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Various insect species such as the Megalopta genalis are able to visually stabilize and navigate

at light levels in which individual photo-receptors may receive fewer than ten photons per second.

They do so in cluttered forest environments with astonishing success while relying heavily on

optic flow estimation. Such capabilities are nowhere near being met with current technology, in

large part due to limitations of low-light vision systems.

This dissertation presents a body of work that enhances the capabilities of visual sensing

in photon-limited environments with an emphasis on low-light optic flow detection. We discuss

the design and characterization of two optical sensors fabricated using complementary metal-

oxide-semiconductor (CMOS) very large scale integration (VLSI) technology. The first is a

frame-based, low-light, photon-counting camera module with which we demonstrate 1-D non-

directional optic flow detection with fewer than 100 photons/pixel/frame. The second utilizes

adaptive analog circuits to improve room-temperature short-wave infrared sensing capabilities.

This work demonstrates a reduction in dark current of nearly two orders of magnitude and an

improvement in signal-to-noise ratio of nearly 40dB when compared to similar, non-adaptive

circuits. This dissertation also presents a novel simulation-based framework that enables bench-

marking of optic flow algorithms in photon-limited environments. Using this framework we



compare the performance of traditional optic flow processing algorithms to biologically-inspired

algorithms thought to be used by flying insects such as the Megalopta genalis. This work serves

to provide an understanding of what may be ultimately possible with optic flow sensors in

low-light environments and informs the design of future low-light optic flow hardware.



BIOLOGICALLY-INSPIRED LOW-LIGHT VISION SYSTEMS FOR MICRO-AIR
VEHICLE APPLICATIONS

By

Andrew Samuel Berkovich

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor Pamela Abshire, Chair
Professor Timothy K. Horiuchi
Professor Martin Peckerar
Dr. Geoffrey L. Barrows
Professor Yiannis Aloimonos



c© Copyright by
Andrew Samuel Berkovich

2017



Dedication

I dedicate this dissertation to my family. Few people are able to enjoy the type of endless

love and support that I have received throughout my life. I owe everything to them and am

truly fortunate to have them in my corner.

ii



Acknowledgments

First, I would like to thank my adviser Dr. Pamela Abshire for her continuing support during

my Ph.D. research. She set high expectations and challenged me to evolve and improve as a

researcher throughout my PhD studies. I thank her for caring enough about me to do so and

for giving me the chance to take part in such exciting research. I certainly would not be where

I am today without her guidance. She is a kind-hearted individual and I owe her my endless

gratitude.

I would like to thank all of my committee members, Dr. Timothy Horiuchi and Dr. Martin

Peckerar, Dr. Geoffrey L. Barrows, and Dr. Yiannis Aloimonos for agreeing to serve on my

examination committee and taking time out of their busy schedules to meet with me and engage

in valuable discussions.

A special thanks goes out to Dr. Geoffrey Barrows who has served me both as collaborator

and as wonderful mentor. He taught me a great deal about how to effectively manage time and

resources, and helped me grow as a researcher. I could not have asked for a better collaborator

throughout my PhD research and his seemingly endless supply of new demos and projects helped

inspire and excite me to get back into the lab and work on my research.

Thanks to all the members of the Integrated Biomorphic Information Systems (IBIS) Labora-

tory, both past and present, for helping cultivate a collaborative, open, and exciting atmosphere

in the lab. Special thanks to Timir Datta, Tsung-Hsueh Lee, Marc Dandin, and Babak Nouri for

laying a foundation for me to built upon, for so many thought provoking and informative discus-

sions, and for all of their help during my time in the IBIS Laboratory. Thanks to Alex Castro

for helping with some of the CTIA data collection, to Sheung Lu for help setting up optical

experiments, and Bathiya Senevirathna for help with Cadence and general troubleshooting.

iii



I also must thank Dr. Agis Iliadis, my first graduate mentor. In large part, my journey into

graduate school at UMD occurred thanks to his support and encouragement. I still remember

taking ENEE313 with him back in 2010 and getting my first taste of research in his lab. I can

not thank him enough for his help, support, and kindness over the years.

iv



Contents

List of Tables vii

List of Figures viii

List of Abbreviations xii

1 Introduction 1
1.1 Biological Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Specific Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Low-Light Image Sensors 9
2.1 Fundamentals of Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Photodetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Photon Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 SPAD Image Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Why SPADs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 SPADs in CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 SPAD Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Photon Detection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 SPAD Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 SPAD Spike Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 SPADCAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Pixel Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Counter Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.4 Dark Count Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.5 Photon Detection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.6 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.7 Pixel Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.8 Low-Light Optic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Room Temperature SWIR Sensing 51
3.1 SWIR Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Microbolometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Photodiodes and Avalanche Photodiodes . . . . . . . . . . . . . . . . . . 53
3.1.3 Quantum Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



3.1.4 Dark Current in Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Capacitive Transimpedance Amplifier Pixel . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Amplifier Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Amplifier Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Floating Gate Devices: Overview . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.4 CTIA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Experimental Characterization: Dark Current . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Non-Adaptive CTIA Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Adaptive CTIA Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Floating Gate Devices: Programming . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Summary of Results and Discussion . . . . . . . . . . . . . . . . . . . . . 65

3.4 Experimental Characterization: Signal-to-Noise Ratio . . . . . . . . . . . . . . . 66
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Optic Flow Benchmarking 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Synthetic Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Natural Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.3 DCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Optic Flow Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Block Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Image Interpolation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Biological Correlation-Based Detectors . . . . . . . . . . . . . . . . . . . . 81
4.3.4 Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Results: Synthetic Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Spatial Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Contrast Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.3 Dark Count Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.4 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.5 Spatial Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Results: Natural Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 Dark Count Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.3 Motion Blurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.4 Spatial Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.1 Effects of Baseline Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.2 Correlation-Based Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.3 Block Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6.4 Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.5 Conclusions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 108

vi



List of Tables

2.1 State-of-the-Art SPAD Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 CTIA Dark Current Suppression Performance Summary . . . . . . . . . . . . . . 65

4.1 Peak Photon-Limited Optic Flow Performance Summary . . . . . . . . . . . . . . 106

vii



List of Figures

2.1 Illustration of operating ranges for SPAD-based pixels, linear active pixel sensors,
and logarithmic active pixel sensors. The figure illustrates what is typical for each
technology rather than peak performance for state-of-the-art sensors. . . . . . . . 17

2.2 Count rate versus photon rate for ideal, paralyzable, and non-paralyzable photon
counting modules. Dead time, τ , is varied over three orders of magnitude to
illustrate its effect on maximum count rate. . . . . . . . . . . . . . . . . . . . . . 28

2.3 Layout picture of SPADCAM. Array is comprised of a 16x16 pixel array with
frame-based, analog readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Schematic of pulse shaping circuit. The circuit consists of a comparator followed
by a monostable pulse generator and is designed to generate a pulse width of 4.3ns. 32

2.5 Layout picture of the SPAD pixel. It contains a 360µm2 perimeter-gated SPAD
in an area of 60µm x 60µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Circuit schematic of analog counter. Input spikes are capacitively coupled to the
gate of M2 through C1. The output voltage is stored across C2 and readout
through a source follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Transient response of analog counter in low-light conditions. Average step-size is
approximately 10mV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Transient response of analog counter in low-light conditions. Average step-size is
approximately 30mV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Normalized dark count rate versus anode voltage across a single row of SPADCAM. 36
2.10 Cumulative distribution of dark count rate across a single row of SPADCAM.

Each curve corresponds to a unique anode voltage ranging from 13.48V to 13.68V.
Anode voltage is indicated next to each curve. . . . . . . . . . . . . . . . . . . . . 36

2.11 Photon detection efficiency versus anode voltage across a single row of SPADCAM. 38
2.12 Estimated SNR of SPAD photodetection for a photon flux of 1M photons per

SPAD per sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Cartoon representing signal processing flow for a single pixel in the NDS algo-

rithm. Raw pixels (PRraw) are spatially pooled (PRpool) and then sequentially
processed in a HPF and LPF. The final step (RNDS) correlates HPF with LPF
from its two neighboring pixel with addition. . . . . . . . . . . . . . . . . . . . . 44

2.14 Visualization of 32 consecutive 1-D frames capturing a moving edge. The x-
axis corresponds to pixel number for a 12x1 spatially-pooled frame. The y-axis
corresponds to frame number of 32 consecutive frames. . . . . . . . . . . . . . . . 45

2.15 Visualization of 32 consecutive 1-D frames capturing optic flow response of the
NDM algorithm during a moving edge. The x-axis corresponds to detector num-
ber for a 10x1 detector array. The y-axis corresponds to frame number of 32
consecutive frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



2.16 Visualization of 32 consecutive 1-D frames capturing optic flow response of the
NDS algorithm during a moving edge. The x-axis corresponds to detector num-
ber for a 10x1 detector array. The y-axis corresponds to frame number of 32
consecutive frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.17 Transient response of a single spatially-pooled pixel (PRpool) and its correspond-
ing optic flow detector outputs (RNDM , RNDS). Amplitudes for the three signals
are normalized to improve reader clarity. Image velocity corresponds to 1.67
pixels/frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.18 Transfer function for NDM algorithm in response to 1-D motion. Image velocity is
swept from 0-16.7 pixels/frame. Error bars denote standard deviation in velocity
measurement. The curve labeled theoretical corresponds to the ideal response of
the NDM algorithm for a particular sinusoidal algorithm and is included to show
a general agreement in shape of the measured transfer function. NDM algorithm
has a time constant of 60ms for all filters. . . . . . . . . . . . . . . . . . . . . . . 48

2.19 Transfer function for NDS algorithm in response to 1-D motion. Image velocity is
swept from 0-16.7 pixels/frame. Error bars denote standard deviation in velocity
measurement. The curve labeled theoretical corresponds to the ideal response of
the NDS algorithm for a particular sinusoidal algorithm and is included to show
a general agreement in shape of the measured transfer function. NDS algorithm
has a time constant of 40ms for all filters. . . . . . . . . . . . . . . . . . . . . . . 49

3.1 a) Non-adaptive CTIA circuit configuration, b) Adaptive CTIA circuit configuration 56
3.2 Simulation of a CTIA pixel discharging with an initial input offset of 1mV for

different values of open-loop gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Circuit schematic of offset canceling adaptive amplifier. . . . . . . . . . . . . . . 58
3.4 Micrograph showing an adaptive CTIA pixel. The adaptive op-amp and integra-

tion capacitor are highlighted in yellow while the floating gate (FG) devices are
in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Transient response of CTIA pixel discharging with Si photodiode in the dark.
VDiode indicates reverse bias of the photodiode. . . . . . . . . . . . . . . . . . . . 61

3.6 Dark current for InGaAs and Si photodiodes as a function of reverse bias voltage.
Results are for the non-adaptive photocircuit. . . . . . . . . . . . . . . . . . . . . 62

3.7 Estimated dark current and photocurrent for CTIA photocircuit with InGaAs
photodiode. Reverse bias is controlled with a 12-bit DAC integrated into a
Teensy3.2 micro-controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Estimated dark current and photocurrent for CTIA photocircuit with Si photo-
diode. Reverse bias is controlled with a 12-bit DAC integrated into a Teensy3.2
micro-controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 Estimated SNR for CTIA photocircuit with InGaAs photodiode illuminated at
two different light intensities (LED1, LED2). Reverse bias is controlled with a
12-bit DAC integrated into a Teensy3.2 micro-controller . . . . . . . . . . . . . . 69

3.10 Estimated SNR for CTIA photocircuit with Si photodiode illuminated at two
different light intensities (LED1, LED2). Reverse bias is controlled with a 12-bit
DAC integrated into a Teensy3.2 micro-controller . . . . . . . . . . . . . . . . . . 70

ix



4.1 Cartoon illustration of optic flow estimation in a simple scene (a) with global,
1D motion and a complex scene (b) with 2D flow generated by multiple objects
moving at different velocities and depths. . . . . . . . . . . . . . . . . . . . . . . 75

4.2 2D sine grating used for synthetic images for Npool = 60 and a spatial frequency
of 4 cycles/frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Gray scale panoramas of natural forest scenes. The original dimensions of each
image are 1110x4000 for (a), 667x2000 for (b), 3327x7520 for (c), and 2180x6564
for (d). Each image is scaled down to create template images of size 251xm and
a single 251x251 frame covers a FOV of 100.4o for (a), 120.5o for (b), 160.6o for
(c), and 120.5o for (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Computational model of the Hassenstein-Reichardt based elementary motion de-
tector (EMD), shown in (a), non-directional multiplication (NDM) detector, shown
in (b), and non-directional summation (NDS) detector, shown in (c). In each algo-
rithm, the photoreceptor (PR) outputs first pass through a high-pass filter (HPF)
to remove signal offset and produce zero-mean signals. Signals are then delayed
with a low-pass filter (LPF) and correlated with either a multiplication block (Π)
or a summation block (Σ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Plot of N2b versus spatial frequency for synthetic images with C=90%, DCR=0.1,
and image velocity of 5 pixels/frame. Spatial frequency is swept from 1 cy-
cle/frame to 9 cycles/frame. We show results for Npool = 240. . . . . . . . . . . . 88

4.6 Plot of N2b versus image contrast for synthetic images with f=5 cycles/frame,
velocity = 5 pixels/frame, and DCR=0.1 counts/pixel/frame. Image contrast is
swept from 10% to 90% in increments of 10%. We show results for Npool = 240. . 88

4.7 Plot of N2b versus dark count rate for synthetic images with f=5 cycles/frame, ve-
locity = 5 pixels/frame, and C=90%. DCR is swept from 0.1 to 1k counts/pixel/frame
with one point per decade. We show results for Npool = 240. . . . . . . . . . . . 89

4.8 Plot ofN2b versus image velocity for a synthetic image with f=5, C=90%, DCR=0.1.
Image velocity is swept from 1 pixel/frame to 10 pixels/frame. We show results
for Npool = 240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Plot of N2b versus Npool. Npool is swept from 60 to 240 in steps of 60. DCR is
0.1 counts/pixel/frame, image velocity is 5 pixels/frame, and spatial frequency is
5 cycles/frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Simulation results showing N2b averaged over each of the four natural panora-
mas with error bars indicating maximum and minimum values of N2b among
the panoramas. DCR is swept from .1 to 1k counts/pixel/frame with an image
velocity of 5 pixels/frame and Npool = 240. . . . . . . . . . . . . . . . . . . . . . 95

4.11 Simulation results showing N2b averaged over each of the four natural panora-
mas with error bars indicating maximum and minimum values of N2b among
the panoramas. Velocity is swept from 1 to 10 pixels/frame with DCR=0.1
counts/frame and Npool = 240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.12 Simulation results showing N2b averaged over each of the four natural panora-
mas with error bars indicating maximum and minimum values of N2b among
the panoramas. Velocity is swept from 1 to 10 pixels/frame with DCR=0.1
counts/frame and Npool = 240. Image blurring is simulated with a spatial fil-
ter in MATLAB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



4.13 Simulation results showing N2b averaged over each of the four natural panora-
mas with error bars indicating maximum and minimum values of N2b among the
panoramas. Npool is swept from 60 to 240 in steps of 60 with an image velocity
of 5 pixels/frame and DCR=0.1 counts/pixel/frame. . . . . . . . . . . . . . . . . 98

xi



List of Abbreviations

ADC Analog-to-Digital Converter
APD Avalanche Photodiode
APS Active Pixel Sensor
AQC Active Quench Circuit
AR Anti-reflection
BJT Bipolar Junction Transistor
BM Block Matching
CCD Charge Couple Device
CMOS Complementary Metal-Oxide Semiconductor
CTIA Capacitive Trans-Impedance Amplifier
DAC Digital-to-Analog Converter
DCR Dark Count Rate
EEPROM Electrically Erasable Programmable Read-Only Memory
EHP Electron-Hole Pair
EMCCD Electron Multiplying Charge-Couple Device
EMD Elementary Motion Detector
ES Exhaustive Search
FG Floating Gate
FOV Field-Of-View
FPAA Field Programmable Analog Array
GPS Global Positioning System
HPF High-Pass Filter
HR Hassenstein-Reichardt
IIA Image Interpolation Algorithm
IM Intensity Measurement
IMU Inertial Measurement Unit
LED Light Emitting Diode
LPF Low-Pass Filter
MAV Micro Air Vehicle
MOS Metal-Oxide Semiconductor
NDM Non-Directional Multiplication
NDS Non-Directional Summation
OF Optic Flow
PDE Photon Detection Efficiency
PEB Premature Edge Breakdown
PMT Photomultiplier Tube
PQC Passive Quench Circuit
PWM Pulse-Width Modulated
QD Quantum Dot
ROIC Readout Integrated Circuit
SF Source Follower
SiPM Silicon Photomultiplier
SLAM Simultaneous Localization and Mapping
SNR Signal-to-Noise Ratio
SPAD Single-Photon Avalanche Diode
SWAP Size, Weight, and Power

xii



SWIR Short-Wave Infrared
UAV Unmanned Aerial Vehicles
UV Ultra-Violet
WFI Wide Field Integration

xiii



Chapter 1

Introduction

Over the past decade, vast improvements in the cost, size, and functionality of unmanned

aerial vehicles (UAVs) have enabled them to become low-cost, commercially available platforms.

As UAVs continue to shrink to the micro and nano air vehicle (MAV/NAV) regime [1], new

applications in indoor, urban, cluttered, low altitude, and/or confined environments become

accessible for this technology. Such platforms are well suited for intelligence, surveillance, and

reconnaissance applications that require rapid sensing in environments that are inaccessible

and/or dangerous to humans or ground-based robots. This shift towards near-earth flight has

created a new set of technological challenges and opportunities, particularly in flight control,

visual perception, and low-power systems.

Major challenges are the size, weight, and power (SWaP) restrictions placed on micro-scale

vehicles. Popular MAV platforms such as the Crazyflie have a maximum payload weight of 10-20

grams and a wingspan of 10cm. These restrictions severely limit the size of batteries they carry

and place power consumption at a premium. This also limits the size of sensing and computing

systems placed on-board MAVs and demands highly integrated, compact systems.
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Shifting from high-altitude flight to low-altitude flight increases the complexity of navigation

and path planning. High-altitude flight can rely on a priori path planning using GPS guidance

and simple IMU-based flight controllers. Because high-altitude environments are fairly static

and obstacles are fairly sparse, challenges like obstacle avoidance and real-time path planning

can largely be ignored.

Near-earth flight is quite different. In many low-altitude environments such as urban cities,

GPS is susceptible to jamming and is generally unreliable. Typical GPS update rates vary

between 1 Hz and 10 Hz, which is slow compared to the flight dynamics of MAVs. Environ-

ments are complex and dynamic which makes navigation difficult and real-time path planning

a requirement. Even low-level tasks such as hover-in-place and obstacle avoidance are difficult

in these conditions. Ultimately, these platforms demand on-board sensing so they are able to

perceive and interact with their environment.

