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This dissertation features three essays exploring the market impacts of two

types of quality certification—a voluntary non-GMO label and a mandatory food

safety standard. In the first essay, I use a hedonic framework to examine whether

firms use a voluntary quality certification for non-GMO products to extract rent

from customers. Using U.S. retail scanner data coupled with data from a voluntary

non-GMO label, I find no evidence of price premiums or quantity changes for newly

certified non-GMO products. Instead, the label may induce firms to develop new

non-GMO products targeted to high-valuation consumers. The second essay ex-

amines how voluntary non-GMO food labeling impacts demand in the ready-to-eat

[RTE] cereal industry. I estimate a discrete-choice, random coefficients logit demand

model using monthly data for 50 cereal brands across 100 DMAs. Consumer tastes

for the label are widely distributed, and this heterogeneity plays a substantial role

in individual choices; but, on average, the non-GMO label has a positive impact

on demand. I estimate welfare effects by simulating two labeling scenarios: one in

which all brands use the non-GMO label, and one in which no brands use the label.



The simulation results suggest that non-GMO labeling in the RTE cereal industry

may improve consumer welfare on average. In the final essay, we use data from

an original national survey of produce growers to examine whether complying with

the Food Safety Modernization Act’s Produce Rule will be prohibitively costly for

some growers. We examine how food safety measure expenditures required by the

Rule vary with farm size and practices using a double hurdle model to control for

selectivity in using food safety practices and reporting expenditures. Expenditures

per acre decrease with farm size, and growers using sustainable farming practices

spend more than conventional growers on many food safety practices. We use our

estimates to quantify how the cost burden of compliance varies with farm size. We

also explore the policy implications of exemptions to the Rule by simulating how

changes to exemption thresholds might affect the cost burden of each food safety

practice on farms at the threshold.
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Introduction

This dissertation features three essays exploring the market impacts of two

types of quality certification—a voluntary non-GMO label and a mandatory food

safety standard. Quality certification plays an important role in many industries,

especially in markets for credence goods (Darby and Karni 1973) and markets with

adverse selection (Akerlof 1970). In these cases, consumers cannot accurately eval-

uate the quality of goods prior to purchase; therefore, certification can alleviate

informational asymmetries between consumers and firms and increase market effi-

ciency (Dranove and Jin 2010).

Many forms of quality certification exist in food and agricultural markets in

the U.S., ranging from voluntary disclosure to mandatory standards. In the case

of non-GMO food products, certification is based on a voluntary third-party label

managed by the Non-GMO Project. The Non-GMO Project began offering non-

GMO certification and labeling in 2010 for food products that fall under a 0.9%

threshold for GMO1 presence. Products that obtain the certification feature an

easily recognizable label on their package. With regards to produce safety, the

1GMO stands for “genetically modified organism” and refers to plants whose genetic mate-
rial has been altered using genetic engineering techniques, such as recombinant DNA technology.
This term is also used to describe agricultural crops produced from seed stock that employs this
technology and food products that contain ingredients derived from these crops.
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prevailing “certification” is the Produce Rule implementing the Food Safety Mod-

ernization Act [FSMA], a mandatory government-based minimum quality standard

for growing produce. The Produce Rule requires operational changes to meet stan-

dards associated with agricultural water; biological soil amendments; domesticated

and wild animals; employee training and health and hygiene; and equipment, tools,

buildings, and sanitation. This dissertation explores the economic impact of these

two quality certifications. The first two essays examine how the Non-GMO Project

Verified certification affects demand for food products, and the third essay examines

growers’ costs of complying with the Produce Rule.

The first essay investigates whether firms use a voluntary quality certification

for non-GMO products to extract rent from consumers. Using weekly retail point-of-

sale data from a large sample of supermarkets across the U.S coupled with a unique

dataset from the Non-GMO Project, I find no statistically significant price premi-

ums or quantity changes for newly certified non-GMO food products. I, however,

find support for the hypothesis that the certification may induce other firm strate-

gies such as new non-GMO product development targeted to specific consumers.

Altogether, the findings suggest that certification costs are not passed directly to

consumers of existing products that are reformulated to meet the non-GMO certifi-

cation standard. Instead, firms may pass the costs using newly introduced products.

The second essay builds on the first and investigates the role of voluntary

non-GMO food labeling as a non-price marketing strategy in the ready-to-eat [RTE]

cereal industry. I estimate a discrete-choice, random coefficients logit demand model

with monthly retail point-of-sale data for 50 breakfast cereal brands in 100 DMAs

2



between 2010 and 2014. The results indicate that consumer tastes for the non-

GMO label have a wide distribution, and this heterogeneity plays a substantial role

in individual choices; but, on average, the non-GMO label has a positive impact

on demand. To shed light on the potential welfare effects of non-GMO labeling, I

simulate two labeling scenarios in the RTE cereal industry: one in which all brands

use the non-GMO label over the entire timeframe of the data, and one in which no

brands use the label. The simulation results indicate that non-GMO labeling in the

RTE cereal industry may reduce industry profits but improve consumer welfare on

average.

The final essay, co-authored with Erik Lichtenberg, addresses concerns raised

by small and medium size produce growers that compliance with the FSMA Produce

Rule will be prohibitively costly. We use data from an original national survey of

fruit and vegetable growers to examine that contention. In particular, we examine

how expenditures on food safety measures required by the Produce Rule vary with

farm size and farming practices using a double hurdle model to control for selec-

tivity in both using food safety practices and reporting expenditures. We find that

expenditures per acre decrease with farm size and that growers using sustainable

farming practices spend more than conventional growers on many food safety prac-

tices. We use our estimates to quantify how the cost burden of compliance varies

with farm size. We then explore the policy implications of exemptions to the Rule

by simulating how changes to the exemption thresholds for farm revenue and share

of direct sales might affect the cost burden of each food safety practice on farms at

the threshold.

3



Chapter 1: Who Pays for Voluntary Quality Certification? Evidence

from the Non-GMO Project Verified Label∗

1.1 Introduction

Quality disclosure is an important element of many industries, most notably

in markets for credence goods (Darby and Karni 1973) and markets with adverse se-

lection (Akerlof 1970). In both cases, quality certification corrects an informational

asymmetry between consumers and firms, enabling consumers to ascertain product

quality, which can lead to quality improvements and facilitate vertical sorting (Dra-

nove and Jin 2010). By the same token, depending on market structure, firms may

use quality certification to exercise market power and engage in second degree price

discrimination and extract rent from consumers (Mussa and Rosen 1978), typically

benefiting firms at the expense of consumers. This paper explores the role of volun-

tary quality certification as a means to exercise such market power, using evidence

from a voluntary non-GMO certification in the U.S food industry.

The Non-GMO Project began offering non-GMO certification and labeling in

2010 for food products that fall under a 0.9% threshold for GMO presence. Products

∗Nielsen data is provided by the Data Center at The University of Chicago Booth
School of Business. Information on availability and access to the data is available at
http://research.chicagobooth.edu/nielsen.
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that obtain the certification feature an easily recognizable label2 on their packaging

that reads, “Non-GMO Project Verified” (See Figure 1.1). The Non-GMO Project

does not restrict the types of products that can be certified, which is to say that a

product is eligible for certification regardless of whether or not it contains ingredi-

ents for which commercially produced GMO variants currently exists. Furthermore,

organic products, which are prohibited from containing GMO ingredients based on

the National Organic Program standards, are also eligible for certification. As such,

the cost of certification can vary significantly depending the magnitude of product

changes required (e.g., product reformulation, sourcing of new ingredients, etc.) to

meet the non-GMO certification standard.

The goal of this paper is to first determine whether firms use a voluntary,

non-GMO quality certification to extract price premiums3 or increase market share

for newly certified food products, and whether these strategies evolve over time.

Specifically, I use a hedonic framework to estimate price premiums and changes

to quantity sold for newly certified non-GMO food products using the Non-GMO

Project Verified label. The estimation is carried out on a large sample of weekly,

product-level retail point-of-sale data for 18 product categories from U.S. super-

markets from 2009 to 2014. The transaction data is coupled with a unique dataset

from the Non-GMO Project that contains non-GMO certification dates for products

throughout the label’s history. I find no evidence of price premiums or changes to

quantity sold for newly certified non-GMO food products. I then investigate alter-

2Throughout the paper, I use the terms “label” and “certification” interchangeably with regards
to the Non-GMO Project verification standard.

3Depending on the product, price premiums may reflect pass-through of certification costs, rent
extraction, or a combination of both.
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native strategies by which firms could extract rent and pass the certification cost

to consumers. I find suggestive evidence that the certification may induce firms to

develop new non-GMO products for specific types of consumers.

The paper is structured as follows. Section 1.2 provides institutional details

and discusses the literature on quality disclosure and labeling as well as previous

empirical work on willingness-to-pay for non-GMO products. Section 1.3 presents

a simple theoretical model on the economics of labeling to help guide the empirical

analysis. Section 1.4 describes the data sources I employ to implement this study.

Section 1.5 presents the empirical model for the analysis of non-GMO price pre-

miums and quantities sold, with accompanying results in Section 1.6. Section 1.7

explores alternative strategies firms may use to extract rent and pass the certifica-

tion cost to consumers. Lastly, Section 1.8 offers concluding remarks as well as next

steps to better understand firm behavior and consumer preferences.

1.2 Background

1.2.1 Institutional Details

In the U.S., over 90% of canola, corn, cotton, soybeans, and sugar beets are

GMO.4 Most GMO seed varieties are modified to carry several input-traits designed

to benefit producers, the most common of which are herbicide tolerance5 and insect

4GMO stands for “genetically modified organism” and refers to plants whose genetic material
has been altered using genetic engineering techniques, such as recombinant DNA technology. In the
literature, this term is used interchangeably with GM (“genetically modified”) and GE (“genetically
engineered”) to describe agricultural crops produced from seed stock that employs this technology
and food products that contain ingredients derived from these crops.

5Monsanto’s “Roundup Ready” seeds for canola, corn, soybeans, and sugar beets are resistant
to glyphosate, the active chemical in their popular herbicide Roundup.
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resistance.6 While genetically engineered seeds exist for additional crops and input

traits, these crops represent the vast majority of the total area of GMO crop varieties

planted in the U.S. Many common ingredients used in processed foods are derived

from these GMO crops, such as aspartame, flavorings, high-fructose corn syrup, oils,

starches, and various additives and preservatives; and the Grocery Manufacturers

Association estimates that 70-80% of food eaten in the U.S. contain GMOs (Bren

2003).

The FDA asserts that approved GMO food products are not significantly dif-

ferent from or less safe than their non-GMO produced counterparts and, thus, do

not require additional labeling. Nonetheless, 64 countries around the world require

labeling of GMO food, and labeling has become a mainstream debate in the U.S. The

U.S. Organic Standard prohibits the use of GMOs, thus providing an indirect form of

non-GMO labeling for Organic food products in the U.S., but conventionally-grown

food has no such restriction. Nonetheless, a voluntary verification and labeling

scheme for non-GMO products called the Non-GMO Project emerged in the U.S.

beginning in 2010. As of December 2015, nearly 35,000 products from over 1,900

brands use the label, accounting for over $13.5 billion in annual sales.

Twenty U.S. states introduced mandatory GMO labeling legislation in 2014,

by which time mandatory GMO labeling laws had already been passed in Maine,

Connecticut, and Vermont. The labeling laws in Maine and Connecticut contained

trigger clauses that required additional states to pass similar laws before theirs would

6Monsanto seeds for corn, cotton, and soybeans express genes for insecticidal proteins from
Bacillus thuringiensis (Bt).
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go into effect, but the Vermont law contained no such clause and became effective on

July 1, 2016. In the meantime, Congress passed the National Bioengineered Food

Disclosure Standard (2016), creating a national mandatory GMO labeling standard.

The bill, which became law on July 29, 2016, preempts any mandatory state GMO

labeling laws and calls for the creation of a federal labeling standard within two

years of its enactment. Notably, the law allows food manufacturers a choice of

labeling including on-package text, a symbol, or a digital link (e.g., a QR code) that

provides access to an internet website containing information about the product’s

GMO content (Hall 2016). Critics of the new law insist that the labeling options

are too lenient and will allow food manufacturers to hide the GMO content of their

products behind a QR code, effectively preventing consumers without smartphones

from accessing that information (Lowe 2016).

The institutional incentives for non-GMO food labeling are well established in

the economics literature. In the context of information economics, non-GMO food

products are differentiated by a vertical process attribute unobservable to the con-

sumer, even after consumption, which makes them a type of credence good (Darby

and Karni 1973). The commonly prescribed mechanism for dealing with this infor-

mation asymmetry is to implement some type of third-party monitoring or labeling,

much like the Organic standard (McCluskey 2000). GMO labeling schemes vary

across countries, with the U.S.7 and Canada employing a voluntary non-GMO la-

beling regime, while the European Union, Australia, New Zealand, and Japan use

7In the case of the U.S., mandatory labeling will take effect once rulemaking is finalized for the
National Bioenginerred Food Disclosure Act.
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a mandatory GMO labeling scheme. The typical economic argument for voluntary

labeling is that, in the absence of market failures, this regime yields the socially opti-

mal outcome while avoiding any unnecessary costs to society. One of the arguments

commonly promulgated by the food industry against mandatory GMO-labeling is

that such a law would cause a large increase in food prices as food manufactur-

ers reformulate their products to be non-GMO to avoid the stigma that a “contains

GMO” label would create, which proved to be a very effective argument in defeating

a patchwork of state legislation, most notably Prop 37 in California in 2012 (Carter

et al. 2012).

As a corollary to such a cost argument, one might also argue that food man-

ufacturers who choose to use a non-GMO label would also increase food prices,

passing on the costs associated with ingredient reformulation as well as certification

and labeling fees to the consumer. However, if the market for existing products

that become non-GMO certified is very price competitive, already commands high-

margins, or is subject to low retailer pass-through rates,8 firms may not necessarily

be able to pass these costs on to consumers. Despite these limitations, if firms can

increase market share by adopting the label, incentives may still exist to seek out

non-GMO certification. On the other hand, firms may have an opportunity to use

new product development as a means to extract a non-GMO price premium. That

is, food manufacturers may certify new products prior to market entry and launch at

a higher price point. In this case, we may observe firms behaving more strategically,

8Besanko et al. (2005) analyze retailer’s pass-through behavior of a major U.S. supermarket
chain for 78 products across 11 categories and find that pass-through varies substantially across
products and across categories.
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choosing to price non-GMO products certified within their product life differently

from new products certified before market entry. In this paper, my empirical anal-

ysis focuses primarily on the first group—products certified within their product

life—but I also provide some descriptive analysis to help characterize the second

group of products.

1.2.2 Non-GMO Project Verification

The Non-GMO Project is a nonprofit organization that offers third-party ver-

ification and labeling for products that fall under a 0.9% threshold for GMO pres-

ence, which aligns with the mandatory labeling standards in Europe. The Non-GMO

Project Standard defines the program’s core requirements including traceability, seg-

regation, and testing of high-risk ingredients at critical control points (Non-GMO

Project 2014c). The verification process is handled by one of three technical ad-

ministrators: FoodChainID, NSF International, and IMI Global. Products that

contain any high GMO risk ingredients9 require an onsite inspection for verifica-

tion, whereas products with low-risk ingredients may only require a review of the

ingredient specification sheets, and therefore verification costs can vary considerably

between products (Non-GMO Project 2014a). The Non-GMO Project Standard also

requires ongoing testing of all at-risk ingredients10 as well as rigorous traceability

9The Non-GMO Project classifies the following crops as high GMO risk: alfalfa, canola, corn,
cotton, papaya, soy, sugar beets, and zucchini and yellow summer squash. Inputs derived from
these crops and animals fed these crops or their derivatives are also considered high-risk. They also
maintain a list of monitored crops for which suspected or known incidents of accidental comingling
have occurred that are regularly tested (Non-GMO Project 2014e).

10The Non-GMO Project Standard requires testing of individual ingredients, not finished prod-
ucts, because the latter is not a reliably accurate measure of GMO presence (Non-GMO Project
2014c).
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and segregation practices, both of which are maintained through annual audits and

on-site inspections for high-risk products (Non-GMO Project 2014b). On average,

the verification process takes 4 to 6 months, and upon completion the Non-GMO

Project provides the producer with a licensing agreement to use their name and

verification mark on the verified product.

The Non-GMO Project also verifies products for which no commercially pro-

duced GMO variant currently exists, which they refer to as low-risk. Their rationale

for doing so involves four distinct considerations (Non-GMO Project 2014d): (1)

Some low-risk products may still contain high-risk ingredients, such as the oil some-

times used in packaged dried fruit; (2) Incidents of accidental comingling of GMO

material have occurred with seemingly low-risk products such as rice and flax, so

verification can help mitigate these issues; (3) The organization believes that only

verifying high-risk products may place a large burden on consumers to know which

products are at risk of containing GMO ingredients, and this lack of understanding

may provide an unfair marketing advantage to products with high-risk ingredients

carrying the label; and (4) The organization believes that verifying low-risk prod-

ucts helps raise awareness and build consumer interest for non-GMO food products

as a whole, which can help set norms as new GMO products are developed.

Usage of the Non-GMO Project Verified label has grown significantly over the

past five years, with sales of labeled products in 2014 totaling $11 billion (Non-GMO

Project 2014a). Figure 1.2 shows the monthly cumulative growth in products using

the label by Organic status. The label launched with about 200 products in 2010

and includes over 15,000 products as of January 2015. Products using the label are
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close to evenly split between Organic and conventionally grown. Non-GMO Project

Verified products span a wide range of product categories as well. Figure 1.3 shows

the annual growth by product category for products using the label. As of December

2014, the largest category was snack foods, desserts, and sweeteners, accounting for

over 2,800 products. Other large categories include beverages; breads, grains, and

beans; fruits and vegetables; and packaged/prepared foods, each of which comprises

over 1,500 products.

As of 2015, the Non-GMO Project Verified program accounts for the largest

share of non-GMO food labeling in the U.S., but in recent years other voluntary

labeling efforts have also emerged. Whole Foods Market, the top specialty grocer

in the U.S., has vowed to label all GMO products in their stores by 2018, and

the FDA recently finalized their industry guidance for voluntary non-GMO labeling

(FDA 2015). In May 2015, at the request of a major non-GMO grain dealer in

the U.S., the USDA developed a voluntary non-GMO certification and labeling

program through their existing “USDA Process Verified” program (Jalonick 2015).

Similar to other USDA-sponsored voluntary food labels such as “humanely raised”

or “grass fed”, the program is administered through the department’s Agriculture

Marketing Service and is available to companies for a paid fee. Also in mid-2015,

NSF International launched another private label option called the Non-GMO True

North program, which offers certification and labeling of non-GMO intermediate

and retail products (Greene et al. 2016).
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1.2.3 Relevant Literature

The concept of a credence good was first discussed by Darby and Karni (1973)

as an extension of search and experience goods (Nelson 1970). In the context of a

vertically differentiated good,11 the consumer knows what she needs ex ante, but

she neither observes the utility nor the type of good she receives ex post. Because

consumers cannot verify quality even after consumption, a market for credence goods

will theoretically fail in the absence of third-party monitoring.

More broadly, credence goods are simply a manifestation of asymmetric infor-

mation between consumers and producers, a topic widely discussed in the literature

on quality disclosure. Perhaps the most fundamental and oft-cited result in this

area is the well-known “unraveling result” (Viscusi 1978; Grossman 1981). Accord-

ing to the theory, all but the lowest quality seller in a market have an incentive to

voluntarily disclose quality information, thus eliminating the need for mandatory

disclosure. However, this result is based on several strong assumptions, so in real-

ity, we observe incomplete voluntary disclosure in many markets.12 Milgrom and

Roberts (1986) show that if the consumer is unsophisticated or not well informed,

full voluntary disclosure will generally fail. This is particularly applicable to non-

GMO labeling given that genetic engineering is a relatively new technology, and

the average consumer may be unaware of its proliferation in the conventional food

system. Another important consideration is interactions between different quality

11In the case of non-GMO food products, this vertical differentiation takes the form of a process
attribute.

12For an extensive review of the literature on the failure of unraveling and, more broadly, on the
theory and practice on quality disclosure, see Dranove and Jin (2010).
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labels (e.g., interaction between Organic and non-GMO food labels). Bonroy and

Constantatos (2014) review the theoretical literature on quality labels and discuss

how a new label may interact with existing market distortions, identifying a number

of effects that may cause the industry not to set a socially optimal label. From a

relevant policy perspective, Roe and Sheldon (2007) examines the tradeoffs between

different labeling regimes (private versus government, discrete versus continuous

quality, mandatory versus voluntary) and shows that firms tend to prefer discrete

labels certified by private firms.

Most empirical studies of GMO labeling employ hypothetical surveys and in-

centivized lab experiments to analyze consumer preferences for GMO products. Lusk

et al. (2005) identifies 25 separate studies that together provide 57 estimates of con-

sumers’ willingness-to-pay (WTP) for GMO food products. Significant variation

exists in the valuation estimates across studies. Percentage premiums for non-GMO

food ranged from -68% to 784%, with an average of 42%, and are significantly

affected by elicitation method.

More recent studies tend to focus on the issue of GMO labeling more directly

and attempt to quantify the effects of different labels. Onyango et al. (2006) uses

a nationwide survey to analyze U.S. consumer’s choice of cornflakes in five different

labeling scenarios. They find that consumers place a 10% premium on food labeled

as non-GMO and 6.5% discount on food labeled as GMO; but, interestingly, con-

sumers also attach a 5% premium for food labeled GMO if the label also specifies

“USDA approved” or “to reduce pesticide residues in your food.” Roe and Teisl

(2007) further explores the nuances of GMO labeling content by eliciting consumer
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reactions to 80 different GMO label variations through a survey. A key finding of

the study is that labels with simple claims and claims certified by the FDA are

most credible. Dannenberg et al. (2011) uses an experimental auction to compare

mandatory versus voluntary labeling of GMO food and finds that when two labels

exist, one for GMO and one for non-GMO, both schemes generate a similar level of

uncertainty about unlabeled products. Costanigro and Lusk (2014) conducts a series

of choice experiments and finds evidence that consumer WTP to avoid GMO food

is 140% higher with a mandatory “contains” GMO label compared to a voluntary

“does not contain” GMO label.

1.3 Economics of Voluntary Non-GMO Food Labeling

Food products tend to be differentiated both horizontally and vertically in

product space. The vertical dimension reflects quality-based attributes, which share

a “more is better” property. Therefore, while consumers may differ in their valua-

tion of quality, these attribute levels can be consistently ranked by all consumers.

The horizontal dimension reflects non-quality taste attributes, which each consumer

will rank differently based on their taste preferences. For example, nutritional con-

tent and freshness could be vertical quality attributes, whereas texture, flavor, and

brand could be considered horizontal taste attributes. Given the observed level of

segmentation in nearly all food product categories, any realistic model of non-GMO

food labeling should account for heterogeneity in consumer preferences along both

dimensions. Additionally, in terms of market structure, the food manufacturing in-
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dustry tends to be dominated by multiproduct firms operating under oligopolistic

competition.13

1.3.1 Baseline Model

Desai (2001) develops a multiproduct firm duopoly model in which the market

consists of two consumer segments that differ in their willingness to pay for quality,

and consumers in each segment are distributed across a linear city a la Hotelling

(1929). Each consumer’s location reflects her specific taste preference, and the

“transportation cost” for each segment represents that segment’s strength of taste

preferences. Each firm produces up to two products (one for the low-valuation

segment and one for the high-valuation segment), and has a fixed location on the

line within a given segment that reflects consumer perceptions of the firm’s product

taste attributes (i.e. a firm’s location may differ across consumer segments). I use

this model as a baseline by which to analyze the economics of voluntary non-GMO

food labeling and present a summary of its original specification below.

Formally, as presented in Desai (2001), the market consists of a high-valuation

and a low-valuation consumer segment (i = H,L), each of which containsNH andNL

consumers, respectively. Consumers in each segment gain utility θiq from consuming

a product of quality q. Furthermore, consumers in each segment are uniformly

distributed along [0, 1] in a linear city and incur transportation cost ki to travel

away from their location x. As such, a consumer of type i derives utility U(θi, x) =

13Take, for example, the market for ready-to-eat cereals, in which the top four firms, each
producing dozens of different brands, account for upwards of 80% of the market (Nevo 2001).
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θiq − kit − p from consuming a product of quality q, price p, located a distance

t from the consumer’s location. The supply side consists of two symmetric firms

(j = A,B), each of which produces a product of quality qij for consumer segment

i. In each segment i, Firm A is located at a distance ai, and Firm B is located at a

distance bi from the left,14 where ai < 1/2 and bi = 1− ai > 1/2. Costs are identical

across firms, with each firm incurring marginal cost c(q) = γq2/2 for producing

a product of quality q. Firms maximize profits by choosing prices (pLj, pHj) and

quality levels (qLj, qHj) for their respective product lines.

In contrast to the classic monopoly self-selection models with only vertical

differentiation (Mussa and Rosen 1978; Moorthy 1984), in this model firms provide

each segment with its preferred quality level and the typical self-selection constraints

are not binding in equilibrium (under some conditions).15 In this scenario, when

both market segments are fully served, the location xi of the consumer in segment

i indifferent between buying products of quality qiA and qiB offered by each firm is

xi =
θi(qiA − qiB) + ki(ai + bi)− (piA − piB)

2ki
if ai ≤ xi ≤ bi. (1.1)

We can thus calculate demand for each product of Firm A (diA) and Firm B (diB) as

diA = Nixi and diB = Ni(1− xi), respectively. The equilibrium prices and qualities

14See Figure 1 in Desai (2001) for a visual representation of the model.
15The appendix in Desai (2001) provides a full derivation of the equilibrium for the duopoly

model.
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for the unconstrained problem are

p∗iA =
1

6
(2ki(2 + ai + bi)) +

θ2i
2γ
,

p∗iB =
1

6
(2ki(4− ai − bi)) +

θ2i
2γ
, q∗ij =

θi
γ

, (1.2)

and this solution satisfies the self-selection constraints when −2γ[(1 +aL−aH)kH −

kL] + (θH − θL)2 ≥ 0. Economically, this condition indicates that firms are more

likely to provide low-valuation consumers with their preferred quality levels when

there is greater heterogeneity in quality valuations than in taste preferences between

segments; and firms are more likely to provide efficient quality to the low-valuation

segment as horizontal differentiation decreases in the high-valuation segment. Ad-

ditionally, price-cost margins are increasing in taste preferences ki; if high-valuation

consumers also have stronger taste preferences, the higher quality product will have

higher price-cost margins as well.

1.3.2 Introduction of the Non-GMO Label

Within the horizontal or vertical product space, food can have multiple at-

tributes, each of which consumers may value differently. In the baseline model,

I represent the attributes within each space as single taste and quality attribute.

When thinking about how to model voluntary non-GMO labeling, consider that

Non-GMO production is a vertical process attribute that is (weakly) more costly

than conventional production, which supports its treatment as a quality attribute in

a vertical differentiation framework. Nonetheless, because non-GMO is a credence
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attribute, it is plausible that some consumers may value it in a fundamentally dif-

ferent way than other quality attributes, thus warranting a separate treatment in

the consumer utility function.

Prior to the introduction on the non-GMO label, suppose that consumers

derive utility and firms operate in equilibrium as characterized in the baseline model

presented in Section 1.3.1.16 Once the non-GMO label is launched, consumers gain

additional benefit from food products that feature the label such that the a consumer

of type i derives utility U(θi, δi, x) = θiq+δiDng−kit−p, where Dng = 1 if a product

undergoes non-GMO certification and uses the label, and δi is the incremental gain

in utility a consumer of type i gets from consuming a non-GMO product.

When a firm chooses to certify an existing product, it necessitates replacing

any GMO ingredients in the product with non-GMO variants, which often cost more

to produce. I model this new cost as a constant, additive term α in the expression

for marginal cost: c(q,Dng) = γq2/2 + αDng. That said, it is important to note that

non-GMO variants do not differ from GMO variants of ingredients nutritionally or in

any other way the FDA deems “significant,” so this type of “reformulation” is more

aptly characterized as simply a re-sourcing of certain inputs and may not induce

firms to re-optimize over other quality attributes.17 Therefore, I assume that quality

is fixed at the equilibrium in the baseline model, and firms decide whether or not to

label their products by choosing prices to maximize profits given the new consumer

utility and marginal cost.

16See Appendix A.1 for a brief characterization of the baseline equilibrium.
17In fact, if firms did reformulate a product in an appreciable way, resulting in a change of

ingredients or nutritional content, this would trigger a new UPC and effectively qualify as a new
product.
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We can show that if Firm A chooses to label its products and Firm B does

not, the consumer indifference location xi shifts to the right by an amount δi/2ki,

enabling Firm A to capture additional market share and make greater profit at Firm

B’s expense, provided that δi > α. By symmetry, the equivalent outcome occurs if

Firm B chooses to label and Firm A does not.18 In equilibrium, both firms’ optimal

strategy is to label their products, in which case xi remains unchanged relative to the

baseline case due to symmetry across firms, and both firms’ prices simply increase by

an amount equal to the additional marginal cost α for non-GMO labeling, resulting

in no change in profits.19 Interestingly, in the duopoly setting, neither firm can

use the non-GMO label to exercise market power and extract additional rents from

consumers due to the nature of competition between the two firms. Additionally,

note that if the incremental marginal cost α associated with non-GMO labeling

is insignificant, firms may not increase prices at all upon labeling their products.

Lastly, due to symmetry of the non-GMO utility term across products of either

quality type for a given consumer, the labeling equilibrium will automatically satisfy

the self-selection constraints when −2γ[(1 + aL − aH)kH − kL] + (θH − θL)2 ≥ 0, as

in the baseline equilibrium.

1.3.3 Incentives for New Product Development

In the previous model of non-GMO labeling, I assume that consuming a non-

GMO product benefits consumers in either segment i through an incremental gain in

18See Appendix A.2 for a complete derivation of the result when only one firm chooses to label
its products as non-GMO.

19See Appendix A.3 for a derivation of the equilibrium when both firms choose to label their
products as non-GMO.
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utility δi; and once the label launches in the marketplace, firms take quality of their

existing product line as fixed from the pre-labeling regime when deciding whether or

not to label their products. However, one might argue that a more GMO-attentive

consumer segment exists that values the non-GMO label in a fundamentally different

way. For this segment of consumers, the benefit of the non-GMO label may interact

with the quality and taste dimensions in consumer utility, such that it enhances

their valuation of quality or increases the strength of their taste preferences20—i.e.,

brand loyalty.

In this scenario, the label could induce firms to develop new products at the

higher, preferred quality level of this segment because doing so would enable firms to

extract higher price-cost margins on these products. In effect, the label may serve as

a mechanism by which to segment these GMO-attentive customers from other high-

valuation consumers and make it more profitable to serve them separately. For the

sake of comparability, I build off the same two-segment baseline model presented

in Section 1.3.1. Once the non-GMO label is launched, consumers in segment L

derive utility U(θL, δL, x) = θLq + δLDng − kLt − p, just as before. Consumers in

segment H derive utility U(θH , δH , x) = θH(1 + δHDng)q − kH(1 + δHDng)t − p,

as described above. Marginal costs are c(q,Dng) = γq2/2 + αDng. Lastly, I assume

that quality for products in segment L (i.e. pre-existing products) is fixed at the

equilibrium in the baseline model, but firms now choose new optimal quality levels

for products in segment H (i.e. new product development), in addition to choosing

20Empirical work suggests that not all consumers assign a non-negative valuation to non-GMO
certification (Lusk et al. 2005), in which case the non-GMO attribute may not meet the “more is
better” property for all consumers, thus warranting its treatment as a horizontal taste attribute.
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prices to maximize profits given the new consumer utility and marginal cost. In

equilibrium, both firms’ optimal strategy is to label their products and increase

quality for segmentH. The equilibrium prices for products in segment Lmatch those

presented in Section 1.3.2, where prices increase by an amount equal to the additional

marginal cost α for non-GMO labeling. The equilibrium prices and qualities for

products in segment H are

p∗HA =
1

6
(2kH(1 + δH)(2 + aH + bH)) +

θ2H(1 + δH)2

2γ
+ α,

p∗HB =
1

6
(2kH(1 + δH)(4− aH − bH)) +

θ2H(1 + δH)2

2γ
+ α,

q∗Hj =
θH(1 + δH)

γ
. (1.3)

Clearly, in this model the price-cost margins for segment H are amplified by the

interaction effect of the non-GMO label with taste preferences in consumer utility.

