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Recognizing the identity of a face or a person in the media usually requires lots

of training data to design robust classifiers, which demands a great amount of human

effort for annotation. Alternatively, the weakly labeled data is publicly available,

but the labels can be ambiguous or noisy. For instance, names in the caption of a

news photo provide possible candidates for faces appearing in the image. Names in

the screenplays are only weakly associated with faces in the videos. Since weakly

labeled data is not explicitly labeled by humans, robust learning methods that use

weakly labeled data should suppress the impact of noisy instances or automatically

resolve the ambiguities in noisy labels.

We propose a method for character identification in a TV-series. The proposed

method uses automatically extracted labels by associating the faces with names in

the transcripts. Such weakly labeled data often has erroneous labels resulting from

errors in detecting a face and synchronization. Our approach achieves robustness

to noisy labeling by utilizing several features. We construct track nodes from face

and person tracks and utilize information from facial and clothing appearances.



We discover the video structure for effective inference by constructing a minimum-

distance spanning tree (MST) from the track nodes. Hence, track nodes of similar

appearance become adjacent to each other and are likely to have the same identity.

The non-local cost aggregation step thus serves as a noise suppression step to reliably

recognize the identity of the characters in the video.

Another type of weakly labeled data results from labeling ambiguities. In

other words, a training sample can have more than one label, and typically one of

the labels is the true label. For instance, a news photo is usually accompanied by the

captions, and the names provided in the captions can be used as the candidate labels

for the faces appearing in the photo. Learning an effective subject classifier from

the ambiguously labeled data is called ambiguously labeled learning. We propose a

matrix completion framework for predicting the actual labels from the ambiguously

labeled instances, and a standard supervised classifier that subsequently learns from

the disambiguated labels to classify new data. We generalize this matrix completion

framework to handle the issue of labeling imbalance that avoids domination by

dominant labels. Besides, an iterative candidate elimination step is integrated with

the proposed approach to improve the ambiguity resolution.

Recently, video-based face recognition techniques have received significant at-

tention since faces in a video provide diverse exemplars for constructing a robust

representation of the target (i.e., subject of interest). Nevertheless, the target face in

the video is usually annotated with minimum human effort (i.e., a single bounding

box in a video frame). Although face tracking techniques can be utilized to asso-

ciate faces in a single video shot, it is ineffective for associating faces across multiple



video shots. To fully utilize faces of a target in multiples-shot videos, we propose a

target face association (TFA) method to obtain a set of images of the target face,

and these associated images are then utilized to construct a robust representation

of the target for improving the performance of video-based face recognition task.

One of the most important applications of video-based face recognition is out-

door video surveillance using a camera network. Face recognition in outdoor en-

vironment is a challenging task due to illumination changes, pose variations, and

occlusions. We present the taxonomy of camera networks and discuss several tech-

niques for continuous tracking of faces acquired by an outdoor camera network

as well as a face matching algorithm. Finally, we demonstrate the real-time video

surveillance system using pan-tilt-zoom (PTZ) cameras to perform pedestrian track-

ing, localization, face detection, and face recognition.
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Chapter 1: Introduction

In this dissertation, we discuss several methods for recognizing the identity of

faces and persons in still images or videos. The objective is to accomplish the iden-

tification task using weakly labeled data. As compared to human annotation, which

requires lots of human effort, the weakly labeled data is usually publicly available

but the labeling can be noisy. An effective approach should suppress the impact of

noisy samples and resolve the ambiguities in weakly labeled data. Moreover, the

face images in videos usually have various poses, which contribute to diverse data,

useful for learning a robust classifier. To leverage this advantage, face images of the

subject of interest appearing in the scene should be consistently associated, and the

associated face images enable us to to utilize the diverse information in the video.

In this chapter we briefly describe these topics.

1.1 Character Identification in TV-series via Non-local Cost Aggre-

gation

We propose a non-local cost aggregation algorithm to recognize the identity of

face and person tracks in a TV-series. In our approach, the fundamental element for

identification is a track node, which is built on top of face and person tracks. Track
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nodes with temporal dependency are grouped into a knot. These knots then serve as

basic units in the construction of a k-knot graph for exploring the video structure.

We build the minimum-distance spanning tree (MST) from the k-knot graph such

that track nodes of similar appearance are adjacent to each other in MST. Non-local

cost aggregation is performed on MST, which ensures that information from face

and person tracks is utilized as a whole to improve the identification performance.

The identification task is performed by minimizing the cost of each knot, which

takes into account the unique presence of a subject in a venue. Experimental results

demonstrate the effectiveness of our method.

1.2 Learning from Ambiguously Labeled Face Images

Learning a classifier from ambiguously labeled face images is challenging since

training images are not always explicitly-labeled. For instance, face images of two

persons in a news photo are not explicitly labeled by their names in the caption.

We propose a Matrix Completion for Ambiguity Resolution (MCar) method for

predicting the actual labels from ambiguously labeled images. This step is followed

by learning a standard supervised classifier from the disambiguated labels to classify

new images. To prevent the majority labels from dominating the result of MCar, we

generalize MCar to a weighted MCar (WMCar) that handles label imbalance. Since

WMCar outputs a soft labeling vector of reduced ambiguity for each instance, we

can iteratively refine it by feeding it as the input to WMCar. Nevertheless, such an

iterative implementation can be affected by the noisy soft labeling vectors, and thus
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the performance may degrade. The proposed Iterative Candidate Elimination (ICE)

procedure makes the iterative ambiguity resolution possible by gradually eliminating

a portion of least likely candidates in ambiguously labeled faces. We further extend

MCar to incorporate the labeling constraints between instances when such prior

knowledge is available. Compared to existing methods, our approach demonstrates

improvements on several ambiguously labeled datasets.

1.3 Video-Based Face Association and Identification

In this work, we focus on a new video-based face identification task, where the

target (i.e., person of interest) in the probe video is only annotated once with a face

bounding box in a frame and the video may consist of multiple shots. Most of the

video face identification techniques assume that the video is of single shot, and thus

frame-by-frame bounding boxes of the target face can be extracted by tracking a

face across the video frames. Nevertheless, such automatic annotation is vulnerable

to the drifting of the face tracker, and the face tracking algorithm is inadequate

to associate the face images of the target across multiple shots. We propose a

target face association (TFA) technique that retrieves a set of representative face

images in a given video that are likely to have the same identity as the target face.

These face images are then utilized to construct a robust face representation of

the target face for searching the corresponding subject in the gallery. Since two

faces that appear in the same video frame cannot belong to the same person, such

cannot-link constraints are utilized for learning a target-specific linear classifier for
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establishing the intra/inter-shot face association of the target. Experimental results

on the newly released JANUS challenge set 3 (JANUS CS3) dataset show that

the proposed method generates robust representations from target-annotated videos

and demonstrates good performance for the task of video-based face identification

problem.

1.4 Face Recognition Using an Outdoor Camera Network

Face recognition in outdoor environments is a challenging task due to illumi-

nation changes, pose variations, and occlusions. We discuss several techniques for

continuous tracking of faces acquired by an outdoor camera network as well as a face

matching algorithm. Active camera networks are capable of reconfiguring the cam-

era parameters to collaboratively capture the close-up views of face images. Robust

face recognition methods can utilize compact representations extracted from multi-

view videos. Constraints such as consistent tracking of faces and the limitations of

network resources should be satisfied. Lastly, we discuss some remaining challenges

and emerging frameworks for face recognition in outdoor camera networks.

1.5 Contributions of the Dissertation

We make the following contributions in this dissertation.

• Character identification in TV-series

1. We propose a unified approach for identifying the face and person tracks

in a TV-series by constructing the track nodes to multiplex the modalities

4



of face and clothing feature from face and person tracks, respectively.

2. We explore the video structure via constructing the minimum-distance

spanning tree (MST) from the track nodes such that track nodes that

are likely to have the same identity are adjacent to each other. The non-

local cost aggregation method is effective in predicting the identity of

track nodes.

• Learning from ambiguously labeled face images

1. We propose a matrix completion for ambiguity resolution (MCar) method,

where instances and their associated ambiguous labels are jointly consid-

ered for disambiguating the class labels.

2. We provide a geometric interpretation of the matrix completion frame-

work from the perspective of recovering the potentially-separable convex

hulls of each class.

3. We expand MCar to resolve the label ambiguity in the presence of labeling

imbalance.

4. We propose the ICE approach to improve the reliability of iterative WM-

Car. The integration of WMCar and ICE is effective for resolving the

ambiguity and outperforms WMCar in general.

5. The proposed method can handle the group constraints between instances

for practical applications.

• Target face association
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1. We introduce a new video-based face identification task, where the probe

video is only annotated once with a bounding box on the face of the

target (subject of interest) in a video frame. The objective is to find

the corresponding subject in the gallery based on this target-annotated

probe video.

2. We propose a target face association method that establishes the asso-

ciation between face images of the target in multiple-shot videos. These

associated face images are then utilized to create a robust representation

of the target face.

• Face recognition using an outdoor camera network

We describe a real-time video surveillance system consisting of four pan-tilt-

zoom (PTZ) cameras at the University of Maryland campus. This system

utilizes a master and slave camera framework to perform pedestrian tracking,

face detection, and face recognition tasks.

1.6 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present

a non-local cost aggregation method for character identification in TV-series. We

discuss the problem of learning from ambiguously labeled data using matrix com-

pletion methods in Chapter 3. Then in Chapter 4, we present a solution to the

problem of face association and video-based face identification. In Chapter 5, we

summarize some recent face recognition techniques using outdoor camera networks

6



and present the design details of an outdoor camera network system at the Univer-

sity of Maryland campus. Finally, we conclude this dissertation and discuss future

directions in Chapter 6.
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Chapter 2: Character Identification in TV-series via Non-local Cost

Aggregation

Character identification is an important task for preparing the metadata for

a TV-series, since several applications, such as video summarization [3], analysis of

character interactions [4], and shot retrieval [5, 6], require knowing the identities of

humans in the scenes. Nevertheless, character identification in TV-series remains a

challenging task since the video is usually unconstrained and the human pose varies.

Recently, non-local cost aggregation methods have been shown to yield good

results in establishing dense stereo correspondence [7, 8]. This framework ensures

that information is effectively utilized via non-local cost aggregation on a minimum

spanning tree. Motivated by these works, we propose a non-local identification

framework to recognize the identity of each face track and person track such that

identities in the venue are consistently reported. Extending the non-local framework

to solve the identification problem in a TV-series is not straightforward. Unlike

pixels with identical modalities which line up in a planar graph structure, face tracks

and person tracks own different modalities in the timeline. Besides, contextual

information (e.g., unique presence of a subject) should be utilized to improve the

identification performance.
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We propose a unified approach for identifying the face and person tracks in

a TV-series. We construct the track nodes to multiplex the modalities of face and

clothing feature from face and person track, respectively. Our method possesses

the capability to explore the video structure by constructing the minimum-distance

spanning tree (MST) from the track nodes such that track nodes that are likely

to have the same identity are adjacent to each other. A typical identification task

assigns the identity such that the cost of each track node is minimized. By per-

forming the non-local cost aggregation on MST, the identity assignment becomes

more reliable via minimizing the aggregated cost, which allows the information from

adjacent track nodes to be utilized as a whole. Furthermore, the unique presence of

a subject in a venue is taken into account by minimizing the total aggregated cost

of the track nodes with temporal dependency. Experimental results on TV-series

datasets demonstrate the effectiveness of the proposed method.

The rest of the chapter is organized as follows. Section 2.1, we review some

related work on face and person identification. In Section 2.2, we describe the

proposed framework for character identification in TV-series. In Section 2.3, we

demonstrate experimental results on two TV-series datasets. Section 2.4 concludes

the chapter with a summary.

2.1 Related Work

Existing works use the names provided in the screenplay, speech identification

[9], and attributes (e.g., gender) [10], to assist person identification. Furthermore,
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analyzing the text information in subtitles has been used for person identification

[11]. Nevertheless, several prior efforts [12,13] based on face clustering and tracking

are not suitable for consistently identifying the characters in a TV-series due to shot

variations and the occlusion of faces. Since the human body is more perceivable even

when the face is occluded, person tracking [14] can provide additional advantages

for person identification.

Our work is closely related to [9] that models the character appearances using

Markov random field (MRF) representations of face and person tracks. Additional

information, such as alternating shots and speaker identification, is utilized into their

model to improve the identification performance. Their MRF framework relies on

tracks with both face and clothing modalities, and transfers the face identification

result to person tracks where faces cannot be authenticated due to occlusion or

other reasons. However, this approach cannot guarantee that all the information in

face and person tracks is utilized since the procedure of pre-clustering of clothing

appearance and post-assignment of the identity to person tracks based on clustering

results are performed separately.

2.2 The Proposed Framework

The block diagram of our approach is illustrated in Figure 2.1. First, the face

and person tracks form track nodes if their bounding boxes co-occur with reasonable

relative positions (Section 2.2.1). Track nodes with temporal dependency are then

grouped into a knot (Section 2.2.2). We construct the MST from the k-knot graph

10



Face 
Tracking 

Construct 
Track Nodes 

Construct  
k-knot graph 

Cost 
Aggregation 

Cost 
Minimization 

Per Knot 
Person 

Tracking 

Construct 
MST 

Track Node 
ID Labeling 

Face Track  
ID Labeling 

Person Track 
ID Labeling 

Construct 
Knots 

Figure 2.1: Block diagram of the character identification framework.

(Section 2.2.3) such that information can be conveyed across the track nodes in the

video sequence. The cost of each track node is aggregated on the MST such that

track nodes with similar appearance and temporal adjacency are more likely to have

the same identity (Section 2.2.4). The identification problem is thus cast as a cost

minimization problem per knot such that the uniqueness constraint is incorporated

(Section 2.2.5). In the end, face and person tracks inherit the identity of the track

node they are associated with.

2.2.1 Construction of Track Nodes

A track node can acquire feature modalities from both face and person tracks,

which constitute a stronger representation than individual tracks. Besides, a track

node typically has longer presence in timeline than its individual tracks, which

allows the uniqueness constraint to be exploited over a longer period. Although a

track node provides a unified representation, any erroneous matching of face and

person track is irreversible. Besides, any error in the construction of track nodes

causes immediate performance degradation in identification since face and person

tracks inherit the identity of track node. Thus, we propose the following two-step

procedure to construct the track nodes:
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1) We use the Hungarian algorithm [15] to match the bounding boxes of face

and person tracks in each frame. The Hungarian algorithm takes the cost matrix

as input and outputs the matching status between the bounding boxes of face and

person track in each frame. Each entry of the cost matrix corresponds to the distance

between the center of face bounding box and the hypothesized center of the face

according to the location of the person bounding box. If more than half the number

of co-occurrence of bounding boxes of a face track and a person track are matched

by the Hungarian algorithm, the face and person track are linked.

2) Each face and person track is initially treated as a track node. Two track

nodes are merged into a larger track node if there is a link between two track

nodes. This merging procedure is performed iteratively until it converges. Figure

2.3 illustrates a track node consisting of face and person tracks.

Track nodes can be categorized into three types: Face-body, face-only, and

body-only track node. Face-body track nodes consist of both modalities from face

and person tracks. Some track nodes only have a single modality, either from face

or person track. Face-only track nodes appear when the human body cannot be

detected. On the other hand, the body-only track nodes commonly appear when

actors turn their bodies around. It is clear that face-body track nodes possess more

information as compared to track nodes of a single modality.
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2.2.2 Construction of Knots

Structural analysis of video can enhance the performance of identification.

For instance, alternating shots [9] are common when filming conversations between

two characters. This evidence can be utilized in identification by accumulating the

decision for instances appearing in highly-correlated backgrounds. Nevertheless,

the video structure usually depends on the media content, and it can be difficult to

analyze a long shot. We propose to organize the track nodes into several knots. A

knot is defined as the minimum set of track nodes with dependency in a temporal

window such that there is no temporal dependency between any two knots. Track

nodes can be organized into several knots using the following procedures:

1) We initialize a knot with a track node.

2) We iteratively augment other track nodes that share at least one common frame

with any track node in this knot until it converges.

3) Construct another knot by going back to 1) until all the track nodes are organized.

In Figure 2.2(a), several track nodes are organized into three knots separated by

dotted lines.

2.2.3 Construction of the k-Knot Graph

The k-nearest neighbor (k-NN) graph has been widely used to explore the la-

tent structure of data. However, it does not consider the temporal structure of track

nodes and the contextual information of the unique presence of a subject. Hence,

we represent the structure of track nodes with an undirected k-knot graph to exploit
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the contextual information of videos. The k-knot graph is constructed as follows:

1) Any two track nodes within a knot are connected with an edge if both track

nodes do not share any common frame. This ensures two track nodes appearing in

the same venue are set far apart while exploring the latent structure of track nodes.

2) As two track nodes from each of the two knots do not have temporal dependency,

information can be transferred between them. Nevertheless, two track nodes become

irrelevant if they are separated by a long temporal duration. In order to emphasize

the information of a track node within a short temporal duration, a track node from

the ith knot will only be connected with track nodes from the (i−k)th, (i−k+ 1)th,

. . . , and (i + k)th knot. This allows the information to be successfully conveyed

among track nodes for identification.

Figure 2.2(b) illustrates an example for constructing the k-knot graph from

the track nodes. The distance between the ith and jth track node in the k-knot

graph is defined as

d(i, j) = (1− γ)df (i, j) + γdp(i, j), (2.1)

where γ controls the tradeoff between the distance induced by face and clothing

modality. The df (i, j) is the distance between the ith and jth track node induced by

the face modality, which is defined as

df (i, j) =


min

m∈Fi,n∈Fj
df (x

m
i ,x

n
j ) , if Fi 6= ∅, Fj 6= ∅

dmaxf , otherwise,

(2.2)

where Fi is the index set of face features in the ith track node, and xmi represents
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the mth face feature vectors of the ith track node. If the track node i or j lack the

modality from face tracks, df (i, j) will be set equal to dmaxf , which is the maximum

value of df (i, j). df (x1,x2) denotes the cosine similarity [16] between x1 and x2, and

sophisticated metrics, such as the one discussed in [17], can be utilized to improve

the performance.

The clothing feature is the RGB color histogram computed from the bounding

box corresponding to the torso in the person track. Similarly, we define the distance

between the ith and jth track node induced by the clothing modality as

dp(i, j) =


min

m∈Pi,n∈Pj
dp(h

m
i ,h

n
j ) , if Pi 6= ∅, Pj 6= ∅,

dmaxp , otherwise,

(2.3)

where Pi is the index set of clothing features in the ith track node. The hmi denotes

the mth clothing feature vector of the ith track node. dp(h1,h2) represents the chi-

squared distance between histogram feature h1 and h2. Note that dp(i, j) will be set

equal to the maximum distance dmaxp if track node i or j lack the clothing modality.

2.2.4 Construction of the Minimum-distance Spanning Tree (MST)

The construction of MST automatically removes the unwanted edges of large

distance such that the total distance of the spanning tree is minimized. Motivated

by this fact, we construct the MST from the k-knot graph to explore the structure

of track nodes. In Figure 2.2(c), we observe that track nodes of the same identity

are closer in MST since edges of large distance are removed during the construction

of MST. Note that the distance between two track nodes in MST is defined as the

summation of distances along the edges connecting these two track nodes. Hence,
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we define D(i, j) as the distance between the ith and jth track node in MST. Note

that D(i, j) = d(i, j) if the ith and jth track node are directly connected by an edge

in MST. We define the similarity between the ith and jth track node as

S(i, j) = exp

(
−D(i, j)

σ

)
, (2.4)

where σ is the parameter to adjust the similarity.

