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Today, electronic devices have been widely deployed in our daily lives, basic

infrastructure such as financial and communication systems, and military systems.

Over the past decade, there have been a growing number of threats against them,

posing great danger on these systems. Hardware-based countermeasures offer a

low-performance overhead for building secure systems. In this work, we investigate

what hardware-based attacks are possible against modern computers and electronic

devices. We then explore several design and verification techniques to enhance

hardware security with primary focus on two areas: hardware Trojans and side-

channel attacks.

Hardware Trojans are malicious modifications to the original integrated cir-

cuits (ICs). Due to the trend of outsourcing designs to foundries overseas, the threat

of hardware Trojans is increasing. Researchers have proposed numerous detection

methods, which either take place at test-time or monitor the IC for unexpected be-

havior at run-time. Most of these methods require the possession of a Trojan-free



IC, which is hard to obtain. In this work, we propose an innovative way to detect

Trojans using reverse-engineering. Our method eliminates the need for a Trojan-free

IC. In addition, it avoids the costly and error-prone steps in the reverse-engineering

process and achieves significantly good detection accuracy. We also notice that in

the current literature, very little effort has been made to design-time strategies that

help to make test-time or run-time detection of Trojans easier. To address this is-

sue, we develop techniques that can improve the sensitivity of designs to test-time

detection approaches. Experiments show that using our method, we could detect a

lot more Trojans with very small power/area overhead and no timing violations.

Side-channel attack (SCA) is another form of hardware attack in which the ad-

versary measures some side-channel information such as power, temperature, timing,

etc. and deduces some critical information about the underlying system. We first

investigate countermeasures for timing SCAs on cache. These attacks have been

demonstrated to be able to successfully break many widely-used modern ciphers.

Existing hardware countermeasures usually have heavy performance overhead. We

innovatively apply 3D integration techniques to solve the problem. We investigate

the implication of 3D integration on timing SCAs on cache and propose several

countermeasures that utilize 3D integration techniques. Experimental results show

that our countermeasures increase system security significantly while still achieving

some performance gain over a 2D baseline system. We also investigate the security

of Oblivious RAM (ORAM), which is a newly proposed hardware primitive to hide

memory access patterns. We demonstrate both through simulations and on FPGA

board that timing SCAs can break many ORAM protocols. Some general guidelines



in secure ORAM implementations are also provided. We hope that our findings will

motivate a new line of research in making ORAMs more secure.
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Chapter 1: Introduction

1.1 Why Do We Need Cyber Security?

With the help of continued device scaling and emerging technologies such as

3D-integration, the performance of electronic devices including personal computers

and smartphones have been increasing rapidly in the past twenty years. For example,

the supercomputer Cray-2 developed in 1985 can only perform 2 billion floating point

operations per second, while a smartphone produced in 2015 can easily perform over

100 billion floating point operations per second. The dramatic increase in computing

power allows these electronic devices to be used for a wide range of applications,

including communication, banking, process control, etc. They also become the

critical part of larger systems used in financial, commercial and military sectors.

As these electronic devices become more ubiquitous, they also become ex-

tremely vulnerable to various attacks. For example, the demand for high-performance

has resulted in the invention of many computer components, such as branch predic-

tion unit, cache, etc. They are used to fill in the speed gap between the fast CPU

and the slow memory. However, they also introduce another level of vulnerability.

Recently, researchers have proposed several attacks on these components that can

successfully break many modern encryption algorithms running on the computer

1



system [1–5]. Moreover, the demand of lower time-to-market and lower price has

driven big electronic companies to outsource their designs to be fabricated overseas.

This makes it easier for untrusted third parties to make modifications of the original

circuit, steal intellectual property, make counterfeits, or overproduce the products

and sell them for profits [6–8].

Given the pervasiveness of computing devices in commercial and military sys-

tems, the above-mentioned attacks can have devastating consequences. For example,

the attacks on caches can be used to break Advanced Encryption Standard (AES).

AES is currently the most widely-used encryption algorithm. Breaking it essentially

means that military communications can be eavesdropped, bank transactions can

be forged, etc. Another example is the malicious modification of the original circuit,

also known as hardware Trojans (HTs). HTs are inevitable in the current trend

of outsourcing designs to foundry overseas. They can be used to change the func-

tionality, cause the denial of service, or leak valuable information of the underlying

system. Due to the decreasing size of device features and increasing complexity of

modern systems, HTs are very hard to be detected. Consider what will happen if

they evade detection and are placed in military systems or safety-critical systems

(power grid, first response system, etc.).

Because of the ever growing number of possible attacks and potential devas-

tating consequences, there is an urgent need for a comprehensive and effective way

to enhance the integrity, reliability and security of electronic devices, private data,

and hardware systems.
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1.2 Possible Threats on Hardware Systems

In this Section, we will introduce possible threats on hardware systems. Typ-

ically, the life-time of a hardware system can be divided into the four phases:

• Design Time. In this phase, designers come up with the register transfer level

(RTL) design of the underlying system. The RTL design then goes through

synthesis, technology mapping, placement and routing steps and is converted

to layouts that will be fabricated in foundries. The software running on the

hardware system is also developed in this phase.

• Fabrication Time. In this phase, the layout is sent to one or multiple foundries

to be fabricated. Because of economical reasons, most design companies do

not keep an in-house foundry. Instead, they send layouts to foundries not in

their control.

• Test Time. If multiple foundries are involved in the fabrication phase, then it

is in this phase that multiple parts are finally assembled. Then the fabricated

chips are inspected and tested for possible failure. This step also includes the

testing of software running on the hardware system.

• Post-deployment. In this phase, the tested chips are deployed and perform

their specified tasks.

We will introduce the threats that may take place during all of the above four

phases next.
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1.2.1 Threats during Design Time

During Design time, designers come up with the RTL design of the underlying

system. They also write software that runs on the system if necessary. It is possible

that a rogue employee in the design team may try to maliciously modify the design

file or steal the whole design. Moreover, nowadays, most designers do not build the

entire RTL design from scratch. Instead, they typically purchase some intellectual

property (IP) from third parties and integrate them with their own IPs. For example,

most likely, the designer of a smartphone will purchase the WiFi module from a third

party and integrate it with his/her own modules. Although this practice effectively

lowers the time-to-market, it also allows a rogue employee from IP vendors to insert

malicious circuitry into the IP that causes malfunction or denial-of-service.

Another source of threat comes from the Electronic Design Automation (EDA)

tools or compilers. In the design phase, RTL designs are synthesized, mapped,

and then placed and routed to make layouts using EDA tools. If these tools are

untrusted, then the quality of the resulting layouts is in question.

We can summarize the two major threats that may happen during design

phase as follows:

• Hardware Trojans and Software Trojans. As stated above, a rogue employee in

the design team or from IP vendors may maliciously modify the RTL design.

This is known as hardware Trojans (HTs). EDA tools may also insert HTs.

Similarly, if there is software development involved, then software Trojans may

be inserted.
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• IP or Software Piracy. Rogue employees in the design team can also steal the

IP or software source code and later use them to make counterfeit instances.

Note that the stolen IP or software can also be used to aid attacks that happen

in a later phase.

1.2.2 Threats during Fabrication Time

In this phase, the layouts are sent to a foundry or multiple foundries to be

fabricated. For economical reasons, most designers do not keep an in-house foundry.

Instead, they outsource their designs to other foundries. Since the designers now

lose control over the fabrication process and the foundries might not be trusted,

three attacks might take place:

• Hardware Trojans. Adversaries in the foundry may modify the mask used in

lithography. This allows them to insert HTs into the layout. These HTs will

cause malicious behavior to the products.

• IC Piracy. Adversaries in the foundry may steal the layout entirely. The

stolen layout can be reverse-engineered to gain knowledge about the RTL

design. This knowledge may be used to make counterfeit products. It may

also enable attacks that happen in the later phase.

• Overproduction. Once the foundry has the layout, it can overproduce the

products and sell the additional copies for profit. This leads to the loss of

profit in the product designer.

5



1.2.3 Threats during Test Time

If the RTL design is fabricated at multiple foundries, it is assembled during this

phase. Then test vectors are applied to detect any unwanted or incorrect behavior.

Two possible threats exist at this time.

• Hardware Trojans. During test time, attacker may choose to activate HTs

already inserted during previous phase(s). It is also possible that a rogue

employee in the testing team may deliberately ignore the incorrect behavior

caused by the HTs in the design and thus leaving HTs active.

• Denial-of-Service (DoS). Because no testing will happen after the test phase,

an attacker may choose to launch DoS attack at this time. When the altered

products are deployed, fixing them will cause a lot of time and efforts from

the designer, which is a huge loss of profit for the designer.

1.2.4 Threats during Post-Deployment

After the electronic device has been deployed, various threats may also happen.

• Hardware Trojans. HTs inserted during previous phases may stay inactive

up till now to evade detection during test time. After an electronic device

is deployed, adversaries may choose to active these HTs through executing a

specific sequence of instructions, sending a specific data entry, bringing the

environment to a specific condition, etc. After activation, HTs will perform

their intended attacks (change functionality, leak information, cause DoS, etc.)

6



on the device.

• Recycling. Adversaries may recycle used products from the market and then

refurbish them and resell them for profit. These recycled products not only re-

duce the profit of the designer, but also pose threats to end customers because

these products usually have reliability issues.

• Reverse-engineering. Adversaries may reverse-engineer the device to gain

knowledge at various levels (system level, transistor level, etc.). These ex-

tracted information may be used to make counterfeit products, or facilitate

future attacks.

• Brute-force attacks. In this form of attacks, the adversary only has black-box

access to the system (i.e. the adversary can only observe the output of the

system with the input chosen at his discretion) and tries to figure out the

underlying secret data.

• Side-Channel Attacks (SCAs). Side-channels are defined as the unintended

output channels from the physical implementation of an algorithm [9]. These

side-channels include execution time, power consumption, electromagnetic ra-

diation, sound, visible light, heat, faulty output, etc. Among these side-

channels, execution time, power consumption and faulty output are the mostly

exploited ones. In SCAs, the attacker has access to some side-channel informa-

tion in addition to inputs and outputs. These side-channel information may be

correlated with the secret data being processed. Therefore, by observing these
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side-channel information, adversaries may learn part of or full secret data.

1.3 How Can We Defend

Because there are tremendous number of threats and the potential conse-

quences are devastating, researchers have spent years of effort in enhancing the

security of electronic devices. In this section, we will introduce some of the exist-

ing countermeasures and their limitations. Note that pure software techniques are

beyond the scope of this thesis. We will focus on hardware-assisted countermeasures.

The effort to enhance hardware security typically falls into two categories:

design techniques and verification techniques. Design techniques aim to come up

with a design that is secure in nature against possible threats. For example, circuit

obfuscation techniques can be used to thwart foundries from overproducing. They

can also be used to prevent attackers from learning any meaningful knowledge by

reverse-engineering. Verification techniques try to verify the reliability, authentic-

ity, and correctness of the underlying system. For example, functional testing, or

providing testing vectors to the system and comparing the outputs with intended

outputs, is one verification technique. We will explain these two techniques next.

1.3.1 Design Techniques

One way to thwart IP piracy and overproducing is to use logic encryption [10–

13]. Logic encryption inserts additional gates into the original design to hide the

functionality. One example is shown in Figure 1.1. In addition to primary inputs (I1-
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(a) Original circuit (b) Encrypted circuit

Figure 1.1: An example of logic encryption. The circuit is encrypted using one key

gate X1. O1 will not outout the correct value unless a correct key K1 is given.

I6), the encrypted circuit takes an additional input (K1) as the key. The circuit will

not function correctly (O1 will not output correct value) unless a correct key bit is

supplied. The key is given by the designer and applied at the test time. Therefore,

the attackers in the fabrication phase cannot use or overproduce any functional

copies without the correct key. Moreover, this adds complexity to the structure of

the circuit, making it harder for the attacker to tell useful information from the

circuit. As a result, it complecates reverse-engineering attacks and hardware Trojan

insertions.

Similar ideas are also applied to obfuscate sequential circuit [14, 15]. After

the circuit with intended functionality is designer, the designer inserts additional

states into the original finite state machine (FSM). These extra states compose the

locking structure and unless a correct key is supplied, the FSM will not enter the

correct states for normal functionality. After additional states are inserted, the

design undergoes the same synthesis, mapping, place and route process and the

resulting layout is sent to the foundry for fabrication. Attackers in the foundry
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cannot overproduce or steal the design without knowing the correct key.

To further protect the circuit from being reverse-engineered, circuit camou-

flaging techniques are introduced [16]. The idea is to use a configuratble CMOS

cell to disguise the functionality of XOR, NAND or XOR. More specifically, the

layout of each configurable CMOS cell is almost the same and only differs in the

interconnection. Depending on how the interconnection is made, the CMOS cell

can be XOR, NAND or NOR gate. Since it is very hard for the attackers to figure

out the interconnection information, the XOR, NAND and XOR looks essentially

the same in the layout level. This prevents an attacker from learning the structure

of the circuit by reverse-engieering. Consequently, it also prevents an attacker from

launching further attacks as introduced in Section 1.2.4.

Split manufacturing has also been proposed to mitigate IP piracy and hardware

Trojan insertion during the fabrication process [17–21]. The idea of split manufac-

turing is to split an IC netlist into multiple parts. Each part is fabricated at a

different foundry. As a result, since no single foundry has access to the full design,

the IP piracy and hardware Trojan insertion attacks can be prevented. Currently,

the most widely studied form of split manufacturing is to split the IC into two

parts. One part contains all the active components (transistors) and some wires.

This part is referred to as Front-End of Line (FEOL). The other part contains the

rest of the wires and is referred to as Back-End of Line (BEOL). Usually, FEOL is

sent to untrusted foundry for fabrication while BEOL is fabricated at the trusted

or in-house foundry. The reason is that in-house or trusted foundries often have

less advanced manufacturing technologies (e.g., 32 nm process) while the untrusted,
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(a) Stacked 3D IC (b) Interposer-based 2.5D IC

Figure 1.2: Structure of 3D IC and 2.5D IC.

off-shore foundries have more advanced technologies (e.g., 14nm process). FEOL

requires smaller feature sizes and advanced fabrication processes and is better fab-

ricated at untrusted foundries. BEOL on the other hand, does not need advanced

processes and can thus be fabricated at in-house foundries. In this way, the un-

trusted foundry only has access to partial netlist information and cannot steal the

full IC design.

Similar to split manufacturing, 3D (and 2.5D) IC fabrication technology also

seem to be a promising solution to mitigate IP piracy in the fabrication phase [22,23].

Structure of 3D and 2.5D IC is shown in Figure 1.2. In a 3D IC, separate dies are

connected together using through-silicon vias (TSVs) while in a 2.5D IC, connections

are made using an interposer. Note that 3D (2.5D) IC is proposed because transistor

feature size shrinking is reaching physical limit. 3D IC is deemed as a viable option

to continue performance improvement beyond transistor scaling because it allows

multiple dies (therefore more transistors) to be stacked up. However, researchers

have found out that 3D (2.5D) IC also benefits security. In 3D (2.5D) IC, separate

dies can be manufactured in separate foundries. Because no foundries have access

to the full netlist, the IP piracy during fabrication is hindered.
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To mitigate side-channel attacks, several types of techniques have been intro-

duced [24–27]. The first one is hiding. The goal of randomization-based approaches

is to make side-channel information independent of the secret data or operation.

To achieve this, the side-channel information is either randomized or kept equal for

all secret data or operations. For example, to defend against power side-channel

attacks, the designer can design the device such that the same amount of power

is consumed in each clock cycle. However, the ideal goal of perfectly random or

equal is very hard to be reached in practice. Researchers have been trying to get

close to this goal. The second type of techniques is masking. The basic idea is to

randomize the secret data that is processed by the device such that the side-channel

information is independent of the secret data. In a masked implementation, each

secret value v is concealed by a random mask m: vm = v ∗ m. The operation ∗

is usually XOR function ⊕, modular addition + or the modular multiplication ×.

The mask m is generated internally and varies from execution to execution. Since

the attacker does not know m, even if he/she figures out the dependency between

side-channel information and vm, he/she cannot learn v.

1.3.2 Verification Techniques

While design techniques try to prevent attacks from happening, adversaries

may still be able to evade those defense mechanisms. Therefore, it is important

to have verification techniques which will raise red flags when an attack has been

detected. In this section, we will introduce some verification techniques to detect
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hardware Trojans, IC counterfeiting and recycling. Typically, these verification

technique can be divided into four catagories: physical inspection, functional testing,

side-channel analysis, and run-time monitoring.

Physical inspections can be used to detect physical and material properties

and thus can be used to detect physical counterfeit defects [28–30]. This includes

the inspection of the package as well as leads of the chip under test. Scanning acous-

tic microscopy (SAM) is used to study the structure of a component. It generates

an image of the component based on its acoustic impedance at various depth. Any

delamination or cracks will be easily detected. After decapsulation, internal struc-

tures and wires can be inspected. Scanning electron microscopy (SEM) can also be

used to take images of the die, package and leads to detect any anomaly. Chemi-

cal composition of the chip under test is also inspected to detect defects related to

materials.

Functional testing is used to detect any defects that impact the functional-

ity [31–33]. In functional testing, test vectors are provided to the chip under test.

The resulting outputs are recorded and compared with desired ones. Any mismatch

between the two indicates a possible defect. With the help of automated test pattern

generation, the functional testing process has been highly automated, making it the

most efficient way to verify the functionality of a component. However, the biggest

challenge in functional testing is that that usually test vectors cannot cover the en-

tire input space. This leaves the possibility that a defect changes the functionality

but is undetected. Another form of functional testing is memory tests. In memory

tests, read/write operations are performed on a memory to verify its functionality.

13



Because functions of memories are simple, exhaustive memory tests are possible and

are widely used during the process of manufacturing testing.

In side-channel analysis, the side-channel parameters (e.g., delay, power con-

sumption, etc.) of the chip under test are measured. A recycled chip may have a

different delay parameter than a brand new legitimate chip. A hardware Trojan-

infected chip may consume different amount of power than a Trojan-free chip. There-

fore, by measuring the parameters of the chip under test and compare those values

with desired values, IC recycling and hardware Trojans can be detected [34–36].

There are two challenges associated with this technique. The first one is how to

determine the desired values of all the measured parameters. In case of hardware

Trojan detection, this requires a Trojan-free IC (golden IC). However, how to ver-

ify or obtain a golden IC remains unknown. The second challenge is that process

variation and normal aging may cause the measured parameters to vary from their

nominal values. This fact may cause high false alarm rate.

Run-time monitoring serves as the last line of defense to detect defects or

malicious behaviors in the hardware system [37–39]. Run-time measurements are

compared with simulation data or calculated data. Any anomalous behavior indicate

a potential hardware Trojan attack or counterfeit detect. When the anomalous be-

havior is detected, built-in defense mechanisms can take effect to minimize potential

damages. For example, once a hardware Trojan is detected in the communication

system, the run-time monitor may choose to use an alternative system to avoid se-

cret data from being leaked. Similar to side-channel analysis, how to determine the

desired values of the measured parameters is tough question. In addition, run-time
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monitoring often incurs heavy performance or resource overhead, further limiting

its usage.

1.4 Contribution and Thesis Organization

In this dissertation, we investigate innovating solutions to mitigate attacks

in the hardware systems introduced above. We also explore the implication of

emerging technologies and hardware primitives on security. Specifically, we focus on

the following three areas:

• Hardware Trojans: Our first part of research focuses on hardware Trojans be-

cause they are the most challenging hardware threats to prevent and detect.

As introduced above, hardware Trojans can cause devastating consequences.

They can also leave backdoors to be exploited by software attacks. Detection

and prevention techniques are urgently needed. However, they are no easy

tasks. Hardware Trojans can be inserted at any phase during the hardware

design cycle. They are also stealthy in nature and are usually small in size,

making them very hard to detect. In this dissertation, we propose a novel,

efficient and effective Trojan detection approach that eliminates the need for a

golden chip. Our approach takes advantage of reverse-engineering and is thus

among the strongest approaches. Experimental results on publically available

benchmarks show that our proposed method can detect Trojans with more

than 99% accuracy and less than 1% false positive rate. We also provide a

design-time technique that can increase the sensitivity of the design to hard-
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ware Trojans, which can detect 16.87% more Trojans with only 7.87% area

overhead and 17.72% leakage power overhead.

• Countermeasures for Timing Side-Channel Attacks on Cache: Our second

part of research focuses on mitigating cache timing side-channel attacks. It

has been demonstrated that these attacks are able to break many widely-

used modern ciphers and are thus very dangerous. Existing countermeasures

usually have very heavy overhead, limiting their usage. In this dissertation,

we investigate how to defend these attacks with the help of 3D integration

technology. We demonstrate that these attacks can be mitigated effectively

while still achieving around 10% performance boost over a 2D baseline system.

• Timing Side-Channel Attacks on ORAMs: Our last part of research is focused

on the security of a new hardware primitive, i.e. Oblivious RAM (ORAM). It

has been demonstrated that memory access patterns can leak very sensitive

information even if the underlying data is encrypted. To mitigate this leak-

age, ORAM has been proposed to conceal the actual access pattern from an

adversary who is observing the accesses to the remote storage. In this disser-

tation, we show that timing side-channel attacks are able to leak sensitive data

from many efficient ORAM implementations. We also provide some general

guidelines to make ORAMs more secure.

The rest of the dissertation is organized as follows. In Chapter 2, we discuss

hardware Trojans, timing side-channel attacks on cache and ORAMs in greater de-

tail. Chapter 3 introduces the motivation and implementation details of our Trojan
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detection and design-time technique. These results have been published in [40–42].

In Chapter 4, our countermeasures to mitigate timing side-channel attacks on cache

are discussed. Part of the results is published in [43]. Chapter 5 shows our findings

on possible timing side-channel attacks on ORAMs. The result will be published

in [44]. Finally, Chapter 6 concludes the thesis and discusses future work.
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Chapter 2: Background

2.1 Hardware Trojans and Detection Techniques

2.1.1 Hardware Trojans

Hardware Trojans (HTs) are malicious modifications to the circuitry of an IC

that can be made at any untrusted or outsourced phase of the IC’s production (de-

sign, synthesis, fabrication, and distribution) [6]. HTs can leak secret information,

disable the IC, or even destroy the IC [7] making them very dangerous. HTs can be

described in terms of their physical and activation characteristics [7, 8].

Physical: A HT can change the functionality or parameters of the IC. Functional

changes include addition and deletion of transistors, gates, interconnects, etc. Para-

metric changes consist of thinning interconnects, weakening flip-flops, increasing

susceptibility to aging, etc. which can reduce the yield and reliability of an IC

design [45].

