
ABSTRACT

Title of dissertation: SEMANTIC-DRIVEN MODELING AND
REASONING FOR ENHANCED SAFETY OF
CYBER-PHYSICAL SYSTEMS

Leonard Petnga, Doctor of Philosophy, 2016

Dissertation directed by: Doctor Mark Austin
Associate Professor, Department of Civil and
Environmental Engineering, and Institute for
Systems Research

This dissertation is concerned with the development of new methodologies

and semantics for model-based systems engineering (MBSE) procedures for the be-

havior modeling of cyber-physical systems (CPS). Our main interest is to enhance

system-level safety through effective reasoning capabilities embedded in procedures

for CPS design. This class of systems is defined by a tight integration of software

and physical processes, the need to satisfy stringent constraints on performance,

safety and a reliance on automation for the management of system functionality.

Our approach employs semantic–driven modeling and reasoning : (1) for the design

of cyber that can understand the physical world and reason with physical quantities,

time and space, (2) to improve synthesis of component-based CPS architectures, and

(3) to prevent under-specification of system requirements (the main cause of safety

failures in software). We investigate and understand metadomains, especially tem-

poral and spatial theories, and the role ontologies play in deriving formal, precise

models of CPS. Description logic-based semantics and metadomain ontologies for

reasoning in CPS and an integrated approach to unify the semantic foundations for

decision making in CPS are covered. The research agenda is driven by Civil Systems

design and operation applications, especially the dilemma zone problem.

Semantic models of time and space supported respectively by Allen’s Tem-

poral Interval Calculus (ATIC) and Region Connectedness Calculus (RCC-8) are

developed and demonstrated thanks to the capabilities of Semantic Web technolo-

gies. A modular, flexible, and reusable reasoning-enabled semantic-based platform

for safety-critical CPS modeling and analysis is developed and demonstrated. The

platform employs formal representations of domains (cyber, physical) and metado-

mains (temporal and spatial) entities using decidable web ontology language (OWL)

formalisms. Decidable fragments of temporal and spatial calculus are found to play

a central role in the development of spatio-temporal algorithms to assure system

safety. They rely on formalized safety metrics developed in the context of cyber-

physical transportation systems and collision avoidance for autonomous systems.

The platform components are integrated together with Whistle, a small scripting

language (under development) able to process complex datatypes including phys-

ical quantities and units. The language also enables the simulation, visualization

and analysis of safety tubes for collision prediction and prevention at signalized and

non-signalized traffic intersections.

Keywords: semantic, model-based systems engineering, description logics, ontol-

ogy, time, space, cyber-physical system.

SEMANTIC-DRIVEN MODELING AND REASONING

FOR ENHANCED SAFETY OF CYBER-PHYSICAL SYSTEMS

by

Leonard Petnga

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Associate Professor Mark Austin, Chair/Advisor
Professor John Baras
Professor Bilal M. Ayyub
Professor Paul Schonfeld
Assistant Professor Huan Xu

c© Copyright by

Leonard Petnga
2016

Acknowledgments

My graduate experience has been one that I will cherish forever, and I owe

my thanks to all the people who have made this dissertation possible. First, I would

like to express my sincere gratitude to my advisor Associate Professor Mark Austin

for supporting my Ph.D studies and related research, for his patience, motivation,

and immense knowledge. He has always made himself available for help and advice

and has always kept his door open to me. Without his extraordinary theoretical

ideas and computational expertise, this thesis would be a distant dream. Also, I

would like to thank Professor John Baras for giving me an invaluable opportunity

to work on challenging and extremely interesting projects in his laboratory. He

has always provided constructive feedback and ideas, and multi-form assistance and

advice that have contributed to the quality of this work while making my humble

person a better researcher. Thank you to Professors Bilal M. Ayyub, Paul Schonfeld,

and Elise Miller-Hooks, and Assistant Professor Huan Xu for serving on my thesis

committee and reviewing the manuscript.

This thesis would have not been possible without financial sponsorship of

the National Institute of Standards and Technology (NIST), and technical exchanges

and discussions with its researchers, especially within the Systems Integration Divi-

sion. Special thanks to Dr Vijay Srinivasan, Allison Barnard Feeney, Conrad Bock,

Frank Riddick, Tina Lee, Peter O. Denno and Carlitta Foster-Hayes. Short-term

funding from the US Naval and Air Systems Command (NAVAIR) and MITRE have

contributed to this work too. Therefore, I thank Dr Huan Xu and Mark Blackburn

ii

for making these opportunities available.

My colleagues at the Systems Engineering and Integration laboratory (SEIL)

have enriched my graduate life in many ways and deserve a special mention. Dr

Shahan Yang provided guidance and help during the early stages of the research.

Parastoo Delgoshaei has contributed with prototype versions of codes – throughout

the struggle, she has been a very loyal, dependable and great friend. Yuchen Zhou

and Jacob Moschler helped with ideas and software support. Analyses performed by

Maria Coehlo provided valuable insights into implications of space ontological com-

mitments on design trade-off. My interactions with Seksun Moryade, James Jones,

Chalida U-tapao, David Daily, Mehdi Dadfarnia, Ben Abeye, Nefretiti Nassar, Ron

(Carina) Wang and Mamadou Faye have been very fruitful.

I would also like to acknowledge help and support of staff members at the

Institute for systems Research (ISR) and at the Department of Civil and Environ-

mental Engineering (CEE). Kimberly Edwards, Alexis Jenkins, Heather Stewart,

Kerri Poppler James and Carla Scarbor’s administrative help is highly appreciated.

Thank you to Gwen Flasinski for computer support.

My housemates at my various places of residence have been a crucial factor in

the smooth completion of this dissertation. Special thanks and gratitude to Marcus

Williams and Derek Veil for reviewing countless manuscripts and Sonia Donaldson

for her friendship. I would also like to thank Diane, Henrietta, Chantelle, Candace,

Yaa, Isabelle, Sonia, Dominique, Nelie & Christian, Serge, Valerie & Noel, Liz &

Olivier, Rosine & Emmanuel, Paul, Youssoufa and Gustave for their kindness and

iii

words of support.

I owe my deepest thanks to my family who have always stood by me, guided

me, and pulled me through impossible odds at times. I particularly thank my par-

ents, siblings, and extended family in Cameroon, USA, France, Senegal, Equatorial

Guinea and Canada. Special thanks to Za’a Made, Lili, Ariane & Ange, Malili &

Allen, Sandrine & Gaeten, Sosso & Jackson, Mami J. & Max, Solange & Jacques,

Gaby, Bruno, Aurelie & Alain for always cheering and encouraging me even during

the most difficult moments of this research. I cannot list all of your names here, but

be assured you have a special place in my heart. Words cannot express the gratitude

I owe each and everyone of you.

It is impossible to remember and name all, and I apologize to those I’ve

inadvertently left out. Lastly, thank you all and thank God!

iv

Table of Contents

List of Figures ix

1 Introduction 1
1.1 Problem Statement and Contributions 1

1.1.1 Cyber-Physical System Components and Architectures 3
1.1.2 Key Characteristics of CPS Component Interactions 5
1.1.3 Contributions of this Dissertation 6

1.2 Challenges in Cyber-Physical Design and Operation 8
1.2.1 Physical-Domain Behavior versus Cyber- Domain Behavior . . 8
1.2.2 Safety of Cyber-Physical Systems 10

1.3 State-of-the-Art Model-based Systems Engineering 12
1.3.1 Multi-Level Approach Model-Based System Design 14
1.3.2 Pathway of System Development 15

1.4 Limitations of MBSE for CPS Design 18
1.4.1 Lack of Supportive Integration Science 18
1.4.2 Deep but Fragmented Theories 21
1.4.3 Limited Language and Domain Modeling Semantic Capabilities 22

1.5 Research Questions and Hypothesis 23
1.6 Research Scope and Objectives . 25
1.7 Dissertation Outline . 29

2 Semantic Web: Theory, Models, Languages and Tools 30
2.1 Introduction to Semantic Web . 30

2.1.1 Semantic Web Vision . 30
2.1.2 Technical Infrastructure . 31

2.2 Description Logics (Semantics and Ontologies for Reasoning) 32
2.2.1 Knowledge Representation Formalisms 32
2.2.2 Description Logics Semantics 34
2.2.3 Ontologies and Ontological Languages 39

2.3 Semantic Extensions and Support for Web-Based Reasoning 41
2.3.1 Description Logics Extensions for the Web Ontology Language 41
2.3.2 Reasoning Support for SROIQ - based Ontologies 43

v

2.4 Working with Semantic Web Technologies 44
2.4.1 Low-Level Technologies (IRI and UNICODE) 44
2.4.2 Extensible Markup Language (XML) 44
2.4.3 Resource Description Framework (RDF) 45
2.4.4 The Web Ontology Language (OWL) 47

2.5 Working with Jena and Jena Rules 49
2.5.1 Jena . 50
2.5.2 Jena Rules . 50

2.6 Case Study: Semantic Modeling of Family Dynamics 51
2.6.1 Family Ontology and Graph (Jena) 51
2.6.2 Event-Driven Graph Transformations (Jena Rules) 54

3 Semantic Modeling of Time 55
3.1 Introduction . 55
3.2 Models and Properties of Time . 56

3.2.1 Discrete versus Dense Time 56
3.2.2 Time Instants and Intervals 58
3.2.3 Qualitative Descriptions of Time 58
3.2.4 Precedence Relations . 60

3.3 Ontological Descriptions of Time . 61
3.3.1 Temporal Theories and Calculus 61
3.3.2 Specifications of Time . 63
3.3.3 Allen’s Temporal Intervals Calculus 65
3.3.4 Comparison of Leading Ontologies of Time 67

3.4 Temporal Reasoning and Rules . 73
3.4.1 Temporal Logic . 73
3.4.2 Jena Rules for Temporal Reasoning 74

3.5 Case Study: Temporal Modeling and Reasoning in Action 75
3.5.1 The Time Ontology . 75
3.5.2 Semantic Graph Transformations 76

4 Semantic Modeling of Space 81
4.1 Introduction . 81
4.2 Space and Spatio-Temporal Theories 82

4.2.1 Spatial Theories and Calculus 82
4.2.2 Spatio-Temporal Theories . 86

4.3 Ontological Descriptions of Space . 88
4.3.1 Ontologies of Space . 88
4.3.2 Classes of Spatial Ontologies 89

4.4 Multi-Scale Spatial Modeling and Reasoning 91
4.4.1 Space Matters: Need for Formal Models of Space for CPS . . 91
4.4.2 Qualified Theory: Region Connectedness Calculus 93
4.4.3 Spatial Modeling Architecture and Description 95

4.5 Working with the Java Topology Suite (JTS) 99
4.6 Case Study: Spatial Modeling and Reasoning in Action 102

vi

4.6.1 Case Study Description . 102
4.6.2 Spatial Ontology and Rules 104
4.6.3 Spatial Reasoning . 106

5 Framework for Ontological Modeling and Decision Support 110
5.1 Introduction . 110
5.2 CPS Knowledge Modeling and Ontologies 111

5.2.1 Requirements on CPS Models for Decision Making 111
5.2.2 Tackling Semantic and Safety Challenges 114

5.3 Framework for Modeling CPS Knowledge and Reasoning Support . . 115
5.3.1 High Level Architecture . 115
5.3.2 Overview of the Framework 117
5.3.3 From Data to Knowledge: DSOs & Semantics 120
5.3.4 From Knowledge to Model: System Integration 122
5.3.5 Reasoning for Decision Support 125
5.3.6 Dimensional Reduction for Decision Making in CPS 127

5.4 Case Study: A Reasoning Framework for Traffic System Safety 137
5.4.1 Problem Description and Analysis 137
5.4.2 Jena Modeling of the Traffic System: System Architecture . . 143
5.4.3 Domains Layer: Light, Car and Time Semantic Blocks 143
5.4.4 Semantics Support Layer: Handling of Physical Quantities . . 145
5.4.5 Integration Layer: Integrator and System Level Reasoning . . 146
5.4.6 Application Layer: Instantiation and Testing 149

6 Cyber-Physical Transportation Systems: Safety Metrics, Tubes and Analyses151
6.1 Introduction . 151
6.2 Systems Integration and Simulation with Whistle 153

6.2.1 Whistle Scripting Language 153
6.2.2 Systems Integration with Whistle 156

6.3 Safe CPTS: Metrics for Characterizing the Dilemma Zone Problem . 158
6.3.1 Cyber-Physicality of Traffic Systems 158
6.3.2 Metrics for Characterizing the Dilemma Zone Problem 160

6.4 System Architecture and Implementation 165
6.4.1 System Architecture . 165
6.4.2 Simulation Prototype . 169

6.5 Safety Analyses . 176
6.5.1 Single Factor Safety Analysis 177
6.5.2 Set (pair) Factor Safety Analysis 182
6.5.3 Beyond Predefined Configurations and Pair Factors 184

6.6 Discussion . 185

7 Metrics and Spatio-Temporal Algorithms for Safety-Critical CPS 187
7.1 Introduction . 187
7.2 Types of Collision . 188
7.3 Tubes and Metrics for Dynamic Entities on Away Collision Course . . 189

vii

7.3.1 Objectives and Modeling Assumptions 189
7.3.2 Local and Global Lane Safety 191
7.3.3 Local Lanes Safety Formulas for Away Collision 194
7.3.4 Local Lanes Safety Metrics for Away Collision 204

7.4 Collision Avoidance Strategies and Algorithms 210
7.4.1 Generic Collision Avoidance Process 210
7.4.2 Away, Glancing and Clipping Collision Avoidance Algorithms 212

7.5 Case Study: Glancing Collision at Non-signalized Intersection 224
7.5.1 Overview of the case study . 224
7.5.2 Spatio-temporal reasoning for glancing collision avoidance . . 225
7.5.3 Impact of space ontological commitment on safety decisions . 230

8 Conclusion and Future Work 232
8.1 Conclusions . 232

8.1.1 Summary of Work . 232
8.1.2 Answers to Research Questions 233

8.2 Future Work . 235
8.2.1 Ontological and Multi-level Integrated Control 236
8.2.2 Temporal and Spatial Reasoning with Uncertainties 237
8.2.3 Whistle Platform Development 237
8.2.4 Safe Airport Taxiway System 238

Appendices 241

A Description Logics and ALC Extension 241
A.1 Basic description logics . 241
A.2 The ALC description logics . 242

B DL extensions for OWL2 246

C Reasoning services for SROIQ - based ontologies 250

D Multi-dimensional Spatial Representation Functions for Safety-Critical CPS254
D.1 Assumptions and Foundations . 254
D.2 Interaction Functions . 256
D.3 Component Capability Functions . 259

Bibliography 260

viii

List of Figures

1.1 Behavior of self-driving automobiles at a busy traffic intersection . . . 2
1.2 Schematic of a CPS (Adapted from [157]). 4
1.3 Challenges in cyber-physical system design and operation. 9
1.4 Schematics for two cars that must safely cross an intersection 11
1.5 Airport Taxiway Modeling . 13
1.6 Multi-level approach model-based systems engineering. 14
1.7 Pathway from operations concept to simplified models of systems . . 16
1.8 Complexity and challenges in CPS Modeling (Adapted from [262]). . 20
1.9 System requirements and formalisms for CPS models 26
1.10 Framework for implementation of semantic-enabled simulation of CPS 27

2.1 Semantic Web technology stack. 31
2.2 Illustrations of leading knowledge representation formalisms. 35
2.3 Illustrations of foundational DL reasoning algorithms. 39
2.4 Description Logics formalism extensions for OWL 42
2.5 Example of RDF triple . 45
2.6 An RDF graph of relationships important to Spiderman. 46
2.7 The making of the web ontology language (OWL) 48
2.8 Example of a formal definition of a “great researcher” in OWL. . . . 49
2.9 Simplified framework for modeling with ontologies and rules. 52

3.1 Schematic of discrete and dense time models. 57
3.2 Definition of instant, interval and temporal entity in OWL-Time. . . 64
3.3 Allen’s temporal intervals . 66
3.4 Taxonomy of temporal features . 69
3.5 Comparison of leading ontologies of time 72
3.6 Schematic for linear (left) and branching (right) temporal logic. . . . 73
3.7 Semantic-driven modeling and reasoning in the temporal domain . . . 77
3.8 Excerpt of statements relative to the time interval tXB 79

4.1 Taxonomy concerning physical in SUMO [31] 90
4.2 Relationships between spatial entities in Region Connection Calculus 93
4.3 Spatial models hierarchy and representations. 96

ix

4.4 Spatial modeling and reasoning support for race track simulation . . . 96
4.5 An annotated view of Java Topology Suite Test Builder User interface 100
4.6 Simple spatio-temporal reasoning examples 103
4.7 Illustration of a simplified ontology of space and sample literal rules . 104
4.8 Ontological class Region and statements relative to space s1 107
4.9 Physical and semantic model views of simulation of safety constraints 108

5.1 Framework for semantic-driven model-based development process for CPS118
5.2 Architecture of the CPS-KMoDS . 119
5.3 Proposed flow chart for development of the CPS-KMoDS framework. 124
5.4 Summary illustrations of dimensional analysis procedures. 130
5.5 Mapping between the physical (X) and dimensionless (Π) spaces . . . 136
5.6 Dilemma zone problem and corresponding simplified decision tree . . 138
5.7 Framework for decision-making for the DZ Problem 140
5.8 Decision tree for a human-driven car for the yellow light 142
5.9 Time reasoning engine semantic block and its implementation. 144
5.10 Construction mechanism of the traffic system integrator ontology . . 147
5.11 Reconfiguration of the light to get the car out of an unsafe region. . . 149

6.1 Visualization of Open Street Map data in Whistle 154
6.2 Composite class diagram. 155
6.3 Implementation of MVC pattern with the control as a mediator . . . 155
6.4 Simulation architecture for spatio-temporal reasoning. 157
6.5 Dilemma tubes in the dimensionless (∆) space. 164
6.6 Dilemma tubes simulation system architecture 166
6.7 Schematic of system inputs and outputs 170
6.8 Parameters-based single factor safety profiles. 177
6.9 Parameters-based safety templates and indexes. 181

7.1 Types of collision. 187
7.2 Behavior of a single vehicle as a Hybrid system. 191
7.3 Behavior of leader and follower vehicles as Hybrid systems. 192
7.4 3D coordinates representation and illustrative orientation 195
7.5 Safety tubes for local away collision control 208
7.6 Collision configurations for spatio-temporal algorithms 223
7.7 Intersection model as an irregular space block in XML. 226
7.8 Communication and control for spatio-temporal reasoning 227
7.9 Space-time trajectory for two vehicles on a glancing collision course. . 229

8.1 Real-time simulation and safety validation of taxiway operations. . . 239

A.1 Architecture of a knowledge representation system based on DLs . . . 243
A.2 Summary of description logic concepts constructors ([29]). 244

D.1 Structural decomposition of the system. 257
D.2 Spatial representation and corresponding spatial functions. 257

x

D.3 Interaction Functions Definition . 258

xi

List of Abbreviations

AI Artificial Intelligence
ALC Attribute Language Concepts
API Application Programming Interface
ARQ Automatic Repeat Query
ASDE-X Airport Surface Detection Equipment
ATIC Allen’s Temporal Interval Calculus
BFO Basic Formal Ontology
BWI Baltimore-Washington International (airport)
CAD Computer-Aided Design
CAE Computer-Aided Engineering
CEM Composite Entity Model
CPS Cyber-Physical Systems
CPS-KMoDS Knowledge Modeling and Decision Support framework for CPS
CPTS Cyber-Physical Transportation System
CYCORD CYClic ORDder
DA Dimensional Analysis
DAE Differential Algebraic Equations
DAML DARPA Agent Modeling Language
DARPA Defense Advanced Research Projects Agency
DL Description Logics
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DSKB Domain-Specific Knowledge Base
DSO Domain-Specific Ontologies
DZ Dilemma Zone
EFTP Extended Fuzzy-Timing Petri net
ET Eastern Time
EEM Extended Entity Model
FAA Federal Aviation Administration
FEA Finite Element Analysis
FOL First Order Logic
FSM Finite State Machine
FSTPA Formal System Theoretic Process Analysis
GIS Geographic Information System
GML Geographical Markup Language
GUI Graphical User Interfaces
HPSG Head-Driven Phrase Structure Grammar
IM Intersection Manager
ISO International Organization of Standardization
IRI Internationalized Resource identifiers
JFMI Java-based Functional Mock-up Interface
JTS Java Topology Suite
JUMP Java-based Unified Mapping Platform
LAN Local Area Network
MBSE Model-Based Systems Engineering

xii

MMTS Metamodeling Technical Space
MoC Models of Computation
MoE Measure of Effectiveness
MPC Model Predictive Control
MVC Model- View-Controller
NMPC Nonlinear Model Predictive Control
ODE Ordinary Differential Equation
OGC Open Geospatial Consortium
OIL Ontology Inference Layer
OOD Object Oriented Design
OSM Open Street Map
OTS Ontological Technical Space
OWL Web Ontology Language
PM Primitive Model
PHYSYS PHYsical SYStem
QHP Quantified Hybrid Programs
RACER Renamed ABox and Concept Expression Reasoner
RCC Region Connectedness Calculus
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RDQL RDF Query Language
ROW Right Of Way
SQL Structured Query Language
SPARQL Simple Protocol and RDF Query Language
STPA System Theoretic Process Analysis
STT Spatio-Temporal Trajectory
SUMO Suggested Upper Merged Ontology
SUV Suburban Utility Vehicle
SysML System Modeling Language
TE Temporal Elements
TF Temporal Features
TM Temporal Measures
TP Temporal Properties
TR Temporal Relations
TS Temporal Structures
UAV Unmanned Aerial Vehicle
UML Unified Modeling Language
U.S. United States
V2I Vehicle To Infrastructure
V2V Vehicle To Vehicle
W3C World Wide Web Consortium
WWW World Wide Web
XML Extensible Mark-up Language

xiii

Chapter 1: Introduction

1.1 Problem Statement and Contributions

Cyber-physical systems (CPS) are systems in which network of computa-

tional and physical elements are seamlessly integrated and tightly coupled. The

general idea of cyber-physical systems is that ...

... embedded computers and networks will monitor and con-

trol the physical processes, usually with feedback loops where

computation affects physical processes, and vice versa.

Cyber-physical systems are now possible due to remarkable advances in sensing,

computing, communications, and material technologies over the past few decades.

The basic design requirement is that software and communications technologies will

work together to deliver functionality that is correct and works with no errors.

Looking ahead, not only is CPS is expected to find its way into a multitude of

industries, from buildings (e.g., energy efficient buildings) to automotive (e.g., self-

driving cars) through health care (e.g., smart heart implant) and manufacturing

(e.g., self-organized production lines), but in many cases, CPS capabilities will allow

for completely new kinds of engineering design [75, 194, 195, 218, 246, 285]. Figure

1

Figure 1.1: Behavior of self-driving automobiles at a busy traffic inter-
section – stop signs and traffic lights are replaced by mechanisms for
vehicle-to-vehicle communication (Adapted from http:citylab.com)

1.1 shows, for example, the behavior of self-driving automobiles at a busy traffic

intersection. Notice that the traffic lights are gone! Safety is achieved through

the use of vehicle-to-vehicle communication, sensing (e.g., combinations of LiDAR,

radar and GPS), and sophisticated algorithms and software for collision avoidance

instead of stop signs and traffic lights.

Because CPS has the potential to fundamentally change the way in which we

interact with the physical world [74,204,205], governmental entities and researchers

have positioned it as the next technological revolution that will equal (and possibly

surpass) the Internet. As this time, however, the realization of these opportunities

is hindered by the lack of a foundational science and techniques for modeling CPS

[191, 284].

2

1.1.1 Cyber-Physical System Components and Architectures

An examination of CPS application domains reveals components that span

multiple physics and engineering domains, operate across multiple time scales, and

have dynamics that are sometimes affected by human-in-the-loop interactions. Thus,

we can categorize CPS components as follows [262]:

a) Cyber components. These are computation, control and communication plat-

forms, each implementing some specific system function. Given their software

(or cyber) nature, these components need a physical (or hardware) platform

to run the corresponding program, to support communication among cyber

components and with the surrounding environment.

b) Physical components. They act as facilitators for physical interactions as well as

implementation of functional specifications for the system. Generally speak-

ing, physical component complexity increases when components cover multiple

engineering domains, and when components embed computational capability.

Examples of the latter include on-board computers in automobiles, unmanned

aerial vehicles (UAV), smart sensors in bridges, and smart medical implants.

Figure 1.2 shows the network structure and components in a prototypical CPS ap-

plication. The system is made of four integrated and networked platforms with

a physical plant. A network (wireless in this case) allows the various platforms to

communicate with each others. This network could be as small as a Local Area Net-

work(LAN) or as big as the Internet. Some of the links between the platforms are

3

Figure 1.2: Schematic of a CPS (Adapted from [157]).

direct and would not go through the wireless network. One of the platforms (#4) is

embedded in the physical plant which interacts with the cyber world through phys-

ical interfaces. Each platform is made of all or some of the following components.

i) Computation module. Computation modules process plant data collected by

sensors and/or output from other platforms. System architectures may impose

dependency relationships among computation modules, independently on their

location. For our illustrative example (see Figure 1.2), this capability allows

physical processes occurring in the plant to affect or modify computations in

platform #2 using both the embedded platform (#4) and the wireless network

4

to communicate with platform #2.

ii) Sensors. Sensors collect plant data (physical measurements) and pass them

to the computation module for further processing. For example, sensors are

illustrated on platforms #1 and #4. They usually operate as a node in a

sensor network architecture.

iii) Actuators. They intervene in the feedback control loop of the plant to control

mechanisms or processes according to the system specifications. Platform #3

illustrates one of them.

iv) Interfaces. Network interfaces allow for the flow of data between platforms

directly or through a network. Physical interfaces allow for plant and platform

connectivity. In Figure 1.2, all platforms are equipped with both types of

interfaces except for platform #2, which has only network interfaces.

1.1.2 Key Characteristics of CPS Component Interactions

The aforementioned description seems typical of modern software intensive

systems. However, what sets CPS apart is the nature of the interaction between

its components and their configuration. Especially, we can distinguish the following

three characteristics.

1) Two-way interactions between the cyber and physical subsystems. As illustrated

in Figure 1.2, CPSs go beyond sophisticated embedded systems with master-

slave relationships to achieve cooperative, seamless, fully synergistic integra-

5

tion of the cyber and physical worlds [157, 189].

2) Distributed system components. CPS design deals with a multiplicity of physics

and distributed components with concurrent behaviors [66, 158, 262]. The

distribution of components can span a network as small as a local area network

(LAN) or as big as the Internet. Some of the links between the platforms would

not go through the wireless network.

3) Embedded computational platforms. With the current trend of increasing com-

plexity of engineering systems, physical components could have some em-

bedded computational capabilities. On-board computer in automobiles, Un-

manned Aerial Vehicles (UAV), smart sensors in bridges and smart medical

implants are some illustrations. This capability allows the effective feedback

and communication between the physical and the cyber [189].

1.1.3 Contributions of this Dissertation

During the past four years the author has conducted research in ontological

models and systems for safety-critical CPS and related problems. The scope of work

has included: model-based design and formal verification processes for automated

waterway system operations [213], ontological frameworks for knowledge modeling

and decision support in cyber-physical systems [212], safe traffic intersections [211],

connected-vehicle systems [206], security of unmanned aerial vehicles [214], spatial

ontologies and models for safety-critical CPS [210], semantic platforms for CPS [209],

ontologies of time and time-based reasoning [207].

6

The contributions of this thesis are documented in conference and journal publica-

tions [206–214], and can be summarized as follows:

Contribution 1: Temporal and Spatial Semantics for Decidable Reasoning in CPS.

Procedures for semantic modeling of Time and Space are investigated and demon-

strated. Allen’s temporal interval and calculus were found to be the most qualified

theory for the ontological description of this meatadomain in the context of CPS

design. Similarly, the region connectedness calculus (RCC-8) has been qualified

as spatial theory for CPS design. A corresponding compliant multi-scale spatial

modeling was introduced and described.

Contribution 2: Semantic-based Platform for Safety-critical CPS Modeling and

Study. A novel ontological-based knowledge and reasoning framework for decision

support for CPS(CPS-KMoDS) was developed and described. The framework relies

on OWL as ontological language and enables ontological description and integration

of (application) domains, time and space as metadomains. Resulting models are

determinate, executable and support physical quantities.

Contribution 3: Safety Metrics, Algorithms and Analysis Methods for Safety-

critical CPS. We have developed, simulated and analyzed safety metrics that cap-

ture the essence of the interactions between entities as per safety theoretic analysis

approaches. This was rendered possible thanks to lessons learned from dimension

analysis. Types of collisions were investigated and corresponding avoidance strate-

gies for away, glancing and clipping collisions were described. Collision avoidance

algorithms, that effectively predict and resolve spatio-temporal conflicts in the cy-

7

ber world before they occur in the physical one, were developed and the impacts of

spatial ontological commitment on decision making were investigated.

Contribution 4: Java Library for spatio-temporal modeling and reasoning. We

have developed a library of software components for capturing and representing

spatial and temporal knowledge and performing inference involving both metado-

mains. The library contains semantic (i.e., in the form of ontologies) and physical

(i.e., for space) representations of the domains along with rules that enforce quali-

fied theories in the respective domains. The open source Java Topology Suite (JTS)

provides support in the form of high quality software for two-dimensional geometric

representations of spatial entities.

1.2 Challenges in Cyber-Physical Design and Operation

1.2.1 Physical-Domain Behavior versus Cyber- Domain Behavior

Figure 1.3 provides a ten-to-twenty year perspective on cyber-physical sys-

tems design and operation.

A key challenge stems from the diversity of mathematical abstractions that

are needed to describe behavior and failure across the physical and cyber domains.

On the physical side of the problem, behavior tends to be continuous and, for the

most part, can be expressed as the solution to ordinary and partial differential

equations. Uncertainties can be managed through the use of reliability analysis and

design safety factors. Usually, a physical system will provide some kind of warning

8

Physics from multiple domains.

Physical DomainCyber Domain

push

push

Stringent requirements on timing

Dominated by logic

C−P Behavior

Heterogeneous implementations
Networks of computation
Executable code
Cyber capability in every physical component.

C−P Structure

C−P Requirements

Behavior must be robust to unexpected conditions.

Spatial and network abstractions
−− physical spaces
−− physical and social networks.
−− networks of networks

Sensors and actuators.

C−P system must be adaptable to sub−system level failures.

Needs to be fault tolerant

Control, communications

Multiple spatial− and temporal− resolutions.
Not entirely predictable.
Combined logic and differential equations.

Figure 1.3: Challenges in cyber-physical system design and operation.

– excessive displacements, cracking, heating, wear-out – if it is going to fail. Minor

physical system behaviors are often localized. In contrast, the cyber side of the

problem is dominated by computational systems that are discrete and inherently

logical, with success tied to notions of correctness of functionality and timeliness

of computation. If a computational strategy is logically incorrect, then “saying it

louder” will not fix anything. Perhaps the most vexing aspect of computational

systems design is that a small logical error can result in system-level failures that

are very costly and, sometimes, even catastrophic. Solutions to this problem are

complicated by the ease with which software development can begin before we have

a full understanding of the system’s purpose. As such, software-related accidents

are usually caused by flawed requirements (and not standard wear-out failures),

9

erroneous assumptions about the operation of a control/computer system [171], and

unsafe interactions among the system components and/or models of a process are

inconsistent with the real state of the process and a controller provides unsafe control

actions [163].

1.2.2 Safety of Cyber-Physical Systems

In order for a CPS to be safe, it must be able to adapt to both internal

and environmental changes while maintaining data integrity and robustness. When

system behaviors are uncertain and/or concurrent solutions to this problem are par-

ticularly vexing – the problem is so difficult that present-day modeling and design

techniques are clearly inadequate [284]. A review of major accidents in modern

engineering history highlights the shortfall of traditional safety analysis approaches

and techniques to addressing safety in the design of modern engineering systems.

Event chain models such as Heinrich’s Domino Model [232] (or its Swiss Cheese

Model [224] variant) are built on the premises that accidents are caused by direct,

linear chains of events and often time point finger at human errors as partial [223]

or sole cause [54] of accidents. Probabilistic risk models [200] were introduced to

account for uncertainties that may arise in the chain of events with the side ef-

fect of explaining accidents as one in a billion occurrence assimilated to “simple

coincidences” [175]. Despite being meticulously implemented, these state-of-the-

art procedures have failed to stop or prevent catastrophes such as the loss of the

Mars polar lander [136] or the Columbia space shuttle [249]. They also haven’t

10

Figure 1.4: Collage of schematics for two cars that must safely traverse a traffic
intersection (Adapted from [291]).

been able to prevent serious incidents such as the power-outage across Northeast-

ern U.S. and Southeastern Canada in 2003 [181], or the emergency shutdown of

the Hatch Nuclear Power Plant five years later, in 2008 [141]. Thus, safety re-

searchers have been investigating approaches that account for the increasing central

role software plays in managing system functionality and, unfortunately, in causing

accidents [152,161,288]. Extensions of the McCalls software quality model [260] and

system-theoretic models [160, 162] are such approaches.

In spatially distributed systems, safety challenges are often materialized in

the form of risks of collision. Collision between dynamic entities is a permanent

concern and has led researchers to investigate and develop strategies, algorithms

11

and systems to avoid collisions [122, 168, 266]. Figure 1.4 shows, for example, a

series of schematics for two cars that need to safely traverse a traffic intersection.

As indicated in the top left-hand schematic, one car wishes to go straight ahead;

the second car wishes to make a left-hand turn. From a safely perspective, the key

point to note is that the intersection space is a shared resource, which at all times

can occupy at most one car. The scheduling of the car operations to avoid accidents

can be viewed as the design of trajectories in space and time which must remain

separated. See the lower right-hand schematic of Figure 1.4. Figure 1.5 illustrates

the same ideas in the context of safe taxiing at airports.

1.3 State-of-the-Art Model-based Systems Engineering

The central tenet of model-based systems engineering (MBSE) is that sys-

tems should be designed and managed through the use of models [178, 193], as

opposed to documents. MBSE procedures are driven by a need to achieve high lev-

els of productivity in system development, and lead to design solutions that provide:

(1) Bang for the buck – minimal mechanism; maximal function (i.e., a good, balance

of functionality, performance and economics), (2) Reliable operation in a wide range

of environments, and (3) Ease of accommodation for future technical improvements.

Established practice is to deal with design complexity through separation

of concerns and development along disciplinary lines, followed by procedures for

systems integration and validation and verification. While this approach eases work

organization, design solutions tend to have loosely coupled system architectures that

12

Figure 1.5: Airport Taxiway Modeling

13

are limited in levels of achievable performance. Increases in system size and com-

plexity drive the need for: (1) disciplined approaches to system design that involve

the application of decomposition, composition, abstraction and use of semi-formal

and formal analysis [23, 25, 134, 184], and (2) modeling formalisms that capture

cause-and-effect relationships between designer concerns (e.g., correctness of system

functionality; adequacy of performance; assurance of safety) and problem solutions.

1.3.1 Multi-Level Approach Model-Based System Design

In a step toward addressing these concerns, Mosteller and co-workers [184]

describe a multi-level approach to model-based system design having an intricate

combination of mechanisms, as shown in Figure 1.6.

System Analysis

B
ot

to
m

−
up

 c
om

po
si

tio
n

Transformation

Semi−formal

System Design

Analysis

Design

T
op

−
do

w
n

de
co

m
po

si
tio

n

Formal
Analysis

Detailed Simulation

Goals / Scenarios UML / SysML

Validation and VerificationDesign Space Exploration

Trade−off Analysis

Figure 1.6: Multi-level approach model-based systems engineering. Semi-formal
models provide a high-level view of the complete system (efficiency). Formal models
provide a detailed view of the actual system (accuracy) [184].

The pyramid structure partitions the development effort into four interre-

lated blocks organized into two levels. The top level contains semi-formal models

14

capturing ideas (goal/scenarios) and preliminary designs represented in graphical

languages such as the Unified Modeling Language (UML) and the System Model-

ing Language (SysML) [85, 271]. Together, goals and scenarios analysis and use of

UML/SysML provide the designer with “big picture” summary of the system under

development and highlight the major components, their connectivity, and perfor-

mance. Representations for preliminary/tentative design need to be based on semi-

formal models (e.g, UML and SysML) that have a fixed syntax and semantics and,

thus, can be used to communicate ideas among the participating disciplines [85,271].

The lower level comprises models built from formal languages having precisely de-

fined semantics. These models provide computational support for: (1) Detailed

simulation of system behavior to assess achievable levels of performance, (2) Veri-

fication of correctness of functionality, particularly in the system control, and (3)

Systematic design space exploration. Together the combination of high- and low-

level representations work to prevent serious flaws in design direction, and to provide

deep insight into the system behavior and functionality through formal analyses.

1.3.2 Pathway of System Development

Figure 1.7 shows the pathway from an operations concept to simplified mod-

els for behavior and structure, requirements, system-level design and model checking.

The first important task is to develop a functional description for what the

system will do? Since a system does not actually exist at this point, these aspects

of the problem description will be written as design requirements and mathematical

15

Revise Use Cases and

Activity Diagrams

Sequences of tasks

between ohjects.
Sequence of messages

Models of System Behavior
and System Structure.

Req 1.

Req 2.

High−Level Requirements.

Design Space Exploration Model Checking

Detailed SimulationTrade−off Analysis
Constraints

Scenarios

and Scenarios

−− scenario 4
−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence Diagrams

Individual Use Cases

Figure 1.7: Pathway from operations concept to simplified models for behavior and
structure, to requirements, system-level design and model checking.

constraints. It is important to note that while use cases and textual scenarios are

neither requirements nor functional specifications, they imply requirements, objects,

and object interactions and interfaces in the stories they tell. As a case in point,

when use cases are associated with a specific class (in the system), working scenar-

ios are, in essence, an invocation of the operations in the class. Some use cases will

correspond to only a single operation. Others will involve a set of operations, usu-

ally occurring in a well-defined sequence. Further design requirements/constraints

will be obtained from the structure and communication of objects in the models for

system functionality (e.g., required system interfaces). Models of behavior specify

what the system will actually do; often they can be represented as networks and

hierarchies of tasks, functions and processes. Models of structure specify how the

16

system will accomplish its purpose. The system structure corresponds to collections

of interconnected objects and subsystems, constrained by the environment within

which the system must exist. The nature of each object/subsystem will be cap-

tured by its attributes, such as the physical structure of the design, environmental

elements that will interact with the system, and the system inputs and system out-

puts. System-level design is created by mapping fragments of system functionality

onto specific subsystems/objects in the system structure. Thus, the behavior-to-

structure mapping defines in a symbolic way the functional responsibility of each

subsystem/component. In the system evaluation, performance and characteristics

of the system-level design are evaluated against the test requirements.

The heavy arrows in Figure 1.7 show pathways of traceability and itera-

tions of refinement within the model-based development. Engineers should be able

to look at a requirement and understand: (1) the goals and scenarios from which

the requirements emanated, and (2) the ways in which the requirement has been

satisfied in the system implementation. Pathways to requirement verification can

involve a multitude of analytical procedures involving (continuous system) simu-

lation for performance assessment, and formal approaches to analysis of (discrete)

control actions for verification of correctness of system functionality. Usually, sev-

eral iterations of development will be needed to modify the system behavior, system

structure, perhaps even the original operations concept, and achieve a design that

satisfies all of the system-level requirements.

17

1.4 Limitations of MBSE for CPS Design

1.4.1 Lack of Supportive Integration Science

Despite all of the advances that have been made in model-based systems

engineering over the past few decades, the fact remains that today we do not have

a mature science to support systems engineering of high-confidence cyber-physical

systems assembled from subsystems spanning a multiplicity of domains. In order

for cyber-physical design procedures to proceed in a rational way we need:

1. Mechanisms to easily combine abstractions from multiple physics (e.g., electri-

cal, mechanical, chemical, biological) and field equations (solids, fluids, heat,

electromagnetics, chemistry) into sets of coupled equations that model the

system. Components may be discrete (as in rigid body elements, control ac-

tuation elements, software logic), or continuous.

2. Mechanisms for system assembly that will anticipate and deal with subsystem

interactions, while also minimizing undesirable side effects and emergent be-

haviors. In other words, we ought to be able to compose CPS models from

simpler well-defined systems.

3. A consistent treatment of time and space across multiple scales. This may

leads to multiple models of the same field, which coexist in space and time.

Examples of this class of problems occur in computational micro-mechanics

and in fluid turbulence.

18

4. Mechanisms to understand how fault tolerance, security, decentralized control,

and the social aspects of these systems influence design.

5. Methodologies and tools to conduct design-space exploration and trade-off anal-

ysis across domains that are part physical and part cyber.

Figure 1.8, adapted from Sztipanovits and co-workers [261, 262], summarizes the

complexity and challenges in developing integrated architectures and models for CPS

applications. Satisfying even a small subset of this vision is challenging. Lee [158] il-

lustrates this complexity using a subset of an aircraft electrical power system (EPS).

Depending on the domain-specific viewpoint, the perception of the system can range

from a software to an electrical system passing by a mechanical, control or commu-

nication network. This leads to multiple domain-specific models of the CPS, with

none of them covering the CPS entirely. In a slightly different take on strategies to

address challenges for CPS development, Sztipanovits [262] explains this complexity

through the observation that, often, the behavior of physical components in CPS

is defined by interactions among multiple physics that are difficult to capture in

a single model. Thus, the CPS designer will face the challenge of composition of

multi-models for heterogeneous physical systems.

The integrated nature of CPS applications means that approaches to system

development no longer work well. A second problem is due to the general trend

toward software-dominated management of system functionality raises new concerns.

For example, a new fundamental question is: How do we know that an automated

driving system in a self-driving vehicle will always do the right thing? Present-

19

Figure 1.8: Complexity and challenges in CPS Modeling (Adapted from [262]).

20

day approaches to the model-based systems engineering and design of CPS lead to

nondeterminate (i.e., broken) models with weak meta-domain (e.g. temporal, space)

semantic support. This situation makes it difficult to analyze and evaluate critical

system level behaviors and properties [154, 199, 295].

1.4.2 Deep but Fragmented Theories

With respect to CPS model semantics, Doyle [69] observes that theories

backing the various disciplines involved in CPS are “deep but fragmented, incoherent

and incomplete.” The landscape of theories span from Turing and Von Neumann for

computation to Einstein, Carnot or Newton for system physics through Nash and

and Von Neumann for computation to Einstein, Carnot or Newton for system physics

through Nash and Bode in control or Shannon in communication domain. Various

domains involved in the modeling and design effort are orthogonally mapped to

the main models abstraction layers. Unlike the software abstraction layer, platform

and physical layers are obvious centers of attention for safety, mostly because of

their physicality. However, a close look at deadlock properties in a software for

CPS will lead us to consider it as a safety property for the system as well. The

rationale here is that timing (from the physical world) in models at this abstraction

layer is not a simple performance or quality factor for the software but a design

correctness criterion. Therefore, answering the question on whether the system is

safe or not at any point in time would require to consider all of its relevant aspects

across the domains/physics involved and abstraction layers thus, various levels of

21

system integration. Unfortunately, at this time however, the lack of a “systems

science” for system composition and integration, along with means to unify cyber

and physical resources under the same mathematical framework remain the main

obstacles toward the ultimate realization of the CPS vision [69, 192].

1.4.3 Limited Language and Domain Modeling Semantic Capabilities

As a solution to the problem of weak semantics of leading modeling lan-

guages - such as the Unified Modeling Language (UML) and System Modeling Lan-

guage (SysML) - researchers have advocated approaches using logic to strengthen

UML/SysML semantics through language retrofitting. Proponents of this approach

advocate for the use logic to strengthen semantics of languages such as the UML

[20,34] or SysML [105]. This has made possible the development of computer aided

support for automatic checking of model properties such as inconsistencies and re-

dundancies during system design. In [106], the authors demonstrate the use of these

language retrofitting approaches but also recognize their limitations when it comes

to handling time. Moreover, the implementation of these approaches is not intu-

itive and needs strong knowledge in logic. The latter uses abstract mathematical

notations thus, requires an extra effort from the designer. Other researchers have

investigated the use of ontologies - especially OWL-based ones - to create formal

language representations in system design environments (tools). System ontology as

a pattern for what constitutes a system (parts, connections, identity, dependence,

etc...) provides a strong foundation to the analyses needed for modeling a domain

22

of interest and establishing meaning of terms [104]. Thus, researchers have looked

at the integration of ontological and system modeling languages mostly by means

of profiling [103, 228, 277]. In the case of OWL and SysML, blocks and associations

in the latter are mapped respectively to classes and properties in the former. Rea-

soning is performed by translating and interpreting model questions as axiom set

questions.

1.5 Research Questions and Hypothesis

The separation of design concerns promoted by traditional systems engineer-

ing approaches, does not work for CPS. It leads to multiple distinctive viewpoints

and a broken design flow that creates confusion and generate inconsistencies at

every turn. Instead, the synergy between the physical (hardware) and cyber (soft-

ware) subsystems for seamless integration becomes critical as the cyber (software)

is increasingly responsible for the management of system functionality. Therefore,

decisions made in the management of functionality have to be correct...all the time!

To this end, the main research question we address is: how to improve the ability

of the cyber to understand the physical world for efficient decision making?

Specifically, we would like to know:

1. How to effectively identify, capture and express safety requirements and physical

semantics in the overall CPS design flow? One important motivation here is to

uncover conditions, events or situations that could ultimately result into the

system displaying emergent behaviors, setting it into a path toward unsafe

23

states. Another motivation is guaranteeing the decidability of the system

reasoner in the context of high computational and expressiveness load, driven

by the presence of complex data types (dimensions and units).

2. What temporal and space theories are the most appropriate for modeling and

design of CPS? One major interest here is the ability to trace safety related

questions to the interplay between space and time in spatio-temporal con-

straints and relationships that may or might be violated.

3. What knowledge representation formalism is suitable for semantic-based mod-

eling and reasoning in CPS? Decidability, reasoning algorithms efficiency and

support for concrete domains are of utmost importance in the context of CPS.

4. To what extent can domain ontology models, especially the ones of time and

space, and associated framework for formal reasoning about these meta-domains,

be used to streamline design flows? We ought to be able to obtain, from the re-

sulting design flow, precise and accurate models that satisfy the requirements

identified above and suitable for system level analyses.

5. How can cyber and physical behaviors be seamlessly integrated into an executable

CPS model ? A successful attempt will lead to better models for simulation

and analysis of CPS, which will provide greater insight into the design and

understanding of such systems. Thus, the development of novel software in-

frastructure able to produce such models is critical to CPS systems engineers.

Our central hypothesis is that well-elicited requirements, use of formal languages and

24

proper capture of relevant domains semantics are the three main pillars to model

and design correctness. This implies strong modeling language semantics and deep

integration of domain semantics in models for analysis and formal verification of

system requirements.

1.6 Research Scope and Objectives

The central tenet of our research is that CPS modeling and design challenges

can be tackled through the development of ontological frameworks that embed of

physical semantics into cyber models for system smartness. Accordingly, we wish

to devise a platform infrastructure that will enable:

1. The identification, configuration and mapping of the appropriate instance of a

semantic platform to the given system’s engineering elements and components,

2. A cost-effective bottom-up composition of the system and multidisciplinary,

multi-hierarchy and multi-domain traceability of cause-and-effect relationships

and dependencies and,

3. The use of formal methods especially logic-based approaches to ensure the cor-

rectness of models of system functionality, system design and decision making.

If successful, this research will result in a framework that manages an interaction of

system requirements with a variety of domains, and provides language support for

CPS models having strong temporal, spatial, and domain-specific semantics.

25

Figure 1.9: System requirements, domain, and language formalisms for integration
and management of CPS models.

Figure 1.9 summarizes the coupling among these entities. The platform will

be used to analyze and understand system-level performance and safety that depend

on correct time- and space-based prediction of the future state of the system, and

the satisfaction of physical world constraints that also depend on time and space.

The research will contribute to a computational infrastructure where meta-

domain (i.e., time and space) and domain-specific ontologies, and rule checking rou-

tines operate hand-in-hand with a new scripting language called Whistle [65]. Figure

1.10 shows, for example, a vision for such an architecture. Engineering models of

system structure will consist of networks and hierarchies of connected components

formally described in terms of geometry (e.g., position, size) and connectivity (e.g.,

connected, touches, disjoint). Engineering models of system behavior will be com-

binations of discrete (e.g., statecharts) and continuous (e.g., differential equations)

26

im
po

rt

Instances

Data
Requirement
Individual

verify

Textual Requirements
define

Classes

Ontologies and Models

Design Rules

Engineering Model

System Structure

System Behavior

a c d

b

Reasoner

Relationships

Properties

Rules and Reasoner

Spatial RulesTemporal Rules

Temporal Ontology Spatial Ontology

Meta−Domain Ontologies and Rules

import import import

Figure 1.10: Framework for implementation of semantic-enabled simulation and
rule-based control of cyber-physical systems. Domain-specific ontologies and rules
are supported by meta-domain ontologies and rules covering time and space, which,
in turn, are derived from theories and models of time and space described in Chapters
3 and 4 (Adapted from Delgoshaei, Austin and Pertzborn [65]).

27

behaviors.