Optical sensing offers one of the most promising technologies to solve this challenge. For

decades, CCD and CMOS imaging arrays have offered sufficiently high frame rates and spatial

resolution for UAV applications. They can be paired with mature computer vision techniques

to extract visual information and perform tasks such as optic flow estimation and SLAM.

However, a major limitation of current vision systems is their performance in photon-limited

environments. As a result, autonomous air vehicles are not able to effectively operate outdoors at

night, indoors in unlit environments, or when flying at very high speeds where image exposure

times must be very short to prevent image blurring. These applications can all be classified

as photon limited environments in which thousands of photons, or fewer, are incident on a

photodetector each second. To date, few technologies exist that enable these capabilities. The

focus of this work is to develop image sensor technology for this application.
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1.1 Biological Inspiration

The rich diversity of flying organisms on this planet are able to solve many of the same problems

that exist in MAV technologies. Insects, for example, are constrained to visual, chemical, and

mechanical sensory inputs, extremely low power budgets, and are not equipped with radio com-

munication, radar, or GPS. Using these sensory inputs, they are able to operate autonomously

while finding food and mates, avoiding predation, navigating to and from nests, and doing all

of this in the cluttered, low-light environments of dense forests at night. In addition, many of

these airborne insects accomplish these tasks with just hundreds or thousands of photons each

second [2] using visual sensory systems that are well-adapted for photon-limited environments.

A great example of such nocturnal flying insects is the Central American sweat bee Megalopta

genalis. It emerges from its nest at late twilight and early dusk to forage for food. At these

hours, light levels are on the order of 1 mlux and one of its photoreceptors may receive as few

as ten photons per second [3]. Regardless, they have been shown to reliably navigate through

dense forests using visual landmarks for navigation. They visually stabilize themselves, avoid

obstacles in dynamic and cluttered environments, and are able to identify and land on their nest

(fallen or hollowed out logs) in dense forests.

Other nocturnal and diurnal insects like the house fly Musca domestica and hawk moth

Deilephila elpenor have demonstrated similar abilities to operate in photon-limited environments.

The Musca domestica can respond to optical flow stimuli at light levels of two to three photons

per photoreceptor per second while the Deilephila elpenor can distinguish between colors at

similar light levels [4].

Inevitably, low-light vision is limited by photon shot noise which has SNR =
√
N , where N is

the sample size (photon detection events) of a given photodetector in a given exposure time. The
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only way to increase the SNR is to increase the sample size of a photodetector. In spite of this

challenge, neural recordings of photoreceptors in nocturnal insects show a strong to response to

individual photons [5] with very good noise characteristics. Research by Dacke, Warrant, Baird,

and others has focused on understanding the visual adaptations and image processing techniques

utilized by both diurnal and nocturnal insects to achieve such high performance [6–14]. Their

findings suggest that the higher optical sensitivity achieved by nocturnal insects is not a result

of intrinsic photoreceptor adaptations but rather how the information is processed [5]. These

processing techniques include the use of neural filtering [5] as well as spatial and temporal

pooling [15–21].

Spatial pooling, also called spatial summing, involves the accumulation of photon detec-

tion events from a region of photoreceptors. This technique creates virtual photoreceptors with

higher overall photon rates and sample size than individual photoreceptors but comes at the

cost of spatial resolution. Temporal summing refers to an integration of photon detection events

over some period of time. The longer the integration period, the larger the sample size of a

given photoreceptor which helps overcome photon shot noise. While the existence of tempo-

ral summation is well known in individual photoreceptors, it comes at the price of temporal

resolution–naturally a trade-off exists between spatial summing and allowable flight speeds be-

fore image blurring occurs. Simultaneous spatial and temporal summing has a multiplicative

effect on the effective photon rate and sample size of the resulting “virtual photoreceptors”. The

Deilephila elpenor illustrates this principle beautifully to extend its visual sensing capabilities

by two orders of magnitude [13]. If implemented effectively, these biological image processing

techniques offer great promise for addressing the needs of MAV vision systems in photon limited

environments.
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Beyond fundamental detection and low-level image processing comes the question of how the

information is used and perceived. In comparison to SLAM and other high-fidelity computer

vision systems, insects demonstrate a “minimalist’s approach” to autonomous navigation using

computationally simple optic flow algorithms, in conjunction with low-resolution imagers. Optic

flow is a well-known imaging concept that is used to describe visual stimuli based on their

apparent motion relative to an observer or imager. Both nocturnal and diurnal insects use this

concept to control groundspeed, stabilize themselves, perform obstacle avoidance, navigate to

and from nests, and forage for food [3, 6, 7]. This allows insects to simplify a visual scene to

its bare essentials and avoid complex vision problems such as object recognition and high-level

perception. For next-generation MAVs that are striving for payloads <1g in weight, wingspans

of several centimeters, and operating capabilities in GPS-denied environments and low-light

environments, these biological systems offer a proof of concept and design inspiration.

1.2 Specific Aims

The goal of this work is to develop image sensors that enhance the ability of MAVs to perform

visually-based tasks in low-light, cluttered, near-Earth environments without relying upon GPS.

These tasks include obstacle avoidance, hover-in-place, and self-stabilization.

We develop two types of vision systems. The first operates primarily in the visible spectrum

and uses custom, silicon-based, single photon avalanche diodes (SPADs) that we fabricate in

standard CMOS processes. The second operates in the short wave infrared (SWIR) spectrum,

primarily between 1.2µm and 1.8µm, using InGaAs photodiode arrays. This system enables

vision at night using ambient airglow illumination or active IR illumination. This system is

fabricated by hybridizing an InGaAs photodiode array with a custom read out integrated circuit
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(ROIC) utilizing novel circuits to reduce dark current.

We also develop a novel framework to benchmark the performance of optic flow algorithms in

photon-limited environments. In this work we compare “conventional” optic flow methods with

biologically-inspired methods and explore the effects of spatio-temporal pooling and wide-field

integration of optic flow. We present initial benchmarking results that identify what photon

rates are necessary to obtain “useful” optic flow measurements and enable comparisons between

different optic flow algorithms.

1.3 Thesis Organization

Chapter 2 discusses solid-state photodetectors with an emphasis on single-photon detection.

We make a case for the use of single-photon avalanche diodes (SPADs) in ultra-low light vision

systems. This chapter covers the design of single-photon avalanche diodes in standard CMOS

processes and the integration of SPADs into image sensors. We demonstrate low-light optic

flow estimation with a SPAD image sensor and characterize sensor performance. Technical

contributions in this chapter include:

• Characterization of perimeter-gated SPADs including dark count rate, photon detection

efficiency, and signal-to-noise ratio.

• Design and fabrication of SPAD image sensors and SPAD arrays including both frame-

based and event-based architectures.

• Experimental characterization of SPAD arrays including pixel mismatch and off-chip optic

flow estimation under photon-limited conditions.

Chapter 3 discusses the challenges of room-temperature short-wave infrared sensing (SWIR).
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This chapter features experimental characterization of an adaptive analog circuit that improves

room-temperature sensing capabilities for low-power, SWaP constrained applications. Technical

contributions in this chapter include:

• Design and fabrication of both adaptive and non-adaptive CTIA structures.

• Experimental characterization of both adaptive and non-adaptive CTIA structures includ-

ing limitations of dark current suppression and the effects of dark current suppression on

detection limits and signal-to-noise ratio. Characterization is performed with both Si and

InGaAs photodiode arrays.

This chapter contains material included in a manuscript that will be submitted for publi-

cation in the IEEE Sensors Journal and features excerpts from an article that demonstrates

dark current suppression through adaptive CTIA structures. The article, which has been ac-

cepted for publication in the Proceedings of IEEE International Symposium on Circuits and

Systems (2017), was co-authored by Alexander Castro, Mohammad Islam, Dr. Fow-Sen Choa,

Dr. Geoffrey Barrows, and Dr. Pamela Abshire.

Chapter 4 provides a brief overview of optic flow estimation and optic flow algorithms. This

chapter presents a novel simulation framework that enables benchmarking of various optic flow

algorithms at low-light levels. We discuss the effects of spatial and temporal pooling and explore

the limitations of photon-limited optic flow processing. Technical contributions in this chapter

include:

• Development of a simulation-based framework that enables benchmarking of optic flow

algorithms under varying illumination intensities.

• Analysis of optic flow performance for both biologically-inspired and traditional algorithms

7



using both natural and synthetic images. This includes quantifying the effects of dark count

rate, optic flow velocity, and image characteristics on overall performance.

This chapter contains material included in a manuscript that will be submitted for publica-

tion in the Biological Cybernetics Journal and features excerpts from an article that benchmarks

several optic flow algorithms at low-light levels using synthetic 2-D sine grating visual stimuli.

The article, which has been published in the Proceedings of IEEE International Symposium

on Circuits and Systems (2016), was co-authored by Dr. Geoffrey Barrows and Dr. Pamela

Abshire.
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Chapter 2

Low-Light Image Sensors

2.1 Fundamentals of Imaging

The field of low-light image sensors has long been dominated by photo-multiplier tubes (PMTs),

charge-coupled devices (CCDs), and electron multiplying CCDs. These technologies are fairly

mature and offer low-noise performance and high sensitivity. However, these sensors are not well-

suited for integration with CMOS technologies and offer limited promise for next-generation

low-light imaging systems. Increasingly, research efforts have focused on CMOS active-pixel

sensors (APSs) and hybrid detectors for such applications. The ultimate goal of such research

is to develop sensor arrays with single photon resolution, high frame rates, increased system

integration, and decreased power consumption. In this chapter we discuss some of these tech-

nologies and suggest the use of single-photon avalanche diodes (SPADs) for low-light imaging

applications.
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2.1.1 Photodetectors

Detectors in standard CMOS processes include phototransistors, transmission gates, and photo-

diodes. While variations in device implementation exist, the physical mechanism of detection in

each device is unique. While there is a wealth of non-CMOS devices (not fabricated in standard

CMOS processes) including quantum dots, thin films (graphene, black phosphorus, etc.), and

superconducting devices, in this chapter we focus on CMOS-compatible detectors and PMTs

(as they have long been the gold-standard for detection of weak optical signals). Our goal is to

develop low-light detectors that can be integrated into CMOS circuits for high density arrays

and room-temperature operation.

Photodiode

One of the simplest and most common photo-transduction devices is the photodiode. In its

simplest form, it consists of a P-N or P-I-N junction. Photon absorption in the diode generates

an electron-hole pair (EHP) which can either recombine or separate into mobile charge carriers.

EHPs generated in or near the depletion region have a high probability of separation due to

the built-in field of the junction. While photocurrent generation in a diode can occur at both

positive and negative bias voltages, typical applications reverse bias photodiodes. This is done

to maximize the depletion region width and field strength. Additionally, saturation current

in a diode is fairly insensitive to fluctuations in bias voltage while forward bias currents are

exponentially dependent on fluctuations in bias voltage (see Eq. 2.1).

Idiode = Isat
(
eqV/kT − 1)− Iop (2.1)
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Linear-Mode Avalanche Photodiode

Linear-mode avalanche photodiodes (APDs) are essentially p-n junction photodiodes biased just

below their breakdown voltage. The strong reverse bias produces a large internal electric field

near the diode junction. Optically and thermally generated carriers near the depletion region

are rapidly accelerated by the large field and are likely to undergo impact ionization. As a result,

APDs have an internal multiplication gain (M), shown in Eq. 2.2, where Iph,M is the multiplied

photocurrent, Id,M is the multiplied dark current, Iph is the unmultiplied photocurrent, and Id

is the unmultiplied dark current. The regime in which APDs are biased is characterized by a

high probability of impact ionization but no avalanche breakdown— impact ionization is not

self-sustaining.

M =
Iph,M − Id,M
Iph − Id

(2.2)

The random nature of impact ionization acts as a noise source during photodetection. A

measure of this noise is the excess noise factor (F). It is related to the ratio of the standard

deviation of the multiplication σM and multiplication factor (M) as shown in Eq. 2.3. The origin

of excess noise is generally explained by the McIntyre formula [22,23] which relates multiplication

noise to the relative impact ionization rates of electrons and holes.

F = 1 +
σ2m
M2

(2.3)

APDs operate as analog devices, similarly to photodiodes. Device gain is heavily dependent

on bias voltage which enables APDs to be operated as gain modulated photodetectors [24].

Internal gain is generally on the order of 100 − 103 which enables APDs to be used in low-light

applications.

11



Geiger-Mode Avalanche Photodiode

Geiger-mode APDs, or single photon avalanche diodes, are essentially APDs biased above their

breakdown voltage. In this operating regime, depletion fields are above the critical electric field

(3 · 105V/cm in Si) and impact ionization is a self-sustaining process.

SPADs operate like Geiger counters for photons and are intrinsically event-based detectors.

A single optically or thermally generated electron hole pair can trigger avalanche breakdown

in the device due to its high gain (>106). Avalanche current densities can reach upwards of

1 A/mm2 and will destroy the device if not quenched. Therefore, SPADs must be quenched

immediately after an avalanche process begins, and reset back to their “ON” state to enable

subsequent detection. This “digital” or spiking behavior is contrary to typical photodetectors

which are analog in nature.

Avalanche events triggered by thermally generated carriers are referred to as dark counts and

are typically associated with trap and defect states. Reductions in DCRs have been achieved

through optimization of SPAD geometries. Such optimization takes advantage of gettering

inherent to CMOS fabrication processes and has been shown to effectively reduce thermal noise

to around <1Hz/µm2 even for large area SPADs [25]. In planar fabrication processes, electric

fields tend to be enhanced around the diode periphery which causes the diode edges to be

biased higher than the bulk region and results in premature edge breakdown. This results in

non-uniform breakdown within the photosensitive diode area and degraded SPAD performance.

Perimeter gating utilizes a poly-silicon field gate to repel carriers away from the diode edges and

has been shown to effectively suppress premature edge breakdown [25]. In newer fabrication

processes, retrograde wells can be used in place of poly gates to achieve the same effect.

12



Phototransistor

Phototransistors operate much like bipolar junction transistors (BJTs). When operating as a

phototransistor, the BJT base is typically left floating and the base current is generated by a

photocurrent. The “output” of the device is the collector-emitter current and, much like a BJT,

is equal to β ·Ib. Thus, the phototransistor intrinsically has a current gain of β. Phototransistors

typically have a slower temporal response than photodiodes. Recent developments in active pixel

sensors have generally moved away from phototransistors in favor of p-n junction diodes.

Transmission Gate and Charge-Coupled Devices

Charge-coupled device (CCD) technologies are based on the photogate. Unlike photodiodes,

they accumulate charge in metal-oxide-semiconductor (MOS) capacitors. Applying a voltage to

the polysilicon gate of a MOS capacitor induces a local depletion region in the silicon substrate

underneath the gate. This potential well defines an area in which photogenerated carriers can

be accumulated. In CCD arrays, each photogate serves as a single pixel.

Readout requires that charges be transferred from one photogate to the next across a

row/column, much like an analog shift register. Charge transfer between photogates must be

highly efficient to ensure signal integrity and requires custom CCD processes to enable large

CCD arrays. As a result, CCD technologies don’t offer the integration of pixel-level or array-level

transistors. While CCDs are common commercial cameras, they require multi-chip solutions for

many vision applications.

In 2001, electron multiplying CCD (EMCCD) arrays were first introduced [26, 27]. They

improve readout SNR at high frame rates with an internal gain mechanism. The gain is provided

by impact ionization in a gain register which is part of the read-out mechanism. While readout
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SNR is improved, the dark current is also amplified which ultimately limits device performance.

They are widely used for low light applications [28] (10−4 lux) and offer higher data rates than

CCD arrays.

While CCDs demonstrate low noise performance1 (<10 electrons/µm2/sec) and high fill

factors (>50%), they do not enable focal plane array processing and generally have high power

consumption (>100 mW). As a result, they are severely limited by the readout bottleneck and

low-power CMOS techniques cannot be adopted to reduce power consumption. Thus for low

power compact vision systems, such as MAVs, CCD technologies are not ideal.

Photomultiplier Tube

PMTs are high-voltage, high-gain vacuum devices for photo-detection of weak optical signals.

Photon absorption occurs in a photocathode. Photons with energy greater than the work func-

tion of the photocathode produce photoelectric emission of electrons from the photocathode

into the vacuum. This signal is then amplified through a series of dynodes (electron multipliers)

which use large electric fields to rapidly accelerate the particles and achieve signal gain through

secondary electron emission. After several multiplication stages the electrons are collected at

the PMT anode.

Electron focusing and multiplication demand large fields and often high voltages, typically

around 1000V. PMTs are not compatible with standard CMOS technology and require large

areas relative to their CMOS and CCD counterparts. This severely limits their applications and

makes PMTs unsuitable for low-power, compact, and versatile low-light imagers.

Various PMTs are commercially available through companies such as Hamatsu [29] and

1Data compiled from DigiKey CCD Image Sensors (www.digikey.com) and Hamamatsu CCD Cameras

(http://www.hamamatsu.com)
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Photonis [30]. The current market offers micro-PMTs with reduced package sizes (<5mm2),

high voltage modules(>1000V ), and low voltage modules (<10V ). Such commercially available

PMTs offer high gains (>106), dark currents in the nA range, and weigh upwards of 10g. Even

with the miniaturization of PMTs, they are still far too large to be implemented in imaging arrays

used for many computer vision applications and cannot offer satisfactory spatial resolution for

most imaging applications [31].

2.1.2 Photon Shot Noise

Photon shot noise arises from uncertainty in photon arrival time. It is widely accepted that

photon arrival can accurately be modeled as a Poisson process. The physical limitation of low-

light imaging is shot noise. While all other noise sources (1/f noise, thermal noise, reset noise,

dark noise) can be minimized through circuit design and system-level approaches, shot noise is

unavoidable.

Poisson processes have a probability density function (PDF) given by Eq. 2.4 where k and

λ are the measured number and expected number of events in a given time window. Poisson

processes are described by their Poisson variable λ and have mean and variance equal to λ.

P (k) = e−λ
λk

k!
(2.4)

2.2 SPAD Image Sensors

SPADs are widely used in time-correlated imaging. These applications take advantage of the

high temporal resolution and digital behavior of the device. It is noteworthy that there is

nearly no work discussing the use of SPADs in low-light image sensors that do not focus on
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time-correlated applications. In this section we argue that SPADs are useful for general purpose

low-light imaging and describe the unique characteristics of SPADs that make them appealing

for such applications.

2.3 Why SPADs?

Unlike CCD and PMT technologies, high performance SPADs can be implemented in standard

CMOS processes. This allows for the integration of photodetection and image processing on

a single chip. The benefits of this can be enormous for SWaP-constrained applications and is

described in more detail in later sections. Unlike quantum devices, SPADs can operate at room

temperature and do not require ultra-low or cryogenic temperatures to operate and achieve

single photon resolution.

