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To accurately model the transmembrane proteins, accurate descriptions of its natural 

environment, i.e., lipids, are critical. The all-atom CHARMM36 lipid force field (C36FF-AA) is 

tested with molecular dynamics (MD) simulations. Through comparison to experiments, we 

conclude that the C36FF-AA is accurate for use with bilayers of varying head and chain types over 

biologically relevant temperatures. The united-atom chain model of the C36FF (C36FF-UA) of 

common lipids is developed to improve simulation efficiency. It shows good agreement between 

the simulated bilayer properties obtained by C36FF-UA and experiments, and also between the 

simulated results from UA and AA lipid models. Besides the single-component membrane, 

multiple-components 18:2 linoleoyl-containing soybean membrane models have been developed. 

The structural properties of pure linoleoyl bilayers agree well with experiments, based on which 

the soybean membrane models also result in reasonable structural properties.  

Accurate lipid force field greatly facilitates the study of transmembrane proteins. Lactose 

permease of Escherichia coli (E. coli) belongs to major facilitator superfamily (MFS) which is the 

largest and most diverse family of transporters and serves as a model for secondary active 

transporters (SATs) in this dissertation. LacY structures of the cytoplasmic-open, occluded-like, 



and recently periplasmic-partially-open state have been determined, however, the crystal structure 

of LacY in the periplasmic-open state is still not available. The periplasmic-open LacY structure 

is important for understanding the complete proton/sugar transport process of LacY as well as 

other similar SAT proteins. MD simulations are performed to test the accuracy of the previously 

developed periplasmic-open LacYIM-EX model (JMB 404:506), and two other periplasmic-open 

LacY models, LacYSW and LacYFP models (JMB 407:698). The simulated results indicate that 

LacYIM-EX is the only structure that remains stable in the periplasmic-open state. The MD dummy 

spin label simulations (MDDS) have also been performed and the results show that the orientation 

of the spin labels significantly affect the distance measurement so that the proper interpretation of 

DEER requires the aid of MDDS simulations. Self-guided Langevin dynamics (SGLD) 

simulations are performed to search periplasmic-open LacY. The results show that no outward-

facing is obtained with nanosecond-averaged results, but if we study individual structures, 

conformational sampling is obtained with certain SGLD parameters that enhance natural helical 

motions. This SGLD approach might hold promise for studying conformational changes of other 

SAT proteins. 
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Chapter 1 Introduction 

 

1.1 Membrane 

 

Membrane lipids function as boundaries to cells and internal organelles and 

regulate the molecular traffic across the boundaries [1]. Together with sterols, 

phospholipids are the main structural components of membranes [1], and their studies are 

necessary to understand the role and mechanisms on how membrane lipids regulate 

molecular transport as well as protein function [2]. When amphipathic phospholipids are 

mixed with water at the correct water to lipid ratio, bilayers spontaneously form, in which 

the nonpolar acyl chains remain in the center and the outer polar head groups interacting 

with the aqueous phase [1]. 

Cell membrane bilayers (without cholesterol) are usually in the liquid crystalline 

phase (Lα) [2]. As the temperature decreases below certain melting temperature, a phase 

transition from Lα to the gel phase (Lβ) occurs [3]. Even though the physiological 

temperature of the human body is nearly constant, microorganisms live in varying 

temperatures, which influences cell membrane properties and structure. The variation of 

these properties is commonly related to the change in membrane fluidity. As the 

temperature increases, the membrane fluidity increases [4].  

1.1.1 Single-component bilayer 

Studying bilayer structural properties is important to understand roles and 

mechanisms of how membrane lipids regulate molecular transport as well as protein 

function [2]. Many properties of pure phospholipid bilayers with multiple chain types 

(Figure 1) mimic the cell membranes effectively even though they do not provide all the 

complexities [5], such as the sterols, glycolipids, and proteins which usually included in 
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the biomembrane that affect the structural properties. Thus, this model is often used to 

study various biomembrane topics when the biological membrane is too complex for 

experimentation [5]. Experimentally, Kučerka et al. [6-10] measured single lipid 

membrane structural parameters, such as surface area per lipid (SA/lip), overall bilayer 

thickness, hydrophobic thickness, and headgroup-to-headgroup thickness, while Leftin and 

Brown [11] measured deuterium order parameters and the NMR spin-lattice relaxation 

time. Molecular dynamics (MD) simulations have also been extensively used to determine 

lipid membrane structural properties. With an accurate lipid force field, simulation results 

can assist the interpretation of x-ray scattering [12], NMR [13], and combined x-ray and 

neutron scattering [7, 9] results to characterize lipid bilayer structure and dynamics. 

Moreover, MD simulations are able to provide insight into bilayer structural properties that 

are difficult to determine experimentally.  

 

Figure 1 Various types of lipid bilayer system snapshots at the end of the simulations 

1,2-dimyristoyl-sn-glycero-3-PC (DMPC) at 30 °C, 50 ns (left), 1-stearoyl-2-oleoyl-sn-

glycero-3-PC (SOPC) at 50 °C, 100 ns (middle), and 1,2-diphytanoyl-sn-glycero-3-PC 

(DPhPC) at 30 °C, 160 ns (right). The traditional color scheme is applied: cyan for carbon, 

blue for nitrogen, red for oxygen, and orange for phosphate. Yellow represents the double 

bond in SOPC and pink is for branch and terminal methyl groups in DPhPC. The hydrogen 

atoms and water molecules are not shown for clarity.  

There are various force fields for MD simulations of the phospholipids. The all-

atom CHARMM36 force field (C36FF-AA) developed by Klauda et al. [14, 15] allows for 

constant particle number, pressure, and temperature (NPT) simulations of pure lipid 
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bilayers, accurately yielding various structural and dynamic properties of lipid membranes. 

MD simulations with the C36FF-AA have been used to study the lipid bilayers with 

cholesterol [16, 17], glycolipids [18], membrane-associated proteins [19-21], micelles [21-

23], and Gram-negative bacterial outer [24, 25] and inner [26, 27] membranes. Previously, 

it has been reported that the C36FF-AA is an accurate force field for PC bilayer simulation 

at varied temperatures [28]. We propose that C36FF-AA may be capable of providing 

better structural properties than other force fields regardless of lipid types; e.g., while the 

experimental SA/lip for POPE is 58.0 Å2 at 35 °C [7], the AMBER Lipid14 predicts 

55.5±0.2 Å2 at 37 °C [29], SLIPIDS gives 56.3±0.4 Å2 at 37 °C [30], and C36FF-AA yields 

59.2±0.3 Å2 at 37 °C [14] that is closest to the experimental data. Moreover, C36FF-AA 

[14] results in more accurate deuterium order parameter than Berger force field [31] for 

DPPC and POPC [32]. Recently, the properties of DMPC, POPC, and POPE obtained from 

C36FF-AA [14], Lipid14 [29], Slipids [33], and GROMOS54a7 [34] were compared in 

[35], showing that C36FF yields more accurate lipid volume, bilayer thickness, and lipid 

diffusion coefficient than the other force fields. 

Therefore, MD simulations were performed to test accuracy of all-atom 

CHARMM36 force field for a variety of lipid types of phospholipid (different head groups 

and tail types for saturated, mono-, mixed-, and poly-unsaturated lipids) over a wider 

temperature range (30-80 °C for saturated and 30-40 °C for unsaturated lipids) by 

comparing the simulation structural properties with and validate the experimental structural 

properties data. In total, 76 lipid types were simulated. Moreover, the large data set from 

our simulations allows investigating certain trends in specific properties as a function of 

temperature, chain length, and unsaturation level. The in-depth analysis of lipid membrane 
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simulations at the atomic level allow for a complete understanding of lipid hydrogen 

bonding, cluster formation, and internal lipid motions. 

Table 1 The simulated lipid’s tail information 

List of the tail name abbreviation, chain length, saturation level, and double bond position 

of the first atom. The double bonds in all the unsaturated lipids have cis geometry. 

 

Saturated   
DL  DM  DP  DS   
12:0  14:0  16:0  18:0    

Mono-unsaturated  
DX  DO  DG  DE  DN  

16:1 (Δ9)   18:1 (Δ9)    20:1 (Δ11)    22:1 (Δ13)    24:1 (Δ15)     

Mixed mono/di-unsaturated (sn-1/sn-2)  
PO  SO  PL  SL   
16:0/18:1 

(Δ9)     

18:0/18:1  

(Δ9)     

16:0/18:2 

(Δ9,12)     

18:0/18:2 

(Δ9,12)       

Poly-unsaturated (sn-1/sn-2)  
SA  SD  DA    
18:0/20:4 

(Δ5,8,11,14)       

18:0/22:6 

(Δ4,7,10,13,16,19)       

20:4/20:4 

(Δ5,8,11,14)          

 

The head group types considered in this study are phosphatidic acid (PA), 

phosphocholine (PC), phosphoethanolamine (PE), phosphoglycerol (PG), and 

phosphoserine (PS). As listed in Table 1, the lipid tail types vary with saturated chain 

lengths ranging from 12 to 18, which are dilauroyl (DL, 12:0), dimyristoyl (DM, 14:0), 

dipalmitoyl (DP, 16:0), and distearoyl (DS, 18:0). Mono-unsaturated lipids vary with chain 

length ranging from 16 to 24 which are dipalmitoleoyl (DX), dioleoyl (DO), digadoleoyl 

(DG), dierucoyl (DE), and dinervonoyl (DN). Mixed mono/di-unsaturated lipids include 

1-palmitoyl-2-oleoyl (PO), 1-stearoyl-2-oleoyl (SO), 1-palmitoyl-2-linoleoyl (PL), and 1-

stearoyl-2-linoleoyl (SL). Poly-unsaturated lipids include 1-stearoyl-2-arachidonoyl (SA), 

1-stearoyl-2-docosahexaenoyl (SD), and diarachidonoyl (DA). The full name of a lipid can 

be obtained by combining the tail and head group names of the lipid in the following 
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format; e.g., DXPE is 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine. Table 1 

summarizes all the acyl chain types and a few representative lipid structures are shown in 

Figure 2. The list of all the simulation systems that have been performed are shown in 

Table A.1, and the detail results will be provided in Chapter 4. 

 

Figure 2 Chemical structures of a few representative lipids types.  

The blue hydrogen and red oxygen atoms indicate the hydrogen bonding proton and 

acceptors used in the hydrogen bond analysis, and the carbon atoms used for reorientational 

correlation analysis are shown in cyan.  

The total of 72 lipid molecules in each bilayer (36 lipids per leaflet) is applied in 

all the single-component lipid bilayer system (except for the pure 18:2 linoleic lipid bilayer 

which will be introduced in the later section). In order to check the system size effects on 

the analyzed properties, we performed addition simulations of DOPA, DOPG, and DOPS 

with 128 lipid molecules. As shown in Table A.2, there are no or minor effects on almost 

all structural properties. We did not calculate lipid diffusion constants in this study due to 

well-known finite-size effect carefully studied in [36]. 



6 

 

1.1.2 Multiple-component bilayer 

1.1.2a E. coli Membrane 

The biological membranes are more complex than a simplified homogenous lipid 

bilayer. Specifically, a realistic membrane contains a variety of lipid components, such as 

glycerol lipids, sterols, and transmembrane proteins, etc. An accurate representation of the 

membrane is essential when the lipid-protein interactions need to be taken into account, for 

instance, the E. coli membrane which was used in our studies of a transmembrane protein.  

Table 2 The top6 membrane composition  

The lipid number in the top/bottom leaflet are shown as ideal (initially built), but the lipids 

that overlap with proteins are removed. The modified columns show the exact lipids 

numbers applied in the explicit membrane MD simulations for all the protonation states. 1-

palmitoyl-2-cis-9,10-methylene-hexadecanoic-acid-sn-glycero-3-phosphoethanolamine 

(PMPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-

pentadecanoyl-2-cis-9,10-methylene-hexadecanoic-acid-sn-glycero-3-

phosphoethanolamine (QMPE), 1-palmitoyl- 2-cis-9,10-methylene-hexadecanoic-acid-sn-

glycero-3-phosphatidylglycerol (PMPG), 1-palmitoyl-2-palmitoleoyl-snglycero-3-

phosphoglycerol (PSPG), and 1-oleoyl-2-palmitoleoyl-snglycero-3-phosphoethanolamine 

(OSPE). Please refer to reference [27] for the chemical structure of each lipid.  

Lipids sn-2 sn-1 Ideal top/bot. Modified top/bot. 

PMPE cy17:0 16:0 74/74 72/74 

POPE 18:1 16:0 20/20 19/20 

QMPE cy17:0 15:0 20/20 19/19 

PMPG cy17:0 15:0 16/16 16/15 

PSPG 16:1 16:0 14/14 14/14 

OSPE 16:1 16:0 12/12 11/12 

 

A multiple-component lipid membrane model (top6) was developed previously to 

match the composition of the inner membrane of E. coli. This is based on the composition 

published by Pandit and Klauda [27] in which the ratio of  PE:PG equals 4.2:1 and the 

membrane contains lipids with a cyclopropane moiety (cyC17:0). The lipids used are listed 

in Table 2 and it is known that E. coli cannot produce sterol, so these membranes lack these 
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sterol lipids. This membrane model was applied to study the lactose permease of E. coli, 

LacY which will be introduced in the later section. 

1.1.2b Soybean Membrane 

In comparison, considerably less work has been done on the plasma composition 

of higher plants. In the past, studies have been hindered because highly enriched fractions 

of plasma membranes could not be produced sufficiently for analysis. However, recent 

studies have provided more concrete characterizations through different isolation 

techniques, resulting in plasma membranes fractions that may exceed 80% purity [37]. 

Additionally, lipid analysis techniques have continued to improve over time. Mass 

spectrometry, for instance, has been largely successful in recent years due to its high 

sensitivity and high specificity [38]. 

 

Figure 3 Chemical structures of linoleoyl lipids and snapshot of soybean membrane 

a) The lipids are SLPC, DLiPC, LLPE, and sterol lipids of β-sitosterol (SITO), stigmasterol 

(STIG). The positions of double bond carbons are shown in blue texts. b) The snapshot of 

hypocotyl at the end of the simulation. The glycerol phospholipids are shown in blue lines; 

the two types of sterols SITO and STIG are in red and yellow lines respectively, the water 

is shown in red dot and the potassium ions are shown in green sphere.  
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Plant membranes have also been modeled but less frequently than membranes of 

other organisms. Previously, MD simulation techniques were used to investigate the 

interaction between isoprene and a phospholipid membrane [39]. The results of the study 

found that plants release isoprene to stabilize the membrane and avoid undergoing a heat-

induced phase transition [39]. Soy membranes, however, have not been extensively studied 

through computational models. 

Table 3 Lipid composition of soybean hypocotyl membrane 

Lipid sn-1/sn-2 Exp[37, 40, 41] # lipid/leaflet 

PLPC 16:0 – 18:2 11.5% 12 

DLiPC 18:2 - 18:2 22.1% 22 

PLPE 16:0 - 18:2 13.3% 13 

DLiPE 18:2 - 18:2 7.3% 7 

LLPE 18:2 - 18:3 5.1% 5 

PLPI 16:0 - 18:2 8.5% 9 

L2PI 18:2 - 18:2 3.6% 4 

Sitosterol N/A 21.0% 21 

Stigmasterol N/A 7.5% 7 

 

Table 4 Lipid composition of soybean root membrane 

Lipid sn-1/sn-2 Exp[37, 40, 41] # lipid/leaflet 

PLPA 16:0 - 18:2 10.0% 10 

LLPA 18:2 - 18:3 10.0% 10 

PLPC 16:0 - 18:2 11.0% 11 

LLPC 18:2 - 18:3 11.0% 11 

PLPE 16:0 - 18:2 10.2% 10 

LLPE 18:2 - 18:3 10.2% 10 

LLPS 18:2 - 18:3 4.3% 4 

PLPI 16:0 - 18:2 4.7% 5 

Sitosterol N/A 18.6% 19 

Stigmasterol N/A 10.0% 10 

 

The compositions of soybean plasma membranes vary depending on the species, 

stage of development, and the part of the plant. The two parts of the plant that were 

examined in this study were the hypocotyl and the root of a developing seedling. The 
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hypocotyl is the stem of the germinating seedling, found below the seed leaves and the 

embryonic root. The root membrane under study was that of the seedling soybean root. The 

compositions of these membranes were weighted and averaged from past experimental 

studies [37, 40, 41] and modeled using lipid bilayers consisting of 100 lipids on the top and 

bottom leaflets.  

The purpose of the soybean membrane study is to model and characterize the 

properties of the plasma membranes of these two regions of the soy plant through MD 

simulations for use in future studies. The pure 1-stearoyl-2-linoleoyl-sn-glycero-3-

phosphocholine (SLPC, 18:0/18:2) and dilinoleylphosphatidylcholine (DLiPC, di-18:2) 

bilayer systems are studied (Figure 3a). The hypocotyl and root membranes each contains 

two common types of sterols (sitosterol and stigmasterol) and 7 or 8 eight types of linoleoyl 

glycerol phosphate lipids, with the head groups such as PA, PC, PE, PI, and PS (for root 

membrane only). The ratio of the sterols and lipids of each head group are very similar in 

the hypocotyl and root membrane models. The composition for hypocotyl membrane is 

shown in Table 3 and root membrane in Table 4. The built hypocotyl membrane based on 

the given composition is shown in Figure 3b, and the detail results will be provided in 

Chapter 5. 

1.2 Transmembrane Protein-Lactose Permease of E. coli (LacY)  

1.2.1 Function of LacY 

Normal functioning of cells requires energy, and disaccharides (e.g. lactose) are 

one example energy source. In E. coli, lactose is transported into the cell via a 

transmembrane protein (e.g. lactose permease, LacY) that catalyzes the coupled 

translocation of β-galactosides and a proton [42]. LacY is classified as a secondary active 
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transporter (SAT) that utilizes the free energy from the transporting of proton along the 

gradient to drive the accumulation of β-galactosides against their concentration gradient 

[43] via a symport mechanism (proton and sugar transport in the same direction). It belongs 

to major facilitator superfamily (MFS) which is the largest and most diverse transporters 

that transport many types of substrates, such as ions, peptides and disaccharides [44] as in 

LacY. Moreover, MFS can be found in membranes of many living organisms [45, 46]. 

 

Figure 4 A schematic model showing the sugar/proton symport mechanism [47-49]. 

In the plot, H (blue) represents proton, S (red) represents galactoside sugar. The residues 

(Glu269, His322, and Glu325) involved in proton transport are shown. 

Based on the complete sugar/proton transport cycle in LacY proposed by Guan and 

Kaback [47], a similar schematic model of process with the known occluded transition 

states added by Madej et al. [49] is shown in Figure 4, which involved eight transition steps: 

1) Sugar induces LacY to change from apo-occluded to outward-facing state; (2) Proton 

enters LacY from periplasmic side and protonates Glu269; (3) Sugar enters LacY from 

periplasmic side; (4) The outward-facing LacY become occluded during which the proton 

is transferred to Glu325 through His322 (5) The occluded LacY change to the inward-

facing state;  (6) Sugar is released on the cytoplasmic side; (7) Proton is released on the 

cytoplasmic side; (8) LacY transits back to the apo-occluded state [47-49]. 
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1.2.2 Structures of LacY 

LacY consists of 417 residues, in which twelve transmembrane helices are 

connected by hydrophilic loops, short N-terminus and C-terminal tail [50]. It is pseudo-

symmetric with six helices in N-domain and C-domain respectively, and interior 

hydrophilic cavity [51], like any other MFS members [44]. The earlier obtained LacY 

crystal structures are in the cytoplasmic-open (inward-facing), such as 2V8N [52] shown 

in Figure 5, or 1PV7 [53], in which the cytoplasmic side is open, and the periplasmic side 

of LacY is tightly packed. The occluded-like structure has also been determined (4OAA 

[54] shown in Figure 5), in which both cytoplasmic and periplasmic sides are closed. The 

recently nanobody-binded periplamic-partially-open LacY 5GXB [55] was also obtained. 

 The crystal structure of periplasmic-open (outward-facing) state LacY is not 

available. The residues involved in proton translocation are near the center of the LacY 

hydrophilic cavity [56]. According to the alternating access mechanism [57], the 

periplasmic side of LacY should be able to open and close during the translocation of sugar 

across the membrane [58-60]. 

A few experimental techniques, such as single-molecule fluorescence (Förster) 

resonance energy transfer (sm-FRET) [61] and double electron-electron resonance (DEER) 

[62], have been used to understand structural changes in LacY. The sm-FRET results show 

that upon binding of a galactopyranoside, distance of labeled residues decrease on the 

cytoplasmic side and increase on the periplasmic side; the opening/closing of the 

cytoplasmic and periplasmic side of LacY may not be coordinated, which suggests two 

domains of LacY do not behave as rigid bodies [61]. DEER has been used to measures the 

distances between the pairwise couplings electron spins of the spin labels. It is also 
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observed that galactopyranoside induce a closing on the cytoplasmic side and opening on 

the periplasmic side [62].  

 
Figure 5 Side view snapshots and pore radii of the LacY in different conformational states.  

The LacY structure of cytoplasmic-open 2V8N LacY crystal, the occluded 4OAA LacY 

crystal, and the periplasmic-open LacYIM-EX model (left panel). Pore radii of three 

periplasmic-open (outward-facing) LacY models (right panel).  

The exact structure of periplasmic-open LacY is important for understanding the 

complete proton/sugar transport cycle of LacY and also the mechanism of other substrate 

transporters. However, LacY structures are only known for the cytoplasmic-open [52, 53] 

and occluded-like [54] state. Molecular simulation methods have been applied to determine 

the periplasmic-open LacYIM-EX (Figure 5) structure by Pendse et al. [48]. Most of the 

residue pair (Cα-Cα) distance change of the outward-facing LacYIM-EX model has the 

reasonable agreement with DEER. The major disagreement is that the cytoplasmic side 

does not close as much as DEER data suggests. In this study, the MD simulations are 

performed to further test the accuracy of LacYIM-EX model, as well as two other available 

periplasmic-open LacY models, LacYSW and LacYFP models obtained by Radestock et al. 

[51], the detail results of which will be provided in Chapter 6. The pore radii of three 

models are shown in Figure 5 (right panel). Another key disagreement between LacYIM-EX 

model and DEER are that distance change between the spin-labeled neighboring residues 

are very similar in simulated Cα-Cα distance [48], but they are significantly different in 

DEER experimental data [62], which motivate us to perform MDDS simulations to test the 
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effect of spin labels (size and internal flexibility) on the LacY residue distance 

measurement, the detail results of which will be provided in Chapter 7. 
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Chapter 2 Computational Methods 

2.1 Principles of Molecular Dynamics Simulation  

The computer simulation has advantages of low cost, high efficiency, accessibility- 

of details in the atomic scale. For rare cases when the light particles (He, H2, and D2) have 

very high translational and rotational motion frequency (hν > KBT), the quantum effect 

needs to considered, while most materials can be assumed to obey law the classical 

(Newtonian) mechanics with great accurary [63]. Therefore, MD simulation allows 

simulating the physical movements of atoms (position, and velocity) by numerically 

solving Newton's equations of motion using an interatomic potential (i.e. force field).  

Besides experiments, MD simulations have also been extensively used to determine 

lipid membrane equilibrium structural properties and also transport properties (diffusivity, 

viscosity, and thermal conductivity, etc.). Only the equilibrium properties are covered in 

this work, while the transport properties are not calculated due to lack of experimental data 

and also slightly less relevant to the membrane study. With an accurate lipid force field, 

simulation results can assist the interpretation of x-ray scattering [12], NMR [13], and 

combined x-ray and neutron scattering [7, 9] results to characterize lipid bilayer structure 

and dynamics. Moreover, MD simulations are able to provide insight into bilayer structural 

properties that are difficult to determine experimentally.  

For complex biological molecules, molecular simulation programs are typically 

used to perform MD simulations. Some example programs are Assisted Model Building 

with Energy Refinement (AMBER) [64], Chemistry at HARvard Macromolecular 

Mechanics (CHARMM) [65], GROMACS [66], Large-Scale Atomic/Molecular Massively 
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Parallel Simulator (LAMMPS) [67], and the Nanoscale Molecular Dynamics (NAMD) 

[68], among which CHARMM [65] and NAMD [68] are the two programs applied in my 

study. 

 

Figure 6 Simulation flowchart [63, 69] 

The common process steps in the MD simulation program are shown in Figure 6, 

which in words are as follows [63, 69]: 1. Initialize the system by providing the initial 

positions (coordinates) and velocities of all the particles in the system, and also reading the 

initial state parameters, such as number of particles, number of time steps, and initial 

temperature, etc., and also the desired environmental parameters, such as desired 

temperature and pressure, etc.  2. Calculate interatomic interaction potential energy and 

then the force based on the selected force field. 3. Numerically integrate Newton’s equation 

of motion based on the specified algorithm. 4. Write the position and velocity data of all 

the particles in this time step to the trajectory file 5. If the number of the time step is less 

than the specified desired simulation time, repeat Step 2-4. Otherwise, break the loop, and 

the simulation process is complete. The obtained trajectories will then be analyzed to obtain 
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the averaged system properties. To better understand the MD simulation, more details on 

steps 1-3 will be discussed in each of the following subsections.  

2.1.1 Initialization 

The term initialization mainly refers to specify the initial positions and velocities 

of particles in the system. Even though the initial state should not affect the properties at 

the equilibrium state, to avoid unnecessary longer simulation time, we still want to select 

the initial positions of particles to be compatible with the overall structure of the system 

that we want to build, and are confined by the shape and size of box based on the crystal 

structure of the simulated objects, with the requirement that the atomic core of the particles 

should not overlap [63]. Based on initial temperature and density, a uniform distribution of 

velocity values within the certain interval is generated.  Then each velocity component (x, 

y, and z) of each particle is randomly drawn from the velocity uniform distribution. 

Therefore, generally, the velocities of particles are randomly distributed initially, and they 

would form a Maxwell-Boltzmann distribution when the equilibrium is reached [63]. The 

desired number of steps (simulation time) is based on the time the system reaches 

equilibrium since we aim to calculate the equilibrium properties.  

2.1.2 Calculate Force based on Force Field 

Before getting into the calculation, it is necessary to introduce the term-force field. 

A force field contains two components: function to calculate the energy from position 

coordinates and parameters in the function. A key functioning step of simulation is to 

calculate interaction function and force based on the varied force field. There are many 

types of force fields available. The selection of force field depends on the type of simulated 

system and the interested parameters that we want to calculate.  
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All force fields potential functions contain two classes of interactions. First class is 

the bonded interactions which include covalent bond-stretching, angle-bending, dihedral 

or torsion potentials when rotating around bonds, and out-of-plane “improper torsion”. And 

the second class of the non-bonded interactions which include Lennard-Jones repulsion 

and dispersion and Coulomb electrostatics. For our all-atom molecular dynamics 

simulations, as we aim to test the accuracy of all-atom CHARMM36 force field (C36FF-

AA),  we have been applying C36FF-AA with the potential function is shown below, which 

has the additional cross Urey-Bradley term representing the in-plane deformations and 

asymmetric bond stretching between atoms 1 and 3 in some cases [70]. 
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(1) 

Then based on calculated potential energy, the force for particle i is calculated:  

Calculation of interaction force of among all particles based on applied force field 

is usually most time-consuming step of the simulation process. For the pairwise addition 

interactions, i.e. considering the force on particle i due to all other (nearest imaged 

neighbor) particles (which is done in CHARMM force field). Originally, the computing 

scale time would be O(N2) to evaluate N(N-1)/2 pairs of interactions. However, some 

techniques have been developed to speed up the force calculation. For instance, with the 

switching function [71] with reasonable cutoff distance applied, the time scale can be 

reduced to O(N). 

