
ABSTRACT

Title of dissertation: PATH PLANNING, FLOW ESTIMATION,
AND DYNAMIC CONTROL
FOR UNDERWATER VEHICLES

Francis D. Lagor Jr., Doctor of Philosophy, 2017

Dissertation directed by: Professor Derek A. Paley
Department of Aerospace Engineering
Institute for Systems Research

Underwater vehicles such as robotic fish and long-endurance ocean-sampling plat-

forms operate in challenging fluid environments. This dissertation incorporates models of

the fluid environment in the vehicles’ guidance, navigation, and control strategies while ad-

dressing uncertainties associated with estimates of the environment’s state. Coherent flow

structures may be on the same spatial scale as the vehicle or substantially larger than the

vehicle. This dissertation argues that estimation and control tasks across widely varying

spatial scales, from vehicle-scale to long-range, may be addressed using common tools of

empirical observability analysis, nonlinear/non-Gaussian estimation, and output-feedback

control.

As an application in vehicle-scale flow estimation and control, this dissertation de-

tails the design, fabrication, and testing of a robotic fish with an artificial lateral-line

inspired by the lateral-line flow-sensing organ present in fish. The robotic fish is capable

of estimating the flow speed and relative angle of the oncoming flow. Using symmetric



and asymmetric sensor configurations, the robot achieves the primitive fish behavior called

rheotaxis, which describes a fish’s tendency to orient upstream.

For long-range flow estimation and control, path planning may be accomplished

using observability-based path planning, which evaluates a finite set of candidate control

inputs using a measure related to flow-field observability and selects an optimizer over the

set. To incorporate prior information, this dissertation derives an augmented observability

Gramian using an optimal estimation strategy known as Incremental 4D-Var. Examina-

tion of the minimum eigenvalue of an empirical version of this Gramian yields a novel

measure for path planning, called the empirical augmented unobservability index. Nu-

merical experiments show that this measure correctly selects the most informative paths

given the prior information.

As an application in long-range flow estimation and control, this dissertation con-

siders estimation of an idealized pair of ocean eddies by an adaptive Lagrangian sensor

(i.e., a platform that uses its position data as measurements of the fluid transport, after

accounting for its own control action). The adaptive sampling is accomplished using the

empirical augmented unobservability index, which is extended to non-Gaussian posterior

densities using an approximate expected-cost calculation. Output feedback recursively

improves estimates of the vehicle position and flow-field states.
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Chapter 1

Introduction

The past few decades have seen the emergence of mobile autonomous systems as

practical and useful technologies. These technologies have moved beyond proof-of-concept

demonstrations driven by the research community. Society at-large is now demanding

these technologies to improve daily life and our understanding of the world around us.

Autonomous Underwater Vehicles (AUVs) are of particular interest. These vehicles may

automate patrol of harbors, bays, littoral zones, in-land lakes, and some rivers, as well

as inspect infrastructure. Autonomous ocean vehicles can now take scientific measure-

ments within a long-duration deployable network. These submersible technologies have

the potential to secure our domestic waterways and to contribute meaningfully to our

understanding of the threat of global climate change.

AUVs have great potential, but underwater autonomy has been a major research

focus for several decades. Despite many proof-of-concept demonstrations with AUVs,

most applications still have not progressed beyond teleoperation of robotic platforms [1]

or pre-planned missions with limited forms of autonomy based on simple switching in
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response of pre-programmed events [2]. One may attribute delayed progress to the many

challenges faced by these platforms.

Some of the largest challenges currently faced by submersible autonomous robots

involve their interactions with their surrounding fluid environments. Understanding the

surrounding environment can be challenging because of the breadth of dynamic behavior

exhibited by fluid flows—the system is infinite-dimensional, distributed, time-varying, and

can display multi-scale effects, leading to turbulence and chaos. For some applications,

understanding the surrounding fluid environment can be relatively straightforward. For

example, many large, fast-moving vehicles such as commercial aircraft and naval sub-

marines address flow interactions by linearization of the vehicle dynamics about fixed

operating conditions (e.g., steady, wings-level flight) and scheduling control gains to stitch

together these operating points [3]. This approach does not require knowledge of the fluid

environment beyond the conditions experienced at each operating point, for which exten-

sive empirical testing is performed. Of interest are applications in which the surrounding

flow field is not simply addressed through linearization and coherent flow structures are dy-

namically relevant to the vehicle and its intended path. For smaller vehicles with reduced

power available for control, vehicle stabilization in an unknown flow becomes increasingly

important. Additionally, long-endurance vehicles need to consider large, coherent flow

structures that may greatly influence their intended path if they wish to minimize control

effort or ensure their intended trajectory is feasible given control limitations.

This dissertation contributes to the control design practices for AUVs by developing

flow-aware controllers that enable interaction with the surrounding fluid environment. It
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contributes estimation and control loops that have understanding of the surrounding flow

as a primary design objective. By employing output-feedback control, nonlinear/non-

Gaussian estimation, and observability-based sensor placement and routing, the vehicle

recursive improves its understanding of the flow by updating its flow map using information

collected from sensors. Using the updated flow map, the vehicle then can take control

action to further another control objective within the flow field or navigate to highly

informative regions of the flow field to collect additional measurements. This control

design methodology applies in two example applications: (i) the orientation control of a

bioinspired robotic fish, and (ii) adaptive sampling of an autonomous vehicle deployed

to monitor a pair of ocean eddies. Improved control of robotic fish will enhance our

national security, while intelligent path planning for ocean-sampling vehicles will lead to

new scientific understanding of the world’s oceans and climates.

1.1 Statement of the problem

One challenging consideration for mobile autonomous robotic systems is the influ-

ence of an unknown or unsteady flow field [4–6]. Robotic platforms operating in challeng-

ing flows face difficult vehicle-fluid interaction problems. Challenging fluid flows may be

strong flows, in which local flow speeds may meet or exceed vehicle’s through-water speed

(i.e., the speed of the vehicle relative to the flow) thereby inhibiting forward progress

[7]. Complex fluid flows also include flow fields with prominent nonlinearities, including

coherent flow structures on the order of the vehicle’s body length or larger, that are dy-

namically relevant to the stability and long-range trajectory of the vehicle. For many
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applications, the presence of a challenging flow means that traditional control techniques

based on linearization are insufficient.

The challenges of the vehicle’s Guidance, Navigation, and Control (GNC) in chal-

lenging flows are substantially enhanced if the flow is unknown or uncertain. The term un-

known is reserved for flows in which very little is known about the surrounding environment—

only that the physics of fluid dynamics apply. In the case of an unknown flow, there is

insufficient prior information from initial conditions, boundary conditions, or other con-

straints to be able to form a reduced-order model of the flow. Reduced-order models are

often necessary for rapid evaluation within a control loop. Addressing GNC of robotic

platforms in fully unknown flows is beyond the scope of this dissertation and is a direction

for future research (see Section 8.2). This dissertation focuses on uncertain flows. The

term uncertain is reserved to indicate that the true flow state is not known, but there is

sufficient prior information of the flow structure to be able to form a reduced-order model.

Further, the vehicle may make estimates of the true flow state, but these estimates carry

a degree of uncertainty with them. The challenge then lies in properly quantifying all of

the uncertainties about the flow and utilizing this knowledge effectively in the vehicle’s

GNC.

Complex vehicle-fluid interaction problems occur across many spatiotemporal scales.

This dissertation considers two general categories: vehicle-scale interactions and long-

range interactions. Vehicle-scale interactions occur at the same spatial scale of the vehicle

body and occur over a timescale consistent with how long it takes the vehicle to traverse

a body length (or a small multiple of the body length) when traveling at an average ve-
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hicle speed. Long-range interactions occur over distances that greatly exceed the vehicle

length scale and on a timescale that is consistent with the much longer length scale, when

traveling at an average vehicle speed. The two categories of vehicle-scale and long-range

fluid interactions correspond naturally and respectively with the two control objectives

of stabilization and path planning. Vehicle stabilization typically is achieved by a con-

troller running in a fast inner loop that controls the vehicle dynamics in the presence of

disturbances. Path planning is usually a task assigned to a slower outer loop that takes

deliberative control action to achieve a higher-level control objective.

AUVs should be capable of understanding their local, surrounding flow using flow

sensors. AUVs should also be capable of inferring the global flow structure in the far

field through exploration and coordination with other vehicles. With these capabilities,

AUVs will be able to achieve effective GNC in challenging flows by building stabilizing

and path planning controllers with understanding of the flow environment at both vehicle

and long-range scales.

Engineers must overcome substantial challenges in order to meet these goals. Some

of the most prominent challenges concern the fundamental limitations of observability

that may inhibit unique inference of the state of the fluid system. Observability is the

property by which the initial state of a system can be uniquely inferred by watching the

output or measurements of the system over a specified time horizon. Being able to infer

the initial state of an infinite-dimensional, nonlinear dynamical system uniquely using a

finite number of sensors is undoubtedly doomed to failure without additional knowledge

or constraints to aid in the inference. However, by carefully arranging the sensors on the
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body of the vehicle as well as moving the sensors within the flow field while integrating

the measurements in time, it is possible to restore observability.

The next question concerns how to move the sensors to maximize observability.

One approach is observability-based path planning, in which candidate control inputs are

evaluated by simulating their impact on observability over a future time interval. The

criterion for evaluation is a measure called the empirical unobservability index. Until

now, it has been unclear how to incorporate prior information about the state of the

vehicle and the flow within observability-based path planning. Additionally, there exists

no comprehensive adaptive-sampling framework based on observability that makes proper

use of state uncertainty in estimation, feedback, and path planning.

To study vehicle-scale flow sensing, this dissertation considers the application of

closed-loop stabilizing control of a bioinspired robotic fish using flow-sensing information.

To study the long-range flow sensing, this dissertation tackles the application of ocean

sampling using a guided sensor that takes its own position data as measurements. To-

gether, the following tasks directly address the challenges of GNC for AUVs in challenging

flows and form the basis of this dissertation:

1. Develop a control framework for closed-loop motion control of a bioinspired robotic

fish, using only local, flow-sensing information.

2. Determine the how to incorporate prior information from ongoing flow-field estima-

tion in observability-based evaluation of possible future paths.

3. Develop an adaptive-sampling framework for flow-field estimation by a guided sensor
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using its Lagrangian data as measurements.

1.2 Survey of related work

This section provides surveys of related literature in the areas of bioinspired flow

sensing and control, observability-based path planning, and flow estimation using ocean

sampling vehicles. Due to the wide breadth of topics covered in this dissertation, these

surveys only focus on the most pertinent works known to the author at the time of writing.

Additional references appear elsewhere in the text of the dissertation where appropriate.

1.2.1 Bioinspired flow sensing and control

A flow field provides rich information to the evolutionarily adaptive, flow-sensing

features present in some biological systems [8, 9]. The field of bioinspired flow sensing

has developed with the following objectives: (i) to use biological structures to inform

the design, fabrication, and packaging of artificial flow-sensing devices for autonomous

robotics [5, 10]; and (ii) to develop algorithms for data assimilation and control that

use these complex flow-sensing arrays to achieve specific functional goals, such as local

flow-field estimation, object identification, and navigation [6, 11, 12].

One prominent example of an advanced biological flow-sensing system is the lateral-

line system present in all cartilaginous and bony fish and aquatic amphibians [9, 12].

The uses of the lateral-line system in fish behavior include orienting in flow (rheotaxis),

schooling, detecting obstacles, and avoiding predators. For example, the blind Mexican

cave fish (Astyanax fasciatus) relies exclusively on the lateral-line system for orienting,
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navigating, and schooling [8, 9]. The lateral-line system runs the length of the fish and is

made up of receptors, known as neuromasts, ranging in number from under 100 to over

1000 [9]. The neuromasts consist of ciliary bundles of hair cells, covered in a gelatinous

outer dome called a cupula, that serve as mechano-electrical transducers with directional

sensitivity [8]. Neuromasts exist in two types: superficial neuromasts, which are located on

the exterior surface; and canal neuromasts, which are located between pore entrances of a

subdermal lateral-line canal. Superficial neuromasts serve as flow-velocity sensors, whereas

canal neuromasts respond to pressure-driven flow in the canal in order to measure pressure

differences [13].

Two specific fish behaviors of interest for bioinspired robotics are rheotaxis and

station-holding, because they serve as foundational behaviors from which one can construct

a more complex repertoire. Rheotaxis is a behavior in which a fish orients upstream

toward oncoming flow [14]; station-holding is a behavior in which a fish maintains position

behind an upstream obstacle [8]. The lateral-line sensing modalities are thought to play

an important role in executing these behaviors [8]. An artificial lateral-line system for use

on an autonomous underwater vehicle would enhance its autonomy by providing a short-

range sensing modality. Moreover, it would provide indispensable sensory information in

dark, murky, or cluttered environments, where traditional sensing modalities like vision

or sonar may be impaired.

Since the first artificial lateral-line was fabricated [15], researchers have developed

artificial lateral-line systems using a variety of sensor types, including microfabricated hot-

wire anemometry [15], capacitive [16], piezoresistive [17], optical [12], and ionic polymer
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metal composite cantilever [11] sensors. Yang et al. [10] designed an artificial lateral-line

canal and demonstrated the properties of band-pass filtering and noise rejection in dipolar

and turbulent flows. Tao and Yu [9] provided a comprehensive review of biomimetic hair

flow sensors, and Ren and Mosheni [18] performed analytical work for flow sensing of a

Kármán vortex street. Abdulsadda and Tan [11] created an artificial lateral-line using

ionic polymer metal composite cantilever sensors and trained an artificial neural network

to localize a dipole source. Venturelli et al. [13] showed that an artificial lateral-line made

of off-the-shelf piezoresistive pressure sensors (approximating pressure-difference measure-

ments of canal neuromasts) can be used to identify the presence of a Kármán vortex street

and its hydrodynamic features. Kottapalli et al. [19, 20] developed liquid crystal polymer

pressure sensors in a flexible array for mounting on curved surfaces. Asadnia et al. [21]

produced a piezoelectric artificial lateral-line requiring zero power input.

Although many investigators have constructed artificial lateral-line systems, few

have implemented closed-loop estimation and control using sensor data, and these con-

trollers have been empirical in nature. For example, Salumäe et al. [6] demonstrated

closed-loop rheotaxis of a robotic fish using pressure sensors and a Braitenberg controller,

which is a memoryless controller that uses direct pressure readings from sensors on oppos-

ing sides of the fish to turn in the direction of increasing signal strength. Using empirical

techniques, Salumäe and Kruusmaa [22] also demonstrated closed-loop station-holding

control of a fish robot. Work is still needed to develop model-based controllers that will

be extensible to more challenging flow environments.

Chapter 4 presents an output-feedback-control framework for achieving rheotaxis
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using symmetric and asymmetric artificial lateral-line sensor arrays. This research pre-

sented novel contributions at the time of publication. Since publication, additional sig-

nificant robotic fish research has been performed. DeVries et al. [23] created an artificial

lateral line with multiple sensing modalites, using Ionic Polymer Metal Composite (IPMC)

whisker sensors to mimic the sensory information from superficial neuromasts and signal

differences from pressure sensors to mimic the sensory information from canal neuromasts.

Using this multimodal, artificial lateral line, the pressure-difference measurement equation

from Chapter 4, and many of the same components in output-feedback-control framework,

DeVries et al. [23] demonstrated rheotaxis with improved flow-field estimation and station

holding behind an upstream obstacle (also known as flow refuging [24]). Zhang et al.

[25] also utilized the pressure-difference measurement equation from Chapter 4 in a flow-

sensing and control framework for station keeping of a self-propelled, flexible robotic fish.

The station keeping task involved identification of the oncoming freestream flow speed and

self-propulsion with a corresponding forward average velocity to avoid being swept back

by the current. Modification of the output-feedback-control loop required inclusion of a

feedforward term capturing the inverse kinematics needed to swim at an average forward

speed.

Other notable contributions in bioinspired flow sensing and control since the publi-

cation of the findings in Chapter 4 include the works of Xu and Mohseni [26] and Akanyeti

et al. [24]. Xu and Mohseni [26] derive a method for the automatic use of pressure signals

on the hull of an AUV for estimating the hydrodynamic forcing on the body. They use

the estimated forcing in a control framework for trajectory tracking with the control de-
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sign being accomplished with robust-integral-of-the-sign-of-the-error (RISE) control and

backstepping. They show the benefit of their framework in simulation and conduct a one

degree-of-freedom gantry-controlled test of the trajectory tracking of a cylinder outfitted

with pressure sensors. Akanyeti et al. [24] construct a three degree-of-freedom robotic fish

constrained to the plane and endowed with an artificial lateral line made up of commercial

off-the-shelf pressure sensors. The authors use empirically constructed relations to extract

information of the robot’s flow-relative states as well as salient flow features. Using these

correlations, the authors perform a number of closed-loop control experiments, including

station keeping, station holding behind an obstacle, and flow-aided trajectory following.

1.2.2 Observability-based path planning

Observability is the property of being able to infer the initial state of a system or

underlying model parameters by observing the system output over a fixed time interval. In

Chapters 6 and 7, the system under study is a fluid dynamic environment surrounding and

influencing a mobile sensor, and the vehicle must infer the parameters in a flow model that

most accurately represent the environment. In such a context, observability-based path

planning refers to the systematic selection of paths that enhance the vehicle’s observability

of the underlying flow-field parameters.

Many researchers have planned informative routes by considering a path’s observ-

ability or empirical observability, which is an approximation to observability for nonlinear

systems. Hinson et al. [27] analytically derive a trajectory that maximizes the observabil-

ity of inertial position and heading for a self-propelled vehicle in uniform flow. They pose
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an optimal-control problem to choose a path that minimizes the condition number of the

observability Gramian for the linearized dynamics. Unfortunately, analytical solutions to

the optimal-control problem exist only in specialized cases due to non-differentiability and

non-convexity of the cost functional [27]. This problem may be addressed with grid-based

optimization [7], or evaluation over a family of pre-determined candidate trajectories.

Quenzer and Morgansen [28] also perform a finite-dimensional optimization over a dis-

crete set of constant turning rates for an empirical observability-based controller in a

multivehicle helming application.

Another method for performing finite-dimensional optimization of observability is to

consider evaluation over a family of pre-determined candidate trajectories. The Adaptive

Sampling and Prediction field experiment of 2006 in Monterey Bay performed a similar

optimization over a family of coordinated sampling patterns with respect to a sampling

performance metric [29]. In addition to reducing computational cost, this method permits

integration of observability optimization with other control policies that may have gener-

ated the candidate trajectories. For example, Chapter 7 generates candidate trajectories

by steering a vehicle to separating boundaries of invariant regions in a two-vortex flow

field.

A topic not previously addressed in the observability-based path planning literature

is the incorporation of prior information with a forward-looking observability analysis.

This topic is the focus of Chapter 6, and the result is a novel concept called augmented

observability. However, incorporating prior information in general adaptive sampling has

been accomplished in previous works by maximizing the anticipated reduction in error

12



covariance. For example, Bishop et al. [30] consider an adaptive network design problem

by optimizing the forecasted error covariance of an Ensemble Transform Kalman Filter over

a finite set of possible network realizations. Davis et al. [31] also consider the forecasted

covariance reduction in an objective analysis estimation technique to simulate routes for

underwater gliders. Reducing the anticipated error covariance is a closely related topic

to incorporating prior information in observability-based path planning, and Section 6.5

specifically addresses the similarities and differences.

Augmented observability in Chapter 6 includes an observability Gramian and an

inverse covariance. Due to inclusion of an inverse covariance matrix, one may consider

it to be an information-theoretic concept. Existing research [32] has shown the utility of

information metrics for nonuniform spatiotemporal coverage when sampling via a team of

cooperative oceanographic vehicles. Other researchers [33] use mutual information for mul-

tivehicle scalar-field sampling. To make the connection between augmented observability

and information theory explicit, Section 6.4 relates the empirical augmented observability

Gramian to the Fisher information matrix for initial-condition inference.

1.2.3 Flow estimation using ocean-sampling vehicles

Distributed environmental sampling is an active field of research [34, 35] due to its

many applications, including contaminant plume localization [36], biological monitoring

[37], and data assimilation in atmospheric and oceanic sciences [38, 39]. Autonomous

sampling vehicles determine advantageous routes for measurement collection in response

to uncertainty in estimates of a real-time environmental process [40]. Significant hardware
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and sensor improvements [41] as well as algorithmic performance guarantees [42, 43] have

further encouraged interest. However, there are open challenges about how mobile sensor

platforms can most effectively sample and interact with challenging flow environments [7,

43, 44]. When the underlying flow field is uncertain these difficulties are further magnified.

Ocean sampling for the purpose of ocean-state estimation is of particular interest.

Due to strong ocean-atmosphere coupling, improved understanding of the ocean may lead

to better predictions in atmospheric climate variations on a wide range of time scales [45,

46]. Ocean-observing systems provide essential information on the state of the ocean for

use in oceanographic, atmospheric, and climatological modeling and forecasting. One such

system is Argo, a continuously deployed, global array of drifting platforms that capture

temperature, current, and salinity data on vertical dives [47]. Although the Argo system

already provides subsurface measurements, these measurements are incredibly sparse—

only 3,750 floats in 361,900,000 square kilometers of ocean [46, 48].

Observation sparsity motivates the need for sampling with long-endurance autonomous

vehicles like underwater drifters (passive vehicles that operate at constant depth) and

ocean gliders (steered vehicles that operate at variable depths) [35, 49, 50] in the design

of the next global, ocean-observing system. A steered sampling platform such as a glider

that travels within the flow field taking targeted observations may be even more beneficial

than passive drifter, even if the drifter has longer endurance. Utilizing such platforms and

their Lagrangian position data (i.e., time-series measurements of vehicle position), au-

tonomous control algorithms may exploit flow-field forecasts by using underlying currents

for transport and uncertainty reduction. The benefits of underwater gliders for adaptive
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sampling have been established for reducing uncertainties in estimates of ocean processes

[35, 49, 50], and for sampling and tracking oceanographic features [34, 37]. However,

there exists no comprehensive framework that takes advantage of ocean-current forecasts

for autonomous and coordinated path planning of multiple, minimally actuated vehicles.

Prior works have examined energy [51] and time-optimality [43] of path planning

for point-to-point navigation of a self-propelled vehicle using stochastic-optimization and

level-set methods. However, a framework for extended-deployment ocean sampling, which

is focused primarily on flow-field estimation, should address transport barriers formed by

coherent structures for understanding the flow-field geometry. Coherent structures are

also important for long-endurance path planning [51], coverage and sampling [52], and

understanding ocean transport processes in general [50]. Mallory et al. [44] highlighted

the importance of coherent structures in the flow field for understanding spatial transport

and sampling coverage. Prior works have also addressed this issue by optimizing the

launch site of passively drifting vehicles (e.g., see [53]).

Coherent structures in strong flows such as ocean eddies and gyres create (almost)

invariant sets or entrained regions; a vehicle cannot leave the set without exerting control.

There are many techniques for identifying coherent structures in flows [54]. For example,

Lagrangian Coherent Structures (LCS) are calculated by finding the local maxima in a

Finite Time Lyapunov Exponent (FTLE) field [55]. Another approach uses the stochastic

Frobenius-Perron operator to examine the transition probabilities between spatially dis-

cretized cells [54]. Methods also exist for quantifying the uncertainty of such structures

[56].
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To test the adaptive-sampling framework, Chapter 7 considers flow-field estimation

around a pair of coherent ocean eddies modeled as point vortices. Coherent eddies in the

ocean persist on mesoscales (10 to 500 km) and submesoscales (1 to 10 km) for weeks or

even months. These coherent structures play an important role in global transport and

mixing processes [57]. During field experiments of the second Autonomous Ocean Sam-

pling Network (AOSN-II), small-scale (15 km) eddies appeared at the mouth of Monterey

Bay and contributed to the overall transport of cold water away from the southern part of

the bay [37]. Understanding transport within these flow structures is possible but requires

in situ observations over a large spatiotemporal volume collected by fleets of autonomous

vehicles [7, 57–59]. Section 2.3.1 describes the two-vortex system in which invariant sets

and coherent flow structures appear. Chapter 7 utilizes the invariant-set boundaries in

the planning algorithm and samples along invariant-set boundaries to improve the overall

flow-field observability. Empirical observability analysis of a drifting Lagrangian sensor

motivates this proposal. Krener and Ide [60] previously applied empirical observability to

Lagrangian and Eulerian sensor deployment in a point-vortex flow. Section 5.1 extends

their analysis to show that the boundaries of invariant sets also have high observability of

flow-field parameters under Lagrangian position measurements.

Vehicle guidance along invariant-set boundaries requires a path-following controller.

