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Twitter. I observe similar diffusion patterns among different data sets and adopt the 
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about event diffusion, but also can be used to effectively predict user influence and 

topic popularity. The above findings are consistent across various experiment 

settings. I also demonstrate that linear models consistently outperform state-of-art 

nonlinear ones in both user and hashtag prediction tasks, possibly implying the strong 

log-linear relationship between selected prediction features and the responses, which 

potentially could be a general phenomenon in the case of urgent event diffusion.  
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Chapter 1: Introduction 

 

1.1 Background 

1.1.1 Motivation 

In recent years, the emergence of popular social media platforms, such as Facebook 

and Twitter, has largely changed the way people communicate and interact with each 

other. These online social networks, not only provide global platforms for users 

around the world to share information and express opinions, but also generate 

massive amounts of unstructured data resulting from the human-to-human 

interactions. These huge amounts of data are still far from been fully utilized, which, 

at present, creates great challenges for people or organizations to use the data to make 

better and intelligent decisions (Evans, 2010). One crucial area still to be explored is 

the study of information diffusion (spreading) on these platforms, which has great 

business potential and marketing implications (Evans, 2010) (Chen, 2010) (Stieglitz, 

2013)  

 

Information diffusion can be considered a subtopic of the study of general diffusion, 

and it includes a broad range of research directions. It can be classified into different 

sub-categories depending on the research context—exploratory (Zhou, 2011) vs. 

predictive analysis (Kupavskii, 2012), parametric (with specific concrete diffusion 

models) (Galuba, 2010) vs. non-parametric (empirical) studies (Lerman, 2010),  

diffusion mechanism study (Romero, 2011) vs. user influence study (Bakshy, 2011) 

or topic popularity study (Ma, 2013) etc.  As to the different platforms themselves—

whether they are large social media platforms or only restricted small social 

networks, it is not surprising to find that many research results are generalizable and 

can be directly applied to one another (Borge-Holthoefer, 2013). This is because 

although these platforms do possess diverse properties, they share much more in 

common—which can be summarized as general principles of information diffusion 

(more details in the next section).   

 

For my work, I concentrate on one small aspect of this large topic—information 

diffusion study during urgent events on the well-known social media platform—

Twitter. Here, urgent events are defined as any large event that results in rapid and 

large-scale diffusion. More specifically it may include the following cases:  

 

1. A large emergency or crisis—such as natural disasters, terrorist attack, or any other 

types of events that will cause large-scale public concern.  
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2. General world-wide breaking news that attracts great public interest.  

 

3. Other types of explosive information that can spread over with comparable scale 

and speed, such as diffusion of news about notable brands.  

 

 

 Although in my study I mainly use the data from the first category, I believe the 

results should hold consistently for other types of urgent events. This is because as 

stated above, all these urgent events share common diffusion patterns—vast 

spreading speed and large spreading scales regardless of the types of urgent event. I 

hypothesize that all the tools I have developed can be easily migrated.  

 

However those special properties of urgent events diffusion will add significant 

difficulty on the predictive analysis of the data, since an early period prediction will 

be necessary for stake holders to respond in time and to make proper decisions based 

on the prediction results. This is the main emphasis of my work, which includes 

prediction on user influence and topic popularity during the urgent diffusion.  

1.1.2 Why retweets on Twitter  

Being a microblogging service with over 300 million monthly active users, Twitter is 

commonly used to propagate information using short text messages. Though the 

conversations occurred online, they can provide deep insights in how generally 

people behave and offer enough information to understand human behavior across a 

variety of fields (Bollen, 2011) (Borondo, 2012). Especially for urgent events or 

crises, Twitter has become a powerful medium that propagates news globally at a 

high rate. Therefore, I use information diffusion on Twitter as my study case to give 

practical implications and to develop reasonable decisions or strategies. 

 

Engagement Functionality Network 

Follow others Build friendship Following-follower 
network 

Create new tweets Start new conversation No network directly 
formed 

Mention others in tweets Involve in conversation Mention network 
Retweet others’ tweets Spread information Retweet network 
 

Table 1.1 Twitter engagement and network formation 

 

Table 1.1 gives different types of engagement that a user can participate in on 

Twitter. Posting tweets is the content generating step, but how much the content will 

be exposed will depend on the following-follower network (F-F network in short for 

simplicity) and the privacy settings (a user can control whether his or her tweets can 

be seen by the general public). This is why study of the F-F network has been the 

mainstream research area (Kwak, 2010) (Galuba, 2010): it more or less controls the 

diffusion potentials of new content, in most situations mentioning and retweeting can 
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only occur on the backbone of the F-F network (Figure 1.1). But this can also be the 

reason why study of F-F network alone is not enough—it just provides the backbone 

for the diffusion not the actual diffusion pathways. Moreover, research shows that 

using number of followers as the user influence measure could be misleading (Cha, 

2010) , where large divergence has been observed between user influences measured 

number of followers and number of retweets, and the latter measure is usually more 

meaningful in practical applications.   

 

 

 
Figure 1.1 Information diffusion by retweets on backbone of F-F network (Morales, 2014) 

 

 

As to retweeting, it is a typical Twitter behavior where users can share tweets that 

they believe are interesting or important to their followers or general public (Table 

1.1). Under the context when real life events occur, this behavior can serve to spread 

important information through the whole Twitter network (Kwak, 2010).  

 

However, retweeting is not the only way to diffuse important information on 

Twitter—other engagement behavior such as tweets with links or hashtags and 

mentions are also popular alternatives for retweeting (Galuba, 2010) (Bakshy, 2011) 

(Rattanaritnont, 2012).  But compared to mentions, URLs and hashtag tweets, 

retweets have the following distinct properties:  

 

1. Retweets can be considered as the minimum pathways for information diffusion. 

Perhaps not all informative tweets are retweeted by the users, but people choose to 



 

 

 4 

 

retweet usually when they believe the focal tweet is more important and informative. 

This argument seems to be how some tweets gain a high number of retweets.  Thus 

retweets should highlight tweets which are crucial in information spreading. Using 

retweets is a simple and straightforward way to capture the underlying diffusion 

pathways in the lower bound sense.  

    

2. Retweets can spread information regardless of the origin—they are not restricted 

by the forms of the tweets. Tweets that include URLs, hashtags or simply plain text 

are all able to deliver useful information as long as they are generating retweets. 

Though from my data I observe people do use more URLs and hashtags during urgent 

diffusion, there are still many examples of informative tweets—which got a lot of 

retweets and do not include URLs or hashtags: for example, tweets like 

"HURRICANE WATCH for CT shoreline!!!! Just issued!" occur in the hurricane 

data sets. On the other hand, hashtags or URLs can often be the breeding ground for 

all types of spam messages (Grier, 2010) (Thomas, 2011)  

 

3. Another advantage of using retweets compared to tweets with URLs or hashtags is 

that retweets can provide solidly tractable pathways for information diffusion models 

(Zhou, 2011) (Hong, 2011) (Kupavskii, 2012). While for URLs and hashtags tweets, 

an actual diffusion model that defines the information pathways is needed to do the 

analysis—the diffusion  models defined on chronological adoption of URLs for 

example (Bakshy, 2011). Also as mentioned in the same literature, there are situations 

where chronological adoption of URLs or hashtags does not imply influence at all--

when users could just cite them independently, while in contrast retweets with URLs 

or hashtags can be considered as stronger indicators of influence than these merely 

chronological influence assignments. Moreover, the users' detailed following-

follower structure is often necessary for these influence models definition, which is 

generally not available especially for large number of users.    

 

4. Compared to the other alternative diffusion pathways—mentions, retweets are 

considered as a subset of them in the Twitter context. Thus mentions still possess 

those advantages over URLs and hashtags, but the problem with mentions is that they 

also include casual mutual conversations among users, which cannot be accounted as 

really informative tweets.  

 

Because of these reasons, in my study I focus on retweets for the information 

diffusion study. I understand that they may not reflect the actual diffusion pathways, 

i.e., since users can communicate outside the Twitter platform. Actually I am seldom 

fully exposed to the ground truth information diffusion pathways unless I am keep 

tracking of all users and all of their communication, which is impossible for big 

urgent event diffusion on Twitter—a world-wide information exchange platform. 

Therefore I believe using retweets is the currently best available choice to keep track 

of and study the information diffusion on Twitter.  
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1.2 Related work 

1.2.1 Information diffusion study  

Studies concerning information diffusion in general can be divided into descriptive 

analysis and predictive analysis, and information diffusion modeling usually takes 

both aspects into consideration. My work also contains both descriptive and 

predictive analysis during urgent events diffusion.  

 

In theory, information generally propagates in the form of information cascades 

through various networks. According to Bikhchandani's defination, the propagation 

results from actions of individuals to follow behavior of preceding individuals 

without regarding to their own information (Bikhchandani, 1992). Different types of 

information cascades occur under different networks (Zhou, 2011) (Borge-

Holthoefer, 2013) (Cheng, 2014). As to Twitter particularly, the information cascades 

are usually the retweet cascades or retweet trees (Kwak, 2010) (Zhou, 2011), though 

there are also more complex definitions (Wu, 2011) (Hui, 2012) (Taxidou, 2014).  

 

The descriptive studies of various networks--blog graph (Gruhl, 2004), Facebook 

photo sharing graph (Cheng, 2014), Twitter retweet graph (Borondo, 2012) and even 

more general social networks (Borge-Holthoefer, 2013) have shown that information 

cascades share common properties: one property is the broad but very skewed size 

distribution, which usually resembles the power law distribution; the other one is the 

relative shallow depth and tree-like topology. With these resemblances under various 

contexts, the methods can usually be used interchangeably regardless of the 

underlying networks and diffusion models. Previous research explored information 

diffusion using various models: an epidemic modeling approach is the classic way to 

study the general diffusion process and includes diffusions other than information 

diffusion (Gruhl, 2004) (Khelil, 2002); there are also other nonparametric influence 

models such as the threshold model (Karimi, 2013) and the linear influence model 

(Yang J. &., 2010). However, many of these diffusion models require knowledge of 

the underlying affinity network—in the Twitter case it would be the Following-

Follower (F-F) network, which provides the backbone for potential diffusion to occur 

and is not available in the data sets used for my prediction study (more details in data 

description). Yang (Yang J. &., 2010) built an influence model without a prior 

knowledge of the F-F network and was able to make good predictions about 

influence. But his approach does not fit well into my prediction task because i) He 

studied diffusion of various hashtags instead of diffusion of a specific event;  ii) He 

used data sets that span a long period of time but I only have limited data information 

for the prediction since it is based on an urgent event diffusion.   

 

Despite of the model differences, all the studies more or less use the temporal 

properties of diffusion—e.g. the dynamics of the associated information cascades. 

Given the context of my problem, a very relevant work on information diffusion 

study is from Rogers (Rogers, 2014). She did the diffusion study through exploring 

properties of the retweet chains—e.g. dynamics and topology. Moreover she used the 
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same 15k_user data sets (more details later) as I do for the diffusion tracking study. 

But she did not perform any prediction analysis and she did not use the underlying 

retweet network properties to characterize the diffusion process, which should have 

both high explanatory power and high predictive power. I attempt to utilize all 

available network properties (more details in later section) to reveal elaborate 

dynamics of the diffusion that are not easily exposed using previous approaches. Thus 

the diffusion study in this dissertation can be considered as study of temporal 

networks (Holme, 2012), and I adopt the approach "representing temporal data as a 

static graph" mentioned in the paper.  

 

1.2.2 Prediction during urgent events diffusion  

As to urgent events, crises or emergencies, Palen and colleagues developed 

comprehensive studies (Hughes, 2009) (Vieweg, 2010). But the majority of his work 

focuses on descriptive analysis—information extraction, social impact and user 

behavior etc. Due to the high spread rate and large spread scale of information during 

urgent events, prediction is a challenging task, but at the same time it also 

demonstrates great application potentials—e.g. providing recommendations to stake 

holders who are interested in the urgent diffusion process. Though little previous 

work exists on urgent event diffusion prediction, I can still draw useful lessons from 

previous related work, and then make proper accommodations. As noted in the first 

section, the prediction tasks include user influence prediction and topic popularity 

prediction. However, based on both previous literatures and my discoveries they are 

very closely related from each other (especially when the topics are referred to as 

hashtags in Twitter), many of the models and frameworks can actually be used 

interchangeably.   

 

User influence characterization and prediction has always been one of the central 

topics in the field of general diffusion study—not just restricted to information 

diffusion. Strict definitions of diffusion context and influence are the first things to 

consider in developing any study on user influence. Since there is always a certain 

underlying network that can have the diffusion procedure run through, and nodes 

within the network will represent the actual users, thus various network centrality 

scores from that network can be directly used as the user influence measure.    

 

Since the definition and quantification of user influence is contextually subjective, I 

have to settle a ground truth measure for my prediction study. I use the size of 

information cascades—the retweet cascades to be the golden-rule measure, which is 

considered as a standard empirical influence metric for information seed users 

(Kleinberg, 1999) (Kupavskii, 2012). My fundamental question is which centrality 

metrics have good prediction power for this influence measure. Various classical 

network centrality measures (degree, PageRank, HITS scores etc.) (Kwak, 2010) 

(Cha, 2010) (Galuba, 2010) (Rattanaritnont, 2012) , or additional derived measures 

(Benzi, 2013) (Laflin, 2013) (Mantzaris, 2013) could be used as the potential 

predictors. However, there is no comprehensive study to predict node influence using 

those different network centralities features derived from the underlying diffusion 
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network—the retweet network in my case (more details in next section). I believe 

these various centrality scores derived from the diffusion network should be closely 

correlated with users' retweet cascades size and thus serve as potential effective 

predictors.  

 

Previous research has shown prediction concerning information cascades. For this 

work, I just pick several examples for illustration and comparison purposes.  Bakshy 

(Bakshy, 2011) created an overall prediction on average size of cascades formed by 

root users using a decision tree, but the prediction performance is relatively poor due 

to the highly skew distribution of cascade size, high variability among users behavior, 

according to the author. Noticing this fact, I do not plan to make general prediction 

for all nodes, but only focus on "important" ones. This is a practical consideration 

since the majority of nodes involved in the network will be inactive in the future and I 

only need to keep track of those really influential ones. My prediction framework 

starts with this framework as a foundation, and then implements new network 

features in addition to those have been adopted in the paper. Kupavskii (Kupavskii, 

2012) did a thorough search of possible features and obtained decent results on 

retweet cascades prediction, which provides a broad list of potential features to be 

used. But what he was trying to predict are cascades size formed by specific tweets, 

not by users, thus what he is actually doing is predicting tweet influence instead of 

user influence. Thus, some features he employed—especially the tweet content 

features, are not usable in my case.  

 

Cheng (Cheng, 2014) avoided direct prediction about the cascade size and 

innovatively switch the problem to examine whether each cascade will grow over the 

medium size or double its current size. His work provides insights by discovering 

significant features in controlling growth of cascades, which is also enlightening in 

identifying potential influential users who will double their scores in the future. But 

my main goal is not on the predictability of cascade growth and how the effects of 

various features change with evolution of cascades. It is less relevant for me to know 

the detailed growth procedure or whether a cascade will double its size in the future, 

since the majority of cascades turn out to be small, I only care about nodes that are 

going to be "important" in the near future—top tiers nodes in the influence scores 

rank. Also I am studying Twitter retweet network instead of the Facebook photo re-

sharing network, thus some features are not applicable to my study. Hofman and 

colleagues (Martin, 2016) (Hofman, 2017) had a thorough discussion on the 

predictability of the problem. He mentioned that there was unavoidable inherent 

variability within the prediction problem even perfect information was given. He 

suggested unifying the standard for the prediction and evaluation. He also stressed 

that prediction and interpretation were both important and should be viewed as 

complements to each other. While his work does have profound implications, it was 

of less concern to my goal, which was to find the best available solution for the 

prediction problem given the limited information.  

 

Simmie (Simmie, 2014) applied a hidden Markov model to rank user influence, 

where he combined information from users' social context--following-follower 
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network information and direct tweets observation together. However, his model is 

not suitable for my problem because it requires full social link structure of all users—

which is not available in my data sets. And it is challenging to collect this information 

in urgent diffusion case even if I acquire the ability to do so—the diffusion spreads 

rapidly and the corresponding users graph grows exponentially. One way out would 

be to narrow the scope only to a much smaller group of users, but the problem is how 

to select those users and collect their full social links with only limited information 

given due to the urgent diffusion reality, let alone the fact that the user influence can 

vary much over time—meaning users selected before may not represent the true 

influential users in the population. Moreover, estimation or selection of parameters 

involved in the hidden Markov model requires a large amount of data to obtain 

meaningful results, which, again, is not feasible in my study. Finally, as the author 

noted, the scalability would be an issue. Work done by Galuba (Galuba, 2010) 

illustrates the classical parametric modeling approach using popular epidemic models 

characterize cascades and making prediction about next hop probability. But again it 

required information from all users' follower structure. Significant work has been 

done on predicting the tweet popularity—number of retweets a tweet can get (Hong, 

2011) (Jenders, 2013) (Petrovic, 2011). Although these studies have profound 

pioneering implications, they are not about predicting influential "nodes". And they 

put much value on content features, which are features derived from single tweets and 

are difficult to aggregate onto the user level, thus makes them not feasible for user the 

prediction.  

 

Topic prediction is another area that is well researched. The topic is closely related to 

the content of the diffusion and refers to be a relative stable and consistent collection 

of relevant content (Lambrecht, 1996) (e.g. tweets in Twitter), thus topic study is 

usually involved in the field where users are spreading collections of content or 

information that can be characterized and properly clustered.  Therefore under the 

context of information diffusion, Twitter is the ideal platform to perform topic 

analysis with the actual text in the tweets serving as the content to be grouped.  

 

In the Twitter context, one straightforward topic definition is simply using the 

hashtag (see https://support.twitter.com/articles/49309 for hashtag usage 

recommendation from Twitter): which should include the keywords or summary of 

the corresponding tweets, thus can be used to categorize tweets and describe a topic 

or theme. There have been quite a few successful studies about predicting popularity 

of hashtags. One very well cited work is from Tsur (Tsur, 2012), where the author 

predicted weekly hashtags volume using LASSO linear regression. The author 

adopted a mixture of wide range of features including hashtag content, hashtag tweets 

content, user F-F network features and some basic temporal features.  While many of 

these features are readily available in my data, some others are hard to obtain 

considering the early time prediction demands for my task. Moreover, the prediction 

uses training set lasting a long period of time (several months) on a coarse time 

granularity—weekly volume, which clearly is not suitable in my study.  
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Another well-known research is done by Ma (Ma, 2013). He performed a thorough 

feature exploration for newly emerging hashtags popularity prediction. He modified 

the problem to a multi-class classification task to avoid direct prediction and make a 

comprehensive comparison among a wide range of feature sets for their predicting 

effectiveness. He did doing the prediction on daily basis, which is a finer time 

granularity and similar to my task. He also creatively adopted some context features 

derived from users mention network to improve the prediction, while in my work, I 

use similar ones from the retweet network. Thus his work is much more relevant to 

my purpose, but still does not precisely fit my situation. Firstly, the time frames and 

scales of the data are different.  The data the author used are restricted to Singapore 

based users and have a time span of several months; while the data I have access to 

are generally world-wide tweets about specific urgent events and usually only proper 

about 1-2 weeks. With the long-term and relative homogenous (same set of users) 

data in hand, instead of a strict time based prediction—which is necessary for my 

implementation, the author simply performs a 10 fold cross-validation (CV) over 

hashtags occurring at different time stamps. This research explores the predictive 

power of wide range types of features on newly emerging hashtags prediction; but it 

is not in good alignment with what I aim to achieve: a time-based early-stage 

prediction with only limited information available within a short period of time. Also 

the author defined the number of users adopting a given hashtag as the popularity 

measure, but I decide to use the number of retweets a hashtag obtained as the target 

response to characterize the hashtag ability of spreading information under the urgent 

information diffusion context. This was also due to the differences between the goals 

of the prediction task. Moreover, granted the distinctions on data and prediction task, 

many features adopted by the author became either unnecessary or unavailable—e.g. 

the border user definition and the corresponding exposed vectors were less relevant 

given retweets as the target response. There were also other features not available for 

other reasons—using information from the full data set (the clarify scores) or 

requiring extra effort (hashtag lexical features).  