The semantic counterpart of engineering models is ontologies (class hierar-

chies), individuals (graphs), and rules. An ontology as “a set of knowledge terms,

including the vocabulary, the semantic interconnections, and some simple rules of

inference and logic for some particular topic [117].” To provide a formal conceptu-

alization within a particular domain, and thereby facilitate communication among

people and machines, ontologies need to accomplish three things: (1) Provide a

semantic representation of each entity and its relationships to other entities; (2)

Provide constraints and rules that permit reasoning within the ontology, and (3)

Describes behavior associated with stated or inferred facts. In the proposed archi-

tecture, ontologies and rules in the temporal and spatial domains will be integrated

with domain-specific ontologies and rules, and support reasoning for simulation and

rule-based control. Computation with rules provides several advantages [176, 229]:

(1) Rules that represent policies are easily communicated and understood, (2) Rules

retain a higher level of independence than logic embedded in systems, (3) Rules sepa-

rate knowledge from its implementation logic, and (4) Rules can be changed without

changing source code or underlying model. A rule-based approach to problem solv-

ing is particularly beneficial when the application logic is dynamic, and where rules

are imposed on the system by external entities. Both of these conditions apply to

the design and management of cyber-physical systems.

28

1.7 Dissertation Outline

This dissertation is organized into eight chapters. Chapter 2 introduces

theories, languages and tools used in the Semantic Web. These tools and lan-

guages will be used extensively in our studies of time and space, and applications

that can be built with these capabilities. Semantic models of time and space (and

spatio-temporal combinations of space and time) are discussed in Chapters 3 and

4, respectively. Chapter 5 introduces a novel ontological framework for knowledge

modeling and reasoning for CPS. Chapter 6 discusses the development and simula-

tion of safety metrics for cyber-physical transportation systems design and analysis.

Chapter 7 covers the formulation of spatio-temporal metrics and algorithms for colli-

sion avoidance in safety-critical CPS. And finally, the conclusions and contributions

of this dissertation, and suggestions for future work are presented in Chapter 8.

29

Chapter 2: Semantic Web: Theory, Models, Languages, and Tools

2.1 Introduction to Semantic Web

2.1.1 Semantic Web Vision

In his conceptualization of the World Wide Web (late 1980s), Tim Berners-

Lee [35] identified two main goals:

1. To make the Web a collaborative medium and,

2. To make the Web understandable and automatically processable by machines.

During the past twenty five years the first part of this vision has come to pass –

today’s Web provides a medium for presentation of data/content to humans. Ma-

chines are used primarily to retrieve and render information. Humans are expected

to interpret and understand the meaning of the content. The Semantic Web aims

to produce a semantic data structure which allows machines to access and share

information, thus constituting a communication of knowledge between machines,

and automated discovery of new knowledge [94, 117, 237]. Realization of this goal

will require mechanisms (i.e., markup languages) that will enable the introduction,

coordination, and sharing of the formal semantics of data, as well as an ability to rea-

30

Figure 2.1: Semantic Web technology stack.

son and draw conclusions (i.e., inference) from semantic data obtained by following

hyperlinks to definitions of problem domains (i.e., so-called ontologies).

2.1.2 Technical Infrastructure

Figure 2.1 illustrates the technical infrastructure that supports the Semantic

Web vision, and the foundation upon which we hope to build CPS applications.

Each new layer builds on the layers of technology below it. Briefly, the bottom layer

is constructed of Internationalized Resource Identifiers (IRI) and Unicode. IRIs

are a generalized mechanism for specifying a unique address for an item on the

web. The eXtensible Markup Language (XML) provides the fundamental layer for

representation and management of data on theWeb. XML data is organized into tree

31

hierarchies. As already noted, Semantic Web applications will gather information

from a variety of sources, and in the context of CPS, merge and organize these

sources for decision making. Unfortunately, there is no easy way for tree structures

to be merged. The resource description framework (RDF) solves this problem by

allowing for the representation of graphs of data on the web. Graphs can always be

merged. The web ontology language (OWL) provides for semantic descriptions of

the underlying data. Together, XML, RDF and OWL allow for the implementation

of reasoning that can prove whether or not assertions are true or false. For practical

purposes, these tools need to operate in (almost) real time and, as such, description

logics require extensions to make them computationally decidable.

2.2 Description Logics (Semantics and Ontologies for Reasoning)

2.2.1 Knowledge Representation Formalisms

Formal representation of knowledge of a domain requires formalisms that

describe it. Thus, researchers have developed several knowledge representation for-

malisms such as Semantic Networks [17, 222, 256], Frame Systems [40, 76, 116, 183],

Description Graphs [47, 203, 254] and Logic-based formalisms [27, 29] as illustrated

in Figure 2.2. We briefly describe these formalisms as follows.

1. Semantic Networks: Information in this formalism is stored in categories

that are logically related to each other in a hierarchy without repetition from

one level to another. Multiple types of edges (subclass/superclass, prop-

32

erty/subproperty, and/or, etc..) and nodes (subject/object, generic/individual)

offer ways to create a semantic network of the domain under study. Reading

the graph allows one for instance to translate a subclass/superclass edge into

a concept definition. This results in a label graph materializing a definito-

rial representation of (world) concepts. In [222], the author provides a full

description of this formalism.

2. Frame Systems: This formalism has been introduced as a solution to the in-

creasing complexity of semantic networks. Data structures similar to records

are used to represent knowledge about situations and objects. Defaults, mul-

tiple perspectives and analogies are also included with the goal of regrouping

all relevant knowledge about a situation in one object instead of having the

information distributed across multiple axioms. In CLASSIC [257], frame-

based formalisms are implemented in set of Lisp functions that turn out to be

difficult in use for capturing arbitrary disjunctions.

3. Description Graphs: Graphs are given a formal semantics through a trans-

lation into first-order formulae as information representation formalism. Sowa

[254, 255] introduces conceptual graphs as the basic and most important de-

cidable fragment of this formalism. This allows its use in support to most

reasoning services involving graphs validity or subsumption. The author views

this formalism as a descendant of frame systems and semantic networks.

4. Logic-based Formalisms: They are an evolution of the declarative part of

frame systems and they have played a central role in the evolution of artificial

33

intelligence (AI) formalisms. They are known to be decidable fragments of

first-order logic and they exist in multiple variants. Feature logics were devel-

oped as the constraint logic part of so-called unification grammars such as the

head-driven phrase structure grammar (HPSG) (see http://hpsg.stanford.edu/

for more details). They differ from Description Logics (DL) [29] by the use

of single-valued attributes whereas DL relies on multi-values ones. Modal and

description logics are the leading logic-based formalisms. Also, some results

from variations of modal logics (propositional dynamic logics, µ-calculus) have

been translated into description logics [62, 234].

2.2.2 Description Logics Semantics

Description Logic Basics. Description logics are a family of logic based knowl-

edge representation formalisms that describe domain in terms of concepts, roles and

individuals [125]. Universal (∀), existential (∃), intersection (⊓), Union (⊔) and

negation (¬) operators are used to specify restrictions needed to make the language

decidable with low complexity. In DL, semantics are defined by interpretations. An

interpretation I is defined as followed:

I = (∆I ,.I) where (∆I is the domain of interest (non-empty set) and, .I is an

interpretation function that maps:

• Concept name C : a subset CI of ∆I ,

• Role name R : a binary relation RI over ∆I and,

• Individual name x : an instance xI of CI

34

Figure 2.2: Illustrations of leading knowledge representation formalisms. (a) Con-
ceptual definition of the Truck domain using a Semantic network, (b) Truck domain
as a Frame, (c) Conceptual (description) graph of the statement “John is going to
Boston by bus” [255], (d) First order logic (FOL)description of the cat domain and
its interpretation [127]

Concepts, roles and individuals are respectively equivalent to FOL unary predicates,

binary predicates and constants. Considering two concepts C1 and C2, a relation R,

the interpretation function above extends to concept expressions as summarized in

Table 2.1.

A more detailed definition of DL constructors can be found in Appendix A. Con-

cepts, roles and individuals build up to the DL knowledge base K〈T ,A〉 of a domain

D. Here, T is a set of terminological axioms or Tbox, A is a set of assertional ax-

35

Name Expressions(DL) Interpretation (FOL)
Intersection (C1 ⊓ C2)

I = CI
1 ∩ CI

2

Union (C1 ⊔ C2)
I = CI

1 ∪ CI
2

Negation(concept) (¬C1)
I = ∆I\CI

1

Nominal {x}I = {xI}
Existential quantifier (∃R.C1)

I = {x|∃y.〈x, y〉 ∈ CI
1 }

Value restriction (∀R.C1)
I = {x|∀y.(x, y) ∈ RI ⇒ y ∈ CI

1 }
Unqualified Number restriction (≤) (≤ nR)I = {x|#{y|〈x, y〉 ∈ RI} ≤ n}
Unqualified Number restriction (≥) (≥ nR)I = {x|#{y|〈x, y〉 ∈ RI} ≥ n}
Inverse(relation) (∀R−)I = {(x, y)|(y, x) ∈ RI}

Table 2.1: Sample basic description logic (DL) constructors

ioms or Abox, x and y are individuals belonging to D. With respect to the modeling

languages features, DL distinguish themselves by the non-finiteness of the domain

and the open-world assumption of the knowledge modeling.

The DL Family There exists numerous DLs formalisms with various level of ex-

pressiveness. They are differentiated mostly base on what concept and role operators

and, concept and role axioms are allowed and how they are used in the language.

The ALC is the smallest propositionally closed DL. Expressions in this DL can be

fully defined using five concept operators (⊓,⊔,¬, ∃, ∀), two concept axioms (⊑,≡).

No role axioms are authorized and only atomic roles are allowed. For instance, a

“great researcher” (vague in plain English) is a concept that can be formally de-

scribed as follows.

GreatResearcher ≡ Person ⊓ ∀hasAward.(ResearchAward ⊔ ∃isPrestigiousAward.NobelPrize)

In this example, the concept has been defined using two atomic concepts (Person

and ResearchAward) two atomic roles (hasAward, isPrestigiousAward) and two

operators (intersection and union) interpreted as set operations. Given that the no-

tation ∀R.C characterizes the set of individuals that are in the relationship R with

36

individuals belonging to the set denoted by the concept C, the expression following

the “·” is a “role filler” to the atomic role hasAward.

In the EL DL also known as the sub-Boolean DL, there is no universal quan-

tifier (∀). Thus, the above statement can’t be written as is. The best one can do is

to define a “researcher” as a person who conducts research as follows.

Researcher ≡ Person ⊓ ∃conductsResearch

This shows the expressiveness limits of some DLs and highlights the need for strate-

gic and selective extensions to resolve this problem. This is particularly critical in

ensuring the decidability of the knowledge modeling language supported by the DL

under consideration. Appendix B illustrates some of these extensions to the ALC

or S. Some of them are as follows.

• Role hierarchy H: e.g., hasAcademicAward ⊑ hasAward

•Role box (composition)R: e.g., hasPublication ◦ hasWonPrize ⊑ hasAward

• Nominal/singleton O: e.g., {Petnga}

• Inverse roles I: e.g., isPrestigiousAwardedTo ≡ hasAward−

• Number restrictions N : e.g., ≥ 3hasAward (more than awards)

• Qualified number restrictions Q: e.g., ≤ 2hasAward.NobelPrize (awarded

less than 2 Nobel prizes)

As an illustration, the SHIQ DL can be determined as follows. SHIQ = S

+ role hierarchy(H) + inverse roles(I) + QNR

Inferencing Services. The knowledge base K introduced above can be extended

with the addition of new facts. However, one should first make sure that K is well-

37

constructed and is inconsistency free. Thus, it should be sound with respect to

known basic inferencing tasks as illustrated in Figure 2.3 and formally defined in

Appendix C.

Subsumption. This reasoning service checks if the knowledge in the Tbox T of K is

correct. It also establishes hierarchy among concepts i.e., C1 ⊑K C2 ?

Equivalence. It checks for redundancy between elements in the knowledge base K

and establishes equivalence between representations in the Tbox. In other words,

the question answered here is C1 ≡K C2 ?

Consistency. The main goal of this reasoning task is to ensure that the knowledge

in K is meaningful. In other words, C1 ≡⊥.

Instantiation. This task consists of checking if an individual i is an instance of a

class C1. This can be written as follows: i ∈K C1.

Satisfiability. It consists of checking the consistency of either a concept, an Abox or

the knowledge base K. As defined in Appendix C, the satisfiability of concepts and

the AboxA are checked with respect to the Tbox T . The knowledge base K is satis-

fiable ⇐⇒ ∃M s.t. M |= K, where M is a model. Tableaux algorithms used to test

satisfiability of the knowledge base. An interesting resource to figure out the com-

plexity of reasoning in description logics can be found at http://www.cs.man.ac.uk.

38

Figure 2.3: Illustrations of foundational DL reasoning algorithms.

2.2.3 Ontologies and Ontological Languages

Ontologies. The quest of identifying entities and types of entities that exist has

led earlier Philosophers to ontology, which they defined as the study of “being” or

“existence” and their basic categories. They have classified ontologies in four types

base on their degree of abstraction and field of application [215]. Upper ontologies

formally define high level meta concepts while domain ontologies focus on concepts

relevant to a given, specific subject area or domain. Interface ontologies formally de-

fine the juncture of two disciplines or domains and process ontology describe process

domains (business or engineering).

Over the years, these research efforts have provided means for humans to

develop and access semantic contents beyond simple definitions and taxonomies.

39

However, this has been harder to achieve in a very efficient way for computers and

engineering systems [126]. In the scientific community, an ontology is an engineering

artifact that provides explicit specification of the intended meaning of a vocabulary

used to describe a given domain. Constraints in the specifications help capture

background knowledge (which does not have to be complete) about the domain.

For the ontology to be fully useful for modeling and reasoning applications, it has

to (1) capture the shared understanding of the domain of interest and, (2) provide

a formal and machine readable model of that domain knowledge. Ontologies have

been shown effective in capturing and formally represent reusable knowledge in

various domains such as biology [238], healthcare and medicine [97], geography [99],

agriculture [251] and defense [148].

Ontology Languages. They are formal, declarative languages used to build on-

tologies. Knowledge representation formalisms provide the appropriate semantics

needed by ontology languages to effectively and precisely capture and represent

knowledge with regard to the chosen theory in a human-readable way. Expres-

siveness and inferencing are central in determining the capabilities of ontological

languages. However, a trade-off between these two elements is needed as one comes

at the cost of the other. In the ontology community, a distinction is generally

made between earlier languages qualified as traditional such as Ontolingua or F-

logic from the ones that use the Extensible Markup Language (XML) scheme to

encode knowledge such as the RDF. From a structural stand point, frame-based

languages (e.g.: F-logics, Knowledge Machine programming language,..) are dis-

40

tinguished from description-logic based languages (e.g.: KL-ONE, Racer,..) and

first-order logic -based languages (e.g.: common logic, CycL,...). Languages in the

first group are partially or completely based on frame knowledge representation

formalisms as introduced in Section 2.2.1. DL-based languages extend frame-based

languages while keeping the focus on making the languages both human and machine

readable. The last group of languages enable both the formulation of expressions

in FOL as well as arbitrary predicates. A comprehensive comparative study of

ontological languages and their capabilities can be found at [58].

2.3 Semantic Extensions and Support for Web-Based Reasoning

This section introduces formalisms for the capture and representation of

knowledge, suitable for decision making support in CPS development. Traditional

approaches to knowledge representation and reasoning stem from artificial intelli-

gence and classical logics, which may or may not be decidable. Our focus is on

methods that are computationally decidable. As such, we make extensive use of

description logics and its various extensions.

2.3.1 Description Logics Extensions for the Web Ontology Language

In order to build models that address the challenges identified in Chapter 1,

CPS applications need to be backed by ontologies that have well-defined semantics

and support for formal reasoning. DLs provide these formal foundations to the

web ontology language [201]. In fact, the semantics of the OWL language can be

41

Figure 2.4: Description Logics formalism extensions for the Web Ontology Language

defined through a translation into an expressive DL. However, as pointed out by

Baader and co-workers [28], the ALC extensions (see Appendix A) are incapable

of efficiently supporting OWL because important pieces are missing. Bridging this

gap requires a certain number of extensions including support for role Hierarchy

(H), Nominals (O), Inverse and transitive roles(I), Cardinality/Number restriction

(N), Qualified number restrictions(Q), Role restrictions(R) and Concrete domains.

These extensions are briefly defined along with illustrative examples in Appendix

B.

Figure 2.4 shows how these extensions to ALC DL can be organized and

42

mapped to semantics for the OWL sub-languages. To that extend, OWL 2 (stan-

dardized in 2009) overcomes a number of weaknesses (e.g., relational expressivity,

syntax deficiencies, species definitions) in OWL 1 [102]. Tapping into this potential

for efficient modeling and decision support for CPS-based applications requires ef-

fective and decidable reasoning capabilities as enablers. We briefly introduce in the

next section the reasoning infrastructure needed to that aim.

2.3.2 Reasoning Support for SROIQ - based Ontologies

When the relevant set of axioms are applied to a specific DL-based ontology,

the result is a knowledge base K = (T ,A) for the domain being modeled. However,

this is half of what we later need. This foundation needs to be completed with a

reasoner that can derive, through inferencing, additional facts about the concepts of

the domain of interest. Among the key reasoning services needed, are satisfiability,

subsumption, equivalence and disjointness. These services are formally defined in

Appendix C. Also, with regard to the SROIQ-DL which is mapped to OWL 2 (see

Figure 2.4) there is a need to formally establish the decidability of this DL. Thus,

proposition 1.1 builds on the definitions introduced to establish the satisfiability of

the TBox while Lemma 2 ensures the elimination of the ABox for the purpose of

simplifying the complexity of the reasoning process. Horrocks and co-authors [128]

use these preliminary results to construct and describe an algorithm that decides

the satisfiability and subsumption of SROIQ as stated by Theorem 4. Hence, given

the mapping in Figure 2.4, this theorem ensures the decidability of OWL 2 DL, the

43

language of development of the ontological framework that we introduce in Chapter

5.

2.4 Working with Semantic Web Technologies

2.4.1 Low-Level Technologies (IRI and UNICODE)

At the bottom of the semantic web stack, unicode provides 16-bit support

for multiple languages, and internationalized resource identifiers (IRI) provide a

means for the unique identification of resources on the Web. Unicode enables the

multi-language representation and handling of texts.

2.4.2 Extensible Markup Language (XML)

The extensible mark-up language provides a syntactic basis for data ex-

change and is both human and machine interpretable. XML technology has two

aspects. First, it is an open standard which describes how to declare and use simple

tree-based data structures within a plain text file (human readable format). XML

is a meta-language (or set of rules) for defining domain- or industry-specific markup

languages. Within the systems engineering community, for example, XML is being

used in the implementation of AP233, a standard for exchange of systems engineer-

ing data among tools [186]. A second key benefit in representing data in XML is that

we can filter, sort and re-purpose the data for different devices using the Extensible

Stylesheet Language Transformation (XSLT) [268, 292].

44

2.4.3 Resource Description Framework (RDF)

While XML provides support for the portable encoding of data, it is limited

to information that can be organized within hierarchical relationships. This can

be a problematic situation for XML as a synthesized object may or may not fit

into a hierarchical (tree) model. A graph, however, can, and thus we introduce the

Resource Description Framework (RDF).

RDF is a graph-based assertional data model for describing the relationships

between objects and classes (i.e., data and metadata) in a general but simple way,

and for designating at least one understanding of a schema that is sharable and

understandable. The graph-based nature of RDF means that it can resolve circular

references, an inherent problem of the hierarchical structure of XML. An assertion

is the smallest expression of useful information. RDF captures assertions made in

simple sentences by connecting a subject to an object and a verb, as shown in Figure

2.5.

Figure 2.5: Example of RDF triple where node A is a subject, “predicate” is a verb,
and node B is an object.

In practical terms, English statements are transformed into RDF triples consisting

of a subject (this is the entity the statement is about), a predicate (this is the

named attribute, or property, of the subject) and an object (the value of the named

45

Figure 2.6: An RDF graph of relationships important to Spiderman.

attribute). Subjects are denoted by a IRI. Each property will have a specific meaning

and may define its permitted values, the types of resources it can describe, and its

relationship with other properties. Objects are denoted by a “string” or IRI. The

latter can be web resources such as requirements documents, other Web pages or,

more generally, any resource that can be referenced using a IRI (e.g., an application

program or service program).

A set of related statements constitute an RDF graph. RDF graphs can

be used to model a wide variety of relationships, including those among friends,

location data, business data, and show information about a restaurant and a movie

[237]. Figure 2.6 illustrates, for example, a graph model of relationships relevant to

Spiderman.

Limitations of RDF. Unfortunately, RDF is unable to capture vital knowledge

attributes such as existence and cardinality or localized range and domain con-

46

straints as well as richer properties such as transitivity, inverse or symmetrical

properties [126]. This makes it weaker to describe resources in sufficient detail and

difficult in use to support reasoning as introduced in Section 2.2.2. The Ontology

Inference Layer (OIL) and DARPA Agent Markup Language (DAML) were devel-

oped separately and respectively by European and American researchers to address

the weaknesses of RDF. They were subsequently merged into DAML+OIL which

became the foundation of OWL [129].

2.4.4 The Web Ontology Language (OWL)

Pathway from RDF to OWL. The Web Ontology Language (OWL) is a DL-

based knowledge representation language for constructing ontologies. OWL adds

expressiveness to the Semantic Web for knowledge representation, information con-

tent processing and machine interoperability.

One key driver of the development of OWL was for the language to support

the creation of extensible, ease of use, ease of querying ontologies that are compat-

ible with the world wide web (WWW) as recommended by the World Wide Web

Consortium (W3C) [1]. Earlier effort in that direction led to the development of the

RDF which, along with its schema extension (RDFS), has later evolved into OWL

as shown in Figure 2.7.

Structure and Family of OWL. OWL is based on the basic features of RDF intro-

duced above but it strengthens it by adding structure and vocabulary for describing

properties and classes. They enable richer property definitions(e.g.: transitivity),

47

Figure 2.7: The making of the web ontology language (OWL): From the resource
description framework(RDF) to OWL (adapted from [129])

class property restrictions(e.g.: someValuesFrom), equality between classes(e.g.:

sameAs) and relations between classes (complementOf). The additional capabili-

ties allow ontological systems to use reasoning structures and infrastructure to infer

new facts (triples) from existing ones with FOL as baseline mathematical, formal

foundation. As a matter of fact, Horrocks [126] points that OWL is a Web-friendly

syntax for SHOIN DL. As an illustration, the DL concept of “great researcher”

introduced in Section 2.2.2 can be translated in OWL as follows (see Figure 2.8).

The family of OWL encompasses three languages distinguished by their

increasing expressiveness. OWL Lite allows the expression of simple syntax and

constraints but inferencing is more tractable using this version. OWL DL has a

human-friendly syntax, inferencing is decidable and the language is computation-

ally complete. OWL Full ensures full compatibility with RDF and RDFS languages

48

<owl:Class>

<owl:intersectionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Person"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAward"/>

<owl:allValuesFrom>

<owl:unionOf rdf:parseType=" collection">

<owl:Class rdf:about="#ResearchAward"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#isPrestigiousAward"/>

<owl:someValuesFrom rdf:resource="#NobelPrize"/>

</owl:Restriction>

</owl:unionOf>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Figure 2.8: Example of a formal definition of a “great researcher” in OWL.

however, the cost is that there is no guarantee in the validity of all computed state-

ments [1]. Also, the most recent version of the language i.e., OWL2 comprises three

independent profiles (or sub-languages) that restrict its structure in different ways :

expressiveness (OWL2 - EL), Querying (OWL2 - QL) and Reasoning (OWL2 - RL).

We note that previous versions: i.e., OWL1 Lite (limited expressiveness), OWL1

DL (decidable with support for DL) and OWL1 Full (full expressiveness) can also

be viewed as profile of OWL2 [290].

2.5 Working with Jena and Jena Rules

Not all technologies on the semantic web are standardized. Some are emer-

gent ones that are used mostly for horizontal and vertical integration of multiple

layers of the stack. Generally speaking, they are Application Programming Inter-

49

faces (API) used to complete integration tasks.

2.5.1 Jena

Jena [4] is an open source Java framework for building semantic web and

linked data applications. It provides APIs for RDF, triple store and OWL (ontology

and inference). Jena uses a rule-based reasoning approach, which is the classic

technique to logic-based reasoning where the knowledge-based system is developed

by deduction, induction, abduction or choices from a starting set of data and rules.

A unifying logic, such as the DL, is needed for horizontal integration of top layers

of stacks and provide the rigorous, formal support needed by system (CPS) models.

The latter are the result of the top level, i.e., the application layer which allows users

to visualize and interact with whatever underlying semantic platform supporting the

application.

2.5.2 Jena Rules

The Jena inference subsystem is designed to allow a range of inference en-

gines or reasoners to be plugged into Jena. Jena Rules is one such engine. Reasoners

provide a means to derive additional RDF assertions which are entailed from some

base RDF together with any optional ontology information and the axioms and rules

associated with the reasoner. Jena Rules use facts and assertions described in OWL

to infer additional facts from instance data and class descriptions. Such inferences

result in structural transformations to the semantic graph model.

50

Remark 2.1. (Ontological Tools). The development of ontology applications is

facilitated with research and commercial tools such as Oiled for DAM+OIL ontolo-

gies (http://oiled.semanticweb.org/building/) and Protege for OWL ontologies [124].

Others, such as WebODE are able to translate, import, and export ontologies in mul-

tiple languages (e.g., RDF,RDFS, OIL, DAML+OIL,etc.) [59]. Concurrent work in

the development of reasoners includes: Pellet [243], RacerPro [8], FaCT++ [9] and

Hermit [10].

2.6 Case Study: Semantic Modeling of Family Dynamics

This case study examines the work of Austin, Delgoshaei and Nguyen [24]

from the perspective of basic ontology- and rule-based modeling of systems with Jena

and Jena rules. A simplified semantic model of a family is defined by ontologies

(Jena) and constrained by rules (Jena Rules). Once the family model has been

assembled, the graph of family individuals and relationships will evolve in response

to events.

2.6.1 Family Ontology and Graph (Jena)

Figure 2.9 illustrates the appeal of behavior modeling with ontologies and

rules [139, 167, 240]. The upper right-hand side of the figure shows the relationship

among classes and properties in a simplified family ontology. A person has prop-

erties: hasAge, hasWeight, and hasBirthDate. Male and Female are subclasses

(specializations) of class Person. Boy is a specialization of Male. A Child is a

51

Figure 2.9: Simplified framework for modeling with ontologies and rules.

Person who may (or may not) attend Preschool.

The abbreviated fragment of code:

// Define classes ...

person = model.createClass(ns + "Person");

male = model.createClass(ns + "MalePerson");

boy = model.createClass(ns + "Boy");

// Define relationships among classes ...

person.addSubClass (male);

male.addSubClass (boy);

// Create data properties for the class Person ...

hasAge = model.createDatatypeProperty(ns + "hasAge");

hasAge.setDomain(person);

hasAge.setRange(XSD.integer);

hasBirthDate = model.createDatatypeProperty(ns + "hasBirthDate");

hasBirthDate.setDomain(person);

hasBirthDate.setRange(XSD.date);

52

demonstrates the definition of the family ontology classes, their assembly into a

hierarchy, and definition of data properties for the class Person. The data property

hasAge is an integer. The data property hasBirthDate is a date. Notice that

since Boy is a subclass of MalePerson, and MalePerson is a subclass of Person,

boys automatically have the properties age and birthdate through class hierarchy

inheritance.

The next step is to define family individuals, the data associated with each

individuals, and the relationship of one individual to other individuals in the family.

The fragment of code:

// Namespace for the family ontology ...

String ns = "http://austin.org/family#";

// Create ontology model (a graph) ...

OntModel model = ModelFactory.createOntologyModel();

// Add "Sam" to the family graph model ...

Individual sam = boy.createIndividual(ns + "Sam");

model.add (sam);

// Create statement: Sam’s birthdate is 2007-10-01.

Literal bdate = model.createTypedLiteral("2007-10-01", XSDDatatype.XSDdate);

Statement cbd = model.createStatement(sam, hasBirthDate, bdate);

model.add (cbd);

establishes a name space for the family ontology, creates a graph model for the

storage of individuals and their data and object properties, and then creates an

Individual model for Sam and a data property statement for his date of birth. Jena

provides very powerful facilities for querying the graph model, subject to a wide

53

range of search criteria.

2.6.2 Event-Driven Graph Transformations (Jena Rules)

The upper left-hand side of Figure 2.9 shows one fact and three rules. Sam

is a boy born October 1, 2007. Given a birthdate and a current time, a built-in

function getAge() computes Sam’s age. Further rules can be defined for when a

person is also a child and when children attend Preschool. The schematic along the

bottom of Figure 2.9 shows the evolution of a graph defining the properties of Sam

as a function of time. The abbreviated fragment of code:

@prefix af: <http://austin.org/family#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y) ->

[(?a rdf:type ?y) <- (?a rdf:type ?x)]]

// Rule 02: Compute and store the age of a person

[GetAge: (?x rdf:type af:Person) (?x af:hasBirthDate ?y)

getAge(?y,?z) -> (?x af:hasAge ?z)]

[UpdateAge: (?a rdf:type af:Person) (?a af:hasBirthDate ?b)

(?a af:hasAge ?c) getAge(?b,?d) notEqual(?c, ?d) ->

remove(2) (?a af:hasAge ?d)]

is taken from the Jena Rules for the family ontology. The first rule propagates class

hierarchy relationships. The second set of rules serves two purposes. First, given an

individuals data of birth, the GetAge rule computes their age and inserts it into the

semantic model via the hasAge data property. When a person has a birthday, the

UpdateAge rule removes the old age from the graph and inserts the new age.

54

Chapter 3: Semantic Modeling of Time

3.1 Introduction

Timed systems are those where timing and scheduling of events (i.e., logical

results of computation) are relevant to correct operations [123]. In hard real-time

systems, correct operation depends of satisfaction of hard time-ordered deadlines. In

soft real-time systems, correct operation depends on satisfaction of “average time”

constraints.

Formal approaches to CPS design need precise, ambiguity-free, and consis-

tent representations of time in order to support the proper ontological modeling of

this domain. However, after 2,500 years of research on the nature of time there is not

much to show for, beside clocks that can measure time and help locate events, their

order of occurrence and durations. There remain many critical, semantically-related,

unresolved issues including the fundamental questions of “What time actually is”

and “Which aspects of time are subjective or mind-dependent” [68].

This chapter examines methods for the semantic modeling of time. The

scope of investigation covers a review of methods capable of representing and working

with time computations that are both quantitative and qualitative, continuous and

55

discrete. Models and properties of time are visited in Section 3.2 and the ontological

descriptions of this domain are conducted in Section 3.3. Methods and tools for

qualitative temporal reasoning have been developed over the past three decades and

we revisited them in Section 3.4. They allow applications to manage coarse-grained

causality, action and change. A notable and highly influential example is Allen’s

interval calculus that is illustrated in Section 3.5.

3.2 Models and Properties of Time

For formal approaches to the verification of CPS to work, we need formal

models to capture the appropriate granularity of time.

3.2.1 Discrete versus Dense Time

A first natural categorization of formalisms dealing with time-dependent

behavior is whether such a model is a discrete or dense set. From a mathematical

standpoint, notions of discrete and dense time (see Figure 3.1) can be expressed as

follows [87]:

• A discrete set consists of isolated points (e.g., the integers 0, 1, 2, ...) separated

by regular intervals.

• A dense set (ordered by <) is such that for every two points t1, t2, such that t1

< t2, there is always another point in-between (i.e., t1 < t3 < t2).

56

1.60

Discrete Time Model

Real Time Model

210

0.00 0.33 0.55 0.93 1.33

Figure 3.1: Schematic of discrete and dense time models.

The main advantage of discrete-time representations is conceptual simplicity. In a

discrete time domain time is advanced by discrete steps. Specific tick events are

used to model the advance of one time units, and Events can only happen at integer

time values. The delay between any two events is always a multiple of the minimal

delay of one time unit [239].

Modeling time as a dense (continuous) process means that time is modeled

by real numbers and changes in state can happen at any point in time. The delay

between two events can be arbitrarily small, Dense models of time provide a more

adequate representation of reality, particularly asynchronous systems. However,

because dense time implies an infinite number of possible states, timed systems are

modeled symbolically rather than explicitly.

In practical terms, the challenge in working with time is complicated by

the tendency of analytical procedures to mix-and-match dense/discrete formalisms,

and to sometimes rely on qualitative relationships among entities involving time.

For example, differential equations are normally stated with respect to real variable

domains, whereas difference equations are defined on integers. Also, in control sys-

57

tems, event-triggered and time-triggered are two control paradigms that can make

use of both discrete and continuous models of time, depending on the criticality of

the application [140]. In event-triggered real-time systems, activities are initiated as

a result of significant and identifiable events. However, in time-triggered systems,

activities are started at predefined points in real-time. Computing devices are for-

malized through discrete models when their behavior is paced by a clock, so that

it is natural to measure time by counting clock, ticks, or when they deal with (i.e.,

measure, compute, or display) values in discrete domains. Qualitative evaluation of

relationships between events in time are expressed in terms of “before or after” but

omitting details such as “how much before or how much after.”

3.2.2 Time Instants and Intervals

Instants in the dense model of time are isomorphic to the rational numbers:

between any two instants there is always another. Continuous models of time are

isomorphic to the real numbers, i.e., they are dense and also, unlike the rational

numbers, without gaps.

3.2.3 Qualitative Descriptions of Time

The frequent under-specification of time in natural language expressions

constitutes the leading source of uncertainty in temporal knowledge representation.

Vagueness in the granularity of time in temporal statements stems from the multi-

ple forms temporal references can take. As an illustration, let’s consider temporal

58

references in various statements related to the Rio Olympics.

The Rio Olympics started ...

(a) ... at 7:00 PM (ET) on Friday, August 5, 2016.

(b) ... in the evening of Friday, August 5, 2016..

The Rio Olympics lasted ...

(c) ... 17 days.

(d) ... less than a month.

The Rio Olympics happened ...

(e) ... after Copa America Centenario.

(f) ... during summer.

Temporal entity references can be absolute (a) or relative (b). Similarly, temporal

durations can either be absolute (c) or absolute (d). Moreover, the order in which

events occur in the temporal domain can be specified in an order that can be certain

(e) or uncertain (f). On the other hand, under the assumption that the minute is

the granularity of our time measurement, statement (a) is fully specified otherwise

it could not be the case; for instance if, instead of minute, the granularity of time

is second. Removing the reference to the time zone (ET) will lead to the same

conclusion.

59

3.2.4 Precedence Relations

Operators are needed to describe relationships among time intervals (e.g.,

looking forward, looking backward, contained within, separated ...etc). These rela-

tions can be described through precedence relations.

Relation Mathematical Representation

Transitivity For all x,y,z, if x < y and y < z then x < z.

Nonreflexivity For all x, Not (x) < x.

Linearity For all x,y, x < y or x = y or x > y.

Left Linearity For all x,y,z, y < x and z < x implies y < z or y = z or z < y.

Begin There exists an x and not a value of y such that y < x.

End There exists an x and not a value of y such that x < y.

Predecessor For all x, there exists y such that y < x.

Successor For all x, there exists y such that x < y.

Table 3.1: Properties defining the temporal domain structure.

The properties “begin” and “end” state that the temporal domain is bounded

in the past (future). The properties “predecessor” and “successor” show that the

temporal domain is unlimited in the past (future). These relationships dictate the

set of formulae that temporal logics can express.

60

3.3 Ontological Descriptions of Time

3.3.1 Temporal Theories and Calculus

Theories of Time. The diversity of views of meaning of time has led to vari-

ous temporal theories in multiple domains from philosophy to physics passing by

knowledge representations. Thus, we identify and analyze those theories along with

corresponding temporal calculus in the context of CPS design. Time as point, in-

terval, duration and dimension appear among the leading theories [108, 115].

i. Time-point. The notion of a point in time supports this temporal theory;

this concept is sometimes assimilated to the one of a “position in a temporal

coordinate system” which has no duration and is useful in locating events on

the time-plenum.

ii. Time-interval. Pieces of time located on the temporal continuum (or time-

plenum) serve as a basis for the temporal theory. Some researchers have also

attempted to theorize Temporal regions. We’ll put those efforts in this category

of temporal theories with the rationale that an interval is a special type of

region. Allen’s temporal interval calculus [18] is an example of the interval

perspective while time in the context of space-time region in the Descriptive

Ontology for Linguistic and Cognitive Engineering (DOLCE) illustrates the

region viewpoint [179].

61

iii. Time-duration. Constant amounts of time that can be compared and are

distinctive from the length of the time interval are used to define time. Some

researchers have extended duration calculus for conventional control theory

[297].

iv. Time-dimension. Time is considered a physical dimension such as length,

mass or voltage, with unit and physical properties as specified by Gruber and

Olsen [108].

Selecting a Candidate Temporal Theory. Many engineering modeling paradigms

have looked at those theories mostly for the purpose of physical systems modeling,

merely considering time as simple quality of service parameter in the cyber world.

This has to change as temporal concerns in complex, software-intensive systems

such as CPS include guarantees that computations will be achieved within required

response times [155, 156]. Therefore, appropriate theories and calculus should: (a)

enable the appropriate granularity of time for system applications to be efficiently

captured by formal models and, (b) be backed by sound temporal logics that can

support practical temporal reasoning. Irrespective of the chosen theory and related

calculus, one ought to be able to clearly express relationships between temporal

entities. The ultimate goal is to later enable the reasoner to answer mereological

(part-of), topological (connects) and logical (”rules-based”) questions on the tem-

poral domain. One would also like to capture other relevant aspects of time such as

clock, calendar and temporal aggregates while adopting the appropriate granularity.

62

3.3.2 Specifications of Time

Researchers and practicians have long seek to develop easily understand-

able, reusable, flexible and formally defined ontologies of time. Whether they are

developed as part of foundational, Upper-Level or stand alone ontologies, their use-

fulness in large scale knowledge system [77] and the Semantic Web applications has

been shown very important [121]. Existing ontologies of time employ a combina-

tion of foundational theoretical primitives introduced in Section 3.3.1, but they are

otherwise strongly influenced by the targeted need for which they were developed.

The ontologies are usually structured using a combination of hierarchized classes,

properties, axioms and instances constructed on above-mentioned primitives. As

illustration, Hatala et al. [114] rely on a discrete time-space point model to store

user paths in their real-time audio museum application. Gruninger [109] introduces

time-point based axioms to support formalizing the process specification language

(PSL). The time in this theory is based on totally ordered time-points and it sup-

ports branches for possible futures. In OWL-Time [2], Instant and Interval are

basic mereological individuals, serving as foundational temporal entities (see Figure

3.2). Beside the selection of the temporal primitive and theory, the knowledge mod-

eler has to make a certain number of decisions regarding the granularity of time,

representation and use of calendars as well as temporal intervals (open vs close).

Despite sustained research efforts and resulting high variety of offers, a recent review

and analysis of the paper collection of the TIME Symposia series (http://time.di.unimi.it/)

63

:Instant

a owl:Class ;

rdfs:subClassOf :TemporalEntity .

:Interval

a owl:Class ;

rdfs:subClassOf :TemporalEntity .

:TemporalEntity

a owl:Class ;

rdfs:subClassOf :TemporalThing ;

owl:equivalentClass

[a owl:Class ;

owl:unionOf (:Instant :Interval)] .

Figure 3.2: Definition of instant, interval and temporal entity in OWL-Time.

from 1994 at 2014 shows that existing ontologies of time still do not meet all the

needs of the Artificial intelligence and Semantic web communities [72]. Those needs

have been formalized in the form of an ontology for which features of time satisfy

a “synthetic theory” defined by the TIME community. The profile of this baseline

theory are defined based on the attributes of selected concepts areas in the taxonomy

of temporal features shown in Figure 3.4.

The gaps identified are the lack of coverage by current ontologies of the

following critical aspects:

(i) Density of time which is a critical tradeoff parameter between model expressive

power and its computational complexity,

(ii) Relaxed linearity for expressing parallel independent time lines,

(iii) Scale factors which would enable time to run with different “velocities”,

(iv) Periodicity of temporal structures such as subintervals,

64

(v) Measures formats (e.g.: date/time) and clocks.

3.3.3 Allen’s Temporal Intervals Calculus

Allen’s temporal interval calculus (ATIC) is an interval-based temporal the-

ory developed and introduced by James F. Allen in the early eighties [18, 19]. He

identifies and specifies thirteen (13) relationships between any ordered pair of “con-

vex” time intervals as the core of his Interval Algebra. The main seven (7) relation-

ships are illustrated in Figure 3.3; Six (6) inverse relations also exist. The strength

of Allens interval algebra resides in its capability to manipulate interval and express

temporal properties and their evolution over those intervals. At the core of this

algebra is the relationship between time intervals. Thus, given two time intervals

I1 and I2, a time-point t and a proposition φ, we might ask a variety of questions

over the time domain such as: (1) Mereological or part-of questions (e.g., Is

the interval I1 a sub-interval of I2? Does t occur within I1? Is the interval I1 equals

to I2? What interval represents the temporal intersection of I1 and I2? Does inter-

val I1 contains interval I2?); (2) Topological or connects questions (e.g., Does

interval I1 happens before or after interval I2? Do intervals I1 and I2 meet? Do

intervals I1 and I2 start and/or end at the same instants?) and, (3) Logical or

rules-based questions (e.g., Does the proposition φ hold within the interval I1?

If φ holds during the interval I1 does it hold during I2 too? Does the proposition φ

hold before or after the interval I1?).

Hobbs & Pan [121] provide formal definitions of these interval relations in

65

intEquals (I1, I2)

Seven main relationships

I1

I2

I1 I2 I1 I2

I1

I2

I1

I2 I2

I1I2

I1

intDuring (I1, I2) intOverlaps (I1, I2)intFinishes (I1, I2)intStarts (I1, I2)

intMeets (I1, I2)intBefore (I1, I2)

Figure 3.3: Allen’s temporal intervals: Seven main relationships among intervals of
time

terms of before relations among their beginning and end points, which exist, given

their proper nature. Moreover, these intervals are closed i.e. if we consider intervals

over a time domain (T) with {beginAt, endAt, t} ⊆ (T), then t is within the closed

interval [beginAt, endAt] if beginAt ≤ t and t ≤ endAt. For instance, if I1 and I2

are two time intervals, the above intOverlaps relationship is defined as follows.

intOverlaps(I1,I2) ≡ [ProperInterval(I1) ∧ ProperInterval(I2)]

∧ (∃ t2, t3)[ends(t2, I1) ∧ begins(t3, I2) ∧ before(t3, t2)

∧ (∀ t1)[begins(t1, I1) ⇒ before(t1, t3)]

∧ (∀ t4)[ends(t4, I2) ⇒ before(t2, t4)]]]]

Clock, time zone and calendar definitions are added to this interval framework to

serve as the foundation of the OWL time ontology for the semantic web published

by W3C [2]. This time ontology is expressed in OWL DL which, as shown in Section

2.4.4, is a First Order Logic restriction based on SHOIN DL. This DL is decidable

thanks partially to well defined semantics and proven reasoning algorithms. Thus,

this qualifies OWL time ontology for time-based reasoning in framework for CPS

66

design.

Remark 3.1. A number of researchers [18, 78, 185] have determined that interval-

based models are more appropriate for formal analysis having time-dependent be-

havior than other models. In particular, interval-based temporal logics built over

Allen’s Interval Algebra [18] or Moszkowskis Interval Temporal Logic [185] appear

as adequate choices to support practical temporal reasoning for the class of CPS

systems of interest. However, it’s critical for intervals to be fully specified using

the granularity of time implemented in the cyber part of the CPS. Therefore, in

this work, we adopt interval calculus approach, which assumes that all intervals are

“proper” with a before relationship between their beginning and end instants, which

are fully specified time points. One of the key benefices of this specification is the

avoidance of situations where instances of time intervals are underspecified; that is,

either its beginsAt and/or endsAt properties have no values or the assigned values

are underspecified as noticed by Krieger [142]. Moreover, this allows the formulation

of restricted axioms which, when expressed in an ontology language, will ensure that

time reasoning is decidable.

3.3.4 Comparison of Leading Ontologies of Time

There is currently a wealth of ontologies of time resulting from extensive

research in academia and in-house development by industry or joint effort. Even

though they seek to formally represent the temporal domain in an unambiguous,

human and machine readable way, their features appear clearly different as shown

67

in Table 3.2. Most state-of-the-art ontologies are developed in OWL with time-

interval and/or time-point as theoretical foundations but they define and employ

various root concepts. However, most root concepts subsume Time Point and Time

Interval which enable the axiomatization of time-interval calculus such as Allen’s

temporal interval calculus.

When developed as part of foundation or upper level ontologies, the time

ontology is merely an extension of such models and is highly influenced by the

needs and requirements of those research efforts. It is not the case for stand alone

ontologies which requirements and construction are more specifics and tend to be

exhaustive. This certainly explains why leading stand alone time ontologies tend

to over-perform upper ones when it comes to satisfying the specifications of the

reference time ontology (synthetic theory) as shown in Table 3.2. Cyc Time and

Suggested Upper Merged Ontology (SUMO) Time appear to be the best founda-

tional ontologies but meet less than 60% of the reference ontology specifications as

opposed to OWL Time. The latter emerges as the best stand alone ontology whose

75% of the features match the one of the reference time ontology. Time ontologies

are compared on six dimensions as follows [72].

68

Figure 3.4: The taxonomy of important temporal features as determined by the TIME community [72]. The six concepts whose
attributes are used to characterize Time ontology and compare their various implementations are highlighted and numbered. They are chosen based
on the importance dimmed by the TIME community of their attributes in characterizing a perfect Time ontology reflecting a “ Synthetic theory”.

69

Category
Time on-
tology

Root con-
cept

Theory
Implem.
Language

Degree satisf. synth. theory(%)
Description/download#

TF TE TS TP TR TM All&

Foundational
or Upper-
Level Ontolo-
gies

Cyc Time TimeInterval Time-
interval

CycL 63 29 50 50 100 33 58 http://www.cyc.com/platform/opencyc/

SUMO Time Time posi-
tion

Time-point
& Interval

SUO-KIF 38 71 0 63 100 67 58 http://www.adampease.org/OP/

DOLCE Temporal
Location

Time-region OWL 0 7 0 0 0 33 4 http://www.loa.istc.cnr.it/old/DOLCE.html

BFO Time Time-region OWL-DL 19 21 0 6 17 33 15 http://jowl.ontologyonline.org/bfo.html

GFO-BT Chronoid Time-
interval
& Point

OWL 25 57 25 0 58 0 29 http://www.onto-med.de/ontologies/gfo/

PSI-ULO TimeInterval Time-
interval

OWL-DL 50 57 0 0 0 0 22 http://isrg.kit.znu.edu.ua/

Ontologies of
Time

OWL-Time Temporal-
Entity

Time-
interval

OWL- DL 63 86 63 63 100 67 74 http://www.isi.edu/ hobbs/owl-time.html

TimeLine TimeLine Time-
interval

RDF 31 57 25 50 33 33 40 http://motools.sourceforge.net/timeline/ti-

meline.html

Reusable
Time

NA∗ Time-point
& Interval

KIF, OKBC 63 93 38 56 100 33 68 http://www.ksl.stanford.edu/ontologies/time

PSI-Time TimeInstant Time-Point OWL- DL 88 86 50 25 100 67 69 http://isrg.kit.znu.edu.ua/

AKT Time Time-entity Time-point
& Interval

Ontolingua
& OCML

13 29 0 50 0 33 22 http://projects.kmi.open.ac.uk/akt/ref-

onto/

SWRL Tem-
poral

ValidTime Time-
interval

OWL 0 57 25 63 75 0 40 http://swrl.stanford.edu/ontologies/built-

ins/3.3/temporal.owl

SOWL Temporal-
Entity+

Time-
interval+

OWL 63 86 50 63 92 67 71 http://www.intelligence.tuc.gr/prototypes.php

Table 3.2: Characterization and evaluation of leading ontologies of time.
Legend: ∗ Both Time-Interval & Time-Point were identified as main concepts; +Inferred from OWL-Time given that Temporal concepts in this

ontology are defined using OWL-time; & Based on all (36) attributes identified; #Accessed July 22, 2016. Selected parameters and features of the
Synthetic theory of time for the evaluation : TF=Temporal Features; TE=Temporal Elements; TP=Temporal Properties; TR=Temporal Relations;
TM= Temporal Measures.

70

• Temporal features and properties (TF & TP). Temporal features are primi-

tives that embody the basic theory of time and it incidence (especially in the concept

of motion). This translates into the ability of the time ontology to define the right

density, order, periodicity of time as well as handling temporal uncertainty. Tempo-

ral features of the PSI Time ontology appear the closest to the ones required by the

reference ontology. Among the critical temporal properties the time ontology should

represent are time granularity, scale, duration, date format and timestamps. OWL

Time, SWRL Temporal, SOWL and SUMO Time score the best on this dimension.

• Temporal Elements and Structures (TE & TS). Temporal elements are primi-

tive entities that make up a temporal theory as introduced in the taxonomy in Figure

3.4. Thus, the time ontology should be able to properly define and capture temporal

primitives such as Time Points, Temporal Intervals or Temporal Segments . Almost

all stand alone ontologies perform well on this dimension with the Reusable Time

being the best. On the other hand, Temporal structures are purpose-driven com-

pound constructs built from base primitive structures and temporal elements such

as temporal periods or Calendar. This seems to be a hard to meet specification as

almost all ontologies fail to get past the bar of 50% match of the reference ontology.

However, OWL Time ontology stands among all the ontologies considered.