Previous works [61, 62] developed such controllers for a variety of vehicle models, but

without significant flow-field influence on the vehicle. Chapter 7 constructs a hybrid

controller to guide the vehicle modeled as a self-propelled particle along set boundaries

while allowing for periodic re-assessment of the selected route, in the presence of a time-
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invariant flow field with spatial nonuniformity. The hybrid steering controller includes a

streamline controller and a stream-function-value controller. The streamline controller is

a novel application of an existing transformation of the vehicle speed and heading relative

to the flow [63] and an existing flow-free steering algorithm [62] to a time-invariant flow

field. The vehicle drives to a unique, closed streamline of the flow by building a Bertrand

family of curves extended from the target curve. The streamline should be a simple,

closed, regular curve. Section 5.2.1 analytically establishes the region of validity for the

streamline controller by proving that within this region a unique closest point on the curve

exists, extending the existing control law [62] to non-convex, closed streamlines in a flow

field. The stream-function-value controller guides the vehicle to the valid region of the

streamline controller. Together, the streamline controller and the stream-function-value

controller are a hybrid control strategy that generates candidate trajectories guided to

highly observable regions of the flow field, the invariant-set boundaries.

1.3 Contributions of dissertation

This dissertation provides research contributions in the general areas of robotic

fish design, observability-based path planning, and adaptive sampling for environmental

monitoring. The main results of this dissertation have been published or submitted for

publication in archival journals [64–66]. Earlier research results related to this dissertation

appeared in conference proceedings [67–70]. Some additional discussion and results appear

in this dissertation that have not appeared elsewhere. Unless otherwise stated, the follow-

ing claims of contribution were performed together with colleagues in the aforementioned
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publications.

We study flow-field estimation by bioinspired robotic fish using distributed sensor

arrays. We also explore how the feedback of flow-field information can be used to achieve

primitive, bioinspired behaviors, such as rheotaxis. Specifically, we develop a pressure-

difference measurement model for interfacing potential-flow models with distributed arrays

of pressure sensors for estimation. We use empirical observability analysis of a potential-

flow model of a hydrofoil in uniform flow to optimize pressure-sensor placement. We

develop an output-feedback-control framework for achieving rheotaxis in an unknown,

uniform flow field. We experimentally demonstrated rheotaxis using symmetric and asym-

metric sensor arrays. These contributions preceded subsequent collaborative works that

investigated the use of multimodal artificial lateral lines [23], station holding by a robotic

fish [23], and the closed-loop self-propulsion of a flow-sensing robotic fish [25, 71, 72].

We also study the model-predictive control technique known as observability-based

path planning in which a mobile robotic platform seeks to gain information about a spa-

tiotemporal process present in its environment. In the context of sampling for the purpose

of flow-field estimation, we provide an example that shows how the inclusion of the vehi-

cle’s sampling history in observability-based path planning can alter its selected path. We

pose the question of how best to incorporate prior sampling information in observability-

based path planning, especially when the true state or model parameters under study are

uncertain. To address this question, we solve a continuous-time variational data assim-

ilation problem in terms of the linear stochastic observability Gramian with an inverse

background error covariance, which together we refer to as augmented observability. We
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provide an analytical solution to the continuous-time Kalman filter Riccati equation for

a linear time-varying system with deterministic dynamics and uncertain measurements

in terms of the stochastic observability Gramian, and we compare anticipated-covariance

path planning to observability-based path planning using this solution. We extend aug-

mented observability to nonlinear systems by utilizing the empirical observability Gramian,

yielding a novel method for scoring candidate trajectories, the empirical augmented un-

observability index. I also provide an analytical connection between empirical augmented

observability and Fisher information. These contributions are important because they

provide a quantitative evaluation criterion for automatic selection of the candidate path

that maximizes the anticipated observability given existing state uncertainty. The strategy

of path planning with empirical augmented observability is illustrated for a single vehicle

in a two-vortex flow pertinent to ocean sampling.

We additionally study the problem of adaptive Lagrangian sampling for flow-field

estimation to answer the question of where to steer vehicles that use their own positions

as measurements to estimate most accurately the underlying flow field. We consider the

estimation of the locations and strengths of two co-rotating vortices as an example system.

We propose an adaptive-sampling framework that includes a nonlinear/non-Gaussian es-

timator to handle flow-field nonlinearities. The framework also exchanges full probability

density functions (pdf) describing the state/parameter uncertainty between the estimat-

ing and planning functional blocks. We refer the the planning functional block as the

Augmented-Observability Planner (A-OP). Within the A-OP, we identify regions of high

flow-field observability for Lagrangian measurements as coherent structures that divide
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the flow. We develop a hybrid steering controller for time-invariant flows that directs a

self-propelled vehicle along separatrices of the two-vortex flow field. The A-OP uses a

hybrid steering controller to simulate steering to these target streamlines as a means of

generating candidate control inputs. We implement augmented observability-based path

planning for non-Gaussian probability densities by performing an approximate expected

cost calculation over the empirical augmented unobservability index for each candidate

control. This calculation yields a novel approach to observability-based path evaluation

that weights candidate paths with reference to how anticipated observability gains comple-

ment existing information represented by non-Gaussian densities. Numerical experiments

on a single vehicle in the two-vortex flow demonstrate the benefits of each component in

the proposed sampling framework.

1.4 Outline of dissertation

Chapters 2 and 3 provide background information utilized throughout this disserta-

tion. The topics collected in Chapters 2 and 3 represent existing knowledge upon which

subsequent chapters build. Chapter 4 presents an application implementing output feed-

back control of a robotic fish for the task of rheotaxis. Chapter 5 details how to perform

observability-based path planning in an uncertain potential-flow field. Chapter 6 derives a

theoretically justified method for incorporating prior information in empirical observability

analysis. Chapter 7 applies augmented observability analysis within an adaptive-sampling

framework for estimating a two-vortex flow, a problem pertinent to ocean sampling. Chap-

ter 8 concludes the dissertation by summarizing the contributions and discussing directions
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for future research.

Chapter 2 provides necessary background for the modeling of fluid flows and vehi-

cles in the plane. This chapter employs the notational convenience of complex-variable

mathemetics, for which there is additional background in Appendix A. Stream functions

and potential-flow theory form the basis of the reduced-order fluid modeling used in this

dissertation. Section 2.1 presents the background needed to represent flow fields using

stream functions. Section 2.2 introduces potential-flow theory, velocity potential func-

tions, and complex potential functions. Section 2.3 specializes potential flow to planar

flow fields that contain vortical structures. Self-propelled particle models representing the

dynamics of an abstracted vehicle in the plane are presented in Section 2.4.

Chapter 3 details state estimation techniques that are useful for output-feedback

control. Section 3.1 presents multiple topics from estimation theory, including recursive

Bayesian filtering and the Gaussian Mixture Kalman Filter (GMKF). These estimation

tools feature prominently in the output-feedback approaches of this dissertation to both

vehicle-scale and long-range flow sensing. Chapter 3 concludes with Section 3.2 by dis-

cussing observability, both classical linear observability and the approximate extension of

linear observability to nonlinear systems, known as empirical observability.

As an application, rheotaxis encapsulates many of the challenges of vehicle-scale

flow sensing and control highlighted in Section 1.1. To achieve rheotaxis on a bioinspired

robotic fish, Section 4.1 constructs a potential-flow model of flow past the body of a fish and

derives a pressure-difference measurement equation for obtaining flow-sensing information

from a distributed sensor array. Section 4.3 details the construction of a flow-sensing
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and control test bed used in experiments. Section 4.4 evaluates the potential-flow model

against experimental data as well as against data collected from Computational Fluid

Dynamic (CFD) simulations. Section 4.2 performs observability-based sensor placement of

pressure sensors on the body of the robotic fish using the potential-flow model. Section 4.5

proposes our framework for closed-loop rheotaxis, and Section 4.6 presents experimental

data for the framework using both symmetric and asymmetric sensor arrays.

Chapter 5 discusses how to perform GNC of a self-propelled particle model of a

vehicle in an uncertain potential-flow field. Section 5.3 discusses observability-based path

planning and presents results illustrating the most informative regions of a flow field from

which a Lagangian sensor can sample. These regions are the separating boundaries of

invariant sets, including close approaches along the stable manifolds of saddle points. Sec-

tion 5.2 derives a hybrid steering controller. The first component of this hybrid controller

is a steering controller that converges to a unique streamline. Section 5.2 also derives

analytical expressions for the region of validity of the controller based on the curvature

characteristics of the target streamline. The second component of the hybrid controller

applies outside of the region of validity and steers the vehicle to within a region of validity

for the first controller in the hybrid strategy.

Chapter 6 poses the question of how one can incorporate prior information with

a forward-looking observability analysis in observability-based path planning. Section

6.3 provides background on the error covariance matrix and the stochastic observability

Gramian. Additionally, Section 6.3 presents the solution to an optimal, linear data as-

similation problem known as Incremental 4D-Var. The Incremental 4D-Var formalism for
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optimal, initial-condition inference provides an answer of how to incorporate prior infor-

mation for Gaussian uncertainty—combine the stochastic observability Gramian with the

inverse of the covariance associated with the initial condition estimate. An appropriate

name for this new matrix is the augmented observability Gramian since the observability

Gramian is augmented with a prior covariance. Section 6.3 extends the augmented observ-

ability Gramian to the nonlinear case by replacing its stochastic observability Gramian

with the empirical observability Gramian. Section 6.4 connects augmented observability

with two other inference matrices: the Fisher information matrix, and the Kalman Filter

covariance. Section 6.5 introduces a novel measure for observability-based path planning

with prior information, known as the empirical augmented unobservability index, and it

also provides an upper bound on this quantity. Section 6.5 also performs a numerical

experiment to demonstrate that augmented observability-based path planning yields the

desired planning decisions. Section 6.6 concludes the chapter by extending augmented

observability-based path planning to non-Gaussian prior pdfs approximated by Gaussian

Mixture Models (GMMs).

Chapter 7 addresses the application of adaptive sampling with a guided Lagrangian

sensor for ocean-state estimation. Section 7.1 presents the framework designed to solve

this problem, consisting of a nonlinear/non-Gaussian estimator and the A-OP. The A-OP

identifies high-observability regions of the flow field for sampling, simulates steering to

each of these regions for several, possible state realizations, and performs an augmented

observability analysis with expected cost to choose the control that minimizes the empirical

augmented unobservability index. Section 7.2 demonstrates the performance gains for each
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element of the adaptive-sampling framework by conducting Monte Carlo experiments in

a two-vortex flow.

Chapter 8 concludes the dissertation. Section 8.1 summarizes the primary contri-

butions of this work. Section 8.2 discusses directions for future research. A direction for

future research in vehicle-scale flow sensing entails the use of higher-fidelity reduced-order

flow models within the control loop. Another direction moves closer to estimation of an

unknown flow field by considering the additional problem of model selection using sensor

data. The primary direction for future research in long-range flow sensing involves incor-

porating additional, cooperative vehicles in the estimation of the flow environment while

using augmented observability-based guidance.

Supplemental materials are provided for the reader in the appendices. Appendix A

reviews complex-variable mathematics and includes a list of useful mathematical identities.

Appendix B details how to extract boundary targets for steering in the two-vortex example

from Chapter 7. Appendix C contains rationale for the parameter values selected in the

numerical experiments performed in Section 7.2.

A terminology index appended to the end of the dissertation can assist the reader

in readily locating material thoroughout the text.
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Chapter 2

Modeling of fluid flows and vehicles in the

complex plane

This chapter presents necessary background on topics of fluid-flow modeling and

vehicle modeling in the complex plane. Complex variables can compactly represent sim-

plified fluid dynamic models in the plane. The tools for modeling planar fluid flows arise in

Chapters 4 (which uses potential-flow theory), 5 (which uses stream functions), 6 (which

uses a two-vortex flow), and 7 (which uses stream functions and a two-vortex flow). This

chapter models planar flows using a stream function under assumptions of steady, in-

compressible flow. This chapter also introduces potential flow theory, which is useful for

constructing fluid models additively under an assumption of irrotationality. Point-vortex

flows are potential flows that have all circulation of the flow field concentrated at vortex

singularities. This chapter also describes the two-vortex system, which is a point-vortex

flow useful for studying path planning of autonomous vehicles.

Modeling an abstracted autonomous vehicle using complex variables provides uni-
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fied approach to studying path planning for an autonomous vehicle in the presence of

planar fluid flows. This chapter details the self-propelled particle model, a steering con-

troller for converging to a level-set of a scalar-valued function in the plane, and a control

transformation for steering a self-propelled particle in the presence of a flow field.

In an effort to keep the dissertation self-contained, Appendix A provides an overview

of more fundamental concepts from complex-variable mathematics.

2.1 The stream function for steady, incompressible flows

Stream lines provide curves connecting the velocity vectors in an instantaneous flow

field, and they represent level-set values of a scalar function known as a stream function.

The stream function is useful for specification of a flow field because spatial differentiation

returns the full velocity field in the domain. This section derives the relation between

the stream function and the velocity field in complex variables since many texts only

use complex variables for potential-flow theory (see Section 2.2). In the following, the

stream function applies more generally than to potential flows alone. Specifically, the

adaptive-sampling framework in Chapter 7 utilizes a stream function for a steady and

incompressible flow in the plane; an additional potential-flow (irrotationality) assumption

is not needed.

Consider a steady, planar flow described by a spatial (Eulerian) velocity field, f(z, z̄),

evaluated at z = x + iy. The constraint that a streamline is everywhere tangent to the

flow velocity implies that there is no flow perpendicular to a streamline. Rotating the flow

vector by i provides the perpendicular flow, if , and the constraint of no flow perpendicular
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to a streamline becomes

〈if, dz〉 = 0. (2.1)

Equation (2.1) can be simplified using (A.1) and scaled to yield

− 2if̄dz + 2ifdz̄ = 0, (2.2)

which closely resembles the exact differential of a scalar-valued complex function ψ [73]

dψ =
∂ψ

∂z
dz +

∂ψ

∂z̄
dz̄. (2.3)

The equality of an exact, scalar differential to zero would imply the existence of a function

that is constant along streamlines. However, one cannot directly equate the coefficient

terms of (2.2) and (2.3) unless the spatial derivatives of these coefficients (equivalently,

the mixed, second partial derivatives of ψ) also agree, providing the constraint

∂2ψ

∂z∂z̄
=
∂(−2if̄)

∂z̄
=
∂(2if)

∂z
, (2.4)

or

∂f

∂z
+
∂f̄

∂z̄
= 0. (2.5)

Equation (2.5) is 〈∂/∂z̄, f〉 = 0, thereby representing a zero-divergence condition that is

equivalent to the steady continuity equation in the plane under an assumption of incom-

pressibility of the fluid.
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When Equation (2.5) is satisfied, a scalar-valued function ψ satisfying dψ = 0 exists

and one may derive the flow velocity vectors from ψ by equating coefficients in (2.2)

and (2.3). Spatial differentiation of ψ recovers the velocity field, and an incompressible,

time-invariant flow f in C may be conveniently represented in terms of a stream function

ψ = ψ (z, z̄) by [74, 75]

f(z, z̄) = −2i
∂ψ

∂z̄
(z, z̄). (2.6)

2.2 Potential-flow models in the plane

Equation (2.6) provides a convenient method for prescribing the flow-velocity field

through the use of a stream function. Another convenient way to prescribe a flow field is

by specifying a velocity potential φ(z, z̄) such that the gradient of this function provides

the flow

f = 2
∂φ

∂z̄
. (2.7)

A flow that admits representation (2.7) is a potential flow. An important assumption that

the flow is irrotational is implicit in this representation.

Let curlC : C→ R be an operator over the C plane, such that

curlCf := 2

〈
i
∂

∂z̄
, f

〉
. (2.8)

Confined to the C plane, the result of this operation corresponds with the scalar component

of the usual curl operation from vector calculus when applied to vectors in the plane. This
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scalar value, known as the vorticity

ω(z, z̄) = curlCf(z, z̄), (2.9)

describes the rotational character of the flow field f . If f admits representation (2.7),

calculate the vorticity field by substitution,

ω = curlC

(
2
∂φ

∂z̄

)
= −i ∂

∂z

(
2
∂φ

∂z̄

)
+ i

∂

∂z̄

(
2
∂φ

∂z

)
= −2i

∂2φ

∂z∂z̄
+ 2i

∂2φ

∂z̄∂z

= 0.

Therefore, a potential flow is necessarily an irrotational flow.

A steady, planar flow that is both incompressible and irrotational is called an ideal

flow. Such a flow possesses both a velocity potential φ and a stream function ψ. Equating

the expressions of the flow velocity

f = −2i
∂ψ

∂z̄
= 2

∂φ

∂z̄
, (2.10)

yields the constraint

∂

∂z̄
(φ+ iψ) = 0, (2.11)

which matches the Cauchy-Riemann relation (A.4) for the composite function w(z) =
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φ(z, z̄)+iψ(z, z̄). The composite function w(z) is an analytic function known as a complex

potential.

The complex potential yields the conjugate flow via

f̄ =
dw

dz
. (2.12)

One may also recover the velocity potential and stream function via

φ(z, z̄) =
1

2

(
w(z) + w(z)

)
, (2.13)

and

ψ(z, z̄) =
1

2i

(
w(z)− w(z)

)
. (2.14)

A notable attribute of potential flow is the additivity of complex potentials; the sum

of two complex potentials yields another, valid complex potential describing the combined

flow field. For example, the complex potential for a stationary source of strength Λ at the

orgin is Λ log(z), and the complex potential for a uniform flow of speed U is Uz. Together,

(Λ log(z) + Uz) gives the complex potential for a stationary source within uniform flow.

2.3 Point-vortex flows

Point-vortex flows are flows that have circulating character and are nearly irrota-

tional with vorticity concentrated only at the isolated centers of vortices. Without an

assumption of irrotational flow, consider the expression for the vorticity field of a planar
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flow in terms of the stream function

ω = curlC

(
−2i

∂ψ

∂z̄

)
= −4

∂2ψ

∂z∂z̄
(2.15)

The right-hand side of (2.15) is the complex equivalent of the negative of a Laplacian

operator [76], making (2.15) a Poisson partial-differential equation, for which the solution

in the plane can be expressed in terms of the Green’s function 1/(2π|z − ξ|2) [74]

ψ(z, z̄) =

∫
1

2π|z − ξ|2
ω(ξ)dξ. (2.16)

To create a nearly irrotational flow with circulating character, let vorticity exist only

at isolated points in the flow, called point vortices. The integral of vorticity within an

enclosed area is circulation Γ. A point vortex j has circulation Γj concentrated at its

center. The superposition of point vortices located at zj for j = 1, . . . , N yields the total

vorticity field

ω(z) =
N∑
j=1

Γjδ(z − zj), (2.17)

where δ is a Dirac delta function. Insertion of (2.17) into (2.16) with evaluation of the

integral results in the stream function for a flow field containing N stationary vortices

ψ(z, z̄) =

N∑
j=1

−Γj
2π

log |z − zj |. (2.18)
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2.3.1 The two-vortex system

The two-vortex system is a potential-flow model of two interacting ocean eddies. It

is useful in studying idealized path planning of ocean vehicles, because it is analytically

tractable and (when viewed in a co-rotating frame) contains coherent flow structures [70].

These coherent structures are important barriers to transport that also play a role during

path planning. Further, the two-vortex system is a natural extension of prior works on

observability-based path planning in a uniform flow [27] and in the presence of a single,

stationary point vortex [7]. The two-vortex model appears in the research of Chapters 6

and 7.

Let z represent a location in the complex plane C. Let z1 and z2 be the locations

of two point vortices with circulation strengths Γ1 and Γ2, respectively. Applying (2.18)

to the two-vortex case gives the stream function

ψ (z, z̄) = − 1

2π
(Γ1 log|z − z1|+ Γ2 log|z − z2|) . (2.19)

Making use of (2.6), the flow felt by a drifting vehicle at location z becomes

f(z, z) =
iΓ1

2π

z − z1

|z − z1|2
+
iΓ2

2π

z − z2

|z − z2|2
. (2.20)

The flow-field specification (2.20) according to stream function (2.19) allows evalu-

ation if z1 and z2 are known. However, the vortices are also interacting; vortices advect

according to the flow of other vortices. The flow at z due to an isolated vortex j at zj
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with circulation strength Γj is

fj(z, z) =
iΓj
2π

z − zj
|z − zj |2

. (2.21)

Each vortex in the two-vortex system is influenced by the flow of the opposing vortex

only. Evaluation of the flow fj(z, z) at each vortex location zj under the influence of the

opposing vortex q 6= j, leads to the two-vortex dynamics

żj = − iΓq
2π

zj − zq
|zj − zq|2

, (2.22)

for j, q = 1, 2 with j 6= q.

Under dynamics (2.22), vortices with same-signed circulation strengths rotate in a

relative equilibrium (i.e., an equilibrium in a reduced set of variables) around a shared

center of vorticity [74]

zcv =
Γ1z1 + Γ2z2

Γ1 + Γ2
. (2.23)

Let

ω =
Γ1 + Γ2

2π|z1 − z2|2
(2.24)

be the angular rate of rotation of the vortex pair about zcv. During this motion, the

distance between the vortices d = |z1 − z2| is conserved. The transformation

z(t) = ξ(t)ei(ωt+φ) + zcv (2.25)
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maps between the inertial frame and a reference frame that co-rotates with the vortices

around zcv, where ξ(t) is the complex variable in the co-rotating frame, and φ is an initial

phase angle of the vortex pair.

(a) Γ2 = Γ1 (b) Γ2 = 2Γ1

Figure 2.1: Flow-field geometry for the two-vortex system in the co-rotating frame; red
circles are vortices; green circles and green diamonds are center and saddle fixed points,
respectively; black lines are the stable and unstable manifolds of the saddle points.

In the co-rotating frame, invariant regions appear as enumerated in Figure 2.1. Fig-

ure 2.1(a) shows the streamlines for two equal-strength vortices. The black lines represent

separating boundaries or separatrices, which divide the six invariant regions for this case.

A vehicle drifting within an invariant region may escape the region only if control actions

are taken. The separatrices represent the stable and unstable manifolds for the saddle

points. Note that five fixed points are present: two center fixed points are shown as green

circles, and three saddle fixed points are shown as green diamonds. Figure 2.1(b) shows
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a similar portait for two vortices with the same-signed circulation but unequal strengths

Γ1 < Γ2. An additional invariant set forms and the origin of the frame shifts towards the

stronger vortex.

A first-order model for the motion of a drifting vehicle is

ż = f. (2.26)

Under the frame transformation (2.25), these kinematics in the co-rotating frame are

ξ̇ = f − iωξ. One may alternately write ξ̇ = fR, where fR = f − iωξ defines a flow in the

co-rotating frame. In the co-rotating frame, the stream function corresonding to fR via

the stream-function-flow relation (2.6) is [65]

ψR
(
ξ, ξ̄
)

= − 1

2π
(Γ1 log|ξ − ξ1|+ Γ2 log|ξ − ξ2|) +

ω

2
|ξ|2, (2.27)

where ξ1 and ξ2 are the locations of the vortices in this frame.

For Lagrangian sampling in the two-vortex system, the full system state (including

both vortices and a sampling vehicle) is given by

(Γ1, z1,Γ2, z2, z)
T , (2.28)

where z represents the location of a drifting vehicle. The state of this system may also be
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represented by the real-valued vector

x = (Γ1,<(z1),=(z1),Γ2,<(z2),=(z2),<(z),=(z))T (2.29)

when convenient. For a controlled vehicle, the state vector also includes the heading, which

the next section addresses. All dynamical calculations for the two-vortex system in this

dissertation, including observability calculations in Chapters 5, 6, and 7, are performed in

the inertial frame and converted to the co-rotating frame only for plotting.

2.4 Steering-controlled guidance with self-propelled particle models

Planning planar routes for an autonomous vehicle can readily be accomplished by

abstracting away the vehicle and replacing it with a particle model that has nominal

forward speed ρ and steering as the primary control input. This abstraction, known as

the self-propelled particle model, allows the engineer to focus on high-level vehicle guidance

by removing vehicle-specific dynamics. However, the simplified model of the vehicle retains

the necessary constraint that the vehicle cannot instantaneously move side-to-side; it can

only turn while propelling forward. Typically, one assumes that lower-level controllers will

be used for navigation and control of the vehicle when the planned paths are executed.

The planar, self-propelled particle model for a vehicle at z ∈ C with speed ρ is [7]

ż = ρeiβ

β̇ = v,

(2.30)
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where v is a steering input and β is the heading relative to the x axis. This model

represents a vehicle under gyroscopic steering control.

2.4.1 Self-propelled particle model with flow

This section presents a self-propelled particle model in the presence of an underly-

ing flow field and shows a connection to the self-propelled particle model without flow.