Let Ci(y) represent the cost for the ith track node if it is treated as identity

y ∈ C, where C = {1, 2, . . . , c} is the identity set. The modeling of Ci(y) will

be discussed in Section 2.2.6. Following the non-local cost aggregation framework

presented in [7], the aggregated cost of the ith track node is computed by

CA
i (y) =

∑
j

S(i, j)Cj(y) =
∑
j

exp

(
−D(i, j)

σ

)
Cj(y). (2.5)

The aggregation procedure can be treated as a filtering operation, where each track

node contributes to the task of identification via similarity weighting. Identification

becomes robust since information from adjacent track nodes is utilized as a whole

for determining the identity. Although the cost aggregation in (2.5) requires the

weighted summation across all the track nodes, Yang [7] provides a linear time

exact algorithm to significantly reduce the computational burden.

2.2.5 Cost Minimization per Knot

The identity of the ith track node can be obtained by assigning the identity

that minimizes its aggregated cost in (2.5). Since a knot consists of several track

nodes with temporal dependency, the identity of track nodes from a knot should be
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jointly determined. The solution can be obtained by enumerating all combinations of

labeling that are consistent with the uniqueness constraint such that the aggregated

cost of knot is minimized. Hence, we can predict the identities of track nodes in the

jth knot by solving

ŷj = arg min
y∈Yj

∑
i∈Oj

CA
i (yi), (2.6)

where Oj is the set containing the indices of track nodes in the jth knot. The

identities of track nodes in the jth knot form a column vector y, and Yj is the set

consisting of all the combinations of identities that satisfy the unique presence of an

identity. This combinatorial problem can be solved by an optimization procedure

based on relaxation technique discussed in [9]. Once the identities of track nodes

are determined, the face and person tracks inherit the identity of the track node it

is associated with.

2.2.6 Modeling the Cost Function

The cost function returns the amount of the deviation from the designated

subject. Herein, we define the cost for treating the ith track node as identity y as

Ci(y) =


−ri(y), if Fi 6= ∅,

0, otherwise.

(2.7)

Note that the ith track node has cost equal to 0 if it lacks the face modality, i.e.

Fi = ∅. Hence, track nodes that miss face modality will passively receive the

information propagated from adjacent track nodes. Without loss of generality, the

17



unknown class is regarded as the cth class, and ri(y) in (2.7) is modeled as

ri(y) =


1
|Fi|

∑
m∈Fi

Φy(x
m
i ), y ∈ {1, 2, . . . , c− 1},

1
|Fi|

∑
m∈Fi

λmin
j 6=c

(1− Φj(x
m
i )) , y = c,

(2.8)

where Φy(x) returns the probabilistic output from a support vector machine (SVM)

[18,19]. We follow the setting in [9] to train the SVMs with a second-order polyno-

mial kernel. The training data of the first (c − 1)th classes are used to train c − 1

classifiers using one-versus-all SVM. Note that we do not explicitly model the un-

known class since the number of face tracks corresponding to the unknown class is

usually insufficient to model the unknown class. Hence, we use the minimum com-

plementary of the probabilistic output among c− 1 subjects to model the likelihood

of the unknown class. However, this excessively biases towards the unknown class

as the minimum complementary of the probabilistic output can be large for unseen

data. We use λ to adjust the likelihood of the unknown class, and λ is obtained from

classifying the validation data such that the classification accuracy is maximized.

The validation data consists of a subset of training samples from major characters

and all the training samples of the unknown class.

2.3 Experimental Results

In this section, we perform experiments on the TV-series datasets in Section

2.3.1 and discuss the results in Section 2.3.2.

18



2.3.1 Evaluation on TV-series Datasets

We use two datasets provided by the authors of [9,20] for evaluation.1 The first

dataset consists of 6 episodes of Big Bang Theory (BBT), and the second dataset

consists of 6 episodes of Buffy the Vampire Slayer (BF). We use the face features

readily provided in these datasets. The dimension of the feature vector is 240, and

the feature coefficients are computed using the discrete cosine transform (DCT)

from face regions of 48 × 64 pixels. The BBT dataset provides face and person

tracks, while the BF dataset only provides face tracks. Moreover, only 22 % (recall)

face tracks are labeled via matching the name of the transcript with the face track

that is speaking [20, 21]. These face tracks are weakly labeled with 87 % accuracy

(precision) due to the falsely detected speaking face and the mismatch of transcripts.

Note that we do not specifically handle the potentially erroneous labeling situation

and use all the available labels for training. More sophisticated methods, reported

in [20,22], can be utilized to further improve the identification performance.

The identification accuracy of face (person) track is computed as the number

of correctly identified face (person) tracks over the total number of face (person)

tracks in each episode. For comparison, we follow the same setting reported in [20].

There are 11 and 28 subjects in the BBT dataset and BF dataset, respectively.

Each dataset has an additional unknown class. Characters that do not belong to

any subjects are regarded as belonging to the unknown class, and the uniqueness

constraint is not applied to the unknown class. Since the BF dataset does not

1Dataset is available at http://cvhci.anthropomatik.kit.edu/projects/mma.
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provide the person track, we compute the clothing features from a hypothesized

rectangular region below the face. A similar procedure is also reported in [23] to

extract the clothing features. Hence, the BF dataset demonstrates another scenario

where person tracks are not available, and each face track is trivially treated as a

track node. Throughout all the experiments, we use γ = 0.8, σ = 0.1, and k = 10.

2.3.2 Discussion on the Experiments

We compare our method with the person identification framework based on

MRF [9], which takes the probabilistic output from a trained classifier using semi-

supervised learning with constraints (SSLC) [20]. Our trained classifier is denoted as

SVM. The performance of identification evaluated on “track node” and “track node

with cost aggregation” is denoted as TN and TN+CA, respectively. Considering the

uniqueness constraint, we denote TN+CA+K as “TN+CA with cost minimization

per knot”. Based on the experimental results, we make the following observations:

1. In Table 2.1, our SVM gives identification accuracy of 78.21% for the BBT

dataset. Specifically, the construction of track nodes provides 0.85% improvement.

It provides a slight improvement since face tracks belonging to the same track node

can be fused for reliable identification. The cost aggregation procedure provides

additional 4.49% improvement since the filtering operation of cost aggregation can

propagate the information to track nodes without face modality and suppress the

impact of noisy instances. Considering the uniqueness constraint, we use (2.6) to

jointly determine the identities of track nodes of each knot. Overall, our method
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(TN+CA+K) outperforms the MRF framework with SSLC (SSLC+MRF) by 3.48%.

The confusion matrix for the identification of face tracks in the BBT dataset is

presented in Figure 2.4, which shows that our method is effective in classifying all

the characters including the guest characters. Note that Doug and Summer are not

correctly identified since no weakly-labeled face track is associated with these two

subjects for training.

2. In Table 2.2, TN + CA significantly improves the identification accuracy of

person tracks over TN, which shows that the identification result of face tracks

is successfully transferred to the person track via the cost aggregation on MST.

When the uniqueness constraint is considered, TN+CA+K attains the identification

accuracy of 86.66%.

3. Since the BF dataset does not provide person tracks, each face track is treated

as a track node. Therefore, the performance of SVM and TN are identical. In

Table 2.1, our method (TN + CA) achieves the identification accuracy of 69.39%.

However, enforcing the uniqueness constraint gives only a minor improvement. One

of the reasons is that the video structure of BF usually has one or two characters

in the scene, which does not provide as much contextual information as in BBT.

Our method (TN + CA + K) outperforms SSLC and SVM by 3.71% and 4.26 %,

respectively.

4. The performance of person identification task depends on the recognizing ac-

curacy of the face classifier. In order to fairly compare with [9], we evaluate the

identification accuracy of person tracks by providing the groundtruth for face tracks.

Following the protocol in [9], we use the BBT dataset to evaluate the character iden-
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tification component. Only the five main characters and the additional unknown

class are evaluated. As we can observe in Table 2.3, our method (TN+CA+K)

achieves 4.5% improvement over [9]. This shows that our method performs better

than [9] since the information from face and person tracks is utilized as a whole for

identification.

5. Table 2.4 shows the statistics of track nodes in the BBT dataset. In order to

investigate the quality of track nodes, we verify whether the face and person tracks

in a track node have the same identity using the groundtruth. A track node with any

inconsistent identities among its face and person tracks is regarded as an erroneous

track node. It is clear that erroneous track nodes only account for a small portion

(0.4%) of all the track nodes. In contrast to the MRF framework proposed in [9]

where the identities of face tracks are first recognized and transferred to person

tracks without visible face based on the affinity of the clothing appearance, our

method ensures that all the information is utilized as a whole. Although body-only

track nodes lack face modality, they serve as the relay for propagating the inference

of other track nodes. Moreover, the duration of the track node accounts for the

temporal appearance of an identity in the timeline, and thus the pairwise constraint

between track nodes is generally stronger than just the face or person track alone.

2.4 Summary

We proposed a unified framework for character identification in a TV-series.

We constructed the track nodes from face and person tracks, and used the track
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Table 2.1: Identification accuracy of face tracks in BBT and BF datasets.

Episode BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BBT-Avg. BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 BF-Avg.

SSLC [20] 89.23 89.20 78.47 76.59 75.09 68.05 79.44 71.99 61.27 66.60 67.07 69.59 61.72 66.37

SSLC + MRF [9,20] 95.18 94.16 77.81 79.35 79.93 75.85 83.71 − − − − − − −

SVM 87.94 85.84 77.81 76.25 72.76 68.66 78.21 69.63 62.20 64.20 67.07 69.34 62.45 65.82

TN 90.35 87.26 78.47 77.11 72.04 69.15 79.06 69.63 62.20 64.20 67.07 69.34 62.45 65.82

TN + CA 92.28 91.15 82.22 84.85 78.85 71.95 83.55 74.08 62.31 67.81 72.10 75.95 64.11 69.39

TN + CA + K 94.21 92.39 84.01 87.78 83.15 81.59 87.19 75.65 64.38 66.70 72.81 76.97 63.93 70.08

Table 2.2: Identification accuracy of person tracks in the BBT dataset.

Episode 1 2 3 4 5 6 Avg.

TN 78.54 73.04 75.58 63.77 64.07 61.49 69.42

TN + CA 89.12 87.77 83.67 80.97 78.31 71.01 81.81

TN + CA + K 91.80 89.81 87.71 86.61 82.95 81.09 86.66

Table 2.3: Identification accuracy of person tracks given the groundtruth identities

of face tracks in the BBT dataset.

Episode 1 2 3 4 5 6 Avg.

MRF [9] 98.3 89.9 94.8 89.1 85.3 88.5 91.0

TN 86.0 82.6 86.9 78.2 79.1 76.7 81.6

TN + CA 95.7 93.4 96.4 91.5 88.9 85.2 91.8

TN + CA + K 97.8 96.9 97.4 94.2 94.5 92.5 95.5
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Table 2.4: Statistics of the tracks, track nodes, and knots in Episode 1-6 of BBT.

Episode 1 2 3 4 5 6

# Face tracks 622 565 613 581 558 820

# Person tracks 671 638 643 657 604 883

Our track nodes (TNs)

# Face-body TNs 527 469 476 481 424 604

# Face-only TNs 14 21 66 43 80 156

# Body-only TNs 142 168 158 174 174 262

# All TNs 683 658 700 698 678 1022

# Erroneous TNs 0 1 1 2 6 11

# Knots 362 348 375 330 281 316
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nodes to serve as the basic unit in constructing the MST. Hence, track nodes with

similar appearance are adjacent in MST. Then non-local cost aggregation was per-

formed on the MST, which serves as a filtering operation to suppress the impact

of noisy instances and provides the inference to track node without face modality.

Considering the unique presence of a subject, the identities of track nodes with

temporal dependency was jointly determined by minimizing the aggregated cost of

those track nodes. Experimental results confirm the effectiveness of our method.
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Figure 2.2: Construct the MST from track nodes of three identities (color-encoded

as orange, purple, and blue). (a) Knot construction: Track nodes are organized into

three knots (separated by the dotted lines). (b) k-knot graph: The thin green lines

represent the edges between the track nodes in a knot, and any pair of track nodes

from each of the two knots linked by the bold green lines is connected by an edge.

(c) MST: Edges of large distances in the k-knot graph are removed. Hence, track

nodes of the same identity are more likely to be connected since their associated

edges have relatively small distances.
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Timeline 

Figure 2.3: Face tracks (blue and green) and a person track (red) are merged into

one track node.
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Figure 2.4: Confusion matrix over Episode 1-6 of BBT for TN + CA + K.
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Chapter 3: Learning from Ambiguously Labeled Face Images

Learning a classifier for naming a face requires a large amount of labeled face

images and videos. However, labeling face images is expensive and time-consuming

due to significant amount of human efforts involved. As a result, brief descriptions

such as tags, captions and screenplays accompanying the images and videos become

important for training the classifiers. Although such information is publicly avail-

able, it is not as explicitly labeled as human annotations. For instance, names in

the caption of a news photo provide possible candidates for faces appearing in the

image [24,25] (see Figure 3.1). The names in the screenplays are only weakly asso-

ciated with faces in the shots [21]. The problem in which instead of a single label

per instance, one is given a candidate set of labels, of which only one is correct is

known as ambiguously labeled learning1 [10, 26–29].

In recent years, the problem of completing a low-rank matrix with missing

entries has gained a lot of attention. In particular, matrix completion methods have

been shown to produce good results for multi-label image classification problems

[30], [31]. In these methods, the underlying assumption is that the concatenation of

feature vectors and their labels produce a low-rank matrix. Our work is motivated by

1also known as partially labeled learning and superset label learning
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President Barack Obama is accompanied by Secretary of State Hillary 
Rodham Clinton [Photo and caption from The Telegraph] 

Figure 3.1: The names in the captions are not explicitly associated with the face

images appeared in the news photo.

these works. The proposed method, Matrix Completion for Ambiguity Resolution

(MCar), takes the heterogeneous feature matrix, which is the concatenation of the

labeling matrix and feature matrix, as input. We first show that the heterogeneous

feature matrix is ideally low-rank in the absence of noise. This in turn, allows us

to convert the labeling problem as a matrix completion problem by pursuing the

underlying low-rank matrix of the heterogeneous feature matrix. In contrast to

multi-label learning, ambiguous labeling provides the clue that one of the labels in

the candidate label set is the true label. This knowledge is utilized to regularize the

labeling matrix in the heterogeneous feature matrix. This is essentially the main

difference between our work and some of the previously proposed matrix completion

techniques [30], [31].

Although ambiguous learning techniques can take advantage of large-scale and

diverse ambiguously labeled data, most of the methods cannot properly handle the
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labeling imbalance that is often present in publicly available training data. For in-

stances, celebrities and leading actors usually dominate (appear more frequently) in

the candidate label sets, and these majority labels can easily bias the results of ambi-

guity resolving methods. As the proposed method relies on low-rank approximation

of the heterogeneous feature matrix, heterogeneous feature vectors associated with

those majority labels can dominate the process of low-rank approximation and thus

bias the recovery of the labeling matrix. We propose the weighted MCar (WMCar)

to overcome the labeling imbalance in ambiguously labeled data. Unlike conven-

tional instance weighting techniques [32] that assign unequal instance weight to the

cost function of instances, WMCar performs unequal column-wise weighting on the

heterogeneous feature vectors. Therefore, a heterogeneous feature vector associated

with majority labels will contribute less to the process of low-rank approximation

than that associated with minority labels.

The column-wise weighting in WMCar can be computed by estimating the

groundtruth label distribution from the recovered labeling matrix, but the recovered

labeling matrix is not accessible without applying WMCar to resolve the ambiguity

in the original labeling matrix. Nevertheless, iteratively updating the column-wise

weighting and recovering the labeling matrix with WMCar is not reliable (see it-

erative WMCar in Figure 3.15). An explanation is that there is some unresolved

ambiguity in the soft labeling matrix recovered by WMCar. The remaining am-

biguity (noise) can be detrimental to the iterative process as we iteratively update

WMCar by substituting the labeling matrix with the recovered one from the previous

iteration. Hence, we propose the Iterative Candidate Elimination (ICE) procedure
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to iteratively eliminate the least likely candidates from a portion of the ambiguously

labeled data. This procedure iteratively suppresses the noise in the recovered label-

ing matrix and thus yields a better performance in the next iteration of WMCar.

Although WMCar with ICE is an iterative approach, it is fundamentally differ-

ent from previously suggested iterative methods [28, 33, 34]. Unlike previous works

that iteratively construct class-specific models and update the labels, the iterative

process of ICE is effective in sequential noise suppression. Besides, WMCar con-

catenates the labels and features as a heterogeneous matrix to recover the labels in

each iteration. This ensures that the information in the ambiguously labeled data

is used as a whole in recovering the true labels.

Moreover, we generalize MCar to include the labeling constraints between the

instances for practical applications. For instances, two persons in a news photo

should not be identified as the same subject even though both of them are am-

biguously labeled in the caption. As shown by the recent success in low-rank ma-

trix recovery [35], several prior works have developed robust methods for classifica-

tion [36], [37]. The proposed method inherits the benefit of low-rank matrix recovery

and possesses the capability to resolve the label ambiguity via low-rank approxima-

tion of the heterogeneous matrix. As a result, our method is more robust compared

to some of the existing discriminative ambiguous learning methods [10,38]. The dis-

ambiguated labels from MCar are then used to learn a supervised learning classifier,

which can be used to classify new data.

We use the following notations in this chapter. The matrix element ai,j denotes

the entity in the ith row and jth column of matrix A. 1n represents a column vector
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of size n× 1 consisting of 1’s as its entries. ‖ · ‖1 and ‖ · ‖0 denote the `1 norm and

`0 norm, respectively. The Frobenius norm and the nuclear norm of A are defined

as ‖A‖F =
(∑

i,j(ai,j)
2
) 1

2
and ‖A‖∗ =

∑
i σi(A), respectively where σi is the ith

singular value of A. (·)T denotes transposition operation. |S| returns the cardinality

in set S. Sa[b] = sgn(b) max(|b|− a, 0) is the shrinkage operator. The concatenation

of matrix A and B is defined as

A

B

 = [A; B].

The rest of this chapter is organized as follows. In Section 3.1, we review some

related work on ambiguously labeled learning methods. Section 3.2 describes the

proposed MCar and WMCar. The optimization procedure for WMCar is described

in Section 3.3. Section 3.4 describes the ICE procedure in detail. Section 3.5 presents

the extension of MCar for incorporating the constraint between instances. In Section

3.6, we demonstrate the results on synthesized as well as real-world ambiguously

labeled datasets. Finally, Section 3.7 concludes this work with a brief summary and

discussion.