In fact, unlike the previous case, even if both segments have identical transportation

costs (i.e. kH = kL), segment H still commands a higher price-cost margin in this

setting. Additionally, we can show that both firms earn additional profit in the

amount of

∆Πj =
NHkHδH

2
(1.4)

over the baseline equilibrium and, by extension, the equilibrium in which both firms

simply label their pre-existing product line.21

21See Appendix A.4 for a derivation of the equilibrium when both firms choose to introduce a
new product for segment H.
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1.4 Data

1.4.1 Nielsen Retail Scanner and Consumer Panel Data

Because the Non-GMO Project Verified label has only been in use since 2010,

and the majority of its growth has occurred from 2012 onward, it is crucial that

this research is conducted with the most recent demand data available. The Nielsen

Retail Scanner (Nielsen RMS) data contains weekly purchase and pricing data from

retail store point-of-sale systems for over 2.6 million UPCs. The data includes 35,000

retail stores across the U.S., representing over 90 major retail chains in 52 markets.

It includes all 1,100 reported Nielsen product categories, which span 125 product

groups and 10 departments. In addition to demand data, the dataset includes store

demographics and product characteristics.

The Nielsen Consumer Panel (Nielsen HMS) data contains trip-level purchase

and pricing data for an unbalanced panel of 40,000 to 60,000 U.S. households and

spans the same timeframe as the Retail Scanner data. The data is collected using

a handheld scanning device that participants use at home to track all their pur-

chases. Like the Retail Scanner data, the Consumer Panel data includes all 1,100

reported Nielsen product categories for all major retail channels: grocery, drug,

mass merchandise, superstore, club stores, convenience, and health. Along with

purchase data, the panel includes consumer demographics, product characteristics,

and geographic data.
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1.4.2 Non-GMO Project Data

I have secured a unique monthly dataset of verified products from the Non-

GMO Project that includes product UPC, verification date, product name, product

category, organic status, and producer/brand name. The data spans the entire

label history through 2014. I merge this information with Retail Scanner data from

Nielsen to clearly identify non-GMO food products that use the Non-GMO Project

Verified label. Moreover, the label verification date contained in this dataset allows

me to identify when non-GMO products in the Nielsen data began using the Non-

GMO Verified label.

1.4.3 Selection of Food Categories

For this analysis, I focus on 18 food product categories primarily consisting

of snack foods, dry goods, and other processed foods. Table 1.1 presents summary

statistics for each product category of the Nielsen Retail Scanner Data from 2009

to 2014. The decision to focus on these categories is based on common and distinct

factors for each category. First, all 18 categories are comprised of a non-negligible

share of Organic products. Because Organic products do not contain GMO ingredi-

ents, their presence ensures the existence of products that are eligible for non-GMO

certification without reformulation within a given food category, and these prod-

ucts may serve as a reliable counterfactual to help identify the effect of non-GMO

labeling. Additionally, each category exhibits good variation in non-GMO labeling

over time and has exhaustive coverage in the Nielsen data, helping ensure that the
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empirical analysis will have reasonable identification power to provide meaningful

results.

Each category also has unique features that will aid in uncovering nuances

in the analysis. Ready to eat cereal has a long history of study in the empirical

industrial organization literature, beginning with the work of Scherer (1979) on

optimal product variety through the work of Richards and Hamilton (2015) on

variety pass-through. This may provide a benchmark for our analysis and help

guide future avenues of exploration. Snack chips have distinct varieties that are

either more or less likely to contain GMO ingredients, and this feature is likely

more salient to consumers than in other product categories. For example, tortilla

chips are primarily corn-based. Over 90% of corn in the U.S. is GMO, so these

products present a much more salient GMO “risk” to consumers. On the other

hand, potato chips are made mostly of potatoes, for which no commercially available

GMO varieties currently exist, and thus pose a lower “risk” to consumers.

Baby food represents a product category for which consumers may have a

heightened sensitivity to GMO presence; and, therefore, we may expect to see dif-

ferent purchasing behavior in this category. In particular, parents that perceive

GMO ingredients as posing some sort of health risk may pay a higher premium for

non-GMO in this category, since these food products are intended for their chil-

dren. On the other hand, baby food has long been dominated by a small number

of well-established conventional brands, and the reputations these firms have built

over time may overshadow non-GMO labeling. Other product categories pose dif-

fering levels of GMO risk as well. For example, products from categories such as
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rice, chocolate, dried fruit, olive oil, nuts, tea, pasta, and dry seasoning, have no

commercially available GMO variants; however, in some cases the additives used in

processing may contain GMOs (e.g., soy lecithin used in chocolate, etc.). Lastly,

cooking oils are typically made from corn, soybean, and canola, all of which are

predominantly GMO in the U.S.

Figure 1.4 shows total national sales for Non-GMO Project Verified products

between 2010 and 2014, based on the retail scanner data for the selected product

categories. The figure also shows sales of products each year that became Non-

GMO Project Verified in a future calendar year, denoted “To Be Verified,” which

helps distinguish growth in the Non-GMO market from newly introduced products

versus existing products that become Non-GMO Project Verified. Sales on Non-

GMO Project Verified products more than doubled in 2011 and 2012, largely due

to growth in labeling among existing products. 2013 and 2014 also saw double-digit

percentage growth, attributable to both expansion of the overall Non-GMO market

as well more labeling among pre-existing products.

1.5 Empirical Model

For each product category in the analysis, the Nielsen Retail Scanner Data

contains weekly prices and quantities sold across the U.S. at the store and UPC

level. For each estimation, I restrict the sample to products that obtained the

Non-GMO Project Verified label between 2010 and 2014, with at least 6 months of
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sales data prior to being certified and 12 months of sales data after certification.22

The rationale for this approach is based on two requirements. First, the empirical

specification relies on pre- and post-treatment indicators that I construct using

the product verification dates; therefore, it is critical that sufficient data exists

before and after the labeling event to estimate the effect of the label on prices and

quantities. Second, the sample needs to remain relatively stable to minimize the

confounding effects of product entry and exit on the model estimates. Restricting

the sample as I have done helps ensure both these conditions are met.23

1.5.1 Price Premium Regression Model

1.5.1.1 Main Specification

I use scanner data from 2009 to 2014 aggregated to the national level and

calculate a sales-weighted price per ounce pjklt, where j is a product UPC, k is

a manufacturer, l is a category, and t represents a particular week. Using the

verification dates for non-GMO products, I construct multiple treatment indicators

based on the timeframe before and after a product receives the non-GMO label to

estimate the average effect of labeling on prices for non-GMO food products and

22As a robustness check, I explore several specifications using the full sample, which includes
conventional products that were never certified, and found no significant deviations. Those results
are available in Appendix A.5.

23As a caveat to the subsequent analysis, note that post-treatment indicators beyond 12 months
are subject to changes in product mix.
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explore dynamic effects of the label in greater detail,

log(pjklt) = ψ1PRE612jklt + ψ2PRE06jklt + ψ3POST06jklt + ψ4POST612jklt

+ ψ5POST1224jklt + ψ6POST24pjklt + ξj + ξt × ξk × ξl + εjklt (1.5)

where each treatment indicator is a dummy variable that equals 1 if observation

week t is, respectively, 6 to 12 months prior, 0 to 6 months prior, 0 to 6 months

after, 6 to 12 months after, 12 to 24 months after, or greater than 24 months after

the verification date for product j; ξj, ξk, ξl, and ξt are product UPC, manufacturer,

category, and week fixed effects, respectively; and εjklt is a random error term. To

control for any potentially confounding manufacturer- and category-level pricing

decisions, I allow the weekly intercepts to vary across manufacturer and category by

including Week×Manufacturer×Category fixed effects. The coefficients of interest,

ψ, measure the average price effect of non-GMO labeling in each time period. Since

I use a log-linear specification, the coefficients ψ can be interpreted as a percentage

change in the product price in each time period.

1.5.1.2 Organic Interaction

The National Organic Program, established in 2000, also prohibits the use of

GMO ingredients, effectively making USDA Certified Organic products a subset of

Non-GMO products. Therefore, a Non-GMO Project Verified label on an organic

product is somewhat redundant and does not necessarily provide new information,

so I would not expect to observe a price premium associated with it. Nonetheless,
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nearly half of all Non-GMO Project Verified products are also Certified Organic,

suggesting that firms believe that consumers are not fully informed about the organic

standard or that the Non-GMO label bestows some additional value. There may

also be favorable cost considerations that influence a firm’s decision to seek out a

non-GMO label for organic products: firms have already invested in a Non-GMO

supply chain and incurred any associated reformulation costs for these products.

Furthermore, the supply chain has already been vetted to minimize adventitious

presence of GMO ingredients, so the likelihood of incurring any unforeseen costs

during the certification process is lower for organic products. Therefore, we expect

the cost of non-GMO certification for organic products to be less than that of non-

organic products; and, to the extent that certification costs are passed through to

the consumer, this will be reflected in price premiums.

Both of these factors support the hypothesis that Certified Organic products

will command lower price premiums after non-GMO certification than non-organic

products. I explore this with an additional price premium specification that includes

an organic indicator interacted with the treatment indicators:

log(pjklt) = ψ1PRE612jklt + ψ2PRE06jklt + ψ3POST06jklt + ψ4POST612jklt

+ ψ5POST1224jklt + ψ6POST24pjklt + ψ7PRE612jklt ×Orgj

+ ψ8PRE06jklt ×Orgj + ψ9POST06jklt ×Orgj + ψ10POST612jklt ×Orgj

+ ψ11POST1224jklt ×Orgj + ψ12POST24pjklt ×Orgj

+ ξj + ξt × ξk × ξl + εjklt (1.6)
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where Orgj is an indicator variable that equals one if product j is Certified Organic.

1.5.2 Quantity Regression Model

Depending on market conditions, firms may not be able to extract a price

premium by using the label; however, firms may use the non-GMO Project Veri-

fied label to capture market share from other products. To test for this possibility, I

regress weekly product sales quantities on the treatment indicators using a specifica-

tion similar to that used for the price premium regressions. I use scanner data from

2009 to 2014 aggregated to the national level and calculate weekly sales quantity

qjklt,where j is a product UPC, k is a manufacturer, l is a category, and t represents

a particular week. I construct the same time-period-based indicator variables based

on when a product receives the non-GMO label to estimate the average effect of

labeling on the sales quantity for non-GMO food products,

log(qjklt) = ψ1PRE612jklt + ψ2PRE06jklt + ψ3POST06jklt + ψ4POST612jklt

+ ψ5POST1224jklt + ψ6POST24pjklt + ξj + ξt × ξk × ξl + εjklt (1.7)

where the treatment indicators are the same as in Equation 1.5; ξj is a product UPC

fixed effect; and ξt × ξk × ξl is a Week×Manufacturer×Category fixed effects. The

coefficient of interest, ψ, measures the average quantity effect of non-GMO labeling

in each time period. Since I use a log-linear specification, the coefficients ψ can be

interpreted as a percentage change in the weekly sold quantity in that time period.
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1.5.3 Identification

Each of the specifications introduced above includes fixed effects to control for

unobserved heterogeneity across product UPC and week-manufactuer-category. The

product-UPC fixed effect controls for unobserved differences in product attributes

across UPCs. The week-manufacturer-category fixed effects essentially create weekly

intercepts to control for manufacturer-category level pricing changes. Therefore,

the identification strategy relies on variation in timing of non-GMO certification

for UPCs within each manufacturer-category. In other words, if every UPC for a

manufacturer-category is certified in the same week, the treatment effect cannot be

identified. I provide a measure of this variation in Table 1.2. For each product cat-

egory, I calculate the average number of weeks between the first and last non-GMO

product certification for each manufacturer. With the possible exception of olive

oil, there is sufficient variation in certification timing in all product categories for

identification. Of course, the standard identifying assumption also applies: unob-

served factors that could simultaneously affect price or quantity sold and non-GMO

certification are time-invariant.
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1.6 Results

1.6.1 Price Premiums

1.6.1.1 Main Results

Table 1.3 presents the price premium regression results based on the model

specified in the Equation 1.5. Columns I and II present alternate specifications with

a progression of fixed effects, and Column III is the preferred specification. In the

first specification with UPC and Week×Category fixed effect, I estimate coefficients

for the pre- and post-treatment indicators that are consistently negative and sta-

tistically significantly different from zero. The estimates for pre-certification 6-12

months and pre-certification 0-6 months indicate about a 1% decrease in price lead-

ing up to the certification event. After certification, the price decreases by about a

3% in the first 0-6 months and becomes more negative over time.24 In the second

specification with UPC and Week×Manufacturer fixed effects, the point estimates

for the coefficients are negative as well, but most of them are not statistically signif-

icantly different from zero; and, furthermore, the estimates are heavily attenuated.

The fact that the Week×Manufacturer fixed effect absorbs much of the significant

negative treatment effect observed in the first specification suggests that firms may

be engaging in manufacturer-level pricing decisions that were biasing the previous

results.

24Based on the data construction, the coefficient estimates for the post-certification 12-24 months
and 24+ months indicators may be biased by changes in product mix, since the sample only
guarantees 12 months of post-certification data for a given UPC.
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In the final specification with the full suite of UPC and Week×Category×Manufacturer

fixed effects, the treatment effect vanishes, and none of the coefficient estimates are

statistically significantly different from zero. Moreover, while the point estimates are

still slightly negative, they are further attenuated towards zero and lack economic

significance. These results show no evidence of dynamic pricing effects, either; which

is to say that the treatment effect does not evolve over the post-certification time

period. The progression of results across specifications suggests that firms may en-

gage in manufacturer and category specific pricing strategies; but once we control

for this behavior, we do not find evidence that firms are using the Non-GMO Project

Verified certification to extract price premiums on pre-existing products.

There are a number of reasons firms may not use the Non-GMO Project Ver-

ified label to extract price premiums for existing products, some of which were

discussed in prior sections of this paper. The stylized data presented in Section 1.4

suggests that non-GMO food products occupy a higher-priced food segment to begin

with, so it is possible that firms already enjoy large profit margins on these product

and cannot increase prices without losing market share. Additionally, we observe

that a significant portion of Non-GMO Project Verified products receive certifica-

tion prior to market entry, and these products may launch at a higher price point

on average, relative to existing Non-GMO Project Verified products. Therefore,

another possibility is that firms are recouping costs and exercising market power

through new product entry.
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1.6.1.2 Organic Interaction Results

Table 1.4 presents the price premium regression results based on Equation 1.6

that includes an organic indicator interaction term with each of the treatment indi-

cators. Once again, Column I and II contain results for an alternate specifications

with UPC and Week×Category fixed effects and with UPC and Week×Manufacturer

fixed effects, respectively. The preferred specification in Column III employs the

full suite of fixed effects from Equation 1.6. The progression of results across

specifications is very similar to that presented in the previous section, with the

Week×Manufacturer fixed effect absorbing some manufacturer-level pricing behav-

ior in the second specification.

Focusing on the final specification, the main treatment indicator coefficient es-

timates are not statistically significantly different from zero, and the point estimates

are very close to zero, which is consistent with our results from the main specifica-

tion. To interpret the organic interaction, the coefficient estimates for the main and

interaction terms should be added together.25 The point estimates for the organic in-

teraction terms are all slightly negative, but only the post-certification 12-24 month

interaction term is statistically significantly different from zero.26 Therefore, I can-

not conclude that organic products command smaller price premiums for non-GMO

certification than non-organic products.

25Because I include UPC fixed effects, a separate, time-invariant organic indicator term cannot
be estimated.

26Given the potentially confounding product mix effects after 12 months of certification, this
result warrants some skepticism.
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1.6.2 Quantity Sold

While our results do not indicate that firms use the non-GMO certification to

extract price premiums for existing products, firms may use the certification to sell

more units of non-GMO products. For single-product firms, any increase in quantity

sold directly increases profits so long as the product has a positive profit margin.

In the case of multi-product firms, if these firms seek non-GMO certification for

products that command higher profit margins, then any increased market share for

these products will also lead to increased profits.

Table 1.5 presents results for the quantity regression estimates based on Equa-

tion 1.7. As with the price premium regressions, Column I, II, and III contain results

for a progression of fixed effects, with the preferred specification contained in Col-

umn III. In the first specification, the estimates for the post-certification 0-6 months

and 6-12 months treatment indicators are positive and statistically significantly dif-

ferent from zero, suggesting that firms may increase quantity sold after certification

for non-GMO products. However, to the extent that firms engage in manufacturer-

level marketing strategies, this specification will produce biased results. Once we

control for Week×Manufacturer fixed effects in the second specification, the results

lose statistical significance, although the point estimates are still large and positive.

In the preferred specification, while the point estimates for the post-certification

treatment indicators remain positive, none of the estimates are statistically signifi-

cantly different from zero. As such, our results do not provide conclusive evidence

that firms use the non-GMO certification to increase the quantity of products sold.
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1.7 Alternative Firm Strategies

In the preceding results, I find no evidence that firms use non-GMO certifi-

cation to extract price premiums or increase quantities sold for pre-existing, newly

certified products. The certification may, however, induce other firm strategies such

as new non-GMO product development targeted to specific consumers by which

firms could extract rent and pass the certification cost to consumers. To explore

this possibility, I first show that a significant portion of non-GMO products obtain

the Non-GMO Project Verification prior to appearing in the retail scanner data and

therefore represent new product introductions. I augment this with some descriptive

statistics that may support the notion that firms price non-GMO products certified

within their product life differently from new products certified before market entry.

Then I provide descriptive statistics for consumer demographics to highlight differ-

ences between consumers that purchase pre-existing non-GMO products, newly in-

troduced non-GMO products, and non-certified products, which suggests that firms

may target new non-GMO product introductions to a specific type of consumers.

1.7.1 Timing of Certification

Figure 1.5 illustrates the number of months a non-GMO product is on the mar-

ket prior to receiving the Non-GMO Project Verification. A negative value indicates

that a product obtained Non-GMO Project Verification prior to appearing in the

Nielsen retail scanner data. A significant portion of products in each food category

(20% on average) receive certification before entering the market, suggesting that
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firms may use the label to facilitate new product development and increase product

diversity, thereby exercising market power through second-degree price discrimina-

tion.

To delve more into Figure 1.5, Table 1.6 presents a comparison of average

prices by product category for Non-GMO Project Verified UPCs, based on whether

the product already existed in the Nielsen data prior to certification or was newly

introduced after certification. “Pre-Existing” products consists of post-certification

data for products that are Non-GMO certified and have at least 6 months of sales

history prior to certification and 12 months after certification. “New Entry” prod-

ucts consists of the first 3 months of post-certification data for products that are

Non-GMO certified and became certified prior to appearing in the Nielsen data. The

second column shows the percentage of manufacturers in each category for which

the mean price of their new entry products exceeded the price of their pre-existing

products. The data indicates that, for many product categories, the majority of

manufacturers introduced new products at prices greater than those of pre-existing

products, further suggesting that firms may use new product entry as a means to

extract rent and pass the certification costs for Non-GMO Project Verified products

to consumers.

1.7.2 Targeting to Non-GMO Consumers

If firms are potentially developing new non-GMO products and introducing

them at higher price points than their existing product line, are these products
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being targeted to a specific type of consumer? From a future policy standpoint, it is

important to understand whether voluntary non-GMO labeling disproportionately

affects a particular consumer segment, and whether that impact is beneficial or

harmful.27 To provide some context, I explore how non-GMO consumers differ, on

average, from other consumers for the food products in this study.

I use Nielsen Consumer Panel data from 2009 to 2014 for all purchases made

in the relevant product categories. Each record represents a household’s purchase

of a particular product on a specific trip to a store. I calculate mean values for

several household demographic variables (income, household size, graduate educa-

tion, presence of children) across the data, by product non-GMO certification and

new entry status (i.e. products certified prior to entering the market, as dicussed

in the previous section). The summarized data reflect product- and trip-weighted

statistics for household demographics.

Table 1.7 presents results for the consumer demographic analysis. In aggregate,

across all 18 food categories, households that consume non-GMO food products

tend to be wealthier, smaller, more educated, and less likely to have children. These

trends are even more pronounced for consumers of new entry, non-GMO products,

further suggesting that firms may target different market segments for new and

pre-existing non-GMO products. This evidence, while suggestive, is consistent with

the hypothesis that firms strategically introduce new non-GMO certified products

to facilitate second-degree price discrimination and pass the non-GMO certification

27As a concrete example involving another food policy issue, similar concerns have been raised
regarding the soda tax in New York City, which many regard as a regressive tax that is unduly
burdensome to households of low socioeconomic status.
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cost to consumers.

1.8 Conclusion

In recent years, GMO food labeling has become a mainstream debate in the

U.S. While the U.S. organic Standard provides an indirect form of non-GMO labeling

for Organic food products by prohibiting the use of GMOs, a voluntary verification

and labeling scheme for non-GMO products called the Non-GMO Project emerged in

the U.S. in 2010. It has grown rapidly to include 35,000 products, accounting for over

$13.5 billion in annual sales as of 2015. In this paper, I investigate whether firms use

a voluntary, third-party quality certification to exercise market power by extracting

price premiums or increasing quantity sold on newly certified products, and whether

those effects persist over time. In particular, I use a hedonic framework to estimate

price premiums and quantity changes for newly certified non-GMO food products

using the Non-GMO Project Verified label in the U.S. I exploit a unique dataset from

the Non-GMO Project that contains verification dates for products throughout the

label’s history, coupled with weekly retail point-of-sale data from 2009 to 2014 for a

large sample of supermarkets across the U.S. I find no statistically significant price

premiums or quantity changes for newly certified non-GMO food products in the

food categories examined. I, however, find suggestive evidence that the label may

induce other firm strategies such as new non-GMO product development targeted

to specific consumers by which firms could extract rent and pass the certification

cost to consumers.
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The findings in the paper warrant more in-depth analysis along two fronts.

First, while firms do not appear to extract price premiums or increase quantities sold

for newly certified non-GMO products that already exist in their product line, some

evidence suggests that firms may exercise market power through new non-GMO

product introduction. Exploring this type of behavior is best suited to a rigorous

structural model that can account for market structure and firm branding strategy.

Second, consumers clearly differ in their preferences for non-GMO products, and,

therefore, the behavioral effect of the Non-GMO Project Verified certification is

not entirely straightforward. Furthermore, if firms behave strategically, perhaps

exploiting the non-GMO certification to increase profits through second degree price

discrimination, the welfare implications of the certification are also unclear. To

quantify these effects, a structural demand model that captures heterogeneity in

consumer preferences for non-GMO products is essential.
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Source: The Non-GMO Project, 2016.

Figure 1.1: Non-GMO Project Verified Label
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Note: Product counts are not unique by package specification.

Figure 1.2: Cumulative Monthly Non-GMO Project Verified Products by Organic
Status
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Note: Product counts are not unique by package specification.

Figure 1.3: Growth in Non-GMO Project Verified Products by Product Category
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Figure 1.4: Annual Non-GMO Project Verified Product Sales
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Note: Product ages are capped at 60 months based on the time span of the data.

Figure 1.5: Product Age When Non-GMO Project Verified
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Table 1.1: Summary Statistics

Product Category Total
UPCs

Mfrs. Organic
UPCs

Non-
GMO

Verified
UPCs

Mean
Price
($/oz)

BABY FOOD - STRAINED 939 26 442 198 0.19
CANDY-CHOCOLATE 12868 1237 393 153 0.35
NUTS - BAGS 5655 626 86 153 0.44
SNACKS - POTATO CHIPS 5871 252 13 154 0.29
CEREAL - GRANOLA & NATURAL 914 197 106 126 0.24
CEREAL - READY TO EAT 2923 137 186 240 0.20
COOKIES 15886 1655 180 172 0.23
FRUIT-DRIED AND SNACKS 3840 496 320 262 0.34
FRUIT DRINKS-OTHER CONTAINER 6433 815 310 141 0.03
GRANOLA & YOGURT BARS 3264 310 334 229 0.37
OLIVE OIL 1811 487 103 72 0.28
PASTA-SPAGHETTI 1335 289 114 41 0.09
RICE - PACKAGED AND BULK 1418 375 84 151 0.07
SALAD AND COOKING OIL 1062 351 85 90 0.08
SEASONING-DRY 12184 1422 633 410 0.84
SNACKS - TORTILLA CHIPS 2353 346 54 154 0.24
TEA - BAGS 2482 300 379 117 0.09
TEA - HERBAL BAGS 1996 263 340 185 0.17
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Table 1.2: Manufacturer-Category Variation in Certification Timing

Product Category Average Weeks
b/t Certification

BABY FOOD - STRAINED 46.51
CANDY-CHOCOLATE 24.87
NUTS - BAGS 9.51
SNACKS - POTATO CHIPS 7.32
CEREAL - GRANOLA & NATURAL 2.13
CEREAL - READY TO EAT 23.48
COOKIES 21.75
FRUIT-DRIED AND SNACKS 14.49
FRUIT DRINKS-OTHER CONTAINER 20.53
GRANOLA & YOGURT BARS 8.70
OLIVE OIL 0.41
PASTA-SPAGHETTI 5.33
RICE - PACKAGED AND BULK 9.56
SALAD AND COOKING OIL 28.38
SEASONING-DRY 32.86
SNACKS - TORTILLA CHIPS 20.55
TEA - BAGS 20.93
TEA - HERBAL BAGS 23.70
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Table 1.3: Price Premium Regressions

I II III

Pre-Cert. 6-12 Mos. −0.010∗∗ −0.012∗ −0.010
(0.003) (0.006) (0.007)

Pre-Cert. 0-6 Mos. −0.013∗∗ −0.007 −0.001
(0.005) (0.008) (0.009)

Post-Cert. 0-6 Mos −0.033∗∗∗ −0.018· −0.013
(0.006) (0.011) (0.011)

Post-Cert. 6-12 Mos. −0.038∗∗∗ −0.028∗ −0.021
(0.007) (0.013) (0.013)

Post-Cert. 12-24 Mos. −0.045∗∗∗ −0.022 −0.011
(0.009) (0.017) (0.018)

Post-Cert. 24+ Mos. −0.062∗∗∗ −0.036 −0.018
(0.012) (0.022) (0.022)

UPC FEs Yes Yes Yes
Week FEs Yes Yes Yes
× Category Yes No Yes
× Manufacturer No Yes Yes

Adj. R2 0.986 0.989 0.989
Num. obs. 351052 351052 351052

Note: Each column represents a separate regression. Standard
errors are clustered at the product level in parentheses: ∗∗∗p <
0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1.
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Table 1.4: Price Premium Regressions with Organic Interaction

I II III

Pre-Cert. 6-12 Mos. 0.006 −0.003 −0.001
(0.006) (0.010) (0.011)

Pre-Cert. 0-6 Mos. 0.007 −0.002 0.005
(0.007) (0.012) (0.012)

Post-Cert. 0-6 Mos −0.013 −0.009 −0.004
(0.008) (0.014) (0.015)

Post-Cert. 6-12 Mos. −0.027∗∗ −0.015 −0.008
(0.009) (0.016) (0.017)

Post-Cert. 12-24 Mos. −0.034∗∗ 0.003 0.014
(0.011) (0.020) (0.022)

Post-Cert. 24+ Mos. −0.053∗∗∗ −0.024 −0.010
(0.014) (0.024) (0.025)

Pre-Cert. 6-12 Mos. × Organic −0.028∗∗∗ −0.018 −0.017
(0.008) (0.011) (0.012)

Pre-Cert. 0-6 Mos. × Organic −0.035∗∗∗ −0.008 −0.010
(0.009) (0.011) (0.012)

Post-Cert. 0-6 Mos × Organic −0.035∗∗∗ −0.016 −0.016
(0.009) (0.012) (0.012)

Post-Cert. 6-12 Mos. × Organic −0.019· −0.022· −0.021
(0.010) (0.013) (0.013)

Post-Cert. 12-24 Mos. × Organic −0.019· −0.042∗∗ −0.043∗∗

(0.010) (0.013) (0.014)
Post-Cert. 24+ Mos. × Organic −0.015 −0.017 −0.013

(0.011) (0.013) (0.014)

UPC FEs Yes Yes Yes
Week FEs Yes Yes Yes
× Category Yes No Yes
× Manufacturer No Yes Yes

Adj. R2 0.986 0.989 0.989
Num. obs. 351052 351052 351052

Note: Each column represents a separate regression. Standard errors are
clustered at the product level in parentheses: ∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05, ·p < 0.1.
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Table 1.5: Quantity Regressions

I II III

Pre-Cert. 6-12 Mos. 0.044 −0.020 −0.048
(0.037) (0.054) (0.056)

Pre-Cert. 0-6 Mos. 0.062 −0.011 −0.040
(0.049) (0.077) (0.078)

Post-Cert. 0-6 Mos 0.138∗ 0.060 0.027
(0.062) (0.098) (0.097)

Post-Cert. 6-12 Mos. 0.144· 0.151 0.120
(0.077) (0.123) (0.119)

Post-Cert. 12-24 Mos. 0.116 0.218 0.187
(0.103) (0.164) (0.160)

Post-Cert. 24+ Mos. 0.164 0.300 0.277
(0.143) (0.224) (0.211)

UPC FEs Yes Yes Yes
Week FEs Yes Yes Yes
× Category Yes No Yes
× Manufacturer No Yes Yes

Adj. R2 0.858 0.901 0.903
Num. obs. 351052 351052 351052

Note: Each column represents a separate regression. Standard
errors are clustered at the product level in parentheses: ∗∗∗p <
0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1.
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Table 1.6: Non-GMO Certification of New and Pre-Existing Food Products

Product Category Pct. Mfrs.
New Entry >
Pre-Existing
Mean Price

(%)

New
Entry
UPCs

Pre-
Existing
UPCs

BABY FOOD - STRAINED 100.0 57 81
CANDY-CHOCOLATE 25.0 46 67
NUTS - BAGS 80.0 30 85
SNACKS - POTATO CHIPS 66.7 31 83
CEREAL - GRANOLA & NATURAL 100.0 42 56
CEREAL - READY TO EAT 70 68 121
COOKIES 55.6 59 91
FRUIT-DRIED AND SNACKS 44.4 65 87
FRUIT DRINKS-OTHER CONTAINER 60.0 38 80
GRANOLA & YOGURT BARS 33.3 55 87
OLIVE OIL 50.0 12 24
PASTA-SPAGHETTI 0.0 14 19
RICE - PACKAGED AND BULK 75.0 52 73
SALAD AND COOKING OIL 60.0 25 52
SEASONING-DRY 33.3 26 228
SNACKS - TORTILLA CHIPS 50.0 25 84
TEA - BAGS 100.0 22 75
TEA - HERBAL BAGS 62.5 33 96
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Table 1.7: Average Consumer for Conventional & Non-GMO Products

Non-GMO Product Mean
Inc.

Median Inc. HH
Size

Grad
Edu.

Child

No All $65607 [$50K, $60K) 2.70 0.16 0.30
Yes Pre-Existing $68508 [$50K, $60K) 2.60 0.20 0.28
Yes New $77277 [$60K, $70K) 2.53 0.25 0.26
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Chapter 2: The Impact of Voluntary Non-GMO Labeling on De-

mand in the Ready-to-Eat Cereal Industry∗

2.1 Introduction

In markets with asymmetric information, quality disclosure can lead to effi-

ciency gains that benefit consumers and producers (Grossman 1981; Dranove and Jin

2010). Firms may also use quality certification to influence perceived product qual-

ity and exercise market power. This paper examines the impact of voluntary quality

certification on demand in the ready-to-eat [RTE] cereal industry, using evidence

from the Non-GMO Project Verified food label. While past studies have investigated

firms’ use of non-price marketing strategies such as advertising, couponing, and new

product introductions in the RTE cereal industry (Thomas 1999; Nevo 2001; Nevo

and Wolfram 2002), this paper is the first to examine the role of voluntary quality

certification as a marketing strategy in this industry.