Consider a sampling platform with self-propulsive speed α located at z ∈ C and advected

with the flow. The self-propelled particle model (2.30) may be modified to include the

influence of an underlying flow velocity f on the vehicle according to [7, 63]

ż = αeiθ + f

θ̇ = u,

(2.31)

where θ is the counter-clockwise angle from the positive real axis to self-propulsive direction

and u is a steering-rate control.

Paley and Peterson [63] construct a method for compensating for the influence of

the flow by defining the variables in (2.30) to be the total vehicle speed ρ = |αeiθ + f |,

the total velocity angle β = arg(αeiθ + f), and the flow-relative control input v. These

definitions transform the model (2.31) with flow into the model (2.30) without flow. The

control inputs of the two models are related by [63]

u =
v −

〈
ḟ , ieiβ

〉
1− ρ−1 〈f, eiβ〉

, (2.32)
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where ḟ = (∂f/∂z) ż+(∂f/∂z̄) ˙̄z. Note that (2.32) has a singularity if the vehicle is unable

to make forward progress, that is, if
〈
f, eiβ

〉
= ρ or equivalently, if

〈
f, eiθ

〉
= −α [63]. In

strong flows for which the vehicle may not always be able to make forward progress, a

saturation function may be applied to u to handle large control excursions [7].

2.4.2 Steering along a level-set of a scalar field

A useful control objective for guidance of an autonomous vehicle represented by a

self-propelled particle model is to steer the vehicle along a level-set of a scalar field. Such a

scalar field may be defined by a virtual function designed to specify vehicle paths or tracks

that the vehicle may follow during surveillance or sampling missions. The control design

task then requires that the vehicle converge to a specified level-set of the scalar-valued

function. This section describes an existing control law that achieves this objective for a

user-defined scalar-valued function defined over the plane.

Let a1 = eiβ be the velocity orientation vector. Under the constraint a2 = ia1, the

unit vectors a1, a2 ∈ C define a path frame for the vehicle. The dynamics of the path-frame

vectors are [77]

ȧ1 = va2

ȧ2 = −va1.

(2.33)

The solutions of (2.30) and (2.33) describe the evolution of the vehicle and its path frame.

Zhang and Leonard [77] use a self-propelled particle model similar to (2.30) and a

path frame similar to (2.33) to derive a control law in a scalar field Θ(z, z) that navigates
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the vehicle to the level-set {z : Θ(z, z) = Θd} for a desired field value Θd.1 This control

law applies to a vehicle that may have nonconstant speed ρ. The control law of [77] makes

use of the following frame constructions. Consider the path frame (a1, a2) of a vehicle

located at z ∈ C and construct a secondary frame (b1, b2) also located at z, such that b2

points in the direction of the gradient of the field and b1 is a clockwise rotation of b2, i.e.,

b1 = −ib2

b2 =
∂Θ
∂z̄

|∂Θ
∂z̄ |

.

(2.34)

Let η represent the angle from a1 to the b1 direction such that

cos η = 〈a2, b2〉 = 〈a1, b1〉

sin η = 〈a2, b1〉 = −〈a1, b2〉 .
(2.35)

Figure 2.2 depicts these definitions, with <(·) and =(·) denoting the real and imaginary

operators, respectively. Zhang and Leonard [77] consider how the angle η changes and

how the scalar field value Θ changes as the vehicle moves to derive the following theorem.

Theorem 1 (Zhang and Leonard [77]). Suppose a scalar field Θ(z, z) is defined over

a connected subset of C with extrema −∞ ≤ Θmin < Θmax ≤ ∞. Further, assume

|∂Θ/∂z̄| < ∞ and |∂2Θ/∂z∂z̄ + ∂2Θ/∂z̄2| < ∞ with |∂Θ/∂z̄| 6= 0 except at a finite

number of points where either Θmin or Θmax is attained. Let Π (Θ) be a scalar function

meeting the technical requirements:

1This section presents the work of [77] in the form of complex variables.
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Figure 2.2: Nomenclature used in control laws for steering to a desired level-set.

(i) g(Θ) is a locally Lipschitz continuous function on (Θmin,Θmax) so that Π(Θ) is

continuously differentiable on (Θmin,Θmax);

(ii) g(Θd) = 0 and g(Θ) 6= 0 if Θ 6= Θd;

(iii) lim
Θ→0

Π(Θ) =∞, lim
Θ→∞

Π(Θ) =∞ and ∃Θ̌ such that Π
(
Θ̌
)

= 0.

Assume η(t0) 6= π and |∂Θ/∂z̄| 6= 0 initially. Then, the steering control law

v = ρ

κa cos η + κb sin η − 4
dΠ

dΘ

∣∣∣∣∣
Θ(z)

∣∣∣∂Θ

∂z̄

∣∣∣ cos2 η

2
+K1 sin

η

2

 , (2.36)

with

κa =
−1

|∂Θ
∂z̄ |

〈
b1,

∂2Θ

∂z∂z̄
b1 +

∂2Θ

∂z̄2
b̄1

〉
κb =

1

|∂Θ
∂z̄ |

〈
b1,

∂2Θ

∂z∂z̄
b2 +

∂2Θ

∂z̄2
b̄2

〉
,
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steers the self-propelled vehicle model (2.30) such that η → 0 and Θ→ Θd as t→∞.

Figure 2.2 shows two simulations of a vehicle steering under control law (2.36) with

different start locations and the same Θd value. The ultimate closed curve for the Θd level

set that the vehicle steers to depends on the initial condition. Section 5.2.2 utilizes this

theorem to construct two new controllers: the first controller drives the vehicle through

a flow field to a unique, closed streamline of the flow, and the second controller drives

the vehicle to be within the applicable range of the first controller, if it is not already

within range. These two controllers combine in a hybrid control strategy that Chapter 7

incorporates in a guided-sampling framework.
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Chapter 3

State estimation and observability

To learn about a surrounding fluid environment, autonomous vehicles must take

measurements of the flow with sensors or through their own motion. By comparing these

measurements to anticipated values derived from various realizations of a flow model, the

vehicle may assess the most likely state of the fluid system (or the most likely model

parameter values). These comparisons comprise the task of flow-field estimation. This

chapter presents two powerful methods for nonlinear/non-Gaussian state estimation that

may be used in conjunction with a fluid flow model to achieve flow-field estimation. This

chapter also describes the use of the state- or parameter-vector estimate for feedback,

which is also called output-feedback control.

Observability can describe the ability of the vehicle to infer the true initial state

of the fluid surroundings by collecting flow measurements over a specified time interval.

If the flow measurements provide enough information to infer uniquely the true initial

condition or the true parameters of the flow field, then the vehicle has observability of

the flow field. This chapter introduces observability and a numerical approximation to
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observability, known as empirical observability. Empirical observability is a tool that the

vehicle may use to assess informative regions for sampling or which candidate control

signal will lead to the best sampling trajectory for the vehicle.

3.1 Output-feedback control using nonlinear/non-Gaussian filters

Output-feedback control refers to the use of a state estimate based on output mea-

surements in a state feedback controller [78]. The flow field surrounding an underwater

vehicle is often unknown, so control action based on flow-field information necessarily

requires estimation of the flow-field state or parameter vector. Chapter 4 provides an

application of estimating the angle of a robotic fish relative to an oncoming flow to feed-

back to the controller. Similarly, Chapter 7 provides an application of estimating vortex

states and strengths by an ocean vehicle guided to take informative measurements of its

surrounding flow field.

Consider the stochastic system

ẋ(t) = A(t)x(t) +G(t)w(t)

y(t) = C(t)x(t) + v(t),

(3.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output vector, A(t), G(t), and C(t)

are real-valued, time-varying matrices and, w(t) and v(t) are white Gaussian noise vectors

with covariances Q(t) and R(t), respectively. The state x(t) and the measurement y(t)

are both stochastic processes due to randomness injected by the process noise w(t) and
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the measurement noise v(t).

The true state x(t) in (3.1) is uncertain because of uncertainties in the initial con-

dition, process noise w(t), and measurement noise v(t). Filtering refers to generating an

estimate x̂(t) of the unknown state vector x(t) at the current time t using the measure-

ment y(t) and prior uncertainties. System (3.1) possesses certain favorable characteristics:

dynamics that are affine in x(t), an output equation that is affine in x(t), and additive,

white Gaussian noise in both the dynamics and the measurements. With such structure,

the optimal filtering algorithm is the Kalman Filter [79], which is the minimum-variance,

unbaised estimator for producing continuous-time estimates x̂(t) given system (3.1). The

uncertainties in the estimate are captured by the state error covariance P (t), which the

Kalman Filter also provides. Chapter 6 re-visits the continuous-time Kalman Filter for

the case of deterministic dynamics to make comparisions between its covariance P (t) and

a novel concept, known as augmented observability.

Consider the stochastic, nonlinear system

ẋ(t) = g(t, x(t)) +G(t)w(t)

y(t) = h(t, x(t)) + v(t),

(3.2)

where g and h are nonlinear, real-valued, vector functions. A nonlinear filter addresses

systems in which the dynamics function is nonlinear or the observation function is nonlin-

ear, or both [80]. Note that one may also estimate parameters of the system dynamics in

(3.2) by creating an augmented state vector that includes the parameters and appending
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zero dynamics.

Nonlinear dynamics and nonlinear observation operators lead to the development of

non-Gaussianity in the pdfs that characterize the state uncertainty. A filter the properly

handles the uncertainties for (3.2) is referred to as a nonlinear/non-Gaussian filter. This

dissertation uses two nonlinear/non-Gaussian filters for output-feedback control: the re-

cursive Bayesian filter, and the Gaussian Mixture Kalman Filter. The recursive Bayesian

filter appears in Chapter 4, and the Gaussian Mixture Kalman Filter appears in Chapter

7.

Although systems (3.1) and (3.2) provide continuous-time measurements, only the

theoretical work of Chapter 6 considers continuous-time measurements. The applications

of Chapters 4 and 7 employ continuous-time dynamics with discrete-time measurements

by collecting the observations at time tk, yielding

ẋ(t) = g(t, x(t)) +G(t)w(t)

y(tk) = h(tk, x(tk)) + v(tk).

(3.3)

3.1.1 Recursive Bayesian filtering

Bayesian estimation is a probabilistic technique by which knowledge of an unknown

quantity is enhanced through the assimilation of measurements [81]. Bayes’ formula is

[81]

π(x|y)︸ ︷︷ ︸
posterior

∝ π(y|x)︸ ︷︷ ︸
likelihood

π(x)︸︷︷︸
prior

, (3.4)
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where π(·) represents a probability density function (pdf). The central idea is to use Bayes’

formula (3.4) to adjust the prior understanding of an unknown quantity x, represented in

the form of a pdf, based upon the likelihood that a measurement y was generated by a

nearby state of the system. Normalization of the posterior density is required to ensure the

total integral of the pdf sums to unity. (The ∝ symbol is used to indicate a proportional

relationship). In practice, grid-based Bayesian estimation discretizes a finite volume of

state space or parameter space and approximates the pdf’s on this grid. Normalization is

performed by dividing the weight at each grid point by the total weight, summed over all

grid points. Through re-arrangement of the measurement equation in (3.3), the assump-

tion of additive Gaussian measurement noise results in a Gaussian likelihood function

π(y(tk)|x) ∝ exp

(
−1

2
(y(tk)− h(tk, x))T Q−1 (y(tk)− h(tk, x))

)
, (3.5)

where Q is the measurement covariance matrix. The entries of the covariance matrix Q

are typically calculated by considering the noise characteristics of data offline, prior to

filtering. The tk dependence in the term x(tk) is suppressed here because (3.5) is viewed

as a function over the discretized x state space.

Collect the discrete-time measurements in set Dk such that

Dk = {y(t1), . . . , y(tk)}. (3.6)

The posterior probability density from the previous tk−1 assimilation time is used as the
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prior density for assimilation at time tk, yielding

π(x(tk)|Dk) ∝ π (y(tk)|x(tk))π (x(tk−1)|Dk−1) . (3.7)

The state evolution equation and the measurement equation together are an evolution-

observation model, for which our knowledge of the system state can evolve in time and

be augmented with new information through the following sequential, recursive scheme,

known as Bayesian filtering [81]:

• Time evolution of the pdf (uncertainty propagation) is accomplished using the

Chapman-Kolmogorov equation [81]

π (x(tk+1)|Dk) =

∫
π (x(tk+1)|x(tk))π (x(tk)|Dk) dx(tk), (3.8)

• Assimilation of the observations occurs via Bayes’ formula [81]

π (x(tk+1)|Dk+1) ∝ π (Dk+1|x(tk+1))π (x(tk+1)|Dk) . (3.9)

Note that the use of transition density π (x(tk+1)|x(tk)) in (3.8) is based on a Markov

assumption in the propagation of uncertainty (i.e., the state x(tk+1) depends only on the

state x(tk)) [81]. Chapter 4 implements uncertainty propagation by shifting probability

mass on the discretized state space and diffusing using a Gaussian transition density.

For more advanced uncertainty propagation (e.g., when probability mass does not shift
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uniformly across the state space), the following filter implements a nonlinear, ensemble-

based approach.

3.1.2 Gaussian Mixture Kalman Filter

The Gaussian Mixture Kalman Filter (GMKF) is a nonlinear/non-Gaussian filter

because it performs nonlinear forecasts of state uncertainty and it allows for non-Gaussian

pdfs that commonly arise when nonlinear dynamics are present. The filter assumes a linear

observation operator, which is ideal for the Lagrangian data assimilation application in

Chapter 7. Gaussian mixture-based filters have previously appeared in literature in a

variety of forms (see, e.g., [82], [83], or [84]). The GMKF is based primarily on the filter

of Sondergaard and Lermusiaux [84], known as the GMM-DO filter because it combines

Gaussian mixture models and dynamically orthogonal field equations. The GMM-DO filter

differs from other mixture filters because it contains automated selection of the number

of Gaussians used. We adopt the GMM-DO filter without the DO equations and instead

directly propagate the state estimate.

Let wm, m = 1, . . . ,M , be scalar weights such that
∑M

m=1wm = 1. Let xm and

Pm, m = 1, . . . ,M , be the mean vectors and covariance matrices respectively for M

multivariate Gaussians N (x;xm, Pm). The weighted sum of M Gaussian densities [84]

p
(
x; {(wm, xm, Pm)}Mm=1

)
=

M∑
m=1

wmN (x;xm, Pm) (3.10)

is a valid pdf known as a Gaussian mixture that integrates to unity and has an analytical
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representation. Through the selection of the weights, means, covariances, and number of

mixture components, (3.10) can represent highly non-Gaussian distributions.

Traditional ensemble/particle-based methods represent a pdf using a sparse support

of ensemble members (i.e., a Monte Carlo sampling of realizations) [80]. This represen-

tation enables nonlinear propagation of the uncertainty in the forecast step of the filter.

Unfortunately, many particle filters suffer from degeneracy issues due to the sparsity of

the pdf representation [80]. Kernel-based approaches address this issue by periodically

creating a full density estimate from the ensemble sample so that the state space is fully

supported and resampling may be performed [80]. Unfortunately, such approaches invari-

ably require the arbitrary choice of fitting parameters such as the kernel bandwidth [84].

For Gaussian mixtures, given a specific choice for mixture complexity, an Expectation-

Maximization algorithm may be applied to select automatically the weights, means, and

covariances of the Gaussians to best fit the ensemble [85]. A key contribution of [84] is

the use of the Bayesian Information Criterion (BIC) for the automatic selection of the

mixture complexity as well. The BIC may be (approximately) expressed as [84]

BIC = −2
N∑
j=1

log p
(
xj ; {(wm, xm, Pm)ML}Mm=1

)
+K logN, (3.11)

where K is the number of parameters in the model, xj is the jth ensemble member,

{(wm, xm, Pm)ML}Mm=1 is the collection of maximum likelihood GMM components pro-

duced by the EM algorithm, and N is the number of ensemble members. For a multivariate
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Gaussian mixture,

K = M

(
2n+

n(n− 1)

2
+ 1

)

is the number of free parameters, where n is the dimension of the state vector. Note

that the BIC has two components: the first component evaluates the goodness-of-fit for

the model of complexity M and the second component is a penalty on the overall model

complexity [84]. By sequentially evaluating models of increasing complexity, one may

identify a local minimum in the BIC. One seeks the best fit of a mixture of Gaussians to

the data; the model-complexity term in the BIC ensures that a simpler model is preferred

[84].

Let matrix H replace the observation operator h in (3.3) since it linearly extracts

the vehicle position from the state vector, i.e.,

y(tk) = Hx(tk) + v(tk) with v(tk) ∼ N (0, R(tk)) . (3.12)

In the case of a single Gaussian forecast pdf, Gaussian measurement noise, and a linear

observation operator, the Kalman-analysis equations represent the optimal approach to

Bayesian assimilation of a linear measurement. For M = 1, the GMKF reduces to an

Ensemble Kalman Filter (EnKF) in which only a single Gaussian is used to represent the

prior (forecast) and posterior (analysis) densities. In the case of a mixture of Gaussians,

the Kalman-analysis equations may be augmented with a weight-analysis equation to yield
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the proper application of Bayes’ rule for each component in the mixture [84]. For M > 1,

the GMKF may be viewed as a collection of Ensemble Kalman Filters operating in parallel

[84]. Algorithm 1 contains the GMKF, for the case of constant noise covariances.

Algorithm 1 Gaussian Mixture Kalman Filter

Input: GMM of prior pdf
Output: GMM of analysis pdf
Parameters: N , MaxComplexity, and covariance matrices Q, R

1: Sample N particles from the prior pdf.
2: Integrate the particles forward in time with process noise sampled from N (0, (tk −
tk−1)Q)
// Fit a minimal GMM to the forecast ensemble

3: EM algorithm to fit GMM with 1 Gaussian. Evaluate the BIC.
4: for m← 2 to MaxComplexity do
5: EM algorithm to fit GMM with m Gaussians. Evaluate the BIC.
6: If BIC increases, select previous GMM, set M=m−1, then break.
7: end for

// Assimilate measurements
8: Calculate the analysis weight for each Gaussian in GMM.

wam =
wfmN (y;Hxfm, HP

f
mHT +R)∑M

q=1N (y;Hxfq , HP
f
q HT +R)

.

9: Calculate the Kalman gain, analysis mean, and analysis covariance for each Gaussian.

Km = P fmH
T
(
HP fmH

T +R
)−1

,

xam = xfm +Km(y −Hxfm),

P am = (I −KmH)P fm.

In practice, the model-size penalty term in (3.11) can be relaxed to allow for more

complex models during the initial estimation cycles, reducing the tendency to place too

much trust in the first measurements, causing the filter to follow noise in the data. Replace
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the K logN term in (3.11) with

K
(

1− etk/τrelax
)

logN,

where τrelax is a relaxation time constant. Note that either tk →∞ or τrelax = 0 recovers

(3.11).

The GMKF yields a GMM of the posterior pdf after assimilation of data. Two

approaches to extracting estimates from the pdf are the use of a mode-finding algorithm

such as [86] or taking the overall mean [86]

x =

M∑
m=1

wmxm (3.13)

and covariance [86]

P =
M∑
m=1

wm
(
Pm + (xm − x)(xm − x)T

)
(3.14)

of the mixture. The extraction of only a mean and a covariance from a possibly multi-

modal pdf does not fully utilize the pdf. Chapter 7 designs a path planner that uses the

full posterior GMM. Section 7.2 compares the performance of this path planner to one

that uses only the mean and covariance of the mixture.

3.2 Linear and empirical observability

In dynamical systems theory, observability describes the ability to infer the initial

state of a system by observing the output over a specified time interval. The presence of

53



a full-rank condition in the observability Gramian indicates that the state of a system can

be inferred from observations of the output [60]. Consider system (3.1) without process

noise or measurement noise, resulting in the deterministic linear system

ẋ(t) = A(t)x(t)

y(t) = C(t)x(t),

(3.15)

with x(t) ∈ Rn, y(t) ∈ Rm, A(t) ∈ Rn×n, and C(t) ∈ Rm×n. For the time interval [t0, tf ],

the linear observability Gramian is [87]

Wo(t0, tf ) =

∫ tf

t0

Φ(τ, t0)TCT (τ)C(τ)Φ(τ, t0)dτ, (3.16)

where Φ(τ, t0) is the state transition matrix for the dynamics from time t0 to τ . By

uniqueness of the state solution to (3.15), the state transition matrix has the property

that Φ(τ, t0)−1 = Φ(t0, τ). Assessing the rank of Wo(t0, tf ) is a boolean test to determine

whether the system is observable on the time interval [t0, tf ]: if Wo(t0, tf ) is full rank,

then the system is observable.

For a nonlinear system, the observability Gramian may not be easily formed through

linearization about an equilibrium point [60, 88]. Consider nonlinear system (3.2) without

noise, such that

ẋ(t) = g(t, x(t))

y(t) = h(t, x(t)),

(3.17)
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where g and h are nonlinear functions. The tangent-linear model for the dynamics (3.2)

along a reference trajectory xr(t) with output yr(t) is given by the linear system

d

dt
(δx(t)) =

∂g

∂x

∣∣∣
xr(t)

δx(t)

δy(t) =
∂h

∂x

∣∣∣
xr(t)

δx(t).

(3.18)

For an initial condition x0, the solution to (3.18) for δx(t0) = x(t0) − xr(t0) yields the

approximations xr(t) + δx(t) ≈ x(t) and yr(t) + δy(t) ≈ y(t). The local observability

Gramian for the nonlinear system (3.17) is defined to be the linear observability Gramian

(3.16) for the tangent-linear approximation (3.18) with C(τ) = ∂h/∂x|xr(τ) and Φ(τ, t0)

as the state transition matrix for ∂g/∂x|xr(τ) [60].

The empirical observability Gramian [60] is an approximation of the local observ-

ability Gramian (3.16) for the nonlinear system (3.17). Let φ(t, t0, x(t0)) denote the state

solution of (3.17) from (t0, x(t0)) at time t. Let ε > 0 denote a perturbation magni-

tude, and let ej represent the unit vector with one in the jth entry and zeros elsewhere.

Through 2n simulations of the system output from closely perturbed initial conditions,

the empirical observability Gramian for time interval [t0, tf ] may be constructed as

Weo(t0, tf , x(t0)) =

∫ tf

t0

Ψe(τ, t0, x(t0))TΨe(τ, t0, x(t0))dτ, (3.19)

where the (i, j)th entry of the n× n matrix Ψe is

[Ψe(τ, t0, x(t0))]ij =
hi(τ, φ(τ, t0, x(t0) + εej))− hi(τ, φ(τ, t0, x(t0)− εej))

2ε
. (3.20)
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Note that that Ψe is a central-difference approximation to ∂h/∂x(t0) and, in the limit

ε→ 0, Weo converges to the local observability Gramian Wo for (3.17) [60, 89].

Similar to the linear observability Gramian Wo(t0, tf ), the empirical observability

Gramian Weo(t0, tf , x(t0)) must be full rank for the system (3.17) to be observable on

[t0, tf ]. The initial state x(t0) is also included in the arguments, because this assessment

only applies for the initial condition used, in contrast to Wo. Weo has also been applied

to systems similar to (3.17) that include a prescribed control signal u(t), i.e., ẋ(t) =

g(t, x(t), u(t)) [70, 89]. The control u(·) is a time-varying input signal, prescribed over

[t0, tf ], so Weo should be denoted Weo(t0, tf , x0, u[t0,tf ]).
1

If the system fails to satisfy the observability rank condition in any open subset of the

state space, then the system is not locally observable [60]. If, however, the observability

rank condition holds on Weo, one may measure the degree of observability using the

unobservability index ν of Weo defined by Krener and Ide [60] to be the reciprocal of the

smallest eigenvalue λmin of Weo, i.e.,

ν(Weo) =
1

λmin(Weo)
. (3.21)

The unobservability index quantifies how difficult it is to infer the initial condition x(t0)

from the system output over [t0, tf ] [60].

1We omit some arguments of Weo(t0, tf , x(t0), u[t0,tf ]) and write instead Weo(t0, tf ) or Weo if the
meaning is clear from context.
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Chapter 4

Application I: Output-feedback control for

rheotaxis of a robotic fish

As an application of vehicle-scale flow estimation and control, this chapter presents

the design and use of an artificial lateral-line system for a bioinspired robotic fish capable

of autonomous flow-speed estimation and rheotaxis (the natural tendency of fish to orient

upstream), using only flow-sensing information. This chapter addresses vehicle-scale flow

estimation and control for a robotic fish through observability-based sensor placement,

nonlinear/non-Gaussian estimation, and output-feedback control. This chapter contains

the first application of observability-based sensor placement for flow-field estimation in

an experiment, and it also makes contributions in bioinspired robotics by performing

autonomous rheotaxis with symmetric and asymmetric sensor arrays.