 

As to more general and abstract topics, while considerable literature focuses on 

various Twitter topic modeling or detection techniques (Cataldi, 2010) (Hong L. a., 

2010) (Mathioudakis, 2010) (Ramage, 2010) (Godin, 2013), fewer studies are seen on 

predicting the continuous popularity of these topics. Potential reasons might be the 

prediction task is not as intriguing as the topic modeling or other popular prediction 

problems—prediction of tweets popularity for example. For the actual topic definition, 

one state-of-art topic modeling to apply is Latent Dirichlet Allocation (LDA) (Blei, 

2003). Many topic modeling studies simply adopt it or other variants of LDA models, 

including the ones mentioned above. However, LDA may not be the most suitable 

topic modeling method in my case. Yang (Yang, 2014) has a very good discussion 

about large-scale and high precision topic modeling in Twitter. Finding the best topic 

models is not the focus of my study. I use the LDA model simply as an extension 

study of the hashtag prediction in order to see how the prediction will vary between 

straightforward hashtag defined topics and more abstract model defined topics. Thus,  

in this study, I just use LDA to model the latent or general topics and then attempt to 
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predict the popularity of the generated topics as weighted aggregation of documents 

(to be defined) popularity.  

 

In short, although my proposed prediction tasks, the focus of my discussion in this 

study, share things in common with previous studies, these tasks still exhibit unique 

properties and thus require novel solutions. 

1.3 Data sets 

There are two types of data sets involved in my study: 15k_user data sets and event 

data sets.  

1.3.1 15k_user data set 

All of the data are collected through Twitter API (for more details see 

https://dev.twitter.com/overview/api), where users can specify various conditions 

(user status, key words, timestamps, locations etc.) to obtain the corresponding tweets 

information. The analyses are performed either with offline or online—streaming 

mode with different API options. Once the conditions for the queries are settled, the 

API server will responds with the query request—for offline mode it will return the 

batch data, for online mode it continuously will update with streaming data.  

 

The data obtained contain all basic information for each tweet such as: status_id 

(unique identifier for each tweet), timestamp, text content, user_id (unique identifier 

for each user), user_name, basic social profiles of the user, links and hashtags 

information of the tweet etc. For my study, I have collected two types of data sets—

the 15k_user data and events data sets.  

 

The 15k_user data sets collect all tweets, followers and friends from a selected group 

of 15k users (Swaroop, 2014) with a period lasting about 2-3 months. The main 

motivation for the collection of 15k_user data sets is to find representative subsets of 

the whole Twitter universe—including all users, tweets and the associated network 

structure. Although collection of Twitter universe over a fixed period of time is not 

infeasible, but it does require additional cost from the Twitter API and often is not 

necessary for many applications. According to Swaroop (Swaroop, 2014), the 

following protocol is used to select the 15k users:  

1. Find the first active user and add it to the active_user_list 

2. Obtain followers of the active users, add them into the user_list 

3. Iterate user from the user_list and determine if it is an active user, if yes repeat step 

1 and 2.  

4. Repeat the above user picking steps until the size of the active_user_list reaches 

15k.  

 

In the above steps, an active user is defined to satisfy: i) Having at least one retweet 

within his or her last 100 tweets; and ii) Having the tweet frequency not less than 1 

tweet per day within his or her last 100 tweets. After the 15k active users have been 
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selected, all of their activity (tweets), followers and friends are also obtained within a 

period of 2-3 months.  

 

Two sets of 15k_user data are obtained for my analysis—15k_2011 and 15k_2012, 

which are collected from different months in 2011 and 2012 respectively, but the 

users are shared between the two sets. Since the collection only specifies users and 

does not put restriction on the tweets content, the data include everything the users 

talked about—news, real time events, normal chats, or any other conversations. This 

is in contrast to the event data set, which only includes tweets about a specific event.  

 

The 15k_user data is mainly used for the study in Chapter 2, where I describe the 

generation of a subset of 15k_2011 set—the OBL data set. This data set is about the 

real big event—death of Osama Bin Laden and is used as the sample set for the 

diffusion tracking study.  The OBL set is extracted from the 15k_2011 set using 

regular expression with some key terms derived from his name—Osama, bin laden 

etc. More details of the data are described in later sections.  

1.3.2 Event data set  

The event data sets have similar structure and data fields as the 15k_user data; but 

now the tweets are confined by selected key terms instead of selected users. These 

event data sets are used for the prediction study described in Chapter 3 and Chapter 4. 

With certain conditions specified—keys words, location or other restrictions by the 

end users, the Twitter streaming API is expected to return a collection of tweets 

fitting into those conditions. But according to the Twitter API document, the volume 

of the returning collection cannot exceed the volume of a small fraction of total public 

tweets stream at the same time. This is saying that if the volume of the target tweets 

collection is larger than the volume of a certain fraction of the total public tweets 

stream at the same time, only a sample of the target collection will be returned; 

otherwise, the full collection should be returned. Even under the condition that only a 

sample of target collection is returned, the sample itself usually already constitutes a 

huge amount of data considering the full volume of the public tweets stream, thus the 

effect of sample bias introduced in this way is limited. But Twitter also provides 

service to remove this volume cap with additional financial cost if that is desired.  

 

Once an urgent event is identified, the streaming collection can be started using key 

terms specifying that event. Following this, 4 event data sets are collected, each of 

which is concerning a crisis event: Hurricane Irene in 2011, Hurricane Sandy in 2012, 

Nepal earthquake in 2015 and Jonas blizzard in 2016.  Simple key words are used to 

track the tweets—for example the following terms are used to grab the Irene data set: 

#irene, irene, #hurricane, hurricane, #hurricaneirene, where the prefix "#" denotes 

hashtags in Twitter.  This simple approach will inevitably catch irrelevant tweets and 

does not include all tweets talking about the events, but I believe the level of noise is 

low and the volume of the collection is large enough so that these bias factors do not 

affect the final results. I will come back to discuss more details on the data sets in 

later sections.   
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1.4 Network analysis 

1.4.1 Retweet network  

As mentioned in the previous section, retweets can provide valuable insights for 

information diffusion study on Twitter. Thus the network formed by retweets can be 

considered as the approximate to the underlying diffusion pathways. Moreover, the 

time stamps information associated with the retweets can be used to investigate the 

temporal properties of the diffusion. In contrast to the other often studied network—

the F-F network, the retweet network not only better represent the diffusion pathways, 

but can also provide rich dynamic information about them. The definition of the 

retweet network is straightforward: if user A retweet user B, then I consider there is a 

directed edge formed between user A and user B (with the timestamp of the retweet 

as the edge attribute), thus a directed network is formed.   

 

Table 1.2 shows one example of retweet with several common data fields. Generally 

a retweet can be captured by either the retweet indicator or using the text regular 

expression "RT @username". However as seen in this example the retweet indicator 

does not work and cases like this are not in a small number, thus I decide to use the 

regular expression to capture all the retweets. In the above example I will form a 

directed edge from user GLB62 to user keithurbahn.   

 

From now on, network will refer to the retweet network by default unless otherwise 

specified.   

 

 

Date Status_ID User_I
D 

User_na
me 

Timesta
mp 

Text Retwe
et 
indicat
or 

5/1/20
11 
22:27 

6487865544423
4200 

149444
71 

GLB62 1304303
251 

WOW 
RT@keithurb
ahn: So I'm 
told by a 
reputable 
person they 
have killed 
Osama Bin 
Laden. Hot 
damn. 

0 

 
                         Table 1.2 One example of retweet from OBL set 
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1.4.2 Related network statistics 

Given the retweet network, I have chosen several important network statistics for the 

study. Since the network is directed, I choose network statistics that are properly 

defined for directed network.  

 

 

 
Figure 1.2 Global level and node level network statistics from a simple network 

 

 

Figure 1.2 gives a picture illustration of the network statistics involved in my study. A 

simple directed network with 5 nodes and 6 edges (each arrow in the graph is a 

directed edge) is used to explain various network statistics. In summary the network 

statistics studied can be classified into two categories: global level statistics and node 
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level statistics. Global level statistics refer to statistics defined on the global or the 

whole network level and node level statistics refer to statistics defined on the node or 

user level.  

 

More specifically, global level statistics include the followings:   

1. Average degree: since an edge is directed, each link can be considered as an 

inbound link or an outbound link depending on which node is considered as the 

reference; but the average degree over all the nodes will be the same no matter 

inbound links or outbound links.  

 

2. Density: it is a measure for how complete a network is connected—the number 

fraction of connected edges over the maximum possible edges.   

 

3. SCC (WCC), LSCC (LWCC) and reciprocity: SCC and WCC are strongly 

connected components and weakly connected components respectively. For directed 

network a strong link exists between two users if two users can be connected in both 

directions, while it is a weak link if the connection only exists in one direction. All 

nodes that are strongly (weakly) connected from each other will form a strongly 

(weakly) connected component. LSCC (LWCC) is largest strongly (weakly) 

connected component, which is the fraction of size of largest strongly (weakly) 

connected component over the total size (number of nodes). Reciprocity is simply the 

counting fraction of edges that are reversible (bi-directional).   

 

4. Global transitivity (clustering coefficient) and diameter: global transitivity counts 

the fraction of connected triangles over all connected triples, here I only consider 

undirected connections for simplicity and isolated nodes are not counted. The 

diameter is the longest path length (length of shortest path) between two nodes 

existing in the graph, also only count undirected connections for simplicity.  

 

For node level statistics:  

1. Indegree and ourdegree: simply counts of inbound links and outbound links for 

each node.  

 

2. Authority and hub scores, eigenvector and pagerank: these are all centrality 

measures calculated based on adjacency matrix of the graph, which can be considered 

as "deeper and extended" measures instead of one-step measures of indegree and 

outdegree.  

i) Authority and hub scores are computed recursively based on each other, which 

characterize the value of a node by inbound links and outbound links respectively 

(Kleinberg, 1999).   

ii) Eigenvector centrality is derived from the principle eigenvector of adjacency 

matrix, and again the direction of edges is ignored in the calculation due to sparsity 

problems of the graphs.  

iii) Pagerank is a popular centrality measure to quantify importance of web pages, 

what makes it different from the rest three is that it has an external parameters to be 
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determined—the damping factor. This factor is used to characterize the decaying 

influence over long-ranged links, which is usually set to be 0.85 for convention.       

  

3. Local transitivity (clustering coefficient): similar to the global transitivity, it counts 

the fraction of triangles over connected triples from a given node. Isolated nodes are 

set to be zeroes and direction is also not considered.  

 

4. Betweenness and closeness centrality: these two measures are related to shortest 

paths among nodes. Closeness centrality is proportional to inverse of the average path 

length (length of shortest path) between the given node and the rest ones. 

Betweenness centrality simply counts the number of shortest paths through a given 

node.   

 

All the above statistics are computed using the R package—igraph. Firstly the graph 

is constructed from an R data frame formed by the edge-list. Then different network 

statistics are computed using different built-in functions included in the igraph 

packages, further implementation details are illustrated in the manual of the package.      

 

1.4.3 Dynamic network statistics extraction 

In order to study the dynamic properties of the diffusion process, instead of using just 

the aggregate (static) version of all these statistics, I also need to take statistics from 

snapshots of temporal networks based on the timestamps. The idea is straightforward, 

and Figure 1.3 demonstrates the statistics extraction steps from a simple network. 

 

In Figure 1.3, I assume to have the network below within time period [0, 𝑇], and the 

edges are formed within each sub-period: e.g. user d retweet user c and user e retweet 

user c within sub-period [
1

3
𝑇,

2

3
𝑇]. Then within each sub-period, a sub-network is 

formed and the corresponding statistics are extracted, I will get one set of statistics 

within each given time interval and in the sections of this dissertation, I just refer 

these statistics as dynamic network statistics, while the statistics derived from the 

whole period [0, 𝑇] (the full network) will be called static statistics—implying they 

do not contain the temporal information of the network.   
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Figure 1.3 Dynamic network features extraction illustration 

 

 

The network truncation time 𝑇 defines the full network I would like to study. With 

the additional parameter—the time window size (denoted as Δ), which is 
1

3
𝑇 in my 

example, I can control how transient or persistent temporal information I want to 

know from those dynamic statistics.  

 

The example in Figure 1.3 just shows one way of defining the dynamic statistics, 

which I call it segmented dynamic statistics. The other way to extracting the dynamic 

statistics is to define the cumulative networks over time (Figure 1.4) and I can obtain 

the cumulative dynamic statistics.  
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Figure 1.4 Two types of dynamic statistics series—segmented series (top) and cumulative 

series (down) 

 

The potential problem with the cumulative series is that the statistics series are 

correlated (future values depend on past values) and it is not good for predictive 

analysis—the correlated features will cause problems especially for linear models. 

Thus I will stick to the segmented series from now on unless otherwise specified. But 

there are still situations when I need to use the cumulative series: one is when the 

segmented sub-graphs are very sparse and cause the segmented statistics less 

informative or even not valid; the other may just be I do want to incorporate the 

cumulative effects into my observation.  

1.5 Outline of work 

In this dissertation I want to demonstrate how static and dynamic network properties 

of the retweet network reveal valuable insights of urgent event diffusion on Twitter, 

the outline of the work is listed as follows: 

 

 In Chapter 2 I focus on how I use these network statistics to perform real time 

tracking of urgent event diffusion and how they can shed lights on various temporal 

patterns of the diffusion process. Moreover, I make a simple attempt to compare 

whether these statistics can differ among different types of popular topics on 

Twitter—trends (Mathioudakis, 2010), which may not be real life events. All the 

analysis done in this chapter used the 15k_user data since only these data include 

trends of various types and is not restricted to real life urgent events.  

 

In Chapter 3, I describe how I aim to spend my effort on one important problem in the 

field of information diffusion study—the user influence prediction. I take the size of 
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retweet cascades as a measure of influence and established an early time prediction 

framework using a "cross prediction" mode to make effective prediction on the user 

influence within only limited amount of prior information given. I also study how 

various experiment factors affect the prediction performance and I reach relatively 

consistent results. In this study, I use the event data sets since 15k_user data only 

include a small subset of the whole diffusion of the event.  

 

In Chapter 4, I move to the prediction of popular topic during urgent event diffusion.  

The same data sets are used and similar prediction framework as the user case was 

applied. I adopt two types of topics to perform my prediction tasks: self-defined 

topics, i.e.,—hashtags, model defined topics, i.e., —latent topics. I observed similar 

results with the topic prediction as to the user case. 

  

Chapter 5 is a comprehensive conclusion of the whole study and gives promising 

pathways for future extension.  
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Chapter 2: Tracking urgent event diffusion on Twitter 

 

2.1 Introduction 

2.1.1 Motivation 

The retweet network is suitable to explore the temporal patterns of information 

diffusion on Twitter. Given all the information provided by the Twitter API, the 

retweet network can serve as a real time monitor of information diffusion on 

Twitter—not just for diffusion of events, but for diffusion of any popular topics—

which are called trends on Twitter. By viewing the event diffusion process as 

expansion of the retweet network, the diffusion can be tracked and analyzed with 

retweet network analysis. In this Chapter, I show that the dynamic network statistics 

derived from the retweet network can reveal detailed dynamics of urgent event 

diffusion. Moreover, these statistics can also be used to differentiate hashtags of 

different types—e.g. hashtags related to real life events or hashtags related more 

general topics on Twitter.  

2.1.2 Data description 

For the diffusion tracking study, I mainly use the OBL data set from the 15k_user 

data as my sample data set. Similar results are derived from the event sets.  

 

Data 
set 

No.twe
ets 

No. 
user
s 

No.retweet
s 

No. 
mentions 

No.tweets 
with URLs 

No.tweets 
with 
Hashtags 

15k_20
11 

109792
80 

146
23 

2426257(0.
221) 

6879875(0.
627) 

3510811(0.
320) 

2154061(0.
196) 

15k_20
12 

785058
3 

120
43 

1806645(0.
230) 

4577257(0.
583) 

3487325(0.
444) 

2327301(0.
296) 

 
                                       Table 2.1 15-k user data summary 

 

Table 2.1 gives a summary for the two 15k_user data sets I have analyzed, the time 

frames are from 25 Apr 2011 13:24:57 GMT to 17 Aug 2011 01:23:22 GMT for the 

2011 set and from 07 Sep 2012 17:00:04 GMT to 11 Dec 2012 11:56:23 GMT for the 

2012 set. The numbers in the parentheses represent the corresponding fractions over 

the total number of tweets. Not all users are active within the periods. While fractions 

of retweets and mentions remain stable, the fractions of URLs and hashtags have 

increased—implying users are getting more used to links and hashtags.  
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Figure 2.1 shows the overlay comparison of F-F distribution between the two 

15k_user sets, only users (11966) from the intersection set of 15k_2011 users and 

15k_2012 users are shown in the figure. Most users do not change their behavior 

much, though some users shift a little bit. The number of tweets has generally 

increased. For both 2011 and 2012 sets there is an unusual turning slope, due to the 

Twitter restriction on the number of friends a given user can follow—the limit of the 

friends depends on the number of followers a user has. From the plot it seems that 

this is simply a linear relationship and it is possible to infer the approximate linear 

equation from the data.  Also a user is likely to post more tweets with higher number 

of followers, that could be because that posting more tweets and having more 

followers could have a reinforcement effect on each other.   

 

           
 
                        Figure 2.1 15k_user data sets F-F distribution comparison 

 

Table 2.2 is a comparison table for the OBL data and the background set—which is 

simply a mixture of everything (all tweets) from the 15k_user data but with the same 

time frame as the OBL set: from 02 May 2011 02:27:10 GMT to 04 May 2011 

02:23:51 GMT.   
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Data set No.tweets No.retweets No. mentions No.tweets 
with URLs 

No.tweets 
with Hashtags 

Background 470438 114206(0.243) 288058(0.612) 174262(0.370) 120052(0.255) 
OBL 28743 12815(0.446) 16338(0.568) 14076(0.490) 7666(0.267) 
                                  

                                             Table 2.2 OBL data summary  
 

The OBL set, which is the representative for the event data set, has significantly 

higher fractions of retweets and URLs compared to the background—implying more 

retweets and links occur during urgent event diffusion compared to the normal-level 

Twitter activity. While the components of hashtags and mentions do not differ much, 

showing these two types of tweets are not well distinguishable between urgent event 

diffusion and normal activity.  

 

 
                               

                  Figure 2.2 Evolution plot for OBL and background sets  

 

Figure 2.2 is the evolution plot for OBL and background sets, and the time interval 

length for the series is 60 min. It clearly shows how the diffusion dynamics of an 

event differ from the normal-level activity. All curves from the background set have 

clear periodical patterns, while ones from the OBL set slowly decay.  All types of 

tweets follow the similar trend for both sets, only differing by their scales.  

 

 

Statistics Background 
network 

OBL network OBL_15k 
network 

No. nodes 61963 10099 754 
No. edges  114206 12815 787 
Avg. indegree 1.843 1.269 1.044 
No. SCC 61397 10088 743 
No. WCC 2118 1110 146 
LSCC 0.00749 0.000495 0.00663 
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LWCC 0.873 0.711 0.561 
Transitivity 0.00513 0.00223 0.0193 
Reciprocity 0.00687 0.00141 0.0234 
Diameter 29 8 7 
 
                                                Table 2.3 OBL retweet network summary 

 

Table 2.3 shows the retweet networks comparison, where the OBL_15k network 

refers to the network only including edges between the 15k users. The three networks 

are ordered in decreasing scopes, and also form a decreasing subset series—the latter 

ones are subsets of preceding ones. Besides the differences on the scales of the 

network, the OBL_15k network is better connected as can be shown by the 

transitivity and reciprocity. But the networks are not generally well connected in the 

strong sense and do not have much clustering patterns (number of triangular links). 

By looking at the retweet networks formed by other subsets similar results are 

observed; thus this can be considered as general properties of the retweet network: (1) 

few mutual connections (users have been retweeted by each other) and clusters, and 

(2) mainly composed of unidirectional links. All these values are even lower in the 

event network—the OBL network, which means this property is reinforced during 

event diffusion.  

 

2.2 Event evolution tracking 

2.2.1 Global level tracking 

In the next two sections I will describe the various network statistics that are used to 

track the diffusion of the event over time, the default network used will be the OBL 

network unless otherwise specified.  