Prior hedonic analysis does not find evidence of price premiums or quantity

changes for newly certified non-GMO food products across 18 food categories, in-

cluding RTE cereal (Adalja 2016). In this study, I estimate a discrete-choice, random

∗Nielsen data is provided by the Data Center at The University of Chicago Booth
School of Business. Information on availability and access to the data is available at
http://research.chicagobooth.edu/nielsen.
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coefficients logit demand model (Berry et al. 1995; Nevo 2001) with monthly Nielsen

Retail Scanner data for 50 breakfast cereal brands in 100 DMAs between 2010 and

2014. I use the model to examine the impact of voluntary non-GMO labeling on

demand for RTE cereal and to characterize heterogeneity in consumer tastes for non-

GMO labeling. The results indicate that consumer preferences vary significantly for

the non-GMO label, and this heterogeneity affects individual choices. In aggregate,

the non-GMO label positively impacts demand on average.

I use the structural parameters recovered from the demand estimation along

with an assumed model of firm behavior to calculate price-cost margins. I use these

results to simulate welfare effects for two different labeling regimes in the RTE

cereal industry: one in which all brands use the non-GMO label and one in which

no brands use the label. I analyze changes in producer and consumer welfare by

analyzing changes in firm profit and individual compensating variation, respectively.

The simulation results suggest that non-GMO labeling in the RTE cereal industry

may improve consumer surplus but reduce industry profit on average.

Several factors make the RTE cereal food category well suited for estimating

the effects of voluntary non-GMO food labeling on demand. First, there exists

substantial variation in non-GMO labeling across time and products in this category.

Second, the data that I use have an exhaustive coverage of the purchases for these

products. Finally, RTE cereal has a long history of study in empirical industrial

organization, so parameter estimates are readily available in the literature with

which to benchmark my model estimates.

The paper is structured as follows. Section 2.2 discusses the literature on
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the RTE cereal industry, willingness to pay for non-GMO, and demand estimation.

Section 2.3 presents the theoretical framework for the structural economic model

and welfare analysis. Section 2.4 describes the data sources I employ to implement

this study. Section 2.5 highlights the empirical strategy I use to estimate the demand

system. Section 2.6 presents parameter estimates recovered from the model and the

simulated welfare effects of non-GMO labeling. Lastly, Section 2.7 offers concluding

remarks as well as opportunities for future extensions to the analysis.

2.2 Background Literature

2.2.1 Demand Estimation in Markets with Differentiated Products

Demand estimation has a long history in economics research dating back to

Stone (1954), but estimating structural demand models for differentiated products

has historically posed several obstacles. First, due to the large number of products,

simply estimating a system of demand equations is empirically intractable due to the

large number of parameters to estimate. Another problem that must be addressed

is consumer preference heterogeneity, of which the proliferation of differentiated

products is a manifestation. Discrete choice models such as the logit demand model

(McFadden 1973) circumvent the dimensionality issue by transforming each product

into a bundle of relevant attributes, thereby shrinking the dimensions of the system.

However, due to the model assumptions, the standard logit model carries with it

strong restrictions on consumer substitution patterns.

Of the many advances that have occurred since then, the methodology devel-
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oped in Berry (1994) and Berry et al. (1995) [BLP] represents a significant inno-

vation for demand estimation in differentiated-products markets. In this seminal

work, BLP estimates a random-coefficients discrete choice demand model by us-

ing a fixed-point contraction mapping to solve the system numerically. The BLP

model incorporates preference heterogeneity and allows for more flexible substitu-

tion patterns, but these features come at the expense of significant computational

complexity. Thanks in part to Nevo (2000b), who made MATLAB code for BLP

estimation publicly available, the BLP model has seen wide use in empirical indus-

trial organization, underlying much of the work in demand estimation conducted

over the past two decades.

Since then, several additional improvements have been made within this esti-

mation framework. Nevo (2001) extended this model by incorporating panel data

techniques such as brand fixed effects and partially relaxing parametric assumptions

for preference heterogeneity by drawing from an empirical distribution of consumers.

Petrin (2002) uses average consumer data relating demographics to purchase prob-

ability to fit additional moment restrictions, thus obtaining more precise estimates

of structural parameters. Berry et al. (2004) uses detailed consumer-level data on

consumers’ second choices to fit three sets of moments, thus providing an alterna-

tive source of identification. Despite its widespread use, the BLP estimation tech-

nique presents significant numerical challenges. Dubé et al. (2012) and Knittel and

Metaxoglou (2014) both conduct comprehensive analyses of the algorithms used to

estimate random-coefficients logit demand models and show that results vary widely

depending on the algorithm, starting values, and tolerances. As such, it is critical
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that researchers exercise extreme caution when estimating these types of models.

2.2.2 Ready-to-Eat Cereal Industry

There has been sustained interest among economists in the RTE cereal in-

dustry since the 1970s, when the FTC brought an antitrust suit against Kellogg,

General Mills, and Post. The industry exhibits some of the classic traits of a differ-

entiated oligopoly—high concentration, enormous brand proliferation, and frequent

new product introductions. The early literature on the RTE cereal industry directly

addresses the antitrust concerns raised by the FTC. Schmalensee (1978) use’s the

Hotelling model to analyze firm conduct in the RTE cereal industry and argues that

frequent new product introductions by incumbent firms serve to protect profits and

deter new entry in the industry.2 Scherer (1979) looks at new product introduc-

tions as well, but from a welfare perspective. He provides evidence suggesting that

product variety is overstimulated and, based on launching costs, very likely welfare

reducing at the margin.

More recent literature on the RTE cereal industry tends to focus on either

price or non-price marketing strategies. Thomas (1999) examines firm response to

entry and finds that incumbent response depends on the scale of entry, and firms use

advertising and new product introductions for entry deterrence in addition to price.

Nevo (2001) uses a BLP approach to measure market power in the RTE cereal indus-

try. He finds that the high price-cost margins in the industry are largely explained

2This paper is based upon the author’s expert testimony as a government witness in the afore-
mentioned FTC antitrust case.
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by product differentiation and multi-product firm pricing rather than collusive be-

havior, suggesting that any market power is attributable a firm’s product portfolio

and advertising. Nevo (2000a) uses the same model to analyze the effects of mergers

in the industry by using the structural parameters recovered from BLP estimation

to simulate new price equilibria and welfare changes of various merger scenarios (two

of which actually occurred). Nevo and Wolfram (2002) analyze the relationship be-

tween shelf prices and coupons in the RTE cereal industry. Interestingly, they find a

negative correlation between prices and availability of manufacturer coupons. They

present evidence that this behavior is driven by strategic interaction between firms,

manager incentives, and the effects of coupons on repeat purchase.

In an effort to address both price and non-price strategies, Richards and Pat-

terson (2006) uses a dynamic setting to examine strategic interaction between firms.

They find that firms tend to price and choose product lines cooperatively in the

static setting; but, with dynamic interactions, firms behave more competitively

along both dimensions. Chidmi (2012) examines vertical relationship between re-

tailers and manufacturers in the RTE cereal industry to shed light on retail pricing

decisions. He estimates different supply models using demand parameters recov-

ered from BLP estimation with data from four supermarket chains in the Boston

area. The results imply that manufacturers make pricing decisions and retailers do

not intervene (i.e. retailer margins are zero), thus avoiding double-marginalization.

Richards and Hamilton (2015) examines pass-through of wholesale price changes

into retail prices and product lines of firms in the RTE cereal industry. By account-

ing for the endogeneity of product line decisions for multi-product firms, they find
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evidence that wholesale price changes are passed through one-to-one to retail prices.

2.2.3 Willingness-to-Pay for Non-GMO

Empirical studies of willingness-to-pay [WTP] for non-GMO labeling have de-

cidedly mixed findings. Most studies employ surveys and lab experiments to analyze

consumer preferences for GMO products. Lusk et al. (2005) identifies 25 separate

studies that together provide 57 estimates of consumers’ WTP for GMO food prod-

ucts and finds significant variation in the estimates. Price premiums for non-GMO

food ranged from -68% to 784%, with an average of 42%, and are significantly

affected by elicitation method.

Recent studies attempt to shed light on the source of this variation. Using

data from a nationwide survey, Onyango et al. (2006) finds that consumers place

a 10% premium on food labeled as non-GMO and 6.5% discount on food labeled

as GMO; but, interestingly, consumers also attach a 5% premium for food labeled

GMO if the label also specifies “USDA approved” or “to reduce pesticide residues

in your food.” Roe and Teisl (2007) uses a survey to elicit consumer reactions

to 80 different GMO label variations and finds that labels with simple claims and

claims certified by the FDA are most credible. Costanigro and Lusk (2014) conducts

a series of choice experiments and finds evidence that consumer WTP to avoid

GMO food is 140% higher with a mandatory “contains” GMO label compared to a

voluntary “does not contain” GMO label. Lastly, Adalja (2016) uses national retail

scanner data for 18 food categories coupled with labeling data from the Non-GMO
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Project Verified voluntary label and finds no evidence of price premiums for non-

GMO products; however, suggestive evidence supports the hypothesis that the label

induces incumbent firms to introduce new products.

2.3 Conceptual Framework

The conceptual approach as well as the empirical strategy for the structural

model follows very closely with the framework of Nevo (2001), so I present an

abbreviated treatment here using the same notation.

2.3.1 Consumer Demand with Heterogeneous Preferences

Consider an economy in which we observe t = 1, . . . , T markets, each with

i = 1, . . . , It consumers and j = 1, . . . , J products with average prices pjt. The

indirect utility of consumer i from consuming product j in market t is

uijt = xjtβi − αipjt + ξjt + εijt, (2.1)

where xjt is a K-dimensional vector of observable product characteristics, ξjt is the

unobserved product characteristic, (βi, αi) are K+ 1 individual-specific coefficients,

and εijt is a mean-zero stochastic term. The unobserved product characteristic

ξjt can be further decomposed as ξjt = ξj + ξt + ∆ξjt, where ξj and ξt can be

captured empirically with brand and time dummies, respectively, in which case xjt

only contains time-varying product characteristics. The indirect utility from the

outside option is normalized to zero.
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Consumer preferences depend on individual demographics D and unobserved

individual characteristics v, which are formally modeled as a

 αi

βi

 =

 α

β

+ ΠDi + Σvi, vi ∼ Pv(v), Di ∼ PD(D), (2.2)

where Di is a d × 1 vector of demographics that follow the distribution PD, vi is

a K + 1 vector of mean-zero normally distributed unobservables that follow the

distribution Pv, Π is a (K + 1) × d matrix of coefficients that measure how tastes

(for observable characteristics) vary with demographics, and Σ is a (K+1)×(K+1)

matrix of parameters. If we observe individual demand data, we can use such data

to characterize Di nonparametrically by drawing from an empirical distribution P̂D

such as the Current Population Survey [CPS] or the Nielsen Consumer Panel.

The set of individual characteristics that lead to product choice j are implicitly

defined by

Ajt(x, p·t, δ·t; θ2) = {(Di, vi, εit)|uijt ≥ uilt}, ∀ l = 1, . . . , J.

If we assume that D, v, and ε are independent, the market share for product j is

the integral

sjt(x, p·t, δ·t; θ2) =

∫
Ajt

dP (D, v, ε) =

∫
Ajt

dPε(ε)dPv(v)dPD(D), (2.3)

which can be computed either analytically or numerically depending on the distri-

61



butional assumptions made on D, v, and ε.

2.3.2 Firm Behavior

Assume there are f = 1, . . . , F firms, and each firm produces a subset Ff of

the J products. Profit is calculated as

Πf =
∑
j∈Ff

(pj −mcj)Msj(p)− Cf ,

where sj(p) is the market share of product j, M is the market size, and Cf is the

fixed cost. Assuming a Bertrand-Nash equilibrium in prices, the first order condition

with respect to price for each product j is

sj(p) +
∑
r∈Fr

(pr −mcr)
∂sr(p)

∂pj
= 0.

We can construct the J × J price derivative matrix S where each element Sjr =

−∂sr(p)
∂pj

and the J × J ownership matrix Ωo where each element Ωjr = 1 if products

r and j are owned by the same firm or zero otherwise. If I define the matrix Ω as

the Hadamard product of Ωo and S and express for s, p, and mc as J × 1 vectors, I

can solve for the price-cost margins as

p−mc = Ω−1s(p). (2.4)
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Once demand parameters are recovered, Equation 2.4 can be used estimate marginal

costs for each brand.

2.4 Data

Estimating a demand system for differentiated products requires, at a mini-

mum, marketing data with prices, market share, and product characteristics across

several markets in the U.S. These data typically consist of consumer panel data,

aggregate market-level data, or both. Models that use individual data account for

consumer heterogeneity and allow for a high level of product differentiation. They

also circumvent price endogeneity issues common to aggregate demand models (e.g.,

Goldberg 1995). That said, an aggregate industry model explicitly addresses supply

side and equilibrium considerations. Ideally, an estimation strategy that combines

both approaches can enrich the analysis by addressing demand, supply, and market

equilibrium together (e.g., Nevo 2001; Petrin 2002; Berry et al. 2004).

I use month-DMA-brand-level data between 2010 and 2014 (each market is

a DMA-month, for a total of 5,988 markets) on prices, market shares, and brand

characteristics from the Nielsen Retail Scanner Data; and I combine it with non-

GMO labeling data from the Non-GMO Project. Additionally, to complete the

demand system, I must specify the market share for the outside good in each mar-

ket, which requires an estimate of overall market size. I use data from the U.S.

Census Bureau’s Annual Estimates of the Resident Population for Counties along

with household sales data for RTE cereal from the Nielsen Consumer Panel to con-
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struct this estimate. Lastly, I draw consumer demographics from the CPS Annual

Supplement.

2.4.1 Nielsen Retail Scanner and Consumer Panel Data

The Nielsen Retail Scanner data contains weekly, UPC-level quantity and

price data from retail store point-of-sale systems for 35,000 retail stores covering

more than half the total sales volume of grocery stores across the U.S. The full

dataset contains 2.6 million UPCs, representing 1,100 Nielsen product categories.

RTE cereal represent one such product category. I aggregate the RTE cereal data

by month, DMA, and brand (e.g., General Mills Honey Nut Cheerios is one brand,

etc.). Volume sales data is standardized by converting quantity to ounces sold, and

market share is calculated by dividing ounces sold by potential market size (see

Section 2.4.3 for details on the derivation of market size). A standardized price

variable is calculated as total dollar sales divided by ounces sold, and real prices are

adjusted using the U.S. average monthly urban CPI for breakfast cereal.

If one was simply interested in estimating demand for the major brands in

the RTE cereal industry, an appropriate way to choose brands would be to select

the J brands with the top national market share. However, since I am primarily

interested in examining how a voluntary non-GMO label affects demand for RTE

cereal, it is critical that the brands chosen accurately reflect the market for non-

GMO RTE cereal. Accordingly, the brands used in the demand estimation must

include those which started using the non-GMO label between 2010 and 2014 and
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unlabeled brands that may be considered viable substitutes for these products.

I use information from Nielsen Consumer Panel to select brands to use in

the demand estimation. The Nielsen Consumer Panel data contains trip-UPC-level

purchase and pricing data for a nationally-representative panel of 40,000 to 60,000

U.S. households, covering the same product categories as the Retail Scanner data

for all major retail channels. To determine the relevant brands, I first identify

households that purchased newly launched Non-GMO Project Verified RTE cereal

brands in 2014.3 I then examine the portfolio of RTE cereal brands previously

purchased by these same households, and I choose the top 50 brands based on

projected volume purchased between 2010 and 2014. I then restrict the total number

of markets in my final dataset by selecting the 100 DMAs with the highest total

volume of sales for these 50 brands. Table 2.1 presents summary statistics by brand

for the variables used in the estimation.

2.4.2 Non-GMO Project

To estimate the effect of a non-GMO food label on demand for RTE cereal, I

have secured a unique, UPC-level monthly dataset of non-GMO products from the

Non-GMO Project4 that identifies the date each product began using the Non-GMO

Project Verified label. The Non-GMO Project began offering third-party verification

and labeling for food products in 2010, and the dataset spans 2010 to 2014. Usage

of the label has grown rapidly since 2010; the Non-GMO Project currently verifies

3These are brands that entered the market between 2010 and 2014 with Non-GMO Project
Verification already in place prior to appearing in the Nielsen data.

4See Adalja (2016) for a comprehensive background on the Non-GMO Project.
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over 3,000 brands that represent more than 43,000 products and $19.2 billion in

sales (Non-GMO Project 2017). Figure 2.1 shows total national sales for Non-GMO

Project Verified RTE cereal products between 2010 and 2014, based on the Nielsen

Retail Scanner data. To help distinguish between growth from newly introduced

products and existing products, the figure also show sales for products verified in

a future calendar year, denoted “To Be Verified.” I merge this data by UPC with

Nielsen Retail Scanner data to clearly identify the month in which RTE cereals

began using the Non-GMO Project Verified label.

2.4.3 Market Size

We do not directly observe the market share for the outside good—it is calcu-

lated as the total market size less the market share of the inside goods. We must,

therefore, define the total market size. This is generally done by choosing an observ-

able variable to which market size is proportional as well as a proportionality factor

to calculate actual market size (Nevo 2000b). In the case of the RTE cereal indus-

try, we ultimately need a measure of the monthly market size, in terms of quantity

of RTE cereal consumed, for each DMA in the sample. I assume the market size

in each DMA-month is proportional to the population size. I construct monthly

estimates of the population size for each DMA between 2010 and 2014 using the

U.S. Census Bureau’s Annual Estimates of the Resident Population for Counties. I

assume the population is constant across all months in a given year. DMAs con-

sist of non-overlapping counties, so aggregating these population estimates to the
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DMA-level is straightforward.

To estimate the proportionality factor, I use the national, trip-level Nielsen

Consumer Panel data from 2010 to 2014 to calculate the total volume (in ounces)

of RTE cereal consumed per household, per year. I then use each household’s size

to calculate the total number of individuals in the sample and construct a yearly

measure of average daily per capita consumption. On average, daily per capita cereal

consumption between 2010 and 2014 is about 0.5 ounces (about half a serving per

person per day for a typical breakfast cereal); however, it declines slightly each

year over this time period, suggesting that the RTE cereal market is shrinking. To

accurately capture the changing market size, I let the daily per capital consumption

estimate vary by year. Multiplying by the number of days in each month, I construct

the final proportionality factor to use with monthly population estimates above to

define market size: average monthly per capita RTE cereal consumption in ounces.

I use market size along with the quantity data from the Nielsen Retail Scanner data

to calculate brand market shares to use in demand estimation.

2.4.4 Consumer Demographic Data

To construct an empirical distribution of consumer demographics, I use data

from the Annual Social and Economic Supplement to the Current Population Survey

for 2010 through 2014. Using county information and the sample weights provided

in the survey, I sample 50 individuals for each DMA each year (the data is the same

across all months in a given year). The variables include age, household income, and
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household size. I calculate individual income as household income divided by house-

hold size, and I also define a child indicator variable that equals one if age < 16.

The final demographic variables used in the estimation are logarithm of income, log-

arithm of income-squared, age, and child. For stability in the estimation procedure,

log income and age are demeaned and scaled by their standard deviations; and log

income-squared and child are demeaned. Table 2.2 contains summary statistics by

DMA for the demographic variables used in estimation.

2.5 Empirical Approach

2.5.1 Demand Estimation

By defining θ = (θ1, θ2) as a vector of all the parameters in the structural

demand model, where θ1 = (α, β) are the linear parameters and θ2 = (Π,Σ) are the

nonlinear parameters, we can combine Equations 2.1 and 2.2 to express utility as

uijt = δjt(xjt, pjt, ξjt; θ1) + µijt(xjt, pjt, vi, Di; θ2) + εijt, (2.5)

δjt = xjtβ − αpjt + ξj + ξt + ∆ξjt, µijt = [−pjt, xjt]′ ∗ (ΠDi + Σvi).

In this formulation, δjt contains only linear parameters and is devoid of any individual-

specific parameters, so it represents the mean utility common to all consumers.

The terms µijt + εijt represent a mean-zero deviation from the mean, capturing

the individual random coefficients. Consumer tastes are distributed as multivariate

normal, conditional on demographics, such that vi ∼ N(0, IK+1). The vector of
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demographics D is sampled from the CPS and includes variables for log income, log

income-squared, age, and a child indicator. Because I include brand-specific dummy

variables (ξj), xjt only contains a time-varying indicator for non-GMO certification

that equals one when a product receives Non-GMO Project Verification and zero

otherwise.

We assume the εijt is distributed i.i.d. according to a Type I extreme value

distribution, but allow for correlation between choices through the term µijt. Under

these assumptions, I calculate individual purchase probabilities as

sijt =
exp(δjt + µijt)

1 +
∑K

k=1 exp(δkt + µikt)
(2.6)

and product market shares as

sjt =

∑It
i=1 sijt
It

. (2.7)

To address correlation between prices p and the structural error term ∆ξjt, we

introduce a set of price instruments Z = [z1, . . . , zM ] and use the estimation method

developed by Berry (1994) to construct a nonlinear GMM estimator based on the

moment condition:

E[Zm ω(θ∗)] = 0, m = 1, . . . ,M,

where ω is the structural error term (see below) and θ∗ are the true parameter

values. The estimation routine entails minimizing the GMM objective function to
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calculate an estimate of θ∗ such that

θ̂ = argmin
θ

ω(θ)′ZA−1Z ′ω(θ) (2.8)

where A is an appropriate weight matrix—i.e., a consistent estimate of E[Z ′ωω′Z].

To express the structural error term as a function of the parameters, we must first

calculate the vector of mean utilities δ·t for each market t. To do so, we equate the

calculated market shares from Equation 2.7 with observed market shares from the

data:

s(δ·t; θ2) = S·t (2.9)

and solve for δ·t by inverting the system of market share equations numerically using

the BLP contraction mapping:

δ
(k+1)
·t = δ

(k)
·t + lnS·t − ln s(δ

(k)
·t ; θ2), (2.10)

where k denotes the fixed-point iteration. Once δ is computed, the error term can

be calculated as

ωjt = δjt(S·t; θ2)− xjtβ − αpjt (2.11)

and used directly in Equation 2.8. The elements of θ1 in Equation 2.11 are obtained

using linear instrumental variables regression. Nevo (2000b) and Nevo (2001) pro-
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vide additional details on the estimation strategy, and Appendix B.2 documents

several improvements and deviations in my own computational strategy.

Once I have estimated the structural demand parameters, I can calculate the

partial derivatives of market shares with respect to prices as

∂sj(p)

∂pk
=


1
It

∑It
i αisijt(1− sijt) if j = k,

− 1
It

∑It
i αisijtsikt otherwise.

(2.12)

I calculate the price elasticities of the market shares sjt as

ηjkt =


pjt
sjt

1
It

∑It
i αisijt(1− sijt) if j = k,

−pkt
sjt

1
It

∑It
i αisijtsikt otherwise.

(2.13)

These values are used to calculate price-cost margins and to simulate welfare effects.

2.5.2 Price Instruments

While brand and time fixed effects eliminate the unobserved brand-specific

and month-specific deviations from the structural error term in Equation 2.5, the

DMA-specific component ∆ξjt remains. If firms account for this deviation, then

DMA-specific valuations will be correlated with the error term, creating a price

endogeneity problem and biasing estimates of α. To correct this problem, I use

a similar approach to Nevo (2001) to construct price instruments by exploiting

the panel structure of the data. The identifying assumption is that DMA-specific

valuations are independent across DMAs after controlling for brand, month, and
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consumer demographics, but prices across DMAs are correlated due to common

marginal costs. Under this assumption, for a given DMA, prices of brand j in all

other DMAs and across all months are valid instruments. I implement this strategy

for each brand j in DMA-month t by constructing monthly average prices for all

directly neighboring DMAs and using prices for the twelve nearest months (including

the current month) as instruments.

2.5.3 Time-Invariant Product Characteristics

By employing brand fixed effects, taste coefficients for time-invariant prod-

uct characteristics that may be of interest cannot be recovered directly from the

main estimation. For example, organic certification may be seen as a substitute

for non-GMO certification, but due to its time-invariant nature in the data sam-

ple, its direct effect cannot be estimated. Other time-invariant characteristics of

interest include: organic certification interacted with final non-GMO status, new

product indicator,5 kids’ cereal indicator, and sugar content. To recover estimated

coefficients for these variables, I regress the brand fixed effects recovered from the

main estimation on these characteristics using the minimum-distance procedure of

Chamberlain (1982). The estimation procedure consists of a GLS regression where

the estimated covariance matrix from the main estimation is used as a weight ma-

trix to adjust for correlation in the dependent variable. These results are presented

alongside the full model results in Section 2.6.2.

5In essence, did the product launch during the time period of the sample or did it exist prior
to that?
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2.5.4 Welfare Analysis

From a policy standpoint, measuring changes in consumer welfare is a critical

component in evaluating different labeling schemes. Using the structural parame-

ters recovered from demand estimation, I simulate the effects of two counterfactual

scenarios on consumer welfare. In the first scenario, I assume that the government

completely bans the use of GMO ingredients in food and thus requires all 50 brands

to undergo non-GMO certification and use the label across all markets in the sample.

In the second scenario, I assume the government outlaws non-GMO labeling on food

products and thus bans any brands from using the label across all markets in the

sample. These scenarios are not entirely unreasonable and warrant consideration.

For example, many countries in Europe currently place heavy restrictions on the

use of GMO ingredients in food products in what amounts to a ban. As such, most

food products undergo non-GMO certification and very few contain GMOs.6 Ad-

ditionally, in the U.S., the FDA asserts that approved GMO food products are not

significantly different from or less safe than their non-GMO produced counterparts

and, thus, do not require additional labeling. Based on that, industry groups have

spent years lobbying Congress to pass a law banning any form GMO labeling on the

grounds that it would mislead consumers.7

In a perfect information environment, one can estimate the changes to con-

6At the very least, in many European countries if a food product contains GMOs, it must be
clearly labeled as such, creating a stigma that food manufacturers try to avoid.

7This effort ultimately lead to the passage of the National Bioengineered Food Disclosure Stan-
dard in 2016, which tasks USDA with establishing a national voluntary non-GMO labeling stan-
dard.
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sumer welfare using a simple measure of compensating variation based on the tradi-

tional random utility model. We can calculate the compensating variation for each

individual in a given market t as

CV P
i =

1

αi

[
ln

J∑
j=0

exp(Ṽij)− ln
J∑
j=0

exp(Vij)

]
, (2.14)

where Vij = δj + µij and the terms with a tilde are evaluated after the policy

change. Taking the average of this result across all It individuals yields the aver-

age compensating variation for market t. However, non-GMO food products are

credence goods, differentiated by a vertical process attribute unobservable to the

consumer, even after consumption (Adalja 2016). Accordingly, in the presence of

imperfect information, the traditional multinomial logit measure for compensating

variation is biased due to the discrepancy between consumers’ decision utility and

experience utility (Houde 2016). When the utility function for consumers’ purchase

decisions does not coincide with the utility function for consumers’ post-purchase

experiences, the change in consumer surplus for each individual in a given market t

can be expressed as

CV I
i =

1

αi

[
ln

J∑
j=0

exp(Ṽij) +
J∑
j=0

s̃ij(Ṽ
E
ij − Ṽij)

]
−

1

αi

[
ln

J∑
j=0

exp(Vij) +
J∑
j=0

sij(V
E
ij − Vij)

]
, (2.15)

where the terms with a tilde are evaluated after the policy change, V E
ij denotes

experience utility, and Vij denotes decision utility. The expression in Equation 2.15
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differs from the perfect information welfare measure in Equation 2.14 due to the

two correction terms of the form
∑J

j=0 sij(V
E
ij − Vij). These terms account for the

discrepancy between consumers’ perceptions that guide decision making and what

they actually experience (see Leggett 2002, for a full derivation). Note that if no

discrepancy exists between the two utility functions, then the expression in 2.15

reduces to the perfect information welfare measure in 2.14.

Given the credence good nature of the non-GMO product attribute, one might

argue that a non-GMO label affects decision utility, but it does not impact expe-

rience utility due to the fact that the attribute cannot be physically experienced,

even after consumption. Such an argument suggests the use of Equation 2.15 for

calculating welfare effects of a policy change. The possibility also exists that con-

sumers who purchase non-GMO products experience a warm glow (Andreoni 1990),

or the certification may affect social status in some way, such that the label also

impacts experience utility, despite the fact that it cannot be physically sensed. If

the non-GMO label’s impact on decision and experience utility are aligned, then

Equation 2.14 is an appropriate measure for welfare analysis. Given these compet-

ing arguments, I present welfare estimates using both expressions for changes in

consumer surplus in the results.
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2.6 Results

2.6.1 Logit Specification

In Equation 2.5, if we assume that consumer heterogeneity only enters the

model through the error term εijt (such that θ2 = 0, βi = β, and αi = α for all

consumers), and we assume that εijt is distributed as i.i.d. Type I extreme value;

then the model distills to a logit specification. In this case, Equation 2.9 can be

solved analytically as δjt = ln(Sjt) − ln(S0t), where S0t is the observed outside

market share for market t, and the estimation procedure simplifies to 2SLS. The

logit specification places strong restrictions on the model—it implies that cross-

price elasticities are only a function of market share; however, it can serve as a

useful starting point for the full model.

Table 2.3 presents results for the logit specification of the model. The the

first column is estimated using standard OLS without instrumenting for price, while

the second column is estimated using 2SLS with the price instruments described

in Section 2.5.2. As expected, the parameter estimate for price is negative in both

cases; but the 2SLS estimate is larger in magnitude. This suggests, at the very

least, that failing to address the price endogeneity issue results in an attenuation

bias when measuring own-price elasticities. Interestingly, the coefficient on the non-

GMO labeling indicator is negative and statistically significantly different from zero

in both cases, indicating that use of the label reduces the mean utility of consumers.

This result is consistent across both regressions and does not change significantly
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when we instrument for price. It is worth noting, however, that the point estimate

for the label indicator is about one-twentieth the magnitude of price; so while the

effect is negative, it may not be economically meaningful. In the full model, we will

explore this possibility in more detail by simulating the economic effects of different

labeling scenarios.

2.6.2 Full Model

The results for the full random coefficients logit model are presented in Ta-

ble 2.4. The specification includes brand and time (month) fixed effects in addi-

tion to the demand parameters listed in the table. The first column presents the

mean parameter estimates (β) as well as the taste coefficients estimated using the

minimum-distance procedure. The estimate for price is negative, as expected, and

about twice the magnitude of the estimate from the logit specification. This indi-

cates higher own-price elasticity, on average. The estimate for the non-GMO labeling

indicator is positive and about one-tenth the magnitude of the price estimate. This

suggests that use of the label has a slightly positive effect on mean utility and, thus,

a brand’s market share, which means that firms may have an incentive to seek out

the label. Anecdotally, this result seems to coincides with the label’s rapid growth

between 2010 and 2014. Furthermore, while Adalja (2016) finds no effect of the

non-GMO label on price premiums for newly certified non-GMO food products, this

result suggests that the effect of the non-GMO label is transmitted via changes in

market share.
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The additional taste coefficients estimated from the brand fixed effects provide

further insight on the drivers of demand. First, the coefficient on organic certifi-

cation is also positive and of similar magnitude to the non-GMO label coefficient,

indicating that both certifications have a similar impact on demand. However, the

Non-GMO×Organic interaction term, while similar in magnitude to the organic and

non-GMO estimates, is of the opposite sign (negative). This finding would suggest

that the two certifications are effectively substitutes in terms of driving demand,

and the presence of both certifications on a product does not have an appreciably

greater impact on demand.8 The coefficient estimate for the kids’ cereal indicator

is positive, as is that for sugar content, which is consistent with past findings in the

literature. Interestingly, the estimate for the new product indicator is negative and

of similar magnitude to the kids’ indicator. To some extent, the extensive product

promotion and advertising that tends to accompany the launch of a new RTE cereal

product may serve as an effort to overcome this negative effect.

The subsequent columns provide model estimates that characterize individual

heterogeneity around the means. The demographic interactions used in the final

specification include price interaction terms for income, income squared, and child;

label interaction terms for income and age; and constant terms for income and age.