3.1 Related Work

Various methods have been proposed in the literature for dealing with am-

biguously labeled data. Some of these methods propose Expectation Maximization

(EM)-like approaches to alternately disambiguate the labels and learn a discrimina-

tive classifier [39, 40]. Non-parametric methods have also been used to resolve the

ambiguity by leveraging the inductive bias of learning methods [26]. For the ambigu-

ously labeled training data the actual loss of mislabeling is not explicit. As a result,
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it is difficult to learn an effective discriminative model. Cour et al. [10,41] proposed

the partial 0/1 loss function for ambiguous labeling, which is a tighter upper bound

for the actual loss as compared to the 0/1 loss [42]. Subsequently, a discriminative

classifier can be learned from the ambiguous labels by minimizing the partial 0/1

loss. Several works have improved the learning of partial labels with the modeling

of partial loss [43], error-correcting output codes [44], and iterative label propaga-

tion [45]. Liu et al. [27] proposed to learn a conditional multinomial mixture model

for predicting the actual label from ambiguous labels. Several dictionary-based

methods have also been proposed for handing partially labeled datasets [28,34,46].

In particular, an EM-based dictionary learning approach was proposed in [28], where

a confidence matrix and dictionary are updated in alternating iterations. Although

dictionary-based methods are robust to occlusions and noise, the EM-based ap-

proach can be very sensitive to the selection of initial dictionary and also may suffer

from suboptimal performance.

Luo et al. [38] generalize the ambiguously labeled learning problem addressed

in [10] from single instances to a group of instances. The ambiguous loss considers

the association between the group of identities and the candidate label vectors. The

pairwise constraint between the instances (e.g. unique appearance of a subject) is

accounted for when generating the candidate label vectors. Furthermore, Zeng et

al. [33] use a Partial Permutation Matrix (PPM) to associate the identities in a

group with ambiguous labels. The pairwise constraint is encoded by restricting the

structure of PPM. Assuming that instances of the same subject inferred by PPM can

ideally form a low-rank matrix, the actual identity of an instance can be predicted
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by alternatively updating the low-rank subspace and PPM. Xiao et al. [47] associate

the identities in a group from ambiguous labels by minimizing the summation of the

discriminative affinities in a group, where the affinities are learned from the low-rank

reconstruction coefficient matrix and the weak supervision of ambiguous labels.

Recently, learning from weak annotations of labeling imbalance has received

significant attention [48, 49]. Chen et al. [50] have employed the part-versus-part

decomposition [51] to overcome the data imbalance in multi-label learning. Charte

et al. [52] propose several methods to resample the multi-label training data to

compensate the imbalance level. Wu et al. [53] incorporate the class cardinality

bound constraints to deal with class imbalance. Although several prior works have

addressed the issue of imbalanced data in the context of multi-label learning, the

labeling imbalance in ambiguously labeled data remains to be investigated. We

propose to estimate the groundtruth label distribution from ambiguous labels. With

the estimated groundtruth label distribution, the instance weight of WMCar can be

computed to deal with labeling imbalance.

3.2 The Proposed Framework

The ambiguously labeled data is denoted as L = {(xj, Lj), j = 1, 2, . . . , N},

where N is the number of instances. There are c classes, and the class labels are

denoted as Y = {1, 2, . . . , c}. Note that xj is the feature vector of the jth instance,

and its candidate labeling set Lj ⊆ Y consists of candidate labels associated with

the jth instance. The true label of the jth instance is lj ∈ Lj. In other words, one
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of the labels in Lj is the true label of xj. The objective is to resolve the ambiguity

in L such that each predicted label l̂j of xj matches its true label lj. We associate

the candidate labeling set Lj with a soft labeling vector pj, where pi,j indicates the

probability that instance j belongs to class i. This allows us to quantitatively assign

the likelihood of each class the instance belongs to if such information is provided.

Given the ambiguous label of the jth instance, we assign each entry of pj as
pi,j = (0, 1] if i ∈ Lj,

pi,j = 0 if i /∈ Lj,
j = 1, 2, . . . , N, (3.1)

where
∑c

i=1 pi,j = 1. Without any prior knowledge, we assume equal probability for

each candidate label. Let P ∈ Rc×N denote the ambiguous labeling matrix with pj

in its jth column. With this, one can model the ambiguous labeling as

P0 = P− EP , (3.2)

where P0 and EP denote the true labeling matrix and the labeling noise, respec-

tively. The jth column vector of P0 is p0
j = vlj , where vlj is the canonical vector

corresponding to the 1-of-K coding of its true label lj.

Similarly, assuming that the feature vectors are corrupted by some noise or

occlusion, the feature matrix X with xj in its jth column can be modeled as

X0 = X− EX , (3.3)

where X ∈ Rm×N consists of N feature vectors of dimension m, X0 represents the

feature matrix in the absence of noise and EX accounts for the noise. Concatenating

(3.2) and (3.3), we obtain a unified model of ambiguous labels and feature vectors,
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which can be expressed as P0

X0

 =

P

X

−
EP

EX

 . (3.4)

Let

Hobs =

P

X

 and E =

EP

EX

 (3.5)

denote the heterogeneous feature matrix and its noise, respectively. If we can show

that Hobs is a low-rank matrix in the absence of noise, then we can use matrix

completion methods for resolving the ambiguity in labeling. In the following section,

we investigate the low-rank property of Hobs.

3.2.1 Exploiting the Rank of Hobs

The column vectors of X0 can be partitioned into sets S1, S2, . . . , Sc based

on their true labels. We assume that the elements of Sk form a convex hull Ck of

nk vertices. It is clear that nk ≤ |Sk|. The representative matrix of the kthclass,

Dk ∈ Rm×nk , consists of vertices of Ck as its column vectors, and each column vector

is treated as a representative of the kthclass. Therefore, according to the definition

of a convex hull, a noise-free instance x0
j from class k (x0

j ∈ Ck) can be represented

as

x0
j = Dkak,j, where aTk,j1nk = 1, ak,j ∈ Rnk×1

+ . (3.6)

Note that ak,j ∈ Rnk×1
+ is the coefficient vector associated with the representative

matrix of the kth class. As the true label of an instance is not known in advance,
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we can represent x0
j as

x0
j = Dqj,

D = [D1 D2 · · · Dc],

qj = [aT1,j aT2,j · · · aTc,j]
T , qTj 1 = 1,

(3.7)

where D ∈ Rm×(
∑c
i=1 ni) is the collective representative matrix, and qj ∈ R(

∑c
i=1 ni)×1

+

is the associated coefficient vector.

According to (3.7), we can decompose X0 as

X0 = DQ. (3.8)

The coefficient matrix Q in (3.8) is not unique as column vectors of D are not

necessarily linearly independent. However, we assume that an ideal decomposition

X0 = DQ∗ satisfies the following condition

x0
j = Dq∗j , where a∗Tk,j1nk = 1, x0

j ∈ Sk,

a∗Tl,j 1nl = 0, l 6= k,

(3.9)

which implies that x0
j is exclusively represented by Dk even though it is possible

that it can be written as a linear combination of any other vertices from different

classes.

With this, we can recover the true labels from

P0 = TQ∗, (3.10)

where T = [v11
T
n1

v21
T
n2
· · · vc1

T
nc ] accumulates the coefficients associated with

each matrix representative. Hence, the coefficient vector of dimension
∑c

i=1 ni is
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converted into labeling vector of dimension c. Concatenating P0 = TQ∗ and X0 =

DQ∗, we further represent (3.4) asP0

X0

 =

T

D

Q∗. (3.11)

It is clear that

rank(

[
P0; X0

]
) ≤ min

(
rank(

[
T; D

]
), rank(Q∗)

)
≤ min

(
c+m,

c∑
k=1

nk, N

)
.

(3.12)

Since the representatives in D only account for a subset of data samples, it is clear

that
∑c

k=1 nk ≤ N . Therefore,

rank(

[
P0; X0

]
) ≤ min

(
c+m,

c∑
k=1

nk

)
. (3.13)

The rank of [P0; X0] is at most
∑c

k=1 nk if the dimension of feature vectors m is not

less than the number of representatives in D, i.e.
∑c

k=1 nk ≤ m. Hence, [P0; X0]

has a relatively smaller rank than N in the case of N >> min (c+m,
∑c

k=1 nk) .

From the above rank analysis and (3.4), we arrive at the following proposition:

Proposition 1. The heterogeneous feature matrix Hobs is low-rank in the absence

of noise.

Note that a similar result is also reported in [54] without making the convex

hull assumption.

3.2.2 Matrix Completion for Ambiguity Resolution

According to (3.10), the true labeling matrix P0 can be recovered if D and Q∗

are available. Nevertheless, obtaining D and Q∗ based on the observed P and X is
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intractable by solving a matrix decomposition problem

min
T,D,Q

∥∥∥∥∥∥∥∥
P

X

−
T

D

Q

∥∥∥∥∥∥∥∥
2

F

, (3.14)

subject to the conditions specified in (3.9)-(3.11). Following [30], we propose to

resolve the ambiguity by recovering the underlying low-rank structure of the het-

erogeneous feature matrix. Hence, we transform the matrix decomposition problem

to a matrix completion problem. For the ease of presentation, we start with solv-

ing a label assignment problem assuming that X is noise-free, i.e. X = X0. The

predicted labeling matrix Y can be estimated by solving the following rank mini-

mization problem

min
Y,EP

rank


Y

X0




s.t.

Y

X0

 =

 P

X0

−
EP

0

 ,
yj ∈ {v1,v2, . . . ,vc}, j = 1, 2, . . . , N,

yi,j = 0 if i /∈ Lj ∀j.

(3.15)

The problem is to complete the labeling matrix Y via pursuing a low-rank matrix

[Y; X0] subject to the constraints given by the ambiguous labels. The first constraint

defines the feasible region of label assignment and the second constraint implies that

an instance can only be labeled among its candidate labels. We cannot guarantee

that the optimal solution of (3.15) always yields a perfect recovery of ambiguous

labeling such that Y∗ = P0. Several factors contribute to our inability to resolve the
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ambiguity. For instance, if label 1 is consistently present in the candidate labeling

set of each instance, assigning v1 for each column vector of Y yields a trivial solution.

This issue is also addressed in [41], as learning from instances associated with two

consistently co-occurring labels is impossible.

Note that Y∗ = P0 is one of the possible optimal solutions to (3.15). The solu-

tion may not be unique if any one of the instances belongs to more than one convex

hull, i.e. the convex hulls from different classes overlap with each other. Hence, an

instance can be ideally decomposed from either one of the convex hulls without fur-

ther changing the rank of [Y; X0]. This issue is analogous to the non-separable case

of linear support vector machine (SVM). Nevertheless, it is our intention to seek

Y = P0 by solving (3.15) with the understanding that 1) the ambiguous labeling

carries rational information, and 2) data lies in sufficiently high-dimensional space

such that convex hulls of each class are separable [55].

Figure 3.2 illustrates the geometric interpretation of MCar using the convex

hull representation. When each element in the candidate labeling set is trivially

treated as the true label, the convex hulls of each class are erroneously expanded

and the low-rank assumption of [Y; X0] does not hold. MCar exploits the underlying

low-rank structure of [Y; X0], which is equivalent to reassigning the labels for those

ambiguously labeled instances such that instances of the same class cohesively form

a convex hull. Hence, each over-expanded convex hull shrinks to its actual contour,

and the convex hulls become potentially separable. This is essentially different from

discriminative ambiguous learning methods that construct the hyperplane between

ambiguously labeled instances by minimizing the ambiguous loss.
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L={1} 

MCar 

L={2} L={3} L={1, 2} L={2, 3} L={1, 3} 

Class 1 

Class 3 

Class 2 

Ambiguous Labels Disambiguated Labels 

Figure 3.2: MCar reassigns the labels for those ambiguously labeled instances such

that instances of the same subjects cohesively form potentially-separable convex

hulls. The vertices of each convex hull are the representatives of each class, forming

Dk. The interior and outline of the circles are color-coded to represent three different

classes and various ambiguous labels, respectively.
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When data is contaminated by sparse errors, the optimization problem in

(3.15) can be reformulated as

min
H,EX ,EP

rank(H) + λ‖EX‖0

s.t. H =

Y

Z

 =

P

X

−
EP

EX

 ,
yj ∈ {v1,v2, . . . ,vc}, j = 1, 2, . . . , N,

yi,j = 0 if i /∈ Lj ∀j,

(3.16)

where H is the heterogeneous feature matrix in the absence of noise, and Z is the

recovered feature matrix. The parameter λ ∈ R+ controls the rank of H and the

sparsity of noise. The objective is to assign the predicted label Y and extract

the sparse noise of X in pursuit of a low-rank H. Figure 3.3 illustrates the ideal

decomposition of the heterogeneous feature matrix, where the underlying low-rank

structure and the ambiguous labels are recovered simultaneously.

As (3.16) is a combinatorial optimization problem, we relax each column vector

of Y in probability simplex in Rc. The original formulation can be rewritten as

min
H,EX ,EP

rank(H) + λ‖EX‖0 + γ‖Y‖0

s.t. H =

Y

Z

 =

P

X

−
EP

EX

 ,
1Tc Y = 1TN , Y ∈ Rc×N

+ ,

yi,j = 0 if i /∈ Lj ∀j,

(3.17)

where γ ∈ R+ encourages the sparsity of Y such that the original discrete feasible

region can be well approximated. From the perspective of convex hull representa-
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Figure 3.3: Ideal decomposition of the heterogeneous feature matrix using MCar.

The underlying low-rank structure and the ambiguous labeling are recovered simul-

taneously.

tion, such relaxation allows each instance to be represented from more than one set

of representative matrix Dk, while it will be penalized by the non-sparsity of Y.

Consequently, the predicted label of instance j can be obtained as

l̂j = arg max
i∈Lj

yi,j. (3.18)

3.2.3 Ambiguously Labeled Data with Labeling Imbalance

The class imbalance may lead to performance degradation in SVM as a ma-

jority class with abundant training samples can bias the decision boundary toward

a minority class with scarce training samples. Analogously, MCar may suffer from

labeling imbalance when a majority label is frequently present among the candidate

labels in the ambiguously labeled data. When we resolve the ambiguity using (3.17),

the heterogeneous feature vectors associated with a majority label are more likely

to dominate the low-rank approximation of the heterogeneous matrix than those
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associated with a minor label. Hence, the recovered soft labeling matrix will bias

toward those soft labeling vectors associated with majority labels.

Class-weighted SVM applies unequal weighting to the cost function of different

classes to mitigate the class imbalance [56]. Hence, instances from the minority

label will be better emphasized than those from the dominant label to establish an

objective decision boundary. However, the concept of class-weighted SVM cannot

be directly applied to MCar to deal with label imbalances since each instance is

not labeled as a particular class in the ambiguously labeled data. Without the

knowledge of the true labels, we formulate the instance-weighted objective function

of (3.14) as

min
T,D,Q

N∑
j=1

ηj

∥∥∥∥∥∥∥∥
pj

xj

−
T

D

qj

∥∥∥∥∥∥∥∥
2

F

, (3.19)

where ηj is the instance weight of the jth instance. In order to balance the square

errors contributed by each class in (3.19), we aim to set instance weight ηj as 1/Nlj ,

where Nlj is the number of the instances from the lj class. Nevertheless, assigning a

class weight for each instance is not feasible in the ambiguously labeled data since

the true label lj is not explicitly known. Moreover, Ni is intractable since the data

is not explicitly labeled. Hence, we propose to set the instance weight as

ηj =
1∑c

i=1 pi,jN̂i

, (3.20)

where

N̂i =
N∑
j=1

pi,j (3.21)

is the estimated number of instances of the ith class. The estimated number of
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instances of the ith class accumulates the soft labeling scores corresponding to the

ith class across all the instances. With the soft labeling vector pj, we can compute

the effective number of instances of the class that the jth instance belongs to by∑c
i=1 pi,jN̂i. Hence, our proposed weighting scheme is eligible to compute the effec-

tive class weight of each ambiguously labeled instance even though the knowledge

of true label is not available. The design of the instance weight is not unique, and

readers may refer to [32,57] for modeling the instance weight with respect to various

objectives.

For the ease of presentation, we reformulate (3.19) as

min
T,D,Q

∥∥∥∥∥∥∥∥
P

X

W −

T

D

QW

∥∥∥∥∥∥∥∥
2

F

, (3.22)

where

W =
√

diag(1TNPTP)
−1

(3.23)

is a diagonal weighting matrix with wj,j =
√
ηj. As post-multiplying W does not

increase the rank of a matrix, we claim that Proposition 1 also applies to the weighted

heterogeneous feature matrix HobsW = [P; X]W. We propose the weighted MCar
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(WMCar) by generalizing (3.17) as

min
H,EX ,EP

rank(HW) + λ‖EXW‖0 + γ‖YW‖0

s.t. HW =

YW

ZW

 =

PW

XW

−
EPW

EXW

 ,
1Tc YW = 1TNW, YW ∈ Rc×N

+ ,

yi,j = 0 if i /∈ Lj ∀j.

(3.24)

Let H̄obs = HobsW, H̄ = HW, and Ē = EW, we reformulate (3.24) as

min
H̄,ĒP ,ĒX

rank(H̄) + λ‖ĒX‖0 + γ‖Ȳ‖0

s.t. H̄ =

Ȳ

Z̄

 =

P̄

X̄

−
ĒP

ĒX

 ,
1Tc Ȳ = 1TNW, Ȳ ∈ Rc×N

+ ,

ȳi,j = 0 if i /∈ Lj ∀j.

(3.25)

The predicted label can be retrieved from Y = ȲW−1 using (3.18). Interestingly,

the instance-weighted MCar is equivalent to executing MCar with the weighted

heterogeneous feature matrix. A larger weight on the heterogeneous feature vectors

associated with minority labels provides those instances a stronger impact in the low-

rank approximation of the heterogeneous matrix, and thus the labeling imbalance

can be compensated. As (3.17) is generalized by (3.25) in consideration of labeling

imbalance, WMCar is identical to MCar in the special case of W = I.
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Algorithm 1 The optimization algorithm for WMCar (3.29)

Input: P ∈ Rc×N , X ∈ Rm×N , W ∈ RN×N , Lj ∀j, λ, and γ.

1: Initialization:

2: P̄ = PW, X̄ = XW, H̄obs = [P̄; X̄];

3: Ȳ = 0, Z̄ = 0, µ > 0, µmax > 0, ρ > 1, Λ = [ΛP ; ΛX ] = H̄obs/‖H̄obs‖2;

4: while not converged do

5: ĒP = P̄− Sγµ−1 [Ȳ − µ−1ΛP ];

6: ĒX = Sλµ−1 [X̄− Z̄ + µ−1ΛX ];

7: (U,Σ,V) = svd
(
H̄obs − Ē + µ−1Λ

)
;

8: H̄ = USµ−1 [Σ]VT ;

9: Λ = Λ + µ
(
H̄obs − H̄− Ē

)
;

10: µ = min(ρµ, µmax);

11: Project Ȳ:

12: . Line: 13: Projection for (3.31)

13: ȳi,j = 0 if i /∈ Lj ∀j;

14: . Line: 15-16: Projection for (3.30)

15: Ȳ = max(Ȳ, 0);

16: ȳj = wj,j ȳj/‖ȳj‖1, ∀j;

17: end while

18: H = H̄W−1, E = ĒW−1

Output: (H,E)
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3.3 Optimization

The augmented Lagrangian method (ALM) has been extensively used for solv-

ing low-rank problems [35,58]. In this section, we propose to incorporate the ALM

with the projection step [30,31] to solve the optimization problem of WMCar.