 

Figure 2.3 shows the evolution plots of various global statistics of the OBL network, 

the titles of the subplots are the corresponding time window sizes. Both the number of 

nodes and number of edges are decaying gradually--implying the diffusion is 

gradually ceasing. The curves become smoother with a larger time window; local 

patterns average out as some small peaks in the plots have disappeared with 

increasing time window size.  The peaks at 8AM of May 3rd in the LSCC, LWCC 

and reciprocity plots demonstrate there are some mutually connected links at that 

time, but the number of the links is not large given the values of the statistics. Except 

for some small peaks, the reciprocity remains zero, showing barely any edges connect 

both directions. In the big picture, it shows the network is weakly connected 

relatively well but not strongly connected. This can also be seen from the differences 

of the trends between the LSCC and LWCC curve: while the LSCC curve remains 

nearly flat except few bidirectional edges, the LWCC curve exhibits similar patterns 

as the total number of nodes in the long run. This indicates the largest weakly 

connected component follows nearly the same pace with the number of nodes, which 
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can also be viewed as the sum of size of all components. To put this in another way, it 

shows that the diffusion starts out with large-size weakly connected components—

many users are connected by the retweet paths, then gradually dies out with fragments 

of small size weakly connected components—much fewer users continue their 

discussion in smaller groups; only few users have retweeted each other in the whole 

procedure—meaning the flow of the information mainly goes in one direction. In 

summary, by controlling the time window size and the statistics types, I can reveal 

both local and global dynamic patterns of the diffusion to a specified level of 

resolution.  
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       Figure 2.3 Global level network statistics evolution plots for OBL network   
 

 

         
Figure 2.4 Global level network statistics evolution plots comparison for three networks   
 

Figure 2.3 has illustrated the comparison varying the statistics and the time window 

size, Figure 2.4 will demonstrate the comparison from different scopes of networks. 

Apart from the obvious differences on the scale, clearly both the strongly connected 

and clustering patterns stand out when the scope of the networks is decreasing. This is 

a natural result from the fact that only retweets originated from the 15k users are 

included in the data—meaning the mutually connected links can only come from the 

15k users. This result also discloses a flaw in the 15k_user data—it naturally carries a 

bias when studying the retweet network by excluding all retweets not coming from 

the 15k users. Thus this diffusion study will inevitably be biased, but similar results 

are likely to manifest by observing the patterns within the 15k network, which is free 

of bias. Moreover, even if the results are incorrectly specified due to the underlying 

bias, the methodology still proves its value and that is the main idea I want to convey 

in this section.  
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2.2.2 Node level tracking 

 

The previous section mainly discuss how I use various global level network statistics 

to track detailed dynamic patterns of diffusion, in this section I will extend similar 

discussion to node level statistics.  

 

While the global level statistics can tell explicit information about the global patterns, 

it is natural to believe the node level statistics can also be informative for node level 

tracking.  

 

 

       
                        

         Figure 2.5 Node level network statistics evolution plots for OBL network   

 

Figure 2.5 shows the top 10 node level statistics evolution plots ranked by 4 different 

centrality measures, the upper 4 plots use the segmented series and the lower 4 plots 

use the cumulative series for comparison (for the differences between the two series, 

please check the dynamic network statistics section). The top 10 nodes are different 

with different centrality measures, although authority score and indegree, hub score 
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and outdegree are closely related from each other. The most valuable information 

obtained from the figure is that the dynamics of important nodes can be monitored, 

where the importance is defined by various centrality scores. The segmented series 

plot emphasizes the nodes importance within each selected time window, while in the 

cumulative plot I can see how the cumulative importance ranking is changing over 

time. Considering the confusion from plotting too many lines, only 10 nodes are 

shown for the node level plot, and these are the top nodes that are needed to be 

studied. But this methodology provides the flexibility where nodes can be targeted 

and monitored as decided. All nodes can be monitored at the same time, or target top 

nodes ranked by a specific centrality measure.   

 

2.3 Event hashtag identification 

2.3.1 Hashtag evolution comparison 

I have shown that these different network statistics can be used to shed light on the 

dynamics of urgent event diffusion.  Now I would like to further investigate whether 

a real time event will exhibit distinct network properties to general popular topics on 

Twitter—trends or not. I think of this as the extension of the diffusion tracking study 

not only since they are closely related, but also because I have the full activity of the 

15k users on general trends (not just ugent events).      

 

                 
Figure 2.6 Evolution plots for event and non-event hashtag networks 
 

In Figure 2.6 I select two hashtags of different types and then compare the retweet 

network properties derived from the two hashtags. "TeamFollowBack" is a popular 

meme on Twitter, using this meme, interested users will adopt the hashtags, follow 

each other and communicate each other. Hashtag "royalwedding" corresponds to the 

British royal wedding in 2011. The first hashtag can stand for a large group of trends 

on Twitter which are not related to life outside Twitter and I call this a "meme 

hashtag", while the second hashtag serves as an indication of an event happening 
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outside Twitter and I call this an "event hashtag". Clearly both the hashtag volume 

(number of tweets with a given hashtag) and the number of edges (the hashtag 

retweets volume) show the differences between these two types of hashtags—the 

meme hashtag does not have a clear trend and remains relatively stable over time 

while the event hashtag follows a sharp burst-decay trend. Other plots also show the 

differences: the LWCC and LSCC of the event hashtag network have much larger 

variations than the ones from the other network.  But the meme hashtag network has 

more clustering and mutual links since it includes more mutual communication; this 

is in contrast to the event hashtag network, which mainly contains simple one-

directional links. Similar results also happened in other event related hashtags.  

 

The above comparison raises the conjecture that hashtags related to real life events 

might be distinguished from other types of hashtags using the network statistics. 

Although I do not have many event related hashtags in the whole 15k_user data, this 

is a potential future research direction.  

2.3.2 Hashtag clustering  

Following the conjecture from the previous section, I make an attempt to cluster a 

group of selected hashtags using network statistics. The clustering results are 

compared to the results obtained using the hashtag tweets text, which is considered as 

the ground truth here. The selected hashtags are from both 15k_user data sets:  

15k_2011 set: 

'royalwedding','Osama','OBL','BinLaden','Tornado','Joplin','MemorialDay','Te

amFollowback','FF','NowPlaying','YHP','SocialMedia','MADNESS','quote','SHOUTO

UT','500aday','fb‘ 

 

15k_2012 set: 

'election','election2012','iphone5','debate2012','blackfriday','hurricanesandy','h

alloween','hurricane','facebook','dope','twitter','business','hiphop','travel','jobs','music

','marketing','tech','hr' 
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                            Figure 2.7 Hashtag tweets text cleaning and processing 

 

Here I intentionally choose a balanced mixture of event related hashtags (boldfaced) 

vs. non-event ones to see how they are different from each other. Here I have tried my 

best to find hashtags related to real events. The same list of hashtags will also be used 

in the binary classification task for the next section. The network features used for 

both tasks are: average indegree', 'density', 'LSCC', 'LWCC', 'WCC ratio' and 

'transitivity'. The WCC ratio is the ratio of number of weakly connected components 

over total number of nodes. To accommodate the variations among time spans of 

different hashtags, I choose the uniform time span of 6 days for all hashtags, where 

starting times are the times when the hashtags are first adopted. Also the time window 

size is chosen to be 1d to obtain various dynamic network statistics, both the static 

statistics and the dynamic ones are combined to perform the clustering.  

 

 

 

Remove special 
strings  and 
punctuation 

Perform 
tokenization, 

lowercasing and 
stop words 

removal  

Remove remaining 
tokens with non-

alphanumeric 
characters   

Perform token 
stemming and 
remove tweets 
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number less than 
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   Figure 2.8 Hashtag K-means clustering 2D principle components representation (K=5, the 

upper one uses the network statistics, the lower one uses the text features) 
 

I adopt the simple but powerful K-means clustering method (Hartigan, 1979), which 

is an iterative clustering method trying to minimize within-cluster distance given the 

clusters number.. Figure 2.7 shows the full text processing flowchart for hashtag 

tweets text, which are pretty standard text cleaning steps. Here the text for each 

hashtag refers to the text of all types of tweets (retweets or mentions etc.) from a 

given hashtag. The obtained tokens after the cleaning process are further filtered by 

selecting the top 10k tokens weighted by TF-IDF (term frequency inverse document 

frequency) (Blei, 2003) , which is a popular weighting strategy for document related 

analysis such as topic modeling.  All the text cleaning steps are done using Python 

library NLTK. The special strings to be removed, i.e. mainly URLs, are defined using 

regular expressions. The NLTK ordinary word tokenizer was used and the stop words 

list from NLTK is modified a bit by adding letter "t" to all negation stop words, doing 

so is because I will perform punctuation removal before stop words removal. The 

stemmer used is the Snowball stemmer. The same process will be used for topic 

prediction task in Chapter 4.  

 

 

Figure 2.8 demonstrates the clustering results (K=5) with a 2D principle components 

representation, which is using the first two components of principle component 

analysis (PCA) to visualize the clustering results. First I look at the results from text 

features (the lower plot), some closely related pairs are close from each other, which 

is really making sense: SocialMedia, twitter and facebook; election, election 2012 and 

debate2012; Osama, OBL and BinLaden; hurricane, hurricanesandy, Joplin and 

Tornado etc. While for clustering results using network statistics, they are more 

concentrated. This is mainly due to the difference between the dimensionality of the 

data space: the total number of network features is only 42, and the number of text 

features is 10k. In spite of the great dimensionality difference, some meaningful pairs 

can still be obtained: Osama, OBL and BinLaden; Joplin and Tornado; hurricane and 

hurricanesandy; election, election 2012 and debate2012. There are still some 
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discrepancies, especially to those non-event hashtags, but it is clearly demonstrating 

that the network statistics do have the ability to distinguish hashtags to some extent.  

 

 

    
 
 Figure 2.9 Hashtag K-means clustering sum of squares ratio varying by number of clusters 

(the left one uses network features, the right one uses text features) 
 

Usually the performance of the clustering is measured by some external ground truth 

evidences, but since I do not have them here, I use the internal metric instead—the 

sum of squares ratio. The ratio is defined as the fraction of sum of squares among 

clusters over the total sum of squares, thus higher ratio will imply higher fraction of 

between-cluster variation—meaning better clustering performance. Figure 2.9 shows 

the sum of squares ratio changes over number of clusters from K=2 to K=10. While 

the ratio becomes saturated after K=5 for clusters from network features, it is 

continuously increasing for clusters from text features. Again this is mainly due to the 

high dimensionality of the text features, but it is also indicating that the hashtags are 

difficult to cluster generally--there has been much noise in the data.  

 

Therefore I have observed that using network statistics can indeed provide some 

meaning results, however due to the noise of the overall data, it seems hard to obtain 

a good clustering even using the text features based on the internal metric—sum of 

squares ratio. In the future work, I will explore using subject matter expertise to 

provide an external ground truth. This will create the ability to validate whether using 

text features only is a good choice or not. In this case, I conjecture that the network 

features may provide additional improvement on the clustering and a combination of 

network features and text features could offer better results.  

2.3.3 Event hashtag classification 

To verify how network features can be used to distinguish event related hashtags 

versus non-event ones, I performed a simple binary classification task in addition to 

K-means clustering. The same set of hashtags and features are used in this task. The 

two classes are specified as event ones (boldfaced) and non-event ones. The AUC 

(area under curve) score is used as the performance metric since this is a normal 

balanced class classification, and AUC works well in that context. For a classification 

task with imbalanced classes, AUC is no longer a good score and other alternatives 

should be used (more discussion on this in later sections). The classification method 

used is deep learning (deep neural network), which is a state-of-art nonlinear method, 
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the details of the method and corresponding parameters setting will be mentioned in 

later sections. The reason I am using this method here is due to the high 

dimensionality of text features, the ordinary linear model cannot handle this problem 

well due to singularity issues; another alternative state-of-art nonlinear method—

random forest was examined, but the results are not presented due to computational 

costs.  

 

Features  min 1st Qu median mean 3rd Qu max 

Network 0.35 0.75 0.85 0.83 0.91 1 

Text  0.3 0.85 0.95 0.89 1 1 

Combined 0.55 0.85 0.95 0.92 1 1 
 

       Table 2.4 Event hashtag classification average AUC scores with 100 repetitions 

 

I propose exploring the task using the standard binary classification settings:  

1. Split the data into 3: 1 ratio of training vs. testing sets with the same class labels 

ratio as the original data.  

 

2. Train the model on the training set, then apply the trained model on the testing set, 

and measure the AUC score.   

 

3. Repeat the random splitting in step 1 by n=100 times and all the steps above, 

collect all the AUC scores.  

 

Table 2.4 shows the results from the classification. The performance of the 

classification highly depends on the training sets splitting, this is mainly due to the 

sparsity and labeling of the data—I need more well labeled data to better train my 

model. In spite of the large deviation in the results, there is still a slight improvement 

with the addition of network features, and using network features alone can already 

give comparable results. Considering the dimensionality difference between the two 

types of features, I believe the network features are indeed able to identify event 

hashtags well. However, due to the limited amount of data I have, I am not able to 

further validate this hypothesis.  

2.4 Discussion 

2.4.1 Summary 

This Chapter mainly discusses how I utilize the 15k_user data to study the event 

diffusion on Twitter. In the event diffusion tracking section, I use various evolution 

plots to demonstrate how different network statistics can be used to reveal detailed 

diffusion patterns of an event. There are many parameters that can be finely tuned in 

order to deliver the most accurate information I want. The time window size is the 

one that controls the level of precision: a smaller time window size will result in 

sparser networks and more local dynamic patterns, while a larger time window size 
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will average out small local variations and provides more stable trends. And the 

choice of the time window size should be based on the full time span of the 

data/event/network—a shorter time window size for more transient events and a 

longer time window size for more long-lasting ones. The type of network statistics to 

monitor is also an important factor to consider. For general purpose diffusion 

tracking, the ordinary ones would suffice: number of nodes and edges, average 

degree, or any other content related tweets statistics—fractions of retweets, URLs and 

hashtags etc. For more specialized patterns, such as connectedness, reciprocity, 

clustering or other path related information, I should resort to the corresponding 

specific statistics to handle. Also if I am more interested in how a single or a specific 

group of users behave during the diffusion instead of the global diffusion patterns, I 

should monitor the node level statistics—the type of centrality measure to monitor 

will subject to the requirements of the task: i.e. betweenness centrality for the 

"bridging" functionality of a node and PageRank for a general comprehensive 

measure of the node importance. Sometimes the scope of the underlying network is 

another factor to manipulate, especially when different levels of networks are already 

well defined. Just like the comparison I have shown in the Figure 2.4, different 

choices of networks can either enlighten or blur specific diffusion patterns, deciding 

which networks to choose will depend on the actual task to accomplish.  

 

I have also shown that network statistics can not only be used to keep track of the 

event diffusion, but can also be used to distinguish event related hashtags versus non-

event ones. First I used a figure to illustrate that an event hashtag can be visually 

differed from a non-event one using the network statistics evolution plots. Then I 

further investigated this hypothesis by performing K-means clustering and binary 

classification on selected hashtags from the 15k_user data sets. The results are not 

perfect, but they do demonstrate the network features have the ability to distinguish 

the event hashtags to some extent. However, due to data limitations, I will not be able 

to further verify this conclusion.  

 

In summary, the network statistics can not only provide much insight to the dynamics 

of the diffusion, but can also reveal distinct properties of event related hashtags. But 

more data are needed to further validate the latter conclusion.   

2.4.2 Future work 

As notified previously, one main direction for future work would be to validate the 

obtained results for event hashtag identification. I need well defined classes or 

clusters of hashtags and accurate corresponding labels on each hashtag. Moreover, I 

need a large amount of data like this to drive more persuasive conclusion. Finding 

such data is not an easy task, much time and effort are needed, but the potential 

impact will also be great if I can show the network statistics can indeed generally 

distinguish hashtags of different types.  

 

Another meaningful extension would be trying to build a real-time monitoring system 

to track diffusion process using various network statistics, on both a global and node 

level. Unlike the previous work described, this will be a task requiring intense 
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engineering effort, but it is equally or even more impactful with practical 

implementation purposes.   
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Chapter 3: Predicting user influence during urgent event 

diffusion 

 

3.1 Introduction 

3.1.1 Motivation 

The definition of a user's influence can vary in different contexts, and in my study I 

confine influence to be the ability to "spread information" during the urgent event 

diffusion on Twitter. Thus I choose the total sizes of retweet cascades generated by a 

given user to be the measure of the user influence.  A retweet cascade can be simply 

considered as the full tree-like structure generated from the original tweet, where each 

edge is also labeled with a timestamp. Figure 3.1 shows some concrete examples of 

retweet cascades from the Sandy set. The majority of cascades will appear just like 

the upper one in the figure with centric star shapes; occasionally, there will be 

cascades with more complicated structures like ones in the lower part of the figure. 

Another part to clarify is that since I am measuring the user influence and a user can 

produce several popular tweets with different number of retweets, some weights are 

needed to aggregate these sizes of retweet cascades to generate a single score for that 

user. There are no well-established conclusions for this choice of weights from 

previous studies, therefore I will use the simplest method—the total size of all retweet 

cascades from a given user as the influence measure for that user. In this way, users 

with one highly popular cascade will be considered equally influential as ones with 

multiple median level cascades.    

 

The chosen influence measure is only well defined for users who have posted some 

original tweets and at least received some retweets. I will refer to these users as seed 

users—implying they are the seeds of the diffusion. However, there are definitely 

many other users that also take part in the diffusion process, and some of them are 

also playing important roles—such as users who actively retweeting others. But for 

the purpose of this work, I will concentrate on the seed users. Thus I clarify here that 

the user influence here will literally imply the influence power resulting from the 

"seeding behavior", not something else.  

 

Moreover, based on the literature review, I have discovered the following limitations 

on the influential node prediction:  

1. Since the prediction problem is time sensitive, the authors will usually use data 

spanning a long period to train the model (Bakshy, 2011) (Galuba, 2010)  (Kupavskii, 

2012). However, this is not always feasible since the information given to me for 

training is often limited, especially for the urgent diffusion case—high diffusion rate, 

large diffusion scale and users will not be aware of the event in advance. In this 

situation the value of the prediction will largely depend on whether I can make decent 
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prediction when only having restricted information, which is often the case in the 

Twitter data due to various restrictions of Twitter API. 

 

2. The network features derived from the actual diffusion networks are seldom used 

in prediction, often only the number of retweets are used; while features from users' 

social context--number of followers, number of friends or pagerank of F-F networks 

etc. have been used or suggested frequently (Bakshy, 2011) (Kupavskii, 2012) 

(Petrovic, 2011) (Hong, 2011) (Simmie, 2014). The structural and dynamic 

information contained in the diffusion network--the retweet network in my case, 

could potentially help the prediction.   

 

 
 
                         Figure 3.1 Example of retweet cascades from Sandy set 

 

3. There is no a comprehensive comparison among different prediction methods, 

many authors have adopted decision tree based method—decision tree, random forest 

or gradient boosted tree.  It is generally considered as a better approach than the 

classic GLM (generalized linear models) method (Bakshy, 2011) (Kupavskii, 2012), 
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but may not be the case everywhere;  and the other state-of-art machine learning 

method that I will employ—deep learning has not yet been applied to this field.       

 

In this Chapter, I attempt to work through the above limitations. I propose to select a 

specific number of top nodes based on given information, extract both baseline and 

network features (more details later) of these nodes, then implement three state-of-art 

machine learning methods to predict future influence scores for those nodes. By 

observing similar behavior among similar type of data sets(which will be discussed 

later), I create a feasible way to overcome the limited information by using past data 

sets as the training set to train the model instead of choosing both training and testing 

sets from the same data set. I will show this approach indeed produces decent results 

and that my methodology best suits the conditions of the Twitter streaming API, 

where I can collect real time streaming tweets with proper structural format about 

current major events using specific key words. All the features I have used in my 

models are directly included in those streaming tweets, and do not require any 

additional resources. I will show that addition of network statistics, especially 

dynamic network statistics can consistently produce significant improvement over 

baseline features on the prediction tasks with various experiment settings. Moreover, 

I also discover that the linear model consistently outperform the nonlinear ones in 

various settings, which could imply existence of strong linear relationship yet barely 

nonlinear relationship between the selected features and the response on the log scale 

(I perform log transformation on features and response before prediction).  

 

3.1.2 Data description 

Table 3.1 shows the comprehensive summary for the event data sets. The numbers 

within the parentheses are corresponding fractions.  The retweet cascade depth is 

simply the length of the retweet chain, or the depth of the corresponding retweet tree. 

The four data sets differ on the scales, and the fractions of retweets and hashtags are 

increasing over time—representing the evolution of user habits and the increase in the 

Twitter use. Comparing the most two recent sets—Nepal and Blizzard, users seem to 

prefer adopting mentions (including retweets) and hashtags to spread information. 

Meanwhile less usage of links is observed in Blizzard set and this does not follow the 

trend in the rest three data sets where the fraction of links increased over time. The 

underlying reason for this is unknown—it could possibly just be normal variations 

among data sets. It is also observed that over time the retweet cascades are becoming 

"shallower"--the fraction of cascades with depth greater than 1 is dropping drastically. 