• Temporal Relations and Measures (TR & TM). Relations between temporal

entities and structures are binary properties linking them. Even though the arity

of the relations can be higher than 2, relevant ones do not exceed that limit. Thus,

the ontology should be able to represent Interval-to-Interval (crisp and/or fuzzy),

Interval-to-Point and Point-to-Point relations. Many upper (e.g.: Cyc, SUMO)

71

and stand alone (e.g.: OWL, Reusable Time, PSI-Time) ontologies fully satisfy the

expectations of the reference ontology.

Figure 3.5 summarizes the comparison between the leading upper and stan-

dalone time ontologies. None of them matches all the specifications of the reference

ontology as per the synthetic theory, nor dominates all the others ontologies in all

the dimensions. However, OWL Time appears to match or exceed the performance

of the others in all the dimensions except for the Temporal features where it’s dom-

inated by PSI-Time.

Figure 3.5: Comparison of leading ontologies of time to the reference ontology
(Synthetic theory) as defined by the TIME Community. The six dimensions of
the evaluation are as follows. TF=Temporal Features; TE=Temporal Elements;
TP=Temporal Properties; TR=Temporal Relations; TM= Temporal Measures.

72

3.4 Temporal Reasoning and Rules

3.4.1 Temporal Logic

Temporal logic plays an important role in systems design when we want not

only to know what is true, but when? Mathematical formalisms for temporal logic

are particularly useful for describing the properties of concurrent systems, where

individual processes must be coordinated in order for “correct behavior” to occur

[231]. In this context, behavior means how a system will react to external stimuli

and internal events (critical to reactive systems and real-time systems). Constraints

tend to fall into two categories: 1. Events and event orderings, and 2. Quantitative

temporal constraints.

Figure 3.6: Schematic for linear (left) and branching (right) temporal logic.

The terms linear and branching refer to the structures upon which a formal logic

is interpreted. In both cases, linear and branching time logic, system behavior is

73

described in terms of actions and state sequences. As illustrated on the left-hand

side of Figure 3.6, A model of linear-time temporal logic (LTL) is an infinite linear

sequence of states. where each point in time has a unique successor. Temporal for-

mulas are evaluated over such a sequence of states together with an index i=0,1,2,...

of the i’th state. A model of branching temporal logic (BTL) is an infinite sequence

of states where each point in time may have multiple successors. Branching time

describes all possible time lines.

3.4.2 Jena Rules for Temporal Reasoning

Rules are the underlying mechanisms and enablers of inferencing services

introduced in Section 2.2.2. In Jena, multiple inference engines or reasoners can be

configured and plugged to allow the derivation of additional RDF assertions. Rules

are generally of the form ”If...(condition)... then, ... (consequence) ” statements

(more in Section 5.3.5). The first part (or body) states the set of conditions that

should be satisfied before the rule is fired while the second part (or head) specifies

the new state. Rules formalize relationships and interactions between entities types

in a domain, as such they apply to the TBox of the knowledge base K〈T ,A〉 as

introduced in Section 2.2.2.

Jena enables the formulation of rules to characterize a certain number of prop-

erties and perform qualitative and quantitative evaluations on a domain. In the case

of temporal domain, let’s consider three rules for the following purposes : (R1) to

characterize the order of occurrence between time instants, (R2) to compute the

74

duration of time intervals or, (R3) to specify the “intFinishes” relationship between

two intervals as per ATIC. The following excerpt shows the Jena implementation of

the selected rules.

// Rule 1: Deduction of happensBefore relation between time instants...

[HappensBefore: (?x rdf:type af:Instant) (?y rdf:type af:Instant)

(?x af:hasTime ?t1) (?y af:hasTime ?t2)

lessThan(?t1,?t2) -> (?x af:happensBefore ?y)]

// Rule 2: Compute and store the duration of a time interval...

[GetDuration: (?x rdf:type af:BeginEndTimeInterval) (?x af:beginsAt ?y)

(?x af:endsAt ?z) getDurationInterval(?y,?z,?d) -> (?x af:hasDuration ?d)]

// Rule 3: Deduction of intFinishes relation between time intervals...

[IntFinishesRule: (?x rdf:type af:ProperTimeInterval)

(?y rdf:type af:ProperTimeInterval) (?x af:endsAt ?t)

(?y af:endsAt ?t) -> (?x af:intFinishes ?y)]

3.5 Case Study: Temporal Modeling and Reasoning in Action

Figure 3.7 illustrates a case study problem of modeling in the temporal

domain with ontologies and rules.

3.5.1 The Time Ontology

The upper right-hand side of the figure shows an excerpt of the time ontology

with a representation of the relationship among classes and properties. A tempo-

ral entity has properties: #beginsAt, #endsAt, and #hasDuration. #Interval and

#Instant are subclasses (specializations) of the class #TemporalEntity. #ProperTimeInterval

and #OpenTimeInterval (not shown) are specializations of class Interval. An

75

#Instant is a #TemporalEntity that has a clock time attached/associated to it.

The following excerpt illustrates the formal description of a #ProperTimeInterval.

<owl:Class

rdf:about="http://www.isi.edu/~pan/damltime/time-entry.owl#ProperTimeInterval">

<rdfs:subClassOf rdf:resource="&time-entry;TemporalEntity"/>

<owl:disjointWith rdf:resource="&time-entry;Instant"/>

<owl:disjointWith rdf:resource="&time-entry;OpenTimeInterval"/>

</owl:Class>

Properties can be distinguished by their domain and range. Both the domain

and range of ObjectProperty are ontological classes. Restrictions (e.g.: Reflex-

ive, Symmetric, etc.) can be added to this type of property to constraint their

behavior and their inverse can also be defined. Unlike objectProperties, the range

of DatatypeProperty in ontologies are primitives or specialized datatypes. For in-

stance, the following excerpt describe the #hasTime DataProperty. Its range is an

entity of type dateTime

<owl:DatatypeProperty

rdf:about="http://www.isi.edu/~pan/damltime/time-entry.owl#hasTime">

<rdfs:domain rdf:resource="&time-entry;Instant"/>

<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:DatatypeProperty>

3.5.2 Semantic Graph Transformations

The upper left-hand side of Figure 3.7 shows a set of facts and three rules. The

facts are: (F1) An entity E1 is at location X at time tX and at time tB at location

B. (F2) Entity E2 is at location S at tS and at B at tB. (F3) Interval tXB starts

and ends at the same time respectively as tX and tB. (F4) Interval tSB starts and

76

Figure 3.7: Illustration of semantic-driven modeling and reasoning in the temporal
domain.

ends at the same time respectively as tS and tB. The rules are (R1)-(R3), defined in

Section 3.4.2. The rules are applied to the ontology to transform the structure of the

time semantic graph through inferencing as introduced in Section 2.2.2. First, the

ontology is initialized with the set of facts (F1)-(F4). To that aim, the capability of

the Jena API is used to extract classes and properties from the loaded ontology, then

create semantic-compliant temporal data and finally add the fact as a statement in

model of the semantic graph for the temporal domain. As an illustration, the key

steps to encode the first part of fact (F1) are as follows.

77

// Create individual tX as an instance of the class TemporalEntity

tX = modelTime.getOntClass(ns + "TemporalEntity").createIndividual(ns+"timeAtX");

// Extract hasTime property from the loaded time ontology; add to ‘‘modelTime"....

hasTime = modelTime.getDatatypeProperty(ns + "hasTime");

// Encode the temporal data using the valid dateTime representation

Literal timeX = modelTime.createTypedLiteral("2013-02-28T09:00:10Z",

XSDDatatype.XSDdateTime);

// Write the fact as a statement in the form Subject-Predicate-Object

Statement timeAtXinstant = modelTime.createStatement(tX, hasTime, timeX);

// Add the newly formed statement to the semantic graph

modelTime.add (timeAtXinstant);

The schematic along the bottom of Figure 3.7 shows the evolution of part of the

time semantic graph as the three rules (R1)-(R3) are executed as a function of time.

The first view (Initial Facts) is a representation of the graph after all the facts (F1)-

(F4) are encoded. Some of the data such as the type/class of individual temporal

entities (not shown) remains constant over time. Other data and relations between

entities are dynamic and controlled by time domain rules. As a case in point, after

rule R1 is executed, the graph is expanded with creation of the #happensBefore

objectProperty between tX and tB on one hand and tS and tB on the other hand.

rule R2 adds new data (the duration of time intervals) and property (#hasDuration),

which further expand the graph. The last rule creates the symmetric #intFinishes

objectProperty between intervals #tXB and #tSB.

Figure 3.8 shows some of the statements on the time interval tXB stored in

the data repository after all encoded domain rules are executed on the initial set of

78

Figure 3.8: Excerpt of statements relative to the time interval tXB stored in the
data repository after all encoded domain rules are executed on the initial set of
facts. Initial facts regarding tXB is translated by statement #1 and #3 (for F3).
The impact of the selected set of rules is visible in statements #7 (for rule R2) and
statement #4 (for rule R3). Rule R1 does not have any effect on tXB.

79

facts. The initial facts regarding tXB is translated by statement #1 and #3 (for

F3). The impact of the selected set of rules is visible in statements #7 (for rule R2)

and statement #4 (for rule R3). Rule R1 does not have any effect on tXB. We also

note multiple other statements such as #2, #8 to #13 resulting from other rules.

Remark 3.2. At execution time, rules are not fired in a particular order but

they are not fired in a complete random manner neither. The statements in the

data repository are constantly evaluated with respect to the premise or body of

rules before the rule is fired. However, the modeler can add control mechanisms to

control/enforce a certain order in the execution of the rules. Also, Jena provides

mechanisms to reduce the size of the graph by removing statements. The latter can

be replaced by new ones when updating the graph without expanding its size.

80

Chapter 4: Semantic Modeling of Space

4.1 Introduction

This chapter examines spatial semantics and their use in supporting the cre-

ation of accurate, precise, scalable and reusable models of space in the context

of safety-critical cyber-physical systems (CPS) design. The central premise of our

work is that ensuring the safety of such systems requires the development of a

scalable, flexible, and customizable ontological framework that supports the em-

bedding of physical semantics into cyber models for system smartness. Thus, we

need ambiguity-free models of space that properly capture the spatial configuration

of the system as it’s materialized in the world. This is an essential foundation for

reasoning tasks involving spatial entities.

We discuss the key role that ontologies can play in capturing and formally

representing the space domain. Spatial theories and semantics supporting the for-

malization of spatial knowledge and the decidability of derived spatial reasoning

systems are reviewed in Section 4.2. The ontological descriptions of this domain

are conducted in Section 4.3. In Section 4.4, we develop and describe a simple,

81

multi-dimensional tree structure of spatial models that support the representation

of spatial entities at various level of granularity and enable the use of associated

operations and predicates essential for reasoning using complex spatial datatypes.

We highlight the central role of the region connectedness calculus (RCC-8) algebra

and spatial relationships to support the reasoning about space and spatial regions.

The supportive geometry algorithm for the implementation in Java is introduced

in Section 4.5. A case study demonstrates the use of semantic web technologies to

support spatial knowledge representation and reasoning is described in Section 4.6.

4.2 Space and Spatio-Temporal Theories

4.2.1 Spatial Theories and Calculus

Theories of Space. As for time, there is a need for formal definition of space to

support the ontological modeling of this domain and systems in which they play an

important role, especially when it comes to safety. Thus, we revisit Vieu’s views

in [276] and we adopt a mereotopological categorization of spatial theories which

mirrors - to a certain extent - the one of temporal theories. However, unlike time,

space is not oriented, nor cyclic. This leads to the following classification of main

spatial theories and calculus.

i. Space-point. Space is perceived as arrangement of points with focus on orien-

tation and distance concepts. Other extended spatial entities such as lines and

regions are defined as sets of points. This is the view adopted in mathematical

82

theories of space [118,235,275]. However, in [39], points are centers of regular

3D shapes (sphere).

ii. Space-interval. Tuples of intervals resulting from the projection of regular

regions (i.e., rectangular shapes) on the axes of a reference frame are the prim-

itive spatial entities in this class of spatial theories. These theories are mostly

inspired and attempt to mimic Allen’s temporal calculus [110, 188]. However,

they go beyond mereotopological information to account for orientation infor-

mation as well.

iii. Space-array. In this theory, space is a collection of arrays, i.e., a discrete

coordinate system. It has the advantage to concurrently capture topological,

orientation and distance information all at the same time. This theory is

widely use to support computer visualization and spatial databases applica-

tions as well as linking visual and linguistic spaces [96, 111, 150].

iv. Space-region. A region of any shape with dimension higher than one is the

primitive in these theories. However, regions should be of the same dimension

as the whole space and their interior should not be empty. Major variations

include the earlier version of the region-based theory axiomatized around the

connection relation C and further extensions [51,274,282]. Also, theories built

from one mereological (part) and one topological (contact or external connec-

tion) relations belong to this category [39].

83

v. Space-multidimension. There is no restriction on the dimensionality of spa-

tial primitives nor on the one of the whole space in these theories. They do

not assume nor define a hierarchy between their primitives, but introduce in-

cidence relationship in lieu of ontological dependency. Some of theses theories

focus on rendering multiple dimensions as do humans [89, 101] while others

introduce and support the notion of boundary [247]. Plus, the mathematical

expressivity of such multidimensional spatial theories is of interest for some

researchers [53].

Additional Considerations. Despite the high variety and depth of spatial theo-

ries, a full accounting of space remains more challenging than one of time. Theoriz-

ing space is rendered more complex because of non-mereotopological aspects such

as dimension, orientation, shape, length, area or volume that are relevant in many

applications such as robotic or engineering design. Existing theories accounting for

these aspects often involve explicit triadic relations as it’s the case of (1) Cyclic

order (CYCORD) relation-based calculus [227] or points-qualitative values function

mapping calculus for orientation [235] and, (2) CanConnect primitive-based cal-

culus [64] or delta calculus [302] for distance and size. When it comes to shape,

various approaches based respectively on slope projection, curvature and boundary

segments [137,165,226] are among those that have been investigated. Also, latitude,

longitude, elevation, geopolitical subdivisions or aggregates are of high importance

in Geographic Information systems (GIS) applications [120].

84

On the other hand, results of the composition of spatial primitives from mere-

ological and topological representations are not always unique. Moreover, in spatial

systems, the accuracy of computation and control often depends on the number

and location of sensors as well as their capabilities. If the sensors are moving, then

timeliness of computations will be affected by the velocities of both the sensors and

objects moving throughout the environment.

Selecting a Spatial Theory. The complexity involved in the formal description

of space does not make the selection of a given theory an easy task. However, the

presence of physical entities in complex systems such as CPS dictates that one stays

away from pure philosophical debates - such as the existence or not of vacuum [16,

287] - in the selection approach. Thus, theories that foster geometrical or physical

structure representations of space while enabling the addition of key extensions

above, will be considered for their practical ability in supporting reasoning tasks.

This is consistent with the Newtonian view of space which distinguishes space from

the objects with a location within it as opposed to Leibnizian approach which defines

space in term of inter-relationships between objects [39].

Remark 4.1. (Uncertainties in Spatial Knowledge Representation). As already

seen for time, notions of space can be under-specified in utterances and natural

language expressions. For instance, consider the following expressions: (a) The

car wandered around the 188 train accident scene and, (b) The car wandered to

the 188 train accident scene. As pointed out by Thorton [267], the pairing of the

non-directional verb “wander” and the prepositions “around” and “to” leads to

85

ambiguity that needs either resolution or semantic coercion to properly interpret

the notion of place (a) and path (b). Furthermore, the dimension(s) of the two

spatial concepts (i.e., place and path) is (are) unknown, but it (they) can be very

relevant as we’ll later see.

Also, traditional representation approaches of spatial knowledge generally

assume that (1) boundaries of spatial regions are well-defined and, (2) regions can

be physically observed and rendered as sharp objects. However, Freska [83] points

out that, this assumption is inappropriate since real world limitations in knowledge

acquisition makes uncertainty inherent to the spatial data captured and represented.

4.2.2 Spatio-Temporal Theories

Space-Time. Given the prospect of increasing complexity in handling separately

temporal and spatial theories within a common reasoning framework researchers

have looked into ways to formalize space and time into single space-time theories.

This adds in complexity to the challenge of ensuring satisfiability of the reasoning

process for system models that rely on such theories. The satisfiability of the rea-

soning is now conditioned by the actual existence, in the real world, of the logical

configuration inferred. Thus, the world of the system (such as a CPS) should be a

”living” one, where space and time are clearly defined and well understood. In [265],

the author postulates that, in such a world, the dimensionality of space-time must

be (3+1). He shows that the hyperbolicity property that enables observers to make

predictions will lack in partial differential equations if the dimension of time is dif-

86

ferent from 1. Also, space with less than three dimensions won’t contain observers,

nor allow gravitational forces. Plus, the stability of structures will be problematic

and the fundamental existence of traditional atoms will be questioned in space with

more than three dimensions.

Spatio-Temporal Theories. One of the main interests in plain spatio-temporal

theories lies in the ability to formally describe and reason about motion in a qual-

itative way. Also, changes in spatial entities over time is another important need,

especially in GIS [98]. These capabilities are highly influenced by the foundational

view of the universe adopted by the developer of the theory. For this research, those

theories that are flat space-time geometry - as per either Minkowsky view (space-

time as whole) [182] or Newtonian (space + time independent) view - appear to be

the most attractive.

Proponents of unification have focused their effort on developing theories

that attempt to construct a unified representation from foundational temporal and

spatial theories introduced above. Some have centered their theories on topological

aspects of space-time with various primitives such as: (a) space-time histories [187],

(b) temporal space [49] and, (c) spatio-temporal trajectory (STT) [296]. Another

unified theory constructs spatio-bitemporal objects (ST-simplex and ST-complex)

from 2D spatial and temporal primitives [289]. However, because of the reliance on

2D temporal entities, this theory does not satisfy the hyperbolicity property, thus,

it’s inappropriate in the context of this research.

Researchers that make use of Newtonian view of the universe maintain a

87

clear separation between original spatial and temporal theories and rely on various

solutions to address the challenge of linking time and space in describing motion or

events. One possibility explored by researchers has been to borrow concepts and

ideas from graph theory to support semantics of graph-based models for spatio-

temporal evolution [63, 93]. Another direction investigated has been the definition

of hierarchical relationships in temporal and spatial domains. This effort has been

coupled with the development of modular integration procedures that enable both

the location of events in space and spatio-temporal queries [50].

4.3 Ontological Descriptions of Space

4.3.1 Ontologies of Space

The increasing need for unambiguous and formal qualitative account of

space, location and movement in space in various areas such as robotic [144], urban

environments [151], science [236], geographic information systems [81,217] has driven

the development of spatial ontologies in those domains. Research in some of these

areas has led to the development of domain specific ontological languages. For

instance, the geographical markup language(GML) [11] has been proven effective

in representing geo-ontologies especially in the context of retrieval of geographic

information on the web [13]. Similarly, CityGML has been used to represent 3D

urban objects in city models [107].

Bateman et al. [30] try to break away from application domain dependence

88

of spatial ontologies by introducing“detailed semantics” for linguistic spatial ex-

pressions supportive of computational processing that draws substantially on the

principles and tools of ontological engineering and formal ontology. Because of the

narrow view adopted by many of these “domain oriented approaches” and their

ontological considerations, resulting ontologies of space are limited in scope, access

and uses. However, independently of their applications, ontologies of space need to

support models of space that are three-dimensions (or less) and work with ontolo-

gies and models of time that are one dimensional. Thus, we ought to investigate

ontological approaches that embrace a broad view of space i.e. 3D upper ontolo-

gies that guarantee the satisfaction of the hyperbolicity property (see Section 4.2.2)

when combined with 1D time in space-time.

4.3.2 Classes of Spatial Ontologies

Spatial ontologies can be organized into hierarchies of spatial concepts (a

taxonomy), and can be made more rigorous through the addition of axioms [6,179].

They can be grouped into two main categories as follows:

1. Hierarchical Spatial Ontologies. In this class of ontologies, entities definitions

are classified and organized hierarchically, resulting in a tree structure. In

SUMO [6], spatial entities are part of the physical universe, thus, its use of a

“physical concept” as the root of the tree as shown in Figure 4.1. Objects in

SUMO-space are defined with respect to their shape and position as attributes.

A “SpatialRelation” class generalizes a taxonomy of relationships between

89

spatial entities. OpenCyc [7] follows the same decomposition principle as

SUMO, but it uses a different root i.e. “SpatialThing”. However, the latter

does not make a formal reference to objects of any kind. The reference is made

to concrete, observable spatial categories through the notion of “SpatialThing-

Localized.” OpenCyc has an extensive library of path constructs that make up

its path system. In this category, we also list the dormant effort of developing

OWL-space and linking it with SUMO and OpenCyc. It has been viewed as a

counterpart of OWL-time and is been developed as an extension of the DAML

for space with GIS as the primary application area [120].

Figure 4.1: Taxonomy concerning physical in SUMO [31]

2. Axiomatized Spatial Ontologies. This category of ontologies is characterized by

rigorous ontological definitions strengthened by axioms. The spatial dimension

of DOLCE [179] has an intentional bias toward cognitive knowledge to make it

more suitable for use in the context of semantic web. Thus, “entity” is the root

element of the taxonomy whose categories are rigid properties. Also, DOLCE

adopts a dynamical view of spatial entities by distinguishing between enduring

90

and perduring entities. Axioms in basic formal ontology (BFO) [248] are built

under the premises that reality can be described using two kinds of ontolo-

gies: SNAP and SPAN ontologies. The former is purely spatial and provides

a snapshot of the reality though a description and relationships between con-

stitutive endurant elements. Time is intrinsically present in the latter, thus,

entities in SPAN ontologies are located in a space-time continuum. They un-

fold themselves with respect to a given time interval, domain of reality, and at

some spatio-temporal level of granularity. Overall, DOLCE can be considered

as a special type of SPAN ontologies while SUMO and OpenCyc would be

classified as SNAP ontologies.

4.4 Multi-Scale Spatial Modeling and Reasoning

4.4.1 Space Matters: Need for Formal Models of Space for CPS

Space Matters. In order for formal approaches (such as model checking and the-

orem proving) to the verification of CPS to be effective, system models need to

capture the appropriate granularity of space considering it can be under-specified

as shown in Section 4.2.1. State-of-the-art models of safety-critical systems and

formal verifiers use 0D models of space [95, 259] built on space-point theories.The

absence of spatial boundaries in these system models makes it impossible to prop-

erly track the interactions between the system elements, especially when they are

software-intensive and distributed as in most CPS [162]. In fact, among the five

types of spatial theories listed in Section 4.2.1, none effectively captures both the

91

mereotopological and non-mereotopological aspects of space for CPS modeling in a

practical manner.

Spatial Models. Spatial models can be classified as being either symbolic or ge-

ometric [15]. Geometric models make use of cells and/or boundaries as primitives

model entities. Symbolic models use topological-based structures and/or graphs

to capture connectivity, reachability and hierarchies between spatial entities. Even

though the latter class of models provides semantically compliant entities location

(partially) in a human-readable way along with topological relationships, their onto-

logical commitment with regard to the spatial theories introduced in Section 4.2.1 is

ambiguous. Thus, they can’t be systematically traced to a sound logical foundation.

This makes their use in the context of reasoning for safety-critical CPS applications

inappropriate.

This observation points to a strong need for geometric models, with primi-

tives specified at the desired granularity of space. Fortunately, for the family of CPS

considered in this research, the constraints of determinism and precision on mod-

els can be translated, with regard to the account of space, into mereotopological-

related descriptions. Therefore, theories with strong mereotopological focus and

mechanisms to account for some relevant non-topological aspects are acceptable

spatial foundations for our models. To that extent, space-region theories appear

to be excellent candidates, thus our choice of the Region Connectedness Calculus

(RCC) [56, 225, 233].

92

Figure 4.2: Eight types of relationships between spatial entities in Region Connec-
tion Calculus (RCC-8).

4.4.2 Qualified Theory: Region Connectedness Calculus

Overview. The region connectedness calculus is a space-region theory for space.

Its beauty lies in its strong mereotopological focus and flexibility to seamlessly

integrate with “low dimension” theories and extensions to account for key relevant

non-topological aspects such as distance, area, volume and other relevant features.

Also, this spatial calculus is precise enough to clearly distinguish convex to concave

shapes and it can handle uncertainties in regions’ boundaries. Moreover, it provides

efficient support to inferencing in static and dynamic situations, a capability critical

for qualitative reasoning about motion.

At the core of this algebra is the relationship between spatial regions. Given two

spatial regions S1 and S2, a space-point p and a proposition φ, we might ask a

93

variety of questions over the space domain such as: (1) Mereological or part-of

questions (e.g., Is the region S1 a subset of S2 ? Does p lie within S1 ? Is the region

S1 equals to S2 ? (2) Topological or “connects” questions (e.g., Do intervals S1

and S2 meet ? Do regions S1 and S2 overlap ?) and, (3) Logical or rules-based

questions (e.g., Does the proposition φ hold within the region S1 ? If φ holds within

the region S1 does it hold within S2 too ?)

Cohn [56] has identified and specified eight (8) relationships - based on the

primitive relation “connection” C - between any pair of regions as the core of this

Algebra, thus the name RCC-8(there is a RCC-5 version too). Those relationships

are illustrated in Figure 4.2. The excerpt below illustrates the definition of Part,

Overlaps and Partially Overlaps relationships between 2 given regions x and y.

P(x,y) : ∀z[C(z, x) → C(z, y)] ; x is a part of y

O(x,y) : ∃z[P (z, x) ∧ P (z, y)] ; x overlaps y

PO(x,y) : O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) ; x partially overlaps y

Restrictions. One limitation of RCC is its inability to make a clear distinction

between open and closed regions as well as the dimension of spatial regions. On the

other hand, results of the composition of spatial primitives from mereological and

topological representations can result to multiple possible spatial configurations in

the world which can not be properly captured by the reasoner. Thus, we need to

add restrictions to RCC models with the primary concern of ensuring decidability of

spatial reasoning. These restrictions include, but are not limited to, spatial entities

with shape as regular as possible and limitation to pair-wise (mereo)topological

94

relationships. Also, in order to maintain the hyperbolicity property for space-time

interactions, we restrict the maximum dimension of space to three (3), which does

not eliminate the possibility to navigate to and visualize lower dimension spatial

entities. These constraints allow the formulation of restricted axioms which, when

expressed in an ontology language, will ensure that spatial reasoning is decidable.

4.4.3 Spatial Modeling Architecture and Description

In this section, we introduce a new spatial-based modeling and reasoning

architecture to support the modeling of space, as a metadomain in the context of

safety-critical CPS design. The system architecture is shown on the left-hand side

of Figure 4.4.

1. Multidimensional Spatial Modeling. This module provides to others the

formal model of space in conformance to the spatial theory of interest i.e. restricted

RCC-8 in this case. Model entities are organized into an hierarchy of four types

of spatial entities enriching each other from top to bottom as shown in Figure 4.3.

However, given that each type of model is from a different dimension, they can each

stand by themselves while enabling the representation of spatial entities at various

levels of fidelity using OD (point), 1D (line), 2D (polygon) and 3D (polyhedra)

representations as shown in the middle of the figure. For each of these representa-

tions, a specific type of geometry will ultimately support the encoding and storage

of spatial data of the entity subject to analysis and reasoning. A given layer of the

hierarchy is typically composed of three types of spatial entities as follows.

95

Figure 4.3: Spatial models hierarchy and representations.

Figure 4.4: Spatial modeling and reasoning framework extended with views for race
track simulation and analysis. The three main elements of the framework are: (1)
models of space, (2) models of components, and (3) support for spatial reasoning.

96

a/ Primitive entity. This is the foundational model of space for the dimension

considered. It directly emulates the foundational primitive concept in the restricted

spatial theory. Thus, Node, Lineblock, Spaceblock and Volumeblock are respectively

translations of point (space-point), and regions in dimensions 1, 2 and 3 in RCC-8.

b/ Extended entity. It’s an enriched version of the primitive entity with additional

non-mereotopological attributes and features that may be particularly relevant for

the application of interest. This entity also offers ways to differentiate between

model entities of the same dimensions, as seen for 2D and 3D entities.

c/ Composite entity. Composite entities are made of the composition of two or more

primitive (or extended) entities within the same dimension. The “composition” of

spatial entities at a given level implies the composition of lower level entities, if they

are part of the top level entity.

The “containment” connector is a weaker “composition” between spatial entities

of higher and lower dimensions. It helps define and refine the definition of spatial

entities at various level of the hierarchy. Also, the arrow on the right side of Figure

4.3 shows that the expressiveness and accuracy of the spatial model come at a cost of

higher complexity and computation time. Moreover, in spatial systems, the accuracy

of computation and control often depends on the number and location of sensors as

well as their capabilities. If the sensors are moving, then timeliness of computations

will be affected by the velocities of both the sensors and objects moving throughout

the environment.

2. Component Modeling. In the context of CPS modeling, spatial model en-

97

tities do not stand by themselves. They are enrichment and properties of objects

and components in the real world. For instance, a “Vehicle” object can be defined

by the properties model, make, usage, maximum speed and owner. Adding the po-

sitional information on its geographical location such as its (x,y,z) geo-coordinates

turns the vehicle into a spatial object. The decision to “spatialize” components of

the CPS is dictated by the purpose of the application, the targeted analyzes and the

role they play in the system. Such components are marked with the stamp of the

corresponding spatial entity extension as shown by the PM and EEM annotations

in the central part of Figure 4.4. In safety-critical applications, we can differenti-

ate dynamic components (those whose location evolves with time) from static ones

(those that do not). Sensors are mounted on components (mobile or not) and they

have extended entity spatial model stamp. Actuators are left out this component

model, however, they can be added as part of the component in a way similar to

sensors.

3. Spatial Reasoning. Reasoning occurs at various levels of CPS in support of

system control (locally and globally). Thus, both control algorithms and reasoners

are an integral part of reasoning in the proposed framework. Irrespective of where

it occurs, reasoning involves the inputs, i.e., data from the component module,

the construction of facts and inferencing of new facts that are synthesized by the

controller using the appropriate algorithm. It then generates outputs directly to the

appropriate actuator(s) or the lower level controller.

As for the handling of spatial entities during the reasoning process, the

98

formal definition of concepts as per the theory is handled by the Tbox of the DL

knowledge base. It contains “terminological” space axioms mostly in the form of

mereological and topological binary relations (as defined in Section 4.4.2) embedded

in the structure of the space ontology. These axioms also provide type definition

to spatial objects contained in the Abox which encompasses assertional axioms on

the space domain. The rules engine encodes and enforces system-level rules and

calculations that affect the domains involved in the CPS behavior. This spatial

modeling architecture makes use of rule-based reasoning which encodes rules in the

form of “if...then” statements. The spatial reasoner (1) checks for (un)satisfiability

of propositions constructed with the combination of Tbox and Abox elements in

order to ensure consistency of the space knowledge base and, (2) infers new relations

between input/existing space concepts and objects.

As for time, tableau algorithms can support the testing and checking of con-

sistency in the database and the construction of a clash-free tree of spatial concepts.

Put together, these trees compose triple (RDF) graphs of queryable space concepts.

Both Subjects and Objects in triples are convex space regions and Predicates are

fully compatible with RCC-8 specification as defined in Section 4.4.2.

4.5 Working with the Java Topology Suite (JTS)

The Java Topology Suite (JTS) is an object-oriented software library provid-

ing Euclidian planar linear geometry algorithms in computational geometry. The

initial goal of the project that led to the development of JTS was to develop a

99

Figure 4.5: An annotated view of Java Topology Suite Test Builder User interface
(source: https : //live.osgeo.org/en/overview/jtsoverview.html).

Java API implementing the Open Geospatial Consortium (OGC) Simple Features

Specification for the Structured Query Language (SQL) [60]. The Simple features

specification is an ISO standard (ISO 19125) that specifies mechanisms for storage

and access of (mostly) two-dimensional geographical data. The current version of

JTS (1.8) - released under the GNU Lesser General Public License - provides a com-

plete, consistent and robust implementation of fundamental 2D spatial algorithms

(visit http://www.vividsolutions.com/jts/JTSHome.htm).

As a geometry engine, JTS offers several key capabilities including (1) formal

definition and representation of all types of geometries such as Point, MultiPoint,

100

LineString, MultiLineString, Polygon, MultiPolygon, GeometryCollection, (2) ge-

ometry methods for establishing spatial predicates, performing overlay operations,

and computing metrics such as area() and length() and, (3) geometry processing

operations such as line merging, noding & polygonization or simplification. Along

the path towards designing and debugging spatial algorithms for JTS, researchers

have recognized the central role of spatial visualization. Thus, they have devel-

oped JTS TestBuilder, an interactive desktop interface enabling users to run tests

and experiment with geometry. The intersection matrix of spatial objects is repre-

sented using the Dimensionally Extended nine-Intersection Model (DE-9IM) which

is a topological model and a standard used to describe the spatial relations of two

regions [258]. As shown in Figure 4.5 spatial objects can be visualized and binary

predicates (intersection, equals, overlaps, etc.) can also be tested.

The extensive, full-featured, robust, efficient library of spatial operations

provided by JTS has made it a cornerstone of leading spatial applications including

the Java-based Unified Mapping Platform (JUMP), GeoTools and Moxie Media

Internet Mapping Framework. In [61], the author provides a survey of JTS functions

and components as well as tips for using JTS as an engine for processing Geometry

and its components and APIs for spatial algorithm development.

101

4.6 Case Study: Spatial Modeling and Reasoning in Action

4.6.1 Case Study Description

Simple Spatial Reasoning. In this example, we consider the system shown in

Figure 4.6 a) representing a car (P0) driving through a work area (S0). The system

is modeled with two spatial entities, a Point P0 traveling on a linear trajectory Tr0

that crosses a rectangle S0. We seek to determine the relative position of the point

to the rectangle object as it travels along trajectory Tr0. From the world prospective

and for effective decision making, we want to know whether the following proposition

is true or not:

Φ0 : P0 is inside S0.

A usage of the value of this proposition could be to adjust/reduce the speed of the

car (P0) when it reaches the work area (S0) so it can cross safely.

Formally, this problem can be translated into a variety of questions as in-

troduced in Section 4.4.2 as follows: (a) Mereological : Does P0 lie within S0? (b)

Logical : Does Φ0 hold all the time as P0 travels along Tr0 ?

The implementation needs simplified geometric models of P0, Tr0 and S0.

Their underlining representations as respectively JTS Point, Line and Polygon al-

low the creation of corresponding semantic representations consistent with encoded

spatial knowledge.

Spatial Reasoning with Safety Constraint. System configuration in Figure 4.6

102

Figure 4.6: Simple spatio-temporal reasoning examples

b) is considered in this case. Now, two cars (P1 and P1) compete for the access to

the resource (S1) and only one can use it at a time. The system is modeled using

two points P1 and P2 traveling respectively on rectangular trajectories Tr1 and Tr2

crossing a rectangle S0. We seek to avoid the violation of the following constraint:

C12 : P1 and P2 shall never be inside S0 at the same time.

From the world prospective, we want to know whether the following proposition is

true or not:

Φ12 : The system is safe under constraint C12.

Formally, this can be translated into a variety of questions as introduced in Section

4.4.2 as follows: (c) Mereological : Do P1 AND P2 lie within S0? (d) Logical : Does

Φ12 hold all the time as P1 AND P2 travel along Tr1 and Tr2 respectively?

Keeping the system safe i.e., to satisfy constraint C12, requires not only the control

of the dynamic of the P1 and P2 but also their coordination in both temporal and

spatial domains to prevent the occurrence a the unwanted system configuration.

103

4.6.2 Spatial Ontology and Rules

Space Ontology. A simplified ontological representation of the spatial domain

along with its key rules are needed to solve this case study. The right-hand side of

the Figure 4.7 shows an excerpt of the space ontology with a representation of the

relationship among classes and properties.

Figure 4.7: Illustration of a simplified ontology of space and sample literal rules

A spatial entity has a few core properties: hasGeometry, hasDimension, and hasKey(unique).

Region and ZeroDSpace are subclasses (specializations) of the class SpatialEntity.

Similarly, OneDRegion, TwoDRegion and ThreeDRegion are specializations of the

class Region. The following excerpt illustrates the initial and formal description of

a Region in the OWL ontology.

<owl:Class rdf:about="http://petnga.org/ontologies/space#Region">

<rdfs:subClassOf rdf:resource="&space-entry;SpatialEntity"/>

<owl:disjointWith rdf:resource="&space-entry;ZeroDSpace"/>

</owl:Class>

A Region has an ObjectProperty hasCentroid which points to a unique ZeroDSpace

104

as range. A number of DatatypeProperty helps characterize and specify classes.

For instance, ThreeDRegion can have hasVolume as property. Similarly, hasArea

is well understood to be a property of TwoDRegion. A restriction on the range

of property hasDimension to the value 0 (integer) is necessary to characterize

ZeroDSpace. We note that, in our ontology, the range of the property hasGeometry

is a string as shown in the excerpt below. Its value is of the JTS representation of

the SpatialEntity.

<owl:DatatypeProperty rdf:about="http://petnga.org/ontologies/space#hasGeometry">

<rdfs:domain rdf:resource="http://petnga.org/ontologies/space#SpatialEntity"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

Figure 4.8 a shows the detailed description of the ontological class Region in the

knowledge base along with its defined and inherited subclasses and superclass. The

inheritance mechanism between classes is activated at the creation of the ontology

via class propagation inferencing. This allows the given class to inherit the prop-

erties of the superclass as well. For instance, DatatypeProperty hasGeometry and

hasDimension as well as ObjectypeProperty inside are inherited from its super-

class SpatialEntity.

Facts and Rules for Spatial Inferencing. The left-hand side of Figure 3.7

shows a set of facts and three rules. The facts capture the state of the system

conceptualized in Figure 4.6 at a given time t. Some of them are synthesized as

follows :

• (F0) Entities p0, p1 and p2 are all instances of ZeroDSpace class; (F1) Entities

105

p0 name is “P0”; (F2) Entities p0 initial geometry is “POINT (100 700)” ;

• (F3) Entities tr0, tr1 and tr2 are all instances of OneDSpace class; (F4) Entities

tr0 name is “Tr0”; (F5) Entities tr0 geometry is “LINESTRING (100 700, 300 700, 700

700, 900 700)” ;

• (F6) Entities s0 and s1 are all instances of TwoDSpace class; (F7) Entities s0 name

is “S0”; (F8) Entities s0 geometry is “POLYGON ((300 600, 300 800, 700 800, 700 600,

300 600)” ;

The selected three rules are as follows:

// Rule 1 (R1) : Compute and extract the type of the spatial entity from its geometry ...

[GeoTypeSpace: (?x rdf:type se:SpatialEntity) (?x se:hasGeometry ?g)

getGeometryType(?g,?gt) noValue (?x se:hasGeometryType ?gt)

-> (?x se:hasGeometryType ?gt)]

// Rule 2 (R2) : Infer the dimension of the space from its type ...

[Dim0DSpace: (?x rdf:type se:ZeroDSpace) noValue(?x se:hasDimension ?d)

-> (?x se:hasDimension "0"^^xsd:int)]

// Rule 3 (R3): Deduction of "regDisConnected" relationship between spaces ...

[DC: (?x rdf:type se:Region) (?y rdf:type se:Region) noValue (?x se:regDisConnected ?y)

(?x se:hasGeometry ?g1) (?y se:hasGeometry ?g2) getRCCRelation(?g1,?g2,?rel)

equal(?rel,"DC"^^xsd:string) -> (?x se:regDisConnected ?y)]

4.6.3 Spatial Reasoning

The rules are applied to the space ontology to transform the structure of the

space semantic graph through inferencing. Similarly as seen for the temporal domain, the

ontology is first instantiated with the set of facts (F0)-(F8) and similar ones. Again, Jena

is called to extract classes and properties from the loaded ontology, then create semantic-

106

Figure 4.8: A view of a the ontological class Region and b statements relative
to space s1 in the knowledge base

compliant spatial data and finally add the facts as statements in model of the semantic

graph for the space domain. Facts are encoded as statements the same way as the ones

introduced in Section 2.6. For instance, the following statement is a translation of fact

(F2).

Literal geomPO = modelSpace.createTypedLiteral("POINT (100 700)", XSDDatatype.XSDstring);

Statement pOGeometry = modelSpace.createStatement(pO, hasGeometry, geomPO);

modelSpace.add (pOGeometry);

The excerpt in Figure 4.8 b shows all the statements in the knowledge base (which

contains the semantic graph) for the spatial entity s1 after the spatial rules are added

and executed. The result of Rule 1 is shown in Statement 4 with the reasoner accurately

107

inferring Polygon as the type of the geometry of this entity. Similarly, Rule 2 infers its

dimension to be 2. Rule 3 relies on RCC-8 to establish that this region is disconnected

(regDisconnected) from the other two regions in the knowledge base at the time i.e. Tr0

and S0. Given the open world assumption of ontologies, the remaining relationships do

not appear when there is no match in the knowledge base. We also note, in Statement 11

- Statement 13, the appearance of new types for entity s1 from the initial one stated by

fact (F6). They result from the class propagation rules built in the ontology and enforced

by the Jena API at its creation.

Figure 4.9: Physical and semantic model views of simulation of safety constraints

Figure 4.9 a shows the physical model of the system conceptualized in Figure

4.6. It’s realized thanks to the capabilities of Whistle (more in Chapter 6). The top right

hand side of the figure shows the corresponding semantic description of the situation in

108

the knowledge base.

In excerpt b , we note in Statement 7 the change in the value of the geometry

of entity p0 from the initial fact (F2). This is consistent with the notion that the entity is

dynamic and moving along tr0 thus its position (which is also its geometry in this case)

will change as the entity moves. Also, it appears in Statement 4 that proposition Φ0 in

Section 4.6.1 returns the value true.

In excerpt c as opposed to p0, the geometry of tr0 hasn’t change as the entity

is fixed (see Statement 4). As a Region, the RCC-8 predicated are evaluated and the

result appears in Statement 1 and Statement 5.

Excerpt d illustrates the tracking of the actual location (sensor measurements)

of the entities in the physical world and its usage for control and enforcement of constraint

C12 introduced in Section 4.6.1. The circled area containing both cars shows p1 waiting at

the border of s1 for p2 to leave before it crosses the conflict area too. This translates into

proposition Φ12 returning the value true as well.

109

Chapter 5: Framework for Ontological Modeling and Decision Sup-

port

5.1 Introduction

This chapter builds upon the semantic foundation andMBSE procedures described

in Chapters 1 through 4 to take a first step toward mitigating present-day deficiencies in

CPS analysis and design. We lay down the foundational building blocks to support the

development of determinate CPS models, with strong temporal and domain-specific se-

mantics strengthening model-driven approaches to CPS design. Our focus will be on

the data and information processing layer of CPS modeling, with a particular attention

to procedures and mechanisms for producing determinate, provable and executable CPS

models. We introduce and describe an innovative ontological framework, and illustrate

the structure and phases of construction of a knowledge modeling and decision support

framework for CPS (CPS-KMoDS). The framework offers some flexibility in its implemen-

tation, for example, for the selection of tools and type of tasks targeted by the model.

System dependability characteristics, especially safety, are viewed as multi-domain models

that drive the evaluation of decision tasks and, as such, the development of the ontological

framework.

Section 5.2 presents strategies to address semantics challenges identified in Chap-

110

ter 1 as well as key requirements to be satisfied by CPS-KMoDS models. DL extensions

to the mathematical foundations identified in Section 2.3 play a central role in reasoning

tasks. In Section 5.3, the proposed framework is introduced and its construction process

described. A prototype implementation based on Semantic Web technologies and Jena

Rules and Reasoning is presented in Section 5.4. We exercise the framework through

the development of a reasoning system to support decision making for autonomous cars

passing through a traffic intersection controlled by smart traffic lights.

5.2 CPS Knowledge Modeling and Ontologies

5.2.1 Requirements on CPS Models for Decision Making

A well-designed model contains just enough detail to answer the relevant questions

and nothing more. For the purposes of this work, the main task at hand is support for

decision making, which in turn, drives the need for the development of models that are

determinate, provable and executable. The details are as follows.

1. Determinate: A model is determinate if it provides answers to questions that are

certain and conclusive. For the design of CPS, it is well known that physical pro-

cesses are not determinate. Similarly, on the cyber side of development, the use

of threads as a dominant sequential model of computation to concurrency results

in models that are non-determinate [153]. The long-term challenge is to counter

these realities by “dynamically changing” programming models so that their cor-

rect execution always produces acceptable behaviors at subsystem I/O [158]. This

capability will ease the modeling, simulation and verification of non-functional re-

quirements and dependability properties with safety as one of the most important.

111

Given the restrictions and intrinsic weaknesses of computer systems, this is not an

easy task [149]. However, we ought to be able to start by producing well-defined,

determinate models and progressively move toward stochastic ones along with ways

to deal with uncertainties.

2. Provable: A model is said to be provable if it has the capability to establish the va-

lidity (or truth) of assumptions. For the design of CPS, the development of provable

models is complicated by the heterogeneity of physics, domains, and abstractions

emanating from different types of models. Still, with safety at the heart of system

characteristics, the precise meaning of models is required; thus, the need for formal

semantics and formal descriptions of models that keep unambiguity away.

3. Executable: For our purposes, a model is said to be executable if it is formal enough

to be processed by a machine. Complicating factors include data and information

emanating from multiple distinctive sources, and the need for evaluation of system

behaviors that are dependent on multiple physics and multiple abstractions. See

Figure 1.8. From this perspective, the CPS model will be similar to a computer

program that provides a precise and concise description on how data can be cast

into a representation to support decision making. For this process to work well, the

underlying modeling language should be decidable in the sense that the designer

should be able to automatically determine model correctness and the point of pro-

gram termination. Unfortunately, standard languages such as Fortran, C, C++ or

Java are not decidable, as demonstrated by the unsolvability of the Halting prob-

lem [242,270]. Therefore, to move forward, some restrictions are needed to achieve

decidability of a problem formulation casts in one of these languages.

112

4. Support for physical quantities: We observe that if the cyber has an improved

ability to understand what is happening in the physical world, then the quality of

decision making in the CPS will be improved. Thus, an important capability has

to be the design of cyber that can reason with physical quantities, dimensions (e.g.,

mass, length, time, voltage) and units, time and space. There is a need for CPS

models to capture and handle the representation, conversion and computation of

physical quantities. CPS models should be able to represent and distinguish (during

processing) both dimensions and units. For instance model supportive semantics

should clearly establish distinction between length and mass as dimensions (1 meter

and 1 kilogram) and units within the same dimension (e.g., 1 minute and 1 second)

while properly handling units conversions.

The modeling ecosystem should provide the appropriate structure and constructs to effec-

tively and efficiently deal with these requirements. Together, these features will provide the

foundation to formally prove (or not) the satisfaction of systems safety and non-functional

requirements, the ultimate target being to obtain correct-by-construction designs. How-

ever, despite the numerous strengths of existing approaches, resulting models lack several

of the properties and characteristics needed to satisfy the requirements identified here.

Major weaknesses include the lack of support for the physical aspects of CPS and on-

tological modeling of time, which is one of its critical metadomains. The CPS-KMoDS

framework introduced in this chapter aims to mitigate these gaps with the use of models

and tools based upon ontological and logic-based mathematical foundations introduced in

Chapter 2.

113

5.2.2 Tackling Semantic and Safety Challenges in CPS Modeling and

Analysis

Addressing Semantic Challenges. Some researchers have investigated ways to address

these challenges with mixed success. In Derler [66], a landscape of technologies ranging

from hybrid systems modeling and simulation to concurrent and heterogeneous models of

computation (MoC) is presented. The use of MoC in Ptolemy II [41] is possible thanks to

well-defined semantics for concurrency and communication between actor-oriented compo-

nent models. However, despite its many computational advantages, the use of superdense

time models [45,177] for timing is not intuitive for system modeling. Jensen [135] builds on

these foundations to propose a step-by-step methodology for model-based design of CPS.

This contribution addresses challenges in development of the aforementioned abstraction

layers, but there is no explicit mention on how to handle non-functional requirements

in the broken chain of models produced by the design process. Bhave [36] proposes an

architectural-based approach centered on an “architectural view” that encapsulates struc-

tural and semantic correspondences between the model elements and system entities repre-

sented at multiple layers of abstraction (physical, control, software, hardware). While the

mapping between various views enhances reliance of the run-time base architecture, the

underlying process remains manual and error prone, especially as the size and complexity

of a system grows.

Strategy for Addressing Safety Challenges. It is evident from Figure 1.8 that system

safety properties are critical at all abstraction layers, which makes it a permanent concern

for any CPS designer. Due to the presence of physical-related elements and concepts in

114

the physical and platform abstraction layers, both are obvious subjects of safety concerns.

One way that safety concerns can become an issue in the software abstraction layer is

through deadlocks, which in turn can lead to unsafe system configurations. The rationale

here is that timing (from the physical world) in models at this abstraction layer is not a

simple performance or quality factor for the software but a design correctness criterion.

As a result, the determination as to whether or not the system operates safely at any

point in time requires consideration of all of the relevant aspects across the participating

domains, physics, and abstraction layers. Fortunately, all CPS share some commonality

in the ways they process information [178]. This is illustrated in Figure 1.8 as the so-

called “commonality of information” that crosses all domains and abstraction layers of

the system design. The basic idea is to design a data structure that encapsulates the

relevant knowledge of the CPS of interest while providing the foundation for meaningful

construction of models. We would like to provide a mean to structure, organize and

formalize that knowledge, and address the challenge of modeling aspects of the system

response related to the evaluation of non-functional and safety requirements. The premise

here is that these safety properties and non-functional requirements can be formulated as

decision problems with true/false or yes/no solutions.