In order to decouple Ȳ in the first and third terms of the objective function

in (3.25), we replace ‖Ȳ‖0 with ‖P̄− ĒP‖0 and rewrite (3.25) as

min
H̄,ĒX ,ĒP

rank(H̄) + λ‖ĒX‖0 + γ‖P̄− ĒP‖0

s.t. H̄ =

Ȳ

Z̄

 =

P̄

X̄

−
ĒP

ĒX

 ,
1Tc Ȳ = 1TNW, Ȳ ∈ Rc×N

+ ,

ȳi,j = 0 if i /∈ Lj ∀j.

(3.26)

Following the procedure of ALM, we relax the first constraint in (3.26) and refor-

mulate it as

min
H̄,Ē,Λ,µ

`(H̄, Ē,Λ, µ)

s.t. 1Tc Ȳ = 1TNW, Ȳ ∈ Rc×N
+ ,

ȳi,j = 0 if i /∈ Lj ∀j,

(3.27)

where µ ∈ R+ and Λ ∈ R(c+m)×N . The Lagrangian is expressed as

`(H̄, Ē,Λ,µ) = rank(H̄) + λ‖ĒX‖0 + γ‖P̄− ĒP‖0

+
〈
Λ, H̄obs − H̄− Ē

〉
+
µ

2

∥∥H̄obs − H̄− Ē
∥∥2

F
.

(3.28)

In order to make the optimization problem feasible, we approximate the rank with

the nuclear norm and the `0 norm with the `1 norm [59]. Thus, we solve the following
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formulation as the convex surrogate of (3.27)

min
H̄,Ē,Λ,µ

`R(H̄, Ē,Λ, µ) (3.29)

s.t. 1Tc Ȳ = 1TNW, Ȳ ∈ Rc×N
+ , (3.30)

ȳi,j = 0 if i /∈ Lj ∀j, (3.31)

where the Lagrangian is represented as

`R(H̄, Ē,Λ,µ) =
∥∥H̄∥∥∗ + λ‖ĒX‖1 + γ‖P̄− ĒP‖1

+
〈
Λ, H̄obs − H̄− Ē

〉
+
µ

2

∥∥H̄obs − H̄− Ē
∥∥2

F
.

(3.32)

The ALM operates in the sense that H̄, ĒP , and ĒX can be solved alternately by

fixing other variables. In each iteration, we employ a similar projection technique

used in [30, 31] to enforce Ȳ to be feasible. The entire procedure for solving (3.29)

is summarized in Algorithm 1, and the details of the optimization algorithm are

presented in the following paragraphs.

3.3.1 Solving for ĒP

To update ĒP , we fix H̄, ĒX , Λ and µ obtained in the previous iteration.

Hence, the problem for updating ĒP can be solved by first computing

Ē∗P = argmin
ĒP

γ‖P̄− ĒP‖1 +
〈
ΛP , P̄− Ȳ − ĒP

〉
+
µ

2

∥∥P̄− Ȳ − ĒP

∥∥2

F
.

(3.33)
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For the ease of derivation, we let B̄ = P̄− ĒP and update B̄ as surrogate. We can

reformulate (3.33) as

B̄∗ = argmin
B̄

γ‖B̄‖1 +
〈
ΛP , B̄− Ȳ

〉
+
µ

2

∥∥B̄− Ȳ
∥∥2

F
,

= argmin
B̄

γ‖B̄‖1 +
µ

2
‖B̄− Ȳ + µ−1ΛP‖2

F ,

= argmin
B̄

γ‖B̄‖1 +
µ

2
‖Ȳ − µ−1ΛP − B̄‖2

F .

(3.34)

Using the subgradient of (3.34), we can obtain the closed-form solution for updating

B

B̄∗ = Sγµ−1 [Ȳ − µ−1ΛP ]. (3.35)

Consequently, we can update ĒP as

Ē∗P = P̄− B̄∗ = P̄− Sγµ−1 [Ȳ − µ−1ΛP ]. (3.36)

3.3.2 Solve ĒX

To update ĒX , we fix H̄, ĒP , Λ and µ obtained in the previous iteration.

Thus, the problem for updating ĒX can be solved by

Ē∗X = argmin
ĒX

λ‖ĒX‖1 +
〈
ΛX , X̄− Z̄− ĒX

〉
+
µ

2

∥∥X̄− Z̄− ĒX

∥∥2

F
,

= argmin
ĒX

λ‖ĒX‖1 +
µ

2
‖X̄− Z̄ + µ−1ΛX − ĒX‖2

F . (3.37)

Using the subgradient of (3.37), we can obtain the closed-form solution for updating

EX

Ē∗X = Sλµ−1 [X̄− Z̄ + µ−1ΛX ]. (3.38)
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3.3.3 Solve H̄

To update H̄, we fix ĒP , ĒX , Λ and µ obtained in the previous iteration.

The feasible region of Ȳ in H̄ is currently not considered but will be handled in the

projection step of Ȳ (Section 3.3.4). Therefore, the problem for updating H̄ can be

solved by

H̄∗ = argmin
H̄
‖H̄‖∗ +

〈
Λ, H̄obs − H̄− Ē

〉
(3.39)

+
µ

2

∥∥H̄obs − H̄− Ē
∥∥2

F
, (3.40)

= argmin
H̄
‖H̄‖∗ +

µ

2
‖AH − H̄‖2

F , (3.41)

where AH = H̄obs − Ē + µ−1Λ. According to [60], the above problem can be solved

by

H̄∗ = USµ−1 [Σ]VT , (3.42)

where Σ can be obtained from the singular value decomposition (SVD) of AH de-

noted as

(U,Σ,V) = svd (AH) . (3.43)

Following the procedure in the augmented Lagrangian method (ALM), we can

update Λ and µ as

Λ = Λ + µ
(
H̄obs − H̄− Ē

)
(3.44)

where

µ = min(ρµ, µmax) (3.45)
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in each iteration based on the updated ĒP , ĒX , and H̄.

When the dimension of the heterogeneous feature matrix is large, comput-

ing the SVD of AH in the singular value thresholding procedure is usually time-

consuming. As an alternative, one can use the gradient ascend algorithm applied to

the dual problem of (3.41) to solve H̄ [61].

3.3.4 Project Ȳ

Since the SVD operation for solving H̄ does not always return a feasible Ȳ, we

use a projection technique similar to the one in [30, 31] to enforce Ȳ to be feasible

in each iteration. The projection involves two steps. First, we enforce those entries

of Ȳ that do not correspond to the candidate labels to be zeros since the actual

label only comes from the candidate labeling set provided by the ambiguous labels.

Second, each column vector of Y = ȲW−1 is constrained to be in the probability

simplex. As a result, we replace those negative entries in Ȳ with zeros and then

normalize each column ȳj so that the summation of the entries in ȳj is equal to wj,j.

3.4 Iterative Candidate Elimination for Ambiguity Resolution

According to (3.23), the weighting matrix W of WMCar is a function of P.

As WMCar resolves the label ambiguity in P, the recovered soft labeling matrix

Y can provide a better estimate of W than the original P. This motivates us to

iteratively resolve the ambiguity by alternating between recovering Y and updating

W. Nevertheless, the performance of iterative WMCar is not steady as shown in
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Algorithm 2 The algorithm for WMCar-ICE

Input: P ∈ Rc×N , X ∈ Rm×N , Lj ∀j.

1: while A 6= ∅ and within the maximum number of iterations do

2: W =
√

diag(1TNPTP)
−1

;

3: Obtain Y using WMCar (Algorithm 1);

4: Eliminate the least likely candidate in Lj, j ∈ E using (3.46)-(3.49);

5: . Line: 6-7: Project Y to comply with Lj,∀j

6: yi,j = 0, if i /∈ Lj ∀j;

7: yj = yj/‖yj‖1 ∀j;

8: P← Y;

9: end while

Output: (H,E)
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Figure 3.15. We propose WMCar with ICE (WMCar-ICE) to resolve the ambiguity

by WMCar and then remove the least likely candidate labels in each iteration. The

least likely candidate label of the jth instance is denoted as

m(j) = argmin
i∈Lj

yi,j, (3.46)

and its corresponding soft labeling score is denoted as ym(j),j. As removing a candi-

date label, which is actually a true label, in the candidate set generates an irreversible

error, we propose to iteratively remove a portion of the least likely candidate labels

that have relatively low soft labeling scores than others.

Let A denote the set consisting of the indices of those instances that have

more than one candidate label, which is represented as

A = {j | |Lj| > 1,∀j}. (3.47)

We define the elimination factor as fe (0 ≤ fe ≤ 1), which accounts for the pro-

portion of instances in A participating in the candidate elimination. We construct

a subset E of A, which consists of the entries that correspond to the smallest fe

portion of {ym(j),j|j ∈ A}. We represent it as

E = {j | ym(j),j ≤ t, j ∈ A}. (3.48)

Note that t is automatically determined such that |E| = dfe |A|e. Hence, we can

update the candidate labeling sets by

Lj ← Lj − {m(j)}, j ∈ E . (3.49)

We enforce the soft labeling matrix Y to comply with the updated candidate

labeling sets. We set yi,j = 0, if i /∈ Lj ∀j and project each column vector of Y

54



in the probability simplex. The original P will be replaced by Y, which will serve

as the input of WMCar in the next iteration. The procedure of WMCar-ICE is

summarized in Algorithm 2. Note that updating the weighting matrix W is an

important step in WMCar-ICE since it adaptively adjusts the importance among

instances based on the updated Y in the previous iteration. This ICE procedure

can be utilized by other ambiguous learning techniques that adopt the soft labeling

input/output similar to that of WMCar.

3.5 Labeling Constraints between Instances

In practical applications, several ambiguously labeled instances can appear in

the same venue. As a result, pairwise relations between instances can be utilized to

assist ambiguity resolution. For example, two persons in a news photo should not

be identified as the same subject even though both of them are ambiguously labeled

in the caption. Such prior knowledge can be easily incorporated by restricting the

feasible region of the labeling matrix. Moreover, it is essential to handle the open

set problem, where there are some instances whose identities never appear in the

labels. These unrecognized instances can be treated as the null class.

In this section, we show how MCar’s formulation can be extended to associate

the identities in news photos when the names are provided in captions. We assume

all the instances (face images) are collected from the K groups (photos), and Gk is

the set of indices of the instances (face images) appearing in the kth group (photo).

Note that instances (face images) from the same group (photo) share the same
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ambiguous labels provided by their associated caption. Without loss of generality,

we assume that the cth class corresponds to the null class. Considering the prior

knowledge, the original formulation given in (3.17) can be reformulated as

min
H,EX ,EP

rank(H) + λ‖EX‖0 + γ‖Y‖0 (3.50)

s.t. H =

Y

Z

 =

P

X

−
EP

EX

 ,
1Tc Y = 1TN , Y ∈ Rc×N

+ , (3.51)

yi,j = 0 if i /∈ Lj, i = 1, 2, . . . , c− 1, ∀j, (3.52)

∑
j∈Gk

c−1∑
i=1

yi,j ≥ 1 if ∪
j∈Gk

Lj 6= {c},∀k, (3.53)

∑
j∈Gk

yi,j ≤ 1, i = 1, 2, . . . , c− 1, ∀k. (3.54)

Constraints (3.51) and (3.52) are inherited from the original formulation. The con-

straint in (3.53), assumes that there is at least one non-null identity in a photo unless

all the instances in a photo are explicitly labeled as null. This constraint is enforced

to avoid the trivial solution that all the instances are treated as belonging to the null

class. A similar constraint has been considered by [38] and [33] via restricting the

candidate labeling set and confining the feasible space of PPM, respectively. The

constraint in (3.54) enforces the uniqueness of non-null identities. Note that this

framework can be easily tailored to handle other prior knowledge (e.g. must/cannot-

link constraints, prior statistics) by regularizing the labeling matrix. This problem

can be solved by following the similar relaxation procedures for solving (3.17). The

optimization procedure is summarized in Algorithm 3.
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Following the relaxation procedure in Section 3.3, we can reformulate (3.50)

as

min
H,E,Λ,µ

‖H‖∗ + λ‖EX‖1 + γ‖P− EP‖1

+ 〈Λ,Hobs −H− E〉+
µ

2
‖Hobs −H− E‖2

F , (3.55)

s.t. 1Tc Y = 1TN , Y ∈ Rc×N
+ , (3.56)

yi,j = 0 if i /∈ Lj, i = 1, 2, . . . , c− 1, ∀j, (3.57)

∑
j∈Gk

c−1∑
i=1

yi,j ≥ 1 if ∪
j∈Gk

Lj 6= {c},∀k, (3.58)

∑
j∈Gk

yi,j ≤ 1, i = 1, 2, . . . , c− 1, ∀k. (3.59)

We use a similar procedure of Algorithm 1 presented in Section 3.3 to solve (3.55).

We again use the projection method to guide the process of the matrix completion

such that the constraints on Y are satisfied. Additionally, the projection of Y

handles the group constraints such that the labeling constraints between instances

are satisfied. Hence, we project Y to the feasible regions indicated by (3.57), (3.58),

and (3.59) one at a time, and each one is followed by the projection onto the feasible

region indicated by (3.56) to ensure that each column of Y lies in the probability

simplex. The detailed procedure is summarized in Algorithm 3. This algorithm can

be easily extended to handle ambiguously labeled data with labeling imbalance by

taking H̄ as input with proper manipulation on the projection steps of Ȳ.
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Algorithm 3 The optimization algorithm for (3.55)
Input: P ∈ Rc×N , X ∈ Rm×N , Lj ∀j, Gk ∀k, λ, and γ.

1: Initialization: Y = 0, Z = 0, µ > 0, µmax > 0, ρ > 1, Λ = [ΛP ; ΛX ] = Hobs/‖Hobs‖2;

2: while not converged do

3: EP = P− Sγµ−1 [Y − µ−1ΛP ];

4: EX = Sλµ−1 [X− Z + µ−1ΛX ];

5: (U,Σ,V) = svd
(
Hobs −E + µ−1Λ

)
;

6: H = USµ−1 [Σ]VT ;

7: Λ = Λ + µ (Hobs −H−E);

8: µ = min(ρµ, µmax);

9: Project Y:

10: . Line: 11-13: Projection for (3.57) and (3.56)

11: Y = max(Y, 0);

12: yi,j = 0 if i /∈ Lj , i = 1, 2, . . . , c− 1,∀j ;

13: yj = yj/‖yj‖1, ∀j;

14: . Line: 15-22: Projection for (3.58) and (3.56)

15: for k = 1 : K do

16: if ∪j∈Gk
Lj 6= {c} then

17: for i = 1 : c− 1, j ∈ Gk do

18: yi,j = yi,j/min(
∑
g∈Gk

∑c−1
i=1 yi,g , 1);

19: end for

20: end if

21: end for

22: yj = yj/‖yj‖1, ∀j;

23: . Line: 24-29: Projection for (3.59) and (3.56)

24: for k = 1 : K do

25: for i = 1 : c− 1, j ∈ Gk do

26: yi,j = yi,j/max(
∑
g∈Gk

yi,g , 1);

27: end for

28: end for

29: yj = yj/‖yj‖1, ∀j;

30: end while

Output: (H,E)

58



3.6 Experimental Results

We use the Labeled Faces in the Wild (LFW) dataset [62] and the CMU

PIE dataset with synthesized ambiguous labels to evaluate the performance of our

method under various controlled parameter settings. Furthermore, we use the Lost

dataset [10] and the Labeled Yahoo! News dataset [24,63] to demonstrate the effec-

tiveness of our method in real-world applications. For datasets provided with face

images, we use face images in gray scale of range [0, 1.0]. Each instance is prepro-

cessed with histogram equalization and converted into a column feature vector.

3.6.1 Parameters

It is interesting to observe that (3.16) becomes asymptotically similar to the

formulation of Robust Principle Component Analysis (RPCA) [35] as the dimension

of the data feature is far greater than the number of classes. Motivated by this fact,

we fix λ as

λo =
1√

max(c+m,N)
, (3.60)

which is the tradeoff parameter suggested in RPCA. γ is a tuning parameter that

controls the sparsity of the soft labeling vectors. For MCar-based methods, we use

γ = 2λ0 to encourage stronger sparsity of the labeling vector than that of feature

noise. For ICE, we set the elimination factor fe as 0.5, and set the maximum

number of iterations as 5. These parameters yield good results in general, and we

will investigate the sensitivity of parameters in Section 3.6.4.
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Figure 3.4: Performance comparisons on the FIW(10b) dataset. α ∈ [0, 0.95], β = 2,

inductive experiment.
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Figure 3.5: Performance comparisons on the FIW(10b) dataset. α = 1.0, β = 1,

ε ∈ [1/(c− 1), 1], inductive experiment.
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Figure 3.6: Performance comparisons on the FIW(10b) dataset. α = 1.0, β ∈

[0, 1, . . . , 9], transductive experiment.

3.6.2 Experiments with the Synthesized Datasets

We conduct two types of controlled experiments suggested in [41]. For the

inductive experiment, the dataset is evenly split into ambiguously labeled training

set and unlabeled testing set. The proposed methods, MCar/WMCar-SVM and

WMCar-ICE-SVM, learn a multi-class linear SVM [18] with the disambiguated la-

bels provided by MCar/WMCar and WMCar-ICE, respectively. The testing data is

then classified using the learned classifier. For the transductive experiment, all the

data is used as the ambiguously labeled training set.

We follow the ambiguity model defined in [41] to generate ambiguous labels

in the controlled experiment. Note that α denotes the number of extra labels for

each instance, and β represents the portion of the ambiguously labeled data among
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all the instances. The degree of ambiguity ε indicates the maximum probability

that an extra label co-occurs with a true label, over all labels and instances. Each

controlled experiment is repeated 20 times. We report the average testing (labeling)

error rate for inductive (transductive) experiment, where the testing (labeling) error

rate is the ratio of the number of erroneously labeled instances to the total number

of instances in the testing (training) set. The standard deviations are plotted as

error bars in the figures.

We compare the proposed MCar-based methods with several state-of-the-

art ambiguous learning approaches for single instances with ambiguous labeling:

CLPL [41], DLHD/DLSD [28], KDLSD [34], and IPAL [45]. We report the perfor-

mance of these methods when the experimental results are available in their papers.

Otherwise, we use the configuration suggested in their papers to conduct the exper-

iments. We use ‘naive’ [41] as the baseline method, which learns a classifier from

minimizing the trivial 0/1 loss.

3.6.2.1 The LFW Dataset

The FIW(10b) dataset [41] consists of the top 10 most frequent subjects se-

lected from the LFW dataset [62], and the first 50 face images of each subject are

used for evaluation. We use the cropped and resized face images readily provided

by the authors of [41], where the face images are of 45× 55 pixels.

Figures 3.4 and 3.5 show the results of the inductive experiments. Figure 3.4

shows that the MCar-based methods significantly outperform all the other methods
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when the portion of ambiguously labeled data is larger than 0.2. The performance

of WMCar is comparable to that of MCar since the ambiguously labeled data gen-

erated by this ambiguity model does not substantially result in labeling imbalance.

WMCar-ICE demonstrates better performance than MCar and WMCar when more

than 0.7 portions of the instances are ambiguously labeled. An explanation is that

ICE eliminates the candidates based on the ordering of the least soft labeling score

of each instance. This prioritization step can effectively benefit from a large portion

of ambiguously labeled samples (i.e., large α) that usually carries a diverse aspect

of soft labeling scores. When the portion of ambiguously labeled samples is small,

the improvement due to ICE becomes insignificant.