This chapter describes the principled design and implementation of a dynamic con-

trol framework for rheotaxis of a bioinspired robotic fish that includes model-based esti-

mation of flow-field parameters using two or more pressure sensors in an arbitrary arrange-
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ment. The technical approach employs a reduced-order fluid-mechanical model for flow

past a streamlined body based on potential-flow theory (see Section 4.1). Sensor locations

are selected to maximize empirical observability of the flow-field parameters (see Section

4.2). The recursive Bayesian filter from Section 3.1.1 estimates the flow speed and angle

of attack, under a quasi-static assumption. The use of the estimated angle of attack with

a proportional control law results in a dynamic rheotaxis controller (see Section 4.5).

The technical approach is justified by the following rationale: potential-flow theory

produces a reduced-order model with few parameters that can be used within a real-

time control loop; recursive Bayesian filtering can handle nonlinear observation operators

(without linearization) and arbitrary non-Gaussian probability densities; and a simple

proportional control law permits easier assessment of the filter performance in the control

loop.

The experimental test bed consisted of a 185L flow tank, a two-degree-of-freedom

mechanical gantry system, and a robotic fish endowed with commercially-available pres-

sure sensors (see Section 4.3). To validate the potential-flow model, Section 4.4 compares

it with computational fluid dynamic (CFD) simulations and laboratory experiments. Fi-

nally, Section 4.6 presents experimental test results from the rheotaxis controllers. The

closed-loop demonstration of rheotaxis behavior is the first experimental implementation

of model-based rheotaxis control of a robotic fish based on pressure-difference measure-

ments without first training an empirical or fluid-mechanical model to match the flow-field

conditions.
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4.1 Pressure difference sensor model

This section presents a reduced-order fluid-mechanics model for flow past a fish body

and a measurement equation to predict pressure differences between sensor locations in a

bioinspired artificial lateral-line.

4.1.1 Flow past a streamlined body

An idealized model of fluid flow past a streamlined body enables estimates of flow

parameters based on sensor measurements. Potential-flow theory and conformal mapping,

making use of the Joukowski transformation [90, 91], provide the necessary tools. Let

ξ = Reiθ + λ, where θ ∈ [0, 2π), be a disk of radius R centered at λ, and let b = R − |λ|

[90]. Using the complex plane to represent a two-dimensional domain, the transformation

[90]

z = ξ +
b2

ξ
(4.1)

maps a disk into a symmetric streamlined body centered at the origin [90]. Let U > 0

be the free-stream flow speed and α be the angle of attack of the fish relative to the flow

(when viewed from above). When transformation (4.1) is used in conjunction with the

following complex potential [90, 91]

w(ξ) = U(ξ − λ)e−iα +
R2

ξ − λ
Ue−iα + 2iRU sin(α) log(ξ − λ), (4.2)
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it maps uniform flow past a cylindrical disk into uniform flow past a streamlined body [88,

90]. The first term in the complex potential (4.2) represents the uniform flow, the second

term introduces the boundary condition, and the third term enforces the Kutta condition,

which states that the rear stagnation point must occur at the trailing tip of the airfoil.

The conjugate flow f̄(z) around the body is [88, 90]

f̄(z) =
∂w

∂ξ

(
∂z

∂ξ

)−1

=

(
Ue−iα − R2

(ξ(z)− λ)2
Ueiα +

2iRU sin(α)

(ξ(z)− λ)

)(
1− b2

(ξ(z))2

)−1

, (4.3)

where ξ(z) is the dual-valued inverse mapping of (4.1) with values selected to lie outside

of the fish body [88, 90], i.e.,

ξ(z) =


1
2

(
z +
√
z2 − 4b2

)
arg(z) ∈

(
−π

2 ,
π
2

]
1
2

(
z −
√
z2 − 4b2

)
arg(z) ∈

(
π
2 ,

3π
2

]
.

(4.4)

The real and imaginary parts of f(z) give the components of the flow field. Note that the

flow is evaluated at sensor locations and is parameterized by the free-stream flow speed U

and angle of attack α.

4.1.2 Pressure-difference measurement equation

Consider multiple pressure sensors distributed around the body of a robotic fish

enclosed within canals as shown in Figure 4.3, with pj denoting the pressure at sensor
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Figure 4.1: Relevant reference frames and flow-field parameters describing a one-degree-
of-freedom robotic fish (top view).

location j. A model of the pressure values predicted by the potential-flow model (4.3)

is obtained from Bernoulli’s principle for inviscid, incompressible flow along a streamline

[92], i.e.,

v2

2
+ gh+

p

ρ
= C, (4.5)

where v is the local flow speed, g is the acceleration of gravity, h is the elevation, p is

the static pressure, ρ is the fluid density, and C is a constant describing the total specific

energy of a fluid parcel moving along the streamline. Applying (4.5) to two equal-elevation

locations along a streamline, one of which is a stagnation point, results in the following

expression for pressure p in terms of the streamline’s stagnation pressure ps [92]:

v2
1

2
+
p1

ρ
=
ps
ρ
,
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which implies (after dropping the subscript)

p = ps − ρ
v2

2
.

Figure 4.2(a) shows the pressure p at sensor 1 for various flow-field parameters with

stagnation pressure ps = 100 Pa.

(a) (b)

(c) (d)

Figure 4.2: (a) Fluid pressure at the sensor location; (b) pressure difference between p1, p2;
(c) p1, p3; and (d) p2, p3 sensors locations
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For an unknown angle of attack, the stagnation pressure ps is not known. However,

the difference between two pressure sensors is

∆p12 = p2 − p1 =
ρ

2

(
v2

1 − v2
2

)
.

Hence, a measurement equation based on the pressure difference offers the advantage

that the stagnation pressure, an identifying characteristic of the flow condition, does not

need to be known a priori. The measurement function for the case of three sensors is

a vector collecting individual pressure differences ∆p = [∆p12,∆p13,∆p23], where ∆pjk

indicates the pressure difference from sensor j to sensor k. Figures 4.2(b), 4.2(c), and

4.2(d) illustrate pressure difference values between sensor pairs available in Figure 4.1

for various flow conditions. The maximum value of U = 0.2 m/s corresponds to a flow

speed of 2 body lengths per second for a 10 cm fish. These plots show angles of attack

α ∈ [−15◦, 15◦], since the flow model is accurate only for small angles due to the stall

condition that arises in the study of airfoils [88, 91]. Nonetheless, the experiments evaluate

the model in the range α ∈ [−35◦, 35◦].

Assume that the pressure measurements contain additive Gaussian white noise, i.e.,

the jth sensor measurement is

p̃j = pj + ηj , (4.6)

where ηj has a zero-mean Gaussian distribution with σ2
j variance, N (0, σ2

j ). (Note, the

difference between sensor signals produce another random variable, ηk − ηj , which has
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distribution N (0, σ2
j + σ2

k)). Let Ω = [U,α]T . The measurement equation, after subsititu-

tion of the flow model (4.3) and inclusion of the additive measurement noise model (4.6),

becomes

∆p̃jk(zj , zk; Ω) =
ρ

2

(
|f̄(zj ,Ω)|2 − |f̄(zk,Ω)|2

)
+ ηk − ηj . (4.7)

The pressure difference in (4.7) may be based on sensors arbitrarily distributed around

the fish body; equation (4.7) does not require that the pressure sensors be close together.

Thus, (4.7) is a bioinspired, but not biomimetic, approach to pressure sensing, since

pressure differences measured by canal neuromasts in the lateral-line result from the fluid

pressure at neighboring pore locations [18]. Equation (4.7) can be used to estimate Ω

from pressure measurements. However, Figure 4.2(c) shows that U is unobservable at zero

angle of attack for the symmetric p1, p3 sensor pair, because all flow speeds give ∆p13 = 0.

Figures 4.2(b) and 4.2(d) show how this unobservable region shifts in parameter space for

asymmetric sensor pairs. Similarly, α is unobservable if U is zero. Observability is also

lost if the pressure difference is smaller than the noise level of the sensors.

4.2 Optimizing sensor placement for flow observability

This section describes optimal pressure sensor placement, based on maximizing the

empirical observability of the unknown flow parameters, similar to [88]. Numerical calcu-

lation of the empirical observability Gramian (3.19) for a sensor pair at a constant angle

of attack reveals that the joint state (U,α) is not locally observable, regardless of the pair

placement, because Weo ∈ R2×2 has rank one. However, observability may be restored if
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one combines measurements from the same sensor pair at different angles (i.e., if the fish

robot is permitted to move). Further, observability can be restored for either the U or

α parameter-estimation problem if an estimate of the accompanying state component is

known (e.g., via another sensing modality). Figure 4.3 shows the results for optimizing

Figure 4.3: Optimal placement locations for a pair of pressure sensors based on observ-
ability of several discrete angles of attack.

placement of a pair of pressure sensors to observe a fixed angle of attack for several discrete

angles. Although the flow speed must be known, the results are independent of its actual

value [88].

Figure 4.3 plots the nondimensional coefficient of pressure [90] Cp = 1 − |f |2/U2

versus polar angle around the fish body, starting from 0◦ at the tail, wrapping counter-

clockwise to 180◦ at the nose, and returning to 360◦ at the tail. Whenever the flow

speed on the surface of the fish body is zero, the flow is stagnant and the pressure is
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maximum, so Cp = 1. Note that the sensor pairs always straddle the stagnation point,

as seen in the lower subplot. Further, for increasing angles of attack, one of the sensor

locations approaches the nose of the fish. Performing this analysis for angles in the range

of α = [−15◦, 15◦] in increments of 2.5◦ and summing the observability Gramian values

over all angles, the optimal sensor pair for zero angle of attack is also the optimal pair for

observing arbitrary angles of attack.

Optimization of the nonlinear observability in the three-sensor case produces an

asymmetric result, with a corresponding mirror configuration (mirrored about the real

axis) that is also optimal. The experiments of this chapter use three sensors in a symmetric

layout; two pressure sensors are at the optimal two-sensors locations and a third sensor

is at the nose of the fish. The joint state (U,α) is observable with this three-sensor

configuration, and its symmetry allows for proper flow-field alignment. Furthermore, as

shown experimentally in Section 4.6, ignoring the signal from the nose sensor, leaves a two

sensor configuration that is optimal for observing angle of attack.

4.3 Robotic test bed for flow sensing and control

This section describes the laboratory test bed constructed for experimental valida-

tion of the flow-sensing and control framework. Figure 4.4 shows the laboratory test bed,

which consisted of a 185 L flowtank (Loligo Systems, SW10275 modified) and a two-degree-

of-freedom custom robot equipped with commercially available pressure sensors (Millar

Instruments, Mikro-Tip Catheter Pressure Transducers, model SPR-524). The flow tank

had a flow straightener and a 25 x 25 x 87.5 cm enclosed test section. A 5 x 22 cm slot
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Figure 4.4: The laboratory test bed consisted of a 185 L flowtank and a two-degree-of-
freedom underwater robot equipped with commercially available pressure sensors. The
motors that regulate the robot position and orientation were controlled by a laptop com-
puter.

in the top of the test section provided access for the robotic control arm. Calibration of

the flow tank was accomplished using a Hach FH950 portable flow meter. A mechanical

gantry system provided overhead control of the robot’s orientation and cross-stream posi-

tion (although only orientation control was used in the rheotaxis experiment). The gantry

was elevated by a custom support fixture (materials from 80/20, Inc.) and consisted of

an LS-100-18-H linear lead screw table (Anaheim Automation), coupled to a secondary

stepper motor for rotary motion. Both stepper motors were STM23Q-XAE integrated

stepper drives (Applied Motion Products), which take commands from LabVIEW via an

RS-232 serial connection. The drives contained built-in motion controllers that accept

high-level text commands, most notably feed-to-length and jog commands for control of
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motor position or angular velocity. The stepper motors also contained integrated encoders

that were queried directly from LabVIEW. Each robotic fish was constructed from a 3D-

printed airfoil shape when viewed from above, as shown in Figure 4.5. Choosing R = 2.9

(a) (b)

(c) (d)

Figure 4.5: Images of the robotic fish used in the experiments: (a) Mikro-Tip pressure
sensor (arrow points to rectangular sensing area on side of the device tip) and Delrin
isolation tube; (b) sensors installed in fish within Delrin tubes and PTFE sleeving; (c)
internal canal features of the robotic fish; (d) CAD image of assembled robot.

cm and λ = −0.5 cm yields a 9.9 cm by 2.2 cm fish cross-section that approximately
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resembles the length and width characteristics of a Mottled sculpin (Cottus baridi) [93,

94], a fish previously studied for rheotactic response [95]. The height of the robotic fish

(6 cm) reduced the three-dimensional effects of the flow near sensor locations. The fish

was printed on a uPrint SEPlus printer (Stratasys Ltd) in three pieces with a hollow inner

pocket and port holes with small canals for the sensors. Figure 4.1 shows the locations

of the three pressure sensors used in these experiments. Sensor placement was based on

the observability analysis described in Section 4.2. The sensors were piezoresistive pres-

sure transducers with a straight end (size 3.5F), containing a small rectangular sensing

region on the side of the device tip, as shown in Figure 4.5(a). The sensors connected to

two PCU-2000 Pressure Control Units (Millar Instruments) and were embedded in canals

to shield from direct flow impingement. The sensors read the static pressure, which en-

abled analysis using the potential-flow model as described in Section 4.1. The sensors

were secured in small Delrin tubes within the robotic fish using Teflon tape (see Figures

4.5(a) and 4.5(b)). Calibration of each sensor was performed by submersion in a known

hydrostatic pressure; all sensors in this work had calibration constants within 1% of the

manufacturer-supplied value of 13.30 kPa/V. Soaking the sensors in water for 30 minutes

prior to use reduced sensor drift. Further, pressure data was collected in still water; after

each run, we verified that sensor drift had not exceeded 2%, similar to Venturelli et al.

[13]. A NI-USB-6225 data acquisition board, with a BNC-2115 connector block (National

Instruments) provided the link between the pressure sensors and the LabVIEW software

interface. Sampling occurred at 1000 Hz (within the frequency response limits of the

pressure sensors). However, using the mean of 200 samples as an individual measurement
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increased the signal-to-noise ratio; thus, the effective sampling rate for data collection was

5 Hz. The control loop frequency for all rheotaxis experiments was set to 1 Hz to account

for differences in computation time between the control schemes.

Figure 4.6: Cross-stream pressure survey (zero is channel center) of the Loligo 185L flow-
tank, before and after modification. U = 0.26 m/s (both curves).

Figure 4.6 shows a time-averaged cross-stream pressure survey of the flow tank. It

reveals periodic structures approximately 6 cm wide that align with the guide vanes located

upstream of the flow straightener. The fluid-mechanical model presented in Section 4.1

does not account for such variations. We reduced these variations by including additional

flow straightening structures. Adding two pieces of 3.5 cm wide, 3 mm pore size honeycomb

(Nomex) and an additional flow straightener (Loligo Systems) with 7 cm spacing between

each component reduced the cross-stream pressure variations as shown in the Figure 4.6.

Note that, although the standard deviation (error bars) may increase at a given location,
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the overall maximum, minimum, and average standard deviations were reduced. Figure

4.7(b) illustrates the arrangement of the additional honeycomb in the swim channel.

(a) (b)

(c) (d)

Figure 4.7: Initial fish alignment. (a) Custom 3D-printed tools for aligning the fish body
and holder for a laser pointer; (b) Alignment of the robotic fish using a laser; (c) Time-
averaged relative pressures (U = 0.22 m/s) during a rotary scan after laser alignment; (d)
Final alignment: equalizing p1, p3 pressures.

Since the encoder in the rotary gantry motor provides only a relative rotational mea-

surement, an initial alignment procedure was necessary. The fish body was first aligned

to a holder for a laser pointer using 3D-printed tooling (see Figure 4.7(a)); next, the fish
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was rotated until the laser illuminated markings corresponding to the center of the test

section (see Figure 4.7(b)). After this procedure, we performed a rotary sweep (±5◦) col-

lecting time-averaged pressure measurements. Figure 4.7(c) illustrates the time-averaged

pressure measurements collected during a ±5◦ rotary sweep of the fish. Note that the p2

signal is relatively flat and the p1, p3 signals cross at a location of equal pressure. Due

to the symmetric placement of the sensors, the crossing of the signals at a location away

from the zero orientation indicates an error that can be attributed to the manufacturing

tolerances of the flow tank and the 3D-printed fish, uncertainties in the laser alignment

process, and variations in the pressure field. To define the upstream zero orientation (zero

angle of attack), we rotated the robotic fish in a strong flow (U = 0.47 m/s) until the

p1, p3 pressures were equal. Figure 4.7(d) shows the pressure signals during this process.

We note that the final alignment did not visually differ from the laser aligned condition,

i.e., it was accurate to within 3◦ of the upstream direction.

4.4 Potential-flow model evaluation

This section presents an evaluation of the potential-flow model using computa-

tional fluid dynamics (CFD) simulations and the experimental test bed. To validate

the potential-flow model from Section 4.1, we compared it with simulations from a com-

mercially available CFD solver (COMSOL) and experimental sensor data. The COMSOL

CFD simulations solved the Reynolds Averaged Navier Stokes equations with a Spalart-

Allmaras turbulence model [96]. Figures 4.8(a), 4.8(c), and 4.8(e) show the pressure

difference ∆p13 for constant angles of attack. Figures 4.8(b), 4.8(d), and 4.8(f) show the
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pressure difference ∆p13 for constant flow speeds. For low flow speeds and angles of attack,

the potential-flow model accurately represents the physical phenomenon captured in the

high-fidelity CFD model, with decreasing accuracy at higher speeds and angles. (We note

that a small difference exists in the inlet boundary condition for the CFD simulations and

experiments; the CFD inlet boundary condition is the free stream flow speed measured by

the flow probe at the location occupied by the fish during testing, not the true flow speed

of the inlet to the test section).

Discrepancies with experimental data are likely due to sensor noise, angular align-

ment uncertainty, disturbances in the free-stream flow, cross-stream flow non-uniformities,

and unmodelled viscous effects. Figure 4.9 shows the onset of flow separation from the fish

body, a viscous effect captured by the CFD simulations. When flow separation occurs,

the streamlines of the flow no longer conform to the shape of the streamlined body, due to

a region of backflow or recirculating flow on the upper surface of the fish, often leading to

an unsteady, turbulent wake [90]. The potential-flow pressure-difference model of Section

4.1 assumes that the flow is steady, irrotational, inviscid, and conforms to the body of the

fish. Further, the flow conditions considered here (0.05 m/s to 0.20 m/s) have free-stream

Reynolds numbers that range from 12, 500 to 50, 000 in the test section. These values

exceed the 2, 300 demarcation value for transition from laminar to turbulent flow that

is often used for internal flows [92], clearly violating the laminar flow assumption of the

potential-flow model. Nonetheless, the potential-flow model still proves useful in a control

loop, because it captures the general shape of the pertinent physical relationships. Note

that the accuracy of the potential-flow model increases as the angle of attack approaches
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zero. The potential-flow model is also a reduced-order model, offering the possibility of

real-time implementation.

4.5 Estimation and control framework for rheotaxis

This section describes an approximate recursive Bayesian filter for estimating flow-

field parameters from pressure measurements and a dynamic control framework for rheo-

taxis.

4.5.1 Recursive Bayesian filtering with pressure differences

We adapt the recursive Bayesian filter from Section 3.1.1 to the application of rheo-

taxis for robotic fish. In this application, the flow-field parameter vector Ω represents

the system state. Under a quasi-static assumption, α is a flow-field parameter. How-

ever, α may equally represent the state of the robot turning in the flow. The output

y(tk) at measurement time tk is the vector of pressure differences corrupted by noise, ∆p̃.

The assumption of additive Gaussian measurement noise results in a Gaussian likelihood

function

π(∆p̃|z,Ω) ∝ exp

(
−1

2
(∆p̃−∆p(z,Ω))TR−1(∆p̃−∆p(z,Ω))

)
, (4.8)

where R is the measurement covariance matrix. For the three-sensor case,

R = diag
(
σ2

1 + σ2
2, σ

2
1 + σ2

3, σ
2
2 + σ2

3

)
,
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otherwise R =
(
σ2
j + σ2

k

)
for a single pj , pk sensor pair. (The variances are chosen by

collecting data from the pressure sensors and analyzing the noise statistics. Since the noise

in the sensor measurements increases with free-stream flow speed, we choose the values

based on measurements at the maximum relevant flow speed.) Note that we include the

vector of sensor locations z in (4.8) for clarity. However, for a given robot geometry, z is

a deterministic function of α and inclusion is not necessary.

Pressure sensors provide a sequence of measurements represented by Dk , {∆p̃(t0)

, . . . ,∆p̃(tk)} for collection times {t0, t1, . . . , tk}. The posterior probability density from

the previous tk−1 assimilation time is used as the prior density for assimilation at time tk,

yielding

π(Ω(tk)|Dk) ∝ π (∆p̃(tk)|Ω(tk))π (Ω(tk−1)|Dk−1) . (4.9)

4.5.2 Dynamic control design

We now present a model-based dynamic controller for rheotaxis for which a block

diagram is shown in Figure 4.10. The kinematics of the robot turning at a commanded

angular rate u are

α̇ = u, (4.10)

where u is the control input. The Bayesian filter produces estimates of α̂ and Û as the

robot moves. The estimate Ω̂(tk) is the maximum a posteriori estimate of (4.9), i.e.,

Ω̂(tk) , argmax
Ω

π (Ω(tk)|Dk) . (4.11)
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The controller calculates the control input with the proportional control law [88]

u = −K1α̂. (4.12)

Note that if α̂ = 0, then the closed-loop system α̇ = −K1α̂ is in equilibrium. Moreover, if

the filter produces α̂ estimates that at least have the correct sign as the true orientation,

then the robot will drive toward α = 0, which is the direction of increasing model validity.

We have shown previously that, if the estimation error is bounded, then the angle of

attack error is uniformly, ultimately bounded, with ultimate bound inversely proportional

to the control gain K [88]; this result is illustrated by the experimental results of Section

4.6. Since the Bayesian filter is applied in real-time, it is necessary to account for the fish

motion during the estimation step. Let (3.8) serve as the evolution equation with process

uncertainty so that the prior pdf for the next Bayesian assimilation cycle represents the

best estimate of the system state. We choose π (Ω(tk+1)|Ω(tk)) to be a Gaussian transition

density [88]

π (Ω(tk+1)|Ω(tk)) = N (Ψ, Q), (4.13)

where Ψ , [0,∆tα̇(t)]T , and Q is the process noise covariance matrix, which is tuned to

maximize filter performance. Tuning may be performed by commanding known trajecto-

ries of the robotic fish while estimating the state of the system, increasing the process-noise

variance for each run (from a small initial value) until desired estimation tracking is ob-

tained.
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4.6 Experimental demonstration of rheotaxis control

This section presents estimation results for angle of attack and flow speed using the

potential-flow model and a Bayesian filter, assuming the true values are constant. It also

includes results of a rheotaxis controller based on pressure-difference feedback control,

and it compares these results to the performance of dynamic rheotaxis control based on

recursive Bayesian filtering.

4.6.1 Constant angle-of-attack and flow-speed estimation

Results of Bayesian estimation for constant angle-of-attack and flow-speed experi-

ments are shown in Figure 4.11. Figures 4.11(a) and 4.11(b) present the marginal pdf’s

and estimated parameter values (based on the mode of the joint posterior density) for

an angle of attack of 4◦ and a fixed flow speed of 0.10 m/s. Figure 4.11(c) and 4.11(d)

illustrate the case of an angle of attack of 14◦ and a fixed flow speed of 0.20 m/s. These

two cases span a large portion of the desired operational range and are representative

of the results in most configurations. In both cases, the Bayesian estimator provides a

reasonable flow-speed estimate within only a few seconds. The flow-speed estimates are

accurate thoroughout the remainder of the run. However, in all cases, the estimator sys-

tematically underestimates the angle of attack. Nonetheless, the angle-of-attack estimate

always tended towards a steady value with the correct sign, similar to Figures 4.11(b) and

4.11(d). We attribute the filter’s inability to estimate angle of attack to model errors.

Note in the model comparison results of Figure 4.8 that the model fit to experimental
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results for flow speed at a constant angle of attack is superior to the model fit for angle

of attack.

4.6.2 Rheotaxis via pressure-difference feedback control

We first implemented a feedback control for rheotaxis based directly on the ∆p13

pressure difference from the p1, p3 pressure sensors located on opposing sides of the fish

robot (see Figure 4.1). The control input u was calculated according to the proportional

control law

u = −K2∆p̃13, (4.14)

where K2 is a proportional gain. Figure 4.12 shows the results of the rheotaxis experiment

using (4.14) for two separate flow speeds. Note that convergence to the desired orientation

is not monotonic. Further, 20 to 40 seconds elapse before rheotaxis is achieved, and the

convergence rate and variations in orientation are dependent on flow speed. It is evident

that the pressure-difference signal is jagged and noisy. Although the proportional control

law (4.14) is sufficient to accomplish rheotaxis, it lacks memory of past measurements,

causing sensitivity to sensor noise, and also requires sensors to be arranged symmetrically

on the fish.