5.3 Framework for Modeling CPS Knowledge and Reasoning Support

5.3.1 High Level Architecture

Closing the knowledge gap in MBSE for CPS requires a modeling and design

backbone infrastructure that provides the following capabilities.

1. Mathematical foundations for across domains integration,

115

2. Formal procedures for handing meta domains critical to system “ities (e.g.,

reliability, safety) and,

3. Co-design of control algorithm and embedded platform for system smartness.

As shown in Figure 5.1, our research aims at providing those capabilities. The CPS world

– in which lives the CPS of interest (target) – is abstracted by models that both represent

the target and the theories governing its behavior. This double function of CPS models

enables them to capture both the phenomena and data [86]. This capability increases the

likelihood of uncovering and observing emergent behaviors during design.

Domain theories support the development of domain ontologies and meta-modeling

languages. Here, we consider formal modeling languages with strong semantics that do

not provide room for ambiguities. System’s operational context and expected level of ac-

curacy and precision dictate both the level of detail of domain ontologies and the right

granularity for the meta-domains. Also, they influence the selection of the domain theory

for the problem at hand. However, when it comes to CPS, not all domain theories and

calculus are created equal. Some of them, especially temporal and spatial ones, could lead

to undecidability.

Equipped with these powerful mathematical foundations, models are provided

with means to interpret laws and axioms of relevant domain theories and their combi-

nation in the context of a given CPS design problem. We move requirements from its

natural problem space to the solution space by translating then into formal specifica-

tions supported by corresponding requirements model (mapped to its semantics). Thus,

the resulting design flow is streamed and the co-design of both the physical and cyber

is rendered possible. The interaction between the control algorithms and the embedded

116

platform is manageable through a set of interface variables [112]. The composition of

the system components/subsystems and appropriate tracking, collection and gathering of

data will enable the observation and analysis of system level properties such as safety or

performance. Moreover, the interfacing of our framework with an optimization platform

could enable design space exploration at low cost.

5.3.2 Overview of the Framework

The global context for the design and construction of this framework is knowledge-

enabled models for complex heterogeneous systems, such as CPS. The pathway for this

task involves many steps including automated data acquisition, transformation of data

to knowledge, and finally the creation of models that are reusable, provable and exe-

cutable. The first potential use of these models is for system behavior and safety analysis.

They can also act as middleware for CPS systems. To achieve these purposes, the CPS-

KMoDS framework relies on the composition of domain-specific ontologies (DSO) along

with corresponding knowledge bases (DSKB) on one hand and, domain-specific semantics

extensions, an integrator and the CPS application on the other hand. The components

of the framework are organized into layers as shown on Figure 5.2. Thus, we describe in

the next section the different layers of this architecture, and how the elements interact

together to produce decidable CPS models with regard to the requirements identified in

Section 5.2.1.

117

Figure 5.1: High level architecture of a framework for semantic-driven model-based development process for CPS

118

Figure 5.2: Architecture of the CPS-KMoDS

119

5.3.3 From Data to Knowledge: Domain-Specific Ontologies & Se-

mantics

The domains layer is a modular piece at the center of the CPS-KMoDS archi-

tecture. It covers the participating domains and disciplines (see the columns of Figure

1.8), thus, represents concepts relevant to the CPS under study. To completely capture

and represent the domain knowledge for CPS, we go beyond simple standalone ontolo-

gies toward an architectural structure spanning the bottom two layers of Figure 5.2. The

elements of these layers are (1) domain-specific ontologies, (2) data repositories and, (3)

semantic extensions and computation support. The details are as follows.

Domain-Specific Ontologies. Each domain is formally defined and described by a

light, modular, and reusable basic ontology that captures its core concepts and properties.

Then, it is extended with application-oriented concepts and properties. This approach

to ontology specification is consistent with the TBox definitorial as introduced in Section

2.3.2 and formally defined in Appendix A. In the absence of instances these ontologies

are reusable across applications. Laws and constraints of the domains are captured and

translated as rules in domain-related rules engines. In order to provide support for complex

computations and also to enforce semantics of a given domain, an interface to the relevant

computational platform is needed by the reasoner.

Our framework employs three types of domain-specific ontologies.

1. Physical ontologies. These are ontologies of physical subsystems involved in the CPS

of interest, for example, an automobile, a building or an aircraft.

2. Cyber ontologies. These ontologies describe the cyber part of the CPS are under this

120

category. A software is an example of such domain.

3. Meta ontologies. Meta concepts such as time, space, or privacy that are relevant to the

system are captured and described by this category. Because of their cross-cutting

nature, they can apply to either the physical or cyber worlds, or both.

Data Repository: The data repository contains instances of the concepts defined in the

ontologies. As the assertion component of the architecture, instances are interpreted as

the ABox in the DL formalism. It is important to note that this interpretation operates

under an “open world assumption” as opposed to a “close world assumption” of databases.

Thus, the reasoner is prevented from drawing erroneous and invalid conclusions from the

facts in the knowledge base. Control mechanisms embedded in the rules engine ensure that

any data available in the repository is correct. These measures are particularly important,

as CPS are safety critical systems and the decision made has to be the right one (always)

in order to guarantee system safety.

Semantic Extensions and Computational Support: As shown in Section 2.3.1, the

SROIQ DL is equipped with appropriate formalisms to handle concrete domains – these

are pre-defined interpretation domains for which semantics of datatypes are invariant (i.e.,

the same no mater the interpretation). Therefore, the development of this framework with

an ontology language backed by this DL or equivalent will provide similar support.

Unfortunately, supported concrete sets such as real, integer or boolean that are

computation friendly can miss essential information (e.g., dimensions and units) from the

physics of the domain of interest. Support for reasoning with physical quantities can be

made as needed, and made available to the reasoner through its interface. Hence, the

corresponding computational platform will be able to process physical quantities-based

121

datatypes. These orientations put our framework at the forefront of the efforts for a more

“physicalization of the cyber world” in the sense of Lee [157].

5.3.4 From Knowledge to Model: System Integration

The pathway from knowledge to models is defined by a systematic build-up of

knowledge models from domain-specific ontologies. Ontologies from disparate domains

need to be merged and integrated with ontologies that represent concepts from cross-

cutting concerns, such as time.

Assembling Ontologies. Domain-specific ontologies along with rules engine and seman-

tic support are good foundations to domain-oriented system modeling, as described in the

previous section. In the context of CPS modeling, however, stand alone formalizations of

a sub-domain do nothing more than provide a formal description of the domain and means

for the designer to test proper low-level interactions between the different modules at the

domain level. Even though the latter step is very important, it is not enough. There is

a need to reuse the various domain ontologies in a coherent and correct assembly. This

has to be done in a way that properly renders the CPS of interest while preserving the

decidability of the underlining DL formalism. Several researchers [48, 252] indicate that

the following techniques provide a pathway for moving forward.

1. Merging. Ontologies for similar domains are merged into one single coherent ontology.

2. Alignment. Complementary domains ontologies are linked, resulting in two or more

ontologies.

3. Integration. Ontologies from different domains are merged in one single ontology.

122

The categorization of DSO (as shown in Section 5.3.3) prevents the designer from introduc-

ing overlaps between ontologies during their development. This is not always guaranteed

as concepts and properties can be repeated in different ontologies. Still, the CPS model

has to be viewed as a unified domain, thus the need for a single ontology backing the

model. This leaves us with “ontology integration” as the appropriate pathway for assem-

bling individual ontologies in the CPS-KMoDS framework. The CPS ontology is created

by merging all ontologies (including the integrator) under a single umbrella ontology that

is checked for consistency before any further use.

Integrator Ontology and Extensions. The integrator is created to capture, represent

and translate CPS properties and concepts that are not part of a specific subdomain.

Concepts in this ontology are mostly from the individual DSO. The integrator has its own

rules engine that translates the constraints and laws applicable to the CPS of interest.

It also handles system metrics and control parameters, including decision rules capable

of determining system safety state at any point in time. There is no need for seman-

tic extension to support this ontology as it’s not related to a specific concrete domain.

Depending on the problem, one might need the system rules engine to interface with ex-

ternal solvers, for example, to handle complex calculations such as differential algebraic

equations (DAE) or finite element analysis (FEA). A computation interface augmented

with proper semantic translation capabilities is charged with linking both modules. How-

ever, the effectiveness of such computation platforms are dependent on the performance

of the implementation hardware. This could significantly affect on-going decision tree

exploration in the rules engine in a context where timing is a design correctness criterion,

as seen in Section 5.2.2. For those cases where the granularity of modeled time is not

appropriate for the selected computation support platform, solvers can be replaced by set

123

Figure 5.3: Proposed flow chart for development of the CPS-KMoDS framework.

124

of lookup tables. These lookup tables will encode, with a high level of precision, solutions

to the system’s equations.

5.3.5 Reasoning for Decision Support

Reasoning is concerned with the use of inferencing techniques to draw conclusions

from a set of premises. In the proposed framework, decision trees are translated into sets

of logical rules that can be evaluated through the use of reasoning strategies.

Choosing a Reasoning Approach. Generally speaking, reasoning techniques can be of

three types which are logical [57, 180], heuristic [55, 220] and, ethical [12, 70]. Because of

their weak underlying formalisms thus, high risk of undecidability, the last two approaches

are weak and not good candidates for our framework. Therefore, moving forward, we only

consider automated mathematical logic-based reasoning approaches, with a bias towards

those enabling automated theorem proving. We would like every logical inference to be

checked all the way back to the fundamental mathematical axioms in order to ensure

model provability. Thus, some critical capabilities are needed to the rule-based reasoning

approaches that we adopt for our CPS-KMoDS framework.

Rule-based reasoning for CPS-KMoDS. Rule-based reasoning is the classical ap-

proach to logic-based reasoning, where the knowledge-based system is developed by de-

duction, induction, abduction or choices from a starting set of data and rules. The main

components of a rule-based reasoning system are: (1) the rule base, (2) the inference

engine, and (3) a variety of miscellaneous integration components.

The rule base corresponds to a set of rules applicable to the (sub)system of

interest. Rules are of the form of ”If... then...” statements. Each rule is made of a body

125

that contains all premises or conditions and a head that states the conclusion(s) when the

conditions are satisfied. In CPS-KMoDS, rules are written and used in the following three

ways.

1. Forward chaining (materialization). The rule base is scanned and heads are pre-

computed and stored. Conditions are evaluated one at a time, from left to right.

The evaluation stops any time a condition is not satisfied and the rule is not fired.

The CPS-KMoDS Integrator rules engine uses this method to hook to and access

external lookup tables when needed.

2. Backward chaining (query-rewriting). The computation of the head of the rule is done

on-demand with a minimal index storing. When the head of the rule is not called

in an instance of an execution chain of the rule base, the given rule is not evaluated.

This approach appears to be the most indicated for writing rules in our framework,

especially when it’s used as middleware.

3. Hybrid chaining. This approach combines the previous ones in complex rules designed

to take full advantage of both methods.

Inference engine provides mechanisms supporting the use of the ontology language and

allowing for additional facts to be inferred from available data in the repository and

class definitions. Within the context of CPS-KMoDS, semantic reasoners are the actual

concrete code objects that perform the inferencing task. The chosen ontology language

for our framework is OWL, which is SROIQ-backed and decidable, as shown in Section

2.3.1 and Appendix C. For practical applications of reasoning, any of the leading OWL

DL reasoning tools introduced in Section 2.4.4 such as Pellet or the Renamed ABox and

126

Concept Expression Reasoner(RACER) can be used. They can be plugged into actual

implementations of the CPS-KMoDS framework.

Miscellaneous components for the reasoning system include a temporary working

memory to store information that is in-transit between different computation cycles, and

connections to other parts of the framework. The latter are essentially internal links to

TBox, ABox and possibly external connections to semantic extensions and computation

support systems through interfaces(when needed), as shown in Figure 5.2.

In our framework, reasoning engines are implemented and tested for each of the

DSOs involved in the CPS of interest. They are integrated into a system rules engine along

with the integrator rules engine. This operation mimics the above-mentioned ontologies

integration process. Figure 5.3 employs the architectural component shown in Figure 5.2

and synthetises the development process for modeling and analysis of CPS behavior and

properties in the CPS-KMoDS framework.

5.3.6 Dimensional Reduction for Decision Making in CPS

Dimensional Analysis Foundations. Dimensional analysis(DA) is the study of the re-

lationship between physical quantities through the identification, comparison and tracking

of their fundamental dimensions (e.g., mass, length, time, voltage) and units (e.g., grams,

pounds, miles, meters) during calculations and transformations. DA originates for the

need identified by earlier physicians to make physical laws independent of the units used

in the measurement of the physical variables involved in their formulation. This has led

to the conclusion that those laws should be formulated in term of homogeneous equations

consistent with their multiple (possible) units of measurements, a result that has been

127

formalized through the Buckingham Π theorem.

Theorem 1 (Buckinghan’s Π). When a complete relationship between dimensional phys-

ical quantities is expressed in dimensionless form, the number of independent quantities

that appear in it is reduced from the original n to m = n - r, where r is the maximum

number of the original n that are dimensionally independent. It’s also the rank of the

dimensional matrix. The rows of this matrix are made of all variables of the system while

columns contain all independent dimensions present in the system.

The proof can be found in [38]. Theorem 1 guarantees that every physically meaning-

ful equation involving n variables can be equivalently rewritten as an equation of n - r

dimensionless parameters. It also provides an approach for computing the dimensionless

parameters from the physical variables following a simplified but sound procedure.

Simplified Dimensional Analysis. The DA process consists of building a similarity

transforms S and its inverse S−1 between the dimension space X formed by the physical

variables involved in the problem i.e. (x1, ..., xn) and the dimensionless space Π made

of dimensionless variables (π1, ..., πm) as shown in Figure 5.4(a). The formulations in

dimension and dimensionless spaces are said to be “physically similar” in the sense of

Buckingham in [42]. Figure 5.4(b) summarizes the dimensional analysis procedure which

can be broken as follows.

Dimensional equations and dimension matrix. Dimensions reduction or elimination

is done through nondimensionalization, a process which involves scaling physical quanti-

ties by characteristic units of the system object of the study or natural units. Formally,

physical quantities are expressed as product of the basic physical dimensions and cor-

responding base dimensions in SI standard-compliant symbols i.e., length(L), mass(M),

128

time(T), electric charge(Q), and absolute temperature(Θ), each raised to a rational power

according to the given physical equations. The dimensions formed from a given collection

of the basic SI standard-compliant symbols, form an abelian group i.e. one for which the

order of application of the group operation to two group elements does not affect the

result (axiom of commutativity). These relations form the dimensional equations from

which the dimension matrix (Dnr) is extracted. The latter is an (n x r) matrix which con-

tent is made of the rational power of individual physical quantity symbol as formulated

in the dimensional equations.

Partition and Dimensionless matrix. The dimension matrix is organized and parti-

tioned into two block matrices: Bmr for the dependent variables and Arr for the indepen-

dent variables. In the definition of these matrices, we have :

• n = number of physical variables,

• r = number of dependent variables (= number of base dimensions) and,

• m = n− r = number of independent variables (= number of π groups).

The completeness of the list of physical variables is checked by making sure |Arr| 6= 0.

This will also guarantee that Arr is invertible. The problem can now be cast as expressing

each of the m dimensionless variables or π-groups as a function of an individual indepen-

dent variable and appropriate dependent variables. The matrix product −(AT
rr)

−1BT
mr

provides the solution matrix to this problem as part of the general solution ǫ as follows.

ǫ =





Imm

−(AT
rr)

−1BT
mr



 (5.1)

ǫ is a matrix of size (n x m), with Imm being the identity matrix.

Advantages and Limitations of DA There are multiple advantages in the use of DA

129

Figure 5.4: Summary illustrations of dimensional analysis procedures. (a) Similarity transforms functions S and S1 between
dimension space X and dimensionless Π (adapted from [230]) (b) Construction of the dimensionless matrix from the dimensional
one using rank-preserving operations (adapted from [264]).

130

procedures and techniques in system analysis and design.

Reduced Number of Variables and Workload. Example applications mostly in physics and

chemistry demonstrate the effectiveness of DA in reducing the number of problem variables

from n (in the physical space) to m = n − r (in the dimensionless space) [42, 264]. The

reduction of the number of variables that must be specified to describe the behavior of

the system or a phenomenon at hand leads to a huge simplification of both the problem

and solution spaces. As pointed out by Hanche-Olsen [113], the complexity of theoretical

analysis and experimental design are significantly lowered.

Similarity Laws. DA provides mechanisms to uncover and formulate similarity law for the

physical phenomenon object of the study or analysis. Also, under certain conditions, it

enables the establishment of equivalence between physical phenomena that are different

[253].

Out-of-scale Modeling. DA enables performance analysis and study of larger scale sys-

tems for which a “geometrically similar” smaller model can be built and experimentally

tested. Full-scale performance is established from measurements at the small scale using

relationships between the two systems established by similarity laws above.

Remark 5.1. (Pitfalls and Limitations of DA). For the DA to yield all the above-

mentioned benefits, the analyst should be careful to avoid some of its pitfalls inherent to

the decisions and choices made during the process [253]. One should make sure that the

selected set of independent variables is complete in order to avoid erroneous DA results.

Similarly, superfluous independent variables complicate the results unnecessarily. One of

the most important limitations of DA procedures, especially ones based on factor-label

methods are their inability to properly handle dimensions where relationships between

131

physically equivalent units is defined by “affine transforms” (i.e. of the form x→ ax+ b)

rather than “linear transforms” (i.e. of the form x→ ax) that are common between phys-

ical units. One such example, for the temperature dimension, is the conversion between

degree Fahrenheit (◦F) and degree (◦C) Celcius: θ[◦F] = (9/5)θ[◦C] + 32.

When Dimensional Analysis Adds Value. Built-in support for dimensional analysis

is valuable when the problem analysis step uncovers multiple and complex heterogeneous

dimensions from the various physics involved in the CPS of interest. It’s also helpful in

taking advantage of any opportunity to formulate and solve the system measures of effec-

tiveness using dimensionless metrics. In traditional dimensional analysis, each dimensional

system comprises a number of base dimensions that are sufficient to define the magnitude

- also called unit - of any numerically expressible quantity. In order to address these

challenges, we depart from standard systems engineering design processes by augmenting

the problem domain with the task of performing dimensional analysis, which lays down

the foundation for optimizing the reasoning process downstream. The application of the

proper dimensional analysis procedure to the initial decision tree of the problem actually

reduces the complexity of the decision problem by transforming the amount of indepen-

dent variables in the physical space X into a reduced number of dimensionless variables in

the dimensionless space Π. The systematic reduction of the number of dimensions in the

problem to a very few base dimensions is an important result of this step. Our approach

will customize the transformation to fit the needs and specificity of the problem and the

CPS at hand.

Multi-Level Decision Trees. The dimensionless variables resulted from the dimension

analysis/reduction will be used to create a generalized system level decision tree for the

132

problem. Specifically, the decision problem characterizing system safety can be formulated

as a tree that is a literal translation of system’s sequence of behavior/actions/states that

lead to the realization or demonstration of the satisfaction (or not) of its safety. Thus,

in this framework, CPS safety and non-functional requirements are cast as a multi-level

decision tree, and then translated into the system rule base as an ordered set of rules. We

define the size of a decision tree as the total number of possible outcomes. Thus, the size

of a decision tree with n decision options is 2n. Any new node will multiply its size by 2

(from 2n to 2n+1 = 2 ∗ 2n), thereby increasing the complexity of the decision tree. The

complexity of the decision problem and the participating datatypes is also increased with

the presence of physical quantities. This occurs because datatype instances of physical

DSOs carry the chosen dimensional system for representing the underlying physics. Each

dimensional system comprises a number of base dimensions that are sufficient to define

the magnitude (also called unit) of any numerically expressible quantity.

This approach supports the assessment of safety as a system level property. Also,

reasoning tasks are simplified as replacement of dimension variables by dimensionless

ones alleviates computational complexity by taking away the need for handling units in

every single operation. Moreover, this opens the door to the analysis and visualization,

at various levels of abstractions, of system properties as shown in the right-hand side

of Figure 5.1. Navigating the dimensionless decision tree, tracking and extracting the

compounded variables will enable this capability.

Dimensional Analysis for Reasoning Optimization. Under the assumption of the

use of rule-based reasoning downstream and within the context of our semantic-driven

framework, we modify the traditional dimensional analysis approach to enable the mapping

between the X and Π-spaces. Thus, we revisit and modify some of the definitions in

133

case-based reasoning [119] while preserving the important results of the Buckinghan’s

Π-theorem. This is done in three (plus one optional) steps:

(a) Formal definition of rules. Using the principle of cause and effect along with defini-

tion (#2) in [119], we define a rule as follows.

Definition 5.3.1. (Rule) A rule can be defined as a continuous function f that

maps a set of premises (x1, ..., xn−1), to a conclusion xn, with xi ∈ R+. The rule f

is fired when all xi are present with i ∈ (1, .., n).

Thus, we write:




f(x1, ..., xn−1

︸ ︷︷ ︸

premise(body)

) ⇒ xn
︸︷︷︸

conclusion(head)






(rule f)

In the context of our framework and for the purpose of the dimensional analysis, the

xi are statements expressed as valid triples of the form (NameClass, NameProperty,

NameDatatype). They are constructed from elements of the TBox that are checked

against corresponding instances in the knowledge base ABox at run time.

(b) Definition of the similarity transform function π. This function takes care of the

transformation from the physical variables (with physical dimensions) space X to

the dimensionless variables space Π. It is defined as follows.

Definition 5.3.2. (Similarity transform function) The similarity transform π :

X → Π is defined as

πj = xj

r∏

i=1

x
−αji

i with j ∈ [1 ,m]

134

This represents a surjective mapping, since the similarity transform π of a space Rn

into a space Rm with m = n - r represents a dimensionality reduction. One key

characteristic of this procedure is that different objects in X may be mapped onto

the very same object in Π. The immediate consequence is that the inverse similarity

transform π−1 : Π→ X results in a dimension expansion that cannot be unique.

In our framework, results of the surjective mapping are translated into triples in the

system’s rules engine. Triples in the X space, initially of the form (PhysicalDomainNameClass,

PhysicalDomainNameProperty, PhysicalQuantityNameDatatype), are combined accord-

ing to both system physics as well as model and system controls to formulate state-

ments in the Π space with dimensionless datatypes. The new statements are of the

form (IntegratorNameClass, IntegratorNameProperty, DimensionlessNameDatatype).

(c) Invocation of the similarity transform F of f in Π-space. The following corollary of

the Π-theorem ensures that the similarity transform F of f holds [119].

Corollary 1.1. Let f(x1, ..., xn−1) = xn be the rule for all cases p →∞ with the

premise (x1, ..., xn−1)p, then the similarity transform of the conclusion xn of the rule

f in form of




F (π1, ..., πm−1

︸ ︷︷ ︸

premise

) ⇒ πm
︸︷︷︸

conclusion






(rule f similarity transform F)

The most important consequence of this result for our framework is the guarantee

of the validity and consistency of rules written in the Π space. In fact, X-space and

Π-space related rules can be written and combined (if needed) in the system rules

engine without sacrificing its expressiveness. By reducing the size of the decision

135

Figure 5.5: Modified dimensional analysis procedure for mapping between the phys-
ical space (X) and dimensionless space(Π)

tree, the computational efficiency of the reasoning process is enhanced through fewer

searches of the knowledge base for matches and fewer conflicts to resolve.

(d) Extension of the analyses in the Π-space. Rules, independently of the space in which

they are written, can translate part (intermediary) or a full branch of the decision

tree for the CPS safety problem at hand. Therefore, “rule-compatible decision

trees” are inputs and outputs of the dimension analysis/reduction process. The

experienced modeler/systems engineer can pursue the analysis directly in the Π-

space - by means of generalization for instance - to fit the desired design goal.

However, as we’ll see in the case study in Section 5.4, the resulting insight gained

in the analysis might come at the cost of having to deal with a larger decision tree.

Figure 5.5 summarizes the mapping process while showing the correspondence with the

136

entities in the knowledge base K〈T ,A〉 of a given (CPS) domain D as formally defined in

Section 2.2.2.

5.4 Case Study: A Reasoning Framework for Traffic System Safety

5.4.1 Problem Description and Analysis

The purposes of this case study are twofold:

1. Show how the proposed CPS-KMoDS development chart in Figure 5.3 can be used to

build the architecture in Figure 5.2 and,

2. Illustrate how the underlying reasoning structure can be used to support decision

making and, consequently improve system level safety. Our focus will be on the

domains layer of the architecture and its immediate parent (integration) and child

(extension and computation support).

This case study considers the problem of self-driving cars approaching a traffic intersec-

tion controlled by a smart traffic light system [207, 209]. In this scenario, a vehicle (i.e.,

the physical system) interacts with the light (i.e., the cyber system) with the objective of

maximizing performance subject to the constraint of “absolute” safety (i.e. vehicle cross-

ings are safe at the intersection). The traditional master-slave relationship between the

light and the vehicles are replaced with a cooperative relationship enabling a bidirectional

communication between these entities. Thus, this system is an “ideal CPS” where each

entity is equipped with its computation platform as per Figure 1.2. The problem domain

and analysis procedure is formulated as shown on the left-hand side of Figure 5.3.

137

Figure 5.6: Schematic of spatial and temporal concerns in the dilemma zone prob-
lem. Traffic lights have discrete state behavior versus time. Here, C is the total
cycle time for the lights. Variables dGL, dY L and dRL represent the duration of
the green, yellow, and red lights, respectively. Variable rY L is the time remaining
for the yellow light. Vehicles have dynamic behavior that varies continuously with
time. Here, θS is the time it takes the vehicle to fully stop before the stop line, θB
is the time to reach the intersection while traveling at speed Vx, and θS

′

is the time
it takes the vehicle to fully stop after the stop line.

138

Dilemma Zone: Definition and Existing Solution Approaches. Also called the

twilight zone, Amber signal or decision zone, the dilemma zone is the area at a traffic

intersection where drivers are indecisive on whether to stop or cross at the onset of a

yellow light. Research [294] indicates that under such circumstances only 90% of drivers

will “play it safe” and decide to stop. As result, the behavior of users in “twilight zones”

claims around 2,000 lives and billions of dollars in damages at stop light intersections in

the United States alone every year [130].

From an analysis standpoint (see Figure 5.6), scholars distinguish two types of

dilemma zone that differ by the perspective adopted on the problem. Type I dilemma

zone formulations (see center left side of the figure) place the “physics of the vehicle”

at the center of the problem formulation and are concerned with the difference between

the distance from the stop line to the nearest vehicle that can stop safely (i.e., minimum

stopping distance) and the distance from the stop line of the farthest vehicle that can

cross the intersection at the onset of the yellow light (i.e., maximum clearing distance)

[131,166]. Therefore, the physical parameters of the situation (e.g., car speed, road and car

conditions, and so forth) are the key determinants of whether the car will be able to safely

cross the intersection or stop prior to the stop line. Type II dilemma zone formulations

(see center right-hand side of Figure 5.6) are defined with regard to the driver’s behavior

and decision making as the vehicle approaches the intersection at the onset of a yellow

light. The boundaries of this type of DZ are also sometimes measured with a temporal tag

(i.e., representing the duration to the stop line) added to the probabilistic estimate [46].

In this work, we will adopt the Type I definition of the dilemma zone.

139

Past research has focused on finding ways to mitigate, or eliminate, DZs using

mostly a pure traffic control engineering view of the problem. These efforts have resulted in

signal timing adjustment solutions that ignore or cannot properly account for the physics

of vehicles or driver’s behaviors [174, 198, 301]. In order to deal with uncertainties, other

scholars have used stochastic approaches such as fuzzy set [131] and Markov chains [166].

For all of these traditional techniques, the baseline of the solution can be either reduced

(explicitly or not) to a space- or temporal-based dilemma zone, but not both.

For the purpose of this experiment, we keep the physics and representation of the

vehicle simple and assume that: (i) the vehicle is a point at location (X) traveling at

constant velocity VX towards the light at location B as shown in bottom left hand side of

Figure 5.6; (ii) entities execute actions as instructed in no delay. Also, (iii) computation

and bidirectional communication are performed within actuation and sensing response

time margin of error with no delay.

Figure 5.7: Framework for decision-making for the Dilemma Zone problem. Left:
decision-making in the physical (X) space. Right: decision-making in the dimen-
sionless (Π) space.

140

Translating Safety Requirement Satisfaction into a Decision Problem. The

core safety requirement of the system car-light that should be valid all the times is that

“No vehicle is allowed to cross the intersection when the light is red”. This is a non-

functional requirement, a hard constraint which violation is the driving force behind the

multiple accidents observed at traffic intersections. As shown in Figure 5.6, the continuous

dynamic of the vehicle (a) and discrete behavior of the light (b) illustrate the very different

nature of both entities. This complicates the ability of the system to satisfy the safety

requirement at the onset or in the presence of the yellow light. However, a deeper look of

the problem shows that there is a way forward.

Understanding the mechanisms by which system-level safety is achieved or violated

is critical in addressing the dilemma zone challenge. As shown in Section 5.3.6, decision

trees are the most suitable analysis tool to explore the different possible paths the system

could follow and characterize the resulting state as safe or unsafe. As shown in the left

side of Figure 5.7, the probability of making the right course of action increases when

the smart car has three key information at decision time: (1) Duration ΘY of the yellow

light before it turns red, (2) Vehicle stopping distance XS and, (3) Travel duration ΘB or

distance to light XB. A smart car will be able to detect the light and accurately compute

XS, ΘB and XB on one hand, and take advantage of the bidirectional communication with

the light to obtain ΘY from the stop light. Thus, it will be able to make a more informed

decision as shown by the system decision tree on the left side of Figure 5.7. Although all

paths of the decision tree do not lead to good decisions there is a way out, through the

reconfiguration of the light (see Figure5.6(c)).

141

Figure 5.8: Decision tree for a human-driven car for the yellow light. Upon acknowl-
edgment of the yellow light, the driver has to make a decision between keep going
or stopping with approximate estimate of the travel distance to the stop line and
no information on the time remaining on the duration of the yellow light. None of
the 2 decision paths is 100% safe.

Compared to the decision tree of the human driver shown in Figure 5.8, this ap-

proach significantly improves system level safety and throughput by reducing the number

of decision paths that lead to unsafe system states.

Reasoning Support to Prevent Unsafe System Configurations. The existence of

a configuration of the system for which there is no good decision despite the car smartness

highlights the prominent role of the physics in the overall system safety. One illustration

is the situation where the speed and/or condition of the vehicle along with the one of the

road do not allow it to stop safely before the stop light or cross it before it turns red. Thus,

the system will enter an unsafe state, the vehicle physics preventing the safety requirement

from being satisfied. In such situations, we make use of the bidirectional relationship and

reasoning capabilities of both entities (and an intermediary traffic supervisory controller)

to resolve this issue before it materializes. If the traffic light learns that a vehicle cannot

possibly pass through the intersection safely, it will reconfigure its operations for instance

by lengthening the duration of the yellow light by just the amount of time needed i.e.,

142

∆Θ (determined by the supervisory controller) for the car to cross safely. The additional

time will be taken from the duration of the red light in the same cycle, making its total

length unchanged. This will result in a safe crossing of the intersection as illustrated

in Figure 5.6(c). The mechanics behind this reasoning process as well as the dimension

transformation between the trees in Figure 5.7 will be discussed in Chapter 5.

5.4.2 Jena-based Modeling of the Traffic System: System Architec-

ture

The implementation of the CPS-KMoDS architectural framework makes use of

Semantic Web technologies introduced in Section 4.1. Semantic web technologies provide

a variety of interfaces for accessing and handling standardized technologies such as RDF,

triple stores and OWL platforms. Jena architectural framework supports the deployment

of architectures that are consistent with the general architecture in Figure 5.2. That’s

what the construction process of the solution domain (as per Figure 5.3) of the dilemma

zone problem does. The various layers of the CPS-KMoDS architecture in Figure 5.2 are

individually implemented and programmatically assembled bottom up as per the architec-

ture using the capabilities of Jena API. In the next sections we describe each layer of the

CPS-KMoDS architecture for our traffic system example and their Jena-based assembly

following the flow chart in Figure 5.3.

5.4.3 Domains Layer: Light, Car and Time Semantic Blocks

From a CPS perspective and as suggested by the architecture, our traffic system

model is partitioned into subdomains. We keep the space domain simple (reduced to a

143

Figure 5.9: Time reasoning engine semantic block and its implementation.

point), thus, there is no need for a separate ontological description for this meta domain for

this application. For each of the three foundational sub- domains (i.e., physical, meta and

cyber), a corresponding domain specific ontology – car, time and light – is created along

with domain rules. For instance, a car is defined in term of families such as LightTruck,

SUV with properties like hasWeight and hasFinalDriveRatio. These properties are com-

mon to all types of car. Similarly, hasColor and hasCycleDuration are properties com-

mon to all stoplights. As for time, we employ a simplified version of the OWL-Time

ontology (see Figure 3.2). Concepts such as Instant, ProperTimeInterval and proper-

ties like beginsAt and intMeets serve as the foundation for the domain. Extensions are

programmatically added using the Jena ontology API. This results in the development of

subsystem ontologies that provide a better definition of the subsystem for efficient future

144

use. For example, datatype properties such as hasSpeed and hasStoppingDistance are

added to the car ontology because of their relevance to a formal quantification of the ve-

hicle dynamics. This, in turn, is critical to the decision making strategies that solve the

dilemma zone problem.

A set of rules is created for each domain-specific ontology and encoded in the

corresponding rules engine. For example, the fragment of code:

// Rule #1: Propagate class hierarchy relationships ...

[rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y)

-> [(?a rdf:type ?y) <- (?a rdf:type ?x)]]

// Rule #2: Infer an "Instant" from definition and property of temporal entity...

[Instant: (?x rdf:type te:TemporalEntity) (?x te:hasTime ?t)

noValue(?x rdf:type te:Instant) -> (?x rdf:type te:Instant)]

// Rule #3: Compute duration of a "Proper" time interval ...

[GetDurationPropInterv: (?x rdf:type te:BegEndTimeInt) (?x te:beginsAt ?t1)

(?x te:endsAt ?t2) getDurInt(?t1,?t2,?d) noValue(?x te:hasDuration ?d)

-> (?x te:hasDuration ?d)]

shows how the Jena rules engine relies on hybrid and forward chaining techniques (intro-

duced in Section 5.3.5) respectively to propagate relationships among classes in a hierarchy

(#1), define an entity (#2), and compute and infer new statements, possibly with the help

of built-in functions (#3). Figure 5.9 shows the time reasoning engine semantic block and

excerpts of the implementation of its various modules for our Dilemma Zone application.

5.4.4 Semantics Support Layer: Handling of Physical Quantities

The framework enables the branching of semantic extensions to domains onto-

logical structures wherever it’s needed. In the case of this application, there is a need

145

for our reasoner to properly handle physical quantities, dimensions (length and time) and

units carried by data characterizing physical and meta properties such as hasCarSpeed

and hasDuration in Car and Time ontologies. This is critical in keeping the reasoning

and the ontologies consistent and unambiguous. Both flaws have the potential to lead to

undecidable reasoning.

To that aim, we use the Jscience [5] package to capture and handle the repre-

sentation, conversion and computation of physical quantities across the framework. This

enables the reasoner to properly represent and distinguish, during processing and rules

checking, both dimensions and units. These semantic services are provided to the reasoner

by calls of Jscience functionality within custom built-ins functions where needed. Given

the current inability of Jena to directly process dimensions and units, we wrap them into

String datatypes as illustrated by the use of “XSDString” data type for the range of Car

physical properties (see left-hand side of Figure 5.10).

With this step completed we can proceed to “local” testing of individual domain

level as per Figure 5.3 by populating individual ontologies with valid instances. The

verification of the proper integration of the Jscience and rules engine is of high interest

here. A successful verification clears the path toward the integration of various blocks to

form the integration layer for our traffic system.

5.4.5 Integration Layer: Integrator and System Level Reasoning

Traffic system Integrator. As shown in Figure 5.10, the traffic system integrator defines

relationships between subdomain entities. It’s a meta sub-domain of the traffic system

that cross-cuts the various cyber, physical and other meta domain making up the system

146

Figure 5.10: Illustration of the construction mechanism of the traffic system inte-
grator ontology

and specifies cross-cutting system-level properties. This includes properties related to the

metrics used to help characterize the decision space. Its a separate ontology that simply

uses elements of subsystem ontologies to enable a system-level view of the traffic system.

As a case in point, the excerpt in Figure 5.10 shows how Jena API is used to create and

add a new ObjectProperty hasTSCarInttXB to the Integrator ontology using elements of

the Car ontology (CarEntity) as domain and Time ontology (ProperTimeInterval) as

range. This property defines and associates a proper (close) time interval to the period of

time that a car travels from location X (when the decision is being made) to the stop light

(location B). It is important to observe that the integrator operates like a traffic system

147

“semantic controller” with its own rules engine encoding and enforcing system-level rules

and calculations that affect the domains involved in the CPS behavior i.e. car, time and

light.

Traffic System: Model, Control and Reasoning Strategies. The efficient reasoning

on the system, as a whole requires the integration of the various ontologies. The overall

traffic-system model is constructed from the merging of individual ontologies, including

the Integrator. We opt for a dynamic import of ontologies to manage the stream of

data in the system. Thus, domain and integrator ontologies are added to the empty

traffic system ontology as sub-models, with their top classes as disjoint subclasses of

a TrafficSystemEntity class. A system-level TS rules engine is constructed by way

of union of domain rules engines in a unique file with integrator rules serving both as

controller and systems integration glue. Its configuration mirrors the various branches of

the system decision tree. A predefined, generic Jena reasoner is used to perform inferencing

because of its support for user-defined rules as well as forward, backward and hybrid

chaining execution strategies. The integration of the units package Jscience with Jena thus

as described in Section 5.4.4, enables the processing of physical quantities by the reasoner.

This approach to construction of the TS model has the advantage of preserving the CPS

view of the system while enabling deep insight in the connections and relationships between

the domains. This is critical to uncovering and understanding mechanisms through which

unsafe situations within the dilemma zone occur, while also providing support for efficient

decision making.

148

Figure 5.11: Reconfiguration of the light to get the car out of an unsafe region.

5.4.6 Application Layer: Instantiation and Testing

In order to evaluate the effectiveness of the traffic system framework, we test it as

a stand alone platform. We instantiate the ontological structure by populating the system

with car and light entities and minimal data characterizing their basic properties. We are

particularly interested in configurations of the system for which it reaches one of the four

unsafe states. We verify that the reasoner is able to accurately: (1) predict this occurrence

and, (2) reconfigure itself (actually the light) to enable safe crossing of the intersection

when the car doesn’t have a viable solution (NO GOOD). To exercise the system, we pick

149

a 2004FordTaurusSES (Sedan) weighing around 1.5 ton and approaching an intersection

at 30 m/s. The remaining duration of the yellow light at the time the decision is taken

is rY L = 9s on a total duration of dY L = 15s. Combined with other parameters (e.g.,

stopping distance, braking force, other lights durations, etc...), the traffic system reasoner

is able to infer that the vehicle system will enter an unsafe state, i.e. region IV (see right

hand size of Figure 5.7). The screen capture in Figure 5.11 shows how the traffic system

controller improves decision making in the dilemma zone by allocating extra time i.e., ∆Θ

= 2 s to the length of the yellow light, which is the time needed by the car to cross the

intersection safely. The new system metrics are calculated to account for the change and

ensure the integrity of the duration of the cycle of the stop light. Therefore, the car is

no longer projected to violate the red light when it reaches the intersection, it’s now in

region V which is a safe spot in the decision space.

150

Chapter 6: Cyber-Physical Transportation Systems: Safety Metrics,

Tubes and Analyses

6.1 Introduction

During the past three decades, transportation systems have been transformed by

remarkable advances in sensing, computing, communications, and material technologies.

The depth and breadth of these advances can be found in superior levels of automobile

performance and new approaches to automobile design that are becoming increasing reliant

on sensing, electronics, and computing to achieve target levels of functionality, performance

and cost. By the end of this year, as much as 40% of an automobile’s value will be

embedded software and control related components [263,286]. Looking ahead, even greater

levels of automation will be needed for self-driving cars [92,100]. While consumers applaud

the benefits of these advances and the products they enable, engineers are faced with a

multitude of challenges that are hindering the system-level development of cyber-physical

transportation systems (CPTS). These challenges include:

1. The integration of CPS technologies into existing infrastructure,

2. The realization of “zero fatality” transportation systems, and

151

3. The development of formal models and credible, actionable performance and safety

metrics [71].

To this end, metrics for system safety are needed to:

1. Evaluate the operation and control of transportation systems in a consistent and

systematic way,

2. Identify, measure, and predict dynamic interactions among system components,

3. Set standards that serve as measure of effectiveness (MoEs) and guide MBSE efforts.

In this chapter, we introduce and describe a solution approach to these challenges through

the development and simulation of metrics for safety analysis of CPTS. It builds on the

lessons learned from the case study introduced in Chapter 5 to develop and simulate

traffic systems safety metrics that help characterize and solve the dilemma zone problem.

Thus, we consider the interplay among the key elements of transportation systems at

traffic intersections, and their consequences on overall system level safety. The focus is

on the development of metrics to capture the essence of these interactions, and support

the characterization of the dilemma zone problem and its representation using three-

dimensional dilemma tubes.

Section 6.2 introduces existing software technologies and infrastructure and ones

under-development) used to support the implementation and simulation of the safety met-

rics and tubes. Section 6.3 discusses challenges in realizing cyber physical transportation

systems and introduces the new dilemma zone metrics and their tubular representation.

Section 6.4 describes the system architecture and simulation prototype of the dilemma

tubes. Safety analyses are performed in Section 6.5.

152

6.2 Systems Integration and Simulation with Whistle

6.2.1 Whistle Scripting Language

The simulation and evaluation of CPS applications requires disciplined approaches

to the integration and execution of models. We solve this problem with Whistle, a tiny

scripting language designed for the integration and simulation of applications that are

glued together. Among the key features of the language are its ability to: (1) support

the use of physical units and dimensions from the problem description stage, (2) enable

the use of variables, matrices, and looping and branching structures to control the flow of

program logic and, (3) support the integration of custom-built functions (along with their

names and arguments). The short fragment of Whistle code:

area = 0.04 m^2; // Cross section area of a pipe ...

velocity = 5 m/sec; // Fluid velocity

print "*** Cross section area = ", area;

print "*** Fluid velocity = ", velocity;

print "*** Discharge rate = ", area*velocity;

shows, for example, computation of the flow-rate through a pipe. Notice how the phys-

ical units are built right into the language! For a detailed description of the language

capabilities, see Delgoshaei, Austin, and Pertzborn [65].

Whistle is implemented in Java. As such, its computational support interface

enables the scripting language to handle input and output of model data from/to files

in various formats (XML, Open Street Map (OSM), Java, etc.). Figure 6.1 shows, for

example, visualization of layers of data – buildings, runways, service roads, etc – associated

with Baltimore-Washington International (BWI) Airport. Behind the scenes, Open Street

153

Figure 6.1: Visualization of Open Street Map data in Whistle. This example shows
layers of data – buildings, runways, service roads, etc – associated with Baltimore-
Washington International (BWI) Airport.

Map data is imported into Whistle and stored as an Open Street Map (OSM) Model.

Then, layers of discipline-specific data are systematically extracted from the OSM model,

stored as workspace composite hierarchies, and added to the JavaFX visualization model.

Composite hierarchies are multi-layer tree structures of arbitrary complexity, and are

implemented in a flexible and scalable manner via the composite hierarchy software design

pattern [90]. See Figure 6.2.

Whistle also makes extensive use of the model-view-controller (MVC) software

design pattern. As illustrated in Figure 6.3, MVC provides a clear separation between

154

Component components [];

Component

void operation();

Node Composite

void operation();
void addComponent (Component c);
void removeComponent (Component c);
void operation();

0 .. *
<<interface>>

Figure 6.2: Composite class diagram.

change

of
controllers

Network

User Actions

update
Componentproperty

change

property
update

Select events from
user actions

property
update

property

View

Controller

Model

Figure 6.3: Implementation of model-view-controller with the control acting as a
mediator.

155

domain and presentation objects, and enables communication among multiple models

and views. Notice that there is no direct link between the views and models. Instead,

all exchanges go through the controller located at the center of the pattern (which could

include other controllers), to process and route all the communications between models and

views. Changes in the model are propagated to registered controller(s) which updates the

view(s) accordingly. Controllers also update model properties in response to notifications

by the view of some user action. Thus, overall, the controller plays the role of a mediator

in the communications between models and views.

6.2.2 Systems Integration with Whistle

Figure 6.1 shows layers of geographical data for BWI airport. This data is ob-

tained from Open Street Map and it is static. The next step in Whistle capability is

computational support for the simulation of behaviors in CPS applications.

As illustrated in Figure 6.4, this will require the scripting of problem solving

strategies that drive behaviors, but evaluate them with respect to metrics involving time

and space. Additional visualizations, such as statechart behaviors, will support for syn-

chronized data/information in models and views, and across concurrent processes. There

is also a need for traceability mechanisms that properly link discipline-specific domains,

and across various stages of system development (e.g., requirements, design, simulation,

operation, etc.).

156

Figure 6.4: Simulation architecture for spatio-temporal reasoning.

157

6.3 Safe CPTS: Metrics for Characterizing the Dilemma Zone Prob-

lem

6.3.1 Cyber-Physicality of Traffic Systems

CPTS development challenges and need for metrics. During the past three

decades, transportation systems have been transformed by remarkable advances in sens-

ing, computing, communications, and material technologies. The depth and breadth of

these advances can be found in superior levels of automobile performance and new ap-

proaches to automobile design that are becoming increasing reliant on sensing, electronics,

and computing to achieve target levels of functionality, performance and cost. As of now

(2016), as much as 40% of an automobile’s value is embedded software and control related

components [263, 286]. Looking ahead, even greater levels of automation will be needed

for self-driving cars [92,100].

While consumers applaud the benefits of these advances and the products they en-

able, engineers are faced with a multitude of challenges that are hindering the system-level

development of cyber-physical transportation systems (CPTS). These challenges include

(a) the integration of CPS technologies into existing infrastructure, (b) the realization

of “zero fatality” transportation systems, and (c) the development of formal models and

credible, actionable performance and safety metrics [71]. To this end, metrics for system

safety are needed to (1) evaluate the operation and control of transportation systems in

a consistent and systematic way, (2) identify, measure, and predict dynamic interactions

among system components, (3) set standards that serve as measure of effectiveness (MoEs)

and can guide MBSE efforts. The continue high death toll at traffic intersections reminds

158

us that despite these advances there still lot of work to do to tackle these challenges.

Autonomous Cars and Intelligent Traffic Control Systems. Recent work [3, 280]

illustrates the switch of researchers’ interest toward investigating solutions to the DZ prob-

lem that incorporate both the car physics and light timing, while also providing a pathway

forward for vehicle-to-infrastructure (V2I) interactions and integration. These solutions

will soon become a reality, in part, because of an increased use of artificial intelligence

in automating the command and operation of both cars and traffic signals. For automo-

biles, many aspects of autonomy – from braking to cruise control and driving functions –

are in advanced stages of experimentation. Finding ways to put smartness into vehicles

has contributed to reduced fatalities on highways mostly in the developed world. The

enhancement of traffic signal controls with artificial intelligence is an idea whose time has

arrived – indeed, we now have the capability to determine the position, speed and direction

of vehicles, and adjust light cycling times in a coordinated way to make the intersection

crossing more efficient. Researchers have been developing and testing various technologies

with mixed results [44,133,241]. As a case in point, a pilot study conducted by Carnegie

Mellon University, reports a 40% reduction of intersection waiting times, an estimated 26%

decrease in travel time, and a projected 21% decrease of CO2 emissions [44]. Tapping into

the full potential of these intelligence capabilities is hindered by practical constraints that

include (1) most vehicles cannot currently communicate with traffic light controllers, and

(2) autonomous vehicles still struggle in operating safely in adverse weather conditions

(heavy rain, snow covered roads, etc.) and changing environment (temporary traffic sig-

nals, potholes, human behaviors, etc.). In this work, we assume that these problems will

be resolved by ongoing research activities.

159

Toward Cyber-Physical Traffic Management Systems. Real-time situational aware-

ness (e.g., traffic, location, speed) and decision, combined with vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure (V2I) communications and control are valid and effective

pathways for a solution to both congestion and safety at intersections. As such, we fully

adopt a CPS view of the traffic system with regard to the DZ problem. The value of

this perspective has already been demonstrated in Section 5.4. Autonomous vehicles (i.e.,

the physical system) interact with the light (i.e., the cyber system) with the objective of

maximizing traffic throughput, while ensuring vehicle crossings are safe at the intersection.

Enhanced performance and safety at the intersection have been proven possible, thanks

to the critical role of temporal semantics in improving system level decision-making. Also,

when bi-directional connections between the vehicle and light are possible, new relation-

ships can be established to characterize their tight coupling – this, in turn, enables the

various computers in the CPTS to exchange information, reason, and make informed de-

cisions. These capabilities become safety-critical for situations – hopefully, rare situations

– where behavior/physics of a vehicle is such that they can neither stop, nor proceed,

without entering and occupying the intersection while the traffic light is red. Therefore,

the development of metrics for the DZ problem will greatly benefit from and enrich the

CPTS perspective.