Additionally, I estimate standard deviation (σ) for each of the parameters. The

signs for the price interaction coefficient estimates indicate that individuals with

higher incomes are generally more sensitive to price, which is counterintuitive based

8Given that the National Organic Standard prohibits the use of GMO ingredients, it is not
terribly surprising that these certifications act as substitutes to some extent; however, the organic
certification involves much more than simply using non-GMO ingredients.
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on economic theory; however, the impact of an increase of one standard deviation

in log income from the average is roughly half that of the price coefficient, so the

effect may not be economically meaningful. Individuals under 16 years old are much

more sensitive to price than adults, as expected. Lastly, the parameter estimate for

the standard deviation of price captures unobserved heterogeneity not explained by

demographics.9

The signs for the non-GMO label interaction coefficient estimates are straight-

forward: wealthier individuals as well as older individuals value the non-GMO label

less, all else equal. Furthermore, the magnitude of the income interaction estimate

is on the same order as the mean parameter estimate for the label, and the estimate

for the age interaction is an order of magnitude larger. Therefore, a one-standard

deviation increase in log income or age from the sample averages effectively cancels

out the positive mean valuation of the label, and beyond that the valuation for

non-GMO may become negative. We observe this in the frequency distribution of

the individual-specific non-GMO label coefficients in Figure 2.2. Consumer tastes

for the non-GMO label coefficient have a wide distribution; and, while the mean

valuation is slightly positive, the distribution is rather evenly distributed around

zero, suggesting that consumer willingness to pay for non-GMO certified RTE ce-

real varies significantly.

9I also calculate own- and cross-price elasticities from the model using Equation 2.13. The
results are intuitive and generally as expected. Since price response is not the primary focus of this
paper, median own- and cross-price elasticities are presented in Appendix Tables B.1, B.2, B.3, B.4,
and B.5.
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2.6.3 Simulated Welfare Effects

To shed light on the potential welfare effects of non-GMO labeling, I simulate

two counterfactual labeling scenarios in the RTE cereal industry as outlined in Sec-

tion 2.5.4: one in which all brands use the non-GMO label over the entire timeframe

of the data, and one in which no brands use the label. To establish an initial baseline

for comparing the simulations, I first use the demand parameters recovered from the

model to construct the price derivative matrix S using Equation 2.12. Then I con-

struct the ownership matrix Ωo for the 50 brands used in the estimation to calculate

price-cost margins using Equation 2.4. Initial mean values for market share, price,

marginal cost, price-cost margin, revenue, and profit for each brand, across all 5,988

markets, are presented in Table 2.5.

To simulate each scenario, I simply update the vector xjt to reflect the new

labeling scenario, and then calculate new values for the individual component of

utility µijt using Equation 2.5 and new product market shares using Equation 2.7.

With updated market shares, new revenue and profit can be calculated for each

brand to assess how each labeling scenario impacts firm profitability. Table 2.6

provides updated mean market share, revenue, profit, and change in profit for each

brand, across all 5,988 markets.

The results indicate that complete labeling (Scenario 1) makes most brands

worse off than in the initial case. A partial rationale for this result is as follows.

Full labeling erodes the market power of firms that previously used the non-GMO
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label in the initial case such that these brands lose their niche of high-valuation

non-GMO consumers to other, less expensive brands that start using the label. At

the same time, since the non-GMO label has only a slightly positive effect on mean

utility, and many consumers have a net negative valuation for the non-GMO label,

complete labeling causes more individuals to choose the outside option. As a result,

the original non-GMO RTE cereal brands as well as the newly-labeled conventional

brands tend to lose market share and become worse off on average. On the other

hand, no labeling (Scenario 2) tends to have an ambiguous effect, with firms both

better and worse off. In this scenario, firms that previously used the non-GMO label

may be able to maintain some portion of their high-valuation consumer base while

also capturing market share of lower-valuation consumers from no-label brands. To

the extent that this is possible, some non-GMO RTE cereal brands may become

better off at the expense of conventional brands.

To estimate changes to consumer surplus, I use the new values of utility, µijt,

to calculate the compensating variation [CV] for each scenario, as defined in Equa-

tions 2.14 and 2.15 based on our stance regarding decision vs. experience utility, for

each individual i in market t. I then take the mean of CV over all 50 individuals

for each market t to calculate a market-level mean CV attributable to each labeling

scenario. In Table 2.7, I present both the volume-weighted and population-weighted

average of mean CV over all 5,988 markets for both CV calculations. If we assume

no discrepancy between decision and experience utility, then complete non-GMO

labeling in the RTE cereal industry (Scenario 1) reduces consumer welfare across

all markets on average. However, when we account for the credence good aspect
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of non-GMO labeling and incorporate the Leggett (2002) correction, complete non-

GMO labeling improves consumer welfare on average. This results indicates that

the “cost” of misperception after the policy change is less than the “cost” before the

policy change. On the other hand, the results for Scenario 2 indicate that consumers

would be worse off with no non-GMO labeling relative to the current baseline, re-

gardless of which calculation is used. In fact, the point estimates are very similar

with and without the Leggett correction, since consumers’ decision and experience

utility effectively converge after the policy change wherein no non-GMO labeled

products exist. Given the positive demand parameter estimate for the non-GMO

label on the mean utility valuation, this result is rather intuitive.

2.7 Conclusion

In this paper, I investigate how voluntary non-GMO food labeling impacts

demand in the RTE cereal industry by estimating a discrete-choice, random coeffi-

cients logit demand model with Nielsen Retail Scanner data for 50 breakfast cereal

brands in 100 DMAs between 2010 and 2014. The results indicate that consumer

tastes for the non-GMO label have a wide distribution, and this heterogeneity plays

a substantial role in individual choices; but, on average, the non-GMO label has a

positive impact on demand. Organic certification has a similar impact on demand

to that of the non-GMO label; however, in combination, the two certifications are

effectively substitutes, and the presence of both certifications on a product does

not have an appreciably greater impact on demand. To shed light on the potential

82



welfare effects of non-GMO labeling, I simulate two labeling scenarios in the RTE

cereal industry: one in which all brands use the non-GMO label over the entire

timeframe of the data, and one in which no brands use the label. The simulation

results indicate that non-GMO labeling in the RTE cereal industry may improve

consumer welfare, but reduce industry profit on average.

The RTE cereal industry has long been a subject of research in empirical indus-

trial organization, with several previous studies investigating the role that non-price

strategies such as advertising, couponing, and new product introductions play in the

industry (Thomas 1999; Nevo 2001; Nevo and Wolfram 2002). This paper builds on

that work and is the first to examine how another non-price marketing strategy—

voluntary quality certification—impacts demand in the RTE cereal industry.

Going forward, there are several other considerations and extensions that may

benefit this work. First, given the emergent nature of the Non-GMO Project Ver-

ified label,10 consumer learning dynamics may factor significantly into the results.

For example, prior to the existence of the non-GMO label, it is quite plausible that

most consumers were uninformed about GMOs. As the label began to appear on

supermarket shelves, those consumers may have gradually become educated about

the label and changed their preferences accordingly. As such, results from a static

demand model that does not account for this may have questionable external va-

lidity. To accurately capture the effect of consumer learning, it may be necessary

to adopt a dynamic framework that incorporates a simple Bayesian learning model

(e.g., Ackerberg 2001, 2003). Additionally, there are several complicating dynamics

10While the organization was founded in 2005, they only began labeling products in 2010.
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worthy of consideration on the supply side as well, such as new product development.

As consumers become educated about GMOs, firms may develop new products to

meet changing consumer tastes, rather than simply labeling their existing prod-

ucts. While these dynamics are not addressed in the current model, they remain

important extensions for future work.
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Figure 2.1: Annual Non-GMO Project Verified RTE Cereal Sales
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Figure 2.2: Distribution of Non-GMO Label Coefficient
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Table 2.1: Summary Statistics

Brand
Non-
GMO

Price Label
Avg.

Market Share No.
MarketsAvg. StDev Avg. StDev

01 BARBARA’S PUFFINS Yes 0.386 0.064 0.296 0.000 0.000 5306
02 G M CHEERIOS No 0.211 0.019 – 0.013 0.006 5988
03 G M CINNAMON TOAST CRUNCH No 0.195 0.018 – 0.012 0.005 5988
04 G M COCOA PUFFS No 0.209 0.021 – 0.003 0.002 5988
05 G M FIBER ONE No 0.222 0.026 – 0.001 0.001 5988
06 G M HONEY NUT CHEERIOS No 0.198 0.019 – 0.020 0.008 5988
07 G M HONEY NUT CHEX No 0.215 0.029 – 0.002 0.001 5988
08 G M LUCKY CHARMS No 0.209 0.021 – 0.010 0.004 5988
09 G M MULTIGRAIN CHEERIOS No 0.267 0.026 – 0.005 0.002 5988
10 G M REESE’S PUFFS No 0.196 0.019 – 0.004 0.002 5988
11 G M RICE CHEX No 0.238 0.031 – 0.003 0.002 5988
12 KASHI AUTUMN WHEAT PROJECT SPK Yes 0.199 0.022 1.000 0.001 0.000 3131
13 KASHI CINNAMON HARVEST Yes 0.203 0.017 0.749 0.001 0.001 4788
14 KASHI GO LEAN Yes 0.232 0.020 0.017 0.001 0.001 5988
15 KASHI GO LEAN CRISP! Yes 0.220 0.020 0.182 0.002 0.001 5988
16 KASHI GO LEAN CRUNCH! Yes 0.217 0.018 0.182 0.003 0.002 5988
17 KASHI HEART TO HEART No 0.254 0.021 – 0.002 0.001 5988
18 KASHI ISLAND VANILLA Yes 0.206 0.027 0.595 0.000 0.000 5795
19 KASHI ORGANIC PROMISE ATMN WHT Yes 0.199 0.020 0.376 0.001 0.000 3846
20 KASHI ORGANIC PROMISE CN HRVST Yes 0.208 0.022 0.021 0.001 0.001 1226
21 KASHI ORGANIC PROMISE STBY FLD Yes 0.334 0.050 0.588 0.000 0.000 5759
22 KEL APPLE JACKS No 0.214 0.026 – 0.005 0.002 5988
23 KEL CORN FLAKES No 0.187 0.019 – 0.005 0.002 5988
24 KEL FROOT LOOPS No 0.213 0.023 – 0.008 0.003 5988

Continued. . .
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Table 2.1 – continued from previous page

Brand
Non-
GMO

Price Label
Avg.

Market Share No.
MarketsAvg. StDev Avg. StDev

25 KEL FROSTED FLAKES No 0.172 0.021 – 0.017 0.008 5988
26 KEL FROSTED MINI-WHEATS No 0.161 0.014 – 0.016 0.008 5988
27 KEL FROSTED MINI-WHT LTTLE BTS No 0.193 0.022 – 0.002 0.002 5985
28 KEL RAISIN BRAN No 0.140 0.015 – 0.009 0.004 5988
29 KEL RAISIN BRAN CRUNCH No 0.167 0.016 – 0.005 0.002 5988
30 KEL RICE KRISPIES No 0.222 0.022 – 0.006 0.003 5988
31 KEL SPECIAL K No 0.234 0.018 – 0.004 0.002 5988
32 KEL SPECIAL K RED BERRY No 0.242 0.020 – 0.005 0.003 5988
33 KEL SPECIAL K VANILLA ALMOND No 0.222 0.019 – 0.002 0.001 5988
34 M-O-M FROSTED MINI SPOONERS No 0.126 0.023 – 0.003 0.003 5972
35 MOM’S BEST NATURALS TSTD WT-FS Yes 0.122 0.025 – 0.000 0.000 3444
36 NATURE’S PATH FLAX PLUS Yes 0.271 0.054 0.900 0.000 0.000 5927
37 NATURE’S PATH HERITAGE MLTGN Yes 0.268 0.058 0.901 0.000 0.000 5661
38 NATURE’S PATH OP PW BRKFST BLB Yes 0.258 0.050 0.898 0.000 0.000 5829
39 POST GRAPE-NUTS Yes 0.139 0.017 0.165 0.003 0.002 5988
40 POST HONEY BUNCHES OF OATS No 0.180 0.016 – 0.017 0.009 5988
41 POST RAISIN BRAN No 0.128 0.015 – 0.003 0.002 5988
42 POST SELECTS GREAT GRAINS No 0.201 0.021 – 0.001 0.001 5980
43 POST SHRD WHT ’N BRN SP SZ Yes 0.188 0.022 0.096 0.001 0.001 5768
44 POST SHREDDED WHEAT SPOON SIZE Yes 0.179 0.025 0.116 0.001 0.001 5988
45 QKR CINNAMON LIFE No 0.176 0.021 – 0.004 0.003 5988
46 QKR LIFE No 0.174 0.021 – 0.005 0.003 5988
47 QKR OATMEAL SQUARES No 0.199 0.030 – 0.003 0.002 5984
48 UNCLE SAM TSTD WL-WT FLK&FLXSD Yes 0.310 0.050 0.779 0.000 0.000 5266

Continued. . .
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Table 2.1 – continued from previous page

Brand
Non-
GMO

Price Label
Avg.

Market Share No.
MarketsAvg. StDev Avg. StDev

49 UNCLE SAM TSTD WWB FLKS&FLSD Yes 0.231 0.060 0.982 0.000 0.000 3336
50 KASHI ORGANIC PROMISE BF PS Yes 0.207 0.018 1.000 0.000 0.000 2454
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Table 2.2: Descriptive Statistics for Demographic Variables by DMA

Designated Marketing Area (DMA) Outside
Market
Share

Average
Popula-

tion

Average
Income

Average
Age

Average
Child

PORTLAND-AUBURN ME 0.636 989166 24913 39.4 0.18
NEW YORK NY 0.796 21165376 27046 38.0 0.18
MACON GA 0.839 671423 21953 35.5 0.22
PHILADELPHIA PA 0.731 8046354 26739 37.9 0.21
DETROIT MI 0.796 4837253 25722 37.2 0.18
BOSTON (MANCHESTER) MA-NH 0.653 6430730 23929 39.2 0.18
SAVANNAH GA 0.824 915541 24933 35.6 0.24
PITTSBURGH PA 0.726 2840470 28157 41.1 0.18
FT WAYNE IN 0.819 719204 25937 37.9 0.19
CLEVELAND OH 0.789 3836869 24641 39.8 0.20
WASHINGTON DC (HAGERSTOWN MD) 0.685 6627815 35519 35.7 0.24
BALTIMORE MD 0.716 2945870 32093 37.1 0.17
FLINT-SAGINAW-BAY CITY MI 0.843 1164550 25992 37.9 0.19
BUFFALO NY 0.920 1601355 23100 38.4 0.17
CINCINNATI OH 0.688 2337744 25149 38.5 0.23
CHARLOTTE NC 0.732 3036643 23051 35.0 0.24
GREENSBORO-HIGH POINT-WINSTON SALEM NC 0.775 1760343 25763 40.1 0.18
CHARLESTON SC 0.827 829479 20106 34.4 0.23
AUGUSTA GA 0.809 702247 22787 32.4 0.29
PROVIDENCE-NEW BEDFORD RI-MA 0.804 1604318 25035 37.8 0.22
BURLINGTON-PLATTSBURGH VT-NY 0.759 850630 23682 38.5 0.23
ATLANTA GA 0.831 6517469 25114 35.3 0.22
INDIANAPOLIS IN 0.840 2934588 27729 36.5 0.23

Continued. . .
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Table 2.2 – continued from previous page

Designated Marketing Area (DMA) Outside
Market
Share

Average
Popula-

tion

Average
Income

Average
Age

Average
Child

MIAMI-FT LAUDERDALE FL 0.859 4491338 23845 39.4 0.18
LOUISVILLE KY 0.797 1726671 26683 38.9 0.18
TRI-CITIES TN-VA 0.764 800730 24245 34.9 0.25
ALBANY-SCHENECTADY-TROY NY 0.825 1391414 23921 38.4 0.19
HARTFORD & NEW HAVEN CT 0.843 2657837 26529 38.4 0.19
ORLANDO-DAYTONA BEACH-MELBOURNE FL 0.890 3812030 24164 38.8 0.15
COLUMBUS OH 0.723 2441594 26505 35.4 0.22
YOUNGSTOWN OH 0.807 665768 21974 40.1 0.22
TAMPA-ST PETERSBURG (SARASOTA) FL 0.900 4456924 24682 42.3 0.14
LEXINGTON KY 0.819 1269440 27182 34.1 0.21
DAYTON OH 0.770 1208131 25138 36.6 0.20
NORFOLK-PORTSMOUTH-NEWPORT NEWS VA 0.710 1914660 27071 35.3 0.19
GREENVILLE-NEW BERN-WASHINGTON NC 0.806 805957 19905 28.6 0.30
COLUMBIA SC 0.842 1074481 24916 39.5 0.20
TOLEDO OH 0.813 1068193 22877 37.1 0.20
WEST PALM BEACH-FT PIERCE FL 0.911 1973037 24279 42.2 0.19
WILMINGTON NC 0.755 469138 25637 36.5 0.18
RICHMOND-PETERSBURG VA 0.763 1476812 28114 38.0 0.19
KNOXVILLE TN 0.735 1346498 24070 41.4 0.16
RALEIGH-DURHAM (FAYETTEVILLE) NC 0.726 3011123 27672 33.0 0.24
JACKSONVILLE FL 0.845 1783125 27431 40.1 0.22
CHARLESTON-HUNTINGTON WV 0.841 1160960 24754 34.8 0.26
HARRISBURG-LANCASTER-LEBANON-YORK PA 0.754 1979810 25843 37.1 0.24

Continued. . .
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Table 2.2 – continued from previous page

Designated Marketing Area (DMA) Outside
Market
Share

Average
Popula-

tion

Average
Income

Average
Age

Average
Child

GREENVILLE-SPARTANBURG SC-ASHEVILLE NC 0.793 2206893 22206 36.3 0.22
FLORENCE-MYRTLE BEACH SC 0.805 752680 19352 36.5 0.23
FT MYERS-NAPLES FL 0.898 1231514 24841 42.6 0.17
ROANOKE-LYNCHBURG VA 0.745 1143505 27664 36.0 0.18
JOHNSTOWN-ALTOONA PA 0.822 759006 25051 41.8 0.16
CHATTANOOGA TN 0.839 948008 24711 36.8 0.21
SALISBURY MD 0.655 414483 23088 43.4 0.19
WILKES BARRE-SCRANTON PA 0.916 1527611 25122 39.3 0.22
CHICAGO IL 0.734 9685854 25338 35.6 0.26
ST LOUIS MO 0.921 3192777 25628 38.1 0.20
ROCHESTER-MASON CITY-AUSTIN MN-IA 0.719 368385 28720 34.6 0.25
SHREVEPORT LA 0.844 1019171 24818 36.0 0.22
MINNEAPOLIS-ST PAUL MN 0.748 4596920 30219 38.3 0.23
KANSAS CITY MO-KS 0.893 2451398 29849 38.1 0.18
MILWAUKEE WI 0.689 2318553 24953 37.9 0.22
HOUSTON TX 0.839 6555421 26218 32.7 0.26
NEW ORLEANS LA 0.898 1707119 22472 35.6 0.24
DALLAS-FT WORTH TX 0.824 7298112 24431 34.4 0.25
AUSTIN TX 0.944 1979407 22766 34.3 0.23
CEDAR RAPIDS-WATERLOO & DUBUQUE IA 0.802 886337 29867 38.0 0.18
MEMPHIS TN 0.808 1811992 26166 37.8 0.17
OMAHA NE 0.751 1100039 29119 35.5 0.24
GREEN BAY-APPLETON WI 0.799 1129587 27551 36.1 0.25
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Table 2.2 – continued from previous page

Designated Marketing Area (DMA) Outside
Market
Share

Average
Popula-

tion

Average
Income

Average
Age

Average
Child

NASHVILLE TN 0.830 2702008 26633 37.3 0.21
MADISON WI 0.777 971305 23616 33.2 0.26
PEORIA-BLOOMINGTON IL 0.837 647925 29075 39.3 0.22
WICHITA-HUTCHINSON PLUS KS 0.794 1211270 21324 33.9 0.28
DES MOINES-AMES IA 0.800 1121856 25505 34.3 0.25
DAVENPORT-ROCK ISLAND-MOLINE IA-IL 0.819 771658 27057 35.8 0.26
MOBILE-PENSACOLA (FT WALTON BEACH) AL-FL 0.910 1409843 24135 39.1 0.22
LITTLE ROCK-PINE BLUFF AR 0.856 1467596 24790 35.8 0.23
TYLER-LONGVIEW (LUFKIN & NACOGDOCHES) TX 0.842 743180 19016 34.3 0.30
SIOUX FALLS (MITCHELL) SD 0.811 684839 30218 34.6 0.24
DENVER CO 0.683 4167898 28775 35.3 0.21
COLORADO SPRINGS-PUEBLO CO 0.787 937746 23605 40.4 0.25
PHOENIX AZ 0.713 5116720 27898 40.0 0.19
BOISE ID 0.854 744072 23509 37.3 0.24
SALT LAKE CITY UT 0.835 3036126 20127 30.8 0.33
TUCSON (SIERRA VISTA) AZ 0.695 1171202 23292 38.1 0.21
ALBUQUERQUE-SANTA FE NM 0.876 1933926 28213 36.9 0.26
BAKERSFIELD CA 0.764 857730 17657 31.5 0.26
EUGENE OR 0.787 610633 24399 38.6 0.16
LOS ANGELES CA 0.764 18261036 25024 36.6 0.20
SAN FRANCISCO-OAKLAND-SAN JOSE CA 0.728 7090684 29896 37.9 0.16
YAKIMA-PASCO-RICHLAND-KENNEWICK WA 0.823 690790 18166 35.6 0.27
SEATTLE-TACOMA WA 0.709 4931355 31002 35.8 0.23

Continued. . .
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Table 2.2 – continued from previous page

Designated Marketing Area (DMA) Outside
Market
Share

Average
Popula-

tion

Average
Income

Average
Age

Average
Child

PORTLAND OR 0.729 3202730 21102 36.9 0.24
SAN DIEGO CA 0.722 3183143 24645 36.6 0.23
MONTEREY-SALINAS CA 0.741 749018 21807 33.9 0.24
LAS VEGAS NV 0.742 2051833 22500 37.6 0.22
SANTA BARBARA-SANTA MARIA CA 0.714 705739 22559 35.1 0.21
SACRAMENTO-STOCKTON-MODESTO CA 0.820 4289848 22477 34.7 0.27
FRESNO-VISALIA CA 0.819 1983349 20782 33.9 0.26
SPOKANE WA 0.849 1126495 27557 39.3 0.19
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Table 2.3: Results from the Logit Specification

Variable OLS 2SLS

Price −9.218∗∗∗ −9.815∗∗∗

(0.056) (0.075)
NGMO Label −0.442∗∗∗ −0.448∗∗∗

(0.008) (0.008)

Instruments – prices
R2 0.983 0.983
Num. obs. 277, 085 277, 085

Note: Each column represents a separate regression. All regressions in-
clude brand and month fixed effects. Standard errors are in parentheses:
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1.
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Table 2.4: Full Model Results

Variable
Means StDev Intxn with Demographic Vars
β σ Income IncomeSq Age Child

Price -17.679 1.531 -8.107 -9.913 -64.246

NGMO Label 1.386 2.904 -1.987 -11.498

Constant -14.902a 2.609 8.995 7.075
(1.228)

Organic 1.293a

(0.043)
Non-GMO×Organic -1.530a

(0.051)
Kids 0.486a

(0.018)
Sugar 0.018a

(0.001)
New Product -0.546a

(0.043)

GMM Obj. 0.147
No. Obs. 277,085
a Estimated using a minimum-distance procedure.

Note: Unless otherwise specified, all parameters are GMM estimates. All regressions
include brand and month fixed effects. Standard errors are in parentheses.
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Table 2.5: Initial Baseline for Simulation

Brand Market
Share

Price Marginal
Cost

Margin % Margin Revenue Profit

1 0.0003 0.3571 0.6076 -0.2505 -0.8400 0.0001 0.0000
2 0.0161 0.2104 0.0096 0.2009 0.9238 0.0034 0.0033
3 0.0146 0.1910 0.1082 0.0828 0.4350 0.0027 0.0012
4 0.0045 0.2024 0.0787 0.1237 0.5998 0.0009 0.0005
5 0.0020 0.2224 -0.1702 0.3926 1.6803 0.0004 0.0007
6 0.0244 0.1938 0.1087 0.0850 0.4362 0.0047 0.0020
7 0.0026 0.2068 0.1289 0.0779 0.3847 0.0005 0.0002
8 0.0114 0.2047 -0.0451 0.2498 1.1767 0.0023 0.0027
9 0.0057 0.2632 0.1580 0.1052 0.4113 0.0015 0.0007
10 0.0053 0.1911 0.1038 0.0873 0.4527 0.0010 0.0005
11 0.0042 0.2251 0.1393 0.0858 0.3609 0.0009 0.0003
12 0.0008 0.2006 0.1432 0.0575 0.2750 0.0002 0.0001
13 0.0013 0.2009 0.1582 0.0427 0.2141 0.0003 0.0001
14 0.0017 0.2315 0.3026 -0.0711 -0.2681 0.0004 -0.0001
15 0.0022 0.2164 0.1159 0.1005 0.4549 0.0005 0.0002
16 0.0040 0.2151 0.1062 0.1088 0.5038 0.0009 0.0005
17 0.0025 0.2532 0.2519 0.0013 0.0274 0.0006 0.0001
18 0.0005 0.2014 0.1091 0.0923 0.4464 0.0001 0.0000
19 0.0010 0.1991 0.2892 -0.0901 -0.5139 0.0002 0.0000
20 0.0014 0.2024 0.1376 0.0649 0.3269 0.0003 0.0001
21 0.0003 0.3326 0.5123 -0.1797 -0.5431 0.0001 -0.0001
22 0.0059 0.2068 0.0479 0.1589 0.6959 0.0012 0.0008
23 0.0062 0.1836 0.1090 0.0747 0.4021 0.0011 0.0004
24 0.0091 0.2064 0.1070 0.0994 0.4666 0.0018 0.0009
25 0.0207 0.1656 0.1040 0.0617 0.3755 0.0034 0.0012
26 0.0188 0.1587 0.1014 0.0572 0.3529 0.0029 0.0010
27 0.0032 0.1885 0.1087 0.0798 0.4191 0.0006 0.0003
28 0.0116 0.1359 0.0809 0.0550 0.4055 0.0015 0.0006
29 0.0055 0.1646 0.1044 0.0601 0.3565 0.0009 0.0003
30 0.0070 0.2182 0.1061 0.1121 0.5106 0.0015 0.0008
31 0.0056 0.2336 -0.3699 0.6035 2.5115 0.0013 0.0032
32 0.0068 0.2384 0.3597 -0.1214 -0.4742 0.0016 -0.0007
33 0.0028 0.2210 1.0154 -0.7944 -3.1855 0.0006 -0.0024
34 0.0066 0.1145 0.0834 0.0311 0.2978 0.0006 0.0002
35 0.0003 0.1139 0.0853 0.0285 0.2577 0.0000 0.0000
36 0.0003 0.2548 0.4187 -0.1639 -0.5812 0.0001 -0.0000
37 0.0003 0.2497 0.2932 -0.0435 -0.2504 0.0001 0.0000
38 0.0002 0.2310 0.2062 0.0247 0.1461 0.0000 0.0000
39 0.0041 0.1382 0.0973 0.0409 0.2967 0.0005 0.0002

Continued. . .
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Table 2.5 – continued from previous page

Brand Market
Share

Price Marginal
Cost

Margin % Margin Revenue Profit

40 0.0238 0.1763 0.1288 0.0476 0.2725 0.0042 0.0012
41 0.0038 0.1233 0.0870 0.0364 0.3010 0.0004 0.0001
42 0.0022 0.1954 0.1428 0.0526 0.2776 0.0004 0.0001
43 0.0014 0.1872 0.1267 0.0605 0.3204 0.0003 0.0001
44 0.0022 0.1769 0.1215 0.0554 0.3112 0.0004 0.0001
45 0.0060 0.1688 0.1237 0.0451 0.2673 0.0010 0.0003
46 0.0077 0.1693 0.1260 0.0433 0.2585 0.0013 0.0003
47 0.0051 0.1947 0.1339 0.0608 0.3095 0.0010 0.0003
48 0.0002 0.2944 0.3284 -0.0340 -0.1055 0.0000 -0.0000
49 0.0002 0.2162 0.0564 0.1598 0.7458 0.0001 0.0000
50 0.0006 0.2069 0.1144 0.0925 0.4729 0.0001 0.0001

Note: The values in each column represent the intial volume-weighted mean
values of a given variable for each brand, across all 5,988 markets.
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Table 2.6: Simulated Labeling Scenario Results

Brand
1: Complete Labeling 2: No Labeling

Market
Share

Revenue Profit Profit
Chg

Market
Share

Revenue Profit Profit
Chg

1 0.0009 0.0004 -0.0001 -0.0001 0.0006 0.0002 -0.0001 -0.0001
2 0.0064 0.0013 0.0012 -0.0021 0.0153 0.0032 0.0032 -0.0000
3 0.0057 0.0011 0.0005 -0.0007 0.0140 0.0026 0.0012 -0.0000
4 0.0017 0.0003 0.0002 -0.0003 0.0043 0.0009 0.0005 -0.0000
5 0.0008 0.0002 0.0002 -0.0005 0.0019 0.0004 0.0007 -0.0000
6 0.0094 0.0018 0.0008 -0.0012 0.0233 0.0045 0.0019 -0.0001
7 0.0009 0.0002 0.0001 -0.0001 0.0024 0.0005 0.0002 -0.0000
8 0.0044 0.0009 0.0010 -0.0017 0.0108 0.0022 0.0026 -0.0000
9 0.0032 0.0008 0.0008 0.0001 0.0054 0.0014 0.0007 -0.0000
10 0.0019 0.0004 0.0002 -0.0003 0.0050 0.0009 0.0004 -0.0000
11 0.0016 0.0003 0.0001 -0.0001 0.0039 0.0008 0.0003 -0.0000
12 0.0003 0.0001 0.0000 -0.0000 0.0040 0.0008 -0.0010 -0.0011
13 0.0005 0.0001 0.0000 -0.0001 0.0052 0.0010 -0.0012 -0.0012
14 0.0008 0.0002 -0.0000 0.0001 0.0016 0.0004 -0.0001 -0.0000
15 0.0008 0.0002 0.0001 -0.0001 0.0025 0.0005 0.0004 0.0002
16 0.0016 0.0004 0.0002 -0.0002 0.0043 0.0009 0.0005 0.0000
17 0.0013 0.0003 0.0001 -0.0000 0.0024 0.0006 0.0001 0.0000
18 0.0002 0.0000 0.0000 -0.0000 0.0016 0.0003 0.0004 0.0004
19 0.0004 0.0001 0.0000 0.0000 0.0016 0.0003 0.0000 0.0000
20 0.0007 0.0001 0.0001 -0.0000 0.0014 0.0003 0.0001 0.0000
21 0.0005 0.0002 -0.0003 -0.0003 0.0006 0.0002 -0.0002 -0.0001
22 0.0023 0.0005 0.0003 -0.0005 0.0056 0.0011 0.0007 -0.0000
23 0.0023 0.0004 0.0002 -0.0002 0.0059 0.0011 0.0004 -0.0000

Continued. . .
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Table 2.6 – continued from previous page

Brand
1: Complete Labeling 2: No Labeling

Market
Share

Revenue Profit Profit
Chg

Market
Share

Revenue Profit Profit
Chg

24 0.0035 0.0007 0.0003 -0.0005 0.0086 0.0017 0.0008 -0.0000
25 0.0079 0.0013 0.0006 -0.0007 0.0198 0.0032 0.0012 -0.0001
26 0.0073 0.0011 0.0005 -0.0005 0.0180 0.0028 0.0010 -0.0000
27 0.0011 0.0002 0.0001 -0.0001 0.0030 0.0006 0.0002 -0.0000
28 0.0051 0.0007 0.0003 -0.0003 0.0111 0.0015 0.0006 -0.0000
29 0.0021 0.0003 0.0001 -0.0002 0.0053 0.0008 0.0003 -0.0000
30 0.0027 0.0006 0.0004 -0.0005 0.0066 0.0014 0.0008 0.0000
31 0.0023 0.0005 0.0003 -0.0029 0.0054 0.0012 0.0029 -0.0003
32 0.0030 0.0007 -0.0003 0.0004 0.0065 0.0015 -0.0007 0.0000
33 0.0011 0.0002 -0.0017 0.0006 0.0027 0.0006 -0.0024 -0.0000
34 0.0039 0.0003 0.0001 -0.0001 0.0064 0.0006 0.0002 -0.0000
35 0.0002 0.0000 0.0000 -0.0000 0.0003 0.0000 0.0000 -0.0000
36 0.0001 0.0000 -0.0000 0.0000 0.0009 0.0002 -0.0001 -0.0000
37 0.0001 0.0000 0.0000 -0.0000 0.0009 0.0002 -0.0000 -0.0001
38 0.0001 0.0000 0.0000 -0.0000 0.0006 0.0001 0.0000 0.0000
39 0.0019 0.0002 0.0001 -0.0001 0.0050 0.0007 0.0002 0.0001
40 0.0093 0.0016 0.0004 -0.0007 0.0230 0.0040 0.0011 -0.0000
41 0.0021 0.0002 0.0001 -0.0001 0.0036 0.0004 0.0001 -0.0000
42 0.0009 0.0002 0.0001 -0.0001 0.0021 0.0004 0.0001 -0.0000
43 0.0006 0.0001 0.0000 -0.0000 0.0016 0.0003 0.0001 -0.0000
44 0.0009 0.0002 0.0001 -0.0001 0.0023 0.0004 0.0001 0.0000
45 0.0024 0.0004 0.0001 -0.0002 0.0058 0.0009 0.0003 -0.0000
46 0.0031 0.0005 0.0001 -0.0002 0.0074 0.0012 0.0003 -0.0000

Continued. . .
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Table 2.6 – continued from previous page

Brand
1: Complete Labeling 2: No Labeling

Market
Share

Revenue Profit Profit
Chg

Market
Share

Revenue Profit Profit
Chg

47 0.0019 0.0004 0.0001 -0.0002 0.0049 0.0009 0.0003 -0.0000
48 0.0001 0.0000 -0.0000 -0.0000 0.0006 0.0002 0.0001 0.0001
49 0.0001 0.0000 0.0000 -0.0000 0.0012 0.0002 0.0002 0.0002
50 0.0002 0.0000 0.0000 -0.0001 0.0028 0.0006 0.0002 0.0002

Note: The values in each column represent the mean volume-weighted values of a given
variable in the simulated scenario for each brand, across all 5,988 markets.
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Table 2.7: Welfare Effects of Simulated Labeling Scenarios

Variable Scenario 1:
Complete Labeling

Scenario 2:
No Labeling

No
Correction

Leggett
Correction

No
Correction

Leggett
Correction

Volume-Weighted Mean CV -0.08708 0.00933 -0.01496 -0.01468
Population-Weighted Mean CV -0.03151 0.03248 -0.01450 -0.01385

Note: To calculate Mean CV, individual compensating variation, as defined in Equa-
tion 2.14 and Equation 2.15, is averaged over all 50 individuals in a given market t.
A weighted-average of Mean CV is then calculated over all 5,988 markets.
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Chapter 3: Produce Growers’ Cost of Complying with the Food Safety

Modernization Act∗,†

3.1 Introduction

The enactment of the Food Safety Modernization Act [FSMA] gave the Food

and Drug Administration [FDA] authority to regulate the growing, harvesting, pack-

ing, and holding of fresh fruits and vegetables and represents a major shift in the

agency’s approach from outbreak response to prevention-based controls across the

food supply. Data from the Centers for Disease Control and Prevention indicate

that fruits and vegetables accounted for 46% of foodborne illness outbreaks dur-

ing the period 1998-2008, a larger share than any other category of food (Painter

2013). As one of the implementing rules for FSMA, the FDA has implemented a rule

(known popularly as the Produce Rule) intended to reduce health risks associated

with foodborne illness from consumption of fresh produce. That rule, which became

effective in January of 2016, requires operational changes to meet standards asso-

∗This chapter is co-authored with Erik Lichtenberg, Department of Agricultural and Resource
Economics, University of Maryland, College Park.