Many of the noise sources that plague APS are overcome in SPAD pixels due to their high

gain and digital detection capabilities. This allows SPAD pixels to be much simpler, yet often

larger, than their CMOS APS counterparts. However, this high gain introduces new noise sources

and thus the selection of one technology over another requires consideration of the trade-offs

between power, speed, and noise.

Fig. 2.1 illustrates the operating range for three different pixel architectures: SPAD-based

pixels, linear active pixel sensors, and logarithmic active pixel sensors—this illustration offers a

first-order approximation for operating regimes of each architecture.

The noise floor for SPAD sensors is set by dark count rate which can be as low as 1-100Hz

depending on technology, pixel size, and device architecture. Typical SPAD operating speeds

range from 1MHz to 100MHz with the fastest reported SPAD pixel operating at 185MHz [32].

Tradeoffs between speed and noise in SPADs are discussed later in this chapter. As is illustrated
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Figure 2.1: Illustration of operating ranges for SPAD-based pixels, linear active pixel sensors,

and logarithmic active pixel sensors. The figure illustrates what is typical for each technology

rather than peak performance for state-of-the-art sensors.

in Fig. 2.1, the high gain of SPADs makes them more resilient to kTC noise and thermal noise

than their APS counterparts due to their intrinsically higher signal levels and digital processing

which provides immunity to low level sources of analog noise.

Linear APS are susceptible to dark current as well as kTC noise. While precise values for

these noise parameters vary greatly, kTC noise for a 100fF capacitor is >100 electrons/sec, and

dark currents are similar to SPAD sensors and generally range from 10-1000 electrons/sec. The

upper limit for linear APS is set by the minimum allowable exposure time for pixels. At photon

rates in excess of 1G photons per exposure, discharge rates across a 100fF capacitor would require

frame rates in excess of 1k frames per second. It is important to note that sensor architectures

that employ correlated double sampling and gating can effectively reduce kTC noise and dark

current by an order of magnitude or more. Similarly, sensor architectures that implement

auto-exposure, over-sampling, and other high-dynamic range techniques can effectively prevent

overexposure of pixels at much higher illumination intensities. For our first-order approximation
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we ignore these approaches.

Logarithmic APS are typically limited by slow temporal response at low photon rates and

non-uniformity in photo-response at extremely high photon rates due to operation near the sub-

threshold limit. While the upper limit is unavoidable and rarely reached with traditional image

sensors, the lower limit is proportional to to the ratio of capacitance at the sensing node and

photocurrent. The well-known adaptive logarithmic photoreceptor developed by Delbruck [33]

improves temporal response at low-light levels through the use of a high-gain feedback loop.

Even with such approaches and optimal sensor designs that minimize capacitance at the sensing

node, logarithmic APS are unable to image with time constants comparable to typical frame

rates below photocurrents of around 1fA, or 10k photons/sec.

It is important to mention recent work by Fossum et al. [34–36] who demonstrated ultra

low-noise CMOS APS referred to as quanta image sensors. These sensors achieve extremely

high transduction gains (on the order of mV/e−) without the use of avalanche breakdown.

Advantages of SPAD-based imagers over such approaches are that SPAD sensors do not rely

upon oversampling and high frame rates to acquire images in near-dark environments. SPAD

image sensors can integrate local spike-based processing instead of relying on off-chip image

processing. This makes SPAD well-suited for computational imaging applications and image

sensors with embedded focal plane image processing.

Ultimately, SPADs are an attractive imaging technology because:

1. They demonstrate comparable noise performance to ultra low-noise CMOS APSs with

higher timing resolution.

2. They can be integrated into standard CMOS fabrication processes.

3. Existing research on SPAD imagers has focused on time-of-flight imaging and primitive

18



frame-based sensors. To date, no SPAD imagers have been demonstrated with embedded

image processing or neuromorphic design inspiration. Thus, this promising area of work

remains untapped and offers a novel path towards improved low-light imaging capabilities.

While SPADs are not appropriate for daytime imaging or extremely high dynamic range

imaging (>120dB), they are uniquely well-suited for high-sensitivity, low-light imaging applica-

tions. In this chapter we demonstrate these types of SPAD-based image sensors.

2.3.1 SPADs in CMOS

Developing SPADs in CMOS fabrication processes requires intimate knowledge and understand-

ing of the process layers and characteristics. One of the biggest challenges with designing SPADs

in CMOS processes is preventing premature edge breakdown (PEB). Ideally, a SPAD should

breakdown uniformly across the entire active region which requires a uniform field. However,

since CMOS processes are planar and devices have finite size, electric fields tend to be enhanced

around the diode periphery. This results in the edges effectively being biased higher than the

bulk region and breaking down first. Since the device periphery is optically small and has neg-

ligible contribution to detection efficiency, edge enhancement of electric field will substantially

increase dark count rates and decrease detection efficiency.

Several techniques exist to prevent premature edge breakdown. All of them are designed to

either reduce the electric field or to increase the breakdown voltage at the device periphery. In

doing so, avalanche events have an increased probability of occurring in the center/bulk region

of the device. Some of these techniques employ multiple high-voltage wells, buried diffusion

layers [37], diffusion-based guard rings [38], retrograde wells [39], and polysilicon-based guard

rings [25]. Our SPADs are fabricated in older CMOS processes (ON 0.5µm and XFab XC06)

which do not offer many of these process layers. Therefore, we are limited to using a poly-silicon
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field gate to repel carriers away from the diode edges.

Another problem that plagues CMOS SPADs is high DCRs. Thermally generated EHPs

are often associated with low energy trap and defect states. Techniques for controlling DCRs

are limited since: 1) it is difficult to control defect/trap densities, and 2) defect densities are

controlled by the foundry and technology node. Both temperature and bias voltage have a very

strong effect on DCRs. Thermal carrier generation has an exponential relationship with tem-

perature. Cooling SPADs by 30-40oC is possible with Peltier coolers and can reduce DCRs by

1-2 orders of magnitude. Operating SPADs at a low excess bias (voltage over breakdown) also

reduces DCRs but comes at the expense of detection efficiency and other key SPAD performance

metrics. Work by Nouri and Abshire [40] have shown that narrow or “cigar-like” device geome-

tries can be utilized to take advantage of gettering processes inherent to all CMOS fabrication

processes. This strategy helps mitigate the dark current rates that scale non-linearly with SPAD

area and plague large area SPADs (>1000µm2).

Much of the existing research on SPAD-based sensors has focused on time-correlated imaging.

The goal of these efforts is the development of imagers with ultra-high temporal resolution for 3D

imaging applications [41], positron emission tomography (PET) applications [42], fluorescence

lifetime imaging [43], and other time-correlated imaging applications [44]. These applications

have largely driven improvements in SPAD technology over the past two decades. Most recently,

SPADs have been implemented in deep submicron technology nodes including 90nm [45], 130nm

[46], and 180nm [47]. At the device level, SPAD research has worked to suppress dark counts

and premature edge breakdown in advanced technology nodes through the use of retrograde

well, perimeter gating, and enhancement implant layers [48–54].
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2.3.2 SPAD Noise

Cross-Talk and After-pulsing

Optical and electrical crosstalk are a result of one SPAD event inducing avalanche breakdown

in a neighboring SPAD. Electrical crosstalk is caused by electrical interference through the

substrate or power supply lines. Optical crosstalk is due to photon emission of a SPAD during

avalanche breakdown, triggering breakdown in another SPAD. It is heavily dependent on the

number of carriers involved in an avalanche event and on pixel pitch. Recent work has explored

and quantified the effects of SPAD density and substrate thickness on optical crosstalk [55–57].

After-pulsing is similar to crosstalk except that instead of a SPAD generating a “false”

event in a neighboring pixel, it generates a “false” event in itself—crosstalk and after-pulsing

are the only temporally-correlated noise sources in SPADs. This false triggering is a result of

carriers that are trapped during avalanche breakdown and released after the avalanche event is

quenched. It has been demonstrated that after-pulsing rates can be substantially suppressed

in actively-quenched SPADs through programmed hold-off times following an avalanche event.

While effective, this technique reduces the maximum operating speed and dynamic range of a

SPAD. We also see a strong dependence between after-pulsing probability and SPAD excess bias

voltage. These dependencies introduce significant trade-offs between speed, detection efficiency,

and noise in SPADs. Moreover, these trade-offs vary drastically across device architectures and

fabrication technologies. Recent work by Bronzi et al., Pancheri et al., and others has discussed

the effects of excess bias and dead-time on after-pulsing probability [58–61].
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SPAD Gating

A technique often utilized with noisy SPADs, particularly IR SPADs, is SPAD gating [62,63]. As

opposed to free-running mode, in gated mode SPADs are photosensitive only during a defined,

periodic gate-on window—during this time they are reverse biased above breakdown. During

the gate-off window, the SPAD reverse bias is lowered below the breakdown voltage such that

no avalanche events can occurs and the SPADs are not photosensitive. This operation prevents

false detection of photons outside of some defined timing window. Sufficiently small timing

windows can substantially reduce the effects of all temporally-correlated noise sources as well

as thermal noise and other uncorrelated noise sources. This technique is similar to the use of

optical choppers and lock-in amplifiers in highly sensitive optics experiments.

Timing Jitter

Much like after-pulsing and cross-talk, timing jitter is a noise source specific to SPADs [64,65].

It refers to an uncertainty in the temporal dynamics of a given avalanche event. Each avalanche

process begins near the location of photon absorption. The avalanche process builds up locally

and spreads through multiplication-assisted diffusion and photon-assisted propagation (photon

emission and re-absorption). These processes are stochastic in nature and introduce timing jitter.

Avalanche build up is also strongly dependent on electric field intensity with varies throughout

a device and introduces additional jitter to the temporal dynamics of avalanche events.

Dark Count Rate

Dark count rate (DCR) refers to the generation of photo-generated carriers when a SPAD is in a

dark environment. In general, two process dominate the generation of dark counts: 1) tunneling,

and 2) thermal carrier generation. These processes cannot be differentiated from optical carrier
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generation and DCRs often set the noise floor for low-light sensing.

Tunneling refers to the penetration of electrons through a potential barrier. This process is

highly dependent on electric field strength and is often observed in SPADs due to their large

reverse bias voltage. Tunneling typically occurs between the valence and conduction band of

the SPAD anode and cathode and is more prevalent in deep sub-micron processes that have

higher doping concentrations and narrower depletion regions. Tunneling can be assisted by trap

states and is often the dominant source of dark counts at large excess bias voltages. Tunneling is

not a prevalent noise source in standard p-n junction diodes and is unique to their high-voltage

counterparts

Thermal carrier generation, also known as Shockley-Read-Hall generation, refers to the pro-

cess by which electrons or holes may be promoted from the valence band to the conduction (or

vice versa) through thermal processes. Direct promotion is unlikely in Si SPADs because the

bandgap of Si (1.1eV) is substantially larger than thermal energy at room temperature (kT =

25.9meV), and because Si is an indirect bandgap semiconductor. Thus thermal generation is

often assisted by trap and defect states. These mid-band energy states provide intermediaries

by which carriers can increase their energy. Shockley-Read-Hall generation is highly sensitive to

temperature and is the dominant source of dark counts at high temperatures and small excess

bias voltages. Thermal generation is ubiquitous in CMOS photodetectors and similar silicon

processes can reasonably expect comparable rates of thermal generation.

State-of-the-art low noise performance for SPADs is DCR<1Hz / µm2 [66]. A summary of

SPAD performance across several technology nodes is provided in Table 2.1.
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2.3.3 Photon Detection Efficiency

Photon detection efficiency (PDE), or photon detection probability (PDP), is a measure of how

many photons are detected in a time window at a known photon rate. The ratio of photons

detected to photons incident, or expected detection events, within a given time window provides

PDE. PDE increases with bias voltage. However, at high voltages PDE increases slower than

DCR. Common techniques for boosting PDE include the use of anti-reflection (AR) coatings

and micro-lenses. These have the effect of increasing the number of photons collected in the Si

detector.

State-of-the-art CMOS and CCD image sensors exhibit peak detection efficiencies >70%

[67, 68] with the use of AR coatings and micro-lenses. More primitive CCD sensors (front-side

illuminated and poly-Si gates) and CMOS sensors without micro-lenses have PDEs closer to

30-50% [67, 69] depending on technology. Typical PDEs for SPADs range from 1% to around

30%. Table 2.1 provides a comparison of state-of-the-art SPAD devices across several technology

nodes. The highest reported PDE for CMOS SPADs is 72% [70] in a 130nm node. It is important

to note that this is achieved at a 12V excess bias where the normalized DCR is in excess of

20Hz/µm2. The importance of fabrication processes with image sensor friendly processing is

demonstrated by Niclass et al. [71]. SPADs in the same 0.35µm process were fabricated with

and without a nitride passivation layer. The nitride layer reduced peak PDE by a factor of 7

for one value of excess bias while also shifting the location of the maximum PDP by >100nm.

At wavelengths near 450nm, a decrease in PDP by a factor of approximately 10 is observed.
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Table 2.1: State-of-the-Art SPAD Comparison

Niclass Niclass Mandai Gersbach Gersbach Richardson Webster

[72] [71] [73] [74] [74] [75] [70]

Tech. Node 0.8µm 0.35µm 180nm 130nm 130nm 130nm 130nm

DCR (Hz) 350 750 <5k 11k 220 25 >1k

@ RT Vex = 5 Vex = 3.3 Vex = 4 Vex = 5 Vex = 2 Vex = 1.4 Vex = 12

Active Area (µm2) 38 78 78 58 58 50 50

Norm. DCR (Hz/µm2) 9.2 9.6 <64 190 3.8 0.5 >20

Peak PDP (%) 12 36 36 36 26 28 72

@ λ (nm) 635 465 600 480 480 500 560

Vex = 5 Vex = 3.3 Vex = 4 Vex = 5 Vex = 2 Vex = 1.4 Vex = 12

2.3.4 SPAD Front-End

A key function of SPAD front-end circuitry is to detect and quench avalanche events. If an

avalanche event is not quenched, high current densities during avalanche breakdown can result

in thermal destruction of the device. Following quenching, front-end circuitry must reset the

SPAD to its “active” state where it is ready to detect additional avalanche events. The time

between quenching and reset is referred to as dead-time because SPADs are in an off state and

are not sensitive to thermally- or optically-generated carriers. SPAD front-ends are generally

classified into one of three categories: passive quench circuit (PQC), active quench circuit (AQC),

or hybrid quench circuit. The primary differences between each of these circuits is the mechanism

that controls the timing of the quench phase and reset phase.
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Passive Quenching Circuits

Passive quenching circuits (PQCs) consist of a ballast resistor connected in series with a SPAD.

When avalanche breakdown occurs, a large current passes through the ballast resistor, increasing

the voltage drop across the resistor, and decreasing the voltage across the SPAD. When the

SPAD bias decreases below the breakdown voltage, the avalanche process is stopped. SPADs

self-quench in a PQC and eliminate the need for additional sensing circuitry. Once the avalanche

event is quenched, the SPAD current will drop and the SPAD bias voltage will increase back to

its “active” state. PQC benefit from a fast quench time but suffer from long recharge times that

are set by the RC time constant of the circuit. The resistance in this RC constant is equal to

the value of the ballast resistor and the capacitance is equal to the parasitic capacitance of the

diode. As a result, PQC typically operate at speeds 10-100 time slower than AQC. PQC do not

employ timing circuits that enable a programmable “dead-time”. As a result they often suffer

from higher after-pulsing probabilities than AQCs, can be triggered while recharging, and are

referred to as paralyzable detectors.

Active and Hybrid Quenching Circuits

Active quenching circuits (AQCs) and hybrid quenching circuits (HQCs) operate by detecting

avalanche events and adjusting the SPAD’s bias conditions with active circuit elements. Com-

pared to PQCs, they are able to achieve higher operating speeds and more precise timing control

at the expense of size and power consumption.

Active quenching lowers the SPAD bias voltage below breakdown once an avalanche event is

detected. This ensures that quenching time is not effected by statistical variations in avalanche

multiplication. Following quenching, the bias voltage is kept low for a pre-determined length of
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time. This enables a well-defined dead-time or hold-off time to prevent after-pulsing. After a

programmed dead-time, the AQC increases the bias voltage above breakdown. Reset times are

much faster for AQCs than PQCs since they are driven by active components and can range

from nanoseconds to tens of nanoseconds. Generally, AQCs are non-paralyzable since an active

reset prevents the SPAD from firing until the reset phase is complete. AQCs can operate at

rates >150MHz [32].

Hybrid circuits combine active and passive techniques. Typically, a large ballast resistor is

used to implement passive quenching and active components are incorporated to add a hold-

off time and fast reset [76]. In this configuration large ballast resistors can be used without

compromising high after-pulsing probabilities.

Dynamic Range

SPAD dynamic range is heavily dependent upon front-end circuitry. As previously mentioned,

PQCs are characterized as paralyzable detectors. At high photon rates a nonlinear decrease

in count rate is observed because passively-quenched SPADs can be triggered while recharging.

This has the effect of extending the dead time of the detector and prevents the SPAD output from

crossing a spike threshold voltage. If overexposed, passively-quenched SPADs are “paralyzed”,

detect no photons, and effectively have in infinite dead-time. AQCs are generally non-paralyzable

and use active circuitry to guarantee a well-defined dead-time regardless of illumination intensity.

Photons absorbed within this dead-time are not detected and cannot trigger an avalanche event.

The relationship between input photon rate (λin) and measured photon rate or count rate

(λout) for both paralyzable and non-paralyzable detector models are given by Eq. 2.5 and Eq. 2.6,

respectively. The upper-limit of count rate for paralyzable detectors is given by 1/(e · τ) and

1/τ for non-paralyzable detectors, where τ is the dead-time of the detector. Thus AQCs offer
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Figure 2.2: Count rate versus photon rate for ideal, paralyzable, and non-paralyzable photon

counting modules. Dead time, τ , is varied over three orders of magnitude to illustrate its effect

on maximum count rate.

higher dynamic range and detection rates than their passive counterparts. Ultimately, the

dynamic range of each model is limited by the dark count rate of the SPAD and the dead-time

of the detector. Assuming a modest DCR of 100Hz and a dead-time of 100ns, we can achieve

a maximum dynamic range of <100dB. It is important to note that linearity in count rate

decreases near peak count rates. This is illustrated in Fig. 2.2 for multiple values of dead-time.

λout = λin·−λin·τ (2.5)

λout =
λin

1 + λin · τ
(2.6)
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2.3.5 SPAD Spike Processing

Time-correlated SPAD imagers rely upon the high temporal resolution of SPADs and are sen-

sitive to precise spike timing. For intensity measurements, individual spikes carry virtually no

information. Instead spikes must be integrated over some exposure time to provide meaningful

intensity estimates.