This perhaps also reflects changes in the user behavior—users are retweeting the 

source tweets directly instead of following the chains. The fraction of seed users, who 

are direct contributors of popular tweets, also decreased significantly. Both of these 

observations—"shallower" cascades and fewer seed users, seem to together imply that 

the general distribution of the retweets becomes more concentrated around a few seed 

users; considering this in concert with the trend in the increasing fraction of retweets, 

the chosen influence measure—total retweet cascades of seed users, becomes a more 

notable measure for user influence during the event diffusion.  
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Figure 3.2 includes the F-F distribution plots for several event sets under different 

conditions.  All the plots are restricted to be within one week from the starting date of 

the data collection for equal comparison. Despite of this, there are still too many users 

to be shown in one plot, the users are further truncated by their influence scores—the 

total size of retweet cascades. The threshold of the scores I will consider is labeled as 

TH.  

 

 

Data set Irene Sandy Nepal Blizzard 

No. tweets 3178604 16529593 7310929 1716234 

No. users 1487056 5588298 2229702 941488 

No. 

retweets 
965158(0.304) 8410769(0.509) 3905264(0.534) 1101108(0.642) 

No. 

retweet 

cascades 

with 

depth>1 

71684(0.074) 408919(0.049) 27716(0.007) 14644(0.008) 

No. 

mentions 
1874213(0.590) 9272919(0.561) 4381043(0.599) 1226905(0.715) 

No. tweets 

with URLs 
395835(0.124) 5394189(0.326) 4562842(0.624) 643483(0.375) 

No. tweets 

with 

hashtags 

102954(0.032) 7393790(0.447) 2959370(0.405) 1369829(0.798) 

No. seed 

users 
218298(0.147) 981626(0.176) 184863(0.083) 62611(0.067) 

Time 

frame 

26 Aug 2011 

14:00:00 GMT ----

12 Sep 2011 

23:31:26 GMT 

25 Oct 2012 

04:00:00 GMT ---

06 Nov 2012 

04:59:59 GMT 

27 Apr 2015 

02:00:02 GMT -- 

22 May 2015 

00:24:45 GMT 

22 Jan 2016 

16:09:42 GMT – 

31 Jan 2016 

05:23:00 GMT 

 
                                          Table 3.1 Event data sets comprehensive summary 
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The upper two plots are from the Nepal set with TH=100 and 500 respectively, and 

the lower two plots come from the Irene and Sandy set with TH=500. The rough 

shape of the slopes is similar to those displayed in Chapter 2. Also users with a higher 

number of followers constitute a higher fraction with increasing TH, which is natural 

since the higher number of followers implies a higher potential of being retweeted.   

 

 
 

 
 

Figure 3.2 F-F distribution plots for event data sets (the upper two plots are from the Nepal 

set with TH=100 and 500 respectively; the lower two are plots from Irene set and Sandy set 

with TH=500 respectively) 

 

Comparing the three plots with TH=500, the differences on the data scale also are 

also reflected here:  the Sandy set has the densest plot and the Irene set has the fewest 

users in the plot. Also I find the users seem to be a little concentrated round the band 

with the number of friends between 100 and 1000, meaning higher number of friends 

does not necessarily lead to more retweets.  
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Figure 3.3 is a collection of evolution plots for each of the four event data sets. 

Except for Sandy set, the other three sets more or less start with the peak period, this 

is inevitable for urgent event diffusion since the data collection only begins after the 

start of the event and it is not possible to anticipate the occurrence of the event before 

it actually happens.  
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Figure 3.3 Evolution plots for event data sets (from top to bottom, the plots are for Irene, 

Sandy, Nepal and Blizzard set respectively) 

 

The plots show different components of tweets are evolving with similar a pace with 

the total number of tweets. Across data sets from earlier timestamps to later 

timestamps, hashtags and URLs are adopted more frequently; while mentions and 

retweets also have a small increase but remain relatively stable. All these 

observations coincide with the data summary table.  The Sandy set seems a little 

special with peak occurs several days after the data collection. After investigation, the 

peak time seems to correspond to the landing time of Hurricane Sandy onto the 

eastern shore of US. Since Hurricane Sandy started at Caribbean Sea instead of US 

mainland, thus the discussion began earlier than it actually landed onto US. To 

identify how this delaying peak time will affect my prediction, I created another data 

set called Sandy 4.5 for direct comparison, which is simply defined as a truncated 

version of Sandy set by starting 4.5 days later than the starting time of data collection.  
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3.2 Prediction task formulation 

3.2.1 Task types  

Generally speaking, I have formulated three prediction tasks: rank prediction, 

classification and direct prediction, they are distinguished by types of the response 

variables. Direct prediction simply means predicting the users' raw scores—total size 

of retweet cascades. Rank prediction only cares about predicting the ranking of the 

users instead of their actual scores. Classification will aim to identify a specific class 

of users. There are two types of classification tasks performed in my study:  top 

quantile users classification—e.g. binary classification on top 5% users by the scores; 

and rapidly increasing users classification (only users with response exceeding a 

certain threshold are selected)—e.g. binary classification on users who have scores 

increasing greater than 5 times but also with scores greater than 10.    

 

The rank prediction task will be my main focus, due to the following considerations:  

1. Due to the limited information dilemma, I adopt the "cross prediction" mode—

using data sets corresponding to past events as training data to predict future events 

sets. However, different data sets have different scales. Thus it is a better choice to 

standardize (subtract the mean and divide by the standard deviation) the data sets 

before performing the prediction, which means the prediction scores will be in 

normalized forms and cannot recover to the raw cascades scores. Under this 

condition, what I obtain from the models will be the normalized scores, which implies 

that I am actually performing a rank prediction and not a direct quantity prediction.  

 

2. Since standardization has been performed, the results obtained from rank 

prediction will usually be more reliable and stable than direct prediction; this could 

still be the case even when no heterogeneity exists among the data sets.  

 

3. It will be shown that the classification task can actually be accomplished together 

with the rank prediction task.  

 

As to the performance measure, I will use Spearman rank correlation for rank 

prediction (the results are similar if using Kendall Tau correlation, another frequently 

used metric for ranks). For classification, I will use the area under the precision-recall 

curve (PRAUC), which proves to be an informative measure for highly imbalanced 

classification tasks. As to the direct prediction, I simply use the root mean square 

error (RMSE). The rank correlation is computed using the R base function "cor" and 

rank of ties is defined as the average. The PRAUC is computed using the R package 

PRROC, so does the plot of the PR curve 

 

Even though I have put much emphasis on rank prediction, I will display results from 

all three types of prediction for comparison. And which task to perform in practice is 

subject to what kind of problem needs to be solved.    
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3.2.2 Features 

The features used in all three tasks will be the same, they are all user-specific features 

and include two categories—baseline features and network features, and network 

features are consist of static network features and dynamic network features:  

1. The baseline features are features often used in previous prediction studies yet also 

available in my data, they are:  

'Total of tweets', 'Number of followers', 'Number of friends',  'Number of tweets', 

'Number of mentions', 'Number of tweets with URLs', 'Number of tweets with 

hashtags', and 'Past scores'. Past scores are users influence scores within the feature 

collection period, while the prediction responses are influence scores within the 

prediction period (more details mentioned later). The total tweets are the total number 

of tweets posted by the given user since creation of the account; and number of tweets 

only count the tweets posted from the beginning of data collection, this is the same 

for other features from various specific types of tweets.  

 

2. The network features are constructed using the following network statistics:  

'Indegree', 'Outdegree', 'Pagerank', 'Authority score', 'Hub score', Eigenvector 

centrality', 'Closeness centrality' and 'Local transitivity' (local clustering coefficient). 

(i) The static network features are aggregate statistics of the whole network within the 

feature collection period.  

(ii) The dynamic network features are ones from subnetworks within certain time 

interval. Compared to the static features, dynamic features contain rich dynamic 

information and they could provide additional improvement for the prediction.  

Here I am not including betweenness centrality due to its extremely high computation 

cost and limited benefit.  

 

The features mentioned above are almost all of the features that can be derived from 

the data; some other commonly used features, such as network features derived from 

the F-F networks, are not available in my data.    

 

3.2.3 Training and testing sets 

As mentioned before, training sets will be data sets concerning to past events 

compared to the selected testing set. For example, majority of my analysis will use 

Nepal set as the testing set, and the default training set will be Irene set combined 

with Sandy set; results from Irene set alone or Sandy set alone as training sets are 

listed for comparison. Predictions with testing set Sandy or Blizzard are performed to 

validate the conclusion, and the default training sets are Irene and Irene+Sandy 

respectively. It is worthwhile to note the standardization for rank prediction should be 

performed within each data set separately if multiple training sets are involved, this is 

still due to the scale differences among data sets.  
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                                Figure 3.4 A general prediction task flowchart  

 

What I would like to obtain from these settings is how the choice of training sets and 

testing sets will affect the prediction results. It turns out they are one of the most 

deciding factors on the prediction performance. Especially when the testing set is 

usually fixed in practical applications, choice of training sets from a list of potential 

candidates will be extremely important, and I will develop further discussion on this 

in later sections.   

 

3.2.4 Task parameters 

In my prediction study, the following parameters are used:  

 

T: The feature collection period length, from period [0, T] I can construct the whole 

network and extract both static and dynamic network features. 

h: The prediction period, indicating the length of period for future user score 

prediction. Thus the responses for my experiments will be cascades size within period 

[T,T+h] for nodes under consideration. 

Δ: Time window size for dynamic network features extraction, use segment statistics 

series to reduce features correlations.  

k: Size of top nodes (ranked by past scores) to monitor, the upper bound is 10k in my 

case. 

 

The general flowchart for the prediction task is shown in Figure 3.4. The default 

values for the parameters are: T=1d, h=5d, Δ=6h and k=10000; I will stick to these 

values unless special notes are informed.    

 

Tweets 
collection from  

various data 
sets 

Extract user 
features from 

historical 
tweets by time 

T  

Train the 
prediction 

models from  
previous data 

sets 

Predict in test 
set user 

response in 
future time  

[T, T+h] 
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Figure 3.5 shows the response distribution among various data sets with the default 

parameter settings. The first one is the normal log-log distribution plot and the second 

one is the CDF (cumulative distribution function) plot of standardized score.  From 

the log-log plot I can clearly see the distribution fits the power law distribution well. 

The normalized CDF plot demonstrates using normalization (standardization) can 

indeed reduce heterogeneity among data sets; although the distribution differences are 

still obvious after normalization—especially for nodes with lower scores, but this 

may not be as serious as it appears since I care more about top-ranked nodes, where 

the distributions are much closer from each other.  

 

 

 
 

Figure 3.5 User scores distribution with various data sets with default parameters 
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 Figure 3.6 User scores percentile and ratio of increase distribution for Nepal set with default 

parameters 

           

Figure 3.6 shows the response distribution for Nepal set in another aspect. The y-axis 

is simply the quantile (percentile) of the response; the x-axis is the ratio of increase of 

the influence scores, which is defined as the ratio of response score (cascades size 

during [T, T+h]) over past scores (cascades size during [0,T]). This ratio is the key 

factor to perform the classification on rapidly increasing users. The actual response 

size is illustrated by size of the point. And the red horizontal line represents the cutoff 

value to truncate rapidly increasing users—set to be 10 as the default, which 

corresponds to about 0.6 in quantile.  Thus for the top quantile classification task, my 

main focus is on top bands of the plot; while for rapidly increasing classification task, 

my main focus is on nodes staying in the top right corner.  

 

Table 3.2 shows how the nodes response distribution changes over T among various 

sets, notice only nodes who have shown up in the retweet network (either retweet 

others or being retweeted at least once) are counted. The columns from top to down 

are: total nodes count, nodes response 75% quantile, nodes response 95% quantile, 

nodes count with response >=10, nodes count with response >=100, numbers in the 

parentheses are corresponding counting fractions within top 10000 nodes (ranked by 

past scores), which can be used to illustrate how representative the top 10k nodes are. 

The values in the first row are just the varying T values and h is always equal to the 

default value 5d. I can see from the table if I do not restrict the number of nodes to the 

top 10k, the response distribution will be more skewed. This implies that the majority 

of involved nodes are completely inactive in the next 5 days, they may just retweet 

others' tweets but they do not contribute the content for retweeting. Also the top 10k 

nodes ranked by their past scores can constitute majority of important nodes, although 

there are always missing ones since the base number of nodes is too large. Thus 

choosing the top 10k nodes would suit the task. On one hand, extracting features from 

all nodes would be unnecessary and waste time; on the other hand, even given 

sufficient computational power, it will do no good for the prediction since it is simply 

adding noise to the data by adding data points with null values. In conclusion, all the 

prediction tasks in this study will be confined to the top 10k nodes ranked by past 
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scores—e.g. the rank or the quantile will refer the rank or quantile within the top 10k 

nodes.  

 

 
         Table 3.2 User response distribution over varying T among various data sets (h=5d) 

 1d 2d 3d 4d 5d 

Irene 

Total 235870 445808 581597 615176 630557 

75% 0 0 0 0 0 

95% 3 1 0 0 0 

>=10 
3047(0.52

9) 
1324(0.65

4) 
538(0.766) 342(0.795) 232(0.810) 

>=10
0 

230(0.813) 128(0.891) 55(0.909) 34(0.882) 24(0.917) 

Sandy 

Total 74232 170010 291564 716825 1963399 

75% 0 0 0 0 0 

95% 13 10 8 5 2 

>=10 
4494(0.62

0) 
9060(0.44

3) 
13307(0.35

5) 
21045(0.28

0) 
23765(0.27

5) 

>=10
0 

952(0.808) 
1603(0.75

0) 
2071(0.704) 2895(0.684) 3065(0.727) 

Nepal 

Total 427359 652866 797268 899826 979524 

75% 0 0 0 0 0 

95% 1 0 0 0 0 

>=10 
6482(0.66

6) 
6341(0.62

5) 
5897(0.632) 5374(0.631) 4979(0.636) 

>=10
0 

1130(0.91
1) 

1078(0.86
9) 

1008(0.856) 921(0.847) 872(0.841) 

Blizzar
d 

Total 214508 497547 602503 647983 672856 

75% 0 0 0 0 0 

95% 0 0 0 0 0 

>=10 
2384(0.77

8) 
1874(0.82

0) 
1140(0.814) 753(0.841) 476(0.840) 

>=10
0 

461(0.887) 272(0.941) 137(0.905) 88(0.898) 58(0.914) 
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Figure 3.7 Top 10k user components analysis over varying T values (h=5d) for Irene set, 

Sandy set and Nepal set from top to bottom respectively 
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The other information I can obtain from the table is the overall trend of activity by 

looking at the counts of top nodes. For example, the number of nodes with response 

greater than 10 has decreased from around 3k to only about 200, this is indicating the 

diffusion is gradually dying out. A similar trend is observed in Nepal set and a reverse 

trend is observed in Sandy set, which coincides with what see from the evolution 

plots.  
 

With the nodes selection, if performing a rank prediction the rank will simply be 

based on the selected nodes. This is inevitable unless no nodes selection is performed, 

which is not suggested due to previous discussion. There could be complicated trade-

off considerations on what is the best k value to choose, but this is out of scope of my 

discussion and I will just stick to k=10k in my study.   

 

Figure 3.7 demonstrates the other aspect of dynamics of nodes response 

distribution—what the real top 10k nodes by response consist of.  The three plots 

correspond to Irene set, Sandy set and Nepal set from top to bottom respectively. The 

purple numbers on top of plots are total nodes count by the given T values. There are 

three types of nodes involved in the plots—new nodes, old nodes and rising nodes. 

There are defined as follows:  

1. Old nodes: these are nodes belonging to the top 10k nodes in the past (within 

period [0, T]) 

2. Rising nodes: these are nodes showing up in the past but are not among the top 10k 

nodes.   

3. New nodes: these are nodes not showing up in the past at all, they simply emerge 

within period [T, T+h].  

 

The y-axis in the plots displays the fractions of each type of nodes over top 10k nodes 

ranked by their responses. Fractions of different types of nodes can shed light on the 

underlying diffusion dynamics. In the Irene plot, new nodes and rising nodes are both 

staying above and remain stable, which implies: there are consistently new users 

joining the conversation and generating "impact"; there are not many old users 

continuously remain active (less than 20% and still decreasing over time), meaning 

the ranking is not stable. In the Sandy plot, the trend is clear: the new users are 

dropping over time, old and rising users are gradually catching up. If I refer to the 

evolution plot of Sandy set, I will find around 5 days from starting time the diffusion 

reaches peak hour, which just corresponds to the tails of curves. From there fraction 

of old nodes begin taking the lead—showing the ranking is becoming more stable 

from then on. Similar patterns are observed in the Nepal set, where old nodes are 

taking relatively steady fractions over time—implying stable ranking. And new nodes 

fractions are dropping—implying the diffusion are becoming saturated. Thus I can 

see rich information about the dynamics of the diffusion can be derived from the 

plots.  

3.2.5 Methods 

I adopt three state-of-art machine learning methods for my prediction tasks: LASSO 

linear regression (belongs to one type of generalized linear model, will simply call 
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this GLM from now on), random forest and deep learning (deep neural network). 

While GLM consists of nearly all popular linear models of various types, the other 

two methods are typical non-linear models.  

min
𝛽∈𝑅𝑛

[
1

2𝑙
∑(𝑦𝑖 − 𝑥𝑖

𝑇 ∙ 𝛽)2 + 𝜆𝑃𝛼(𝛽)

𝑙

𝑖=1

] 

𝑃𝛼(𝛽) = (1 − 𝛼)
1

2
‖𝛽‖2 + 𝛼‖𝛽‖ 

                     

The above equations show the loss function of elastic net, which is a more general 

model than LASSO regression. It still has the same square loss function as the 

ordinary linear regression, but with addition of a penalized term to regularize 

magnitude of predictors to prevent overfitting (Babyak, 2004).  The penalized term 

for the elastic net model is the weighted sum of L1 norm and L2 norm of the features 

as above. When α=0 the model will become ridge regression and when α=1 it will 

become LASSO regression. The lower plot illustrates how LASSO regression works 

differently as opposed to ridge regression. In the vector space formed by the 

parameters, the optimal parameters to be estimated will be the intersection of the 

contour plot of the square loss function and the geometry object formed by the 

penalized term. This geometry object formed by L1 penalty term and L2 penalty term 

are hyper-cube and hyper-sphere in the parameter space respectively. Since the 

contour plot of the loss function is convex, the intersection with L1 penalty term will 

inevitably be at the vertices or edges of the hyper-cube. This will force some 

parameters values to be zeroes, and thus the features selection is achieved. Therefore 

LASSO regression is a linear model that can prevent over fitting and achieve variable 

selection, and is used as the deputy of linear model in my task.   

 

Random forest is an ensemble method of decision (regression) trees. Decision trees 

are a popular method used in a previous study of social media influence (Bakshy, 

2011) (Kupavskii, 2012): the basic idea is to perform recursive splitting of features 

values to grouping data points to various leaves based on certain criteria. The features 

and response values within each leaf will be used to decide the final output; the 

convention is majority votes for classification and simple average for real-valued 

prediction. While the random forest method will collect results from many decision 

trees and aggregate them together to produce the final output.  Each tree in a random 

forest is formed by splitting a group of randomly selected features instead of all 

features based on a random sample of full data, and these are where the term 

"random" come from. All these can help reduce correlation among trees so as to avoid 

overfitting. Generally speaking, random forest is a powerful nonparametric yet 

nonlinear model, but the drawback will be the poor model interpretability compared 

to linear models.  

 

Another state-of-art nonlinear machine learning method is deep learning or a deep 

neural network. Although there has been debate about how "deep" a neural network 

should be in order to call it deep learning, I will skip this discussion and simply 

follows the convention from 
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Wikipedia(https://en.wikipedia.org/wiki/Deep_learning)–network with hidden layers 

greater or equal than two is considered as deep learning.   

 

For the deep neural network the features values are fed as input layer, the values from 

previous layer of neural network will experience similar types of nonlinear 

transformation to generate values for the next layer. The transformation will usually 

be to multiply by some weights and then applied to certain pre-defined activation 

function—e.g. the sigmoid function and the tanh function. The choice of activation 

function will generally be subject to the field of the application, but sometimes a 

different activation function is also needed for the output layer depending on the type 

of target response. Overfitting can be avoided either by setting a dropout ratio to 

randomly remove a certain fraction of values fed to the next layer or by adding 

penalized terms just like in GLM. Deep learning is a powerful machine learning 

method and is actually the only effective method for certain tasks (LeCun, 2015). 

This power could be explained by the Universal Approximation Theorem (Hornik, 

1991), which provides a theoretical foundation the mechanism of the method. 