†This material is based upon research supported by the National Institute of Food and Agri-
culture, Specialty Crop Research Initiative, Award No. 2011-51181-30767. Any opinions, findings,
conclusions, or recommendations expressed in this publication are those of the author(s) and do
not necessarily reflect the view of the U.S. Department of Agriculture.
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ciated with agricultural water; biological soil amendments; domesticated and wild

animals; employee training and health and hygiene; and equipment, tools, buildings,

and sanitation. Those changes could be costly.

Small farms and sustainable growers have voiced fears that the Rule will have

adverse competitive effects. Small farms worry that the costs of complying with

the new rule may be disproportionately burdensome and could drive them out of

business (Hassanein 2011; Paggi et al. 2013; Knutson et al. 2014; Ribera et al. 2016).

Farms employing sustainable agricultural practices are concerned that the Rule may

make it impossible for them to use the biological soil amendments and livestock

grazing practices in integrated agricultural systems on which they currently rely.

Both concerns suggest that the Rule may adversely affect important segments of

the produce industry (Ribera and Knutson 2011) that are subject to an increasing

focus nationwide in terms of marketing, consumption, and federal policy (Low 2015).

There is very little publicly available information on the likely cost of the

actions required under the new Rule. To help fill that information gap, we use

data from an original national survey of fruit and vegetable growers and construct a

larger sample than most comparable studies. We examine whether compliance with

the standards in the Produce Rule is likely to be disproportionately burdensome to

small and/or sustainable farm operations. To investigate that question, we analyze

how the costs of food safety practices required by the Produce Rule vary with farm

size and use of sustainable farming practices using a double hurdle model to control

for selectivity in both using food safety practices and reporting expenditures on

them. We use our estimates to quantify how the cost burden of compliance varies
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with farm size. We then explore the policy implications of exemptions to the Rule

by simulating how changes to the exemption thresholds for farm revenue and share

of direct sales might affect the cost burden of each food safety practice on farms at

the threshold.

3.2 Background

3.2.1 Relevant Literature

Several recent studies analyze the costs of implementing practices made manda-

tory by the new on-farm produce safety standards. Hardesty and Kusunose (2009)

use data from a survey of 49 California growers to estimate the compliance costs

for food safety standards imposed by the California Leafy Greens Marketing Agree-

ment [LGMA], which are similar to those required under the proposed Produce

Rule. They find that growers’ seasonal food safety costs more than doubled af-

ter implementation of the LGMA, and the largest growers benefit from significant

economies of scale. Ribera et al. (2012) conduct three case studies of food safety

outbreaks in muskmelon, spinach, and tomatoes and use a survey of producers par-

ticipating in the California LGMA to estimate the compliance costs for new food

safety standards. They find that the costs incurred by producers due to food safety

outbreaks are much greater than LGMA compliance costs, and the most significant

compliance cost increases are attributable to third party audits, staffing, and water

testing. Paggi et al. (2013) use results from several studies to develop an example

of the impact and compliance costs of LGMA-type standards for Florida cabbage
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producers and find that for a representative grower, the probability of operating

at a net loss (in present value terms) over a 2-year period increased by 17%. To

assess the impacts from FSMA, Ribera et al. (2014) develop representative farms

for cabbage, cantaloupe, citrus, onion, spinach, tomato, and watermelon production

in California, Florida, and Texas. They find that the cost of complying with the

Produce Rule is not size neutral and can have negative impacts on the profitability

of small farms. A University of Minnesota study uses data collected from in-person

and telephone interviews with small and mid-sized vegetable farmers to estimate to-

tal costs incurred for Minnesota vegetable growers to adopt GAPs practices on their

farms (Driven to Discover 2012). The study also finds that compliance costs exhibit

significant economies of scale—small farms in Minnesota would face food safety costs

equal to 10% of gross revenue, while average-sized farm operations would incur costs

around 2% of gross revenue. Lichtenberg and Page (2016) use data from a survey

of Mid-Atlantic leafy greens and tomato growers to assess the likely cost burden of

adopting on-farm food safety measures like those required under FSMA. They find

substantial economies of scale but a fairly modest cost burden on farms of all sizes.

Concerns about the burdens imposed on small producers—and the resulting

potential for increased industry concentration—have been recurring issues in discus-

sions of food safety regulation. In the late 1990s, compliance with Hazard Analysis

and Critical Control Points (HACCP) regulations in meat packing and processing

was believed to exhibit economies of scale because large firms had in-house testing

facilities, technicians, and other investments in physical and human capital that

small firms did not have, as well as being able to benefit from bulk discounts for
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outside testing services (MacDonald and Crutchfield 1996; Loader and Hobbs 1999;

Unnevehr and Jensen 1999; Antle 1999). Similarly, the cost burden of adopting

global ISO 9000 food safety certification standards was thought to involve propor-

tionally greater resources for small firms than large ones (Holleran et al. 1999).

The empirical evidence on this score is decidedly mixed. An econometric

analysis by Antle (2000) found no evidence of differences in HACCP compliance costs

in U.S. beef, pork, and poultry processing. An econometric study by Hooker et al.

(2002), by contrast, found that small meat processors incurred higher compliance

costs, while Muth et al. (2003) found that meat and poultry plants classified as

small or very small under HACCP regulations were more likely to exit during the

period of HACCP implementation, although the differential effect of regulation on

exit by plant size was quantitatively quite small.

3.2.2 The Food Safety Modernization Act and the Produce Rule

FSMA was signed into law in January of 2011. While a growing number of

supermarket chains, commodity group organizations and others had been instituting

private food standards for food quality and safety over the preceding decade, a series

of bacterial outbreaks during the mid-2000s indicated that such voluntary efforts

would be insufficient to provide adequate levels of safety (Henson and Reardon

2005; Paggi et al. 2013). The FDA published the original proposed Produce Rule,

officially known as Standards for the Growing, Harvesting, Packing, and Holding of

Produce for Human Consumption, in January of 2013. The Rule was finalized in
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November of 20153 and became effective in January of 2016. It establishes standards

across various aspects of agricultural production, most notably with regards to:

(1) agricultural water; (2) biological soil amendments of animal origin; (3) health

and hygiene; (4) intrusion of domesticated and wild animals; and (5) sanitation of

equipment, tools, and buildings.

For agricultural water that contacts produce or food-contact surfaces, the Rule

establishes quality standards, periodic inspection and testing provisions, and treat-

ment requirements for water not meeting sanitary standards. For soil amendments

of animal origin, the Rule establishes treatment standards and application require-

ments for treated and untreated soil amendments. For health and hygiene, the rule

establishes hygienic practices and training requirements for all farm personnel who

handle produce covered by the Rule. For intrusion of domesticated and wild animals,

the Rule establishes waiting periods between grazing and crop harvest for domes-

ticated animals and monitoring requirements for wild animal intrusion. Lastly, the

Rule establishes sanitary standards for equipment and tools that come in contact

with produce, as well as requirements for pest control, hand washing and toilet fa-

cilities, and sewage and trash disposal. In addition to these measures, the Rule also

requires recordkeeping and documentation to show compliance with each standard.

The Produce Rule applies to farms that grow and sell produce usually con-

sumed raw and not intended for commercial processing (e.g., canning, etc.). Farms

whose annual produce sales averaged less than $25,000 during the preceding three

3The FDA revised the Rule twice in the interim period, each time based on feedback from a
public comment period.
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years are exempt. Farms that have three-year annual produce sales of less than

$500,000 and sell a majority of food directly to a qualified end-user—a consumer,

restaurant, or retail food establishment (e.g., a supermarket, etc.) located in-state

or within 275 miles of the farm—are not subject to the food safety standards in the

Rule.4 Additionally, the compliance dates in the Rule allow more time for smaller

farms to adopt the established safety provisions. Farms with annual produce sales

between $25,000 and $250,000—classified as “very small” farms in the Rule—have

four years after the Rule’s effective date to comply with most provisions. Farms with

annual produce sales between $250,000 and $500,000—classified as “small” farms in

the Rule—have three years. Farms with annual produce sales over $500,0005 have

two years. Furthermore, the compliance dates for water quality standards (including

testing and recordkeeping) are an additional two years after the compliance dates

for the rest of the Rule.

3.3 Data

3.3.1 Survey Design

We use data from an original national survey of fruit and vegetable growers

to analyze the likely cost burden of produce safety measures required under the

Product Rule.6 The survey includes background questions on farm economics, farm

4This provision is an amendment to FSMA introduced by Senators Jon Tester and Kay Hagan
and is commonly referred to as the Tester-Hagan Exemption or, more formally, direct marketing
modified requirements.

5The Produce Rule does not designate a name for farms that fall into this category, so we refer
to them as “medium/large” farms throughout the text and tables.

6Appendix C.2 includes a full version of the survey instrument used.
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characteristics, and use of marketing channels in addition to questions regarding use

and treatment of soil amendments, microbial testing, field monitoring, remedial food

safety actions, preventive food safety actions, and recordkeeping. Soil amendment

questions covered whether animal-based soil amendments were used; whether they

were treated, and if so, at what cost; and the time interval between application

of soil amendments and crop harvest. Microbial testing questions covered whether

the farm collected water, soil amendment, and/or crop samples for testing, and

if so, at what cost (including employee wages, materials, etc.). Field monitoring

questions covered whether the fields were monitored for animal intrusion, flooding,

and/or other contamination; how often these events were observed; and the costs

associated with monitoring the fields. Remedial action food safety questions covered

whether any remedial actions (e.g., sanitation, product disposal, water treatment,

etc.) were taken following test results, flooding, and/or animal intrusion, and if so,

at what cost. Preventive food safety questions covered whether harvest containers

were sanitized prior to harvest or if new containers were used, whether crops were

washed prior to sale, whether the farm used third party food safety audits, and

whether precautions were taken with regards to employee sanitation and hygiene

(e.g., training, tool sanitation, toilet and hand washing facilities, etc.). Lastly,

recordkeeping questions covered whether the farm kept written records for food

safety practices, and if so, how many hours each week were spent doing so.
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3.3.2 Survey Administration

The survey was designed and administered electronically using Qualtrics sur-

vey software. It included skip logic so respondents only answered questions relevant

to their farm operation. Data was collected in person at eight major fruit and

vegetable grower conferences across the U.S. and through online grower listservs

provided by several state fruit and vegetable growers’ associations, university ex-

tension services, and other grower organizations via a password-protected Internet

survey. To address concerns related to the Rule’s impact on sustainable growers, we

also surveyed members of listservs for several sustainable grower organizations and

attendees at a major sustainable grower conference.7 At the conferences, a booth

was set up alongside other exhibitors in the trade show or a similar high traffic area,

and attendees passing by the booth were asked to participate in the survey, after

which they could enter a drawing for a chance to win an Apple iPad. After con-

senting to participate, respondents completed the fifteen-minute survey on tablet

computers, providing information about the 2014 growing season. Upon completing

the survey, the software automatically redirected each respondent to a separate form

in which she could choose to enter the iPad drawing.

The survey sent to grower listservs was identical to the version administered at

the grower conferences, except that respondents completed the survey independently

on their own web-enabled device, typically either a personal computer or tablet.

Members of each listserv were sent an email soliciting their participation in the

7Appendix C.1 includes detailed lists of grower conferences and online listservs from which
responses were collected.
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survey. Each email included a description of the survey and research goal, informed

consent agreement, our contact information, and a web link and password to take the

survey. We used the password to identify the listserv through which the respondent

was contacted. The survey software uses browser cookies to prevent respondents

from taking the survey more than once. As an incentive to participate, online

respondents were given the same offer to enter a drawing for an iPad after completing

the survey. All the survey collectors for the grower listservs remained open until

May 2, 2015.

3.3.3 Summary Statistics

In total, 394 growers completed the survey. A large majority (277, about 70%)

came from listservs while the remainder (117, about 30%) completed the survey

at a grower convention (Table 3.1). Almost 80% of the respondents (311) grow

vegetables, 193 grow berries, and 194 grow fruit and tree nuts (many growers raise

produce from more than one category).

Our sample is weighted towards commercial-size farms compared to the 2012

USDA Agricultural Census as measured by revenue and acreage (Figure 3.1). In

terms of regional distribution, our sample consists of relatively more farms in the

Northeast and South and fewer farms in the West than the U.S. as a whole (Ta-

ble 3.2). The West consists of states that represent a significant portion of large

fruit and vegetable agribusiness growers in the U.S. (e.g., California, Arizona, etc.)

that account for a majority of the produce consumed nationwide. Many of these
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Western growers were already obligated to meet food safety standards under the

LGMA, which are quite similar to those required under the Produce Rule. The

geographic distribution of respondents suggests that, while our sample may be less

representative of total U.S. fruit and vegetable production, it is more representative

of the population of U.S. produce growers likely to be affected by the Produce Rule,

which is ultimately of greater relevance to the issues we wish to address.

Overall, one-third of our sample comes from members of sustainable grower

organizations,8 with the balance comprised of members of conventional grower orga-

nizations. In terms of farm size, sustainable growers in our sample tend to operate

smaller farms than conventional growers, with about half of sustainable growers

falling into the exempt farm classification compared to just over a quarter of con-

ventional growers (Table 3.3). On average, growers in our sample sell more than

half their produce directly to consumers (Table 3.1).

Respondents from grower conventions and listservs are quite similar in most

respects, the major difference being that almost all respondents identified as sus-

tainable came from listservs. Likely for that reason, respondents from conventions

are slightly larger, sell less of their output direct to consumers, do more sampling

and testing, and are a little less likely to be diversified. All of those differences are

small, however.

Based on current sales and practices, over three-fourths of our sample are

exempt from the Produce Rule, which is almost evenly split based on the farm size

8To be concise, we refer to members of sustainable grower organizations as “sustainable growers”
and members of conventional grower organizations as “conventional growers” throughout the text.
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and the Tester-Hagan exemptions (Table 3.3). Almost all very small growers and

three-fourths of small growers in our sample qualify for the Tester-Hagan exemption.

In terms of farming practices, nearly all sustainable growers in our sample qualify

for an exemption, with over half exempt based on size, and about two-thirds of

conventional growers are exempt.

3.4 Profit Maximizing Choice of Food Safety Practices: Theory and

Econometric Specification of Expenditures

We are interested in how the costs of implementing food safety practices re-

quired under the Produce Rule vary with respect to farm size. To fix ideas, consider

a grower using productive inputs X1, . . . , XJ and food safety practices Z1, . . . , ZK

to produce a vector of marketable outputs Y on a farm of fixed acreage A using

a technology represented by a transformation function f(Y,X,Z;A) ≤ 0. Here

marketable output represents a combination of quantity and perceived quality (i.e.,

marketable outputs can differ in terms of quality (locally grown, sustainably grown,

heirloom variety, etc.) and thus price received).

The grower wants to maximize profit:

π = pY −wX− vZ− F s.t. f(Y,X,Z;A) ≤ 0 (3.1)

where p, w, v, and F are vectors of output prices, input prices, food safety prac-

tice costs, and fixed costs, respectively. The necessary conditions imply optimal
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use of productive inputs X∗j (p,w,v;A) and food safety practices Z∗k(p,w,v;A).

Expenditure on food safety practice k is

ek = vkZ
∗
k .

The change in expenditure on food safety practice k with respect to farm size A is

∂ek
∂A

= vk
∂Zk
∂A

=
vkZk
A

∂Zk
∂A

A

Zk

The elasticity of expenditure on food safety practice k with respect to farm

size A is thus

ηk ≡
A

ek

∂ek
∂A

=
∂Zk

∂A
Zk

A

(3.2)

If the marginal change in use of food safety practice k as size (acreage) increases

is less than the average, then expenditure on food safety practice k is inelastic.

Inelastic expenditure on a food safety practice implies that larger operations spend

less per acre than smaller ones; elastic expenditure implies that larger operations

spend more per acre than smaller ones; and unit elastic expenditure implies that

expenditure per acre is constant (invariant with respect to acreage).

Since we are interested in estimating the elasticities of food safety practices re-

quired under the Produce Rule, we assume a log-linear specification of expenditures.
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For grower j, we have

log(ejk) = βk +
∑
i

γiTji + ηk log(Aj) + ujk (3.3)

Here Tji represents variables like crop type and an indicator for sustainable farming

practices assumed to shift expenditures on average and ujk is a normally distributed

white noise error representing all unobservables that influence expenditure on food

safety practice k. We are especially interested in the coefficient of the “sustain-

able” indicator, i.e., average differences in compliance cost between conventional

and sustainable growers, since the latter have been among the most vocal in ex-

pressing concerns about the impacts of compliance with the Produce Rule on their

operations.

For food safety measures that are part of a larger group of practices (e.g., em-

ployee training is one action in employee sanitation and hygiene, etc.), we stream-

lined the survey by asking respondents to provide total cost estimates for the overall

group of food safety practices: all forms of testing, all field inspections, all harvest

container sanitation measures, all employee sanitation and hygiene measures, and

treatment of all soil amendments. For these food safety practices, we control for

each specific action by including indicator variables for each type of action used by

the grower. For these groups of practices, we specify expenditures as

log(ejk) = βk +
∑
m

(βkmPjkm) +
∑
i

γiTji + log(Aj)
∑
m

(Pjkmηkm) + ujk (3.4)
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where Pjkm is an indicator variable taking on a value of 1 if grower j uses individual

action m within the group of practices k. To assess robustness, we also estimate a

model where the elasticities of all practices within a group are assumed equal, as

specified in Equation 3.3.

3.5 Estimation Method

Estimating the parameters of the models specified in the preceding section

is complicated by two factors: (1) we observe cost only for growers who actually

use a food safety practice and (2) some growers who used a food safety practice

did not report cost. For example, between 6% and 22% of respondents in our

sample reported not using one or more of these practices, with as many as 40-60%

reporting not doing any sampling, inspection, or third party audits. Of those who

reported using these food safety practices, between 5% and 30% failed to report

cost. Not surprisingly, non-response rates for cost were substantially higher among

respondents who completed the survey at grower conventions (20-50% of users) than

those responding from listserv solicitations (3-17% of users).

It is likely that unobserved factors affect the probability of a grower using

a specific food safety practice, the cost of implementing that practice, and the

probability that a grower fails to report the cost of that practice. We therefore

estimate a double hurdle model to control for potential selection bias from both

non-use and non-reporting among users. We specify the probability that grower j

uses food safety practice (or group of food safety practices) k as
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Pr(vjk ≤ ξk + µkOj +
∑
i

ζiTji + θk log(Aj)) = Φ(ξk + µkOj +
∑
i

ζiTji + θk log(Aj)) (3.5)

where vjk is a normally distributed white noise error representing all unobservables

that influence the choice of whether to use food safety practice k, and Φ(·) denotes

a standard normal cumulative distribution.

The selection equation contains two variable not included in the expenditure

equation: Oj, an indicator taking on a value of 1 if grower j has a contractual

obligation to use one or more food safety practices, and the share of output sold

to wholesalers/repackers, mass merchandisers, exporters, brokers, or other outlets

(included in the set of grower characteristics Tji). These two variables thus serve as

instruments to identify selection.

A substantial theoretical literature suggests that marketing channels may be

important in creating incentives for growers to adopt food safety practices (Henson

and Caswell 1999; Segerson 1999; Fares and Rouviere 2010; Hennessy et al. 2001;

Henson and Reardon 2005; Fulponi 2006; Carriquiry and Babcock 2007; Rouvière

and Caswell 2012). A foodborne illness outbreak can damage the reputation of

a downstream agent that sells directly to consumers (such as a grocery store or

restaurant), and, if a seller is found liable, can result in direct financial losses as

well. Therefore, in some marketing channels downstream buyers may require pro-

duce growers to use certain food safety practices, motivating our use of Oj as an

instrument for selection. Farmers that sell all of their output direct to consumers
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have no contractual obligations; about 27% of farmers with some direct sales fall

into this category and are thus recorded as having no contractual obligations to use

any food safety practices. (Oj = 0 if the share of direct sales = 100%). To avoid

collinearity, we omit the share of output sold to grocery retailers and foodservice

operations, which are primarily local and thus have a high degree of traceability

and large reputation effects. The same considerations lead us to drop the share of

output sold direct to consumers from the selection equation as well.

We include the indicator of sustainable production practices in the selection

equation to examine how sustainable and conventional growers differ in their use of

food safety practices. There is considerable evidence that consumers view sustain-

ably grown food as safer than conventionally grown foods (see Bourn and Prescott

2002; Yiridoe et al. 2005; Hughner et al. 2007, for example). Additionally, sustain-

able growers tend to utilize more direct-to-consumer marketing arrangements such

as CSAs and farmers’ markets to sell their produce (Martinez 2010) where trace-

ability is likely high. These considerations suggest that sustainable growers may be

less likely than conventional growers to invest in food safety practices, other than

washing product to ensure its attractiveness to potential buyers.

Now combine the selection and expenditure models for each practice. Let Ijk

be an indicator taking on a value of 1 if grower j uses practice k and a value of 0

if grower j does not use practice k. Normalize the variance of vjk to 1 and let σ

denote the variance of ujk and ρ denote the correlation between ujk and vjk. The log

likelihood function for a single food safety practice taking into account both non-use

and non-reporting is:
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log(Lk) =

∑
j|Ijk=0

log Φ

(
−

(
ξk + µkOj +

∑
i

ζiTji + θk log(Aj)

))

+
∑

j|Ijk=1,ejk=0

log Φ

(
ξk + µkOj +

∑
i

ζiTji + θk log(Aj)

)

+
∑

j|Ijk=1,ejk>0

log Φ

(
ξk + µkOj +

∑
i ζiTji + θk log(Aj) + ρ

σ (log(ejk)− βk −
∑
i γiTji − ηk log(Aj))√

1− ρ2

)

+
∑

j|Ijk=1,ejk>0

log

(
1

σ
φ

(
log(ejk)− βk −

∑
i γiTji − ηk log(Aj)

σ

))
(3.6)

The first term in the log likelihood function is the probability that grower j does

not use practice k, summed up over all growers not using practice k. The second

term is the probability that grower j uses practice k, summed up over all growers

using practice k but not reporting expenditures on practice k. The third term is the

probability that grower j uses practice k conditional on grower j reporting positive

expenditures on practice k, summed up over all growers reporting expenditures on

practice k. The fourth term is the probability of observing reported expenditures

log(ejk), summed up over all growers reporting expenditures on practice k. The third

and fourth terms combined thus represent the unconditional probability of observing

reported expenditures log(ejk) summed up over all growers reporting expenditures

on practice k.

The model for groups of practices is analogous. We estimate two versions of

the model for cases where total expenditures are reported for groups of practices.

As presented in Equation 3.4, the main specification adds individual practices in-

tercepts,
∑

m(Pjkmβkm), to the expenditure portion of the model; and it allows the
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acreage elasticities of each individual practice to vary by replacing ηk log(Aj) with

log(Aj)
∑

m(Pjkmηkm). A second specification uses only the group-level intercept βk

and assumes that the acreage elasticities of all practices within each group are the

same, thus using ηk log(Aj), as presented in Equation 3.3. The specification of the

selection equation is the same in both cases.

We estimate the parameters of these double hurdle models simultaneously for

each practice or group of practices, i.e., our estimates are full information maximum

likelihood estimates for each practice or group of practices.

3.6 Estimation Results

The elasticities of food safety practice expenditures, the impacts of sustain-

able production practices on food safety expenditures, and the marginal effects of

factors influencing the probability of using a food safety practice, as estimated by

maximum likelihood using the double hurdle model specified above, are reported in

Tables 3.4, 3.5, and 3.6.9 The number of observations used in each model varies

because of differences in response rates for questions about the use of food safety

practices (Table 3.4); missing observations for fruit and vegetable acreage Aj and

the indicator for contractual obligations to use food safety practices Oj reduced

the size of the usable sample by an additional 24-25 observations. The errors for

sampling and testing, field inspection, container sanitation, and written records are

positively correlated, underscoring the need for the double hurdle specification (Ap-

9Full sets of coefficient estimates for the double hurdle models without and with individual
practice intercepts and interaction terms are presented in Appendix Tables C.2 and C.3, respec-
tively.
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pendix Table C.2). Because the probit selection model is nonlinear, we calculate

average marginal effects for each of the regressors to help quantify the effect farm

size, grower characteristics, and marketing channel have on the probability that

growers use each safety measure (Table 3.6). The estimated marginal effects re-

ported in Table 3.6 indicate that the contractual obligations indicator is a strong

instrument for sampling and testing, field inspections, harvest container sanitation,

written record keeping, and third party audits. Similarly, the share of output sold

through wholesalers/repackers, mass merchandisers, exporters, brokers, or other

outlets is a strong instrument for employee sanitation and hygiene practices. Only

soil amendment treatment lacks a strong instrument for selection, likely because

relatively few growers in our sample use soil amendments.

3.6.1 Effect of Farm Size on Expenditures on Food Safety Practices

There is concern that the Rule may adversely affect small produce growers

and that compliance costs may be sufficiently burdensome to force many out of

business, thereby increasing concentration in the industry. To better gauge this

concern, we investigate how the expenditures and use of food safety practices vary

with farm size. For each food safety practice, we use the estimated coefficient on the

log of acreage (the elasticity of food safety expenditure for practice k with respect

to acreage) to analyze how the expenditures for each food safety practice varies with

farm size (Table 3.4). As noted earlier, inelastic expenditure on a food safety practice

implies that larger operations spend less per acre than smaller ones, consistent with
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increasing returns to farm size; elastic expenditure implies that larger operations

spend more per acre than smaller ones, consistent with decreasing returns to farm

size; and unit elastic expenditure implies that expenditure per acre is constant,

consistent with constant returns to farm size.

Consistent with previous studies of specific crops and geographic areas (Hard-

esty and Kusunose 2009; Ribera et al. 2012; Paggi et al. 2013; Driven to Discover

2012; Lichtenberg and Page 2016), the estimated coefficients for all but two of the

food safety practices included in our survey data indicate that expenditures increase

with operation size but less than proportionally.

In most cases, the estimated elasticities are not significantly different from

zero, consistent with expenditures being fixed and thus decreasing in farm size. Ad-

ditionally, likelihood ratio tests indicate that the estimated acreage elasticities of

expenditure on soil samples (χ2 = 28.72, p < 0.01),10 inspection for other causes

(χ2 = 38.41, p < 0.01), new harvest containers (χ2 = 101.4, p < 0.01), employee

education and training (χ2 = 48.86, p < 0.01), equipment and tool sanitation (χ2 =

73.53, p < 0.01), building sanitation (χ2 = 79.90, p < 0.01), sewage and trash dis-

posal (χ2 = 36.24, p < 0.01), and other preventive measures (χ2 = 40.61, p < 0.01)

are all significantly different from one, ruling out expenditures per acre proportional

to farm size.

In several other cases, the estimated elasticities are less than one but signifi-

cantly different from zero, ruling out expenditures independent of farm size. Like-

10Likelihood ratio tests for inspection for flooding and wildlife intrusion are each conducted on
the sum of the individual flooding/wildlife intrusion and the simultaneous inspection for flooding
and wildlife intrusion simultaneously.
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lihood ratio tests indicate that the estimated elasticities of water samples (χ2 =

35.42, p < 0.01), washing harvest containers (χ2 = 23.82, p < 0.01), washing prod-

uct (χ2 = 19.60, p < 0.01), keeping written records (χ2 = 319.39, p < 0.01), and

third party audits (χ2 = 39.58, p < 0.01) are all significantly different from one as

well as zero, consistent with expenditures per acre being variable but decreasing in

farm size.

The estimated coefficients of the remaining food safety practices are somewhat

mixed. Likelihood ratio tests indicate that the estimated elasticity of treating mul-

tiple soil amendments is not significantly different from one (χ2 = 0.38, p = 0.54)

even though it is significantly different from zero, consistent with constant ex-

penditures per acre. The estimated elasticities of inspection for wildlife intrusion

(χ2 = 0.16, p = 0.69) and treating a single soil amendment (χ2 = 0.31, p = 0.58)

are not significantly different from either zero or one. Both are close in magnitude

to one, though (recall that the elasticity of inspection for wildlife intrusion is the

sum of the wildlife intrusion and wildlife intrusion and flooding elasticities, 0.75),

suggesting that expenditures on these two practices are also likely constant per acre.

3.6.2 Effect of Sustainable Farming Practices on Expenditures on

Food Safety Practices

Sustainably grown food products, which are often sold locally through direct-

to-consumer channels such as farmers’ markets and community supported agricul-

ture arrangements, account for a growing share of total U.S. agricultural sales (Mar-
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tinez 2010). Between 2006 and 2014, the number of farmers’ markets in the U.S.

grew 180 percent, and local food sales totaled an estimated $6.1 billion in 2012.

Business survival also appears to be greater for farms selling into these markets

(Low 2015).