Activation: Some HTs are always active (eg. parametric Trojans) while others rely

on triggering mechanism. A triggered-Trojan consists of two parts: a trigger and

payload. The trigger is a sensing circuitry that waits for an event, such as a rare

input pattern or internal state, to take place. Before the Trojan is triggered, it is
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said to be in the inactive state and the IC mainly works as intended. Once the HT

is triggered, the payload gets activated and executes the Trojans attack.

2.1.2 Trojan Detection Techniques

Hardware Trojans (HTs) can seriously degrade the performance and reliability

of electronic systems. The consequences of HTs range from loss of profit if inserted

in consumer-electronic devices to life-threating if inserted in military devices. As a

result, researchers in academia as well as industry have proposed different approaches

to detect HTs. These methods fall into the following three categories.

Test-time approaches consist of post-silicon tests and are the most widely studied

approaches in the literature. There are two types: functional testing and side-

channel fingerprinting [46]. Functional testing [47–49] aims to detect HTs that

change the functionality (primary outputs) of the IC from the intended one. Side-

channel fingerprinting [50–53] is an alternative approach that measures side channel

signals (timing, power, etc.) and uses them to distinguish genuine ICs from Trojan-

infested ones. It does not require HT to be triggered to be detected (trigger itself

affects the IC’s side channels). Most of these test-time methods require a golden

IC to compare with. The main disadvantages are that these methods require the

Trojan to be activated and they cannot detect small Trojans.

Run-time approaches add circuitry that monitors the behavior/state of a chip af-

ter it has been deployed. If deviation from the expected golden behavior is detected,

additional circuitry can disable the chip or bypass the malicious logic before the HT
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can do any damage. [54] provides a good survey of different run-time approaches.

The major disadvantages of these approaches are their high resource overhead and

assumption that the run-time circuitry is Trojan-free.

Most test-time and run-time approaches assume that a golden model (intended

functionality and behavior) is available to compare with. They suggest reverse-

engineering be used to obtain such a golden model [54].

Reverse-engineering based approaches apply the reverse-engineering (RE) pro-

cess (discussed above) to ICs in order to detect HTs. Basically, the design/netlist

uncovered by RE is compared to an intended (golden) netlist. Since these approaches

are not only time-consuming, but destructive, they have been pursued the least for

HT detection. Their main use of RE has been to verify the Trojan-free chips used

in the golden model development [54].

Since all of the above have their own advantages and disadvantages, one pro-

posed direction is to apply each for the highest HT coverage. For example, post-

silicon, RE-based approaches can verify golden chips required for test-time and

run-time golden models. Functional and side-channel approaches can be used to

detect small and large Trojans respectively that were inserted during fabrication.

Run-time approaches can act as a last line of defense.

2.2 Timing Side-Channel Attacks on Cache and Countermeasures

In cache-timing side-channel attacks, the attacker measures some timing in-

formation related to cache behavior and correlates that with system’s underlying
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secret to learn it. There are different ways to categorize these attacks. We adopt

the method in [55]. Based on how the timing information is obtained, these at-

tacks fall into the following two categories: external interference-based attacks and

internal interference-based attacks.

2.2.1 External Interference-based Attacks

The attacks that fall in this categories happen because the attacker and the

encryption (victim) process share the same cache. In modern multi-core processors,

two processes can run on the same core concurrently. In this scenario, they certainly

share the same L1 cache belonging to that core. Or in a different scenario, two

processes run on two different cores. However, the last level of cache (LLC) is still

shared between these cores and therefore these two processes still share some part of

cache. Cache sharing results in interference between two processes, e.g., one’s cached

data being evicted by the other. This is the key feature of the external interference

attacks. As a result of the external interference, the attacker will observe some

timing variation depending on whether his data is evicted by the victim’s data or

not.

Prime+Probe Attack. Tromer et. al. proposed this kind of attacks [3]. A typical

attack setting is as follows (see also Figure 2.1). The attacker runs his program on

the same core with the victim process and they share some levels of cache (e.g., L1

cache). Then the following steps are repeated: 1) Prime: the entire cache is filled

with attacker’s data. 2) Idle: the attacker lets the victim process run. 3) Probe: the
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Figure 2.1: How Prime-Probe attack works. Each square represents a cache line.

The attacker’s data is shown as dark square while the victim’s lookup table is shown

as light square. The top figure shows the cache state after the prime step. The

bottom figure shows the cache state after idle step where two cache lines get evicted

by the victim process.

attacker measures the time to reload each set of his data. The reload time of each

cache set reflects whether the victim process accesses that cache set. From there,

system secret can be leaked.

For example, in [3], the authors correlate the predicate with the highest 4

bits of each byte of the key used in the AES encryption. With some sophisticated

statistical methods, the authors were able to recover full 128-bit key used in the

AES encryption after only 300 encryptions on Athlon64 and 16000 encryptions on

Pentium 4E. In [56], the authors used the predicate learned to attack address space

layout randomization (ASLR). ASLR is a mitigation against control-flow hijacking
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attack by randomizing the system’s virtual memory layout either every time a new

code execution starts or every time the system is booted. More specifically, it

randomizes the base address of important memory structures such as the code,

stack, and heap. As a result, the adversary has no clue about the virtual address of

relevant memory locations and thus cannot perform a control-flow hijacking attack.

The authors learn the ASLR scheme using the following way. They make sure that

a privileged code portion (such as the operating system’s system call handler) is

present within the cache by executing a system call. Then a designated set of user

space addresses are accessed and the system call is executed again. The time to

perform the system call is recorded. If the time is longer, then those accesses evict

the system call handler code from the cache. Because the structure of the cache is

known, parts of the virtual address of the system call handler code is revealed. By

repeating this, the ASLR scheme is eventually fully revealed. In [4], the authors

show that they are able to learn the specific keys pressed on the keyboard both for

GTK-based Linux user interfaces and Windows user interfaces within 1ms.

Note that the same scheme can also be applied to other types of cache. For

example, in [57, 58], authors apply Prime+Probe technique to instruction cache.

The underlying idea is similar. To learn if a specific instruction cache set has been

visited or not, the adversary first fills that cache set with his own instructions by

executing instructions that map to that cache set. Then the adversary lets the victim

process run. In the Probe step, the adversary re-executes all instructions executed

in the Prime step. If the re-execution takes longer, the adversary knows that that

particular instruction cache set has been accessed by the victim process. In [57], one

23



attack on the RSA encryption is shown. The authors were able to identify different

RSA phases as well as the operation sequence of sliding window exponentiation used

in RSA encryption. Around 200 scattered bits of 512-bit exponents can be leaked.

When Prime+Probe method is applied to the branch target buffer (BTB), we

call it Branch Prediction Attack (BPA). Although BTB is not a cache, we categorize

this kind of attacks as cache-based timing side-channel attacks because in modern

processors, BTB functions similarly to a set-associative cache storing the target

address of some previously taken conditional branches. When CPU is executing a

conditional branch, it first checks if the BTB has a match. If not, the branch is

predicted as not taken. CPU updates the BTB later If the branch turns out to be

taken indeed. The Prime step in this attack is to execute some conditional branches

that are all taken and are mapped to a given BTB set. The Probe step is to re-

execute these conditional branches. Depending on whether the Probe step is longer

or shorter, the adversary can learn whether there exist branch mispredictions due

to BTB misses and learning that reveals whether some conditional branches in the

victim process that are mapped to the same BTB set were taken or not. [5,59] shows

that the adversary can successfully break the RSA encryption algorithm using BPA.

In [60], authors show how to break the ASLR using BPA. The results show that

they can recover the kernel ASLR in about 60 ms when performed on Linux system.

Flush-Reload Attack In [1], the authors outline another method of attack called

Flush+Reload attack. The attacker shares the last-level of cache with the victim.

The attacker is interested in whether the victim accesses a specific memory ad-

dress. To learn this, he repeatedly performs the following steps: 1) Flush: the
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monitored memory address is evicted from the entire cache hierarchy, usually using

some architecture-dependent instruction. For example, clflush instruction on X86

architecture. 2) Idle: the attacker waits while the victim process is running and

using the cache. 3) Reload: the attacker reloads the monitored memory address. If

during the idle time, the victim has accessed the monitored line, then the monitored

line will be cached and consequently the reload time will be shorter than the case

where the victim has not accessed the monitored line.

Various information can be leaked subsequently. In [61], the adversaries can

learn the full 16-byte key used in an AES encryption after only 100 encryptions.

Similar results are obtained in [62], but note that the attack is also successful in a

cross-VM environment. In [63], the authors can recover secret keys of the secp256k1

curve, used in the Bitcoin protocol after observing only 25 signatures. Other suc-

cessful attacks include [64–68].

2.2.2 Internal Interference-based Attacks

In this kinds of attacks, the attacker will rely on the reuse of the cached data

within the victim process. Bernstein [2] initiated the work in this area. The basic

idea is to exploit the impact of the reused cached data on the total execution time

of the victim process. The entire execution time t can be affected by both inputs

and underlying secret based on some internal cache contentions. By correlating

the execution time with the underlying secret, the attacker can learn partial or full

secret data. The attack usually requires large amount of samples to be collected.
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Figure 2.2: An illustration of a cache line in Partition Lock cache.

In [2], 227 encryption of random packets are needed to learn the full key used in

AES encryption. Similar attacks have been also proposed in [69,70]

Note that there are other methods to categorize these attacks. For example,

Prime+Probe attack and its variant are often called access-driven attacks. Bern-

stein’s attack is often categorized as time-driven attack.

2.2.3 Hardware Countermeasures

Generally hardware-based mitigation approaches fall into three categories:

partition-based, randomization-based and timing source obscuring-based.

Partition-based approaches partition the cache into several parts, with each part

used by one process. For example, in [71], the concept of partitioned cache is in-

troduced. The author proposed to partition cache in such a way that no processes

share the same cache block. However, no implementation details were given. Such

a static partition usually does work well because it incurs heavy performance over-

head. In [72], the authors proposed to dynamically reserve cache lines for active

threads and prevents other co-executing threads from evicting reserved lines. The

performance overhead for 2-threaded workloads are around 1%. In [73], the authors

proposed to add instructions to ISA so that secure processes can lock a cache line

for its own uses. The modified cache line is shown in Figure 2.2. Each cache line
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contains one bit indicating whether the cache line is locked. It also includes ID

field which indicates the ID of the process that locks the cache line. If a cache line

is locked by a process, only that process can unlock it and no other processes can

ever use this cache line. The worst-case performance overhead was reported to be

20%. Similar ideas were introduced in [74]. In [75], the authors proposed to flush

the cache on a context switch, which isolates data shared between two processes.

However, it incurs extra overhead of flushing the cache. Usually partition-based

approaches defend external interference attacks because the attacker’s data cannot

be evicted by the victim process. However, these countermeasures are ineffective

against internal interference attacks and often incur heavy performance overhead.

Randomization-based approaches randomize the side-channel information with

the hope that the adversary cannot learn anything useful from the measurements.

In [76], the authors proposed to load a random nearby memory block to the cache

rather than the one on-demand during a cache-miss. In this way, the correlation

between access time and cache hits is reduced. In [77, 78], authors proposed to

replace a cache line in a random cache set when contention between victim and the

attacker happens. However, the above two methods are still vulnerable to internal

interference attacks.

Timing source obscuring-based approaches target at the timekeeping. [79]

proposed to add some random delay to the output of the RDSTC instruction, which

is used by most, if not all, cache-based timing SCAs. This adds noise to the attacker’s

measurement, making the attacker measurement much harder. In [80], the authors

proposed a system that can defend against timing-based side-channel attacks in
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a cloud setting. The system triplicates each cloud-resident guest VM and places

replicas so that the three replicas of a guest VM are no overlapped with those of

others. Then it uses the timing of I/O events at a VM’s replicas collectively to

determine the timings observed by each one or by an external observer. In this

way, the observed timing behaviors are similarly likely in the absence of any other

individual VM and are thus obscured. The major flaw of these approaches is that

they do not defend against an attacker who uses his own timekeeping sources.

2.3 Oblivious RAM

2.3.1 General Idea

It has been demonstrated that memory access patterns can leak very sensitive

information even if the underlying data is encrypted. For example, in [81], an attack

that exploits data access pattern made to an encrypted email repository is proposed.

The results show that with very little prior knowledge, the attack can disclose as

much as 80% of the search queries. To mitigate these attacks, oblivious RAM

(ORAM) has been proposed to conceal the actual access pattern from an adversary

who is observing memory traffic.

ORAM was first proposed by Goldreich et. al. in [82] to conceal the following

from adversaries observing memory traffics: (1) the locations of the items accessed,

(2) the type of the access (either read or write), (3) the relative order of all the

data accesses, and (4) how many requests are made to the same location. In their

original implementation, ORAM hides the access pattern through continuous shuf-
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Figure 2.3: An illustration of reading block “a”. In this ORAM, Z = 1 and L = 2.

fling, decryption and encryption operations and has heavy performance overhead.

Substantial progress has been made to make ORAM more efficient [83–87].

2.3.2 Path ORAM

The Path ORAM is proposed in [88] as a simple and efficient ORAM protocol.

In Path-ORAM, the memory is organized as a binary tree containing L + 1 levels

(with level 0 being the root and level L being the leaves) and 2L leaves. Each node

in the tree is called a bucket. Each bucket can hold Z data blocks. A data block

is analogous to a cache line, which is a fixed number of bytes of data. If a bucket

has less than Z real blocks, it is padded with dummy blocks to be size Z. Z is a

user-defined parameter and usually a small number suffices, such as Z = 4. Let

i ∈ {0, 1, . . . , 2L − 1} denote the ith leaf. Each leaf i will define a unique path from

the root to leaf i, denoted by P (i). Let P (i, l) denote the lth node on the path from

root to leaf i.

The client maintains two data structures locally. The stash is used to hold

blocks that overflow from the tree bucket on the remote storage. The position map
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is used to store the mapping between a block and a leaf node in the tree in the

remote storage. For example, positionMap[b]= i means that block b is mapped to

leaf i. The main invariant of Path ORAM is: at any time, a block is mapped to

a leaf bucket in the tree in the remote storage, uniformly random. That block is

either in the stash or in some bucket in the path from the root to the mapped leaf.

We show next how this invariant is maintained.

During initialization, the client’s stash is emptied. Every bucket in the re-

mote storage is initialized to contain encryptions of some dummy blocks. The

position map is filled with independent random numbers between 0 and 2L − 1.

Whenever an access op (either read or write) of a block b is made, the client first

looks up the position map to get the leaf that block b is mapped to, denoted by i

(i.e.positionMap[b]=i). Then according to the invariant, if block b exists on the

remote storage, it must be either in the stash or on the path P (i). Then each block

in the path P (i) is read into the stash and decrypted. At this point, if block b exists

on the remote storage, it must be in the stash. Then if op = read, block b is re-

turned, otherwise, it is updated. Next, block b is remapped to another leaf and the

position map is updated. As many blocks as possible in the stash are re-encrypted,

and written back to path P (i) in the order of leaf to root. A block b′ can be placed

at P (i, l) only if the path P (positionMap[b′]) intersects the path P (i) at level l.

This ensures that invariant is maintained. If a bucket in the path P (i) has less than

Z real blocks, it is padded with encrypted dummy blocks to be size Z. One example

of reading a data block in the Path ORAM is shown in Figure 2.3.
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Chapter 3: Reverse-engineering Based Hardware Trojan Detection

3.1 Introduction

More and more integrated circuit (IC) designers are outsourcing fabrication to

foundries and incorporating third-party intellectual property (IP) cores into their

designs. This practice helps to lower costs and reduce time-to-market pressure,

but can also lead to security problems such as malicious modifications to ICs, also

known as hardware Trojans (HTs). HTs can change IC functionality, reduce IC

reliability, leak valuable information from the IC, and even cause denial of service [8].

Depending on the applications, the consequences of HTs range from loss of profit if

used in consumer-electronic devices to life-threatening if used in military devices.

To reduce the risks associated with Trojans, researchers have proposed differ-

ent approaches to detect them. Test-time detection approaches [46–49] have drawn

the greatest amount of attention from researchers. In these approaches, functional

and/or side-channel behavior of suspect ICs are compared to a “golden model” that

represents the expected behavior of a Trojan-free IC. If the suspect IC deviates

sufficiently from the golden model, it is classified as being Trojan-infected. While

these approaches have met with some success, obtaining such golden models/data

is mostly an open problem.
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Motivation. Prior works such as [54] suggest that reverse-engineering (RE) be used

to identify Trojan-free ICs and verify the data used for the golden models. However,

our literature survey did not find any work describing how to do this accurately and

efficiently. Reverse-engineering is actually a very complex, error-prone, and time-

consuming process. It consists of 5 steps [89]: decapsulation, delayering, imaging,

annotation, and schematic creation. The first 3 steps essentially obtain images of the

physical layout for test ICs. The last 2 steps extract netlists for the circuit/design

based on the images. A naive approach to RE-based Trojan detection would apply

all 5 RE steps to extract netlists for comparison with a golden netlist, but this

approach is flawed. First, some Trojans (eg. parametric Trojans [45]) can actually

be missed by only comparing netlists. Second, the effort required by this naive

approach is unnecessarily excessive because generating the netlist via the last 2 RE

steps is time-consuming and requires manual input.

Contributions. In this Chapter, we propose a more efficient and robust RE ap-

proach for solving the above problem. In our approach, we avoid extracting netlists

altogether. Instead, we develop a machine learning approach that classifies ICs as

Trojan-free and Trojan-inserted based on features extracted from the IC images.

Our approach essentially eliminates the last two reverse-engineering (RE) steps 4-5,

which can save lots of unnecessary effort. The major features of our approach and

our contributions are as follows:

• To our knowledge, we propose the first IC classification scheme for hardware

Trojan (HT) detection based on reverse-engineering of chips without generat-
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ing a gate or transistor netlist. As stated above, this saves much effort.

• In our approach, we use images obtained from the imaging step of reverse-

engineering and extract features from them to characterize an IC’s physical

layout. We develop a Support Vectors Machine (SVM) approach that auto-

matically learns how to distinguish between expected and suspicious structures

in the ICs and ultimately classifies unknown ICs as Trojan-free or Trojan-

infected. Our method does not rely on a Trojan-free (golden) IC which is the

underlying assumption of many other approaches.

• Our approach depends heavily on several SVM modeling parameters as well

as algorithm parameters related to feature selection. We discuss how to select

these parameters in a way that makes our classification approach accurate

and robust to noise in the training data. Furthermore, our proposed features

account for fabrication and reverse-engineering induced variations that occur

within the ICs.

• We perform simulation experiments on 6 publicly available benchmarks, rang-

ing in size from 50 to over 100,000 gates. The results show that our method can

detect three different kinds of HTs (inserted transistors, deleted transistors,

and parametric changes) with very high accuracy. We also vary the modeling

and algorithm parameters to determine their impact on our method.

The rest of the chapter is organized as follows: Section 3.2 gives a brief review

of reverse-engineering, hardware Trojan characteristics and detection, and general

SVM. Section 3.3 defines the hardware Trojan detection problem we want to solve
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and discusses the motivation behind it. Section 3.4 explains our SVM-based Trojan

detection method in detail including challenges, feature selection, SVM implemen-

tation, parameter selection, and merits. In Section 3.5, experimental results are

discussed. In Section 3.6, we discuss the motivation behind the design-for-security

technique. Section 3.7 explains the design-for-security technique in greater detail.

Relevant experimental setup and results are shown in Section 3.8. Finally, Sec-

tion 5.5 concludes the paper.

3.2 Preliminary

3.2.1 Reverse Engineering

Reverse-engineering of an IC is the process of analyzing an IC’s internal struc-

tures, connections, etc. in order to determine how it was designed and how it

operates. RE is considered an important tool for learning how to build and improve

upon designs as well as proving Intellectual Property (IP) infringement. A typical

RE flow includes the following steps [89].

1. Decapsulation: The die is removed from its package.

2. Delayering : Each layer of the die is stripped off one at a time using chemical

methods while polishing the surface to keep it planar.

3. Imaging : Thousands of high-resolution images of each exposed layer are taken

using scanning electron microscope (SEM). The images are stitched together

to form a complete view of the layer using special software. Multiple layers
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are also aligned at this step so that contacts and vias are lined up with layers

above and below them.

4. Annotation: All structures in the device (interconnects, vias, transistors, etc.)

are annotated either manually or by using image recognition software [89].

5. Schematic creation, organization, and analysis: A hierarchical or flat netlist is

generated using the annotated images as well as public information (datasheets,

papers, etc.).

All of the above steps are time-consuming and error-prone. The first 3 steps essen-

tially extract images of the structures contained in the IC. Removing and planarizing

layers affect the structures in the exposed and lower layers, resulting in additional

noise in their IC structures. The last 2 steps are required for circuit/design ex-

traction and are also quite challenging. The annotation process and the schematic

creation/analysis often requires input from experienced analysts [89].

3.2.2 A Survey of Design-for-Trust Strategies

Design-time strategies aid test-time detection approaches [90]. They aim at

either preventing the insertion of Trojans or easier detection of Trojans. Very few

works have been proposed in this direction and we provide a survey of design-time

strategies in this section.

In [91], a new systematic design for Trojan test strategy is proposed. It iden-

tifies in the RTL code Trojan-vulnerable source code and replaces it with hardened

Trojan prevention and detection code. It also embeds some probe cells into the
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design. The goal is to make Trojan insertion harder.

In [92], an inverted voltage scheme is proposed to pronounce the behavior of

any undesirable logic. The authors claim this technique will better activate and

detect the malicious insertions in third party ICs. In [93], an efficient dummy flip-

flop insertion procedure is proposed to increase Trojan activity. To increase the

probability of Trojan activation during test-time, [94] proposes the insertion of scan

flip-flops. [95] maximizes circuit activity in specific regions of the IC while reducing

that in other regions to enhance side-channel analysis

3.3 Problem Statement and Motivation

Problem Statement. Assume we are given ICs from one or more untrusted foundries.

We want to determine which ICs are Trojan-free (TF) and which have Trojans

inserted (TI). We consider that there are three-types of TI cases possible:

• Trojan Addition (TA): These HTs add transistors, gates, and interconnects

into the original layout.

• Trojan Deletion (TD): These HTs delete transistors, gates, and interconnects

from the original layout.

• Trojan Parametric (TP): These HTs perform physical changes to the transis-

tors, gates, and interconnects of the original layout as suggested in [45].

Examples of TF, TA, TD, and TP are shown in Figure 3.1. Note that the above

problem can be viewed as an instance of the classification problem which is given
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Figure 3.1: Example of three kinds of trojans. SEM image of metal1 layer is shown.

as follows. Assume we have 2 classes of objects denoted by C0 and C1. Let each

object be represented by a feature vector x = (x1, . . . , xn) where xi denotes the ith

feature, xi ∈ R, and n denotes the # of features. Given an unknown object A, the

problem is to determine the correct class of A. In our case, objects are chips under

test and TF represents class C0 while the TI cases (TA, TD and TP) represent class

C1.