Figure 3.5 shows that MCar outperforms prior methods over various degrees

of ambiguity except when ε > 0.7. Thus, MCar yields improved performance at

low and intermediate levels of ambiguity, but it becomes susceptible at high levels

of ambiguity. One explanation is that both the true label and the extra labels of a

subject will result in low-rank component of the labeling matrix when they are likely

to co-occur in high degree of ambiguity. Consequently, separating the true label from

the extra labels in MCar becomes challenging. Another explanation is that a high

degree of ambiguity results in labeling imbalance, which causes the performance

degradation of MCar. To verify this, we obtain the label distribution by counting

the number of label occurrences in the candidate labeling sets for each class. We

define the imbalance factor as the ratio of the maximum to the minimum value in

the label distribution. The average imbalance factor varies from 1.33 to 3.58 as the

degree of ambiguity increases. This confirms that WMCar outperforms MCar in high
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degree of ambiguity since WMCar is effective in mitigating the impact of labeling

imbalance. Furthermore, WMCar-ICE outperforms WMCar by iteratively removing

the least likely candidate labels from the candidate labeling sets. This experiment

demonstrates that the labeling imbalance can cause performance degradation even

though there is no class imbalance among the number of groundtruth faces per class.

In Figure 3.6, MCar-based methods outperform the other approaches only

when the number of extra labels is less than 5 in the transductive experiment. This

shows that MCar-based methods cannot be effective when the labeling is severely

cluttered such that the low-rank approximation of heterogeneous feature fails. Sim-

ilar to the controlled parameter setting in Figure 3.4, the ambiguously labeled data

generated by this ambiguity model does not substantially result in labeling im-

balance. Hence, the performance of WMCar is comparable to that of MCar, and

WMCar-ICE slightly outperforms WMCar.

Figure 3.9 shows the intermediate results of low-rank decomposition of the fea-

ture matrix using MCar. Note that variations due to illumination, occlusions (e.g.

eyeglasses, hand), and expressions are suppressed such that the low-rank component

of a subject is preserved. In contrast to MCar-based methods, the discriminative

methods (e.g. naive, CLPL) and IPAL are susceptible to such variations. Fur-

thermore, it also demonstrates the robustness of our methods even though the face

images are not perfectly aligned. The proposed method outperforms the dictionary-

based methods [28, 34] for all cases except when there is severe ambiguity. Note

the low-rank approximation of MCar operates on the feature matrix and ambiguous

labeling matrix as a whole by concatenating them such that the actual labels and
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the low-rank component of feature matrix are recovered simultaneously. This essen-

tially demonstrates the advantage of the proposed method over the DLHD/DLSD

and KDLSD methods that iteratively alternate between confidence and dictionary

update.

3.6.2.2 The CMU PIE Dataset

The CMU PIE dataset contains face images from 68 subjects of different poses,

illumination conditions, and expressions. Following the protocol presented in [28],

we select the 18 subjects for evaluation. Each subject has 21 images under different

illumination conditions, and the face images are resized to 40× 48 pixels.

We synthesize the ambiguous labels based on the controlled parameters. The

results of two transductive experiments for CMU PIE dataset are shown in Figures

3.7 and 3.8. In Figure 3.7, MCar-based methods and IPAL recover all the label

ambiguity for various portions of ambiguously labeled samples. In Figure 3.8, our

proposed methods consistently outperform most of the state-of-the-art methods ex-

cept IPAL as we increase the number of extra labels for each ambiguously labeled

sample. Since the CMU PIE dataset is collected in a constrained environment,

the collective face images of a subject are well-modeled by low-rank approximation.

Hence, MCar demonstrates marginally improvements over most of the methods in

this dataset. This can be seen by visualizing the intermediate results of low-rank

decomposition of the feature matrix using MCar as shown in Figure 3.10. Besides,

the IPAL method outperforms our methods when β > 6. Since the IPAL method
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Figure 3.7: Performance comparisons on the CMU PIE dataset. α ∈ [0, 0.95], β = 2,

inductive experiment.

utilizes the locally linear embedding for label propagation, which is effective in

learning the underlying structure of data that has plenty of samples collected in

the constrained environment. Hence, IPAL is able to recover the severely cluttered

labels that MCar-based methods fail to approximate it as a low-rank matrix.

3.6.3 Experiments with Real-world Datasets

We conduct experiments on the Lost dataset and Labeled Yahoo! News dataset

where the ambiguous labeling are collected in the real world. In the Labeled Yahoo!

News dataset, we consider the labeling constraints between instances.

66



0 2 4 6 8 10
0

20

40

60

80

100

Number of extra labels for each ambiguously labeled sample (β)

A
v
e
ra

g
e
 l
a
b
e
lin

g
 e

rr
o
r 

ra
te

 (
%

)

 

 

naive

CLPL

DLHD

DLSD

KDLSD

IPAL

MCar

WMCar

WMCar−ICE

Figure 3.8: Performance comparisons on the CMU PIE dataset. α = 1.0, β ∈

[0, 1, . . . , 9], transductive experiment.

Figure 3.9: A subset of images from FIW(10b) demonstrates the low-rank decom-

position of feature matrix in MCar: the original face images, histogram-equalized

images X, low-rank component Z, and noisy component EX , from the first row to

the forth row, respectively.
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Figure 3.10: A subset of images from the CMU PIE dataset demonstrates the low-

rank decomposition of feature matrix in MCar: the original face images, histogram-

equalized images X, low-rank component Z, and noisy component EX , from the

first row to the forth row, respectively.

3.6.3.1 The Lost Dataset

The Lost dataset consists of face images and ambiguous labels automatically

extracted using the screenplays provided in the TV series Lost. We use the Lost

(16, 8) dataset released by the authors of [10] for evaluation. The Lost (16, 8) dataset

consists of 1122 registered face images from 8 episodes, and the size of each is 60×90

pixels. The labels cover 16 subjects, but only 14 of them appear in the dataset.

Figure 3.11 illustrates the label distribution, which exhibits labeling imbalance.

We compare MCar-based methods with the performance of ‘naive’, CLPL ,

MMS [38], and IPAL [45]. No labeling constraint between instances is considered in

this experiment. Results are shown in Table 3.1. It can be seen from this table that

MCar-based methods significantly outperform CLPL and MMS. This shows that
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MCar-based methods resolve the ambiguity and handles variations of instances in

the TV series much better when compared to discriminative methods. Note that the

performance of MMS is close to that of CLPL since the ambiguous loss functions of

both methods become similar when no labeling constraint between the instances is

considered.

Figure 3.12 demonstrates that the groundtruth label distribution estimated

by (3.21) is close to the groundtruth. Hence, WMCar can effectively utilize this

information to compensate the labeling imbalance. Although WMCar slightly out-

performs MCar, the collaboration of WMCar and ICE (WMCar-ICE) significantly

outperforms MCar. On the other hand, MCar-ICE is inferior to WMCar-ICE since

the ICE procedure can inadvertently remove the candidates corresponding to mi-

nor labels without considering the labeling imbalance. It is challenging for IPAL

to exploit the underlying structure of scarcity labeled data and deal with label-

ing imbalance. Hence, IPAL cannot successfully resolve the label ambiguity in this

dataset. We tailor the RPCA [58] and MC-Pos [54] to solve the ambiguous learning

problem by trivially taking the heterogeneous matrix as input and predicting the

labels from the soft labeling matrix of output with (3.18). The experimental result

shows that existing low-rank approximation methods cannot substantially resolve

the label ambiguity.
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Figure 3.11: The label distribution of the Lost (16, 8) dataset.
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Figure 3.12: The groundtruth label distribution of the Lost (16, 8) dataset.

‘Groundtruth’ denotes the number of instances per class counted from the

groundtruth labels, and ‘Estimated’ denotes the estimate of the groundtruth la-

bel distribution from the ambiguous labels.
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Table 3.1: Labeling error rates for the Lost (16, 8) dataset

(available at http://www.timotheecour.com/tv data/tv data.html).

Method Error Rate

naive 18.6 %

CLPL [41] 12.6 %

MMS [38] 11.4 %

IPAL [45] 22.9 %

RPCA [58] 29.9 %

MC-Pos [54] 23.6 %

MCar 8.5 %

WMCar 8.2 %

MCar-ICE 8.0 %

WMCar-ICE 5.2 %
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Table 3.2: Average testing error rates for the Labeled Yahoo! News dataset (avail-

able at http://lear.inrialpes.fr/data).

Method Error Rate

CL-SVM 23.1 % ± 0.6 %

MIMLSVM [64] 25.3 % ± 0.3 %

MMS [38] 14.3 % ± 0.5 %

LR-SVM [33] 19.2 % ± 0.4 %

MCar-SVM 14.5 % ± 0.4 %

WMCar-SVM 13.6 % ± 0.8 %

MCar-ICE-SVM 15.0 % ± 1.0 %

WMCar-ICE-SVM 12.9 % ± 0.8 %
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3.6.3.2 The Labeled Yahoo! News Dataset

The Labeled Yahoo! News dataset contains fully annotated faces in the images

with names in the captions. It consists of 31147 detected faces from 20071 images.

We use the precomputed SIFT feature of dimension 4992 extracted from that face

images provided by Guillaumin et al. [63]. Following the protocol suggested in

[38], we retain the 214 subjects with at least 20 occurrences in the captions. The

remaining face images and names are treated as belonging to the additional null

class. The ambiguous labeling is imbalanced in this dataset, where the number

of labels present in the captions ranges from 20 to 1917 with mean and standard

deviations equal to 64.6 and 147.3, respectively. The top two subjects that are

present most frequently in the captions are ‘george w bush’ and ‘saddam hussein’.

We conduct experiments on five training/testing splits by randomly selecting 80%

of images and their associated captions as training set, and the rest are used as

testing set. In each split, we also maintain the ratio between the number of training

and testing instances from each subject.

The baseline approaches are CL-SVM and MIMLSVM [64], where their im-

plementation details are provided in [38]. We compare with two state-of-the-art

ambiguous labeling methods that consider labeling constraints between instances:

MMS [38] and LR-SVM [33], which are based on discriminative model and low-rank

framework, respectively. We resolve the ambiguity for the labels in the training set

using (3.50) and train a multi-class linear SVM [18] to classify the testing data.

Our MCar-SVM algorithm exhibits a slightly 0.2% higher error rate as compared
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to MMS. An explanation is that MCar relying on the low-rank approximation for

ambiguity resolution is particularly sensitive to labeling imbalance. This results in

performance degradation in the learned classifier since the output labels of MCar

are potentially biased toward the majority labels.

Compared to the LR-SVM method, the MCar-SVM algorithm demonstrates

4.7% improvement on the testing accuracy. Since MCar assigns the labels across

all instances via low-rank approximation of heterogeneous feature matrix, it is more

effective than the LR-SVM method, which updates the PPM and the low-rank

subspace of each class alternately. When we consider the labeling imbalance and

utilize the ICE procedure, our proposed WMCar-ICE-SVM outperforms MCar-SVM

by 1.6%

3.6.4 Sensitivity of Parameters

We use the Lost (16, 8) dataset to conduct the sensitivity analysis of MCar-

based methods. In Figure 3.13, we evaluate the performance of WMCar over a set

of parameters (λ, γ). We observe that the labeling error rate is relatively low when

λ approaches λ0 with respect to various γ. A similar trend is also observed when we

evaluate the performance of MCar with the same experimental setting. Hence, we

conclude that the tradeoff parameter suggested in RPCA is applicable or at least a

good reference for selecting λ.

In Figure 3.14, we evaluate the performance of MCar-based methods with

various γ and a fixed λ = λo. For ICE, we set the elimination factor fe as 0.5,
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Figure 3.13: Labeling error rates of WMCar evaluated with a set of parameters

(λ, γ) in the Lost (16, 8) dataset. The λ-axis and γ-axis are normalized with respect

to λo.
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and we set the maximum number of iterations as 5. It shows that WMCar out-

performs MCar for γ ∈ [1, 4]λo. WMCar-ICE outperforms WMCar and MCar for

γ ∈ [0.25, 6]λo. We empirically set γ = 2λo, which yields good results for the MCar-

based methods as illustrated in Figure 3.14. The performance of MCar-ICE flattens

out as γ ∈ [1.5, 6]λo, which is inferior to WMCar-ICE. This again confirms that

WMCar is essential to ICE to effectively reduce the labeling error. Besides, we ob-

serve that WMCar-ICE is less sensitive to γ since the ICE procedure intrinsically

encourages the sparsity when removing the least likely candidate from a candidate

labeling set. It is interesting to note that the lowest labeling error rate 3.7% is

attained by WMCar-ICE with γ = 1.75λo. With the availability of validation data,

a properly-selected γ can yield remarkable performance of MCar-based methods.

We conduct the sensitivity analysis of WMCar-ICE with λ = λo and γ = 2λo

and evaluate the performance with various fe. In Figure 3.15, the performance of

WMCar-ICE (fe = 0) fluctuates since the ICE procedure becomes ineffective as

fe = 0. A small elimination factor (fe = 0.25) yields better performance than large

elimination factors, but it takes more iterations to converge. Since the candidate

elimination step in WMCar-ICE can incur an irreversible error, a small elimination

factor can conservatively eliminate the least likely candidates in the candidate la-

beling sets. Hence, abrupt decision resulting from large elimination factors can be

avoided, and the soft labeling matrix can be gently updated to guide the low-rank

approximation of heterogeneous matrix. Considering the tradeoff between the rate

of convergence and performance, we set fe = 0.5 and let the maximum number of

iterations be 5 in ICE.
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Figure 3.14: Labeling error rates of MCar-based methods versus γ in the Lost (16, 8)

dataset with λ = λo. The γ-axis is normalized with respect to λo.

3.6.5 Convergence

Since the projection method in Section 3.3.4 is not non-expansive, we cannot

simply follow the rationale that the composition of gradient, shrinkage, and projec-

tion steps is non-expansive to prove convergence [54]. We attempt to replace the

projection method of MCar with the Euclidean projection onto the simplex [65],

which is a non-expansive projection, but the performance of the modified MCar

degrades significantly. An explanation is that the Euclidean projection onto the

simplex can inadvertently generate non-sparse entries, which conflicts with the orig-

inal objective to encourage the sparsity of the soft labeling matrix in (3.25). On

the other hand, our simple projection step normalizes the `1 norm of a soft label-

ing vector, which effectively restricts the soft labeling vector to lying on the `1 ball
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Figure 3.15: Labeling error rate versus the number of iterations in WMCar-ICE. The
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tors. The performance of WMCar-ICE (fe = 0) fluctuates since the ICE procedure

becomes ineffective as fe = 0.
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and maintains an identical sparsity. Although the convergence of MCar has been

observed empirically in [66], a theoretical justification of convergence needs further

investigation. Since the number of ambiguous labels is finite, the convergence of

ICE is straightforward with fe > 0

3.7 Summary

We introduced a novel matrix completion framework for resolving the ambigu-

ity of labels. In contrast to existing iterative alternating approaches, the proposed

MCar method ensures all the instances and their associated ambiguous labels are

utilized as a whole for resolving the ambiguity. Since MCar is capable of discov-

ering the underlying low-rank structure of subjects, it is robust to within-subject

variations. Hence, MCar can serve as the counterpart of discriminative ambiguous

learning methods. Besides, WMCar generalizes MCar to compensate the labeling

imbalance, and thus an instance associated with minority labels has a stronger im-

pact than that associated with majority labels. The ICE procedure improves the

performance of iterative WMCar by eliminating a portion of the least likely can-

didates in each iteration. As demonstrated by the experiments on the synthesized

ambiguous labels and two datasets collected from real world, our proposed methods

consistently resolve the ambiguity when single face images or group of face images

are ambiguously labeled.

79



Chapter 4: Video-based Face Association and Identification

Video-based face identification [67–69] has broad applications, such as auto-

matic indexing of a video, shot retrieval of a character in a TV-series, and suspect

identification in surveillance videos. Unlike still images, a subject in a video gener-

ates diverse exemplars that contribute to creating a robust representation. Videos

of these applications usually consist of multiple shots that involve scene and view

changes. Nevertheless, most of the current video identification techniques focus on

the identification task where the videos are of a single shot and the frame-by-frame

face bounding boxes of the target (i.e., person of interest) are either readily pro-

vided or automatically associated using a tracking algorithm. For instance, the

YouTube Faces dataset [70] provides frame-by-frame annotations, which has been

used as benchmarks for evaluating video-based face identification algorithm. Al-

though bounding boxes can be automatically extracted with face detection and

tracking, human supervision is often needed to ensure that the annotations are

not corrupted by the failure of face detection and tracking steps. Besides, most

video-based identification techniques [69, 71–73] have evaluated their performances

on video face datasets consisting of single-shot videos, including YouTube Faces

dataset [70], Point and Shoot Face Recognition Challenge (PaSC) dataset [74], and
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Celebrity-1000 [75].

Although tracking techniques [76–78] can be used to associate the face images

of a target in single-shot videos by utilizing the spatial, temporal, and appearance

affinity, they are not effective for associating the target’s face images present in mul-

tiple shots of a video. Hence, a video-based face identification technique that utilizes

face tracking in a single shot cannot fully exploit useful information contained in

multiple-shot videos, such as news videos, sport broadcasts [79], and movie trail-

ers [80]. Figure 4.1 shows the target in a news video of multiple shots taken in

several venues. An intra-shot face association technique should establish the linkage

between face images within a video shot, and an inter-shot face association method

should retrieve relevant face images from a single target annotation across multi-

ple shots. Hence, the problem of performing video-based face identification task,

where the target is only annotated once in the multiple-shot video, needs further

investigation.

We propose a target face association (TFA) method to retrieve a set of rep-

resentative face images in a video that have the same identity as the target. This

set of associated face images is then utilized to generate a representation for face

identification (See Figure 4.2). The TFA method leverages a linear support vector

machine (SVM) to obtain the associated face images in the video. This linear SVM

is trained iteratively with positive and negative instances guided by the cannot-link

constraints. Note that several prior works have utilized the cannot-link constraints

to learn effective metrics and models [20,23,81–84]. Initially, only face images corre-

sponding to the target annotation are treated as the positive instances. The negative
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Figure 4.1: A set of frames from a probe video in the JANUS CS3 dataset. This

video consists of multiple shots taken from four scenes. The target is annotated

with a red bounding box in frame #181, and faces extracted by the face detection

algorithm are shown in green bounding boxes.
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Figure 4.2: Video-based face association and identification.
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training instances are the target’s cannot-link instances, i.e., face images that appear

with positive instances in the same frame. Face images that are classified as positive

will undergo a pruning process to iteratively remove the least likely positive instance

that violates the cannot-link constraint. Hence, the updated positive instances as

well as their cannot-link negative instances can be used to update the linear SVM. If

there is no negative training instance inferred by the target’s cannot-link instances,

we utilize an external face dataset as background negative instances. The idea of

using a single instance against a large set of negative instances to learn the similarity

function with respect to background subjects is an essential component in comput-

ing one-shot similarity [70,85,86]. Hence, we can learn a target-specific classifier by

leveraging the background statistics in scenarios that do not have any within-video

negative training instances.