Sustainable grower organizations have expressed concern that some provisions

of the Produce Rule may be unduly burdensome to sustainable growers, particularly

for the treatment of animal-based soil amendments. We use the estimated coefficient

of the sustainable farming practices indicator to examine this possibility. The esti-

mated coefficient of the sustainable indicator is positive for all food safety practices

and significantly different from zero in the regressions for expenditures on harvest

container sanitation, washing product, and keeping written records. All three indi-

cate that sustainable growers spend as much as twice as much on these practices as

conventional growers. However, it is by no means clear that greater expenditures on

washing product and harvest container sanitation can be attributed to compliance

with the Produce Rule, since they could easily be due to marketing considerations

that predate the Produce Rule (e.g., delivering clean products in clean containers

direct to consumers).

The estimated coefficients of the sustainable farming practices indicator in

the equations for sampling and testing, field inspection, and written recordkeeping

all suggest that sustainable grower spend 40-60% more on these practices than

conventional growers. All of these coefficients except for that of written records

are estimated imprecisely, however. Overall, then, the estimated coefficients of

our econometric models provide limited evidence supporting the contention that
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compliance with the Produce Rule be more burdensome for sustainable growers

than conventional ones.11

3.6.3 Effect of Farm Size and Sustainable Farming Practices on Use

of Food Safety Practices

Lower costs should make larger farms more likely to invest in food safety. We

find evidence supporting that hypothesis for some food safety practices. We find

positive, statistically significant marginal effects of acreage on the probability of

using sampling and testing, conducting field inspections, keeping written records,

and having third-party audits. The effects of acreage on sampling and testing,

field inspections, and third party audits are substantial: a 1 percent increase in

acreage is associated with a 5-6 percentage point increase in the probability that each

practice is used. The effect of acreage on written records is somewhat smaller but

still substantial—a 1% increase in acreage is associated with a 2.5 percentage point

increase in the probability of keeping written records. The estimated marginal effects

for the remaining food safety practices are not statistically significantly different

from zero and quite small in magnitude, implying that larger farms are no more

or less likely than smaller operations to sanitize harvest containers, wash product,

utilize employee sanitation and hygiene measures, or treat soil amendments.

We argued earlier that growers using sustainable farming practices might be

11For completeness, we investigate whether the elasticities of food safety practice expenditures
with respect to acreage differed for conventional and sustainable grower. None of the coefficients of
the interaction between the log of acreage and the sustainable grower indicator were significantly
different from zero. All were small in magnitude as well.
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less likely to invest in food safety measures since such investments would have low

returns. Our econometric results provide another reason: higher costs of food safety

measures. We find that sustainable growers are neither more nor less likely than

conventional growers to employ most food safety measures. The exception is washing

product: sustainable growers are 21 percentage points more likely to wash product,

a result that is consistent with their heavier reliance on selling direct to consumers

with whom they are likely to have personal ties. Overall, these estimates suggest

that the Produce Rule will require changes in growing practices for similar shares

of sustainable and conventional growers.

3.7 Policy Implications

Our estimates of the elasticities of food safety expenditures with respect to

acreage indicate that per acre expenditures on most food safety practices decrease

with farm size, suggesting that compliance with the Produce Rule will be more dif-

ficult for smaller operators than for larger ones. We examine the potential impacts

of compliance with the Rule more closely by examining the cost burden of compli-

ance. We define the cost burden of food safety practice k as expenditures on food

safety practice k as a share of total production expenditures ek/
(∑

j wjXj +
∑

n en

)
. We

investigate how that cost burden varies with (a) farm size and (b) the exemption

thresholds using simulations based on our econometric estimates.
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3.7.1 Farm Size and the Cost Burden

The elasticity of this cost burden with respect to acreage is ψk = ηk − λ,

where λ denotes the elasticity of total expenditure with respect to acreage. We use

our survey data to obtain an estimate of λ, which we obtain by regressing the log

of total expenditures for fruit and vegetable production reported by each grower

on the log of fruit and vegetable acreage. The estimate of λ obtained from this

regression is 1.0049 (with a standard error of 0.0459, R2 = 0.66 and N = 244) and

the constant term is 8.3201 (with a standard error of 0.1450). Since the estimated

elasticity is indistinguishable from one, we set λ = 1 in the simulations that follow

in this section.

Overall, our results support the contention that the cost of compliance with

the Produce Rule requirements will be more burdensome to small farms than large

ones. The cost burden of food safety practices for which expenditures are fixed

(invariant with respect to farm size) is inversely proportional to acreage. As we have

seen, those practices include inspection for flooding, inspection for other causes,

use of new harvest containers, employee education and training, equipment and

tool sanitation, building sanitation, sewage and trash disposal, and other preventive

sanitation measures. For each of these, a farm with ten times the acreage of a smaller

farm will have a cost burden only a tenth the size that of the smaller farm. Similarly,

the cost burden of food safety practices with acreage elasticities between zero and

one will decline with farm size, albeit at a lower rate. The acreage elasticities of

testing water samples and washing harvest containers, for instance, are about 0.55,
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implying an elasticity of the cost burden of -0.45 for each of these practices. The cost

burden of these two practices for a farm with ten times the acreage of a smaller farm

will be about 35% (10−0.45) that of the smaller farm. Only in the cases of inspection

for wildlife intrusion and testing soil amendments (either single or multiple) does

the cost burden appear to be invariant with respect to farm size. Overall, then, our

estimated coefficients indicate that that the Produce Rule will impose a much larger

food safety cost burden on smaller operations than larger ones, consistent with the

concerns raised by many small farm advocacy organizations.

3.7.2 Effect of Changes to FSMA Exemption Thresholds on Food

Safety Cost Burden

The farm size and Tester-Hagan exemptions to FSMA are intended to protect

very small and local food producers for whom the costs of complying with FSMA

would be unduly burdensome. To better understand how growers at these exemption

thresholds are affected by FSMA, we simulate how the magnitude of the food safety

cost burden varies by farm revenue and share of direct sales. The former determines

the size threshold for exemption while the two combined determine the Tester-Hagan

exemption.

The cost burden of food safety practice k with our log-linear specification

is exp(αk − α1)A
(ηk−λ); here α1 is the constant term in the regression of log of

total expenditures on log of acreage and αk is the constant term in the expen-

diture equation for food safety practice k, which is different for each combina-
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tion of crop type and farming practice. To conduct this simulation, we need to

know how acreage varies with revenue and the share of direct sales. We use our

survey data to obtain estimates of these two parameters by regressing the log

of fruit and vegetable acreage on the log of fruit and vegetable revenue and the

share of fruits and vegetables sold direct to consumers. Our estimate of the cost

burden for a threshold combination of revenue R and share of direct sales s is:

exp(αk − α1)ψ
(ηk−λ)
0 Rψ1(ηk−λ) exp (ψ2(ηk − λ)s).12 The coefficient of the log of rev-

enue is ψ1 = 0.64 (with a standard error of 0.0336). The coefficient of the share

of direct sales is ψ2 = −0.0115 (with a standard error of 0.002). The constant

term is ψ0 = −3.9904 (with a standard error of 0.4456). The regression uses 240

observations and has an R2 = 0.71.

Table 3.7 presents our estimates of the cost burdens of each group of food safety

practices for each combination of crop type and sustainable/conventional farming

practices. To examine the impact of altering the thresholds for the Tester-Hagan

exemption, we estimate cost burdens at the current levels ($500,000 in annual sales

and 50% direct sales) and at combinations representing increases of 50% in each

($750,000 in annual sales and 75% direct sales). For the size exemption, we estimate

cost burdens at the current level ($25,000 in annual sales) and at double that level

($50,000 in annual sales) assuming 49% direct sales in both cases. All estimates are

presented as percentages (i.e., on a scale of 0-100).

Our simulation results suggest that even with significant economies of scale,

12For brevity, we limit our analysis to groups of practices (rather than individual practices within
each group) using the acreage elasticities estimated with no interaction terms.
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compliance with the Produce Rule would impose modest burdens on growers cur-

rently exempt from the Rule due to Tester-Hagan limits on size and share of direct

sales. Expenditures on sampling and testing, field inspections, and keeping written

records are each under 0.2% of total expenditures. Harvest container sanitation

expenditures are larger but still under 0.75% of total expenditures. Washing veg-

etables requires the greatest expenditures but even this practice amounts to only 3.5

percent of total expenditures at the current exemption limits. Adding up the cost

burden estimates of individual food safety practices for growers with the highest cost

burdens (sustainable vegetable growers with annual sales of $500,000 selling 50% of

output direct to consumers who treat soil amendments) gives an upper bound esti-

mate of the impact of raising Tester-Hagan exemption thresholds. Doing so gives a

total estimated cost burden of 10.5%. This figure is probably an overestimate, since

most growers qualifying for the Tester-Hagan exemption wash product for marketing

reasons already; deducting expenditures on washing product reduces the estimated

cost burden to 7.0%. Such an increase in expenditures is quite modest. It could,

however, correspond to a significant reduction in profit if margins are low.

While a large portion of small growers qualify for exemption from FSMA based

on size or Tester-Hagan rules, small growers with revenue over $25,000 that do not

sell at least 50% through direct marketing channels are not exempt from FSMA. The

impact of raising the exemption threshold on those growers would be considerable.

Consistent with the findings of Ribera et al. (2016), that impact is largely due to the

high cost of third party audits, which amount to about 8.5% of total expenditures

for sustainable berry growers with $25,000 in annual sales and almost 7.5% of total
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expenditures for conventional berry growers with $25,000 in annual sales. At the

same time, however, the cost burdens of sampling and testing, field inspections, and

keeping written records are quite low, all well under 0.5%, indicating that some of

the food safety practices required under the Produce Rule could be extended to very

small growers at acceptably low cost.

3.8 Conclusion

The passage of the Food Safety Modernization Act in 2011 authorized the FDA

to regulate growing, harvesting, packing, and holding of fresh fruits and vegetables.

The rule for produce safety, which became effective in January of 2016, sets stan-

dards for agricultural water, soil amendments of animal origin, domesticated and

wild animals, employee health and hygiene, and equipment and building sanitation

that could be costly for growers to implement. In particular, small farms worry that

the costs of implementing the required food safety practices could put them out of

business, and sustainable growers are afraid that the new standards could make it

prohibitively expensive for them to maintain their current farming practices.

Data on the likely cost of the actions required under the new Rule is limited.

We use data from a national survey of 394 fruit and vegetable growers to examine

how expenditures on (and thus the cost burden of) food safety practices varies by

farm size and farming practices. We estimate food safety practice expenditures as

a function of acreage, whether sustainable growing practices were used, and other

farm characteristics using a double hurdle model to control for selection in the use
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of each food safety practice and reporting expenditures on that practice. We find

that expenditures on most food safety practices rise less than proportionally as

farm size increases, implying that the cost burden of using them falls with farm

size. Expenditures on many of these practices appear to be invariant with respect

to farm size, implying that they fall in proportion to the inverse of acreage.

We also find evidence that sustainable growers spend substantially more on av-

erage on many of these practices than conventional growers, although our estimates

are precise only for harvest container sanitation, washing product, and keeping writ-

ten records. Recent years have seen growing consumer interest in local food markets,

of which sustainable farming practices are an integral component (Thompson et al.

2008). While most sustainable growers in our sample are presently exempt from

FSMA, our results suggest that the Produce Rule may pose barriers to expansion of

sustainable farming. Our finding that sustainable growers spend more on average on

food safety practices compared to conventional growers suggest these growers could

face a considerable cost disadvantage upon surpassing the FSMA exemption thresh-

old. While our simulations suggest that the magnitude of this burden is modest for

most growers, the Produce Rule could limit the growth of some sustainable farming

operations, making it desirable for them to stay below the exemption threshold. As

the Produce Rule is phased in over the next three years, it will be important to keep

an eye on its effect on sustainable growers and on the agricultural markets in which

they participate.

We use our econometric results to conduct two simulation exercises examining

how the cost burden of using these food safety practices varies with farm size. The
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first simulation exercise examines the ratio of food safety expenditures to total

production expenditures, which we define as the cost burden. We find that this cost

burden falls substantially with farm size: For most food safety practices, increasing

farm size by a factor of ten decreases this cost burden by 45-90%. The second

simulation exercise estimates the cost burden for farms that are currently exempt

due to size in terms annual sales or due to the Tester-Hagan amendment, which

exempts farms using a combination of annual sales and share of sales direct to

consumers. This exercise shows that raising exemption thresholds would impose

a relatively small cost burden on farms that are currently exempt by the Tester-

Hagan amendment. For farms that are exempt by size class, raising the threshold for

exemption would impose modest increases in cost for most practices, the exception

being third party audit. We thus find little or no evidence that compliance with the

Produce Rule will threaten the competitiveness of small operations to any significant

extent.

A caveat to the inferences drawn here comes from the nature of our data. Our

sample is broadly representative of commercial produce growers in most of the U.S.

but underrepresents commercial produce growers in California, Arizona, Texas, and

Florida, the states that account for the largest shares of fruit and vegetable produc-

tion. Growers in these underrepresented states operate largely under contracts with

packing firms, marketing firms, and grocery chains; those contracts often mandate

the use of many of the food safety practices considered here. Food safety practice

usage rates and expenditures by growers in these states may thus differ from those

of growers elsewhere in the U.S. Our sample is broadly representative of the popula-
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tion of fruit and vegetable growers in the U.S., so that our analysis yields reasonable

inferences about the likely effects of the Produce Rule on growers. But our sample

underrepresents fruit and vegetable production and thus cannot be used to draw

inferences about effects of the Produce Rule on fruit and vegetable markets (i.e.,

output and price levels).
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Table 3.1: Survey Descriptive Statistics

Variable Listserv
Average

Conference
Average

Total Ob-
servations

Number of Observations 277 117 394

Use of Food Safety Practices (Share of Subsample)

Sampling and Testing 0.38 0.5 328
Field Inspections 0.36 0.44 318
Harvest Container Sanitation 0.67 0.76 321
Wash Product 0.54 0.59 317
Employee Sanitation and Hygiene 0.66 0.84 313
Written Records 0.56 0.69 309
Soil Amendment Treatment 0.3 0.2 169
Third Party Audits 0.14 0.24 303

Crop Type (Share of Subsample)

Berries Only 0.03 0.07 394
Fruit and Tree Nuts Only 0.17 0.09 394
Vegetables Only 0.25 0.37 394
Fruit/Tree Nuts and Berries 0.03 0.01 394
Vegetables and Berries 0.16 0.23 394
Vegetables and Fruit/Tree Nuts 0.09 0.06 394
Berries, Fruit/Tree Nuts, and
Vegetables

0.27 0.18 394

Farming Practices (Share of Subsample)

Sustainable 0.44 0.07 394
Conventional 0.56 0.93 394

Share of Output Sold through Marketing Channel (%)

Direct Sale 62.18 53.85 338
Wholesale/Mass Merchandiser /
Exporter / Broker / Shipper /
Other

28.14 30.28 338

Grocery Retailers 6.69 13.3 338
Foodservice Operations 3.63 3.05 338

Other Explanatory Variables

Contractual Obligation (Share of
Subsample)

0.23 0.37 326

Log Fruit and Vegetable Acreage 2.14 3.85 365
Log Fruit and Vegetable Expen-
ditures

10.42 11.47 253

Log Fruit and Vegetable Revenue 10.84 11.85 254
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Table 3.2: Regional Distributions of Farm Operations

U.S. Region U.S. Census of Agriculture (%) Sample (%)

Vegetables 72045 287

Midwest 23.9 25.8
Northeast 19.6 27.9
South 29.8 37.3
West 26.8 9.1

Berries 30538 181

Midwest 22.1 19.9
Northeast 25.5 27.6
South 31.6 42
West 20.8 10.5

Fruit and Tree Nuts 31126 181

Midwest 3.2 21
Northeast 0.7 25.4
South 44.6 28.7
West 51.5 24.9

Source: 2012 USDA Census of Agriculture - Vegetable Operations

Note: 5 respondents (1%) chose not to report state
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Table 3.3: Exemption Status by Farm Size and Grower Organization

Classification Size Exempt Tester-Hagan
Exempt

Grand Total
Exempt

Economic Class

Exempt 91 (100%) - 91
($25,000 or less)
Very Small - 80 (93%) 80
($25,001 to $250,000)
Small - 24 (75%) 24
($250,001 to $500,000)
Medium/Large - - -
(More than $500,000)

Grower Organization

Conventional 42 (27%) 60 (38%) 102 (65%)
Sustainable 49 (51%) 44 (45%) 93 (96%)

TOTAL 91 (36%) 104 (41%) 195 (77%)

Note: 140 respondents (36%) chose not to report revenue, so exemption status
cannot be determined.
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Table 3.4: Estimated Farm Size Elasticities of Food Safety Practice Expenditures

Dependent variable = log expenditures With In-
teractions

No
Interaction

Panel A. Sampling and Testing (N = 303)

Log Fruit and Veg. Acreage x Water Samples 0.5510∗∗∗ -
(0.0754)

Log Fruit and Veg. Acreage x Soil Amendment
Samples

0.2094 -

(0.1475)
Log Fruit and Veg. Acreage x Product Samples 0.0604 -

(0.1126)
Log Fruit and Veg. Acreage - 0.6955∗∗∗

(0.0764)

Panel B. Field Inspection (N = 294)

Log Fruit and Veg. Acreage x Flooding -0.2032 -
(0.6088)

Log Fruit and Veg. Acreage x Wildlife Intrusion 0.5097∗∗∗ -
(0.1049)

Log Fruit and Veg. Acreage x Other Causes 0.1554 -
(0.1363)

Log Fruit and Veg. Acreage x Flooding x Wildlife
Intrusion

0.2448 -

(0.6166)
Log Fruit and Veg. Acreage - 0.5608∗∗∗

(0.0795)

Panel C. Harvest Container Sanitation (N = 297)

Log Fruit and Veg. Acreage x Wash Containers -0.0291 -
(0.1022)

Log Fruit and Veg. Acreage x New Containers 0.5607∗∗∗ -
(0.0900)

Log Fruit and Veg. Acreage - 0.5475∗∗∗

(0.0602)

Panel D. Washing Product (N = 294)

Log Fruit and Veg. Acreage - 0.6816∗∗∗

(0.0719)

Panel E. Employee Sanitation and Hygiene (N = 290)

Log Fruit and Veg. Acreage x Employee Training 0.0877 -
(0.1305)

Continued. . .
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Table 3.4 – continued from previous page

Dependent variable = log expenditures With In-
teractions

No
Interaction

Log Fruit and Veg. Acreage x Toilet/Handwash
Facilities

-0.1345 -

(0.1323)
Log Fruit and Veg. Acreage x Equipment Sanita-
tion

0.0337 -

-0.1081)
Log Fruit and Veg. Acreage x Building Sanitation 0.6863∗∗∗ -

-0.2062)
Log Fruit and Veg. Acreage x Sewage/Trash Dis-
posal

-0.1469 -

(0.1905)
Log Fruit and Veg. Acreage x Other Preventive
Actions

0.117 -

(0.1386)
Log Fruit and Veg. Acreage - 0.6319∗∗∗

(0.0542)

Panel F. Written Records (N = 296)

Log Fruit and Veg. Acreage - 0.2560∗∗∗

(0.0416)

Panel G. Soil Amendment Treatment (N = 169)

Log Fruit and Veg. Acreage x Single Soil Amend-
ment

1.5959 -

(1.078)
Log Fruit and Veg. Acreage x Multiple Soil
Amendments

0.8995∗∗∗ -

(0.1626)
Log Fruit and Veg. Acreage - 0.9180∗∗∗

(0.1587)

Panel H. Third Party Audit (N = 283)

Log Fruit and Veg. Acreage - 0.3798∗∗∗

(0.0986)

Note: Each regression is estimated by maximum likelihood using a double hurdle
specification. All regressions contain crop type (vegetables, berries, fruit and tree
nuts) and an indicator for sustainable farming practices as controls. Interaction
models for groups of practices also contain indicators for each type of practice within
the group as controls. Standard errors are reported in parentheses. Asterisk (∗),
double asterisk (∗∗), and triple asterisk (∗∗∗) indicate significance at the 10, 5 and 1
percent level, respectively.
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Table 3.5: Estimated Impact of Sustainable Farming Practices on Food Safety Prac-
tice Expenditures

Practice Type With Interactions No Interaction

Sampling and Testing 0.4900 0.4638
(0.3559) (0.3922)

Field Inspection 0.4125 0.4685
(0.3652) (0.3754)

Harvest Container Sanitation 0.6788∗∗∗ 0.6253∗∗

(0.2477) (0.2448)
Washing Product - 0.7333∗∗

(0.3231)
Employee Sanitation 0.1592 0.2675

(0.2416) (0.2482)
Written Records - 0.4459∗∗

(0.1954)
Soil Amendment Treatment 0.2349 0.2322

(0.3965) (0.3848)
Third Party Audit - 0.1249

(0.5112)

Note: Each regression is estimated by maximum likelihood using a double hurdle
specification. All regressions contain crop type (vegetables, berries, fruit and
tree nuts) as controls. Interaction models for groups of practices also contain
indicators for each type of practice within the group as controls. Standard errors
are reported in parentheses. Asterisk (∗), double asterisk (∗∗), and triple asterisk
(∗∗∗) indicate significance at the 10, 5 and 1 percent level, respectively.
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Table 3.6: Marginal Effects of Acreage, Marketing Channel, Farming Practices, and Crop Type on the Probability of Safety
Measure Use

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Washing
Product

Employee
Sanita-
tion &

Hygiene

Written
Records

Soil
Amend-

ment
Treat-
ment

Third-
Party
Audits

Log Fruit and Vegetable Acreage 0.0649∗∗∗ 0.0520∗∗∗ -0.0119 -0.0102 0.0107 0.0254∗ -0.0238 0.0455∗∗∗

(0.0146) (0.0148) (0.0088) (0.0126) (0.0096) (0.0135) (0.0234) (0.0094)
Contractual Obligation 0.1543∗∗ 0.2517∗∗∗ 0.0779∗ -0.0288 0.0276 0.3197∗∗∗ 0.1339 0.2141∗∗∗

(0.0749) (0.0674) (0.0444) (0.0607) (0.0493) (0.1077) (0.1318) (0.0287)
Wholesale / Other Sale Share 0.0007 -0.0007 -0.0003 0.001 -0.0011∗∗ 0.0000 -0.0021 0.0001

(0.0008) (0.0008) (0.0004) (0.0007) (0.0006) (0.0007) (0.0014) (0.0005)
Sustainable 0.0304 -0.0678 0.0071 0.2129∗∗∗ 0.0263 0.03 0.0217 -0.0479

(0.0601) (0.0638) (0.0393) (0.0603) (0.0401) (0.0471) (0.0824) (0.0503)
Berries -0.0234 -0.0433 0.0993∗∗∗ 0.0347 0.0711∗ -0.0162 -0.0353 -0.0341

(0.0518) (0.0556) (0.0368) (0.0473) (0.0365) (0.0414) (0.0798) (0.0354)
Fruit and Tree Nut 0.0462 -0.0098 -0.0181 0.0651 -0.0566 0.0531 0.0234 -0.0134

(0.0541) (0.0585) (0.037) (0.051) (0.0375) (0.0452) (0.0804) (0.0387)
Vegetables -0.1097 0.1421∗ -0.0205 0.3123∗∗∗ -0.1508∗∗ 0.0495 -0.0532 -0.0557

(0.0752) (0.0807) (0.0478) (0.0554) (0.0619) (0.062) (0.2069) (0.0458)

Note: Each regression is estimated by maximum likelihood using a double hurdle specification. All regressions contain crop type
(vegetables, berries, fruit and tree nuts) and an indicator for sustainable farming practices as controls. Models for groups of
practices also contain indicators for each type of practice within the group as controls. Standard errors (reported in parentheses)
were estimated using the delta method. Asterisk (∗), double asterisk (∗∗), and triple asterisk (∗∗∗) indicate significance at the 10,
5 and 1 percent level, respectively.
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Table 3.7: Effects of Changes to Exemption Thresholds on Food Safety Cost Burden
Percentage for Each Food Safety Practice

A. Change to Tester-Hagan Exemption Revenue Threshold (Direct Sales Share =
50%)

Farming Practices Sustainable Conventional
Revenue $500,000 $750,000 $500,000 $750,000

Sampling and
Testing

Berries 0.1709 0.1577 0.1075 0.0992
Fruit and Tree Nuts 0.1149 0.1061 0.0723 0.0667
Vegetables 0.0981 0.0905 0.0617 0.0569

Field
Inspection

Berries 0.1205 0.1074 0.0754 0.0672
Fruit and Tree Nuts 0.1997 0.1779 0.125 0.1114
Vegetables 0.1868 0.1664 0.1169 0.1042

Harvest
Container
Sanitation

Berries 0.7155 0.6354 0.3829 0.34
Fruit and Tree Nuts 0.5367 0.4766 0.2872 0.255
Vegetables 0.7848 0.697 0.4199 0.3729

Washing
Product

Berries 1.5824 1.455 0.76 0.6988
Fruit and Tree Nuts 2.6088 2.3988 1.253 1.1522
Vegetables 3.5089 3.2265 1.6853 1.5497

Employee
Sanitation
and Hygiene

Berries 1.023 0.9286 0.7829 0.7106
Fruit and Tree Nuts 1.1086 1.0063 0.8484 0.7701
Vegetables 1.1754 1.0669 0.8995 0.8165

Written
Records

Berries 0.0048 0.0039 0.003 0.0025
Fruit and Tree Nuts 0.0032 0.0026 0.0021 0.0017
Vegetables 0.0033 0.0028 0.0021 0.0018

Soil
Amendment
Treatment

Berries 1.4652 1.4325 1.1615 1.1356
Fruit and Tree Nuts 1.956 1.9123 1.5506 1.516
Vegetables 2.7608 2.6992 2.1886 2.1398

Third Party
Audit

Berries 2.572 2.1869 2.2701 1.9302
Fruit and Tree Nuts 0.8542 0.7263 0.7539 0.641
Vegetables 1.0672 0.9074 0.9419 0.8009

B. Change to Tester-Hagan Exemption Direct Sales Share Threshold (Revenue =
$500,000)

Farming Practices Sustainable Conventional
Direct Sales Share 50% 75% 50% 75%

Sampling and
Testing

Berries 0.1709 0.1868 0.1075 0.1175
Fruit and Tree Nuts 0.1149 0.1257 0.0723 0.079
Vegetables 0.0981 0.1072 0.0617 0.0674

Continued. . .
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Table 3.7 – continued from previous page

Field
Inspection

Berries 0.1205 0.137 0.0754 0.0857
Fruit and Tree Nuts 0.1997 0.2269 0.125 0.142
Vegetables 0.1868 0.2122 0.1169 0.1328

Harvest
Container
Sanitation

Berries 0.7155 0.8162 0.3829 0.4367
Fruit and Tree Nuts 0.5367 0.6122 0.2872 0.3276
Vegetables 0.7848 0.8952 0.4199 0.479

Washing
Product

Berries 1.5824 1.7367 0.76 0.8341
Fruit and Tree Nuts 2.6088 2.8632 1.253 1.3752
Vegetables 3.5089 3.8511 1.6853 1.8497

Employee
Sanitation
and Hygiene

Berries 1.023 1.1389 0.7829 0.8716
Fruit and Tree Nuts 1.1086 1.2342 0.8484 0.9445
Vegetables 1.1754 1.3086 0.8995 1.0014

Written
Records

Berries 0.0048 0.0059 0.003 0.0038
Fruit and Tree Nuts 0.0032 0.004 0.0021 0.0025
Vegetables 0.0033 0.0042 0.0021 0.0027

Soil
Amendment
Treatment

Berries 1.4652 1.5023 1.1615 1.1909
Fruit and Tree Nuts 1.956 2.0055 1.5506 1.5899
Vegetables 2.7608 2.8307 2.1886 2.2441

Third Party
Audit

Berries 2.572 3.0789 2.2701 2.7175
Fruit and Tree Nuts 0.8542 1.0225 0.7539 0.9025
Vegetables 1.0672 1.2775 0.9419 1.1275

C. Change to FSMA Revenue Exemption Threshold (Direct Sales Share = 49%)

Farming Practices Sustainable Conventional
Revenue $25,000 $50,000 $25,000 $50,000

Sampling and
Testing

Berries 0.3082 0.2687 0.1938 0.169
Fruit and Tree Nuts 0.2073 0.1807 0.1304 0.1136
Vegetables 0.1769 0.1542 0.1113 0.097

Field
Inspection

Berries 0.281 0.2307 0.1759 0.1444
Fruit and Tree Nuts 0.4655 0.3822 0.2914 0.2393
Vegetables 0.4354 0.3575 0.2725 0.2238

Harvest
Container
Sanitation

Berries 1.7108 1.3966 0.9155 0.7473
Fruit and Tree Nuts 1.2833 1.0476 0.6867 0.5606
Vegetables 1.8764 1.5318 1.0041 0.8197

Washing
Product

Berries 2.9304 2.5388 1.4075 1.2194
Fruit and Tree Nuts 4.8313 4.1857 2.3205 2.0104
Vegetables 6.4982 5.6298 3.1211 2.704

Continued. . .
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Table 3.7 – continued from previous page

Employee
Sanitation
and Hygiene

Berries 2.0825 1.7649 1.5938 1.3507
Fruit and Tree Nuts 2.2568 1.9126 1.7271 1.4637
Vegetables 2.3928 2.0279 1.8312 1.5519

Written
Records

Berries 0.0198 0.0142 0.0127 0.0091
Fruit and Tree Nuts 0.0134 0.0096 0.0086 0.0061
Vegetables 0.0139 0.01 0.0089 0.0064

Soil
Amendment
Treatment

Berries 1.7292 1.6637 1.3708 1.3189
Fruit and Tree Nuts 2.3084 2.2211 1.83 1.7608
Vegetables 3.2583 3.135 2.583 2.4853

Third Party
Audit

Berries 8.4646 6.4148 7.4711 5.6619
Fruit and Tree Nuts 2.8112 2.1304 2.4812 1.8804
Vegetables 3.5121 2.6616 3.0999 2.3492

Note: Food safety cost burdens are expressed in percentage terms.
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Appendix A: Appendix to Chapter 1

A.1 Solution for the Baseline Equilibrium

In the baseline equilibrium, Firm A solves the profit maximization problem

Π∗A = max
qiA, piA

NHxH

(
pHA −

γq2HA
2

)
+NLxL

(
pLA −

γq2LA
2

)
,

and Firm B solves the profit maximization problem

Π∗B = max
qiB , piB

NH(1− xH)

(
pHB −

γq2HB
2

)
+NL(1− xL)

(
pLB −

γq2LB
2

)
,

where xi takes the form specified in Equation 1.1. By solving the first order con-

ditions for the above problems, we obtain the equilibrium prices and qualities in

Equation 1.2 and firm profits are

Π∗A =
1

18

(
NHkH(2 + aH + bH)2 +NLkL(2 + aL + bL)2

)
Π∗B =

1

18

(
NHkH(−4 + aH + bH)2 +NLkL(−4 + aL + bL)2

)
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A.2 Solution When Only Firm A Labels Products

If only Firm A chooses to obtain the non-GMO label, the new location xi of

the consumer in segment i indifferent between buying products of quality qiA and

qiB offered by each firm is

xi =
θi(qiA − qiB) + ki(ai + bi)− (piA − piB) + δi

2ki
if ai ≤ xi ≤ bi, (A.1)

and the respective profit maximization problems that each firm solves are

Π∗A = max
piA

NHxH

(
pHA −

γq2HA
2
− α

)
+NLxL

(
pLA −

γq2LA
2
− α

)
,

Π∗B = max
piB

NH(1− xH)

(
pHB −

γq2HB
2

)
+NL(1− xL)

(
pLB −

γq2LB
2

)
.

By solving the first order conditions for the new prices and substituting in the

equilibrium qualities from the baseline case, the new optimal prices are

p∗iA =
1

6
(2ki(2 + ai + bi) + 4α + 2δi) +

θ2i
2γ
,

p∗iB =
1

6
(2ki(4− ai − bi) + 2α− 2δi) +

θ2i
2γ

.