Motivation. As discussed in Section 2.1.2, prior works [54] suggest reverse-engineering

(RE)-based methods be used to identify Trojan-free ICs in order to develop the

golden models for other HT detection approaches. However, there has not been

any work devoted towards performing this classification. One can only assume that

papers in the literature would assume a golden netlist and naively apply all 5 RE
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Figure 3.2: Block diagram of our Trojan detection approach.

steps (see Section 3.2.1) to extract netlists from all unknown chips. Only data from

those chips with netlists that match the golden netlist would be included in the

golden model.

We feel that there are some issues with this naive approach. First, some

Trojans (eg. parametric Trojans) can actually be missed by only comparing netlists.

Second, the effort required by this naive approach is excessive. RE steps 4-5 are time-

consuming and require manual input for annotation and schematic read-back. In this

paper, our goal is to develop a more efficient and robust RE approach for solving

the above classification problem. In our approach, we avoid extracting netlists

altogether. Instead, we develop a one-class SVM-based approach that makes a

classification decision based on features extracted from the IC images. The key

features of our approach are ability to detect all the above Trojan cases in an efficient

and automated fashion. Details of our approach and challenges we overcome are

discussed in the next section.

3.4 SVM-based Trojan Detection

Assumptions. As discussed above, we wish to solve the following classification prob-

lem: Given N ICs, classify each as Trojan-free (TF) or Trojan-inserted (TI). To

perform the classification, we assume the following. We assume that the original de-
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sign is Trojan-free and Trojans have only been inserted during fabrication. Formal

verification and trusted (in-house) design are two approaches that guarantee this.

We also assume that we have the original physical layout (referred to as the golden

layout) for all the layers of the IC. Since the designer would ultimately come up

with this layout and send it to the foundry, it is reasonable to assume we have this.

Basic idea. Our approach utilizes the first 3 steps of reverse-engineering (Decapsula-

tion, Delayering, and Imaging) to obtain internal images of each layer (poly, metal1,

etc.) for the ICs. By omitting reverse-engineering (RE) steps 4-5, we save lots

of unnecessary effort. The images recovered represent the physical structures and

layout of the ICs. Then we classify the ICs using these images and support vector

machines (see below). In contrast to the naive RE approach which requires manual

effort, our approach is fully automated and more efficient in terms of computational

and storage resources.

Classification via SVM. The key of our approach is to solve a classification problem

which is defined in Section 3.3. There are many machine learning approaches to

perform classification. Our approach will make use of the popular Support Vector

Machine (SVM) [96] approach. Classification via SVM usually involves two phases:

• Training: In this phase, SVM takes as input training dataset DST = {(xj, yj) |

j = 1, . . . , |DST |} where xj and yj are the jth feature vector and its class label

(C0 or C1). An optimization problem that relies on the dot product of feature

vectors is solved to find a linear decision boundary ω which separates the

feature vectors of class C0 from class C1 so that as many objects from DST as
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possible are correctly classified.

• Classification: This phase takes as input a feature vector x∗ of an unknown

object and outputs its predicted class based on which side of the decision

boundary ω that x∗ resides.

Challenges. The main component of our approach is SVM. Applying standard SVM

discussed above to our problem has its own set of unique challenges:

1. SVM features. Selecting relevant features for SVM-based classification is im-

portant for accuracy and computational efficiency. In our case, we need to

extract features (see feature vectors defined in Section 3.3) from the IC im-

ages obtained from step 3 of the RE process. These feature vectors would be

used during the classification process. Choosing too many features will result

in large overheads. Also, the features selected must contain enough relevant in-

formation to accurately classify the ICs as Trojan-free (TF) or Trojan-inserted

(TI). In our approach, we use a heuristic for selecting features. Features are

determined by comparing physical layouts in the RE images with the golden

layout. Such features are appropriate because they give us some estimate for

how much deviation from the golden layout exists in the ICs. More details on

the features are discussed in Section 3.4.1.

2. Fabrication and RE-induced variations. Differences between the ICs are bound

to exist because of random fabrication variations. Furthermore, the RE pro-

cess (delayering) is also imperfect and could result in additional noise in the

IC structures. A naive matching of the designed layout with the RE layout
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would always result in a mismatch due to the existence of variations. The

challenge is to detect the Trojans while accounting for the variations caused

by manufacturing and RE process. Our SVM classifier must be able to distin-

guish between these random differences and the systematic differences caused

by Trojan insertion. In our approach, we estimate how much random noise

is to be expected between the RE layout and the golden layout. Noise mar-

gins are introduced when extracting feature vectors. More details are given in

Section 3.4.1.

3. SVM Training. Traditional two-class SVM problem requires training samples

from both classes to correctly train the classifier. However, in our HT detection

problem (as defined in Section 3.3), we cannot know in advance which ICs

are Trojan-free and which are Trojan-inserted, nor do we know what kind of

modifications the attackers will make to those ICs. This leads to a lack of

traning samples from one class. We overcome this by using a one-class SVM

approach. More details are given in Section 3.4.2.

4. Computational Effort. Another general issue that we encounter is that ex-

tracting features, training the SVM, and performing classification for the en-

tire layout can be demanding in terms of computational effort and storage.

Rather, in our approach we simplify each of these steps by breaking them up

into smaller sub-problems. Specifically, we divide the IC images into smaller

non-overlapping grids (see Figure 3.3). Then we independently extract features

and classify each grid as Trojan-free (TF) or Trojan-inserted (TI) separately.
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This griddingapproach is advantageous because it allows us to parallelize or

distribute the processing for each grid. A final classification decision for the

entire IC (TF or TI) is made by examining the classes determined for its grids.

Overall Algorithm. Our overall approach is summarized in the block diagram shown

in Figure 3.2. We take as input the golden layout, N chips to classify, and parameter

values for grid size, noise margin dnm, etc. The N chips undergo only first 3 RE

steps, which result in images of each layer for all N chips. The next step is to

divide the images for each layer of all N chips into non-overlapping grids. Features

are extracted for all N chips for each grid in each layer. We train the classifier

and obtain a decision boundary for each layer using a subset of the chips (possibly

even just one chip). After training, we classify the grids in the each layer of all the

N chips as Trojan-free (TF) or Trojan-inserted (TI) based on the ν-SVM decision

boundaries of each layer. Finally, we determine a label for each chip based on these

grid classifications.

3.4.1 Feature Selection

As discussed above, we break the images (layouts) into smaller non-overlapping

grids as shown in Figure 3.3. Features are extracted from each grid by comparing

the corresponding grids of the IC under test (ICUT) with the golden layouts grids

(which we know from design). Note it is assumed that step 3 of the RE process (see

Section 3.2.1) has already properly aligned the images. We will experiment with

different grid sizes in Section 3.5.
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Figure 3.4: Golden layout and SEM image of

real layout within one grid. Solid rectangle

and curve denote Z and Y respectively while

rectangles in dashed line are Zin and Zout.

We illustrate many of our features with the help of Figure 3.4. The RE image

and golden layout of one grid are shown. Let Y denote the structures in the layout

image obtained by reverse-engineering, which is the curly shape in the figure. Let Z

denote the structures in the golden layout, which is the solid rectangle in the middle.

Let Zin be Z scaled by a margin dnm. Let Zout be Z expanded by a margin dnm.

Zin and Zout correspond to two rectangles in dashed lines. dnm represents noise in

fabrication and reverse-engineering process that is thought to be reasonable. Let Z

denote the complement of Z, where the universal set is the set containing all the

pixels in the grid (hence Z is the set of pixels outside Z).

We select five features which are determined based on area and centroid dif-

ferences between the RE and golden layouts.

Area differences. Our first 3 features are obtained by calculating the intersection of

different areas between the golden layout and reverse-engineered layout. They are
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given by the following equations

f1 =
A(Y ∩ Zin)

A(Zin)
(3.1)

f2 =1− A(Y ∩ Zout)
A(Y )

(3.2)

f3 =1− A(Y ∩ Zout)
A(Zout)

(3.3)

where A(Z) denotes the area of Z. Equation (3.1) captures how much from the

golden layout is missing in the reverse-engineered layout while Equation (3.2) and (3.3)

concentrate on whether there is anything additional in the reverse-engineered layout

compared to the golden layout. The values of these features should be 1 if no mod-

ifications exist. When A(Zin) = 0, which means there is no structure at all in the

grid, we set f1 = 1 meaning there is no deletion because there is nothing to delete.

When A(Y ) = 0 or A(Zout) = 0, which means either there is no addition or there

is no way to add because a grid of golden layout is entirely filled with structure, we

set f2 = 0 or f3 = 0 respectively.

The reason that we expand and shrink original structure by a margin and

use them to get first three features is based on the observation that process varia-

tions and noises in RE process tend to produce imperfections only outside Zin and

inside Zout. Thus, any differences within these areas are regarded as acceptable

while differences outside these areas are suspicious. The value of dnm can be rea-

sonably determined by performing simulations of the fabrication and RE processes.

In Section 3.5.2, we shall vary this parameter to see its effects.

Centroid differences. A centroid is defined as the geometric center of a mass (eg. see

Figure 3.5). We calculate features based on the difference between the centroid of
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(a) (b) (c)

Figure 3.5: Illustration of centroid and use of centroid difference to distinguish two

cases. The cross and open dot denote the centroid of structures in the golden layout

and real layout respectively.

the golden layout and ICUT layout because not only do area differences matter, but

where these differences occur also matters. Figure 3.5 explains this in detail. The

solid rectangle in the middle is the structure in the golden layout while the shaded

area is the structure in the RE image for the ICUT. In both cases, A(Y ) is the same.

But in Figure 3.5(b), Y is more biased to the left which indicates malicious deletion

of the right portion. In Figure 3.5(c), Y is more towards the center which indicates

random reverse-engineering and fabrication noise. Both cases will produce the same

f1, f2, f3, but centroids will capture the difference.

Equations for the centroid difference features are as follows

f4 =
|CX(Z)− CX(Y )|

grid′s length
(3.4)

f5 =
|CY (Z)− CY (Y )|
grid′s height

(3.5)

where CX(Z) and CY (Z) denote the x and y coordinate of Z’s centroid.
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3.4.2 SVM implementation

One issue that arises is that we do not have labels for training samples for

either class in our HT detection problem because we do not know which IC grids

are Trojan-infested, nor do we know what kind of modifications are made. To

overcome this, we make a simplifying assumption and use a special implementation

called one-class ν-SVM [97].

The assumption is as follows: we assume that most of the IC grids are samples

of the Trojan-free (TF) class. This is reasonable because Trojans should only infect

a small portion of each IC. Otherwise, if the Trojan was large, it would be easily

detectable by other HT detection methods (eg. functional and side-channel analy-

sis). Then one-class SVM will modify the optimization problem to find a decision

boundary ω that closely surrounds those training samples. Given a new sample, it

will then be classified as Trojan-free or Trojan-infested depending on which side of

the boundary it lies in. [98] proposes different decision boundaries like hyperplane,

hypersphere, and hyperellipsoid. In our Trojan detection context, we will use hy-

perplane because it has a shorter run time and its performance is comparable to the

other decision boundaries according to our experimental results.

One issue with this assumption/approach is that a small portion of the grids/samples

may actually be Trojan-infested. Hence the boundary chosen by one-class SVM

will include these samples (outliers) which will result in misclassification (see Fig-

ure 3.6(a)). ν-SVM introduces a parameter ν to limit the number of outlying samples

(in our case TI samples) that are contained within the boundary. This makes our
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(a) Without ν controlling fraction of outliers (b) With ν controlling fraction of outliers

Figure 3.6: Parameter ν will control fraction of outliers. Those outliers in the

training samples will not be included in the decision boundary with proper choice

of ν.

approach more robust to imperfections in the training set labels and should increase

the classification accuracy (see Figure 3.6(b)).

The main details and formulation of the ν-SVM approach are discussed below.

ν-SVM Training and Classification. [97] gives a detailed algorithm of one-class ν-

SVM. It introduces a parameter ν ∈ (0, 1) which bounds the chance of accepting

outlier sample points. We summarize it below in the context of our IC classification

problem.

The first step is training. We assume we have a training dataset DST =

{(xj, yj) | j = 1, . . . ,m} where xj and yj are the jth grid’s feature vector and its

class label (TF). We determine a hyperplane (boundary) whose normal vector is

ω to separate as many training samples (grids) as possible from the origin with a

maximum margin ρ. Errors (representing samples lying on the same side of the
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hyperplane as the origin does) are allowed and are denoted by slack variables ξi.

To find such a hyperplane, one needs to solve the following quadratic programming

problem:

min
ω∈F, ρ∈R, ξ∈Rm

1

2
‖ω‖2 +

1

νm

n∑
i=1

ξi − ρ (3.6)

subject to

ω · xi ≥ ρ− ξi, ξi ≥ 0, i = 1, 2, . . . ,m

In the above, ω and ρ are the normal and bias of the hyperplane respectively;

F is the input feature space; ξi are slack variables; m is the number of training

samples; ν is a modeling parameter. In the above optimization problem, the ν

parameter acts as a weighting term for the slack variables. Smaller (larger) ν results

in less(more) training samples being on the same side of hyperplane as the origin is.

Equation (3.6) is solved for ω and ρ which define the hyperplane.

The next step is classification. Let x∗ denote a feature vector of an unknown

grid that we wish to classify as TF or TI. f(x∗) is a function that outputs a label

for x∗ given by

f(x∗) = sgn(ω · x∗ − ρ) (3.7)

Intuitively, the output of f is based on which side of the hyperplane x∗ falls on in

the input feature space F . sgn(x) is the sign function which is 1 for all x > 0 and

−1 elsewhere. In our case, an output of 1 and -1 corresponds to the TF and TI class

labels respectively.

Parameter values. There are several parameters that we need to decide before
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solving the above optimization problem:

• ν parameter: [97] proves that ν is the upper bound on the fraction of outliers.

This means if we know the fraction of grids that are maliciously modified,

we can set the value of ν appropriately but the problem is that the fraction

is not known beforehand. If we choose ν to be fairly small, say 1e-8, some

outliers may not be discovered, causing a high false positive rate (failure to

detect HTs). On the other hand, if we choose ν to be a large number, say

0.5, some Trojan-free (TF) grids may be mislabeled as Trojan-inserted (TI),

resulting in a high false negative rate (false alarm of HTs). Our observation

is that Trojans are more likely to modify polysilicon layer and interconnection

layers while only a small portion of via layers may be modified. Thus, we can

choose relatively large ν for polysilicon and interconnect layers while keeping

ν small for via layers.

Also, ν should be varied with the number of training samples/grids. For

example, if ν is so small that ν × #grids < 1, all outliers will be included

within the decision boundary which will lead to failure in detecting Trojans.

In practice, we found that a good value for ν can be obtained by setting

ν × #grids equal to about 10 to 15, which results in 10 or 15 outliers being

kept outside the boundary.

• Kernel function and parameters: The hyperplane decision boundary does not

always give the best result. To have a more flexible way of choosing decision

boundary, we introduce the use of kernel functions. The idea is to map the
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feature vectors from the input space F to a high-dimensional feature space

H and use a hyperplane decision boundary in the high-dimensional space to

separate most of the training samples from the origin. The decision boundary

in the original input space, which is the pre-image of that hyperplane, can

therefore take on many forms. The corresponding optimization problem can

be written as follows:

min
ω∈H, ρ∈R, ξ∈Rm

1

2
‖ω‖2 +

1

νm

n∑
i=1

ξi − ρ (3.8)

subject to

ω · Φ(xi) ≥ ρ− ξi, ξi ≥ 0, i = 1, 2, . . . ,m

where Φ is a map of feature vectors from input feature space F to high dimen-

sional feature space H and other parameters are the same as Equation (3.6).

The label of an unknown vector x∗ is given by:

f(x∗) = sgn(ω · Φ(x∗)− ρ) (3.9)

The problem is how to find such a mapping. Since the optimization problem

above only requires dot products between feature vectors, we can design the

mapping in such a way that the dot products in the high dimensional space can

be computed in the original input space using a kernel function [96] k(x,y)

defined as follows. Note that x and y are two vectors in the original input

space F .
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k(x,y) = (Φ(x) · Φ(y)) (3.10)

So instead of mapping our data via Φ and computing the dot products in a

high dimensional space, we do it in one step, leaving the mapping completely

implicit. In fact in the end we do not even need to know Φ, all we need to

know is how to compute the dot products via a kernel function.

In [99], the author proposes four kernel functions such as gaussian and polyno-

mial. Our results show that polynomial kernel function gives the best result.

Thus we will use polynomial kernel function of the following form:

k(x,y) = (γx · y)d (3.11)

where γ is a parameter whose value can be decided by cross validation. In this

paper, we use the default value in LIBSVM where γ = 1/#features. d is the

degree of polynomial. Too large d will cause the problem of overfitting while

too small d will cause large training error. In practice, we found that d = 5

kept a good balance between training error and real error.

3.4.3 Final Classification

The final classification for each chip is decided by looking at the number of

grids classified as Trojan-Inserted (TI) and their location. We do not classify a chip

as TI if it has only a few sparse TI grids. Rather, we assume that in order for the

chip to be classified at TI there must be at least n neighboring TI classified grids
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in the chip. Neighboring grids can be defined within layers (horizontally adjacent

grids) and between neighboring IC layers (vertically adjacent grids). This is based

on the observation that malicious modifications tend to be continuous. They are

either connected in some way on one layer or connected to some other malicious

modifications through neighboring layers. The maximum number of connected neg-

ative grids gives us a notion of how large deviations from the golden layout there

are in the chip under test.

3.4.4 Merits of the Proposed Approach

Our proposed approach is noteworthy for several reasons:

• In contrast to the naive approach (Section 3.3), we eliminate RE steps 4 and

5 which are not only very excessive, but also may require manual effort. In

contrast, our approach is fully automated and considerably less expensive since

we do not need to obtain an entire netlist for each chip. Furthermore, since

our approach doesn’t use the netlists for detection, we may also be able to

detect parametric Trojans.

• Another interesting feature of our approach is how we divide the classification

into smaller sub-problems. This allows parallelizable feature extraction and

SVM classification of grids for very fast/distributed computations.

• Finally, our approach accounts for noise in the RE ICs in the SVM training

phase. The noise margins we employ in creating the features allows us to

intelligently distinguish between differences in the ICs caused by fabrication
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and RE variations vs. systematic changes caused by an HT. Furthermore,

ν-SVM makes our approach tunable (via ν parameter) to outliers that might

exist in the training samples.

On one final note, we have only proposed using this our approach to build a golden

model for other HT detection approaches because reverse-engineering is destructive.

However, in the future, if less destructive methods are discovered to obtain images

for one or more IC layers, our approach could also be applied to perform Trojan

detection for malicious additions, deletions, and parametric changes. Our SVM-

based approach would provide better coverage of HTs than other existing test-time

methods (functional cannot detect parametric changes while side-channel analysis

cannot detect small Trojans).

3.5 Trojan Detection Experiments and Results

3.5.1 Experiment Setup

Benchmarks. We tested our approach on 6 publicly available benchmarks(from

ISCAS89 and ITC99). They were all synthesized using Cadence RTL Compiler with

Synopsys 90nm Generic Library and placed and routed with Cadence Encounter.

Reports from Cadence tool showed that these benchmarks have a gate count ranging

from 57 gates for s27 to 122,559 for b18 (see Table 3.1).

Golden layout extraction. The golden layout was then obtained by GDSII file gen-

erated by Cadence Encounter tool. This file was later parsed by a Matlab script and

used to generate a binary image for each layer. Each pixel in the image represents
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Table 3.1: Benchmarks used in the experiments.

Benchmarks #gates Source #training chips Training Time(s)

s27 57 ISCAS89 20 121

s298 283 ISCAS89 5 175

s5378 3455 ISCAS89 1 351

s15850 10984 ISCAS89 1 1032

s38417 30347 ISCAS89 1 3055

b18 122559 ITC99 1 13054

5nm in reality. ’1’ in the image denotes there are structures at that position in the

golden layout while ’0’ denotes that there is nothing in the golden layout.

Trojan insertion. For each benchmark, we implemented three kinds of malicious

modifications. We randomly duplicated one component, deleted one component

and selected one gate and doubled its width. We will refer to these three modifi-

cations as Trojan addition(TA), Trojan deletion(TD) and Trojan parametric(TP).

We will refer to original Trojan-free design as TF. In our experiments, we simulated

fabrication and reverse-engineering noise (see below) for 10 “sample” chips of each

type (TF, TA, etc.). Note that in the modifications made to 10 sample chips of each

type, the same gate was added, deleted or altered but the noise was different.

ICUT generation and noise. Using the same method as golden layout extraction, we

generated binary images for these modified designs. To simulate process variations

in fabrication and reverse-engineering, we added some random noise to these binary

images. Figure 3.7 shows the noise. Those images with noise would be used as SEM

images of ICUT.
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Table 3.2: Chip classification accuracy rate averaged over ten trials.

Benchmark TF TA TD TP

s27 100% 100% 100% 100%

s298 100% 100% 100% 100%

s280 100% 100% 100% 100%

s15850 100% 100% 100% 100%

s38417 100% 100% 100% 100%

b18 100% 100% 100% 100%

Table 3.3: Chip classification accuracy rate for ten s298 chips with varying ν.

ν TF TA TD TP

5e-4 100% 9% 6% 0%

2e-3 100% 98% 94% 82%

7e-3 100% 100% 100% 100%

2e-2 54% 100% 100% 100%

5e-2 0% 100% 100% 100%

SVM training. In our experiments, we use the LIBSVM [100] as the tool to solve

ν-SVM optimization problem (Equation (3.8)).

Model and algorithm parameters. We used polynomial kernel function defined by

Eqation (3.11) and chose degree d = 5. We used the default in LIBSVM γ = 0.2.

We varied ν according to the number of grids per layer in the design so that ν ×#

grids is around 10. We set the grid size discussed in Section 3.4 to be 160×160 pixels

(800 × 800 nm in reality), which is 20λ × 20λ. We chose the threshold on number

of connected negative grids as n = 2. We set dnm = 8 (note that by examining the
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Figure 3.7: Simulation of process variations in reverse-engineering process

golden layout images and ones with noise, we could estimate that the value of noise

margin dnm defined in Section 3.4.1 is around 10 pixels). These parameters were

chosen because they gave the best results according to our previous experiments.