6.3.2 Metrics for Characterizing the Dilemma Zone Problem

From Decision Trees to Dilemma Metrics. In Chapter 5, we’ve seen mechanisms

through which safety requirements can be translated into decision trees in the physical

domain. Moving forward requires a deep understanding of the interrelationships between

cross-cutting system parameters from the various domains (car, light, time, space) involved

160

at meta level, especially the temporal one. Also, the ability of the system to efficiently

reason about unsafe situations and find a satisfactory way out is critical. Learning from the

benefits of DA (see Section 5.3.6), we argue that this complexity can be kept in check by

casting the problem in dimensionless terms. Thus, we define and set up a transformation

∆ = Π(Θ,X), (6.1)

of the initial decision tree from the physical space to a dimensionless space. The dimen-

sional analysis for reasoning optimization procedure introduced in Section 5.3.6 guarantees

the consistency of our results in both the physical (X) and dimensionless (Π) spaces. Ex-

pressing the system decision tree in dimensionless space as a result of the transformation

Π necessitates the definition of intermediary variables and parameters.

We begin by noting that the car will not always catch the onset of the yellow

light; thus, what is really relevant for efficient decision-making here is the time left before

the stop light turns red. Using the remaining duration of the yellow light rY L, its full

duration dY L and the ones of the green and red lights i.e., dGL and dRL, we define the

duration of a stop light cycle C, reduced cycle CY L and cycle index k as follows.

C = dY L + dRL + dGL (6.2)

CY L = rY L + dRL + dGL (6.3)

k =
C

CY L
(6.4)

(6.5)

161

The short (α1) and full (α2) yellow light duration as well as the short (β1) and full (β2)

stop light indexes are defined as follows.

α1 =
rY L

CY L
(6.6)

α2 =
dY L

CY L
(6.7)

β1 =
rY L + dRL

CY L
(6.8)

β2 =
dY L + dRL

CY L
. (6.9)

We add to the aforementioned physical variables the stopping duration Θ
′

B of the car

– should it decide to stop – and define the car stopping distance metric ∆S , the

light-car crossing time metric ∆LC and the light-car stopping time metric ∆
′

LC

as follows.

∆S =
XS

XB
(6.10)

∆LC =
ΘB

CY L
(6.11)

∆
′

LC =
Θ

′

B

CY L
. (6.12)

All these metrics are dimensionless and serve as the key decision points of the dimensionless

decision tree shown on the right-hand side of Figure 5.7. Literally, the car stopping distance

metric captures the percentage of the allowed travel distance the car will need to cover to

stop safely (if it can). The light-car crossing time metric measures the percentage of the

light reduced cycle duration needed by the vehicle to arrive safely at the location B of the

162

stoplight (i.e. the stop line) while traveling normally. Finally, the light-car stopping time

metric determines the percentage of the light reduced cycle duration to be covered by the

vehicle at arrival at the stoplight while braking.

Navigating the Decision Tree. Navigation of the decision tree is facilitated by the

equation pair

n = E

(
∆LC − 1

k

)

(6.13)

n
′

= E

(

∆
′

LC − 1

k

)

(6.14)

We employ the integer part function E to define indexes n and n
′

. Equations (6.13) and

(6.14) simplify the definition of α and β indexes when ∆LC > 1 or ∆
′

LC > 1 as follows.

α2,n = k ∗ α2 + k ∗ n+ 1 (6.15)

β2,n = k ∗ β2 + k ∗ n+ 1 (6.16)

α
′

2,n = k ∗ α2 + k ∗ n
′

+ 1 (6.17)

β
′

2,n = k ∗ β2 + k ∗ n
′

+ 1 (6.18)

Along with equations (6.6) through (6.9), the values of α and β (see equations (6.15)

through (6.18)) are necessary and sufficient to constrain the dimensionless metrics ∆S ,

∆LC and ∆
′

LC and render a complete view of all possible outcomes of the decision tree in

a dimensionless space ∆. From the right-hand side of Figure 5.7, we can see that there

are four possible configurations of the system for which it is unsafe.

163

Figure 6.5: Dilemma tubes in the dimensionless (∆) space.

From Dilemma Metrics to Dilemma Tubes. Each of the decision tree pathways on

the right-hand side of Figure 5.7 that leads to an unsafe system state can be represented

as a “dilemma tube” in the ∆ space, as shown in Figure 6.5. For instance, equations

(6.6), (6.8), and (6.10) through (6.12) provide the foundational elements for defining Tube

I. The boundaries of each of the four tubes (i.e., I, II, III and IV) correspond to the

above-mentioned parameters, with the maximum value of ∆S i.e., ∆Smax corresponding

to the maximum value of all the ∆S values in the system. Physically, this is determined by

the physics of the family of vehicles crossing the intersection and the configuration of the

traffic intersection as captured by equation (6.10). If, at any point in time, the system is

projected to enter an unsafe state, this situation will be materialized as a point coordinate

164

P∆(∆S , ∆LC , ∆
′

LC) that is located inside a particular tube. The physical interpretation

of such phenomenon is that the autonomous car does not have a good decision option,

and will need external (light) help to safely cross the intersection.

Scenarios that lead to unsafe system configurations (e.g., see the right-hand side

of Figure 5.7) will follow branches of the decision tree that terminate with an “Unsafe”

system state. While the actual behaviors might not evolve along the pathways presented

in the decision tree, the end result will invariably be the same (i.e., the system will be

projected to enter an unsafe state). In practice, simulation and safety calculations can be

done concurrently and the location of the resulting point coordinate relative to any of the

four dilemma tube types easily determined. A final important point to note is that since

each of the tubes is mutually exclusive, a vehicle can only be in one of the four dilemma

tubes at a time, or in any location in the remaining part of the ∆ space, i.e., a safe region.

Knowing in which tube the unsafe state has been materialized is critical in determining

the appropriate course of action to prevent the occurrence of an accident.

6.4 System Architecture and Implementation

This section introduces a Java-based software system infrastructure that adheres

to the CPTS perspective and supports the tube framework described in Section 6.3.

6.4.1 System Architecture

It makes extensive use of the the MVC design pattern introduced in Section 6.2.1

to create and integrate models (of components and tubes) with simulation views (tubes

and traffic system) glued together by an integration platform that acts as a controller. A

165

Figure 6.6: Dilemma tubes simulation system architecture. The latter follows the
MVC design pattern and integrates models (of components and tubes) with sim-
ulation views (tubes and analysis) glued together by an integration platform that
acts as a controller. A computation platform provides support for the calculations
and ensures data consistency across domains. The system architecture is augmented
with workspaces for traffic intersection simulation

166

computation platform provides support for the calculations and ensures data consistency

across domains as shown in Figure 6.6. The system architecture contains workspaces for

traffic intersection simulation and its main modules are as follows.

1. Component Modeling. The component modeling module plays a central role in

the system simulation. Physical entity models are organized into static and dynamic

components, as shown in the mid-section of Figure 6.6. Examples of the former include

the traffic intersection (i.e., the spatial boundary), traffic lights, and their associated

sensors. Their key attributes are not expected to change over time such as the stop light

durations dY L, dRL and dGL for the yellow, red and green for each cycle. The remaining

duration of the yellow light (rY L) is a key attribute of interest for our study that does

decrease with time. As such, the component modeling module needs a clock to account for

the elapsed time. In our formulation, sensors play a key role in determining the location

(X) and velocity (v) of a vehicle as a function of time. With X and v in place, vehicle

accelerations can be computed from the underlying equations of motion. Also, the vehicle

braking force (Fb) is subject to change over time; thus, it is a variable of the system.

2. Tube Modeling and Metrics Computation Support. DZ tubes are modeled as

software entities because they are not physical entities. In order to properly account for

the multiple facets of tubes in this framework, and provide flexibility in the architecture,

we propose that tube models serve as a data repository platform and bridge between the

computation and the integration modules (see the dashed boxes and connecting arrows in

Figure 6.6).

The interface for the data repository platform distinguishes base tubes (not visu-

alized) from dilemma tubes. The former store the basic initial configuration of the stop

167

light, and information that will be used to create the latter (i.e., dilemma tubes). Dilemma

tubes of various types allow for the representation of unsafe system states as defined by

the car stopping distance metric ∆S, the light-car crossing time metric ∆LC , and the

light-car stopping time metric ∆
′

LC and specifications in equations (6.4) thru (6.18). This

separation of concerns provides modularity and flexibility to the architecture, enabling

the support for modeling of complex intersections with multiple stop lights on multi-lanes

and/or complex intersection configurations (T,Y,X, etc.).

The visualization system interface (not shown) connects with the integration mod-

ule, thereby allowing for flows of data to/from the visualization display, and in accordance

with the adopted GUI technology. In our software prototype (see the top left-hand corner

of Figure 6.6), the display is controlled from the integration module. On the interface

with the computation support module, a traffic tube model is created as an extension of a

more basic tube model. It is the ultimate data structure of the tube as it links predefined

and computed tubes variables. The initial traffic tube is linked to the base tube, and

dilemma tubes are created from updates of corresponding traffic tubes for various values

of rY L. The number of dilemma tubes to be visualized is computed by the system, based

on values of n and n′ as defined by equations (6.13) and (6.14).

The computation support module enables the correct calculation of the vari-

ous metrics and variables needed to efficiently characterize the dilemma zone using the

tube framework. It receives input data from both the component and the tube modules,

processes computation request using equations (6.2) thru (6.18). We distinguish system

parameters from the three tube metrics ∆S , ∆LC , ∆
′

LC introduced above. The former

are computed car, light or dimension parameters and indexes that will contribute in the

168

computation of the latter. Dimensionless indexes are parameters as they are, by defini-

tion, dependent on ∆LC and ∆
′

LC . Most of these parameters are defined as attributes

of the traffic tube model thus, the results are stored as per the specification of that data

structure.

3. System Integration. Reaping the benefits of the system architecture requires bring-

ing together its various modules and pieces in an organized but systematic way. Thus,

we need a way to assemble system models for the purpose of the various analysis needs.

We solve this problem with Whistle. Currently, computational support is added, enabling

Whistle to handle input and output of model data from/to files in various formats (XML,

OSM, Java, etc.). Therefore, an input file (containing any Whistle-compliant program) is

an integral and central part of this module. It provides access to other system modules and

needed functionality via interfaces encoded as scripts. Also, the sequencing and timing

in the execution of the commands is encoded in the program, giving the analyst/modeler

the control of the execution of the simulation.

6.4.2 Simulation Prototype

We describe in this section an implementation of the framework for a scenario

where the system configuration leads to a system state inside Tube I, as shown in Fig-

ure 6.5. The implementation consists of step-by-step assembly of a (typical) dilemma

zone scenario, simulation, and analysis of the results. It is subject to three simplifying

assumptions: (A1) the air resistance is negligible, (A2) there is a two-way, delay-free com-

munication between the light and the autonomous car, and (A3) computation and reaction

times are negligible.

169

Figure 6.7: Schematic of system inputs and outputs. The sub-figures are: (a)
Whistle input file, (b) variables and metrics computation, (c) tubes visualization
for dYL = 100 seconds, and (d) tubes visualization for dYL = 5 seconds.

1. Step-by-Step Assembly of a Real-World Scenario. The step-by-step details are

as follows.

(i) A traffic system controller of a smart traffic system computes and stores in real-time

each stop light indexes (C, CY L, k, αi, βi, i=1,2) based on its corresponding parameters

(rY L, dGL, dY L, dRL) using equations (6.2) through (6.12).

(ii) An autonomous car approaching the intersection at speed s is given its distance XB

to the stop line in real-time. This information is provided either by its on-board radar

coupled with its computer or by the intersection controller. The car itself (autonomous

170

vehicle equipped with camera) notices the onset (or the presence) of the yellow light.

(iii) Based on its current acceleration, speed, road conditions, and maximum applicable

braking force, the on-board computer of the car estimates the vehicles stopping distance

XS, and computes ∆S using equation (6.10).

(iv) The computer finds that ∆S > 1, meaning the car cannot be safely immobilized before

the stop line. It then determines the normal travel time θB to go through the intersection,

i.e., to cover the distance XB, should it decides to go at speed s.

(v) The car requests and obtains from the traffic controller the values of αi, βi, i=1,2 and

the length of the reduced cycle CY L. It then computes the light-car crossing metric ∆LC

using equation (6.11).

(vi) The on-board computer finds that α1 < ∆LC < β1. At this point, the only way for

the car to avoid violating the safety requirement (i.e., never cross the stop line when the

light is red) is to hope that while braking, it will cross the stop line when the line is still

yellow.

(vii) Using equation (6.12), the car determines the travel time θ
′

B to cover the distance

XB while stopping. Then, it computes the light-car stopping time metric ∆
′

LC .

(viii) The on-board computer finds that α1 < ∆
′

LC < β1, which translates as the light will

be already red when the car crosses the stop line while stopping.

Individual values of the metrics ∆S , ∆LC and ∆
′

LC generate a point coordinate somewhere

within the dilemma Tube I, as pictured in Figure 6.5. The physical interpretation of this

system state is that the vehicle does not have a good decision option, and will need a

change of course of action or help from the light to safely cross the intersection.

2. Simulation Setup and Coverage. The simulation setup relies extensively on Java

and its advanced graphics and media packages JavaFX as supportive technologies to create,

171

Element Variable Unit Min Max Set value Predefined parameters

Car
XB m 10 60 30 m1=1,500 kg, m2=2,800 kg,
Fb N 3000 8000 5000 m3=16,500 kg,
v m/s 5 30 10 m4=24,000 kg

Light
rY L s 0 5 2 dRL=20s
dY L s 3 17 5 dGL = 30s

Table 6.1: Summary of simulation parameters.

test, debug, and deploy a client application. Simulation coverage consists of four cars ci,

i ∈ {1, 2, 3, 4} of different size (sedan, SUV, bus, cargo truck) and a stop light. Vehicles will

be distinguished by their weight (m). Vehicle velocity (v), braking force (Fb) and distance

to stop light line (XB) are discrete parameters that can be selected within a predefined

range by the modeler/analyst. As for the stop light, the duration of the red light (dRL)

and green light (dGL) are treated as constants; the duration of the yellow light (dY L)

and the corresponding remaining duration (rY L) are discrete variables within predefined

range. The range of each parameter is generally distributed around an average value that

is used when a fixed value for a specific parameter is needed. Table 6.1 summarizes the

case vehicles and parameter values employed in this simulation.

3. Simulation Execution and Dilemma Tubes Visualization. Visualization of

the dilemma tubes occurs through a processing pipeline that involves the acquisition,

storage, processing, flow and restitution of data between the input file and the visualization

platform. For the execution of a scenario involving one car and one stop light, the following

steps will be completed.

(1) A user creates an input file containing an execution/simulation program in a Whistle-

compliant format. In this application we use a text file, such as the one shown in Figure

6.7(a).

172

(2) The program instantiates a tube DataModel customized to the needs of the simula-

tion. This will later serve as a place holder for the various versions of tubes as they are

constructed and displayed.

(3) The system is initialized. This is done by configuring the stop light with predefined

values to dY L, dRL and dGL. As for the car, if the engineering simulation module (e.g.,

racetrack) is hooked to the integration platform, then a car type is selected based upon

its weight and its physical parameters (initial velocity, trajectory and position). The

corresponding component models are interfaced with the integration module.

Computational requirements during the simulation can be reduced through pre-computation

and storage of the dilemma tube parameters, as described in the following steps (4)-(7).

This is done for various values of rY L and dimensionless indexes n and n′ (see equations

(6.13) and (6.14)).

(4) The number of dilemma tubes N that need to be visualized at each iteration of rY L

is determined as follows.

N =







1 if n and n
′

are undefined

n+ 2 if n ≥ 0 and n
′

undefined

n
′

+ 2 if n undefined and n
′

≥ 0

(n+ 2)(n
′

+ 2) if n
′

≥ 0 and n ≥ 0

(6.19)

In equation (6.19), n is undefined when ∆LC < 1 and n′ is undefined when ∆
′

LC < 1. In

this configuration, the only tubes that can be viewed are of Type I, as per Figure 6.5.

(5) From the input file, a method of the tube DataModel file is called to generate a baseline

empty tube as per the initial configuration of the traffic light. This results in the creation

and storage of a new BaseTube that acts as a placeholder for the set of durations of the

173

three lights. For simulations involving multiple stop lights, the same method can be called

repeatedly for each set of stop lights. Each call of this method will result in a TrafficTube

model being created and instantiated.

(6) Next, a new method is called to create and update dilemma tubes for the given input

baseline tube. This leads to (a) the calling of the traffic tube instance, the extraction and

storage of the set value for dY L, then, (b) the creation of the dilemma tubes via an update

of the traffic tube for the decreasing values of rY L from dY L to 0. Besides the value of

rY L, the values of n and n′ as well as the input baseline tube are needed. The founda-

tional variables needed to display each dilemma tube are computed, i.e., the tube type,

dimensions on axis and coordinates of their location in the dimensionless (delta) space,

as shown in Figure 6.7(b). The total number of dilemma tubes created is determined, as

per equation (6.19). In this case, we have n = n′ = 0, which leads to four dilemma tubes,

Txx, Txo, Tox and Too which are of types I, II, III and IV, respectively.

(7) The dilemma tubes are sorted and grouped by rY L. This information will allow control

of the display of tubes in a way that is consistent with the unfolding of rY L.

(8) With the computation and storage of dilemma tubes completed, we can now move

toward their visualization. The first step consists of enabling Whistle access to the vi-

sualization tube model in order to create an instance of a JavaFX 3D chart. For those

cases where the engineering simulation module is hooked to Whistle, the racetrack and

its contents will be uploaded and displayed as per the set up in step (3). Otherwise,

the simulation can be done with the system state in the dimensionless space computed

separately based on the initial set up and targeted configurations.

(9) The 3D scene for the tube charts is created then, the data stream system is configured

and the data (flow) channel tube between the input file and the 3D GUI is created and

174

initialized.

(10) The simulation of the engineering module is started. As the car follows the path

toward the intersection stop line located at B, its position X is sensed. The remaining

duration on the yellow light rY L is measured from the clock. Both quantities are sent back

to the computation module for processing. For each pair (XB, rY L), the values of ∆LC ,

∆S and ∆
′

LC are computed as per equations (6.10), (6.11) and (6.12). As a group, these

values define the state of the system in the ∆ space.

(11) The set of dilemma tubes corresponding to the value of rY L is pulled from storage (see

step 7) and “pushed” through the channel (see step 9) to the display GUI. We can now

visualize an output similar to the ones shown in Figures 6.7(c) and (d). The yellow plate

is the Plan Tube for the system in the (∆LC , ∆
′

LC) space. It is built from the maximum

values of both parameters for the set of dilemma tubes available for display and defines

the system boundary at ∆S = 1 for which the dilemma tubes take shape.

(12) Identification mechanisms are encoded into the channel system to single out ma-

terialized tube(s) – that is, tubes for which the safety of the system has to be checked.

Materialized tubes are within the immediate vicinity of a system state and, as such, de-

pending on how compact the tube system is, there could be many of them. There is always

at least one materialized tube at any moment (in black in Figure 6.7(c) and (d)). When

a materialized tube contains a system state, it means that the system is projected to be

unsafe. Such tubes are qualified as “active tubes.” We note that the physical interpre-

tation of an active tube is not that of an actual violation of the system safety constraint

but that it will happen in an immediate future, and certainly within the time left on the

yellow light (if any).

(13) Configuration of the tube system. The way the tubes appear on the visualization

175

GUI depends on the values of dimensionless indexes n and n′. To identify the formation of

the tubes, we look at the tubes from the top view in the plan (∆
′

LC ,∆LC) in the computer

screen reference system, i.e., with ∆
′

LC pointing downward and ∆LC pointing right. As

for the value of N in equation (6.19), four types of formation are possible:

TubeFormation =







point if n and n′ are undefined

line if n ≥ 0 and n′ undefined

I if n undefined and n′ ≥ 0

rectangle if n′ ≥ 0 and n ≥ 0

(6.20)

In the point formation the only tube that can be displayed is of Type I. In the line

formation, realized tubes appear aligned horizontally on an axis parallel to the ∆LC axis.

A similar formation is observed in the I formation with the tubes being aligned vertically

following the ∆
′

LC in the dimensionless space. The boundary of the last type of formation

has the shape of a rectangle. When n = n′, it becomes a square as for the four-tube

formation in Figure 6.7 (c).

6.5 Safety Analyses

The purposes of this section are two-fold. First, we employ the simulation platform

described in Section 6.4.2 to identify and analyze the key factors that affect the system level

safety of the traffic system. In the second part of this section, single and set-pair factor

safety analyses are performed to investigate how system safety depends on systematic

adjustments to single factors (e.g., vehicle braking force) and combined sets of parameters.

Safety Factors Identification. Under the set of assumptions (A1) to (A3), and from

Table 6.1, the following six factors are singled out for further consideration: weigh of the

176

Figure 6.8: Parameters-based single factor safety profiles.

car(m), car velocity(v), car braking force(Fb), distance to stop light (XB), remaining

duration of the yellow light (rY L), and configured duration (dY L). For these studies we

pick n = n′ = 0 which leads to a four-tube square formation.

6.5.1 Single Factor Safety Analysis

a/ Effect of Car Weight and Velocity. For this analysis, we use the set of four cars

and assign for each simulation run a velocity within the range in Table 6.1 with a step

of 5m/s. The remaining four parameters are fixed to their set values. For each run, we

177

observe and record the presence and name of any active tube (synonym of unsafe system)

as well as the identity of the car whose state has been materialized in the active tube.

The absence of any active tube means the system is safe for all vehicles. The results are

summarized in a parameter-based safety profile as shown in Figure 6.8(a).

For this particular configuration of the traffic system, the active tube for all runs is the

tube Txx, which is of Type I. The heavier cars (#3 and #4) violate the safety constraint

at lower speed (v ≤ 15m/s), while small and mid-size vehicles (#1 and #2) would not

violate the safety constraint if they operate on both sides of velocity v = 15m/s. The

combined effects of inertia and velocity play against safety (i.e., heavier cars lack agility

– at velocity v ≤ 15m/s, they can neither stop before nor clear the intersection within

the 2s time interval). We note the troubling “unsafe” state for all cars at v = 15m/s. To

summarize, operating heavier vehicles within higher velocity range and, small and average

size vehicle at lower or higher velocities are the only way to keep the traffic system safe.

A quick evaluation of the sensitivity of the safety profile to changes in any of the fixed

parameters shows that the only one for which it doesn’t change significantly is dY L. For

instance, if we consider changes in rY L, smaller and mid-size vehicles become safer as long

as rY L grows beyond 2s (3s for heavier vehicles). At lower rY L (≤ 1s), all vehicles tend

to be unsafe except for smaller ones at low velocity (v ≤ 10m/s). Given the relatively far

distance (XB = 30 m) at which this evaluation is performed, there might still be room for

improvement as the car gets closer to the intersection stop line, especially at low velocities.

b/ Effects of the Car Distance to the Intersection. For this study, we use the same

set of four cars and keep track of the distance to the stop line, this time with a step of

10m which is used to define the location of sensing points for the system. And as with

the previous analysis, the remaining four parameters are fixed to their set value. System

178

safety is tracked by observing and recording the presence and name of active tubes along

with the identity of the car whose state has been materialized in the active tube. Finally,

the distance-to-stop-line safety profile (see Figure 6.8(b)) is generated.

We observe that, as heavier vehicles (#3 and #4) approach the intersection, they are

mostly unsafe until the last checkpoint, where their dynamic capabilities allow them to

either stop safely before or clear the intersection within the remaining 2s on the yellow

light. The small vehicle (#1) is safe all the time. The mid-size vehicle (#2) is also safe

at all checkpoints with the exception of checkpoint XB = 20m (which corresponds to

the last location where heavier vehicles transition to a safe state). An examination of

the sensitivity of this profile to perturbations in rY L reveals that heavier cars are more

sensitive than mid-size and small cars. Away from the light (XB ≥ 50m), heavier cars

are unsafe and they will require 5s, 4s and 3s on rY L,respectively at 40m, 30m and 20m

to avoid violating the intersection safety requirement. Mid-size vehicles, in contrast, only

require 3s at 20m to stop.

c/ Effects of the Car Braking Force. The same protocol is followed to study how car

braking force affects system safety. To that end, we systematically vary the parameter

Fb within the defined range in Table 6.1 using a 1000N step. This results in the braking

force safety profile shown in Figure 6.8(c).

For this configuration of the system, the effect of the braking force is well perceived for

the mid-size car (#2) as it leaves the unsafe state when Fb increases and passes the

5, 000N threshold. Under the same circumstances, heavier cars (#3 and #4) certainly

need a braking force outside the current simulation range – in fact, our set value for the

maximum force of 8, 000N does not help switch the system back into safety. In other

words, even a 8, 000N braking force is insufficient to counter the kinetic energy of the

179

vehicles and immobilize them within XB = 30m and rY L = 2s left on the yellow light.

Small cars are much more agile, and the minimum braking force of 3, 000N is good enough

to keep the smallest car (#1) safe.

As the value of rY L decreases, the safety profile for car #1 is not affected as all for all

values of Fb. However, below 5, 000N , the mid-size and heavier cars would require rY L

≤ 4s to remain safe. Above that threshold force, only heavier car will need the same

amount of time to stay safe. Thus, we can conclude that the higher the inertia of the

vehicle, the higher breaking force and time on yellow light are needed for the system to

remain safe.

d/ Effects of the Initial Configuration of the Yellow Light. As a final step in this

experiment, we would like to understand how the configuration of the stop light by the

traffic engineer and, in particular, the duration of the yellow light dY L, affects the system

safety. To that end, we consider a fixed stop light cycle duration C = 55s and assign an

increasingly high percentage of that duration to the yellow light from 5% to 30% with a

step of 5%; thus, the data range shown in Table 6.1. The simulation is ran for the various

values of dY L and results of the safety profile are shown in Figure 6.8(d).

We see from the safety profile that, for a given value of rY L = 2s, increasing the actual

duration of the yellow light does not affect the outcome of system safety. However, a look

at the corresponding tube formation shows that, as the value of dY L increases, so is the

spacing between the tubes. This translates into more room for safety, should the system

manage to get out of unsafe situations, i.e., the volume occupied by the tubes. The contrast

between the tube formations in Figures 6.7(c) and (d) illustrates this phenomenon. When

dY L = 5s, a low value, the rectangle formation is compact, and the tubes are closed to each

other (see Figure 6.7 (d)). Should they realize all, there will be little to no room to avoid

180

a violation of the safety constraint. Conversely, at higher dY L = 100s (for illustration

only) there is plenty of room between the tubes. This means that, should there exist

a mechanism to take advantage of the availability of this safety space to adjust rY L to

higher values, the safety of the system will be improved. These observations make the case

for reconfigurable traffic lights that are capable of adjusting the remaining duration of the

yellow light to resolve safety issues. Also, we note the variation in tube sizes in Figures

6.7(d) and 6.7(c), with Txx being the smallest and Too the biggest. This observation

can be traced back to index k, as per equation (6.4), and its further propagation into

the parameters that define the tubes as shown in Figure 6.5, especially those defined by

equations (6.15) to (6.18). Finally, we note that 0 ≤ rY L ≤ dY L thus, the two variables

are dependent. Setting dY L from an initial position dY L1 to dY L2 ≥ dY L1 allows rY L to

add dY L2 − dY L1 to its range which, as we have seen so far, adds more safe room for the

overall system.

Figure 6.9: Parameters-based safety templates and indexes.

181

6.5.2 Set (pair) Factor Safety Analysis

Despite the valuable insight provided by single factor analyses in understand-

ing system level safety, they provide just a “snapshot” view of the system through the

perspective of the parameter considered for the analysis. The sensitivity of most safety

profiles to changes in the values of rY L clearly shows that even though most factors are

set or controlled independently, their interaction is the key driver behind system level

safety. Thus, there is a need to look at changes to system safety caused by adjustments

to combined sets of parameters.

a/ Parameter-based Safety Template for Pair (rY L,XB). Pairing the six param-

eters leads to fifteen possible sets. However, given that parameters such as rY L and dY L

are dependent and others such as m and XB are constrained by the vehicle physics, not

two sets of parameters are equally important or relevant for this study. Thus, we won’t

be analyzing the system safety for all pairs, but we will be looking at the pair (rY L,XB),

which illustrates the cyber-physicality of the traffic system as introduced in Section 6.3.1.

The protocol of the study described here can be repeated and applied to other pairs as

well.

For set factor studies, all the parameters considered vary within their individual,

predefined range. The other parameters are configured to their set values as presented

in Table 6.1. Running the simulation and recording the safety state of the system result

in the creation of a parameter-based safety template, such as the one seen on Figure

6.9(a). This particular template is created with the configuration K ≡ (m = 1, 500kg, v =

10m/s, Fb = 5, 000N, dY L = 5s, dRL = 20s, dGL = 30s). The template shows the safety

182

state of each system operational point. A red dot signifies that under K, the system state

is in an active tube (i.e., the system is unsafe). A blue dot means the system is safe. In

practical terms, the template is an indicator of safety – for instance, under configuration

K, if car #1 crosses the intersection boundary (XB=30m) when there is only 3s left on

the yellow light, the system will be safe as it will be located at A(30m, 3s), which is a safe

operational point on the template. If, however, the configuration K remains unchanged,

the system will be unsafe 2s later at location C(10m, 1s). Therefore, for the system to

remain safe under K, the car has to enter the intersection when there is at least 4s left on

the yellow light. These examples illustrate the greater insight, we can gain using safety

templates, in the interplay between system parameters and their effects on system level

safety.

b/ Parameter-based Safety Indexes for Pair (rY L,XB). A subspace Us that con-

tains all unsafe states of the system for the configuration K can be defined as follows.

UsK(rY L,XB) =

{ 0s ≤ rY L ≤ 1s

1m ≤ XB ≤ 15m.
(6.21)

Intuitively, one might think that a smaller subspace Us translates to a safer system, but

this is only part of the story. Considering that an unsafe subspace might also contain safe

states, as observed in this case, we ought to be able to quantitatively assess the safety of

a configuration in a clear and simple way. To this end, we introduce the parameter-based

configuration safety index SI as follows.

SIK(rY L,XB) =

(

1−
nUK

nK

)

∗ 1000. (6.22)

183

Here, nUK
is the number of unsafe states (red dots) in Us and nK the total number

of states in the template for configuration K. For the safety template shown in Figure

6.9(a), we count nUK
= 5 unsafe states and nK = 6 ∗ 7 = 42 total states. This leads to a

configuration safety index of SIK(rY L,XB) = 880.

By systematically adjusting the vehicle weight (m) and velocity (v) we can generate an

ensemble of safety templates, and then for each, compute the safety index. This leads

to the safety index chart shown in Figure 6.9(b). The chart shows that for high speeds,

both the smallest vehicle (Sc) and heaviest vehicle (Bc) have similar levels of safety. The

smallest vehicle does a better job at lower velocities. In-between, the mid-size vehicle (Ac)

cannot do better at average velocity (As).These results are consistent with the findings in

Section a/.

We note that this safety index does not capture the topology of unsafe and safe points in

the Us subspace for (rY L,XB). As seen in Section a/ above, that distribution is critical in

predicting the future state of the system. Therefore, we cannot use the safety index SI to

that same end. However, it can be used for a high level estimate of the parameter-based

safety appreciation of the system safety before diving into topological considerations of

Us for further investigation. To that extent, the two approaches serve complementary

purposes.

6.5.3 Beyond Predefined Configurations and Pair Factors

Any change in the value of a parameter in the configuration K in Section 6.5.2

a/ automatically forces the switch to a different safety template (with the new value

for that parameter) to predict the state of the system when the car reaches the stop

line. This limits the ability of the Systems Engineer to navigate the design space of the

184

traffic system. A possible solution is to flatten all independent variables in a pentagon-

like diagram which will give a partial view of the whole design space. The actual full

design space is much more complex (i.e., a five-dimensional shape) and almost impossible

to visualize. Any combination of values of the five parameters (m, v, Fb, rY L,XB), each

within its respective range, is theoretically a valid point.

6.6 Discussion

Our preliminary results are contingent upon assumptions (A1) through (A3) listed

in Section 6.4.2. Neglecting air resistance (A1) certainly simplifies the account of the

dynamics of the cars but it comes at a price. With the acceleration null, the velocity is

assumed constant on XB which leads to a constant value of ΘB in equation (6.10) for

all vehicles at the same velocity for the same value of XB. This propagates all the way

to the tubes visualization where, under such circumstances, points for the various cars

will be stuck in the plan (∆S ,∆
′

LC) at a single ∆LC value. One opportunity for further

investigation is to account for the air resistance in the dynamics of the car, through a

drag force f = k1 ∗ v
2 for instance. This will lead to a more accurate model of the vehicle

dynamic that will ultimately improve the quality of the results. The immediate effect on

the tube framework will be the distribution of system states along the axis ∆LC as well.

Task execution of the scenario introduced in Section 6.4.2 requires intensive com-

putations and communication at multiple steps; this makes it hard for assumptions (A2)

and (A3) to survive any physical prototype testing of the system. In fact, as many

researchers have pointed out, not only do real-world computations and communication

require finite amounts of time to complete [156,283], but delays of unacceptable duration

185

can trigger accidents in traffic scenarios that are safety critical. Given that such con-

siderations are platform-dependent, there should be in a future iteration of this work a

mechanism to account for delay information in the execution model, perhaps along the

lines of what has been accomplished with Ptolemy [221].

186

Chapter 7: Metric and Spatio-Temporal Algorithms for Safety-Critical

Cyber-Physical Systems

7.1 Introduction

Figure 7.1: Types of collision.

Whether desired or not, collisions among ob-

jects happen as a result of (unresolved) spatio-temporal

conflicts between the entities involved. Preventing such

accident to occur in safety-critical CPS requires not just

the correct predictions of future time-based system state

as seen in Chapter 4, but also its spatial-based state. In

other words, it’s critical that the system makes the right

decision and takes the right action at the right time and

right place to remain safe. Therefore, we ought to inves-

tigate and understand spatial semantics as well as the

interplay between time and space theories in support-

ing successful spatio-temporal conflict resolution algorithms and strategies. Thus, in this

chapter we will examine different types of collisions then, develop metrics for character-

izing safety in this context and finally, construct algorithms to prevent the occurrence of

such collisions.

187

In Section 7.2, we investigate the classification of collisions that will be used

subsequently in this chapter. In Section 7.3, spatial models introduced in Chapter 4

are used to conceptualize and develop safety tubes and metrics for dynamic entities in

away collision. Section 7.4 brings together the power of meta-domain (i.e., space and

time) semantics and metrics to develop safety algorithms for away, glancing and clipping

collisions avoidance. Finally, Section 7.5 demonstrates the effectiveness of the spatio-

temporal based approach in tackling the problem of glancing collision at a non-signalized

traffic intersection. We show that the ontological commitment (i.e., how the world is

seen) of object representations with regard to the dimension of the space is critical to the

proper understanding of the spatial configuration of the system in the world by the cyber

(on-board computer) and the accurate prediction of the collision.

7.2 Types of Collision

In spatially distributed systems, safety challenges are often materialized in the

form of risks of collision. Collision between dynamic entities is a permanent concern and

has led researchers to investigate and develop strategies, algorithms and systems to avoid

collision in many industries including aerospace [122], automobile [168] and railway [266].

Generally speaking, and as illustrated in Figure 7.1, scholars [80] have categorized collisions

in four types:

(1) Toward collision. Also called face-to-face collision, it occurs when the entities collide

while moving toward each other while on the same trajectory.

(2) Away collision. In this type of collision, the two entities are moving on the same

trajectory and the one behind rears end the one ahead (or an obstacle).

188

(3) Glancing collision. Entities in this type of collision are moving on different but

crossing trajectories and the agents collide at the intersection point of the two

trajectories.

(4) Clipping collision. The two entities involved in this collision are traveling on non-

parallel yet, non-intersecting trajectories but they end up colliding because of their

shape. Examples include taxiway incidents at crowded airports around the globe

[14,138]. The study of this type of collision requires spatial models of dimension D

≥ 2.

7.3 Tubes and Metrics for Dynamic Entities on Away Collision Course

In this section, we use the prospective on spatial modeling introduced in Section

4.4 to revisit the lane control problem and develop safety metrics and tubes in that context.

The lane control problem is cast as an away collision challenge as defined in Section 7.2.

7.3.1 Objectives and Modeling Assumptions

Background and Objectives. In [170], the authors introduce and verify formal models

for distributed cooperative control of multiple cars. They form distributed hybrid systems

where components coordinate their actions in order to minimize the risk of collisions. The

resulting systems are cyber-physical systems where cyber functionality (V2V and V2I

communication, computation, control) have to closely interact and coordinate their action

with physical functionality (sensing, actuation) at various level of complexity to keep the

system safe locally and globally. The models are formulated as quantified hybrid programs

(QHP) that account for both the dynamic and the control of individual cars and the way

189

they affect system safety. This model is verified using a formal proof calculus for QdL [216].

Space is captured in those models at a 0D level which, in light with issues raised by certain

types of collisions e.g. away & clipping collisions (see Section 7.2), is not appropriate for a

complete understanding and resolution of the problem. Thus, we seek to generalize, extend

and use those models in the context of the various representations of spatial entities as

introduced in Section 4.4. Our main focus will be the preservation of the various results

obtained, in the face of increasingly explicit and expressive spatial representations of the

dynamic entities. Also, we seek to develop and define safety metrics for each appropriate

level of refinement of spatial representations for a quick, easy evaluation of the system

safety.

Assumptions. We reiterate here some of the key assumptions made for this work.

(A1) The acceleration a of each dynamic entity takes instant effect and its global

maximum limit is denoted A.

(A2) The braking power of each dynamic entity varies between b (minimum) and B

(maximum) with B > b > 0.

(A3) The reaction time for each entity is bounded by ε which can physically be tied

to the inverse of the frequency at which sensors are updated in the system.

(A4) Each entity, except for the first one in the lane, will have at most one leader

and they are all moving forward only.

(A5) Each system component (e.g. vehicle, aircraft, etc.) is a rigid uniform, non-

deformable body.

190

Figure 7.2: Behavior of a single vehicle as a Hybrid system.

7.3.2 Local and Global Lane Safety

The behavior of a controlled dynamic entity (taken alone) such as a vehicle, can

be modeled as a hybrid system as shown in Figure 7.2. From a stopping state, the vehicle

can accelerate to a set speed Vset and, once it’s reached, will cruise until another one is set.

If the new set speed is smaller than the previous then the vehicle will slow down (brake)

or stop if the new speed is null. Otherwise, the vehicle will go back to the acceleration

state and increase its speed.

Local lane control and safety. In a situation where the vehicle is part of a 2-vehicle

system on a longitudinal lane, this simple and straightforward mode of operation may not

be possible especially if the given vehicle is the follower (f) of a lead (l) one. As shown

in [170], the lead vehicle can still behave as described on Figure 7.2 but the follower can

only do the same when it’s safe; in other words, when the following safety condition is

191

satisfied.

Safeε ≡ xf +
v2f
2b

+

(
A

b
+ 1

)(
A

2
ε2 + εvf

)

< xl +
v2l
2B

(7.1)

Figure 7.3: Behavior of leader and follower vehicles as Hybrid systems.

The follower l can brake anytime on it own without having to acknowledge the

decision made by f . However, this will not always prevent a collision. This can be

explained by the fact that if it’s so close to l that even the hardest instant braking would

not prevent a crash, the system is already unsafe and the decision to brake would ultimately

not matter. Figure 7.3 illustrates the resulting behavior of the follower vehicle. For the

purpose of simplification the behavior of the leader has been kept simple. For the 2-vehicle

system to remain safe locally i.e. avoid away collision situation, f has to remain behind l

all the time. Thus, the following Safe distance formula relation must be a system invariant

192

that must hold.

(f ≪ l)→

(

xf < xl ∧ xf +
v2f
2b

< xl +
v2l
2B
∧ vf ≥ 0 ∧ vl ≥ 0

)

(7.2)

Global lane control and safety. In the context of global lane control challenge, the

system is made of n > 2 vehicles moving forward on a longitudinal lane, with none allowed

to pass the one in front. Using previous results, first-order variables and assumption (A4),

the leader of a given vehicle i in the list of vehicle C is defined as follows.

L(i) = j ≡ x(i) < x(j) ∧ ∀k : C \ {i, j} (x(k) < x(i) ∨ x(j) < x(k)) (7.3)

(i≪ L(i)) ≡ ∀j : C ((L(i) = j)→ (i≪ j)) (7.4)

The verification of the safety of the global level system safety involves the definition

of transitive leaders L∗(i) as follows.

(i≪ L∗(i)) ≡ [k ::= i; (k ::= L(k))∗](i≪ k) (7.5)

Ultimately, it’s shown that for every configuration of the system in which each car is safely

following the car directly in front of it, all cars will remain in a safe configuration while

they follow the distributed control. Thus, the following Safety formula must hold all the

time for the system to be safe.

∀i : C (i≪ L(i))→ [glc](∀i : C (i≪ L∗(i))) (7.6)

Additional information, details and proofs can be found in [170].

193

Limitations of Lane Control and Safety Models. The models and corresponding

safety invariants introduced in this Section are based on a space-point theorization of the

space occupied by each vehicle. Thus, that space is captured by the 0D representations

of vehicles as points i.e. xl, x(i). Thus, the shape, length and actual boundaries of the

vehicles are ignored in the model. As shown in Section 4.4, the granularity and fidelity of

the representation of spatial entities are critical in safety-related decisions. Moreover, the

models explicitly reduce the scope of the results to configurations of the system for which

the entities move along longitudinal lanes. In real world, they have to negotiate curves

and uneven terrains. Therefore, we need to revisit system safety invariant formulas with

respect to the various levels of representation of spatial entities (as pictured in Figure 4.3).

7.3.3 Local Lanes Safety Formulas for Away Collision

Space-based Safety Invariant Formulas. From assumption (A5), all points within

the boundary of the spatial entity representing a moving component (vehicle) will move

at the same speed. Therefore, it guarantees that the local and global lane control models

introduced in [170] remain valid if the granularity of the spatial entities representation

changes (increases). However, there is a need to clearly specify in the models which

point(s) of the entity(ies) is(are) been used by the models. This is particularly critical for

the safety invariants formulas as they have to properly capture and express the conditions

under which the system is safe. Consequently, we look into the (re)formulation of the safety

invariant relation (7.2) for local lane control for each of the 4 dimensions (0,1,2,3) of space

as defined in Section 4.4.3. In order to account to real-world situations, the formulation

of the invariants should consider curved trajectories in general while remaining true to

longitudinal (straight lines) ones too. Accounting for the curvature of the trajectory

194

constraints pushes us to consider the orientation of the object/entity as well as its velocity

and acceleration - with respect to a given reference system - and the need to integrate

them in the formulation of the right hand side of equation (7.2).

Figure 7.4: 3D coordinates representation (a) and illustrative cardinal orientation
track in 2D space (b).

1/0D space model. Under this perspective, objects are represented by their center of

inertia (as a point), where the displacement force is applied. In a general case, we represent

the object as a point in 3D coordinate system as shown for the point S in Figure 7.4 (a).

In order to enable the representation of the system on longitudinal axes, we define a

transformation (T) as follows.

(T)







X = x− xf

Y = y − yf

Z = z − zf

(7.7)

195

where f is the following entity or the “follower”.

Using Figure 7.4 (a), the orientation vector ov of the object is defined as follows.

ov(R)







ovX = sin(α)cos(θ)

ovY = sin(α)sin(θ)

ovZ = cos(α)

(7.8)

with ‖ov‖ = 1, is the norm of the orientation vector ov.

The representative coordinates of the leader, follower as well as their respective velocity

and acceleration vectors are determined in R=(X,Y,Z) coordinate system as follows.

Position leader:

l(R)







Xl = xl − xf

Yl = yl − yf

Zl = zl − zf

(7.9)

Position follower:

f (R)







Xf = 0

Yf = 0

Zf = 0

(7.10)

Velocity leader:

v
(R)
l







vXl = Vlov
X
l = Vlsin(αl)cos(θl)

vYl = Vlov
Y
l = Vlsin(αl)sin(θl)

vZl = Vlov
Z
l = Vlcos(αl)

(7.11)

where Vl is the norm of the velocity vector vl. Similarly, the velocity of the follower is

determined as follows.

196

Velocity follower:

v
(R)
f







vXf = Vfov
X
f = Vfsin(αf)cos(θf)

vYf = Vfov
Y
f = Vfsin(αf)sin(θf)

vZf = Vfov
Z
f = Vfcos(αf)

(7.12)

where Vf is the norm of the velocity vector vf .

The acceleration is defined as the derivative of the velocity i.e. v′ = a.

Acceleration leader:

a
(R)
l







aXl = v′Xl ovXl + vXl ov′Xl

aYl = v′Yl ovYl + vYl ov
′Y
l

aZl = v′Zl ovZl + vZl ov
′Z
l

(7.13)

After calculation, we obtain:

a
(R)
l







aXl = Vlα
′
lcos(αl)cos(θl)− Vlθ

′
lsin(αl)sin(θl)

aYl = Vlα
′
lcos(αl)sin(θl) + Vlθ

′
lsin(αl)cos(θl)

aZl = −Vlα
′
lsin(αl)

(7.14)

Acceleration follower:

a
(R)
f







aXf = v′Xf ovXf + vXf ov′Xf

aYf = v′Yf ovYf + vYf ov
′Y
f

aZf = v′Zf ovZf + vZf ov
′Z
f

(7.15)

As for the leader, we obtain after calculation:

a
(R)
f







aXf = Vfα
′
fcos(αf)cos(θf)− Vfθ

′
fsin(αf)sin(θf)

aYf = Vfα
′
f cos(αf)sin(θf) + Vfθ

′
fsin(αf)cos(θf)

aZf = −Vfα
′
fsin(αf)

(7.16)

197

As per assumptions (A1) and (A2), we have −B ≤ aik ≤ A with i ∈ {X,Y,Z} and

k ∈ {l, f}.

Figure 7.4 (b) illustrates the representation of moving vehicles - red dot for the leader

and blue dot for the follower - on an octagon track. The eight branches of the octagon

capture the main orientations of the entity’s trajectory in 2D space. The workspace is

augmented with the coordinates of the objects when projected on the (X,Y) axes of the

(R) coordinate system. These axes are in the same orientations and are parallel to their

counter part x and y. We note that the direction in which the track is traveled and the

branch on which the movement is tracked affect the sign of the coordinate of the leader.

However, the coordinate of the follower is always null (origin). In (R) coordinate system,

each axis is an oriented longitudinal coordinate system as considered above. Thus, we

seek to write the right hand side of equation (7.2) for each of the 3 axes. To that aim, we

introduce an orientation vector oa for the acceleration of the object as follows.

oa(R)







oaX = sin(β)cos(λ)

oaY = sin(β)sin(λ)

oaZ = cos(β)

(7.17)

where ‖oa‖ = 1 is the norm of the orientation vector oa. Angles β and λ are the coun-

terpart of α and θ introduced in equation 7.8. We rewrite the acceleration of the vehicle

as follows.

a(R)







aX = A ∗ oaX = Asin(β)cos(λ)

aY = A ∗ oaY = Asin(β)sin(λ)

aZ = A ∗ oaZ = Acos(β)

(7.18)

where A is the norm of the acceleration vector a. The values of β, λ and A can be

calculated by putting side by side any of equations (7.14) or (7.16) and (7.18). This leads

198

to the following: λ = arctan(v′y/v
′
x), β = arccos(v′z/A) with A = (v′2x + v′2y + v′2z)

1/2

The minimum and maximum braking distances (in the worse case scenarios) in the second

part of each expression of the invariant are obtained as follows. We first notice that during

braking, for i ∈ {X,Y,Z}, ai < 0. Then, from assumption (A2) on breaking powers, we

have b < ‖a‖ < B. We then use the formulation in equation (7.18) to represent the

acceleration. Therefore, the braking distance bd on each axis for the follower is bounded

by the projection of its maximum (‖a‖ = b) value as follows.

bd
(R)
f







bdXf =
(vX

f
)2

2|aX
f
|
<

V 2

f
sin2(αf)cos

2(θf)

2b|sin(βf)cos(λf)|

bdYf =
(vY

f
)2

2|aY
f
|
<

V 2

f
sin2(αf)sin

2(θf)

2b|sin(βf)sin(λf)|

bdZf =
(vz

f
)2

2|aZ
f
|
<

V 2

f
cos2(αf)

2b|cos(βf)|

(7.19)

with αf , θf , βf , λf /∈ {kπ/2, (2k + 1)π/2} and k ∈ Z.

Similarly, the braking distance for the leader is bounded by its minimum value as follows.

bd
(R)
l







bdXl =
(vX

l
)2

2|aX
l
|
>

V 2

l
sin2(αl)cos

2(θl)

2B|sin(βl)cos(λl)|

bdYl =
(vY

l
)2

2|aY
l
|
>

V 2

l
sin2(αl)sin

2(θl)

2B|sin(βl)sin(λl)|

bdZl =
(vz

l
)2

2|aZ
l
|
>

V 2

l
cos2(αl)

2B|cos(βl)|

(7.20)

with βl, λl /∈ {kπ/2, (2k + 1)π/2} and k ∈ Z.

Therefore, the bound values in equations (7.19) and (7.20) illustrate the worse case scenar-

ios for which the leader applies the maximum braking power B while the follower applies

the minimum value b. Table 7.1 shows the resulting expression of the safety invariant

function obtained for each axis.

The following special cases are of interest.