𝑓𝑖 = −
𝜕

𝜕𝑟𝑖
𝑉(𝑟1, … 𝑟𝑁) 

(2) 
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2.1.3 Integrate Equation of Motion 

As in almost all systems, it is valid to approximate the movement of the particles 

in the system using Newton’s Equation of motion: 𝑓𝑖(𝑡) = 𝑚𝑖
𝜕2𝑟𝑖

𝜕𝑡2
. Taylor expansion of the 

position function of a particle r(t) around time t related to velocity v(t) and time step Δt, as 

shown in equation (3), is used to derive the varied algorithms to numerically integrate 

equation of Newtonian motion, including low-order (Verlet-style) algorithms and high-

order algorithms.  

The energy conservation is an important factor for a good algorithm. There are a short time 

(i.e. constant for a few time steps) and a long time (i.e. constant for many time steps) energy 

conservations.   

The low-order algorithms tend to have moderate short-time but good long-time 

energy conservation, while the high-order algorithms tend to have good short-time but 

inaccurate long-time energy conservation. There still is no algorithm available that can 

meet both short and long time energy conservation, which means that there is no algorithm 

that can predict both the short and long time trajectory of the particles. Therefore, from 

MD simulations, instead of precise predictions based on the initial condition, we obtained 

the statistical predictions which generally represent the true system very well [63]. The 

low-order Verlet-style integration algorithms are applied for my simulations. Velocity 

Verlet [72] is applied in the NAMD [68], while CHARMM [65] provides Velocity Verlet 

[72] and Leapfrog Verlet [73] and a few other algorithms. Leapfrog Verlet [73] is used in 

all the CHARMM scripts involved in my work.  

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)∆𝑡 + 
𝑓(𝑡)

2𝑚
∆𝑡2 + ⋯ 

(3) 
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2.1.4 Periodic Boundary Condition  

The periodic boundary condition (PBC) is applied to avoid surface artifacts, so a 

molecule that exits the primary cell to the right reappears on the left. PBC is important 

because single simulation box is generally small to obtain good statistical data, while with 

PBC now we can assume that the periodic system has an infinitely large system size. All 

systems are large enough to avoid any finite size issues that have been noted previously 

[36]. 

2.1.5 Interaction Between Molecules 

Since molecules interact with each other, the nonbonded interactions are 

computationally demanding, if we consider over all neighbors in the infinite periodic 

system. To increase efficiency, for van der Waals interactions, instead of sudden cut-off 

which brings more error, a switch function (in our simulations, a switch distance of 10 Å) 

is applied so that the interaction is switched off 2 Å before the cut-off (12 Å). For the 

electrostatic interactions, the particle mesh Ewald summation (PME) is applied which 

splits the summation into short- and long-range interactions separated by cut-off. The short-

range part is directly calculated while the long-range part is treated by assigning charges 

to a grid that is solved in reciprocal space through Fourier transforms [69]. 

2.1.6 Temperature and Pressure Control 

The cut-offs and rounding errors can cause drifts in the energy. A thermostat is 

applied to maintain the desired set temperature by adding heat through various algorithms 

during the integration. In our MD simulations, Langevin dynamics was applied to non-

hydrogen atoms to maintain the constant temperature. Similarly, the system can be 

maintained in the set total pressure through scaling the simulation box size in x, y, and z 
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dimensions. Nosé-Hoover Langevin-piston algorithm [74, 75] was used to maintain a 

constant pressure in our MD simulations. 

2.1.7 Time Step 

Millions of pairs of non-bonded interactions have to be calculated at every time 

step, therefore it is the most cost computation over the simulation. Larger time step will 

increase the computation efficiency, however, it generally introduces more error, e.g., 1-fs 

time step introduces error in bond vibrations (because bond length vibration is about the 

time scale of 1 fs [69]).  In our simulations, we are not interested in the detail about the 

bond vibration for hydrogens, so we apply SHAKE algorithm [76] to constraint the 

hydrogen-involved bond length, which allows us to use 2-fs as the time steps. 

2.2 Molecular Dynamics Simulation Setup Protocols 

2.2.1 Common MD Simulation Setup 

CHARMM-GUI Membrane Builder [77-81] was used to build either homogenous 

or heterogamous membrane with or without protein. These simulations used the standard 

TIP3P water model [82, 83] with the C36FF [14, 15]. The van der Waals interactions were 

smoothly switched off between 10 and 12 Å by a forced-based switching function [71]. All 

the bond lengths involving hydrogen atoms were constrained using the SHAKE algorithm 

[76]. Particle mesh Ewald [84] was used for electrostatic interactions with an interpolation 

order of 6 and a direct space tolerance of 10-6. NAMD [68] was used to perform the MD 

simulations at varied temperatures. The simulation temperatures were above the gel-

transition temperatures of individual lipids. After standard CHARMM-GUI six 

minimization and equilibration steps (0.685 ns) [81], the simulations were run for 100 or 

150 ns (depends on the time the system reach equilibrium) with a time-step of 2 fs, and the 
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data was collected every 4 ps. All simulations were run in the NPT ensemble with a 

pressure set to 1 bar. Langevin dynamics was applied to non-hydrogen atoms to maintain 

the constant temperature with a Langevin coupling coefficient of 1 ps-1, while Nosé-Hoover 

Langevin-piston algorithm [74, 75] was used to maintain constant pressure with a piston 

period of 50 fs and a piston decay of 25 fs.  

2.2.2 Membrane-only System 

 

Figure 7 An example built DLPA bilayer system together with water and ion molecules.  

The red dots represent water, and the cyan spheres are K+ ions. The orange surrounded by 

red dots represent the phosphate groups located in the water and bilayer interface, and the 

silver lines represent the hydrophobic acyl chains of DLPA. 

For single-component lipid bilayer, each bilayer system was built in a tetragonal 

box containing a total of 72 lipid molecules (36 per leaflet) and about 45 water molecules 

per lipid to make sure that lipids were fully hydrated. K+ ions were added to neutralize 

anionic PA, PG, and PS bilayer systems. The example of the built system of DLPA bilayer 

is shown in Figure 7. For the united-atom simulations, CHARMM-GUI Membrane Builder 

[77-81] is used to build the all-atom lipid bilayer system first, and then the tails are 

modified to generate the united-atom bilayer system. This method is also applied to build 

the soybean membrane model that contains new lipid structures which are not currently 

available in the CHARMM-GUI Membrane Builder. 
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2.2.3 LacY-Spin-label System 

DEER studies on proteins mostly use the 1-oxyl-2,2,5,5-tetramethylpyrroline-3-

methyl methanethiosulfonate spin label (MTSSL, Figure 8a), which can selectively attach 

to the sulfhydryl group of either natural or engineering mutated cysteine residues and 

release the sulfuric acid [85], during which the disulfide bond is formed between MTSSL 

and cysteine. The DEER experiment provides distance distribution instead of a single value 

of the distance for each residue pair due to the flexibility of structures [86, 87]. Molecular 

dynamics dummy spin-labels (MDDS) simulations [88] are performed to predict the spin 

label distance distribution in order to verify the effect of size and orientation of spin labels 

on the accuracy of DEER measurement. MDDS simulation has been used to study some 

SAT proteins, such as conformational change of LeuT [88], and the conformational change 

and ion-coupling of another Mhp1 [89]. MD simulations with the all-atom MTSSL are 

computationally expensive. Moreover, multiple pairs of spin labels in the vicinity cannot 

be simulated simultaneously, because the MTSSL will interact with each other. Therefore, 

instead of using a full spin label MTSSL (Figure 8a), dummy OND spin labels (DSL) as 

shown in Figure 8b are applied, in which nitroxide oxygen ON(D) atom is used to replace 

the MTSSL side chain, as DSLs are parametrized as a neutron atom,  not interacting with 

each other, and having very weak interaction with surrounding protein residues [88, 90]. 

Besides, the targeted residues are mutated to ALA to avoid steric clashes with ON(D) spin 

labels [88]. The dummy spin label with side chain (Ala-O) is well parametrized so that it 

behaves same as full MTSSL [88]. 



23 

 

 

Figure 8 The snapshots of the two types of spin labels and MDDS simulation setup: 

a) MTSSL spin-labeled residue used in DEER b) Dummy spin-labeled residue with Ala-O 

side chain used in the MDDS simulation c) A side view snapshot of the built inward-facing 

LacY with nine dummy spin labels for the MDDS simulation. 

 The structures used for the MDDS simulation are selected based on equilibrated 

pore radii. The last frame structure at each 2 ns (10-20 ns) of the inward-facing and 

occluded structures are sampled from implicit Self-guided Langevin dynamics (SGLD) 

simulations with 2V8N as initial structure, and each 10 ns (10-100 ns) of outward-facing 

from explicit MD simulation with E269-protonated LacYIM-EX as initial structure. Total six 

inward-facing structures, six occluded structures, and ten outward-facing structures are 

sampled for the MDDS simulations. To direct compare the structure and spin label 

distances, the MDDS simulations with crystal structures (2V8N [52], 1PV7 [53] and 4OAA 

[54]) are also performed. In each LacY structure, the nine target residues are mutated to 

ALA (R73, V105, S136, N137, I164, T310, Q340, S375, and S401), and the dummy spin 

labels are added to these residues to match with the experimentally-measured spin labels. 

The MDDS simulations of LacY in a vacuum are performed using Langevin dynamics at 

37 °C for 10 ns with a dielectric constant of 80. The time step is 0.5 fs, and the data is 

collected every 250 fs. The friction constants are set to 10.0 ps-1 for spin labels (ON), and 

5.0 ps-1 for all the rest atoms. A constraint force constant of 1 kcal·mol-1·Å-2 is applied to 

the backbone of the protein throughout the MDDS simulations. An example of built 
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structure of inward-facing LacY with dummy spin labels is shown in Figure 8c. For each 

run, the spin label distance distribution is the histogram plots of the spin label pair distances 

obtained from 20,000 frames. The mean distances are obtained by fitting the averaged 

distance distribution data of each conformational state to Gaussians. 

2.2.4 Membrane-LacY System 

  

Figure 9 A side view snapshot of built LacYIM-EX in the explicit membrane and ββ-(Galp)2. 

The sugar ββ-(Galp)2 is shown in purple and K+ is shown in the cyan sphere.  

 

With the available PDB of the outward-facing LacY structural models, the 

CHARMM-GUI Membrane Builder [77-79, 81] is used to build a protein, membrane, 

water, and neutralizing potassium ions heterogeneous systems in a tetragonal box. Then 

ββ-(Galp)2 is appended to the system. Since the binding of β-galactosides induces LacY to 

open on the periplasmic side, [62] we believe that the LacY tends to remain in the outward-

facing state when it binds to β-galactosides. An example of the final built system is shown 

in Figure 9. The lipid membrane is modeled to match the composition of the inner 

membrane of E. coli. This is based on the composition published by Pandit and Klauda 

[27] in which ratio of  PE:PG equals 4.2:1 and the membrane contains lipids with a cycle-

propane moiety (cyC17:0). A total of 312 lipid molecules 156 per leaflet, and two water 

layer of thickness 15 Å are built. Additional pore water is placed to avoid protein clash 

toward the empty pore center, but it cannot overlap with ββ-(Galp)2. The LacY models 
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with either Glu269, His322 and Glu325 (Figure 9b) protonated, which are three essential 

residues for proton translocation [53]. The NAMD program [68] is used to equilibrate the 

lipid bilayer systems using two types of equilibrations. The standard Membrane Builder 

six-step equilibration process [77-79, 81] gradually turnoff both backbone and side chain 

restraints over 685 ps at a temperature of 37 °C. When the LacY is unstable, an extra 10-

ns restrained equilibration may be applied, in which the side chain restraints gradually 

turnoff over 685 ps, while the constant backbone restraints of 10 kcal·mol-1·Å-2 is applied 

and continues for additional 5 ns, finally the backbone restraints gradually turnoff over 5 

ns. After the completion of equilibrations, the MD simulation runs are performed for 100 

or 150 ns.  

2.3 Self-Guided Langevin Dynamics Simulation  

 

Figure 10 Snapshot of SGLD simulation in the implicit membrane setup for LacY.  

The following color schemes are applied: LacY is shown in grey, sugar ββ-(Galp)2 in 

yellow, water molecules in red, chloride ions in green. 

The SGLD simulation can accelerate the conformational change while preserving 

the conformational distribution well when the guiding parameters are within the suggested 

range (guiding factor less than 1 is recommended for avoiding deviation from the canonical 
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ensemble) [91]. Therefore, it is applied to enhance search efficiency of LacY in different 

conformational states without the loss of the conformational accuracy [73, 91, 92].  

The wild-type inward-facing LacY crystal structure 2V8N [52] from RCSB protein 

data bank is used in the SGLD simulation in the implicit membrane. The CHARMM-GUI 

Membrane Builder [77-79, 81] is used to build the membrane, water, and neutralizing ions 

heterogeneous systems in a tetragonal box. To generate implicit membrane environment, 

the membrane is removed from the system, and a planar (with normal in the z direction) 

exponential potential restraint is applied to LacY, water and ions in order to maintain the 

hydrophobic interaction. The number of ions is adjusted to keep system neutral. To increase 

the simulation efficiency, the XY dimensions of water layers are reduced to A=B=90 Å. 

Then the disaccharide β-D-Galp-(1-1)-β-D-Galp is appended to the system. The pore water 

that overlap with ββ-(Galp)2 is removed. The final built system is shown in Figure 10, 

which is similar to Figure 9 but without the membrane bilayer and slightly smaller X/Y 

dimensions. The CHARMM program [65] is used with the backbone of the protein fixed, 

the system is minimized for 1000 steps and equilibrated for 1ns with Langevin dynamics 

and Hoover Langevin-piston algorithm [74, 75]. Then, the SGLD simulations with leap-

frog Verlet algorithm [73] are performed for 20 ns at 37 °C with no restraints. The time 

step is 2 fs, and the data is collected every ps. The varied guiding factor (SGFT) between 

0.5 and 1.25, and the varied friction constant (FBETA, collisions per picosecond) between 

0.5 and 25 ps-1 are applied to test their ability to enhance conformational sampling.  
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Chapter 3 Analysis Method  

3.1 Lipid Bilayer Properties  

3.1.1 Experimental Approaches  

Small angle x-ray and neutron scattering (SAXS/SANS) can be applied to obtain 

x-ray and neutron form factors as well as the bilayer thicknesses [93]. Without a structural 

model, headgroup-to-headgroup thickness (DHH) can be obtained by measuring the 

distance between the peaks in the electron density profile (EDP) resolved from x-ray 

scattering, and the overall bilayer thickness (DB) can be obtained from neutron scattering 

with protonated lipid and deuterated water [6]. With the experimentally estimated lipid 

volume (VL) [94] and DB, the SA/lip can be obtained by SA/lip = 2𝑉L/𝐷B  [93]. 

Alternatively, for all experimental data used in this work, more accurate thicknesses and 

SA/lip can be obtained by fitting scattering density profile (SDP) structural model proposed 

by Kučerka et al. to both x-ray and neutron scattering data [95-97]. Our MD simulations 

were also compared with previously published experimental deuterium segmental order 

parameters (SCD) [11, 98] and the nuclear spin-lattice (Zeeman) relaxation times (T1) [11] 

measured by nuclear magnetic resonance (NMR). 

3.1.2 Simulation Calculation Methods  

3.1.2a X-ray and Neutron Form Factors  

In our simulation of homogenous membranes, the atom density profile (ADP) was 

calculated by CHARMM [65] from which the EDP was obtained. The SIMtoEXP program 

[99] was used to obtain the form factors (|F(q)|) where q is a total scattering vector by 
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Fourier transformation of the electron/neutron density data. The reduced chi square (χ2) 

were used to describe the level of agreement [99] 

𝜒2 =
√∑ (|𝐹𝑠(𝑞𝑖)| − 𝑘𝑒|𝐹𝑒(𝑞𝑖)|)2 ( Δ𝐹𝑒(𝑞𝑖))

2
⁄

𝑁𝑞

𝑖=1

(𝑁𝑞 − 1)
 

(4) 

where 𝑁𝑞 is the number of data points, 𝐹𝑠(𝑞𝑖) is the simulated form factor, 𝐹𝑒(𝑞𝑖) is the 

experimental form factor, 𝑘𝑒  is the scaling factor, and Δ𝐹𝑒(𝑞𝑖)  is the experimental 

uncertainty of data i. 

3.1.2b Surface Area per Lipid  

For single-component bilayer, the SA/lip was directly calculated by the area of the 

simulation box divided by the number of lipids per leaflet. Block averages were used to 

obtain the statistical errors of SA/lip. For multiple-component bilayer, the X and Y 

coordinates of the representative atoms of each lipid (O3 for sterols, and C2, C21, and C31 

for glycerol phosphate lipids) of the primary cell and the surrounding 8 images are 

imported into Qhull [100] which constructs the convex polygons for each atom (with all 

the interior angles less than 180º). The total area of the polygons is equal to the box size, 

from which the averaged estimated SA/lip for each lipid component will be obtained. The 

area compressibility modulus, KA was calculated using, 

𝐾𝐴 =  𝑘𝐵𝑇〈𝐴〉/𝜎〈𝐴〉
2  (5) 

where kB is the Boltzmann constant, 〈𝐴〉 is the average surface area, T is the temperature, 

and 𝜎〈𝐴〉
2  is the variance of the area. 
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3.1.2c Bilayer Thicknesses  

To calculate various membrane thicknesses, the electron density of each atom is 

combined into the following groups: a polar head group (i.e. acid/proton for PA, choline 

for PC, ethanolamine for PE, glycerol for PG, and serine for PS), phosphate, glycerol, 

carbonyl, methylene (CH2), methine (CH) (if there is any double bound), methyl (CH3), 

K+ (for PA, PG, and PS), and water [101]. DHH is the distance between two peaks in the 

EDP along the membrane normal (i.e., the z-axis) as shown in Figure A.1, which can be 

directly obtained. DB is the distance between the midpoints of the volume probability 

profile of water molecules, and the hydrophobic thickness (2DC) is the distance between 

the midpoints of the volume probability profile of bilayer's hydrocarbon acyl chains [6]. 

With the assumption that the volume of each component (on average) is independent of the 

membrane normal [102-104], which is the same assumption made in SIMtoEXP [99], DB 

and DC can also be directly calculated from the EDP. The volume probability relation is 

shown in Eq. (6). The sum of component probabilities equals 1 in each bin [99]: 

1 = ∑ 𝑝𝑖(𝑧)𝑁𝑐
𝑖=1 = ∑ 𝑉𝑖𝑛𝑖(𝑧)𝑁𝑐

𝑖=1             (6) 

where pi is the probability of component i, Nc is the number of component in the lipid, Vi 

is component volume, and ni is number density of component i. When the EDP of 

hydrocarbon acyl chain (including CH3, CH2, CH) reaches maximum, and the hydrocarbon 

acyl chain is the only component (i.e., 𝑉C =  1/𝑛C,max), DC can be calculated as half of the 

distance between the positive and negative z values that correspond to 𝑛C,max/2 (i.e., 

𝐶max/2 in EDP, where 𝐶max is electron density of hydrocarbon acyl chain, as shown in 

Figure A.1). Similarly, when the EDP of water reaches maximum at the edge region of the 
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lipid bilayer, and water is the only component except the small trace of K+ ions, DB can be 

calculated as the distance between the positive and negative z value that corresponds to 

𝑛W,max/2 (i.e., 𝑊max/2 in EDP). 

3.1.2d Deuterium Order Parameter  

The simulated SCD is defined as the ensemble average of the second order Legendre 

polynomial P2 [105, 106]:  

𝑆𝐶𝐷
(𝑖)

= |〈𝑃2(𝑐𝑜𝑠𝜃𝑖)〉| = |〈3 𝑐𝑜𝑠2 𝜃𝑖 − 1〉/2| (7) 

where θi is the angle between C-H bond on the ith carbon and the bilayer normal, and the 

angular bracket denotes a time and ensemble average. SCD is a measure of the overall order 

of bilayer lipids, i.e., a higher SCD value indicates more ordered lipid chains. 

3.1.2e Hydrogen Bonding 

One of the main advantages of simulation over experiment is the accessibility of 

further details in the atomic scale, e.g., hydrogen bonding to understand the fundamentals 

of lipid bilayer structural properties. The number of intra-lipid (𝑁HB
intra) and inter-lipid (𝑁HB

inter) 

hydrogen bonds were calculated with the following hydrogen bond definition: distance 

between proton and the acceptor pairs less than 2.4 Å and the angle of donor-proton-

acceptor greater than 150° including the periodic boundary conditions. The H and H-

acceptors involved in hydrogen bonding for each head group are shown in Figure 2; the 

phosphate (PO4
−

) and carbonyl (CO) groups are the common H-acceptors for PA, PE, PG, 

and PS lipids, and PS lipids have additional H-acceptor carboxylate (COO−) group. Note 

that there are no hydrogen bonds between PC lipids as it has no proton donor. 
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3.1.2f Lipid Lateral Clustering  

Lateral clustering analysis was performed to visualize the effects of hydrogen 

bonding and other inter-lipid interactions. The clustering of lipids was analyzed using 

python scikit-learn [107] implementation of density-based spatial clustering of applications 

with noise (DBSCAN) algorithm [108]. A maximum distance of 5.5 Å (6.5 Å is used for 

single-component PC and PG lipid bilayer) between the center of mass of head group atoms 

(phosphate and the above atoms as shown in Figure 2), and minimum cluster size of three 

lipids per cluster were applied [109]. 

3.1.2g Correlation Time and Spin-Lattice Relaxation Time 

As the bilayers reach thermal equilibrium, the systems are relatively static 

macroscopically. However, all the atoms are in constant motions due to the thermal 

fluctuations [110]. To characterize the dynamics of C-C vector spins in the equilibrated 

system, the second rank reorientational correlation function is calculated to find the 

correlation between the C-C vectors [111]:  

𝐶2(𝑡) =  〈𝑃2(𝑢̂(0) · 𝑢̂(𝑡))〉 = (3 〈(𝑢̂(0) · 𝑢̂(𝑡))
2

〉 − 1) 2⁄    (8) 

where 𝑢̂(0) and 𝑢̂(𝑡) are the normalized C-C unit vectors at time 0 and t, respectively. P2 

is a second order Legendre polynomial, and 𝐶2(𝑡)  is time and ensemble averaged 

correlation between 𝑢̂(0) and 𝑢̂(𝑡) [111]. Time t varies among the simulation time of the 

equilibrated portion with a step of 4 ps. 𝐶2(𝑡) describes how much the spin of a C-C vector 

at time t correlates to the spin of a C-C vector at time zero. As t increases, the correlation 

function 𝐶2(𝑡) decays first and then reaches a plateau. There can be multiple stages of 
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correlations, short or long range order [110], so that simulated 𝐶2(𝑡) are fitted to two 

exponential decay functions and a constant:  

𝐶2(𝑡) = 𝑎0 + 𝑎1𝑒−𝑡/𝜏1  + 𝑎2𝑒−𝑡/𝜏2 (9) 

where the plateau  𝑎0  is a long-time value of the correlation function.  𝑎1  and  𝑎2  are 

coefficients of two exponential decay functions, τ1 and τ2 are two correlation times 

corresponding to fast and slow spin-lattice relaxations of lipids, respectively. τ2 for C22-C32 

can be used to describe the correlation time of lipid wobble, which is restricted rotation of 

the long axis of lipids [112, 113].   

Another parameter that describes the NMR relaxation is the spin-lattice relaxation 

time (T1). By assuming the pure dipolar relaxation between the 13C nucleus and its attached 

protons, the spin-lattice relaxation rate (1/NT1) are related to spectral density [114].  

𝑅1 =
1

𝑁𝑇1
=

1

10
(

ℏ𝛾𝑐𝛾ℎ𝜇0

4𝜋𝑟𝑐−ℎ
3 )

2

[𝐽(𝜔𝐻 − 𝜔𝐶) + 3𝐽(𝜔𝐶) + 6𝐽(𝜔𝐻 + 𝜔𝐶)] 
(10) 

where N is the number of protons attached to the carbon, ℏ is Plank’s constant divided by 

2π, and γc and γh are the gyromagnetic ratio for C and H (in radian·s-1T-1), respectively. µ0 

is vacuum permeability, rc-h is the effective C-H bond length, 1.117 Å [115], ωC and ωH 

are the Larmor frequencies of C and H (in radian·s-1), respectively, and the ratio 𝜔𝐻 𝜔𝐶⁄ =

3.9764, J(ω) is the spectral density of the second rank reorientational correlation function: 

𝐽(𝜔) = ∫ 𝐶2(𝑡)
∞

0

cos (𝜔𝑡)𝑑𝑡 
(11) 

Based on calculated simulated C2(t) and the NMR carbon Larmor frequency, Eq. 

(11) was calculated by numerical integration (trapezoidal rule), and the corresponded 
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simulated spin-lattice relaxation rate was calculated by Eq. (10), from which spin-lattice 

relaxation time T1 was obtained for comparison with experimental T1. 

3.2 Protein Conformational Analyses 

The pore size of the cavity can be used to describe the level of opening/closing of 

LacY structure on the cyto- and periplasm. The pore radius of LacY is calculated by using 

HOLE program [116], which searches the maximum radii of spheres in the cavity without 

overlapping any LacY atom with known van der Waals radii [117]. Metropolis Monte 

Carlo simulated annealing procedure [118, 119] is applied to adjust the point on the xy-

plane (orthogonal to the pore vector which is in the z direction). Then the process continues 

by taking small displacement in the direction of the approximate vectors to find more 

optimal center points on the new plane until the specified maximum radii 7 Å is reached 

which determines the end of the pore. Based on z axis of protein, the cutoff of 7 Å radius 

is near the transition from being within the protein and in the bulk phase, therefore the z 

range corresponding to the cutoff radius of 7 Å would contain almost all LacY structure. 

The z coordinate of the center points of spheres and their radii are stored for each frame, 

then the final pore radii are 1-ns block averaged with the z coordinate bin size 0.25 Å. 

The Cα distance of residue pair is commonly analyzed to describe the conformation 

of a protein. DEER data [62] provides the distance of the spin labels attached to the nine 

residue pairs near the end of helices of LacY. With the available inward-facing LacY 

crystal structure and the DEER spin label distance, the residue pair distances of outward-

facing LacY are predicted. In our analysis, we calculate the distance of those same residue 

pairs from our simulations and then compare the difference. However, due to large 
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uncertainty of DEER spin label distance measurement, the estimations involve large 

inaccuracy (more detail will be provided in Section 7.2).  

The root mean standard displacement (RMSD) calculations are also commonly 

applied. By selecting the initial LacY structure as the reference, RMSD can be calculated 

to describe the stability of LacY structure by calculating the magnitude of conformational 

change of LacY at each time step. Besides the initial structure, the LacY structure of 

different states, or different LacY models can also be used as a reference structure to 

compare the conformational difference over time. Trajectory overlap can be performed to 

visualize the conformational difference of two LacY structures. 

3.3 General Tools 

Python combined with the Shell scripts was used for the general data analyses. 

Visual Molecular Dynamics (VMD) [120] was used to create snapshots of the bilayers and 

LacY. Gnuplot [121] was used to generate the structure property plots.  
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Chapter 4 Results on Single-Component Membranes 

This chapter covers two types of CHARMM36 force fields specifically used here 

for simulating the single-component or pure lipid bilayer in two separate sections, but can 

be used for more complex models with multiple lipids and proteins. The all-atom model 

which explicitly simulate all atoms, and united-atom atom model which lumps each carbon 

and its attached hydrogens (CH, CH2, and CH3) into a single representative atoms (CH1E, 

CH2E, and CH3E) corresponding to each are presented. Section 4.1 demonstrates the 

simulation results with C36FF-AA model in order to test the accuracy of it and also to 

show the capability of the model to provides the reasonable in-depth analyses results. The 

further detail related to C36FF-AA is published in [28, 109]. Since C36FF-AA is been 

proved to be an accurate force field, to improve the simulation efficiency while keeping 

the similar accuracy, the C36FF-UA is developed and tested, the results of which are 

demonstrated in Section 4.2. The development of C36FF-UA model lays groundwork for 

more complex membrane models, which are too complex and computational expensive to 

study with the all-atom force field. 