Experiments and results recorded. We conducted four experiments. The first one

was to test our method’s ability to detect HTs using the above parameters. We

selected 1˜20 chips (shown in Table 3.1) randomly from TF, TA, TD and TP chips

and used them as training samples. The test samples consisted of 10 TF, 10 TA,

10 TD and 10 TP chips. Training phase was then conducted and test samples were

classified as Trojan-free or Trojan-infested. To get a notion of the runtime of the al-

gorithm, we record the training time for one case of each benchmark. Accuracy rate

defined in Equation (3.12) was recorded for each case. This training and classifica-

tion process was repeated for 10 trials and accuracy rate was averaged as shown in

Equation (3.12). The difference between ten trials was samples chosen for training.
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racc =
#mislabeled chips

#chips under test
(3.12)

In the second, third and fourth experiments, we varied three different parame-

ters, namely ν, grid size g, and noise margin dnm for s298 benchmark while keeping

everything else the same as the first experiment. In addition to accuracy rate, we

also recorded the false negative/positive rate of classification of all the grids given

by:

f− =
#false negative grids

#true positive grids + #false negative grids
(3.13)

f+ =
#false positive grids

#true negative grids + #false positive grids
(3.14)

3.5.2 Results and Discussion

Results of the first experiment are listed in Table 3.2. They demonstrate that

our method can detect three kinds of malicious modifications, including malicious

addition, deletion and parametric changes, with high accuracy rate while recognizing

Trojan-free chips reliably.

Results of the second experiment are shown in Table 3.3. Note that s298 has

1936 grids per layer for grid size 20λ×20λ. The results show that when ν is very small

(ν×#grids < 5), we cannot detect Trojans very well because # of outliers identified

in the training samples is small. Therefore most of outliers in training samples will

be mislabeled as positive. In the classification phase, many negative samples whose

feature vectors are similar to positive samples will be mislabeled, resulting in failure
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Table 3.4: Average false negative rate f−, false positive rate f+ and chip classification

accuracy racc for ten s298 chips of four kinds with varying grid size.

Gridsize
TF TA TD TP

f− f+ racc f− f+ racc f− f+ racc f− f+ racc

10λ× 10λ 0.043% - 78% 0.041% 5.8% 100% 0.039% 9.8% 100% 0.037% 1.7% 100%

20λ× 20λ 0.037% - 100% 0.041% 6.5% 100% 0.034% 14.5% 100% 0.035% 10.3% 100%

30λ× 30λ 0.031% - 100% 0.023% 5.2% 100% 0.027% 36.5% 100% 0.028% 19.7% 100%

Table 3.5: Average false negative rate f−, false positive rate f+ and chip classification

accuracy racc for ten s298 chips of four kinds with varying noise margin values.

Noise Margin TF TA TD TP

(Pixels) f− f+ racc f− f+ racc f− f+ racc f− f+ racc

0 0.42% - 84% 0.31% 8.18% 100% 0.42% 82.8% 92% 0.33% 21.8% 100%

8 0.037% - 100% 0.042% 7.52% 100% 0.037% 13.6% 100% 0.036% 10.6% 100%

16 0.036% - 100% 0.071% 3.41% 100% 0.043% 16.9% 100% 0.071% 3.19% 100%

24 0.30% - 96% 0.18% 6.65% 100% 0.28% 24.9% 96% 0.16% 11.6% 100%

30 0.81% - 63% 0.28% 6.81% 100% 0.45% 83.7% 54% 0.36% 87.8% 18%

to detect Trojans. Detection of parametric Trojans is extremely hard because their

modifications are very small and their feature vectors are very similar to Trojan-

free grids. On the contrary, when ν is too large, the decision boundary surrounds

those true positive training samples tightly and even some positive samples may be

mislabeled. This leads to detection of all the Trojans but also causes false alarms

(which is indicated by a failure to detect all Trojan-free chips reliably). The results

suggest that ν ×#grids should be around 10 to 15 to get the best result.
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Results of the third experiment are shown in Table 3.4. The results reveal that

as grid size increased from 10λ×10λ to 30λ×30λ, the false negative rate decreased.

This is because when the grid size is small, the denominator in Equation (3.1), (3.2)

and (3.3) tend to be small, causing it to be more sensitive to noise. Furthermore,

when the grid size gets smaller, total number of grids will be larger but ν remains

the same, so there may be more grids mislabeled as outliers. When grid size is equal

to 10λ × 10λ, more false negative grids existed and were connected, giving rise to

false alarm in 4 out of 10 TF chips. On the other hand, when grid size increased, the

false positive rate increased. This is because when grid size is large, the method is

less sensitive to noise and small modifications within a grid. In the worst case, there

may be so many false positive grids that negative grids are not connected, leading

failure to detect Trojans. Moreover, when the grid size gets larger, the number of

grids that contain malicious modifications gets smaller. When this number is equal

to one, we cannot detect the Trojan at all. Thus, large grid size does not work for

small Trojans. Therefore, we concluded from the results that grid size could neither

be too small or too large.

Results of the fourth experiment are listed in Table 3.5. Results showed that

our approach worked the best when the value of noise margin was close to its true

value(when it was 8). However, when the value of noise margin deviated from its

true value slightly (when dnm = 16, 24), the results were only slightly worse. This

is actually good because we do not need to accurately estimate the true value of

noise margin, which is almost impossible to be done precisely. We just need to pick

a reasonable guess and our approach would work.
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In summary, the results above show that our proposed method can detect

HTs with high accuracy rate if parameters are chosen correctly. The SVM modeling

parameter ν should be decided according to the number of grids per layer. When

the grid size g = 20λ × 20λ and noise margin dnm is close to its true value, results

are the best. However, if dnm deviates a little from its true value, results are only

slightly worse.

3.6 Design-for-Security: Motivation

Motivation. As shown in Section 3.5, our detection approach can achieve very high

detection accuracy even with one training chip and does not require the existence

of a golden chip. Thus, we will use it as our post-manufacturing hardware Trojan

detection method. We are interested in finding any design-time strategies that can

make detection of Trojans easier using that method.

As a motivating example, we choose one benchmark, s298, from ISCAS89 [101].

We select two subsets of standard cells from Synopsys 90nm generic library, namely

{DFFX1, INVX4, NAND2X1, NOR2X0} and {DFFX1, INVX2, NAND2X4, NOR2X2}.

We synthesize the benchmark using these two subsets respectively, and generate two

synthesized designs. For each design, we randomly select one standard cell from it as

attack target and make several malicious modifications including structure deletion

and addition to that target at the layout level. These modified designs will serve as

the Trojan-infected designs. In total, for each design, random selection of the attack

target is done 10 times, and each time 10 different modifications are applied to it,
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Table 3.6: Trojan miss rate, false positive rate, area and leakage power values of

two benchmarks. Numbers in parenthesis are ratios of values in two designs.

TMR (%) FPR (%) Area (µm2) Power (nW)

Design 1 33.14 (1.41X) 0.35 1167 6622

Design 2 23.55 0.43 (1.21X) 1403 (1.20X) 9122 (1.38X)

making the total number of Trojan designs 100 for each synthesized design. We

then apply training and classification techniques introduced in [42] to both designs.

The training is done on 5 Trojan-free chips. After classification of each grid in the

IC is done, Trojan Miss Rate (TMR) and False Positive Rate (FPR) defined below

averaged over 100 Trojan designs are recorded. The area and leakage power are

also reported in Table 3.6. Note that no timing constraints are specified during the

synthesis.

TMR =
#grids with malicious modifications and are NOT detected

#grids that have malicious modifications
(3.15)

FPR =
#grids without malicious modifications but are mislabeled

#grids that have no malicious modifications
(3.16)

This table shows that two designs have significant difference in Trojan miss

rate. In general, we can detect 41% more malicious modifications made to the second

design than those made to the first design. However, this does not come for free.

Design 2 also has a higher false positive rate and incurs 20% overhead in area and

leakage power. We summarize our findings from the above motivating example:

• Malicious modifications made to some standard cells in a given library may be

easier to be detected than those made to other standard cells. Put in another

way, some standard cells are more sensitive to malicious modifications and are
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thus favored over others in terms of Trojan detection.

• Though design 2 has a higher false positive rate (FPR) which is 0.43%, it is

negligible. Moreover, since we intend to use the technique to identify golden

chips, what is more important is to decrease the Trojan miss rate, which is

also the false negative rate. Because false positive rate and false negative rate

cannot be decreased at the same time, we will neglect FPR and only focus on

TMR.

• The increase in Trojan detection accuracy usually leads to extra area/power

overhead.

This motivates us to find a ’best’ subset of standard cells such that if the circuit

is synthesized on it, detection of Trojans using [42] will be the most accurate while

area/power/timing overheads are acceptable. However, we do not want to write our

own EDA tool because it is tedious and error-prone. Instead, we are interested in

modifying existing EDA tool flow to make it security-aware so that our approach

can be readily used. We will define this problem formally next.

Problem Definition. Given a technology library l consisting of a set of n standard

cells such that l = {C1, C2, . . . , Cn} , a circuit in the form of RTL code or netlist

denoted by d, an area upper bound Aup, leakage power upper bound Pup and some

timing constraints t1, t2, . . ., find a subset of l, namely ls = {Cs1 , Cs2 , . . . , Csi}, such

that when we synthesize d on ls, malicious modifications made to it will be the easiest

to be detected (among all possible subsets ls) given that the following constraints
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Figure 3.8: 16 Primitive Structures

Standard Cell CTMR TMR

NAND2X0 36.08% 27.32%

NAND2X1 43.08% 39.33%

NAND2X2 38.31% 32.83%

NAND2X4 33.18% 25.38%

Table 3.7: CTMR and actual Trojan miss rate of some standard cells

are met:

ls is universal, t1, t2, . . . are satisfied

area ≤ Aup, leakage power ≤ Pup (3.17)

Challenges. Note that the above problem is actually an optimization problem where

the possible solution space is the power set (the set of all subsets) of l, the objective

is to maximize Trojan detection accuracy and the constraints are defined by (3.17).

We argue that the following challenges have to be addressed before solving the above

problem.

• The objective function is vague. We have to define mathematically Trojan

detection accuracy.
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• In order to find the best subset of standard cells, a characterization of each

standard cell has to be done.

• The possible solution space is exponential. For example, saed90nm library

has 340 standard cells. Thus, its power set contains 2340 = 2.23 × 10102 ele-

ments. Moreover, for each possible solution, we need to run the entire synthe-

sis flow to estimate the area, power, etc. thereby making the approach highly

complicated. Obviously, exhaustive search is computationally prohibited and

heuristics are needed.

3.7 Design-for-Security: Implementation

3.7.1 Characterization of Each Standard Cell

Before proposing our method of standard cell selection, we first investigate

what causes the difference in sensitivity to malicious modifications between differ-

ent standard cells. Reverse-engineering based Trojan detection approaches such

as [42] usually extracts several features like centroid difference, area of difference,

etc. from each grid. Since different primitive structures (such as ’T’ shape, ’L’

shape, ’F’ shape, etc.) in a grid have different centroid patterns, they may have

different sensitivities to malicious modifications. Therefore, in order to characterize

the sensitivity of each standard cell, we have to characterize its building blocks,

which are these primitive structures first.

We identify 16 possible structures (shown in Figure 3.8) in a grid as primitives.
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Note that though these 16 primitives are not exhaustive, our experiments show that

over 90% of the grids contain exactly one of them. Therefore, they are a good

representative of primitive structures. We will synthesize several benchmarks, apply

gridding and use the method in [42] to train one classifier for each benchmarks. We

say a grid is of type i(1 ≤ i ≤ 16) if it contains only ith primitive. Otherwise we say

it is of type 17. After training, we make some malicious deletions and additions to

these benchmarks and use the classifier to classify each grid. We then calculate the

Trojan Miss Rate (TMR) defined by Eqn (3.15) for each type of the grid respectively.

We let pi (1 ≤ i ≤ 17) denote the TMR of grid type i.

After the characterization of each primitive structure is done, given a technol-

ogy library, we can apply the same gridding to each standard cell and label each

grid as 1-17 using the same way as above. Say that there are ni grids of type

i (1 ≤ i ≤ 17) in the standard cell. We define below CTMR (Cell Trojan Miss

Rate) which measures the average probability that a malicious modification is not

detected if it happens at one random grid of the cell.

CTMR =

∑17
i=1 ni × pi∑17

i=1 ni
(3.18)

By definition, the smaller CTMR a cell has, the easier it is to detect malicious

modifications made to it. To see this, we measure the actual Trojan miss rate of

all NAND2 standard cells by synthesizing a NAND2 gate using these standard cells

respectively, making some malicious modifications to the synthesized design and

calculating TMR defined by Eqn (3.15). We also calculate CTMR of these standard

cells and list them in Table 3.7. The results indicate that CTMR is a great metric
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Figure 3.9: Overall Block Diagram of Our Proposed Method

for cell’s sensitivity to malicious modifications.

3.7.2 Mathematical Description of The Objective Function

Now that we have a good metric for cell’s sensitivity to malicious modifications,

we can define a design’s sensitivity accordingly. Suppose a circuit is synthesized on

a technology library and the synthesized design contains ki (1 ≤ i ≤ n) standard cell

Ci. Let l = {C1, C2, . . . , Cn}. Then we calculate this synthesized design’s Trojan

miss rate (DTMR) as below:

DTMR(l) =

∑n
i=1 ki × CTMRi∑n

i=1 ki
(3.19)

where CTMRi is the Trojan miss rate for cell Ci (defined by Eqn (3.18)). We use

DTMR as the metric to measure the design’s sensitivity to malicious modifications.

The smaller DTMR a design has, the easier it is to detect malicious modifications

made to this design. Note that when the circuit is fixed, DTMR is only determined

by a subset of standard cells, denoted by l, on which the circuit is synthesized. Thus,

we write DTMR as a function of l.

We can reformulate the problem in Section 3.6 as:

minli∈2l DTMR(li) (3.20)

subject to constraints defined in Eqns (3.17). Here 2l means the power set (the set
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of all subsets) of the given technology library l. The subset of standard cells denoted

by lopt that leads to the optimal value of the above optimization problem is what

we want. We will call lopt the solution to the above problem.

3.7.3 Steepest Descent Method

As stated in Section 3.6, an exhaustive search is computationally prohibited.

Heuristics are needed to reduce the search space and find a near-optimal solution.

We will instead, adapt the idea of the steepest descent method (SDM) to solve the

above problem. To find a local minimum of function f , the general SDM works as

follows:

1. Find an initial solution x0 and set xold = x0.

2. Calculate the gradient at the current solution and construct a new solution

xnew = xold−λ∇f(xold) where λ is the step size that controls the convergence

rate and should be kept relatively small.

3. If f(xnew) < f(xold) then we set xnew = xold and go back to step 2. Otherwise,

a local minimum point xold has been found.

Note that the performance of SDM depends heavily on the initial solution.

However, when the initial solution and the step size is chosen carefully, it can lead

to very good solutions. Therefore, we will adapt its idea to solve our problem. But

applying SDM to our problem has the following challenges, some of which are due

to the nature of the method and some are unique to our problem.
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• The performance of the SDM relies heavily on the choice of the initial solution.

How to select the initial solution should be carefully investigated.

• The SDM is based on recursively updating the current solution to get a better

solution. How to do this efficiently and effectively has yet to be examined.

• The SDM only works where the function to be optimized is differentiable.

However, in our problem, it is a discrete function. We have to define the

gradient accordingly.

We will address these challenges in the following text.

3.7.4 Our Proposed Algorithm

The overall proposed flow is shown in Figure 3.9. We will explain each step as

well as the intuition behind the step.

Choice of initial solution. We can make up an arbitrary initial solution, which is to

choose an arbitrary subset of standard cells. However, there is no guarantee that

synthesizing the circuit d on this subset will meet area/timing/power constraints.

In fact, the chance is very low. However, we can obtain an initial solution in a better

way. We synthesize the design on the whole library applying all timing constraints.

This will give us a list of standard cells used together with area and leakage power

of the design. This is a baseline design and its area and leakage power are the

minimum values we can get given that all timing constraints are met. So it must be

one feasible solution (if this design does not meet the area and power constraints,

then no design will meet those constraints and no feasible solution exists) and is a
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very good point to start with. We will set the list of standard cells used in that

synthesis as our initial solution.

How to modify the current solution. In the context of our problem, the modification

is done by adding/removing several standard cells into/from the current solution.

This is where the exponential complexity comes in because there are exponential

numbers of ways of adding/removing standard cells to/from the old solution. To

reduce the computation complexity, we make a key observation here.

Typically in a library, there are multiple standard cells with different drive

strength that implement exactly the same logic function. For example, AND2X1,

AND2X2, AND2X4 all implement logic AND function of two operands: Out =

In1&In2 but with increasing drive strength. We group all standard cells that im-

plement the same logic function but with different drive strength into one group.

For each standard cell Ci, we say standard cell C ′i is a possible alternative of Ci if it

satisfies the following three properties: 1) It is in the same group with Ci. 2) It has

a larger drive strength than Ci. 3) It has a lower CTMR defined by Eqn (3.18) than

Ci. We call all possible alternatives of Ci its list of possible alternatives and we limit

the way we modify the old solution such that a standard cell in the old solution can

only be replaced by another standard cell in its list of possible alternatives. If such

list is empty, that standard cell is fixed in the solution and can never be moved out

from the old solution. Such limitations have the following advantages:

• By ensuring that a standard cell is replaced with another one that implements

exactly the same function, we can perform incremental synthesis in EDA which
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can obtain power/area/timing information much faster than synthesizing a

design from scratch. The correct functionality of the new design is also trivially

guaranteed.

• Since all standard cells in the possible alternative list have a greater drive

strength, enough drive strength originally required by the design is guaranteed.

• By limiting the replacement of one standard cell with only another standard

cell in its list of possible alternatives, the search space is cut significantly.

By the third property of the possible alternative, the search space is further

reduced without affecting the optimality of the solution.

• It can be easily implemented, fully automated and 100% compatible with

current flow of a commercial CAD tool.

Note that when we impose the above limitations, the modifications to the cur-

rent solution can be done additively. This means that instead of adding/removing

multiple standard cells from the design in one shot, we can always limit each modi-

fication to replacing only one standard cell say Ci with another standard cell Cj
i in

its list of possible alternatives.

Gradient calculation. Since each modification to the current solution is done by

replacing one standard cell with another one that is in its list of possible alternatives,

we only need to define the gradient for each standard cell in all lists of possible

alternatives of the initial solution. The gradient should assess the quality of the

modification. Due to the discrete nature of our problem, gradient has to be defined
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in a different way. The detailed steps to obtain the gradient is defined below:

1. Let l0 = {C1, C2, . . . , Ck} denote the initial solution. Let p0, a0, p0 denote the

leakage power, area, and timing slack obtained after initial synthesis.

2. For each standard cell in l0, we identify its list of possible alternatives. We

replace a standard cell Ci with one of its possible alternative Cj
i and keep all

the other standard cells in l0 unchanged. We call this new subset of standard

cells lji . We resynthesize the design on lji and obtain new leakage power pji , area

aji and timing slack tji . Let DTMR(l0) and DTMR(lji ) denote the design’s

Trojan miss rate (defined by Eqn (3.19)) when synthesizing the circuit on l0

and lji respectively. We define the following quantity first:

∆DTMR(lji ) = DTMR(l0)−DTMR(lji )

∆t(lji ) =
t0 − tji
t0

, ∆a(lji ) =
aji − a0

a0

, ∆p(lji ) =
pji − p0

p0

We then define the gradient as follows:

∇DTMR(lji ) =
∆DTMR(lji )

∆t(lji ) + ∆a(lji ) + ∆p(lji )
(3.21)

Intuitively, this quantity measures how much improvement in DTMR we can get

with 1% overhead in power, area and timing slack by replacing Ci with Cj
i in l0

to form the new library lji . The greater this gradient is, the more improvement in

DTMR such replacement can yield given that the overhead stays the same.

Overall Algorithm. Putting all things together in the framework of the steepest

descent method, we detail the steps of our algorithm below:
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1. Identify and characterize primitive structures. Then characterize each stan-

dard cell in a given technology library. Note that for a given technology library,

this step only needs to be done once.

2. Synthesize the design using the whole technology library and obtain the subset

of standard cells used denoted by l0. This is our initial solution. We set

lold = l0.

3. Identify the list of possible alternatives for each of the standard cells in l0.

Obtain the gradient defined by Eqn (3.21) for every standard cell in every list

of possible alternatives.

4. Find in all lists of possible alternatives the standard cell with the largest corre-

sponding gradient, say Cj
i which is jth standard cell in the possible alternative

list of Ci.

5. Replace Ci with Cj
i in lold and let lnew denote the new subset of standard cells.

Synthesize the design on lnew and check if area/power/timing constraints are

met. If so, set lold = lnew and set the possible alternative list of Ci to empty. If

not, remove Cj
i from the possible alternative list of Ci and keep lold unchanged.

6. Repeat step 4-5 until all lists of possible alternative are empty. lold is what we

want.

3.7.5 Merits of Our Approach

Our proposed method is noteworthy for the several reasons:
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• It works with the current design flow of a CAD tool. This means we do not

need to write our own CAD tool. All we need is to implement our algorithm as

a script and the CAD tool will generate a security-aware synthesized design.

• We cut the search space significantly while still being able to find a rather near-

optimal solution (as indicated in experimental results in Table 3.9). Also, our

definition of gradient allows us to keep a good balance between the optimality

of the solution and overheads in timing/area/leakage power.

• We avoid synthesizing designs from scratch by using incremental synthesis.

This saves the algorithm run-time greatly. Furthermore, if we assume the

incremental synthesis time is a constant, then after initial synthesis, our al-

gorithm run-time is only linearly dependent on the number of standard cells

in the technology library and is independent of the circuit size. Thus, our

algorithm is efficient and scalable.

3.8 Design-for-Security: Experiments and Results

3.8.1 Experiment Setup

Benchmarks. We test our approach on 8 publicly available benchmarks (from IS-

CAS89 [101] and trustHub [102]). They are all synthesized using Cadence RTL

Compiler with Synopsys 90nm generic library. Reports from Cadence tool show

that these benchmarks have gate counts ranging from 69 for s298 to 175456 for AES

(shown in Table 3.8). The detailed description of each benchmark is listed below.
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Table 3.8: Benchmarks used in the experiments.

Benchmark Source #Gates Clock Frequency

s298 ISCAS89 69 25MHz

s5378 ISCAS89 728 25MHz

s15850 ISCAS89 1968 25MHz

s38417 ISCAS89 5066 25MHz

AES TrustHub 175456 500MHz

b19 TrustHub 45150 25MHz

MC8051 TrustHub 6927 50MHz

XGE MAC TrustHub 60222 156.25MHz

Applying constraints. We set the load capacitance to 100pF on all output ports for all

benchmarks. We set the input/output delays to 200ps. The clock frequency of each

benchmark is listed in Table 3.8. For each benchmark, we apply the above timing

constraints (no timing violations are tolerated in our experiments) and synthesize

the design using the Synopsys 90nm generic library. We can then obtain the area

and leakage power after synthesis is done. We then set the allowed overhead for

leakage power and area to 30%, which means the leakage power and area should not

exceed their original values by more than 30%.