Digital Counter Pixel

Digital counters are well suited for integrating SPAD pulses [77,78]. They offer low-noise perfor-

mance, low leakage currents, and low pixel mismatch. However, high resolution digital counters

(>8 bits) can occupy a large area and can be difficult to implement in compact pixel designs.

Digital counters require an input signal that clearly crosses logic levels. This requires that

SPADs have an AQC with rail-to-rail output or PQC with a digitizing block (comparator,

Schmitt trigger, etc.). Digital counters are not well-suited for local image processing tasks in

the focal plane as digital values would likely have to be converted to an analog voltage and would

require a digital-to-analog converter (DAC) in each pixel. This further limits pixel size and fill

factor. Overall, digital counters offer an attractive solution for frame-based SPAD imagers with

off-chip processing.

Analog Counter Pixel

Analog counters offer an attractive alternative to their digital counterparts. They are more

compact and convert spikes directly to analog voltages, making them well-suited for embedded

image processing tasks. Ultimately, counter resolution is limited by pixel and readout noise.

However, even a modest step-size of 5mV corresponds to roughly 9-bit resolution with a 3.3V

supply voltage. The biggest challenges with analog counters are: achieving high linearity, keeping
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leakage currents small, and minimizing pixel mismatch.

Pixel-level analog counters for SPAD-based photon counting applications have recently been

demonstrated by Pancheri et al. [79], Chitnis et al. [80] or Dierickx et al. [81]. High fill-factors

of 20% have been demonstrated with photo-response non-uniformities of 1%. However, exist-

ing counters suffer from limited dynamic range, large area implementation, and/or non-linear

outputs which require corrections for linearization.

2.4 SPADCAM

We implemented a 16x16 array of passively quenched SPADs with analog counters in each pixel.

The chip was fabricated in a ON0.5µm process on a 1.5mmx1.5mm TinyChip through MOSIS.

A screenshot of the chip layout is shown in Fig. 2.3.

2.4.1 Pixel Architecture

The pixel implements a perimeter-gated SPAD with passive quenching. We chose passive quench-

ing because it enables smaller pixels and a simpler pixel design. This means we have paralyzable

SPADs and the image sensor can be “photo-bleached” if sufficiently bright stimuli are provided.

Passive quenching is notoriously plagued by slow and highly variable recovery times in excess of

1µsec. To mitigate these effects we implement a pulse shaping circuit following the SPAD. This

consists of a comparator and monostable pulse generator, shown in Fig. 2.4, to improve pulse-

width uniformity of SPAD pulses. The monostable pulse generator was designed to produce a

pulse width of 4.3ns. We verified this through Monte Carlo simulations and showed a standard

deviation in pulse width of 93ps, or approximately 2% of the mean pulse width. These digital

pulses propagate to an analog counter that integrates photon counts. The analog counter value
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Figure 2.3: Layout picture of SPADCAM. Array is comprised of a 16x16 pixel array with frame-

based, analog readout.
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out

Figure 2.4: Schematic of pulse shaping circuit. The circuit consists of a comparator followed by

a monostable pulse generator and is designed to generate a pulse width of 4.3ns.

Figure 2.5: Layout picture of the SPAD pixel. It contains a 360µm2 perimeter-gated SPAD in

an area of 60µm x 60µm.

is readout through a simple source follower circuit.

The pixel is implemented in an area of 60µm x 60µm with a fill factor of 10%. The SPAD

is cigar-shaped and perimeter-gated with an active area of 360µm2. A screenshot of the pixel

layout is provided in Fig. 2.5.

2.4.2 Counter Architecture

The analog counter is adapted from a design by Gasparini et al. [82]. A schematic of the counter

circuit is provided in Fig. 2.6. A digital spike is input to the circuit at C1 and passes through

a high-pass filter (HPF) formed by C1 and M1. When the gate of M2 goes high, capacitor

C2 partially discharges through M2 and the counter output voltage, stored on C2, decreases.
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Figure 2.6: Circuit schematic of analog counter. Input spikes are capacitively coupled to the

gate of M2 through C1. The output voltage is stored across C2 and readout through a source

follower.

By removing charge packets in this manner, the circuit achieves high linearity over its entire

dynamic range.

The step size of the counter is tuned by adjusting VB, the gate voltage of M1. The limiting

factor of the step size is the noise floor. One noise source is leakage at the output node. We

experimentally measured the average leakage rate across the array as 7.2 mV/sec with a standard

deviation of 0.69 mV/sec. This corresponds to a leakage current of about 1fA. For moderate

exposure times of 10-100ms this corresponds to a discharge of <1 mV per frame. This leakage

rate is well below the step size of the counter even when tuned to 9-bit resolution (6.4mV

step size). By adjusting VB, we demonstrate an average step size of approximately 10mV (see

Fig. 2.7) and 30mV (see Fig. 2.8). In both cases, counters display high linearity with R2>0.99

over the entire dynamic range of the counter.

2.4.3 System Architecture

This imager uses a standard frame-based readout with a simple source follower for each column.

The output of the chip is an analog voltage and is read by an off-chip ADC. Maximum readout
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Figure 2.7: Transient response of analog counter in low-light conditions. Average step-size is

approximately 10mV.

Figure 2.8: Transient response of analog counter in low-light conditions. Average step-size is

approximately 30mV.
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time per pixel is conservatively 50ns. The entire array can be readout in 12.8µs which has an

equivalent frame rate of about 78kHz. The operation of the imager readout is as follows: First,

a global reset signal is sent to all pixels to recharge counter outputs to V DD. Second, the chip

integrates counts during an exposure time. Third, each element in the array is sequentially read.

2.4.4 Dark Count Rate

Dark count rate was measured by averaging the total number of SPAD pulses over at least 500

consecutive frames in dark conditions. Each frame had an exposure time of >50ms. During all

measurements the anode and gate connection are shorted. DCR is measured for anode voltages

between 13.40V to 13.80V. This represents a rail-to-rail voltage of about 16.7V to 17.1V and an

excess bias of approximately 1V-1.4V. Fig. 2.9 shows DCR for each of the 16 pixels in a single

row of the image sensor as a function of anode voltage. DCR is normalized to units of Hz/µm2

for a 360µm2 SPAD. We note saturation in the DCR curves which corresponds to saturation in

the analog counter, not DCR. In Fig. 2.10 we show the cumulative distribution of dark count

rates in the same row of the array. At an anode voltage of 13.68V, nearly all pixels are fully

saturated by dark counts.

2.4.5 Photon Detection Efficiency

Optical characterization is performed with a monochromator (Newport Cornerstone 260 1/4M,

model 74100) in an optically isolated Faraday cage. The monochromator illuminates the sensor

with a monochromatic light beam generated by a 150W Hg-Xe light source. A diffraction grating

provides a narrow-band stimulus with 2nm resolution and enables wavelength to be swept from

200nm to 1100nm.

Optical power is measured with a calibrated photometer (Newport 818-UV Low-Power UV
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Figure 2.9: Normalized dark count rate versus anode voltage across a single row of SPADCAM.

Figure 2.10: Cumulative distribution of dark count rate across a single row of SPADCAM. Each

curve corresponds to a unique anode voltage ranging from 13.48V to 13.68V. Anode voltage is

indicated next to each curve.
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Enhanced Silicon Photodetector) and an optical power meter (Newport 1830-C). The detector

has a sensor area of 100mm2 and a spectral range of 200nm to 1100nm. A test beam with

power density of 17.5nW (measured on the optical power meter) is configured at a wavelength

of 450nm which corresponds to a mean photon rate of 396 photons/µm2/sec.

Photon detection efficiency (PDE) is measured by averaging the total number of SPAD pulses

over at least 500 consecutive frames, first in dark conditions, then in light conditions. The dark

measurement provides DCR at a specific bias while the light measurement provides the total

number of dark counts and the total number of photons detected per frame. We estimate the

number of detected photons as the difference between the bright and dark measurement. The

PDE is approximately equal to the number of photons detected per frame (Nd) divided by the

number of incident photons expected per frame (Nph).

Fig. 2.11 shows PDE for each of the 16 pixels in a single row of the image sensor as a

function of anode voltage. PDE is computed for the area of the SPAD, not pixel, so fill-

factor is not included in the measurement. PDE measurements are limited by saturation of

the pixel-level analog counters. At high anode voltages, where peak PDE is expected, high

DCRs quickly saturate the counter and prevent accurate measurements of PDE. For this reason,

PDE are limited to anode voltages before saturation occurs. Thus, we cannot characterize PDE

performance for the SPADs at larger excess bias voltages.

We note a low peak PDE of <1% at a wavelength of 450nm. This occurs at a modest excess

bias voltage around 1V. This stands in contrast to typical SPAD PDEs ranging from 1% to 30%.

One explanation for this result is the fabrication process. The SPADs described in this work have

been fabricated in an ONC5 process which not offer optical windows removed from passivation

layers, deposition of dielectric materials that enhance photon absorption, or micro-lenses that
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Figure 2.11: Photon detection efficiency versus anode voltage across a single row of SPADCAM.

provide a concentration factor and increase photon flux for each pixel. As previously mentioned,

Niclass et al. [71] demonstrate that passivation layers can reduce PDE by approximately one

order of magnitude. We expect that this is the dominant factor in the abnormally low peak

PDE measurements. Increasing frame-rates during pixel-level characterization would have the

effect of increasing the capacity of pixel-level counters and would enable PDE characterization

at larger excess bias voltages which should also increase peak PDE.

2.4.6 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is the ratio of photon detection rate over dark count rate. We

calculate it as the product of quantum efficiency and photon flux over dark count rate. We

estimate SNR at a photon flux of 1M photons/SPAD/sec across a range of bias voltages. Fig. 2.12

shows SNR estimates for select pixels across a single row of the SPAD image sensor. SNR is

estimated using PDE and DCR measured in the previous sections.

A notable result is that peak SNR does not occur at the same bias voltage as peak PDE. This

38



Figure 2.12: Estimated SNR of SPAD photodetection for a photon flux of 1M photons per SPAD

per sec.

is because as bias voltage increases, gains in PDE come at the expense of increased DCR. The

bias voltage at which peak SNR is achieved is insensitive to photon flux. An increase or decrease

in photon flux simply shifts the SNR curves vertically without changing the shape of the SNR

curve or the location of its maximum. To the best of our knowledge, this result has been reported

in literature. Typically, optimization of SPADs focuses on either minimizing DCR or PDE, not

SNR. This contribution is particularly significant for intensity-based measurements that do not

rely upon temporal correlation techniques (such as gating) as a way to reduce effective DCR.

2.4.7 Pixel Mismatch

SPADs across the SPADCAM image sensor suffer from much higher levels of mismatch than

traditional APS. A major source of mismatch that is unique to SPADs is variability in breakdown

voltage. Breakdown voltage varies due to: 1) effectiveness of the poly-Si guard ring in suppressing

premature edge breakdown, 2) doping concentrations and their effect on depletion region width
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and field strength, and 3) system-level considerations such as Ohmic voltage drops in wiring.

These variations are observed in PDE curves that show nearly a 150mV spread in the anode

voltages required to achieve equivalent PDE (see Fig.2.11). This corresponds to a standard

deviation of 42mV, or <1% of the anode voltage, from a limited sample size of 16 SPADs. We

see a comparable result in work by Antolovic et al. [83] which reports a standard deviation in

breakdown voltage of 67mV across a 512x128 pixel array.

Another major source of mismatch is variability in defect density across the image sensor.

This mismatch is present in traditional CMOS image sensors and gives rise to FPN. DCR

distributions across SPAD image sensors can generally be modeled with a normal distribution

[83]. The high sensitivity of SPADs gives rise to a high sensitivity to DCR. Across SPAD

literature we see particularly noisy SPADs referred to as “hot” pixels. These are SPADs with

high DCRs that typically fall outside of the normal distribution of the SPAD array. These SPADs

are often ignored or shut off for imaging applications as they can dominate readout resources and

generate noisy data. Across one row of our image sensor we see a mean DCR of 1.77 Hz/µm2,

a median DCR of 0.93 Hz/µm2, and a high standard deviation of 1.77 Hz/µm2 for an anode

voltage of 13.58V. Generalizing statistics is not possible for such a small dataset. However,

we can clearly separate out noisy SPADs (DCR>3 Hz/µm2) from “typical” SPADs (DCR<1.5

Hz/µm2). The second population accounts for nearly 11 out of our 16 SPADs (68%) and have

a mean DCR of 0.71 Hz/µm2, a median DCR of 0.63 Hz/µm2, and a standard deviation of 0.32

Hz/µm2 for an anode voltage of 13.58V. Of the four noisy pixels, two have a DCR between

around 3.6 Hz/µm2 and two have a DCR in excess of 5 Hz/µm2.
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2.4.8 Low-Light Optic Flow

In spite of the wealth of research on optic flow algorithms, optic flow hardware, and low-light

imaging hardware, there is little to no work discussing the integration of low-light imaging

hardware with optic flow detection. SPADCAM provides a platform to pursue this work. We

focus on detection of 1-D optic flow using a single row of our 16x16 array. We implement optic

flow processing off-chip to enable testing of multiple algorithms and image processing techniques.

The ultimate goal of this work is to lay the groundwork for an embedded SPAD-based, low-light

optic flow sensor.

Algorithm Selection

In our exploration of low-light algorithms, we focus on block matching, image interpolation,

and three biologically-inspired correlation-based motion detectors (elementary motion detec-

tor, non-directional multiplication, and non-directional summation). A detailed description

of each algorithm is provided in Chapter 4 along with benchmarking results for each algo-

rithm at low-light levels. We ultimately focus on off-chip optic flow detection using the two

non-directional correlation-based motion detectors: non-directional multiplication (NDM), and

non-directional summation (NDS). These algorithms clearly outperform the elementary motion

detector (EMD) in photon-limited environments. Block matching (BM) struggles to detect mo-

tion with low-resolution images and is not well-suited for 1-D optic flow on a 16x1 array. Also,

pixel mismatch and the presence of “hot” pixels introduce significant biases in block matching

which degrades overall performance. Performance of the image interpolation algorithm (IIA)

also degrades substantially due to pixel mismatch. Neither IIA nor BM implement techniques

for mismatch compensation and both assume that image contents remain constant between sub-
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sequent frames. This assumption breaks down when significant variations in PDE and DCR

exist. NDM and NDS, on the other hand, initially process SPAD signals with a high-pass filter

(HPF). This approach has been demonstrated throughout biological systems as a method for

overcoming mismatch between neurons. Additionally, these algorithms are correlation-based

and more sensitive to temporal constant than to absolute intensity measurements. As a result,

they are well-suited for noisy SPAD arrays.

Experimental Setup

The optical setup is similar to the setup for characterization of PDE and DCR. All measurements

are performed in an optically isolated Faraday cage. A monochromator illuminates the sensor

with a monochromatic light beam at a wavelength of 700nm and optical power of 93nW. Image

motion is produced by passing a metal plate above the image sensor. The plate travels between

the optical fiber output of the monochromator and the image sensor. The metal plate passes

back and forth, parallel to the orientation of rows in the SPAD sensor, and modulates the

photon flux of the imager. The metal plate is connected to a 3D printer (Borlee Mini01 Desktop

Compact 3D Printer) which is programmed to generate 1-D motion at velocities ranging from

0-16.7 pixels/frame, or 1-10mm/sec.

Image Processing

A single frame corresponds to a 16x1 image. Prior to optic flow processing, each frame is

spatially-pooled from 16x1 to 12x1. This filter is applied for two reasons: 1) to reduce pixel

offset, and 2) improve SNR of optical signals. The spatial filter is an adaptation of the triangular

image filter with dimension 5x1. The 12x1 spatially-pooled frames are then processed by the

NDM and NDS algorithms. Both algorithms first apply a high-pass filter followed by a low-pass
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filter (LPF) to each pixel in the 12x1 array. The output of the LPF is a temporally delayed

version of the HPF output. The final stage of each algorithm is to correlate the HPF output of

each pixel to the delayed outputs of its two neighboring pixels. Since only 10 of the 12 pixels

have two neighbors, the output vector of the NDM and NDS algorithms have dimension 10x1.

A visual representation of these algorithms is presented in Fig. 4.4(b) and Fig. 4.4(c).

Optic Flow Response

Biologically-inspired algorithms are traditionally characterized with sinusoidal gratings [84]. As

a result, analysis of their transfer functions and overall characterization is usually presented

exclusively for such visual stimuli. However, this analysis is generally applied due to its math-

ematical simplicity and ease of description. Such algorithms are, in fact, well-suited for a

wide-range of images, not exclusively sinusoidal gratings. A cartoon representing the signal

processing flow of a single pixel is shown in Fig. 2.13. A visual stimulus that consists of a rising

or falling edge can produce a sharp peak at the output of the NDS as well as the NDM and

EMD algorithms. The image processing for optic flow detection of such stimuli is identical to

that of sine gratings. However, the flow estimate is measured by the mean algorithm response

for sine gratings and the peak response for stimuli such as the one illustrated in Fig. 2.13. In

our experimental setup, we generate a visual stimulus that mimics a square wave with small

spatial frequency (<1 cycle/frame) instead of a sine wave. Thus, in order to characterize each

algorithm we look at peak response produced by the moving edge of the stimulus.

Experimental Characterization

Images are captured at a frame rate of 10fps. Frame rate is limited by the relatively slow

operating speed of the micro-controller (Teensy3.2). The micro-controller is equipped with an
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Figure 2.13: Cartoon representing signal processing flow for a single pixel in the NDS algorithm.

Raw pixels (PRraw) are spatially pooled (PRpool) and then sequentially processed in a HPF

and LPF. The final step (RNDS) correlates HPF with LPF from its two neighboring pixel with

addition.

integrated ADC used to read analog outputs from the image sensor and is used to generate

control signals for the sensor. As previously mentioned, the image sensor is able to operate at

frame rates in excess of 1kfps. Since parameters such as photon flux, frame rate, PDE, and

fill-factor may vary drastically depending on environment and sensor design, a more universal

description of low-light performance can be provided in absolute number of photons required for

a particular operation. Thus in our analysis of algorithm performance, we quantify performance

as a function of photons/frame or photons/pixel/frame.

As previously discussed, we characterize non-directional optic flow for simple square wave

stimuli. Stimuli produce high contrast edges between “dark” and “bright” light intensities. We

configure the experimental setup so that “dark” conditions correspond to approximately 27 pho-

tons/pixel/frame and “bright” conditions correspond to approximately 65 photons/pixel/frame.
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Figure 2.14: Visualization of 32 consecutive 1-D frames capturing a moving edge. The x-axis

corresponds to pixel number for a 12x1 spatially-pooled frame. The y-axis corresponds to frame

number of 32 consecutive frames.