Case 1.1: αf = αl = kπ, k ∈ Z. This implies sin(αf) = sin(αl) = 0 and cos(αf) =

199

|Xf | < |Xl|∧|Xf |+
V 2
f sin

2(αf)cos
2(θf)

2b|sin(βf)cos(λf)|
< |Xl|+

V 2
l sin

2(αl)cos
2(θl)

2B|sin(βl)cos(λl)|
∧Vf ≥ 0∧Vl ≥ 0

(7.21)

|Yf | < |Yl| ∧ |Yf |+
V 2
f sin

2(αf)sin
2(θf)

2b|sin(βf)sin(λf)|
< |Yl|+

V 2
l sin

2(αl)sin
2(θl)

2B|sin(βl)sin(λl)|
∧Vf ≥ 0∧Vl ≥ 0

(7.22)

|Zf | < |Zl| ∧ |Zf |+
V 2
f cos

2(αf)

2b|cos(βf)|
< |Zl|+

V 2
l cos

2(αl)

2B|cos(βl)|
∧ Vf ≥ 0 ∧ Vl ≥ 0 (7.23)

Table 7.1: Safety invariant formulas for 0D space model

±1; cos(αl) = ±1. Plus, the acceleration and velocity vectors are parallel i.e. βf , βl =

kπ, k ∈ Z. This leads to cos(βf) = ±1 and cos(βl) = ±1. Thus, both vehicles move on

the Z axis and we obtain in equation (7.23) a relation similar to the one in equation (7.2).

Case 1.2: αf = αl = (2k + 1)π/2 and θf , θl = kπ, with k ∈ Z. Both vehicles

move on the X axis. As above, the acceleration and velocity vectors are parallel i.e.

βf , βl = (2k + 1)π/2 and λf , λl = kπ, with k ∈ Z. The exact same relation expressed by

equation (7.2) is found for equation (7.21).

Case 1.3: αf = αl = π/2; θf = (2k + 1)π/2; θl 6= (2k + 1)π/2; k ∈ Z It results

a configuration of the system for which follower and leader are on different, non-parallel

segments on a (X,Y) plan such as the one on Figure 7.4. One such configuration could be

when leader and follower are respectively on the north (N) and north west (NW) or west

(W) and south east (SE) branches of the track.

From this 0D space model and, assuming a representation of the objects in 2D or 3D, we

will need to separate the leader and the follower in ONLY ONE (1) of the three dimensions

in order to keep the system safe. Thus, only one of the conditions (7.21), (7.22), (7.23)

needs to be satisfied for the system to be safe.

2/1D space model. With 1D space models, each object is represented by two

200

points materializing their front (F) and back (B) as pictured in center of Figure 4.3. The

2 points are actually the extremities of the line segment that represents the object. Under

assumption (A5) both front and back points - as part of a rigid body - have the same

dynamic, thus they share the same acceleration and speed but not the same position in

space. For the system to remain safe, we need to guarantee that the back of the leader (l)

is not going to be hit by the front of the follower (f). Therefore, the two points we should

be tracking are their respective back and front i.e. Ff and Bl. Thus, we’ll consider the

position, velocity, acceleration and orientation of those particular points of the 2 objects

and rewrite the safety invariant conditions found in Table 7.1 as shown in Table 7.2.

|XF
f | < |X

B
l |∧|X

F
f |+

V 2
f sin

2(αF
f)cos

2(θFf)

2b|sin(βF
f)cos(λ

F
f)|

< |XB
l |+

V 2
l sin

2(αB
l)cos

2(θBl)

2B|sin(βB
l)cos(λ

B
l)|
∧Vf ≥ 0∧Vl ≥ 0

(7.24)

|Y F
f | < |Y

B
l |∧|Y

F
f |+

V 2
f sin

2(αF
f)sin

2(θFf)

2b|sin(βF
f)sin(λ

F
f)|

< |Y B
l |+

V 2
l sin

2(αB
l)sin

2(θBl)

2B|sin(βB
l)sin(λ

B
l)|
∧Vf ≥ 0∧Vl ≥ 0

(7.25)

|ZF
f | < |Z

B
l | ∧ |Z

F
f |+

V 2
f cos

2(αF
f)

2b|cos(βF
f)|

< |ZB
l |+

V 2
l cos

2(αB
l)

2B|cos(βB
l)|
∧ Vf ≥ 0 ∧ Vl ≥ 0 (7.26)

Table 7.2: Safety invariant formulas for 1D space model

Remark 7.1 (Some limitations and a solution). The accuracy and precision of the safety

model are critical for the effectiveness of the reasoning process. Thus, the effectiveness

of this safety invariant formulas is based on the premises that (1) each front and back

point of the objects follow a predefined trajectory without any slip and (2) the design of

the trajectories is appropriate with the physics of the vehicle. In real world applications,

situations such as bad weather (snow, heavy rain, ice), length of the vehicle with regard to

the acuity of curve and turns can result to loss of control of either the front or back of the

vehicle or both. Therefore, a system configuration such as the one at the bottom right of

201

Figure 7.4 b) is possible. This situation is similar to case#1.3 above with αf = αl = π/2;

k = 0; θl 6= 0. On top of that, in case the leader has stopped i.e. Vl = 0, the invariant

formula (7.25) will be satisfied all the time meaning the system is safe, which is not

obviously the case as shown in Figure 7.4! Therefore, we need to account for the full

length of the line segment representing the vehicle - as a rigid body - in the formula.

Resolving this issue necessitates the representation of each vehicle as 1D proper spatial

(RCC-compliant) entity as introduced in the table in Figure D.3 in Appendix D. The

(spatial) interaction between the leader and the follower will therefore be defined by the

function fcrash as formulated in equation (D.9). Thus, we replace the distance constraint

in the safety invariant formulas stated in Table 7.2 and obtain a revised formulation

of the safety invariant property as shown in Table 7.3. Using this new formulation, it

(fp
crash(l, f) = 0) |1D∧|X

F
f |+

V 2
f sin

2(αF
f)cos

2(θFf)

2b|sin(βF
f)cos(λ

F
f)|

< |XB
l |+

V 2
l sin

2(αB
l)cos

2(θBl)

2B|sin(βB
l)cos(λB

l)|
∧Vf ≥ 0∧Vl ≥ 0

(7.27)

(fp
crash(l, f) = 0) |1D∧|Y

F
f |+

V 2
f sin

2(αF
f)sin

2(θFf)

2b|sin(βF
f)sin(λ

F
f)|

< |Y B
l |+

V 2
l sin

2(αB
l)sin

2(θBl)

2B|sin(βB
l)sin(λB

l)|
∧Vf ≥ 0∧Vl ≥ 0

(7.28)

(fp
crash(l, f) = 0) |1D ∧ |Z

F
f |+

V 2
f cos

2(αF
f)

2b|cos(βF
f)|

< |ZB
l |+

V 2
l cos

2(αB
l)

2B|cos(βB
l)|
∧ Vf ≥ 0 ∧ Vl ≥ 0 (7.29)

Table 7.3: Revised Safety invariant formulas for 1D space model

clearly appears that fp
crash(l, f) = 1 for the special configuration identified above as the

intersection of both spatial entities is not null. In fact, we have S(l) ∩ S(f) =
{

FE
f

}

3/2D and 3D space models. Objects in this approach are represented as respec-

tively polygons and polyhedra of various shapes. Regular, well-defined shapes such as the

rectangles in the right hand side of Figure 7.4 are in line with the 2D spatial representa-

tion models in Figure 4.3 while fitting the RCC-8 restrictions introduced in Section 4.4.2.

Therefore, they are suitable but they are not always appropriate for the application at

202

hand. Accounting for all possible shapes of objects is impossible without some approxi-

mation. Therefore, we define and use the smallest regular bound (rectangle and polyhedra

shape respectively) for the object. This allows the model to be conservative and precise

enough without sacrificing the effectiveness of the prediction in the reasoning process (see

Remark 7.2). On the other hand, in situations where the predicted “logical” collision does

not happen, adversary conditions such the ones described in Section 6.3.1 may leave no

way out for the objects to spatially separate as they will be already too close.

As for the previous case, all (restricted) RCC-compliant representations will be appropri-

ate. The main constraint in the invariant is the absence of overlaps between the two shapes

all the time. The application of the dynamic (stopping distance) constraint on the front

and back of the objects as described above for 1D space model adds further restrictions

to the model. Thus, we write the invariant formulas as follows (see Table 7.4). We obtain

(fp
crash(l, f) = 0) |2,3D∧|X

F
f |+

V 2
f sin

2(αF
f)cos

2(θFf)

2b|sin(βF
f)cos(λ

F
f)|

< |XB
l |+

V 2
l sin

2(αB
l)cos

2(θBl)

2B|sin(βB
l)cos(λB

l)|
∧Vf ≥ 0∧Vl ≥ 0

(7.30)

(fp
crash(l, f) = 0) |2,3D∧|Y

F
f |+

V 2
f sin

2(αF
f)sin

2(θFf)

2b|sin(βF
f)sin(λ

F
f)|

< |Y B
l |+

V 2
l sin

2(αB
l)sin

2(θBl)

2B|sin(βB
l)sin(λB

l)|
∧Vf ≥ 0∧Vl ≥ 0

(7.31)

(fp
crash(l, f) = 0) |2,3D ∧ |Z

F
f |+

V 2
f cos

2(αF
f)

2b|cos(βF
f)|

< |ZB
l |+

V 2
l cos

2(αB
l)

2B|cos(βB
l)|
∧ Vf ≥ 0 ∧ Vl ≥ 0 (7.32)

Table 7.4: Safety invariant formulas for 2D and 3D space models

the same formula as for 1D space, with the difference that objects here are either 2D or

3D spatial entities as indicated in the first constraint in the formulas. As stated before,

only one of these 3 formulas needs to be satisfied to guarantee the separation, given that

the right granularity of space has been used by the modeler. In other term, for a point

representation in 3D of the object or any of its point, a unit displacement ∆d = 1 on any

of the 3 axes in any referential system and any direction is significant enough to ensure

203

spatial separation.

Remark 7.2 (Tolerance for 2D and 3D representations). Approximating the actual com-

plex shape of a spatial entity in the world by a regular polygon or polyhedra bound without

sacrificing the accuracy and precision, thus effectiveness of the reasoning process, requires

not only to evaluate and track the tolerance of the spatial representation of objects but

also the selection of the one that offers the better precision at the lowest computation

cost. To that aim, we define the tolerance tdim of the representation of a real world object

S in dimension dim as the percentage of space of the object ADDED to its spatial model

M . It’s computed as follows.

In 2D,

t2D =
AreaM −AreaS

AreaM
∗ 100 (7.33)

In 3D,

t3D =
V olumeM − V olumeS

V olumeM
∗ 100 (7.34)

The smaller the value of tdim the better the representation.

7.3.4 Local Lanes Safety Metrics for Away Collision

In this section, we build from lessons learned in Section 6.3.2, as well as results

obtained in Section 7.3.3 and previous research to define and represent safety metrics for

the away collision for the local lane control problem. Looking at the behavior of both

the leader and the follower in Figure 7.3, it appears that, for the system to be always

safe, constraint Safeε has to be satisfied all the time. The satisfaction of this (set of)

condition(s) - especially in case the follower is too close - could result in accident even if

204

the follower applies the maximum braking force. Therefore, we would like condition (7.1)

to be satisfied all the time. We revisit the invariant relations uncovered in Section 7.3.3

to define the appropriate metrics for each situation. Given that the safety formula has

to be true on only one of the axis we’ll use the expression on the x-axis in the graphics

for the sake of simplification of representations. However, all metrics for all axes must

be computed and the conditions checked for all axes before drawing any conclusion on

the safety of the system. Also, to keep the definition of metrics simple, we’ll consider the

conditions on the speed i.e. Vf ≥ 0 ∧ Vl ≥ 0 always verified.

In order for the system to be safe, the following three conditions have to be

satisfied: (C1) relation (7.1) has to be verified in the (R) coordinate system then, (C2)

the positions of the objects have to be separated on at least 1 of the coordinates and,

(C3) their expected positions, should they brake in the worse case configuration, are also

separated on at least one of the axes.

1/0D-based safety metrics. Using equation (7.1) and the transformation (T) along

with the subsequent notations and calculations, we define the Safe following metrics ∆sfε

for the three coordinates as follows (see Table 7.5).

In order to satisfy (C1), either one of the following conditions should be met.

∆sfε(l, f)|0D







∆X
sfε

< 1

∆Y
sfε

< 1

∆Z
sfε

< 1

(7.38)

Also, we define the Longitudinal separation metrics ∆ls(l, f) as follows.

∆X
ls (l, f)|0D =

|Xf |

|Xl|
(7.39)

205

∆X
sfε(l, f)|0D =

|Xf |+
V 2

f
sin2(αf)cos

2(θf)

2b|sin(βf)cos(λf)|
+
(
A
b
+ 1
) (

A
2
ε2 + εVf |sin(αf)cos(θf)|

)

|Xl|+
V 2

l
sin2(αl)cos2(θl)

2B|sin(βl)cos(λl)|

(7.35)

∆Y
sfε(l, f)|0D =

|Yf |+
V 2

f
sin2(αf)sin

2(θf)

2b|sin(βf)sin(λf)|
+
(
A
b
+ 1
) (

A
2
ε2 + εVf |sin(αf)sin(θf)|

)

|Yl|+
V 2

l
sin2(αl)sin2(θl)

2B|sin(βl)sin(λl)|

(7.36)

∆Z
sfε(l, f)|0D =

|Zf |+
V 2

f
cos2(αf)

2b|cos(βf)|
+
(
A
b
+ 1
) (

A
2
ε2 + εVf |cos(θf)|

)

|Zl|+
V 2

l
cos2(αl)

2B|cos(βl)|

(7.37)

Table 7.5: 0D-based safe following metrics for away collision with λl, βl /∈ {kπ, (2k+
1)π/2}k ∈ Z

∆Y
ls(l, f)|0D =

|Yf |

|Yl|
(7.40)

∆Z
ls(l, f)|0D =

|Zf |

|Zl|
(7.41)

In order to satisfy (C2), one of the following relations should be satisfied by the metrics.

∆ls(l, f)|0D







∆X
ls < 1

∆Y
ls < 1

∆Z
ls < 1

(7.42)

Finally, the Braking separation metrics ∆bs(l, f) are defined as follows.

∆X
bs(l, f)|0D =

|Xf |+
V 2

f
sin2(αf)cos

2(θf)

2b|sin(βf)cos(λf)|

|Xl|+
V 2

l
sin2(αl)cos2(θl)

2B|sin(βl)cos(λl)|

(7.43)

∆Y
bs(l, f)|0D =

|Yf |+
V 2

f
sin2(αf)sin

2(θf)

2b|sin(βf)sin(λf)|

|Yl|+
V 2

l
sin2(αl)sin2(θl)

2B|sin(βl)sin(λl)|

(7.44)

∆Z
bs(l, f)|0D =

|Zf |+
V 2

f
cos2(αf)

2b|cos(βf)|

|Zl|+
V 2

l
cos2(αl)

2B|cos(βl)|

(7.45)

206

Satisfying (C3) requires that one of the following relations be satisfied by the metrics.

∆bs(l, f)|0D







∆X
bs < 1

∆Y
bs < 1

∆Z
bs < 1

(7.46)

Together, these 3 groups of safety metrics define the conditions under which the system

will be safe using 0D space representation in a 3D coordinates system. Figure 7.5 (a)

shows a synthesized view of how they interact to created a safety tube within which the

system is safe. Outside of that tube, the system is unsafe.

Building the safety tube. Let’s consider the variable ∆dim
m which denotes the selected value

calculated for a metric m ∈ {bs, ls, sfε} in space of dimension dim (=0 in the figure). The

procedure to create the tube (actually a cube) proceeds as follows.

• (S1) Pick any metric m then, compute all values of the metric ∆m that need to be

computed (i.e. sub metrics ∆X
m,∆Y

m and/or ∆Z
m) and, if none of the value is strictly

smaller than 1 as stated in either equation (7.38), (7.42) or (7.46), then the system

is unsafe. Otherwise, any of the value that satisfies the condition stated is assigned

to ∆dim
m .

• (S2) Repeat step (S1) for any of the next metrics m
′

. If all sub metrics have values

within the required range then, assign to ∆dim
m′ variable and goto (S3), otherwise,

the system is unsafe.

• (S3) Repeat step (S1) for the last metric m”. If all sub metrics have values within the

required range then, assign to the corresponding ∆dim
m” . The corresponding point

is represented within the tube meaning the system is safe otherwise, the system is

unsafe.

207

Figure 7.5: Safety tubes for local away collision control under : (a) 0D space models,
(b) 1,2,3D space models .

2/1,2,3D-based safety metrics. For dimensions higher than 0, we need to dis-

tinguish the location of the front and back of respectively the follower and the leader in

the expression of the safe following metric ∆sfε in Table 7.5. It results the expressions in

Table 7.6.

∆X
sfε(l, f)|1,2,3D =

|XF
f |+

V 2

f
sin2(αF

f
)cos2(θF

f
)

2b|sin(βF
f
)cos(λF

f
)|

+
(
A
b
+ 1
) (

A
2
ε2 + εVf |sin(α

F
f)cos(θ

F
f)|
)

|XB
l |+

V 2

l
sin2(αB

l
)cos2(θB

l
)

2B|sin(βB
l
)cos(λB

l
)|

(7.47)

∆Y
sfε(l, f)|1,2,3D =

|Y F
f |+

V 2

f
sin2(αF

f
)sin2(θF

f
)

2b|sin(βF
f
)sin(λF

f
)|

+
(
A
b
+ 1
) (

A
2
ε2 + εVf |sin(αF

f)sin(θ
F
f)|
)

|Y B
l |+

V 2

l
sin2(αB

l
)sin2(θB

l
)

2B|sin(βB
l
)sin(λB

l
)|

(7.48)

∆Z
sfε(l, f)|1,2,3D =

|ZF
f |+

V 2

f
cos2(αF

f
)

2b|cos(βF
f
)|
+
(
A
b
+ 1
) (

A
2
ε2 + εVf |cos(θFf)|

)

|ZB
l |+

V 2

l
cos2(αB

l
)

2B|cos(βB
l
)|

(7.49)

Table 7.6: 1,2,3D-based safe following metrics for away collision, with λl, βl /∈
{kπ, (2k + 1)π/2}, k ∈ Z

As for the previous case, in order for condition (C1) to be satisfied, constraints (7.38) need

208

to be applied to equations in Table 7.6 as follows.

∆sfε(l, f)|1,2,3D







∆X
sfε

< 1

∆Y
sfε

< 1

∆Z
sfε

< 1

(7.50)

In the absence of a projection on individual axes, the longitudinal separation metric

∆ls(l, f) is defined based on the crash function introduced in section D.2 and equations

in Tables 7.3 and 7.4 as follows.

∆ls(l, f)|1,2,3D = fp
crash(l, f) (7.51)

For condition (C2) to be satisfied in this case, the following relation should be true all the

time.

∆ls(l, f)|1,2,3D = 0 (7.52)

We also need to distinguish the front and back locations of the leader and follower in

defining the braking separation metric ∆bs(l, f) as follows.

∆X
bs(l, f)|1,2,3D =

|XF
f |+

V 2

f
sin2(αF

f
)cos2(θF

f
)

2b|sin(βF
f
)cos(λF

f
)|

|XB
l |+

V 2

l
sin2(αB

l
)cos2(θB

l
)

2B|sin(βB
l
)cos(λB

l
)|

(7.53)

∆Y
bs(l, f)|1,2,3D =

|Y F
f |+

V 2

f
sin2(αF

f
)sin2(θF

f
)

2b|sin(βF
f
)sin(λF

f
)|

|Y B
l |+

V 2

l
sin2(αB

l
)sin2(θB

l
)

2B|sin(βB
l
)sin(λB

l
)|

(7.54)

∆Z
bs(l, f)|1,2,3D =

|ZF
f |+

V 2

f
cos2(αF

f
)

2b|cos(βF
f
)|

|ZB
l |+

V 2

l
cos2(αB

l
)

2B|cos(βB
l
)|

(7.55)

As previously stated, those metrics are fully defined for λl, βl /∈ {kπ, (2k + 1)π/2}, k ∈ Z.

209

Satisfying (C3) requires that one of the following relations be satisfied by the safe braking

metrics.

∆bs(l, f)|1,2,3D







∆X
bs < 1

∆Y
bs < 1

∆Z
bs < 1

(7.56)

Together, constraints (7.50), (7.52) and (7.56) define the “volume” within which the system

is safe. Using the variable ∆dim
m introduced above, we represent on Figure 7.5 (b) this safety

tube for the system when dim ∈ {1, 2, 3}. We note here that the null (0) value required

for the metric ∆ls(l, f) flattens the tube into a safety square, i.e. a 2D-shape.

Remark 7.3 In the case of the 1D space, the definition of the safe following metric

assumes the use of the updated version of the safety invariant formulas in Table 7.3. If

one uses the original version i.e. Table 7.2, a tube similar to the one in Figure 7.5 a) will

be obtained instead.

7.4 Collision Avoidance Strategies and Algorithms

7.4.1 Generic Collision Avoidance Process

Traditional collision avoidance strategies decompose the process into three generic

steps as follows [147].

1. Sense: Sensors such as radars or transponders are used to perform an accurate

surveillance of potential targets/obstacles. The sensors can be standalone or orga-

nized into a coordinated, synchronized network to maximize efficiency.

2. Detect: Data collected from sensors are processed for the purpose of the determina-

tion as to whether a risk of collision or conflict exists and a characterization of the

210

risk (prediction) is established.

3. Avoid: The determination, characterization and execution of the appropriate avoid-

ance maneuver for the risk (type of collision) identified are performed at this step.

Ensuring the safety of real-time systems such as the ones in the class of CPS we’ve been

studying in this research requires this process be ran continuously as long as the system is

operational. Also, it must be executed in little to no latency. This is not always guarantee

as the last step could require significant actuation time and the first two might require

extensive computation (algorithm execution), which consumes time too [32]. Moreover,

the performance of the implementation (physical) platform can greatly affect the outcome

of the process. In the context of this work, we introduce the generic Algorithm 1 as a

foundation for further collision type-driven avoidance strategies.

Algorithm 1 Generic Safety Procedure for Safety-critical CPS

Input: Set of system parameters P ; Set of acceptable safety range values RC = [rCj],
j ∈ {1, . . . , nR} for the problem’s nR applicable dimensionless metrics under a given
set of hard constraints C

Output: Realization of the safety state s ∈ {safe, unsafe} of the system S under con-
straints C

1: Take and save the (sub)set of sensor measurements X in physical space X , ⊲ Only

relevant sensor readings are needed

2: Compute and save set of dimensionless safety metrics: PiC = [πC
j]= f(X, P) , j ∈

{1, . . . , nR} ⊲ Function f will encompass the transformations required by DA (if needed)

3: idx← nR ⊲ Variable storing the last “safe” index

4: j ← 1
5: while (πC

j ∈ rCj and j ≤ nR) do ⊲ Search index for which any constraint c ∈ C is violated

6: idx← j
7: j ← j + 1
8: end while
9: if idx < nR then ⊲ Establishing the safety state of the system

10: s← unsafe
11: else
12: s← safe
13: end if
14: return s ⊲ The system safety state is s

211

In Algorithm 1, the focus has been on the first two steps of the above-described generic

process. Sensing is covered in line #1 while lines #2 to #15 determine whether the system

is safe or not. We also note that the set of acceptable safety range values RC is determined

by analyses such as the ones performed in Sections 6.3 and 7.3. The last step on corrective

action is left out of the algorithm because it’s highly dependent on the configuration and

capabilities of the system at the time the unsafe state is established. Also, we recognize

the assumption the algorithm makes on the existence of formulae to compute the various

safety metrics which is not always obvious to uncover as we’ve seen throughout this work.

7.4.2 Local Away, Glancing and Clipping Collision Avoidance Algo-

rithms

In the context of collision avoidance, we side with the authors in [80] who rightfully

point out that there is no “one-size-fits-all” collision avoidance strategy. Differences in

types of collision lead to difference in avoidance strategies. Spatial constraints on entity

trajectories as well as their dynamics further reduce avoidance options at hand. The

higher the degree of freedom of the entities involved, better and more are the avoidance

options. Thus, in this section, we build from foundational work in Sections 7.4.1 and 7.3

as well as chapters 4 and 5 to develop collision avoidance algorithms for away, glancing

and clipping collisions. In order to keep the complexity of the algorithms in check, we’ll

treat away collision independently from the others.

Away Collision Avoidance Algorithm. In order to develop this algorithm, we need

to modify and customize Algorithm 1 using the set of safety metrics uncovered in Section

7.3.4. We also need to:

212

(a) Define the appropriate set of system parameters based on the assumptions in

Section 7.3.1,

(b) Select the appropriate ontological commitment for spatial representation of dy-

namic objects and,

(c) Make a clear distinction between the leader (l) and the follower (f).

The main constraint is

cfl = (f ≪ l) ∈ C (7.57)

i.e. the follower must always be behind the leader.

Algorithm 2 modifies and adapts Algorithm 1 to the local away collision avoidance

problem. It relies on system sensor measurements and metrics developed in section 7.3.4

to determine the safety state of the system. The algorithm is decomposed in three phases,

each addressing different stages of the solution.

In Phase 1, relevant system sensor measurements – mainly from individual dynamic en-

tity’s position, velocity and orientation – are read and stored. We note here that the

location and identity of the sensors to be read depends on the ontological commitment for

the spatial representation of these objects as defined by the input dim ∈ {0, 1, 2, 3}.

In Phase 2, the system set of safety metrics is computed using the appropriate dimension-

based formulas as determined in Section 7.3.4.

Phase 3 uses the results of the metric computation and the set of acceptable safety range

values to characterize the safety of the system.

Based on the returned value of s, corrective actions can be taken if needed. In the case

s = unsafe, the range of possible corrective actions includes, depending on the entities

allowed degree of freedom : (a) slow down the follower f to the speed of the leader l, (b)

213

Algorithm 2 Local away collision avoidance algorithm
Input: Set of system parameters P = {A, b, ε}; Ontological commitment for spatial rep-

resentation of dynamic objects dim ∈ {0, 1, 2, 3}; Set of acceptable safety range values
RC =

⋃nR−1
j=0 {[0, 1[} for the problem’s nR = 9 applicable dimensionless submetrics

∆coord
m (l, f)|dim (once dim is fixed), under the set of hard constraints C = {cfl}; with

m ∈ {bs, ls, sfε} and coord ∈ {X,Y,Z}
Output: Realization of the safety state s ∈ {safe, unsafe} of the system S under C

Phase 1 - (Sub)set system dynamics sensor measurements X̂

1: if dim = 0 then
2: X̂f ← {Xf , Yf , Zf , Vf , αf , θf , βf , λf} ⊲ Position, velocity and orientation follower

3: X̂l ← {Xl, Yl, Zl, Vl, αl, θl, βl, λl}, ⊲ Position, velocity and orientation leader

4: else
5: if dim ≥ 1 then
6: X̂f ← {XF

f , Y F
f , ZF

f , Vf , α
F
f , θ

F
f , β

F
f , λ

F
f } ⊲ Front (F) of follower (f)

7: X̂l ← {XB
l , Y B

l , ZB
l , Vl, α

B
l , θ

B
l , β

B
l , λB

l } ⊲ Back (B) of leader (l)

8: end if
9: end if
10: X̂ ← X̂f∪ X̂l ⊲ System measurements

Phase 2 - Set of safety metrics: [∆coord
m (l, f)|dim] = [πC

j]= f(X̂, P) , j ∈ {0, . . . , 8}

11: Create empty list of πC
j : PiC

12: for coord ∈ {X,Y,Z} do
13: for m ∈ {bs, ls, sfε} do
14: if dim = 0 then
15: Compute ∆coord

m (l, f)|0D ⊲ Use eqs. 7.35 – 7.37, 7.39 – 7.41, and 7.43 – 7.45

16: else
17: Compute ∆coord

m (l, f)|1,2,3D ⊲ Use eqs. 7.47 – 7.49, 7.51, and 7.53 – 7.55

18: end if
19: Add result to list: PiC ← ∆coord

m (l, f)|dim
20: end for
21: end for

Phase 3 - Characterization of system safety

22: idx← |PiC | − 1 ⊲ Variable storing the last “safe” index; nR = |PiC |

23: j ← 0
24: while (πC

j ∈ [0, 1[and j < |PiC |) do ⊲ πC
j ∈ PiC and rCj = [0, 1[, ∀j ∈ {0, . . . , 8}

25: idx← j
26: j ← j + 1
27: end while
28: if idx < |PiC | − 1 then ⊲ Establishing the safety state of the system

29: s← unsafe
30: else
31: s← safe
32: end if
33: return s ⊲ The system safety state is s

214

move l forward faster or, (c) move l away (left, right, up, down) from the trajectory of

f [80].

Glancing and Clipping Collision Avoidance Algorithm. One key advantage of

safety metrics is their ability to encapsulate spatial and temporal properties of the system

into important, powerful system-level dimensionless parameters for safety modeling and

analysis of safety-critical systems such as CPS. This has been proven very effective in

the case of the away collision algorithm. However, as of now, we don’t have predefined

metrics to assist in detecting and characterizing glancing or clipping collisions. Therefore,

developing avoidance algorithms is an effort that requires detail knowledge of spatial and

temporal representations and constraints applicable to the system. Thus, we’ll build

on semantically supported metadomain representations developed throughout this work

as part of the CPS-KMoDS. This includes the temporal and spatial modeling system

introduced respectively in Chapters 3 and 4.

Thus, we need to define and assign :

(a) (Intersecting) travel trajectories to individual moving entities and,

(b) Make a clear distinction between the entities id ∈ 1, 2 and their priority in term

of right of way (ROW), predefined traffic rules.

In light with the multi-level spatial representation scheme introduced in Section 4.4.3, we

introduce the following definition.

Definition 7.4.1. (Trajectory) A trajectory is a sequence of adjacent spatial entities

of identical dimensions. It can be closed or open but also oriented. In order words,

Tr(i)|dim =
⋃n−1

t=0 {s
i
t}|dim, with sit spatial entities, dim ∈ {0, 1, 2, 3}, and, n ≥ 1 is a

trajectory if all of the following conditions are satisfied: (i) Each sit is either a Primitive,

Extended or Composite entity (as defined in Section 4.4.3), (ii) All entities’ dimension is

215

the same as the one of the trajectory Tr(i) i.e. ∀sit, dim(sit) = dimTr(i) and, (iii) Two

consecutive entities in Tr(i) are adjacent i.e. ∀t ∈ {0, . . . , n − 1}, sit+1 ∈ Adj(sit) (when

n ≥ 2).

When the trajectory is positively oriented, it’s noted Tr+(i) and its spatial entities are

traversed in the ascendant order of occurrence in the list. This order is reverse when it’s

negatively oriented and noted Tr−(i). For the remaining part of this document, we’ll

assume trajectories are positively oriented unless explicitly indicated. One important

consequence of this definition is that a trajectory can be represented at various levels

of abstractions, using the appropriate spatial ontological commitment defined by the pa-

rameter dim. Also, the intersection of two trajectories of dimensions k and k′ can be

either null, or an (or set of) entity of dimension k′′ ≤ min(k, k′). Similarly, the spatial

representation of (a dynamic) entity e has to be made complete by specifying its highest

spatial dimension as e|dim. For instance, when dim = 2, the geometry of e is a Polygon

as illustrated on the right side of Figure 4.3. This also means that e can be represented

at lower dimensions i.e. as a Line (dim := 1) or Point (dim := 0).

Remark 7.4 When the maximum dimension is not represented, the default dimension

i.e. dim = 2 is assumed. We can picture the trajectory of e|dimE in dimension dimS as

its (expected) trace when it moves in a specific direction, when represented in that spatial

dimension. However, the closest physical entity representation of the real world entity is

better done with dimE ∈ {2, 3}.

Equipped with this definition, we make the following additional assumptions.

(B1) The lower the Id of the entity, the higher is its ROW.

(B2) Entities i and j travel at velocities within the allowed speed limits in each of

the segments of trajectory Tr+(i) and Tr+(j) respectively.

216

(B3) Similarly to assumption (A3), the computation time is assumed to be negligible

thus, will not affect safety procedures.

In order to support the development of the glancing and clipping collision avoidance al-

gorithms, we define and introduce spatial and temporal intersection functions. Algorithm

3 describes the procedure through which the intersection of two trajectories expressed in

various dimensions is computed. The algorithm returns either an empty set or a single

spatial entity in a dimension k′′ ≤ min(k, k′). When the geometric intersection of com-

ponent entities in the trajectories leads to multiple entities (line #13), the algorithm

extracts the first subset of adjacent entities (line #14) – for instance if the trajectories

cross each other several times – then, composes individual entities into a larger one of

the same dimension (line #17). The composition (MergeWith) operation preserves the

spatial decomposition procedure introduced in Section 4.4 thus, the consistency of the

results of RCC-8 operations on the composed entities is guaranteed.

Dealing with time requires an extra effort. Thus, we introduce the function defined by

Algorithm 4 that computes the intersection of two proper time intervals as per Allen’s

temporal interval calculus.

Given that (dynamic) entities are already annotated in definition 7.4.1 we can use the

result to spatially annotate temporal entities as well, especially instants. Thus, tsit|k will

denote the time instant associated to the event of entity i being at location or occupying

spatial entity sit|k.

The last element we need is the set of safety constraints associated to the glancing and

clipping collisions avoidance problem. Thus, we consider the spatial intersection sij|k

of two trajectories of identical dimension k as computed by Algorithm 3 as follows :

sij|k = Tr+(i)|k ∩ Tr
+(j)|k; with k ∈ {0, .., 3}. For glancing collision, the main constraint

217

Algorithm 3 Spatial intersection of two trajectories dim of k & k’ (k, k
′

∈ {0, .., 3})

1: function SpatialIntersection(Tr+(i)|k =
⋃n−1

t=0 {st}|k ,Tr+(j)|k′ =
⋃m−1

l=0 {sl}|k′)
2: sij|k′′ ← ∅ ⊲ Result of the intersection k

′′

≤ min(k, k
′

)

3: TempListij|k′′ ← ∅
4: for t ∈ {0, .., n − 1} do
5: for l ∈ {0, ..,m − 1} do
6: Ovlptl|k′′ ← st|k ∩ sl|k′ ⊲ RCC-8 compliant geometric operation

7: if Ovlptl|k′′ 6= ∅ then
8: TempListij|k′′ ← Ovlptl|k′′ ⊲ Add to list

9: end if
10: end for
11: end for
12: sizeList← |TempListij|k′′ |
13: if sizeList > 1 then
14: adjSetList|k′′ ← Adj(TempListij |k′′)[0] ⊲ Set of adjacent entities in the list

15: sM |k′′ ← adjSetList|k′′ [0] ⊲ Initialize merging entity

16: for p ∈ {1, .., |adjSetList|k′′ | − 1} do
17: sM |k′′ ←MergeWith(adjSetList|k′′ [p]) ⊲ Geometric composition

18: end for
19: sij|k′′ ← sM |k′′
20: else
21: if sizeList = 1 then
22: sij|k′′ ← TempListij|k′′ [0] ⊲ Save the only element in the list

23: end if
24: end if
25: return sij |k′′ ⊲ The intersection can be an empty set ∅

26: end function

Algorithm 4 Intersection of two proper time intervals
1: function TemporalIntersection([t1, t2] ,[t3, t4])
2: [tb, te]← ∅ ⊲ tb = beginInstant and te = endInstant of resulting time interval

3: if t3 ≤ t2 then
4: tb ← max(t1, t3)
5: te ← min(t2, t4)
6: end if
7: return [tb, te] ⊲ The Intersection can be an empty set or an instant (if tb = te)

8: end function

218

is

cGij = (ei 6= ej, ∀i, j/i 6= j sij|0 = ∅) ∈ C (7.58)

i. e. ANY two (dynamic) entities picked among the family of nE entities on glancing

collision course must be separated spatially at all time in the lowest dimension (sij|0 = ∅).

Similarly, the main constraint for clipping collision can be written as follows.

cCij = (ei 6= ej, ∀i, j/i 6= j sij|2 = ∅) ∈ C (7.59)

We note that, thanks to the possibility of multidimensional representations of entities and

trajectories offered by our framework, we can clearly distinguish glancing and clipping

collisions using the value of sij|k. Therefore, we take advantage of this representation

in Algorithm 5 to support the description of the procedure through which glancing and

clipping collisions are predicted and resolved before they materialize.

Among the key inputs of the algorithm are the ontological commitment for spatial

representation dimE of a pair of dynamic objects E = (ei, ej)|dimE along with their

trajectories Tr(i)|k and Tr(j)|k expressed in dimensions k ∈ {0, .., dimE}. Also, the set

of system parameters P and hard constraints C are also needed. In Phase 0, algorithm

variables are defined and initialized.

The goal of Phase 1 is to research and predict, based on current configuration of the

system and given inputs, any future spatial conflict and characterize the type of collision

(if any). First, the intersection of spatial entities at all dimensions is computed and stored

(lines #11 to #13) using spatial function in Algorithm 3. Then, in lines #15 to #21, the

lowest dimension idx at which there is a spatial conflict is extracted (if any). As shown

in Figure 7.6 the value of dimension idx is also used to differentiate possible glancing

219

Algorithm 5 Local glancing and clipping collision avoidance algorithm
Input: Pair of dynamic entities E = (ei, ej)|dimE ; Ontological commitment for spatial

representation of dynamic objects dimE ∈ {2, 3}; Trajectory of entity i, Tr(i)|k =
⋃n−1

t=0 {s
i
t}|k and entity j, Tr(j)|k =

⋃m−1
l=0 {s

j
l }|k, with n,m ≥ 2, i < j and k ∈

{0, .., dimE}; Set of system parameters P = P i ∪ P j ∪ P space; Reaction velocity
vǫ > 0; Set of hard constraints C = {cGij , c

C
ij} applicable to the system.

Output: Realization of the safety state s ∈ {safe, unsafe} of the system S under C;
Type of collision (avoided) colType ∈ {none, glancing, clipping}

Phase 0 - Initialize variables

1: sc← false ⊲ Initialize variable indicating whether there is a spatial conflict or not

2: tc← false ⊲ — // — — // — — // — temporal — // —

3: dimS ← dimE
4: idx← dimS + 1
5: sij|k ← ∅ ∀k ∈ {0, .., dimS} ⊲ First collision spatial entity for i and j in dim = k

6: Oij|0 ← O|0 ⊲ Closest collision POINT on sij |k for i and j

7: Ai|0, A
j |0 ← O|0 ⊲ Closest approach POINT on Tr(i), Tr(i) to Oij |0 for i,j

8: colType← none
9: tijb |0, t

ij
e |0 ← 0 ⊲ Begin and end of intersection time interval; dimS =0

10: s← unsafe ⊲ By default, the system is unsafe

Phase 1 - Predict spatial conflict and collision type based on trajectories

11: for k ∈ {0, .., dimS} do ⊲ Compute intersections for all possible dimensions

12: sij|k ← SpatialIntersection(Tr(i)|k, T r(j)k) ⊲ Use Algorithm 3

13: end for
14: k ← 0
15: while (k ≤ dimS and sc = false) do ⊲ Lowest dim. of non empty spatial intersect.

16: if sij |k 6= ∅ then
17: sc← true
18: idx← k ⊲ There is a spatial conflict for representations at dim = idx

19: end if
20: k ← k + 1
21: end while
22: if sc = false then
23: s← safe ⊲ There is NO SPATIAL conflict, hence no risk of collision ahead

24: return s, colType ⊲ The system is s = safe and colT ype = none ⇒ STOP !

25: end if
26: si|2, s

j |2 ← ∅ ⊲ Spatial variables

27: if idx = 0 or idx = 1 then ⊲ GLANCING collision between trajectories

28: colType← glancing ⊲ See Figure 7.6 a0 to c0 and a1 to b1

29: si|2 ← s|2 ∈ Tr(i)+|2/SpatialIntersection(s|2, s
ij |2) = sij|2 ⊲ Use Algorithm 3

30: sj|2 ← s|2 ∈ Tr(j)+|2/SpatialIntersection(s|2, s
ij|2) = sij |2

31: Oij |0 ← BL(sij|2)|
θij or BR(sij|2)|

θij ⊲ BL & BR as per Fig. 4.3; θij = orient. sij |2
32: end if

220

33: if idx = 2 then ⊲ There is a CLIPPING collision between the trajectories

34: colType← clipping
35: if dim(sij |2) = 0 then ⊲ The trajectories meet at POINT sij |2; See Figure 7.6 c2

36: si|2 ← s|2 ∈ Tr(i)+|2/SpatialIntersection(s|2, s
ij|2) = sij |2 ⊲ Use Algo. 3

37: sj |2 ← s|2 ∈ Tr(j)+|2/SpatialIntersection(s|2, sij|2) = sij |2
38: Oij|0 ← sij |2
39: else
40: if dim(sij|2) = 1 then ⊲ Trajects. meet at LINE sij |2; See Fig. 7.6 b2

41: si|2 ← si ∈ Tr+(i)|2/SpatialIntersection(sij |2, si) = Back(sij |2)
42: sj|2 ← sj ∈ Tr+(j)|2/SpatialIntersection(s

ij |2, s
j) = Back(sij|2)

43: Oij|0 ← Back(sij |2)
44: else
45: if dim(sij |2) = 2 then ⊲ Traject. meet at POLYGON sij |2; See Fig. 7.6 a2

46: si|2 ← si ∈ Tr+(i)|2/SpatialIntersection(sij |2, si) =
BL(si|2)|

θiorBR(si|2)|
θi ⊲ BL or BR depends on θi

47: sj |2 ← sj ∈ Tr+(j)|2/SpatialIntersection(sij |2, sj) =
BL(sj |2)|θjorBR(sj|2)|θj

48: Oij|0 ← BL(sij |2)|θijorBR(sij|2)|θij

49: end if
50: end if
51: end if
52: Ai|0 ← BL(si|2)|θiorBR(si|2)|θi ⊲ BL & BR as per Fig. 4.3; θi= orientation i

53: Aj |0 ← BL(sj |2)|
θjorBR(sj|2)|

θj

54: end if

Phase 2 - Predict Temporal conflict based on system dynamic

55: X̂Ai|0 ← {A
i|0, vAi|0, tAi|0} ⊲ Position, velocity and time stamp of i at location Ai|0

56: X̂Aj |0 ← {A
j|0, vAj |0 , tAj |0} ⊲ Position, velocity and time stamp of j at location Aj |0

57: tiOij |0
← tAi|0 + dur(Ai|0, Oij|0) ⊲ Computed travel time dur(Ai|0, Oij |0) = f(X̂Ai|0 , P

i)

58: tj
Oij |0
← tAj |0 + dur(Aj|0, Oij|0) ⊲ Expected arrival time at collision point

59: [tijb |0, t
ij
e |0]← TemporalIntersection([tAi|0, t

i
Oij |0

], [tAj |0 , t
j
Oij |0

]) ⊲ Use Algo.4

60: if [tijb |0, t
ij
e |0] = ∅ or t

ij
b |0 6= tije |0 then

61: s← safe ⊲ There is spatial but NO TEMPORAL conflict

62: return s, colType ⊲ The system is s = safe and colT ype ∈ {glancing, clipping}

63: else
64: tc← true ⊲ There are spatial AND temporal conflict

65: end if

Phase 3 - Prevent collision by (time) separating back of i & front of j

66: Bi|0 ← BL(i)|2|θi or BR(i)2|θi ⊲ Back of entity i as per Fig. 4.3

67: tBOi|0 ← tBi|0 + dur(Bi|0, Oij|0) ⊲ Expected arrival time of Bi at collision point

68: while tBOi|0 > tj
Oij |0

do
69: vAj |0 ← vAj |0 − vǫ ⊲ Slow down entity j (has lowest priority a per Assumption(B1))

70: tj
Oij |0
← tAj |0 + dur(Aj|0, Oij|0) ⊲ Update tj

Oij |0
; with dur(Aj |0, Oij |0) = f(X̂Ai|0 , P

i)

71: end while

221

72: tc← false ⊲ The temporal conflict has been resolved

73: s← safe
74: return s, colType ⊲ The system is s = safe and colT ype ∈ {glancing, clipping}

collision idx = 0, 1 (line #28) from clipping collision idx = 2 (line #33) in Algorithm 5.

When idx = 0 the trajectories intersect at their lowest spatial dimension of representation

(dimSij |0 = 0) and we have the configuration c0 . However, finding the system closest

collision point Oij|0 and the two closest approach points Ai|0 and Aj |0, requires to trace

the spatial representation of the trajectories all the way up to the one at dimension 2 as

shown by the arrows between c0 and a0 via b0 . Similarly, the traceability between

representations b1 and a1 shows the mean through which closest collision and approach

points are determined when idx = 1 and dimSij |1 = 0. In case dimSij|1 = 1, we have

a configuration similar to b0 . When idx = 2, the three ways the entities can clip are

illustrated in configurations a2 , b2 and c2 . Finally, through the investigation of the

dimension of the intersecting entity sij|idx, we compute and store both the closest collision

POINT on sij|k and approach POINT on Tr(i), Tr(i) to Oij|0 for i and j (lines #27 to

#54).

Phase 2 makes use of Algorithm 4 and system dynamic to compute the intersection of

temporal intervals made of the time instants at approaching points tAi|0 and tAj |0 and the

expected time instants at collision point tiOij |0
and tj

Oij |0
. The result is used to predict any

temporal conflict between the dynamic entities.

The goal of Phase 3 is to resolve the spatio-temporal conflict by separation of the colliding

entities in the temporal domain. Thus, we make sure that the back of the entity with the

highest traffic priority i.e. i will cross the collision point Oij |0 BEFORE the front of the

entity of lowest priority j (lines #68 to #71). This is done by slowing down entity j via

222

Figure 7.6: Representations of collision configurations for spatio-temporal algo-
rithms

a speed reduction (braking) as shown in line #69.

Remark 7.5 Algorithms 2 and 5 address away, glancing and clipping collision avoidance

strategies. Achieving the “zero accident” goal indicated in Chapter 4 requires the various

actors to make the right decision at the right time but also the system as a whole to apply

the right (combination of) collision avoidance strategy(ies) for the situation at hand. This

adds another layer of complexity on the implementation of the algorithms.

223

7.5 Case Study: Glancing Collision at Non-signalized Intersection

7.5.1 Overview of the case study

We consider the problem of a glancing collision between two smart cars at a non-signalized

traffic intersection. All the stoplights at the intersection are replaced by a single intersec-

tion manager (IM) that monitors traffics, establishes collision risks (if any) and intervenes

to resolve spatio-temporal conflicts impeding safe crossings at the intersection. We seek to

understand how the ontological commitment of the spatial model of the vehicles and their

representation affects the outcome of the reasoning process for collision prediction. To that

aim, we consider a particular but simple configuration of the modeling landscape where

reasoning for collision avoidance is done with spatial representations at dimE ∈ {0, 1}

and dimS = 1. The problem is approached from a CPS perspective in the sense that

vehicles are dynamic (physical) objects equipped with sensing, computation and commu-

nication (cyber) capabilities that communicate and interact with each other and the IM.

For the purpose of this experiment, we assume that both vehicles travel at constant but

different speeds and they are within sensing range of each other. We have developed a

Java-based software platform consistent with the simulation architecture in Figure 6.4 and

interprets the semantic network of 2D spaces adopted by the Open Street Map (OSM)

community [197]. As such, the spatial models used in this experiment are at level L2 and

lower on the hierarchy of spatial modeling (see Figure 4.3).

With the help of JavaFX, we created and visualized a race track (full details not shown)

that preserves the semantic information of space. The lower right-hand of Figure 4.4 shows

a zoom on the intersection of the track of interest for our application.

224

7.5.2 Spatio-temporal reasoning for glancing collision avoidance

We rely on the detailed architecture in Figure 4.4 to drive the implementation of

the spatio-temporal reasoning scheme. We consider here a scenario involving a glancing

collision (as pictured in Figure 7.1) between two driverless vehicles.

1/Component Models. In order to keep the experiment simple yet explicit enough

to maintain the focus on the topic of this Chapter, we consider only 2 vehicles operating

in the limited space representing the intersection. Thus, the vehicles are “dynamic” com-

ponents and the intersection itself is considered a “static” component. Both component

types have non-spatial features as illustrated in Section 4.4.3. However, each vehicle is

assigned a predefined trajectory, both intersecting at the location s13 inside the space

occupied by the intersection. Control points are located on the track, at trajectories in-

tersection or curvatures to keep track of the distance of the vehicle to eventual/candidate

conflict areas.

2/Spatial Models. Each of the component type within the system has a spatial extension.

As a case in point, the traffic intersection is modeled as an “IrregularSpaceBlock,” which

is an extended spatial entity in layer L2 in the hierarchical model on Figure 4.3. Figure 7.7

illustrates the XML representation of the intersection1 as an irregular space block. The

geometry is a JTS encoded polygon that defines the precise contour of the intersection as

an ordered list of JTS points (in 0D). Also, points of interest (pois) as well as metrics (e.g.,

area) and features (e.g., name, identifier) can be captured by the model. The dynamic

nature of vehicles along with the expected use of its spatial model for reasoning purpose

pose a challenge on the choice of the appropriate level of spatial representation needed as

explained in Section 4.4.3. This choice affects the effectiveness of the reasoning. For this

225

Figure 7.7: Data view of the model of an intersection as an irregular space block in
XML.

experiment, a vehicle i will be viewed either as a:

(a) 2D Point which is the centroid G(i) of its shape in 2D,

(b) Straight Line connecting its front F(i) to its back B(i) or,

(c) Polygon (rectangle) represented by its corner points as shown in Figure 4.3.