Moreover, there has not been a comprehensive application of deep learning to social 

media user predictive analysis, thus I choose this approach in my study to see its 

performance for my tasks.    

 

For the implementation, I perform all my prediction analysis using R. The packages I 

have used include: igraph for network construction and features extraction, glmnet, 

glm2, party and h2o for the prediction. I adopt the default settings for all the three 

methods: 

1. For LASSO GLM, I use the 10-fold cross validation (CV) and refit the model with 

selected features that gives the least CV error. 

 

2. For random forest, I reduce the number of trees from 500 to 200 for runtime 

consideration. Each tree is trained on an independent bootstrap sample of the training 

data with a default number of 5 features randomly selected for each splitting. The 

final prediction outputs are the average or majority votes of all trees.  

 

3. For deep learning, I use 2 hidden layers of 200 neurons in each layer, with 

hyperbolic tangent activation function, quadratic loss function for real-valued 

prediction and cross entropy loss function for classification, with the input features 

dropout ratio as 0.5 within each hidden layer.  

 

A brief tuning parameters search was completed but the above default settings proved 

the best, thus I will adopt them in my experiments. More careful grid searches can be 

carried out to find optimum settings for each method for particular implementations.  

 

For rank prediction and classification, all the features and responses are first log 

transformed and then standardized (centered by means and scaled by standard 

deviations) within the nodes selected (10k in my case). For direct prediction, they are 

just log transformed and not standardized.  For the classification experiments, down-
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sampling is performed to obtain balanced training set and average prediction scores 

are used to produce the PRAUC values.  

 

3.2.6 Variable importance              

 

Variable importance is another useful output of the prediction other than the predicted 

values. It reflects how effective a given predictor on the given response when the 

predictor is not well correlated with other predictors. Among the three methods I have 

used, only GLM provides a rigorous defined yet easily interpreted variable 

importance measure. This is one of the biggest advantages of the linear model. 

Although not perfect, there are some usable variable importance metrics for the rest 

two methods. The variable importance option provided for random forest is obtained 

by permuting features values and monitor how the prediction performance varies with 

it. If the values of more important features are permuted, the performance will suffer 

more serious degradation, thus a variable importance measure can be computed based 

on this. For deep learning, there is an approximate measure to aggregating weights of 

first few layers of the neural networks, this may work well for shallow neural 

networks, but for really "deep" ones there are still no proper candidates.  

 

 

3.3 Prediction results 

3.3.1 Rank prediction 

Now I show the results of rank prediction with various parameters settings, but as 

mentioned earlier, I will always stick to the default settings unless specific 

notifications. All the rank correlation scores are obtained from the average prediction 

scores out of n=10 (as default value) replicated runs of the experiment.    

 

Figure 3.8 shows the rank prediction results for Nepal set varying methods and 

training sets. In the first plot, the differences among methods are subtle, GLM 

performs slightly better.  The feature combination static+dynamic delivers the best 

results, compared to results with static only, I can tell dynamic features indeed help 

the prediction much. Also addition of network features to baseline ones indeed 

improvement the performance significantly. Since the two nonlinear methods fail to 

beat GLM, I will adopt GLM as the default method from now on since it is fast to run 

and straightforward to interpret. The next two plots show the results from GLM with 

varying number of nodes involved. The x-axis labels the number of top nodes 

included for rank correlation calculation, of which are ranked by past scores; the 

corresponding y axis is the rank correlation measured within that group of nodes. 

Therefore it is not surprising to see the results exhibit much more variations for fewer 

nodes and stabilize when the number is large enough. The network features, 

especially the dynamic ones, outperform the baseline ones much more with smaller 
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nodes count than larger nodes count. I believe this is because the top nodes (top 10 or 

top 50), compared to lower ranked ones, have exhibited rich activity and thus have 

generated informative network features. Thus the functionality of the network 

statistics can be maximally explored; with more and more nodes involved—especially 

those much less active and lower ranked nodes, the predicting power of network 

statistics will decrease gradually since many of them will be almost inactive or even 

have null values. This is not the case for some of the baseline features, such as 

number of followers/friends and total of tweets, which will remain relatively constant 

regardless nodes activity, thus baseline features will generally provide the most stable 

(although not the best) results. Addition of network features consistent outperform 

baseline ones with changing number of nodes count, and for Nepal set even network 

features alone can provide much better results. Also the choice of training sets here 

does not matter much—they all produce comparable results. Irene+Sandy does a 

slightly better job and thus will be used as the default training set.   
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  Figure 3.8 Rank predictions using GLM on Nepal set varying methods and training sets 

 

Figure 3.9 displays the rank prediction results of Nepal set varying T, h and Δ (all 

default settings are applied unless otherwise specified). The titles of the first four 

plots simply represent the four different values of Ts. The addition of network 

features can consistently improve the performance under various settings, though the 

extent of improvement is different depending on the conditions. The best on average 

feature combination across all settings still seems to be static+dynamic, showing the 

network features alone can have good predicting power, at least to the Nepal testing 

set. While I do not see significant performance differences with varying T and h, Δ 

with 6h indeed does obviously better than Δ with 3h. Considering the static feature 

combination as the case when Δ=24h, there seems to exist an optimum value for Δ to 

give the best performance. A possible explanation for this is: too large Δ cannot 

provide enough dynamic information while too small Δ value may incorporate many 

null feature points thus also degrade the performance due to overfitting. This 

optimum value will depend heavily on the training and testing sets and can be found 

with fine tuning carefully, though the current settings seem satisfactory.  
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        Figure 3.9 Rank prediction using GLM on Nepal set varying T, h and Δ  
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Figure 3.10 Rank prediction using GLM on Nepal set varying the underlying networks 
 

The above Figure 3.10 compares the rank prediction results using two network 

statistics from two different networks—retweet network and mention network. In 

Twitter the mention network is implied denoted with "@" and it is common that a 

user can mention multiple users in a single tweet, which is unlike retweets. And all 

retweets generally belong to mentions, so do all replies towards the tweets. Thus I can 

consider the mention network is including all sorts of user communication, but is not 

mainly diffusion-oriented.  Therefore retweet network features outperform mention 

ones significantly, though the mention network will be much better connected than 

the retweet network.  

 

I have already shown the network features can improve the prediction performance 

with respect to the baseline ones, but I would like to further investigate whether this 

improvement is stable or not.  Thus I carry out the stability analysis in Figure 3.11. 

The rank correlation is calculated from each single run of the experiment instead of 

the average scores from the above plots. Then a rough distribution of the rank 

correlation scores is simulated by repeating the experiments n=100 times. The mean 

and mean±sd values are computed for comparison. For GLM both static+dynamic 

and baseline+static+dynamic outperform the baseline statistically. Moreover, GLM 

stands out the rest two in terms of stability, which is not surprising since both the rest 

two methods have much "randomness" associated with them, especially for deep 

learning due to hidden layer values drop out.   

 

Figure 3.12 and Figure 3.13 show the rank prediction results for Sandy set and 

Blizzard set as the extension study.  The effect of the testing sets is clearly large, 

especially for the network features. The best feature combination is 

baseline+staic+dynamic and the improvement towards baseline is less. This implies 

testing sets will have considerable influence on the predicting power of network 

statistics, but less influence for the baseline ones since they remain stable over time. 

That might be the reason why many of the baseline features share popularity among 
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previous related studies—they do provide robust results that are less affected by the 

data sets under study.  
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Figure 3.11 Rank predictions on Nepal set method stability—with methods GLM, RF and 

DL from top to bottom 

 

For the prediction on the Sandy set, the Irene set is the default training set. GLM still 

provides the best results. The result on the Sandy 4.5 set is much better than the 

Sandy set. A possible explanation for this is that the diffusion has just broken out at 

the beginning time of Sandy 4.5, just like the case of Nepal set. This makes the 

predicting power of the features much better than ones from Sandy set, where the 

diffusion has not started.  

 

 
    

Figure 3.12 Rank predictions using GLM on Sandy set varying methods and testing sets 

 

As to the prediction on Blizzard set, the training set is Irene+Sandy for the first 

methods comparison plot. Again GLM still gives the best on average results. Like in 

the Nepal case, different training sets do not give different results. The feature 

combination baseline+static+dynamic consistently produces the best results over 

various settings, which validates the fact that network statistics can indeed improve 
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the prediction but the extent of improvement will largely depend on the testing set 

and other various settings.  

 

 

 
Figure 3.13 Rank predictions using GLM on Blizzard set varying methods and training sets 
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          Figure 3.14 Rank prediction on Nepal set GLM variable importance 
 

Figure 3.14 provides the variable importance measure for Nepal set rank prediction 

and the titles for each plot corresponds to various T values. The subscripts for the 

network features refer to the separate time windows of length Δ. All values are 

computed based on n=100 runs, where during each single run different features can 

be selected and different feature weights can be obtained. The upper histograms show 

the frequency of selection from the LASSO algorithm for features over 100 runs, and 

the lower bar charts show the distribution of feature weights for top 10 features 

ranked by the absolute values of their weights over 100 runs. Some baseline 

features—number of followers, number of tweets, number of tweets with URLs and 

past scores are always selected and exhibit high weights across different T values, 

indicating high predicting power consistently. But certain dynamic network features 

are also always chosen and have significant weights, sometimes even outperform the 

baseline ones. Moreover, I can see from the bar plots that all feature weights are 

robust over the 100 runs—again indicating the stability of the GLM method.  In 
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summary, the network features not only help the prediction, but also are also of great 

importance in the prediction—not add-ons features that just improve the results.   

3.3.2 Classification 

 

 
 
Figure 3.15 Top quantile users binary classification comparison for Nepal set—using 

classification and rank prediction 
 

Figure 3.15 gives the results comparison for top quantile nodes binary classification 

using direct classification and rank prediction. The default method for rank prediction 

is GLM and the default quantile for prediction is 5%. The lower plot uses random 

forest for the classification since it is the best on average method for classification. It 

is interesting to find the rank prediction can also handle this task well, even better 

than the standard classification. Larger improvement is observed for method GLM, 

where the main reason may be the down-sampling in the classification since the 

quality of the CV operation in GLM depends heavily on the size of training set, and 

there is no training data loss due to down-sampling for rank prediction. Great 

improvement of rank prediction over classification with quantile 1% seems to support 
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this hypothesis, consideration the sample size for 1% is only 400 for classification 

compared to 20k for rank prediction for each run.  
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  Figure 3.16 Top quantile users binary classification using GLM from rank prediction 

varying parameters 

 

However, this down-sampling seems to be necessary for classification, the 

performance turns out even worse without it. The main reason that the rank prediction 

is well suitable for this task may simply be that it is a top rank nodes classification 

problem—meaning the positive class to be predicted is highly correlated with the 

rank. While for classification of user classes less correlated with rank, the results 

would be different.  Figure 3.16 lists results from various settings for the top quantile 

nodes binary classification using rank prediction. They are similar to results from the 

ordinary rank prediction, which is natural. The order of the feature combination 

remains stable over various settings. Combined with similar results from rank 

prediction, I conclude the improvement of network statistics is robust.    
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  Figure 3.17 Top quantile users binary classification from rank prediction PR curves—1%, 

5% and 10% from top to bottom 

 

Figure 3.17 displays the actual precision-recall curves for three quantile values. The 

sharp rise for feature combination static is likely due to the first few top-ranked nodes 

by prediction scores do not include any true positive values. While the PRAUC value 

can be considered as an average measure of the performance, the PR curve gives the 

full dependency plot of precision and recall values. Again the improvement of 

network statistics is still robust across changing recall values.   
 

 

 
     Figure 3.18 Rapidly increasing users binary classification from rank prediction PR 

curves—1%, 5% and 10% from top to bottom 

 

Figure 3.18 shows the results for rapidly increasing nodes binary classification using 

standard classification (with RF) and rank prediction (with GLM). The x-axis stands 

for the percentage of increase, and y-axis uses the same PRAUC score as the top 

quantile nodes classification. The ordinary classification can simply be replaced by 
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rank prediction since they are producing comparable results. Compared to the true 

fractions of these nodes, which can be considered as the approximate scores for the 

complete random model, the results are bad—only do twice better towards the 

random guess. The differences among various settings are not significant; this simply 

implies that my framework cannot handle this task well based on given data.  
 

3.3.3 Direct prediction 

 

 
 

 
      Figure 3.19 Direct predictions on Nepal set varying methods and T 
 

Figure 3.19 gives the results of direct prediction on Nepal set varying methods and T, 

recall the default training set used here is Irene+Sandy.  The GLM still performs the 

best, network features still improve the prediction consistently and dynamic network 

features still outperform the static ones. Considering the response distribution on the 

log scale, results with RMSE around 2 can be considered good.  However, after I 
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perform some extension experiments on direct prediction, I find the results are not as 

stable as ones obtained from rank prediction.  

 

 

 
    Figure 3.20 Direct prediction using GLM on Nepal set varying training sets  
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Set Irene Sandy Sandy 4.5 Irene+Sandy Irene+Sandy 4.5 

Log past scores 0.394 0.740 0.742 0.561 0.277 
 
      Table 3.3 KS statistics of past scores between various training sets and Nepal set  
 

Figure 3.20 lists the result of direct prediction on Nepal set by varying training sets. 

The second plot is the same as the first except results from Sandy 4.5 are removed for 

better visualization. Clearly the choice of training sets proves to be important for 

direct prediction, which is unlike the rank prediction case. The performance can go 

from pretty good to extremely bad if the training set is not properly chosen. The main 

reason lying behind should be the heterogeneity between the training and testing sets. 

However, there is no existing rigorous method for training set selection for my task 

here. Thus I try to propose some empirical criteria on my own. One potential 

candidate is using the Kolmogorov–Smirnov (KS) statistics, which is a commonly 

used metric to measure similarity between two probability distributions.  Here I 

simply calculate the KS statistics of past scores between each given training set and 

the testing set. The KS scores are computed using the R base function "ks.test". The 

reason to use past scores is that I believe past scores represent past activity of users 

and should be most correlated to their future response. I can definitely compute the 

KS statistics for each feature that I think are important and aggregate the results to 

give a single output. However, given that the variable importance is not given 

beforehand, it is difficult to determine which features to choose and how to aggregate 

the resulting scores from each feature. Thus I will just use past scores to compute KS 

statistics for now being.  

 

Comparing the prediction results in Figure 3.20 and KS statistics in Table 3.3, the KS 

statistics can indeed identify good training sets to some extent, though still far from 

perfect. Since the calculation of KS statistics depends on the sample size of the 

empirical distributions, I need to compare KS scores of single training set and double 

training sets separately. Following this, Table 3.3 tells Irene set is the best single set 

while Irene+Sandy 4.5 is the best double sets, which all fit the results well. However, 

the KS scores cannot tell whether Sandy or Sandy 4.5 is worse, thus my suggestion is 

just use the score to choose the best one (the one with significantly lower score) to 

use.   
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Figure 3.21 Direct predictions on Sandy 4.5 set and Blizzard set varying methods 
 

Figure 3.21 gives the results for the direct prediction extension study on Sandy 4.5 set 

and Blizzard set varying methods. The reason to use Sandy 4.5 set simply is it returns 

better results for rank prediction than Sandy set. The leading position for GLM is still 

firm, though the order of feature combinations are not so stable compared to rank 

prediction.  

 

Figure 3.22 shows the results on Blizzard set using GLM method with varying 

training sets. Similar problems as Nepal set prediction are observed, and it becomes 

even worse. Also the performance of network statistics suffer most from wrong 

choice of training set, although they still provide some improvement for the best 

training set.  This is why the direct prediction is unstable.  
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Figure 3.22 Direct prediction using GLM on Blizzard set varying training sets 
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Set Irene Sandy 
4.5 

Nepal Irene+Sandy  Irene+Sandy 
4.5 

Irene+Nepal 

Log past 
scores 

0.380 0.900 0.590 0.102 0.444 0.444 

 
       Table 3.4 KS statistics of past scores between various training sets and Blizzard set  
 

Once again, the KS scores provide good suggestion on choosing a proper training set. 

The best single set and double set given by KS scores is Irene and Irene+Sandy 

respectively, both of them are indeed the ones that give the best on average results. 

Since the network statistics could potentially suffer much degradation due to 

improper choice of training sets, I use the more stable baseline feature combination 

for the direct prediction task when I cannot pick a best training set from KS scores or 

other related metrics.  

 

 

           Figure 3.23 Direct prediction on Nepal set GLM variable importance  
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Figure 3.23 shows the variable importance of GLM method on direct prediction of 

Nepal set. The setting is exactly the same as the rank prediction case. Here I rank the 

frequency with increasing order in the upper selection frequency plot since most of 

the features are selected all the time. For the feature weights bar charts, there are 

more dynamic network features staying on this top10 rank than the rank prediction 

case, recall the features are ranked by the absolutely value of their weights.  

Therefore I believe the network statistics still have great potentials for the direct 

prediction task, but how well they can perform will heavily rely on a good choice of 

training set.  

 

 

User_name 
(rank/log(score+1)) 

Past score  Predicted 
by SD 

Predicted 
by B 

Predicted 
by BSD 

True  

ActualidadRT 13/7.84 4/9.11 17/8.69 7/9.65 7/8.60 

johnspatricc 32/7.33 9/8.68 66/7.89 36/8.35 6/8.60 

AP 8/8.67 15/8.38 4/8.24 11/9.95 3/8.82 

TurkKizilayi 238/5.83 181/6.26 516/4.90 301/5.93 2/8.83 

ksushma140 21/7.54 11/8.46 299/5.64 172/6.54 5/8.66 
 
               Table 3.5 Prediction further investigation on selected nodes using GLM  
 

In order to further investigate how the features are acting on various users, I selected 

some users as examples to see their individual prediction output. Table 3.5 shows the 

prediction results for 5 selected users. The short notation SD, B, and BSD refer to the 

feature combination static+dynamic, baseline and baseline+static+dynamic 

respectively. The values in the table are shown in the format of "rank/log(score+1)". 

For users "johnspatricc" and "ksushma140", the network features alone can make 

good prediction while the baseline features are off target. On the contrary, baseline 

features predict well on user "ksushma140" when the network features are off the 

target. And in both cases, combining baseline and network features will generate 

average outputs.  As results from various settings show, baseline+static+dynamic is 

indeed the most stable feature combination and nearly always outperforms the 

baseline ones. However, for user "TurkKizilayi", none of the feature combinations 

can do a decent prediction. The main reason is that this user is simply not active in the 

past if I look at the past scores, thus I cannot obtain informative features. Thus this 

brings one drawback of the framework—it does not well on users with poor activity, 

which is something hard to avoid for this type of urgent diffusion prediction unless 

additional information can be obtained from external resources.  

 

Thinking on the side of stake holders who want to find potential influential users, the 

actual scores or rank of the users might not be a major concern, where the goal is to 

find a list of potential candidates.  In that case, the main goal is to discover how many 

"real" top nodes are missed from each feature combination. Table 3.6 shows the 

missing count by the three feature combinations plus the missing count by the union 

of top nodes predicted by all three feature sets.   
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Missing 
counts by 

rank 

Missed by 
SD 

Missed by B 
Missed by 

BSD 
Missed by 

all 
Count of 
the union 

Top 10 5 6 7 4 16 

Top 20 11 12 11 8 33 

Top 50 19 30 24 15 75 

Top 100 40 45 44 27 144 
 
               Table 3.6 Missing nodes count under various feature sets using GLM  
 

For instance, in the first row it shows among the real top 10 nodes ranked by the true 

response, only 5 are captured by top 10 nodes given by feature set static+dynamic and 

only 4 are captured by top 10 nodes given by feature set baseline etc.; if I union the 

top 10 nodes from three feature combinations together, I can capture 6 of real top 10 

nodes but the total number of nodes I am using will increase to 16.  Here I illustrate 

an alternative way to solve the problem, while whether using the union to achieve the 

maximum coverage is subject to the practical implementation considerations—e.g., 

what is the cost of targeting each user and what is the benefit if I correctly specify one 

more user.  

 

3.4 Discussion 

3.4.1 Summary 

In this Chapter I have described a comprehensive study that is across various settings 

on user influence prediction during urgent event diffusion.  The main findings are: 

  

1. The network features as defined, especially the dynamic network features can help 

the prediction and improve the prediction performance over baseline features across 

various settings consistently. The dynamic features outperform the static ones 

consistently—implying the additional dynamic information is helpful in the 

prediction. Similar results are shown by both the prediction results and the variable 

importance ranking. The extent of improvement largely depends on the testing set and 

other parameters.  