Baseline design and security-aware design generation. For each benchmark, we

synthesize the circuit using the whole library with all timing constraints applied.

We call this design the baseline design. It represents a design that is optimized

in area and meets all timing constraints but lacks any security concerns. We then

apply our algorithm and obtain a list of standard cells. We resynthesize the circuit

74



on this list of standard cells and call it security-aware design. We will use Cadence

Encounter tool to place and route both designs.

Trojan insertion. For each benchmark, for both baseline design and security-

aware design, we randomly choose a standard cell as our attack target and make 4

malicious modifications to it (2 addition of structures and 2 removal of structures).

The random selection of attack target is done 15 times and in total 60 Trojan-

inserted chips are generated.

Experiment conducted and results recorded. For each benchmark, for both baseline

design and security-aware design, we train SVM over 5 Trojan-free chips for s298

and 1 Trojan-free chip for all other benchmarks and use the classifier to classify the

60 Trojan-inserted chips. The detailed training and classification steps as well as

parameter selection follow the work in [42] with one small distinction. Instead of

classifying the whole IC, we only generate the labels for each grid in the IC. We then

calculate the Trojan miss rate defined in Eqn (3.15) for both designs averaged over

60 chips. The difference of Trojan miss rate between baseline design and security-

aware design is then calculated and the ratio of the difference to the Trojan miss

rate of the baseline design is reported as TMR improvement. We also report the

leakage power and area overhead of security-aware design compared with baseline

design. The results are listed in Table 3.9. The algorithm run-time as well as the

time consumed for the initial synthesis is also reported. Note that the algorithm

run-time does not include the pre-synthesis step shown in Figure 3.9.
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Table 3.9: TMR improvement, leakage power overhead (LO), area overhead (AO),

algorithm run time (AT) and the original synthesis time (OT) of all benchmarks

Benchmark TMR Improvement AO LO OT(s) AT(s)

s298 20.93% 10.09% 17.67% 16.4 283.9

s5378 13.04% 7.91% 16.05% 31.3 663.6

s15850 15.23% 6.21% 13.94% 44.4 906.1

s38417 16.00% 4.00% 8.58% 103.4 990.4

AES 23.45% 16.68% 28.21% 2302 9941

b19 23.21% 8.51% 29.74% 759.1 3841

MC8051 15.62% 7.70% 21.99% 204.3 10010

XGE MAC 7.48% 1.85% 5.60% 2031 9055

3.8.2 Results

From Table 3.9, we can see that using our method , we can detect on average

16.87% more malicious modifications with only 7.87% area overhead and 17.72%

leakage power overhead. Note that Cadence RTL Compiler always optimizes the

area given that all timing constraints are met, making the area overhead very small

compared with leakage overhead. We also note that the our algorithm’s performance

depends heavily on the timing requirements of the design. If a design’s timing re-

quirements are easily met, then our algorithm can improve TMR greatly. Examples

are AES and b19. However, if a design’s timing requirements are very hard to meet,

then the improvement in TMR is limited. The example is XGE MAC benchmark

which implements MAC functions for 10Gbps operation. The reason is that when
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timing requirements are hard to meet, each standard cell will have only very few

possible replacement alternatives because replacement is very likely to cause timing

violations. Therefore, the search space for our algorithm is small and the improve-

ment in TMR is limited. Nevertheless, we still can detect 7.48% more Trojans with

only 1.85% overhead in area and 5.60% in leakage power in the latter case. This

proves the efficacy of our algorithm.

3.9 Conclusion

In this chapter, we propose a novel reverse-engineering based approach with-

out generating a gate or transistor netlist. Our approach adapts one-class ν-SVM

to the HT detection problem. The experimental results on several publicly available

benchmarks show that our method can achieve very high Trojan detection accu-

racy. We also investigated the impact of some modeling and algorithm parameters

on the accuracy rate. Our method is efficient in storage space, does not require

the existence of golden chip and is robust to variations in fabrication and reverse-

engineering process. We also propose a novel design-time strategy to aid test-time

Trojan detection. Experimental results on real benchmarks showed that using our

design-time strategy, we can detect on average 16.87% more Trojans with only 7.87%

area overhead and 17.72% leakage power overhead. Our method is fully automated,

can easily fit into the current design flow of IC and thus is very promising.

77



Chapter 4: Hardware Countermeasures Against Timing Side-Channel

Attacks on Caches

4.1 Introduction

Recent studies on cache-based timing side-channel attacks show an urgent need

for thorough investigations of security issues in CPUs. [2,3,61,103,104] show how to

perform timing side-channel attacks on the data cache to leak the full key of many

wide-used encryption algorithms, such as AES, RSA, etc. Attacks on the instruction

cache [58] and branch prediction buffer [5] have also been demonstrated successful.

Other than targeting at the cryptographic cipher, [4] demonstrates that keystroke

information of a user program can be leaked. [56] shows how timing side-channel

leakage can be exploited to attack address space layout randomization (ASLR),

which is a commonly used technique to circumvent buffer overflow attacks. These

new results on timing side-channel attacks demonstrate that attacks can happen at

any level/type of the cache. They also demonstrate that these attacks can not only

leak system’s critical information, but also break some defense mechanisms (such as

ASLR) and serve as the foundation for further attacks (e.g., buffer overflow attacks).

Therefore, they are extremely dangerous. Though hardware countermeasures based
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on cache partitioning [72], randomization [73,76], and securing the timing source [79]

have been proposed, they all have moderate to heavy performance overhead.

With the slowdown of technology scaling in recent years, 3D integration stands

out as the most promising alternative to continue the area shrinking and performance

gain. In a 3D CPU, caches and even main memory are stacked vertically on top of

the processors. The vertical interconnection is achieved using through-silicon vias

(TSVs), which are much shorter than a 2D connection. The reduced wire length nat-

urally results in delay reduction and consequently performance improvement [105].

Also due to large number of TSVs and extra layers of space, we can have more

bandwidth and more cache and memory on chip. The availability of more intricate

functional resources (due to 3D) as well as the associated reduction in timing and

increase in bandwidth, can be used for mitigating the impact of timing side channel

attacks. In this chapter, we investigate several intricate architectural techniques

which exploit the availability of 3D integration for mitigating timing side-channel

attacks. The major contributions of the work in this chapter are:

• We investigate the following parameters of 3D CPUs that impact both per-

formance and security: more available resources, data migration schemes and

cache-memory address mapping. We explore how to design these parameters

to mitigate side-channel attacks while keeping their impact on performance

minimum.

• We put together a simulation framework which quantifies the performance

and security implications of the proposed countermeasures. We test our pro-
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posed countermeasures against four widely-applied timing side-channel at-

tacks: access-driven attacks on L1, access-driven attacks on last level of cache,

time-driven attacks, and branch prediction attacks.

• The experimental results show that our proposed techniques can reduce the

timing side-channel information leakage in all four attacks significantly while

still achieving more than 20.43% performance gain over a 2D baseline proces-

sor.

It is important to note that the driving force of 3D integration is not security,

but high performance and low power. However, our work shows that 3D integration

also offers inherent security benefits and enables many new defense mechanisms

that would not be practical in 2D. Our work is compatible with the ongoing trend

of transition from 2D to 3D and enables designers to take security into account when

designing future cache using 3D integration technology.

The rest of the chapter is organized as follows. Section 4.2 gives a brief in-

troduction to cache-based timing side-channel attacks, related countermeasures and

3D CPUs. Section 4.3 introduces the attack model we are trying to defend against

and investigates the benefits and new opportunities that 3D integration can bring

us. Section 4.4 explains our proposed techniques in detail and Section 4.5 evaluates

their performance and security. Section 4.6 discusses the merits of our proposed

designs. Finally, Section 4.7 concludes the paper.
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Table 4.1: Lookup Table Accesses in the First Round of AES. xi = pi ⊕ ki
Lookup Table Access Index Lookup Table Access Index

T0 x0, x4, x8, x12 T1 x1, x5, x9, x13

T2 x2, x6, x10, x14 T3 x3, x7, x11, x15

4.2 Preliminary

4.2.1 Lookup Table-based Modern Cipher Implementation

For efficiency purposes, modern cryptographic ciphers are implemented as key-

dependent lookup tables. We use the first round AES encryption (128-bit version)

as an example to illustrate how it works [3].

During system initialization, four tables T0, T1, T2, T3, each containing 256 4-

byte words, are precomputed following the steps in [106]. Given a 16-byte plaintext

p = (p0, . . . , p15), the first round of encryption under the key k = (k0, . . . , k15)

computes a 16-byte intermediate state by accessing the lookup tables shown in

Table 4.1. The key observation relevant to this paper is that the access index to

these tables are dependent on the key. Specifically, the index to lookup tables in

the first round is the exclusive-or of the key and the plaintext. Therefore, leaking

the access patterns to these lookup tables directly leaks the key.

4.2.2 Cache Timing Side-Channel Attacks on Modern Ciphers

Mathematically, we define predicateQ(p, y) = 1 iff. the encryption of plaintext

p (under the unknown key k) accesses cache set y. Q(p, y) cannot be measured
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directly. Instead, the attacker learns it based on some noisy timing measurements

defined by M(p, y). Then the attacker can deduce the key using measurements M

(details will be given shortly). The exact definition of M will vary, but it should

approximate Q(p, y) in the following sense:

Lemma 4.2.1 the expectation of M(p, y) should be larger when Q(p, y) = 1 than

when Q(p, y) = 0.

Prime+Probe attack [3]. The attacker runs his program on the same core with

the victim process and they share some levels of cache (e.g., L1 cache). The attacker

repeatedly performs the following steps: 1) Prime: the attacker fills the entire cache

with his own data. 2) Idle: the attacker runs victim process with a chosen plaintext.

3) Probe: the attacker measures the time it takes to load each set of his data. The

reload time of cache set y under the chosen plaintext p is his measurement M(p, y).

The measurement is then normalized by subtracting the average timing of its cache

set. If Q(p, y) = 1, then the attacker’s data will be evicted from the cache (see

Figure 2.1), which causes cache misses for the attacker and results in a longer load

time in the Probe phase (the load time for set2 and set4 will be longer in Figure 2.1),

thus a larger M(p, y). This satisfies lemma 4.2.1. After obtaining measurements

using many chosen plaintexts, the attacker can learn the partial information about

ith byte of the key ki, in the one-round attack, by testing each candidate values k̃i in

the following way (We only show the case for k0. However, it is applicable to other

bytes of the key).
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Let y(p, b) be the cache set that T0[p0 ⊕ b] maps to, where p0 is the first byte

of the plaintext p. From Table 4.1, we know that y(p, k0) will always be accessed

during the first round of the encryption. Thus Q(p, y(p, k0)) = 1 for all chosen

plaintexts p. If k̃0 6= k0, Q(p, y(p, k̃0)) may or may not be 1. With Lemma 4.2.1,

this means that the expectation ofM(p, y(p, k̃0)) should be the largest when k̃0 = k0.

We define the measurement score for the candidate value k̃0 after encrypting N

random chosen plaintexts, denoted by score(k̃0), as the average of M(p, y(p, k̃0)):

score(k̃0) =
N∑
i=1

M(pi, y(pi, k̃0))

N
(4.1)

where pi denote the ith plaintext. By calculating the measurement score for each

candidate value and finding the argmax, the attacker knows k0. However, in reality,

since multiple lookup table entries are mapped to the same cache set, some candi-

date values will have the same measurement score. This means that only partial

information of k0, denoted by 〈k0〉 can be leaked. We perform the attack on Gem5

simulator (the detailed configurations used can be found in Section 4.3) with 300

chosen plaintexts. In our settings, 16 table entries will be mapped to the same cache

set, therefore 〈ki〉 will be the highest 4 bits of key ki. The measurement score for

deducing 〈k0〉 is shown in Figure 4.1. Based on Figure 4.1, the attacker concludes

that 〈k0〉 = 8 since the highest peak appears at 8.

Berntesin’s Attack: The attacker will rely on the reuse of the cached data within

the victim process. Bernstein [2] initiated the work in this area. The basic idea is

to exploit the impact of the reused cached data on the total execution time of the

encryption. As shown in Table 4.1, during the first round of the AES encryption, one
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Figure 4.1: Measurement score for 〈k0〉 in 2D cache configurations.

table is accessed using the index xi = pi⊕ ki, where pi and ki are the ith byte of the

plaintext and key respectively. The corresponding data is then cached and may be

reused later. Thus, the entire encryption time t can be affected by each of the values

xi based on some internal cache contentions. To carry out this attack, the attacker

first runs the encryption on his own machine (that has the same configurations with

the target machine) with a chosen key kchosen and a large volume of plaintexts,

he records the time for each encryption. Then he calculates the average encryption

time t(i, x) for each byte i, i = 0, 1, . . . , 15 and each possible value of x = pi⊕kchoseni .

Then he performs similar steps on the target machine with the unknown key k to

collect the average encryption time, u(i, j) for each byte i and each possible value

of j = pi. Ideally:

t(i, x) = u(i, j), if x = ki ⊕ j (4.2)
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Figure 4.2: Wire-length reduction achieved in 3D cache configurations: using four

stacked layers of cache, the interconnect length reduces by 50%.

Then, for each candidate value k̃i of key ki, cross-correlation is calculated as:

corr(k̃i) =
255∑
m=0

t(i,m) · u(i,m⊕ k̃i) (4.3)

Due to Eqn (4.2), corr(k̃i]) is the largest when k̃i = ki. Therefore, after taking

enough samples, the attacker can calculate the cross-correlation and the argmax(corr)

leaks the key.

Though it requires large amount of samples to be collected, Bernstein’s at-

tack [2] is a generic attack and is widely applicable since it is extremely difficult

to achieve fast constant-time software. Timing variation exists due to the need of

memory hierarchy, which is inevitable in the current computer system. Therefore,

this kind of attack is extremely hard to defend against. Similar attacks have been

proposed in [69,70]
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Figure 4.3: One NUCA L2 Configuration.

4.2.3 3D CPUs

Offering shorter wire-length and larger bandwidth, 3D integration has been

viewed as a promising alternative of technology scaling to continue the performance

improvement. Though 3D integration has its own shortcomings such as low yield

and reliability issues. Researchers have proposed various techniques to overcome

them [107–110]. Over the last decade, 3D CPUs have been actively built where

caches and even main memory are stacked vertically on top of the processor. Based

on what to integrate and how to integrate them, different 3D CPU configurations

have been proposed. In [105], the authors propose to keep L1 cache on the same layer

with the processor while stacking all other levels of caches on top of the processors.

As a result, the wire-length is shortened and the latency is reduced. Also more

space will be available to place L2/L3 cache resulting in enlarged capacity. To

further reduce the latency in a given level of cache, wordlines/bitlines are divided

and mapped onto different active device layers [111]. To achieve more performance

boost, [112] proposes to integrate the main memory on top of the processor.
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When stacking a larger L2 (or other levels of cache) on top of the processor,

access time will be dependent on the physical location of the requested cache line.

Based on this observation, Non-Uniform Cache Architecture (NUCA) has been pro-

posed [113] and is the most widely used model in 3D architecture. Instead of having

a large and uniform L2 cache, the L2 space is divided into multiple banks, which

have different access latencies depending on the location relative to the processor.

See Figure 4.3, for core 1, accessing zone 1 will have the smallest latency while

accessing zone 4 will have the largest latency. To improve the performance of the

NUCA architecture, data migration schemes and the corresponding infrastructure

have been proposed [114, 115]. The idea is to migrate data to the cache bank close

to its accessing core(s).

4.3 Problem Definition

4.3.1 Attack Model

We consider computers (either single-core or multi-core) with multiple levels

of memory (registers, cache, main memory,etc.). The key assumption is that there

is access latency variation among different levels of memory (this is the root of

non-constant time encryption and thus the root of the timing side-channel leakage).

An encryption (note that we take encryption as an example of victim process here.

Generally speaking, the victim process can be any process that runs on private data)

process is running on this computer that takes a plaintext (ciphertext) as input and
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computes the corresponding ciphertext (plaintext) with a fixed secret key k. An

adversary A is trying to learn the key k. We make the following assumptions about

A.

1. A knows all details about the cryptographic algorithm and its implementation.

Specifically, he knows the position of lookup tables in memory.

2. A knows how memory lines are mapped to cache lines in a conventional cache.

However, the designer might hide this information from A by randomization.

3. A can feed the encryption/decryption process with chosen plaintexts (or ci-

phertexts) and can get the corresponding ciphertexts (or plaintexts).

4. A can run any program before/after or simultaneously with the encryption/decryption

process.

5. A does not have any privileges that a super user has

Note that these assumptions are the ones generally used in the literature [3, 61,

116]. With these assumptions, the adversary A can apply any kinds of attacks

introduced in Section 2.2 to learn the secret key k. The major challenges for the

adversary A are two-fold : modeling error and measurement noise. For example, in

Prime+Probe attack, there are other programs and the operating system running

in the background which may also evict the attacker’s cache lines. These evictions

are not modeled in the attack which may lead to wrong guesses.

88



4.3.2 Is 3D Integration a Natural Defense?

As stated in Section 4.3.1, the root cause of cache-timing side-channel attacks

is the access latency variation between different levels of memory in the memory

hierarchy. Since 3D integration technology can reduce access latency (thus latency

variation) significantly, one natural question to ask is that if it defends against the

side-channel attacks?

To explore this, we run one experiment using the Gem5 simulator [117]. The

system configuration used in Gem5 is shown in Table 4.2. We use two sets of L1/L2

access latencies. For 2D cache configuration, we use 4 cycle/11 cycle as L1/L2

latency to mimic a modern Intel i7 processor [118]. For 3D cache configuration,

we assume that L2 cache is partitioned into 4 dies and stacked vertically on top of

the core. Using the results in [111] that 3D reduces L2 latency by 30%, we set L2

latency to 8 cycles while keeping L1 latency unchanged. We perform the one-round

Prime+Probe attack proposed in [3] with an arbitrarily chosen secret key. The goal

of the adversary is to learn the high nibble (highest 4 bits) of each byte i of the key,

denoted by 〈ki〉. We plot the measurement score (defined in Eqn 4.1) of 〈k0〉 after

running the encryption with 300 different plaintexts in Figure 4.1 and Figure 4.4.

Note that the ground truth is 〈k0〉 = 8.

The maximum measurement score at both Figure 4.1 and 4.4 occurs at 8,

leading the attacker to guess that 〈k0〉 = 8. We make the following two observations

from Figure 4.1 and 4.4: 1) In 3D settings, measurement score has lower signal

to noise ratio. For example, in Figure 4.4, peaks at 8 and 10 have very similar
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Table 4.2: Gem5 Simulator Configurations

ISA X86

Processor type single core, out-of-order

L1 cache 8-way, 32KB

L2 cache 8-way, 1MB

Cache line size 64 Bytes

Cache replacement policy LRU

DRAM frequency and channels DDR3-1600 / 1

measurement scores. Since key recovery relies solely on the adversary’s ability to

discover the highest peak, this adds more challenges to the adversary. In a real

world setting where there are operating system and other programs running in the

background, the modeling error mentioned above may cause the peak at 10 to have

a larger measurement score, leading the adversary to a wrong conclusion that the

high nibble of the first byte of the key is 0xA (10). This shows that 3D integration

does benefit security. 2) However, 〈k0〉 can still be clearly spotted from the figures in

both 2D and 3D cache configurations. This shows that the inherent security benefit

that 3D brings is very limited.

The rest of the paper seeks other techniques that can further enhance the

security of 3D integration. It should be noted that the attacks can happen at

any level of cache and defending attacks at one level of cache is far from enough.

Thus, the countermeasures should be comprehensive. It is also worthwhile pointing

out that 3D integration technology is happening because of the low power and high

performance it can bring. With our techniques, the security can be an added feature.
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Figure 4.4: Measurement score for 〈k0〉 in 3D cache configurations.

Our proposed techniques, which utilizes 3D integration technology, will enable future

system designers to take security into account while optimizing performance and

power consumption.

4.4 Reducing Timing Side-channel Leakage

4.4.1 Side-channel Leakage Analysis

As shown in the work of Zhang et. al [55], there are three ways to ensure no

side-channel leakage exists:

1. Output Elimination. The side-channel C does not produce any output.

2. Input Ambiguity. For any output o, the input of the channel C can be any

input i with the same probability.
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3. Noise Domination. For any output o, if its generation is due to the channel’s

inherent noise instead of the channel input, then the output is not affected by

the input.

These three ways are the foundations to design countermeasures against side-

channel leakage. However, completely eliminating output seems impossible. In

terms of our cache-timing side-channel attacks, this requires that the attacker cannot

measure any timing information from the system. Prior works suggest eliminating

the instruction that enables the attacker to read the time step counter (for example,

RDTSC instruction on X86 ISA) such that the attacker cannot measure the timing

information. However, this is impractical since such instruction is needed in other

scenarios and cannot be eliminated. Furthermore, the attacker can always use his

own timing source to measure the timing information. Thus, output elimination is,

though theoretically sound, not practical. In this paper, we work along the second

and third approach.

To achieve input ambiguity, essentially we want to de-correlate the output

from the input. In terms of our cache-timing side-channel attacks, we should en-

sure that timing measurements, which reflect the cache eviction or reuse patterns,

are not purely (deterministically) determined by the key. This is the motivation of

our random eviction, randomization-based data migration and the address permu-

tation techniques. To achieve noise domination, we should add noise to attacker’s

measurement such that the signal-to-noise ratio is reduced. In terms of the cache-

timing side-channel attacks, this requires a smaller difference between measurements
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generated from a cache hit and a cache miss. This motivates our heterogeneous way-

latency cache design and our idea of integrating more levels of cache with smaller

latency difference between adjacent levels. Next, we will go over implementation

details of all these designs.

4.4.2 Random Eviction Cache Design

As stated in Section 2.2, the attacker can correlate the timing information

with the cache eviction (reuse) patterns. Since the eviction (reuse) is purely and

deterministically decided by key-dependent data, the adversary can then discover

critical information by correlating it with the timing information he measures. To

de-correlate the timing information from the key-dependent data, non-determinism

should be added to the system to make timing information dependent on other things

besides the cryptographic key. This will make the attack harder, even impossible to

learn the secret key.

The idea of random eviction, which evicts a random line from the cache at a

predetermined rate, is motivated by this notion of adding nondeterminism to the

system. The intuition behind how it works can be illustrated using the Prime+Probe

attack introduced in Section 2.2. During the Probe phase, the attacker can measure

the load time and learns whether a certain line has been evicted. If the cache

eviction is deterministic, then the attacker knows whether the victim has used the

cache line or not. However, if the cache eviction is non-deterministic, even if the

attacker observes that a cache line has been evicted, he cannot be sure whether it is
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randomly evicted by the random eviction policy or it is evicted as a result of victim

accessing the cache. Thus, it prevents the attacker from learning the victim’s key-

dependent cache access pattern and prevents him from learning the key ultimately.