This corresponds to an image contrast of 64%. Fig. 2.14 visualizes 32 consecutive frames cap-

turing a moving edge of the visual stimulus. Blue pixels corresponds to “dark” pixels that are

partially occluded while yellow pixel correspond to “bright” pixels. Total photon flux corre-

sponds to roughly 1k photons/frame when the sensor is fully illuminated.

Optic flow processing produces frames of size 10x1—each “pixel” corresponds to the output

of an optic flow detector. Similar to Fig. 2.14, we can visualize the output frames from the NDM

and NDS algorithms. Fig. 2.15 and Fig. 2.16 visualizes 32 consecutive frames (same frames as

shown in Fig. 2.14) corresponding to optic flow response of the NDM and NDS algorithms.

Each algorithm displays a strong response (yellow) as the moving edge of the visual stimulus is

detected and a weak baseline response (blue) at all other times.

Fig. 2.17 shows the normalized transient response of a single spatially-pooled pixel (PRpool).

It clearly displays a difference in photon flux between dark and bright scenes. The curves for
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Figure 2.15: Visualization of 32 consecutive 1-D frames capturing optic flow response of the

NDM algorithm during a moving edge. The x-axis corresponds to detector number for a 10x1

detector array. The y-axis corresponds to frame number of 32 consecutive frames.

Figure 2.16: Visualization of 32 consecutive 1-D frames capturing optic flow response of the

NDS algorithm during a moving edge. The x-axis corresponds to detector number for a 10x1

detector array. The y-axis corresponds to frame number of 32 consecutive frames.
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Figure 2.17: Transient response of a single spatially-pooled pixel (PRpool) and its corresponding

optic flow detector outputs (RNDM , RNDS). Amplitudes for the three signals are normalized to

improve reader clarity. Image velocity corresponds to 1.67 pixels/frame.

RNDM and RNDS are also normalized and show a strong response to both rising and falling

edges of the stimulus (motion right and left).

As we sweep image velocity from 0-16.7 pixels/frame, we observe variations in peak response

of each algorithm. Both the NDS and NDM algorithms are configured such that the time

constant of both the HPF and LPF are equal. For NDM, we set the time constant to 60ms.

For NDS, we set the time constant to 40ms. These time constants are selected as they produce

transfer functions that are able to clearly discriminate static and dynamic scenes, they produce

a fairly linear response to small image velocities (<4 pixels/frame), and overall are well-suited

for the visual stimuli. The transfer function for the NDM and NDS algorithms are provided

in Fig. 2.18 and Fig. 2.19, respectively. As discussed in Chapter 4, the NDS algorithm offers a

higher mean SNR than the NDM algorithm across the velocity range. We measure a mean SNR

of 12.6dB for the NDM algorithm and a mean SNR of 15.7dB for the NDS algorithm.
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Figure 2.18: Transfer function for NDM algorithm in response to 1-D motion. Image velocity is

swept from 0-16.7 pixels/frame. Error bars denote standard deviation in velocity measurement.

The curve labeled theoretical corresponds to the ideal response of the NDM algorithm for a

particular sinusoidal algorithm and is included to show a general agreement in shape of the

measured transfer function. NDM algorithm has a time constant of 60ms for all filters.
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Figure 2.19: Transfer function for NDS algorithm in response to 1-D motion. Image velocity is

swept from 0-16.7 pixels/frame. Error bars denote standard deviation in velocity measurement.

The curve labeled theoretical corresponds to the ideal response of the NDS algorithm for a

particular sinusoidal algorithm and is included to show a general agreement in shape of the

measured transfer function. NDS algorithm has a time constant of 40ms for all filters.
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Conclusion

We experimentally demonstrate 1-D non-directional optic flow with a SPAD-based image sensor

at light levels corresponding to an average of <100 photons/pixel/frame and image contrast of

64%. This is the first known demonstration of optic flow with a SPAD image sensor as well as

the first demonstration of optic flow detection at such low-light levels.
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Chapter 3

Room Temperature SWIR Sensing‡

Short wave infrared (SWIR) imaging is widely used for low-light and night vision applications.

Typically we define SWIR photons as having wavelengths between 900nm and 1700nm and

energies between 1.3eV and 0.7eV. Due to the longer wavelengths of SWIR photons, compared

to visible photons, they benefit from reduced Rayleigh scattering and enable “see through”

imaging in fog, haze, and rain.

SWIR night vision systems benefit greatly from a phenomenon known as nightglow. This

refers to the process by which molecules in the atmosphere become excited through the ab-

sorption of solar radiation during the day and then return to their low-energy states at night,

radiating photons as they relax. The radiation spectrum is broadband and stretches from the

‡Excerpts from a manuscript in preparation for submission to IEEE Sensors Journal as A. Berkovich, G.

Barrows, P. Abshire, “Improving Signal-to-Noise Ratio (SNR) for Room Temperature SWIR Sensing Through

Adaptive, Floating Gate CTIA Photocircuit”, 2017 and a conference paper published as Andrew Berkovich,

Alexander Castro, Mohammad M. Islam, Fow-Sen Choa, Geoffrey Barrows, and Pamela Abshire, “Dark Current

Reduction by an Adaptive CTIA Photocircuit for Room Temperature SWIR Sensing”, International Symposium

for Circuits and Systems (ISCAS)
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visible spectrum across the infrared spectrum. However, the spectrum has large peaks in SWIR

spectrum and throughout the IR spectrum which correspond to transition energies of airborne

molecules such as CO2, OH, H2O, and O2. These peaks provide significantly higher illumination

intensities than starlight and visible wavelengths at night, and has contributed to the widespread

use of SWIR image sensors for night vision applications. For applications where nightglow is

unavailable, such as indoors, active illumination may be possible. In such applications, SWIR

imagers are well suited for covert or stealth applications as SWIR photons are invisible to the

human eye.

3.1 SWIR Detectors

Much like the photodetectors discussed in Chapter 2, SWIR sensors are diverse in their sensing

mechanisms and physical composition. Common sensor structures include microbolometers [85],

image intensifiers [86], photodiodes [87], avalanche diodes [88,89], and quantum devices [90,91].

Today, the large majority of commercially available SWIR cameras utilize either microbolome-

ters or photodiodes [92–94]. Research and development of SWIR detectors is largely driven

by applications in security, defense, and health care. These R&D efforts largely focus on tech-

niques for reducing the high cost of SWIR detectors, improving device reliability, and integrating

detectors into high-resolution, 2D arrays.

3.1.1 Microbolometers

The origins of microbolometers go back to the 1950’s [95]. The simplest bolometer is a single,

homogeneous, semiconductor used for thermometry. Infrared radiation is detected by measuring

changes in resistance of the semiconductor that result from changes in temperature of the mate-
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rial. This change in temperature corresponds to absorption of infrared photons. Recent work has

improved the sensitivity and overall performance of these sensors through the use of composite

and MEMS structures, as well as through the optimization of material fabrication [95–97].

Bolometers are used for optical sensing across the infrared and millimeter spectrum and offer

a viable alternative to photodiodes in many applications. The distinguishing difference between

bolometers and photodiodes is that bolometers absorb and thermalize photons. Due to rapid

thermalization, bolometers detect the elevated detector temperature. Photon detectors (e.g.

photodiodes) extract thermally-excited carriers before they thermalize.

3.1.2 Photodiodes and Avalanche Photodiodes

Photodiodes and avalanche photodiodes are described in more detail in Chapter 2. SWIR diodes

are often fabricated with III-V semiconductors (InGaAs, InP). SWIR APDs and SPADs have

been demonstrated by various groups [98–101]. Inevitably, these detectors are plagued by high

levels of noise (after-pulsing, cross-talk, dark count rates) and rely upon cooling or temporal

gating to improve sensing capabilities. These technologies suffer from relatively new and imma-

ture fabrication techniques which leads to high sensor costs and unreliable sensor performance.

As a result, materials such as black silicon and germanium have garnered significant attention

for SWIR sensing [102,103]. These material systems offer substantially more mature fabrication

techniques and lower costs which has motivated efforts to extend their spectral response deeper

into the IR spectrum.

3.1.3 Quantum Detectors

Thanks to rapid advances in materials science, novel SWIR photodetectors based on nanos-

tructures, quantum devices, and emerging materials have become an increasingly popular ap-
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proach [104–107] to IR sensing. These systems exploit narrow-band gap materials such as IV-VI

semiconductors (PbS, PbSe) and tunable structures like HgCdTe and graphene [104–107].

The biggest challenges with such approaches are the integration of these devices with CMOS

technology, and scaling from individual detectors to high-resolution 2-D image sensors. Demon-

strations of quantum SWIR detectors often present results for individual detectors, not arrays.

Increasingly scaling and system integration are becoming the focus of work in this area and these

material systems offer a promising alternative to more mature technologies such as bolometers

and photodiodes.

3.1.4 Dark Current in Photodiodes

One of the biggest hurdles in implementing SWIR sensors is the high dark current that is typically

associated with narrow-band gap photodetectors. A major focus of ongoing research is the

development of SWIR sensors that are capable of operating at room temperature. Substantial

efforts have been made in the area of device fabrication and optimization in order to minimize

dark current [108–112] at the device level. At the system level, thermal cooling is often used to

further boost device performance and reduce dark currents. However, it is important to note

that for mobile, low-power application, thermal cooling often exceeds size, weight, and power

constraints of such systems.

At the system-level, a variety of active pixel sensors and sensing techniques, such as current

skimming and signal compression, [113–118] have been demonstrated to mitigate the effects of

dark noise. The goal of such work is typically to extend dynamic range or improve uniformity

across the image array. However, it is important to note that such techniques simply compensate

for dark current without actually reducing it. Thus, dark current still contributes shot noise

and limits detection sensitivity.
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In this chapter we present a novel approach to dark current reduction that precisely adjusts

the measurement conditions so that dark current does not affect the measurement in the first

place. We demonstrate a photocircuit that holds the applied bias voltage of a photodiode near

zero volts (within 1mV). This approach has the advantage of reducing dark current so that shot

noise from the dark current does not affect the measurement in the first place.

3.2 Capacitive Transimpedance Amplifier Pixel

The capacitive transimpedance amplifier (CTIA) photocircuit uses a transimpedance amplifier

(TIA) with a capacitor in the feedback loop to integrate photocurrent. Typically, one of two

configurations is used with this circuit. Either the photodiode’s anode and cathode are placed

between the inverting and non-inverting terminal of the amplifier, or one of the diode terminals

is connected to the non-inverting terminal while the other is connected to an external reference

voltage (see Fig. 3.1).

In Fig. 3.1a, the voltage across the diode is controlled by the external reference voltages

DAC and V P . This configuration is often used when it is desirable to apply, either a large

reverse bias (>1V) across the diode, or a dynamic bias (e.g. modulation). In Fig. 3.1b, the

voltage across the diode is zero for an ideal amplifier, but practically is set by the input offset

of the amplifier. This configuration is used when it is desirable to apply a small, static reverse

bias across the diode (<1V).

3.2.1 Amplifier Gain

An important consideration for the design of the amplifier in the CTIA photocircuit is the gain.

The input-output relationship is vout = Av(V+ − V−) = Av · dV . This means that as the CTIA
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Figure 3.1: a) Non-adaptive CTIA circuit configuration, b) Adaptive CTIA circuit configuration

pixel discharges during integration, the input differential must be nonzero to allow the output

to change. As the input offset grows, the diode bias voltage changes. For large reverse biases

(>1V), this effect may be negligible. However, for bias voltages comparable to the turn-on

voltage of the diode this can have significant consequences. This effect is particularly relevant

for the CTIA configuration shown in Fig. 3.1b.

In Fig. 3.2 we simulate this effect assuming an initial amplifier offset (diode bias) of 1mV.

This simulation assumes an exponential I-V curve for the diode, a saturation current of 100pA,

and an integrating cap of 100fF. We plot discharge curves for different amplifier gains ranging

from 40dB to 90dB. We see that for high-gain amplifiers (90dB) the discharge is highly linear,

as we expect. This linearity indicates that the discharge rate is fairly constant throughout the

integration period and is equal to the dark current at a bias of 1mV. For low-gain amplifiers,

we clearly see a non-linear discharge curve. This indicates a substantial increase in dark current

during the integration time and is a direct result of the growing differential input required to

change the output. For an output swing of 3.3V, the input differential changes by 33mV with a

40dB gain, and 33µV with a 100dB gain.

When designing CTIA structures we ensure that the differential amplifier has a gain of

>100dB to minimize the effects of varying input differential voltage. It is important to note
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Figure 3.2: Simulation of a CTIA pixel discharging with an initial input offset of 1mV for

different values of open-loop gain.
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Figure 3.3: Circuit schematic of offset canceling adaptive amplifier.

that this comes at the cost of increased noise. This is an important trade-off to explore but is

not discussed in this chapter.

3.2.2 Amplifier Offset

Typical amplifier input offsets are on the order of 10mV. Due to the exponential relationship

between current and voltage, an input offset of 10mV versus 1mV can alter dark current by more

than an order of magnitude. Thus, input offset can be a limiting factor in low light detection

and motivates this work.

We modified a standard amplifier circuit to include a floating gate (FG) current mirror, as

shown in Fig.3.3. This FG enables us to compensate for input offset in the amplifier by precisely

adjusting currents in the current mirror under specific bias conditions. As the specific bias

conditions diverge, the offset cancellation will be less accurate. In this chapter we demonstrate

the feasibility of this approach in a CTIA photocircuit implemented in a 0.6µm CMOS process.

Many discrete amplifiers ICs offer offset null capabilities to reduce input offset voltages to

just several µV and are often used in instrumentation applications. Jandu et al. demonstrate an

architecture with an auto-zero amplifier in a feedback loop to limit input offset to approximately
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2µV and fairly high power consumption of 5mW [119]. Also, several patents discuss techniques

for minimizing input offset [120–122].

The fundamental approach underlying most offset null or input-offset minimization tech-

niques are precisely tuned current sources that sink or source current to compensate for mis-

match across the circuit. While different approaches may implement a wide range of techniques

for programming these current sources, including feedback loops, adaptive circuits, and digital

tuning, the underlying principles are similar. We employ this basic principle in our adaptive

CTIA structures. The advantages of using a single floating gate device for input-offset com-

pensation are: 1) low circuit complexity, 2) minimal increase in total circuit area and power

consumption, and 3) scalability of circuit architecture.

3.2.3 Floating Gate Devices: Overview

Floating gate devices are commonly available in standard digital CMOS technologies and pro-

vide local nonvolatile analog storage with long storage lifetimes [123] (1-100µV voltage drop

over 10 years), and high-resolution (14-bit) memory cells [124]. They are the basis for EEP-

ROM and have been used in a wide range of adaptive circuits including imagers [125], data

converters [126], field-programmable analog arrays [127–129], and amplifiers [130]. Carver Mead

and Misha Mahowald can largely be credited for the first use of floating gate devices in adaptive

neuromorphic sensing and computing systems [131,131]. This line of research continued for well

over two decades [132, 133] and still is pursued today [123]. The work reported in this chapter

is the first known use of floating gates in readout integrated circuits for SWIR sensors.
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3.2.4 CTIA Operation

We compared the adaptive CTIA circuit with a non-adaptive version, which is identical except

that capacitor Cf, shown in Fig. 3.3, is shorted. Both CTIA structures include a 10pF integration

capacitor as shown in Fig. 3.1. Monte Carlo simulations show that the amplifier has an average

open-loop gain of 130dB with a std of 3.4dB and an average input offset of -18.7mV. This ensures

a gain of >106 and means that a change in the output of 3V corresponds to a change of <3µV

at the input.

3.3 Experimental Characterization: Dark Current

We performed a series of experiments to characterize the dark current of the CTIA photocircuit.

The CTIA circuits were fabricated in a standard 0.6µm CMOS process; a micrograph is shown

in Fig. 3.4. All circuits were placed in a box that provides electrical and optical shielding. We

tested the CTIA structures with two different photodiodes, one InGaAs and one Si. The Si

device is a commercially available photodiode (OSRAM #SFH229FA) with a dark current of

50pA at a reverse bias of 10V. The InGaAs device is a custom 4x4 array fabricated by Islam et

al. [134] and has a smaller turn on voltage and much higher dark current density compared to

Si diodes. We selected a sample with unusually high defect densities to represent a “worse-case”

scenario with respect to dark current. This diode has a dark current of 170nA at a reverse bias

of 100mV. All measurements were performed at room temperature.

3.3.1 Non-Adaptive CTIA Pixel

A schematic of the measurement setup is shown in Fig. 3.1a. We connect the photodiode anode

to a 12-bit DAC. The DAC has a 3.3V rail and offers voltage resolution of <1mV. We measured
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Figure 3.4: Micrograph showing an adaptive CTIA pixel. The adaptive op-amp and integration

capacitor are highlighted in yellow while the floating gate (FG) devices are in green.

Figure 3.5: Transient response of CTIA pixel discharging with Si photodiode in the dark. VDiode

indicates reverse bias of the photodiode.

discharge curves of the CTIA pixel for various anode voltages. By sweeping the anode voltage

we tuned the diode bias to within 1mV of its “optimal” zero bias condition.

Fig. 3.5 shows the transient response of the non-adaptive CTIA structure with the Si photo-

diode. The different curves are for different values of reverse bias voltages across the photodiode.

As we raise the diode’s anode voltage from 0V towards the amplifier reference voltage VP, the

slope of the discharge curves decreases. This holds until the anode bias exceeds the cathode

voltage at which point the diode becomes forward biased and can no longer discharge.

We estimate dark current from these curves by calculating the average slope (I = C ·∆V/∆t).
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Figure 3.6: Dark current for InGaAs and Si photodiodes as a function of reverse bias voltage.

Results are for the non-adaptive photocircuit.

We measure discharge time (∆t) as the time required for the CTIA output to discharge from

90% to 10% of its voltage range. As expected, by decreasing the applied bias we are able to

suppress the dark current. For each diode we are able to decrease dark current by 1-2 orders of

magnitude. It is worth noting that for the InGaAs diode we were not able to measure leakage

currents for large input offsets since the dark currents were so large that discharge was nearly

instantaneous and could not be adequately sampled in our experimental setup.

3.3.2 Adaptive CTIA Pixel

In the adaptive CTIA structure, the photodiode is placed between the inverting and non-

inverting amplifier inputs, and the input offset sets the bias conditions for the diode. We

tune the input offset by adjusting vfg. We cannot directly measure the input offset as any

connection to the non-inverting terminal would introduce additional leakage current that would

interfere with dark current measurements. The floating gate voltage is measured through a

readout buffer. We repeated the same measurements as for the non-adaptive structure, except
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instead of sweeping the diode anode voltage using a DAC, we adjust the diode bias by varying

the floating gate voltage. A more detailed description of the floating gate operation is provided

in the following section.