 

2. GLM proves to be the best prediction method considering various factors: 

prediction performance, interpretability, variable importance and runtime efficiency 

etc. The good performance of GLM implies that there could be strong log-linear 

dependency among the selected features and the response. In contrast to the 
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conventional impression that the nonlinear models will usually outperform the linear 

model, the two nonlinear methods involved in my prediction task perform similarly or 

even slightly worse than the linear method. One direct reason for this could be that 

there is no significant nonlinear relationship between the selected features and the 

response.  

 

3. The rank prediction demonstrates the most stable and reliable result, while the 

result for direct prediction is not stable and highly depends on the choice of training 

sets and testing sets. Moreover, it is shown that both classification tasks—top quantile 

nodes and rapidly increasing nodes classification can be solved well using rank 

prediction solely.  

 

4. KS statistics can potentially serve as an empirical criterion to choose training set 

for direct prediction, which proves to be of extreme importance.  

 

5. Both baseline and network features do not predict well on nodes with poor activity, 

nor for the rapidly increasing nodes classification task. The main reason behind is 

similar—the features used are not informative, external resources or data is needed to 

handle this problem.  

 

In summary, I have established a novel early time prediction framework that utilizes 

all of the limited information that would be available in an urgent diffusion context 

and still achieves reasonable results. Moreover I have shown that the newly adopted 

features from the underlying diffusion network have consistently impressive 

predicting power on the future user influence.   

3.4.2 Future work 

One crucial future direction would be to extend this framework to other types of 

urgent events other than the natural disasters used in my work, which should output 

comparable results, at least in the Twitter context.  Another promising direction is to 

evolve the whole framework would be to other platforms—e.g. Facebook or 

Instagram, which again should not be difficult to do since these social media share 

much in common and as noted in the introduction part—many models and methods 

can be applied interchangeably among these platforms. Finally, provided with enough 

time and engineering effort, it would be possible to build a user friendly API to 

implement the framework that would interface with the Twitter API to provide real-

time online prediction for any user of the API.  
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Chapter 4: Predict topic popularity during urgent event diffusion 

 

4.1 Introduction 

4.1.2 Motivation 

In the previous section, I discussed two well—cited studies on hashtag popularity 

prediction and the main reasons why they are not well fit for my prediction task.  In 

this Chapter, for the hashtag prediction task I describe the use of the number of 

retweets a hashtag can obtain in the prediction period as the prediction goal. 

Generally speaking, the framework for hashtag popularity prediction is similar to the 

user prediction case since they both belong to the urgent diffusion prediction 

category. Since the behavior of hashtags can be somehow considered as an 

aggregation of many users' behavior, there should be something more general in 

common between the two tasks. Thus I propose to make the general settings of the 

two tasks as similar as possible. I also adopt two sets of features—baseline and 

network features for the hashtag prediction, corresponding to ones used in the user 

case. Moreover, since I do not adopt any text content features for the user prediction, 

I also remove them from the general settings for hashtag prediction. But to compare 

with previous studies, I also show how the results can vary if all available text content 

features are included.     

 

As the topic prediction part, I will use the LDA model for topic modeling and propose 

prediction on generated latent topics. One important question left to determine is the 

definition of documents. Godin (Godin, 2013) uses single tweets as documents to 

train LDA models for hashtags recommendation towards general tweets not including 

hashtags. But Hong (Hong L. a., 2010) has pointed out that the effectiveness of topic 

models can be highly influenced by the length of the "documents", and for better 

topic modeling aggregation of short messages is recommended. Ma (Ma, 2013) 

considers hashtags as documents and uses topic probabilities derived from LDA 

model as text content features for hashtag popularity prediction, suggesting hashtags 

are potential candidates for LDA documents. Moreover Mehrotra (Mehrotra, 2013) 

points out pooling of tweets by hashtags can provide an improvement over LDA topic 

modeling of single tweets. Therefore in this task I decide to simply treat hashtags as 

documents and perform LDA topic modeling only on tweets containing hashtags, this 

is due to the similar reason I mentioned earlier in literature review part: I do not have 

the time and interest on specifying related hashtags for general tweets since it is not 

the main focus of my study. Further details on hashtags text cleaning and LDA 

modeling are mentioned in the next section.  
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In this Chapter I will show there are a great similarity yet some slight differences 

between prediction of user influence and prediction of hashtag popularity. In both 

tasks I find addition of network statistics can have significant improvement on the 

prediction performance over baseline features, also the linear method outperforms the 

nonlinear ones consistently—possibly indicating strong log-linear existing between 

selected features and target response for both prediction tasks. The LDA topic 

prediction shows a slight different pattern since each topic is a weighted aggregation 

of all the involved hashtags.   

 

 

4.1.2 LDA model implementation 

Before implementing the LDA model, I need to preprocess the text first. The steps for 

the text preprocessing are exactly the same as in Chapter 2 for hashtags clustering and 

classification analysis (see Figure 2.7).  One extra step to do before the text cleaning 

is filtering. Here I adopt a simple filtering strategy: removing hashtags with unknown 

digits or including only one digit, by doing so many noisy and irrelevant hashtags will 

be removed. More involved and rigorous filtering may include spam hashtags 

detection (Stringhini, 2010) (Castillo, 2011) or hashtags semantic clustering (Costa, 

2013) (Ozdikis, 2012) (Vicient, 2014). However, these hashtags filtering and cleaning 

approaches often require well labeled data to train the models and validate the results, 

which are not available to me; moreover, my main goal is to explore the early time 

prediction framework for urgent diffusion on Twitter, and I believe hashtags filtering 

will not affect the performance much but will indeed matter for practical 

implementation where the quality of the underlying topics will be a big concern.  

 

After the simple filtering is performed, each hashtag is considered as a separate 

document and the text of the document is simply the aggregation of all tweets 

including that hashtag. The text is processed following the steps showing the Figure 

2.7. Then the top 10k tokens, across all documents, will be used with tokens 

occurring over 50% across all documents eliminated to remain more distinguishable 

tokens among the documents. Finally TF-IDF weighting is applied to improve the 

modeling performance.  

 

Generally speaking, the Latent Dirichlet Allocation (LDA) model, is a flexible topic 

model to extract latent topics from a collection of documents while each document is 

considered as a mixture of various topics with the probabilities provided by the 

model. This is where the flexibility comes from—each document can either be more 

concentrated on fewer topics or be more diverse on more topics. Another advantage 

of LDA is the generalizability to new documents, compared to the other popular topic 

model— probabilistic latent semantic analysis (pLSA), of which the size of 

parameters is increasing linearly with the number of training documents and causes 

serious overfitting problems.  

 

Figure 4.1 shows the plate notation for the ordinary LDA model. Here I assume there 

are M documents, K underlying topics and each document has the same number of N 
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words for simplicity. Since the general framework is Bayesian, each parameter 

involved is a random variable. Among these variables only the word identification 

variable—w is known to me; thus it is in grey color and rest unknown variables are in 

white.  More specifically, the meaning of each variable is:  

α: the Dirichlet prior parameter for document-topic distribution 

θ: the multinomial topic distribution probabilities varying from each document 

z: the topic assignment for each word within each document 

β: the Dirichlet prior parameter for topic-vocabulary distribution  

φ: the multinomial vocabulary distribution probabilities varying from each topic 

w: the identification for each word within each document 

 

The model considers each document as a collection of words, and the following is the 

general data generating process:  

1. Generate the document-topic distribution θ from the prior α for each document 

2. Generate the topic-vocabulary distribution φ from the prior β for each topic 

3. For each word within each document, draw the topic assignment z from the 

distribution given by parameter θ, then draw the word w from the topic-vocabulary 

distribution φ with the topic assigned as z  

This data generating process explains the high flexibility and generalizability of the 

model, and it can be further adapted to different situations by various extensions and 

derivations.  

 

           
 

                                              Figure 4.1 LDA model illustrations  

(source: https://en.wikipedia.org/wiki/File:Smoothed_LDA.png, this file is licensed under the 

Creative Commons Attribution-Share Alike 3.0 Unported license) 
 

As to the model inference, since the target posterior distribution is intractable, 

approximate approaches are implemented. There are two state-of-art inference 

approaches for LDA model—collapsed Gibbs sampling (Porteous, 2008) and 

variational Bayes method (Blei, 2003). While the collapsed Gibbs sampling integrates 

out unimportant variables to improve convergence speed, variational method chooses 

a simplified distribution to approximate the target by minimizing the KL divergence. 

In my study, I implement the LDA model using the python library genism (see 
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https://radimrehurek.com/gensim/ for more implementation details), which adopts an 

online version of variational Bayes method. The algorithm is better scalable to larger 

collection of documents and can update the model continuously. For my task, 

estimates of the document-topic probabilities are the only ones that I care about. In 

most results I will adopt the default settings unless otherwise specified.  

 

An important parameter to be fixed before I apply LDA modeling is the number of 

topics for the model. Ideally this value should be determined by some external 

evidence—human judgement, extra information about the documents or some 

supervised leaning tasks associated with the underlying topics etc. If no external 

resources are available, like in my case, I have to resort to some internal metrics. One 

of the intrinsic metrics often used for topic quality measurement is the topic coherent 

score. Topic coherent scores are generated to measure content consistency and 

coherence within each topic. There are various definitions for the coherent scores, in 

my study, I will just stick to one of them—the UMass score (Mimno, 2011). This 

score calculates the conditional probabilities of less frequent terms on more frequent 

terms where all terms are from top ranked words by frequency from each topic. 

Recalling that I have adopted the TF-IDF weighting before implementing the LDA 

model, thus the TF-IDF weighted version of corresponding probabilities are used for 

both model inference and coherent scores calculation.  

 

Number  5 8 10 15 20 

Mean  -341 -354 -364 -377 -387 

SD 22 15 21 14 11 
 
Table 4.1 Average topic coherent scores distribution varying number of topics with 100 

repetitions for the whole Nepal set 
 

Table 4.1 shows the mean and standard deviation of average coherence scores across 

topics after n=100 repetitions under various number of topics for the whole Nepal set. 

More specifically, under a given number of topics, top ranked (top 20) terms from 

each topic of the whole Nepal set are selected to compute a score and then the 

average score from all topics is obtained; the process is repeated by 100 times, the 

corresponding mean and standard deviation of the mean scores are listed in the table. 

Simply judging by the mean value of the average score, the coherent score increases 

as the number of topics decreases. However, the standard deviation is large so that it 

can just fill the differences, implying the results are unstable. One possible 

explanation for this unstability could just be that the topics derived from the model 

are not table. Moreover, this is only a relatively static calculation, the actual number 

for the topics may change over time and the content of the documents (hashtags) can 

also drift. Since the main goal of my task is to check how the prediction will vary 

between the appearing topics—hashtags and the abstract topics, I believe the actual 

quality of the topic modeling is of less concern. Out of this consideration, I simply 

choose an intermediate number 10 as the number of topics for my task and I believe 

the obtained conclusion is well generalizable to other cases with different number of 

topic.   
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4.2 Prediction on hashtag popularity 

4.2.1 Response distribution 

For the hashtag prediction task in this section, the setting and the framework are 

similar to the user case. So I simply repeat the same analysis done in the previous 

Chapter to see how these two prediction tasks will vary from each other. The same 

sets of data are used except for Irene set, which is excluded since it does not have 

many hashtags involved. Figure 4.2 shows the response distribution of various data 

sets under the default setting: T=1d, h=5d and k=10k. However, I notice that for 

Nepal and Blizzard sets the total number of hashtags that has any retweets within 

period T is only about 7000-8000, thus the actual number of hashtags involved in 

prediction is not 10k here. The distribution patterns are similar to what I have 

observed for the user case: power law distribution and comparable normalized 

response distribution. Figure 4.3 shows the percentile and ratio of increase 

distribution for hashtags from Nepal set, the distribution is more extreme (the 

differences among the points are much larger) compared to the user case: the red 

threshold line raises about 20% in the quantile value (with the same threshold 

value=10) and the magnitude increases by about 2 for top quantile points.    
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   Figure 4.2 Hashtag response distribution with various data sets with default parameters 

 

This "the rich get richer" is similar to the famous "Matthew effect" (Merton, 1968). 

The differences between the distribution of user score and hashtag score demonstrates 

this Matthew effect is much stronger for hashtags than users, which I believe is a 

natural result from the fact that the number of hashtags is much less than the number 

of users involved.  
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        Figure 4.3 Hashtag scores percentile and ratio of increase distribution for Nepal set with 

default parameters 

 

Table 4.2 is the response distribution summary from various data sets with varying T. 

Here the Sandy set refers to the Sandy 4.5 set and I will use this reference for all 

prediction tasks in this Chapter.  

 

 1d 2d 3d 4d 5d 

Sandy 

Total 62755 80394 87838 93743 99759 

75% 1 0 0 0 0 

95% 18 9 6 4 2 

>=10 4793(0.729) 3828(0.728) 3440(0.744) 2816(0.783) 2030(0.833) 

>=100 879(0.914) 692(0.899) 607(0.904) 469(0.932) 299(0.960) 

Nepal 

Total 7800 11861 14457 16573 18309 

75% 8 3 2 1 1 

95% 110 51 35 25 19 

>=10 1795(1.000) 1739(0.969) 1670(0.947) 1575(0.928) 1460(0.927) 

>=100 424(1.000) 368(0.986) 334(0.991) 306(0.987) 267(0.978) 

Blizzard 

Total 7812 16018 19267 20991 21943 

75% 6 1 0 0 0 

95% 75 15 7 4 2 

>=10 1524(1.000) 1145(0.948) 719(0.940) 484(0.942) 308(0.954) 

>=100 312(1.000) 166(0.964) 97(0.969) 64(0.984) 38(1.000) 
 
     Table 4.2 Hashtag response distribution over varying T among various data sets (h=5d) 
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 Figure 4.4 Top 1k hashtag components analysis over varying T values (h=5d) for Sandy set, 

Nepal set and Blizzard set from top to bottom respectively  
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All the specifications of Table 4.2 follow exactly the same meanings as Table 3.2. As 

stated before, the total number of hashtags is much less than the number of users in 

the same settings, especially for Nepal set and Blizzard set. This makes the 

distribution more concentrated: top quantile values are larger and there are larger 

fractions of "active" hashtags (hashtags with response greater than 10 and 100) within 

top 10k hashtags (recalling the numbers in parentheses are the corresponding 

fractions within the top 10k hashtags ranked by the response). Thus top 10k hashtags 

better represent the population of "active" hashtags than the user case. Also the 

number of "active" hashtags is dropping over time: it implies the gradual decaying of 

the diffusion and coincides with the observation for the user case.  

 

Similar to Figure 3.7, Figure 4.4 shows the components evolution of the hashtags 

over time. But since I have much less number of total hashtags, I choose a smaller 

threshold for hashtags components observation—top 1k hashtags as opposed to top 

10k users for the user case. Here I follow the same definitions for the three types: old 

ones refer to hashtags staying in the top 1k rank within past period (period [0,T]), 

rising ones refer to hashtags existing in the past and staying below the top 1k rank, 

and new ones refer to hashtags not existing in the past. All fractions will correspond 

to the fractions over top 1k hashtags by response during period [T,T+h]. Recall the 

Sandy set here is actually the Sandy 4.5 set, thus it is not surprising to see the 

fractions for all three types of hashtags remain steady over time since the diffusion 

turn to be steady during that period for Sandy. For the Nepal and Blizzard set, the 

fraction of new hashtags follows a gradually decreasing trend which means the 

diffusion process has turned from eruption state to steady state. While the old 

hashtags takes the lead at most times for all three sets—showing relative higher 

stability in the ranking compared to the user case, the behavior of rising ones is 

slightly different—showing differences of hashtag dynamics among three data sets.     
 

To summarize, compared to the user case, similar yet more concentrated distributions 

exist for hashtags, and relatively consistent dynamic patterns from evolutions of both 

response and node components persist. All these similarities seem to demonstrate the 

same underlying truth about the urgent diffusion regardless of the diffusion media 

(users or hashtags) I have chosen. Thus consistent prediction results should also be 

obtained for the hashtag case and I will show it in next sections.     

 

4.2.2 Experiment factors 

The basic experiment settings will be the same as the user case. I will set up a similar 

series of experiments compare these two prediction tasks on every aspect. Thus I will 

only mention the parts that will be different. Since now the prediction is based on 

hashtags, the extracted features will be different from the user ones. I am still going to 

have two general types of hashtag features: baseline features and network features. 

Apart from these two general types, there are also other features for extensive studies.  

 

The general baseline features will include:  
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'Number of tweets', 'Number of retweets', 'Number of mentions', 'Number of tweets 

with URLs', 'Number of users', 'Average user tweets', 'Average user followers' and 

'Average user friends'.  

All the above features are derived from tweets containing specific hashtags.  

And the general network features (both the static and dynamic ones) include: 

'Average indegree', 'Density', 'LSCC', 'LWCC' and 'WCC'  

As opposed to the node level features for the user prediction, these network features 

are global level ones derived from the retweet networks formed from each hashtag.  

 

Other additional features include network features from the co-occurrence (COO) 

network and text content features from hashtag tweets text.  The COO network is 

defined to capture the co-occurrence relationship among hashtags. For tweets 

including multiple hashtags, I form pairwise undirected edges between all hashtags 

showing up in the same tweets. When users put multiple hashtags in the same tweets, 

it is actually indicating those hashtags are somehow related from other, at least 

through the content of the tweets. Therefore the motivation to setup this network is to 

characterize the relationship among various hashtags. I would like to know if features 

derived from this network will have any impact on predicting the hashtag popularity. 

The network features with both static and dynamic versions include:  

'Degree', 'Pagerank', 'Eigenvector centrality', 'Closeness centrality', 'Authority score', 

'Hub score' and 'Local transitivity'.  

All these are node level features defined on the undirected COO network.  The text 

content features are derived from the tweets text—including the hashtag text itself. 

These features are derived following recommendations from the previous work (Tsur, 

2012) (Ma, 2013) and availability to me, which contain the following:  

'Hashtag character length', 'Hashtag digits indicator', 'Number of tokens', 'Average 

polarity', 'Clarity score'. The first two are simply features from the hashtag text. The 

other four are features from the text of hashtags. The polarity score is computed to 

measure how extreme a given tweet is. The score ranges from -1 to 1: -1 for 

extremely negative content, 1 for extremely positive content and 0 for neutral content. 

Average polarity is the average polarity score for each tweet from a given hashtag. 

Since I am doing log(x+1) transformation, I add 1 to all polarity scores to avoid 

getting invalid values. Clarity score is calculated in the same way as (Ma, 2013), 

which is the KL divergence between the token distribution within hashtags and the 

distribution within text of all hashtag tweets. This score serves as a quantitative 

measure to detect the distinction between document text and the background text—

thus the "clarity" of the document. These additional features are adopted for an 

extension study to identify whether they can improve the prediction in addition to the 

above two general types.  
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4.2.3 Rank prediction results 

 
 
 Figure 4.5 Nepal hashtag rank prediction results varying by methods, training sets and T 
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Figure 4.5 shows the results for Nepal hashtag rank prediction varying by methods, 

training sets and T, with exactly the same setting as the user case for direct 

comparison. Default values are assumed for prediction parameters not mentioned 

explicitly. All the patterns observed in the figure are similar to the user case:   

1. GLM still does the best overall job and the differences among methods are subtle 

when number of nodes involved for the rank prediction is large.  

2. The retweet network features improve the prediction when added to baseline ones.  

3. Dynamic features not only do steadily better than static ones, but also outperform 

baseline ones for themselves alone when the number of nodes involved is not large.  

4. Consistent results are observed by varying T values. 

Since Sandy 4.5 set outperforms Sandy set evidently, I will use Sandy 4.5 set as the 

default training set.  

  

Figure 4.6 lists the results from several additional comparisons. Here RT_network 

features refer to both static and dynamic network features from retweet network, and 

COO_network features refer to corresponding ones from the COO network. Unlike 

the slight improvement by using retweet features in the user case, here the 

performance of the network features derived from retweets and mentions are almost 

the same. I think the possible reasons are: the node level network features are used for 

user prediction while global level features are used for hashtag prediction, and the 

variability among node level features are much higher than global level ones, thus 

node level features seem to able to exhibit the distinction between retweets and 

mentions more obviously. The second plot shows the results using COO network 

features. Unlike the retweet network features, the COO network features alone cannot 

provide good results. The retweet network features have prominent prediction power 

for smaller number of top hashtags, when the improvement from the baseline ones is 

also greater. When the number of hashtags involved is large, where many of them are 

almost inactive (Figure 4.3), the performance of network features degrades and less 

improvement is observed. Though adding COO features to baseline ones can obtain 

intermediate improvement, using them alone has the worst performance as always. 