Though random eviction has been mentioned in several papers [55, 119], no

implementation details and experimental results have been given (especially in the

context of 3D integration). The main drawback of this technique is the associated

performance overhead, since useful data may be evicted from the cache, causing

high miss rate. However, we argue that the overhead can be greatly reduced with

the use of 3D integration. We use the data from [111] to help illustrate this. [111]

showed that the L2 access latency can be reduced by 30% with 3D integration.

Therefore, if the data is randomly evicted from L1 cache, the resulting penalty of

accessing L2 cache is reduced by 30%, which is a huge improvement. Furthermore,

the penalty would be fairly small compared with the huge performance gain that 3D

brings. Thus, we argue that 3D integration enables the random eviction policy to

take place. Next, we investigate some implementation details which have not been

given in the prior literature.

Note that in a modern multiple-core computer, evicting a line from the cache

cannot be done by simply setting the invalid bit of the cache to 1 and writing back

the data. Coherence policies have to be enforced so that when one share of data

gets invalidated and written back to the memory, the other copies get updated. The

proposed random eviction cache architecture is shown in Figure 4.5.

Eviction Interval Register is used to control the interval between two random

evictions. For example, if it is five, then every 5 cycles, a random line is evicted
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Figure 4.5: Block Diagram of Random Eviction Policy

from the cache. Intuitively, the smaller this number is, the larger de-correlation can

be achieved and thus more robust the system is against timing side-channel attacks.

However, smaller eviction interval also leads to larger downgrade in performance.

Thus, this number governs the trade-off between security and performance, and

has to be decided smartly. The trade-off between performance and security will be

shown later in Section 4.5. The Eviction Enable Register is used to enable/disable

the random eviction policy. According to the values of these two registers, a timer

is used to generate proper eviction signals. Then two random number generators

(RNGs) are used to generate random way and set number respectively. These two

numbers are fed to eviction handler to handle the eviction (and possible write-

back) and generate proper messages to be broadcast to the system bus to enforce

cache coherence. The detailed implementation of eviction handler is dependent on

the coherence policy. We give an example implementation for MOESI protocol in

Table 4.3 which is a coherence protocol commonly used in modern processors.

The random eviction policy can be implemented with/without operating sys-

tem’s assistance. Without the operating system’s assistance, the Eviction Interval

Register and Eviction Enable Register are hard-coded and the random eviction
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Table 4.3: The actions to perform and messages to broadcast to the system bus by

eviction handler depending on the cache line state. The cache line is marked as I

state after performing actions and broadcasting messages.

Cache State Actions Messages

M Set invalid bit and write back the cached data None

O Set invalid bit and write back the cached data Invalidate lines

E Set invalid bit None

S Set invalid bit None

I None None

policy is always happening. With the operating system’s assistance however, the

operating system is in charge of filling these two registers. When the system is run-

ning non-security-critical programs, the random eviction policy can be turned off for

maximizing performance. When the system is running security-critical programs,

the random eviction policy should be enabled and the random interval should be

set according to the level of security needed. These two methods have their own

advantages/disadvantages and should be chosen at the designer’s discretion. With

operating system’s assistance, the random eviction policy can be turned on only

when needed and thus maximized performance can be achieved. However, this

makes the attack’s job simpler. He only needs to hack the operating system to set

the Eviction Enable Handler to 0 to bypass the random eviction policy. Without

operating system’s assistance, the attacker has no way to turn off this policy but

this downgrades the system’s performance when executing programs that are not

security-critical.

96



4.4.3 Heterogeneous Way-Latency Design

Our second design aims to add noise and reduce the signal-to-noise ratio of the

attacker’s measurement. Traditionally, accessing the data in each way of the same

cache should have the same access latency. We propose a cache design that has

different accessing latencies across different ways and the latencies are determined

as follows. Suppose in a conventional Nway-way set associative cache, the latency

for accessing this level and next level of cache is tup and tdown respectively. Then

the latency for accessing each way i, i = 0, 1, . . . , Nway − 1 of our heterogeneous

way-latency cache, denoted by ti, is determined by:

ti = tup +
tdown − tup
Nway

× i (4.4)

Rounding to the nearest integer is performed, if needed. For instance, suppose in

a 8-way set associative conventional cache, the latency for accessing this and next

level of cache is 4/8 respectively. Then in our cache design, accessing data in way-0

through way-7 will have a latency of 4, 4, 5, 5, 6, 6, 7, 7 respectively. The intuition

behind how this design can defend against side-channel attacks is illustrated as

follows.

Take Prime+Probe attack as an example. The adversary eventually will mea-

sure the time to reload his data and judges whether his data has been evicted based

on that time. Suppose the cache hit/miss latency is 4/8 cycles respectively and

the cache is 8-way set associative. In a conventional cache, the time to reload the

attacker’s data in a set if the victim does not evict any of his data is 4*8=32 cycles.
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If the victim has evicted one cache line from this set, the time for the attacker to

reload is 4*7+8*1=36 cycles. There is a 4-cycle difference. However, in our cache

design where way-0 through way-7 have a latency of 4, 4, 5, 5, 6, 6, 7, 7 cycles

respectively, the difference can be 1-4 cycles depending on which way gets evicted.

The signal-to-noise ratio can be reduced by as much as 75%. The 1 or 2 cycle of

difference can be hard to measure given the presence of background noise. Similarly,

this cache design also adds noise to internal interference based attacks.

Using voltage scaling, the technique can be easily implemented by slowing

down the sense amplifiers of the bit lines of different ways. It is important to

note that though this method adds randomness to the attacker’s measurement, it

also downgrades the performance. However, with the 3D integration technology

which reduces the latency difference between two levels of cache, the performance

overhead is much smaller than in a 2D configuration. Thus, 3D integration enables

this defense mechanism to take place.

The heterogeneous way-latency design can also implemented purely in hard-

ware (where the voltage scaling is permanent) or with the assistance from the oper-

ating system (where the voltage scaling is dynamically determined by the operating

system). The pros and cons of these two methods are similar to those in the random

eviction policy.
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4.4.4 Components to Integrate

As stated above, attacks may happen at any level of cache. A secure system

should defend against all of them. Since the root cause of all these attacks is the

huge latency difference between different levels of the cache and main memory (see

Section 2.2), we argue that the following claim is true:

Claim 1 Integrating more levels of cache so that there is a more gradual change in

latency from cores to main memory is beneficial for security.

We illustrate this using the following example. Consider two options when

designing a 3D CPU. We can either stack large L2/L3 caches on top of the processors

(configuration 1) or we can choose to sacrifice some L2/L3 capacity and use the saved

space for a DRAM L4 cache (configuration 2). Prime+Probe attacks on L1/L2 will

have the same results in both configurations since the latency difference between

L1/L2 and L2/L3 are the same. Note that cache capacity does not matter because

the attacker will only be using a very small portion of the cache. However, attacks

on L3 will have dramatically different results. Assume that L3/L4 cache and the

main memory have a latency of t3, t4, tm respectively. Assume in the attack, one

cache line containing attacker’s data in L3 is evicted by the victim process. Then

the evicted line has to be fetched from the main memory in configuration 1 and

from L4 in configuration 2. As a result, in configuration 1, there will be a tm − t3

cycle-difference in the attacker’s measurements depending on whether his data gets

evicted by the victim process or not. That difference is reduced to tm − t4 cycles

in configuration 2 (note that t4 > t3). Consequently, configuration 2 has a smaller
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timing leakage, which demonstrates our Claim 1.

For time-driven attacks, more levels of cache is also beneficial. This is because

in these attacks, the attacker tries to correlate the secret information (such as the

cryptographic key) with the overall execution time, which depends on the number

of cache hits in different levels of cache. More levels of cache will add more variables

to the system, which will significantly complicate the correlation process. Note that

fundamentally this is true to both 2D and 3D designs. However, 3D CPUs are more

relevant because they have more space to allow additional caches to be added.

4.4.5 Data Migration Scheme

As stated in Section 4.2.3, L2 cache and below will most likely be NUCA in

3D CPUs. Though in some 2D designs, NUCA has already been applied, we argue

that data migration scheme (DMS) is more relevant in 3D because of locality and

network on-chip. Therefore, we consider the impact of DMS on security in this

subsection. We use Figure 4.3 to illustrate NUCA. L2 cache is stacked on top of

four cores. It is divided into 16 banks. The organization of 16 ways in a particular

cache set is shown in Figure 4.3. Suppose the latency of core 1 accessing data in

zone 1/2/3/4 is t1, t2, t3, t4 respectively. Due to locality, t4 > t3 > t2 > t1. Without

data migration, the data block often accessed by core 1 may be located at zone 4,

which is very inefficient. To optimize the performance, researchers have proposed

the following performance-oriented data migration scheme : periodically check and

migrate the data to the zone nearest to its accessing core(s) [115]. However, its
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security implication is unknown. We consider a randomization-based DMS which

periodically migrates a data block to a random zone. We argue that the following

claim is true:

Claim 2 A randomization-based DMS is more beneficial to security than a performance-

oriented DMS

To show this, we compare the randomization-based DMS with above performance-

oriented DMS. We still use the setting in Figure 4.3. In time-driven attacks, the

attacker will try to correlate the secret information (such as the cryptographic key)

with the overall execution time. If a performance-oriented DMS is applied, then zone

1 will host data that are recently accessed by core1 and zone 4 will host data that

are least recently used by core1. As a result, when a cache miss happens, most likely

a data block from zone 4 will be replaced. This fixed pattern makes the attacker’s

correlation easier. On the contrary, if a randomization-based DMS is applied, data

block in zone 1/2/3/4 may be replaced with equal probability. This adds much more

randomness into the overall execution time, making the attack much harder.

The randomization-based DMS also adds security against access-driven (such

as Prime+Probe) attacks. For illustration purposes, we consider attacks on L2

cache. Let tl3 denote the average L3 hit latency. If one cache line containing

attacker’s data in L2 is evicted by the victim process in the attack, in a performance-

oriented DMS, the victim’s data block will be migrated to zone 1 (because it has

been recently accessed). As a result, there will be a tl3 − t1 cycle-difference in the

attacker’s measurements between the case where the attacker’s data was evicted
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by the victim process and the one where his data was not evicted. On the other

hand, if randomization-based DMS is applied, the victim’s data block can reside in

zone 1/2/3/4 with equal probability. Therefore, the expected difference between two

cases is tl3− t1+t2+t3+t4
4

. Since t1+t2+t3+t4
4

> t1, the expected difference is smaller with

randomization-based DMS applied. Therefore, we conclude that a randomization-

based DMS results in smaller timing leakage, which demonstrates Claim 2.

Note that we do not apply DMS to L1 cache because: 1) L1 cache is on-core

where network-on-chip is not applicable. Data cannot travel efficiently. 2) L1 cache

is sensitive to latency and the traffic overhead of migrating data blocks is too large

for L1. Therefore, we only apply randomization-based DMS to L2 cache and below.

Consequently, it does not defend against Prime+Probe attacks on L1 cache.

4.4.6 Address Permutation

Section 4.4.4 and 4.4.5 have addressed two fundamental problems unique to 3D

CPU design. However, attacks on L1 cache (both instruction and data) and branch

target buffer (BTB) are still not mitigated. In this section, we propose the address

permutation technique to mitigate attacks on all levels/types of cache, including L1

cache and BTB.

The idea of address permutation is to permute the address lines ran-

domly (not known to the attacker). We illustrate this using the following example.

Assume the attacker is performing Prime+Probe attack on a 4-way set associative

cache to learn whether cache set 1 was accessed by the victim process or not. As-
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sume the cache has 23 = 8 sets and each cache block has 22 = 4 bytes. In this

setting, the cache set number is obtained by extracting bit4-bit2 in the address line

(shown in Figure 4.6 as shaded box). In the Prime step in the attack (see Sec-

tion 2.2), the attacker will fill the cache set 1 by loading the data in four addresses

shown in the left hand side of Figure 4.6. Note that these four addresses are all

mapped to cache set 1. Next consider the case where permutation of the address

line {b7, b6, b5, b4, b3, b2, b1, b0} → {b5, b3, b7, b4, b2, b6, b1, b0} is applied (but the at-

tacker is not aware of this). The permuted four addresses are shown in the right

hand side of Figure 4.6. The attacker still loads data in these four addresses hoping

to fill cache set 1 with his data. However, in this case, he is actually loading data to

cache set 2, 2, 3, 3 respectively, none of which are related to cache set 1. Therefore,

the attacker cannot gain any information about whether cache set 1 was accessed

or not.

The implementation diagram is given in Figure 4.7. The permutation network

can be implemented efficiently using Benes network [120] or Butterfly network [121].

Note that for performance reasons, only the block address is permuted. This means

that if a cache block is 26 = 64 bytes, the lowest 6 bits are not permuted. CPU can

change the permutation by changing the value in the permutation control register.

The register can be changed at a given interval or before running security-critical

applications. Every time the permutation control register is changed, all dirty cache

lines need to be written back to the memory. However, we will show next that

the permutation control register does not need to be changed very often, thus the

write-back overhead can be amortized. In modern processors, L1 cache is virtually
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Figure 4.6: Address Permutation Illustration.

Figure 4.7: Address Permutation Block Diagram.

indexed, physically tagged while all other caches are physically indexed, physically

tagged. Thus the permuted virtual address is only connected to L1 cache while

permuted physical address goes to all caches. The tag is extracted from the permuted

physical address in all caches. When write-back happens, original physical address

will be computed through the inverse permutation network.

Note that the above technique is only effective against access-driven attacks.

It may be applied to any level/type of cache such as instruction cache or branch

target buffer. The security of this technique depends on the fact that the attacker

does not know what the permutation is. This is ensured by making permutation

control register access a privileged instruction. However, the attacker may still learn

the permutation through brute-force attack. Note that the attacker only needs to

determine the permutation relevant to cache set extraction in all levels of cache

rather than the full permutation. Consider the following setting similar to a modern
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64-bit computer. The cache block is 26 = 32 bytes and the maximum number of

cache sets in all caches is 213 = 8192. We will illustrate the brute-force attack as

follows.

The attacker’s job is to figure out which 13 bits out of the 64-6=58 bits are

used as set index. The attacker constructs C13
58 hypotheses, each corresponding to

one possible address mapping. Then for each address mapping, the attacker finds

17 addresses that map to the same cache set under this address mapping. The

attacker then primes the cache using the first 16 addresses, visit the 17th address,

and then reload data in the first 16 addresses. The attacker measures the time in

the prime step and probe step respectively. The time difference between these two

time steps is the signature for that hypotheses. The true hypothesis is the one with

the largest signature. We simulate the above steps on our computer. The attacker is

able to obtain the signature values for 7×105 hypotheses each second. Then getting

the signature for all hypotheses would take roughly 52 days. In other words, the

attacker needs roughly 52 days to successfully guess the correct address mapping.

Therefore, the control register does not need to be changed often so the write-back

overhead can be neglected.

We note that the idea of randomizing memory-cache address mapping has

been proposed in [77]. However, there are some salient differences between our

method and theirs. Their work uses a level of indirection and involves the lookup

of the index bits in the ReMapping Table (RMT) which may be very inefficient.

On the contrary, our method manipulates directly on the address mapping and

incurs very small performance overhead (this can be verified by our experiments
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in Section 4.5). Moreover, it is unknown whether their work can extend to BTB

since they fail to show the performance and security evaluations on the BTB. Our

countermeasures, however, are very effective against attacks on BTB with very small

overhead (see Section 4.5). We also note that modern Intel processors divide LLC

into four slices and use an undocumented hash map (which is the xor of some bits of

the physical address) to determine which slice a memory block resides in. Though

this essentially is another form of memory-cache address randomization, the level

of security it achieves is too weak. In a 32-bit processor, only the highest 15 bits

of the physical address are involved in the hash map. This means an attacker only

needs to try 215 = 32768 combinations before he can successfully recover the hash

map (note that with our address permutation technique, the attacker needs to try

out 6.48 × 1016 permutations). Actually, there already have been some works that

successfully reverse-engineer the hash map [56,122].

4.5 Evaluations

In this section, we will evaluate the performance and security implications of

our proposed countermeasures. We first introduce the metrics and simulation in-

frastructure we will be using. Then we explain in detail the experiments we conduct

and discuss the results. Note that the experimental evaluation of the countermea-

sures proposed in Section 4.4.2 and 4.4.3 appears in [43]. We will only evaluate the

rest of the countermeasures and all countermeasures combined in this paper.
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4.5.1 Metrics and Simulation Infrastructure

Metrics. For performance evaluation, we record the instruction per cycle

(IPC) after running each benchmark for 10 billion instructions. This represents the

number of instructions a system can run in a single cycle. The larger this value is,

the better the performance is. For security evaluation, we calculate the side-channel

vulnerability factor (SVF). More details about SVF can be found in [119]. Basically,

SVF is a value between 0-1 that measures the correlation between the attacker’s

measurements and the ground truth. Thus, lower SVF translates to smaller side-

channel leakage. Though [123] proposed another metric based on SVF, we feel that

SVF is more suitable for our situation for accurate system side-channel leakage

characterization since [123] is based on a binary observation trace while SVF works

on observation traces that take any numerical values. Therefore, for our evaluation

purposes, we will use SVF as security metric. The larger SVF a system has, the less

secure it is.

Simulation Framework. We implement all the proposed techniques on the

Gem5 simulator [117], which is a cycle-accurate, modular simulator widely used for

computer architecture research. We simulate a two-core X86 CPU with different

memory system configurations. For illustration purposes, we show the detailed

configuration for a 2D baseline system in Table 4.4. In different experiments, we

may add more levels of cache and change cache size/latency to simulate 3D CPUs.

The parameters will be introduced later in this section. For performance evaluations,

we run 10 PARSEC benchmarks [124] on each system and record the corresponding
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Table 4.4: Gem5 Configuration of a 2D Baseline System

ISA X86

Processor type 2 cores, out-of-order

L1 cache 8-way, 32 KB, 4-cycle latency

L2 cache 8-way, 1MB, 11-cycle latency

L3 cache 16-way, 3MB, 35-cycle latency

Cache line size 64 Bytes

Cache replacement policy LRU

Main Memory Gem5’s SimpleMemory, 200-cycle latency

IPC. This shows the performance overhead of our countermeasures on a general-

purpose computer. For security evaluations, we simulate several attacks on Gem5

and calculate SVF for each attack. The attacks we simulated will be introduced

shortly.

Attacks performed. To evaluate the security implications, we simulate the

following four widely-applied attacks. 1) We perform Prime+Probe attack on L1

cache to attack an AES algorithm, following the steps in [3]. 2) We follow steps

in [56] to perform Prime+Probe attack on the last level of cache (LLC) to deduce

the cache set used by the victim process. 3) We perform a time-driven attack

introduced in [2] to attack an AES algorithm. 4) We perform the branch prediction

attack (BPA) introduced in [5] to deduce the key used in the victim process. The

victim process would either take or not take a branch based on each bit of a 32-bit

key.

We perform five experiments to evaluate the security and performance of our
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Table 4.5: Different systems we have simulated.

Systems Name Eviction Interval Heterogeneous Way Latency Used

2D base No Evictions No

2D 5N 5 Cycles No

2D 5Y 5 Cycles Yes

3D ins No Evictions No

3D 5N 5 Cycles No

3D 2N 2 Cycles No

3D 5Y 5 Cycles Yes

proposed techniques. The first four experiments evaluate each of the proposed tech-

niques. The fifth experiment evaluates all the techniques combined.

In the first experiment, we evaluate the security and performance implications

of random eviction technique (RET) and heterogeneous-way latency (HWT) tech-

nique. To be more specific, we explore the performance and security trade-off under

different parameters. Seven different systems are simulated and their parameters

are listed in Table 4.5. In this experiment, the L1 cache is private on-core while

the L2 cache is shared among different cores. The access latency for L1/L2 cache

in the 2D design is 4/11 cycles respectively. We assume that using 3D integration,

L2 cache is partitioned into 4 layers, connected by TSVs, and is similar to the one

shown in Figure 4.2. This fine-grained partition reduces the interconnect length and

thus the access latency for L2. Using the data in [111], we set the L1/L2 latency

to 4/8 cycles respectively. Similarly, we assume that the main memory (DRAM) is

also integrated on-chip using 3D integration, we cut the DRAM controller latency
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in half [125]. Other configurations are exactly the same as in 2D system. The

corresponding system is called the 3D insecure system (3D ins).

We evaluate security under two different attacks, Prime+Probe attack and

Bernstein’s attack. In Prime+Probe attack, we follow the one-round attack steps

in [3] with one exception: we do not use the “pointer chasing” technique since we find

it unnecessary. The goal is to extract the high nibble (highest four bits), denoted

by 〈·〉, of each byte of the 16-byte key. The key is chosen arbitrarily. We plot the

measurement score of the 16-th byte on each simulated systems (see Table 4.5) after

1000 encryptions in Figure 4.8.

A visual inspection of these measurement scores shows that in 2D base and

3D ins systems, the measurement score of 16th byte takes its largest value at 7,

which leads the attacker to the correct conclusion that 〈k15〉 = 7. However, 〈k15〉

cannot be correctly deduced from any other systems. The average SVF is reported

in Table 4.6. From Table 4.6, we can make several observations: 1) The 2D base has

a slightly larger SVF than 3D ins system. This verifies our hypothesis that with a

reduced latency, 3D integration offers inherent security benefits (but very limited).

2) The larger eviction frequency a system has, the larger security improvement

it can achieve (3D 2N has a smaller SVF than 3D 5N). 3) The SVF goes down

significantly as we add random eviction and heterogeneous way-latency mechanisms

to the system. 4) 3D 5Y has a significantly smaller SVF than 3D 2N, which means

security is maximized when both defense mechanisms work together.

In Bernstein’s attack, we follow the steps in [2] with the packet size set to 16

bytes and 222 samples (The original attack uses 227 samples. However, taking 227
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Figure 4.8: Measurement score for 16th byte of the key in different systems. X-axis

is the candidate value, Y-axis is the measurement score.

samples on the simulator would take more than 25 days, which is too long. Moreover,

it is enough to show the efficacy of our countermeasures using 222 samples). The

average SVF is shown in Table 4.6. The discussion for the Prime+Probe attack

also applies here. One thing to note is that the SVF improvement is not as large

as that in Prime+Probe attack. This implies that Bernstein’s attack, or internal

interference attacks in general, is much harder to defend than external interference
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Table 4.6: The average SVF in Prime+Probe attack and Bernstein’s attack for

different systems

System Prime+Probe Berstein

2D base 0.8743 0.1071

2D 5N 0.1085 0.0538

2D 5Y 0.0723 0.0369

3D ins 0.8628 0.0929

3D 5N 0.0668 0.0511

3D 2N 0.0589 0.0498

3D 5Y 0.0247 0.0348

attacks as stated in Section 2.2. Nevertheless, our proposed methods can still cut

the SVF by more than two thirds.