The discharge curves (not shown) appear similar to those of the non-adaptive structure.

Again we estimate dark current by measuring the discharge time (∆t) from 90% to 10% of the

voltage range. We demonstrate two states of the adaptive CTIA pixel: poorly tuned and finely

tuned. For the InGaAs diode we define poorly tuned as having a floating gate voltage 15-20mV

from its optimal value and finely tuned as within 1mV. We categorize our results in this way

because, as previously mentioned, we cannot directly measure input offset and must estimate its

value. The “optimal value” is defined as the floating gate voltage that produces an input offset

of exactly 0V – which would, theoretically, produce an infinite discharge time. In these two cases

we measure an average dark current of 5.8nA for the poorly tuned pixel and 2.25pA for the finely

tuned pixel. The poorly tuned case performs slightly worse than the best-case scenario observed

for the non-adaptive CTIA structure (0.7nA). The finely tuned case represents a reduction in

dark current of 2-3 orders of magnitude over both the non-adaptive and poorly-tuned adaptive

cases. Again, for large offsets produced by a floating gate >100mV from its optimal value, the

dark current is so large that discharge is nearly instantaneous and cannot be measured in our

experimental setup.

For the Si diode we define the poorly tuned case as having a floating gate voltage 10-20mV

from its “optimal” value and finely tuned as within 5mV from its “optimal” value. We measure

an average dark current of 1.6pA for the poorly tuned case and 33.8fA for the finely tuned case.

The finely tuned case is close to the lowest observed dark current for the non-adaptive circuit

(10.4fA).
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3.3.3 Floating Gate Devices: Programming

As shown in Fig. 3.3, the floating node is connected to the gate of a MOSCAP that tunes the

floating gate voltage via Fowler-Nordheim tunneling. The body of the MOSCAP is connected

to an external high-voltage power supply vtunn. Increasing vtunn increases the probability that

charge carriers can tunnel through the gate dielectric and increases the voltage of the floating

gate.

To program the floating gate we first UV erase the chip and program the floating node at

a specified high voltage. We use an off-chip power-FET to generate 1ms digital pulses with

an amplitude of 14.15V. Each pulse increases the floating gate voltage by about 500µV. The

programming resolution can be adjusted by varying the tunneling voltage or the tunneling pulse

width. We note that in this implementation the floating gate voltage leaks at a rate of 1.5µV/sec,

corresponding to <1e−/sec. We believe that the cause for this is hot carrier injection current

from the readout buffer of the floating node. This is significant for long integration times >1sec,

but is negligible for more typical exposure times of 10-100ms. This effect can be mitigated by

periodically “refreshing” the floating node during operation to keep it properly tuned.

Programming of the FG itself is limited only by GPIO speed of the connected micro-controller

and can conservatively take a few milliseconds. The limiting factor in calibrating this circuit is

the the long integration time of dark current required to determine the direction of FG adjust-

ment. While this occurs on the time scale of minutes, it should only have to occur once prior to

operation. We note that the photocircuit is calibrated at a specific temperature and, through

Cadence simulations, found that a change in temperature of 1oC shifts offset by approximately

1mV. Thus re-calibration would have to occur for significant changes in temperature.
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Table 3.1: CTIA Dark Current Suppression Performance Summary

Si InGaAs

Non-Adaptive (best) 10.4fA 700pA

Adaptive (poor) 1.6pA 5.8nA

Adaptive (fine) 33.8fA 2.25pA

3.3.4 Summary of Results and Discussion

We compared dark currents measured for InGaAs and Si photodiodes using both adaptive and

non-adaptive CTIA circuits over a range of photodiode bias conditions. Table 3.1 summarizes

the results. We measured total power consumption of the photocircuit as 174µW for both

the adaptive and non-adaptive circuits. The addition of a FG device and the tuning circuitry

increase total amplifier area by about 7.5%.

As noted above, in this implementation we observed leakage on the floating node at a rate of

1.5µV/sec. The lowest observed dark current of 30fA in finely tuned Si photodiodes is limited

by the floating gate leakage. These results were obtained for a discharge time of >1000 sec,

which corresponds to a 1mV change in floating gate voltage. The lowest observed dark current

of 2.25pA in finely tuned InGaAs photodiodes corresponds to a current density of 4.97nA/cm2.

This is an impressive result for a custom-fabricated sample with high defect density and demon-

strates a reduction in dark current by 5 orders of magnitude relative to the measured dark

current of 170nA for the same diode at a reverse bias of 100mV.

We intentionally designed a high gain amplifier to minimize offset accumulation, but that

design choice introduces other types of noise and leads to trade-offs between dark current,

amplifier gain, and dynamic range. It is important to consider all sources of noise including

read noise, 1/f noise, kTC noise, shot noise, but this full analysis is beyond the scope of this
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work. In future work we intend to examine the trade-offs between bias voltage, dark current,

and quantum efficiency using responsivity and SNR measurements for SWIR detection.

These results provide the first demonstration of dark current reduction in SWIR sensors

operating at room temperature by readout circuits that provide fine bias tuning. This provides

an important proof of concept for a new SWIR readout concept.

3.4 Experimental Characterization: Signal-to-Noise Ratio

Using the same CTIA structures as discussed in Sec. 3.3, we extend the characterization of

the non-adaptive CTIA structure to include SNR measurements. Again, circuits were placed

in a box that provides electrical and optical shielding. We tested the CTIA structures with a

different (less noisy) InGaAs photodiode and the same Si photodiode (OSRAM #SFH229FA).

To enable optical measurements, a green LED is included in the shielded experimental setup to

illuminate the photodiode. The light intensity of the LED is controlled with PWM output from

a micro-controller (Teensy3.2) running at a frequency of 488Hz.

Using the non-adaptive structures configured as shown in Fig. 3.1a, we sweep the photodiode

bias voltage from approximately 1mV to >1V. For each bias voltage, three consecutive measure-

ments are taken. First, we measure pixel discharge in the dark to estimate dark current. Then,

we measure pixel discharge at two different illumination intensities (LED1, LED2). Again we

estimate diode current by measuring the discharge time (∆t) from 90% to 10% of the voltage

range and calculate the average slope (I = C ·∆V/∆t). From these three measurement we are

left with three diode currents (ID, IL1, and IL2). ID corresponds to the diode dark current, IL1

corresponds to the total diode current at illumination intensity LED1, and IL2 corresponds to

the total diode current at illumination intensity LED2. We estimate the photocurrent for LED1
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Figure 3.7: Estimated dark current and photocurrent for CTIA photocircuit with InGaAs photo-

diode. Reverse bias is controlled with a 12-bit DAC integrated into a Teensy3.2 micro-controller

as Iph,1 = IL1 − ID and the photocurrent for LED2 as Iph,2 = IL2 − ID.

Fig. 3.7 and Fig. 3.8 show the plots for the dark current and photocurrents as a function of

bias voltage for the InGaAs and Si diodes, respectively. We note that for both plots photocurrent

is fairly constant with respect to bias voltage. This indicates that diode responsivity is not

strongly dependent on bias voltage across these bias conditions. For the Si diode we note a

reduction in dark current of approximately 1.5 orders of magnitude by tuning reverse bias from

20mV to 1mV. Similarly, we note a reduction in dark current of approximately two orders

of magnitude by tuning reverse bias from 20mV to 1mV for the InGaAs diode. For both Si

and InGaAs, dark current displays peak sensitivity to bias voltage near 1mV. This response is

expected, following the exponential current-voltage diode relationship, and supports the need

for accurate input-offset compensation with <1mV error.
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Figure 3.8: Estimated dark current and photocurrent for CTIA photocircuit with Si photodiode.

Reverse bias is controlled with a 12-bit DAC integrated into a Teensy3.2 micro-controller
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Figure 3.9: Estimated SNR for CTIA photocircuit with InGaAs photodiode illuminated at two

different light intensities (LED1, LED2). Reverse bias is controlled with a 12-bit DAC integrated

into a Teensy3.2 micro-controller

Fig. 3.9 and Fig. 3.10 show the plots for SNR as a function of bias voltage for the InGaAs

and Si diodes, respectively. The two curves on each plot correspond to SNR measurements at

different illumination intensities. SNR is estimated as the ratio of photocircuit to dark current.

For the Si diode we note an improvement in SNR of approximately 30dB when reverse bias

is adjusted from 20mV to 1mV. This 30dB gain agrees well with the 1.5 decade reduction in

dark current and indicates that the dark current reduction does correspond to an improvement

in SNR. For the InGaAs diode we note an improvement in SNR of approximately 40dB when

reverse bias is adjusted from 20mV to 1mV. This 50dB gain agrees well with the 2 decade

reduction in dark current and, again, indicates that the dark current reduction does correspond

to an improvement in SNR.
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Figure 3.10: Estimated SNR for CTIA photocircuit with Si photodiode illuminated at two

different light intensities (LED1, LED2). Reverse bias is controlled with a 12-bit DAC integrated

into a Teensy3.2 micro-controller
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3.5 Conclusions

In this chapter we demonstrate that we can precisely bias a CTIA photocircuit, using a 12-bit

DAC, in order to compensate for input-offset and minimize photodiode bias (within 1mV). This

reduction in photodiode bias voltage corresponds to a significant reduction in dark current of

the photodiode while simultaneously boosting SNR. We demonstrate a 30dB and 40dB improve-

ment for a Si and InGaAs diode, respectively, when comparing a 20mV bias voltage (typical

amplifier input-offset) to a 1mV bias voltage. This is the first experimental demonstration of

SNR improvement at near-zero bias conditions that we are aware of.

We also demonstrate that by incorporating adaptive circuit elements (floating gate transistor)

to a differential amplifier in a CTIA photocircuit, we are able to compensate for input-offset

with precision that exceeds 12-bit resolution (<1mV). This result is demonstrated by comparing

minimum dark current achieved in a finely-tuned adaptive CTIA structure to minimum dark

current achieved in a finely-tuned non-adaptive CTIA structure biased with a 12-bit DAC.

The combination of these results is significant because it suggests that floating gate compen-

sation can be successfully implemented in room-temperature SWIR sensors. More importantly,

this technique can be utilized to improve SNR for SWIR optical sensing. We show that adap-

tation can offer improved sensing capabilities (lower dark current) than programmable 12-bit

DACs in each pixel. Moreover, this adaptive approach is scalable for high-resolution arrays,

increases overall pixel size by <10%, and has negligible contribution to total power consump-

tion of the photocircuit. A significant limitation of this approach is that it requires significant

time for calibration of an entire array (minutes), and the photocircuit must be recalibrate, or

adaptively tuned, if operating temperature deviate by more than 1-2oC.
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Chapter 4

Optic Flow Benchmarking‡

4.1 Introduction

Optic flow estimation is fundamental to nearly all vision systems, biological and artificial. It

provides motion fields that are used in primitive, visually-based control systems as well as high-

level motion analysis tasks. In the animal kingdom it is used by flying birds and insects for tasks

such as self-stabilization [135, 136], odometry [137, 138], obstacle avoidance [7, 139], and speed

control [6,139]. It is also used by humans and other animals for control of locomotion [140] and

path planning [141]. In computer vision, optic flow is used for tasks such as video compression,

motion-based image segmentation, image stabilization, and object tracking [142–144]. In nearly

all visual systems, it is used as a low-level characterization of motion upon which higher-level

visual processing tasks are built.

Optic flow detection has been an active research topic for more than 40 years [145, 146].

Decades of research has improved the performance of optic flow algorithms with respect to

‡In preparation for submission to Biological Cybernetics to appear as: A. Berkovich, G. Barrows, P. Abshire,

“Benchmarking Photon-Limited Performance of Biologically-Inspired Optic Flow Processing Algorithms”, 2017
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large image displacement [147] and preservation of multi-scale image features [148,149]. Several

groups have benchmarked the performance of optic flow algorithms with respect to both accuracy

[150] and efficiency [151], and several standardized data sets (MPI-Sintel [152], KITTI [153],

Middlebury [154]) have been developed to support benchmarking efforts.

In spite of these efforts, one area of research not yet addressed is the performance of optic

flow algorithms at low light levels. This is particularly relevant for robotic applications in photon

limited environments such as deep inside a building or cave, or underneath a forest canopy at

night time. These environments present ambient light levels in which just thousands of photons

per second may be available for image sensors. Current technology is unable to meet such

capabilities. It is important to understand the limitations of various optic flow algorithms in

photon limited environments in order to inform the design of future low-light imaging technology.

In this work we present a framework for this analysis. We quantify the performance of optic

flow processing algorithms in photon-limited conditions. In contrast to traditional computer

vision systems, we draw inspiration from flying, nocturnal insects like the Megalopta genalis and

adopt a minimalist approach. We simulate the acquisition of optical flow over a wide field of

view with low-resolution sensors (<100k pixels). Our goal is not to obtain optimal performance

metrics, but rather to quantify the minimum photon rates necessary to obtain “useful” optical

flow measurements, understand the roles of spatial and temporal pooling in photon-limited optic

flow processing, and explore the effects of shot noise on different types of optic flow algorithms.

This will in turn support a better understanding of limitations in sensing optic flow for future

MAV technologies.
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4.2 Image Generation

We benchmark the performance of several algorithms with both natural and synthetic scenes.

Benchmarking of each optic flow algorithm is performed through MATLAB-based simulations.

Details about images are provided in Sec. 4.2.1 and Sec. 4.2.2. Each benchmarking trial begins

by generating a “template” image. This image is a panorama that represents a full 360o field-

of-view (FOV). By using a panorama we can circularly shift the template horizontally along

its x-axis, indefinitely, without generating discontinuities in the image. To preserve uniformity

among templates, each template is re-sized to 251xm pixels. The importance of the value 251

is described later in this section. The number of pixels along the x-axis (m) varies for each

natural scene but templates have aspect ratios ranging from 2:1 to 4:1. For synthetic images,

each template is 251x251.

Once a template image is generated we then produce a series of frames that are processed by

optic flow algorithms. Known optic flow is generated from frame to frame by circularly shifting

the template image by a defined amount. Using this approach we generate 400 sequential frames

for all benchmarking simulations. This provides a continuous visual stimulus for each algorithm

that physically corresponds to an observer rotating clockwise while standing in place. This

approach does include parallax, when using natural images, but does not generate the complex

2D flow fields that result from complex, dynamic environments with multiple moving objects

(see Fig. 4.1(b). Instead, global 1D motion is generated along the x-axis (see Fig. 4.1(a)).

The role of spatial pooling is investigated by resizing each frame prior to computing optic

flow to either 60x60, 120x120, 180x180, or 240x240. Re-sizing is implemented with the MATLAB

function imresize which applies a nearest-neighbor interpolation to reduce image dimensions.

Template images are shifted by strictly integer values. Thus, spatially-pooled frames are shifted
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(a) (b)

Figure 4.1: Cartoon illustration of optic flow estimation in a simple scene (a) with global, 1D

motion and a complex scene (b) with 2D flow generated by multiple objects moving at different

velocities and depths.
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by an effective image velocity of νeff which is given by νeff = ν·N
Norig

. Norig is the y-dimension

of the template image and is set to a semi-arbitrary value of 251 to ensure that all effective

image velocities are non-integer values which provides a more physically plausible simulation.

We benchmark the accuracy of each algorithm over a range of velocities (ν = 1-10 pixels/frame).

An image velocity of 5 pixels/frame translates to an effective velocity of 1.2 pixels/frame for a

60x60 image and 4.8 pixels/frame for a 240x240 image.

Using this approach we: 1) define a non-stochastic template image, 2) generate a sequence

of non-stochastic frames based on known optic flow by circularly shifting the template image,

3) generate a stochastic image sequence from the non-stochastic image sequence produced in

the previous step, 4) process both stochastic and non-stochastic image sequences using several

optic flow algorithms, 5) statistically evaluate performance of each optic flow algorithm based

on varying benchmarking parameters.

Photon arrival is modeled as a Poisson process. We incorporate dark count rates into our

framework and ignore all other noise sources–thus we only explore the effects of shot noise and

dark counts. Stochastic images are generated by converting pixel-level intensity values to Poisson

random variables. The Poisson variables in each spatially-pooled frame are then normalized and

scaled so that the sum of all Poisson variables in a frame is equal to the appropriate photon flux

per frame. Next, each pixel-level Poisson variable is used to generate a random pixel value. This

is done using MATLAB’s Poisson random generator function (poissrnd). For a photon flux of

576k photons/frame, a spatially-pooled 60x60 frame will have an average Poisson value of 160

photons/pixel while a 240x240 frame will have an average Poisson value of 10 photons/pixel.

We assume all pixels are perfectly linear photon counting modules at low illumination in-

tensities (<107 photons/sec). This assumption is reasonable since a Geiger-mode avalanche
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photodiode operating at a modest detection rate of 20MHz has high linearity (R2>0.999) up

to 107 photons/sec. Thus even at “high” illumination intensities of 109 photons/frame, a single

large detector in a 60x60 array will receive <106 photons/frame or <107 photons/sec at standard

frame rates. For the simulations described in this paper we sweep target photon rate from 103

photons/frame to 1012 photons/frame with two data points per decade. While the upper end

of this range would saturate the photodetectors, we include this data to ensure that we capture

all relevant behaviors and effects in the simulations.

4.2.1 Synthetic Images

Synthetic images are used to study the narrow-band response of each algorithm and gain insight

into their performance. While physically unrealistic, they allow us to test each algorithm at

a well-defined image contrast and spatial frequency. All synthetic images are 2D sine wave

gratings of the form S(x, y) = C · sin(2π · fx · x + φx) · sin(2π · fy · y + φy) + 1 where C is the

Michelson contrast of the sinusoidal grating and fx and fy are the vertical and horizontal spatial

frequencies of the gratings. We generate gratings of varying contrast and spatial frequency and

always set fx = fy for the sake of simplicity. We rotate sine gratings by 45o to ensure all rows

have non-zero spatial gradients.

4.2.2 Natural Images

Natural images provide physically realistic broadband visual stimuli. We use a variety of natural

images shown in Figs. 4.3(a), 4.3(b), 4.3(c), 4.3(d). These images are 360o panoramas gathered

from Google Images capturing forest scenes. While our simulation framework enables bench-

marking of any natural environment, we focus on forest scenes as they are particularly relevant

in low-light applications for aerial platforms.
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Figure 4.2: 2D sine grating used for synthetic images for Npool = 60 and a spatial frequency of

4 cycles/frame.

4.2.3 DCR

For each benchmarking simulation we define a dark count rate (DCR). This DCR provides the

average number of dark counts per pixel per frame in the original 251x251 pixel image. The

DCR is incorporated in the spatial pooling process. Thus if the DCR for a simulation is 1

count/pixel/frame (for the 251x251 template image), a spatially-pooled image with Npool = 60

would have 3600 total pixels each with a dark count rate of 17.5 counts/frame.