Moreover, the feature combination with all features only barely beats the combination 

of basline+retweet features when the number of hashtags is large, but has much worse 

performance when the number is small. Therefore the COO features are much less 

effective than retweet features, thus I do not recommend extracting them for the 

prediction since extra amount of network computing is involved and it leads to low 

benefit cost ratio. However, when computing resource is not a big concern, they can 

still be added to provide an alternative solution. As to the text content features, to my 

surprise, themselves alone are even giving much worse results than the COO features 

(about 0.1-0.2 on the rank correlation score, not shown in the plot to provide better 

resolution). What's more, the baseline+content feature combination has no 

improvement over baseline, and so does the combination of all features over 

baseline+retweet combination. This simply implies the content features have nearly 

no predicting power at all, at least to this rank prediction task.  
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  Figure 4.6 Nepal hashtag rank prediction results by varying additional factors 
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This observation is in contrast to (Ma, 2013), where some of the content features are 

considered to be effective. I speculate the main reason lies in the context of the 

prediction task: some derived content features use information from a long term 

collection of data set with a mixture of all types of hashtags, while my task is 

focusing on prediction of hashtags restricted to limited time period and a specific 

event. Regardless of the true underlying reason, I have shown that the retweet 

network features turn out be much more effective than content features in this special 

urgent diffusion prediction task. This may have profound implications: content-based 

features, while could contain rich information and be highly effective potential 

predictors, cannot fully utilize their potentials and perform well on a prediction task 

restricted with limited information; while diffusion based network features, on the 

other hand,  can still stably provide decent performance under this difficult condition.  

 

 

 
 
 Figure 4.7 Blizzard hashtag rank prediction results by varying methods and training sets 
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Figure 4.7 shows the results for Blizzard set hashtag rank prediction for extension 

study and the default Sandy 4.5 training set is used in the first plot. Like in the user 

case, the results turn to be a little noisier, but these should be reasonable considering 

the high variability nature of the prediction task. Compared to the other two methods, 

GLM is still the best choice if I take its various advantages into consideration. The 

network features still improve the performance overall, just not to the extent of the 

Nepal case. As to the training sets, Nepal and Sandy 4.5 seem to perform slightly 

better than Sandy set, but they are close on average. This is in consistent with what I 

have observed for the user rank prediction—the differences among various training 

sets are not significant.  

 

 
 

     Figure 4.8 Nepal hashtag rank prediction GLM method stability  
 

Same as Figure 3.11, Figure 4.8 is the stability plot for GLM method for the hashtag 

rank prediction task (n=100). The result is even more stable than the user case, which 

could be simply because the hashtags have more stable rank. The other two methods 

still have much worse stability like in the user case and thus are not shown here to 

save space. Therefore I can say GLM is the best method for both user and hashtag 

prediction tasks in terms both performance and stability, which could possibly 

suggest a strong yet stable log-linear dependency between the selected features and 

the target response.  

 

The results for the classification tasks are in Figure 4.9. For the top quantile 

classification task the rank prediction has comparable performance as formal 

classification (same setting as in the user prediction). This is basically the same 

conclusion I have drawn for the user prediction. However, for the rapidly increasing 

classification task, rank prediction significantly outperforms formal classification, 

which is different from the user case.  Though not being satisfactory based on the 

PRAUC score, the performance of the rank prediction is nearly 8 times against the 

random guess across different increasing percentages, compared to only about 2 times 

in the user case. This improvement over user prediction may also result from the 

more concentrated hashtag response distribution. Recalling the previous quantile 



 

 

 88 

 

analysis, the same response threshold bar—10 for the rapidly increasing classification 

corresponds to about 80% quantile in the hashtag case and about 60% quantile in the 

user case respectively. Therefore the positive data points in the hashtag prediction 

case contain higher fraction of top-tier points by response than that of the user 

prediction case, which could lead to better alignment of the classification with rank 

prediction in the hashtag case over the user case.  

 

 
 

                Figure 4.9 Nepal hashtag classification results  
 

Figure 4.10 shows the variable importance ranking for the GLM method. Same to the 

user case, I am using the baseline+static+dynamic feature combination. But this time 

I reverse the order in the frequency plot since most of the features involved have been 

selected every time (n=100), more than the user case, which also explains the better 

method stability for the hashtag prediction. As to the top 10 variable magnitude rank, 

similar patterns as the user case are observed: there are constantly important baseline 

features like number of tweets and URLs, and also some varying dynamic network 

features such as the WCC values within different time windows, where the fractions 
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of the selected baseline features and network features are nearly 1:1. Interestingly, for 

dynamic network features derived from the same network statistics—WCC, they can 

even have different signs in the weights; moreover they are also significant regardless 

of the signs. This again illustrates the necessity of adopting the dynamic network 

features: they can show varying effects under varying time intervals and each of them 

may turn out be significant as well; while simply using static features will not only 

hide these dynamic patterns but degrade the performance as well.   

 

   

 
 

        Figure 4.10 Nepal hashtag rank prediction GLM method variable importance 
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4.2.4 Direct prediction results 

 
 
Figure 4.11 Nepal hashtag direct prediction results varying by methods, training sets and T 
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Figure 4.12 Blizzard hashtag direct prediction results by varying methods and training sets 

 

Following similar settings as the user case, Figure 4.11 and Figure 4.12 show the 

direct prediction results for Nepal set and Blizzard set respectively. Compared to the 

user case, hashtag direct prediction exhibits both similarities and distinctions. In both 

cases, on average across all settings GLM has the best performance and addition of 

network features make improvement on prediction over baseline features.  Also the 

variations among methods and training sets are larger than the rank prediction. But 

unlike to the user prediction case, the variations among training sets are much smaller 

for hashtag prediction, which demonstrates more stable prediction. A possible 

explanation is that the heterogeneity among hashtag features and response across 

various data sets is much smaller compared to that in the user case. Although the 

selection of training sets is of less concern than the user case, prominent improvement, 

which is even larger than improvement from good features selection, can still be 

obtained if a proper choice is made.  
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Set Sandy Sandy 4.5 

Log scores (top 3000) 0.722 0.746 
 

Set Sandy Sandy 4.5 Nepal 

Log scores (top 3000) 0.643 0.810 0.140 
 
Table 4.3 KS statistics of past scores for various training sets with Nepal set (top) and 

Blizzard set (bottom) 

 

 

 
 

        Figure 4.13 Nepal hashtag direct predictions GLM method variable importance  
 

In Table 4.3 the KS statistics from past scores for training sets selection are presented. 

Since now different sets have different number of data points (see Table 4.2), the 

comparison cannot be made directly with different sample sizes. Here I only use the 

top 3000 data points for the KS statistics calculation. For the Nepal set prediction, the 

two values obtained are close, thus I cannot make a good decision on which training 

set is better. For the Blizzard set prediction, though I still cannot distinguish whether 
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Sandy or Sandy 4.5 is better, I can confirm with high confidence Nepal set should be 

the best choice. And the result indeed fits this well. Thus I believe the KS statistics 

with past scores can still be a good empirical criterion for training sets selection, 

given the distinction among the statistical values is large.  

 

Figure 4.13 displays the variable importance for direct prediction task for Nepal set 

using GLM method. Generally the plots look similar to Figure 4.10: most features are 

selected by the model all the time and top ranked features consist of both baseline and 

network features. One thing slightly different is that I observe higher fraction of 

dynamic network features in the top 10 ranked features by weights, as far as to 8-9 

out of 10. This demonstrates the dynamic network features are playing more 

important roles for the direct prediction task. And greater improvement effect can be 

observed for hashtags staying in the top rank, when these features are really taking 

meaningful values instead of many nulls.  

 

 

Hashtag 
(rank/log(score+1)) 

Past score  Predicted 
by SD 

Predicted 
by B 

Predicted 
by BSD 

True  

rebuild 13/7.80 458/3.14 15/6.68 95/5.17 1017/3.30 

supportnepal 138/5.29 56/4.75 77/5.06 43/5.65 13/8.72 

earthquakeagain 50/6.31 37/5.53 66/5.12 52/5.43 15/8.49 

helpnepalchildren 5970/0.69 7322/-
1.29 

4637/0.17 5887/0.15 9/9.31 

3news 4926/0.69 7032/-
1.29 

6421/-
0.22 

6961/0.006 18/8.34 

 

        Table 4.4 Prediction further investigation on selected hashtags using GLM 

 

 

Missing 
counts by 

rank 

Missed by 
SD 

Missed by B 
Missed by 

BSD 
Missed by 

all 
Count of 
the union 

Top 10 3 3 3 3 12 

Top 20 7 8 7 7 24 

Top 50 21 23 22 17 66 

Top 100 39 44 40 31 139 
 

        Table 4.5 Missing hashtags count under various feature sets using GLM  

 

Following the same ideas as Table 3.5 and Table 3.6, I further investigate the effect of 

features on prediction based on several individual hashtags. Tracing back SD 

represents feature combination static+dynamic, B represents baseline and BSD 

represents baseline+static+dynamic; the values in the table are rank and log(score+1) 

respectively. In Table 4.4, the hashtag 'rebuild' is over ranked by B but pretty well 
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predicted by SD if I look at the direct prediction score vs. the true score. It is 

interesting to see here for this hashtag with log past score 7.8, the feature combination 

SD only predicts 3.14 compared to 6.68 provided by B, which clearly indicates there 

is unique information included in those network features so that they are suggesting a 

different result. For hashtags 'supportnepal' and 'earthquakeagain' the results are very 

similar for all features combinations and past scores, but they are different from the 

true values. This illustrates that for hashtags with intermediate past activity but with 

high future activity, none of the features may be able to make accurate prediction. 

The situation is much worse for hashtags 'helpnepalchildren' and '3news', where they 

showed barely activity in the past but high activity in the future, and none of the 

features can make even reasonable prediction. This is exactly the same as I have 

noticed in the user case: I cannot make good prediction out of nothing. But generally 

speaking, similar to the user case, the BSD combination will provide the most reliable 

and stable results since it can make use of the advantages of both network and 

baseline features. Table 4.5 serves the same purpose as Table 3.6 to provide a 

suggestion for maximum top hashtags inclusion. The improvement by union all 

results seems to be less, but it still depends on the actual cost function to determine 

whether it is worth to do or not.  

 

 

4.3 Prediction on latent topic popularity 

4.3.1 Features and response  

Following the same settings as mentioned earlier, I consider hashtags as documents to 

build the LDA topic model with number of topics to be 10. More specifically, I am 

using all hashtags (after content filtering) within period [0,T] to construct the LDA 

model, and then use the model to infer the topic probabilities for each hashtag 

involved. The weighted aggregation (the weights are the corresponding probabilities) 

of features and response of hashtags will be used as features and response for each 

topic. And since the content of documents (hashtags) will drift and change over time 

(will be shown later), the topics formed from them will also prosper and decay 

relatively fast. Thus I will set the default prediction period h to be 2d instead of 5d. 

The weights of features are given by the LDA model trained within period [0,T], 

while the weights for the response are inferred using the trained model on hashtags 

text within period [T,T+h]. For consistency consideration, I need to maintain the 

same set of hashtags for derivation of features and response. There may be newly 

invented hashtags in period [T,T+h] that have good alignment with existing topics, 

but I have to exclude them from the prediction task since they do not preserve 

features in the training period. The potential bias introduced by this exclusion is 

inevitable in this prediction task setting. Moreover there are other factors to be 

considered like documents drifting and noisy hashtags filtering, I will only select the 

top 10k hashtags by retweets during [0,T] for features and response extraction, which 

is the same thing as I have done for the user and hashtag prediction tasks. Thus the 

response—the topic popularity will be the weighted aggregation of top 10k hashtags 
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response with weights inferred by the existing LDA model upon the text of the same 

10k hashtags during period [T,T+h].  

 

As to topic features, they also include the baseline features and network features, with 

the corresponding weights are from the LDA model during period [0,T]. The baseline 

features will simply come from the hashtag baseline features plus one additional 

'Average polarity', which I believe should be a useful feature for topics. For baseline 

features that are defined as summations: 'Number of tweets', 'Number of retweets', 

'Number of mentions', 'Number of tweets with URLs', 'Number of users', I use the 

weighted aggregation of hashtags ones to form the topic ones. For others that are 

defined as means: 'Average user tweets', 'Average user followers', 'Average user 

friends' and 'Average polarity', I use the weighted average of hashtag values as topic 

ones. But for network features I cannot do the same since network features are 

defined on one whole network and weighed aggregation of network statistics from 

various networks have no practical meanings. In this case I can construct a weighted 

network for each topic, with the edges coming from all edges of top 10k hashtags and 

the weights are corresponding probabilities from each hashtag for the same topic. 

Since there are not many well defined network statistics for weighted directed 

networks, I introduce two network statistics for this weighted network: 'Average 

indegree' and 'Median outdegree'. Other parameters not mentioned will simply adopt 

the default settings as previous sections.  

 

 

     
                 

            Figure 4.14 LDA topic response comparisons across various data sets  
 

Figure 4.14 lists the topics popularity (response with h=2d) over various T values 

across three data sets. Here the topic indices are simply ranked by increasing order of 

the topic response for better alignment comparison. The default topic indices are 

ranked by the topic coherent scores, which are the ones used in Figure 4.15. From the 

plots both within the sample range and cross samples (data sets) range of the topic 

response are about 2 on the natural logarithm scale. 
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Figure 4.15 LDA expected versus true topic response comparison across various data sets 

(the data sets are Sandy, Nepal and Blizzard from top to bottom respectively) 
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Since both features and response are weighted aggregation of hashtags values, they 

tend to have more homogenous within sample and cross samples distribution (only 

the distribution of the response is shown here). This is different from both user 

prediction and hashtag prediction, where the distribution is heterogeneous in either 

aspect. Thus for the topic prediction task I can simply adopt the direct prediction 

approach, where the unfavorable effect of heterogeneity is reduced significantly.   

 

Topic_5 Topic_9 Top 10 hashtags 

tokens 
probs_ex

pected 

probs
_true 

token
s 

probs_ex
pected 

probs
_true 

name 
volu
me 

'earthq
uak', 

'help', 
'quak', 
'aid', 
'toll', 

'death'
, 

'relief', 
'effort', 
'peopl', 
'victim' 

0.0537 0.279 

'mem
ber', 
'quak
ehit', 
'com', 
'click', 
'hat', 
'churc

h', 
'coord

in', 
'mort

o', 
'preac
her', 
'retur

n' 

0.341 0.0299 nepal 
166
411 

0.0282 0.367 0.544 0.0220 
nepalearthquak

e 

593
48 

0.0485 0.373 0.541 0.0216 earthquake 
236
44 

0.0362 
      
0.406 

0.549 0.0202 nepalquake 
201
05 

0.0460 0.287 0.540 0.0322 
nepalquakerelie

f 
116
10 

0.0411 0.145 0.361 0.103 helpnepal 
114
50 

0.0671 0.579 0.633 0.0686 
helpnepalchildre

n 

104
38 

0.0405 0.237 0.245 0.0240 prayfornepal 
670

9 

0.0322 0.0315 0.719 0.0279 supportnepal 
556

9 

0.0449 0.389 0.545 0.0466 
msghelpearthqu

akevictims 

521
5 

 

Table 4.6 Selected topic probabilities comparison for Nepal set with T=36h 

 

Figure 4.15 shows the response comparison using two types of weights (probabilities): 

the expected weights—ones indicated by the training model during period [0,T] and 

the true weights—ones derived from the text of same top 10k hashtags during 

[T,T+h]. The motivation behind is to investigate the document content changing over 

time. From top to bottom the sets are Sandy, Nepal and Blizzard respectively, and the 

title of each subplot corresponds to the T value. For majority of the topics across 

various T values and data sets, the expected values are close to the true values, which 

indicates the content of the corresponding documents is relatively stable at least to a 

short term future. But there are a few cases when the discrepancy is big—seen in the 

48h plot for Sandy set, the 36h and 48h plot for Nepal set. These cases imply the 

underlying hashtags (at least some major ones) are experiencing drastic changes from 

present to the near future since all topics are from existing models and they will 
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remain relatively static.  Two topics that have exhibited the largest discrepancy in the 

Nepal 36h plot are further studied as examples to investigate the document drifting 

effect, and the results are listed in Table 4.6.  

 

Index Top 10 tokens 

1 'que', 'por', 'del', 'con', 'sandi', 'los', 'york', 'las', 'para', 'huracan' 

2 
'sandi', 'school', 'hurrican', 'tomorrow', 'power', 'day', 'get', 'class', 'cancel', 
'like' 

3 
'birthday', 'chill', 'candl', 'tormenta', 'cooki', 'social', 'cheek', 'cuba', 'cours', 
'tras' 

4 'blew', 'reason', 'dog', 'sandi', 'gym', 'roof', 'wors', 'dear', 'hate', 'calm' 

5 'sandi', 'hurrican', 'bitch', 'safe', 'east', 'coast', 'everyon', 'hope', 'fuck', 'stay' 

6 
'help', 'hurrican', 'sandi', 'donat', 'obama', 'victim', 'relief', 'romney', 'amp', 
'via' 

7 'hurrican', 'sandi', 'close', 'due', 'amp', 'power', 'the', 'new', 'storm', 'wind' 

8 'sandi', 'walk', 'someon', 'run', 'bore', 'alright', 'gas', 'drink', 'hurrican', 'water' 

9 
'anyth', 'spongebob', 'sandi', 'badai', 'hair', 'swim', 'twerk', 'whore', 'dan', 
'hoy' 

10 'sandi', 'hurrican', 'like', 'get', 'the', 'power', 'eat', 'came', 'room', 'are' 
 

 

Index Top 10 tokens 

1 
'yoga', 'des', 'earthquak', 'dog', 'south', 'auction', 'rescu', 'wow', 'everest', 
'surviv' 

2 'voor', 'per', 'van', 'een', 'met', 'uit', 'aan', 'het', 'aardbev', 'che' 

3 'todo', 'mit', 'ein', 'den', 'bruce', 'les', 'til', 'anim', 'pour', 'ist' 

4 'der', 'die', 'und', 'erdbeben', 'nach', 'das', 'aus', 'von', 'club', 'auf' 

5 
'rais', 'fund', 'earthquak', 'fundrais', 'relief', 'help', 'donat', 'money', 'today', 
'support' 

6 'terremoto', 'que', 'los', 'por', 'del', 'para', 'con', 'las', 'muerto', 'ayuda' 

7 'earthquak', 'quak', 'toll', 'death', 'hit', 'miss', 'helicopt', 'anoth', 'rescu', 'dead' 

8 
'gempa', 'korban', 'indonesia', 'untuk', 'wni', 'ronaldo', 'bantuan', 'tim', 
'cristiano', 'dari' 

9 
'help', 'donat', 'earthquak', 'peopl', 'pray', 'support', 'pleas', 'need', 'prayer', 
'victim' 

10 'earthquak', 'relief', 'help', 'effort', 'aid', 'via', 'disast', 'donat', 'quak', 'proud' 
 

Table 4.7 Top 10 tokens for each topic from Sandy set (top) and Nepal set (bottom) 

 

In Table 4.6 the probabilities for top 10 hashtags by retweet volume are shown to 

reflect the content variations of the topics. Clearly topic 5 is underestimated while 

topic 9 is over estimated. This suggests the content of underlying hashtags is shifting 

from topic 9 to topic 5, where I can distinguish their differences by the top 10 tokens. 

From this situation I can perceive the differences between the topics defined simply 
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by hashtags and by latent topic models. While the former are annotated by a variety 

of people who believe the content should be relevant to a concentric but relatively 

vague idea, the later are solely content based and judged by computers using the 

distribution of tokens. The ideal topic model should be able to reach a consensus with 

human belief to some extent, with the extent can also be finely tuned.  

 

To further explore the topics formed by the models, I list the top ranked tokens for 

each topic formed by the full data sets in Table 4.7. There many of the topics indeed 

delivering concordant information, such as topic 2,5,6,7 for Sandy and topic 5,7,9,10 

for Nepal. Though there are also topics formed by languages other than English and 

thus cannot be understood well, this can barely be avoided since I do not have a well 

labeled training set to perform the language classification task. Generally speaking, 

the LDA model is really generating meaningful topics, although the best number of 

topics is still a concern here—larger number of topics can either split more general 

topics into smaller but also more concentric ones or capture some hidden interesting 

small topics, while smaller number of topics can aggregate fragmented yet less 

meaningful topics into consistent and more meaningful ones. But as mentioned earlier, 

the main goal of my study is not trying to build good topic models, but to investigate 

and compare how the prediction task will vary from the two topic definitions—

hashtags and latent LDA topics. Thus the quality of the topics is of less concern and 

should not affect my final conclusion.  