These geometries correspond respectively to Node (L0), LineBlock (L1) and RegularSpace-

Block (L2) spatial models. We add position sensors (0D) at those points of interest on

the vehicle boundary to track their position in real-time during simulation.

3/Spatio-temporal Reasoning. Effective collision avoidance requires the separa-

tion of entities in temporal and spatial domains. Therefore, the reasoner - embedded in the

IM - should implement Algorithm 5 in order to achieve that goal. However, considering the

goal of this analysis, we’ll conduct a special implementation, with spatial representations

at dimE ∈ {0, 1} and dimS = 1.

226

Figure 7.8: Illustration of ontology-based communication and control for spatio-
temporal reasoning in a distributed traffic system architecture.

A collision is predicted to occur when the spatial representations for vehicles V(1)

and V(2) – let’s call them S1 and S2 – are predicted to occupy the same location at the

some point in time. In other words, one of the RCC-8 spatial predicates PO(S1, S2)

or EC(S1, S2) will evaluate to true. We assign a path to each vehicle on the racetrack

and a constant but different traveling speed to each of them. With dimE = 0 and

dimS = 1, the system is modeled as two 0D dots (vehicles) traveling along intersecting

tracks (trajectories), which would correspond to a configuration similar to b1 in Figure

7.6. However, when dimE = 1 the system is configured as a 1D line (with a front and back

as shwon in Figure 4.3) traveling along another line(s). After the set up, the simulation

227

is launched.

The left side of the Figure 7.8 illustrates the implemented ontology-based commu-

nication and control for spatio-temporal reasoning for the traffic system viewed as a dis-

tributed system. Each domain ontology is extended by its reasoner implementing domain

rules. System level rules (traffic rules) are applied to all entities. Ontologies communicate

via their interface which listen to (and communicate relevant) changes in the semantic

graph across the domains. Vehicles send “crossing request” containing required infor-

mation (Statements 1 - 4) to the IM and it returns its decision on conflict resolution

(Statements 8 - 9). The right hand side of the Figure illustrates what is happening

behind the scene as the collision is predicted and resolved before it materializes in the

physical world.

In the first phase of the reasoning algorithm, the IM computes the spatial intersec-

tion of the two trajectories which yields s13 (i.e. Oij |0 in Algorithm 5) as the intersection

location. Given the dimension (dim(s13) = 1) of this spatial entity and the classification

of collisions in Figure 7.1, the IM predicts a glancing collision between the two vehicles

at that specific location. The right hand side of the Figure shows that for the reasoning

process to be effective and decidable, each vehicle needs to register to the IM (Statement

1), communicate its trajectory (Statement 2), current velocity (Statement 3) and ex-

pected arrival time at the closest approach point (i.e. Ai|0 and Aj |0 in Algorithm 5) to

the control zone (Statement 4).

In the second phase, the reasoner computes the travel duration of each vehicle to

the collision point (as stated in lines #57 and #58 of the algorithm) and infers the cor-

responding time interval of each vehicle while in the intersection control zone (Statement

6). Then, the computation of the temporal intersection of the two time intervals estab-

228

lishes the nature of the relationship between them as per Allen’s temporal interval calculus

(Statement 7). The “intFinishes” result clearly indicates a temporal conflict between the

two intervals as shown by the corresponding configuration in Figure 3.3. This knowledge

- combined with the one on the already established spatial conflict at s13 - completes the

prediction of the glancing collision at that specific location.

The collision (i.e. spatio-temporal conflict) is resolved (in the cyber world) and

prevented (in the physical world) in phase 3 of the reasoning algorithm. In order to realize

this goal, the IM identifies the vehicle with the lowest traffic priority (i.e. #2) and compute

the velocity required to achieve the temporal separation at location s13 in accordance with

traffic rules such as the posted speed limit for that branch of the trajectory (Statement

8). The IM communicates to both vehicles the new (safe) velocities (Statement 9).

Figure 7.9: Space-time trajectory for two vehicles on a glancing collision course.

229

7.5.3 Impact of space ontological commitment on safety decisions

The results in the previous Section were obtained with dimE = 0 and dimS = 1

and, for the particular initial system state, the reasoner was able to predict, process and

resolve the glancing collision before it occurred. However, it’s not always the case as the

shape and size of entities matter. To investigate this point in the context of this study,

we run another simulation with dimE = 0 and dimE = 1. Instead of considering only

the approach and collision points, we also include the prediction for intermediary, control

points as pictured in the bottom right side of Figure 4.4. Using the physical model of the

system and the capability of JavaFX, we run the simulation and extract both the distance

to conflict point and time stamps at each location.

Figure 7.9 shows the resulting space-time trajectory of each vehicle. The distance of

each control point to s13 is computed and normalized with respect to the collision point

as reference. In order for the reasoner to predict a collision, it needs the spatial data

encapsulated in the geometric representation (spatial model) of the vehicle. When the

vehicle geometry is a 2D point (0D space), its space-time trajectory is the black dashed

line followed by the centroid of each vehicle, i.e., G(1) and G(2). The temporal gap

between those two trajectories at s13 indicates that the two vehicles (will) arrive at the

collision point at different instances of time; in other words, no collision. However, if we

consider a higher level spatial model (1D space) for the vehicle, i.e., a straight line by

tracking its front and back as per Figure 4.3, we obtain two trajectories for each vehicle.

The red one is the trajectory of the sensor installed at the front point F(i) of the vehicle

while the yellow one is the one at the back B(i). The solid straight blue and red lines are

the “temporal lengths” of vehicles 1 and 2, respectively. Now, we see that the back of

230

vehicle 1 arrives after the front of vehicle 2 and before its back. In other words, vehicle 1

gets to s13 first and is hit on its right flank by vehicle 2. As such, the 1D space model was

able to predict a collision that the 0D space model was unable to catch ! Thus, the higher

the space ontological commitment - characterized here by the value of dimE - the more

precise is the (safety) decision. However, the complexity of the reasoning increases too (in

this example, the reasoner tracks 2 points in 1D representation instead of 1 in 0D). This

results is consistent with the expectations as illustrated by the arrow in the right side of

Figure 4.3.

Remark 7.6 (Tolerance of temporal representations). With Allen temporal calculus as

the underlying theory (partially ordered domain) for temporal representations in models,

the ontological commitment for time is clear in the CPS-KMoDS framework. However,

the (system) modeler should be aware of, and is still responsible in defining the acceptable

tolerance level for the temporal reasoning as done for space (see Remark 7.2). This is

directly tied to the selected granularity of time in the model. It should be selected in a

way that uncertainties in representations are minimized and kept in check so they don’t

affect decision making. As an illustration, if the temporal tolerance of the reasoning was

set to ∆t = 5s and the “Object” entity in Statement 6 (see right side of Figure 7.8)

was Object : "110-303;120-300" (in second), Statement 7 would remain unchanged

because the duration difference δt = 303-300=3s remains within the margin of error set by

the value of ∆t. However, with a lower temporal tolerance, let say ∆t = 2s, Statement 7

will return "intDuring" which, as per the representations in Figure 3.3, does not illustrate

temporal conflicts at any extremity of the intervals.

231

Chapter 8: Conclusion and Future Work

8.1 Conclusions

8.1.1 Summary of Work

Our research conceptualizes and demonstrates formal procedures for a semantic

modeling and reasoning framework that enables co-design of software (cyber) and hard-

ware (physical), as well as integration of domain-specific semantics in model-based systems

engineering (MBSE) of safety-critical cyber-physical systems (CPS). The latter are charac-

terized by tight integration of software and physical processes, the need to satisfy stringent

constraints on performance, safety and a reliance on automation for the management of

system functionality. This work has been motivated by the realization of the inability

of state-of-the-art traditional MBSE to support efficient design and verification of such

systems. As demonstrated throughout this thesis, the need for highly-integrated system

architectures in CPS changes the very nature of MBSE as currently perceived by scholars.

Specifically, the separation of design concerns coupled with weak semantics of modeling

languages (such as UML or SySML) lead to multiple distinctive viewpoints and a broken

design flow which ultimately creates confusion and generates inconsistencies at every turn.

The work conducted focuses on a family of CPS applications for which safety and

232

performance are dependent on the correct predictions of future system state in terms of

space and time. To assure system safety at all times, it is essential that these systems

make the right decision at the right time and right place. This requirement, in turn, drives

the need for collection and processing of temporal and spatial information in a timely

manner. These observations have shaped our approach to “semantic-driven” design and

analysis and, in particular, the need for models and strong semantics suitable for formal

analysis. Prototype implementations employ Semantic Web technologies and demonstrate

integration mechanisms among domains and meta-domains in Civil System applications,

especially transportation systems.

8.1.2 Answers to Research Questions

Five research questions were asked and answered as follows:

1. How to effectively identify, capture and express safety requirements and physical se-

mantics in the overall CPS design flow? Safety properties are hard constraints defined at

system level thus, associated requirements define the criteria used to evaluate its opera-

tion. As such, safety requirements are non-functional and as shown in Chapter 5 can be

formulated as decision problems with true/false or yes/no solutions. Physical semantics

can be captured directly in the formal description of the physical subsystems (domain and

metadomains) with linkage to the appropriate semantics as extensions (physical quanti-

ties for instance) as illustrated by the bottom two layers of the architecture in Figure 5.2.

Also, in Chapter 7, we saw that, when translated into formal specifications supported by

the corresponding requirements model (mapped to its semantics), requirements can be

moved from their natural problem space to the solution space. This helps smooth the

233

development of safety Algorithms, streamlines the design flow and enables the co-design

of both the physical and cyber parts of the system.

2. What temporal and space theories are the most appropriate for modeling and design of

CPS? Based on foundation research that found interval-based models as most appropriate

for formal analysis having time-dependent behavior and the selection criteria laid out,

Allen’s temporal interval calculus was identified as the most qualified temporal theory

for our modeling framework. Similarly, the region connectedness calculus, which is a

space-region theory was qualified as the most appropriate spatial formalism for the CPS

design and modeling. Both theories were shown effective in supporting the compliance of

resulting CPS models to requirements.

3. What knowledge representation formalism is suitable for semantic-based modeling and

reasoning in CPS? Among the knowledge representation formalisms investigated, De-

scription Logics offered very attractive features for semantics of complex domains (such

as CPS) modeling including, non-finiteness of the domain and open-world assumption of

the knowledge modeling. However, because of limitations on expressiveness of some DLs

we identified selective extensions to the ALC resulting into the SROIQ DL. The latter

provides support for concrete domains, improves the reasoning algorithms and ultimately

supports the decidability of the knowledge modeling language OWL2.

4. To what extent can domain ontology models, especially the ones of time and space, and

associated framework for formal reasoning about these meta-domains, be used to streamline

design flows? We uncovered the “commonality of information” that crosses all domains

and abstraction layers of CPS design. This allows ontology models to effectively en-

capsulate the relevant knowledge of the CPS of interest across application domains and

234

metadomains, especially space and time. The domain layer of the CPS-KMoDS in Figure

5.2 illustrates how the system domains can be encoded in semantic blocks. Given that

requirements can be modeled in the similar way, this enables the flattening of the design

knowledge and the bridging of the gap between the problem and the solution domains.

Collision avoidance algorithms developed in Chapter 7 especially Algorithms 2 and 5,

embody such integration.

5. How can cyber and physical behaviors be seamlessly integrated into an executable CPS

model? The capabilities of the Whistle scripting language [65] currently under develop-

ment were put to work to integrate the various modules of the CPS-KMoDS framework

during the simulation. This has resulted into precise, accurate and executable CPS models

appropriate for system level analyses. Also, even though the focus of this research was

on semantic modeling, we’ve set and explored the foundations for the integration of the

semantic and the physical models for the purpose of control as illustrated in applications

in Chapter 4.

8.2 Future Work

The contributions of this thesis represent a proof-of-concept in the context of

MBSE and, as such, there are many opportunities for extension and improvement. Looking

forward, one goal is to support modeling of behaviors in large scale complex systems, such

as cities and battlefields. An important opportunity is methodologies and tools that can

provide assistance to cities in their recovery from environmental disruptions. Thus, a

number of outstanding issues and problems are left for future research.

235

8.2.1 Ontological and Multi-level Integrated Control

In spatially distributed CPS, sending irrelevant control commands or correct ones

with unacceptable delays as well as failing to provide commands at all when needed or

making bad assumptions can lead to catastrophic outcomes. One such example is the

recent accident involving a self-driving Google car which, leaving from a stopped position

alongside a road, assumed it had the right of way over a bus driving on the targeted

lane because it was ahead of it! This resulted in the vehicle glancing off the right side of

the bus [300]. This makes the case for CPS controller to be intelligent i.e., its model and

implementation have to be syntactically, semantically and ontologically correct [22]. Thus,

the extension of the CPS-KMoDS with ontological control [79] will result into precise and

accurate decision making at the control level, but also the ability for the control system to

handle problematic control situations, especially those involving the violation of ontological

assumptions.

On the other hand, state-of-the-art control for CPS often adopt a narrow view

of the issue with focus on specific security aspects such as sensor data or weaknesses

in operational implementation [43, 132] or various aspects of resiliency and robustness

[281, 299]. When the view is broadened, domain semantics are barely taken into account

across application domains including: cyber and physical systems control co-design with

applications in distributed CPS [21], buildings [112] and, robotics [298]. There is value

in investigating the synergistic integration of low and high level control with ontological

control into a multi-level architecture. The resulting control scheme ought to be able to (1)

guarantee precise and accurate handling of spatio-temporal constraints of the (Net)CPS

of study, (2) make efficient decision based on sound reasoning and environment learning,

236

(3) resolve ontological assumption violations, with the ultimate goal of achieving system

level safety.

8.2.2 Temporal and Spatial Reasoning with Uncertainties

Uncertainties are inherent to all domain knowledge representations as seen through-

out this thesis, for space and time. Given the scope of this research our approach of this

question has been limited to simple metrics for quantification of spatial and temporal toler-

ance as introduced in Chapter 7. More need to be done to tackle the double challenge of (i)

representing uncertain and incomplete spatial and temporal knowledge and (ii) construct-

ing effective methods of inference using those representations. For time, paths forward

include graphical [173,278], fuzzy [73,190,293] and probabilistic representations [219,279].

Similarly, qualitative and quantitative approaches for dealing with uncertainties in spa-

tial representations provide alternative investigation paths: fuzzy Sets [67,82,84,91,169],

three-Valued Logics [52,159,202], rough sets [33,37], probabilistic [167,250,269] and hybrid

Methods [244,245].

8.2.3 Whistle Platform Development

To date, Whistle [65] has been developed with engineering analysis of multi-

domain applications in mind. Despite its current impressive features, many pieces of a

comprehensive systems integration engine are missing. Opportunities for future work in-

clude language support for the smooth integration of models of physical components and

computation along with the simulation and visualization of continuous and discrete behav-

iors. Whistle library support for calendar, scheduling and optimization modules is needed.

237

This will enable tasks planning and scheduling, which would allow the implementation,

simulation and design analysis of increasingly realistic, real-world scenarios. Another need

is computational support for elicitation of requirements, followed by their integration into

the design flow. Such a capability would open the door to their (automatic) verification as

part of the design process. The latter is the mechanism through which the solution domain

(design) is checked against the problem domain (requirements) and should be carefully

defined and configured. Also, these capabilities will enable the simulation and analysis of

large scale complex systems.

8.2.4 Safe Airport Taxiway System

A key problem with aviation systems becoming progressively crowded is their

diminished ability to deal with heavy work loads and enhanced ground safety concerns

[273]. Since 1990, the Federal Aviation Administration (FAA) has reported six (6) runway

collisions resulting in sixty-three (63) deaths. Fifty-four (54) percent of incursions during

2003 through 2006 were caused by pilot errors and (29) percent were caused by air traffic

controller errors [272, 273]. Also, state-of-the-art solutions have been unable to prevent

the frequent occurrence of aircraft wings and tails clipping on airport taxiways all around

the world [14,138,164]. Recent work [50,88,145,146] in the use of tree structures for the

hierarchical organization of temporal and spatial refinements offers one potentially useful

pathway forward.

We envision solutions that will rely on autonomous agents that implement semantic-

based, spatio-temporal collision avoidance algorithms introduced in this dissertation. Fig-

ure 8.1 shows the current state of this research with a portion of the Baltimore-Washington

238

Figure 8.1: Real-time simulation and safety validation of taxiway operations

International (BWI) airport. So far, the focus of the work has been on developing the phys-

ical model of the system. The right hand side of the figure represents Runway 15L/33R

and surrounding runway and taxiways. The map is created using parsed data from open

street map and visualized with the help of JavaFX. Runways and taxiways are partitioned

into spatial entities consistent with the framework in Figure 4.3. Aircraft are also created

as spatial objects and assigned predefined trajectories (black lines). Behaviors are defined

for each type of spatial entity and executed by the aircraft. On the left side of the figure,

the position of the aircraft is tracked in real time using sensors located at specific areas

(front and back in this case). The feasibility of implementation in real-time of solutions,

such as the ones described here, requires studies that incorporate delays and the effect

they will have on achievable levels of performance.

239

When complete, this research will produce new approaches to the multi-level sim-

ulation of concurrent physical behaviors, coupled with mapping relationships and software

tools for the reasoning, evaluation, and coordination of taxiway operations defined in terms

of their spatial and temporal requirements. Also, this application offers an ideal platform

for in-depth investigation of the issues identified in Sections 8.2.1 through 8.2.3.

240

Appendix A: Description Logics and ALC Extension

A.1 Basic description logics

Description logics are a family of logic-based knowledge representation formalisms

that can describe domain in terms of concepts (e.g., classes in OWL), roles (e.g., properties,

relationships) and individuals (e.g., objects). As a subset of first-order logics (FOL),

they provide well-defined semantics supporting decidability and development of efficient

reasoning algorithms. The acronym AL stands for attribute language (see Appendix 1

of Baader [29] for details on naming scheme for DLs). When a basic DL serves as a

foundation for knowledge representation, many other DLs may be constructed through

the addition of specific extensions. One such extension is the attribute language concepts

(ALC). The benefit of this extension mechanism is that is allows for the specification of

languages supporting new features. For example, atomic concepts (A) can be extended

to support arbitrary concepts (C), thereby enabling the description of any domain of

interest. A second important extension is the number restriction N which leads to ALCN

DL.” This is a subset of the frame-based DL FL and is equivalent to AL, but without

atomic negation, inverse, transitive roles and subroles or concrete domains [?,?]. As we

will soon see, these extensions and restrictions are needed to make the language decidable

with low complexity, a strategy that is supported by Lutz [172], who identifies ALC as

the most appropriate DL for reasoning with concrete domains.

241

A.2 The ALC description logics

In this DL, the operators universal (∀), existential (∃), intersection (⊓), Union (⊔),

negation (¬) can be properly applied to atomic (A, Ai,..), arbitrary (C, D,..), top (⊤) (i.e.,

All concepts names) and bottom(⊥) (i.e., Empty concept) concepts. Primitive relations

(r, s,...) as well as existential restriction (∃r.C) and value restriction (∀r.C) on concepts

are other key constructors used to formally define a domain of interest. The complete set

of defined concepts of the basic ALC system can be represented by the following grammar:

C:= ⊤ | ⊥ | A | ¬C | C ⊓D | C ⊔D | ∀r.C | ∃r.C

For instance, the statement ”A woman who is single and whose children are either boy or

girl” can be expressed in DL using a minimal number of concepts as follows.

Human ⊓ ¬ Male ⊓ ∀hasChild.(Boy ⊔ Girl).

In DL, semantics are defined by interpretations. In the case of ALC, an interpretation I

is formally defined as follows [26]:

Definition 1 (Interpretation): An interpretation I = (△I , .I) consists of a non-empty set

△I , called the domain of I , and a function .I that maps every ALC− concept to a subset

of △I , and every role name to a subset of △I × △I such that, for all ALC − concepts C,

D and all role names r,

⊤I = △I , ⊥I = ∅

(C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI , ¬CI = △I \ CI ,

(∃r.C)I = {x ∈ △I | ∃y ∈ △Iwith < x, y >∈ rIand y ∈ CI}

(∀r.C)I = {x ∈ △I | ∀y ∈ △I , if < x, y >∈ rI , then y ∈ CI}

242

x and y are instances of C in the interpretation I.

Concept descriptions are used to build statements in a DL knowledge base, in accordance

to the semantics provided by the interpretation.

Figure A.1: High level architecture of a knowledge representation system based on
description logics (Source: [29])

Figure A.1 shows that the knowledge base (KB) is typically made up of two parts: (1) A

terminological part or TBox, and (2) An assertional part called ABox. TBox statements

describe a set of concepts and properties for these concepts. ABox statements are TBox-

compliant statements about individuals belonging to those concepts. Together ABox and

TBox statements make up a knowledge base.

Definition 2 (TBox): A TBox T is a finite set of general concept inclusion (GCI). A GCI

is of the form C ⊑ D where C, D are ALC − concepts. When C ≡ D the corresponding

pair of GCI C ⊑ D and D ⊑ C are symmetrical. If C is a concept name, then the axiom

C ≡ D is called a definition. An interpretation I is a model of a GCI C ⊑ D if CI ⊆ DI ;

I is a model of a TBox T if it is a model of every CGI in T .

A TBox T can be definitorial (also called an acyclic TBox), i.e., it contains only definitions

along with certain restrictions. In this case, concept names in left-hand side of T are

243

Figure A.2: Summary of description logic concepts constructors ([29]).

”defined concepts” while concepts in the other side are ”primitive” concepts.”

Definition 3 (ABox): An ABox A is a finite set of assertional axioms of the form x : C

or (x,y) : r, where C is an ALC − concept, r is an ALC − role, and x and y are individual

names. An interpretation I is a model of an assertional axiom x : C if xI ∈ CI and I is

a model of an assertional axiom (x,y): r if (xI , yI) ∈ rI ; I is a model of an ABox A if it

is a model of every axiom in A.

These definitions equip us with the necessary elements to formally define the notion of

knowledge base introduced above.

244

Definition 4 (Knowledge base): A knowledge base (KB) is a pair (T ,A) where T is a

TBox and A is an ABox. An interpretation I is a model of a KB K = (T ,A) if I is an

interpretation of T and I is a model of A.

We write I |= K, (I |= T , I |= A) to denote that I is a model of a KB K (respectively,

TBox T , ABox A).

A summary of the main DL concept constructors is shown in Figure A.2.

245

Appendix B: DL extensions for OWL2

1. Role hierarchy (H): Hierarchies between roles are allowed in this extension. This

results into the ALCH or SH DL formalism that is a translation of foundational

OWL. In turn, there are three OWL sublanguages with increasing expressiveness:

OWL-Lite, OWL-DL and OWL-Full(no syntactic constraints). More precisely, the

DL TBox along with the role hierarchy extension map to the OWL (Lite or DL)

ontology. In OWL, the domain of interest is defined in term of classes related to

each other by properties. These entities correspond respectively to concepts and

roles in SH DL.

As an illustration, the DL statement hasColor.CarColor ⊑ hasCarDescriptor can

be translated into OWL as follows:

<owl:ObjectProperty rdf:about="#hasColor">

<rdfs:subPropertyOf rdf:resource="#hasCarDescriptor"/>

<rdfs:range rdf:resource="#CarColor"/>

</owl:ObjectProperty>

The properties here are of type object, but they could also be of type data depending

on the domain and application need.

2. Nominal (O): In this DL extension, use of the nominal constructor {} allows

for the definition of singleton sets (i.e., as concepts) from individual names. The

246

corresponding restriction in OWL is achieved with the object property elements

owl:oneOf and owl:hasValue.

Let us suppose that we are given an ”individual” V6. We can use this extension to

define all cars that are equipped with this particular engine type as follows.

Car ⊓ ∃hasEngine.{V 6}

This can be translated in OWL using the constructor owl:hasValue as follows.

<owl:Class rdf::about="#Engine">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasEngine"/>

<owl:hasValue rdf:resource="#V6"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

An important limitation of nominals [26] is that is can dramatically increase the

complexity of reasoning processes.

3. Inverse and transitive roles(I): This extension is needed to increase the expres-

siveness of the DL. Inverse and transitive roles are expressed in OWL using the

object properties owl:inverseOf and owl:TransitiveProperty.

For instance, makeCar ≡ hasMaker− and can be expressed in OWL as follows.

<owl:ObjectProperty rdf:about="#makeCar">

<owl:inverseOf rdf:resource="#hasMaker"/>

</owl:ObjectProperty>

The procedure for expressing that an object property is transitive is as follows:

247

<owl:ObjectProperty rdf:about="#hasFollower">

<rdf:type rdf:resource="#TransitiveProperty"/>

<rdfs:domain rdf:resource="#Car"/>

<rdfs:range rdf:resource="#Car"/>

</owl:ObjectProperty>

4. Cardinality/number restriction (N): This extension allows for the formal ex-

pression of the number of relationships that individuals of specific types can have

among them, a feature that is particularly relevant to CPS modeling.

For example, the statement A car has at most one engine can be written as follows.

Car ⊑≤ 1hasEngine

Additional syntax elements and their corresponding semantics are shown on Figure

A.2.

5. Qualified number restrictions (Q): This extension is similar to the previous

one with the difference that we can describe individual types that are counted by

a given number of expressions, which allows for representation of the notion of a

”data interval.”

To see how this works in practice, we can extend the definition of a car to allow for

two through five doors. The corresponding logical expression is:

Car ≡ V ehicle⊓ ≤ 1hasEngine ⊓ (≥ 2hasDoor⊓ ≤ 5hasDoor)

6. Role restrictions (R): This extension completes the I DL by providing role

inclusion axioms as well as support for reflexivity, symmetry and roles disjoint-

ness. In OWL, these features show up as the property characteristics owl:reflexive,

248

owl:irreflexive, owl:symmetry, owl:functional and owl:disjointWith. The fragment

of code:

<owl:ObjectProperty rdf:about="#hasFollower">

<rdf:type rdf:resource="#TransitiveProperty"/>

<rdf:type rdf:resource="#IrreflexiveProperty"/>

<rdf:type rdf:resource="#AsymmetricProperty"/>

<owl:disjointWith rdf:resource="#hasPredecessor"/>

<rdfs:domain rdf:resource="#Car"/>

<rdfs:range rdf:resource="#Car"/>

</owl:ObjectProperty>

illustrates the use of these characteristics for a more precise specification of the

aforementioned hasFollower object property.

7. Concrete domains: This extension provides support for the handling of concrete

sets (real numbers, integers, strings, etc..) and concrete predicates (numerical com-

parisons, string comparisons and comparisons with constants) on these sets.

249

Appendix C: Reasoning services for SROIQ - based ontologies

The SROIQ description logics that support OWL 2 are introduced in Krotzsch [143]

and are thoroughly detailed in Horrocks [128]. Here, SR = ALC + role chains(R), O =

nominals (closed classes), I = support for inverse rules, and Q = qualified cardinality

restrictions. We note the extension of the grammar to include role expressions R := U |

NR | N
−
R

where NR is the set of role names and U is the universal role. Also, alongside

the TBox and ABox, the RBox is an integral part of SROIQ axioms.

Thus, from the grammar

C:= NC | C ⊓C | C ⊔C | ¬C | ⊤ | ⊥ | ∀R.C | ∃R.C | ≥ nR.C | ≤ nR.C | ∃R.Self |

{NI}

where n is a non-negative integer, C⊓C representing expressions of the form C ⊓D with

C, D ∈ C and {NI} are individual names, SROIQ axioms are defined as follows.

ABox: C(NI) R(NI , NI) NI ≈ NI NI 6≈ NI

TBox: C ⊑ C C ≡ C

RBox: R ⊑ R R ≡ R R ◦R ⊑ R Disjoint(R,R)

When applied to any given SROIQ-based ontology, this set of axioms creates a

knowledge base K = (T ,A) for the domain being modeled. However, when applicable,

the following reasoning tasks are required with regard to the TBox T and ABox A [196]:

250

Definition C.0.1. (Satisfiability) A concept C is satisfiable w.r.t. a TBox T if there

exists an interpretation I |= T such that CI 6= ∅.

Similarly, an ABox A is satisfiable w.r.t. a TBox T if there exists an interpretation

I |= T ∪ A.

Definition C.0.2. (Subsumption) A concept C is subsumed by D (C ⊑T D) with C, D

∈ C if for all interpretations I, if I |= T then CI ⊆ DI .

Definition C.0.3. (Equivalence) Two concepts C and D (C, D ∈ C) are equivalent with

respect to T if for all interpretations I, if I |= T then CI = DI

Definition C.0.4. (Disjointness) Two concepts C and D (C, D ∈ C) are disjoint with

respect to T if for all interpretations I, if I |= T then CI ∩DI = ∅

The reasoner should be able to systematically decide on the existence and satisfaction

of these characteristics and assert (or infer) new facts and statements that are added

to the knowledge base K. However, reasoning over K in its wholeness is very inefficient.

Fortunately, it has been proven that there are ways to reduce the complexity of reasoning to

polynomial order through elimination of ABox and TBox axioms/concepts. This advance

is formulated in the following results [128,196]:

Proposition 1.1. (Satisfiability w.r.t. TBox) Subsumption, equivalence, and disjointness

with respect to T are reducible to testing (un)satisfiability w.r.t. T

251

Lemma 2. (ABox Elimination) SROIQ concept satisfiability with respect to ABoxes,

RBoxes, and TBoxes is polynomially reducible to SROIQ concept satisfiability with

respect to RBoxes and TBoxes only.

Similar result is formulated for the elimination of both the TBox and Universal Role thus,

the following theorem addressing reduction.

Theorem 3 (Reduction). 1. Satisfiability and subsumption of SROIQ-concepts w.r.t.

ABoxes, RBoxes, and TBoxes are polynomially reducible to (un)satisfiability of SROIQ-

concepts w.r.t. RBoxes.

2. Without lost of generality, we can assume that RBoxes do not contain role as-

sertions of the form Irr(R), Tra(R), or Sym(R), and that the universal role is not used.

This result reduces the standard SROIQ (concepts and ABoxes) inference problem

to the one of determining the consistency of a SROIQ-concept with respect to a reduced

RBox where all role assertions are of the form Ref(R) or Dis(R,S). Krotzsch [143] also

points out the need for ”structural restrictions” on SROIQ-based ontologies as a whole

in order to guarantee the existence of correct and terminating algorithms to support

inferencing. We note that the first restriction, simplicity is concerned with non-simple

roles resulting from roles composition. Second, regularity is concerned with RBox axioms.

The main goal of such restrictions is to limit the occurrence of cyclic dependencies between

complex roles and inclusion axioms (i.e., see the OWL constructor owl:SuperPropertyOf

(chain)). Horrocks et al. [128] build on these results to develop and describe a terminating,

sound, and complete tableau-based algorithm that decides the consistency of a SROIQ-

concepts with respect to a reduced RBox.

252

Theorem 4 (Decidability). The tableau algorithm decides satisfiability and subsumption

of SROIQ-concepts with respect to ABoxes, RBoxes, and TBoxes.

253

Appendix D: Multi-dimensional Spatial Representation Functions for

Safety-Critical CPS Design

D.1 Assumptions and Foundations

The CPS of interest is made of static and dynamic components that interact

with each other. Each group of subsystem is made of different types of components.

Components of same types share the same type of behavior. The tree structure on Figure

D.1 shows a high level description of the structural decomposition of the system. As an

illustration, for a traffic intersection system, traffic lights and radars are static components

while (motor) vehicles and pedestrians are dynamic components.

The number of static and dynamic components in the system are derived from

the number of components of each type as follows.

nSC =

s−1∑

i=0

nTSC [i] (D.1)

nDC =

d−1∑

i=0

nTDC [i] (D.2)

The total number of components in the system results from the sum of the two variables

above.

254

nC = nSC + nDC (D.3)

The system evolves in a connected world in which components can be connected. Thus,

each component is smart i.e. it can possess the following 3 capabilities: (a) communica-

tion with cooperating objects within a certain sensing range, (b) sensing and detection

for safety, based on the physics of the component such as its current speed or some de-

sign prescription such as a security perimeter around the component, and (c) boundaries

sensing for physical contact detection.

The egg-shape graphics on the left hand side of figure D.2 illustrate the spatial

representation of these capabilities for each component C[i]. The biggest oval Scov[i] rep-

resents the coverage space for communication purpose while Sphys[i]) and Scont[i] represent

the physics and contact detection spaces. All these entities are centered on the centroid

point of the spatial representation of the component which is assumed to be the one of

the shape representing the object. Equipped with these elements, we make the follow-

ing assumptions regarding the spatial representations for the various capabilities of the

components. We write I = {0, ..., n} the set of component identifiers in the system.

A1 - Each component occupies some spatial resource within the boundaries of

the system. This translates as follows:

∀i ∈ I, Scont[i] 6= ∅ (D.4)

A2 - When the physical (communication) space exists, it contains the contact

255

(physical) space. This translates as follows.

∀i ∈ I, Sphys[i] 6= ∅ ⇒ Scont[i] ⊂ Sphys[i] (D.5)

∀i ∈ I, (Scov[i] 6= ∅ ∧ Sphys[i] 6= ∅)⇒ Sphys[i] ⊂ Scov[i] (D.6)

The explanation behind (D.5) is that each smart component, in its normal mode of op-

eration, has the ability to detect and sense components that are within its vicinity as

pertaining to its current dynamics. As for (D.6) the rationale is that the coverage and

communication range of a component exceeds the one of the constrained by its physics.

In open space, technology such as GPS allow almost unlimited coverage to moving object

on earth and in the air.

D.2 Interaction Functions

Interaction functions define and describe interactions between pair of component

in the system in a formal and systematic way. The table on figure D.3 shows the mapping

of spatial entities for the purpose of the definition of interaction functions between compo-

nents i.e. fp
com for communication, fp

saf for safety and fp
crash for contact capabilities. For

each capability, we define a function based on the intersection of the tree types of spatial

entities as follows.

The right hand side of Figure D.2 shows the values taken by the functions defined in

(D.7),(D.8) and (D.9) for different configurations of the system. For simplification, we

use the following notations com(i, j), saf(i, j) and crash(i, j) respectively for fp
com(i, j),

fp
saf (i, j) and fp

crash(i, j).

256

Figure D.1: Structural decomposition of the system.

Figure D.2: Spatial representation and corresponding spatial functions.

257

Figure D.3: Interaction Functions Definition

f p
com(i, j) = f p

com(j, i) =







−1 if Scov[i] = ∅ ∨ Scont[j] = ∅
0 if Scov[i] ∩ Scont[j] = ∅ ∨ Scov[j] ∩ Scont[i] = ∅ ∨ i = j;
1 if Scov[i] ∩ Scont[j] 6= ∅ ∨ Scov[j] ∩ Scont[i] 6= ∅;

(D.7)
with Scov[i], Scov[j] 6= ∅ when f p

com(i, j) = 0, 1 .

f p
saf (i, j) = f p

saf(j, i) =







−1 if Sphys[i] = ∅
0 if Sphys[i] ∩ Scont[j] = ∅ ∨ Sphys[j] ∩ Scont[i] = ∅ ∨ i = j;
1 if Sphys[i] ∩ Scont[j] 6= ∅ ∨ Sphys[j] ∩ Scont[i] 6= ∅;

(D.8)
with Sphys[i], Sphys[j] 6= ∅ when f p

saf (i, j) = 0, 1.

f p
crash(i, j) = f p

crash(j, i) =

{
0 if Scont[i] ∩ Scont[j] = ∅ ∨ Scont[j] ∩ Scont[i] = ∅ ∨ i = j
1 if Scont[i] ∩ Scont[j] 6= ∅ ∨ Scont[j] ∩ Scont[i] 6= ∅

(D.9)

Table D.1: Definition of communication, safety and crash interaction functions

258

D.3 Component Capability Functions

We rely on the interaction functions above to define for a given component C[i],

its communication(f c
com(i)), safety(f c

saf (i)) and crash (f c
crash(i)) functions as follows.

Communication Capability.

f c
com(i) =







∑nC−1
j=0 αcom

j ∗ fp
com(i, j) if Scov[i] 6= ∅

−1 if Scov[i] = ∅

(D.10)

The parameter αcom
j in (D.10) is defined as follows .

αcom
j =







1 if fp
com(i, j) = 1

0 if fp
com(i, j) 6= 1

(D.11)

Safety Capability.

f c
saf (i) =







∑nC−1
j=0 αsaf

j ∗ fsaf(i,j) if Sphys[i] 6= ∅

−1 if Sphys[i] = ∅

(D.12)

The parameter αsaf
j in (D.12) is defined as follows .

αsaf
j =







1 if fp
saf (i, j) = 1

0 if fp
saf (i, j) 6= 1

(D.13)

Crash Capability.

f c
crash(i) =

nC−1∑

j=0

fp
crash(i, j) (D.14)

259

Bibliography

[1] 2004. W3; See https://www.w3.org/TR/owl-features/, February 2004.

[2] 2006. Time Ontology in OWL, accessible at : http://www.w3.org/TR/owl-time/;

Accessed 11/24/2013.

[3] 2011. At a crossroads:New research predicts which cars are likeliest to run lights

at intersections.; Accessible at : http://newsoffice.mit.edu/2011/driving-algorithm-

1130; last accessed on 06/05/2014.

[4] 2013. Apache Jena, accessible at : http://www.jena.apache.org; Accessed on

11/27/13.

[5] 2013. Jscience, accessible at : http://www.jscience.org; Accessed on 11/27/13.

[6] 2014. Suggested Upper Merged Ontology (SUMO), Available at

http://http://www.ontologyportal.org/, Accessed on 05/27/14.

[7] 2014. OpenCyc, Available at http://www.cyc.com/platform/opencyc, Accessed on

06/01/14.

260

[8] 2016. RACER; See http://www.ifis.uni-luebeck.de/ moeller/racer/publications.html,

July 2016.

[9] 2016. FaCT++; See https://code.google.com/archive/p/factplusplus/, July 2016.

[10] 2016. Hermit; See http://www.hermit-reasoner.com/, July 2016.

[11] 2016. Geography Markup Language; See http://www.opengeospatial.org/standards/gml,

July 2016.

[12] A.A.C.U. Ethical Reasoning Value Rubric. Association of American Colleges &

Universities(AACU), 2010.

[13] Abdelmoty A. I., Smart P. D., Jones C. B., Fu G., and Finch D. A critical Evaluation

of Ontology Languages for Geographic Information Retrieval on the Internet. Journal

of Visual Languages & Computing, Volume 16, Issue 4, Pages 331358, 2005.

[14] Abel D., Andersen T., and Conaboy C. Jets crash on Logan taxiway. In Boston

Globe, 10/03/16.

[15] Afyouni I., Ray C., and Claramunt C. Spatial models for context-aware indoor

navigation systems: A survey. Journal of Spatial Information Science, Number 4

85123, pages 85–123, 2012.

[16] Alexander H.G. The Leibniz-Clarke Correspondence. ed. by H.G.Alexander; Manch-

ester,UK, 1956.

[17] Allen J. F., Frisch A. . What’s in a Semantic Network. 20th. annual meeting of

ACL, Toronto, pp. 19-27, 1982.

261

[18] Allen J.F. Maintaining Knowledge about Temporal Intervals. Communications of

the ACM, 26(11):832–843, 1983.

[19] Allen J.F. Towards a General Theory of Action and Time. Artificial Intelligence,

23(2):123–154, 1984.

[20] Andrea C., Diego C., De Giacomo G., Maurizio L. A Formal Framework for Rea-

soning on UML Class Diagrams. M.-S. Hacid et al. (Eds.): ISMIS 2002, LNAI

2366.

[21] Annaswamy A. M., Soudbakhsh D., Schneider R., Goswami D., and Chakraborty

S. Arbitrated Network Control Systems: A Co-Design of Control and Platform

for Cyber-Physical Systems. Control of Cyber-Physical Systems: Lecture Notes in

Control and Information Sciences, Volume 449, pp 339-356, 2013.

[22] Antsaklis P. Defining Intelligent control: Report of the Task Force on Intelligent

Control. International Symposium on Intelligent Control, pp (i)-(xvii), Columbus,

OH, August 16-18, 1994.

[23] Austin M.A., Baras J.S., and Kositsyna N.I. Combined Research and Curriculum

Development in Information-Centric Systems Engineering. In Proceedings of the

Twelth Annual International Symposium of The International Council on Systems

Engineering (INCOSE), Las Vegas, USA, July 2003.

[24] Austin M.A., Delgoshaei P., and Nguyen A. Distributed Systems Behavior Modeling

with Ontologies, Rules, and Message Passing Mechanisms. In Thirteenth Annual

Conference on Systems Engineering Research (CSER 2015), Hoboken, New Jersey,

March 17-19 2015.

262

[25] Austin M.A., Mayank V., and Shmunis N. PaladinRM: Graph-Based Visualization

of Requirements Organized for Team-Based Design. Systems Engineering: The

Journal of the International Council on Systems Engineering, 9(2):129–145, May

2006.

[26] Baader et al. Description Logics. In Frank van Harmelen, Vladimir Lifschitz, and

Bruce Porter, editors, Handbook of Knowledge Representation, chapter 3, pages

135–180. Elsevier, 2008.

[27] Baader F. Logic-based knowledge representation. In Artificial intelligence today, PP.

13-41, Springer-Verlag Berlin, Heidelberg , 1999.

[28] Baader F., Horrocks I., and Sattler U. Description Logics as Ontology Languages

for the Semantic Web. In Dieter Hutter and Werner Stephan, editors, Mechanizing

Mathematical Reasoning: Essays in Honor of Jrg Siekmann on the Occasion of His

60th Birthday, number 2605 in Lecture Notes in Artificial Intelligence, pages 228–

248. Springer, 2005.

[29] Baader F., McGuinness D.L. , Nardi D., and Patel-Schneider P.F. The Description

Logic Handbook: Theory, implementation, and applications. Cambridge, 2003.

[30] Bateman J. A., Hois J., Ross R., and Tenbrink T. A linguistic ontology of space for

natural language processing. Artificial Intelligence 174,10271071, 2010.

[31] Bateman J. and Farrar S. . Spatial Ontology Baseline. OntoSpace Project Report,

SFB/TR 8: I1-[OntoSpace], Deliverable D2, Workpackage 1, University of Bremen,

Germany, 2006.

263

[32] Baumgartner G., Heap D. and Krueger R. Course notes for CSC165H: Mathematical

expression and reasoning for computer science. In Department of Computer Science,

University of Toronto, CA, 2006.

[33] Beaubouef T., Petry F.E. and Ladner R. Spatial data methods and vague regions:

A rough set approach. In Applied Soft Computing, 7(1), 425440, 2007.

[34] Berardi D., Diego C., and De Giacomo G. Reasoning on UML class diagrams .

Elsevier-Artificial Intelligence, 168:70–118, 2005.

[35] Berners-Lee T., Hendler J., Lassa O. The Semantic Web. Scientific American, pages

35–43, May 2001.

[36] Bhave A., Krogh B., Garlan D., and Schmerl B. Multi-domain Modeling of Cyber-

Physical Systems Using Architectural Views. Dept. of Electrical & Computer Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15217, 2010.

[37] Bittner T. and Stell J. Rough sets in approximate spatial reasoning. In W. Ziarko

& Y. Yao, eds., Rough Sets and Current Trends in Computing, vol. 2005 of Lecture

Notes in Computer Science, 445453, Springer Berlin / Heidelberg, 2001.

[38] Bluman G.W. and Kumei S. Symmetries and Differential Equations. In Springer-

Verlag, New York, 1989.

[39] Borgo S., Guarino N., and Masolo C. A Pointless Theory of Space Based On Strong

Connection and Congruence . L. Carlucci Aiello and S. Shapiro (eds.): Proceedings

of KR’96, Principles of Knowledge Representation and Reasoning, San Mateo, CA,

USA, pp. 220-229, 1996.

264

[40] Brachman R. J. and Levesque H. J. . The tractability of subsumption in frame-based

description languages. 4th National Conference of the American Association for

Artificial Intelligence (AAAI-84). Austin, TX, pp. 34-37, 1984.

[41] Brooks C., Lee E.A., Liu X. , Neuendorffer S. , Zhao Y., and Zheng H. Heteroge-

neous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy

II). Technical Report ECB/EECS-2008-28, Department Electrical Engineering and

Computer Sciences, University of California, Berkeley, CA, April 2008.

[42] Buckingham E. On physically similar systems. PhysRev, 4(4):345–376, 1914.

[43] Cardenas A.A., Saurabh A., and Shankar S. Secure Control: Towards Survivable

Cyber-Physical Systems. LectureNotes/ss13/RN, University of California, Berkeley,

California, USA, 2008.

[44] Carnegie Mellon University (CMU). Smart Traffic Signals. In

http://www.cmu.edu/homepage/computing/2012/fall/smart-traffic-signals.shtml;

Accessed : November 15, 2014.

[45] Cataldo A., Lee E. A., Liu X., Matsikoudis E., and Zheng H. A construc-

tive fixed-point theorem and the feedback semantic of timed systems. Workshop

on Discrete Event Systems (WODES), Ann Arbor, Michigan., Available from:

http://ptolemy.eecs.berkeley.edu/publication/papers/06/constructive/, 2006.

[46] Chang M.S., Messer C.J., and Santiago A.J. Timing traffic signal change intervals

based on driver behavior. Transportation Research Record, 1027, 20-30, 1985.

265

[47] Chein M., Mugnier M. L. Graph-Based Knowledge Representation: Computational

Foundations of Conceptual Graphs. Springer Publishing Company, Incorporated, 1

edition, 2008, 2008.

[48] Choi N., Song I.Y. and Han H. A survey on ontology mapping. pages 34–41.

SIGMOD Rec, 2006.

[49] Claramunt C. and Jiang B. A Representation of Relationships in Temporal Spaces.

In: Innovations in GIS VII: Geocomputation, Taylor & Francis(eds.), pp. 41-53,

2000.

[50] Claramunt Christophe and Jiang Bin. Hierarchical reasoning in space and time. 9th

International Symposium on Spatial Data Handling (SDH) Beijing, P.R.China, P.

Forer, A. G. O. Yeh and J. He (eds.), pp. 3a. 41-51, 2000.

[51] Clarke B. A Calculus of individual based on ”connection”. Notre Dame Journal of

Formal Logic 22(3), 204-218, 1981.

[52] Clementini E. and Di Felice P. . A spatial model for complex objects with a broad

boundary supporting queries on uncertain data. In Data Knowledge and Engineering,

37(3), 285305, 2001.

[53] Clementini E. and Di Felice P. A Comparison of Methods for Representing Topolog-

ical Relationships. Information Sciences 3, 149-178, 1995.

[54] Cleveland State University. Theories of accident causation. Work Zone Safety and

Efficiency Transportation Center, 2011.

[55] Cohen P. R. and Grinberg M. R. A Theory of Heuristic Reasoning About Uncer-

tainty. AI Magazine Volume 4 Number 2 (1983) 17 - 24, 1983.

266

[56] Cohn A. G., Bennett B., Gooday J., and Gotts N. M. Qualitative spatial repre-

sentation and reasoning with the region connection calculus. Geoinformatica,1:144,

1997.

[57] Console L., Dupre D. T., and Torasso P. On the relationship between abdunction

and deduction. Journal of Logic Programming (1991) 1 , 661 690, 1991.

[58] Corcho O. and Gomez-Perez A. A Roadmap to Ontology Specification Languages.

EKAW00. 12th International Conference on Knowledge Engineering and Knowledge

Management, 2000.

[59] Corcho O., Fernandez-Lopez M., Gomez-Perez A., and Vicente O. An Inte-

grated Workbench for Ontology Representation, Reasoning and Exchange. Prof. of

EKAW2002, Springer LNAI 2473, 138-153, 2002.

[60] Davis M. History of JTS and GEOS. In http://lin-ear-th-

inking.blogspot.com/2007/06/history-of-jts-and-geos.html. Retrieved 2016-08-01 ,

2007.

[61] Davis M. Secrets of the JTS Topology Suite. In http://tsusiatsoftware.net/jts/files/.

Retrieved 2016-08-01, 2016.

[62] De Giacomo G. and Lenzerini M. Concept Language With Number Restrictions and

Fixpoints, and Its Relationship With Mu-Calculus. 11th European Conference on

Artificial Intelligence(ECAI), John Wiley and Sons, Ltd, 1994.

[63] Del Mondo G., Stell J. and Claramunt C. A Graph Model for Spatio-temporal

Evolution. Journal of Universal Computer Science, 16:1452–1477, 2010.

267

[64] DeLaguna T. Point, line and surface as sets of solids. The journal of philosophy,

19, pp. 449-461, 1922.

[65] Delgoshaei P., Austin M.A., and Pertzborn A. A Semantic Framework for Modeling

and Simulation of Cyber-Physical Systems. In International Journal On Advances

in Systems and Measurements, Vol. 7, No. 3-4, December, 2014, pp. 223–238., 2014.

[66] Derler P., Lee Edward A. and Sangiovanni-Vincentelli A.L. Addressing Modeling

challenges in Cyber-Physical Systems. Technical Report N0 . UCB/EECS-2011-

17, Electrical Engineering and Computer Sciences University of California Berkley,

2011.

[67] Dilo A., De By R. and Stein. A system of types and operators for handling vague

spatial objects. In International Journal of Geographical Information Science, 21(4),

397426, 2007.

[68] Dowden B. Time. In Internet Encyclopedia of Philosophy, available at

http://www.iep.utm.edu/time/, accessed 07/11/2016, 2016.