4.1 All-atom CHARMM36 Force Field  

4.1.1 Test the accuracy  

Biomembrane functionalities strongly depend on their structures. Therefore, 

considerable efforts have been made to estimate the membrane structural parameters, such 

as surface area per lipid (SA/lipid), volume per lipid (VL), hydrophobic thickness (DC), 

overall bilayer thickness (DB), and deuterium order parameters (SCD). Instead of analyzing 

the data separately, Kučerka et al. [104] proposed to simultaneously analyze both x-ray and 
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neutron scattering (SAXS/SANS) data to determine the lipid structural parameters. By this 

method, experimental data on common lipid bilayers were measured to estimate their 

SA/lipid and thicknesses by fitting the scattering density profile (SDP) model [104] to the 

scattering data. 

MD simulation is also used to determine the lipid membrane structural properties. 

The all-atom CHARMM36 force field (C36 FF-AA) developed by Klauda et al. [14] allows 

for accurate constant molecule number, pressure, and temperature (NPT) simulations of 

pure lipid bilayers. Moreover, it is capable of matching various structural and dynamical 

properties of lipid membranes, which results in more realistic membrane models, including 

lipid molecules containing branched chains [122]. To further verify the accuracy of the 

C36 FF-AA, we provide MD simulation results of varied types of glycerol phosphate lipid 

bilayers (Figure 2) over a wide range of temperatures and comparisons with experimental 

data obtained by Kučerka et al. [6] and NMR data obtained by Douliez et al. [98] and 

Brown et al. [11]. 

4.1.1a X-ray and Neutron Form Factors 

Comparison of x-ray and neutron scattering with MD simulations is most direct 

when the form factors are used [101, 123]. These experimental methods provide detailed 

characteristics of the overall and component bilayer structure and thus are an excellent tool 

to assess the accuracy of the C36FF. This section will briefly discuss the results of our MD 

simulations in comparison with all available form factor data for saturated and unsaturated 

lipids. To quantitatively describe the level of agreement between simulated and scaled x-

ray scattering experimental form factors, the χ2 values [99] in Eq. (4) were obtained from 

the SIMtoEXP program for the first two lobes only (Figure 11a and Table A.3 to A.4); a χ2 
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value lower than 8 should be considered the excellent agreement, and lower than 30 

reasonably good agreement. 

 

Figure 11 Comparison of MD-based form factor to experiment.  

a) MD-based form factor (the black curve) of DOPG at 30 °C to experimental x-ray form 

factor (red circle) [8]. b) Comparison of the MD-based form factor of DLPG at 60 °C to 

experimental deuterium neutron scattering data [8] in three contrasts. %D is %D2O. The 

black curves are the MD-based form factor at each corresponding deuterium concentration.  

Saturated lipids Similar to DLPC in [28], the simulated XFF of the DLPE and 

DLPG agree well with experimental x-ray scattering data at a temperature range of 30-60 

°C (Figure A.2a-f,  Table A.3). The simulated XFF of 12:0, 14:0, and 16:0 PC lipids at 60 

°C agree well with experiment at the first lobe, but show minor deviation in the second 

lobe (Figure A.2g-i), while 18:0 PC shows minor deviation in both lobes (Figure A.2j). 

Moreover, as chain length increases, the χ2 of saturated PC lipids and the deviation in the 

second lobes slightly increases (Table A.3, Figure A.2g-j). The difference between the 

simulated and experimental XFF in the first lobe is due to inaccurate lipid density, while 

the deviation in the second lobe is caused by inaccuracies in either the lipid or water density 

[28, 124]. Based on these, we can conclude that the water density maybe slightly inaccurate 

for the saturated PC lipids at relatively high temperature (60 °C), while the lipid density 

may be slightly inaccurate for DSPC at 60 °C. Overall, the simulated form factors of the 

saturated lipids demonstrate great agreement with experiments and also results in χ2 in the 

excellent agreement range. 
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Unsaturated lipids χ2 of the XFF of mono-unsaturated PC lipids are generally 

greater than saturated lipids, and the mixed-unsaturated lipids have intermediate values 

(Table A.4), which implies that the agreement level increases as the saturation level 

increases. As shown in Figure A.2n-r, the simulated XFF of the 18:1 PC lipids agree well 

with experiment, while the 16:1, 20:1, 22:1, and 24:1 PC lipids show minor deviations in 

both the first and second lobes. The mono-unsaturated PC lipids with long chain (22:1, and 

24:1 PC) results in more deviation in the first lobe. These imply that the water density is 

slightly off in the mono-unsaturated PC lipids, and the lipid density may be slightly 

inaccurate for lipids with long acyl chains, which agree with the conclusion from the 

saturated PC lipids. The mixed-unsaturated PO/SO PC and PG lipids match experimental 

form factors well in all lobes (Figure A.2s-t,w-x), while PO/PO PE lipids show minor 

deviation in the second lobe (Figure A.2u-v). 

Except for POPS, the NFF of all lipids (with varied tail types and temperatures) 

show excellent agreement with experiments (Figure 11b). For POPS, the simulated NFF 

deviates from experimental NFF in the region of q < 0.2 (Figure A.3), suggesting possible 

deviation in its DB and also SA/lip as neutron scattering data is more sensitive to DB and 

SA/lip [10, 124] (The comparisons will be provided and discussed below). 

Further error analysis χ2 calculated by Eq. (4) may not agree with the comparison 

result by directly visualizing the form factor plot because χ2 is strongly affected by the 

experimental uncertainty Δ𝐹𝑒(𝑞𝑖) and number of data points 𝑁𝑞 . e.g., the experimental 

uncertainty for DOPC is 0.01, while it is 0.05 for DXPC which results in much higher χ2 

for DOPC even though the actual agreement of DOPC between simulation and experiments 

is very well. The comparison plots show that the disagreement level looks similar for 
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DXPC and POPS (Figure A.2n and Figure A.3a), and the significant higher χ2 of POPS 

(561) may be due to different number of data points in the first two lobes of POPS (~300), 

and DXPC and other lipids (~400). For DNPC (Figure A.2r) and some PG lipids (Figure 

A.2a, m, and x), the deviation between the simulated and experimental form factor is 

probably due to experimental errors as their XFF does not cross |F(q)|=0 for each lobe. The 

minor deviation in the second lobe may also be due to low resolution resulted from 

unilamellar vesicle (ULV) sample in the second lobe, while the use of oriented bilayer 

sample that has higher resolution in the second (and third) lobe may result in better 

agreement (Figure A.2q, s) [28].  

Overall, the agreement between experimental and MD-simulated form factors by 

C36FF is excellent for almost all lipid types, but there are a few deviations that suggest 

either experimental errors or minor inaccuracies in the water model or the lipid force field. 

4.1.1b Surface Area per Lipid 

Temperature and head group dependence For all lipids, the SA/lip increases as 

temperature increases (Figure 12a and Table A.5-A.7), which agrees with the results of our 

previous study on PC lipids [28]. The slope kT generally increases as chain length increases, 

indicating that the temperature effect is stronger for lipids with longer acyl chains. 

Considering only the head group, the SA/lip is affected by the steric size of the head group 

and its interactions via hydrogen bonding. Among the five lipid types, PC, PG, and PS have 

larger head groups than PE lipids, and PA lipids have the smallest head group. For all tail 

types, the PG lipids have the greatest SA/lip among five head groups due to its intra-lipid 

hydrogen bonding (the details of hydrogen bonding will be provided in Section 4.1.2a). PC 

lipids have a large head group and no hydrogen bonding, yielding intermediate SA/lip. PA, 
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PS, and PE lipids have relative small SA/lip, in which PA is close to or slightly greater 

than PS, and followed by PE lipids (Figure 12a-c). The PS and PE lipids form more 

intermolecular hydrogen bonds than other head group lipids, which results in lower SA/lip. 

PS lipids have more hydrogen bonds but a larger head group size than PE lipids, yielding 

only a slightly higher SA/lip (than PE lipids) in most systems. 

 

Figure 12 The variations of SA/lip and the comparison to experiment.  

The variations of SA/lip as a function of a) temperature, b) mono-unsaturated lipid tails, 

and (c) poly-unsaturated lipid tails. d) Comparison of simulated SA/lip with experimental 

data [6-8, 10] at different temperatures. The blue represents simulation data, and the red 

represents experimental data. The slopes are −0.14 ± 0.01 (simulation) and −0.20 ± 0.01 

(experiment) for PG lipids, −0.11± 0.01 (simulation) and −0.17 ± 0.02 (experiment) for PC 

lipids, and −0.15 ± 0.01 (simulation) and −0.21 ± 0.01 (experiment) for PE lipids. The error 

bars show the uncertainty of experimental values of DLPC. e) Comparison of simulated 

SA/lip with experimental data for mono-unsaturated lipid tails. The error bar is not shown 

when its uncertainty is within the symbol size. f) Overall comparison of simulated and 

experimental SA/lip [6-10] with the correlation coefficient and its standard deviation. The 

black line is x=y, and two gray lines are the boundaries of 95% confidence interval of 

experimental SA/lip. The circle indicates the most deviated SA/lip of POPS with 62.7 Å2 

(experiment) and 58.5 ± 0.3 Å2 (simulation). The error bars of the simulated SA/lip are not 

shown as they are within the symbol size. 
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Tail dependence For both saturated and mono-unsaturated lipids, except for DSPC 

lipids at 80 °C, the SA/lip decreases as the chain length increases (Figure 12b, Table A.5) 

due to more ordered chain packing with longer acyl chains. As shown in Figure 12c, the 

SA/lip of SL (18:0/18:2) is higher than SO (18:0/18:1), indicating that the SA/lipid 

increases as the level of unsaturation of chain increases because of the kinks (causing less 

ordered packing) formed by additional double bonds. For SA (18:0/20:4) and SD 

(18:0/22:6) lipids, the SA/lip slightly decrease in most systems (Figure 12c, Table A.5-

A.7), suggesting that the chain length effect is stronger than the double bond effect when 

both chain length and unsaturation increase. However, at 30 °C, the SA/lip of PC and PG 

lipids increase, implying that double bonds may be the dominant affect at lower 

temperatures, while the chain length affect is dominant at higher temperatures. Comparing 

SA to DA (20:4/20:4), as more double bonds than chain length are added, a double bond 

affect is much stronger, yielding much higher SA/lip at both 30 °C and 40 °C.  

Comparison to experimental data As shown in Figure 12d and Figure A.4, for 

saturated PG, PC, and PE lipids, the simulated SA/lip agree with experimental data better 

at intermediate temperatures (50 and 60 °C), and minor deviations occur at low and high 

temperatures. The slope kT of simulated SA/lip is lower than experimental kT for all three 

head group types (Figure 12d). This may be due to the inaccurate thermal expansion of 

TIP3P water model, for which the density of pure water agrees well with experiment at 

intermediate temperatures (40 and 50 °C), but higher and lower than the experiment at low 

and high temperature, respectively [28]. The over hydration in the head group results in 

looser packing of lipids at lower temperatures. Mono-unsaturated PC lipids agree better at 

higher chain length, while the simulated SA/lip is higher than experimental data at lower 
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chain length, which may also due to higher water density. There is an unexpectedly low 

SA/lip at 16:1 and also 24:1 that deviate from a linear trend for both simulation and 

experiment (Figure 12e), based on which the fitting of the 2nd order polynomial to the 

SA/lip (and also thicknesses) of mono-unsaturated PC lipids is proposed by Kučerka et al. 

[10]. In this study, however, we did not apply a non-linear model because of the SA/lip 

from 18:1 to 22:1 are quite linear and we do not have 14:1 SA/lip to fully support the non-

linearity. Overall, the simulated and experimental SA/lip are strongly correlated with the 

Pearson correlation coefficient of 0.95 ± 0.05 (Figure 12f). Besides the SA/lip of POPS 

that shows the highest deviation (4.2Å2), the simulated SA/lip of all other lipids are within 

the 95% confidence interval from the experimental values. The average absolute deviation 

(AAD) between the simulated and experimental SA/lip is 1.3 Å2, and the average error 

(%AAD) is 2.1%.  

4.1.1c Thicknesses  

Three types of thicknesses are calculated: (i) the overall bilayer thickness (DB) that 

is a measure of water penetration into the bilayer, (ii) the hydrocarbon acyl region 

thicknesses (2DC) that is a measure of the bilayer hydrophobic thickness, and (iii) the 

headgroup-to-headgroup thickness (DHH) that is a measure of the distance between the 

hydrophilic regions of the bilayer. Each thickness provides information on various regions 

of the lipid membrane and can be compared with SDP model-fitted experimental 

thicknesses. 
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Figure 13 The variations of DB and the comparison to experiment.  

The variations of DB by a) temperature and b) mono-unsaturated lipid tails. Comparison of 

simulated DB with experimental data [6-8, 10] as a function of c) temperature and d) mono-

unsaturated lipid tail length. The blue represents the simulation data, and the red represents 

the experimental data. Overall comparison of simulated and experimental data [6-10] of e) 

DB and f) 2DC, shown with correlation coefficients and their standard deviations. In e), the 

circle indicates the DB of POPS at 30 °C: 38.2 Å (experiment) and 42.7 Å (simulation). 

Temperature, head group, and tail dependence As temperature increases, the 

thicknesses generally decreases (Figure 13a, Figure A.5, and Table A.8-A.16), which 

agrees with the PC lipid case reported in [28]. The temperature dependence of PC lipids is 

weaker than the other lipids. The DB, 2DC, and DHH of the PS and PE lipids are greater than 

PC and PA lipids, and the PG lipids have the smallest values (Figure 13a-b and Figure A.5). 

The high intermolecular hydrogen bonds in PS and PE lipids may also contribute to their 

large thicknesses due to the tight packing. Even though PC lipids also have a large head 
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group, three methyl groups in choline may make PC head group less hydrophilic and has a 

tendency to bend toward the hydrophobic region (Figure 2). The PG lipids have lower 

thicknesses than PA lipid (which has the smallest head group) because the PG head group 

bends toward phosphate due to its high intramolecular hydrogen bonding, causing loose 

lipid packing (i.e., larger SA/lipid) and thus smaller thicknesses. More specifically, the DHH 

of PS is greater than PE lipids for all tail types, while this is not always the case for DB and 

2DC. This implies that head group size and intermolecular hydrogen bonds may play more 

important roles in DHH. The PC lipids have higher DB but lower 2DC than PA lipids (Figure 

A.5), suggesting that the head group size plays more roles in DB, while hydrogen bonds 

may play more roles in 2DC. As the chain length increases, the thicknesses increase as 

expected (Figure 13b and Figure A.5). Comparing SO to SL, the thicknesses decrease as 

unsaturation level increase (Figure A.5 and Table A.8-A.16). By changing the tail from SA 

(20:4/18:0) to SD (22:6/18:0), the thickness increases, implying that the chain length has 

stronger effects than the double bond for the same increment in chain length. Comparing 

SA to DA (20:4/20:4), as the increment in the double bond is twice more than the chain 

length change, the thickness decreases.  

Comparison to experimental data Except for DSPC at 60 °C and POPS at 30 °C, 

the simulated DB agree well with experiment (Figure 13c-d, Figure A.6, and Table A.8-

A.10). Simulated DC of saturated PE lipids are slightly lower than experimental data at low 

temperature, while the PG and PC lipids match experimental data very well (Figure A.6a-

c). Simulated DHH of PG lipids agrees with experimental data well, while the PE and PC 

lipids are higher than experimental data, which is likely due to over hydration in the head 

group region (Figure A.6d-f). The DHH results agree with the observations that simulated 
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XFF of PG lipids agree with experimental XFF well, while the simulated XFF of PC lipids 

are slightly shifted left (Figure A.2). The thicknesses of simulated POPS at 30 °C shows 

most deviations, in which DB, 2DC, DHH are 4.5, 1.9, and 2.8 Å higher than the experiment, 

respectively, which also agrees with the fact that the XFF is shifted to the left and the 

noticeable disagreement in NFF. Overall, the simulated and experimental DB, DC, and DHH 

agree reasonably well, and they are strongly correlated with the Pearson correlation 

coefficient of 0.97 ± 0.04 (DB), 0.99 ± 0.02 (DC), and 0.96 ± 0.04 (DHH), respectively 

(Figure 13e-f, Figure A.7, and Table A.8-A.16). The AAD and %AAD are 0.9 and 2.4% 

(DB), 0.7 and 2.3% (DC), and 1.9 Å and 5.3% (DHH), respectively.  

4.1.1d Deuterium Order Parameter (SCD) 

     Another commonly measured experimental bilayer property is SCD, which describes the 

order of each carbon in the acyl chain. This provides details of the molecular structure of 

lipids with respect to the bilayer normal. Except for sn-2 of poly-unsaturated lipids due to 

the presence of double bonds, the SCD of carbon 4 to 7 are invariant and have meaningful 

values (i.e., not too small) for each lipid system (Figure A.8a-f), so the temperature and 

chain length dependence is described by the averaged SCD of carbon 4 to 7. 
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Figure 14 The simulated C4-C7 averaged SCD and comparison of SCD to experiments.  

a) sn-1 at different temperatures and b) sn-1 with varied mono-unsaturated lipid tail length. 

Comparison of simulated sn-1 SCD with experimental data [11] at relatively low 

temperatures (c) DPPC at 50 °C and d) SDPC at 30 °C) and relatively high temperature (e) 

DPPC at 80 °C and f) DSPC at 80 °C). Both the simulation and experimental data are sorted 

from C2 to the last sn-1 carbon.  

Temperature, head group and tail dependence As temperature increases, C4-C7 

averaged SCD of all lipids decreases, as the lipids behave closer to liquid and become more 

disordered (Figure 14a and Figure A.8g). The sn-1 SCD of PS, PE, and PA lipids show 

stronger temperature dependence than the PC and PG lipids, which is also the case for the 

sn-2 chain (Table A.17 to Table A.22). Generally, PE lipids have the highest SCD, followed 

by PS, PA, PC, and PG lipids, which is the inverse order of SA/lip, as they are both related 

to the lateral packing of the lipid bilayer; i.e., the tighter the lipid packing is, the lower the 

SA/lip are and the higher SCD are, which is also the direct consequence of head group size 
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and hydrogen bonding. As the chain length increases, SCD of both saturated and unsaturated 

lipids increases (Figure 14b and Figure A.8b). Unsaturation lowers SCD of the double bond 

and neighboring carbons and thus the C4-C7 averaged SCD (Figure A.8 and Table A.19, 

and Table A.22). 

Comparison to experimental data Simulated sn-1 SCD of PC lipids agree 

reasonably well with NMR results [11] (Figure 14c-d and Figure A.9a-f). However, the 

deviation of SCD in the sn-1 chain occurs for DLPC and DMPC at 50 °C (Figure A.9d-e), 

and DPPC and DSPC at 80 °C (Figure 14e-f). For the sn-2 chain of PC lipids, the first (C2) 

and last carbons of the lipid tails agree well with NMR SCD measured by Brown et al. [11], 

while deviations occur for all carbons between them (NMR2 in Figure A.9g-l). However, 

the simulated SCD agree better with SCD data (NMR1 in Figure A.9) measured by Douliez 

et al. [98]. The constant experimental SCD for the first few carbons (starting C3) obtained 

by Brown et al. [11] is caused by unavailable signal splitting for these carbons. Therefore, 

the inaccurate experimental SCD in these carbon atoms may cause the deviation between 

the simulated and experimental SCD. Moreover, Douliez et al.’s results are expected to be 

more accurate as only the sn-2 chain is measured, while Brown et al. measures both sn-1 

and sn-2 chains simultaneously, which involves additional derivation and uncertainty in 

NMR data analyses.  

4.1.2 Further In-depth Study of Lipid Bilayer  

4.1.2a Hydrogen Bonding 

Inter-lipid The number of inter-molecular hydrogen bonds per lipid (𝑁HB
inter) of 

varied lipid types is summarized in Table A.23-A.25. As temperature increases, 𝑁HB
inter 

decreases for all lipid types, and PS lipids show stronger temperature dependence than the 
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others (Figure 15a). PS and PE lipids have higher 𝑁HB
inter than PG and PA lipids since NH3

+ 

in PS and PE lipids provides three protons for hydrogen bonding with the surrounding 

phosphate. PS lipids have higher 𝑁HB
inter than PE lipids due to its additional H-acceptor in 

carboxylate (COO−) in its head group which results in formation of complex network 

(Figure 15c). The PG lipids have two protons, resulting in intermediate 𝑁HB
inter, while PA 

lipids have only one proton, which results in the lowest 𝑁HB
inter. For both saturated and mono-

unsaturated lipids, as chain length increases, PS lipids show obvious increase in 𝑁HB
inter, but 

the mono-unsaturated PE, PG, and PA lipids show very little increase (Figure 15b and 

Figure A.10). Comparing PO to PL, and SO to SL lipids, except for SLPS at 40 °C, 𝑁HB
inter 

decreases as unsaturation level increases (Table A.25) as more double bonds generate more 

kinks in the acyl chain that prevent tight lipid packing. As the tail changes from SL to SA, 

𝑁HB
inter of both PE and PS lipids decrease, suggesting that the unsaturation level effect is 

dominant. As tail changes from SA to SD, the PA, PE, and PG lipids show slightly 

decreasing 𝑁HB
inter at 30 °C, while slightly increasing 𝑁HB

inter at 40 °C. However, PS lipids 

have increasing 𝑁HB
inter at both 30 and 40 °C, suggesting that the chain length is the dominant 

effect.  
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Figure 15 The inter-lipid and intra-lipid hydrogen bonding in the lipid bilayers.  

The number of inter-lipid hydrogen bonds at a) different temperatures of DL lipids and b) 

different chain lengths of mono-unsaturated lipids. c) A snapshot (top view) of a DLPS 

network by inter-lipid hydrogen bonds at 30 °C. The number of intra-lipid hydrogen bonds 

at d) different temperatures of DL lipids and e) different chain lengths of mono-unsaturated 

lipids. f) A snapshot (top view) of a DLPG head group forming a ring-like structure by 

intra-lipid hydrogen bonds at 30 °C. 

Intra-lipid The number of intra-molecular hydrogen bonds per lipid (𝑁HB
intra) is 

summarized in Table A.26 to Table A.28. As temperature increases, 𝑁HB
intra decreases for 

PG lipids, increases for PS and PE, and is constant for PA lipids (Figure 15d). PG lipids 

have the highest 𝑁HB
intra and prefer intra-lipid over inter-lipid hydrogen bonding, because PG 

lipids have two hydroxyl groups as proton donors (Figure 2) and form stable ring-like 

structures through intra-lipid hydrogen bonds (Figure 15f). PE and PS lipids have much 

smaller 𝑁HB
intra as their proton donors are mostly involved in stable inter-molecular hydrogen 

bonds. PA lipids have the lowest 𝑁HB
intra and their 𝑁HB

intra are from the intra-lipid hydrogen 

bonds between the proton and the two carbonyl groups, while the phosphate oxygens make 

more contributions in 𝑁HB
intra of the other head group types. Moreover, the 𝑁HB

intra do not show 
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any dependence on tail types for all head groups (Figure 15e, Figure A.10c-d, and Table 

A.26 to Table A.28).  

4.1.2b Lipid Clustering 

The SA/lip describes the ensemble averaged lipid packing (based on the entire 

bilayer system), while the cluster size can characterize the local packing behavior of lipid 

head groups (since we are using the center of mass of the head group atoms for clustering 

analysis; see Section 3.1.2f). As shown in Figure 16a, for DLPA at the end of the simulation 

at 30 °C, five clusters are formed with average six lipids per cluster. Both hydrogen 

bonding and lipid-K+ interactions contribute to the formation of clusters in PA lipids. The 

corresponding simplified schematic plot based on the center of mass of PA head groups is 

shown in Figure 16b. With the minimum cluster size of three lipids, the cluster size strongly 

depends on a cutoff distance (Dcut) used for clustering analysis (Figure 16c). As Dcut 

increases, the cluster size increases, and for each head group type, there is a transition Dcut 

over which the cluster size is not sensitive to Dcut variation. The transition Dcut is about 5.5 

Å for PS, PE, and PA, and 6.5 Å for PC and PG lipids. Despite different Dcut, the cluster 

size is about four lipids per cluster for all head group types. The increasing rate of the 

cluster size of PA lipids shows a local maximum at Dcut = 4.6 Å (a), at which the probability 

of both hydrogen bonds and lipid-K+ interactions (considering the K+ within 4 Å of 

phosphate O−) reach a maximum (Figure A.11b). At Dcut = 5.2 Å, the increasing rate of 

cluster size reaches its minimum, and the cluster size curve approaches the transition point, 

which is correlated with the dramatic decrease in the probability of both hydrogen bonds 

and lipid-K+ interactions. For head groups larger than PA, the head group distance 

involving hydrogen bonds and lipid-K+ interactions span a larger distance range, and there 
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may be more types of interactions that make it difficult to directly relate individual 

interactions to the cluster size. Therefore, to capture all possible interactions that contribute 

to lipid clusters (especially hydrogen bonding for PE, PG, and PS lipids), a Dcut of 6.5 Å 

was used in our analysis. 

 
Figure 16 Snapshot of DLPA and the clustering scheme plots and the analysis results:  

a) Snapshot of the top leaflet of DLPA at the end of the simulation at 30 °C. The cyan 

spheres are K+ ions. The orange and red in licorice represent the phosphate, the red spheres 

indicate the head groups that form clusters, and clear spheres indicate the ones that do not 

form a cluster. The blue dashed lines represent the hydrogen bonds. b) Schematic plot of 

DLPA clusters based on the center of mass of PA head groups. c) The number of lipids per 

cluster of saturated lipids as a function of distance cutoff used for clustering analysis. d) 

The number of lipids per cluster of saturated lipids at different temperatures. e) The number 

of lipid per cluster of saturated lipids with different chain lengths. 

Temperature, head group, and tail dependence The average number of lipids 

per cluster of saturated lipids at varied temperatures is summarized in Table A.29. As 

temperature increases, the cluster size of PS, PE, and PA lipids decrease, while it does not 

change for PC and PG lipids (Figure 16d) since the applied Dcut of 6.5 Å is their transition 

cutoff distance. PS and PE have the highest cluster size due to high 𝑁HB
inter. PS lipids have a 

larger head group and higher 𝑁HB
inter than PE, and these two counter effects result in a similar 

cluster size as in PE lipids. PA lipids have the smallest head group size and the lowest 
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𝑁HB
inter, which result in the intermediate cluster size. The cluster size of PC is small as it has 

no hydrogen bonding, but the results show that electrostatic interactions are strong enough 

in PC lipids to contribute to a small clustering of lipids. For example, as shown in Figure 

A.11c-e, the N+ of choline group and two O− of phosphate group point toward each other 

in the clustered DLPC to form connections due to electrostatic interactions. The PG lipids 

have the smallest cluster size due to the intra-lipid hydrogen bonding that enables formation 

of the bulky ring-like structure and thus prevents the tight packing of PG lipids. 

4.1.2c Lipid Motions 

Temperature and head group dependence The slow overall lipid relaxation time, 

i.e., the correlation time τ2 of the C22-C32 vector obtained by fitting C2(t) to Eq. (9), is a 

measure of the mobility of lipid, which is commonly known as lipid wobbling. A larger τ2 

indicates lower mobility. For all head groups, as temperature increases, τ2 decreases due to 

more thermal motion (Figure 17a, Table A.30 to Table A.32). In particular, the additional 

inter-lipid hydrogen bonds of the PS lipids due to its carboxyl group in the head group 

allow formation of a stable multiple lipid complex network (Figure 15c), which 

significantly reduces mobility and thus results in a much higher value of τ2 (i.e., nearly 

twice larger than those in the other head group types). In addition, as temperature increase, 

the τ2 of the PS lipids show stronger temperature dependence than the other head groups 

lipids, which is well correlated with the faster decrease in both 𝑁HB
inter of PS (Figure 15a) 

and the stability of the PS lipid complex network (Figure 16d with a decrease in cluster 

size from 8 to 5.5 going from 30 to 80 °C). At 80 °C, the τ2 of PS lipids is very close to the 

other lipids. Despite the paucity of the inter-lipid hydrogen bonding ability, the PC lipids 

do not have the slowest τ2, indicating that the electrostatic interactions and head group size 
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may also affect τ2 in addition to the hydrogen bonds. In fact, PA lipids show the lowest τ2 

due to its smallest size as well as the deficiency in the inter-lipid hydrogen bonding.  