4.6.3 Rheotaxis via dynamic control with Bayesian filtering

Figure 4.13 presents results from rheotaxis experiments using the estimation and

control framework and the [∆p12,∆p13,∆p23]T measurement signals from the sensor ar-
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rangement in Figure 4.1. Figures 4.13(a), 4.13(c), and 4.13(e) show an experiment with a

flow speed of 0.12 m/s and an initial angle of attack of 30◦. Figures 4.13(b), 4.13(d), and

4.13(f) present another experiment with a flow speed of 0.07 m/s and an initial angle of

attack of −30◦. Although the Bayesian filter typically underestimates the angle of attack

as shown in the constant angle-of-attack estimation, in both cases the control loop drives

the robotic fish to the correct upstream direction, because the estimation error vanishes at

zero angle of attack. These results show that a dynamic controller based on the potential-

flow model achieves rheotaxis from an uncertain initial orientation outside the accurate

domain of the potential-flow model.

Although the Bayesian estimation approach increases the computational work re-

quired, one of its benefits over simple pressure difference control is reduced long-term

sensitivity to sensor noise. Figure 4.13 shows the estimator transient response is short

(< 20 s). Although the estimator exhibits sensitivity to noise in the transient period, it

maintains its final estimates without large excursions due to noisy data. This benefit is

due in part to the filter’s ability to assimilate ∆p measurements from multiple sensor pairs.

The 0.07 m/s case was selected for direct comparison to the performance of the simple

pressure difference controller under the same conditons. The low flow-speed condition is

challenging for both controllers due to the low pressure signal-to-noise ratio. The time

history of the Bayesian controller results in a steady, long-term orientation of the robot.

Note in Figure 4.13(b) the estimator initially generates an angle-of-attack estimate with

the wrong sign, causing the robot to turn in the wrong direction, before correcting the

filter’s estimate and driving to zero angle of attack.
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One advantage of the simple pressure difference approach is that only two sensors

are needed. The results shown thus far for the Bayesian dynamic controller rely on three

sensors. To allow further direct comparison to the simple pressure difference approach, we

look at the case of only utilizing the p1, p3 sensors in the dynamic controller. Note that

this case represents an example of how the dynamic rheotaxis controller performs if the

p2 nose sensor fails. Figures 4.14(a), 4.14(c), and 4.14(e) present the results of a rheotaxis

experiment using the ∆p13 signal. The robotic fish achieves rheotaxis with a long-term

orientation that is robust to noise. Figures 4.14(b), 4.14(d), and 4.14(f) illustrate the

performance of the Bayesian rheotaxis controller in the case of p1 sensor failure (a sensor

on one side of the fish). The robotic fish is able to achieve rheotaxis using only the

∆p23 signal. This result is significant because the p2, p3 sensor pair is an asymmetric

sensor configuration. We note that both cases of the two-sensor configurations shown

here provide accurate estimates of the free-stream flow speed, which was accomplished by

modifying the filter process noise variance.

As noted in Section 4.2, the joint state (U,α) is not observable for a single sensor

pair at a constant angle of attack, but observability can be restored if the robot is allowed

to move and measurements are integrated in time. Thus, initial conditions with small

angle of attack resulted in poor estimator performance. Comparing the two-sensor ex-

periments to the three-sensor experiments reveals that properly placed additional sensors

can increase the observability of the flow field, improving robustness in the estimates and

overall estimator performance.

Although empirical methods can be used for rheotaxis behavior in a robotic fish,
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the principled approach outlined here has the following additional advantages: it provides

robust rheotaxis performance in the presence of noise; it provides estimates of both the

angle of attack and flow speed, which can be used for more complex navigational tasks;

it provides extensibility to more sophisticated fluid-mechanical models; it generalizes to

asymmetric/arbitrary sensor configurations, requiring only evaluation of the flow model

at these sensor locations; and it provides a framework in which information can easily be

fused from multiple sensors and multiple sensory modalities.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Evaluation of the potential-flow model using CFD and experiments. (a),
(c), and (e) Comparisons for constant angle of attack; (b), (d), and (f) comparisons for
constant flow speed. Error bars represent the standard deviation of the experimental data.
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(a) (b)

Figure 4.9: CFD simulations showing the onset of flow separation. (a) 6◦ angle of attack,
U = 0.05 m/s; (b) 6◦ angle of attack, U = 0.14 m/s

Figure 4.10: Flow-sensing, estimation and control framework for rheotaxis.
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(a) (b)

(c) (d)

Figure 4.11: Estimation results for fixed angle of attack and flow speed. Contour plots
show the marginal pdfs at each instant in time. The estimate (mode) is shown in black,
and the white lines indicate the ground truth values.
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Figure 4.12: Results of robotic rheotaxis using a pressure-difference feedback control.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Results from rheotaxis experiments using the Bayesian dynamic feedback
controller with the [∆p12,∆p13,∆p23]T pressure signals.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Results from two rheotaxis experiments using the Bayesian dynamic feedback
controller with two sensors. (a),(c),and (e) Using the ∆p13 pressure signal only. (b),(d),
and (f) using the ∆p23 pressure signal only.
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Chapter 5

Observability-based guidance, navigation,

and control in planar flow fields

For flow-field sampling applications, such as the one presented in Chapter 7, to

understand the most about the underlying flow field, a vehicle should plan paths that

enhance observability of the flow field or flow-field parameters. Two possible approaches

to incorporating observability in path planning are: (i) to steer the vehicle to highly

observable regions of the flow field, and (ii) to select from a candidate set of controls

or parameterized family of trajectories for the control that minimizes unobservability as

measured by the unobservability index. The latter is referred to as observability-based

path planning and is discussed in Section 5.3. This chapter combines these approaches.

It first identifies multiple highly observable regions in the flow field, and use a hybrid

steering controller to simulate guiding the vehicle to each of these regions. The control

signals that are required for these simulations are collected into a set of candidate control

signals. Observability-based path planning can then be performed utilizing this candidate
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set. The elements of the candidate set have the virtue that they each are guiding to a

highly observable region. The observability-based path planning analysis then selects an

optimizer from this set.

This chapter presents path planning of an autonomous sampling vehicle in a planar

flow field using an observability-based, model-predictive control strategy. The chapter first

presents how to identify highly observable regions of a flow field for a Lagrangian position

sensor. It then describes a hybrid steering controller that steers the vehicle along a closed

streamline in the flow field. We detail the region of validity within which convergence to

a unique streamline is guaranteed. If the target streamline is chosen to be a separating

boundary of invariant sets, then it corresponds with a highly observability path for a

Lagrangian position sensor. By identifying high-observability regions in the flow field,

simulating steering these regions, and performing observability analysis for selection of

the candidate control input that maximizes observability, the result is an observability-

based, model-predictive control strategy for path planning of an autonomous sampling

vehicle.

5.1 Empirical observability of invariant-set boundaries

This section addresses how to find highly observable regions for sampling with a

Lagrangian position sensor in the flow field. To identify such regions, it utilizes the

empirical observability tool from Section 3.2 to evaluate the empirical observability index

for a drifting vehicle in the two-vortex flow field from Section 2.3.1. A self-propelled vehicle

will achieve different empirical observability indices, dependent on the control input. It
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is impossible to simulate the infinity of possible control signals for a sampling interval for

this assessment. However, the influence of the flow on the self-propelled vehicle model

(2.31) is the same for a drifting vehicle model (2.26) (i.e., the flow term directly impacts

the vehicle’s velocity). The observability results for a drifting vehicle can therefore be

viewed as pertinent to a controlled vehicle.

(a) (b)

Figure 5.1: Log10 of the unobservability index for orbits in the two-vortex system for a)
Γ2 = Γ1, and b) Γ2 = 2Γ1.

Orbits are of interest, both for drifting vehicles on extended deployments and for

vehicles that actuate infrequently. Krener and Ide [60] examine the unobservability index

over one period of the two-vortex system to assess launch locations for Lagrangian drifters.

We extend this analysis to closed orbits in the following manner. First perform a grid-

based unobservability analysis similar to [60], with a longer time horizon that ensures all

of the drifters in the domain achieve at least one full orbit. For each orbit considered,

assign to the curve the average value of the unobservability indices from the grid-based
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analysis. The grid-based analysis provides an estimate of the best launch location, whereas

the orbit averages provide estimates from which dependence on the initial conditions has

been removed. Figures 5.1(a) and 5.1(b) present the results of this calculation for equal-

strength and unequal-strength cases, respectively, using 1000 orbits from random initial

conditions selected from a uniform distribution over the domain and integrated over the

time interval [0, 24π]. Less informative orbits in the two-vortex system occur near the

center fixed points (in regions 2 and 3 for the equal-strength case in Figure 2.1(a)). Figures

5.1(a) and 5.1(b) show that the most informative orbits occur very close to the separating

boundaries between invariant sets. The boundaries of invariant sets in a divergence-free

flow are highly observable under Lagrangian position measurements due to the eventual

distinction of neighboring trajectories by a downstream saddle point. These observations

motivate Lagrangian sampling along the boundaries of invariant sets with frequent passage

near saddle points.

5.2 Hybrid steering control for navigating invariant-set boundaries

The previous section identified invariant-set boundaries as highly observable regions.

This section constructs a controller that steers a sampling vehicle along these paths. This

section first presents a controller that can steer a controlled vehicle along a unique, closed

streamline, as well as an analytical result on the region of validity for this controller based

on the signed curvature of the streamline. Since the controller is not valid in all of the

domain, a second controller is used to steer the vehicle to within the region of validity for

the first controller. Together, these controllers comprise a hybrid steering controller.
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5.2.1 Steering to unique, closed streamlines

This section extends the steering controller of Zhang and Leonard [77] in Theorem 1

to a vehicle in the presence of flow by combining it with the flow-relative transformation of

[63]. Additionally, we utilize another existing technique of [97] to build a Bertand family

of curves around a regular closed streamline. By synthesizing these results, we create a

novel steering controller that steers a self-propelled vehicle to a unique, closed, regular

streamline of an underlying flow field. Moreover, we provide precise specification of the

region in which the controller is guaranteed to converge to the streamline.

Consider the self-propelled particle model in a time-invariant flow given by (2.31).

Assume that the flow-relative transformation of [63] for the control signal u is valid, so

that the model (2.31) may be viewed equivalently as model (2.30). Let the frame (a1, a2),

the frame (b1, b2), the angle η, κa, and κb have the same meanings as defined in Section

2.4.2. Let target curve γ0 be a twice-differentiable, simple, closed, and regular curve that

may enclose a non-convex region of the plane. γ0 also has orientation χ ∈ {−1,+1} for

clockwise or countercounterwise, respectively. Appendix B describes how to create a target

curve γ0 in a given flow field by using the geometry of the saddle points and separatrices.

Note that the separating boundaries of invariant sets do not meet the regularity condition

at saddle points. However, smoothing of cusps using Bézier curves (see Section B.2)

allows for the construction of boundaries avoiding saddles and numerically meeting these

conditions.

Converging to γ0 is accomplished by construction of a scalar orbit function Φ(z, z)
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for which γ0 is a level curve (i.e., Φ(γ0(s), γ0(s)) is constant along the curve with arc

length s). If curve γ0 is a member of a parameterized family of curves γλ, such as a

family of concentric ellipses, then the orbit function Φ may be constructed using the

scalar parameter λ. Let the notation (·)′ denote differentation with respect to arc length

s. If γ0 is a more general (simple, closed, and regular) curve, then an orbit function may

be constructed using a Bertrand family of curves [62], i.e.,

γλ(s) = γ0(s) + λiγ′0(s), (5.1)

in which additional family members are formed by offsetting from γ0 by a distance of |λ|

perpendicular to the curve (in either the positive or negative iγ′0(s) direction, depending

on the sign of λ). The orbit function may be defined to be Φ(z, z) = λ if z lies on the

curve γλ [62]. The arc length s is measured along the reference orbit [62].

We impose the requirement that γ0 be a streamline for a flow having stream function

ψ. A unique orbit of the flow (using the Fundamental Theorem of Calculus) is

γ0(t) = z(0) +

∫ t

0
−2i

∂ψ

∂z̄

∣∣∣
z(τ)

dτ, for 0 ≤ t ≤ T, (5.2)

where z(0) is a point lying on the orbit and T is the period of the orbit. The arc length

in (5.1) may be calculated using

s(t) =

∫ t

0

∣∣∣∣−2i
∂ψ

∂z̄

∣∣∣
z(τ)

∣∣∣∣ dτ. (5.3)
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To steer to the unique orbit γ0, we construct a Bertrand family of curves γλ around the

reference orbit so that Φ(z, z) = λ is an orbit function that is zero when the vehicle lies

on the curve γ0.

Let zc be the point on the curve γ0 that is closest to z. Using (5.1), we can express

the function Φ(z, z) as

Φ(z, z) = 〈z − zc, b2〉 . (5.4)

By the construction of a Bertrand family, the orbit function’s gradient ∂Φ/∂z̄ is always

perpendicular each Bertrand curve. Differentiating (5.4)

∂Φ

∂z̄
=

∂

∂z̄

(
(z − z0)b̄2 − (z̄ − z0)b2

2

)
=
b2
2
, (5.5)

shows that the b2 direction also lies perpendicular to each Bertrand curve. Since we addi-

tionally require that γ0 be a streamline of the flow, the direction b2 can also be written in

terms of a stream-function derivative evaluated at zc, such that b2 = (∂ψ/∂z̄/|∂ψ/∂z̄|) |zc .

Using (5.5), we calculate the remaining derivatives of Φ necessary to implement the

control (2.36) in terms of the stream function as

∂2Φ

∂z∂z̄
=

1

2
∣∣∣∂ψ∂z̄ ∣∣∣

(
∂2ψ

∂z∂z̄
− ∂2ψ

∂z2
b22

)
,

∂2Φ

∂z̄2
=

1

2
∣∣∣∂ψ∂z̄ ∣∣∣

(
∂2ψ

∂z̄2
− ∂2ψ

∂z∂z̄
b22

)
.

The right-hand sides of these equations are evaluated at the point on the reference orbit
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zc nearest to the vehicle location z.

The preceding streamline steering control has assumed the existence of a unique

closest point zc on the reference curve γ0. For a general location z in the plane near a

simple, closed, and regular curve, this condition may not hold. However, by considering

the signed curvature κs of the target curve, we define regions in which a unique closest

point is guaranteed to exist. From differential curve theory, the signed curvature κs is

defined such that [98]

γ′′(s) = κs(s)iγ
′(s). (5.6)

Note that γ′(s) is the tangent direction at s, and iγ′(s) is the normal direction. According

to (5.6), the signed curvature may be calculated by κs(s) = 〈iγ′(s), γ′′(s)〉. The following

theorem uses κs to define a region of validity Ω for the streamline steering control law.

Theorem 2. Let curve γ0 be a twice-differentiable, simple, closed, and regular curve in the

plane. Let γI and γE be interior and exterior Bertrand curves, respectively, with constant

offsets

λI =
χ

sup
σ

(κs(σ)χ)
,

λE =
χ

min(0, inf
σ

(κs(σ)χ))
,

(5.7)

respectively, such that |λI |, |λE | > 0.1 Let Ω be the domain between the Bertrand curves

γI and γE. If γI and γE are both simple, closed curves, then for every z ∈ Ω, there exists

1Note for a curve γ0 enclosing a convex region, γE lies at infinity.
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a unique, closest point zc that minimizes the Euclidean distance.

Proof. The necessary and sufficient conditions for γ0(s) = zc to minimize |z−γ0(s)| locally

are

〈
γ′0(s), z − zc

〉
= 0, (5.8)

〈
γ′′0 (s), z − zc

〉
< 1. (5.9)

We prove the theorem for a point z that lies between γ0 and γI ; corresponding arguments

hold for points between γ0 and γE . Since |λI | > 0, and γI is simple by assumption, it does

not have self-intersections and cannot cross γ0. Since |λI | ≥ 0, for every z between γ0 and

γI , there exists a λ and an arc length s such 0 ≤ |λ| < |λI | and z lies on the Bertrand

curve γλ. Let zc = γ0(s). Plugging z − zc = iλγ′0(s) into the left-hand side of (5.8) yields

λ
〈
γ′0(s), iγ′0(s)

〉
= 0,

so zc satisfies the first-order necessary condition (5.8). Using (5.6) transforms the second-

order condition (5.9) to

κs(s)
〈
iγ′0(s), z − γ0(s)

〉
< 1 =⇒ κs(s)λ < 1. (5.10)

This inequality is trivially satisified if κs(s) = 0, λ = 0, or if κs(s)λ < 0, which occurs if

γ0 turns away from z for increasing s. Consider the case of κs(s)λ > 0 so that γ0 curves
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towards z. Upper bounding κs(s)λ gives

κs(s)λ ≤ |κs(s)||λ| <
|κs(s)|∣∣∣sup

σ
(κs(σ)χ)

∣∣∣ .

For an interior point z for which γ0(s) turns towards z, the quantity κs(s)χ is positive.

Hence, the supremum operation will yield a positive value, and we have

κs(s)χ

sup
σ

(κs(σ)χ)
≤ 1,

so that κs(s)λ < 1, satisfying condition (5.9).

For uniqueness of zc, note that by (5.7) and the requirement that γ0 be regular, γλ

for each λ such that 0 ≤ |λ| < |λI | does not pass through a center of curvature. Hence, γ0

may be homotoped (i.e., continuously deformed without changing topology) using (5.1)

to γλ for any λ in 0 ≤ |λ| < |λI |. z lies on only one Bertrand curve with offset λ. From

above, zc is the closest point, and this point is unique.

Theorem 2 defines a domain Ω in which control law (2.36) using the streamline

steering strategy in (5.2)–(5.7) is guaranteed to converge. We remark that it is necessary

to require γI and γE to be simple curves since the offsets (5.7) may produce self-intersecting

curves when used in (5.1) for some pathological curves γ0 (e.g., when segments of γ0 with

opposing orientation have relatively close approaches, γI may have a self-intersection).

When non-simple bounding curves result from the choice (5.7), one may reduce |λ| until

(5.1) produces bounding curves that are simple. Figure 5.2(a) illustrates the definition of
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(a) (b)

Figure 5.2: a), b) Example of steering to a unique, non-convex boundary curve in the
presence of flow. The inner and outer Bertrand curves γI and γE defined based on the
signed curvature are shown in a); the zoom-in b) shows the necessary reference frames
along with the unique, closest initial point zc.

the domain Ω and presents an example of this steering controller for driving to a unique,

closed streamline. Figure 5.2(b) shows the frames needed to utilize steering control law

(2.36) for the scalar field (5.4) created by a Bertrand family of curves around a unique

streamline of the flow.

5.2.2 Steering towards boundaries

The streamline controller of the previous subsection may have a limited domain of

validity Ω for a given reference curve γ0. To address this issue, we create an additional

steering controller that is valid outside of Ω by allowing the stream function ψ (or ψR if

the co-rotating frame is used, as in Chapter 7) to serve as the scalar Θ function given in

Theorem 1. When a vehicle is not within an applicable domain Ω of a boundary curve,
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then we take the stream-function value of the closest boundary curve as the target value

Θd from Theorem 1. This controller drives the vehicle towards the boundaries of invariant

sets. Once the vehicle enters the domain Ω of a boundary curve, it steers according to the

unique streamline controller described previously. Working together, these two controllers

comprise a hybrid control strategy.

5.3 Observability-based path planning

Observability-based path planning of autonomous sampling platforms for flow esti-

mation is a technique by which candidate trajectories are evaluated based on their ability

to enhance the observability of underlying flow-field parameters. Observability-based path

Figure 5.3: Candidate trajectories in observability-based path planning.

planning refers to the evaluation of a finite set of l possible control signals {uj(·)}lj=1 over a

forward-looking time interval [t0, Th] based on the anticipated observability of the output.

The candidate signal may be generated by another control policy (e.g., steering to the
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boundaries of invariant sets) or generated from a parameterized family of possible vehicle

trajectories (e.g., circular loops [88] or superellipses [99]). Each control signal is scored

using its unobservability index (3.21). The control signal that minimizes the unobserv-

ability index is selected, and the process may be repeated when re-planning is desired [69].

Figure 5.3 illustrates this process.
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Chapter 6

Augmented observability-based path plan-

ning

Until now, observability-based path planning (as presented in Chapter 5) has op-

timized path selection for observability without consideration of where the vehicle has

already been or what may already known about the system under observation. A moti-

vating example in this chapter shows that vehicle path history alters the optimal path in

observability-based path planning and that vehicle history must be considered in planning.

Performing observability-based path planning in an estimated environment requires

observability computations using a state or parameter vector that may contain uncer-

tainties. This chapter presents a novel approach that makes use of the background error

covariance at the current time to account properly for uncertainty of the underlying flow.

The reduced Hessian of an optimal data-assimilation strategy, Incremental 4D-Var, prop-

erly accounts for prior information (under a Gaussian uncertainty assumption) in the linear

case and must be full rank to infer the initial state. The reduced Hessian represents an
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observability Gramian augmented with an inverse prior covariance. We extend augmented

observability to the nonlinear case through the use of an empirical Gramian, yielding a

new criterion for scoring candidate trajectories: the empirical augmented unobservability

index.

The augmented observability Gramian has strong connections to other inference

matrices in estimation theory and information theory. Solving the differential Riccati

equation for the covariance of the Kalman Filter under deterministic dynamics also prop-

erly accounts for prior information in the linear case, but at a later time. The solution to

this equation reveals the important distinctions between observability-based, augmented

observability-based, and anticipated covariance-based path planning. Section 6.4.2 makes

a connection to information theory by showing that the empirical observability Gramian

is a numerical approximation to the Fisher information matrix for inference of the initial

condition.

A numerical experiment in this chapter shows that by augmenting the forward-

looking observability analysis with prior information, the optimal vehicle path is the path

with observability content most complementary to the prior information for inferring the

initial state of the system. In addition, this chapter expands augmented observability

path-planning to non-Gaussian prior distributions represented by a GMM. This extension

involves an approximate expected-cost calculation for the augmented unobservability in-

dex using the components of the GMM as weighted realizations from the non-Gaussian

distribution.
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6.1 Motivating example: Effect of vehicle history on path selection

The following example motivates the need to evaluate forward-looking paths with

consideration of where the vehicle has already been or what the vehicle already knows,

i.e., to incorporate prior information in observability-based path planning.

(a) (b)

Figure 6.1: (a) Routes in the observability example in the co-rotating frame. (b) Routes
in the observability example in the inertial frame. Initial conditions for Route A: x(0) =
(1, -.5, 0, 1, .5, 0, -.5, -.335)T ; Route B: x(0) = (1, -.5, 0, 1, .5, 0, .5, .335)T ; Route C:
x(Th)= (1, .45, -.22, 1, -.45, .22, .60, .081)T .

Consider a drifting ocean vehicle located at z, advecting with the flow of two nearby

vortices. Assume, for simplicity, that we are able to able apply control u(t) ∈ C directly

to the vehicle velocity, leading to the kinematic model

ż(t) = f1(z(t)) + f2(z(t)) + u(t), (6.1)
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where fj is the flow contribution from the jth vortex according to (2.21). Note empirical

observability calculations in which a control signal is prescribed over a time interval are

unaffected by the point of entry of the control term since it only acts as a prescribed

function of time over the specified interval. Figures 6.1(a) and 6.1(b) show the setup

for this motivating example in the co-rotating and inertial frames, as described for the

two-vortex system in Chapter 2.

Assume that the vehicle has traversed Route A encircling Vortex 1 during time inter-

val [0, Th], as shown in Figure 6.1(a); Th is approximately 8.44 time units, corresponding

to the time for the drifting vehicle to complete the blue orbit and return to its starting

location in the co-rotating frame. After time Th, the vehicle will again approach the sad-

dle location at ξ = 0. Figure 6.1(a) shows two possible choices at t = Th: the vehicle

can remain on Route A encircling Vortex 1, or switch to Route C, which requires a brief

control action to cross the nearby separating boundary. (Route B will be addressed in

Section 6.5.) After crossing, a vehicle traveling along Route C drifts to the right of the

saddle at ξ = 0 and partially encircles Vortex 2. Should the vehicle remain on Route A

for the subsequent time interval [Th, 2Th] or exert a brief control effort to switch to Route

C?