4.3 Optic Flow Algorithms

We explore three different classes of optic flow algorithms: block matching, gradient-based, and

correlation-based algorithms. Our goal is not to optimize the performance of each algorithm

but rather to benchmark the performance of each class of algorithm at low-light conditions.

This work is in contrast to typical benchmarking experiments which look to optimize overall

performance.
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(a) (b)

(c) (d)

Figure 4.3: Gray scale panoramas of natural forest scenes. The original dimensions of each

image are 1110x4000 for (a), 667x2000 for (b), 3327x7520 for (c), and 2180x6564 for (d). Each

image is scaled down to create template images of size 251xm and a single 251x251 frame covers

a FOV of 100.4o for (a), 120.5o for (b), 160.6o for (c), and 120.5o for (d).
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4.3.1 Block Matching

Block matching algorithms are commonly used in video compression algorithms. They are tra-

ditionally considered to have few similarities with biologically-plausible circuits and algorithms.

However, in their simplest form block matching algorithms may be realized using a structure

similar to a neural network that implements a convolution layer and a winner-take-all layer.

The algorithm first divides each frame into sub-blocks. For each sub-block, a correlation is

computed between that sub-block in consecutive frames. The location of the maximum correla-

tion indicates the motion vector for that sub-block. The algorithm assumes uniform motion for

all pixels within each block. We use an exhaustive search (ES) block matching algorithm adapted

from Barjatya [155]. An implementation of this algorithm is provided on the MathWorks file

exchange [156].

In the benchmarking experiments we use 100 sub-blocks for each frame and a search radius

that varies depending on the level of pooling. We use a search radius of 3 pixels for Npool = 60,

4 pixels for Npool = 120, 6 pixels for Npool = 180, and 7 pixels for Npool = 240. We vary the

search radius to account for the effect of spatial pooling on effective image velocity, as previously

discussed. The choice of 100 sub-blocks per frame produces sub-blocks that are 6x6 pixels for a

60x60 spatially-pooled frame and sub-blocks that are 24x24 pixels for a 240x240 spatially-pooled

frame.

4.3.2 Image Interpolation Algorithm

The Image Interpolation Algorithm (IIA) is a non-iterative gradient-based optic flow algorithm

first proposed by Srinivasan [157] to measure egomotion. It computes six flow fields, three for

translational motion and three for rotational motion, from consecutive frames (f0, f). In this
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work we implement a simplified adaptation of this algorithm that ignores rotational motion and

focuses only on translational motion. An important assumption of this algorithm, like many

gradient-based optic flow algorithms, is that image displacements are small between consecutive

frames and motion is linear and continuous. Similar to block matching, we compute a motion

vector for each of 100 sub-blocks for each frame.

4.3.3 Biological Correlation-Based Detectors

A number of biologically-inspired correlation-based detectors have been proposed based on neu-

rophysiological and anatomical studies of insects. The best known example is the Hassenstein-

Reichardt detector also known as the elementary motion detector (EMD). Unlike other types

of OF algorithms, these algorithms produce a scalar number which does not correspond to a

physical definitive velocity but a relative output of the algorithm—further, outputs are highly

sensitive to contrast, spatial frequency, and temporal tuning. This, in addition to their non-

linear bell-shaped transfer functions, means their outputs are ambiguous under conditions of

unknown image contrast and spatial frequency.

In spite of these characteristics, biologically-inspired correlation detectors are widely used

in mobile robotic systems [158–162]. These algorithms are computationally simple and can be

efficiently implemented directly in the focal plane of an imager [163]. Furthermore, simple optic

flow-based heuristics with these algorithms enable fairly sophisticated behaviors. Hardware

implementations of these algorithms have been studied extensively and use of these algorithms

in embedded systems goes back several decades [163].

Our analysis encompasses the classic elementary motion detector (EMD) as well as two non-

directional variations characterized by Higgins and Dyhr [164, 165]. We hypothesize that the

non-directional variations will outperform the directional EMD at low-light levels and thus look
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(a) (b) (c)

Figure 4.4: Computational model of the Hassenstein-Reichardt based elementary motion de-

tector (EMD), shown in (a), non-directional multiplication (NDM) detector, shown in (b), and

non-directional summation (NDS) detector, shown in (c). In each algorithm, the photoreceptor

(PR) outputs first pass through a high-pass filter (HPF) to remove signal offset and produce

zero-mean signals. Signals are then delayed with a low-pass filter (LPF) and correlated with

either a multiplication block (Π) or a summation block (Σ).
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to benchmark these algorithms in comparison to BM and IIA. The computational models for

each correlation-based algorithm are shown in Fig. 4.4, and their transfer functions are provided

in Sec. 4.3.3, Sec. 4.3.3, and Sec. 4.3.3. It is important to note that these transfer functions are

all derived for moving sinusoidal gratings of the form S(t, x) = .5 · (1 + C · sin(ωt · t+ ωx · x)),

where C is the grating contrast, ωt is temporal frequency, and ωx is spatial frequency.

Elementary Motion Detector

The elementary motion detector (EMD), shown in Fig. 4.4(a), correlates the response of one

photodetector to the delayed response of a neighboring photodetector. It is a “biologically-

inspired” optic flow algorithm proposed by Hassenstein and Reichardt [166] to describe visual

perception of insects. While the EMD and mathematically similar models do not estimate true

image velocity, there is strong experimental evidence [167–169] that supports this model as a

mechanism for visual motion detection in insects, humans, and other animals. The output of

this algorithm REMD is given in Eq. 4.1 where C is contrast, h1 is the magnitude response for a

first-order high-pass filter, h2 is the magnitude response for a first-order low-pass filter, φ2 is the

phase response of the first-order low-pass filter, and φx is the relative phase between neighboring

photoreceptors.

REMD = −C
2

4
· h21 · h2 · sinφ2 · sinφx (4.1)

The C2 term in Eq. 4.1 indicates a strong, non-linear, dependence on image contrast while the

sinφ2 makes the response an odd function and confers directionality to the algorithm. The

output of the EMD is a sinusoidal wave with mean value REMD. This mean is extracted by

applying a low-pass filter to the output of the detector.

In our simulations the HPF and LPF are implemented as infinite-impulse-response (IIR)

single-pole low-pass filters in MATLAB through a recurrence relationship. These filters have no
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explicit definition of time but rather perform temporal filtering with respect to frames. Thus

our simulations are generalizable to imaging systems which may have varying frame rates.

Non-Directional Multiplication

The non-directional multiplication (NDM) detector, shown in Fig. 4.4(b), is mathematically

similar to the EMD. It correlates the response of one photodetector to the delayed responses of

two neighboring photodetectors. The output of this algorithm RNDM is given in Eq. 4.2 where

C, h1, h2, φ2, and φx are the same parameters as in Eq. 4.1.

RNDM =
C2

4
· h21 · h2 · cosφ2 · cosφx (4.2)

Similar to the EMD, the output of the NDM algorithm is a sinusoidal signal with mean RNDM .

The transfer function is almost identical to the EMD with the exception of a cosφ2 term instead

of sinφ2. This produces an even function instead of an odd function and removes directionality

in its motion sensitivity. Benefits of NDM over the EMD algorithm include increased band-

width with regard to spatial frequencies, smaller dependence on spatial frequency, and improved

linearity with respect to speed.

Non-Directional Summation

Proposed by Rivera-Alvidrez [170], the non-directional summation (NDS) detector differs from

the NDM detector only in its last stage, employing summation instead of multiplication (see

Fig. 4.4(c)). The NDS model is linear and produces a zero-mean sinusoidal output. Thus unlike

the NDM and EMD, it encodes velocity as an amplitude instead of a mean. The amplitude for

a sinusoidal input is given by Eq. 4.3.

ANDS =
C

2
· h1 ·

√
4 · h2 · (h2 · cos2ωx + cosωx + cosφ2) + 1 (4.3)
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In order to process the output signal in the same way as the EMD and NDM algorithms, we

add an additional rectification layer after the output. This generates a DC offset that encodes

velocity, similar to the other correlation-based detectors. This rectified output is given by Eq. 4.4.

RNDS =
2 ·ANDS

π
(4.4)

Among the EMD, NDM, and NDS algorithms, the NDS offers the best linearity in its output

with respect to velocity, the smallest sensitivity to spatial frequency, and the broadest band-

width with respect to temporal frequency. In addition, it has a linear dependence on contrast

in comparison with the quadratic dependence observed in the EMD and NDM algorithms. We

hypothesize that the NDS algorithm will outperform the EMD and NDM algorithms when pro-

cessing natural stimuli at low-light levels because it does not require multiplication. Multiplica-

tion serves the functional role to provide correlation of both signal and noise. For multiplication

of two Poisson variables λ1, λ2 >1 the SNR is >0 and multiplication improves SNR of the signal

product. However, if λ1, λ2 <1 then multiplication of correlated signals kills signal strength

faster than noise. Addition, on the other hand, always results in an output SNR that is greater

than that of the input signals. We expect that for photon-limited imaging, this difference will

lead to improved low-light performance of NDS over the other algorithms.

4.3.4 Error Rate

In order to quantify the performance of each algorithm it is important to take into consideration

the large differences that exist between the three classes of algorithms. One issue is the difference

in baseline accuracy (how well algorithms perform in optimal conditions) of BM and IIA. Block-

matching cannot detect sub-pixel motion and can only evaluate integral velocities while IIA

handles large motion poorly and can evaluate non-integral values. Furthermore, the EMD,
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NDM, and NDS algorithms all produce scalar values, not velocities, and are very sensitive to

contrast and spatial frequency of the scene. Thus, defining baseline accuracy when processing

a natural scene is impossible for these algorithms. For this reason we cannot directly compare

baseline accuracy of each algorithm. Furthermore, rather than baseline performance we are

primarily interested in quantifying the effects of shot noise on each optic flow algorithm. For

this reason we propose the metric “error rate” to quantify low-light performance.

We define error rate as the difference between the stochastic output and non-stochastic

output of a particular algorithm. This lets us eliminate differences in baseline accuracy and look

solely at the effects of shot noise. This metric essentially suppresses any bias or error in baseline

performance for a specific optic flow computation and isolates the effects of the noise (shot noise

and DCR). We define Rideal as the ideal response and Rstoch as the stochastic response of a

particular algorithm. For a frame with n rows and m cols (n = m = Npool) we compute the

average error rate, Eavg, across a frame as shown in Eq. 4.5.

Eavg =
1

(n− 2)(m− 2)

n−1∑
i=2

m−1∑
j=2

∣∣∣∣Rideal(i, j)−Rstoch(i, j)

Rideal(i, j)

∣∣∣∣ (4.5)

We express the average error rate Eavg corresponding to an optic flow measurement with

n-bit precision. The accuracy in an n-bit measurement is 2−n and the SNR of the output

is 20 · log10(2n). Thus 2-bit resolution corresponds to an error rate of 25% (12dB) and 3-bit

resolution corresponds to an error rate of 12.5% (18dB). In subsequent analysis of each algorithm

we define N2b, N3b, and N4b as the photon flux at which the average optic flow measurement

across a frame achieves 2-bit, 3-bit, and 4-bit resolution, respectively.
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4.4 Results: Synthetic Images

Benchmarking results are provided for each algorithm when processing 2D sine gratings. Sim-

ulations have been performed, as described above, to quantify the effects of spatial frequency,

image contrast, dark count rate, image velocity, and spatial pooling, and we present the results

of each below. We show the results of each benchmarking experiment by plotting N2b as a func-

tion of the parameter under investigation. We plot N2b for each algorithm: EMD, NDM, NDS,

BM, and IIA (see legends). The legend entry ‘IM’ corresponds to an intensity measurement. It

is computed as the average error rate, Eavg, when the ideal response, Rideal, and the stochastic

response, Rstoch, correspond to pixel-level measurements of photon flux (number of photons de-

tected per frame) rather than an optic flow estimate. We include this in the comparisons as it

gives a sense of pixel-level SNR and enables a comparison between traditional imaging (inten-

sity measurement) versus optic flow imaging (motion estimate) at low-light levels. As expected,

we note that N2b does not change as we sweep parameters such as spatial frequency or image

contrast because those parameters have no effect on pixel-level intensity measurements.

4.4.1 Spatial Frequency

The effects of spatial frequency on optic flow estimation were investigated. The simulations

used sine gratings with a fixed DCR of 0.1 counts/pixel/frame, Michelson contrast of 90% and

image velocity of 5 pixels/frame. This corresponds to a full 360o rotation every 50.2 frames. We

simulate error rates for spatial frequencies ranging from 1 cycle/frame to 9 cycles/frame and

measure N2b for Npool = 60,120,180,240. In Fig. 4.5 we plot N2b versus spatial frequency for

each algorithm.

Simulation results show a general trend that as spatial frequency increases N2b decreases.
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Figure 4.5: Plot ofN2b versus spatial frequency for synthetic images with C=90%, DCR=0.1, and

image velocity of 5 pixels/frame. Spatial frequency is swept from 1 cycle/frame to 9 cycles/frame.

We show results for Npool = 240.

Figure 4.6: Plot ofN2b versus image contrast for synthetic images with f=5 cycles/frame, velocity

= 5 pixels/frame, and DCR=0.1 counts/pixel/frame. Image contrast is swept from 10% to 90%

in increments of 10%. We show results for Npool = 240.
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Figure 4.7: Plot of N2b versus dark count rate for synthetic images with f=5 cycles/frame,

velocity = 5 pixels/frame, and C=90%. DCR is swept from 0.1 to 1k counts/pixel/frame with

one point per decade. We show results for Npool = 240.

Figure 4.8: Plot of N2b versus image velocity for a synthetic image with f=5, C=90%, DCR=0.1.

Image velocity is swept from 1 pixel/frame to 10 pixels/frame. We show results for Npool = 240.
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Figure 4.9: Plot of N2b versus Npool. Npool is swept from 60 to 240 in steps of 60. DCR is 0.1

counts/pixel/frame, image velocity is 5 pixels/frame, and spatial frequency is 5 cycles/frame.

The EMD has the highest sensitivity to spatial frequency and experiences a shift in N2b of about

3 orders of magnitude while the NDM and NDS experience a shift of <1 order of magnitude. At

very high spatial frequencies (cycles/pixel) we note that N2b begins to increase. This increase

corresponds to saturation in the transfer functions of the correlation-based detectors. This is

most notable for Npool = 60 (as it has the highest spatial frequencies in units of cycles/pixel). The

EMD transfer function becomes fully saturated at 7 cycles/frame which is when we see a sharp

rise in N2b. As previously noted, the NDM and NDS algorithms offer wider bandwidth than

the EMD. This broadband response improves algorithm performance at high spatial frequencies

and prevents N2b from decreasing as quickly as the EMD at high spatial frequencies. The IIA

algorithm experiences a decrease in N2b of about 2 orders of magnitude as spatial frequency

increases. Intuitively this makes sense as an increase in spatial frequency increases both the

spatial and temporal gradients of the image. Since gradient-based algorithms extract motion
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from gradients and not absolute pixel values, it makes sense that as these gradients becomes

larger the effective SNR of these algorithms increase as well. The block matching algorithm

experiences a similar shift downward in N2b as we move from low frequencies to mid-range

frequencies. Intuitively this makes sense as an increase in spatial frequency corresponds to an

increase in spatial contrast within sub-blocks and more salient features to match. At high spatial

frequencies, motion direction becomes ambiguous and the block matching algorithm becomes

more susceptible to shot noise. This ambiguity is a feature of periodic sine gratings, as we see

in following sections.

4.4.2 Contrast Effects

The effects of contrast on optic flow estimation were isolated by fixing the spatial frequency of

the sine grating to 5 cycles/frame, the DCR to 0.1 counts/pixel/frame, and the image velocity

to 5 pixels/frame as the contrast varied. Fig. 4.6 shows simulation results. We plot N2b versus

contrast for each algorithm as Michelson contrast is swept from 10% to 90%. Again, we repeat

this measurement for Npool = 60,120,180,240.

We see that as contrast increases, N2b decreases monotonically for all of the algorithms. This

result is fairly intuitive. Higher contrast images effectively produce more textured images. They

produce a stronger response from the correlation-based detectors, and produce more salient fea-

tures (bright pixels with higher SNR) to track or match. A surprising result is that the rate

of change in N2b with respect to contrast (SC = −∂log10(N2b)
∂C ) is uniform across all algorithms

regardless of spatial pooling. This result suggests that improvements are not a result of sensitiv-

ity of each algorithm to contrast but rather to improved SNR in image “texture” (being able to

differentiate peaks and troughs). This is particularly surprising result because the responses of

the EMD and NDM algorithms have a square dependence on contrast while the NDS response
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has a linear dependence. We see that at low contrast (C=10-20%) SC is approximately 0.5,

while at high contrast SC is around 0.1.

4.4.3 Dark Count Effects

Fig. 4.7 shows N2b versus DCR as we sweep DCR from 0.1 to 1k counts/pixel/frame with one

point per decade. The 2D sine grating has a fixed image frequency of 5 cycles/frame, image

velocity of 5 pixels/frame, and contrast of 90%. Dark count rate has the effect of reducing

contrast in a scene while also contributing to the shot noise in each pixel. Thus, it sets the noise

floor for each pixel. A DCR of 1 counts/pixel/frame corresponds to a total of 63k counts/frame.

As expected, N2b increases as DCR increases. At low DCR levels (0.1 and 1 counts/pixel/frame)

N2b is more than an order of magnitude larger than the total number of dark events per frame.

Thus we see a negligible effect of DCR on N2b. At higher DCR levels (>10 counts/pixel/frame)

we find that N2b increases at a rate of approximately ∂log10(N2b)
∂log10(DCR) ≈ 0.5. This is only observed

if the DCR is close to or greater than N2b. This result suggests that optic flow can be detected

when noise events outnumber detection events, at least in high contrast images. We note that

even for a sine grating with 6M photons/frame and 63M dark counts/frame we can visually

inspect sequential frames (video) and detect motion in spite of the high noise levels.

4.4.4 Velocity

We isolate the effects of image velocity by fixing spatial frequency at 5 cycles/frame and sweeping

image velocity from 1 to 10 pixels/frame. Again, contrast is set to 90% and DCR is set to 0.1

counts/pixel/frame. In Fig. 4.8 we plot N2b versus velocity for each algorithm.