 

Figure 17 The of second rank reorientational correlation time τ2: 

a) DL lipids at different temperatures of various head group types and b) different chain 

lengths at 80 °C of various head group types. 

Tail type dependence As shown in Figure 17b, τ2 increases as the chain length 

increases. Compared to other lipid types, the faster increase in the τ2 of PS lipids again 

correlates with the faster increase in 𝑁HB
inter. Since 𝑁HB

inter of PA, PE, and PG lipids show 

negligible increase with chain length (Figure A.12a), the increase in the τ2 of these lipids is 

due to the increasing van der Waals interactions of the acyl tails. PE lipids generally have 

higher τ2 than PA, PC, and PG lipids. Moreover, the τ2 of the unsaturated PS lipids are not 

always higher than the other head group types (Figure A.12, Table A.31, and Table A.32). 

The τ2 of PO lipids are smaller than PL at 30 °C, while are greater at 40 °C (Table A.32). 

The τ2 of SO is higher than SL for PE lipids probably due to decreasing 𝑁HB
inter, while it is 

lower for PC and PS lipids. Based on these, we propose that there may be a threshold of 

the interaction strength that affects lipid mobility. When the combined inter-lipid 

interaction reaches a certain level, the lipid wobble slows down significantly.  
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Figure 18 DLPC structures and Spin-lattice relaxation time T1 of PC lipids: 

 a) The chemical structure of DLPC shown with some carbon atom names. Comparison of 

simulated relaxation time T1 to experimental data [11]. b) DMPC with varied carbon 

frequency at 30 °C and c) DLPC with ωC = 45.29 MHz at different temperatures. The blue 

represents the simulation data, and the red represents the experimental data. The standard 

errors of MD-based T1 and the experimental uncertainty at low frequencies and 

temperatures are less than the symbol size. 

Comparison of T1 to experimental data Our final validation of the C36FF is to 

examine dynamical motions of lipid carbons, as quantified by NMR T1. The carbon atom 

names for which T1 was calculated are shown in Figure 18a. As the carbon Larmor 

frequency (ωC) increases, T1 of DMPC increases (Figure 18b). The simulated T1 agree well 

with the experiment from Cγ to C8, except for carbon G2 with high ωC (150.84 MHz), in 

which the MD-based T1 is higher than experimental data. This deviation is also observed 

in the T1 of DPPC (201.2 MHz) reported in [113]. Moreover, MD-based T1 agree better 
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with experiment at relatively high frequency (except C14). The frequency dependence is 

also observed in DLPC (Figure A.13a-c), and the frequency dependence gets weaker as 

temperature increases. Figure 18c shows that T1 increases as temperatures increases. Best 

agreement of DLPC occurs at an intermediate temperature (Figure 18c and Figure A.13). 

With the same frequency, T1 of the equivalent positions have very weak chain length 

dependence (Figure A.13f). Overall, the T1 obtained from the simulation show quite good 

agreement with experimental values. 

4.2 United-atom CHARMM36 Force Field  

 

4.2.1 Development  

The united-atom CHARMM36 force field (C36FF-UA) of common lipids is 

developed to improve the simulation efficiency. The united atom topology files are 

generated by grouping together the hydrogen atoms and the carbon atom in methyl (CH3), 

methylene (CH2) and methine (CH) based on the all-atom CHARMM 36 force field 

(C36FF-AA).  

The approach and the C36FF-UA of a few lipids have been developed and has been 

published previously in [125]. The goal of my study is to develop extended types of lipids, 

such as more saturated glycerol phosphate lipids of various head groups, saturated PC 

lipids and monounsaturated PE lipids with varied chain lengths, and also a few types of 

sphingomyelin and ceramides. A good portion of C36FF-UA results has been done by 

undergraduates which will be submitted for publication in the future. What presented here 

is only small section of this larger study which describes my work focus on this study. 

The same force field parameters as C36FF-AA are applied to the non-grouped 

atoms of this lipid model in the hydrophilic head group region. The dihedral parameters 
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involved the united carbon atom (CH1E, CH2E, and CH3E) may require obtaining new 

parameters by fitting the molecular mechanical energy (MME) to the quantum mechanical 

energy (QME). For instance, in sphingomyelins and ceramides, the fitting result for the 

dihedral parameter of CH2-CTL2-C-NHL is shown in Figure 19a. The dihedral involved 

double bond CEL1- CEL1-CTL2-CH2E  require to fitting the two angles  CEL1-CEL1-

CTL2-CH2E and CEL1-CTL2- CH2E-CH3E simultaneously as shown in Figure 19b. 

 

Figure 19 Comparison plots of the results of fitting MME on QME 

The results of fitting MME on QME to obtain the dihedral parameters for angles such as a) 

CH2-CTL2-C-NHL and b) the dihedral involved double bond CEL1- CEL1-CTL2-CH2E 

4.2.2 Test the accuracy  

The accuracy of the C36FF-UA is analyzed by the bilayer properties comparisons 

between the simulated data with C36FF-UA and C36FF-AA lipid models, and also the 

comparisons between the simulated data obtained by C36FF-UA and the experimental data.  
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Figure 20 The SA/lip and SCD for C36FF-AA and C36FF-UA.  

The comparison between simulated all-atom (AA) and united-atom (UA) models of C36 

force field for saturated PC lipids with the a) the surface area per lipid for saturated lipids 

with varied chain lengths at varied temperatures and with the b) the deuterium order 

parameter of DLPC at 60 ºC.  

Figure 20a shows that the MD simulated SA/lipid from C36FF-UA and C36FF-AA 

tends to agree well for saturated PC lipid with longer chain length, and for shorter chains, 

the C36FF-UA-based SA/lipid is slightly smaller than the SA/lipid from C36FF-AA. The 

most deviation occurs for the lipid with the carbon chain length 18 (DSPC) at 60 ºC, at 

which the C36FF-AA suggests a gel-phase transition that cause a dramatic decrease in 

SA/lipid, while the C36FF-UA does not. The experimental SA/lipid of DSPC at 57 ºC  is 

67.5 Å2 and its gel transition temperature is 54 ºC [126].  So in this case, the prediction 

from C36FF-AA is off while the C36FF-UA is more accurate. Figure 20b shows that except 

for major deviation in C3 and some deviation in C4 in chain sn-1 (chain 3), the SCD from 

C36FF-UA and C36FF-AA agree well. The C36FF-UA models of other varied lipid types 

are also developed and the detail comparison will be presented in the future publication co-

authored by two other undergraduate students.  

 

  

a b
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Chapter 5 Results on Multiple-component Soybean Membrane Models 

This chapter covers three topics, the pure ω-6 linoleoyl phosphate lipid bilayer, 

followed by the multiple-component soybean membrane models, and ends with the 

comparison of DLiPC in the pure and mixture hypocotyl membrane (Figure B.1). As shown 

in Table 3 and Table 4, besides two sterols, the main components of soybean hypocotyl 

and root membranes are the ω-6 linoleoyl phosphate lipids, which are a class of lipids that 

has not been well studied using computational techniques. Therefore, the pure membrane 

of two ω-6 lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (SLPC, 18:0/18:2) 

and dilinoleylphosphatidylcholine (DLiPC, di-18:2) as shown in Figure 3, are studied and 

the results are presented in Section 5.1. As we mentioned, soybean is interesting to study 

mainly because it has plenty of ω-6 essential that is very important for human health. The 

MD simulations are performed on soybean hypocotyl and root membrane and results are 

presented in Section 5.2. DLiPC is one component in hypocotyl membrane, the comparison 

of DLiPC properties are demonstrated in Section 5.3. 

5.1 Single-Component Membranes with Linoleic Chain(s) 

The C36 lipid force field has been parameterized for monounsaturated and 

polyunsaturated (>4 double bonds) lipids [14, 127], but has not been tested against 

experimental data on dual-unsaturated tails such as linoleic acid. Therefore, MD 

simulations of SLPC and DLiPC were performed to compare with experimental data and 

provide a baseline to compare with our soybean membrane models. The equilibration of 

SA/lip was extremely fast (less than 20ns) as shown in Figure B.2. The average SA/lip for 

DLiPC was 4 Å2 higher than SLPC with a single chain with dual-unsaturation (Table 5). 
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The KA is slightly higher for SLPC compared to DLiPC (Table 5) suggesting that the 

presence of the 18:0 chain slightly rigidifies the membrane. 

Table 5 System size and overall properties of lipid bilayers 

Membrane Lipid T (K) # Lipid # Water Time (ns) SA/lip (Å2) KA (N/m) 

One-lipid 
SLPC 303.15 80 2800 100 66.6 ± 0.2 0.30 ± 0.02 

DLiPC 303.15 80 2800 124 70.7 ± 0.2 0.26 ± 0.01 

Hypocotyl   298.15 200 6000 150 52.7 ± 0.2 0.51 ± 0.07 

Root    298.15 200 6000 150 51.9 ± 0.1 0.57 ± 0.06 

 

 

Figure 21 MD-based SCD of SLPC and DLiPC compared to experimental values.  

The comparison of the averaged deuterium order parameter (SCD) of sn-2 chain for a) SLPC 

and b) DLiPC to experimental data PLiPC[128]. The double bonds at C6-7 and C9-10 are 

shifted to C9-10, C12-13 to match SLPC 

Although there lack direct SCD NMR measurements for DLiPC and SLPC, there 

does exist SCD data on the isolinoleoyl (18:2Δ6,9) with its double bonds shifted up from 

linoleoyl (18:2Δ9,12)[128]. Considering this shifted the placement of the double bonds, the 

order parameters are in excellent agreement between the MD simulations and experiment 

(Figure 21). The SCDs for the sn-2 chain for DLiPC are nearly identical to the sn-1 chain 

except for Carbon-2 (Figure B.2) and the expected trends are observed for the sn-1 chain 

of SLPC (Figure B.3). 
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There is published data on the 13C NMR spin-lattice relaxation times for various 

carbons for DLiPC [129]. Since carbon assignment is not straightforward and estimated 

with NMR, Figure 22 shows the ranked order of the NMR T1 values from low to high. The 

agreement between experiment and MD is excellent. Table B.1 contains the raw data for 

the NMR T1s and also compares the assigned values for the T1 from an experiment in 

comparison with the directly calculated values from MD simulations (Table B.2). Previous 

experimental values for C14/C15 were suggested to be 0.59 and 0.51, respectively but 

roughly have the value we obtained from our MD simulations for the C4-6/C7-8 position 

(Table B.2). Although MD simulations show a non-monotonic increase in T1 from C2 to 

C18 it is less severe than that suggested previously by experiment [129]. 

 
Figure 22 The relaxation time T1 (s) of tail carbons of DLiPC at 30 °C.  

The carbon Larmor frequency ωC is 90.80 MHz, and experimental data[129] is 

monotonically sorted from low to high due to assignment uncertainty. 

The density profiles show slight changes between the SLPC and DLiPC bilayers 

(Figure 23). The main effect is in the thickness of these bilayers (Table 6) which is 

inversely related to the SA/lip in Table 5. The presence of two double bonds for each chain 

influences all measures of bilayer thickness (head group, water, and hydrocarbon 

densities). DLiPC bilayers have more density of unsaturated carbons at the center of the 

bilayer and the maximal peaks shifted toward the center as compared to SLPC.  However, 

this has a minimal effect on the overall density in this hydrocarbon region (Figure 23a). 
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Figure 23 The electron density profile (EDP) of SLPC and DLiPC:  

a) The comparison of the total EDP of SLPC and DLiPC b) The group EDP of SLPC and 

c) DLiPC, which includes choline (Chol), phosphate (Phos), glycerol (Gly), carbonyl 

(Carb), methine (CH), methylene (CH2), methyl (CH3), and water (Wat). 

 

Table 6 The average thicknesses of bilayers (Å). 

Thickness (Å) SLPC DLiPC Hypo Root 

DHH 39.9 ± 0.3 37.3 ± 0.2 42.7 ± 0.3 42.7 ± 0.1 

DB 38.9 ± 0.3 35.5 ± 0.03 40.1 ± 0.1 39.3 ± 0.1 

2DC 29.1 ± 0.2 26.9 ± 0.03 32.0 ± 0.1 32.2 ± 0.04 

 

5.2 Soy Membrane Models 

Based on C36 MD simulations with SLPC and DLiPC, the lipid force field for 

polyunsaturated lipid tails [127] is in excellent agreement with limited experimental data. 

Therefore, our next step is to develop model membranes for the soy membranes of the 

hypocotyl and root to structurally quantify how these differ within the soybean plant and 

compare to the simple single-component membranes with two double bonds per chain. 

5.2.1. Surface Areas and Area Compressibility 

The SA/lip as a function of time (Figure B.2) demonstrates that the replicas reached 

equilibrium for this metric after 50ns. The average SA/lip was the smallest for the root 

membranes with 0.8 Å2 lower than the hypocotyl (Table 5). This is the result of having 

slightly more sterols in the root membrane and containing PA lipids with their small head 

group and thus lower component SA/lip, which is evident from the component SA/lip 

(Table 7) with PLPA being several Å2 lower than similar PLPC or PLPE lipids. Differences 
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in the component SA/lip between the hypocotyl and root membranes for the same lipid 

show statistically identical values between these two model membranes, further 

demonstrating that sterols and PA lipids are influencing the change in the overall SA/lip. 

The KA nearly doubled compared to the single-lipid membranes (Table 5) due to the 

elevated concentration of sterol.  

Table 7 Component Surface Area per Lipid (SA/lip) for Soybean Membranes 

Model Lipid SA/lip (Å2) 

Hypo  Sterols 30.6 ± 0.1 

 PLPC 61.1 ± 0.4 

 PLPE 60.6 ± 0.4 

 PLPI 62.0 ± 0.5 

 LLPE 60.2 ± 0.5 

 DLiPC 62.3 ± 0.4 

 DLiPE 60.3 ± 0.7 

 DLiPI 60.7 ± 1.2 

Root  Sterols 30.4 ± 0.2 

 PLPA 58.9 ± 0.9 

 PLPC 61.4 ± 0.2 

 PLPE 60.6 ± 1.0 

 PLPI 61.0 ± 0.6 

 LLPA 60.4 ± 0.6 

 LLPC 61.9 ± 0.1 

 LLPE 60.7 ± 0.8 

 LLPS 60.0 ± 0.7 

 

5.2.2. Chain Order Parameters 

The SCD provides a way to compare with available NMR data (as above) and also 

to provide information on the acyl chain order in the lipid bilayer. The order parameters 

for most of the lipids were approximately the same between the hypocotyl and root 

membranes. However, for lipid LLPE (Figure 24), some of the order parameters on the C2 

chain of the hypocotyl version were slightly higher than the equivalent values in the root 

LLPE. This was especially noticeable for carbons 3-7. The opposite was true for the PLPC 

lipids (Figure B.5a-b). Although the shape of the order parameters was more consistent 
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between the hypocotyl and root, the root carbons tended to be slightly higher for both 

chains, indicating that the root membrane lipids are more ordered, which is consistent with 

the decrease in the overall SA/lip (Table 5). 

 

Figure 24 The comparison of SCD of LLPE lipid in the soybean membranes:  

a) sn-1 chain and b) sn-2 chain of soybean hypocotyl and root membranes.  

 

5.2.3. Tilt Angle Distributions 

As shown in Table 8, comparing two sterols in each membrane model, the average 

tilt angle for sitosterol is slighter greater than stigmasterol (but within standard error) in 

hypocotyl membrane, whereas the root membrane models show sitosterol with a noticeable 

higher tilt angle than stigmasterol. The distribution of the tilt angles shows limited variation 

for each sterol between different soy membranes (Figure 25). The tilt angles of sitosterol 

are very similar in hypocotyl and root membranes. However, as shown in Figure 25, the 

stigmasterol has a slightly larger probability having tilts greater than 17.5o in hypocotyl 

(0.45) than root (0.41) membrane model. This indicates that the stigmasterol is more 

upright in the root membrane compared to the hypocotyl model which agrees with slightly 

lower SA/lip of sterols in the root membranes. The difference of title angle distribution of 
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stigmasterol between the same sterols in two membrane models may be the consequence 

of the hydrogen bonding or clustering effects, the analysis results of which will be 

presented in the later sections to understand the possible reason.  

Table 8 Average Tilt Angle for Sterols in Soy Membranes 

Type Hypocotyl Root 

Sitosterol 17.9 ± 0.1 18.1 ± 0.3 

Stigmasterol 17.6 ± 0.4 16.9 ± 0.4 

 

 

Figure 25 Tilt angle distributions of sterols in soy membrane. 

 a) sitosterol and b) stigmasterol with the vertical lines indicate the angle at 17.5°. 

 

5.2.4. Density Profiles 

The EDPs show the minor difference between the hypocotyl and root membrane 

models (Figure 26a). The general position and shape of the two models are nearly identical 

with between the models. The DHH and DC are statistically identical between the two soy 

membrane models (Table 6). The main overall difference is in the water measure for the 

bilayer thickness (DB) with the root model having a thinner membrane by 0.8 Å. The 

replacement of PC/PE lipid with PA allows for more water penetration into the bilayer for 
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the root membranes, consistent with single-component bilayers having the lower DB 

compared membranes with other lipid head groups in our soy membrane models [109].  

Secondary peaks at roughly ±10Å are the result of increased density due to the 

sterols (Figure 26c). This increased density is the maximum in the ring density for the 

sterols (Figure 26d and Figure B.6b). The EDP for sitosterol has the same shape in between 

the two soy membranes, whereas stigmasterol shows some variation between these 

membranes. The hydroxyl and ring carbons for stigmasterol show a slight positive shift 

from the center of the bilayer (Figure B.6b). This results in the tail density for the root 

membrane to have additional peaks that are shifted from the center of the bilayer. The more 

upright orientation of stigmasterol suggests this ordering influence the position of this 

sterol in the root membrane. 

 

Figure 26 Total and group EDP of hypocotyl and root membranes:  

a) The comparison of the total electron density profile of hypocotyl and root membranes b) 

The component electron density profiles of hypocotyl membrane, which includes choline 

(Chol), ethanolamine (EolAm), inositol (Inos), phosphate (Phos), glycerol (Gly), carbonyl 

(Carb), methine (CH), methylene (CH2), methyl (CH3), potassium ion (Pot), and water 

(Wat). c) Total EDP of sterols in hypocotyl and root membrane (SITO-sitosterol and STIG-

stigmasterol) d) Group EDP of sitosterol, which includes OH, ring, and tail. 
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5.2.5. Lipid Hydrogen Bonding 

The lateral ordering of lipids is promoted through either hydrogen bonding or 

electrostatic interactions. The sterols on average are hydrogen bonded to other lipids 24% 

of the time (Table B.3). Although PC lipid cannot form self-hydrogen bonds, these can act 

as acceptors to other lipids and for the hypocotyl and root membranes, there are 0.40 and 

0.33 hydrogen bonds per lipid (Figure 27a and Table B.3). As expected the PE, PI and PS 

lipids have the highest occurrence of hydrogen bonding and PA intermediate between these 

and the PC lipids, which are similar in trends to what has been observed in single-

component membranes [109]. Although several lipids can form intra-lipid hydrogen bonds, 

only the PI lipids have the significant formation of this class of hydrogen bonding at 

roughly 0.25 intra-lipid hydrogen bonds per lipid (Table B.3).  

There are some statistical differences in hydrogen bonding between the hypocotyl 

and root membranes (Figure 27a and Table B.3). The common PE lipids (PLPE and LLPE) 

show a reduction in inter-lipid hydrogen bonds for the hypocotyl membrane. There is a 

reduction in the number of PE lipids in the root membrane that appears to slightly enhance 

the hydrogen bonding with PE lipids. The number of inter-lipid hydrogen bonds per lipid 

of sterols does not depend on membrane type as the glycerol phosphate lipids. Other 

common lipids and sterols show no statistical difference in hydrogen bonding between soy 

membranes. Moreover, comparing the sitosterol and stigmasterol in hypocotyl and root 

membranes, the lowest number of hydrogen bonds per lipid of stigmasterol in the root 

membrane (0.230± 0.0002) may explain the lowest titling angle among four (Table B.3). 

This suggests that hydrogen bonding is one of the causes of the titling angle difference of 

stigmasterol in the two membrane models.  
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Figure 27 Hydrogen bonding and clustering in the soybean membranes: 

a) Comparison of the number of inter-lipid hydrogen bonds of the common lipids in 

hypocotyl and root membrane. b) Schematic plot of clustering of root membrane. PL lipids 

are shown in red, LL are shown in blue, and sterols are shown in yellow c) Probability of 

the cluster composition of PL and LL lipids in root membrane. The blue arrows indicate 

increasing probability as composition difference of PL and LL lipids increases. 

 

Table 9 Number of hydrogen bonds of PL and LL lipids 

Number of hydrogen bonds per PL/LL lipid or per sterol of the root membrane, (comparing 

the equal number PA, PC, and PE head groups only). 

Pairs NHB/lip 

PL-PL 0.256 ± 0.019 

LL-LL 0.264 ± 0.015 

PL-LL 0.215 ± 0.023 

SITO-PL 0.235 ± 0.025 

SITO-LL 0.186 ± 0.016 

STIG-PL 0.211 ± 0.034 

STIG-LL 0.198 ± 0.023 

 

As shown in Table 9, based on lipids with the equal number of the PA, PC and PE head 

groups in the root membrane, the overall number of hydrogen bonds per lipid between PL-

PL (16:0/18:2) and LL-LL (18:2/18:3) are higher than PL-LL, suggesting that the lipids 

with the same unsaturation level tails prefer to form hydrogen bonds. The sterols prefer to 

form hydrogen bonds with PL than LL lipids. Among the two types of sterols, the more 

saturated sitosterol shows stronger preference with PL lipids. 
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5.2.6 Lipid Clustering 

The number of hydrogen bonding describes the strength of the interaction of varied 

lipid components in the membrane which affects the normal functioning of biomembrane. 

The lipid clustering is also an important membrane structural property, especially for E. 

coli because it reflects the biological activities of cell-penetrating peptides (CPPs) and 

antimicrobial peptides (AMPs) [130, 131], and other cationic antimicrobial agents [132]. 

The MD simulation result also indicates that clustering is strongly correlated to the 

curvature of the complex lipid bilayer surface [133]. 

As we know, the interaction between the sterols and glycerol phosphate lipids are 

stronger than the interactions between glycerol phosphate lipids. As shown in Figure 27b, 

the existence of sterols in soybean membrane induces the formation of clusters that are 

“glued” by the sterols. The fraction of sterols forming a cluster (YC) is higher than glycerol 

phosphate lipids for both hypocotyl and root membranes. Sitosterol has a slightly lower 

tendency to form cluster than stigmasterol in hypocotyl membrane, while slightly higher 

in root membrane. The average fraction of lipid in the cluster (Xc) of PL lipids (0.286) 

higher than LL (0.269) in the root membrane suggests PL has a higher tendency to form a 

cluster, and this is also the case for hypocotyl membrane (Table B.4). Stigmasterol in the 

root membrane has lower Yc than in hypocotyl membrane, meaning that slightly less 

stigmasterol in the root membrane form the clusters, which also may explain the low tilting 

angle (Table 8). 

In the root membrane, PL and LL lipids have a same number of lipids with the same 

head group types (PA, PC, and PE), therefore, it is used for the further lipid type 

dependence comparison. The LL lipids have both tails unsaturated while PL lipids have 
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only one tail unsaturated (Figure B.1). As shown in Figure 27c, the unsaturation level 

difference in the tail shows no effect in small clusters (NPL<=2), in which the probability 

of (2, 2) cluster composition is higher than (1, 2) and (2, 1) implying that PL and LL lipids 

interactions have no preference. However, for the large cluster (NPL>= 3), the equal lipid 

(diagonal) composition demonstrate the lowest probability, suggesting that PL and LL 

lipids prefer to form clustering with the same lipid tails due to stronger van der Waals 

interactions, which agrees with the above hydrogen bonding results. The cluster 

compositions of sitosterol with PL and LL lipids are slightly different while there is much 

less difference for stigmasterol (Figure B.7). The clusters with the number of PL or LL 

lipids greater than 3 is present in sitosterol, but absent in stigmasterol, implying that 

sitosterol interact with glycerol phosphate lipids stronger than stigmasterol. 

5.3 Comparison of DLiPC in the Pure and Hypocotyl Membrane 

The SA/lip of DLiPC in the hypocotyl membrane is 62.3 ± 0.4 Å2 (Table 7), which 

is much lower than 70.7 ± 0.2 Å2 (Table 5) in the pure membrane. The 2DC considering 

DLiPC only in the hypocotyl membrane is 32.7 ± 0.2 Å, which is larger than 26.9 ± 0.03 

Å (Table 6) in the pure membrane. These results suggest the tighter packing of hypocotyl 

mixture membrane than single-component DLiPC membrane. As shown in Figure 28a, the 

EDP of the hydrophilic head group region, interface, and tail region of the DLiPC in the 

hypocotyl membrane shift outward which agrees with the elongation of DLiPC in the 

mixture due to tighter packing.  

In comparison, the SCD of a single component membrane such as the DLiPC bilayer 

seems to resemble that of the hypocotyl membrane (Figure 28b-c). Moreover, the SCD is 

categorically higher for the hypocotyl soybean membrane lipids than for the single 
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component membrane lipids. This suggests that the presence of multiple lipids, including 

sterols, increased chain order in the soy membrane systems. 

 

Figure 28 EDP per lipid of DLiPC in the pure and hypocotyl membrane: 

a) Group EDP of the hydrophilic head group (Chol+Phos), interface region (Gly+Carb), 

and hydrophobic tail groups (CombC). b) The SCD of DLiPC of hypocotyl and pure 

membranes in c) sn-1 and d) sn-2 chain. 
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Chapter 6 Results on Periplasmic-Open LacY Models 

This Chapter covers two topics. Section 6.1 demonstrates the comparison of 

currently available periplasmic-open LacY models to verify the feasibility of the models. 

Section 6.2 present the simulation results from SGLD simulation with the method 

described in Section 2.3, which is the simulation method applied to obtain more unknown 

periplasmic-open LacY structures.  

6.1 Test the Current Available Periplasmic-Open LacY Models  

6.1.1 Three Periplasmic-Open LacY Models 

Structural models haven been developed to represent the possible structure of 

periplasmic-open LacY, such as LacYIM-EX model [48], repeats-swapped (SW) and FucP-

based (FP) LacY models [51]. The accuracy of periplasmic-open LacYIM-EX model 

obtained by Pendse et al. [48], and LacYSW and LacYFP models both obtained by Radestock 

et al. [51] are tested using MD simulations (with detail method protocol on page 20)  in 

explicit membrane with sugar (ββ-(Galp)2) bound to the protein.  

 

Figure 29 Side views of outward-facing LacYIM-EX, LacYSW, and LacYFP models.  

The following color scheme is used for each helix: blue=H1, red=H2, gray=H3, orange=H4, 

yellow=H5, tan=H6, silver=H7, green=H8, pink=H9, cyan=H10, purple=H11, 

mauve=H12. 
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LacYIM-EX model (Figure 29, left) was obtained through a two-step hybrid implicit-

explicit simulation method, in which SGLD simulations [73, 91] were performed with 

LacY in an implicit membrane, from which the partial periplasmic-open structures 

obtained were used in MD simulations in an explicit lipid bilayer to obtain the LacY 

structure that is fully open on the periplasmic side [48].  

 

Figure 30 Pore radii of three periplasmic-open LacY models: 

a-c) Pore radii of three periplasmic-open LacY models at varied simulation time. The black 

curve is the pore radii of the 1PV7 crystal structure. And the curves in difference colors 

are the pore radii of LacYIM-EX at time 1 ns to 100 ns with step 10 ns. d-e) The histogram 

of the probability of minimum pore radii on the periplasmic and cytoplasmic sides. 