Table 6.1 shows the unobservability indices for the upper 6×6 submatrix ofWeo cor-

responding to the observability of the flow-field parameters and states γ1, <(z1), =(z1), γ2,

<(z2), and =(z2), for these routes. Forward looking-observability on [Th, 2Th] shows Route

A as preferable to Route C. However, if the previous empirical observability Gramian from

[0, Th] for Route A is included in the evaluation, the route combination (A,C) yields the

106



most observable path. The value of the unobservability index over the interrupted inter-

vals [0, Th], [Th, 2Th] differs from the index over the continuous interval [0, 2Th], since new

perturbed initial conditions are selected at time Th in the interrupted case. Moreover, note

that the unobservability index for Route A differs between intervals [0, Th] and [Th, 2Th],

because the vortices in the inertial frame are at a different phase of rotation for these

times.

Table 6.1: Unobservability analysis of Routes A and C

Time span: [0, Th] [Th, 2Th] [0, Th], [Th, 2Th]
Route Unobs. Route Unobs. Routes Unobs.

A 6.222 A 8.444 (A,A) 0.2927
C - C 27.50 (A,C) 0.2537

The results of this numerical experiment show that the historical information changes

route selection. Moreover, including the observability for the portion of path already cov-

ered by a vehicle appears to be an appropriate method for incorporating historical infor-

mation. However, the states of the vehicle and the flow field may be uncertain. Such

evaluations should involve the best estimate of the system state at time t0 and ideally

incorporate the uncertainty about that state. In the sequel, all prior information of the

system up until time t0 is assumed to be encoded in a background error covariance matrix

P0.
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6.2 Observability with stochastic measurements

This section presents the linear observability Gramian for the case of stochastic

measurements, as well as the empirical version. We subsequently use these expressions in

Section 6.3.

6.2.1 Error covariance and stochastic observability

Consider the stochastic system (3.1), with state vector x(t) ∈ Rn, output vector

y(t) ∈ Rp, real-valued, time-varying matrices A(t), G(t), and C(t), white Gaussian pro-

cess noise w(t) with covariance Q(t), and white Gaussian measurement noise v(t) with

covariance R(t) [100]. For notational simplicity, we suppress time-dependence in what

follows.

The continuous-time Kalman Filter provides the optimal, minimum-variance, un-

baised estimate for the system (3.1). In addition, the Kalman Filter provides an estimate

of the error covariance, which describes the uncertainty in the state estimates. The error

covariance P (t) ∈ Rn×n evolves according to the differential Riccati equation [100]

Ṗ = AP + PAT +GQGT − PCTR−1CP. (6.2)

Consider (3.1) with deterministic dynamics such that Q(t) ≡ 0. Gelb et al. multiply

the left- and right-hand sides of the (6.2) by −P−1 and P−1, respectively, then use the

identity Ṗ−1 = −P−1ṖP−1 to transform the differential Riccati equation (6.2) into a
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differential Lyapunov equation in terms of the precision matrix P−1, i.e.,[100]

d

dt

(
P−1

)
= −P−1A−ATP−1 + CTR−1C, (6.3)

with P−1(t0) = 0n×n for the case of no prior information. With the use of Liebniz’s rule,

the solution to this equation, verified via substitution, is [100]

P−1(t) =

∫ t

t0

ΦT (τ, t)CTR−1CΦ(τ, t)dτ. (6.4)

The right-hand side of (6.4) must be positive definite for some t > t0 for observability

[100]. This integral closely resembles the linear observability Gramian (3.16), except

the arguments of Φ are (τ, t) instead of (τ, t0). Multiplying (6.4) on the left by I =

ΦT (t, t0)−1ΦT (t, t0) and on the right by I = Φ(t, t0)Φ(t, t0)−1, and using the composition

property Φ(τ, t0) = Φ(τ, t)Φ(t, t0) yields

P−1(t) = ΦT (t0, t)

(∫ t

t0

ΦT (τ, t0)CTR−1CΦ(τ, t0)dτ

)
Φ(t0, t)

= ΦT (t0, t)Wso(t0, t)Φ(t0, t), (6.5)

where Wso defines the stochastic observability Gramian for (3.1) with Q(t) ≡ 0. Wso

resembles the linear deterministic observability Gramian with an inclusion of R−1 for

measurement noise. Aoki [101] defined an analogous discrete-time stochastic observability

Gramian containing the measurement noise covariance. The connection between error co-
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variance and observability is apparent in the linear case: the inverse of the error covariance

of the optimal filter for a linear time-varying system with deterministic dynamics is given

by the stochastic observability Gramian transformed by ΦT (t0, t) and Φ(t0, t).

6.2.2 Empirical observability with stochastic measurements

Consider the nonlinear system (3.17) with the addition of measurement noise,

ẋ(t) = g(t, x(t))

y(t) = h(t, x(t)) + v(t),

(6.6)

where v(t) is white Gaussian noise with covariance R(t). The dynamics in (6.6) are

unaffected by the inclusion of the measurement noise. Hence, the reference trajectory xr

defined in Section 3.2 is unaffected by this change. If we specify that the output reference

trajectory should be the ensemble-averaged output corresponding to the xr trajectory,

then we recover yr without the need to change notation, and (3.18) similarly holds.

We construct an empirical Gramian for system (6.6) in the same manner as Krener

and Ide [60], however, we include the measurement covariance R(t) to mirror the linear,

stochastic observability Gramian. Hence, with a slight abuse of notation, we replace (3.19)

with

Weo(t0, tf , x(t0)) =

∫ tf

t0

Ψe(τ, t0, x(t0))TR−1(τ)Ψe(τ, t0, x(t0))dτ, (6.7)

if stochastic measurements are present. The sensitivity matrix Ψe is still defined by (3.20).

Note that in the limit ε → 0, (6.7) converges to the local, stochastic observability

110



Gramian Wso in (6.5) for the tangent-linear model (3.18). Inclusion of the R(τ)−1 term

accounts for the affect of measurement covariance on observability and matches its place-

ment within the linear stochastic observability Gramian. Krener and Ide [60] omit the

R(τ)−1 term but note that the outputs can be scaled so that the noise has unit covariance.

6.3 Augmented observability

This section considers the variational data assimilation strategy Incremental 4D-Var

with deterministic, linear dynamics and uncertain measurements. These dynamics cor-

respond to a tangent-linear approximation of a nonlinear system, similar to the tangent-

linear model used in the definition of empirical observability by Krener and Ide [60]. The

optimal solution of this problem requires inversion of a matrix known as the reduced Hes-

sian. Since the reduced Hessian consists of the linear stochastic observability Gramian

with the addition of an inverse background error covariance, we refer to it as the aug-

mented observability Gramian. For nonlinear systems, we utilize an empirical Gramian

within augmented observability to yield empirical augmented observability and an index

associated with its minimum eigenvalue that is useful for path planning. We also derive a

useful upper bound on the empirical augmented unobservability index.

6.3.1 Incremental 4D-Var for optimal linear estimation

Incremental 4D-Var is a technique in data assimilation originating in numerical

weather prediction and oceanography that provides smoothed estimates1 of a trajectory

1The term smooth does not refer to differentiablility here. A smoothing algorithm uses measurements
over the entire estimation time interval simultaneously during each estimation step.
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of a dynamical system [102]. The name originates from the use of spatial, dynamical

models of the weather and ocean (3D in space + 1D for time) as well as techniques from

the calculus of variations. Under deterministic dynamics, solving for the optimal initial

condition estimate x̂0 that results in a trajectory that is best fit to the data is equivalent

to solving for the entire best-fit trajectory x̂(·) over time interval [t0, tf ]. Consider the

following continuous-time, optimal estimation problem with a linear dynamical constraint.

Given an estimate x̂0 of the initial state with covariance P0, let x̂(·) denote the nonlinear

trajectory resulting from x̂0. Let C(t) denote the observation operator of the tangent-

linear model (3.18), and let ∆y(t) = y(t)− ŷ(t) be the difference between measurement

y(t) and the expected measurement ŷ(t) corresponding to estimate x̂0. Incremental 4D-

Var seeks an updated estimate x̂0 + δx0 of the initial condition for which the update δx0

minimizes (with τ arguments suppressed)

J(δx) =
1

2

∫ tf

t0

(
∆y(τ)−C(τ)δx(τ)

)T
R−1(τ)

(
∆y(τ)−C(τ)δx(τ)

)
dτ+

1

2
δx(t0)TP−1

0 δx(t0)

(6.8)

subject to

d

dt
(δx(t)) =

∂f

∂x

∣∣∣
x̂r(t)

δx(t) with δx(t0) = δx0. (6.9)

The cost function (6.8) has continuous-time measurements but is otherwise identical to

the Incremental 4D-Var approach of Courtier et al. [103]; eqn. (6.8) can therefore be

thought of as the incremental cost function in the inner loop of an Incremental 4D-Var

implementation. Since the dynamics are linear and deterministic, we may solve (6.9) in
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terms of δx0, i.e.,

δx(t) = Φ(t, t0)δx0. (6.10)

Using (6.10) and δx(t0)=δx0 converts (6.8) to the unconstrained cost function (with most

τ arguments suppressed)

J0(δx0) =
1

2

∫ tf

t0

(
∆y−CΦ(τ, t0)δx0

)T
R−1

(
∆y−CΦ(τ, t0)δx0

)
dτ +

1

2
δxT0 P

−1
0 δx0. (6.11)

A first-order necessary condition for optimality results from requiring the Fréchet deriva-

tive of J0 evaluated along perturbation direction η to vanish for all η, i.e.,

d

dε
J0(δx0 + εη)

∣∣∣
ε=0

= 0 ∀η. (6.12)

Since P−1
0 and R−1 are symmetric matrices, this yields

ηT
(
−
∫ tf

t0

Φ(τ, t0)TCTR−1
(

∆y − CΦ(τ, t0)δx0

)
dτ + P−1

0 δx0

)
= 0.

Since this expression is zero for any η, the parenthesized terms must be identically zero,

yielding the linear equation for δx0

(∫ tf

t0

Φ(τ, t0)TCTR−1CΦ(τ, t0)dτ + P−1
0

)
δx0 =

∫ tf

t0

Φ(τ, t0)TCTR−1∆y dτ. (6.13)

Note the left-hand side of (6.13) contains both the linear stochastic observability Gramian

Wso(t0, tf ) and the background error covariance. This equation may be solved uniquely
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for δx0 if and only if the matrix inverse of the parenthesized term in (6.13) exists, i.e., it

is full rank. Typically, the observability Gramian should be full rank to able to infer the

initial state of the system. Here this requirement is relaxed because the presence of P−1
0

ensures invertibility. In Incremental 4D-Var data assimilation, the parenthesized term is

known as the reduced Hessian [104]. Due to the formulation in terms of observability

with the addition of prior inverse covariance P0, we refer to this matrix as the augmented

observability Gramian

Wao(t0, tf ) =Wso(t0, tf ) + P−1
0 . (6.14)

For linear, discrete-time dynamics, Li and Navon [104] have shown the equivalence

of 4D-Var and Kalman Filter estimates. They have also shown a connection between the

inverse of the reduced Hessian and the covariance of the Kalman Filter in discrete-time.

These results motivate the solution in the next section on the covariance of the Kalman

Filter for deterministic dynamics in continuous time.

6.3.2 Empirical augmented observability

To extend the linear augmented observability Gramian Wao in (6.14) to nonlinear

dynamics, we replace the linear stochastic observability Gramian Wso(t0, tf ) with the

stochastic version of the empirical observability Gramian Weo(t0, tf ) defined in (3.19).

The empirical augmented observability Gramian is

Wea(t0, tf , x(t0), P0) =

∫ tf

t0

Ψe(τ, t0, x(t0))TR(τ)−1Ψe(τ, t0, x(t0))dτ + P−1
0
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=Weo(t0, tf , x(t0)) + P−1
0 . (6.15)

We suppress the dependence of Wea on x(t0) and P0, except when it is needed for clarity.

We also define the empirical augmented unobservability index to be

νa (Wea) =
1

λmin(Wea)
=

1

λmin

(
Weo + P−1

0

) . (6.16)

We use this index in Section 6.5 and Chapter 7 for path planning.

For two matrices V and W , it can be shown through use of an eigenvector of V +W

and Rayleigh quotients that λmin(V )+λmin(W ) ≤ λmin(V +W ) [105]. This identity leads

to the upper bound on the index (6.16), given by

νa (Wea) ≤ ν (Weo)

1 + ν (Weo) /λmax (P0)
, (6.17)

where we have used the fact that λmin

(
P−1

0

)
= 1/λmax (P0). Note that if we have perfect

initial knowledge of the state so that P0 → 0, then the νa index tends to zero, indicating

that the system is perfectly observable based on prior information alone. Similarly, if ν →

0, then νa goes to zero, so that perfect observability in Weo leads to perfect observability

in Wea. Also note that if we have no initial knowledge of the system state, i.e., P0 →∞,

then νa ≤ ν.
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6.4 Connections to existing inference matrices

The minimum-variance solution for a posterior filter covariance is given by the

continuous-time Kalman Filter, which provides a differential Riccati equation describ-

ing its evolution. The analytical solution to this differential Riccati equation connects

the inverse covariance of a Kalman Filter to the augmented observability Gramian. The

empirical augmented observability Gramian also connects to information theory since the

empirical observability Gramian (without prior information) can be shown to be an ap-

proximation to the Fisher information matrix for initial condition inference.

6.4.1 Connection to the Kalman Filter covariance

The solution (6.4) to (6.3) (equivalently (6.2) with Q(t) ≡ 0) requires the assumption

of zero prior information. The solution to (6.2) when prior information is present was noted

to exist [79] in the work of Levin [106]. However, the solution in [106] requires knowledge

of all entries of a state transition matrix for an associated Hamiltonian dynamical system

(which is not easily found, even in the time-invariant case), and the solution is not given

explicitly in terms of the stochastic observability Gramian. This section presents a solution

for the inverse covariance of the continuous-time Kalman Filter for deterministic dynamics.

Since augmented observabilityWao(t0, tf ) is a quantity that results from a smoothing

operation (Incremental 4D-Var) and applies at time t0 and (6.3) is a filtering equation

applicable at time tf , to solve (6.3) the augmented observability Wao(t0, tf ) must be

transformed by ΦT (t0, tf ) and Φ(t0, tf ) similar to (6.5). This observation suggests the
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following solution to (6.3).

Theorem 3. The inverse covariance of the continuous-time Kalman Filter under deter-

ministic linear dynamics and in the presence of initial covariance P0 is

P−1(t) = ΦT (t0, t)Wao(t0, t)Φ(t0, t)

= ΦT (t0, t)
(
Wso(t0, t) + P−1

0

)
Φ(t0, t). (6.18)

Proof. Note at t = t0, Φ(t0, t0) = I and Wso(t0, t0) = 0, hence P−1(t0) = P−1
0 as desired.

We must verify that (6.18) is a solution to (6.3). Consider the left-hand side of (6.3) by

differentiating the proposed solution, which gives

d

dt

(
P−1(t)

)
= Φ̇T

(
Wso + P−1

0

)
Φ + ΦT d

dt

(
Wso

)
Φ + ΦT

(
Wso + P−1

0

)
Φ̇, (6.19)

where Φ = Φ(t0, t) and Wso =Wso(t0, t). Differentiation of Wso(t0, t) yields

d

dt

(
Wso(t0, t)

)
= ΦT (t, t0)CT (t)R−1(t)C(t)Φ(t, t0). (6.20)

Recall from linear systems theory [107] the transition matrix property

Φ̇(t0, t) = −Φ(t0, t)A(t). (6.21)

Substituting (6.20) into (6.19) and using the composition property to show ΦT (t0, t)

ΦT (t, t0) = I and Φ(t, t0)Φ(t0, t) = I results in the desired left-hand side. Plugging (6.18)
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into the right-hand side of (6.3) gives a matching expression.

This result is important because it connects the optimal filter covariance to the

augmented observability Gramian and enables the following distinctions between path-

planning methods given in Section 6.5.1.

6.4.2 Connection to the Fisher information matrix

This section connects empirical and empirical augmented observability to Fisher

information for the system (6.6) with an uncertain initial condition x(t0)∼N (x0, P0) and

constant measurement noise covariance R.

Let p (Z|Ω) denote the conditional probability density associated with measurements

Z of the output of a system with an underlying parameter vector Ω. Let E [·] denote the

expectation operator. From information theory, the Fisher information matrix (FIM),

defined component-wise by [108]

[F (Z,Ω)]jk = −E
(

∂2

∂Ωj∂Ωk
log p (Z|Ω)

)
, (6.22)

assesses the informativeness of measurements Z in the inference of Ω. The FIM inverse

provides the Cramér-Rao lower bound on the covariance CΩ̂ of estimates Ω̂ generated by

an unbiased estimator (i.e., CΩ̂ ≥ F
−1) [108].

One may distinguish versions of the FIM by the pdf substituted for p (Z|Ω). Linear

information filters, which are Kalman Filters formulated to propagate the inverse of the

state covariance, use the filtering density p (y(tf )|x) for the measurement vector y(tf )
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conditioned on the signal x(·) over the interval [t0, tf ] to obtain F (y(tf ), x) = P−1(tf )

given in (6.4). Powel and Morgansen [89] connect the time-derivative of the empirical

observability Gramian to F (y(tf )|x(t0)), which is based on the latest measurement and

the initial condition, in the limit of (3.20) as ε → 0. Here, we consider the likelihood

density p(y|x(t0)) for the continuous-time signal y(·) over the interval [t0, tf ], conditioned

on the uncertain initial condition x(t0).

Calculation of the FIM using the p(y|x(t0)) density for signal y(·) requires stochastic

analysis that properly accounts for the nonconstant offset h(t, x(t)) in the output equation

of (6.6); we follow Law et al. [109], who derive a related expression for a posterior density.

Consider a constant measurement covariance R(t) = R. Define the integrated stochastic

process Y (t) =
∫ t
t0
y(τ)dτ and let β ∈Rm be a standard Brownian motion with time shift

t0 such that β(t0) = 0 and E
(
β(t0 + 1)2

)
= 1. For a given x(t0) and the corresponding

trajectory φ(·, t0, x(t0)), the output equation of (6.6) can be represented by the Itô process

[109]

dY (t) = h(t, φ(t, t0, x(t0)))dt+
√
Rdβ(t). (6.23)

Let YR(·) be an associated reference process that is the solution to the driftless

version of (6.23), i.e., when h(·, φ(·, t0, x(t0))) ≡ 0, over the time interval [t0, tf ]. For

brevity, we suppress the arguments of φ. For (6.23) with uncertain x(t0), Girsanov’s
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formula [109, 110]

p (Y, x(t0))

p (YR, x(t0))
= exp

(
−1

2

∫ tf

t0

‖h(τ, φ(τ, t0, x(t0)))‖2Rdτ +

∫ tf

t0

〈h(τ, φ(τ, t0, x(t0))), dY (τ)〉R
)
.

(6.24)

provides a means of obtaining the relevant joint density p(Y, x(t0)) in relation to a driftless

reference system. The second integral in (6.24) is an Itô integral, where the bracketed

integrand is the weighted inner product 〈a, b〉R = (R−1/2a)T (R−1/2b). Girsanov’s formula

enables the following connection between empirical observability and the FIM.

Theorem 4. For system (6.6) with an uncertain initial condition x(t0)∼N (x0, P0) and

measurement noise v(t)∼N (0, R), the empirical observability Gramian (3.19) is a numer-

ical approximation to the Fisher information matrix F(y, x(t0)) if the likelihood density

p (y|x(t0)) is differentially smooth.

Proof. First, note that p(Y |x(t0)) = p(y|x(t0)) for signals Y (·) and y(·). The independence

of YR and x(t0) implies

p (Y, x(t0))

p (YR, x(t0))
=
p (Y |x(t0))

p (YR)
. (6.25)

By the property of logarithms log (A/B) = logA − logB and the absence of x(t0) from

p(YR), note that

∂2

∂x(t0)j∂x(t0)k
log p (Y |x(t0)) =

∂2

∂x(t0)j∂x(t0)k
log

p (Y |x(t0))

p (YR)
. (6.26)
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Combining (6.26) with (6.22) yields FIM entries

[F (y, x(t0))]jk = E
(

∂2

∂x(t0)j∂x(t0)k

(
1

2

∫ tf

t0

‖h(τ, φ(τ, t0, x(t0)))‖2Rdτ

−
∫ tf

t0

〈h(τ, φ(τ, t0, x(t0))), dY (τ)〉R
))

. (6.27)

By the smoothness assumption on p (y|x(t0)), the expectation and the partial differenti-

ation operations may commute. The expectation of an Itô integral is zero [109], so the

second term provides zero contribution. Differentiation of the first term yields

F (y, x(t0)) =

∫ tf

t0

∂h (τ, φ)

∂x(t0)

T

R−1∂h (τ, φ)

∂x(t0)
dτ. (6.28)

Following [89] in passing (6.6) to a limit as ε→ 0 gives

lim
ε→0
Weo(t0, tf ) = F (y, x(t0)) . (6.29)

This expression reveals that Weo(t0, tf ) is an approximation to F (y, x(t0)) for nonvanish-

ing values of ε.

The FIM assesses the inference certainty due to measurement data alone [111], so

prior information does not appear in (6.29). Including prior information, the relation

between the FIM and Wea becomes

lim
ε→0
Wea(t0, tf ) = F (y, x(t0)) + P−1

0 . (6.30)
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6.5 Augmented observability-based path planning

This section discusses the use of the empirical augmented unobservability index

(6.16) for path planning. It compares the method to other path planning strategies and

concludes with an experiment showing that planning according to the novel index (6.16)

yields the desired autonomous behavior in the presence of Gaussian prior uncertainty.

6.5.1 Distinctions in path-planning strategies

Previous adaptive-sampling works (e.g., Bishop et al. [30] and Davis et al. [31]) have

analyzed the anticipated reduction in error covariance as a relevant quantity for planning of

adaptive sampling in the presence of prior information (conversely, existing uncertainty).

Anticipated error covariance analysis is similar in the case of a linear deterministic model

to augmented observability. In the nonlinear case, the approaches differ because the

anticipated reduction in covariance approach depends on the estimation scheme. We

define empirical augmented observability independently of the estimator; it includes only

the system dynamics, output equations, and the background error covariance.

The optimal inverse covariance (6.18) is a transformed version of the augmented

observability. Alternately, write (6.18) by factoring out an inverse, i.e.,

P (tf ) = Φ(tf , t0)W−1
ao (t0, tf )ΦT (tf , t0). (6.31)

Since a covariance matrix P transforms under dynamics from t1 to t2 according to P (t2) =
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Φ(t2, t1)P (t1)ΦT (t2, t1) [100], the filtering covariance P (tf ) at time t is related to the

inverse of the augmented observability W−1
ao (t0, tf ) by propagation under the dynamics.

Equation (6.31) highlights the differences between path planning strategies in the linear

case. Planning based on Wso alone does not account for prior covariance P0. Planning

based on the augmented observability GramianWao accounts for bothWso and P0, but still

differs from filtering-covariance planning by the additional transformation of the dynamics.

These distinctions lead to the following interpretations of the strategies: (i) planning

based on Wso is equivalent to selecting the candidate path that results in highest observ-

ability for the time interval [t0, tf ]; (ii) planning based on P (tf ) selects the candidate path

that results in the most certainty in the antipicated posterior covariance at time tf ; (iii)

planning based onWao selects the candidate path with observability that is the most com-

plementary to information in the prior inverse covariance P−1
0 at time t0. Planning based

on Wao and P (tf ) are not guaranteed to yield the same results since the transformation

by the dynamics in (6.31) may affect the eigenvalues of the Wao. However, three practical

advantages of planning withWao instead of P (tf ) are (i) since the true state and flow-field

parameters are not known for a flow estimation application, propagation of Wao may not

lead to a reliable anticipated posterior covariance; (ii) for nonlinear dynamics, the antici-

pated posterior probability density function may be multimodal and not well represented

by P (tf ); and (iii) the influence on path selection of the prior information encoded within

P0 may be easier to interpret since P0 does not receive additional transformation.
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6.5.2 Experiment in automated turn selection using augmented empirical observ-

ability

Consider again the two-vortex system and the routes shown in Figure 6.1. Route A

reflected about both the real and imaginary axes yields Route B. Over the time interval

[Th, 2Th], Routes A and B yield identical ν indices of 8.444, whereas Route C has a ν index

of 27.50. Now consider the 3×3 block submatrices in Weo(Th, 2Th) corresponding to the

vortex states. Table 6.2 provides the ν indices for the vortex submatrices for each route.

Route A and Route B yield identical yet interchanged values. Traversing Route A around

Table 6.2: Unobservability analysis of vortex states only for Routes A–C

Time span: [Th, 2Th]
Route Unobs., Vortex 1 Unobs., Vortex 2

A 0.2631 0.5933
B 0.5933 0.2631
C 0.1430 2.6468

Vortex 1 provides more observability of Vortex 1 than Vortex 2, and traversing Route B

around Vortex 2 provides more observability of Vortex 2 than Vortex 1. Route C is more

complex, because it provides more observability of Vortex 1 even though it departs from

Vortex 1 and begins to encircle Vortex 2.