 

With the number of topics fixed, there will be drastic topic drifting over time due to 

content variation of the underlying hashtags. Some formed topics may only exist 

within a short period of time but some others may persist in long term. In Table 4.8, I 

select some persistent yet meaningful topics to see what kind of topics survives 

longer periods. The first two topics are from the Sandy set and the last one is from the 

Nepal set, the boldfaced tokens are ones that are shared through different periods. 

Here I choose the most persistent yet meaningful topics by measuring the fractions of 

overlapping tokens within the top 10 tokens within different periods since topic 

indices tell nothing about their relationship, this criterion can be modified subject to 

personal preference and I am simply using it for illustrative purposes. Again the 

indices of the topics correspond to the coherent ranking, thus they can serve as a rank 

of topic quality to some extent. The first Sandy topic expresses a clear theme: 

'Hurricane Sandy is approaching east coast and hope everyone stay safe'. This one 

should be the most long-lasting yet consistent topic observed for Sandy set, which 

should be reasonable considering the particular feature of events related to natural 

disasters. The second Sandy topic appears less straightforward but I can still infer the 

central idea is about school class cancellation due to the hurricane, where the 

discussion is likely to be initiated and prevailed among students.   

 

The Nepal topics seem to less persistent and the best one I have found only has 4 

tokens in common through all periods. But the idea conveyed is clear: all about relief, 

donation and aid due to deaths during the earthquake. There are other less persistent 

but maybe more centric topics which are also worth to study—about more specific 

issues such as certain rescue actions or church prayer activities. Therefore the topic 
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model is achieving meaningful performance, and my main goal is to predict the future 

popularity of these topics.  

 

Collection 
period 

Index Top 10 tokens 

12h 9 
'safe', 'sandi', 'hurrican', 'everyon', 'stay', 'coast', 'east', 
'hope', 'power', 'pray' 

24h 5 
'safe', 'sandi', 'hurrican', 'everyon', 'coast', 'east', 'hope', 
'stay', 'peopl', 'pray' 

36h 7 
'safe', 'hurrican', 'sandi', 'east', 'coast', 'everyon', 'stay', 
'hope', 'peopl', 'pray' 

48h 8 
'hurrican', 'sandi', 'east', 'safe', 'coast', 'everyon', 'stay', 
'hope', 'new', 'affect' 

All 5 
'sandi', 'hurrican', 'bitch', 'safe', 'east', 'coast', 'everyon', 
'hope', 'fuck', 'stay' 

 

Collection 
period 

Index Top 10 tokens 

12h 10 
'school', 'sandi', 'tomorrow', 'cancel', 'class', 'hurrican', 
'day', 'get', 'power', 'work' 

24h 8 
'sandi', 'hurrican', 'school', 'get', 'tomorrow', 'sleep', 'like', 
'fuck', 'bitch', 'cancel' 

36h 10 
'sandi', 'hurrican', 'school', 'tomorrow', 'get', 'fuck', 'bitch', 
'day', 'got', 'class' 

48h 10 
'school', 'tomorrow', 'class', 'sandi', 'cancel', 'hurrican', 
'day', 'get', 'thank', 'power' 

All 2 
'sandi', 'school', 'hurrican', 'tomorrow', 'power', 'day', 'get', 
'class', 'cancel', 'like' 

 

Collection 
period 

Index Top 10 tokens 

12h 1 
'earthquak', 'effort', 'toll', 'call', 'quak', 'peopl', 'death', 
'suppli', 'help', 'aid' 

24h 4 
'earthquak', 'help', 'relief', 'toll', 'donat', 'quak', 'peopl', 
'death', 'effort', 'rise' 

36h 5 
'earthquak', 'help', 'quak', 'aid', 'toll', 'death', 'relief', 
'effort', 'peopl', 'victim' 

48h 8 
'earthquak', 'help', 'toll', 'quak', 'death', 'relief', 'aid', 
'donat', 'peopl', 'effort' 

All 10 
'earthquak', 'relief', 'help', 'effort', 'aid', 'via', 'disast', 
'donat', 'quak', 'proud' 

 

   Table 4.8 Selected persistent topics over various periods for Sandy and Nepal sets 
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While the true future popularity of previous topics is hard to find, I use the weighted 

aggregation of hashtag popularity as the approximation, and it is the best available 

approach given the data and information in hand.  

 

4.3.2 Prediction results 

The direct prediction is expected to lead to relatively good results and it indeed does. 

Figure 4.16 shows the direct prediction results for Nepal set varying T and methods. 

The RMSE is below 1 on the log scale for the best setting, considering the 

corresponding magnitude for the response is about 10~12, I believe the results are 

satisfactory.  For the prediction methods, the GLM no longer performs the best since 

the prediction results are highly unstable. The main reason should be the singular 

fitting problems that occur occasionally. Moreover, warning messages are received to 

remind there are too few samples for the CV—the minimal requirement is 3 for each 

fold. But even the number of folds changes from the default value 10 into 3, the 

singular fitting issue is still there. There are two driving factors for this: the sample 

sparsity and the homogenous features distribution, where the latter one could be more 

fatal to the linear model. Given more samples, this issue may be remedied to some 

extent by CV and feature selection, but it is not feasible in this study due to the setting 

of my problem. Thus GLM may not be a good choice for this prediction task.  

 

 

Figure 4.16 LDA topic popularity predictions for Nepal set varying T and methods 

 

In contrast, the other two nonlinear methods perform relatively stable: with DL 

performs better during the first two periods and RF performs better during the last 

two. To achieve the best stability, I suggest the approach using the average scores of 

RF and DL methods, which gives more stable results staying below a RMSE of 1 

consistently.  As to the feature sets, generally I do not see any significant 

improvement over baseline features. Given the great computational cost (mainly for 

the weighted graph construction), network features are not recommended for this task 

since the baseline ones already provide satisfactory results. 
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Figure 4.17 LDA topic popularity predictions for Blizzard set varying T, methods and 

training sets 
 

Figure 4.17 shows the topic prediction results for Blizzard set with GLM method 

removed. The results are even better than the Nepal case and RF+DL average also 

gives the most stable performance with RMSE around 0.5. For this case, the network 

features demonstrate some improvement over baseline ones, especially for the DL 

approach. However, as I mentioned earlier, it is still not necessary since the overall 

performance of all feature sets is already good.  The second plot shows the results for 

the RF+DL average approach with varying training sets. The Sandy set performs best 

on average while Nepal set does the worst on average. Although the general 

performance is still good, the variability among methods and training sets are much 

more than the feature sets, which seems to be natural when it comes to direct 

prediction instead of rank prediction. Thus, choice of training sets proves to be much 

more important than choice of features in this case. The empirical measure for 

training sets selection I have used before—the KS statistics may not be a suitable one 
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here since the sample size is too small to make the comparison results powerful 

enough. Then a proper alternative would be to simply use the combination of the two 

sets: as shown in Figure 4.17, the combination can give relatively stable results even 

though no further information about which one to choose is provided.  

4.4 Discussion 

4.4.1 Summary 

For the hashtag prediction part, I intentionally follow nearly the same settings as the 

user prediction to identify their similarities and differences. It is easy to observe that 

they should share much in common from each other since both the user activity and 

hashtag activity will largely depend on single tweet popularity (number of retweets it 

obtains); especially for tweets with extremely high popularity, the corresponding 

users or hashtags (if there is any) will also be attached with large scores as well. More 

specifically, I have found the following common aspects:  

1. The response distribution for both the users and hashtags followed well with the 

power law distribution, demonstrating that it is a general phenomenon for information 

diffusion on Twitter regardless which level to look at: tweets (looking at the retweets 

distribution of each tweet), users or topics.   

 

2. The network features, especially the dynamic ones, significantly improve over 

baseline ones across different prediction tasks for both cases. To view this more 

generally, the additional dynamic information included in those features is indeed 

helpful in predicting the near future behavior, for both users and hashtags.  

 

3. For both cases the GLM method not only gives the best on average performance, 

but also possesses other advantages over the other two non-linear methods: such as 

stability, run time efficiency and well defined variable importance etc. Similar to the 

user case, there is also a strong log-linear dependency between the selected features 

and the response. The fact that no better performance is observed from the two 

nonlinear methods towards to the linear method again shows there is no significant 

nonlinear relationship between the selected features and the response. More generally, 

this can imply there is strong log-linear dependency (while no significant nonlinear 

dependency on the log scale) between past activity and near term future activity, 

where the activity could be quantified by various metrics (number of retweets, 

number of mentions, URLs etc.) based on different levels (tweets, users, topics etc.).  

 

4. Given the heterogeneity among the data sets, it is not surprising to see the rank 

prediction turns out to be more stable than direct prediction in both situations. And 

the rank prediction results can be directly used for top-tier users or hashtags 

classification as well. As to the direct prediction, the choice of training sets is a 

crucial issue to be considered in both cases, and the KS statistics proves to serve as a 

good empirical measure for both tasks.  
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5. Since both the baseline and network features used in the prediction tasks rely 

heavily on past behavior, they will be ineffective for samples with low past activity, 

regardless the samples are users or hashtags.    

 

Provided with the above common points, there are also distinctions between the two 

scenarios:  

1. The "Matthew effect" for hashtags is much stronger than for that of users. This can 

be seen directly from the quantile distribution plots, where the distribution is more 

extreme for hashtags than users, and their maximum values are differed by about 2 

orders of magnitude.  

 

2. Perhaps due to the more extreme distribution, the prediction results exhibit better 

stability than the user case. For the rank prediction, on one hand the GLM method 

stability plots illustrate better stability for hashtag prediction directly; on the other 

hand, a larger fraction of variables are selected by the GLM model in hashtag 

prediction than user prediction, which can also be evidence of better stability. For the 

direct prediction, the distinction is more obvious. Wrong choice of training data can 

lead to totally absurd results in the user case, while still remain relatively reasonable 

ones in the hashtag case. A possible explanation for this might be: because of the 

more extreme distribution for all data sets, the distortion due to training and testing 

sets heterogeneity is somehow reduced—the distributions become more similar from 

each other in the log scale.  

 

3. Much better results exist in the rapidly increasing classification task for hashtags. 

The underlying reason may also be the more extreme distribution, where more rapidly 

increasing samples belong to top-tier hashtags and exhibit higher activity, thus can 

lead to much improved results with network features.   

 

For the latent topic prediction, I consider it as a weighted version of hashtag 

prediction: the features and response are all weighted aggregation of hashtag ones. As 

to the topics, the LDA model is doing a decent job to pick up some concentric and 

persistent topics, although the quality of topics still have much room for 

improvement. The way to quantify the topic popularity may be biased and 

inappropriate, but it is the currently best approach available to me given the 

information I have. Due to the weighted aggregation, the distribution of features and 

response become much more homogenous. This makes standardization unnecessary 

and thus I can just go ahead with the direct prediction tasks. The followings are the 

main discovery for the latent topic prediction: 

1. Generally speaking the prediction results are good in terms of RMSE measure, 

which should not be surprising given the good alignment of topic response in Figure 

4.14. The GLM method no longer performs well due to unstable results led by the 

singular fitting problem. Increasing the sample size could fix the problem but it is not 

feasible in my setting. The other two nonlinear methods are stable and using the 

average scores of RF and DL methods is the most stable approach.   
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2. The prediction improvement of network features over baseline ones is limited. It is 

likely because these network features do not have good differential power among the 

topics, which is a result of the homogenous distribution. Consideration the 

computation cost of weighed graph construction and network features extraction, I do 

not recommend using these features for this task since the performance of baseline 

features is already good, unless better accuracy is highly preferred and rich 

computation resources are granted.  

 

3. The performance variations due to methods and training sets are much larger than 

choice of features, which is similar to my observation for the user and hashtag direct 

prediction tasks. But I do not think KS statistics is a good choice for training sets 

selection for this task due to the small sample size and limited testing power. I 

suggest using the combination sets for better stability purpose if no other information 

about the better training set is provided.   

4.4.2 Future work 

Similar to the user prediction tasks, I would like to extend the analysis to other types 

of events and platforms. Combined with the diffusion tracking and user prediction 

analysis, this topic prediction task could also be one function for the more general-

purposed event diffusion study user API granted with enough time and engineering 

effort.  Given more time for investigation to the latent topic part, I would like to 

construct an online framework that can fulfill and concatenate the following tasks 

well: topic formation or detection, topic quality identification, topic evolution monitor 

and topic popularity prediction.    
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Chapter 5:  Conclusion 
 

 

5.1 Discoveries and contributions 

For urgent event diffusion through Twitter, my primary assumption in this study is 

that the diffusion of urgent events mainly relies on retweeting behavior. There are 

definitely other effective ways for information diffusion to occur: such as posting new 

relevant tweets, adopting hashtags or URLs, and mentions. But as discussed before, 

retweets demonstrate several advantages over the other measures: they not only 

provide solidly tractable path for the diffusion (compared to normal tweets), but also 

are stronger indictors of information diffusion (compared to mentions) and include 

more general forms of underlying tweets (compared to tweets with hashtags or 

URLs). Therefore they are the best candidate for the study of information diffusion. 

Based on this, the study of urgent event diffusion can be considered as study of the 

underlying retweet network, and it is the main reason why I emphasize much on 

network statistics in my study.  

 

In this dissertation I accomplish a comprehensive study on urgent event diffusion 

through Twitter using the retweet network statistics. My main findings are:  

1. With proper choice of category and time window size, the network statistics, 

especially the dynamic ones can reveal detailed global level and node level diffusion 

patterns. The results from hashtag K-means clustering and event hashtag binary 

classification also show these statistics can be helpful to distinguish different types of 

hashtags.    

 

2. For both the user and hashtags prediction tasks, the network statistics especially the 

dynamic ones can provide significant improvement over baseline features. The extent 

of improvement will depend on the experiment settings—including prediction types, 

choice of training and testing sets, values of prediction parameters etc. The 

effectiveness of these statistics indicates there is strong past-to-future behavior 

dependency for both user and hashtag.   

 

3. In both the user and hashtag prediction tasks similar patterns are observed for 

response distribution and prediction results. Moreover, GLM method outperforms the 

other two nonlinear methods and proves to be the best prediction method for both 

tasks on several aspects—results, reliability, interpretability etc. All these may imply 
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there is strong linear dependency and no significant nonlinear dependency between 

selected features and response on the log scale, and this dependency may persist 

regardless of the scopes of prediction—whether on tweet, user or hashtag level.   

 

4. For LDA topic popularity prediction the improvement of network statistics is not 

significant. I believe the main reason is that the distribution of LDA topic popularity 

is much more homogenous than the user and hashtags cases. The GLM method does 

not perform best either, which could be due to the inherent drawback of a linear 

model in the case of limited sample size. The most reliable approach for this task will 

be to use the average scores of the other two nonlinear methods with a combination of 

training sets.  

 

With the above discoveries, my work demonstrates the following contributions:  

1. I have developed a comprehensive study of urgent event diffusion on Twitter 

including information diffusion tracking, user influence and topic popularity 

prediction. Though there have been studies about urgent events, they do not generally 

cover the scope that I do. I believe my work can serve as a foundation for further 

research on urgent event study, which can have large potential social and business 

impact.   

 

2. I constructed a new early-time prediction (recommendation) framework for both 

user influence and topic popularity. Given the nature of urgent event, prediction in the 

early stage of diffusion is a must for useful implementation in practice. I managed to 

solve the limited information problem, which is faced by every early time prediction 

approach, by using past event data as training sets for future event data sets 

prediction. The framework not only produces satisfactory yet consistent results, but is 

well scalable as well. It best utilizes the information provided by Twitter streaming 

API and can easily adapt to the "online" prediction mode which maintains continuous 

input and output streams. Moreover, diffusion tracking or monitoring can be 

embedded as an add-on function for exploratory analysis. Therefore, with proper 

additional engineering effort, my framework can provide both diffusion tracking (e.g. 

summary statistics and visualization) and diffusion prediction (e.g. user prediction 

and topic prediction) in an online mode by taking streaming input and generating 

streaming output.   

 

3. I developed innovative network statistics derived from the retweet network for both 

the monitoring and prediction study. These statistics, especially the dynamic network 

statistics including rich temporal information about the diffusion, have demonstrated 

great value in revealing detailed diffusion patterns, predicting user influence and 

predicting topic popularity. This shows the temporal properties underlying diffusion 

network can provide much insight on the diffusion study, which has not been stressed 

in previous study.  

 

4. I obtained robust prediction results from various experiment settings. The 

improvement from the network statistics is consistent and GLM method gives the best 

on average performance. This reveals common behavior patterns during the urgent 
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event diffusion among different levels of entities—tweet, user and topic, which 

should be a natural but still meaningful conclusion.  

 

All in all, the urgent event diffusion exhibits distinct properties over traditional 

information diffusion study; therefore the study of urgent event diffusion also 

requires specific methodology and framework. This is a relatively new research area 

that only draws limited attention but could have a great potential impact and deserve 

further exploration. In my dissertation I have established a comprehensive and 

insightful framework to describe urgent event diffusion on Twitter. I believe my work 

can be a basis or a good reference for future related study in this area. 

 

 

      

5.2 Limitations and expectations 

Given the above discoveries and contributions, there are also following limitations 

that need to be resolved for future work:  

1. More data sets are needed to further consolidate all my conclusions. For the 

hashtag clustering and classification study in Chapter 2, the sample size is less than 

50 and this prevents me from reaching a reliable result. Moreover, a well-defined 

external label is needed to provide a solid validation for hashtag clustering and 

classification. For the prediction part, I need more data sets from categories of urgent 

events other than natural disasters—such as breaking news or other explosive events 

to further validate my findings, although I believe consistent results will be obtained. 

To go one step further, I will also need data from other platforms—such as Facebook, 

Instagram or LinkedIn to see if my conclusion is generalizable to use cases other than 

Twitter.     

 

2. Although I have shown that the network statistics derived from the retweet network 

are effective in revealing detailed diffusion patterns and predicting future influence 

(users or topics), there still lacks theoretical foundation to explain these phenomena. 

A theoretical or empirical guide is needed to figure out the optimal experiment 

settings in advance—e.g. the optimal time window size for the tracking study, the 

optimal starting time for the feature collection period (Sandy set vs. Sandy 4.5 set),  

and the optimal top users or hashtags included (the k value) in the prediction study. 

This is crucial in my framework since there are many different experimental settings 

that have to be determined beforehand, especially for the prediction task. In my 

analysis I choose a series of "standard" settings by exploratory analysis of data and a 

simple grid search, but for practical implementation it will be much more efficient if 

there is certain criterion that can be used to make the choice automatically. More 

specifically, the need for a generally applicable standard is urgent and necessary for 

the following two tasks: selection of training set and selection of feature collection 

period starting time. In my study I use KS statistics as the empirical measure for the 

former task, although it proves to be relatively effective, it still cannot be a reliable 

and qualified standard. For the later task, the currently available approach is to match 
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the evolution patterns of training and testing sets, which is far from satisfactory and 

cannot be used in real-time prediction. Moreover, I have found that different feature 

sets (baseline features and network features) are good at predicting users or hashtags 

of different types, thus it would be beneficial to figure out what individual properties 

(past activity or habit etc.) are leading to the differences. Then I can incorporate these 

factors into the prediction task to achieve individual automatic feature selection for 

the best prediction performance.   

 

3. My prediction framework only gives meaningful prediction results for data points 

that exhibit certain activity during the feature collection period. This is natural since 

no prediction framework can provide meaningful output given null input. Also my 

framework is not able to effectively capture data points that experience a rapid 

response increase, this is because none of the included features can do this well. 

Generally speaking, limited sources of data should be the one to blame for all the 

above shortcomings. Given useful external sources, with a slight modification my 

framework can easily combine features from those sources and overcome the 

limitations.   

 

4. Currently my framework adopts a wide range of programming libraries across 

several open source languages. For efficient practical implementation consideration, 

more engineering effort is needed to merge all of these pipelines into one 

homogeneous package. Given more time and effort, I would like to write a composite 

package to achieve all the functionality and build a simple user interface for easy 

implementation. Ideally, my framework should be able to perform both the tracking 

and prediction tasks with an "online" mode—taking continuous data input streams, 

processing them with use specified commands, then generating continuous output 

streams.     

 

In conclusion, the main direction for the future work would be the cross validation 

and practical implementation of my whole monitoring and prediction framework. 

Ideally my framework should be able to help the stake holders who are interested in 

the diffusion process to either find interesting diffusion patterns or obtain a 

recommended list of important users or topics, meanwhile with all results 

continuously updated by feeding new data. While devoting myself to this goal, I 

would also like to warmly welcome any other interested researchers to join with me 

to accomplish this project together.    
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