In performance evaluation, we evaluate the performance of our proposed mech-

anisms on 7 PARSEC benchmarks [126]. The normalized instruction per cycle (IPC)

on general purpose programs as well as on AES encryption of 10 thousand 16-byte

plaintexts is recorded. We report the performance gain (IPC improvement) over

2D base for each benchmark on each system. The average performance gain on all

Parsec benchmarks are also reported. The results are shown in Figure 4.9.

The following observations can be made from the results: 1) On average,

the 3D ins has 20.62% higher IPC than 2D base. This reflects the potential huge

performance benefit by transition from 2D to 3D. 2) If we compare 3D 5Y with

3D ins and compare 2D 5Y with 2D base, on average, 3D 5Y has 5.58% performance

overhead while 2D 5Y has 10.73% overhead. The performance overhead is smaller
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Figure 4.9: Performance Gain of RET+HWL Over 2D Baseline System.

in 3D since the penalty for a cache miss is smaller, as discussed in Section 4.4.2.

3) As the eviction frequency goes up, the performance overhead increases. This is

intuitively right because higher eviction frequency leads to more data elimination

and downgrades the performance. 4) On all benchmarks, 3D 5Y has around 10%

worse performance than 3D 2N, however, Table 4.6 shows that the improvement

in security is huge (thus 3D 5Y should be favored over 3D 2N). In other words,

our two countermeasures should work together to obtain the maximum security

over performance yield. 5) It is noteworthy that on most countermeasures, our

strongest countermeasure (3D 5Y) still performs better or equally good as 2D base

(on average, 0.24% gain). This leverages the huge improvement performance 3D

brings. Furthermore, with operating system’s assistance where countermeasures will

be applied only when executing security-critical program, a secure system (3D 5Y)

still has 16.60% performance gain over 2D baseline system (on AES). In a word, the

performance loss due to our proposed mechanisms would be fairly small compared to

the huge gains obtained by going to 3D. Therefore, we conclude that 3D integration
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Figure 4.10: Performance Gain of 3D 1, 3D 2, 3D 3, 3D 4 Over the 2D base System.

enables random eviction and heterogeneous way latency mechanisms, which would

have been impossible in a 2D context, to take place.

The second experiment verifies Claim 1 in Section 4.4.4, that is more levels

of cache with smaller latency difference between two adjacent levels is beneficial to

security. Five systems are simulated, shown in Figure 4.7. We introduce each of

them in more detail:

• 2D base represents a 2D system. The L1, L2, L3 latency is set to 4, 11, 35

cycles respectively, which mimics a modern Intel processor [118]. The size of

L1, L2, and L3 caches also resembles the one used in a modern processor.

• 3D 1 represents a 3D processor with main memory off-chip. Compared with

2D base, we add more caches (1M of L2, 3M of L3 and 16M of L4, all SRAM)

to capture the fact that 3D processors have more available resources. The

latency of L1∼L3 is also reduced to 4, 8 and 18 cycles due to shorter wire-

length that 3D integration enables. The latency of L4 is set to 40 cycles.
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• 3D 2 also represents a 3D processor with main memory off-chip. Compared

with 3D 1, we reduce the size of L2/L3 SRAM caches and use that space for

an additional L5 DRAM cache. Note that since the area of 1M DRAM and

8M SRAM is roughly the same, 3D 1 and 3D 2 have roughly the same total

area. L5 latency is set to 90 cycles. All other latencies are the same as 3D 1.

• 3D 3 represents a 3D processor with main memory on-chip. Compared with

3D 1, we take away L4 SRAM cache and use that space for on-chip main

memory. Still, we keep the total area the same. The on-chip main memory

latency is set to 100 cycles. All other latencies are the same as 3D 1.

• 3D 4 also represents a 3D processor with main memory on-chip. Compared

with 3D 3, we reduce the size of L2/L3 caches and use that space for L4 cache.

All latencies are the same as 3D 3.

For this experiment, we assume that NUCA is not applied which means a

uniform access latency is used for each level of cache. We evaluate the performance of

each system on 10 PARSEC benchmarks. As shown in Table 4.8, our first technique

does not defend against branch prediction attacks and prime+probe attacks on L1,

therefore, we only evaluate security on prime+probe attacks on LLC and time-driven

attacks.

The performance gain over 2D base is shown in Figure 4.10. The geometric

mean of the performance gain for each system in shown in the legend. We also

calculate SVF for each attack on each system and plot the SVF reduction over

2D base in Figure 4.11.
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Figure 4.11: SVF Reduction of 3D 1, 3D 2, 3D 3, 3D 4 Over the 2D base System.

Table 4.7: Systems Simulated

Systems
L1 L2 L3 L4 L5 Main Memory

Size Size Size Size Size (On-Chip) Size

2D base 32K 1M 3M - - -

3D 1 32K 2M 6M 16M - -

3D 2 32K 1M 3M 16M 32M -

3D 3 32K 2M 6M - - 128M

3D 4 32K 1M 3M 4M - 128M

Comparing 3D 1 with 3D 2 and 3D 3 with 3D 4 in Figure 4.11 and 4.10, we

can see that having an extra level of cache (at the cost of reducing the capacity of

high-level caches) has negligible overhead in performance but is extremely beneficial

to security. The security gain is especially large for Prime+Probe attack on LLC,

since an extra level of cache can remarkably reduce the latency difference between

LLC and main memory.

In the third experiment, we compare the randomization-based data migration

scheme with performance-oriented data migration scheme (see Section 4.4.5). The

details of these migration schemes can be found in Section 4.4.5. We assume that
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Figure 4.12: Evaluation of Randomization-based DMS with Respect to Performance-

oriented DMS.

they are invoked every 100 clock cycles. We use 3D 3 in Figure 4.7 as our memory

system and implement two migration schemes on top of it. Note that if other

memory systems are chosen, we will get similar results. We choose 3D 3 as our

memory system without loss of generalization. We compare the randomization-

based data migration scheme (DMS) with respect to performance-oriented DMS. In

this experiment, NUCA is applied to L2 and L3. The L2 and L3 layers are divided

into four zones (see Figure 4.3). We assume that for core 1, accessing zone 1∼zone

4 will have an additional 0, 2, 4, 8-cycle hop latency on top of the latency values

used in the first experiment. The latency for core 2 can be determined similarly.

The performance (IPC) overhead and SVF reduction of randomization-based

data migration scheme with respect to performance-oriented data migration scheme

are plotted in Figure 4.12. Note that as shown in Table 4.8, randomization-based
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Figure 4.13: Evaluation of Address Permutation Technique.

DMS only benefits Prime+Probe attacks on LLC and time-driven attacks, therefore

we only calculate SVF data on these two attacks. On average, randomization-based

data migration scheme has 5.82% performance overhead, but can achieve over 35%

SVF reduction in two attacks.

In the fourth experiment, we implement the address permutation technique in-

troduced in Section 4.4.6 to all levels of cache (including the branch target buffer).

We use 3D 3 in Figure 4.7 as our memory system and apply address permutation

to it. Note that if other memory systems are chosen, we will get similar results.

We choose 3D 3 as our memory system without loss of generalization. In this ex-

periment, NUCA is not applied. As stated in Section 4.4.6, address permutation

is not effective against time-driven attacks. Therefore, we evaluate security against

all attacks but time-drive attack introduced in Section 4.5.1. We randomly pick 20

permutations and calculate the performance overhead and SVF reduction of each

permutation. The averaged performance overhead and SVF reduction (with respect
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to a system without address permutation implemented) are reported in Figure 4.13.

The results show that with at most 1.4% performance overhead, the address per-

mutation technique can reduce SVF by over 85%.

In the last experiment, we compare random eviction technique (RET) and het-

erogeneous way-latency (HWL) with all other techniques proposed in Section 4.4.4,

4.4.5 and 4.4.6. We implement randomization-based DMS and address permuta-

tion on system 3D 4 shown in Figure 4.7. We also implement RET and HWL

on system 3D 3. Note that we choose 3D 3 instead of 3D 4 because 3D 4 shows

the effectiveness of redistributing cache levels. Then we implement randomization-

based DMS, address permutation, RET and HWL on top of system 3D 4, which

represents the system with all the strongest countermeasures proposed in both this

work. We evaluate the performance by obtaining the IPC values running 6 dif-

ferent PARSEC benchmarks. We evaluate the security by simulating four attacks

introduced in Section 4.5.1 and calculate the SVF. We compare all the results with

respect to a 2D baseline system 2D base. The performance gain and SVF reduction

over a 2D base baseline system are plotted in Figure 4.14. The geometric mean of

performance gain is shown in the legend. We also compare the performance of our

strongest countermeasures (all proposed countermeasures on top of 3D 4) with a 3D

baseline system (performance-oriented DMS+3D 3). On average, the performance

downgrade is 6.86%.

Figure 4.14 shows that on most attacks, the security improvement of RET+HWL

and other techniques is comparable. However, other techniques have far less perfor-

mance overhead. One exception is that RET+HWL is more effective on time-driven

119



0

10

20

30

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

bo
dy

tra
ck

ca
nn

ea
l

fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

str
ea

m
clu

ste
r 0

20

40

60

80

100

S
V

F
 R

ed
uc

tio
n 

(%
)

Prim
e+

Pro
be

 o
n 

L1
   

  

Prim
e+

Pro
be

 

on
 L

LC
   

   

Tim
e-

dr
ive

n 

Atta
ck

   
   

Bra
nc

h 
   

Pre
dic

tio
n

RET+HWL, 7.05% Other Techniques, 19.89% All Techniques Combined, 6.14%

Figure 4.14: Comparison between different techniques proposed in this thesis.

attacks. Therefore, to achieve the strongest security, we propose to ombine all tech-

niques proposed in this work. The security evaluation shows that the combined

system achieves the highest SVF reduction at the cost of some additional overhead.

To demonstrate that our proposed countermeasures achieve satisfactory SVF

reduction (and thus side-channel leakage reduction), we plot the attacker’s measure-

ments in Prime+Probe attacks on L1/LLC, in time-driven attacks and in branch

prediction attacks on a 2D baseline system 2D base and on 3D 4 system with all

our proposed countermeasures applied.

We plot the measurement scores for 16th key byte in Prime+Probe attacks

on L1 in Figure 4.15. More details on the attack can be found in [3]. Basically

the measurement scores are related to the reload time in the third step of the

Prime+Probe attack introduced in Section 2.2. The attacker will deduce the highest

4 bits of each byte of the key based on the measurement scores. He will guess that the

candidate value with the largest measurement score is the right one. In our settings,

the correct value is 7. We can see that in a 2D base system, the attacker can correctly
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Figure 4.15: Measurement Scores for Deducing Key Byte 16 for Both Systems.

deduce that 7 is correct while in a system with our countermeasures applied, the

attacker cannot gain any useful information. The SVF data for both systems are

also shown on top of each plot. Clearly, there is over 95% reduction in SVF which

shows that our system can defend against this kind of attacks successfully.

In the Prime+Probe attacks on LLC, we run a victim process that accesses

cache set 81. We plot the reload time for cache set 40-100 for both systems in

Figure 4.16. Similar to Prime+Probe attacks on L1, the attacker will see which

cache set has the largest reload time and deduce that it is the cache set that the

victim accesses. Clearly, on the 2D baseline system, the attacker can correctly

deduce that cache set 81 was accessed by the victim. However, on the system with

our countermeasures applied, the attackers measurements cannot give him too much

useful information. If he has to make decision on which cache set was accessed by

the victim, the best he can do is to pick the one with the largest reload time, which is

cache set 92. Obviously, the attacker will make a mistake on this system. Therefore,

we conclude that our system will prevent the attacker from launching Prime+Probe

attacks on LLC.

121



Cache Set
40 60 80 100

M
e
a
s
u
re

m
e
n
t 
  

S
c
o
re

 (
c
y
c
le

s
)

1900

1920

1940

1960

1980

2000

2020
SVF=0.0314

Our Work

Cache Set
40 60 80 100

600

610

620

630

640

650
SVF=1

2D_base

Figure 4.16: Reload Time for Cache Set 40-100 for Both Systems.

In time-driven attack, we plot the measurement scores (see [2,70]) for candidate

values 0-31 when deducing key byte 8. The attacker guesses that the correct key is

the one with the highest measurement score. Note that the true value of key byte 8 is

0x07 in this experiment. As shown in Figure 4.17, in neither systems, the attacker

can recover the correct key directly. This is due to the fact that to successfully

recover the key, usually time-driven attacks require a huge number of samples (for

example, 225 samples are used in [2]). However, when running on a Gem5 simulator,

225 samples would take more than a month to simulate. Therefore, we only use 222

samples in the simulation. With less samples, the attackers cannot directly recover

the key. However, if he follows the steps in [2], he can quickly recover the key in

the 2D base system using a brute-force as candidate 0x07 has the second highest

measurement score. However, in the system with our countermeasures applied, the

brute-force attack would take a long time since candidate value 0x07 has very small

measurement scores compared with others. Therefore, we conclude that our system

will defend against time-driven attacks to some extent.

We plot the attackers measurements in the branch prediction attack (BPA)
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Figure 4.17: Attacker’s Measurements in Time-driven Attacks.

on two systems in Figure 4.18. The attacker will deduce a 32-bit key based on

these measurements. A long (short) execution time leads him to deduce that the

corresponding bit is 1 (0). In both figures, measurements corresponding to key bit

1 are plotted in solid red dots while those corresponding to key bit 0 are plotted in

open dots. In the right figure, the attacker can draw a clear threshold line between

solid and open dots, meaning he can easily and correctly obtain the key. However,

in the left figure, solid and open dots are mixed up and the attacker cannot learn

the full key. These results show that our proposed work can defend against attacks

on the branch prediction buffer effectively. We also note that in [60], the authors

proposed to use BPA on attacking address space layout randomization. The under-

lying mechanism is exactly the same as the one used in the above attack. Therefore,

our defense method could successfully prevent this attack from happening.
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4.6 Comparison with Related Work

We summarize the effectiveness of our proposed techniques and several other

existing techniques against various attacks in Table 4.8. Note that no counter-

measures can defend against all types of attacks. Different techniques need to work

together to ensure a secure CPU. Our address permutation technique is the only one

that can mitigate attacks on BTB. In addition, we investigate several vital features

of a 3D CPU and show how they can be exploited to minimize timing side-channel

leakage while still achieving some performance gain over a 2D baseline processor

(see experimental results provided in Section 5.4).

In addition, we compare our proposed countermeasures with existing ones.

Most partitioning-based approaches such as [72–74] have heavy performance over-

head because they reserve part of the cache for the use of the secure process only.

For example, the worst-case performance overhead was reported to be around 20%

in [73]. Random eviction technique has been mentioned in several papers as a con-

ceptual idea [55, 119]. However, neither implementation details nor performance or
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Table 4.8: Comparison of Several Countermeasures

Methods
Access-driven attacks

Time-driven attacks

L1 BTB Others

Claim 1&2 No No Yes Yes

Addr Perm Yes Yes Yes No

[76] Yes No Yes Yes

[72,73] Yes No Yes No

security evaluation is given. The random fill technique proposed in [76] has heavier

performance overhead than the random eviction method we proposed. Countermea-

sures proposed in [77,78] are not effective against timing-driven attacks. Moreover,

going to 3D does not benefit the performance. The RPCache proposed in [77] has

around 30% access latency overhead compared with a conventional set-associative

cache. On the contrary, our proposed address permutation technique only incurs

at most 1.7% performance overhead. The implementation logic in [77] is also much

more complex than ours because of an additional level of indirection. It also con-

sumes more area and power due to the usage of LNRegs which stores the cache-

to-memory mapping information. The 3D-monitor based countermeasure proposed

in [127] uses a monitor to control accesses to the cache owned by the victim pro-

cess at the run-time. However, it has similar limitation with the cache-partition

work [72].
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4.7 Conclusion

In this chapter, we have proposed comprehensive methods to design a secure

3D CPU that has small timing side-channel information leakage. Performance and

security evaluations show that compared with a 2D baseline processor, our proposed

techniques are very effective against many widely-used timing side-channel attacks

while still achieving remarkable performance gain.
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Chapter 5: Side-Channel Attacks on Path-ORAMs

5.1 Introduction

It has been demonstrated that encryption of data alone is not sufficient to

protect client’s privacy when the client is accessing data in a remote storage. [81]

shows that memory access patterns can leak very sensitive information even if the

underlying data is encrypted. To mitigate this leakage, oblivious RAM (ORAM)

has been proposed to conceal the actual access pattern from an adversary who is

observing the accesses to the remote storage.

ORAM algorithm was first proposed by Golderich and Ostrovsky [82]. In the

original form, it involved heavy shuffling, encryption and decryption operations,

which had lots of performance overhead. Since its introduction, researchers have

made significant progress in developing efficient and low-overhead ORAM proto-

cols [83–87]. Most notably, in [88], Stefanov et al. proposed Path ORAM, a very

efficient and simple ORAM protocol.

In [82, 88] and many subsequent efficient implementations of ORAMs, such

as [128], the CPU is assumed to be secure and the ORAMs are proved to be zero-

leakage from an adversary who is monitoring the memory traffic under this assump-

tion. However one can surely imagine realistic situations where a piece of Malware
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is running on the CPU along with secure code. In such a scenario, the ORAM’s se-

curity needs to be evaluated. When the CPU is no longer secure, although ORAMs

are proved to be secure against an attacker observing the memory traffic (referred

to as an outside attacker), it is not secure any more against an adversary who can

execute malicious programs on this CPU (referred to as an inside attacker), as we

will show in this dissertation.

In this chapter, we evaluate the security level of ORAMs when the adversary

can execute malware which observes the secure thread behavior through timing side

channels. We identify common leakage points in many efficient ORAM protocols

and propose several attack scenarios to demonstrate that the timing side-channel

leakage exists. We hope that the analysis in this dissertation would motivate a new

line of research to make ORAMs more secure to such attacks. We summarize our

main contributions below:

• We identify three common leakage points in many recently proposed, efficient

ORAM implementations.

• We propose different attack scenarios where an inside attacker and outside

attacker collude to learn the underlying sensitive information and implement

these attacks on some popular ORAM protocols.

• Experimental results on both FPGA and simulators are obtained and they

demonstrate that the proposed attacks are feasible and can leak sensitive in-

formation.

• Possible mitigation methods are provided and discussed.
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1: Read private data D, Allocate an array T , counter ← 0

2: for i = 1; i < |D|; i+ + do

3: if D[i]=1 then

4: T [counter + +]← 1

5: else

6: Do something else

7: end if

8: end for

Figure 5.1: Algorithm1: Trusted Program

The rest of the chapter is organized as follows: details on how different attacks

can be performed on the ORAMs are given in Section 5.2. Section 5.3 outlines several

possible countermeasures to mitigate the proposed attacks on ORAM. Experimental

results are listed and relevant discussions are given in Section 5.4. Finally, Section 5.5

concludes the paper.

5.2 Timing Side-channel Attacks on ORAMs

5.2.1 Previous Work

One timing side-channel attack on ORAM was demonstrated in [129]. The

trusted client’s program is shown in Figure 5.1. It takes a client’s private input D

and based on each bit of D, it either makes an access to the memory or not. An

attacker observing the processor’s output pins can learn D effectively. At the time
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the trusted program is processing bit i of D, if the attacker observes that there is

an ORAM access, he knows that D[i] = 1. Otherwise, he knows that D[i] = 0. The

root cause of this attack is that when ORAM is accessed leaks privacy. Note that

possible countermeasures have been dicussed in [129]. The idea is to use a queue to

store all incoming ORAM requests and visit remote storage in a fixed interval (or

issue a dummy request if the queue is empty). This idea has been adopted by other

ORAM researchers [128, 130, 131] and we assume that it has been implemented in

all ORAMs.

5.2.2 Attack Model

We make the following assumptions about the attack model. Multi-core. We

assume that the processor is multi-core. When each core has a miss in the last-level

of cache, it places a request to the ORAM. The processor is running one trusted

program on one core.

Outside attacker. An attacker can monitor the processor’s output pins. We

refer to this attacker as an outside attacker. More specifically, he can observe the

following: 1) when the program is loaded onto the processor and terminates; 2) the

address sent to the external storage and the associated data; 3) when each access to

external storage is made. This outside attacker is the adversary model often used in

the literature when assessing the security of the ORAM [84,88]. ORAM is provably

secure to an outside attacker working alone.

No privilege. The inside attacker has no access to privileged instructions and
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cannot bypass the restrictions imposed by the operating system, such as reading

another program’s memory. This assumption is also in accordance with [129].

Above are common assumptions used in the ORAM protocols. In addition,

we make two more realistic assumptions:

Inside attacker. Another attacker can execute untrusted programs on the CPU.

He can run his program either before, after, or simultaneously with the trusted

program. We refer to this attacker as an inside attacker. The inside attacker may

not necessarily be the same person as the outside attacker but they will collude to

figure out the underlying private information. Even if no trusted program is running,

these attackers may still collude to learn the ORAM implementation characteristics,

which could be used later to attack a trusted thread.

Timing measurements. We assume that the inside attacker can measure, in his

program, the time between when a data request is made and when the data is

ready. We believe that this is a valid assumption since most modern processors

provide instructions to read the internal timestep counter (such as RDTSC in X86

processors). The inside attacker can utilize these instructions to obtain the above

timing information.

Using the above attack model, we note that the attack [129] shown in Sec-

tion 5.2.1 and ours have salient differences. We assume that the CPU is not secure

and our attacks utilize the timing side-channel information measured by both inside

and outside attackers while [129] only relies on the outside attacker to measure tim-

ing side-channel information. As a result, our attacks are more powerful and harder

to mitigate. In the next several sections, we will show how the ORAM protocol can
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be compromised with the help from an inside attacker.

5.2.3 Attacks on Queuing Delay

To obfuscate when each ORAM access is made, a queue is used to store all

the incoming requests, ORAM is accessed a fixed periodic rate. This seems to be

working in the single-core environment. However, in a multi-core scenario, this

queue will become the source of the leakage, as demonstrated next.

Consider the scenario that the trusted program visits a memory location that

only it has access to and retrieves some private data D. The trusted program has a

memory access pattern that is dependent on the private data D (e.g., Figure 5.1).

The attacker’s goal is to learn D. However, he cannot learn it directly as the

operating system prohibits him from reading another program’s memory.