The following numerical experiment illustrates the use of the empirical augmented

observability for path planning. At time t = Th, assume the vehicle has no prior observ-

ability information, but has a prior covariance P0 = diag(α I3×3, β I3×3, 0.001 I2×2). That

is, the vehicle knows its position with relative certainty and it has α, β ∈ R+ multipliers
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for diagonal covariances on the states of Vortices 1 and 2, respectively. If α > β, then

the vehicle has more initial uncertainty about Vortex 1 as compared to Vortex 2, and vice

versa. For the planning interval [Th, 2Th], the vehicle chooses a route using the augmented

observability index νa. For ease of interpretation of the results, first consider the case in

which the vehicle may impulsively switch to Route B. Define the quantity

νa,j − νa,A
max (νa,A, νa,j)

(6.32)

for Routes j = B,C as a measure of turn confidence. When νa,j > νa,A, turn confidence is

positive and the vehicle should remain on Route A. When νa,j < νa,A, the vehicle should

switch to Route j for j = B,C. The denominator maps the quantity to the interval [−1, 1].

Figures 6.2(a) and 6.2(b) show the results of numerically altering the α and β

prior variances. For large, uncertain α or β values, the prior covariance term determines

the turn selection in Figure 6.2(a), and the vehicle appropriately selects the route that

explores the more uncertain vortex. In Figure 6.2(b), the behavior is more complex due

to the observability results associated with this route in Table 6.2. Route C provides more

observability of Vortex 1 relative to Vortex 2, and it also provides more observability of

Vortex 1 than Route A does. Route A provides more observability of Vortex 2 than Route

C. Correspondingly, turn selections in Figure 6.2(b) have reversed. Also note that Figure

6.2(b) displays a region where the diagonal decision boundary bends. In this region, α and

β are large and uncertain, so the vehicle’s decision defaults to the observability analysis

without prior information in Table 6.1; Route A is selected because it is more observable
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(a) (b)

Figure 6.2: Turn confidence in selecting either (a) Route A or Route B, or (b) Route A
or Route C, for a 100× 100 grid of α and β values. Decision boundaries where νa,j =νa,A
are shown as magenta lines.

than Route C. These experiments suggest that the augmented unobservability index yields

a criterion for automated path selection that coincides with intuitive use of observability

in a manner that complements the prior information of the background error covariance

P0. This example demonstrates that augmenting observability with prior information

improves sampling by changing the optimal path in an intuitive manner.

6.6 Augmented observability-based path planning with non-Gaussian

densities

The previous sections develop augmented observability in the presence of Gaussian

prior uncertainty. This section extends augmented observability-based path planning to
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the case of non-Gaussian prior uncertainty.

Assume that the prior pdf p(x) may be well approximated by the Gaussian mixture

model (3.10). Given a GMM p(x) =
∑M

m=1wmN (x;xm, Pm), one may generate a ran-

dom sample from the pdf by selecting Gaussian m with probability wm and subsequently

sampling from Gaussian m using standard methods for random sampling of a multivariate

normal distribution (e.g., see [85]). This interpretation of a Gaussian mixture model as the

sum of disjoint probabilities that x is distributed according to Gaussian m motivates the

selection of {xm}
M
m=1 for a sampling of the GMM with weights ŵj = wm. That is, select

each component Gaussian with probability wm and represent each component Gaussian

by its mean to generate a sparse, approximate representation of the prior pdf. Choosing

the component modes of a GMM as a sparse pdf sampling is natural because each mode

is associated with an accumulation of probability mass, by construction of the mixture.

Indeed, only the means, covariances, and weights of a Gaussian mixture are needed to

perfectly recover the first and second moments of the overall pdf (see for example (3.13)

and (3.14)).

Denote a list of candidate control signals (perhaps generated by another control pol-

icy or other means) by {uj(·)}Kj=1, where K is the total number to be evaluated. For each

control signal, calculate an empirical augmented unobservability index νa(Wea(t0, tf , xm, Pm, uj))

for each component m in the GMM using the mean xm and covariance Pm. Then, an ap-

proximate expected cost Jνa in augmented unobservability index for a prescribed control
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uj may be found by summing over all components in the mixture

Jνa(uj) ≈
M∑
m=1

wmνa(Wea(t0, t, xm, Pm, uj)). (6.33)

Equation 6.33 defines the expected cost in augmented unobservability that the vehicle

pays if it decides to implement control signal uj . The expected cost is a weighted sum

of the augmented unobservability indices over all mixture components. Note that this

calculation includes evaluating the candidate control uj over all state realizations xm for

m = 1, . . . ,M . If control uj was generated assuming that a realization xp represented

the truth, then these calculations correspond to implementation of the selected control

across all state realizations, xm for m = 1, . . . ,M , even those that were assumed to be

incorrect during the control’s construction (i.e., for m 6= p). One may then compare the

expected cost in augmented unobservability across all candidate control inputs and select

the minimizer.
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Chapter 7

Application II: Adaptive Lagrangian sam-

pling of a two-vortex flow field

The flow measurements of ocean-sampling vehicles are often their Lagrangian data,

i.e., measurements of the vehicle position under the influence of the flow. Sensor platforms

like gliders are minimally actuated to extend endurance; planning efficient, feasible, and

informative routes is therefore essential. A comprehensive path planning framework for

guiding Lagrangian sensors for maximal observability of the underlying flow field is still

needed.

This chapter focuses on the development of an autonomous estimation and control

framework to enable a Lagrangian sampling vehicle capable of steering and flow-relative

propulsion to estimate a potential-flow field with unknown parameters. The adaptive-

sampling architecture guides a hypothetical oceanographic vehicle along paths of high flow-

field observability. High observability of flow-field parameters is obtained from sampling

trajectories along the boundaries of invariant sets with close approaches to saddle points.
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This chapter also utilizes augmented observability to account for uncertainty in the path-

planning portion of a model-predictive control architecture.

The adaptive-sampling framework includes a model-predictive controller, known as

the Augmented-Observability Planner (A-OP), that simulates candidate trajectories of the

vehicle steering to invariant-set boundaries and selects the most informative one based

on the empirical augmented unobservability index. Empirical augmented observability

(developed in Chapter 6) is an extension of empirical observability to account for prior

uncertainty of the system state in observability-based path planning. When non-Gaussian

prior uncertainty is present, the A-OP performs augmented observability analysis using

an approximate, expected cost calculation (see Section 6.6).

After selecting a trajectory, the vehicle collects Lagrangian measurements (i.e., mea-

surements of its own position after accounting for control action) and assimilates these

data in the GMKF, a nonlinear, non-Gaussian filter. The vehicle recursively improves its

flow-field map using the posterior uncertainty and plans new vehicle paths for adaptive

sampling. The performance of the flow-estimation framework is shown in an idealized

model of an ocean eddy pair based on potential flow theory.

The nonstationary estimation problem of inferring the strengths and locations of

two co-rotating vortices, which is pertinent to ocean sampling, provides a challenging test

case for this framework. The periodic motion of two point vortices in relative equilibrium

(e.g., rotating together at a constant rate) represents an idealized model of a naturally-

occurring ocean eddy pair. Further, it is a demonstrative problem for studying autonomous

navigation, because when viewed from a co-rotating frame, this system contains invariant
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sets that can be used to study the role of coherent structures in navigation and flow-field

estimation.

7.1 Framework for adaptive Lagrangian sampling

This section presents a novel architecture for guided-Lagrangian adaptive sampling

for nonlinear flow-field estimation that uses augmented observability-based path planning.

Figure 7.1 shows the proposed framework for adaptive sampling and estimation of a flow

field using a guided-Lagrangian sensor. This adaptive-sampling, estimation, and control

Figure 7.1: Adaptive-sampling, estimation, and control loop.

loop consists of the true system dynamics (i.e., the ocean currents and vehicle dynamics),

Lagrangian measurements of vehicle position, a nonlinear/non-Gaussian GMKF estimator,

and the Augmented-Observability Planner with expected cost (A-OP).

As presented in Chapter 3, the GMKF accommodates nonlinear dynamics and non-

Gaussian probability densities by approximating them with a mixture of Gaussians se-

lected to minimize the BIC, thereby yielding the simplest (based on the number of pa-

rameters) fit of a Gaussian mixture to the data [84]. The GMKF algorithm is well-suited
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for assimilation of Lagrangian data due to the linear observation operator present in such

problems. The GMKF combines the measurement with a prior pdf in the form of a Gaus-

sian mixture. The result of this non-Gaussian inference is a posterior pdf that encodes all

uncertainty of the flow-field parameters and the vehicle state.

The A-OP is the other key component in this framework, because it encodes the

augmented observability guidance strategy, making use of the posterior pdf for planning.

An observability analysis requires an individual state estimate for the initial condition.

An augmented-observability analysis requires an individual state estimate together with

a covariance matrix, which characterizes the uncertainty. The GMKF is capable of non-

Gaussian inference, and extracting a single estimate or statistic from the posterior pdf

for use by the path planner does not fully utilize the pdf. We make additional use of the

posterior density by extracting multiple state realizations (the GMM component modes

with their associated covariances) for processing by the A-OP. An expected cost calculation

as detailed in Section 6.6 enables the use of a multimodal posterior pdf for planning, rather

than a single state estimate.

Figure 7.2 details the A-OP. At pre-determined intervals, the A-OP uses a parame-

terized model of the flow-field dynamics and calculates a flow-field map for each xm and

the associated invariant-set boundaries. The A-OP uses these target boundaries to gen-

erate candidate control inputs based on virtually steering to each nearby boundary using

the hybrid steering controller from Chapter 5. The hybrid controller creates candidate

trajectories by driving the vehicle along paths of high observability, which align with the

separating boundaries of invariant sets. (Appendix B describes in detail how to construct
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Figure 7.2: Augmented-Observability Planner (A-OP) with expected cost.

target curves for the hybrid steering controller and provides examples in the two-vortex

system.) The A-OP subsequently assesses the candidate control signals using augmented

observability analysis with approximate, expected cost and selects the most informative

path.

The vehicle attempts to execute the planned trajectory until the next planning pe-

riod by open-loop execution of the control signal u that corresponds with the intended

vehicle trajectory. Position measurements of the vehicle are periodically taken and sup-

plied to the GMKF. The GMKF assimilates Lagrangian data (after accounting for the

vehicle’s own control effort) to produce more informed estimates of the parameters, com-

pleting the estimation and control loop.

This framework is novel because it properly accounts for uncertainties in observability-

based path planning by sharing state realizations and covariances between the estimation

and planning sub-blocks. The shared samples are used in an approximate, expected cost

133



calculation employed during the augmented observability analysis.

7.2 Adaptive Lagrangian sampling numerical experiments

This section presents numerical experiments necessary to demonstrate the efficacy

of the proposed adaptive-sampling framework. First, this section presents the necessary

formulae and transformations needed for these simulations. Second, it describes simulation

setup, initial conditions, and example calculations of the closed-loop system. Third, it

provides a comprehensive comparison of simulation cases in which various components

of the framework (e.g., the non-Gaussian estimator, adaptive refinement of the flow-field

map, augmented observability planning, and expected cost evaluation) are sequentially

engaged.

7.2.1 Simulations in the two-vortex system

Chapter 2 presents the two-vortex system, including the necessary formulae and

transformations for the inertial and co-rotating frames. (Chapter 2 presents the hybrid

steering controller. Chapter 5 presents the flow-relative transformation that the hybrid

steering controller utilizes.) Figure 7.3 provides a summary of all relevant reference frames,

coordinates, and conversions needed for the numerical experiments of this chapter. The

subscript R decorates quantities defined in the co-rotating frame. Coherent structures

that are targets for the hybrid steering controller are visible in the co-rotating frame. The

flow-relative control transformation allows calculation of a control that accounts for the

influence of the flow in the co-rotating frame. The control signal is converted back to the
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inertial frame for simulation. All simulation and filtering calculations occur in the inertial

frame.

Figure 7.3: Diagram of reference frames, coordinates, and conversions for the two-vortex
system with flow-relative steering control.

7.2.2 Experimental setup and example runs

Assume two vortices of fixed, but unequal strength. The vortices co-rotate about a

conserved center of vorticity zcv and have a conserved separation distance d. The locations

and strengths of the vortices are estimated. Fix simulation parameters such as sampling

frequency and duration, planning time constants, filter and controller gains, the initial

estimate and uncertainty of the system state, and the vortex and vehicle parameters.

Detailed information on parameter selection is in Appendix C. Large variances in the

initial condition estimates for vortex circulation strength and position represent large

uncertainty in the initial state estimate. These choices challenge the GMKF to perform
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proficiently in estimating the system state from uncertain initial conditions.

The GMKF converges over a wide range of initial conditions, however, convergence

is not guaranteed for arbitrary initial conditions (e.g., if the initial vortex estimates are

far from accurate or if a drifting vehicle is launched in a region of low observability).

To demonstrate robustly the performance benefits of this framework, we perform Monte

Carlo simulations from random initial conditions throughout the initial-condition sample

space. The initial conditions of primary importance are the vehicle launch location and

orientation as well as the phase of vortex rotation relative to the vehicle initial position.

We sample 100 vehicle positions uniformly from a 3 × 3 square-unit area in the domain

of interest. The vehicle initial orientation and the true initial phase of rotation for the

vortices are sampled uniformly from the interval [0, 2π]. Figure 7.4 shows the initial

vehicle locations and orientations for the simulations. It also shows the initial estimate

of the vortex locations and the associated separatrices in green. For clarity, only one

realization of the true-vortex locations is shown; other realizations are rotations about the

same center of vorticity.

Figures 7.5(a)–7.5(f) are three representative test cases for a single initial condition

that is one of the random initial conditions in Figure 7.4. The co-rotating frame in Figures

7.5(a), 7.5(c), and 7.5(e) is based on the true vortex-pair rotation rate ω. Figures 7.5(b),

7.5(d), and 7.5(f) show the inertial frame and Lagrangian measurements that the vehicle

uses to estimate the flow-field parameters. Figures 7.5(a) and 7.5(b) show the trajectory of

a drifting vehicle in the true co-rotating frame and the inertial frame, respectively. In the

inertial frame, the vehicle traces out a near-circular trajectory that precesses around the
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Figure 7.4: Initial conditions used in numerical experiments; arrow heads are initial vehicle
locations and orientations; initial conditions of the vortices and their separatrices are
shown in green (estimated) and black (truth).

vortices. In the co-rotating frame, the vehicle remains on a closed streamline, confined to

the outermost invariant set. This launch location yields a rather unobservable trajectory

since the motion the drifter in the outermost invariant set closely resembles the motion

that results from many other vortex-pair realizations. Figures 7.5(c) and 7.5(d) show a self-

propelled vehicle with a planner that knows the true flow-field parameters navigating along

boundary paths to minimize the unobservability index over a forward-looking time horizon.

Only results from the time interval [0, 2.5] are shown for clarity. Magenta diamonds denote

planning times. Note that the trajectory in the co-rotating frame explores the invariant-

set boundaries, without specification of navigation targets a priori. In the inertial frame,

the path contains spirographic segments corresponding to the vehicle navigation around

the innermost invariant sets. Portions of the inertial trajectory also appear more jagged
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as the vehicle changes course at planning times to follow a more observable route.

Figures 7.5(e) and 7.5(f) show an example run of the full closed-loop, adaptive La-

grangian sampling framework over the time interval [0, 2.5] (shortened for clarity). Neither

the planner nor the estimator know the flow-field parameters; the vehicle uses feedback

control to adapt the flow-field map according to Lagrangian measurements. The path of

the vehicle in the true co-rotating frame does not clearly navigate along boundary curves.

However, each trajectory segment between planning times does in fact steer towards sep-

arating boundaries if viewed in the co-rotating frame of the instantaneous state estimate;

the resulting trajectory is the accumulation of navigation choices that minimize the ex-

pected augmented unobservability index over the candidate control signals and flow-field

maps that the vehicle evaluates. As the state estimate improves later in the simulation,

the vehicle navigates more closely along the true separating boundaries, similar to Figure

7.5(c).

Figure 7.6 displays the GMKF estimation results that correspond to the run in

Figures 7.5(e) and 7.5(f) for the full closed-loop system. The GMKF automatically selects

the necessary number of Gaussians for the GMM in the forecast pdf prior to each data-

assimilation step. Figures 7.6(a) to 7.6(f) show time histories of the marginalized pdfs

for the vortex states. White lines represent the true state trajectory. From incorrect and

uncertain initial estimates with large variances, the closed-loop system effectively identifies

and tracks the two-unequal vortices. Although each of the marginalized pdfs for vortex

strength appear to be close to Gaussian at any given point in time, non-Gaussianity

is clearly evident in the marginalized pdfs for vortex location in Figures 7.6(c)–7.6(f),
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highlighting the importance of using a non-Gaussian filter in this application.

In many trial runs, the GMKF converged to a trajectory in which the Vortex 1 esti-

mate agreed with the Vortex 2 true state and vice versa. This condition is not problematic

because the system dynamics are invariant to an exchange of the vortex labels. After sim-

ulation, the minimum of the estimation error between the two labeling conventions reveals

which labeling convention the estimator selects for each run. Prior to calculation of the

data in Table 7.2, vortex labels were adjusted to best match the results of the estimator.

7.2.3 Test of performance gains

Eight cases in Table 7.1 test for performance gains from each feature of the sampling

framework. The selected options indicate the realization of the framework components for

each case. For each case, 100 Monte Carlo simulations were performed using the initial

conditions provided in Figure 7.4. Table 7.2 contains a bar graph of the estimation error

results, averaged over all simulation trials for a particular case and normalized by the

mean of Case 8, an idealized case. Error bars represent one standard deviation from the

mean.

Case 1 represents a drifting vehicle using an EnKF estimator; this case is similar

to many experiments currently performed in practice (e.g., see [53]). Case 2 also contains

a drifting vehicle, however the GMKF is used for estimation. The large reduction in

estimation error achieved by Case 2 in comparison to Case 1 shows the benefit the GMKF

over an EnKF. Examination of individual runs for Case 1 reveals that often the estimator

fails to identify the system accurately for the range of parameters considered. More
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Table 7.1: Matrix of numerical experiments in adaptive Lagrangian samplingTable 1: Matrix of numerical experiments.

Cases

Planning & Control Estimation

Off

On

EnKF GMKF
Non-adaptive Adaptive

Single Estimate Single Estimate Expected Cost

Forward Obs. Forward Obs. Aug. Obs. Forward Obs. Aug. Obs.

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8* X X

* Flow known by the planner but not by the estimator

Table 2: Table of results for numerical experiments.

Cases

Results

Estimation error averaged over 100 trials

∑
k‖x(tk)− xtrue(tk)‖2

(nondimensional, ×103, normalized by Case 8)

1 2.95
1.52
1.49
1.31
1.26
1.03
1.02
1.00

2

3

4

5

6

7

8*

* Flow known by the planner but not by the estimator

1
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1

sophisticated constructions of the EnKF algorithm exist that include features such as

covariance localization and covariance inflation [112] that could improve the performance

of the EnKF in these simulations. However, we implement a basic form of the EnKF for
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direct comparison to the GMKF, for which the only change is an increased capacity of

M ≥ 1 Gaussians.

Cases 3–7 perform adaptive sampling based on an estimated map of the flow field.

Case 3 uses a self-propelled vehicle with an observability-based planner that considers em-

pirical observability calculated forward-in-time and based on the mean estimate extracted

from the Gaussian mixture pdf. The map of the flow field used for generating candidate

control signals is based on the initial estimate of the system only and does not update at

later times (i.e., the vehicle does not adapt its map to new state estimates). Case 3 shows

a benefit of self propulsion in flow-field estimation as it outperforms Case 2. Cases 4–7

show that alternate navigation of a self-propelled vehicle can achieve better estimation.

The use of a non-adaptive flow-field map in Case 3 steers the vehicle towards invariant-set

boundaries in its flow-field map, which may actually correspond to less observable paths

in the true flow-field map, since the initial estimate is incorrect. This case highlights the

need for a self-propelled vehicle to be appropriately guided. Note that the variance in esti-

mation results is the smallest for Case 3, which is attributable to the use of a non-adaptive

flow-field map.

Case 4 contains a planner that makes sampling decisions based on forward-looking

observability analysis, similar to Case 3. However, Case 4 adapts its flow-field map based

on the overall mean estimate of the posterior pdf after each estimation cycle. Case 4

demonstrates a large improvement over Case 3 in estimation performance. Case 5 also

plans adaptively using the mean estimate of the posterior pdf, but it performs an aug-

mented observability analysis based on the overall mean estimate and the overall co-
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variance matrix for the posterior pdf. For the parameter values selected, augmented

observability-based path planning in Case 5 yields better estimation performance than

forward-looking observability-based path planning in Case 4. This finding extends the

results of [66], which did not perform estimation using a closed-loop, adaptive-sampling

setup. Note that although the posterior pdf may be multimodal, Cases 3 and 4 only use

the mean of the pdf, and Case 5 only uses the mean and covariance. Use of a single

estimate from the posterior pdf does not fully utilize the information present in the pdf,

but it is consistent with traditional output-feedback control.

The approximate expected-cost calculation for planning in the presence a posterior

pdf represented by a Gaussian mixture model allows the planner to use more than a sin-

gle estimate from the posterior pdf. Case 6 adaptively plans using multiple samples, the

component modes, from the posterior pdf. For each sample, the planner generates an

individual flow-field map, creates candidate control inputs using the hybrid steering con-

troller, and completes an approximate expected-cost calculation for the unobservability

indices for a forward-in-time observability analysis. Relative to Cases 4 and 5, Case 6

shows an improvement that highlights the benefit of an expected cost analysis. Case 7

utilizes the complete framework for augmented-observability path planning with approx-

imate expected cost. Case 7 performs an approximate expected-cost calculation of the

augmented unobservability index for multiple state realizations, whereas Case 6 uses the

unobservability index without augmentation. Case 7 offers a slight improvement estima-

tion error over Case 6. Note that the improvement is not as large as the improvement

of Case 5 relative to Case 4. The expected cost calculation of Case 6 inherently includes
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additional prior information from the posterior pdf through its use of multiple samples,

so the improvement from Case 6 to Case 7 is present but less substantial.

The planner in Case 8 knows the true flow-field parameters, whereas the estimator

does not. This case represents a vehicle that knows the most observable regions of the

flow field for sampling. The average estimation error for this case is the smallest of all

cases. Note that the cumulative benefits of the adaptive-sampling framework cause the

average estimation error of Case 7 to closely approach the best-case error in Case 8.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Vehicle trajectories in the true co-rotating (a,c,e) and inertial (b,d,f) frames
for a drifting vehicle (a and b) over time interval [0, 5], an observability-guided vehicle
with a known flow-field map (c and d) over time interval [0, 2.5] (shortened for clarity),
and a vehicle navigating according to the A-OP with an estimated flow-field map (e and
f) over time interval [0, 2.5] (shortened for clarity); green diamonds are measurement-time
markers; magenta diamonds are planning-time markers; red lines record the paths of the
vortices.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Estimation results for the closed-loop sampling framework. a)-f) Time histories
of the marginalized pdfs for the vortex states.
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Figure 7.7: Time history of the number of Gaussian components used by the GMKF.

146



Chapter 8

Conclusion

This chapter reviews the primary contributions of this dissertation in detail and

provides suggestions for future research.

8.1 Summary of contributions

This dissertation addresses the problem of autonomous flow sensing by mobile

robotic platforms in challenging fluid flows. The dissertation specifically divides the range

of applications into two classes: vehicle-scale flow-sensing problems, and long-range flow-

sensing problems. Vehicle-scale flow-sensing problems require rapid understanding of the

flow field, as a primary objective may be vehicle stabilization. Long-range flow-sensing

problems have the distinctions that additional time is available for deliberative path plan-

ning and often a global picture of the fluid environment is sought.

Common tools may be utilized for both classes of problems, including observability-

based sensor placement and routing, nonlinear/non-Gaussian estimation, and output feed-

back control. For two specific applications, rheotaxis of a robotic fish and adaptive La-
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grangian sampling for flow-field monitoring, this dissertation provides estimation and con-

trol frameworks that successfully accomplish their respective objectives. In the framework

for long-range path planning using observability, it is necessary to address the question of

how to choose informative vehicle paths using both a forward-looking observability anal-

ysis and prior information from previous estimation cycles. The answer to this question

is a novel path planning index: the empirical augmented unobservability index.

8.1.1 Output-feedback control for rheotaxis of robotic fish

Understanding the flow around a fish-like body is essential for robotic fish appli-

cations. Rheotaxis of a robotic fish is a vehicle-scale flow-sensing application in Chap-

ter 4 that involves estimation of the flow field and subsequent control action to achieve

the desired upstream orientation. To accomplish this task, Section 4.1 employs a fluid-

mechanical model for flow around a robotic fish based on potential-flow theory and pro-

vides estimates of both the fish’s orientation and the free-stream flow speed. Pressure-

difference measurements are inspired by the canal neuromast sensing modality in fish.