To demonstrate the effectiveness of the proposed approach, we evaluate it with

the recently released JANUS challenge set 3 (JANUS CS3) dataset, which is an ex-

tended version of [87]. In this dataset, a subject is represented by a template which

contains images or videos from various media sources. A template is a succinct folder

for organizing the exemplars of a subject in probe and gallery media. For instance,

the FBI’s wanted list usually has several images for a suspect [87]. In particular, the

Protocol 6 of the JANUS CS3 dataset is a video-to-image face identification task in

the open-set setting, which provides an end-to-end benchmark to evaluate the effec-

tiveness of representing the probe template from the video of single annotation and

to demonstrate the capability of searching for the mated (same-identity) template

in the gallery. The evaluation results show that the proposed method achieves good
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performance for the video-based face identification task.

The rest of this chapter is organized as follows. In Section 4.1, we review recent

face retrieval and identification techniques. Section 4.2 describes the proposed target

face association method. In Section 4.3, we demonstrate experimental results with

the Protocol 6 of the JANUS CS3 dataset. Finally, Section 4.4 concludes this work

with a brief summary.

4.1 Related Work

Various methods have been proposed in the literature for video face retrieval

[67, 80, 88, 89]. An end-to-end video face retrieval system is proposed in [88], where

several processing steps are utilized to handle variations due to pose, illuminations,

and expressions (PIE). Sivic et al. [67] proposed to retrieve the subject of inter-

est using a set of images that exhibits extensive variations of exemplars. The set

of images is created from intra-shot matching, and the shot retrieval of a subject

is obtained from computing the chi-square distance among the set of face images.

Besides, several face retrieval techniques based on sparse representations have been

proposed in [80, 89] to improve the robustness of face recognition algorithms. Re-

cently, deep learning methods [72, 90–93] have shown significant improvement for

face recognition over handcrafted features [94, 95] since the features learned by the

deep convolutional neural network (DCNN) using large scale labeled face dataset

are robust to PIE variations. Recently, a neural aggregated network [73] has been

proposed to aggregate multiple face images in the video for generating a compact
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representation for video-based face recognition. Moreover, video-adapted DCNN

features [83,84] finetuned with automatically discovered cannot-link face tracks have

shown improvements for clustering the face tracks in multiple-shot videos.

Prior works have shown improvements for video-based face recognition and

retrieval tasks based on bounding boxes provided by human annotation or associated

using a face tracker. The problem of selecting a set of representative face images of

the target face from a multiple-shot video for creating a robust face representation

has not been well studied in these works. Our work is motivated by the recent

success of template adaptation technique [86]. The template adaptation technique

is a form of transfer learning method [96] that employs a linear classifier to learn a

template-specific similarity function. Such template-specific similarity function has

shown improvements for face verification and identification tasks. We propose the

TFA technique that learns a target-specific linear classifier for obtaining exemplars

of the target face in the video. With a single annotation of the target, the linear

classifier of TFA can automatically learn from training instances inferred by cannot-

link constraints in the video.

4.2 The Proposed Method

In the video-based face association and identification task, we are given a single

annotation of the target face in a probe video. The objective is to retrieve a set

of representative face images of the target in the video, and then this set of face

images is utilized to create a face representation of the target face for searching its
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corresponding subject in the gallery. In the probe video, the target face is indicated

by the human-annotated face bounding box b0 in frame f0. There are m bounding

boxes discovered by a face detector in a video. These face bounding boxes are

denoted as b1, b2, . . . , bm, which are present in frames f1, f2, . . . , fm, respectively.

The feature corresponding to the face image in bounding box bi is denoted as xi.

We aim to learn a target-specific SVM that can be used to classify a set of face

images for creating a face representation of the target. We describe the details of

each component of the proposed method as follows.

4.2.1 Face Preassociation with Tracking

Since learning the target-specific SVM requires the target annotation as the

initial positive training instance, a low-quality target annotation, such as noisy,

badly illuminated, and extreme pose face images, prevents the TFA from learning an

effective SVM. A tracking technique is able to model the appearance and motion of a

human head, and thus it allows us to capture subsequent face images of high quality

for good initial representation. Hence, we employ an off-the-shelf tracking technique

[97] to track the target face, and the face detection bounding boxes preassociated

by tracking are utilized as the initial positive training set.

In each frame, the face detection bounding box that has the highest intersection-

over-union (IoU) ratio [98] with the tracking bounding box is utilized as the preas-

sociated face images of the target. As the tracking technique becomes vulnerable to

severe occlusion and abrupt motion, we only incorporate those preassociated face
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Figure 4.3: Preassociated face images using tracking. The first row shows the target

annotation in videos, and the second row shows the preassociated face images using

tracking.

detection bounding boxes in the first k frames. Since tracking across the shot bound-

ary can lead to unexpected preassociation of face images from different subjects, we

utilize a simple shot detection method by checking the absolute difference of pixel

values between two consecutive frames. When the absolute difference is larger than

a certain threshold, the preassociation with tracking is terminated. Figure 4.3 shows

several cases where face preassociation with tracking improves the initial represen-

tation where the target annotation is corrupted due to extreme pose, noise, and

occlusion. With the preassociation of tracking, we can obtain a set of preassociated

face images as initial positive training instances to learn the linear SVM. The index

set of the positive training images is Sp = {0} ∪ T , where T consists of indices of

those face images preassociated by tracking.
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4.2.2 Target Face Association

We train a target-specific linear SVM from face images in the video to establish

the intra/inter-shot face association of the target face. With the annotation of the

target face and the preassociated face images, the index set of positive instances

is initially represented as Sp = {0} ∪ T . The negative training instances can be

automatically discovered by utilizing the fact that the presence of a subject is unique.

We define the cannot-link relation between the ith and jth face image as

gi,j =


1, if ri,j ≤ γ, fi = fj, and i, j ∈ {0, 1, . . . ,m},

0, otherwise,

(4.1)

where ri,j is the IoU ratio between bounding box bi and bj. Since the non-maximal

suppression of the face detection response is not perfect, a face can be discovered by

more than one bounding box. We set a tolerance threshold γ for the IoU ratio to

avoid face images of similar bounding boxes in a frame being mistakenly enforced

by the cannot-link constraints. Thus, gi,j = 1 indicates that the ith and jth face

image are far apart and appear in the same frame, and both images should not

be identified as the same subject. Hence, the index set of within-video negative

instances is represented as Sn = ∪j∈Sp{i |gi,j = 1}.

We introduce a background negative set {xi}m+l
i=m+1 of l instances collected from

an external face dataset to model the background subjects, and its corresponding

index set is represented as Sb = {m+1,m+2, . . . ,m+ l}. The background negative

set becomes essential when there is no within-video training instance. We train a

linear SVM with training data {(xi, yi)|i ∈ (Sp ∪ Sn ∪ Sb)}, where the data label yi
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is expressed as

yi =


1, if i ∈ Sp,

−1, otherwise.

(4.2)

We propose two models to learn the weight vector w of the linear SVM.

4.2.2.1 Model 1

The weight vector w of the linear SVM is solved using the max-margin frame-

work

min
w

1

2
wTw + Cp

∑
i∈Sp

max[0, 1− yiwT x̄i]
2

+ Cn
∑
i∈Sn

max[0, 1− yiwT x̄i]
2

+ Cb
∑
i∈Sb

max[0, 1− yiwT x̄i]
2,

(4.3)

where

Cp = C
|Sp|+ |Sn|+ |Sb|

2|Sp|
,

Cn = C
|Sp|+ |Sn|+ |Sb|
2(|Sn|+ |Sb|)

|Sn|+ |Sb|
2|Sn|

=
|Sp|+ |Sn|+ |Sb|

4|Sn|
, and

Cb = C
|Sp|+ |Sn|+ |Sb|
2(|Sn|+ |Sb|)

|Sn|+ |Sb|
2|Sb|

=
|Sp|+ |Sn|+ |Sb|

4|Sb|

(4.4)

account for the weights to compensate for the class imbalance, and C is the cost

parameter in the linear SVM. The weights are inversely proportional to the number

of instances in positive and negative training sets. Among the negative samples,

the weights are designed to be inversely proportional to the number of instances

in Sn and Sb such that the importance of the within-video negative instances and

background negative instances are balanced. We normalize xi to unit norm, and

then concatenate it with one to account for the bias. The normalized and augmented

89



feature vector is represented as

x̄i = [xTi /‖xi‖ 1]T . (4.5)

4.2.2.2 Model 2

Unlike Model 1 where the background negative instances are always utilized for

training, we propose Model 2 that only utilizes the background negative instances

when there is no within-video negative instance. The weight vector w of the linear

SVM is solved using the max-margin framework

min
w

1

2
wTw + Cp

∑
i∈Sp

max[0, 1− yiwT x̄i]
2

+ 1[Sn 6= ∅]Cn
∑
i∈Sn

max[0, 1− yiwT x̄i]
2

+ 1[Sn = ∅]Cb
∑
i∈Sb

max[0, 1− yiwT x̄i]
2,

(4.6)

where

Cp = 1[Sn 6= ∅]C
|Sp|+ |Sn|

2|Sp|
+ 1[Sn = ∅]C

|Sp|+ |Sb|
2|Sp|

,

Cn = C
|Sp|+ |Sn|

2|Sn|
, and

Cb = C
|Sp|+ |Sb|

2|Sb|
.

(4.7)

Note that 1[·] is the indicator function. In this model, the negative training set is

composed of the within-video negative instances that appear with positive instances

in a frame. If there is no within-video negative instance, we employ the background

negative instances as negative training instances.

The face images in the video that are classified as positive will be regarded

as the associated face images of the target. In certain cases, the human-annotated
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instance x0 can be misclassified as negative due to noise and extreme pose of a face

image. Hence, we enforce the index 0 to be included in A, and the index set of the

associated face images is represented as

A = {0} ∪ {i |wT x̄i > 0, i = 1, . . . ,m}. (4.8)

The associated face images in A are assumed to have the same identity as the

target. Nevertheless, face images in the same frame can be erroneously classified

as the same subject and considered as the associated images in A. We propose to

resolve such a conflict by iteratively removing the least likely instance among those

instances that violate the cannot-link constraints.

The index set of those instances that violate the cannot-link constraints is

represented as

Q = {i |gi,j = 1, i ∈ A, j ∈ A}. (4.9)

We can obtain the index of the least likely instance in Q by solving

α = argmin
i∈Q−{0}

wT x̄i. (4.10)

To prevent the human-annotated instance x0 from being removed in A, we restrict

the feasible space of (4.10) to Q− {0}. The index set of the associated face images

can be updated by

A← A− {α}. (4.11)

The above procedure is performed iteratively until all the violations are resolved.
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4.2.3 Representation of the Target Face

Since the associated face images are assumed to have the same identity as the

target does, we can use the associated face images as positive training instances

(Sp ← A). With the cannot-link constraints, we can update the index set of the

negative training instances by Sn ← ∪j∈Sp{i |gi,j = 1}. We can alternately update

the associated face images in A and the weight vector w until the index set of

the associated face images converges or the maximum number of iterations tmax

is attained. The detailed procedure of the TFA is described in Algorithm 4. The

associated face images in Amay introduce outliers that do not have the same identity

of the target face. To improve the reliability of the representation, we use the

average pooling of the feature vectors of the associated face images to create the

representation of the target face. We can express the representation of the target

face as

xfa =
1

|A|
∑
i∈A

xi. (4.12)

Note that the proposed method can handle the intra/inter-shot association of face

images and face tracks. Although xi represents a descriptor of a face image in this

work, the proposed method can be easily extended to operate on track-level face

descriptors [69,71] and the cannot-link constraints among face tracks.
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Algorithm 4 The algorithm for TFA

Input: {xi}m+l
i=0 , {bi}mi=0, {fi}mi=0.

Initialization:

1: Establish the cannot-link constraints with (4.1);

2: Create the index set of preassociated face images T ;

3: Sp = {0} ∪ T , Sn = ∪j∈Sp{i |gi,j = 1},

Sb = {m+ 1,m+ 2, . . . ,m+ l}, t = 0;

4: while not converged and t < tmax do

5: Obtain w with Model 1 using (4.3) or Model 2 using (4.6);

6: Update A with (4.8);

7: . Line 8-12: Resolve the violations with cannot-link constraints

8: while not converged do

9: Update Q with (4.9);

10: Obtain α with (4.10);

11: A← A− {α};

12: end while

13: Sp ← A;

14: Sn ← ∪j∈Sp{i |gi,j = 1};

15: t← t+ 1;

16: end while

Output: A
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4.3 Experimental Results

The JANUS CS3 dataset is the extended version of [87] which contains 11,876

images and 7,245 video clips of 1,870 subjects for evaluating face verification and

identification task. We evaluate the proposed approach on Protocol 6 of the JANUS

CS3 dataset. In Protocol 6, there are 7,195 probe templates. Each probe template

provides a human-annotated face bounding box in a frame to mark the target in

the video. These probe templates are evaluated with respect to two galleries. There

are 940 and 930 templates in Gallery 1 and Gallery 2, respectively. The subjects in

Gallery 1 and Gallery 2 are disjoint. Each template in the gallery consists of several

images, and each image has a human-annotated bounding box provided to mark the

subject in the image. The objective is to search the mated template in the gallery

for a given probe template.

Protocol 6 is an open-set identification problem, and thus some of the probe

templates will not have a mated template in the gallery. The ranking accuracy is

evaluated with those probe templates that have a mated template in the gallery,

which demonstrates the performance of closed-set search. To prevent the algorithm

from using the prior knowledge that a probe template can always find its mated

template in the gallery, the true positive identification rate (TPIR) and false positive

identification rate (FPIR) are evaluated to demonstrate the performance of open-

set search. The mathematical expressions of TPIR and FPIR can be found in [99].

Hence, a robust face identification technique should achieve high ranking accuracy

as well as high TPIR at a specific FPIR.
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For each probe template, we employ HyperFace [100] to discover the face

bounding boxes in the video for every fifth frame as well as the target-annotated

frame f0, and the confidence threshold of the HyperFace detection is set at -0.5. Also,

we refine the human-annotated bounding box of the target using the HyperFace

detector. Face images are aligned with facial landmarks provided by HyperFace,

and the aligned face images are represented by DCNN features [92,93]. Each probe

template with a single annotation in the video is converted to a representation of

the target using TFA.

We use the kernelized correlation filter (KCF) tracker [97] to preassociate the

face detection bounding boxes with the target face. The tracking algorithm is ap-

plied frame-by-frame to preassociate the face detection bounding boxes in every fifth

frame for the first k = 50 frames. We notice that using more than 50 frames does not

further improve the performance of video-based face identification performance. To

prevent the unexpected preassociation resulting from the drifting of the tracker, a

preassociated face detection bounding box whose IoU ratio with the tracking bound-

ing box is less than 0.3 is discarded. For the parameters of TFA, two bounding boxes

with IoU ratio less than γ = 0.1 are enforced by a cannot-link constraint, and the

maximum number of iterations tmax is set at 3. We collect 160,498 face images

from 1,710 subjects (1710-subject face dataset) to model the negative background

subjects. Each subject is represented by the average of the feature vectors of a sub-

ject, and thus there are 1,710 instances in the background negative set. We use the

weighted Liblinear implementation [101] with L2-regularized L2-loss support vector

classification (primal) setting to learn the weight vector, and the cost parameter C

95



is set to 10.

The face representation of the ith probe template xfai is computed by (4.12),

and the cosine similarity score between the ith probe template and jth gallery tem-

plate is denoted as

si,j = cos(xfai ,x
gal
j ), (4.13)

where xgalj denotes the average of the feature vectors in the jth gallery template.

We compute two similarity matrices with two types of triplet embedded DCNN

features [92, 93], respectively. The average of these two similarity matrices is used

for performance evaluation. Note that the two types of DCNN features are trained

with the CASIA-WebFace dataset [102]. The DCNN in [92] is trained with face

images cropped with a tight bounding box, and the dimension of the feature is 320.

On the other hand, the DCNN in [93] is trained with face images cropped with a

loose bounding box that includes more context, and the dimension of the feature

is 512. Both types of DCNN feature are embedded with the triplet probabilistic

embedding matrix trained with the aforementioned 1710-subject face dataset, and

the embedded feature dimension of each type of DCNN feature is 128.

We employ two baseline schemes for comparison. Baseline 1 uses the target-

annotated face image to represent the probe template. Baseline 2 uses the face

images preassociated by KCF tracker to represent the probe template. Note that

the preassociation in Baseline 2 is performed from the target-annotated frame to

the upcoming shot boundary. Tables 4.1 and 4.2 present the face identification

results on Gallery 1 and Gallery 2, respectively. The performance of probe videos
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evaluated with Gallery 1 is substantially better than that with Gallery 2, but the

image quality in Gallery 1 is not perceivably different from that of Gallery 2. One

explanation is that the probe videos that have a mated template in Gallery 2 (Figure

4.4(b)) are more challenging to match than those in Gallery 1 (Figure 4.4(a)). This

is evidenced by the fact that the target annotation in Figure 4.4(b) is of lower quality

than that in Figure 4.4(a) in terms of resolution, illumination, pose, and occlusion.

These unfavorable factors may lead to the performance degradation of TFA and face

identification.

Table 4.3 presents the average results of two galleries. The performance of

Baseline 2 is better than that of Baseline 1 since preassociation with KCF tracker

is able to collect additional face images in the intra-shot for creating a diverse face

representation. The proposed TFA method with Model 1 and Model 2 outperform

the two baseline schemes since a face representation can be created from the as-

sociated face images in the intra-shots and inter-shots, which demonstrate more

diverse representations than face images in the intra-shots alone. We observe that

the performance of TFA (Model 2) is better than that of TFA (Model 1). The major

difference between Model 2 and Model 1 is that the background negative instances

are only utilized in Model 2 when there is no within-video negative instance. On the

other hand, Model 1 always utilizes the background negative instances as part of

negative training instances. This shows that the within-video negative instances are

more effective than the background negative instances to train the decision bound-

ary, and the target-specific classifier in Model 2 is more discriminative in separating

the target from others by directly utilizing the within-video negative instances as
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the negative training instances. Besides, background negative instances may have

a different distribution as instances in the video, which introduces the unfavorable

domain mismatch. Table 4.4 presents the identification results with various numbers

of iterations using TFA. It is clear that most of the improvement is attained at the

first iteration, and the improvement becomes marginal as the number of iterations

increases.

We observe that the performance of TFA (Model 2) is 0.3% better on Rank-1

accuracy than TFA (Model 2, no preassociation). This shows that preassociation

with KCF tracker is effective in improving the initial set of positive instances for

learning a robust linear classifier. Although TFA is effective in retrieving most of

the associated face images of the target to increase the diversity of the subject rep-

resentation, it inevitably introduces some outliers and thus affects the identification

accuracy. Hence, the advantage of diverse representations from the associated face

images can be slightly offset by those incorrectly associated face images. Figure

4.5 shows the results of TFA in subsets of frames from three videos, and Figure

4.6 shows the associated face images corresponding to videos in Figure 4.5. Since

the association quality of TFA highly depends on the performance of DCNN fea-

tures and the characteristics of the face detector, we can observe that face images

of extreme pose, blur, and illumination as well as false positives and false negatives

of face detection have significant impact on the performance of TFA. Nevertheless,

the proposed framework is general and can be adapted to work with any other face

representation or face detector. Thus, it is expected to further improve the results

when improved appearance features and face detectors are used.
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Table 4.1: Results on Gallery 1 in the Protocol 6 of the JANUS CS3 dataset.