From this result, it follows that Firm A captures additional market share and com-

mands higher price-cost margins than Firm B, provided that δi > α. Furthermore,

Firm B’s profit decreases relative to the baseline case prior to labeling.
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A.3 Equilibrium When Both Firms Labels Products

If both firms chooses to obtain the non-GMO label, the indifference location

xi once again takes the form specified in Equation 1.1, and the respective profit

maximization problems that each firm solves are

Π∗A = max
piA

NHxH

(
pHA −

γq2HA
2
− α

)
+NLxL

(
pLA −

γq2LA
2
− α

)
,

Π∗B = max
piB

NH(1− xH)

(
pHB −

γq2HB
2
− α

)
+NL(1− xL)

(
pLB −

γq2LB
2
− α

)
.

By solving the first order conditions for the new prices and substituting in the

equilibrium qualities from the baseline case, the new optimal prices are

p∗iA =
1

6
(2ki(2 + ai + bi)) +

θ2i
2γ

+ α,

p∗iB =
1

6
(2ki(4− ai − bi)) +

θ2i
2γ

+ α.

It is now trivial to show that neither firm gains any market share nor increases their

profits above the baseline equilibrium.

A.4 Equilibrium When Firms Develop New Products

In this scenario, when both market segments are fully served, the location xH

of the consumer in segment H indifferent between buying products of quality qHA
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and qHB offered by each firm is

xH =
θH(1 + δH)(qHA − qHB) + kH(1 + δH)(aH + bH)− (pHA − pHB)

2kH(1 + δH)
.

The location xL is given by Equation 1.1. Firm A solves the profit maximization

problem

Π∗A = max
qHA, piA

NHxH

(
pHA −

γq2HA
2
− α

)
+NLxL

(
pLA −

γq2LA
2
− α

)
,

and Firm B solves the profit maximization problem

Π∗B = max
qHB , piB

NH(1− xH)

(
pHB −

γq2HB
2
− α

)
+NL(1− xL)

(
pLB −

γq2LB
2
− α

)
,

By solving the first order conditions for the above problems, we obtain the equilib-

rium prices and qualities in Equation 1.3 and firm profits are

Π∗A =
1

18

(
NHkH(1 + δH)(2 + aH + bH)2 +NLkL(2 + aL + bL)2

)
Π∗B =

1

18

(
NHkH(1 + δH)(−4 + aH + bH)2 +NLkL(−4 + aL + bL)2

)
.

A.5 Price Premium Estimation with Full Sample

As a robustness check, the regression specification in Equation 1.5 was es-

timated using an unrestricted sample of Nielsen data spanning 2009 to 2014. In

addition to the observations included in the restricted sample, this sample includes
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products that were non-GMO certified with less than 6 months of sales data prior

to being certified and/or 12 months of sales after certification, and products that

never obtained non-GMO certification. Table A.1 presents results from this sample

with a progression of fixed effects identical to those presented in the main paper.

Across all three specifications, the coefficient estimates for the post-certification

treatment indicators are very small and not statistically significantly different from

zero, consistent with the results presented in the main paper using the restricted

sample.
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Table A.1: Price Premium Regressions - Unrestricted Sample

I II III

Pre-Cert. 6-12 Mos. −0.007∗ −0.005 −0.006
(0.003) (0.004) (0.005)

Pre-Cert. 0-6 Mos. −0.002 0.001 0.000
(0.003) (0.005) (0.006)

Post-Cert. 0-6 Mos −0.002 −0.001 0.001
(0.004) (0.007) (0.007)

Post-Cert. 6-12 Mos. −0.001 −0.007 −0.003
(0.004) (0.007) (0.008)

Post-Cert. 12-24 Mos. −0.005 −0.009 −0.002
(0.004) (0.008) (0.009)

Post-Cert. 24+ Mos. 0.007 0.000 0.012
(0.005) (0.011) (0.012)

UPC FEs Yes Yes Yes
Week FEs Yes Yes Yes
× Category Yes No Yes
× Manufacturer No Yes Yes

Adj. R2 0.969 0.973 0.973
Num. obs. 10366743 10366743 10366743

Note: Each column represents a separate regression. Standard
errors are clustered at the product level in parentheses: ∗∗∗p <
0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1.
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Appendix B: Appendix to Chapter 2

B.1 Additional Tables

Tables B.1, B.2, B.3, B.4, and B.5 present median own- and cross-price elas-

ticities for each of the 50 RTE cereal brands, across all 5,988 markets.
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Table B.1: Median Own- and Cross-Price Elasticities - Brands 1-10

Brand 1 2 3 4 5 6 7 8 9 10

1 4.131 -0.002 -0.000 -0.000 -0.000 -0.001 -0.000 -0.001 -0.019 -0.000
2 -0.000 -3.341 0.159 0.035 0.015 0.268 0.017 0.118 0.022 0.056
3 -0.000 0.189 -3.792 0.043 0.017 0.326 0.020 0.142 0.029 0.066
4 -0.000 0.166 0.165 -3.573 0.015 0.279 0.017 0.123 0.023 0.057
5 -0.000 0.144 0.138 0.031 -3.153 0.239 0.015 0.103 0.017 0.048
6 -0.000 0.185 0.186 0.042 0.017 -3.583 0.019 0.140 0.028 0.064
7 -0.000 0.154 0.152 0.034 0.014 0.256 -3.403 0.112 0.018 0.052
8 -0.000 0.165 0.164 0.037 0.015 0.282 0.017 -3.450 0.024 0.057
9 -0.000 0.052 0.057 0.012 0.004 0.097 0.005 0.040 -1.173 0.020
10 -0.000 0.190 0.189 0.043 0.017 0.319 0.020 0.140 0.028 -3.911
11 -0.000 0.106 0.105 0.024 0.010 0.175 0.011 0.076 0.005 0.036
12 0.000 0.003 0.003 0.001 0.000 0.005 0.000 0.002 0.000 0.001
13 0.000 0.007 0.008 0.002 0.001 0.013 0.001 0.006 0.001 0.003
14 -0.000 0.119 0.114 0.026 0.011 0.194 0.012 0.084 0.008 0.041
15 -0.000 0.109 0.110 0.024 0.010 0.186 0.009 0.077 0.003 0.039
16 -0.000 0.117 0.118 0.025 0.010 0.198 0.010 0.081 0.004 0.040
17 -0.000 0.080 0.076 0.018 0.007 0.131 0.007 0.057 -0.005 0.028
18 0.000 0.014 0.019 0.003 0.001 0.030 0.001 0.011 0.001 0.006
19 -0.000 0.077 0.104 0.018 0.006 0.155 0.005 0.056 0.002 0.029
20 -0.000 0.128 0.135 0.026 0.014 0.210 0.006 0.088 0.005 0.040
21 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 -0.000 0.148 0.150 0.033 0.014 0.254 0.016 0.112 0.018 0.053
23 -0.000 0.201 0.203 0.045 0.018 0.342 0.021 0.147 0.029 0.071
24 -0.000 0.155 0.154 0.035 0.014 0.261 0.016 0.115 0.019 0.054
25 0.000 0.221 0.231 0.050 0.020 0.381 0.023 0.163 0.032 0.080
26 0.000 0.237 0.249 0.054 0.021 0.415 0.024 0.175 0.034 0.087
27 -0.000 0.194 0.195 0.044 0.018 0.326 0.020 0.143 0.029 0.069
28 0.000 0.250 0.277 0.059 0.022 0.456 0.025 0.189 0.032 0.096
29 0.000 0.231 0.238 0.052 0.020 0.398 0.024 0.169 0.033 0.084
30 -0.000 0.139 0.134 0.030 0.013 0.226 0.014 0.100 0.015 0.047
31 -0.000 0.120 0.113 0.026 0.011 0.193 0.012 0.085 0.009 0.041
32 -0.000 0.100 0.099 0.022 0.009 0.165 0.010 0.070 0.002 0.035
33 -0.000 0.142 0.137 0.031 0.013 0.230 0.014 0.101 0.015 0.048
34 0.000 0.252 0.287 0.059 0.021 0.468 0.025 0.193 0.030 0.099
35 0.000 0.281 0.278 0.062 0.021 0.486 0.030 0.208 0.033 0.114
36 -0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000
37 -0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000
38 0.000 0.001 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.000
39 0.000 0.212 0.242 0.047 0.018 0.395 0.019 0.154 0.024 0.080
40 -0.000 0.215 0.217 0.048 0.019 0.365 0.022 0.158 0.031 0.077
41 0.000 0.255 0.288 0.060 0.022 0.471 0.025 0.193 0.031 0.100
42 -0.000 0.181 0.178 0.040 0.017 0.300 0.019 0.130 0.026 0.062
43 -0.000 0.183 0.182 0.039 0.016 0.306 0.018 0.127 0.022 0.063
44 -0.000 0.189 0.195 0.040 0.017 0.321 0.018 0.132 0.023 0.066
45 0.000 0.216 0.223 0.049 0.019 0.369 0.022 0.160 0.031 0.077
46 0.000 0.220 0.227 0.050 0.020 0.374 0.023 0.161 0.032 0.079
47 -0.000 0.180 0.179 0.040 0.016 0.304 0.018 0.130 0.025 0.063
48 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
49 0.000 0.002 0.002 0.000 0.000 0.003 0.000 0.001 0.000 0.001
50 0.000 0.003 0.003 0.001 0.000 0.005 0.000 0.002 0.000 0.001

Note: Each cell entry in row i, column j represents the median elasticity of the market share of
brand i with respect to the price of brand j, over all 5,988 markets.
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Table B.2: Median Own- and Cross-Price Elasticities - Brands 11-20

Brand 11 12 13 14 15 16 17 18 19 20

1 -0.002 0.000 0.000 -0.001 -0.003 -0.005 -0.004 0.000 -0.000 -0.004
2 0.017 0.000 0.000 0.010 0.010 0.023 0.010 0.000 0.003 0.007
3 0.019 0.000 0.001 0.011 0.014 0.029 0.013 0.000 0.005 0.011
4 0.017 0.000 0.000 0.010 0.011 0.024 0.011 0.000 0.003 0.008
5 0.015 0.000 0.000 0.008 0.009 0.019 0.009 0.000 0.001 0.006
6 0.019 0.000 0.001 0.011 0.013 0.027 0.012 0.000 0.004 0.009
7 0.016 0.000 0.000 0.009 0.010 0.022 0.010 0.000 0.003 0.008
8 0.017 0.000 0.000 0.010 0.011 0.023 0.010 0.000 0.003 0.008
9 0.002 0.000 0.000 0.002 0.001 0.002 -0.002 0.000 0.000 0.001
10 0.019 0.000 0.001 0.011 0.014 0.028 0.013 0.000 0.004 0.009
11 -2.446 0.000 0.000 0.006 0.006 0.012 0.005 0.000 0.001 0.004
12 0.000 -3.424 0.061 0.000 0.001 0.002 0.000 0.018 0.001 0.005
13 0.001 0.030 -3.442 0.000 0.004 0.006 0.000 0.010 0.007 0.005
14 0.011 0.000 0.000 -2.718 0.008 0.016 0.007 0.000 0.001 0.005
15 0.009 0.000 0.002 0.006 -3.170 0.032 0.004 0.001 0.002 0.006
16 0.009 0.000 0.002 0.007 0.017 -3.255 0.005 0.001 0.002 0.007
17 0.006 0.000 0.000 0.004 0.003 0.007 -1.773 0.000 0.000 0.002
18 0.001 0.033 0.036 0.001 0.004 0.009 0.000 -3.272 0.007 0.009
19 0.005 0.025 0.022 0.003 0.005 0.015 0.002 0.005 -3.404 0.010
20 0.009 0.031 0.042 0.006 0.007 0.028 0.005 0.002 0.007 -3.084
21 0.000 0.007 0.003 0.000 0.000 0.000 0.000 0.000 -0.000 -0.004
22 0.016 0.000 0.000 0.009 0.010 0.021 0.009 0.000 0.003 0.008
23 0.021 0.000 0.001 0.012 0.015 0.030 0.013 0.000 0.005 0.011
24 0.016 0.000 0.000 0.009 0.010 0.022 0.009 0.000 0.003 0.008
25 0.022 0.000 0.001 0.013 0.017 0.034 0.014 0.001 0.006 0.013
26 0.022 0.000 0.001 0.014 0.018 0.037 0.015 0.001 0.006 0.013
27 0.020 0.000 0.001 0.012 0.014 0.029 0.013 0.000 0.004 0.010
28 0.022 0.000 0.001 0.014 0.019 0.039 0.015 0.001 0.007 0.015
29 0.022 0.000 0.001 0.014 0.017 0.035 0.015 0.001 0.006 0.013
30 0.015 0.000 0.000 0.008 0.009 0.019 0.008 0.000 0.002 0.007
31 0.012 0.000 0.000 0.007 0.007 0.015 0.006 0.000 0.001 0.005
32 0.009 0.000 0.000 0.005 0.005 0.012 0.004 0.000 0.001 0.005
33 0.015 0.000 0.000 0.008 0.009 0.020 0.009 0.000 0.003 0.008
34 0.022 0.000 0.001 0.014 0.019 0.039 0.014 0.001 0.007 0.015
35 0.028 0.000 0.001 0.016 0.023 0.037 0.016 0.000 0.001 0.019
36 0.000 0.015 0.009 0.000 0.000 0.000 0.000 0.001 0.000 0.000
37 0.000 0.016 0.009 0.000 0.000 0.000 0.000 0.001 0.000 0.000
38 0.000 0.019 0.012 0.000 0.000 0.000 0.000 0.001 0.000 0.000
39 0.017 0.001 0.005 0.012 0.026 0.050 0.012 0.002 0.007 0.015
40 0.021 0.000 0.001 0.013 0.016 0.033 0.014 0.000 0.005 0.012
41 0.022 0.000 0.001 0.014 0.019 0.039 0.014 0.001 0.007 0.015
42 0.018 0.000 0.001 0.011 0.013 0.026 0.012 0.000 0.004 0.010
43 0.017 0.000 0.001 0.011 0.019 0.037 0.012 0.001 0.005 0.012
44 0.017 0.000 0.002 0.011 0.020 0.040 0.012 0.001 0.005 0.013
45 0.021 0.000 0.001 0.013 0.016 0.034 0.014 0.001 0.006 0.014
46 0.021 0.000 0.001 0.013 0.016 0.034 0.014 0.001 0.006 0.014
47 0.018 0.000 0.001 0.011 0.013 0.027 0.012 0.000 0.003 0.011
48 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
49 0.000 0.028 0.035 0.000 0.001 0.001 0.000 0.009 0.000 0.000
50 0.000 0.032 0.060 0.000 0.002 0.003 0.000 0.016 0.000 0.004

Note: Each cell entry in row i, column j represents the median elasticity of the market share of
brand i with respect to the price of brand j, over all 5,988 markets.
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Table B.3: Median Own- and Cross-Price Elasticities - Brands 21-30

Brand 21 22 23 24 25 26 27 28 29 30

1 -0.000 -0.001 -0.000 -0.001 0.000 0.000 -0.000 0.000 0.000 -0.002
2 0.000 0.049 0.062 0.084 0.216 0.205 0.027 0.113 0.064 0.062
3 0.000 0.061 0.075 0.102 0.272 0.259 0.033 0.152 0.079 0.073
4 0.000 0.052 0.064 0.088 0.222 0.214 0.028 0.122 0.065 0.064
5 0.000 0.042 0.053 0.073 0.183 0.175 0.024 0.095 0.055 0.054
6 0.000 0.059 0.073 0.100 0.263 0.251 0.033 0.145 0.076 0.071
7 0.000 0.048 0.058 0.081 0.204 0.191 0.025 0.106 0.060 0.060
8 0.000 0.052 0.063 0.089 0.225 0.214 0.028 0.120 0.065 0.063
9 0.000 0.014 0.021 0.025 0.072 0.070 0.009 0.035 0.022 0.016
10 0.000 0.060 0.075 0.101 0.267 0.258 0.033 0.147 0.079 0.073
11 0.000 0.033 0.040 0.055 0.137 0.127 0.017 0.066 0.040 0.042
12 0.002 0.001 0.001 0.002 0.004 0.004 0.001 0.002 0.001 0.001
13 0.000 0.002 0.003 0.004 0.012 0.011 0.002 0.006 0.003 0.003
14 0.000 0.036 0.044 0.060 0.151 0.145 0.020 0.077 0.045 0.046
15 0.000 0.033 0.044 0.056 0.154 0.152 0.018 0.083 0.045 0.039
16 0.000 0.035 0.047 0.059 0.162 0.161 0.019 0.088 0.049 0.042
17 0.000 0.023 0.031 0.040 0.101 0.097 0.014 0.050 0.031 0.028
18 0.000 0.005 0.009 0.008 0.036 0.034 0.003 0.020 0.010 0.005
19 -0.000 0.027 0.040 0.044 0.147 0.146 0.012 0.081 0.043 0.030
20 -0.001 0.040 0.054 0.064 0.191 0.192 0.017 0.100 0.053 0.054
21 2.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 -3.315 0.060 0.087 0.212 0.195 0.026 0.109 0.060 0.061
23 0.000 0.065 -4.085 0.111 0.306 0.285 0.035 0.167 0.087 0.080
24 0.000 0.053 0.062 -3.326 0.218 0.199 0.027 0.113 0.061 0.063
25 0.000 0.072 0.095 0.123 -4.011 0.342 0.041 0.210 0.101 0.087
26 0.000 0.076 0.104 0.130 0.394 -4.132 0.045 0.241 0.114 0.090
27 0.000 0.062 0.077 0.105 0.278 0.271 -4.023 0.158 0.081 0.075
28 0.000 0.081 0.117 0.139 0.464 0.461 0.050 -4.210 0.133 0.094
29 0.000 0.074 0.099 0.125 0.371 0.362 0.043 0.221 -4.402 0.089
30 0.000 0.045 0.054 0.076 0.187 0.171 0.023 0.094 0.053 -3.040
31 0.000 0.036 0.045 0.062 0.150 0.142 0.020 0.076 0.044 0.045
32 0.000 0.030 0.037 0.051 0.130 0.121 0.017 0.064 0.038 0.037
33 0.000 0.044 0.053 0.074 0.186 0.174 0.024 0.095 0.054 0.055
34 0.000 0.081 0.123 0.138 0.488 0.490 0.052 0.319 0.140 0.093
35 0.000 0.089 0.129 0.148 0.485 0.498 0.056 0.314 0.149 0.104
36 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000
37 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000
38 0.000 0.000 0.000 0.001 0.002 0.002 0.000 0.001 0.001 0.000
39 0.000 0.068 0.102 0.116 0.407 0.416 0.038 0.262 0.117 0.079
40 0.000 0.068 0.090 0.116 0.329 0.318 0.039 0.189 0.094 0.083
41 0.000 0.082 0.123 0.139 0.486 0.492 0.052 0.322 0.141 0.094
42 0.000 0.056 0.071 0.096 0.249 0.236 0.030 0.134 0.073 0.070
43 0.000 0.057 0.074 0.096 0.266 0.267 0.031 0.154 0.080 0.070
44 0.000 0.059 0.080 0.100 0.293 0.291 0.032 0.171 0.086 0.072
45 0.000 0.071 0.092 0.118 0.337 0.335 0.040 0.200 0.098 0.084
46 0.000 0.070 0.093 0.118 0.344 0.342 0.040 0.203 0.101 0.085
47 0.000 0.056 0.071 0.096 0.252 0.239 0.031 0.138 0.074 0.069
48 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
49 0.000 0.001 0.001 0.001 0.002 0.002 0.000 0.001 0.001 0.001
50 0.001 0.001 0.001 0.001 0.004 0.003 0.001 0.002 0.001 0.001

Note: Each cell entry in row i, column j represents the median elasticity of the market share of
brand i with respect to the price of brand j, over all 5,988 markets.
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Table B.4: Median Own- and Cross-Price Elasticities - Brands 31-40

Brand 31 32 33 34 35 36 37 38 39 40

1 -0.004 -0.007 -0.001 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
2 0.037 0.041 0.023 0.017 0.002 0.000 0.000 0.000 0.026 0.214
3 0.042 0.049 0.027 0.026 0.002 0.000 0.000 0.000 0.036 0.261
4 0.037 0.042 0.024 0.020 0.002 0.000 0.000 0.000 0.027 0.217
5 0.032 0.036 0.020 0.014 0.001 0.000 0.000 0.000 0.020 0.179
6 0.041 0.047 0.026 0.025 0.002 0.000 0.000 0.000 0.033 0.252
7 0.034 0.039 0.022 0.015 0.001 0.000 0.000 0.000 0.023 0.195
8 0.036 0.041 0.023 0.020 0.002 0.000 0.000 0.000 0.027 0.219
9 0.007 0.003 0.006 0.004 0.000 0.000 0.000 0.000 0.007 0.074
10 0.042 0.048 0.027 0.025 0.002 0.000 0.000 0.000 0.034 0.258
11 0.022 0.024 0.015 0.009 0.001 0.000 0.000 0.000 0.013 0.133
12 0.001 0.001 0.000 0.000 0.000 0.006 0.005 0.003 0.002 0.004
13 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.010 0.011
14 0.026 0.027 0.017 0.011 0.001 0.000 0.000 0.000 0.017 0.152
15 0.022 0.024 0.015 0.009 0.001 0.000 0.000 0.000 0.029 0.155
16 0.024 0.026 0.016 0.010 0.001 0.000 0.000 0.000 0.030 0.165
17 0.015 0.013 0.011 0.007 0.001 0.000 0.000 0.000 0.010 0.102
18 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.016 0.032
19 0.012 0.017 0.013 0.006 0.000 0.000 0.000 0.000 0.022 0.150
20 0.029 0.040 0.020 0.011 0.001 0.000 0.000 0.000 0.029 0.193
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.033 0.037 0.021 0.018 0.002 0.000 0.000 0.000 0.025 0.201
23 0.044 0.052 0.029 0.030 0.002 0.000 0.000 0.000 0.040 0.289
24 0.034 0.039 0.022 0.019 0.002 0.000 0.000 0.000 0.025 0.205
25 0.048 0.056 0.031 0.037 0.003 0.000 0.000 0.000 0.051 0.333
26 0.051 0.058 0.033 0.044 0.003 0.000 0.000 0.000 0.057 0.367
27 0.044 0.051 0.028 0.027 0.002 0.000 0.000 0.000 0.035 0.265
28 0.052 0.059 0.034 0.055 0.004 0.000 0.000 0.000 0.072 0.418
29 0.050 0.057 0.032 0.040 0.003 0.000 0.000 0.000 0.052 0.345
30 0.030 0.034 0.020 0.014 0.001 0.000 0.000 0.000 0.021 0.182
31 -2.649 0.030 0.017 0.011 0.001 0.000 0.000 0.000 0.016 0.152
32 0.022 -2.272 0.015 0.008 0.001 0.000 0.000 0.000 0.014 0.129
33 0.033 0.038 -3.140 0.014 0.001 0.000 0.000 0.000 0.022 0.181
34 0.051 0.057 0.034 -4.251 0.005 0.000 0.000 0.000 0.078 0.444
35 0.051 0.051 0.032 0.085 -4.251 0.000 0.000 0.000 0.078 0.450
36 0.000 0.000 0.000 0.000 0.000 -1.434 0.001 0.001 0.000 0.001
37 0.000 0.000 0.000 0.000 0.000 0.002 -1.521 0.001 0.000 0.001
38 0.000 0.000 0.000 0.000 0.000 0.003 0.002 -1.877 0.001 0.002
39 0.044 0.051 0.029 0.038 0.003 0.000 0.000 0.000 -4.247 0.372
40 0.047 0.054 0.030 0.034 0.003 0.000 0.000 0.000 0.045 -4.007
41 0.052 0.057 0.034 0.061 0.005 0.000 0.000 0.000 0.077 0.443
42 0.041 0.048 0.026 0.022 0.002 0.000 0.000 0.000 0.031 0.245
43 0.041 0.048 0.027 0.023 0.002 0.000 0.000 0.000 0.046 0.265
44 0.041 0.050 0.027 0.025 0.002 0.000 0.000 0.000 0.054 0.285
45 0.047 0.055 0.031 0.036 0.003 0.000 0.000 0.000 0.048 0.322
46 0.049 0.056 0.031 0.035 0.003 0.000 0.000 0.000 0.049 0.330
47 0.040 0.047 0.025 0.023 0.002 0.000 0.000 0.000 0.033 0.249
48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
49 0.000 0.000 0.000 0.000 0.000 0.007 0.006 0.003 0.001 0.002
50 0.001 0.000 0.000 0.000 0.000 0.006 0.005 0.003 0.004 0.003

Note: Each cell entry in row i, column j represents the median elasticity of the market share of
brand i with respect to the price of brand j, over all 5,988 markets.
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Table B.5: Median Own- and Cross-Price Elasticities - Brands 41-50

Brand 41 42 43 44 45 46 47 48 49 50

1 0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000
2 0.026 0.017 0.010 0.011 0.044 0.063 0.037 0.000 0.000 0.000
3 0.036 0.020 0.012 0.014 0.056 0.081 0.043 0.000 0.000 0.000
4 0.028 0.017 0.010 0.011 0.046 0.066 0.037 0.000 0.000 0.000
5 0.020 0.014 0.008 0.009 0.037 0.052 0.031 0.000 0.000 0.000
6 0.034 0.019 0.011 0.013 0.054 0.077 0.043 0.000 0.000 0.000
7 0.023 0.016 0.009 0.010 0.041 0.058 0.032 0.000 0.000 0.000
8 0.028 0.017 0.010 0.011 0.046 0.065 0.037 0.000 0.000 0.000
9 0.007 0.005 0.002 0.002 0.014 0.020 0.009 0.000 0.000 0.000
10 0.035 0.020 0.012 0.013 0.055 0.079 0.044 0.000 0.000 0.000
11 0.014 0.010 0.006 0.006 0.026 0.037 0.021 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.005 0.027
13 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.000 0.002 0.026
14 0.017 0.012 0.007 0.007 0.030 0.043 0.026 0.000 0.000 0.000
15 0.018 0.011 0.009 0.011 0.030 0.043 0.020 0.000 0.000 0.000
16 0.019 0.012 0.009 0.011 0.032 0.047 0.021 0.000 0.000 0.000
17 0.010 0.008 0.004 0.004 0.020 0.029 0.016 0.000 0.000 0.000
18 0.004 0.001 0.002 0.003 0.007 0.010 0.002 0.000 0.002 0.028
19 0.021 0.008 0.006 0.010 0.029 0.042 0.006 0.000 0.000 0.015
20 0.030 0.024 0.009 0.021 0.045 0.064 0.002 0.000 0.000 0.018
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.007
22 0.026 0.015 0.009 0.010 0.043 0.060 0.033 0.000 0.000 0.000
23 0.042 0.021 0.013 0.015 0.062 0.089 0.047 0.000 0.000 0.000
24 0.026 0.016 0.010 0.011 0.044 0.061 0.034 0.000 0.000 0.000
25 0.051 0.024 0.015 0.018 0.074 0.105 0.052 0.000 0.000 0.000
26 0.060 0.025 0.016 0.020 0.082 0.116 0.057 0.000 0.000 0.000
27 0.037 0.020 0.012 0.014 0.057 0.080 0.045 0.000 0.000 0.000
28 0.075 0.027 0.018 0.023 0.095 0.136 0.062 0.000 0.000 0.000
29 0.055 0.024 0.015 0.019 0.078 0.112 0.055 0.000 0.000 0.000
30 0.022 0.014 0.008 0.009 0.039 0.054 0.029 0.000 0.000 0.000
31 0.016 0.012 0.006 0.007 0.031 0.043 0.025 0.000 0.000 0.000
32 0.013 0.010 0.006 0.006 0.026 0.037 0.020 0.000 0.000 0.000
33 0.021 0.014 0.008 0.009 0.038 0.054 0.029 0.000 0.000 0.000
34 0.082 0.028 0.019 0.024 0.100 0.143 0.063 0.000 0.000 0.000
35 0.086 0.027 0.019 0.016 0.107 0.145 0.073 0.000 0.000 0.000
36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.012
37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.012
38 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.015
39 0.064 0.023 0.020 0.026 0.078 0.117 0.049 0.000 0.000 0.001
40 0.046 0.023 0.014 0.017 0.068 0.098 0.051 0.000 0.000 0.000
41 -4.320 0.028 0.019 0.024 0.100 0.143 0.063 0.000 0.000 0.000
42 0.031 -3.812 0.011 0.013 0.051 0.074 0.041 0.000 0.000 0.000
43 0.035 0.020 -4.083 0.018 0.055 0.079 0.041 0.000 0.000 0.000
44 0.040 0.021 0.016 -4.187 0.059 0.086 0.041 0.000 0.000 0.000
45 0.050 0.023 0.014 0.018 -4.281 0.102 0.050 0.000 0.000 0.000
46 0.050 0.024 0.015 0.018 0.073 -4.273 0.051 0.000 0.000 0.000
47 0.032 0.019 0.011 0.013 0.052 0.076 -3.802 0.000 0.000 0.000
48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.582 0.000 0.002
49 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 -2.778 0.023
50 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.005 -3.484

Note: Each cell entry in row i, column j represents the median elasticity of the market share of
brand i with respect to the price of brand j, over all 5,988 markets.
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B.2 Computational Details

My computation approach for estimating the random-coefficients logit demand

model follows Nevo (2000b) very closely; however, I incorporate several modest

improvements that significantly speed up model convergence without negatively

impacting the quality or robustness of the approximation. I start by porting all of

the original MATLAB code to the R programming language (R Core Team 2016). In

light of the findings in Dubé et al. (2012), I use an inner-loop tolerance of εin = 10−14

and outer-loop tolerance of εout = 10−8, significantly increasing the CPU time for

the BLP contraction mapping, since it converges linearly. To speed up convergence

of the contraction mapping without sacrificing numerical accuracy, I instead use the

squared extrapolation method (SQUAREM) algorithm for accelerating fixed-point

iterations, which produces faster and more robust convergence than the traditional

BLP contraction mapping (Reynaerts et al. 2012; Varadhan 2010). To ensure that

the model converges to a global minimum, I estimated the model using ten different

sets of starting values for the θ2 parameters, each set randomly drawn from the

standard normal distribution.

Additionally, because the market-level calculations are independent of one

another (each t represents a separate DMA-Month), an opportunity exists to drasti-

cally improve computational performance by parallelizing computation of the mean

utility (δjt) as well as the Jacobian of the implicit function that defines the mean

utility. Computing these values in parallel also requires parallelization of the func-

tions that compute the individual probabilities of choosing each brand (sijt), the

159



market shares for each brand (sjt), the heteroskedastic nonlinear component of util-

ity (µijt), and the BLP contraction mapping. In my case, I set up a socket cluster

with 64 nodes on a Windows 7 Server, and the work is distributed to each node on

a market-by-market basis using the doParallel package in R (Revolution Analytics

and Weston 2015). Section B.2.1 provides R code for initialization of the parallel

cluster, Section B.2.2 provides modified functions to accommodate parallelization

of the mean utility calculation, and Section B.2.3 provides modified functions for

parallelization of the Jacobian.