The pressure differences also permit elimination of a flow-specific constant in Bernoulli’s

equation. Using the fluid-mechanical model, Section 4.2 places pressure sensors on the fish

body based on an empirical observability analysis. Section 4.3 describes our experimental

test bed, and Section 4.4 evaluates the validity of the potential flow model using the test

bed and CFD calculations.

Section 4.5 presents a feedback controller based on the difference between pressure

measurements collected on opposite sides of the robotic fish. It also describes a dynamic
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rheotaxis controller based on a potential-flow model and a Bayesian filter that uses two or

more pressure sensors in an arbitrary, distributed arrangement. Experimental results show

the dynamic rheotaxis controller reliably achieves rheotaxis despite model error and sensor

noise, while providing accurate flow-speed estimates. The estimation-control framework

produces a dynamic controller that is less sensitive to noise than a pressure-difference

controller and is able to achieve rheotaxis from an initial orientation outside the accurate

domain of the potential-flow model. This framework also generalizes to arbitrary sensor

placement. The primary contribution of Chapter 4 is a framework for rheotaxis and flow-

speed estimation based on pressure-difference information that does not require fitting

model parameters to flow-field conditions. The contributions of this chapter are significant

because rheotaxis and flow speed estimation can be achieved without fitting parameters

empirically. The pressure-difference measurement equation proposed in Chapter 4 has

been subsequently used in [23, 25, 72, 113].

Limitations of this rheotaxis approach include: reliance on reduced model error in

the zero angle-of-attack orientation, causing reduced performance for orientation control

to a non-zero angle of attack; and reliance on a relatively uniform flow. Improvement of

the estimator performance for angle of attack through implementation of a higher fidelity

model may enable orientation control to a nonzero angle.

8.1.2 Observability-based guidance, navigation, and control in planar flows

To incorporate observability tools into long-range flow-sensing applications, Chapter

5 uses observability-based path planning, in which an optimal-control signal is selected
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from a finite set based on an evaluation of how much observability the candidate signals

provide of the underlying flow field, as measured by the unobservability index. We also

utilize observability tools to assess of the most informative regions of the flow to sample

using Lagrangian position measurements. By considering the empirical observability of

drifting orbits, Section 5.1 concludes that the most observable paths closely follow the

separating boundaries of invariant sets, making close approaches to saddle points.

Using the most observable streamlines as steering targets, Section 5.2 develops a

hybrid steering controller. The hybrid steering controller includes a streamline controller

and a stream-function-value controller. The streamline controller is a novel combination

of a flow-relative transformation and a steering control built around a Bertrand family

of curves to steer to a unique, closed streamline of the flow. Theorem 2 analytically

establishes the region of validity for the streamline controller. The stream-function-value

controller guides the vehicle to within the valid region of the streamline controller.

The primary contributions of Chapter 5 are the identification of invariant-set bound-

aries as highly observable to a Lagrangian sampling vehicle, and Theorem 2 regarding the

region of validity of the streamline control law used in the hybrid steering controller.

8.1.3 Augmented observability-based path planning

In using observability-based path planning for long-range flow-sensing applications,

Section 6.1 shows that past vehicle history changes the optimal route selected. It is

therefore necessary to develop a principled approach to performing observability-based

path planning in the presence of prior information. Chapter 6 addresses this problem
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with augmented observability.

This chapter addresses automatic route selection in path planning for flow esti-

mation by scoring candidate trajectories using a new measure called the empirical aug-

mented unobservability index. This measure includes a background error covariance as

well as a forward-looking observability analysis. Section 6.3 defines augmented observ-

ability by drawing insight from the continuous-time reduced Hessian in Incremental 4D-

Var data assimilation. Section 6.3 also derives the optimal inverse posterior covariance

for a continuous-time Kalman Filter with deterministic dynamics. Section 6.4 compares

augmented observability to the optimal, anticipated inverse covariance for a linear, de-

terministic continuous-time system with measurement noise, and it highlights distinctions

between path-planning strategies.

Augmented observability can be extended to the nonlinear setting using empirical

observability, yielding the empirical augmented unobservability index. Using numerical

experiments, Section 6.5 shows that path planning based on this novel index yields the

desired behavior for a guided Lagrangian sensor performing turn selection in a two-vortex

flow field in the presence of prior information. Section 6.6 concludes the chapter by

suggesting how augmented observability-based path planning may be extended to non-

Gaussian prior densities through the use of a mixture of Gaussians and an approximate

expected-cost calculation. The primary contributions of Chapter 6 are the derivation

and definition of augmented observability, as well as the construction of the empirical

augmented unobservability index for path planning.
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8.1.4 Adaptive Lagrangian sampling of a two-vortex flow field

Chapter 7 presents a principled approach to estimate the parameters of a two-vortex

flow that models a double-eddy system in the ocean. The adaptive Lagrangian sampling

framework guides a self-propelled Lagrangian sensor along highly observable paths. The

main components of the framework are a hybrid steering controller guided to invariant-

set boundaries, the Gaussian Mixture Kalman Filter, and the Augmented-Observability

Planner with approximate expected cost.

Section 7.1 builds the adaptive Lagrangian sampling framework and describes the

functions and interactions of its subcomponents. The Gaussian Mixture Kalman Filter

is a dynamic nonlinear filter that produces a non-Gaussian posterior distribution captur-

ing the uncertainty in the state of the system in the form of a Gaussian mixture model.

From the Gaussian mixture model, the Augmented-Observability Planner considers the

component means and their covariances as possible state realizations and associated uncer-

tainties. For each candidate realization, the Augmented-Observability Planner generates

a family of candidate control signals constructed using the hybrid steering controller and

the estimated flow-field map. The Augmented-Observability Planner evaluates the aug-

mented unobservability index, a measure of the complementarity of a forward-looking

observability analysis with a prior background error covariance, for all control signals

and all candidate state realizations. The Augmented-Observability Planner performs an

approximate expected cost calculation by taking a weighted sum of the augmented unob-

servability indices according to the component weights from the Gaussian mixture model.
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The Augmented-Observability Planner then selects the minimizing control signal across all

candidate control signals. The resulting control signal minimizes the empirical augmented

unobservability index weighted across possible state realizations; hence, this control signal

provides the most informative vehicle trajectory given prior information and other possible

state realizations.

Section 7.2 provides numerical experiments showing the benefit of this adaptive

sampling framework in a two-vortex flow field. The primary contribution of Chapter 7

is the adaptive Lagrangian sampling framework built around a nonlinear/non-Gaussian

estimator and the augmented observability tools of Chapter 6.

8.2 Suggestions for future research

8.2.1 Vehicle-scale flow sensing and control

Dealing with complex vehicle-scale flow interactions presents many questions still

open to investigation and further development. Work is needed to perform increasingly

complex flow estimation using time-varying flows, flows for which a stream function must

be approximated, and flows for which a parameterized flow model is not known a priori.

Data-driven approaches for construction of reduced-order flow models, such as dynamic

mode decomposition [114], offer rich possibilities for high-fidelity flow-field estimation that

surpasses the potential-flow based flow models used in the application problems of this

dissertation. Data-driven approaches have the potential to represent flow effects such as

viscous effects and turbulence that are not captured in the above modeling approaches.
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Further, these reduced-order, data-driven models may still allow for rapid computation

that may be implemented on-board the vehicle.

One important estimation question in flow sensing that needs to be addressed is

how to identify structures in the flow field or flow-field characteristics that are pertinent

to the vehicle dynamics and the desired trajectory. Not all aspects of the infinite di-

mensional surrounding fluid flow are important, and some can and must be neglected

for computational efficiency. Additionally, some flow aspects may dictate the features of

a reduced-order model, leading to the question of model selection as a preliminary step

preceeding detailed flow estimation. Future work should address how and when to engage

one of a family of reduced-order models in flow estimation by a flow-sensing vehicle.

8.2.2 Long-range flow sensing and control

This dissertation addresses long-range flow sensing for an ocean-sampling applica-

tion with a single guided, Lagrangian position sensor. Future work is needed to extend

this research to multiple, cooperative sampling agents. Existing research has looked at

distributed estimation and control [36, 115–119] for environmental estimation. However,

these approaches have not been observability-based or augmented observability-based.

Chapter 6 made connections between empirical observability and information theory.

From this discussion it is apparent that further connections may be possible. Specifically,

it would be useful to strengthen the connections between information-theoretic adaptive

sampling approaches (e.g., [120]) and the augmented observability-based approach.

Augmented observability addresses prior information as well as measurement un-

154



certainty. However, it does not address randomness that enters through process noise.

Future research is needed to address the inclusion of stochastic forcing in the dynamics

and to assess its impact on augmented observability-based path planning.
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Appendix A

Complex-variable mathematics

This appendix provides all necessary background material for handling the functions

of complex variables that appear in this dissertation. Section A.1 describes the correspon-

dence between the C plane and the R2 plane. It also reviews complex notation and some

fundamentals. Section A.2 is a collection of complex identities useful in manipulations.

A.1 The C− R2 correspondence

A useful and notationally compact way to represent a planar vector in R2 is through

its direct correspondence to a complex value in the C plane. Let (x, y)T be a vector in R2.

The corresponding value in the C plane is

z = x+ iy,

where i =
√
−1 is the imaginary unit. Although this simplification may seem trivial,

working with complex variables instead of vectors in R2 reduces vector equations to scalar
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equations over C, in effect reducing the number of equations by one half. For example,

the equation of a circle of radius r in R2 may be written parameterically as a function of

an angle θ ∈ [0, 2π) as  x

y

 =

 r cos θ

r sin θ

 .
In complex notation, this equation becomes z = r cos θ + ir sin θ. Even more compactly,

the use of Euler’s identity,

eiθ = cos θ + i sin θ,

yields

z = reiθ.

Under the C − R2 correspondence, a complex variable in C may represent either a point

in the plane or a vector extending from the origin, analogous to the representation of a

variable in R2. A vector in the complex plane may be represented with its modulus [121]

|z| =
√
x2 + y2,

and with an angle measured counterclockwise from the positive real axis, called the argu-

ment arg(z), which satisfies [121]

tan(arg(z)) =
y

x
.
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The principle value of arg(z) is the value satisfying the above relation and lying within

(−π, π].

The operators <(·) and =(·) extract the real and imaginary components of a complex

number, respectively. Further, (̄·) denotes complex conjugation, or mirroring of a complex

number about the real axis, so that

z̄ = x− iy.

It is straightforward to show that for complex variables, the commutative, associative, and

distributive relations hold similar to real-valued expressions [121]

z1 + z2 = z2 + z1

z1z2 = z2z1

(z1 + z2) + z3 = z1 + (z2 + z3)

(z1z2)z3 = z1(z2z3)

z1(z2 + z3) = z1z2 + z1z3.

One may accomplish division by multiplying top-and-bottom by the complex con-

jugate of the denominator, i.e.,

z1

z2
=
z1z̄2

z2z̄2
=
z1z̄2

|z2|2
,
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where the numerator is the multiplication of two complex numbers, and the denominator

becomes a real-valued scalar [121].

An inner product is a useful tool for quantifying the angular relation between two

vectors. In this dissertation, the inner product for complex numbers is

〈z1, z2〉 = <(z̄1z2). (A.1)

One readily sees that this expression naturally agrees with the dot product of two vectors

in R2 under the C− R2 correspondence.

A function f of a complex variable z is denoted f(z) if f depends on z only and not

on z̄. Treating z and z̄ as separate variables, f(z, z̄) denotes a function that depends on

both z and z̄.

Differentiation in complex is defined such that the function f(z) is said to be differ-

entiable at z if

lim
ξ→z

f(ξ)− f(z)

ξ − z

exists for all directions of approach to the point z in the plane [121]. A function that has

this property is called analytic, and we denote its derivative by df/dz. Let ux = <(f)

and uy = =(f). Analytic functions are a very special class of complex-valued functions,

because they possess the structure that their real and imaginary components evaluated at

z = x+ iy satisfy [121]

∂ux
∂x

=
∂uy
∂y

and
∂ux
∂y

= −∂uy
∂x

, (A.2)
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which are known as the Cauchy-Riemann equations.

If a complex-valued function is not analytic (i.e., complex differentiable), we may

still consider weaker notions of differentation, specifically the Wirtinger derivatives [73],

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (A.3)

Using (A.3), one may show that Cauchy-Riemann equations (A.2) are equivalent in com-

plex notation to [73]

∂f

∂z̄
= 0. (A.4)

Thus, the Cauchy-Riemann equations are a statement that an analytic function has no

dependence on the z̄ variable. Confer with [121] for further details on analytic functions.

A.2 Useful complex-variable identities

This section provides a collection of mathematical identities that are useful in the

manipulation of expressions and functions of complex variables. Some of the identities can

be easily derived from others, however some redundancy increases the ease of reference.

This collection of identities stem from a variety of sources, including [7], [73], and [76].

In these identities, the expression f̄ means f(z, z̄), not f̄(z, z̄) (cf. Equation (A.13)).

Additionally, interpret f(z) to mean that the complex-valued function f has no functional

dependence on z̄. Interpret f(z, z̄) to mean such dependence is present. Care should be

taken, as some authors use f(z) to also represent f(z, z̄).
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<(·) and =(·) operator identities

<(z) =
z + z̄

2
(A.5)

=(z) =
z − z̄

2i
(A.6)

<(a) = =(ia) (A.7)

=(a) = −<(ia) (A.8)

Inner product identities

〈a, b〉 = 〈b, a〉 (A.9)

〈a, b〉 =
〈
ā, b̄
〉

(A.10)

〈
a, b̄
〉

= 〈ā, b〉 (A.11)

〈a, ib〉 = −〈ia, b〉 (A.12)

Function identities

f̄ = f(z, z̄) = f̄(z̄, z) 6= f̄(z, z̄) (A.13)

log(z) = log(z̄) for z 6= 0 (A.14)

Differentiation identities

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
(A.15)

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(A.16)

ḟ =
∂f

∂z
ż +

∂f

∂z̄
˙̄z (A.17)
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∂f

∂z
=
∂f̄

∂z̄
(A.18)

∂ (f ◦ g)

∂z
(z0) =

∂f

∂z
(g(z0))

∂g

∂z
(z0) +

∂f

∂z̄
(g(z0))

∂ḡ

∂z
(z0) (A.19)

∂ (f ◦ g)

∂z̄
(z0) =

∂f

∂z
(g(z0))

∂g

∂z̄
(z0) +

∂f

∂z̄
(g(z0))

∂ḡ

∂z̄
(z0) (A.20)

∂

∂z
〈f, g〉 =

1

2

(
∂f

∂z
ḡ + f

∂ḡ

∂z
+
∂f̄

∂z
g + f̄

∂g

∂z

)
(A.21)

∂

∂z̄
〈f, g〉 =

1

2

(
∂f

∂z̄
ḡ + f

∂ḡ

∂z̄
+
∂f̄

∂z̄
g + f̄

∂g

∂z̄

)
(A.22)
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Appendix B

Construction of targets for the hybrid steer-

ing controller

This appendix addresses the construction of targets for the hybrid steering controller

of Chapter 5. As an example, it considers the two-vortex system that is used in the

adaptive Lagrangian sampling simulations of Chapter 7.

B.1 Extraction of closed curves from the geometry of separatrices

Observability analysis shows that separatrices in the flow are highly observable paths

(under Lagrangian position measurements) for a sampling vehicle to explore. The sepa-

ratrix geometry may be constructed numerically through the following steps: (i) identify

saddle fixed points in the flow field; (ii) from each saddle point, numerically integrate along

the unstable manifolds in forward time and along the stable manifolds in reverse time un-

til a close approach of another saddle or exit from the domain of interest; (iv) eliminate

redundant separatrix curves that may have been generated; and (v) form a graph data
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structure that contains the saddle points as the vertices and separatrix curves as the di-

rected edges of the graph. The result of these operations is a graph data structure (shown

visually in the center of Figures B.1(a) and B.1(b)) that contains geometric information

regarding the flow field, including unique identifiers for all saddle points and separatrices,

coordinates of points numerically constituting these objects, and saddle-separatrix con-

nection information. Figure B.1(a) shows an example of a saddle graph for a two-equal

vortex case. The saddle graph consists of three saddle vertices, four heteroclinic con-

nections (i.e., separatrices that connect two distinct saddle points), and two homoclinic

connections (i.e., separatrices that begin and end at the same saddle point). Figure B.1(b)

shows an example of a saddle graph for a two-unequal vortex case. In the unequal case,

the saddle graph consists of three isolated saddle points that only have self-loops formed

by homoclinic connections.

The hybrid steering controller in Chapter 5 requires simple, closed, regular curves

as inputs for steering targets. All possible closed curves consisting of separatrices can be

obtained by enumerating every elementary cycle in the saddle graph. Using an adjacency-

list data structure to represent the saddle graph, the cycle-finding algorithm of Hawick

and James [122] enumerates all elementary cycles in the graph. This algorithm is unique

from other cycle-finding algortihms, because the adjacency-list data structure permits

multiple edges between vertices, as well as self edges, which are necessary for representing

homoclinic separatrices. The elementary cycles in the saddle graph are lists of saddle-

vertex identifiers to which separatrix objects can be associated to generate closed curves.

After extraction of all closed-curve cycles in the saddle graph, it is necessary to smooth
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(a) (b)

Figure B.1: Extraction of closed, smooth separating-boundary curves in the two-vortex
system for b) Γ2 = Γ1, and d) Γ2 = 2Γ1. The center portions of each subfigure are graph
structures with saddle points at the vertices and separatrices as the edges. The surrounding
curves in each subfigure are scaled, smoothed cycles formed by the separatrices.

cusps that occur at saddle points. The next section describes one means of addressing

this issue.

B.2 Bézier curve smoothing

To create simple, closed, and regular target curves built from separatrices, one can

smooth the closed curves near saddle points using fourth-order Bézier curves to meet the

regularity requirement of the steering control law. These curves allow for the user to

specify the beginning and ending tangent lines for a continuously differentiable connection

to the remainder of the boundary curve.

A fourth-order Bézier curve γB parameterized by σ ∈ [0, 1] is given in terms of contol
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points c0, c1, c2, c3 ∈ C by [123]

γB(σ) = (1− σ)3c0 + 3(1− σ)2σc1 + 3(1− σ)σ2c2 + σ3c3. (B.1)

Let r1 and r2 denote the radii of two concentric circles located at the saddle point S with

r2 > r1 as shown in Figure B.2. Let c0 and c3 denote the entering and exiting intersection

Figure B.2: Notation for smoothing near a saddle point using a Bézier curve.

points of the boundary curve γ0 with the outer circle, respectively. Define c1 and c2 to

be the respective intersections of tangent lines extended from c0 and c3 towards the inner

circle, such that

c1 = c0 + λ1
γ′0
|γ′0|

∣∣∣
c0

(B.2)

c2 = c3 − λ2
γ′0
|γ′0|

∣∣∣
c3
, (B.3)
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where

λ1 = −
〈
γ′0
|γ′0|

∣∣∣
c0
, c0 − S

〉
−

√〈
γ′0
|γ′0|

∣∣∣
c0
, c0 − S

〉2

−
(
r2

2 − r2
1

)
, (B.4)

λ2 =

〈
γ′0
|γ′0|

∣∣∣
c3
, c3 − S

〉
−

√〈
γ′0
|γ′0|

∣∣∣
c3
, c3 − S

〉2

−
(
r2

2 − r2
1

)
. (B.5)

The projected tangent lines intersect the inner circle provided the second terms in (B.4)

and (B.5) are real numbers. If intersection does not occur, the values of r1 and r2 may be

adjusted to satisfy this requirement.

Scaled examples of the resulting smoothed, closed-curve steering targets for the

two-vortex system are shown surrounding the saddle graphs in Figures B.1(a) and B.1(b).
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Appendix C

Parameter selection for numerical experi-

ments in adaptive Lagrangian sampling

Parameters for the simulations performed in Chapter 7 were selected based on ap-

proximate comparison to long-endurance buoyancy-driven ocean-sampling platforms cur-

rently in use in field experiments (e.g., see [37, 49, 50, 77]). Assume a one-month de-

ployment during which the vortex system completes approximately five full rotations.

Assume a vortex separation distance of approximately 10 kilometers, comparable with

submesoscale vortex pairs observed in the oceans [57]. Table C.1 tabulates the simula-

tion parameters for this paper, many of which are linked to the mission, flow field, and

hardware assumptions. Other parameters in the table are user-specified. The simulations

use nondimensionalized values; the characteristic length scale corresponds with the vortex

separation distance d, and the characteristic time scale corresponds with the period of

revolution for the vortex pair.

171



Table C.1: Simulation parameters for numerical experiments in adaptive
Lagrangian sampling

Symbol Parameter
Nominal value
(Nondimensional)

Approximate
representation

Basis for se-
lection

Simulation and vortex parameters

Tvort
Period of vortex pair
rotation

1
≈ 5 periods per
month

Flow-specific

Tsim Simulation duration 5
1 month, ≈ 5
vortex periods

Hardware-
specific,
Mission-specific

Tsamp
Time between mea-
surements

0.0205 ≈ 3 hours Mission-specific

d
Vortex separation
distance

1 ≈ 10 km Flow-specific

Γ1 + Γ2
Total circulation
strength

4π2 ≈ 5 periods per
month

Constrained by
Tvort, d

Vehicle parameters

α
Through-water speed
of vehicle

15.77 ≈ 0.3 m/s
Hardware-
specific

umax
Magnitude of maxi-
mum steering rate

7890
≈ 20m turning
radius at rate α

Hardware-
specific

Planning and control parameters

Tplan
Time until re-
evaluating plan

5Tsamp ≈ 15 hours User-specified

Th
Time horizon for
planning

2.5Tplan ≈ 37.5 hours User-specified

K1,K2
Closed-curve steering
control gains

5, 100 N/A User-specified

K3,K4

Stream-function-
value steering control
gains

1000, 100 N/A User-specified

Estimation parameters

Ne
Number of ensemble
members

5000 N/A User-specified

R
Measurement noise
covariance in the
GMKF

diag([0.02,0.02]) N/A
User-specified,
lower-bounded

Q
Process noise covari-
ance in the GMKF

diag([1,0.1,0.1,1,0.1,
0.1,0.01,0.01])Tsamp

N/A
User-specified,
flow-specific

τrelax

Time constant for
model penalty relax-
ation

50
Initial data col-
lection portion
of mission

User-specified

MaxIter

Max EM iterations in
Gaussian mixture fit-
ting

200 N/A User-specified

MaxComplexity

Number of Gaussians
permitted in mixture
model

10 N/A User-specified

r1, r2
Radii for smoothing
using Bèzier curves

0.05, 3.5r1 N/A User-specified

Estimation initial condition
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P0
Initial estimate co-
variance

diag([20,3,3,20,
3,3,0.01,0.01])

N/A
User-specified,
flow-specific
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Fréchet derivative, 113

Gaussian Mixture Kalman Filter (GMKF),
49, 139

Gaussian Mixture Model (GMM), 49
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laboratory test bed, 66
Lagrangian Coherent Structures (LCS),

15
Lagrangian position data, 14
Lagrangian sampling vehicle, 129
lateral-line system, 7
level-set steering control, 39
linear observability Gramian, 54
local observability Gramian, 55
long-range flow sensing and control, 147

model-predictive control, 18
modulus of a complex number, 158
Monte Carlo simulations, 136

neuromasts, canal, 8
neuromasts, superficial, 8
non-Gaussian uncertainty, 126
nonlinear filter, 45

observability, 53
observability rank condition, 56
observability with stochastic measurements,

108

observability-based path planning, 100
ocean drifter, 14
ocean glider, 14
orbit function, 94, 95
output-feedback control, 44, 142

point vortex, 31
potential flow, 28
prescribed control signal, 56
pressure survey, 70
pressure-difference measurement equation,

60
prior information, 103, 143

quasi-static assumption, 58

reduced Hessian, 111
reference orbit, 94
reference trajectory, 110
regularity condition, 93, 167
Reynolds Averaged Navier Stokes equa-

tions, 72
rheotaxis, 7

saddle graph, 166
self-propelled particle model, 36
sensor failure, 80
sensor placement, 64
state transition matrix, 54, 117
station holding, 11
station keeping, 11
steering targets, 165
stochastic observability Gramian, 109, 110
stochastic system, linear, 44
stochastic system, nonlinear, 45
stream function, 25, 26
stream function derivatives, 95
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tangent-linear model, 55

186



turbulence model, 72
turn confidence, 125
turn experiment, 124
two-vortex system, 32, 135, 169

uncertain flow, 4
unknown flow, 4
unobservability index, 56
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