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50 TPIR at FPIR=0.1 TPIR at FPIR=0.01

Baseline 1: 0.5645 0.6963 0.7464 0.8094 0.8504 0.4654 0.2963

Baseline 2: 0.6323 0.7548 0.8010 0.8550 0.8904 0.5377 0.3725

TFA (Model 1, no preassociation) 0.6428 0.7593 0.7997 0.8515 0.8852 0.5496 0.3798

TFA (Model 2, no preassociation) 0.6650 0.7774 0.8195 0.8755 0.9106 0.5670 0.3760

TFA (Model 1) 0.6504 0.7704 0.8125 0.8623 0.8950 0.5576 0.3833

TFA (Model 2) 0.6689 0.7875 0.8264 0.8803 0.9130 0.5701 0.3892

Table 4.2: Results on Gallery 2 in the Protocol 6 of the JANUS CS3 dataset.

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50 TPIR at FPIR=0.1 TPIR at FPIR=0.01

Baseline 1: 0.4803 0.6014 0.6553 0.7218 0.7725 0.3773 0.2477

Baseline 2: 0.5183 0.6433 0.6917 0.7583 0.8079 0.3863 0.2630

TFA (Model 1, no preassociation) 0.5410 0.6641 0.7218 0.7755 0.8178 0.4208 0.3032

TFA (Model 2, no preassociation) 0.5493 0.6780 0.7292 0.7898 0.8373 0.4213 0.2926

TFA (Model 1) 0.5468 0.6745 0.7264 0.7810 0.8245 0.4204 0.3002

TFA (Model 2) 0.5514 0.6803 0.7315 0.7926 0.8394 0.4245 0.2931

Table 4.3: Average results of Gallery 1 and 2 in the Protocol 6 of the JANUS CS3

dataset.

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50 TPIR at FPIR=0.1 TPIR at FPIR=0.01

Baseline 1: 0.5224 0.6489 0.7009 0.7656 0.8114 0.4214 0.2720

Baseline 2: 0.5753 0.6990 0.7464 0.8066 0.8492 0.4620 0.3177

TFA (Model 1, no preassociation) 0.5919 0.7117 0.7607 0.8135 0.8515 0.4852 0.3415

TFA (Model 2, no preassociation) 0.6072 0.7277 0.7743 0.8326 0.8739 0.4941 0.3343

TFA (Model 1) 0.5986 0.7225 0.7695 0.8216 0.8597 0.4890 0.3418

TFA (Model 2) 0.6101 0.7339 0.7790 0.8365 0.8762 0.4973 0.3411
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Table 4.4: Performance of TFA (Model 2) versus the number of iterations. We

report the average results of Gallery 1 and 2 in the Protocol 6 of the JANUS CS3

dataset.

Rank-1 Rank-5 Rank-10 Rank-25 Rank-50 TPIR at FPIR=0.1 TPIR at FPIR=0.01

Iteration 0 (i.e., A = {0} ∪ T ) 0.5594 0.6840 0.7289 0.7950 0.8371 0.4460 0.2873

Iteration 1 0.6080 0.7285 0.7750 0.8310 0.8695 0.4969 0.3389

Iteration 2 0.6102 0.7335 0.7791 0.8367 0.8743 0.4979 0.3391

Iteration 3 0.6101 0.7339 0.7790 0.8365 0.8762 0.4973 0.3411

Iteration 4 0.6103 0.7342 0.7789 0.8370 0.8767 0.4981 0.3411

Iteration 5 0.6100 0.7346 0.7794 0.8377 0.8769 0.4978 0.3393

4.4 Summary

In this chapter, we present the TFA approach to assist the video-based face

identification task. With a single annotation of the target in the video, TFA can

retrieve a set of representative face images in the video to create a representation of

the target. Unlike tracking techniques that handle the association of face images in

a video shot, the proposed method is capable of associating the face images across

multiple shots in a video. The association is established by a target-specific linear

classifier trained with face images of the target and background subjects in the video.

The linear classifier is trained iteratively with the target’s associated face images and

the target’s cannot-link face images. This target-specific linear classifier retrieves a

set of face images to construct the representation of the target. Experimental results

show that the target representation constructed by the associated face images is able

to improve the performance of video-based face identification.
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(a)

(b)

Figure 4.4: Target-annotated frames in the videos of JANUS CS3 dataset. (a) A

subset of probe videos that has a mated template in Gallery 1. (b) A subset of

probe videos that has a mated template in Gallery 2.
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#001 #191 #401 #266 

#346 #471 #766 #951 

#1066 #1186 #1226 #1411 

(a)

Target 

#181 #346 #491 

#531 #601 #761 

#911 #981 #1016 

(b)

Target 

#231 #1086 #1411 #1486 

#2056 #2611 #2851 #2886 

(c)

Figure 4.5: Subsets of frames that illustrate the associated face images of three

videos in the JANUS CS3 dataset. The human-annotated bounding box of the

target is shown in red, and the bounding boxes of the associated face images are

shown in magenta.
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(a)

(b)

(c)

Figure 4.6: Associated face images of three videos. Face images are displayed from

top to bottom in the order of the confidence of face association.103



Chapter 5: Face Recognition Using an Outdoor Camera Network

Outdoor camera networks have several applications in surveillance and scene

understanding. Several prior works have investigated multiple person tracking

[103–105], analysis of group behaviors [106, 107], anomaly detection [108], person

re-identification [109], and face recognition [110–113] in camera networks. Face

recognition in outdoor camera networks is particularly of interest in surveillance

system for identifying persons of interest. Besides, the identities of subjects in the

monitored area can be useful information for high-level understanding and descrip-

tion of scenes [114]. As persons in the monitored area may be non-cooperative, the

face of a person is only visible to a subset of cameras. Hence, information collected

from each camera should be jointly utilized to determine the identity of the subject.

Unlike person re-identification, face recognition usually requires high-resolution im-

ages for extracting the detailed features of the face. As human faces possess a

semi-rigid structure, this enables the face recognition method to develop 3D face

models and multi-view descriptors for robust face representation.

Camera networks can be categorized into static camera networks and active

camera networks. In static camera networks, cameras are placed around the mon-

itored area with preset field of views (FOVs). The appearance of a face depends
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on the relative viewpoints observed from the camera sensors and the potential oc-

clusion in the scene, which has direct impact on the performance of recognition

algorithms. Hence, prior work in [115] has proposed a method for optimal place-

ment of static cameras in the scene based on the visibility of objects. Active vision

techniques have shown improvements for the task of low-level image understand-

ing than conventional passive vision techniques [116] by allocating resources based

on current observations. Active camera networks usually comprise of a mixture of

static cameras and pan-tilt-zoom (PTZ) cameras. During operation, PTZ cameras

are continuously reconfigured such that the coverage, resolution (target coverage),

informative view, and the risk of missing the target are properly managed to maxi-

mize the utility of the application [111,112].

A recent research survey on active camera network is provided in [117], and

the authors propose a high-level framework for dynamic reconfiguration of camera

networks. This framework consists of local cameras, fusion unit, and a reconfigura-

tion unit. The local cameras capture information in the environment and submit all

the information to the fusion unit. The fusion unit abstracts the manipulation of

information from local cameras in a centralized or distributed processing framework

and outputs the fused information. The reconfiguration unit optimizes the reconfig-

uration parameters based on fused information, resource constraints, and objectives.

In centralized processing frameworks, the information from each camera is conveyed

to a central node for predicting the states of the observations and reconfiguring the

local cameras. On the other hand, the distributed processing of the camera net-

works becomes desirable when the bandwidth and power resources are limited. In
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this scenario, each camera node receives information from its neighboring nodes and

performs the tasks of prediction and reconfiguration locally.

Face association across video frames is an important component in any face

recognition algorithm that processes videos. When there are multiple faces appear-

ing in a camera view, robust face-to-face association methods should track the mul-

tiple faces across the frames and avoid the potential of identity switching. Also, face

images observed from multiple views should be properly associated for effective face

recognition. When the cameras are calibrated, the correspondence of face images

observed in multiple views can be established by geometric localization methods,

e.g., triangulation. Nevertheless, geometric localization methods demand accurate

calibration and synchronization among the cameras, and they usually require the

target to be observed by at least two calibrated cameras. Hence, these methods

are not suitable for associating face images captured by a single PTZ camera oper-

ating at various zoom settings. Alternatively, the association between face images

observed in multiple views can be established by utilizing the appearance of upper

body [23,113,118]. This method is effective as the human body is more perceivable

than the face. Besides, the visibility of human body is not restricted to certain view

angle as the human face does. Based on this fact, a face-to-person technique has

been developed in [113] to associate the face in the zoomed-in mode with the person

in the zoomed-out mode. In order to effectively utilize all the captured face images

for robust recognition, face-to-face and face-to-person associations have become the

fundamental modules to ensure that the face images captured from different cameras

and various FOVs are correctly associated.
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Face images captured by cameras in outdoor environments are often not as

constrained as mug shots since persons in the scene are typically non-cooperative.

Furthermore, the face images captured by cameras deployed in outdoor environments

can be affected by illumination changes, pose variations, dynamic backgrounds, and

occlusions. Moreover, the sudden changes in PTZ settings in active camera net-

works can introduce motion blur. Although constructing a 3D face model from face

images enables synthesis of different views for pose-invariant recognition, it typically

relies on accurate camera calibration, synchronization, and high-resolution images.

Hence, we address several issues that come up while designing a face recognition

algorithm for outdoor camera systems. The objective is to extract diverse and com-

pact face representation from multi-view videos for robust recognition. Also, context

information, such as gaze, activity, clothing appearance, and unique presence, can

provide additional cues for improving the recognition performance.

In this chapter, we first review the taxonomy of camera networks in Section

5.1. Techniques for face association are discussed in Section 5.2. Several issues

for face recognition using images and videos captured in outdoor environments are

discussed in Section 5.3. In Section 5.4, we present the design details of a camera

network system for face recognition. Some remaining challenges in outdoor camera

networks are presented in Section 5.5. We conclude the chapter in Section 5.6.
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5.1 Taxonomy of Camera Networks

Several designs of camera networks have been developed to facilitate multiple

camera-based surveillance systems. Camera networks can be categorized into static

camera networks and active camera networks. Characteristics of camera net-

works, such as the centralized/distributed processing framework and overlapping/non-

overlapping camera network, will be discussed in this section.

5.1.1 Static Camera Networks

Static camera networks typically consist of multiple cameras mounted in fixed

locations, and the preset FOVs of the cameras are not reconfigurable during opera-

tion. Static camera networks have been used in multiple person tracking [103–105]

and person re-identification [109]. In order to enhance the coverage area, an omni-

directional camera has been utilized along with a regular perspective camera [119].

There are very few works utilizing the static camera networks for remote face recog-

nition in outdoor environments since a static camera lacks the zooming capability

to capture the close-up view of faces. Some of the designs preset the static cam-

era to the known walking path of pedestrians for capturing the facial details [120].

In practice, static camera networks for face recognition require densely distributed

cameras to opportunistically capture the face images in a wide area. Prior work

reported in [115] has proposed a strategy for the optimal placement of cameras to

ensure that a face of interest is visible to at least two cameras. The objective is

to maximize the visibility function among all the camera setup parameters (loca-
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tions and FOVs) in consideration of potential occlusions in the scene. As the static

camera often lacks the zooming capability to capture the close-up view, face images

captured from a remote camera may not have sufficient resolution and good quality.

Hence, remote face recognition [121] becomes one of the important issues in static

camera networks.

5.1.2 Active Camera Networks

In active camera networks, cameras are reconfigurable during operation to

maximize the utility of a certain application. Most of the active camera networks

utilize a hybrid of static cameras and PTZ cameras, and the utility function can

be formulated as the coverage for the face of interest or the appearance quality of

faces [112]. A common setup in active camera networks is the master and slave

configuration. Static cameras observe the wide area for performing the task of

detection and localization. The PTZ cameras possess the flexibility to capture close-

up views of faces. The master and slave camera networks usually adopt a centralized

processing framework to reconfigure the slave cameras based on observations from

the master camera. Active distributed PTZ camera networks have been proposed

to collaboratively and opportunistically capture informative views and satisfy the

coverage constraints [111,112].
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5.1.3 Characteristics of Camera Networks

The information collected by multiple cameras can be processed in a central-

ized or distributed framework. In the centralized processing framework, information

from all the camera sensors is conveyed to a base station to estimate the tracking

states and determine the identities. The distributed framework can reduce the

amount of data transfer by processing the information locally and then convey the

succinct information to other nodes. Given the limited resources of bandwidth and

power in distributed camera networks, exchanging visual data among sensor nodes is

not preferred. Hence, each sensor node only conveys modest information extracted

from visual content to other sensor nodes. Based on the received information and

its own visual content, each sensor node computes local optimal settings, e.g., PTZ

settings of camera, to achieve the common goal.

For distributed camera networks in a wide area, cameras do not always have

overlapping FOVs. Hence, the camera topology (connectivity between non-overlapping

FOVs of cameras) should be established by exploring the statistical dependency on

the entry and exit activities between cameras [122, 123]. Besides, spatial-temporal

constraints and relative appearance of the persons can be utilized for persistent

tracking in non-overlapping FOVs [124,125]. With the topology of a non-overlapping

camera network, faces and persons appearing from one view to another can be suc-

cessfully associated for robust recognition.
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5.2 Face Association in Camera Networks

Face association relies on persistent person tracking and face acquisition in

outdoor camera networks. In this section, we investigate face-to-face and face-to-

person associations [113], which enable robust recognition in long-term and wide-

area monitoring scenarios.

5.2.1 Face-to-face Association

A successful face-to-face association algorithm can continuously track the move-

ment and appearance changes of faces over time. Nevertheless, face-to-face associ-

ation is challenging since multiple faces appearing in the scene can introduce ambi-

guities. Especially, faces of a group of people are likely to be occluded by each other

when the face images are captured from a single viewpoint. Hence, it is essential to

correctly associate the face images to form face tracks, and then recognition can be

performed effectively for each track based on the assumption that a face track only

consists of face images captured from the same subject.

In general, a multiple face tracking algorithm handles the initialization of

face tracks, simultaneous tracking of multiple faces, and the termination of a face

track. There are several challenges to be addressed while designing a multiple face

tracking algorithm. Face tracks that are spatially close to each other can lead to

identity switching. The drift of face tracks can result due to large pose variations

of faces. Besides, face tracks become fragmented due to occlusion and unreliable

face detection. Moreover, videos captured by the hand-held cameras can be affected
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by unexpected camera motion, which makes the association of face images difficult.

Given the recent advancements in multiple object tracking (MOT) [126–128], several

methods have utilized the framework of MOT for multiple face tracking [13,77].

Roth et al. [77] adapted the framework of multiple object tracking to mul-

tiple face tracking based on tracklet linking, and several face-specific metrics and

constraints were used for enhancing tracking reliability. Wu et al. [13] modeled the

face clustering and tracklet linking steps using a Markov Random Field (MRF),

and the fragmented face tracks resulting from occlusion or unreliable face detection

were then associated to produce reliable face tracks. Duffner and Odobez [127] pro-

posed a multi-face Markov Chain Monte Carlo (MCMC) particle filter and a Hidden

Markov Model (HMM)-based method for track management. The track manage-

ment strategy includes the creation and termination of tracklets. A recent work

in [78] proposed to manage the track from the continuous face detection output

without relying on long-term observations. In unconstrained scenarios, the camera

can be affected by abrupt movements, which makes consistent tracking of faces chal-

lenging. Du and Chellappa proposed a conditional random field (CRF) framework

to associate faces in two consecutive frames by utilizing the affinity of facial features,

location, motion, and clothing appearance [23,118].

Although linking of tracklets from the bounding boxes provided in face detec-

tion has shown some robustness in multiple face tracking, performing face detection

for every frame is not feasible due to high demands on computational resources. As

shown in Figure 5.1, the face association method in [129] detects faces for every 5

frames and uses the Kanade-Lucas-Tomasi (KLT) feature tracker [130] for short-
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Figure 5.1: Block diagram of the multiple face tracking framework.

term tracking. The bounding boxes provided by detection and KLT tracking serve

as inputs for the tracklet linking algorithm [131].

5.2.2 Face-to-person Association

Face recognition in camera networks requires the persistently tracked person

and correct association of captured faces. In overlapping camera networks, the cor-

respondence of faces captured from multiple views can be established from geometric

localization methods, i.e., triangulation. Nevertheless, these techniques may not be

applicable for non-overlapping camera networks.

For PTZ cameras in a distributed camera network, each PTZ camera actively

performs face acquisition operating at different FOVs. It is essential to perform face-

to-person association since the number of faces and the number of persons in the

field of view may not be consistent when switching between zoomed-out and zoomed-

in mode. Face-to-person association ensures that face images of a target captured

from various FOVs can be registered with the same person for identification. The

appearance of face images captured by the zoomed-in mode can be quite different
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from that of full-body images captured by the zoomed-out mode since the close-

up views only capture a portion of the full-body images. Hence, the HSV color

histogram is used to model the appearance of upper-body in different zoom ratio

[113], and the Hungarian algorithm [15] is employed to find the optimal assignment

between faces and persons.

5.3 Face Recognition in Outdoor Environments

In this section, we discuss several issues when performing the recognition task

on images and videos captured by outdoor camera networks.

5.3.1 Robust Descriptors for Face Recognition

Several techniques have been proposed to overcome many challenges due to

pose variations by extracting handcrafted features around the local landmarks of

face images, and a discriminative distance metric is learned such that a pair of face

images from the same person will induce a smaller distance than that from differ-

ent persons. Chen et al. [132] used multi-scale and densely sampled local binary

pattern (LBP) features and trained the joint Bayesian distance metric [133]. Si-

monyan et al. performed Fisher Vector (FV) encoding on densely sampled SIFT

feature [95] to select highly representative features. Li et al. [134] proposed a pose-

robust verification technique by utilizing the probabilistic elastic part (PEP) model,

and thus the impact of pose variations could be alleviated by establishing the cor-

respondence between local appearance features (e.g. SIFT, LBP, etc.) of the two
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face images. Recently, Li and Hua [135] proposed a hierarchical PEP model to

exploit the fine-grained structure of face images, which outperforms their original

PEP model. Recently developed methods based on handcrafted features and deep

features [90, 91] have shown significantly improved performance. However, learning

the deep features usually requires a large number of labeled training data.

As face images captured in outdoor environments suffer from low-resolution

and occlusion, face alignment becomes challenging. Liao et al. [136] have proposed

an alignment-free face recognition using multi-keypoint descriptors, and the size of

the descriptor can adapt to the actual content.

5.3.2 Video-based Face Recognition

In camera networks, sequences of face images in videos can capture diverse

views and facial variations of an individual (assuming a face track only consists

of face images from one person). Hence, several works have proposed video-based

methods for effective representations. Zhou et al. [137, 138] proposed to simulta-

neously characterize the appearance, kinematics and identity of human face using

particle filters. Lee et al. [68] constructed the pose manifold from k-means clustering

of face tracks and established the connectivity across the pose manifold for repre-

senting the face images in the video. Chen et al. [139] proposed to cluster a face

track into several partitions, and dictionaries learned from each partition are used for

capturing the pose variations of a subject. Li et al. [69] adopted the PEP model for

constructing the video-level representation of face images. The video-level represen-
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tation was computed by performing the pixel-level-mean of the PEP-representation

of video frames. Most video-based verification techniques have extracted diverse

and compact frame-level information for constructing video-level representation.