LacYSW model (Figure 29, middle) was obtained through swapping the inverted-

topology repeats method, in which the helices was divided into A, B, C and D units with 

three helices in each unit. Since it is known that unit A and unit B are 2-fold rotational 

symmetric by axis that runs through the center and parallel to the membrane plane, so the 

cytoplasmic and periplasmic side of topology repeats units A and D were firstly inverted, 

then the conformations of the repeats were swapped by modeling the conformation of A 

using the structure of B as a template and vice versa, similarly for unit C and D  [51].  
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LacYFP model (Figure 29, right) was built by apply LacY sequence on the available 

outward-facing crystal structure of another E. coli MFS transporter, L-fucose permease, 

which is L-fucose/proton symporter that shares about 10% sequence identity to LacY only 

[51]. LacYIM-EX structure is obtained from simulation predicted the natural movement of 

LacY, while LacYSW and LacYFP models are two built theoretical models. Therefore, the 

accuracy of these models needs to be verified through MD simulations. 

6.1.2 Comparison of Models with Regular Equilibrium 

The pore radii comparison between the simulation results of the three periplasmic-

open LacY models (Figure 30a-c) shows that LacYIM-EX model remains stable in the 

periplasmic-open state, while the LacYSW and LacYFP close on the periplasmic side and 

become unstable on the cytoplasmic side. The probability histogram demonstrates that on 

the periplasmic side, LacYIM-EX shows the highest probability of opening, while the LacYFP 

shows the lowest probability of opening (Figure 30d), while on the cytoplasmic sides, 

LacYIM-EX shows the much higher probability of closing than the other two models. 

Therefore, the pore radii results suggest that the LacYIM-EX is a better LacY model than the 

other two. 

To visualize the structure change, the structure at the end of simulation compared 

to its initial model structure is shown in Figure 31a, which demonstrates that LacYIM-EX 

does not have a broad conformational change and remains in the outward-facing state, 

while the LacYSW and LacYFP models show closing on the periplasmic side. The pore radii 

results at Figure 31b shows that the closure of pore at the periplasmic side of LacYSW and 

LacYFP occur at the end of equilibrium.  
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Figure 31 Snap shots and pore radii of three outward-facing LacY models:   

a)Snap shots of LacYIM-EX (green), LacYSW (red), and LacYFP (yellow) LacY models at the 

end of simulation compared to its initial model structure b) Pore radii of the three LacY 

models at the initial model, the end of equilibrium and the end of simulation runs. 
 

6.1.3 Comparison of Models with Extended 10-ns Equilibrium 

Table 10 Steps for two types of equilibriums.  

Equilibrium steps for (regular) standard CHARMM-GUI six step equilibrium and extended 

extra 10-ns equilibrium. FCBB , FCSC are Harmonic restraint force constants for backbone 

and side chain, respectively, in unit kcal·mol-1·Å-2 

Type Steps Time (ns) FCSC FCBB 

Regular 6.1 0.035 5 10 

 6.2 0.025 2.5 10 

 6.3 0.025 1 10 

 6.4 0.2 0.5 10 

 6.5 0.2 0.1 10 

  6.6 0.2 0 10 

Extra 7 5 0 10 

 8.1 1 0 5 

 8.2 1 0 2.5 

 8.3 1 0 1 

 8.4 1 0 0.5 

  8.5 1 0 0.1 
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To make sure the closure of the LacYSW and LacYFP are not merely due to short 

equilibrium process (0.685 ns standard six-step CHARMM-GUI equilibrium), additional 

10-ns equilibrium is applied. As shown in Table 10, after 0.685 ns regular equilibration, 

the additional 5-ns equilibration with backbone Harmonic restraint force constant of 10 

kcal·mol-1·Å-2 is applied, and then the restraint is gradually reduced from 10 to 0.1 

kcal·mol-1·Å-2 during another 5-ns equilibration.  

 

Figure 32 The extended 10 ns simulation results: 

a-b) The extended 10 ns equilibrium resulted pore radii of a) LacYSW and b) LacYFP 

models, and residue distance change comparison between the regular and extended 

equilibrium of c) LacYSW and d) LacYFP models. 

Figure 32a-b shows that when extra 10 ns restrained equilibrations are applied, 

LacYSW become slightly more stable and LacYFP remains stable in the closed cytoplasmic 

side and partially periplasmic-open state. The simulated residue distance change of LacYFP 

structure agrees well with DEER (Figure 32c-d). However, LacYFP model is merely the 

LacY homology structure model which is not closely related to LacY. Also, it still has 
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higher RMSD relative to the initial LacYFP model compared to LacYIM-EX for all protein 

backbone and also all helices (Figure 33). 

 

Figure 33 The backbone RMSD relative to their initial model structures:  

a) LacYIM-EX and b) LacYFP relative to their initial model structures during MD simulations 

(with extra 10ns restrained equilibration) of all protein (ALL BB), all helices (ALL HX), 

N-domain helices (N-HX) and C-domain helices (C-HX).  

 

6.2 Search More Periplasmic-Open LacY Structures 

Though the current analysis results indicate that LacYIM-EX may be a reasonably 

good model, its conformation does not fully agree with the DEER results [62]. SGLD 

simulation method is applied to search more periplasmic-open LacY structures, which 

hopefully can lead to a structure that can agree better with DEER. 

SGLD simulations (with detail method protocol provided on page 25) of inward-

facing LacY are performed to obtain LacY in different conformational states. The SGLD 

simulation can accelerate the conformational change while preserves the conformational 

distribution well when the guiding parameters are within the suggested range (guiding 

factor less than 1 is recommended for avoiding much deviation from canonical ensemble) 

[91]. Therefore, it is applied to enhance searching efficiency of LacY in different 

conformational states without the loss of the conformational accuracy [73, 91, 92].  

The SGLD simulations can be run with the implicit membrane and recently with an 

explicit membrane in the NVT ensemble. The wild-type inward-facing LacY crystal 

a b

c
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structure 2V8N [52] (Figure 5) and pre-equilibrated C154G mutated 1PV7 [53] is used in 

the SGLD simulation in the implicit membrane. The pre-equilibrated inward-facing 1PV7 

[53] is also used in the new SGLD simulation in the explicit membrane. The SGLD 

parameter sets with 2V8N [52] and pre-equilibrated 1PV7 [53] with the full residue 

sequence 417 are shown in Table 11 and Table 12. Together with the cut sequence (402 or 

399) of 1PV7 and the occluded structure, there is total 200 SGLD simulation runs in the 

implicit membrane and 8 runs in the explicit membrane have been performed. The detail 

of each parameter will be described in Section 6.2.1.  

             Two implicit MD simulations are performed on inward-facing LacY 1PV7 [53] to 

test the effect of the implicit membrane in the SGLD simulations. As shown in Figure 34, 

pore radii show that the implicit membrane has no effect on the conformational change of 

LacY. LacY remains inward-facing states in both replicas, and there is no residue distance 

change relative to the initial structure at the end of the simulation. 

 

Figure 34 Pore radii of MD simulations in the implicit membrane 
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Table 11 Parameter setup SGLD simulation with 2V8N with 417 residues.  

The beta- galactoside (bgal) is sugar ββ-(Galp)2, which tends to induce periplasmic-open 

LacY. The residues E269, H322, and E325 are three residues involved in proton 

translocation of LacY.  

Binding Protonation TSGAVG SGFT FBETA 

 # 

Replicas 

apo unp 0.25 1.0 1.00 1 

apo 269 0.25 1.0 1.00 1 

apo 322 0.25 1.0 1.00 1 

 apo 325 0.25 1.0 1.00 1 

bgal unp 0.25 0.5 0.10 1 

bgal unp 0.25 0.5 0.25 1 

bgal unp 0.25 0.5 0.50 1 

bgal unp 0.25 0.5 1.00 5 

bgal unp 0.25 0.5 2.00 1 

bgal unp 0.25 0.5 5.00 1 

bgal unp 0.25 1.0 1.00 5 

bgal 269 0.25 0.5 0.10 1 

bgal 269 0.25 0.5 0.25 1 

bgal 269 0.25 0.5 0.50 1 

bgal 269 0.25 0.5 0.50 1 

bgal 269 0.25 0.5 1.00 4 

bgal 269 0.25 0.5 2.00 1 

bgal 269 0.25 0.5 5.00 1 

bgal 269 0.25 1.0 1.00 5 

bgal 322 0.25 0.5 0.10 1 

bgal 322 0.25 0.5 0.25 1 

bgal 322 0.25 0.5 0.50 1 

bgal 322 0.25 0.5 0.50 1 

bgal 322 0.25 0.5 1.00 4 

bgal 322 0.25 0.5 2.00 1 

bgal 322 0.25 0.5 5.00 1 

bgal 322 0.25 1.0 1.00 5 

bgal 325 0.25 0.5 0.10 1 

bgal 325 0.25 0.5 0.25 1 

bgal 325 0.25 0.5 0.50 1 

bgal 325 0.25 0.5 0.50 1 

bgal 325 0.25 0.5 1.00 4 

bgal 325 0.25 0.5 2.00 1 

bgal 325 0.25 0.5 5.00 1 

bgal 325 0.25 1.0 1.00 5 

bgal  unp  0.25 0.5 1.00 1 

bgal  269 0.25 0.5 1.00 1 

bgal  322 0.25 0.5 1.00 1 

bgal  325 0.25 0.5 1.00 1 
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Table 12 Parameter setup SGLD simulation with 1PV7 with 417 residues. 

The beta- galactoside (bgal) is sugar ββ-(Galp)2, which tends to induce periplasmic-open 

LacY. The residues E269, H322, and E325 are three residues involved in proton 

translocation of LacY.  

Binding Protonation TSGAVG SGFT FBETA 

# 

Replicas 

apo unp 0.20 0.75 4.00 1 

apo unp 0.20 0.75 5.00 6 

apo unp 0.20 0.75 6.00 1 

apo unp 0.20 0.80 5.00 1 

apo 269 0.20 0.75 5.00 1 

apo 322 0.20 0.75 5.00 1 

apo 325 0.17 0.75 5.00 1 

apo 325 0.18 0.75 5.00 1 

apo 325 0.19 0.75 5.00 1 

apo 325 0.20 0.70 5.00 1 

apo 325 0.20 0.75 0.50 1 

apo 325 0.20 0.75 0.75 1 

apo 325 0.20 0.75 1.00 1 

apo 325 0.20 0.75 2.50 1 

apo 325 0.20 0.75 4.00 1 

apo 325 0.20 0.75 5.00 6 

apo 325 0.20 0.75 6.00 1 

apo 325 0.20 0.75 7.00 1 

apo 325 0.21 0.75 5.00 1 

apo 325 0.22 0.75 5.00 1 

apo 325 0.23 0.75 5.00 1 

apo 325 0.24 0.75 5.00 1 

bgal 269 0.20 0.75 5.00 1 

bgal 269 0.25 0.50 0.50 1 

bgal 269 0.25 0.50 1.00 1 

bgal 269 0.25 0.75 1.00 3 

bgal 269 0.25 1.00 1.00 5 

bgal 269 0.25 1.04 1.00 1 

bgal 269 0.25 1.06 1.00 1 

bgal 322 0.17 0.75 5.00 1 

bgal 322 0.18 0.75 5.00 1 

bgal 322 0.19 0.75 5.00 1 

bgal 322 0.20 0.75 5.00 5 

bgal 322 0.21 0.75 5.00 1 

bgal 322 0.22 0.75 5.00 1 

bgal 322 0.23 0.75 5.00 1 

bgal 322 0.25 0.50 0.50 1 

bgal 322 0.25 0.50 1.00 1 
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bgal 322 0.25 0.50 15.0 1 

bgal 322 0.25 0.75 1.00 1 

bgal 322 0.25 0.75 5.00 1 

bgal 322 0.25 1.00 1.00 1 

bgal 322 0.30 0.75 5.00 1 

bgal 322 0.30 0.75 7.50 1 

bgal 322 0.50 0.75 7.50 1 

bgal 325 0.20 0.75 5.00 1 

bgal 325 0.25 0.50 0.50 1 

bgal 325 0.25 0.50 1.00 1 

bgal 325 0.25 0.75 1.00 1 

bgal 325 0.25 1.00 1.00 1 

 

6.2.1 SGLD with the Implicit Membrane 

6.2.1a NS-Averaged 

 

Figure 35 Exemplary pore radii resulted from implicit SGLD simulations. 

LacY with Glu269 protonated, SGLD with implicit membrane from equilibrated six time 

frames (ns) that result in the a) inward-facing state and b) occluded state.  

When we consider the ns-averaged pore radii as the target, for SGLD with the 

implicit membrane (1~5 replica per setting, with varied SGFT and FBETA), the pore radii 

suggest that LacY either remain inward-facing (Figure 35a) or changes to an occluded state 

(Figure 35b).  

Guiding Factor The degree of guiding effect in a SGLD simulation can be adjusted 

by varying the guiding factor (SGFT). The stronger guiding force [73] will be introduced 

and the larger energy barrier will be overcome when the SGFT is larger. It was believed 

that the reason that the periplasmic-open LacY structure could not be obtained by 

a cb
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experimental crystallization is due to its higher free-energy state [57]. Therefore, my work 

in SGLD simulations focused on varying the SGFT (with the range 0.5 to 1.25) in order to 

overcome the energy barrier for the outward-facing state.  

Friction Constant The friction constant (FBETA, collisions per picosecond) is 

also called collision frequency. The higher FBETA, the higher guiding force as well as the 

frictional dragging force [73]. Besides the energy barrier effect, the diffusion effect is also 

considered when selecting the value of FBETA. At low FBETA, the larger FBETA, the 

higher transition rate since the energy barrier effect dominant. The higher guiding force 

helps the transition more than the slow down by the higher frictional force. At high FBETA, 

the diffusion effect dominates the transition rate. The larger FBETA, the lower transition 

rate due to higher friction. The transition rate reaches a maximum when the energy barrier 

effect is compensated by the diffusion effect [73]. Meantime, to avoid applying too high 

guiding force, the lower SGFT should be used when higher FBETA is applied.  The varied 

values of FBETA in the range between 0.5 and 25 ps-1 have been applied. 

Local average Time The parameter local average time (TSGAVG) in ps sets the 

boundary of the time scale of motions to enhance. All motions with time scale or periods 

greater than TSGAVG will be enhanced. Therefore, a greater TSGAVG will result in a 

slower motion to be enhanced. The TSGAVG of 0.25ps is applied in most SGLD 

simulations. The varied values of TSGAVG in the range between 0.19 and 0.25 ps have 

been applied to study its effect on the conformational change.  

Initial Structure-Protein Conformational States Besides adjusting parameters, 

different starting structures were used. It is possible that due to time scale limitation or 

unable to overcome a further energy barrier, once the intermediate occluded state is formed, 
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it is difficult to observe any further conformational change that can lead to an outward-

facing state. Therefore, instead of inward-facing LacY, we used apo- and sugar bounded 

occluded and even a few unphysical LacY structures as the starting structures, which were 

already obtained from quite a few from previous SGLD simulations, expecting that it can 

lead the conformational change following transition step 1 or 4 that results in periplasmic-

open LacY (Figure 4). 

 

Figure 36 The frequency of minimum pore radii of LacY resulted from SGLD simulations.  

The varied guiding factor SGFT and friction constant FBETA resulted in periplasmic-open 

and cytoplasmic-close structures with initial structures inward-facing 2V8N and 1PV7, and 

the occluded state obtained from 1PV7 for Glu269 (up-triangle), His322 (circle), and 

Glu325 (down-triangle) protonated states. 

Initial Structure-Protonation States Since LacY is a H/galactoside symporter. 

LacY conformation may depend on the proton translocation, which is presented by the 

protonation states of the relevant residues. Therefore, SGLD simulations are performed on 

the Glu269-, and H322-, and Glu325- protonated LacY. 
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Initial Structure-Protein Sequence Cut The C-terminus loop 400-417 is a 

relatively free loop that tends to expand more widely and may interact with its own protein 

image due to the periodic boundary. Therefore, to avoid this affect, in some conformation, 

LacY is cut at 399 or 402, and the tail residues are not included in the simulations.  

Figure 36 shows that 2V8N does not result in any periplasmic-open state; 1PV7 

results in some periplasmic-open and cytoplasmic-close structures, however, there is no 

common friction constant FBETA that can have both parts valid simultaneously. The 

occluded 1PV7 with guiding factor 0.75 and friction constant 5 ps-1 satisfy the outward-

facing pore radii. However, there are two issues. Since the guiding force applied is quite 

strong, there are unphysical structures which have both the periplasmic and cytoplasmic 

sides open (Figure 37a). Moreover, the Cα distance of this structure disagrees with the 

DEER residue pair distance. More importantly, based on the VMD as shown in Figure 37b, 

these structures are incorrect as the center of the protein pull apart very far way, implying 

that the strong guiding force may have broken the hydrophobic force of the implicit 

membrane, therefore destabilizes the whole protein. 

 

Figure 37 Unphysical LacY structure showing opening on both sides: 

a) The pore radii of the periplamic-open 322-protnanted LacY structure with guiding factor 

0.75 and friction constant 5 ps-1 b) The snap shot of LacY showing the opening on the both 

peri- and cyto-plasmic sides and the between center region. 
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Part of the Structure Applying Guiding In most SGLD simulations, the guiding 

force (i.e. the friction constant FBETA) is applied to the entire LacY structure. To try to 

obtain the periplamic-open LacY structure in a more robust method, we also tried to apply 

the guiding force on only the part of the LacY, such as N-domain, C-domain, or periplasmic 

side, cytoplasmic side. Figure 38 shows that with entire protein guided, as the SGFT 

increases and FBETA decreases, LacY open on the periplasmic side as well as cytoplasmic 

side (which may be caused by hydrophobic interaction on the protein-water interface), 

while with partially guided structure, LacY closes on the cytoplasmic side, and slightly or 

nearly no opening on periplasmic side. Even though no periplamic-open structure is 

observed, with the partially guiding, the overall LacY structure seems more stable. A 

similar result is shown in the N-domain guided simulation. When guiding periplasmic side 

on the occluded structure, and guiding cytoplasmic side on the both-open unphysical 

structure, the periplasmic-open conformation is not obtained, as the guided half does not 

show much conformational change. From these, we conclude that there are strong interior 

correlations between the N- and C-domain, and peri- and cyto-plasmic sides of LacY, so 

that we can not only change part of the conformation of LacY. In order to obtain the 

periplamic-open LacY, the movements of different parts of LacY communicate or correlate 

with each other, and the conformational change of the whole LacY is required.  
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Figure 38 The residue distance and minimum pore radii change  

At lower SGFT and higher FBETA of entire protein guided (which is the case for all unless 

specified) and partially protein guided. 

 

6.2.2b Individual Frame 

Based on more statistical ns-averaged results, which is the average of 1000 frames, 

there is no LacY structure resulted from the SGLD that can result in reasonable pore radii 

and residue distance change that show opening on the periplasmic side, and closing on the 

cytoplasmic side. However, the pore radii fluctuate significantly in this timeframe. So the 

low occurrence of the outward-facing structure may not be captured from the 1000-frame 

average. However, we can observe its existence if we look at each individual frames.  

Specifically, we see some reasonably good outward-facing LacY structures. 
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Figure 39 Snapshots of the outward-facing LacY from implicit SGLD simulations. 

Structure 1 is obtained from Glu269-protonated LacY with guiding factor 0.75, friction 

constant 1 ps-1; Structure 2 is from Glu269-protonated LacY with guiding factor 1.04, 

friction constant 1 ps-1; Structure 3 is from His322-protonated with guiding factor 0.75, 

friction constant 5 ps-1. 

 

Figure 40 Structure analyses of outward-facing LacY from implicit SGLD simulations  

They are starting from pre-equilibrated 1PV7 with reasonable a) pore radii and b) 

Residue pair distance changes based on Cα compared to DEER data [62]. 

 The snapshots of the obtained periplasmic-open LacY structures are shown in 

Figure 39. The pore radii show that Structure 1 and 3 are not fully closed on the cytoplasmic 

side (Figure 40a). And the Cα of residue pair distance change demonstrates that all the three 

structures show reasonable opening on the periplasmic side, but have less closing on the 

cytoplasmic side compared to DEER data [62] (Figure 40b). Based on the Cα of residue 

pair distance Structure 3 has the most cytoplasmic closure with Structure 2 having little 

closure compared to the cytoplasmic-open state.  
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In order to obtain fully equilibrated outward-facing LacY structure that closes more 

on the cytoplasmic sides, MD simulations are performed on these structures in the explicit 

membrane for 100 ns with sugar ββ-(Galp)2. As show in Figure 41, on the periplasmic side, 

the pore radii of Structure 1 and 2 LacY close, and the Structure 3 partially close. On the 

cytoplasmic side, Structure 1 and 3 close, and Structure 2 partially close. The residue pair 

distance results in Figure 42 demonstrate that neither of the LacY structure agrees with the 

DEER experiment [62]. These results suggest that MD simulation with the explicit 

membrane cannot cause LacY close on the cytoplasmic side.  

 

Figure 41 Explicit MD simulation resulted pore radii. 

Three outward-facing LacY structures initially obtained from the implicit SGLD 

simulations. 
 

 

Figure 42 Explicit MD simulation resulted residue pair distances. 

Three outward-facing LacY structures initially obtained from the implicit SGLD 

simulations. 

a b c
Str .1 Str .2 Str .3
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6.2.2 SGLD with the Explicit Membrane 

 

Figure 43 Protonation dependence of explicit SGLD simulations. 

Pore radii obtained from the SGLD simulations in the explicit membrane on pre-

equilibrated 1PV7 LacY with the guiding factor 0.75, and friction constant 5 ps-1 in the 

varied protonation states of a) un-protonated b) Glu269-protonated c) His322-protonated 

and d) Glu325-protonated. 

SGLD has been made available for use with NPT dynamics and allows for the use 

of this method with an explicit membrane, but this is much more computationally 

expensive. Therefore, compared to regular SGLD with the implicit membrane, fewer 

simulations were performed. Only seven SGLD in the explicit membrane with SGFT and 

FBETA sets of (1, 1), (0.75, 5), and (0.75, 10) with three protonation states have been 

performed.  

As shown in Figure 44, with the guiding factor 0.75, and friction constant 5 ps-1, 

the ns-averaged pore radii data demonstrates that there is no protonation state dependence 

as LacY of all protonation states close on the cytoplasmic sides but LacY on the periplamic 

side show no motion. And the guiding factor and friction constant dependence are not 

clearly shown either for SGLD simulation with the explicit membrane (Figure 44). Overall, 
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the results show that LacY has a dynamic conversion from inward-facing to occluded state 

on the cytoplasmic side, while with the presence of membrane, there is no motion of LacY 

on the periplasmic side.  

 To consider the short time scale effect, the LacY simulations with guiding factor 

1, and friction constant 10 ps-1 is run for 100 ns instead of 50 ns as others (Figure 44c). 

There is still no motion observed on the periplasmic side. Moreover, when we look at the 

individual pore radii data, the transition between inward-facing to outward-facing was not 

observed in any run. These results suggest that the existence of the membrane may inhibit 

the opening on the periplasmic side or timescales are too great with this approach. 

 

Figure 44 Exemplary pore radii from SGLD with an explicit membrane.  

LacY with Glu269 protonated, SGLD with an explicit membrane on pre-equilibrated 1PV7 

LacY with varied parameter sets of a) guiding factor 1, and friction constant 1 ps-1 b) 

guiding factor 0.75, and friction constant 10 ps-1 and c) guiding factor 1, and friction 

constant 10 ps-1 (which is run for 100 ns instead of 50 ns). 
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Chapter 7 Results on LacYIM-EX Model 

This Chapter covers two topics on LacYIM-EX Model. Firstly, further analyses 

results on LacYIM-EX structure is presented in Section 7.1 to better understand the 

conformational changes and stability of this periplasmic-open model. Secondly, since 

DEER is only experimental method up-to-date that provides the detail information on the 

conformation of outward-facing LacY, the method and results of the verification of DEER 

data are provided in Section 7.2. The further detail related to LacYIM-EX and MDDS 

simulation is published in [21]. 

7.1 Further Study on the LacYIM-EX Structure 

7.1.1 Pore Radii  

 

Figure 45 Protonation effect on the pore radii of LacYIM-EX and a proposed mechanism:  

a) Pore radii of LacYIM-EX -sugar in the explicit membrane with each of three protonation 

states at varied simulation time. The black curve is the pore radii of 1PV7 crystal structure, 

and the curves in difference colors are the pore radii of LacYIM-EX at time 1 to 150 ns with 

step 30 ns. Z in the plot represents the z-coordinate of the axis along the bilayer normal. 

Positive z corresponds to the periplasmic side of LacY, and negative z corresponds to the 

cytoplasmic side of LacY. b) Probability distribution with bin size 1Å of 1-ns block 

averaged minimum pore radii on the periplasmic side for Glu269 (blue square), His322 

(orange circle), and Glu325 (red triangle) protonated states. c) Schematic model of 

conformational change of LacY during proton transport. 
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The MD simulation is performed on LacYIM-EX with sugar in the explicit membrane 

with three protonation states. The system information is shown in Table C.1. The pore radii 

of LacYIM-EX in the three protonation states compared to 1PV7 crystal structure are shown 

in Figure 45a. It demonstrates that LacYIM-EX remains closed on the cytoplasmic side in all 

three protonation states. However, the periplasmic side depends strongly on the protonation 

state of the three residues. For the periplasmic side, LacYIM-EX with E269-protonated 

remains open, LacY with H322-protonated is partially open, and with E325-protonated has 

periplasmic side tends to close. The probability distribution (histogram with bin size 1Å) 

of the 150-ns simulation time for E269-, H322-, and E325-protonated LacY is shown in 

Figure 45b. The results demonstrate that the pore radii for E269-protonated LacY are 

mostly in the range of 2-3 Å, and it has a higher probability in range 3-4 Å than E325-

protonated LacY. E325-protonated LacY shifts the highest probability to 1-2 Å, and the 

probability decreases as pore radius increases from 1 to 4 Å. In the H322-protonated LacY, 

the pore radii are evenly distributed in 1 to 4 Å which indicates the transition of decreasing 

the pore radii. One main step of LacY transport cycle is the outward-facing LacY picks up 

a proton and a disaccharide from the periplasmic side (external side of the cell). Therefore, 

the pore radii suggest the process that E269 in helix VIII picks up the proton, and then the 

proton shuttle H322 in helix X passes the proton to E325 which is also in helix X but closer 

to the cytoplasmic side (Figure 45c, Figure C.1). As a proton is transported, the periplasmic 

side of LacY closes gradually in order to prevent the substrate leak back to the external of 

the cell, which agrees with the results in Pendse et al. [48]. 

By comparing the structures of E269-, H322-, and E325-protonated LacY at the 

end of simulations, it is found that the residues that make the major contribution to the 
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closing on the periplasmic side are K42, D240, and Q241 as shown in Figure 46, which 

agree with the recent experimental result in [55] that the interaction between K42 and the 

nano-body is the key to maintaining LacY in the periplasmic-open state. In the E269-

protonated LacY, D240 interacts with E325 through potassium salt bridge, while in the 

325-protonated state, D240 interacts with E322 through two water bridges. In the E269-

protonated LacY, K42 is in free space and does not interact with another residue; in the 

H322-protonated LacY, K42 interacts with D36 through a water bridge (not shown in 

Figure 46 for image clarity); in the E325-protonated LacY, K42 form hydrogen bonds with 

H35 and Q241. As protonation state changes from E269 to E325, the histidine residues 

H35 and H322 change rotationally rather than translationally to allow the formation of new 

hydrogen bonds of H35 with K42, and D240 with H322. 