For sine gratings, an increase in image velocity has a similar effect to an increase in spatial

frequency. Both have the effect of increasing optic flow and apparent image motion. Thus similar
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to the frequency sweep, as we increase velocity we see a general downward trend of N2b. This

trend holds until the correlation-based detectors become saturated. For the narrow-band EMD

we see this effect at velocities of around this occurs at a lower velocities of around 5 pixels/frame

while the broad-band NDM and NDS do not saturate until velocities in excess of 12 pixels/frame

for a spatial frequency of 5 cycles/frame. Similarly, the block matching algorithm displays a

downward trend in N2b as velocity increases. It is important to note that the block matching

algorithm cannot detect sub-pixel motion or motion in excess of its search radius. Thus for

Npool = 60 and effective image velocities below 0.7 pixels/frame the BM algorithm outputs zero

motion and we cannot compute error rates (Eavg = 0
0) or extract N2b. At large image velocities

(>7 pixels/frame) we note a slight increase in N2b. Uniquely for the BM algorithm, we note

that certain pairs of velocity and spatial frequency generate ambiguous motion direction–this

explains the spikes in N2b. This occurs because of the periodic nature of sine gratings and is

only observed in BM because each sub-block spans a large horizontal distance of Npool/10 + 2p

where p is the search radius. For Npool = 60 this corresponds to a full period of the sine grating,

thus motion of approximately 0.5 cycles/frame, or 5-7 pixels/frame, is ambiguous. In contrast

to BM, the IIA algorithm is designed for sub-pixel motion and displays poor baseline accuracy

(high error rates in Rideal compared to known optic flow). Thus N2b generally increases for the

IIA as velocity increases.

It is worth noting that we ignore image blurring for sine gratings because blurring effectively

adds another layer of spatial pooling. This has minimal effect on sine gratings, as there is no

high frequency content being filtered out, and has a more significant effect in natural scenes as

we discuss later.

93



4.4.5 Spatial Pooling

In Fig. 4.9 we plotN2b as we sweepNpool from 60 to 240. We set the DCR to 0.1 counts/pixel/frame,

image velocity to 5 pixels/frame, spatial frequency to 5 cycles/frame, and contrast to 90%.

We see that as spatial pooling increases, N2b decreases for every algorithm except for BM.

Spatial pooling has the effect of increasing signal strength at each pixel (expected to decrease

N2b). However, spatial pooling also has the effect of decreasing effective image velocity. We

previously showed that an increase in velocity generally increases N2b for the correlation-based

detectors and decreases N2b for the IIA. Thus, a decrease in N2b as spatial pooling increases

(Npool decreases) makes sense. To explain the results for the correlation-based detectors we must

note that an increase in spatial pooling also has the effect of increasing the spatial frequency

in units of cycles/pixel (not cycles/frame). Thus for the correlation-based detectors, a decrease

in effective image velocity is countered by an increase in spatial frequency (cycles/pixel) and

cumulatively have no effect. Therefore, the primary effect of spatial pooling in the correlation-

based detectors is an increase in signal strength which supports our finding that N2b decreases

with spatial pooling. BM is relatively unaffected by spatial pooling. One reason for this is the

fact that block size scales with spatial pooling. Thus each sub-block has the same photon flux

(photons/sub-block/frame) regardless of Npool. This means that the SNR of each sub-block is

unaffected by spatial pooling. The fact that N2b slightly increases as spatial pooling decreases

likely corresponds to the decrease in effective image velocity. We note that even for Npool = 60,

the effective image velocity is still >1 pixel/frame and BM can adequately estimate optic flow.
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Figure 4.10: Simulation results showing N2b averaged over each of the four natural panoramas

with error bars indicating maximum and minimum values of N2b among the panoramas. DCR is

swept from .1 to 1k counts/pixel/frame with an image velocity of 5 pixels/frame and Npool = 240.

4.5 Results: Natural Images

Unlike synthetic images, we are unable to control parameters such as spatial frequency and con-

trast in natural images. Instead we benchmark the performance of each optic flow algorithm for

four different panoramas. Each panorama has slightly different image properties (image contrast

and frequency content). Again, we look at the effects of dark count rate, image velocity, and

spatial pooling. Additionally, we explore the effects of image blurring. Since we are estimat-

ing N2b for four different panoramas, we plot the mean value of N2b (averaged across the four

panoramas) in each figure and indicate the maximum and minimum value of N2b with error

bars.
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Figure 4.11: Simulation results showing N2b averaged over each of the four natural panoramas

with error bars indicating maximum and minimum values of N2b among the panoramas. Velocity

is swept from 1 to 10 pixels/frame with DCR=0.1 counts/frame and Npool = 240.

4.5.1 Dark Count Effects

We swept DCR from 0.1 to 1k counts/pixel/frame with one point per decade. This corresponds

to a total of 6.3k to 63M dark counts/frame. We set image velocity to 5 pixels/frame and

compute N2b for each of the four panoramas. In Fig. 4.10 we plot N2b on the y-axis and DCR

(dark counts/frame) on the x-axis.

The results are similar to what we found for the synthetic images. When DCR is smaller

than N2b we see little effect on N2b. As DCR increase to levels comparable and larger than N2b,

N2b increases. A notable difference is that the mean value of N2b is higher in natural images

than in synthetic images. Thus some algorithms, such as the EMD, experience no noticeable

difference in N2b. This is because the DCR remains orders of magnitude lower than N2b even at

high levels of DCR.
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Figure 4.12: Simulation results showing N2b averaged over each of the four natural panoramas

with error bars indicating maximum and minimum values of N2b among the panoramas. Velocity

is swept from 1 to 10 pixels/frame with DCR=0.1 counts/frame and Npool = 240. Image blurring

is simulated with a spatial filter in MATLAB.
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Figure 4.13: Simulation results showing N2b averaged over each of the four natural panoramas

with error bars indicating maximum and minimum values of N2b among the panoramas. Npool

is swept from 60 to 240 in steps of 60 with an image velocity of 5 pixels/frame and DCR=0.1

counts/pixel/frame.
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4.5.2 Velocity

We repeated the same velocity sweep for natural scenes. We did this with a DCR of 0.1

counts/pixel/frame and Npool = 60 and 240. We swept over image velocities from 1 to 10

pixels/frame. We did this for all four panoramas and for each algorithm. In Fig. 4.11 we plot

the average value of N2b across each of the panoramas on the y-axis and velocity on the x-axis.

Again the error bars indicate maximum and minimum values of N2b among the panoramas.

Results show similar trends to what we see in synthetic images. Generally, as effective velocity

increases, N2b decreases for the NDM and NDS detectors. In contrast, N2b quickly increases

for the EMD and remains fairly high. The reason for this is that the narrow bandwidth of the

EMD causes it to saturate at a very low effective velocity of 1-2 pixels/frame while the NDS

and NDM saturate at velocities in excess of 10 pixels/frame. Thus once the EMD saturates,

N2b remains high. These finding agree with our findings with synthetic images and accentuates

both the high sensitivity of the EMD to spatial frequency and the benefits of using a detectors

with a wider bandwidth.

Results for the IIA also mimic those found using synthetic images. As velocity increases,

N2b also increases. At high image velocities, baseline accuracy of the IIA degrades substantially

and produces high variance in N2b. This is primarily because it is operating beyonds its optimal

operating point. This is nearly identical behavior to what we find in the EMD. The IIA essen-

tially saturates and cannot compute optic flow with high accuracy making it more susceptible

to noise. N2b decreases for BM until the velocity exceeds its search radius parameter. At that

point we see N2b increase fairly quickly. Again, the search radius essentially sets the velocity at

which the BM algorithm saturates and becomes more susceptible to noise.

99



4.5.3 Motion Blurring

Motion blurring is a particularly important effect in low-light imaging. In such environments

temporal pooling is a common technique used to increase the optical signal strength and boost

SNR. Blurring removes high frequency image features (both spatial and temporal), decreases

image contrast, and can be viewed as an additional layer of spatial pooling. To explore the

effects of image blurring we replicate the experiment conducted in Sec. 4.5.2 and incorporate

a spatial filter during image generation to simulate the effects of blurring. This spatial filter

assumes linear motion of the camera and is implemented using the MATLAB function H =

fspecial(‘motion’,ν,0). We plot the result of this simulation in Fig. 4.12.

Blurring has the effect of causing the EMD, NDM, and NDS to saturate at slightly lower

velocities. It also has the effect of decreasing contrast between neighboring pixels. As expected,

at low velocities blurring (<3 pixels/frame) has minimal effect on N2b. At higher velocities we see

that blurring has a negative effect on all of the correlation-based detectors. This effect is fairly

small for the NDM and NDS, as blurring causes them to just begin to saturate around a velocity

of 7 pixels/frame, and is much larger for the EMD which is further pushed into saturation. The

performance of BM and IIA are actually improved by blurring at high velocities. This is because

blurring improves the baseline accuracy of both algorithms when they begin to saturate. This

result is not intuitive but leads to an improvement in N2b over non-blurring simulation results.

4.5.4 Spatial Pooling

In Fig. 4.13 we plotN2b as we sweepNpool from 60 to 240. We set the DCR to 0.1 counts/pixel/frame

and image velocity to 5 pixels/frame. The results are nearly identical to those from synthetic

images. One notable difference is that N2b is generally larger for natural scenes than for syn-
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thetic scenes. As with synthetic images we see that all of the algorithms benefit from spatial

pooling except for BM. In fact the degradation in performance of BM is even more substantial

for natural scenes.

4.6 Discussion

4.6.1 Effects of Baseline Accuracy

A common trend we see in our benchmarking results is that as baseline performance decreases,

N2b generally increases and optic flow algorithms become more susceptible to noise. As pre-

viously stated, we can only analyze BM and IIA in this manner because the correlation-based

detectors have no baseline accuracy. This trend makes sense with block matching because its

baseline accuracy falls at low velocities (sub-pixel motion) and high velocities (greater than

search parameter). At these velocities, the algorithm fails to find a good match between consec-

utive frames. The output signal of BM is generated by the cross-correlation function between

sub-blocks. Thus when the algorithm fails to find good matches between consecutive frames, the

cross-correlation decreases and the output signal strength and SNR drop. Intuitively this can

be thought of as the algorithm having low confidence in its motion estimate and thus becoming

more susceptible to noise. Baseline accuracy drops for the IIA only at high velocities. In this

operating regime the algorithm fails to compute spatial derivatives accurately (or undersamples

gradients). This is important because the IIA operates on spatial and temporal gradients, not

raw pixel values. As the accuracy of spatial derivative estimates decreases so does the effective

input signal strength of the algorithm. This reduces overall SNR for the algorithm and increases

sensitivity to noise.

It is important to note that modifications can be made to these algorithms to improve
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baseline accuracy where they struggle. However, generally these algorithms are used in different

operating regimes (small displacement vs. large displacement).

The overall conclusion from this analysis is that low-light performance of these optic flow

algorithms is closely linked to their operating conditions. Thus to maximize low-light perfor-

mance, it is important to maximize baseline accuracy. While this result is fairly obvious, it is

an important finding.

4.6.2 Correlation-Based Detectors

Upon inspection of our benchmarking results it quickly becomes obvious that performance of

the NDM and NDS algorithms are quite similar while the EMD is substantially worse across

all benchmarking experiments. This result shows three things. First, scaling of output mag-

nitude by contrast has negligible effect. We would expect that since EMD and NDM have C2

dependence in their optic flow response they would be more sensitive to contrast than NDS

which has linear dependence. Second, mathematically the EMD and NDM are nearly identi-

cal. The major difference between the two is kernel size. The EMD takes inputs from only

two pixels while the NDM takes inputs from three. The larger kernel has a higher SNR than

the smaller kernel and would be expected to improve low-light performance. Third, in spite of

the differences in algorithm design the non-directional algorithms consistently outperform the

directional algorithm. From an SNR point-of-view this makes sense. Summation universally

improves SNR, since signals add linearly and Poisson noise adds sub-linearly, at its output while

subtraction universally decreases SNR at its output. This conclusion is supported by theoreti-

cal and experimental studies of nocturnal insects [171–173] that discuss various forms of neural

and optical summation throughout their visual systems—subtraction is rarely observed in the

visual pathways of nocturnal insects. Achieving directionality in a correlation-based detector
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inevitably requires subtraction at some stage to differentiate between motion to the left and

motion to the right. As noise is introduced into the visual system, the ability to differentiate

between those directions decreases and subtraction of the “left” and “right” signals can all but

eliminate signal strength at the output of the EMD and diminishes SNR.

Another conclusion is that the transfer functions of the algorithms are closely related to

low-light performance. The EMD has the narrowest tuning curves (with respect to velocity)

of the three correlation-based detectors. The EMD’s output quickly falls to zero once aliasing

and saturation occur. In contrast, the NDS and NDM algorithms display much wider tuning

curves and higher bandwidth. Even after their outputs saturate they remain high, near their

peak value, for much higher velocities. Practically, this means that the NDS and NDM fail to

differentiate large image velocities but are very sensitive to a much wider range of high image

velocities than the EMD. This behavior is evident in our benchmarking results as they offer

“peak” low-light performance over a wider range of velocities and operating conditions. We

can draw parallels with baseline accuracy of BM and IIA. The EMD has a fairly narrow set

of operating conditions over which it can reliably detect optic flow while the NDM and NDS

have a broader set of operating conditions. This makes the NDM and NDS algorithms more

resilient to fluctuations in spatial frequency and image velocity than the EMD. This translates

to a wider range of image velocities over which the NDM and NDS can reliably detect optic flow

at low-light levels.

An important distinction between the correlation-based detectors, BM, and the IIA is that

the correlation-based detectors are the only detector that provide dense flow fields with one

vector per pixel. BM and IIA generate sparser fields and, in this instance, only provide 100

vectors per frame. While they can be programmed to generate higher density fields they generally
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cannot generate flow for each pixel, or can only do so with a substantial increase in computing

time and power.

4.6.3 Block Matching

A major difference between the BM algorithm and the correlation-based detectors is kernel size.

Unlike the correlation-based detectors that estimate optic flow for each pixel, BM estimates optic

flow for sub-blocks. Thus it aggregates photons over an area of the image in order to estimate

motion. The BM algorithm relies upon a Mean Absolute Difference (MAD) cost function to es-

timate maximum “similarity” or correlation between sub-blocks. Maximum correlation between

sub-blocks corresponds to minimum MAD between sub-blocks. This means a single “bright”

pixel or high contrast region in a sub-block can provide enough SNR to estimate motion in a

noisy scene. The large kernel size of this algorithm lets it “search” a sub-block for the best pixel

to match with. Intuitively it makes sense that this algorithm provides the best overall low-light

performance. As long as one pixel in a sub-block overcomes some noise threshold, it is able

to accurately estimate motion. At low-light levels this improves performance with respect to

algorithms with smaller kernel sizes and contributes to it outperforming the other algorithms in

photon-limited environments. Due to its large kernel, BM is able to achieve 2-bit accuracy in op-

tic flow measurements at lower light levels than traditional intensity measurements can achieve

2-bit resolution. The downside of these large kernels is that BM benefits from high-density

pixel arrays that are more costly to implement in terms of power consumption, complexity, and

computing cost.
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4.6.4 Computational Considerations

As a first-order approximation of computing costs, we measured the average computing time of

each algorithm for a single frame. Computations and timing measurements were performed in

MATLAB on an Intel Core i5-5300U CPU @ 2.3GHz. For a 240x240 pixel frame, the average

computing times were 338ms for BM, 9ms for IIA, and <3ms for the correlation-based detectors.

For a 60x60 pixel frame, the average times drop to 17ms for BM, 6ms for IIA, and <.3ms for

the correlation-based detectors. It is worth noting that MATLAB is optimized for fast ma-

trix operations over loop-based operations which introduces some bias into these measurements.

Regardless, the discrepancy amongst algorithms is quite large. BM has, by far, the highest com-

putational load of the algorithms. The EMD, NDM, and NDS algorithms are computationally

simple and can be implemented in analog circuitry fairly efficiently [174]. Furthermore, the BM

algorithm offers peak performance when low-levels of spatial pooling are employed which further

increases disparities in computing times—the difference in processing a 60x60 frame with NDS

and a 240x240 frame with BM is around 3 orders of magnitude.

4.6.5 Conclusions and Results

In Table 4.1 we summarize peak performance of each algorithm in both natural and synthetic

scenes. This table provides the minimum value of N2b, in units of photons/frame, of all bench-

marking experiments. A notable result is that BM is able to measure optic flow with 2-bit

resolution at a photon flux of 156k photons/frame. This corresponds to an average of just 2.7

photons/pixel/frame for a 240x240 pixel image. This is a remarkable result and roughly trans-

lates to an illuminance of a few hundred µlux when operating at a frame-rate of 30fps. This

result is promising for low-light vision systems and suggests that there is room for improve-
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ment in current night vision systems. While this work does not address the effects of mismatch

and non-uniformities in image sensors, these issues are addressed in current literature and can

generally be minimized through post-processing and image corrections [175–177]. Photon loss

from quantum efficiency and optics can be accounted for based on the technology of the image

sensor and can be used to scale our results as appropriate. Even a 10x increase in N2b would

still represent a notable improvement over current state-of-the-art optic flow sensors.

Table 4.1: Peak Photon-Limited Optic Flow Performance Summary

Synthetic Natural

BM 83k 156k

IIA 68k 739k

EMD 813k 154M

NDM 681k 4.38M

NDS 228k 1.02M

In order to extrapolate our findings to higher resolution optic flow imaging, we note that for

the EMD, NDM, NDS, IIA increasing photon flux by a factor of 10 roughly improves SNR at the

output of the optic flow detectors by 10dB. This result holds regardless of spatial pooling but

requires that algorithms are operating in “optimal conditions” (sub-pixel motion for IIA and not

in saturation). This relationship holds once these algorithms exceed 2-bit resolution. This slope

of 10dB/decade matches the slope of SNR for a Poisson process SNR = 10 · log10N , where N is

the number of Poisson events. This shows that once each optic flow algorithm overcomes some

noise threshold, they all improve as a typical Poisson process. Before they exceed this threshold,

improvements in SNR are non-linear for all of the algorithms except NDS. In this work we are

quantifying what this noise threshold is for each algorithm. BM does not follow this trend.
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SNR of this algorithm increases at a much faster rate, closer to 30dB/decade and, unlike the

other algorithms, cannot be extended to very high photon rates. This is because BM is the only

algorithm that strictly outputs integer values. At some point error rates drop to exactly 0%, or

an infinite SNR, because optic flow estimates between stochastic and non-stochastic images are

approximated to precisely the same values—this never occurs in the other algorithms.

In conclusion, there are many trade-offs that need to be considered when developing low-

light optic flow sensors. These considerations include computational complexity, whether large

displacement or small displacement optic flow needs to be computed, density requirements of

optic flow estimates, high-level image processing requirements of low-level optic flow estimates,

and more. Each of the five algorithms present unique characteristics in low-light environments.

The goal of this work is not to optimize a particular algorithm or to suggest an optimal approach

for low-light optic flow imaging. Instead we benchmark the performance of these five algorithms

at low-light levels, explore the effects of visual stimuli on each algorithm, and quantify differences

between each algorithm.
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