5.3.3 Multi-view and 3D Face Recognition

Robust face recognition depends on the availability of effective descriptions

of faces. Several prior works have investigated the affine invariant features that

are robust to slight pose variations or view changes. Nevertheless, the 2D model

fails to represent large pose variations due to self-occlusion and the perspective

distortion introduced when the face is close to cameras. The 3D model overcomes

these disadvantages of the 2D model by describing the features on the 3D structure.

Given the estimated pose of the face, the features of a face collected from multiple

views can be jointly registered onto a 3D structure, and thus they are no longer

dependent on the pose variation of the face itself. In face tracking or recognition,

the variation of the head structure is modest. Hence, the 3D feature can be densely

constructed by mapping facial textures onto a generic 3D structure. Nevertheless,

successful modeling of 3D faces requires reliable camera calibration for accurate

registration, which is generally not sufficiently precise in real world surveillance

scenarios. In the following, we review prior works that exploit the multiple views

and 3D face models for recognition.

An et al. [1] adopted the dynamic Bayesian network (DBN) for face recognition

in camera surveillance network by encoding the temporal information and features
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from multiple views. The DBN consists of a root node and several camera nodes

in a time slice. Figure 5.2 shows the DBN structure using three cameras of three

time slices. The root nodes capture the distribution of the subjects in the gallery,

and the camera nodes contain the features of a face observed from each camera.

The time slices enable the DBN to encode the temporal variations of a face. Du et
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Figure 5.2: The DBN structure using three cameras of three time slices [1].

al. [2] proposed a robust face recognition method based on the spherical harmonic

(SH) representation for the texture-mapped multi-view face images on a 3D sphere.

Figure 5.3 shows the texture mapping on a 3D sphere from three cameras. The

textured-mapped 3D sphere was used for computing the SH representation. The

method is pose-invariant since the spectrum of the SH coefficients is invariant to the

rotation of head pose.

Besides, several prior works have utilized structure-from-motion techniques to

reconstruct the 3D model for face recognition from multiple face images [120,140].
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Figure 5.3: The spherical 2D face images captured from three cameras are mapped

on to the 3D facial sphere, which will be used to compute the SH representation [2].

5.3.4 Face Recognition with Context Information

Context features, such as clothing, activity, attributes, and gait, can serve

as additional cues for improving the performance of face recognition algorithms

[141]. Moreover, the uniqueness constraint can be utilized to improve the recognition

accuracy since two persons presenting in a venue should not be identified as the same

subject. Liu and Sarkar [142] proposed a recognition framework by fusing the gait

and face information, and several fusion strategies for integrating these two biometric
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modalities were evaluated. Their experimental results show that the combination of

one face and one gait per person gives better result than two face probes per person

and two gait probes per person. This shows that different biometric modalities can

be fused to further improve the recognition accuracy.

5.3.5 Incremental Learning of Face Recognition

Besides, the outdoor environment can change due to time of day, weather, etc.,

and thus the distribution of data can change. As a result, the model should adapt

to the current captured data for effective face recognition. A recent work in [143]

has proposed an adaptive ensemble method to alleviate the impact of environmental

changes on face recognition by utilizing diversified learned models. The method first

performed change detection to distinguish if the current input significantly differs

from the learned model. Otherwise, a corresponding model is selected for recogni-

tion. Long-term memory was then used to store the parameters for identifying new

concepts and training new model-specific classifier of each subject. The short-term

memory holds the validation data for referencing. The system model can be up-

dated by adopting the boosting-based method for learning independent classifiers

and performing weighted fusion.

As the outdoor scene is an open environment, it is common that a subject

does not belong to any subject in the gallery. Several works have addressed the

issue of open set recognition [144, 145]. Subjects that have not been seen in the

gallery should be rejected, and the captured face images can be potentially used for
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learning models of new subjects.

5.4 Outdoor Camera Systems

In this section, we review several camera networks deployed in outdoor envi-

ronments.

5.4.1 Static Camera Approach

Medioni et al. [120] used two static cameras to monitor a chosen region of

interest. In this work, one of the static cameras provided high-resolution face images

with a narrow FOV, and the other camera captured the full body of pedestrians in

the scene with a wide FOV. A 3D face model was constructed from multi-view

stereo technique operating on the sequences of face images. Stereo pair of wide

baseline can be challenging for establishing correspondence but often provide better

disparity resolution. On the other hand, it is easy to establish correspondence for a

short baseline stereo pair, but the disparity resolution might be insufficient. The task

involved key frame selection to form multiple stereo pairs from near frontal images

within -10 to 10 degrees. Each pairwise stereo pair contributed to a disparity map

that represents the height of the 3D face surface. The mesh descriptor of the 3D face

model was obtained from integrating the multiple disparity maps, and outliers of

disparity were rejected by surface self-consistency. The 3D face models and 2D face

images were used for biometric recognition. Although this approach is capable of

reconstructing the 3D face from outdoor video sequences, their experimental results
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show that the performance of 3D face recognition degrades as the resolution of face

images is reduced due to the increase in distance. This reveals that face recognition

based on 3D modeling in outdoor environments remains a challenging task.

5.4.2 Single PTZ Camera Approach

Face recognition systems using a single PTZ camera are challenging to design

since the persistent tracking of a person, camera control to follow the identity, and

recognizing the identity from face images should be performed simultaneously. Dinh

et al. [146] proposed a single PTZ camera acquisition strategy for extracting high-

resolution face sequences of a single person. Their method employs a pedestrian

detector in the wide FOV to detect face of interest. Once a pedestrian is detected,

the pan-tilt parameters of camera are adjusted to bring the face of a pedestrian

to the center of the image and the zoom parameter is preset to ensure sufficient

resolution of the face images. As the face detector localizes a face, the active tracking

mode is initiated by performing face tracking with the bounding box provided by

the face detector. In the meantime, camera control is initiated to follow the face

simultaneously. Since the tracked face consistently moves in the scene, the camera

control module in [147] is employed to follow the target precisely and smoothly by

sending commands to reconfigure the pan-tilt parameters. The zoom parameter is

dynamically adjusted to ensure that a face in the FOV has a proper size. When the

face drifts out of the FOV of a camera, the one-step-back strategy camera control is

adopted by decreasing the focal length for one-step until the face reappears in the
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FOV.

Cai et al. [113] employed a single PTZ camera for face acquisition for multiple

persons in the scene. The PTZ camera switches between zoomed-in and zoomed-

out mode for obtaining narrow and wide FOV, respectively. In the zoomed-out

mode, person-to-person association was employed to track multiple persons in the

scene. When the camera is switched from zoomed-out mode to zoomed-in mode to

obtain the close-up view of a particular person, the face-to-person association was

performed to ensure that the detected faces in the zoomed-in mode are correctly

associated with the person in the zoomed-out mode. The face-to-face and face-to-

person associations are employed when switching between zoomed-in and zoomed-

out modes. The camera scheduling is based on a weighted round-robin mode to

acquire close-up views of each person in the scene.

5.4.3 Master and Slave Camera Approach

In the University of Maryland (UMD), an outdoor camera network comprising

of four sets of the off-the-shelf PTZ network IP cameras (Sony SNC-RH164) is

employed to acquire face images in the open area in front of a campus building. A

master and slave camera framework is adopted in the outdoor camera system. The

PTZ cameras are deployed on the roof and side walls of the building as shown in

Figure 5.4, and their corresponding locations seen from the top view are marked in

the world map of Figure 5.5. One of the PTZ camera serves as the master camera

(M) and other three cameras serve as slave cameras (S1, S2, and S3). The resolution
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Figure 5.4: The deployment of PTZ cameras at the University of Maryland campus.

of the video stream from each camera is 640× 368 pixels, and the frame rate is 15

frames/second.

The proposed system consists of several modules, including foreground de-

tection [148], blob tracking, face detection, face recognition, and the surveillance

interface.

5.4.3.1 Camera Calibration

Using the steerable functionality of PTZ camera, we calibrate the intrinsic pa-

rameters of each camera using techniques presented in [149] without using a known

pattern [150]. During calibration, we steer all the PTZ cameras to look at a common
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Figure 5.5: The interface of UMD outdoor camera network. The first column shows

the view from the master camera, the world map, and the eight subjects in the

gallery. The second column shows views from three slave cameras. The pedestrians

in the view of master camera are tracked with bounding boxes, and their locations

are marked on the world map. The predicted identity of each tracked pedestrian is

annotated in the world map.
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overlapping area, and all the cameras are zoomed out to maximize the overlapping

FOVs. Since the perspectives are quite different across the different PTZ cameras,

we manually select the common corresponding points (Figure 5.6) for extrinsic cal-

ibration [151]. The extrinsic parameters of the PTZ cameras are computed by the

Bundler toolkit [152] to obtain the rotation and translation matrices relative to the

master camera. Moreover, we assume that the pedestrian movement can be modeled

as a planer motion on the ground plane, and thus we simply mark the location of

the pedestrian in the world map. By using at least three (manually selected) 3D

coordinates on the ground, we obtain the planar equation of the ground plane

aX + bY + cZ = d, (5.1)

and the unit normal vector of the ground plane is denoted as vn =< a, b, c >

/
√
a2 + b2 + c2.

5.4.3.2 Camera Control

The objective of the outdoor camera system is to recognize the identity of a

pedestrian in the area being monitored from a set of subjects in the gallery, and we

report its location and identity in the world map as shown in Figure 5.5. In the view

of the master camera, the moving pedestrians are first detected by the foreground

detection, and then tracked by the blob trackers. We use the foreground detection

and blob tracking methods provided in OpenCV [153]. The image coordinate at the

standpoint of a pedestrian (x, y) is converted into the 3D world coordinate xf to

indicate the 3D coordinate of the foot of the pedestrian. The 3D world coordinate xf
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(a) Master camera (M) (b) Slave camera 1 (S1)

(c) Slave camera 2 (S2) (d) Slave camera 3 (S3)

Figure 5.6: The common corresponding points (green crosses) in master and slave

camera views are used for extrinsic calibration.

is computed by intersecting the ray along the homogeneous coordinates (xz, yz, z)

of the master view with the planner equation of the ground in (5.1). In order to

capture the high-resolution face images for recognition, the slave cameras are steered

to point at the 3D coordinate of the head such that the head of the pedestrian are

brought to the image center. We compute the rough 3D coordinate of the head xh

in the world as

xh = xf + hvn, (5.2)

where h is the average human height of a pedestrian in the scene. In the system, it is

empirically set as a constant. However, a more precise height of a pedestrian in the
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scene can be computed from a reference object of known height and the vanishing

point [154].

A simple camera scheduling strategy is implemented to steer all the slave

cameras to point at the head of a person simultaneously. When there is more than

one person in the monitored area, each person is sequentially observed by all the

slave cameras with a time interval of 4 seconds. Sophisticated camera scheduling

algorithm, such as [112], can be implemented to allocate the PTZ cameras to opti-

mally capture the most informative views. Hence, PTZ cameras can be individually

steered to capture the face images from different persons in parallel.

5.4.3.3 Face Recognition

The sequence of face images detected in the camera views are recognized by

the video-based face recognition method developed by Chen et al. [139]. The dic-

tionaries for the 8 subjects in the gallery are trained offline from two sessions of

videos captured from three slave cameras. In the training stage, each face image in

grayscale is resized to 30 × 30 pixels, and each face image is then vectorized into

feature vector of dimension 900. Feature vectors of each subject are clustered into

ten partitions using k-means clustering. Figure 5.7 shows a subset of partitions from

three subjects in the gallery. There are ten sub-dictionaries of each subject learned

from the ten partitions to build the compact face representation of each subject. In

the testing stage, the identity of a face image in each frame is predicted by assigning

the identity of the sub-dictionary that yields the minimum reconstruction error of
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Figure 5.7: A subset of partitions from three subjects used for dictionary learning.

the face image. The identity of the pedestrian is then determined by using a major-

ity voting that accounts for the predicted identity of face images of previous frames.

The location and identity of each pedestrian is continuously updated on the world

map.

5.4.4 Distributed Active Camera Networks

In master and slave camera networks, the functionality of each camera is as-

signed throughout the operation. On the other hand, in the collaborative and op-

portunistic PTZ camera networks, the tasks of tracking in wide FOV and capturing

high-resolution images in narrow FOV are dynamically reconfigured based on the

current observations. Each PTZ camera is capable of low-level processing, including

target tracking and common consensus state estimation.

Ding et al. [112] have implemented distributed active camera networks of 5

and 9 PTZ cameras, which provide the dynamic coverage of the monitored area.
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The configuration of the PTZ settings relies on a distributed tracking method based

on the Kalman-Consensus filter [104, 105]. Neighboring cameras can communicate

with each other and negotiate with neighboring nodes before taking an action. The

framework optimizes the distributed camera configurations by maximizing the utility

based on the specified tracking accuracy, informative shot, and image quality, in the

active distributive camera network. The utility function can model the area coverage

and target coverage. Another framework in [111] uses a camera network of 215 PTZ

cameras to opportunistically retrieve informative views. A Bayesian framework is

utilized to perform the trade-off between the reward of informative view and the

cost of missing a target. Besides, a framework proposed by Morye et al. [155]

continuously changes the camera parameters to satisfy the tracking constraint and

opportunistically capturing the high-resolution faces. Image quality is formulated

as a function of the target resolution and its relative pose with respect to the view

camera.

5.5 Remaining Challenges and Emerging Techniques

Video surveillance in complex scenarios remains a challenging task since exist-

ing computer vision algorithms cannot adequately address the challenges due to pose

variations, severe occlusions, illumination changes, and ambiguity between identi-

ties of similar appearance. Although the 3D structure of face can provide distinct

features, the issues of synchronization error, calibration error, insufficient imaging

resolution of remote identity, make it difficult to recover the 3D face model. The
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challenges of designing a video surveillance systems do not depend on a single factor,

and the performance of one stage can potentially suffer from unreliable results in

previous stages. All these factors make face recognition in outdoor camera networks

a challenging task.

Face recognition in mobile camera network is an emerging research topic [156].

In this scenario, each visual sensor is mounted on a mobile agent and works coopera-

tively with other visual sensors in the mobile networks. Given the limited bandwidth

and power in the mobile networks, exchanging visual data between sensors becomes

infeasible. Hence, each sensor node only conveys a modest amount of information

extracted from a particular camera to other sensor nodes. Based on the received

information and its own visual data, each sensor node computes an optimal setting

such as the moving direction of the mobile agent or the PTZ setting of camera to

achieve the common goal in the networks. With the low cost of drones, cameras

mounted on flying mobile agents have been utilized for face recognition [157]. As

compared to conventional mobile agents, drones are less restricted by the geographic

constraints. Nevertheless, sophisticated drone stabilization techniques, camera con-

trols, and communication techniques should be developed for conveying informative

and stable face images for face recognition in drone-based video surveillance.

With the prevailing use of personal mobile devices, the utilization of camera

sensors embedding GPS and orientation sensor remains an open problem to solve.

Unlike typical mobile networks where the algorithm gets full control on the steering

of mobile agent, the visual sensors on personal device usually acquire visual data

passively. Hence, crowd-based services as part of the mobile camera network should
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take into account the behavior of user and human interaction to opportunistically

collect information for face recognition in large-scale and unrestricted environments.

5.6 Summary

In this chapter, we first discussed the usefulness of camera networks for face

recognition in outdoor environments. The static camera networks are suitable for

densely distributed wide area, but they are not as flexible as the active camera

networks. The active camera networks can take advantages of the PTZ capability

to opportunistically capture high-resolution face images. Nevertheless, face images

captured in outdoor environments are unconstrained, and the quality is usually

affected by pose variations, illumination changes, occlusions, and motion blur. Ef-

fective multi-view video-based methods should be employed to build diverse and

compact face representations. We reviewed several issues relevant to the design

of camera network systems for face recognition deployed in outdoor environments.

Remaining challenges such as handling real-time operation, synchronization, etc.,

should be overcome to make the outdoor camera network systems for face recog-

nition pervasive and reliable. Finally, we discussed the design details of a camera

network-based system implements at the University of Maryland.
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Chapter 6: Conclusions and Directions for Future Work

In this dissertation, we discussed the face recognition problem in scenarios

where the training or testing data is weakly labeled. We proposed several robust

techniques to overcome such imperfections by exploiting the non-local cost aggre-

gation technique to reduce the impact of noisy labeling and utilizing the low-rank

matrix approximation method to recover the actual labels. Besides, the target face

association is capable of generating a set of associated face images of the target

from a single human-annotated bounding box to support robust face identification.

Several directions for extending are briefly summarized below.

6.1 Character identification in TV-series

We proposed a unified framework for character identification in a TV-series.

We constructed the track nodes from face and person tracks, and the track nodes

served as the basic elements in constructing the MST. As the track nodes with

similar appearance become adjacent in the MST, we showed how the non-local

cost aggregation method can be used to reliably predict the identities of the track

nodes and provide guidance to track nodes lacking the face modality. Nevertheless,

this method involves several parameters, such as the trade-off parameter between
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face and clothing modalities and the parameter to adjust the similarity in the non-

local cost aggregation. These parameters may depend on the characteristics of the

datasets. One future work could be the learning of the parameters so that the

proposed method becomes adaptable to the characteristics of input data.

6.2 Ambiguously labeled learning

We introduced a matrix completion framework for resolving label ambiguities.

The proposed method ensures all the instances and their associated ambiguous labels

are utilized as a whole for resolving the ambiguity by discovering the underlying low-

rank structure of subjects. Besides, we showed that the issue of labeling imbalance

can be handled by performing column-wise weighting on the heterogeneous matrix.

Moreover, the proposed iterative candidate elimination step can further improve

the performance by iteratively removing the least confident candidate. Our method

currently assumes instances of the same subject are jointly low-rank to resolve label

ambiguity. This assumption can be violated if the feature vectors of a subject

are selected from different domains or distributions. For instance, face images of

different poses cannot be well approximated by a low-rank structure. One can

generalize MCar to operate on instances of different distributions.

6.3 Target face association

We proposed a target face association method to retrieve a set of face images

in the video using a single target annotation of the target face. These associated
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face images provide a diverse representation and can be utilized to create a robust

representation for video-based face identification. There are several directions in

which this work can be extended. Currently, we use the average feature vectors

of the associated face images to construct the robust representation. Nevertheless,

the outliers in the associated face images can cause performance degradation. One

interesting extension is to design a weighting scheme for constructing the robust

representation by reducing the contribution from face images of lower association

confidence. Besides, the performance of TFA can be affected by the characteristics

of a face detector. False positive error of face detection can lead to erroneous associa-

tion of non-face images, and missed detection of face images will prevent TFA from

associating the useful exemplars for creating a robust template. Since the video

quality and the distribution of face images are different from video to video, the

performance of TFA can be potentially improved with a video-specific confidence

threshold for face detection.

6.4 Face recognition using an outdoor camera network

We discussed some recent techniques for face recognition in outdoor camera

networks and presented our implementation of the real-time video surveillance sys-

tem at the University of Maryland campus. Several features can be integrated on top

of the current master and slave camera framework to form a hybrid camera network.

Mobile cameras, such as cell phone cameras, body cameras, and cameras mounted

on the drones, can be integrated into the system to opportunistically retrieve the
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face images in the monitored area. Moreover, face association across multiple views

should be studied in the hybrid camera networks to fully utilize the information

from multiple cameras.
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