Besides pore radii change, the protonation effect on both the interaction of residues 

involved in sugar and proton transport is also observed. The experimental mutagenesis 

studies have found that the residues involved in the sugar recognition and binding are E126 

and R144 [134]. The simulation results show that in the E269-protonated structure, Y26, 

F27, N119 and K358 interact with sugar ββ-(Galp)2 through hydrogen bonding, Y350 

interacts with sugar through water bridge; in the H322-protonated structure, only F27 forms 

hydrogen bond with sugar ββ-(Galp)2; in the E325-protonated state, E126 forms hydrogen 

bond with sugar ββ-(Galp)2 which agree with the results in [55, 134] that E126 involved in 

TDG or NPG binding. According to recent experimental results that F27 determines the 

smallest pore radii on the periplasmic side [55]. The interaction difference of F27 in three 

conformational states confirms the importance of F27 in the conformational change. In all 

three (E269, H322 and E325) protonated states, R144 has electrostatic interaction with 
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E126 and E130. In the H322-protonated state, R144 forms an additional hydrogen bond 

with Y350, which suggests that, besides R144 and E126, the residues E130 and Y350 may 

also involve in sugar transport. Our simulation results also agree with the experimental 

conclusion that the residues involved in proton transport are D240, E269, R302, K319, 

H322 and E325 [134]. In the E269-protonated LacY, neutral E269 forms hydrogen bonds 

with S156. In the E325-protonated structure, negative E269 form electrostatic interaction 

with positive K319. In E269 and H322-protonated states, E325 form a hydrogen bond with 

residue Y236. Y236 may be a key residue as it forms hydrogen bonds with R302, and R302 

forms hydrogen bonds with D240 in all three protonation states. This suggests that Y236 

may also be involved in proton transport from H322 to E325. Identify the key residues 

involved in the proton/sugar transport through simulation facilitates the understanding of 

the correct transport process of LacY. The agreement of the key residues between the 

simulation and the experiment validate the outward-facing LacYIM-EX model, which will 

help to experimentally identify and search correct outward-facing LacY crystal structure. 

 

Figure 46 Residues involved pore radii change of LacY.  

Residues E269 (blue) and E325-protonated (red) (snapshots at 150ns) in a) the overall 

LacY structure b) the region for minimum pore radii c) the region involved D240, H322, 

and H325 interactions. The dash lines indicate the H-bond, and the dotted lines indicate the 

salt/water bridge. The green sphere is the potassium involved in a salt bridge for the E269-

protonated system (blue), and the magenta spheres are the water molecules involved in a 
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two water bridge for the 325-protonated system (red). The E269-protonated background 

structure is not shown in the zoom-in image for clarity. 

 

7.1.2 Residue Pair Distances 

The MD simulations on previously developed outward-facing LacYIM-EX model 

[48] are performed with three (E269, H322, and E325) protonation states. The (60-150 ns 

averaged) residues pair Cα distance changes relative to crystal structure are calculated for 

each state and are compared to the distance changes obtained from DEER [62] as shown 

in Figure 47. The first three pairs (V105/T310, I164/T310, and I164/S375) are located on 

the periplasmic side, and the remaining six pairs (R73/S401, R73/Q340, S136/Q340, 

N137/Q340, S136/S401, and N137/S401) are on the cytoplasmic side of LacY. Compared 

to the initial structure (IM-EXi [48]), the residue pair distances obtained from MD 

simulations agrees less with DEER data in the periplasmic side. As shown in Figure 47, 

the residue distances for the first three pairs are generally smaller than for initial structure 

for all three pairs on the periplasmic side. The Cα distance increment of V105/T310 for 

both LacYIM-EX model and three MD simulations are smaller than DEER data [62], and 

compared to the initial LacYIM-EX structure, the Cα distances show decrement after MD 

simulations (Figure 47). For I164/S375, the MD simulations for H322 and E325 show 

reasonable agreement with IM-EXi and DEER data[62], but the residue distance change is 

smaller for E269. For I164/T310, H322 and E325 have smaller distance change compared 

to IM-EXi, while E269 show very negligible opening. All the structures show less distance 

change than suggested by DEER. The deviation of the distance changes in the periplasmic 

side suggests that the periplasmic side of the LacY closes slightly during the MD 

simulation, which is probably a natural stochastic change in paired distances due to the 

closure of pore radii (Figure 45a). The change of CHARMM force field (FF) is another 
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possible reason that may cause the closure of LacY on the periplasmic side. The LacYIM-

EX model is generated with CHARMM22/CMAP protein FF [70] and CHARMM27 lipid 

FF [135, 136], while CARHMM36 FF for protein [137] and lipid [138] are applied in MD 

simulation, which may result in a minor difference in LacY and lipid interactions as well 

as LacY structure. 

 

Figure 47 Residues pair Cα-Cα distance changes relative to crystal structure. 

The explicit MD simulated (60-150 ns averaged) residues pair Cα-Cα distance changes 

relative to crystal structure compared to the ones obtained from DEER [62] and from the 

initial outward-facing LacYIM-EX model [48]. The dashed rectangular marked two residue 

pairs that involve two neighbor residues S136 and N137. 

The residue distance changes data of LacYIM-EXi [48] are very similar to simulated 

LacYIM-EX on the cytoplasmic side, and this agrees with the closed pore radii for all three 

protonation states on the cytoplasmic side (Figure 45a). The simulation results on LacYIM-

EX for the distance change of residue pairs S136/Q340 and N137/S401 agree with DEER. 

The major difference is that the simulated cytoplasmic distance changes R73/S401, 

R73/Q340, and N137/Q340 are smaller than DEER data [62]. Out of nine residues pairs 

provided by DEER, four pairs involve neighbor residues (inside dash rounded rectangle in 

Figure 47). Similar to the residue distance data of LacYIM-EXi [48], the neighbor spin-

labeled residue distance change based on Cα between S136/Q340 and N137/Q340, 

S136/S401 and N137/S401 are very similar in the simulated results for all three protonation 
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states, but they are significantly different in DEER experimental data [62]. However, the 

Cα distance is not experimentally measured, instead, it is the distance between the coupling 

spins of unpaired electrons in nitroxide radical of MTSSL. Therefore, the differences may 

be the result of conformational changes in the spin label that are influencing the distance 

changes and thus gave us the motivation to investigate this further with MDDS simulations. 

7.2 Verify DEER data by MDDS Simulation 

7.2.1 Comparisons of the MDDS Simulation Results to DEER 

The length from the protein Cα to the nitroxide O of DEER spin label MTSSL is 

about 8Å [90], which is large enough to affect the distance measurement. Moreover, there 

are five dihedral angles between Cα to the nitroxide O, each with multiple rotameric states 

[88, 139] (due to bond rotations). Therefore, MTSSL has its internal flexibility/dynamics, 

and the conformational distribution of the MTSSL will contribute to the DEER spin-pair 

distance distribution. This introduces additional broadening of the protein distance 

distribution [140], and may also shift the overall mean distance away from the real Cα 

protein mean distance. As shown in Figure C.2, the dummy ON spin labels sample a 

relatively wide range in paired distances for a given fixed structure. The raw DSL distances 

of pair V105/T310 obtained from MDDS on inward-facing, occluded, and outward-facing 

LacY are compared to DEER distance distribution (black curve line)  and mean distance 

peaks (black vertical line) [62] (Figure C.4). As the residues V105 and T310 are on the 

periplasmic side, we expect the inward-facing state has the lowest residue distances, 

occluded has the intermediate (if there is one), and outward-facing has the maximum ones. 

The raw data of each ns structure for residue pair V105/T310 shows that the inward-facing 

and outward-facing structures contribute to the occluded expected peak at 45 Å (Figure 
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C.4a, c), while the occluded structure contributes to the inward-facing expected peak at 39 

Å (Figure C.4b). This suggests that DEER mean residue distances may not provide the real 

distance of the corresponded distinct structural states of LacY, but potentially have 

distances that span all the states.  

 

Figure 48 Spin label distance distribution obtained from MDDS simulations: 

a) MDDS resulted periplasmic residue pair V105/T310 (zCα=16~20 Å) spin labels distance 

distribution of overall structurally averaged inward-facing, occluded and outward-facing 

LacY compared to DEER distance distribution [62]. The solid vertical lines are the 

distances that are interpreted to be in the three states for the protein. Three spin labels 

distances (40, 45, and 54 Å) obtained from DEER are interpreted as DEER residue 

distances of LacY in inward (blue), occluded to outward (orange) states, respectively. b) 

The pore radii of the crystal structures. c) MDDS resulted pair distance distribution of 

V105/T310 of the crystal structures compared to DEER data [62]. 

 

Table 13 Comparison of spin label distance on V105/T310.  

The distance between Cα (dCα) and dummy ON spin labels (dON) for crystal structures (PDB 

code provided) and structures obtained from simulations of residue pair V105/T310 on the 

periplasmic side. The different states of structures from the simulation are based on pore 

radii. The distances from simulations are structurally averaged data and the standard errors 

are calculated based on six or ten structures of each state. 

 Crystals Simulations  

Distance (Å) 1pv7 2v8n 4oaa Inward Occluded Outward 

dCα 34 36 43 40±0.8 38±0.4 43±0.6 

dON 36 42 47 41±1.4 47±0.8 50±0.7 

 

The structurally averaged spin label distance distribution of V105/T310 for inward-

facing, occluded, and outward-facing LacY are compared to DEER [62] as shown in Figure 

48a. The distance distributions for the other pairs are shown in Figure C.5. The mean 
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distance of the six structurally averaged residue pair distance of occluded LacY structure 

agree with DEER well (at 45 Å), but the distribution of inward-facing LacY is shifted about 

3 Å higher than the suggested peak of 39 Å for this state.  For the outward-facing state, our 

MDDS distribution maximum is shifted about 5 Å lower from the experimentally-

suggested value of 54 Å. However, based on the pore radii data in Figure C.3a, the inward-

facing structures have a very closed periplasmic side, from which we expect good 

agreement in the mean distance 39 Å. Also, if we assume the outward-facing structure 

should be near to the inverted inward-facing crystal structures in terms of pore radius, then 

the pore radii on the periplasmic side should be around 4.5 Å (Figure 48b). The average 

periplasmic pore radii in Figure C.3c is 3.5 Å, from which we expect the deviation between 

the outward-facing MDDS data and DEER will be within 2 Å. The conflicts between the 

residue distance distribution and pore radii analysis suggest that DEER mean distance 

peaks may not actually correspond to different opening/closing structural states of LacY. 

A direct comparison between the pore radii and spin-label distance analysis is 

performed by running the MDDS simulations on the known crystal structures. The pore 

radii of three LacY crystal structures (2V8N [52], 1PV7 [53] and 4OAA [54]) are 

calculated and shown in Figure 48b, which shows that the pore radii of 2V8N and 1PV7 

are very similar, and this is supported by very similar residue pair Cα distances as shown 

in Table 13. However, the spin label distance of periplasmic side residue pair V105/T310 

in Figure 48c and Table 13 show that the spin label distances between 1PV7 and 2V8N are 

different by about 6 Å even though the difference in the pore radii and dCα are very small. 

This clearly shows that the spin label distance is not equivalent to the pore radii nor dCα 

analysis. The deviation is probably due to the orientation and movement of the spin labels. 
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The orientation effect is also observed by comparing the spin label distances of 4OAA and 

the structurally averaged occluded state, which shows that there is a 5 Å difference in dCα, 

while the MDDS simulation result in the same dON as shown in Table 13. The detail of 

orientation effect is demonstrated in the following section.  

7.2.2 Effect of Orientations on Spin Label Distances  

 

Figure 49 The top view on the cytoplasmic side of LacY with dummy spin label.  

It shows the orientation of spin labels in the averaged mean distance involving the 

neighboring residues (S136, N137, and S401) of inward-facing (blue) and outward-facing 

(orange) LacY. The cyan sphere represents Cα, cyan dot line represents dCα, red sphere 

represents ON spin label and red dot line represents dON.  

 

DEER measures the spin label distance between residue pairs, while the MDDS 

simulation allows accessing both the spin label distance (dON) and Cα distance (dCα) 

between residue pairs as shown in Figure 49. Through the results from MDDS simulation, 

we aim to answer the questions such as how much spin label distance would deviate from 

Cα distance, or how accurate it is to estimate protein structure directly from spin label 

distance. Intuitively, we know that two spin labels are closest when they point toward each 

other, and farthest apart when they point away from each other, which both result in 

greatest deviation of the spin label distance from Cα distance. But these extremes do not 

occur often (Figure C.2). MDDS simulated resulted dON and dCα are provided to describe 

the orientation of spin label quantitatively. 
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Table 14 Structural averages of spin label distances of neighboring residue pairs.  

The two pairs are on the cytoplasmic side. The different states of structures from the 

simulation are based on pore radii. The distances from simulations are structurally averaged 

data and the standard errors are calculated based on six or ten structures of each state. 

 Inward (Å) Occluded (Å) Outward (Å) Outward – Inward (Å) 

Pairs dCα dON dCα dON dCα dON ΔdCα ΔdON DEER[62] 

S136/S401 43±0.7 45±1.3 36±0.5 39±1.0 31±0.2 38±0.5 -12 -7 -4 

N137/S401 40±0.6 39±1.4 36±0.5 35±1.1 29±0.3 27±0.4 -11 -12 -13 

 

 To illustrate the effect of orientation on dON, we will compare the MDDS and 

experiments that focus on the initial motivation for this work, i.e., to understand the cause 

of the large differences in the spin label distances between neighboring residue the pairs 

(Figure 47). Table 2 shows that the inward-facing and outward-facing LacY have similar 

Cα distance dCα for neighboring residue pairs S136/S401 and N137/S401, however, there 

are large differences in spin label distances dON. The dON of residue pair S136/S401 is much 

greater than dON of N137/S401 in all states, which is the direct consequence of the 

orientation of spin labels. As shown in Figure 49, the mean distance  of dummy ON spin 

labels of S136 in both inward-facing (blue) and outward-facing states (orange) points away 

from ON spin label of S401, while ON of N137 points toward ON of S401. Moreover, the 

dON agrees better with dCα for N137/S401 than S136/S401 in all three states. As 

demonstrated in Table 14, the deviation between dON and dCα are within 2 Å for N137/S401, 

while it reaches 7 Å for S136/S401. This is also the case for the other neighboring residue 

pairs S136/Q340 and N137/Q340 (Table C.2). The mean spin label distances and their 

corresponding orientations of the remaining residues pairs are also provided in Table C.2 

and Figure C.7, respectively. The fundamental reason for the difference in the deviation 

and the ON spin label distributions is the local environment of the spin labels. As shown 

in Figure 50a-c, the spin label of S136 is spatially hindered in all three states. The residues 

in the proximity of 10 Å of Cα and 8 Å of ON spin labels are considered to cause hindrance 
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to the movement of spin labels. The spin label of S136 in inward-facing LacY is hindered 

by residues N8 to F9, and S193 to V197 (shown in blue), and the occluded state is hindered 

by residues K5 to W10, and A191 to P192 (shown in green), and the outward-facing sate 

is hindered by residues N8 to F9 and T189 to S193 (shown in orange). The hindrance in 

these states results in significantly different spin label distributions in three states due to 

volume exclusion. The spin label of N137 for the inward-facing state is hindered by 

residues S193 to V197 in inward-facing LacY (Figure 50d, blue), however, the spin labels 

for occluded and outward-facing LacY are not hindered. Unlike S136, the spin label 

distributions of N137 for three states show very similar hemisphere-like shape (Figure 50d-

f), which explains the more accurate of dON for N137 than S136. To quantitatively analyze 

this, the angle between C-ON vector to the mean vector (φ) and the angle between the 

projected vectors of C-ON vector to the unit x-axis vector on the plane normal to mean 

vector (θ) are calculated, which are the equivalent spherical coordinates by rotating z-axis 

to the mean vector. The bottom panel of each subplot of Figure 50 shows that the 

distribution of φ and θ varied very different for S136 (Figure 50a-c) but is very similar for 

N137 (Figure 50d-f), which agrees with the visual spin label distribution on the top panel. 

The distribution of the Cα-ON distances, Cβ-Cα-ON bond angles, and N-Cβ-Cα-ON dihedral 

angles obtained from the MDDS simulations in inward-facing(blue), occluded(green), and 

outward-facing states are also calculated and shown in Figure C.7. The results demonstrate 

that the Cα-ON distances are very similar for all states in both S136 and N137, while 

distinct multiple peaks occur in the Cβ-Cα-ON bond angles and the N-Cβ-Cα-ON dihedral 

angles for S136. Among the three parameters, the dihedral angles best reflect the difference 

of local environment in structures in different states. 
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Table 14 also shows that ΔdON is closer to ΔdCα for N137/S401 than S136/Q340. 

Also, both ΔdCα and ΔdON for N137/S401 (-12 Å) agree well with DEER (-13 Å), while 

both ΔdCα and ΔdON for S136/S401 deviated from DEER (-4 Å), which provides the 

evidence to disqualify the DEER value for S136/Q340 as the local environment alters the 

flexibility of the spin label in DEER. The S136 spin-labeling site is tight (Figure 50), the 

MTSSL may be distorted [141] and results in a different orientation in different states that 

affect the DEER distance distributions. Therefore, it is difficult to fully interpret the DEER 

dON as a metric to describe the residue distance change of LacY. The incorporation of 

simulation is necessary to fully probe protein structural changes. One should compare the 

simulated dON with DEER dON, or compare simulated dCα to DEER derived dCα after 

analyzing the orientation effect of spin labels. From the MDDS simulation results in Table 

14, we estimate that the overall spin label distances change ΔdON are about 3 Å greater than 

Cα distances changes ΔdCα. Ideally, The dCα should be derived in each inward-facing and 

outward-facing state from DEER data by incorporating MDDS simulated dON and dCα 

deviation results, and then obtain the difference due to conformational change.   
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Figure 50 Spin label and angle distribution in three conformational states of LacY.  

Dummy ON spin label distribution in three conformational states of LacY for a-c) residue 

S136 (ON are shown in red), d-f) N137 (ON are shown in pink), Cα and the mean distance 

orientation is shown in cyan, and the possible residues that hindered the ON movement are 

shown in blue for inward-facing, green for occluded, and orange for the outward-facing 

state of LacY. Top panel of each subplot shows the distribution visualized in VMD, and 

the bottom panel shows angle distributions, with φ defined as the angle between C-ON 

vector and the mean vector, and θ as the angle between C-ON vector and the unit x-axis 

projection vector on the plane normal to mean vector (θ). 

 The pore radii and dCα are two methods that have being used to determine the degree 

of opening/closing of LacY [48, 142, 143] but there is disagreement between pore radii 

and dCα. The pore radii of 1PV7 and 4OAA (Figure 48b) are very similar on the periplasmic 



104 

 

side, while there is 9Å difference in dCα of residue pair V105/T310 (Table 13). The 

disagreement between pore radii and dCα are also observed during structural sampling. 

Figure C.3 shows that all the structures sampled in each state have very similar pore radii, 

however, the deviation between structures of dCα for V105/T310 is 5Å for both inward-

facing and outward-facing LacY. Let us now look at the difference between these two 

methods. The pore radii measure the minimum pore size which can be considered the upper 

bond of the cross sessional area that allows the sugar to pass. It mainly depends on the 

sidechain behaviors of protein lumen near the center of inner LacY structure (Figure 5). 

The dCα of the spin labeled residues show the distance of the edge ends of LacY, which are 

mainly caused by the overall helical or bundle movement. The dCα supports that 4OAA is 

in the outward-facing state as suggested in [144], while the pore radii in Figure 48b shows 

that it is in an occluded state. A disaccharide is not able to go through the periplasmic side 

with the pore size less than 2 Å. Therefore, the expected outward-facing LacY structure 

should meet both the criteria that having a pore size large enough to allow sugar transport 

on the periplasmic side and small enough to prevent sugar transport on cytoplasmic side, 

and also having residue distance in reasonable agreement with DEER (the derived dCα). 

However, we suggest that it is more appropriate to consider DEER data as a guide for helix 

tilt in a membrane, and pore radii should be used to classify open/closed of LacY structures. 
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7.2.3 Multiple Peaks in MDDS and DEER  

 

Figure 51 Spin label distance distribution showing multiple peaks from Gaussian fittings.  

MDDS resulted multiple peaks structurally averaged spin label distances of residue pair 

R73/S401 on the cytoplasmic side of inward-facing LacY. The black curve is the 

structurally averaged spin label distance distribution obtained from MDDS simulations. 

The blue, green and red curves are the three Gaussian functions used to fit the MDDS data. 

The solid vertical lines are the distances that are interpreted to be in the three states for the 

protein. Three spin labels distances (46, 37, and 25 Å) obtained from DEER [62] are 

interpreted as DEER residue distances of R73/S401 in inward-facing, occluded, and 

outward-facing states, respectively. 

For each fixed protein structure during MDDS simulations, multiple mean distance 

peaks can occur. Figure 51 shows for the six structural averages of the inward-facing LacY, 

the residue pair R73/S401 distribution of spin label distance could be fit to three Gaussians 

with each having a unique mean spin label distance. The multiple peaks occur in most of 

the pairs as shown in Table C.3, which list all the means peaks from Gaussian fit for each 

pair. With the protein backbone fixed, these multiple peaks are merely due to movement 

of dummy spin labels.  Similarly, even though multiple structural states can be captured in 

DEER, each peak of Gaussian need not represent the unique structure, some of the peaks 

may also be the consequence of the varying spin label conformations. As shown in Figure 

51, the Gaussian fits DEER experimental data for R73/S401 of wild-LacY results in three 

distance peaks [62]. To interpret these DEER peaks, it is expected that the peak at 46 Å 

corresponds to inward-facing of LacY, the peak at 25 Å corresponds to an outward-facing 

state, and the intermediate distance 37 Å represents transition state between inward-facing 
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and outward-facing [62]. The DEER data of C154G LacY mutant which is restricted to be 

inward-facing conformation shows two peaks at 38 Å and 45 Å [62] even though only one 

peak is expected. This unexpected additional peak can be explained by the spin label 

distances from MDDS simulations on the inward-facing LacY in Figure 51 which shows 

that the peak at 37 Å is not true intermediate states, instead, it is an indication of spin label 

movement in MDDS simulations and varied spin labels conformations in DEER 

experiment. 

Additionally, the Cα distances of LacY structures obtained from simulations show 

three levels of distances (long, intermediate and short) for most of the residue pairs on cyto- 

and periplasmic sides. The pore radii of our SGLD simulation results on inward-facing 

LacY structure suggest that the LacY has three levels of pore size (open, loosely closed, 

and tightly closed) on the cytoplasmic side. However, the intermediate pore size is 

observed in only a few simulations, so we cannot determine whether there are two or three 

distinct levels of pore size on the periplasmic side. Moreover, the structures of intermediate 

pore radii do not correspond to intermediate residue distances. For example, the occluded 

structure in Figure C.3b has the tightly closed pore radii while having intermediate residue 

pairs Cα distances. This implies that there may be different mechanisms that induce the 

opening of the pore (movement of residue sidechain near pore) and the opening of helical 

bundles. Further studies are required to understand the correlation between the opening of 

the pore radii and helical bundles and their possible mechanisms. 

7.2.4 Approach to Use MDDS to Interpret DEER Measurement in LacY 

 The MDDS results show that spin label distances strongly depend on the orientation 

of spin labels. Therefore, accurate analysis of DEER data for LacY also needs to consider 
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the flexibility of the spin label [145, 146]. As shown in Figure 52, the main peak 

structurally averaged Cα distances, MDDS spin label distances, and DEER spin label 

distances all show strong linear dependence. The correlation coefficient between spin label 

distance obtained from MDDS simulation and DEER experiment of inward-facing and 

outward-facing LacY is about 0.70±0.18. The correlation coefficients of each state are 

provided in Table C.4. This correlation is quite strong with a small population of each state 

in simulation. In the MDDS simulation, the structural averages are taken from five inward-

facing and ten outward-facing structures are performed, while as mentioned earlier, DEER 

catches (almost) all conformations which may include some transition state in sugar 

transport cycle. From the MDDS simulations, we estimate that the actual Cα distance 

changes for LacY are about 3 Å lower than provided DEER data [62]. Moreover, the 

MDDS simulations can be performed on the outward-facing LacY that satisfies pore-radii 

criteria with varied dCα from the expected range. When the dON from MDDS simulation 

agrees with the DEER, the corresponded dCα is likely to be the correct structure. By this 

method, we can verify whether the existing outward-facing model is correct, and also 

estimate the correct dCα that facilitates to determine the structure. The MDDS simulations 

can also be performed on structures (having occluded pore radii) with varied dCα, in order 

to determine whether the intermediate DEER spin labels distance peaks are real 

intermediate dCα changes or they are the consequence of the flexibility of spin labels.  

 The application of MDDS simulation to analyze DEER data to determine LacY 

structure requires accurate DEER data. However, there can be some issues in DEER data. 

Firstly, DEER results are strongly affected by the selection of peaks, while unfortunately, 

the standard of selection is vague. The selection of peaks that corresponds to inward-facing 
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and outward-facing state is mostly based on the maximum percentage of area under the 

peak of each state, while some peaks that have the maximum inward-facing to outward-

facing distance difference are also considered to be meaningful peaks. Secondly, DEER 

measures one residue pair at each experiment, so the residue distances of different pairs are 

not necessary from same structures. The FRET experiment results [61] shows that two 

domains of LacY do not behave as rigid bundles. Based on which, we expect that with 

three levels of residue distances, LacY may have structures beyond the inward-facing, 

occluded, and outward-facing state. These cases cause difficulty to propose a single model 

structure based on DEER measurements. 

 

Figure 52 Correlations among the Cα-Cα distance of the residue pairs, MDDS, and DEER.  

The main peaks the structurally averaged distance values for nine residue pairs of LacY   a) 

Cα-Cα distance vs. MDDS spin label distances, b) Cα-Cα distance vs. DEER spin label 

distances c) MDDS vs. DEER spin label distances. Inward-facing LacY (red diamond) and 

outward-facing (blue square) are shown with the fitting line of both states. The correlation 

coefficients are shown with the standard deviations in the plots. 
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Chapter 8 Future Direction 

8.1 Studies with Lipid Membranes 

My dissertation study confirmed that C36FF-AA is an accurate model for wide 

range of glycerol phosphate lipid types. Based on the accurate pure linoleoyl membrane, 

the resulted multiple-component membrane models are also reasonable. Having accurate 

models for membranes with linoleoyl allow for further studies on membrane-associated 

proteins in plants. Overall, the accurate C36FF-AA provides excellent grounds to study 

model development of other complex plant and even mammal membranes. Moreover, the 

accurate membrane based C36FF-AA model provides accurate bilayer environment for 

protein study. It greatly facilitates the accurate MD simulation of LacY and other 

transmembrane proteins in the explicit membrane, which is important for the accurate 

prediction of the structure and mechanism of the transmembrane proteins. 

The C36FF-UA of a few saturated glycerol phosphate lipids have been developed 

and tested which has been published previously in [125]. Through our new study, we 

developed extended types of lipids, such as DM lipids of various head groups, saturated 

PC and monounsaturated PE lipids with varied chain lengths, and also four types of 

sphingomyelin and ceramides. The accuracy of these C36FF-UA will be tested, and the 

results of which will be helpful to look at various large-scale or long time behaviors. 

8.2 Study the Proton/Sugar Transport Mechanism of LacY 

The MD simulation on LacYIM-EX model shows that LacY closes its periplasmic 

side as proton transport from Glu269 to 325 (toward the cytoplasmic side). And it also 

demonstrates that D240, R302 involved in proton transport, and R144 involved in sugar 
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transport, which agree with the experiment. In the future, the study on the other residues 

that may be either directly or indirectly involved in the proton/sugar transport will be of 

interest. For example, it is found that S53, Q60, and F354 are involved in sugar transport 

[48]. Some other residues such as K319, etc. may not directly bind to neither proton nor 

sugar, but they facilitate the proton/sugar transport. 

Also, the helix-helix interactions will be studied by calculating and observing the 

helix packing changes during LacY conformational change or proton/sugar transport. 

Besides the helix-helix distance change, the breaking/formation of hydrogen bonding 

during the helix packing change will be probed. Umbrella sampling simulations to calculate 

the Potential of Mean Force (PMF) at the varied conformational states and varied positions 

of sugar inside LacY to estimate the free energies may also provide more thermodynamic 

insight. Moreover, PMFs along multiple paths between the inward-facing to the outward-

facing state will be calculated and compared. To improve efficiency, weighted histogram 

analysis (WHAM) [147] will be combined with PMF calculation. 