[69] Doyle J. Feedback Control Theory. class notes, CDS 212 Fall 2011, Available at:

https://www.cds.caltech.edu/wiki/index.php/, 2011.

[70] Elder L. and Paul R. Thinker’s Guide to Understanding the Foundations of Ethical

Reasoning. Foundation for Critical Thinking, 2013.

[71] Energetics Incorporated. Cyber-physical Systems Situation Analysis of Current

Trends, Technologies, and Challenges. Energetics Incorporated for the National

Institute of Standards and Technology (NIST), 2012.

268

[72] Ermolayev V., Batsakis S, Keberle N., Tatarintseva O., and Antoniou G. Ontolo-

gies of time: review and trends . International Journal of Computer Science and

Applications,Technomathematics Research Foundation, Vol. 11, No. 3, pp. 57 115,

2014.

[73] Ermolayev V., Keberle N., Tatarintseva O., Matzke W-E, and Sohniusand R. Fuzzy

Time Intervals for Simulating Actions . Information Systems and e-Business Tech-

nologies, Volume 5 of the series Lecture Notes in Business Information Processing,

pp. 429-444, 2008.

[74] European Union. The ARTEMIS Embedded Computing Systems Initiative.

ARTEMIS joint Undertaking, Available at: http://www.artemis-ju.eu/, 2012.

[75] Feron E. and Balakrishnan H. CPS and NextGen: Cyber-Physical Systems Chal-

lenges in Next Generation Aviation. 2010 NITRD High Confidence Software Systems

(HCSS) Group, 2011.

[76] Fikes R. and Kehler T. . The Role of Frame-based Representation in Reasoning. In

Communications of the ACM, Special edition, Volume 28 Number 9, PP. 904-920 ,

1985.

[77] Fikes R. and Zhou Q. A Reusable Time Ontology. In AAAI Technical Report WS-

02-11, AAAI (www.aaai.org), 2002.

[78] Fisher M. In An Introduction to Practical Formal Methods Using Temporal Logic.

John Wiley & Sons, Ltd, 2011.

[79] Fodor G. A. Ontology Controlled Autonomous System Principles, Operations and

Architecture. Kluwer Academic Publishers, 1998.

269

[80] Foudil C., Noureddine N., Sanza C., and Duthen Y. Path Finding and Collision

Avoidance in Crowd Simulation. In Journal of Computing and Information Tech-

nology - CIT 17, 3, pp.217228, 2009.

[81] Francisco J., Silva M. J., and Chaves M. Linkable Geographic Ontologies. 6th

Workshop on Geographic Information Retrieval(GIR 10), Zurich, Switzerland, 18-

19th Feb., 2010.

[82] Freksa C. Communication about visual patterns by means of fuzzy characterizations.

In In XXIInd International Congress of Psychology, Leipzig, Germany, 1980.

[83] Freksa C. Fuzzy systems in AI: An overview. In In R. Kruse, J. Gebhardt & R. Palm,

eds., Fuzzy systems in computer science, 155169, Vieweg, Braunschweig/Wiesbaden,

1994.

[84] Freksa C. and De Mantaras L. An adaptive computer system for linguistic catego-

rization of soft observations in expert systems and in the social sciences. In 2nd

World Conference on Mathematics at the Service of Man, PP.288292, Las Palmas,

Spain, 1982.

[85] Fridenthal S., Moore A., and Steiner R. A Practical Guide to SysML. MK-OMG,

2008.

[86] Frigg R. and Hartmann S. Scientific Models. The Philosophy of Science-An Ency-

clopedia, N-Z index, Sahotra Sarkar and Jessica Pfeifer(eds), 2:740–749, 2006.

[87] Furia C.A., Mandrioli D., Morzenti A., and Rossi M. Modeling Time in Computing:

A Taxonomy and a Comparative Survey. ACM Computing Surveys, 42(2), February

2010.

270

[88] Galindo C., Saffiotti A., Coradeschi S., Buschka P., Fernandez-Madrigal J.A. and

Gonzalez J. Multi-Hierarchical Semantic Maps for Mobile Robotics. EEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS-05), Edmonton,

Canada, August, 2005.

[89] Galton A. Taking dimension seriously in qualitative reasoning. W. Wahlster (ed),

ECAI’96. Chichester, pp. 501-505, 1996.

[90] Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series,

1995.

[91] Gasos J. and Saffiotti A. Using fuzzy sets to represent uncertain spatial knowledge in

autonomous robots. In IEEE International Conference on Multisensor Fusion and

Integration for Intelligent Systems, pp.420 - 425, Heidelberg, Germany, 1999.

[92] General Motors Corporation (GMC). GM Unveils EN-V Concept: A Vision for

Future Urban Mobility. In http://media.gm.com; Accessed : November 15, 2015.

[93] George B. and Shekhar S. Time-Aggregated Graphs for Modeling Spatio-temporal

Networks. Advances in Conceptual Modeling - Theory and Practice Lecture Notes

in Computer Science Volume 4231, Springer(eds) pp 85-99, 2006.

[94] Geroimenko V., and Chen C. (Eds). Visualizing the Semantic Web: XML-based

Internet and Information Visualization. Springer, 2003.

[95] Giannakopoulou D. NASAs State-Space Exploration: Verifying Safety-Critical Sys-

tems. In CMU / NASA Ames Research Center, 2009.

271

[96] Glasgow J. The Imagery Debate Revisited: A Computational Perspective. Compu-

tational Intelligence, 9:309–333, 1993.

[97] Golbreich C., Zhang S., and Bodenreider O. The foundational model of anatomy in

OWL: Experience and perspectives. Journal of Web Semantics, 4(3), 2006.

[98] Goodchild Michael F. GIS as a Sandbox: The Challenge of Spatio-Temporal Analysis

and Modeling. Space-Time Modeling and analysis Workshop, February 22-23, 2010,

Redland, CA, USA , 2010.

[99] Goodwin J. Experiences of using OWL at the ordnance surveys. First OWL Ex-

periences and Directions Workshop, volume 188 of CEUR Workshop Proceedings.

CEUR(http://ceur-ws.org/), 2005.

[100] Google inc. The Latest Chapter for the Self-Driving Car: Mastering

City Street Driving. In Official Google Blog. N.p., n.d. Web. April,

28 2014, http://googleblog.blogspot.com/2014/04/the-latest-chapter-for-self-driving-

car.html; Accessed : November 15, 2015.

[101] Gotts N. M. Formalizing Commonsense Topology: The INCH Calculus. Four

International Symposium on Artificial Intelligence and Mathematics - AI/MATH’96,

Fort Lauderdale(FL), pp. 72-75, 1996.

[102] Grau et al. OWL 2: The next step for OWL. Journal of Web Semantics: Science,

Services and Agents on the World Wide Web, 6(4):309322, 2008.

[103] Graves H. Integrating SysML and OWL . OWL: Experiences and Directions

(OWLED), 2009.

272

[104] Graves H. Current state of ontology in engineering systems. OMG: Ontology Action

Team, Available from: www.omgwiki.org/MBSE/oku.php?id, 2012.

[105] Graves H. Integrating Reasoning with SysML. INCOSE International Symposium,

Rome, Italy, 2012.

[106] Graves H. and Bijan Y. Using formal methods with SysML in aerospace design and

engineering . Annals of Mathematics and Artificial Intelligence, Springer , 2011.

[107] Groger G., Plumer L. CityGML Interoperable semantic 3D city models. ISPRS

Journal of Photogrammetry and Remote Sensing, Volume 71, Pages 1233, 2012.

[108] Gruber T. R. and Olsen G. R. An Ontology for Engineering Mathematics. In In

Doyle, Torasso, and Sandewall, Eds., Fourth International Conference on Principles

of Knowledge Representation and Reasoning. Morgan Kaufman, 1994.

[109] Gruninger M. Ontology of the Process Specification Language. In Handbook on

Ontologies, Staab et al.(eds), 2004.

[110] Gusgen H. W. Spatial reasoning based on Allen’s temporal logic. Report ICSI

TR-89-049, International Computer Science Institute, Berkeley, CA, USA, 1989.

[111] Habel C. Propositional and Depictorial Representations of Spatial Knowledge: The

case of Path Concepts. R. Studer(ed.): Natural Language and Logic, Lecture Notes

in Computer Science,Berlin:Springer Verlag, pp 94-117, 1990.

[112] Haghighi M. M. Controlling Energy-Efficient Buildings in the Context of Smart

Grid: A Cyber- Physical Systems Approach. Technical Report UCB/EECS-2013-

244, Department of Electrical Engineering and Computer Sciences, University of

California, Berkeley, CA 94720, USA, 2013.

273

[113] Hanche-Olsen H. Buckinghams pi-theorem. In TMA4195 Mathematical modelling,

2004.

[114] Hatala M., Wakkary R. and Kalantari L. Rules and Ontologies in support of Real-

Time Ubiquitous Application. Journal of Web Semantics, 3:5–22, 2005.

[115] Hayes P. A Catalog of Temporal Theories. Technical Report UIUC-BI-AI-96-01,

University of Illinois, USA, 1994.

[116] Hayes P. J. The logic of frames. D. Metzing, Ed., Frame Conceptions and Text

Understanding. Berlin: deGruyter, pp. 46-61, 1980.

[117] Hendler J. Agents and the Semantic Web. IEEE Intelligent Sys-

tems, pages 30–37, March/April 2001. Available on April 4, 2002 from

http://www.computer.org/intelligent.

[118] Hernandez D., Clementini E. and Di Felice P. Qualitative Distances . A. Frank and

W. Huhn (eds.): Spatial Information Theory, Proceedings of COSIT’95. Berlin, pp.

45-57, 1995.

[119] Hertkorn P. and Rudolph S. Dimensional Analysis in Case-Based Reasoning. In

Proceedings International Workshop on Similar Methods, 1998.

[120] Hobbs J. R. DAML Space - An ontology of spatial relations for the semantic web. In-

vited talk, Workshop on the Analysis of Geographic References, Edmonton, Canada,

2003.

[121] Hobbs J. R. and Pan F. An ontology of time for the Semantic Web. Proceeding-ACM

transactions on Asian Language processing(TALIP), 3(1):66–85, 2004.

274

[122] Hoffmann G. M. and Tomlin C. J. Decentralized Cooperative Collision Avoidance

for Acceleration Constrained Vehicles. In Proceedings of the 47th IEEE Conference

on Decision and Control Cancun, Mexico, Dec. 9-11, 2008.

[123] Hooman J. Introduction to Timed Systems. University of Nijmegen, Netherlands,

November 2001.

[124] Horridge M., Jupp S., Moulton G. Rector A., Stevens R., and Wroe C. A Practical

Guide to Building OWL Ontologies using Protege 4 and CO-ODE Tools, October

2007. University of Manchester, England.

[125] Horrocks I. Description Logic Reasoning. The University of Manchester, 2005.

[126] Horrocks I. Ontologies and the Semantic Web. Communications of the ACM,

51(12):58-67, December, 2008.

[127] Horrocks I. et al. A description logic with transitive and inverse roles and role

hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

[128] Horrocks I., Kutz O., and Sattler U. The Even More irresistible SROIQ. pages 57–

67. 10th International Conference on Principles of Knowledge Representation and

Reasoning (KR 2006), AAAI Press, 2006.

[129] Horrocks I., Patel-Schneider P. F., and Van Harmelen F. From SHIQ and RDF

to OWL: The Making of a Web Ontology Language. Journal of Web Semantics,

1(1):7-26, 2003.

[130] Hurwitz D. S. The ”Twilight Zone” of Traffic costs lives at Stoplight Intersections.

Oregon State University, Corvallis, Oregon, USA, 2012.

275

[131] Hurwitz D. S., Wang H. B., Knodler M. A., Nib D., and Moorea D. Fuzzy Sets to De-

scribe Driver Behavior in the Dilemma Zone of High-Speed Signalized Intersections.

School of Civil and Construction Engineering, Oregon State University, USA and

Department of Civil and Environmental Engineering, University of Massachusetts

Amherst, USA, 2012.

[132] Huynh T., Alsadah A. and Hu F. Cyber-Physical System Controls. Cyber-Physical

Systems: Integrated Computing and Engineering Design, 2010.

[133] International Business Machine (IBM) Corporation. IBM Intelligent Transportation

Solution for Active Traffic Management. In Systems and Technology Group, IBM

Corporation, November, 2013.

[134] Jackson D. Dependable Software by Design. Scientific American, 294(6), June 2006.

[135] Jensen J.C., Chang D.H. and Lee E.A. A Model-Based Design Methodology for

Cyber-Physical Systems. IEEE Workshop on Design, modeling, and Evaluation of

Cyber-Physical Systems(CyPhy), Istanbul, Turkey, 2011.

[136] JPL Special Review Board. Report on the loss of the Mars polar lander and deep

space 2 missions. NASA Jet Propulsion Laboratory, 2000.

[137] Junger E. Symbolic Spatial Reasoning on Object Shapes for Qualitative Matching.

A. Frank and I. Campari(eds.) Spatial Information Theory: A theoretical basis for

GIS, COSIT’93, LNCS No. 716, Springer-Verlag, pp. 444-462, 1993.

[138] Kitching C. 2 planes clip on Metro Airport taxiway. In Daily Mail, Available at:

http : //www.dailymail.co.uk/travel/travelnews/article−3021054/Part−wing−

276

torn−two−Ryanair−planes−collide−taxiing−runway−Dublin−Airport.html,

accessed 10/03/16, 2016.

[139] Klai S., and Kahdir M.T. Approach for a Rule Base Ontologies Integration. In 5th

International Conference on Computer Science and Information Technology, 2013.

[140] Kopetz H. Event-triggered versus Time-triggered Real-Time Systems. International

Workshop on Operating Systems of the 90s and beyond, Lecture Notes in Computer

Science, 563():87–101.

[141] Krebs B. Cyber Incident Blamed for Nuclear Power Plant Shutdown . Washington

Post, June 5, 2008.

[142] Krieger H. A General Methodology for equipping Ontologies With Time. German

Research Center for Artificial Intelligence(DFKI), 2009.

[143] Krotzsch M., Simanck F. and Horrocks I. A Description Logic Primer. Department

of computer Science, University of Oxford, UK, Version 1.2, 2013.

[144] Kuipers B. An Ontological Hierarchy for Spatial Knowledge. AAAI Technical Report

FS-94-03, 1994.

[145] Kuipers B. The Spatial Semantic Hierarchy. Artificial Intelligence, 119:191233, 2000.

[146] Kuipers B. An Intellectual History of the Spatial Semantic Hierarchy. Springer

Tracts in Advanced Robotics, 38:243264, 2008, 2008.

[147] Lacher A. R., Maroney D. R., and Zeitlin A. D. Unmanned aircraft collision avoid-

ance technology assessment and evaluation methods. In The MITRE Corporation,

McLean, VA, USA, 2007.

277

[148] Lacy L., Aviles G., Fraser K., Gerber W., Mulvehill A., and Gaskill R. Experiences of

using OWL in military applications. First OWL Experiences and Directions Work-

shop, volume 188 of CEUR Workshop Proceedings. CEUR(http://ceur-ws.org/),

2005.

[149] Lampson B. Getting Computers to Understand. Journal of the Association for

Computing Machinery(JACM), v50, n1, pp.70-72, 2003.

[150] Latecki L. and Pribbenow S. On Hybrid Reasoning for Processing Spatial Expres-

sions. ECAI’ 92 pp. 389-393, 1992.

[151] Laurini R. Urban ontologies. Workshop on urban ontologies, INSA, Lyon, 2004.

[152] Layman L., Basili V. R., and Zelkowitz M. V. The Role and Quality of Software

Safety in the NASA Constellation Program. Technical Report 10-101, 2010.

[153] Lee E. A. The Problem with Threads. EECS Department, University of California

at Berkeley, Berkeley, CA, 2006.

[154] Lee E. A. Cyber-Physical Systems : Design Challenges. Technical Report No.

UCB/EECS-2008-8 , 2008.

[155] Lee E. A. Time is a Resource, and Other Stories. International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing(ISORC),

Orlando, FL, USA, 2008.

[156] Lee E. A. Computing needs time. Communications of the ACM, 52:70–79, 2009.

[157] Lee E. A. CPS Foundations. DAC10, Anaheim, California, USA, 2010.

278

[158] Lee E. A. Cyber-Physical Systems : A Rehash or A New Intellectual Challenge?

Invited Talk in the Distinguished Speaker Series, Design Automation Conference

(DAC), Austin, TX, 2013.

[159] Lehmann F. and Cohn A.G. The egg/yolk reliability hierarchy: semantic data inte-

gration using sorts with prototypes. In Third International Conference on Informa-

tion and Knowledge Management, CIKM 94, 272279, ACM, 1994.

[160] Leveson N. G. A Systems-Theoretic Approach to Safety in Software-Intensive Sys-

tems. IEEE Transactions on Dependable and Secure Computing, 1:66–86, 2004.

[161] Leveson N. G. The Role of Software in Spacecraft Accidents. AIAA Journal of

Spacecraft and Rockets, 41:564–575, 2004.

[162] Leveson N. G. Engineering a Safer World: Systems Thinking applied to Safety. MIT

Press, 2011.

[163] Leveson N.G. A New Approach to Software Systems Safety Engineering. System

Safety Engineering: Back to the Future. See http://sunnyday.mit.edu/book2.html,

2006.

[164] Levin D. P. Collision in Detroit; At Least 8 Die in Collision On

Detroit Airport Runway. In The New York Times, Available at:

http://www.nytimes.com/1990/12/04/us/collision-in-detroit-at-least-8-die-in-

collision-on-detroit-airport-runway.html, accessed 10/03/16, 1990.

[165] Leyton M. A process grammar for shape. Artificial Intelligence, 34, pp. 59-68, 1988.

279

[166] Li P. Stochastic Methods for Dilemma Zone Protection at Signalized Intersections.

Doctor of Philosophy Dissertation submitted to the faculty of the Virginia Polytech-

nic Institute and State University, VA, USA , 2009.

[167] Li Z., Wang Z., Zhang A., and Xu Y. The Domain Ontology and Domain Rules

Based Requirements Model Checking. International Journal of Software Engineering

and Its applications, 1(1), July 2007.

[168] Linkov J. Collision-Avoidance Systems Are Changing the Look of

Car Safety. In Consumer Reports, December 2015, Avaliable at :

http://www.consumerreports.org/car-safety/collision-avoidance-systems-are-

changing-the-look-of-car-safety/, 2015.

[169] Liu K. and Shi W. Computing the fuzzy topological relations of spatial objects based

on induced fuzzy topology. In International Journal of Geographical Information

Science, 20(8), 857883, 2006.

[170] Loos S., Platzer A. and Nistor L. Adaptive Cruise Control: Hybrid, Distributed, and

Now Formally Verified. In CMU-CS-11-107, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, USA, June, 2015.

[171] Lowy J. and Krisher T. Tesla driver killed in crash while using car’s ”Autopilot”. In

Associated Press, available at https://www.yahoo.com/news/self-driving-car-driver-

died-205642937.html, accessed 07/01/2016, 2016.

[172] Lutz C. The Complexity of Reasoning with Concrete Domains. LTCS-Report 99-01,

Aachen university of Technology Research group for Theoretical Computer Science,

1999.

280

[173] Ma J., Knight B., Petridis M., and Bai X. A Graphical Representation for Uncertain

and Incomplete Temporal Knowledge. In Second WRI Global Congress on Intelligent

Systems, Wuhan, China, 2010.

[174] Maas D. Dilemma zone elimination. Sacramento Department of Transportation,

Sacramento, CA, USA, 2008.

[175] Machol R. E. The Titanic coincidence. Interfaces, 5:53–54, 1975.

[176] Mahmoud Q.H. Getting Started With the Java Rule Engine API (JSR 94):

Toward Rule-Based Applications, 2005. Sun Microsystems. For more infor-

mation, see http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

(Accessed, March 10, 2008).

[177] Manna Z. and Pnueli A. The Temporal Logic of Reactive and Concurrent Systems.

Springer, Berlin, 1992.

[178] Marwedel P. Embedded System Design: Embedded systems Foundations of Cyber-

Physical Systems. 2nd Edition, Springer, 2011.

[179] Masolo C., Borgo S., Gangemi A., Guarino N., Oltramari A., and Schneider L.

WonderWeb Deliverable D17 - The WonderWeb Library of Foundational Ontologies

- Preliminary Report. IST Project 2001-33052 WonderWeb: Ontology Infrastructure

for the Semantic Web, Commission of the European Communities, 2003.

[180] Menzies T. Applications of Abduction: Knowledge-Level Modeling. Int . J . Human

Computer Studies (1996) 45 , 305 335, 1996.

[181] Minkel J. The 2003 Northeast Blackout – Five Years Later. Scientific American,

2008.

281

[182] Minkowski H. Raum und Zeit. Physikalische Zeitschrift 10: 7588, 1908.

[183] Minsky M. A Framework for Representing Knowledge. Technical Report, MIT-AI

Laboratory, Massachusetts Institute of Technology Cambridge, MA, USA, 1974.

[184] Mosteller M., Austin M.A., Yang S., and Ghodssi R. Platforms for Engineering

Experimental Biomedical Systems. IEEE Systems Journal, PP(9):1–11, September

2014.

[185] Moszkowski B. and Manna Z. Reasoning in interval Temporal Logic. Proc.

AMC/NCF/ONR Workshop on Logics of Programs, 164:371–383, 1984.

[186] Muller D. Requirements Engineering Knowledge Management based on STEP

AP233. 2003.

[187] Muller P. Topological spatio-temporal reasoning and representation. IRIT-Universite

Paul Sabatier, 31062 Toulouse, France, 2002.

[188] Muskerjee A. and Joe G. A qualitative Model for Space. Association for the Advance-

ment of Artificial Intelligence(AAAI), Conference on Artificial Intelligence (AAAI-

90), Cambridge, MA, USA, pp. 721-727, 1990.

[189] Myers C. Modeling and Verification of Cyber-Physical Systems. Design Automation

Summer School, University of Utah, 2011.

[190] Nagypal G. and Motik B. A Fuzzy Model for Representing Uncertain, Subjective and

Vague Temporal Knowledge in Ontologies. In FZI Research Center for Information

Technologies, University of Karlsruhe, Germany, 2003.

[191] National Institute of Standards and Technology (NIST). Strategic R & D Opportu-

nities for 21st Cyber-physical Systems: Connecting computer and information sys-

282

tems with the physical world. National Institute of Science and Technology(NIST),

Gaithersburg, MD, USA , 2013.

[192] National Science Foundation(NSF). Report: Cyber-Physical Systems Summit . CPS

Week, April 24-25, 2008, St Louis, Missouri, MS, USA, 2008.

[193] Nigel C. Computability: An Introduction to Recursive function Theory. Cambridge,

MA:Cambridge University Press, 1997.

[194] NITRD. High-Confidence Medical Devices: Cyber-Physical Systems for 21st Century

Health Care. The Networking and Information Technology Research and Develop-

ment (NITRD) Program, 2009.

[195] NITRD. Winning the Future with Science and Technology for 21st Century

Smart Systems. Networking and Information Technology Research and Develop-

ment(NITRD), Arlington, VA, USA, 2011.

[196] Olivetti N. Artificial Intelligence: Introduction to Description Logics. INCA-LSIS,

Paul Cezanne university, Marseille, France, 2009.

[197] Open Street Map(OSM). https://www.openstreetmap.org, Accessed May,14. 2015.

[198] Pant P. D. and Cheng Y. . Dilemma zone protection and signal coordination at

closely-spaced high-speed intersections. Report FHWA/OH-2001/12, Ohio Depart-

ment of Transportation, Columbus, OH, USA, 2001.

[199] Pappas G. Cyber-Physical Systems Research Challenges. Penn Research in Embed-

ded Computing and Integrated Systems Engineering (PRECISE), 2010.

[200] Pate-Cornell E. Organizational aspects of engineering system safety: The case of

offshore platforms. Science, 250:12101217, 1990.

283

[201] Patel-Schneider P. F., Hayes P., and Horrocks I. OWL Web Ontology Lan-

guage semantics and abstract syntax. Recommendation, W3C, Available at

http://www.w3.org/TR/owl-semantics/, 2004.

[202] Pauly A. and Schneider M. Spatial vagueness and imprecision in databases. In In

R.L. Wainwright & H. Haddad, eds., Proceedings of the 2008 ACM Symposium on

Applied Computing (SAC), 875879, ACM, 2008.

[203] Pavlic M., Mestrovic A., Jakupovic A. Graph-Based Formalisms for Knowledge

Representation. 17th World Multi-Conference on Systemics, Cybernetics and Infor-

matics, July 9 -12, Orlando, Florida, USA, 2013.

[204] PCAST. Ensuring American Leadership in Advanced Manufacturing. Executive

Office of the President, President’s Council of Advisors on Science and Technol-

ogy(PCAST) , 2011.

[205] PCAST. Capturing Domestic Competitive Advantage in Advanced Manufacturing.

Executive Office of the President, President’s Council of Advisors on Science and

Technology(PCAST) , 2012.

[206] Petnga L. and Austin M.A. Cyber-Physical Architecture for Modeling and Enhanced

Operations of Connected-Vehicle Systems. 2nd International Conference on Con-

nected Vehicles & Expo (ICCVE 2013), Las Vegas, NV, USA, 2013.

[207] Petnga L. and Austin M.A. Ontologies of Time and Time-based Reasoning for

MBSE of Cyber-Physical Systems. 11th Annual Conference on Systems Engineering

Research (CSER 2013), Georgia Institute of Technology, Atlanta, GA, 2013.

284

[208] Petnga L. and Austin M.A. Model-Based Systems Engineering for Design and Auto-

mated Operation of Modern Waterway Systems. In 8th Annual IEEE International

Systems Conference (SysCon 2014). Ottawa, Canada, March 31 – April 3 2014.

[209] Petnga L. and Austin M.A. Semantic Platforms for Cyber-Physical Systems. 24th

Annual International Symposium of The International Council on Systems Engi-

neering (INCOSE), Las Vegas, NV, USA, June 30 - July 03, 2014.

[210] Petnga L. and Austin M.A. Spatial Modeling and Reasoning for Cyber-Physical

Systems. In International Conference on Complex Systems Engineering (ICCSE),

Storrs, CT, USA, November 09-11, 2015.

[211] Petnga L. and Austin M.A. Tubes and Metrics for Solving the Dilemma-Zone Prob-

lem. In The Tenth International Conference on Systems(ICONS 2015), Barcelona,

Spain, April 19 - 24, pages 119–124, 2015.

[212] Petnga L. and Austin M.A. An Ontological Framework for Knowledge Modeling and

Decision Support in Cyber-Physical Systems. Advanced Engineering Informatics,

30(1):77–94, January 2016.

[213] Petnga L. and Austin M.A. Model-Based Design and Formal Verification Processes

for Automated Waterway System Operations. Systems: Special Issue on Product,

Process, System Design Review Methods and Tools, 4(2):1–23, June 2016.

[214] Petnga L. and Xu H. Security of Unmanned Aerial Vehicles: Dynamic State Estima-

tion under Cyber-Physical Attacks. In 4th International Conference on Unmanned

Aircraft Systems (ICUAS 2016), Arlington, VA, June 7-10 2016.

285

[215] Petrov V. Process ontology in the context of applied philosophy. In Vesselin Petrov,

ed. Ontological Landscapes: Recent Thought on Conceptual Interfaces Between

Science and Philosophy. Ontos Verlag. pp. 137 ff. ISBN 3868381074 , 2011.

[216] Platzer A. Quantified differential dynamic logic for distributed hybrid systems. In

In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of LNCS, pages 469

483. Springer, 2010.

[217] Podobnikar T. and Ceh M. A linguistic ontology of space for natural language

processing. IGI Global, 304 pages, doi:10.4018/978-1-4666-0327-1, 2012.

[218] Poovendran R. et al. A Community Report of the 2008 High Confidence Trans-

portation Cyber-Physical Systems. High Confidence Transportation Cyber-Physical

Systems(HCTCPS) Workshop, Washington, DC, USA, 2009.

[219] Portinale L. Modeling Uncertain Temporal Evolutions in Model-Based Diagnosis .

In Eighth Conference on Uncertainty in Artificial Intelligence (UAI1992), Stanford,

California, USA, 1992.

[220] Praitosh P. K. The Heuristic Reasoning Manifesto. Qualitative Reasoning Group,

Electrical and Computer Science, Northwestern University, Evanston IL 60208, USA,

2006.

[221] Ptolemaeus C., Editor. System Design, Modeling, and Simulation using Ptolemy II.

In Ptolemy.org, 2014.

[222] Quillian M. Semantic memory. M. Minsky (Ed.), Semantic Information Processing,

pp. 227-270, MIT, 1968.

286

[223] Rasmussen J. Human error and the problem of causality in analysis of accidents.

ed. D. E. Broadbent, J. Reason, and A. Baddeley, 112. Oxford: Clarendon Press,

1990.

[224] Reason J. Managing the Risks of Organizational Accidents. London: Ashgate, 1997.

[225] Renz J. and Nebel B. On the Complexity of Qualitative Spatial Reasoning: A Max-

imal Tractable Fragment of the Region Connection Calculus. Artificial Intelligence,

108:69–123, 1997.

[226] Richards W. and Hoffman D. D. Codon constraints on closed 2D shapes. Computer

vision, Graphics and Image Processing, 31, pp. 265-281, 1985.

[227] Rohrig R. A theory of Qualitative Spatial Reasoning based on order relations. 2th

American Confernce on AI(AAAI-94), pp. 1418-1423, 1994.

[228] Rouquette N. and Jenkins S. Transforming OWL2 Ontologies into Profiles Extending

SysML . 12th NASA-EST Workshop on Product Data Exchange, Oslo, Norway,

2010.

[229] Rudolf G. Some Guidelines For Deciding Whether To Use A Rules

Engine, 2003. Sandia National Labs. For more information see

http://herzberg.ca.sandia.gov/guidelines.shtml (Accessed, March 10, 2008).

[230] Rudolph S. Knowledge discovery in scientific data. In Proceedings SPIE Conference

DMKD, Florida, USA, 2000.

[231] Russell S. and Norvig P. Artificial Intelligence, A Modern Approach. Prentice Hall,

second edition, 2003.

287

[232] Sabet P. G. P., Aadal H., Mir H. M. J., Kiyanoosh G. R. Application of Domino

Theory to Justify and Prevent Accident Occurance in Construction Sites. IOSR

Journal of Mechanical and Civil Engineering (IOSR-JMCE) , 6:72–76, 2013.

[233] Sanjiang L. and Mingsheng Y. Region Connection Calculus: its models and compo-

sition table. Artificial Intelligence, 145:121–146, 2003.

[234] Schild K. Terminological Cycles and the Propositional With Mu-Calculus. In 4th Int.

Conference on the Principle of Knowledge Representation and Reasoning(KR-94),

pages 509–520. J. Doyle, E. Sandewall, and P. Torasso, 1994.

[235] Schlieder C. Reasoning about ordering . A. Frank and I. Campari (eds.): Spatial

Information Theory - A Theoretical Basis for GIS, Proceedings of COSIT’95. Berlin,

pp. 341-349, 1995.

[236] Schulz S. and Hahn U. Mereotopological Reasoning about Parts and (W)Holes in

Bio-Ontologiest. FOIS 01, Ogunquit, Maine, USA, October 17-19, 2001.

[237] Segaran T., Taylor J., Evans C. Programming the Semantic Web. O’Reilly, Beijing,

2009.

[238] Sidhu A., Dillon T., Chang E., and Sidhu B. S. Protein ontology development using

OWL. First OWL Experiences and Directions Workshop, volume 188 of CEUR

Workshop Proceedings. CEUR(http://ceur-ws.org/), 2005.

[239] Sidorova N. Lecture Notes in Process Modeling. 2007. Department of Mathematics

and Computer Science, Eindhoven University, Netherlands.

288

[240] Siegemund K., Thomas E.J., Zhao Y, Pan J., and Assmann U. Towards Ontology-

Driven Requirements Engineering. In 7th International Workshop on Semantic Web

Enabled Software Engineering, 2011.

[241] Siemens Corporation. Intelligent traffic solutions. In http://www.siemens.com; Ac-

cessed : November 15, 2015.

[242] Sipser M. The Halting Problem. In Introduction to the Theory of computation(Second

Edition ed.). Section 4.2. . PWS Publishing pp. 173-182. ISBN 0-534-94728-X, 2005.

[243] Sirin et al. Pellet: A Practical OWL-DL Reasoner. MIND Lab, University of

Maryland, College Park MD 20742, USA, 2007.

[244] Skrzypczynski P. Merging Probabilistic and Fuzzy Frameworks for Uncertain Spatial

Knowledge Modelling. In 4th International Conference on Computer Recognition

Systems, CORES’05, Rydzyna Castle, Poland, 2005.

[245] Skrzypczynski P. Uncertain Spatial Knowledge Management in a Mobile Robot Ar-

chitecture. In Spatial Cognition and Computation, Volume 1, Issue 3, pp 205-226,

2006.

[246] Smart Manufacturing Leadership Coalition(SMLC). Implementing 21st century

Smart Manufacturing. Workshop Summary Report, 2011.

[247] Smith B. Ontology and the Logistic Analysis of Reality. N. Guarino and R. Poli

(eds): International Workshop on Formal Ontology in Conceptual Analysis and

Representation pp. 51-68, 1993.

[248] Smith B. and Grenon P. The cornucopia of formal-ontological relations. Dialectica,

58:279 296, 2004.

289

[249] Smith M. NASA’s Space Shuttle Columbia: Synopsis of the Report of the Columbia

Accident Investigation Board. CRS Report for Congress, 2003.

[250] Smith R., Self M. and Cheeseman P. Estimating Uncertain Spatial Relationships in

Robotics. In Second Conference on Uncertainty in Artificial Intelligence (UAI1986)

, 1986.

[251] Soergel D., Lauser B., Liang A., Fisseha F., Keizer J., and Katz S. Reengineering

thesauri for new applications: The AGROVOC example. Journal of Digital Infor-

mation, 4(4), 2004.

[252] Song F., Zacharewicz G. and Chen D. An ontology-driven framework towards build-

ing enterprise semantic information layer. Advanced Engineering Informatics (27)

3850, Elsevier, 2013.

[253] Sonin A. A. The Physical Basis of Dimensional Analysis. 2nd Edition, Ain A. Sonin,

2001.

[254] Sowa J. F. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley. ISBN 978-0-201-14472-7, 1984.

[255] Sowa J. F. Conceptual Graphs. In In Handbook of Knowledge Representation, Chap-

ter 5, ed. by F. van Harmelen, V. Lifschitz, and B. Porter, Elsevier, pp. 213237 ,

2008.

[256] Sowa J. F., Borgida A. . Principles of Semantic Networks: Explorations in the

Representation of Knowledge. John F. Sowa (eds), 1991.

290

[257] Starren J. and Xie G. Comparison of Three Knowledge Representation Formalisms,

for Encoding the NCEP Cholesterol Guidelines. Center for Medical Informatics,

Columbia University College of Physicians and Surgeons, New York, 1994.

[258] Strobl C. Dimensionally Extended Nine-Intersection Model (DE-9IM). In Encyclo-

pedia of GIS, Springer US, pp 240-245 , 2008.

[259] Sunanda B. and Seetharamaiah P. Modeling of Safety-Critical Systems Using Petri

Nets. In ACM SIGSOFT Software Engineering Notes archive, Volume 40 Issue 1,

January 2015, pp. 1–7, 2015.

[260] Swarup M. B. and Ramaiah P. S. A Software Safety Model for Safety Critical

Applications. International Journal of Software Engineering and its Applications,

3:21–32, 2009.

[261] Sztipanovits J. Model Integration Challenges in Cyber-Physical Systems. A short

course to NIST Executives. National Institute of Sciences and Technology(NIST),

Gaithersburg, MD, USA , 2012.

[262] Sztipanovits J., Bapty T., Karsai G. and Neema S. Model-Integration and Cyber

Physical Systems : A semantic perspective. Institute for Software Integrated Sys-

tems, Vanderbilt University, TN, 2011.

[263] Sztipanovits J., Stankovic J. A. and Cornan D. E. Industry-Academy Collaboration

in Cyber-Physical Systems(CPS) Research. White Paper, 2009.

[264] Taylor M., Diaz A. I., Sanchez L. A. J. and Mico R. J. V. A Matrix Generalization

of Dimensional Analysis: New Similarity Transforms to Address the Problem of

Uniqueness. Advanced Studies Theoretical Physics, 2(20):979–995, 2008.

291

[265] Tegmark M. On the dimensionality of spacetime. Class. Quantum Grav. 14 (1997)

L69L75., 1997.

[266] The German Aerospace Center (DLR). Railway Collision Avoidance System (RCAS)

Project. In Avaliable at : http://www.collision-avoidance.org/rcas/, 2016.

[267] Thornton R. Integrating the Spatial Semantics of Verbs and Prepositions during

Sentence Processing. In The Oxford Handbook of Cognitive Linguistics, 2010.

[268] Tidwell D. XSLT. O’Reilly and Associates, Sebastopol, California, 2001.

[269] Tossebro E. and Nygard M. Representing Uncertainty in Spatial Databases. In High

Performance Computing and Simulation Conference, 141152, 2008.

[270] Turing A. M. On computable numbers, with application to the entscheiddungsprob-

lem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[271] Unified Modeling Language (UML). See http://www.omg.org/uml. 2003.

[272] United States Government Accountability Office (US GAO). Aviation Runway and

Ramp Safety: Sustained Efforts to Address Leadership, Technology, and Other Chal-

lenges Needed to Reduce Accidents and Incidents. Report GAO-08-29, United States

Government Accountability Office, Report to Congressional Requesters, November,

2007.

[273] United States Government Accountability Office (US GAO). Aviation Safety: FAA

has Increased Efforts to Address Runway Incursions. Report GAO-08- 1169T,

United States Government Accountability Office(GAO), Testimony Before the Sub-

committee on Aviation, Committee on Transportation and Infrastructure, House of

Representatives, September, 2008.

292

[274] Varzi A. Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology.

Data and Knowledge Engineering 20(3), 259-286, 1996.

[275] Vieu L. A Logical Framework for Reasoning about Space . A. Frank and I. Campari

(eds.): Spatial Information Theory - A Theoretical Basis for GIS, Proceedings of

COSIT’93. Berlin, pp. 25-35, 1993.

[276] Vieu L. Spatial representation and reasoning in Artificial intelligence . Spatial and

Temporal Reasoning, pp 5-41, Ed Springer, 1997.

[277] Wagner D.A, Bennett M. B., Karban R., Rouquette N., Jenkins S. and Ingham

M. An Ontology for State Analysis: Formalizing the Mapping to SysML . IEEE

Aerospace Conference, Big Sky, MT, USA, 2012.

[278] Wang Y., Ma J., and Knight B. A Visualized Framework for Representing Uncer-

tain and Incomplete Temporal Knowledge. In International Journal of Computer,

Electrical, Automation, Control and Information Engineering Vol:7, No:11, 2013.

[279] Wang Y., Yahya M., and Theobald M. Time-aware Reasoning in Uncertain Knowl-

edge Bases. In Fourth International VLDB Workshop on Management of Uncertain

Data, Singapore, 2010.

[280] Wassim N. G., Koopmann J., Smith J. D., and Brewer J. Frequency of Target

Crashes for IntelliDrive Safety Systems. US Department of Transportation - Na-

tional Highway Transportation Safety Administration, DOT HS 811 381, 2010.

[281] Weimer J., Bezzo N., Pajic M., Pappas G. J., Sokolsky O., and Lee I. Resilient

Parameter-Invariant Control with Application to Vehicle Cruise Control. Control

293

of Cyber-Physical Systems: Lecture Notes in Control and Information Sciences,

Volume 449, pp 197-216, 2013.

[282] Whitehead A. Process and reality. Macmillan, New York, NY, USA, 1929.

[283] Wilhelm R. and Grund D. Computing takes time, but how much? In Communica-

tions of the ACM, Vol. 57, Issue. 2, February, 2014, pp. 94–103., 2014.

[284] Wing J. Cyber-Physical Systems Research Challenges. National Workshop on High-

Confidence Automotive Cyber-Physical Systems, Troy, MI, USA , 2008.

[285] Winter D. Cyber-Physical Systems - An Aerospace industry perspective. Boeing

Management Company, Seattle, WA, USA, 2008.

[286] Winter D. Cyber-Physical Systems in Aerospace - Challenges and opportunities. Safe

& Secure Systems & Software Symposium (S5), Beavercreek, Ohio USA, June 14-16,

2011.

[287] Wolfgang M. Leibniz’s Theory of Space in the Correspondence

with Clarke and the Existence of Vacuums . Available at :

http://www.bu.edu/wcp/Papers/Mode/ModeMalz.htm, Universitt Bonn, GE,

1995.

[288] Wong E. W., Debroy V. and Restrepo A. The Role of Software in Recent Catas-

trophic Accidents. EEE Reliability Society 2009 Annual Technology Report, 2009.

[289] Worboys M. F. A unified Model for Spatial and Temporal Information. The Com-

puter Journal, 37:26–34, 1994.

294

[290] World Wide Web Consortium(W3C). OWL 2 Web Ontology Language Profiles

(Second Edition). In W3C Recommendation 11 December 2012, Available at:

http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/, 2012.

[291] Wuthishuwong C., and Traechtler A. Vehicle to Infrastructure based Safe Trajectory

Planning for Autonomous Intersection Management. In 13th International Confer-

ence on ITS Telecommunications (ITST), 2013.

[292] XML Stylesheet Transformation Language (XSLT). See

http://www.w3.org/Style/XSL. 2002.

[293] Ye Y., Lu H., Ma J. and Jia L. Uncertain Temporal Knowledge Reasoning of Train

Group Operation Based on Extended Fuzzy-Timing Petri Nets. In Advances in Soft

Computing, vol. 40, pp 59-64, 2007.

[294] Zeeger C.V., and Deen R.C. Green-extension systems at high-speed intersections.

ITE Journal, 19 24, 1978.

[295] Zhang L., He J. and Yu W. Challenges, Promising Solutions and Open Problems of

Cyber-physical Systems. International Journal of Hybrid Information Technology,

6:65–74, 2013.

[296] Zheni D., Frihida A., Ghezala H. B., and Claramunt C. A Semantic Approach for

the Modeling of Trajectories in Space and Time. Advances in Conceptual Model-

ing - Challenging Perspectives, Lecture Notes in Computer Science Volume 5833,

Springer(eds), pp 347-356, 2009.

295

[297] Zhou C., Ravn A. P., and Hansen M. R. An Extended Duration Calculus for Hybrid

Real-Time Systems. Lecture Notes in Computer Science, Volume 736, pp 36-59,

1993.

[298] Zhou Y. and Baras J. S. CPS Modeling Integration Hub and Design Space Ex-

ploration with Application to Microrobotics. Control of Cyber-Physical Systems:

Lecture Notes in Control and Information Sciences, Volume 449, pp 23-42, 2013.

[299] Zhu Q., Bushnell L., Tamer B. Resilient Distributed Control of Multi-agent Cyber-

Physical Systems. Control of Cyber-Physical Systems: Lecture Notes in Control and

Information Sciences, Volume 449, pp 301-316, 2013.

[300] Ziegler C. Watch the moment a self-driving Google car sideswipes a bus. In

The Verge, Available at: http : //www.theverge.com/2016/3/9/11186072/google −

self − driving − car − bus− crash− video, accessed 10/03/16, 2016.

[301] Zimmerman K. and Bonneson J. A. Number of vehicles in the dilemma zone as a

potential measure of intersection safety at high-speed signalized intersections. 83rd

Annual Meeting of the Transportation Research Board Washington, D.C., USA,

2004.

[302] Zimmermann K. Without distances: the delta calculus. A. Frank and W. Kuhn(eds.)

Spatial Information Theory: A theoretical basis for GIS, COSIT’95, LNCS No. 988,

Springer-Verlag, pp. 59-68, 1995.

296

	List of Figures
	Introduction
	Problem Statement and Contributions
	Cyber-Physical System Components and Architectures
	Key Characteristics of CPS Component Interactions
	Contributions of this Dissertation

	Challenges in Cyber-Physical Design and Operation
	Physical-Domain Behavior versus Cyber- Domain Behavior
	Safety of Cyber-Physical Systems

	State-of-the-Art Model-based Systems Engineering
	Multi-Level Approach Model-Based System Design
	Pathway of System Development

	Limitations of MBSE for CPS Design
	Lack of Supportive Integration Science
	Deep but Fragmented Theories
	Limited Language and Domain Modeling Semantic Capabilities

	Research Questions and Hypothesis
	Research Scope and Objectives
	Dissertation Outline

	Semantic Web: Theory, Models, Languages and Tools
	Introduction to Semantic Web
	Semantic Web Vision
	Technical Infrastructure

	Description Logics (Semantics and Ontologies for Reasoning)
	Knowledge Representation Formalisms
	Description Logics Semantics
	Ontologies and Ontological Languages

	Semantic Extensions and Support for Web-Based Reasoning
	Description Logics Extensions for the Web Ontology Language
	Reasoning Support for SROIQ - based Ontologies

	Working with Semantic Web Technologies
	Low-Level Technologies (IRI and UNICODE)
	Extensible Markup Language (XML)
	Resource Description Framework (RDF)
	The Web Ontology Language (OWL)

	Working with Jena and Jena Rules
	Jena
	Jena Rules

	Case Study: Semantic Modeling of Family Dynamics
	Family Ontology and Graph (Jena)
	Event-Driven Graph Transformations (Jena Rules)

	Semantic Modeling of Time
	Introduction
	Models and Properties of Time
	Discrete versus Dense Time
	Time Instants and Intervals
	Qualitative Descriptions of Time
	Precedence Relations

	Ontological Descriptions of Time
	Temporal Theories and Calculus
	Specifications of Time
	Allen's Temporal Intervals Calculus
	Comparison of Leading Ontologies of Time

	Temporal Reasoning and Rules
	Temporal Logic
	Jena Rules for Temporal Reasoning

	Case Study: Temporal Modeling and Reasoning in Action
	The Time Ontology
	Semantic Graph Transformations

	Semantic Modeling of Space
	Introduction
	Space and Spatio-Temporal Theories
	Spatial Theories and Calculus
	Spatio-Temporal Theories

	Ontological Descriptions of Space
	Ontologies of Space
	Classes of Spatial Ontologies

	Multi-Scale Spatial Modeling and Reasoning
	Space Matters: Need for Formal Models of Space for CPS
	Qualified Theory: Region Connectedness Calculus
	Spatial Modeling Architecture and Description

	Working with the Java Topology Suite (JTS)
	Case Study: Spatial Modeling and Reasoning in Action
	Case Study Description
	Spatial Ontology and Rules
	Spatial Reasoning

	Framework for Ontological Modeling and Decision Support
	Introduction
	CPS Knowledge Modeling and Ontologies
	Requirements on CPS Models for Decision Making
	Tackling Semantic and Safety Challenges

	Framework for Modeling CPS Knowledge and Reasoning Support
	High Level Architecture
	Overview of the Framework
	From Data to Knowledge: DSOs & Semantics
	From Knowledge to Model: System Integration
	Reasoning for Decision Support
	Dimensional Reduction for Decision Making in CPS

	Case Study: A Reasoning Framework for Traffic System Safety
	Problem Description and Analysis
	Jena Modeling of the Traffic System: System Architecture
	Domains Layer: Light, Car and Time Semantic Blocks
	Semantics Support Layer: Handling of Physical Quantities
	Integration Layer: Integrator and System Level Reasoning
	Application Layer: Instantiation and Testing

	Cyber-Physical Transportation Systems: Safety Metrics, Tubes and Analyses
	Introduction
	Systems Integration and Simulation with Whistle
	Whistle Scripting Language
	Systems Integration with Whistle

	Safe CPTS: Metrics for Characterizing the Dilemma Zone Problem
	Cyber-Physicality of Traffic Systems
	Metrics for Characterizing the Dilemma Zone Problem

	System Architecture and Implementation
	System Architecture
	Simulation Prototype

	Safety Analyses
	Single Factor Safety Analysis
	Set (pair) Factor Safety Analysis
	Beyond Predefined Configurations and Pair Factors

	Discussion

	Metrics and Spatio-Temporal Algorithms for Safety-Critical CPS
	Introduction
	Types of Collision
	Tubes and Metrics for Dynamic Entities on Away Collision Course
	Objectives and Modeling Assumptions
	Local and Global Lane Safety
	Local Lanes Safety Formulas for Away Collision
	Local Lanes Safety Metrics for Away Collision

	Collision Avoidance Strategies and Algorithms
	Generic Collision Avoidance Process
	Away, Glancing and Clipping Collision Avoidance Algorithms

	Case Study: Glancing Collision at Non-signalized Intersection
	Overview of the case study
	Spatio-temporal reasoning for glancing collision avoidance
	Impact of space ontological commitment on safety decisions

	Conclusion and Future Work
	Conclusions
	Summary of Work
	Answers to Research Questions

	Future Work
	Ontological and Multi-level Integrated Control
	Temporal and Spatial Reasoning with Uncertainties
	Whistle Platform Development
	Safe Airport Taxiway System

	Appendices
	Description Logics and ALC Extension
	Basic description logics
	The ALC description logics
	DL extensions for OWL2
	Reasoning services for SROIQ - based ontologies
	Multi-dimensional Spatial Representation Functions for Safety-Critical CPS
	Assumptions and Foundations
	Interaction Functions
	Component Capability Functions
	Bibliography