The outside attacker alone cannot learn D by observing from the processor’s

output pins only. Because if the ORAM is not accessed, a dummy request will be

sent after some interval to satisfy the requirement that ORAM is accessed at a fixed

rate. Therefore, from the perspective of the outside attacker, access to external

storage is always happening, regardless of the secret data. This means that an

outside attacker alone cannot learn anything. However, as mentioned above, in

the multi-core setting, the queue used to store ORAM access requests may become

the source of leakage. What the attacker does is to run the attack program shown

in Figure 5.2. The inside attacker keeps sending requests to the ORAM (line 4

in Algorithm 5.2). He measures the time it takes to fulfill his request (line 3 in
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1: Allocate a piece of memory A, counter ← 0

2: while NOT TERMINATED do

3: t1 =RDTSC(), A[counter ++] = 1 , t =RDTSC()-t1

4: end while

Figure 5.2: Attack Program 1

Figure 5.2). If there is nothing in the queue, then his request will be serviced

quickly. Otherwise, if the trusted program also accesses the ORAM, then there will

already be a request in front of the attacker’s request, causing the service of his

request to be delayed. Thus, by observing the request completion time, the inside

attacker can learn D.

The amount of information leakage depends on the synchronization between

the attacker’s measurements and each bit of D. To leak full bits of D, the inside

attacker’s program needs to be executed before the start of the trusted program.

Moreover, the attacker needs to know exactly when the trusted program is processing

each bit of D. This can be learned from an offline profiling of the trusted program

or from collusion with the outside attacker who can observe certain processor pins.

When such information is not available to the inside attacker, he can still leak partial

information about D. Such partial information may greatly reduce the exploration

space when brute-forcing D and we consider this attack meaningful.
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5.2.4 Attacks on Encryption and Decryption Time

As introduced in Section 2.3.2, a majority of time spent in the ORAM con-

troller is to decrypt the data blocks retrieved from the memory. To speed up the

process, one implementation (such as Ascend architecture [131]) will be attempted

to decrypt and store in the stash only the real blocks (and ignore those dummy

blocks). This will still be secure against an outside attacker alone. However it will

be problematic in the presence of an inside attacker. Consider the following scenario.

The trusted program waits for user’s private input D and writes data to either an

old location that it has visited or a new location depending on D. The attacker tries

to guess the sequence of these memory visits and from there, he can learn D. For ex-

ample, the trusted program has visited block 1-5. Upon receiving the next input D,

it either visits an old memory location (block 1-5) or a new one (block 6). Knowing

which block the trusted program visits reveals the private input D. However, the

outside attacker alone cannot achieve this. The memory will still bring the whole

paths from the requested leaf to the root to the stash, thus making the memory

trace exactly the same as original Path ORAM protocol. Then those dummy blocks

will be ignored during the decryption process in the ORAM controller. This will

cause some timing difference depending on how many real blocks there are in the

retrieved path. However, since the ORAM controller has an outgoing queue and will

access the remote storage in a uniform rate, this timing difference will be masked

by the effect of the outgoing queue. From the perspective of the outside attacker, it

is the same as if both real and dummy blocks were decrypted. Therefore, from the
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Figure 5.3: Attacker’s measurements given by the FPGA.

perspective of an outside attacker alone, the above implementation is still secure.

On the other hand, the inside attacker can deduce how many real blocks are

in each path by observing the execution time of the trusted program. We use one

motivational example to demonstrate this. We simulate the execution of one trusted

program on a 5-level ORAM on a FPGA board. Intially, the ORAM is empty. The

trusted program is then executed eight times and writes to block 1, 2, 3, 4, 2, 4, 3, 4

during each execution. Note that these blocks may reside in any bucket (1-31 shown

in Figure 5.4). The inside attacker measures the program execution time of each

run and the results are shown in Figure 5.3. Section 5.4 gives details on simulation

framework.

Note that the execution time of run1 and run 2 varies by roughly 130 cycles.

Since the ORAM is originally empty, the attacker knows that 0 blocks are decrypted

during run 1 and 1 block during run 2. Using the same logic, the attacker can see

that 0, 1, 0, 0, 3, 3, 3, 2 real blocks are decrypted in each run. Next, we demonstrate

that if the outside attacker and the inside attacker collude, they can derive the whole
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Figure 5.4: One ORAM structure. Each node is a bucket containing multiple blocks.

execution sequence or greatly reduce the search space for the execution sequence.

They can even guess where each block is with high confidence. For example, suppose

that the outside attacker observes that leaf bucket 22, 27, 16, 20 (see Figure 5.4)

are accessed during the first four executions. In run 2 (where leaf bucket 27 was

accessed), the inside attacker observes that one real block is decrypted. The outside

attacker observes that path 22 is accessed in the first timestep and path 27 is accessed

in the second one. Since the only intersection between path 22 and 27 is bucket 1,

and one real block resides in path 27, it can be concluded that the real block added

in the first timestep was in bucket 1 at the end of first execution of the trusted

program. Then in the third and fourth run, the inside attacker observes that no

real block is decrypted. Therefore, he concludes that run3 and run4 each writes to

a new location. Otherwise, there should be at least one real block in the path to

be decrypted. Deducing the rest of the sequence is similar. We have developed an

attacker program that takes as input the number of real blocks decrypted during

each visit (observed by the inside attacker) and the associated leaf bucket that
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has been visited (observed by the outside attacker), it will output all the possible

memory access sequence and possible locations of each block after each visit. The

idea is to enumerate the possible location of each block after each execution, and

remove those locations that conflict with the observation of either the inside attacker

or the outside attacker. Our attacker program on the above example outputs 428

possible memory access sequences. Compared with 8! possible sequences if only the

observation of the outside attacker is available, we are able to reduce the search

space by 1− 428/8! = 98.93%.

5.2.5 Attacks on Using Stash as Cache

To make ORAM more efficient, [132] proposes to use stash as a cache for local

read/write operations. When the client wants to read data that is in the stash, the

client will directly read from the stash rather than accessing the server. Though this

technique can increase the efficiency of ORAM, it has serious security issues in the

context of timing side-channel attacks originating from inside, as illustrated next.

Consider the following attack scenario. The trusted program runs on a private

key which is unknown to the attacker. The trusted program has a memory access

pattern that depends on the private key (for example, it visits the same block it

visited last time if the key bit is 0, or it visits a new block if the key bit is 1). The

adversary is trying to deduce the private key. The use of ORAM is proved to be

secure against an outside attacker alone. However, the inside attacker can run the

trusted program and measures how long it takes to finish. If the total execution time
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is smaller, then it is highly likely that the trusted program has a repeated sequence

of memory visits that result in cache hits.

To explain this attack in more detail, let us consider two different ORAM

protocols that have such caching behavior. In Phantom [128], tree-top caching is

proposed, which caches the content of blocks in the first few layers of the path

ORAMS (starting from the root) in the stash. For example, one implementation

chooses to store all blocks that should have been stored in bucket 1-7 in the stash.

The number of layers to cache is a design parameter that affects performance. The

more layers to cache, the higher probability of cache hits there is. We use the ORAM

structure shown in Figure 5.4 to illustrate the leakage. Note that the actual ORAM

may have a much higher level than the structure shown. For illustration purpose,

let us assume that in one implementation, three layers of blocks are stored in the

stash. This means blocks in bucket 1-7 will be cached in the stash. To help our

illustration, we define Ai(j) as the ancestor of bucket j in the ith level. For example,

in Figure 5.4, A1(3) = 1 and A3(20) = 5. Consider what will happen if a block (say

block1) has been repeatedly visited. If block1 is stored in a bucket i where A4(i) = 8

(e.g., bucket 16) in the first visit, during next visit of block1, the ORAM protocol

dictates that it be remapped to leaf bucket 16-31 with equal probability. This means,

with probability 7/8, it will be remapped to a bucket i′ where A4(i′) 6= 8. Then

according to ORAM protocol, block1 will be relocated to either bucket 4 or 2 or 1

and will be cached in the stash since it is now in the first three levels of the ORAM.

As a result, with a probability of 7/8, the block will be cached and the same visit to

this block next will be a cache hit and hence very short access time. On the other
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hand, if a different block (say block2) is visited after visiting block1, the access time

of block2 will be independent of that of block1. In summary, if the program has an

access pattern that visits a different block each time, then on average, the access

time of each block visit is roughly the same. However, if the program keeps visiting

the same block, then there is a high probability that the next block visit is a cache

hit, resulting in a shorter execution time. Therefore, if the attacker sees the average

execution time of two memory sequences, he may conclude that the sequence that

has a shorter execution time contains many consecutive visits to the same blocks.

In Fork-path ORAM [133], all blocks along the path visited during an ORAM

access are cached in the stash. This scheme is very vulnerable against an inside

attacker. Using the same logic, we can argue that if the program visits two different

blocks, the access time will be independent (the acccess time of the second block

visit may or may not result in a cache hit). However, if the program visits two same

blocks, then the second block visit is guaranteed to result in a cache hit, since the

path visited during the second visit is guaranteed to be overlapped with the path

in the first visit, according to the invariant of the path ORAM. Therefore, same

as above, an attacker can tell if a sequence contains consecutive visits to the same

block by measuring the program execution time.

5.3 Mitigation Techniques

Generally, one might be tempted to prohibit the use of rdtsc instruction since

it is used in the attack to measure time. However the trusted program running on
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the processor may need such instruction for performance profiling purpose or other

purposes. Even without this instruction, the attacker can connect a timing source

to the processor and use it to measure the timing information (like what we did in

the FPGA board simulation). Therefore, we conclude that prohibiting the use of

rdtsc instructions is neither possible nor enough.

To defend against the attack on queuing delay proposed in Section 5.2.3, we

can make the external storage multi-port, meaning that it can be accessed through

different ports simultaneously. One queue for each core is used. The requests in

different queues are sent to different ports of the external storage. In this way, the

requests generated by one core will not interfere those generated by another core

and thus eliminating the side-channels. A similar idea is to use a different ORAM

controller for each core. However, these may incur area overhead as extra queues

and controllers are needed.

To defend against the attacks on the decryption and encryption time shown

in Section 5.2.4, the protocol should be modified. More specifically, we identify

the root cause of the leakage as decrypting ONLY the real blocks. Therefore, to

defend against this attack, all blocks including dummy blocks should be decrypted.

Security vs. performance trade-off will be presented in Section 5.4. For using stash

as cache, the trade-off between security and performance is given in Section 5.4. The

system designer should choose a design according to security/performance need.
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5.4 Experiments and Results

5.4.1 Experimental Setup

ORAM protocols implemented. To demonstrate that our proposed at-

tacks are effective, we implement several newly proposed Path-ORAM protocols.

More specifically, we implement the ORAM used in the Ascend architecture as

proposed in [131]. Tree-top caching [128] as well as Fork-path ORAM [133] are

also implemented. These ORAM protocols are provably secure against an outside

attacker and they optimize ORAM bandwidth and performance in various ways.

However, we demonstrate that they are vulnerable to an inside attacker.

Attacks performed. We will implement the attacks introduced in Sec-

tion 5.2.3, 5.2.4 and 5.2.5 on the ORAM protocols mentioned above. More specif-

ically, attacks on queuing delay and attacks on decryption time are applied to the

Ascend ORAM while attacks on caching behavior are applied to Phantom and Fork-

path ORAM.

Simulator. To demonstrate that our proposed leakage does exist, we write an

ORAM simulator for each of the above ORAM protocol. We run some experiments

on the simulators to demonstrate the effectiveness of the proposed attacks. All

the parameters used in our simulators are listed in Table 5.1. We assume that the

external storage is a conventional DRAM with 200-cycle latency. The encryption

and decryption is done using random AES encryption and is done at a speed of 100

cycles/block [134]. Since stash usually only holds a small portion of overflow data,
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Table 5.1: Parameters Used in the Simulator

Number of Bucket Per Node, Z 4

Number of Levels L+ 1 10

Block Size 128 Bytes

External Storage Latency 200 Cycles

Encryption/Decryption Time 100 Cycles

Stash Latency 30 Cycles

we assume that it is SRAM and has a latency of 30 cycles. We also enforce the

ORAM to be accessed at a fixed interval as proposed in [134], i.e. 100 cycles.

FPGA-based results. To show that our attacks are real, we also implement

the ORAM protocols used in the Ascend architecture [131] on FPGA. We choose the

Altera Stratix V FPGA, a high-end FPGA with on-board 2GB DRAM (shown in

Figure 5.5). We modify the Altera NIOS-II architecture to add an ORAM controller

between the CPU and the DRAM. The attacker program is developed in C and run

on the NIOS-II software-IP. A high-resolution counter is provided as the attacker’s

source to measure time. We then obtain the results for attacks on decryption time.

5.4.2 Attacks on Queuing Delay

This subsection evaluates the effectiveness of the attack on queuing delay. We

randomly generate fifty values of the secret data D. For each D, we start the inside

attacker’s program on the simulator first. Then we run the trusted program. We

assume that processing each bit of D takes 3000 cycles and this is known to the

attacker. The attacker’s measurements corresponding to two values of D are given
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Figure 5.5: Stratix V FPGA board used in the experiment.

by the simulator and shown in Figure 5.6. 0 in the x-axis corresponds to the start

of the trusted program. Each bin in the figure corresponds to each bit of D. If the

attacker observes that the fulfillment of his data request takes longer in one bin,

he knows that the corresponding bit of D is 1. Figure 5.6 shows clearly that such

attack is able to leak D successfully. In fact, in all the fifty D generated, the inside

attacker is able to learn D successfully.

5.4.3 Attacks on encryption and decryption time.

We use the FPGA board to execute the trusted program introduced in Sec-

tion 5.2.4. Each time, we first initialize the ORAM to empty and run the trusted

program 8 times, visiting either old or new locations randomly. The board outputs

for each execution of the trusted program, which leaf node is visited and how long it
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Figure 5.6: Attacker’s measurements for two different values of D. If fulfillment of

attacker’s data takes longer in one bin, he knows the corresponding bit in D is 1.

takes to finish. This represents the measurements from both the inside and outside

attacker. The attacker program introduced in Section 5.2.4 is then run to deduce

the memory access sequence as well as the possible locations of each block after each

memory visit. The above steps are repeated 100 times and the results are averaged.

To gain a sense of how powerful our attack program is, we record the run time of

our attacker program, which represents how quickly can our program deduce the

subset of possible memory access patterns. The results are averaged over 100 runs

and shown in Table 5.2. For comparison purposes, we also list the number of possi-

ble access sequences and number of possible locations if given only the observation

from the outside attacker. We can see from Table 5.2 that our attacker program

can reduce the search space by orders of magnitude.

5.4.4 Attacks on Caching Behavior

We run the attack described in Section 5.2.5 on both Phantom and Fork-path

ORAMs on the simulator. In Phantom, both caching only the root and caching the
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Table 5.2: Evaluation of our attacker program.

Attacker’s Information Inside+Outside Attacker Only Outside Attacker

Run time 10m14s -

#Possible Access Sequences 386 40320

#Possible Locations 10475520 1.73 ∗ 1014
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Figure 5.7: Attacks on using stash as cache. Left 2 figures show tree-top caching

and right 2 figures show fork-path ORAM. Block access sequences are denoted.

first three layers are explored. We simulate two different memory access sequences

on the simulator 100 times. We plot the averaged execution time of each memory

access given by the simulator in Figure 5.7. From the figure, we can tell that if we

keep visiting the same block, the subsequent access time of the same block in both

protocols will be smaller than that of visiting a different block. In Fork-path ORAM,

since visiting the same block is guaranteed to be a cache hit, hence near-zero access

time, the leakage is the greatest.
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Table 5.3: Evaluation of decrypting all blocks.

What to Decrypt Run-time of 50 Memory Visits (cycles) Correlation

All 648200 0.1651

Only Real 607200 0.9867

5.4.5 Evaluation of Mitigation Techniques

We evaluate mitigation techniques in Section 5.3. We first compare the per-

formance and security of decrypting all vs. only real blocks in Path-ORAMs. We

initialize the ORAM to empty, visit 50 random blocks, and record the time to finish

these 50 memory visits. We repeat this step 100 times and the averaged time is

shown in Table 5.3. For security evaluation, we calculate the correlation coefficient

between the number of real blocks decrypted and the execution time of the trusted

program. The averaged results are also shown in Table 5.3. We can see that with

an average of 6.33% performance downgrade, we can achieve over 6X correlation

reduction. Therefore, decrypting all blocks should always be used.

We then compare the performance and the security of treetop caching. Specif-

ically, we compare the effect of caching only the first 1/2/3 layers and no caching.

For each case, we randomly generate 50 memory visits, each either visits the same

block as previous request or visits a new one. We record the time it takes to finish

these 50 memory visits. The above steps are repeated 100 times and the averaged

time is shown in Table 5.4. For security evaluation, we calculate the correlation co-

efficient between the execution time of the trusted program and a binary indicator

Isame, where Isame = 1 indicates that the same block is visited as the previous visit
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Table 5.4: Evaluation of different caching behavior.

# Layers to Cache Run-time of 50 Memory Visits (cycles) Correlation

0 609300 0.1302

1 412600 0.9467

2 346800 0.9732

3 307500 0.9893

and Isame = 0 indicates a different block is visited. The averaged results are also

shown in Table 5.4. The performance of caching top 3 layer almost doubles com-

pared with no-caching. However, the security is 7X worse. The reason is as follows.

As we increase the number of layers to be cached, the probability of a cache hit

(stash hit) increases and hence the performance goes up. However, higher cache hit

means visiting the same block twice takes shorter because the second visit is more

likely to be a cache hit. As a result, the difference in latencies between visiting the

same block twice and visiting two different blocks is greater. Therefore, the security

goes down. We conclude that the use of caching should be decided according to the

performance and security need of the design.

5.5 Conclusion

In this chapter, we have proposed several timing side-channel attacks on

ORAMs. We demonstrate that ORAM is not secure against an inside attacker who

executes untrusted programs and measures the timing information. We demonstrate

that our proposed attacks can leak significant amount of information using exper-
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iments on both simulator and FPGA. We hope that the analysis in this chapter

would motivate a new line of research to make ORAMs more secure to the proposed

attacks.
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Chapter 6: Conclusion and Future Research Directions

In Chapter 1, we highlighted some of the key issues and challenges in hardware

security. We demonstrate that techniques that enhance cyber security is urgently

needed. We then introduce the general life cycle of a hardware system, including

design phase, fabrication phase, test phase and post-deployment phase. Various

hardware attacks that take place at each phase are also introduced. Existing design

and verification techniques to mitigate these attacks are surveyed and their disad-

vantages are discussed. The main goal of our work is to overcome the challenges

in solving hardware security problems. We also investigate the impact of emerg-

ing technologies and new hardware primitives on hardware security, including new

countermeasures that are enabled by them and new security problems they bring.

Chapter 2 introduces existing research problems and state-of-art results on hardware

Trojan detection, timing side-channel attacks on cache, and Oblivious RAM.

In Chapter 3, we proposed a novel reverse-engineering based hardware Trojan

detection approach without generating a gate or transistor netlist. Our approach

adapts one-class ν-SVM to the HT detection problem. The experimental results

on several publicly available benchmarks show that our method can achieve very

high Trojan detection accuracy. We also investigated the impact of some modeling
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and algorithm parameters on the accuracy rate. Our method is efficient in storage

space, does not require the existence of golden chip and is robust to variations in

fabrication and reverse-engineering process. To extend this work, we proposed a

novel design-time strategy to aid test-time Trojan detection. Experimental results

on real benchmarks showed that using our design-time strategy, we can detect on

average 16.87% more Trojans with only 7.87% area overhead and 17.72% leakage

power overhead. Our method is fully automated, can easily fit into the current

design flow of IC and thus is very promising.

In Chapter 4, we proposed comprehensive methods to design a secure 3D

CPU that has small timing side-channel information leakage. We explored the im-

plications of 3D integration technique on cache timing side-channel signatures. We

investigated how 3D integration can be used to mitigate cache timing side-channel

attacks. Performance and security evaluations showed that compared with a 2D

baseline processor, our proposed techniques are very effective against many widely-

used timing side-channel attacks while still achieving remarkable performance gain.

In Chapter 5, we proposed several timing side-channel attacks on ORAMs.

We demonstrated that ORAM is not secure against an inside attacker who executes

untrusted programs and measures the timing information. We showed that our

proposed attacks can leak significant amount of information using experiments on

both simulator and FPGA. We hope that the analysis in this dissertation would

motivate a new line of research to make ORAMs more secure to the proposed attacks.
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6.1 Future Work

In this dissertation, we have proposed some innovative and unconventional

approaches to enhance hardware security. There are still opportunities for further

improvements and open issues such as the implication of emerging technologies on

other types of hardware attacks.

Implications of 3D integration on other hardware attacks. In this disserta-

tion, we explored the implications of 3D integration on timing side-channel attacks

on cache. As pointed out by Xie et. al [135], 3D integration will bring many op-

portunities and challenges in making hardware more secure. In our future work,

we would like to investigate the implications of 3D integration on other hardware

attacks, including:

• Hardware Trojan detection. Researchers have proposed several design-for-

security techniques to defend against hardware Trojans. These techniques

usually insert some circuitry into the original circuit to function as the defense

mechanism or aid test-time Trojan detection. However, in conventional IC fab-

rication model, these additional circuitry are also fabricated at the untrusted

foundry, leaving their security in doubt. Attackers could sabotage them, leav-

ing designer’s effort in vein. 3D integration technique, on the other hand,

enable designer to integrate these design-for-security circuitry as a separate

die and manufacture them in a trusted foundry. As such, the security of these

additional circuitry is guaranteed. In addition, 3D integration techniques also

allow designer to integrate run-time monitor on top of the original circuit.
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Since vertical interconnection (between dies) is much shorter than horizontal

interconnection (within a die), the performance overhead can be reduced.

• Reverse-engineering attacks. Because 3D integration process is more compli-

cated than conventional fabrication process, the complexity for attackers to

reverse-engineer an IC also increases. This makes 3D integration a natural

defense against reverse-engineering attacks. Moreover, 3D integration enables

designers to include active-shielding of security-sensitive areas with additional

layers of metal. The active shielding techniques make the devices tamper-

resistant.

• Fault-injection attacks. The stacking structure of 3D integration offers a nat-

ural defense against fault injection attacks. The first phase of fault injection

attacks is to inject faults into the device using light illumination, focused ion

beam, etc. By placing the vulnerable tier (e.g.,,, memory) in the lower stack,

the stack above it will act as a shield, which may protect the vulnerable tier

from being influenced by fault injection techniques. Furthermore, the stacking

structure enables system designers to stack a monitor tier on top of the original

system. The monitor tier may watch the system for any intended faults.

ORAM security. In this dissertation, we demonstrated that timing side-channel

attacks can break ORAM, a new security-oriented hardware primitive. Though

we have introduced some general guidelines in designing a secure ORAM in this

dissertation, it merely scratched the surface of the ORAM design-space exploration.

How to balance the trade-off between performance and security is the central topic
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to explore. More experimental results are needed to better design a secure and

efficient ORAM protocol.
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