8.3 Further Study the Method for Effective Protein Structure Searching 

Currently, we have obtained the inward-facing, occluded structures, and also some 

reasonable outward-facing LacY structures from SGLD simulations in the implicit 

membrane. We are currently testing the stability of the outward-facing LacY structures 

obtained from SGLD simulation by the MD simulations with the explicit membrane, from 

which the potentially better structures may be obtained. If the results show that the 

structures obtained are stable, then the similar method may be applied to other SAT 

transporters. 
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 The guiding factor and friction constant set from the previous SGLD simulation 

on LacY, such as (0.75, 1), (1, 1), and (0.75, 5), may be applied to obtain the structures of 

other transmembrane proteins that are not experimentally available. After the implicit 

SGLD simulations, then explicit membrane MD simulation will be performed to test the 

stability or even obtain a better structures. If successful, this could be an excellent tool to 

probe conformational changes in SAT proteins. 

 

 

 

  



112 

 

 

Computation Resources 

 

The high performance computational resources are used. Deepthought maintained 

by the Division of Information Technology at the University of Maryland will be used to 

setup and equilibrate the systems and the post-production analysis. The production run 

simulations will be performed either in Deepthought2 at the University of Maryland or 

Extreme Science and Engineering Discovery Environment (XSEDE) allocations on 

Stampede at Texas Advanced Computer Center (TACC).  
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Appendices 

 

Appendix A 

 

Table A.1 Temperature (ranges imply 10 °C increments) and simulation time of each lipid 

system. 

Tail Head T (°C) Time 

(ns) 

Tail Head T (°C) Time 

(ns) 

DL PA 30-80 100 DX  PA 40 100  
PC 30-80 100 

 
PC 30-40 100  

PE 30-80 100 
 

PE 30-40 100  
PG 30-80 100 

 
PG 40 100 

  PS 30-80 100   PS 30-40 100 

DM PA 40-80 100 DO 

  

PA 

 

30 

40 

150 

100  
PC 30-80 100 

 
PC 30-40 100  

PE 40-80 100 
 

PE 30-40 100  
PG 30-80 100 

 
PG 30-40 100 

  PS 40 

50-80 

150 

100 

  PS 30-40 100 

DP PA 50-80 100 DG  PA 40 100  
PC 50-80 100 

 
PC 30-40 100  

PE 60-80 100 
 

PE 30-40 100  
PG 50-80 100 

 
PG 40 100 

  PS 

 

50 

60-80 

150 

100 

  PS 

 

30 

40 

150 

100 

DS PA 70-80 100 DE  PA 40    
PC 60-80 100 

 
PC 30-40 100  

PE 70-80 100 
 

PE 30-40 100  
PG 60-80 100 

 
PG 40 100 

  PS 70-80 100   PS 30-40 100 

PO PA 30-40 100 DN  PA 40 100  
PC 30-40 100 

 
PC 

 

30 

40 

150 

100  
PE 30-40 100 

 
PE 30-40 100  

PG 30-40 100 
 

PG 40 100 

  PS 

 

30 

40 

100 

150 

  PS 

 

30-40 100 

SO PA 30-40 100 SA PA 30-40 100  
PC 30-40 100 

 
PC 30-40 100  

PE 30-40 100 
 

PE 30-40 100  
PG 

 

30 

40 

150 

100 

 
PG 30-40 100 
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  PS 

 

30 

40 

150 

100 

  PS 30-40 100 

PL PA     SD PA 30-40 100  
PC 30-40 100 

 
PC 30-40 100  

PE 30-40 100 
 

PE 30-40 100  
PG 

 
  

 
PG 30-40 100 

  PS 30 

40 

150 

100 

  PS 

 

30 

40 

150 

100 

SL PA     DA PA 30-40 100  
PC 30-40 100 

 
PC 30-40 100  

PE 30-40 100 
 

PE 30-40 100  
PG 

 
  

 
PG 30-40 100 

  PS 

 

30 

40 

150 

100 

  PS 30-40 100 
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Table A.2 The comparison of structural properties with bilayer system size of 72 and 128 

lipids. The results in Table R1 show that the finite size of the 72-lipids system has no or 

small effect on DOPA and DOPG for almost all structural properties included in our 

analyses. Specifically, there is no finite size effect on the surface area per lipid (SA/lip) in 

Å2, overall bilayer thickness(DB), hydrophobic thickness (DC), and headgroup-to-

headgroup thickness (DHH) in Å; there is a minor size effect on the order parameters (SCD) 

in the sn-1 and sn-2 chains, and intra-lipid and inter-lipid hydrogen bonds (𝑁HB
intra and 𝑁HB

inter), 

and average cluster size, i.e. number of lipids per cluster (Scluster). The lipid wobble C22-C32 

correlation time (τ2) can be affected by the system size due to the change of 𝑁HB
inter. 

Lipid DOPA DOPG DOPS 

Nlipid 72 128 72 128 72 128 

SA/lip 65.1±0.4 64.8±0.2 72.6±0.2 72.6±0.2 64.1±0.4 63.5± 0.1 

DB  36.1±0.3 36.2±0.3 35.1±0.3 34.9±0.3 38.8±0.3 39.7±0.3 

DC  29.7±0.1 29.8±0.1 26.8±0.1 26.8±0.1 30.1±0.1 30.4±0.1 

DHH  38.2±0.1 38.4±0.1 37.6±0.1 37.8±0.1 42.8±0.1 44.0±0.1 

SCD sn-1 0.191±0.004 0.184±0.005 0.157±0.005 0.148±0.005 0.199±0.005 0.195±0.006 

SCD sn-2 0.202±0.006 0.196±0.003 0.171±0.005 0.164±0.004 0.206±0.006 0.200±0.003 

𝑁HB
intra 0.014±0.0005 0.015±0.0004 0.481±0.003 0.475±0.002 0.072±0.005 0.056±0.002 

𝑁HB
inter 0.172±0.003 0.147±0.001 0.288±0.004 0.287±0.003 0.922±0.010 0.964±0.007 

τ2 (ns) 8.75 5.03 4.17 6.10 7.10 10.43 

Scluster 4.41 4.69 3.56 3.74 5.45 5.53 

 

  



116 

 

 

Table A.3 χ2 of MD-based and scaled x-ray form factor of saturated lipids with unilamellar 

vesicle sample [6-8]. (The temperatures for DLPE experimental x-ray form factors are 35, 

45, 55 °C, respectively.) 

  Tail DL  DM  DP  DS  

Head T/°C  12:0  14:0  16:0  18:0  

PC  30 4.3 2.3       

 50 3.4 7.7 3.4    

  60 3.1 5.4 5.8 6.7 

PE  40 1.8          

 50 3.0          

  60 5.5          

PG  30 3.4 6.7       

 50 2.7 1.8 4.3    

  60 4.2 2.5 1.7 4.5 

 

 

Table A.4 χ2 of MD-based and x-ray form factor of unsaturated lipids with unilamellar 

vesicle sample [6-10]. (The temperature for POPS experimental x-ray form factors is 25 °C.) 

  Tail DX  DO  DG  DE  DN  PO  SO  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  16:0/18:1  18:0/18:1  

PC  30 40.2 67.5 28.2 39.4 50.5 2.8 5.4 

  40           24.6   

PE 30        
  40           14.2 9.8 

PG 30   6.2       5.7 3.7 

  40               

PS 30           561.0   
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Table A.5 MD-based surface area per lipid (Å2) with standard errors of saturated lipids at 

varied temperatures and chain lengths. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 56.3±0.3           

 40 57.5±0.2  54.7±0.4        

 50 60.2±0.2  57.4±0.3  53.6±0.4     

 60 61.5±0.2  58.9±0.3  58.0±0.3     

 70 63.1±0.2  61.5±0.2  60.6±0.3  58.2±0.3  

  80 65.1±0.1  63.6±0.2  63.0±0.2  61.8±0.2  

PC  30 63.1±0.3  60.2±0.6        

 40 63.3±0.4  62.1±0.3        

 50 64.3±0.3  63.1±0.3  61.8±0.3     

 60 66.0±0.2  65.0±0.4  63.4±0.4  61.8±0.3  

 70 66.8±0.2  66.0±0.2  65.1±0.3  63.4±0.2  

  80 68.2±0.3  67.3±0.2  65.7±0.3  66.1±0.2  

PE  30 53.8±0.2           

 40 55.0±0.4  52.5±0.3        

 50 56.8±0.2  53.6±0.5        

 60 58.4±0.2  56.9±0.2  54.8±0.3     

 70 59.9±0.2  58.3±0.2  57.1±0.2  55.9±0.3  

  80 61.0±0.2  59.8±0.2  58.9±0.2  58.6±0.2  

PG  30 66.9±0.3  64.8±0.4        

 40 68.1±0.2  67.2±0.4        

 50 70.0±0.2  69.0±0.4  66.4±0.4     

 60 70.9±0.3  70.7±0.3  70.1±0.4  68.1±0.4  

 70 72.7±0.2  71.7±0.3  71.1±0.3  70.6±0.2  

  80 73.5±0.2  73.7±0.3  72.6±0.3  72.4±0.3  

PS  30 55.8±0.3           

 40 57.0±0.2  54.3±0.2        

 50 58.4±0.2  57.0±0.4  53.1±0.3     

 60 59.5±0.2  58.0±0.3  56.7±0.2     

 70 60.9±0.2  60.3±0.2  59.4±0.3  57.7±0.2  

  80 63.2±0.2  62.1±0.3  60.9±0.2  59.8±0.3  
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Table A.6 MD-based surface area per lipid (Å2) with standard errors of mono-unsaturated 

lipids at varied temperatures and chain lengths. 

  Tail DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    65.1±0.4           

  40 66.5±0.3  66.7±0.3  65.2±0.2  62.5±0.3  60.7±0.3  

PC  30 68.3±0.3  69.3±0.3  67.6±0.2  65.3±0.5  62.0±0.3  

  40 69.7±0.2  69.4±0.2  68.4±0.2  66.6±0.3  65.0±0.3  

PE  30 62.1±0.3  61.4±0.2  60.9±0.3  58.7±0.2  50.9±0.1  

  40 63.7±0.2  63.2±0.3  61.4±0.3  60.6±0.2  57.9±0.3  

PG  30    72.6±0.2           

  40 73.9±0.3  73.1±0.4  72.0±0.3  70.2±0.3  69.7±0.2  

PS  30 64.8±0.2  64.1±0.4  61.6±0.3  58.9±0.3  53.5±0.3  

  40 65.2±0.2  64.8±0.4  63.7±0.3  61.5±0.3  58.0±0.3  

 

 

Table A.7 MD-based surface area per lipid (Å2) with standard errors of mixed and poly-

unsaturated lipids at varied temperatures and chain lengths.  
  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 59.8±0.4  58.7±0.3        66.9±0.3  65.7±0.2  74.0±0.3  

  40 61.6±0.4  61.2±0.2        68.5±0.2  67.8±0.2  74.2±0.2  

PC  30 65.5±0.3  65.2±0.3  66.8±0.3  66.7±0.2  71.0±0.3  71.2±0.2  76.4±0.2  

  40 67.6±0.3  66.3±0.4  67.4±0.4  67.4±0.3  71.5±0.2  70.8±0.3  76.4±0.2  

PE  30 56.3±0.4  55.4±0.2  59.6±0.3  58.2±0.3  64.3±0.3  63.1±0.3  70.8±0.3  

  40 57.5±0.2  57.7±0.2  61.0±0.4  60.6±0.2  65.4±0.2  63.9±0.3  71.2±0.3  

PG  30 68.0±0.5  68.8±0.3        73.9±0.4  74.4±0.3  79.9±0.2  

  40 69.5±0.3  69.6±0.4        76.3±0.3  76.0±0.3  80.7±0.2  

PS  30 58.5±0.3  57.5±0.3  60.1±0.3  61.1±0.3  65.1±0.3  64.8±0.4  72.3±0.3  

  40 59.4±0.2  59.2±0.4  62.6±0.2  62.4±0.3  66.4±0.3  63.8±0.3  73.1±0.3  

 

 



119 

 

Table A.8 MD-based overall bilayer thickness DB (Å) of saturated lipids at varied 

temperatures and chain lengths. The standard error of each is less than 0.3 Å. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 30.8          

 40 30.4 36.0       

 50 29.3 34.6 40.6    

 60 29.0 34.1 38.3    

 70 28.3 33.1 37.2 42.4 

  80 28.0 32.1 36.0 40.5 

PC  30 31.6 36.0       

 40 31.1 35.9       

 50 31.1 35.3 39.6    

 60 30.4 34.9 38.9 44.1 

 70 30.6 34.6 38.8 43.3 

  80 30.3 34.1 38.4 41.7 

PE  30 35.1          

 40 34.7 40.4       

 50 33.8 39.6       

 60 33.1 37.8 43.5    

 70 32.5 37.1 42.1 46.8 

  80 32.2 36.7 41.1 45.0 

PG  30 28.8 33.3       

 40 28.4 32.4       

 50 28.0 31.5 36.4    

 60 27.9 31.1 34.9 39.1 

 70 27.4 31.0 34.4 37.9 

  80 27.3 30.4 34.0 37.2 

PS  30 36.1          

 40 35.7 41.7       

 50 34.6 39.6 46.8    

 60 34.3 39.2 43.9    

 70 33.3 37.8 42.0 47.3 

  80 32.1 36.7 41.2 45.8 
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Table A.9 MD-based overall bilayer thickness DB (Å) of mono-unsaturated lipids at varied 

temperatures and chain lengths. The standard error of each is less than 0.3 Å. 

  Tail DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    36.1          

  40 32.4 35.6 39.6 45.2 49.5 

PC  30 34.6 37.1 41.6 46.6 52.7 

  40 34.1 37.5 41.5 46.1 50.8 

PE  30 36.6 40.7 44.6 50.2 61.0 

  40 36.0 40.3 44.7 48.9 54.8 

PG  30    35.1          

  40 31.8 35.1 38.8 43 46.8 

PS  30 34.2 38.8 45.6 51.3 60.7 

  40 35.1 39.2 43.6 48.9 56.5 

 

 

Table A.10 MD-based overall bilayer thickness DB (Å) of mixed and poly-unsaturated 

lipids at varied temperatures and chain lengths. The standard error of each is less than 0.3 

Å. 

  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 37.8 40.3       36.1 37.9 33.0 

  40 36.9 39.3       35.5 37.1 33.2 

PC  30 37.4 39.6 37.4 38.8 36.9 37.9 34.3 

  40 37.7 39.8 37.1 38.6 37.0 38.4 34.7 

PE  30 43.0 45.6 40.2 43.0 39.8 41.7 36.4 

  40 41.8 44.1 39.5 41.4 39.4 41.6 36.6 

PG  30 36.2 37.3       35.2 36.1 33.1 

  40 34.7 37.3       34.3 35.5 33.0 

PS  30 42.7 45.4 41.0 42.2 39.2 41.1 34.9 

  40 41.7 43.5 39.4 41.5 39.4 42.3 34.9 
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Table A.11 MD-based hydrocarbon region (i.e. twice the hydrophobic) thickness 2DC (Å) 

of saturated lipids at varied temperatures and chain lengths. The standard error of each is 

less than 0.1 Å. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 23.3          

 40 23.1 28.1       

 50 22.4 27.2 32.5    

 60 22.2 26.8 30.9    

 70 21.8 26.2 30.1 34.9 

  80 21.6 25.5 29.2 33.5 

PC  30 21.2 25.3       

 40 21.1 25.1       

 50 21.0 24.9 28.9    

 60 20.7 24.6 28.5 33.1 

 70 20.8 24.5 28.2 32.4 

  80 20.6 24.2 28.2 31.4 

PE  30 24.2          

 40 24.0 29.1       

 50 23.5 28.5       

 60 23.2 27.5 32.5    

 70 22.9 27.2 31.8 36.2 

  80 22.8 26.8 31.1 35.1 

PG  30 20.0 24.0       

 40 19.9 23.6       

 50 19.6 23.0 27.2    

 60 19.6 22.8 26.2 30.0 

 70 19.3 22.7 25.9 29.3 

  80 19.4 22.3 25.7 28.8 

PS  30 23.5          

 40 23.2 28.2       

 50 23.0 27.3 33.3    

 60 22.8 27.0 31.6    

 70 22.5 26.4 30.6 35.2 

  80 22.0 26.0 30.1 34.4 
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Table A.12 MD-based hydrocarbon region thickness 2DC (Å) of mono-unsaturated lipids 

at varied temperatures and chain lengths. The standard error of each is less than 0.1 Å. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    29.7          

  40 26.2 29.4 33.2 38.3 42.5 

PC  30 25.2 28 31.9 36.3 41.5 

  40 24.9 28.2 31.7 36 40.3 

PE  30 27.4 31.4 35.3 40.2 48.9 

  40 27.1 31.1 35.2 39.3 44.6 

PG  30    26.8          

  40 23.8 26.8 30.2 34.2 37.8 

PS  30 26.3 30.1 34.8 39.9 47.0 

  40 26.4 30.3 34.0 38.7 44.2 

 

 

Table A.13 MD-based hydrocarbon region thickness 2DC (Å) of mixed and poly-

unsaturated lipids at varied temperatures and chain lengths. The standard error of each is 

less than 0.1 Å. 

  Tail  PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 30.9 33.1       30.0 31.7 27.8 

  40 30.1 32.3       29.6 31.0 27.9 

PC  30 28.1 29.9 27.5 29.0 28.5 29.3 27.0 

  40 27.8 29.8 27.4 29.1 28.5 29.7 27.1 

PE  30 32.6 35.0 30.6 33.0 31.2 32.9 28.9 

  40 31.8 34.0 30.1 32.0 30.9 32.8 29.1 

PG  30 27.2 28.6       27.4 28.1 25.9 

  40 26.2 28.4       26.6 27.8 25.8 

PS  30 31.3 33.9 30.1 31.5 30.8 32.1 28.3 

  40 30.9 32.3 29.4 31.2 30.7 32.7 28.3 
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Table A.14 MD-based headgroup-to-headgroup distance DHH (Å) of saturated lipids at 

varied temperatures and chain lengths. The standard error of each is less than 0.1 Å. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 32.4          

 40 32.4 37.0       

 50 31.4 36.6 41.8    

 60 30.8 36.2 39.8    

 70 30.6 35.0 39.2 43.8 

  80 30.6 34.4 37.8 42.6 

PC  30 30.8 37.0       

 40 31.0 36.4       

 50 31.2 35.6 39.2    

 60 30.4 34.6 38.2 44.2 

 70 31.4 34.6 38.6 43.4 

  80 30.8 34.0 38.8 42.2 

PE  30 34.8          

 40 34.6 40.0       

 50 34.2 39.6       

 60 33.4 38.2 43.2    

 70 33.4 37.2 42.2 46.4 

  80 32.2 36.8 41.6 45.6 

PG  30 31.4 36.4       

 40 31.2 36.0       

 50 30.2 35.0 39.0    

 60 30.6 33.4 38.0 41.4 

 70 30.2 33.4 36.6 40.6 

  80 30.2 32.8 36.6 40.4 

PS  30 36.8          

 40 36.8 41.4       

 50 36.6 40.6 47.8    

 60 35.8 40.4 44.8    

 70 35.6 39.4 43.2 48.6 

  80 34.4 38.8 43.0 47.6 
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Table A.15 MD-based headgroup-to-headgroup distance DHH (Å) of mono-unsaturated 

lipids at varied temperatures and chain lengths. The standard error of each is less than 0.1 

Å. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    38.2          

  40 34.8 38.2 41.8 47.6 51.8 

PC  30 35.6 38.6 42.6 47.8 52.6 

  40 35.2 38.4 42.6 46.8 51.6 

PE  30 37.8 41.8 45.2 50.4 60.2 

  40 36.8 40.8 45.4 49.8 55.0 

PG  30    37.6          

  40 34.4 37.4 41.6 45.6 48.8 

PS  30 39.6 42.8 47.8 53.4    

  40 39.2 43.0 46.8 52.0 58.0 

 

 

Table A.16 MD-based headgroup-to-headgroup distance DHH (Å) of mixed and poly-

unsaturated lipids at varied temperatures and chain lengths. The standard error of each is 

less than 0.1 Å. 

  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 39.8 42.0       38.2 40.6 36.0 

  40 39.2 41.2       38.2 39.2 36.0 

PC  30 38.0 39.8 38.4 39.8 38.2 40.0 37.2 

  40 38.4 40.4 37.8 40.2 38.6 40.2 36.8 

PE  30 43.2 45.6 40.8 43.8 40.2 42.4 38.2 

  40 42.0 44.2 40.2 42.0 40.8 42.4 38.4 

PG  30 38.4 39.6       38.4 39.0 36.0 

  40 37.6 39.8       36.8 37.8 35.8 

PS  30 44.8 47.2 43.8 44.2 43.2 44.0 40.6 

  40 44.4 46.0 42.4 43.8 43.0 45.2 40.6 
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Table A.17 MD-based sn-1 C4 to C7 averaged deuterium order parameter SCD of saturated 

lipids at varied temperatures and chain lengths. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 0.24          

 40 0.23 0.26       

 50 0.21 0.24 0.27    

 60 0.20 0.23 0.24    

 70 0.18 0.21 0.22 0.24 

  80 0.18 0.20 0.21 0.22 

PC  30 0.19 0.21       

 40 0.19 0.20       

 50 0.18 0.21 0.21    

 60 0.17 0.19 0.20 0.22 

 70 0.17 0.18 0.20 0.21 

  80 0.16 0.17 0.19 0.20 

PE  30 0.26          

 40 0.25 0.29       

 50 0.24 0.27       

 60 0.22 0.24 0.27    

 70 0.21 0.23 0.25 0.26 

  80 0.20 0.22 0.24 0.24 

PG  30 0.17 0.19       

 40 0.16 0.18       

 50 0.15 0.16 0.19    

 60 0.15 0.16 0.17 0.18 

 70 0.14 0.15 0.16 0.17 

  80 0.13 0.14 0.16 0.17 

PS  30 0.24          

 40 0.23 0.27       

 50 0.23 0.25 0.28    

 60 0.21 0.24 0.25    

 70 0.21 0.22 0.23 0.25 

  80 0.19 0.21 0.22 0.23 
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Table A.18 MD-based sn-1 C4 to C7 averaged deuterium order parameter SCD of mono-

unsaturated lipids at varied temperatures and chain lengths. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    0.19          

  40 0.18 0.18 0.22 0.24 0.25 

PC  30 0.17 0.17 0.20 0.22 0.26 

  40 0.16 0.16 0.20 0.22 0.23 

PE  30 0.21 0.22 0.24 0.27 0.33 

  40 0.19 0.20 0.23 0.25 0.29 

PG  30    0.16          

  40 0.14 0.15 0.17 0.19 0.20 

PS  30 0.19 0.20 0.23 0.26 0.33 

  40 0.19 0.19 0.21 0.25 0.28 

 

 

Table A.19 MD-based sn-1 C4 to C7 averaged deuterium order parameter SCD of mixed 

and poly-unsaturated lipids at varied temperatures and chain lengths. 

  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 0.24 0.25       0.22 0.22 0.07 

PA  40 0.22 0.24       0.20 0.20 0.06 

PC  30 0.20 0.21 0.20 0.20 0.20 0.20 0.07 

PC  40 0.19 0.20 0.19 0.19 0.19 0.19 0.06 

PE  30 0.28 0.28 0.24 0.26 0.22 0.23 0.07 

PE  40 0.25 0.25 0.23 0.23 0.21 0.23 0.07 

PG  30 0.19 0.22       0.18 0.18 0.06 

PG  40 0.17 0.18       0.17 0.17 0.06 

PS  30 0.25 0.26 0.24 0.23 0.23 0.23 0.07 

PS  40 0.24 0.23 0.23 0.23 0.21 0.23 0.07 
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Table A.20 MD-based sn-2 C4 to C7 averaged deuterium order parameter SCD of saturated 

lipids at varied temperatures and chain lengths. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 0.25          

 40 0.25 0.27       

 50 0.23 0.25 0.28    

 60 0.21 0.24 0.25    

 70 0.20 0.23 0.23 0.25 

  80 0.19 0.21 0.22 0.23 

PC  30 0.21 0.23       

 40 0.21 0.22       

 50 0.20 0.21 0.22    

 60 0.19 0.21 0.22 0.23 

 70 0.18 0.20 0.21 0.22 

  80 0.18 0.19 0.20 0.20 

PE  30 0.27          

 40 0.27 0.30       

 50 0.25 0.28       

 60 0.24 0.25 0.28    

 70 0.22 0.24 0.26 0.27 

  80 0.21 0.23 0.24 0.25 

PG  30 0.19 0.21       

 40 0.17 0.19       

 50 0.17 0.18 0.20    

 60 0.16 0.17 0.18 0.19 

 70 0.15 0.17 0.18 0.18 

  80 0.15 0.16 0.17 0.17 

PS  30 0.27          

 40 0.25 0.27       

 50 0.24 0.25 0.30    

 60 0.23 0.25 0.26    

 70 0.22 0.23 0.24 0.25 

  80 0.21 0.22 0.23 0.24 
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Table A.21 MD-based sn-2 C4 to C7 averaged deuterium order parameter SCD of mono-

unsaturated lipids at varied temperatures and chain lengths. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    0.20          

  40 0.19 0.20 0.22 0.24 0.25 

PC  30 0.18 0.19 0.22 0.23 0.26 

  40 0.18 0.18 0.21 0.23 0.22 

PE  30 0.21 0.22 0.25 0.27 0.32 

  40 0.20 0.21 0.24 0.25 0.29 

PG  30    0.17          

  40 0.16 0.17 0.19 0.21 0.22 

PS  30 0.20 0.21 0.24 0.28 0.33 

  40 0.20 0.20 0.23 0.25 0.29 

 

 

Table A.22 MD-based sn-2 C4 to C7 averaged deuterium order parameter SCD of mixed 

and poly-unsaturated lipids at varied temperatures and chain lengths. 

  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 0.22 0.23       0.05 0.06 0.04 

  40 0.21 0.22       0.05 0.05 0.05 

PC  30 0.18 0.20 0.18 0.19 0.05 0.05 0.05 

  40 0.18 0.19 0.18 0.18 0.05 0.05 0.04 

PE  30 0.24 0.26 0.22 0.23 0.05 0.06 0.05 

  40 0.23 0.24 0.21 0.22 0.06 0.06 0.05 

PG  30 0.18 0.16       0.04 0.05 0.05 

  40 0.17 0.17       0.04 0.05 0.04 

PS  30 0.23 0.23 0.22 0.21 0.05 0.06 0.05 

  40 0.22 0.22 0.21 0.21 0.05 0.06 0.05 
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Table A.23 Inter-lipid number of hydrogen bonds per lipid 𝑁HB
inter  of saturated lipids at 

varied temperatures and chain lengths. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 0.212          

 40 0.194 0.213       

 50 0.175 0.186 0.205    

 60 0.166 0.176 0.175    

 70 0.153 0.161 0.161 0.171 

  80 0.141 0.147 0.146 0.151 

PE  30 0.693          

 40 0.678 0.706       

 50 0.659 0.697       

 60 0.643 0.632 0.692    

 70 0.614 0.625 0.674 0.664 

  80 0.617 0.618 0.630 0.615 

PG  30 0.309 0.325       

 40 0.295 0.296       

 50 0.278 0.281 0.293    

 60 0.267 0.269 0.271 0.272 

 70 0.247 0.252 0.257 0.254 

  80 0.239 0.239 0.244 0.240 

PS  30 1.071          

 40 1.057 1.066       

 50 0.967 0.994 1.082    

 60 0.993 0.970 0.984    

 70 0.909 0.914 0.919 0.969 

  80 0.834 0.907 0.905 0.920 
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Table A.24 Inter-lipid number of hydrogen bonds per lipid 𝑁HB
inter  of mono-unsaturated 

lipids at varied temperatures and chain lengths. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    0.172          

  40 0.159 0.161 0.165 0.178 0.182 

PE  30 0.586 0.581 0.582 0.624 0.768 

  40 0.565 0.572 0.598 0.611 0.626 

PG  30    0.288          

  40 0.270 0.266 0.275 0.292 0.299 

PS  30 0.922 0.922 0.987 1.029 1.152 

  40 0.890 0.903 0.945 0.972 1.047 

 

 

Table A.25 Inter-lipid number of hydrogen bonds per lipid 𝑁HB
inter  of mixed and poly-

unsaturated lipids at varied temperatures and chain lengths. 