B.2.1 Parallel Cluster Inititalization

1 s e t u p c l u s t e r <− f unc t i on ( nc=32) {
2 c l <<− makeCluster ( nc )
3 r e g i s t e r D o P a r a l l e l ( c l )
4 ## Find out the names o f the loaded packages
5 loaded . package . names <− c ( s e s s i o n I n f o ( ) $basePkgs , names ( s e s s i o n I n f o

( ) $ otherPkgs ) )
6

7 t h i s . env <− environment ( )
8 whi le ( i d e n t i c a l ( t h i s . env , g loba l env ( ) ) == FALSE ) {
9 c lu s t e rExpor t ( c l ,

10 l s ( a l l . names=TRUE, env=t h i s . env ) ,
11 env i r=t h i s . env )
12 t h i s . env <− parent . env ( environment ( ) )
13 }
14 ## repeat f o r the g l o b a l environment
15 c lu s t e rExpor t ( c l ,
16 l s ( a l l . names=TRUE, env=globa l env ( ) ) ,
17 env i r=g loba l env ( ) )
18

19 parLapply ( c l , 1 : l ength ( c l ) , f unc t i on ( xx ) {
20 l app ly ( loaded . package . names , f unc t i on ( yy ) {
21 r e q u i r e ( yy , cha rac t e r . only=TRUE) })
22 })
23 }

B.2.2 Parallelized Mean Utility

1 parmeanval <− f unc t i on ( theta2 , newvars=c ( ” mvalold ” ) ,n . mkt=nmkt) {
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2 ## parmeanval s e r v e s as a he lpe r func t i on f o r p a r a l l e l i z i n g the
meanval func t i on below , which now i n c l u d e s a index f o r market

3 c lu s t e rExpor t ( c l , v a r l i s t=newvars )
4 f<−f o r each ( i =1:n . mkt , . combine=c ) %dopar% {
5 meanval ( theta2 , id=(cdid==i ) )
6 }
7 mvalold<<−f
8 re turn ( f )
9 }

10

11 meanval<−f unc t i on ( theta2 , id , maxiter =10000 , t o l=1e−14){
12 theta2w<−matrix (0 , r theta , c theta )
13 theta2w [ which ( theta2w st !=0) ]<−theta2
14 expmu<−exp ( mufunc ( x2 , theta2w , id ) )
15 ## Don ’ t s t a r t with bad va lue s o f d e l t a vec to r ##
16 i f ( any ( i s . na ( mvalold [ id ] ) | i s . i n f i n i t e ( mvalold [ id ] ) ) ) {
17 d e l t a i d <− m v a l l o g i t [ id ]
18 } e l s e {
19 d e l t a i d <− mvalold [ id ]
20 }
21 fp<−squarem ( par=d e l t a i d , expmu=expmu , s=s j t [ id ] , f i x p t f n=blp . inner ,

c o n t r o l=l i s t ( t o l=to l , maxiter=maxiter ) )
22 re turn ( fp $par )
23 }
24

25 mufunc<−f unc t i on ( x2 , theta2w , id ) {
26 #This func t i on computes the non−l i n e a r part o f the u t i l i t y
27 x2<−x2 [ id , ]
28 n<−nrow ( x2 )
29 k<−nco l ( x2 )
30 j<−nco l ( theta2w )−1
31 mu<−matrix (0 , n , ns )
32 f o r ( i in 1 : ns ) {
33 v i<−v f u l l [ id , seq ( i , k∗ns , ns ) ]
34 d i<−d f u l l [ id , seq ( i , j ∗ns , ns ) ] # 2256 by 4 take (1 ,21 ,41 , 61 )

(2 , 22 ,42 , 62 ) . . ( income , income ˆ2 , age , c h i l d )
35 mu[ , i ]<−( ( x2∗ v i ) %∗% ( theta2w [ , 1 ] ) )+(x2 ∗( d i %∗% t ( theta2w [ , ( 2 : ( j

+1) ) ] ) ) ) %∗% rep (1 , k ) #theta2w [ ,1 ]= sigma and theta2w [ , ( 2 : ( j +1) )
]= pi

36 }
37 re turn (mu)
38 }
39

40 blp . inner<−f unc t i on ( de l ta , expmu , s ) {
41 d e l t a <− d e l t a + log ( s ) − l og ( sha r e f cn ( de l ta , expmu) [ [ 2 ] ] )
42 re turn ( de l t a )
43 }
44

45 sha r e f cn<−f unc t i on ( mval , expmu) {
46 # This func t i on computes the ” i n d i v i d u a l ” p r o b a b i l i t i e s o f choos ing

each brand
47 # AND the market share s f o r each product . The output i s a l i s t with

both va lues
48 eg<−expmu∗ kronecker ( t ( rep (1 , ns ) ) , exp ( mval ) )
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49 sum1<−rbind ( colSums ( eg ) )
50 denom<−1/(1+sum1)
51 denom<−denom [ rep (1 , nrow ( eg ) ) , ]
52 ind . cho i c e<−eg∗denom
53 cho i c e<−rowSums( ind . cho i c e ) /ns
54 re turn ( l i s t ( ind . cho ice , cho i c e ) )
55 }

B.2.3 Parallelized Jacobian

1 par jacob <− f unc t i on ( mval , theta2 , n . mkt=nmkt) {
2 ## parjacob s e r v e s as a he lpe r func t i on f o r p a r a l l e l i z i n g the

jacob ian func t i on below , which now i n c l u d e s a index f o r market
3 f<−f o r each ( i =1:n . mkt , . combine=rbind ) %dopar% {
4 jacob ( mval , theta2 , id=(cdid==i ) )
5 }
6 re turn ( f )
7 }
8

9 jacob<−f unc t i on ( mval , theta2 , id ) {
10 # This func t i on computes the Jacobian o f the i m p l i c i t f unc t i on that

d e f i n e s the mean u t i l i t y
11 theta2w<−matrix (0 , r theta , c theta )
12 theta2w [ which ( theta2w st !=0) ]<−theta2
13 expmu<−exp ( mufunc ( x2 , theta2w , id ) )
14 share s<−sha r e f cn ( mval [ id ] , expmu) [ [ 1 ] ] # n x ns
15 x2<−x2 [ id , ]
16 n<−nrow ( x2 )
17 K<−nco l ( x2 )
18 J<−nco l ( theta2w )−1
19

20 t h e t i<−which ( theta2w !=0 , a r r . ind=TRUE) [ , 1 ]
21 t h e t j<−which ( theta2w !=0 , a r r . ind=TRUE) [ , 2 ]
22 r e l<−t h e t i +( the t j −1)∗max( t h e t i )
23

24 f 1<−matrix (0 , n ,K∗( J+1) )
25 f<−matrix (0 , n , l ength ( t h e t i ) )
26

27 # Computing ( p a r t i a l share ) /( p a r t i a l sigma )
28 f o r ( i in 1 :K) {
29 xv<−( x2 [ , i ] %∗% t ( rep (1 , ns ) ) ) ∗ v f u l l [ id , ( ( ns ∗( i −1)+1) : ( ns∗ i ) ) ] # n

x ns
30 sum1<−rbind ( colSums ( xv∗ share s ) ) # 1 x ns
31 f 1 [ , i ]<−rowMeans ( share s ∗( xv−sum1 [ rep (1 , n) , ] ) ) # n x 1
32 }
33 # Computing ( p a r t i a l share ) /( p a r t i a l p i )
34 f o r ( j in 1 : J ) {
35 d<−d f u l l [ id , ( ( ns ∗( j−1)+1) : ( ns∗ j ) ) ]
36 temp1<−matrix (0 , n ,K)
37 f o r ( i in 1 :K) {
38 xd<−( x2 [ , i ] %∗% t ( rep (1 , ns ) ) ) ∗d # n x ns
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39 sum1<−rbind ( colSums ( xd∗ share s ) ) # 1 x ns
40 temp1 [ , i ]<−rowMeans ( share s ∗(xd−sum1 [ rep (1 , n) , ] ) ) #n x 1
41 }
42 f 1 [ , ( (K∗ j +1) : (K∗( j +1) ) ) ]<−temp1
43 }
44 # Computing ( p a r t i a l d e l t a ) /( p a r t i a l theta2 )
45 temp <− share s
46 H1<−temp %∗% t ( temp )
47 H<−( d iag ( rowSums( temp ) )−H1) /ns
48 f <− −s o l v e (H, t o l=1e−20) %∗% f1 [ , r e l ]
49 re turn ( f )
50 }
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Appendix C: Appendix to Chapter 3

C.1 Additional Tables

(Continued on next page...)
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Table C.1: Grower Conferences and Online Grower Listservs Surveyed

Conference / Organization Dates

Pacific Northwest Vegetable Conference & Trade Show,
Kennewick, WA

November 12-13, 2014

29th Annual Southeast Vegetable & Fruit Expo, Myrtle
Beach, SC

December 2-3, 2014

Great Lakes Fruit and Vegetable Expo, Grand Rapids,
MI

December 9-11, 2014

Southeast Regional Fruit & Vegetable Conference, Sa-
vannah, GA

January 8-11, 2015

Future Harvest Chesapeake Alliance for Sustainable
Agriculture Conference, College Park, MD

January 15-17, 2015

Ohio Produce Growers & Marketers Association
Congress, Sandusky, OH

January 19-21, 2015

Mid-Atlantic Fruit and Vegetable Convention, Hershey,
PA

January 27-29, 2015

New Jersey Agricultural Convention and Trade Show,
Atlantic City, NJ

February 2-5, 2015

Georgia Fruit & Vegetable Growers Association January 9, 2014
Michigan State University Extension December 11, 2014
Future Harvest Chesapeake Alliance for Sustainable
Agriculture

January 16, 2015

Center for Produce Safety February 10, 2015
North Carolina Farm Bureau January 23, 2015
Ohio State University Extension January 18, 2015
Oregon State University Extension January 30, 2015
Pennsylvania Association for Sustainable Agriculture January 27, 2015
Pennsylvania Vegetable Growers Association January 26, 2015
University of Florida Extension January 22, 2015
Virginia Association for Biological Farming February 8, 2015
Vegetable Growers Association of New Jersey February 2, 2015
Carolina Farm Stewardship Association December 8, 2014
Cornell Produce Safety Alliance December 9, 2014
Michigan Food & Farming Systems December 9, 2014

Note: The survey closed on May 2, 2015, for all online grower Listservs
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Table C.2: Estimated Coefficients for Double Hurdle Specification With No Interactions

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Washing
Product

Employee
Sanita-
tion &

Hygiene

Written
Records

Soil
Amend-

ment
Treat-
ment

Third-
Party
Audits

Use Variables

Intercept -0.4001 -0.6526∗∗ 1.4989∗∗∗ -0.5749* 2.0709∗∗∗ 0.2122 0.7985 -1.8187∗∗∗

(0.2756) (0.2851) (0.4299) (0.3057) (0.214) (0.3289) (0.6579) (0.4246)
Log Fruit and Vegetable Acreage 0.2276∗∗∗ 0.1552∗∗∗ -0.0872 -0.0391 0.0679 0.1127∗ -0.0691 0.3062∗∗∗

(0.0477) (0.0466) (0.0648) (0.0487) (0.0617) (0.0605) (0.0684) (0.0661)
Contractual Obligation 0.4133∗∗ 0.6936∗∗∗ 0.5795∗ -0.1107 0.1216 1.4203∗∗∗ 0.3883 1.4397∗∗∗

(0.2084) (0.2153) (0.326) (0.2335) (0.3106) (0.4935) (0.3829) (0.2464)
Wholesale / Other Sale Share 0.0013 -0.0015 -0.0026 0.004 -0.0065∗∗ 0.0002 -0.0061 0.0006

(0.0022) (0.0023) (0.0033) (0.0028) (0.0032) (0.0031) (0.0042) (0.0034)
Sustainable 0.0797 -0.181 0.078 0.8183∗∗∗ 0.1819 0.1331 0.0626 -0.3221

(0.1835) (0.1824) (0.2933) (0.2413) (0.2511) (0.2099) (0.2386) (0.3378)
Berries -0.0067 -0.1248 0.7460∗∗∗ 0.1332 0.4751∗∗ -0.0721 -0.1027 -0.2294

(0.1576) (0.1598) (0.2655) (0.1824) (0.1975) (0.1837) (0.2313) (0.2402)
Fruit and Tree Nut 0.116 -0.0539 -0.1435 0.2501 -0.3784∗ 0.2361 0.0677 -0.0899

(0.1628) (0.1658) (0.273) (0.1971) (0.1941) (0.2017) (0.2329) (0.2609)
Vegetables -0.3321 0.4017∗ -0.164 1.2003∗∗∗ -0.9954∗∗∗ 0.2201 -0.1544 -0.3746

(0.2312) (0.233) (0.3523) (0.2441) (0.191) (0.2766) (0.6034) (0.3096)

Expenditure Variables

Intercept 2.6668∗∗∗ 3.0660∗∗∗ 4.3212∗∗∗ 4.8510∗∗∗ 5.0245∗∗∗ 0.7847∗∗∗ 4.2457∗∗∗ 5.9150∗∗∗

(0.4903) (0.5985) (0.3617) (0.8305) (0.3325) (0.2859) (1.2161) (0.675)
Log Fruit and Vegetable Acreage 0.6955∗∗∗ 0.5608∗∗∗ 0.5475∗∗∗ 0.6816∗∗∗ 0.6319∗∗∗ 0.2560∗∗∗ 0.9180∗∗∗ 0.3798∗∗∗

Continued. . .
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Table C.2 – continued from previous page

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Washing
Product

Employee
Sanita-
tion &

Hygiene

Written
Records

Soil
Amend-

ment
Treat-
ment

Third-
Party
Audits

(0.0764) (0.0795) (0.0602) (0.0719) (0.0542) (0.0416) (0.1587) (0.0986)
Sustainable 0.4638 0.4685 0.6253∗∗ 0.7333∗∗ 0.2675 0.4459∗∗ 0.2322 0.1249

(0.3922) (0.3754) (0.2448) (0.3231) (0.2482) (0.1954) (0.3848) (0.5112)
Berries 0.0034 -0.2336 0.1864 -0.1714 -0.125 0.005 -0.0479 1.0149∗∗∗

(0.3021) (0.3223) (0.226) (0.2709) (0.2114) (0.1675) (0.4127) (0.3179)
Fruit and Tree Nut -0.3933 0.2712 -0.1011 0.3285 -0.0446 -0.3887∗∗ 0.241 -0.0873

(0.3205) (0.3233) (0.226) (0.2798) (0.2199) (0.1773) (0.4118) (0.3829)
Vegetables -0.5517 0.2044 0.2788 0.6249 0.0139 -0.3462 0.5856 0.1353

(0.3793) (0.4108) (0.3021) (0.6044) (0.2774) (0.2244) (1.1349) (0.3976)

Sigma 1.8964∗∗∗ 1.6828∗∗∗ 1.4946∗∗∗ 1.5790∗∗∗ 1.5092∗∗∗ 1.2357∗∗∗ 1.3839∗∗∗ 1.0722∗∗∗

(0.1611) (0.2371) (0.0961) (0.1014) (0.0716) (0.0769) (0.1635) (0.1031)
Rho 0.9090∗∗∗ 0.8283∗∗∗ 0.6672∗∗∗ 0.2111 0.0001 0.8256∗∗∗ 0.325 -0.2603

(0.0423) (0.1378) (0.2286) (0.4141) ) (0.0881) (0.4009) (0.2813)

No. of Observations 303 294 297 294 290 286 157 283
Log Likelihood -389.6464 -347.5561 -428.3126 -442.7636 -496.4305 -453.1219 -198.3643 -164.5507

Note: Standard errors (reported in parentheses) were estimated using the delta method. Asterisk (∗), double asterisk (∗∗), and
triple asterisk (∗∗∗) indicate significance at the 10, 5 and 1 percent level, respectively.

167



Table C.3: Estimated Coefficients for Double Hurdle Specification With Interactions

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Employee
Sanita-
tion &

Hygiene

Soil
Amend-

ment
Treat-
ment

Use Variables

Intercept -0.3409 -0.6411∗∗ 1.4962∗∗∗ 2.0511∗∗∗ 0.7974
(0.28) (0.2836) (0.4332) (0.4536) (0.6542)

Log Fruit and Vegetable Acreage 0.2011∗∗∗ 0.1473∗∗∗ -0.0886 0.0685 -0.069
(0.0493) (0.0443) (0.0652) (0.0614) (0.0684)

Contractual Obligation 0.4782∗∗ 0.7127∗∗∗ 0.5780∗ 0.1761 0.3877
(0.2373) (0.2022) (0.3273) (0.3141) (0.3852)

Wholesale / Other Sale Share 0.0021 -0.0018 -0.0025 -0.0071∗∗ -0.0061
(0.0024) (0.0022) (0.0033) (0.0035) (0.0042)

Sustainable 0.0943 -0.1921 0.0525 0.1678 0.0629
(0.1863) (0.1818) (0.2916) (0.2562) (0.2387)

Berries -0.0724 -0.1226 0.7366∗∗∗ 0.4541∗ -0.1022
(0.1607) (0.1579) (0.2641) (0.2317) (0.2315)

Fruit and Tree Nut 0.1431 -0.0279 -0.1342 -0.3612 0.0678
(0.1683) (0.1655) (0.274) (0.2387) (0.2328)

Vegetables -0.34 0.4024∗ -0.1519 -0.9626∗∗ -0.154
(0.2357) (0.2309) (0.3542) (0.3936) (0.5992)

Expenditure Variables

Intercept 2.8170∗∗∗ 3.5581∗∗∗ 4.1740∗∗∗ 3.6239∗∗∗ 3.6368∗∗

(0.6047) (1.0693) (0.3958) (0.5814) (1.5395)
Sustainable 0.49 0.4125 0.6788∗∗∗ 0.1592 0.2349

Continued. . .
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Table C.3 – continued from previous page

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Employee
Sanita-
tion &

Hygiene

Soil
Amend-

ment
Treat-
ment

(0.3559) (0.3652) (0.2477) (0.2416) (0.3965)
Berries -0.0768 -0.2777 0.123 -0.278 -0.0504

(0.2571) (0.3149) (0.2318) (0.2235) (0.4114)
Fruit and Tree Nut -0.1766 0.2693 -0.1104 -0.1386 0.2684

(0.283) (0.3231) (0.2267) (0.2274) (0.412)
Vegetables -0.275 0.4475 0.2136 0.1309 0.5797

(0.3298) (0.4135) (0.3072) (0.298) (1.1347)

Log Fruit and Veg. Acreage x Water Samples 0.5510∗∗∗

(0.0754)
Log Fruit and Veg. Acreage x Soil Amendment Samples 0.2094

(0.1475)
Log Fruit and Veg. Acreage x Product Samples 0.0604

(0.1126)
Water Samples 0.0128

(0.506)
Soil Amendment Samples -0.0747

(0.4907)
Product Samples 1.4928∗∗∗

(0.5315)

Log Fruit and Veg. Acreage x Flooding -0.2032
(0.6088)

Log Fruit and Veg. Acreage x Wildlife Intrusion 0.5097∗∗∗

Continued. . .
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Table C.3 – continued from previous page

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Employee
Sanita-
tion &

Hygiene

Soil
Amend-

ment
Treat-
ment

(0.1049)
Log Fruit and Veg. Acreage x Other Causes 0.1554

(0.1363)
Log Fruit and Veg. Acreage x Flooding x Wildlife Intrusion 0.2448

(0.6166)
Flooding Inspections 0.1746

(1.7905)
Animal Intrusion Inspections -0.8544

(1.029)
Other Inspections -0.0412

(0.5903)
Flooding x Wildlife Intrusion Inspections 0.0268

(1.8359)

Log Fruit and Veg. Acreage x Wash Containers -0.0291
(0.1022)

Log Fruit and Veg. Acreage x New Containers 0.5607∗∗∗

(0.09)
New Harvest Containers 0.4063

(0.3128)

Log Fruit and Veg. Acreage x Employee Training 0.0877
(0.1305)

Log Fruit and Veg. Acreage x Toilet/Handwash Facilities -0.1345
Continued. . .
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Table C.3 – continued from previous page

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Employee
Sanita-
tion &

Hygiene

Soil
Amend-

ment
Treat-
ment

(0.1323)
Log Fruit and Veg. Acreage x Equipment Sanitation 0.0337

(0.1081)
Log Fruit and Veg. Acreage x Building Sanitation 0.6863∗∗∗

(0.2062)
Log Fruit and Veg. Acreage x Sewage/Trash Disposal -0.1469

(0.1905)
Log Fruit and Veg. Acreage x Other Preventive Actions 0.117

(0.1386)
Employee Education/Training 0.7699∗

(0.4175)
Equipment & Tool Sanitation 0.3901

(0.3985)
Building Sanitation 0.1024

(0.3516)
Toilet & Handwashing Facilities 0.1537

(0.5569)
Proper Disposal of Sewage/Trash 0.7019

(0.479)
Other Employee Actions -0.2481

(0.4841)
Total Number of Employees 0.0012∗

Continued. . .
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Table C.3 – continued from previous page

Variables Sampling
&

Testing

Field
Inspec-
tions

Harvest
Con-
tainer
Sanita-

tion

Employee
Sanita-
tion &

Hygiene

Soil
Amend-

ment
Treat-
ment

(0.0007)

Log Fruit and Veg. Acreage x Single Soil Amendment 1.5959
(1.078)

Log Fruit and Veg. Acreage x Multiple Soil Amendments 0.8995∗∗∗

(0.1626)
Multiple Soil Amendments 0.6437

(0.9754)

Sigma 1.4970∗∗∗ 1.6996∗∗∗ 1.4895∗∗∗ 1.4037∗∗∗ 1.3782∗∗∗

(0.1733) (0.2066) (0.0983) (0.0905) (0.1636)
Rho 0.7779∗∗∗ 0.8982∗∗∗ 0.6436∗∗∗ -0.3263 0.325

(0.1451) (0.0801) (0.2563) (0.5064) (0.4048)

No. of Observations 303 294 297 290 157
Log Likelihood -374.9738 -341.5166 -423.2073 -468.5369 -198.1192

Note: Standard errors (reported in parentheses) were estimated using the delta method. Asterisk (∗), double asterisk (∗∗),
and triple asterisk (∗∗∗) indicate significance at the 10, 5 and 1 percent level, respectively.
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C.2 Survey Instrument

Own

Manage

Own and Manage

Neither

No

Yes

 
Please answer the following questions to the best of your abilities with respect to the 2014 growing season (unless otherwise noted).

Reasonably accurate estimates are acceptable.

Background Information

This is a research project being conducted by Professor Erik Lichtenberg at the University of
Maryland, College Park. The purpose of this research is to identify the current prevalence and burden
of different food safety risk-reduction strategies for vegetable and fruit growers nationwide.

Your participation in this research study is voluntary. You may choose not to participate. If you
decide to participate in this research survey, you may withdraw at any time. The procedure involves
filling an online survey that will take approximately 15 to 20 minutes.  At the end of this survey, you
will be asked if you are interested in providing contact information in order to participate in a follow-
up survey. The decision to provide this information is completely voluntary. Your responses will be
kept confidential. All data will be stored in a password protected electronic database. The results of
this study will be used for scholarly purposes only.

If you have any questions about the research study, please contact Professor Erik Lichtenberg,
Department of Agricultural and Resource Economics, University of Maryland, College Park at (301)
405-1279 or elichten@umd.edu. This research has been reviewed according to the University of
Maryland IRB procedures for research involving human subjects. If you have questions about your
rights as a research participant or wish to report a research-related injury, please contact: 

University of Maryland College Park 
Institutional Review Board Office 
IRB Protocol 11-0513 
1204 Marie Mount 
College Park, Maryland, 20742 
E-mail: irb@umd.edu 
Telephone: (301) 405-0678 

By clicking the “NEXT” button below you are indicating that you are at least 18 years of age;
you have read this consent form or have had it read to you; and you voluntarily agree to
participate in this research study.

Do you own or manage a farm?

Is ALL the produce you grow intended for canning or a similar type of commercial processing that
kills pathogens?

What vegetables and/or fruit were produced in 2014?
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Yes

No

Artichokes Eggplant Potatoes and/or Sweet Potatoes

Asparagus Fresh Herbs Radishes and/or Turnips

Beans (any type) Grains, Oilseeds, and/or Hay Squash (any type) and/or Pumpkins

Beets Leafy Greens Sweet Corn

Berries (any type) Melons (any type) Tomatoes

Broccoli and/or Cauliflower Okra Tree Fruits

Brussel Sprouts Onions (any type) Tree Nuts

Carrots Peas (any type) Other Vegetables

Celery and/or Rhubarb Peppers (any type) Other Fruit

Cucumbers     

Were livestock or other domesticated animals raised on the farm, as well?

In what county and state are your farm fields located?

State
County

How many full-time and seasonal employees were employed?

Full-time employees

Seasonal employees

In total, how many acres of land were in production?

Vegetables and Fruit  acres

All Farm Production  acres

What was the total annual revenue and total annual expenditures for all farm production?
Estimates are acceptable.

Total Annual Revenue $ 

Total Annual Expenditures $ 

What share of total annual revenue and total annual expenditures were attributable to vegetable and
fruit production?  

Share of Revenue  %

Share of Expenditures  %
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Yes

No

Yes

No

Please identify the percentage share of all vegetables and fruit sold directly to the listed entities. 
The column must sum to 100.

  All Vegetables and Fruit

Direct Sales   0  %

Grocery Retailers   0  %

Foodservice Operations   0  %

Produce Wholesalers/Repackers   0  %

Mass Merchandisers   0  %

Exporters   0  %

Brokers   0  %

Other   0  %

Total   0  %

Did you have any contractual obligation to adhere to any specific safety standards and testing
procedures?

Please identify the entities with which you had contractual obligations regarding food safety and any
corresponding safety standards (e.g., guidance documents, certification programs, USDA GAP,
Harmonized GAP, etc.).

Vegetables
and Fruit Vegetables and Fruit  

Contractual
Safety

Obligation?

Safety Standard (e.g., GAPs,
Certification, etc.)

Grocery Retailers  

Foodservice Operations  

Produce
Wholesalers/Repackers  

Mass Merchandisers  

Exporters  

Brokers  

Shippers  

Other:  

For vegetable and fruit production, did operations include the use of a soil amendment or soil
treatment that contained animal manures or animal products (e.g., raw manure, compost, fish
emulsions, fish meal, blood meal, etc.)?
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Yes

No

Yes: All soil amendments were treated.

Yes: Some soil amendments were treated, while some were left untreated.

No: All soil amendments were untreated.

Yes

No

Yes

No

Was more than one soil amendment and/or soil treatment of animal origin used for vegetable and
fruit production?

Were any biological soil amendments of animal origin treated using scientifically-valid physical,
chemical or composting processes before application?

Was the biological soil amendment of animal origin treated using a scientifically-valid physical,
chemical or composting process before application?

What was the approximate total annual cost of treating biological soil amendments of animal origin
before application?
Estimates are acceptable.

$ 

What was the shortest time interval in days between the application of soil amendments of animal
origin and harvesting of crops for any growing area on which they were applied?

Treated Soil Amendments  days

Untreated Soil Amendments  days

End of Survey

Thank you for participating in our survey!
If you are interested in learning the survey results, please contact Erik Lichtenberg at elichten@umd.edu.

Please click NEXT to end the survey.

Sampling & Testing, Wildlife, & Flooding

Was more than one water source used for growing, harvesting, packing, or holding vegetables and
fruit?

What water source(s) was used for growing, harvesting, packing, or holding vegetables and fruit?
Please check all that apply. 
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Pond or Lake

River

Stream or Spring

Shallow Well (less than 30 feet)

Deep Well (greater than 30 feet)

Municipal / City Water

Other

Water Samples

Soil Amendment and/or Soil Treatment Samples

Crop/Product Samples

No samples were taken

Grazing only

Working Animals only

Grazing and Working Animals

Neither

Please indicate whether the following samples were collected for microbial testing (e.g., pathogens,
generic E. coli, coliforms, etc.).
If no samples were taken, please check the last box.

How frequently were samples collected?

   Weekly Montlhy Once a Season Never Other

Water   

Soil Amendments and/or Soil
Treatments   

Crop/Product   

How frequently were the following samples collected?

Water Samples

Soil Amendments and/or Soil Treatment
Samples

Crop/Product Samples

What were the total annual expenditures associated with sampling and testing (including employee
wages, materials, etc.)?
Estimates are acceptable.

$ 

Were animals allowed to graze and/or used as working animals in fields where vegetables and fruit is
grown?
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Yes

No

Flooding

Animal Intrusion

Other Contamination Sources

No field inspections were conducted

Sanitary Surveys/Sanitation

Additional Testing

Water Treatments

Leave enough time between last irrigation and harvest or between harvest and end of storage for microbes to die off

Processing/Treatment of Soil Amendments

Use of Substitutes for Contaminated Materials

Material Disposal

Product Disposal

What was the shortest time interval in days between grazing and harvesting of crops for any growing
area that was grazed?

 days

Were any measures taken to prevent the introduction of hazards onto covered produce from working
animals (e.g., segregated horse paths, etc.)?

Were field inspections for flooding, animal intrusion, and/or other contamination sources conducted
prior to harvest?
If no field inspections were conducted, please check the last box.

What was the total annual cost of conducting field inspections (including employee wages, etc.)?
Estimates are acceptable.

$ 

For each of the following, did test results, flooding, animal intrusion, and/or other contamination
sources lead to remedial actions (e.g., sanitation, product disposal, water treatment, etc.)?

   Yes No

Test Results   

Flooding   

Animal Intrusion   

Other Contamination Sources   

Please identify all remedial actions taken following testing, flooding, and/or animal intrusion. 
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Delayed Future Production on Site

Other:

Other:

Yes

No

Yes

No

What was the approximate total annual cost associated with these remedial actions (including the
value of any disposed materials/products, value of lost future production on site, etc.)?
Estimates are acceptable.

$ 

Preventive Actions

Were harvest containers washed and/or sanitized prior to harvest for any vegetable or fruit crops?

Were new harvest containers used for any vegetable or fruit crops?

For which vegetables and fruit crops were harvest containers washed and/or sanitized prior to
harvest?

Artichokes Eggplant Potatoes and/or Sweet Potatoes

Asparagus Fresh Herbs Radishes and/or Turnips

Beans (any type) Grains, Oilseeds, and/or Hay Squash (any type) and/or Pumpkins

Beets Leafy Greens Sweet Corn

Berries (any type) Melons (any type) Tomatoes

Broccoli and/or Cauliflower Okra Tree Fruits

Brussel Sprouts Onions (any type) Tree Nuts

Carrots Peas (any type) Other Vegetables

Celery and/or Rhubarb Peppers (any type) Other Fruit

Cucumbers     

For which vegetables and fruit crops were new harvest containers used?

Artichokes Eggplant Potatoes and/or Sweet Potatoes

Asparagus Fresh Herbs Radishes and/or Turnips

Beans (any type) Grains, Oilseeds, and/or Hay Squash (any type) and/or Pumpkins

Beets Leafy Greens Sweet Corn

Berries (any type) Melons (any type) Tomatoes

Broccoli and/or Cauliflower Okra Tree Fruits
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Yes

No

Employee Education/Training

Clean and Accessible Toilet and Handwashing Facilities

Brussel Sprouts Onions (any type) Tree Nuts

Carrots Peas (any type) Other Vegetables

Celery and/or Rhubarb Peppers (any type) Other Fruit

Cucumbers     

What was the total approximate annual cost of washing and/or sanitizing harvest containers
(including the cost of disinfectants, employee wages, etc.)?
Estimates are acceptable.

$ 

What was the total approximate annual cost for the new harvest containers?
Estimates are acceptable.

$ 

Were any harvested crops/products washed prior to storage or sale?

Which vegetable and fruit crops were washed prior to storage or sale?

Artichokes Eggplant Potatoes and/or Sweet Potatoes

Asparagus Fresh Herbs Radishes and/or Turnips

Beans (any type) Grains, Oilseeds, and/or Hay Squash (any type) and/or Pumpkins

Beets Leafy Greens Sweet Corn

Berries (any type) Melons (any type) Tomatoes

Broccoli and/or Cauliflower Okra Tree Fruits

Brussel Sprouts Onions (any type) Tree Nuts

Carrots Peas (any type) Other Vegetables

Celery and/or Rhubarb Peppers (any type) Other Fruit

Cucumbers     

What was the approximate total annual cost of washing the crops/products (including employee
wages, etc.)?
Estimates are acceptable.

$ 

With regards to employee hygiene and general sanitation, please identify all preventive actions taken.
If no action was taken, please check the last box.
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Equipment and Tool Sanitation

Building Sanitation

Proper Disposal of Sewage and Trash

Other:

Other:

No preventive action was taken.

Yes

No

Yes

No

Food Hygiene and Food Safety Policies and Procedures

Water Treatment Methods

What was the approximate total annual cost associated with these preventive actions?
Estimates are acceptable.

$ 

Besides field inspections, employee hygiene precautions, general sanitation, washing, sampling,
and/or testing, were any other preventive actions taken to directly reduce the risk of pathogen
contamination?

What other preventive actions were taken to directly reduce the risk of pathogen contamination?

What was the total annual cost of implementing these additional preventive actions (including
employee wages, cost of materials and equipment, etc.)?
Estimates are acceptable.

$ 

Do you have a third-party food safety audit program in place? 

What is the total annual cost of these food safety audits?
Estimates are acceptable.

$ 

Do you keep written records or documentation for any of the following?
If not, please check the last box.
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Water Treatment Monitoring Results

Water Testing Results

Soil Amendment and/or Soil Treatement Application Dates

Produce/Crop Harvest Dates

Soil Amendment and/or Soil Treatement Testing Results

Produce/Crop Testing Results

Flooding

Animal Intrusion

Other Contamination

No written records or documentation were kept

On a weekly basis, how much time do you spend on record keeping (in hours)?

 hours
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