  Tail PO SO PL SL SA SD DA 

Head T(°C) 

16:0 

/18:1 

18:0 

/18:1 

16:0 

/18:2 

18:0 

/18:2 

18:0 

/20:4 

18:0 

/22:6 

20:4 

/20:4 

PA  30 0.193 0.200       0.168 0.166 0.150 

 40 0.182 0.179       0.155 0.156 0.141 

PE  30 0.669 0.690 0.606 0.632 0.561 0.548 0.498 

  40 0.622 0.671 0.617 0.603 0.546 0.551 0.500 

PG  30 0.316 0.255       0.283 0.278 0.268 

  40 0.276 0.281       0.262 0.268 0.253 

PS  30 1.075 1.064 1.056 1.007 0.894 0.983 0.840 

  40 0.951 0.957 0.947 0.980 0.916 0.962 0.829 
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Table A.26 Intra-lipid number of hydrogen bonds per lipid 𝑁HB
intra  of saturated lipids at 

varied temperatures and chain lengths. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 0.013          

 40 0.013 0.013       

 50 0.014 0.014 0.012    

 60 0.013 0.013 0.014    

 70 0.013 0.013 0.013 0.013 

  80 0.014 0.014 0.014 0.013 

PE  30 0.068          

 40 0.071 0.074       

 50 0.078 0.071       

 60 0.078 0.081 0.075    

 70 0.079 0.083 0.081 0.081 

  80 0.087 0.082 0.084 0.085 

PG  30 0.473 0.466       

 40 0.462 0.459       

 50 0.460 0.458 0.455    

 60 0.445 0.448 0.442 0.450 

 70 0.440 0.438 0.435 0.441 

  80 0.434 0.430 0.432 0.425 

PS  30 0.052          

 40 0.062 0.058       

 50 0.065 0.067 0.047    

 60 0.065 0.066 0.070    

 70 0.075 0.083 0.074 0.074 

  80 0.084 0.078 0.077 0.081 

 

 

  



132 

 

Table A.27 Intra-lipid number of hydrogen bonds per lipid 𝑁HB
intra  of mono-unsaturated 

lipids at varied temperatures and chain lengths. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    0.014          

  40 0.015 0.015 0.013 0.014 0.014 

PE  30 0.072 0.069 0.072 0.065 0.080 

  40 0.072 0.075 0.074 0.075 0.076 

PG  30    0.481          

  40 0.469 0.473 0.475 0.463 0.466 

PS  30 0.055 0.072 0.052 0.058 0.047 

  40 0.070 0.070 0.065 0.056 0.066 

 

 

 

Table A.28 Intra-lipid number of hydrogen bonds per lipid 𝑁HB
intra  of mixed and poly-

unsaturated lipids at varied temperatures and chain lengths. 

  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 0.015 0.014       0.015 0.015 0.016 

PA  40 0.014 0.014       0.015 0.015 0.017 

PE  30 0.067 0.066 0.072 0.078 0.071 0.069 0.070 

PE  40 0.075 0.069 0.071 0.072 0.074 0.078 0.076 

PG  30 0.467 0.530       0.490 0.480 0.489 

PG  40 0.465 0.465       0.472 0.479 0.482 

PS  30 0.057 0.051 0.062 0.068 0.061 0.058 0.069 

PS  40 0.076 0.065 0.072 0.061 0.066 0.073 0.072 
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Table A.29 The average number of lipids per cluster Scluster of saturated lipids at varied 

temperatures. 

  Tail  DL  DM  DP  DS   

Head T(°C)  12:0  14:0  16:0  18:0   

PA  30 6.17           

 40 5.87 7.14        

 50 5.39 6.07 7.20     

 60 5.35 5.65 5.80     

 70 4.97 5.42 5.31 5.90  

  80 4.95 5.09 5.07 5.31  

PC  30 4.18 4.30        

 40 3.94 4.28        

 50 4.04           

 60 3.96 4.05 4.25 4.36  

 70 3.95 4.08 4.08 4.12  

  80 3.96 4.04 4.09 4.09  

PE  30 7.69           

 40 7.37 8.72        

 50 6.90 7.80        

 60 6.68 6.55 7.70     

 70 6.02 6.16 7.07 7.41  

  80 6.29 6.22 6.52 6.58  

PG  30 3.94 4.14        

 40 3.89 4.15        

 50 3.87 3.97 4.16     

 60 3.91 3.90 3.92 4.06  

 70 3.77 3.81 3.85 3.86  

  80 3.79 3.77 3.80 3.82  

PS  30 7.82           

 40 7.80 8.51        

 50 6.44 7.16 8.57     

 60 6.89 7.11 7.39     

 70 6.06 6.54 6.77 7.08  

  80 5.59 6.18 6.39 6.59  
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Table A.30 The correlation time τ2 (ns) of lipid wobble C22-C32 of saturated lipids at varied 

temperatures and chain lengths. 

  Tail  DL  DM  DP  DS  

Head T(°C)  12:0  14:0  16:0  18:0  

PA  30 3.04          

 40 2.08 2.51       

 50 1.52 2.18 2.77    

 60 0.93 1.55 1.95    

 70 0.79 1.09 1.31 2.03 

  80 0.63 0.77 1.12 1.46 

PC  30 3.59 5.14       

 40 2.38 3.97       

 50 2.38          

 60    1.45    3.04 

 70 0.91 1.35 1.76 2.25 

  80 0.78 0.87 1.36 1.45 

PE  30 3.71          

 40 2.85 5.13       

 50 2.00 2.87       

 60 1.68 3.23 3.05    

 70 0.98 1.33 3.14 2.40 

  80 0.89 1.25 1.98 2.07 

PG  30 3.32 5.60       

 40 2.28 5.22       

 50 1.54 2.45 2.76    

 60 1.13 1.56 1.91 2.45 

 70 0.72 1.45 1.61 1.57 

  80 0.57 0.72 1.30 1.57 

PS  30 7.70          

 40 5.85 11.76       

 50 4.67 5.99 13.85    

 60 2.74 3.21 3.59    

 70 1.66 2.88 3.60 3.83 

  80 1.16 1.80 2.79 3.74 
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Table A.31 The correlation time τ2 (ns) of lipid wobble C22-C32 of mono-unsaturated 

lipids at varied temperatures and chain lengths. 

  Tail  DX  DO  DG  DE  DN  

Head T(°C)  16:1  18:1  20:1  22:1  24:1  

PA  30    8.75          

  40 2.79 3.90 3.39 9.29 9.41 

PC  30 3.76 6.36 4.26 9.19 11.90 

  40 2.50 4.68 4.50 7.75 4.61 

PE  30 5.43 4.03 5.73 5.47 5.26 

  40 5.56 6.07 5.08 5.73 7.42 

PG  30    4.17          

  40 2.67 3.93 3.32 4.56 7.55 

PS  30 7.16 7.10 12.35 16.13 21.20 

  40 4.85 5.26 6.89 6.00 11.23 

 

 

Table A.32 The correlation time τ2 (ns) of lipid wobble C22-C32 of mixed and poly-

unsaturated lipids at varied temperatures and chain lengths. 

  Tail PO  SO  PL  SL  SA  SD  DA  

Head T(°C) 

16:0 

/18:1  

18:0 

/18:1  

16:0 

/18:2  

18:0 

/18:2  

18:0 

/20:4  

18:0 

/22:6  

20:4 

/20:4  

PA  30 5.11 7.26       4.38 3.86 4.18 

  40 3.36 3.06       5.10 3.02 1.87 

PC  30    6.53 4.39 6.67 6.46 4.02 3.55 

  40 4.11 3.37 3.36 5.45 3.62 3.27 3.59 

PE  30 6.81 10.65 7.46 6.85 4.66 8.23 3.24 

  40 4.30 6.15 3.85 3.87 3.79 3.36 3.01 

PG  30 5.23 9.77       3.57 9.77 3.15 

  40 4.23 4.44       3.74 3.24 2.28 

PS  30 11.03 15.09 9.27 13.40 7.19 11.28 6.78 

  40 14.03 4.58 8.18 5.14 8.97 6.47 4.90 
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Figure A.1 Electron density profile (EDP) of DLPE at 30 °C. DHH is the distance between 

two maximum total EDP peaks, DB is the distance between the half of the maximum water 

EDP, 2DC is the distance between the half of the maximum of acyl chain EDP. 
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Figure A.2 Comparison of MD-based form factor data (the black curve) to experimental 

x-ray form factor (red circle) data with the unilamellar vesicle (red) and oriented bilayer 

sample (green) [6-8, 10] for a-c) DLPE at 40, 50, 60 °C. d-f) DLPG lipids at 30, 50, 60 °C. 

g-j) PC lipids at 60 °C with chain length 12, 14, 16, and 18. k-m) PG lipids at 60 °C with 

chain length 14, 16, and 18. n-r) mono-unsaturated PC lipids at 60 °C with chain length 16, 

18, 20, 22 and 24. s-t) POPC and SOPC at 30 °C. u-v) POPE and SOPE at 40 °C w-x) 

POPG and SOPG at 30 °C. 
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Figure A.3 Comparison of MD-based form factor data of POPS at 30 °C (the black curve) 

to the available experimental data at 25 °C [9] of  a) x-ray form factor (red circle)  b) 

deuterium neutron scattering data in three contrasts. %D is %D2O. The black curves are 

the MD-based form factor at each corresponded deuterium concentration. 

 

 

 

Figure A.4 Comparison of simulated SA/lip with experimental data [6, 8] at varied 

temperatures of a) DM lipids and b) DP lipids, and varied tails length at c) 50 °C and d) 

60 °C of saturated lipids. The blue represents the simulation data, and the red represents 

the experimental data. Error bars show the uncertainty of experimental values of PC lipids. 

The error bars are not shown for PG lipids as their uncertainty is within symbol size. 
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Figure A.5 The variations of 2DC by a) temperature b) mono-unsaturated lipid tails c) 

mixed and poly-unsaturated lipid tails, DHH by d) temperature e) mono-unsaturated lipid 

tails f) mixed and poly-unsaturated lipid tails g) DB by mixed and poly-unsaturated lipid 

tails. 
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Figure A.6 Comparison of simulated thicknesses with experimental data [6-8, 10] of 2DC 

with varied a) temperature b) saturated lipid tail length c) mono-unsaturated lipid tail length, 

DHH with varied d) temperature e) saturated lipid tail length f) mono-unsaturated lipid tail 

length, and g) DB with varied saturated lipid tail length. 

 

 

 

Figure A.7 Overall comparison of simulated and experimental data [6-10] of DHH, shown 

with correlation coefficients and its standard deviation. 
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Figure A.8 The sn-1 SCD with varied head groups of a) DS lipids b) DX lipids c) SA lipids, 

and sn-2 SCD with varied head groups of d) DS lipids e) DX lipids f) SA lipids. The 

simulated C4-C7 averaged SCD with varied saturated lipid tails length g) sn-1 with varied 

temperature h) sn-1 with varied mono-unsaturated lipid tail length. i) sn-1 with mixed and 

poly-unsaturated lipid tails. 

 

 

 

 

 

 

 



142 

 

 

Figure A.9 Comparison of simulated SCD with experimental data. NMR1 [11] and NMR2 

[98] of sn-1 SCD at relatively low temperatures, e.g. a) DLPC at 30 °C and b) DMPC at 

30 °C,  and c) POPC at 30 °C,  and relatively high temperature, e.g. d) DLPC at 50 °C e) 

DMPC at 50 °C  f) POPC at 40 °C.  sn-2 SCD with experimental data at relatively low 

temperatures, e.g. a) DLPC at 30 °C and b) DMPC at 30 °C,  and c) DPPC at 50 °C,  and 

relatively high temperature, e.g. d) DLPC at 50 °C e) DMPC at 50 °C  f) DPPC at 80 °C. 

Both the simulation and experimental data are sorted from C2 to end for sn-1, and C3 to 

end for sn-2. 
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Figure A.10 The number of inter-lipid hydrogen bonds of varied a) tails of saturated lipids 

at 80 °C b) tails of mixed and poly-unsaturated lipids at 40 °C, and the number of intra-

lipid hydrogen bonds of varied c) tails of saturated lipids at 80 °C d) tails of mixed and 

poly-unsaturated lipids at 40 °C. 
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Figure A.11 a) The number of DLPA per cluster and its slope (the change of cluster size 

per Å) as function of cutoff distance b) The probability distribution of distance of DLPA 

head group atoms for lipids involved in hydrogen bonding and K+-lipid interactions 

(considering the K+ and O- within 4 Å) c) The snap shot of the top leaflet of DLPC at 30 °C 

at the end of simulation. The orange and red in licorice represent the phosphate, the blue 

triangle represents N+, the blue sphere indicates the head group forms the cluster, and clear 

sphere indicates the ones that do not form the cluster. d) The schematic plot of clusters of 

DLPC at 30 °C, based on the center of mass of PC head group e) Zoom-in view of a DLPC 

cluster. The black dot lines indicate the possible electrostatic interactions. 
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Figure A.12 The C22-C32 orientation correlation time τ2 of poly-unsaturated lipids at 40 °C. 

 

 

 

 

Figure A.13 The comparison of simulated spin-lattice relaxation time T1 to experimental 

data [11]  of a-c) DLPC at 30, 50, 80 °C with varied ωC d) DMPC with ωC = 45.29 MHz 

and e) DPPC with wc = 90.80 MHz at varied temperatures f) T1 of DLPC and DSPC with 

ωC = 90.80 MHz at 80 C. Uncertainty for lower frequencies and temperatures are not shown 

as they are less than the symbol size. 
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Appendix B  

 

Table B.1 The comparison of DLiPC sorted simulated relaxation time T1 (s) to the 

experimental data with hydrogen Larmor frequency 𝜔𝐶=90.80 MHz at 30 °C. 

Index Sim Exp 

1 0.315 ± 0.004 0.272 ± 0.022 

2 0.394 ± 0.004 0.385 ± 0.026 

3 0.534 ± 0.007 0.512 ± 0.037 

4 0.556 ± 0.005 0.593 ± 0.029 

5 0.874 ± 0.008 0.759 ± 0.010 

6 0.973 ± 0.011 0.964 ± 0.011 

7 1.079 ± 0.006 0.964 ± 0.011 

8 1.239 ± 0.014 0.987 ± 0.053 

9 1.460 ± 0.028 1.015 ± 0.019 

10 1.623 ± 0.021 1.687 ± 0.042 

11 2.216 ± 0.021 2.264 ± 0.045 

12 4.052 ± 0.038 4.292 ± 0.404 

  

 

Table B.2 The comparison of DLiPC simulated relaxation time T1 (s) of each carbon 

number to the corresponded original assigned experimental data with hydrogen Larmor 

frequency 𝜔𝐶=90.80 MHz at 30 °C. 

Carbon Sim Exp 

C2 0.315 ± 0.004 0.272 ± 0.022 

C3 0.394 ± 0.004 0.385 ± 0.026 

C4-6 0.534 ± 0.007 0.987 ± 0.053 

C7-8 0.556 ± 0.005 1.015± 0.019 

C9 0.973 ± 0.011 0.964 ± 0.011 

C10 0.877 ± 0.004 -- 

C11 0.874 ± 0.008 0.759 ± 0.010 

C12 1.582 ± 0.008 -- 

C13 1.460 ± 0.028 0.964 ± 0.011 

C14 1.079 ± 0.006 0.593 ± 0.029 

C15 1.239 ± 0.014 0.512 ± 0.037 

C16 1.623 ± 0.021 1.687 ± 0.042 

C17 2.216 ± 0.021 2.264 ± 0.045 

C18 4.052 ± 0.038 4.292 ± 0.404 
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 Table B.3 Number of hydrogen bonds in soybean membranes. 

Type Hypocotyl Root 

Intra-lipid Lipids NHB NHB/lipid Lipids NHB NHB/lipid 

 PLPE 2.170 ± 0.720 0.083 ± 0.001 PLPA 0.330 ± 0.108 0.016 ± 0.001 

 L2PE 1.088 ± 0.333 0.078 ± 0.006 LLPA 0.337 ± 0.119 0.017 ± 0.001 

 LLPE 0.818 ± 0.275 0.082 ± 0.006 PLPE 1.457 ± 0.437 0.073 ± 0.007 

 PLPI 4.636 ± 1.587 0.258 ± 0.01 LLPE 1.426 ± 0.474 0.071 ± 0.001 

 L2PI 1.980 ± 0.654 0.248 ± 0.012 LLPS 0.561 ± 0.197 0.070 ± 0.005 

        PLPI 2.382 ± 0.779 0.238 ± 0.006 

Inter-lipid PLPC 9.621 ± 3.419 0.401 ± 0.028 PLPA 12.489 ± 4.086 0.624 ± 0.013 

 L2PC 17.110 ± 5.573 0.389 ± 0.011 LLPA 12.288 ± 3.933 0.614 ± 0.022 

 PLPE 20.773 ± 6.818 0.799 ± 0.01 PLPC 7.446 ± 2.528 0.338 ± 0.011 

 L2PE 11.598 ± 3.964 0.828 ± 0.039 LLPC 7.051 ± 2.468 0.321 ± 0.017 

 LLPE 8.345 ± 2.828 0.835 ± 0.031 PLPE 18.200 ± 6.149 0.910 ± 0.017 

 PLPI 18.540 ± 6.184 1.030 ± 0.036 LLPE 19.094 ± 6.499 0.955 ± 0.024 

 L2PI 8.660 ± 2.871 1.082 ± 0.013 LLPS 9.222 ± 3.034 1.153 ± 0.024 

 SITO 10.052 ± 3.388 0.239 ± 0.004 PLPI 9.683 ± 3.090 0.968 ± 0.037 

 STIG 3.315 ± 1.116 0.237 ± 0.006 SITO 8.975 ± 2.952 0.236 ± 0.004 

        STIG 4.602 ± 1.525 0.230 ± 0.0002 

Overall PLPC 9.621 ± 3.419 0.401 ± 0.028 PLPA 12.819 ± 4.194 0.640 ± 0.014 

 L2PC 17.110 ± 5.573 0.389 ± 0.011 LLPA 12.625 ± 4.052 0.631 ± 0.023 

 PLPE 22.943 ± 7.538 0.882 ± 0.011 PLPC 7.446 ± 2.528 0.338 ± 0.011 

 L2PE 12.686 ± 4.297 0.906 ± 0.045 LLPC 7.051 ± 2.468 0.321 ± 0.017 

 LLPE 9.163 ± 3.103 0.917 ± 0.037 PLPE 19.657 ± 6.586 0.983 ± 0.024 

 PLPI 23.176 ± 7.771 1.288 ± 0.046 LLPE 20.520 ± 6.973 1.026 ± 0.025 

 L2PI 10.640 ± 3.525 1.330 ± 0.025 LLPS 9.783 ± 3.231 1.223 ± 0.029 

 SITO 10.052 ± 3.388 0.239 ± 0.004 PLPI 12.065 ± 3.869 1.206 ± 0.043 

 STIG 3.315 ± 1.116 0.237 ± 0.006 SITO 8.975 ± 2.952 0.236 ± 0.004 

        STIG 4.602 ± 1.525 0.230 ± 0.0002 
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Table B.4 Clustering fractions of soybean membranes. Yc is the fraction of lipids forming 

the cluster, Xo is the overall composition fraction, and Xc is the average fraction of lipid 

in the cluster. 

Hypocotyl Root 

Lipids Yc Xo Xc Xc-Xo Lipids Yc Xo Xc Xc-Xo 

SITO 0.684 0.210 0.276 0.066 SITO 0.660 0.190 0.236 0.046 

STIG 0.701 0.070 0.095 0.025 STIG 0.644 0.100 0.121 0.021 

PLPC 0.416 0.120 0.096 -0.024 PLPA 0.507 0.100 0.095 -0.01 

PLPE 0.465 0.130 0.117 -0.013 PLPC 0.456 0.110 0.094 -0.02 

PLPI 0.530 0.090 0.092 0.002 PLPE 0.517 0.100 0.097 -0.003 

LLPE 0.522 0.050 0.05 0.000 PLPI 0.514 0.050 0.048 -0.002 

DLiPC 0.407 0.220 0.172 -0.048 LLPA 0.440 0.100 0.083 -0.02 

DLiPE 0.480 0.070 0.065 -0.005 LLPC 0.440 0.110 0.091 -0.02 

DLiPI 0.486 0.040 0.037 -0.003 LLPE 0.507 0.100 0.095 -0.01 

          LLPS 0.524 0.040 0.039 -0.001 
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Figure B.1 Chemical structures of a few exemplary and lipids with the various head group 

and tail types in the two soybean membrane systems. The double bond is shown in red and 

the positions are shown in blue texts. 
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Figure B.2 Surface area per lipid and the accumulative average (Å2) as a function of time 

of the three replicate runs of a-c) SLPC, and d-f) DLiPC. 

 

 

 

Figure B.3 The averaged deuterium order parameter (SCD) of sn-1 chain for a) SLPC and 

b) DLiPC. 
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Figure B.4 Surface area per lipid and the accumulative average (Å2) as a function of time 

of the three replicate runs of a-c) hypocotyl and d-f) root membranes. 

 

 

 

Figure B.5 The SCD of PLPC in hypocotyl and root membrane in a) sn-1 and b) sn-2 chain. 
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Figure B.6 a) The component electron density profiles (EDP) of root membrane, which 

includes choline (Chol), ethanolamine (EolAm), inositol (Inos), serine (Ser), phosphate 

(Phos), glycerol (Gly), carbonyl (Carb), methine (CH), methylene (CH2), methyl (CH3), 

potassium ion (Pot), and water (Wat). b) The group EDP of stigmasterol, which includes 

OH, ring, and tail in hypocotyl and root membrane. 

 

 

 

Figure B.7 Cluster composition of sterols and glycerol phosphate lipids in the root 

membrane.  
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Appendix C  

 

Table C.1 Systems of LacYIM-EX with three protonation states in the explicit membrane.  

Protonation 
# Lipids 

Top./Bot. 

# Regular 

Waters 

# Pore 

Water 

# K+ 

Ions 

# Total 

Atoms 

E269 151/154 19038 91 51 101381 

H322 151/154 19034 96 51 101384 

E325 151/154 19037 88 51 101369 

 

 

 

Table C.2 Molecular dynamics dummy spin-labels (MDDS) simulations [88] resulted 

main peaks of structural averages of spin label mean distances (dON) of all residue pairs of 

LacY compared to Cα distances (dCα) in Å. The different states of structures from the 

simulation are based on pore radii. The standard errors are calculated based on six or ten 

structures of each state. The mismatch of 1 Å for S136/Q340 and N137/Q340 in 6th 

columns and 5th columns are due to round off in the 5th column.  

Structures Inward Occluded Outward Outw. -Inw. Diff. 

Pairs dCα dON dCα dON dCα dON ΔdCα ΔdON 

ΔdON -

ΔdCα 

V105/T310 40±0.8 41±1.4 38±0.4 47±0.8 43±0.6 50±0.7 3 9 6 

I164/T310 32±0.8 37±1.9 30±0.4 37±0.7 30±0.6 40±1.0 -2 2 4 

I164/S375 37±1.1 46±1.1 36±0.4 49±0.4 39±0.7 54±1.0 3 8 5 

R73/S401 45±0.5 49±2.0 43±0.5 53±1.3 35±0.2 42±0.5 -10 -7 3 

R73/Q340 34±0.5 43±1.5 33±0.4 46±0.6 28±0.2 42±0.3 -6 -2 4 

S136/Q340 35±0.7 47±0.7 27±0.3 39±0.3 24±0.3 36±0.4 -10 -11 0 

N137/Q340 32±0.7 36±0.5 28±0.3 33±0.9 23±0.3 26±0.4 -10 -10 -1 

S136/S401 43±0.7 45±1.3 36±0.5 39±1.0 31±0.2 38±0.5 -12 -7 5 

N137/S401 40±0.6 39±1.4 36±0.5 35±1.1 29±0.3 27±0.4 -11 -12 -1 
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Table C.3 All peaks of structurally averaged spin label distances of nine residue pairs of 

LacY (with the bold font indicating the main distance peak) obtained from MDDS 

simulations and DEER data [62] in Å. 

 

 

 

 

 

 

 

 

 

 

Table C.4 The correlation coefficient among the main peaks the structurally averaged 

distance values for nine residue pairs of LacY for Cα-Cα distance (DCα) and MDDS 

interlabel distances (DON), Cα-Cα distance (DCα) and DEER interlabel distances, and 

MDDS (DON) and DEER interlabel distances of inward-facing and outward-facing LacY. 

 

 

 

 

 

  

 MDDS DEER [62] 

Pairs dIW dOW Δd (dOW- dIW) Δd (dOW - dIW) 

V105/T310 41 45  50 4  9     5  14 

I164/T310 37   43    35  40 -3  -8  2  -4 10  14 

I164/S375 46   50    49  54 4  -1  8  3 4  12 

R73/S401 37   43   49 42 5  -1  -7   -21  -16 

R73/Q340 35   49   43 39  42 3  -10  6  -8  -5  -2 -14 

S136/Q340 44   47    33  36 -11  -14  -7 -11 

N137/Q340 36 26 -10       -18 

S136/4S01 45   50   55 38 -7  -13  -17   -4 

N137/S401 33   39    27 -5  -12     -13 

States DCα-DON DCα-DEER DON-DEER 

iw+ow 0.76±0.16 0.76±0.16 0.70±0.18 

iw 0.66±0.19 0.67±0.19 0.70±0.18 

ow 0.89±0.11 0.73±0.17 0.75±0.17 
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Figure C.1 A side view snapshot of three protonated residues in the built LacYIM-EX in the 

explicit membrane system, with E269 (blue), H322 (orange) and E325 (red). The N- and 

C- domain are flipped for a better view of the three residues. 

 

 

 

 

 

 
Figure C.2 The snapshot that shows the movement of the dummy ON spin labels on 

residue V105 and T310 of inward-facing LacY during MDDS simulation. Only 200 out of 

20000 frames are shown for clarity 
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Figure C.3 LacY with E269 protonated, a) inward-facing from equilibrated six time frames 

(ns) from implicit simulation b) occluded from equilibrated six time frames (ns) from 

implicit simulation c) outward-facing LacYIM-EX from equilibrated ten time frames (ns) 

from the explicit simulation. Z in the plot represents the z-coordinate of the axis along the 

bilayer normal. Positive z corresponds to the periplasmic side of Lacy, and negative z 

corresponds to the cytoplasmic side of LacY. 

 

 

 

 

 

Figure C.4 The raw MDDS resulted residue distances of pair V105/T310 on the 

periplasmic side from a) inward-facing b) occluded and c) outward-facing LacY compared 

to DEER data of LacY with binding sugar [62]. The black curve is DEER data of LacY 

with galactosides, the black vertical lines are DEER mean distance peak(s). 
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Figure C.5 a) MDDS resulted paired spin label distance distribution of overall structural 

averaged inward-facing, occluded and outward-facing LacY compared to DEER distance 

distribution main mean peaks [62]. The solid vertical lines are the DEER mean distances 

that are interpreted to be the spin label distances for the inward-facing and outward-facing 

states of LacY. 

 

  



158 

 

 

 

Figure C.6 The top view on the a) periplasmic side and b) cytoplasmic side of LacY that 

show the orientation of spin labels in the averaged mean distance.  

 

 

 

 
Figure C.7 Comparison of distribution of the Cα-ON distances, Cβ-Cα-ON bond angles, 

and N-Cβ-Cα-ON dihedral angles obtained from MDDS simulations in inward-facing(blue), 

occluded (green), and outward-facing states (orange) for residue S136 (a-c) and N137 (d-

f) 
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