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Microorganisms in the plant rhizosphere, the zone under the influence of roots, and 

phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, 

health, and protection. Tomatoes and cucumbers are important players in produce safety, 

and the microbial life on their surfaces may contribute to their fitness as hosts for 

foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External 

factors such as agricultural inputs and environmental conditions likely also play a major 

role.  However, the relative contributions of the various factors at play concerning the 

plant surface microbiome remain obscure, although this knowledge could be applied to 

crop protection from plant and human pathogens.  Recent advances in genomic 

technology have made investigations into the diversity and structure of microbial 

communities possible in many systems and at multiple scales. Using Illumina sequencing 

to profile particular regions of the 16S rRNA gene, this study investigates the influences 

of climate and crop management practices on the field-grown tomato and cucumber 

microbiome. The first research chapter (Chapter 3) involved application of 4 different 



	 	

soil amendments to a tomato field and profiling of harvest-time phyllosphere and 

rhizosphere microbial communities. Factors such as water activity, soil texture, and field 

location influenced microbial community structure more than soil amendment use, 

indicating that field conditions may exert more influence on the tomato microbiome than 

certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-

associated microbial community structures was evaluated.  Shifts in bacterial community 

composition and structure were recorded immediately following rain events, an effect 

which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. 

Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding 

that insects introduced diverse bacterial taxa to the blossom and green tomato fruit 

microbiome. This study advances our understanding of the factors that influence the 

microbiomes of tomato and cucumber. Farms are complex environments, and untangling 

the interactions between farming practices, the environment, and microbial diversity will 

help us develop a comprehensive understanding of how microbial life, including 

foodborne pathogens, may be influenced by agricultural conditions. 
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Chapter 1: Introduction 
 
Plants support diverse microbial populations both above- and below-ground, and these 

communities are intimately connected to plant health and function (Bulgarelli et al., 

2013; Philippot et al., 2013; Pieterse et al., 2014; Vorholt, 2012). While some microbes 

that colonize plants may be classified as plant or human pathogens, other symbionts may 

promote plant growth or stimulate response to stress or infection, qualities that could be 

managed and capitalized upon in agricultural systems (Bakker et al., 2012; Berg, 2009; 

Berlec, 2012; Lakshmanan et al., 2014). Agricultural inputs such as manure-derived 

fertilizers or environmental factors like rainfall could potentially lead to abiotic and biotic 

changes influencing microbial dynamics in the plant habitat. Disruption of plant-

associated microbial community structures could, in turn, lead to changes in plant vitality 

and susceptibility to enteric and plant pathogenic microorganisms. Due to the intimate 

association between plants and their microbial symbionts, an assessment of the influence 

of these inputs on microbial community structure and diversity will lead to a more 

comprehensive view of plant health and function.  

 

Of increasing concern in the agricultural environment is the presence of foodborne 

pathogens, such as Salmonella enterica, pathogenic Escherichia coli, and Listeria 

monocytogenes (Brandl, 2006; Olaimat and Holley, 2012). Unlike plant pathogens, which 

often decrease crop yield and quality (Oerke, 2006), these are unlikely to cause visible 

symptoms while the crop is growing, making detection in the field difficult. Enteric 

pathogens are capable of survival through harvest and processing (Bennett et al., 2015; 
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Harris et al., 2003; Tomás-Callejas et al., 2011), and once established on the plant surface 

they are difficult to eliminate (Goodburn and Wallace, 2013; Parish et al., 2003), posing a 

serious threat to consumers of fresh-cut produce. In the United States alone, the CDC 

estimates that 1 in 6 people (48 million total) become sick from foodborne illness every 

year, and 3,000 of these illnesses result in death (Scallan et al., 2011a; Scallan et al., 

2011b). Of these illnesses, 46% are estimated to be produce-associated (Painter et al., 

2013). Efforts to reduce foodborne disease contamination of fresh produce today 

primarily focus on prevention, both pre- and post-harvest. Good Agricultural Practices 

(GAPs) have been established to give farmers recommendations on cultural practices that 

strengthen on-farm food safety risk management by reducing opportunities for 

contamination through wildlife management, effective waste processing, worker 

education and training, and microbiological water quality management (FDA et al., 

1998). Although the plant-foodborne pathogen interaction is an important factor in 

understanding on-farm food safety, a holistic approach that includes agricultural and 

environmental conditions and the plant microbiome as contributors to this interaction will 

lead to a more complete understanding of how to reduce the risk of foodborne pathogen 

contamination of produce.   

 

Without knowing what organisms are present in the phyllosphere and how environmental 

conditions influence the communities there, research cannot move forward to providing 

direct answers that will help farmers in prevention efforts. There is a clear need for 

replicated manipulative studies in the field of phyllosphere microbiology, and with next 

generation sequencing becoming more accessible and affordable, it is now feasible to 
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characterize the complexity of microbial communities in the phyllosphere and to 

investigate influential factors. The application of these methods in the area of food safety 

of fresh produce is still in early stages, and there are many basic questions that need to be 

answered for the field to move forward. Based on the hypothesis that environmental and 

human-driven factors in agriculture may influence the crop microbiome in a way relevant 

to food safety and security, the purpose of this project was to investigate response of 

bacterial community structure and diversity associated with tomato (roots, flowers, 

leaves, and fruit) and cucumber (fruit) to three factors: application of organic and 

synthetic fertilizers, rainfall prior to harvest, and insect exclusion.  

 

The objectives and specific aims of the study were as follows: 

Objective 1: Evaluate the influence of three soil amendments (raw poultry litter, sterile 

poultry litter pellets and vermicompost) on the tomato microbiome as compared to 

mineral nutrition.  

Specific aim 1-1: Compare community composition and structure among 

blossom, fruit, and root surfaces from plants fertilized with a variety of organic 

amendments versus a synthetic fertilizer. 

Specific aim 1-2: Evaluate physiochemical soil characteristics and their 

relationship to bacterial community composition and structure on tomato plant 

surfaces. 

Specific aim 1-3: Determine if relative abundance of taxa of interest for food 

safety, such as Enterobacteriaceae, Listeriaceae, Clostridiaceae and 

Paenibacillaceae are statistically significantly different among treatments. 
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Objective 2: Assess the influence of rain events on bacterial community structure of 

field-grown fresh produce. 

Specific aim 2-1: Profile and compare bacterial communities living on the surface 

of cucumber fruits, tomato leaves, and tomato fruits 4 days before, 1 day after, 

and 4 days after rain events. 

Specific aim 2-2: Determine if relative abundance of taxa of interest for food 

safety, such as Enterobacteriaceae, Listeriaceae, Clostridiaceae and 

Paenibacillaceae shifts over the three time points. 

Objective 3: Evaluate the influence of insect exclusion on bacterial communities 

inhabiting the surfaces of tomato blossoms and fruit.  

Specific aim 3-1: Compare bacterial community structure and diversity between 

tomato fruit and blossoms collected from netted plants and non-netted plants.  

Specific aim 3-2: Identify taxa that are likely introduced or augmented by insect 

visitation to tomato blossoms and fruit.  
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Chapter 2: Literature Review 
 

1. The plant microbiome: Diversity, dynamics, and role in agriculture 
 
Microorganisms, including bacteria, fungi, oomycetes, and viruses, contribute to many 

processes important to human health and economic wellbeing, including global nutrient 

cycling, plant and animal health, and the phytoremediation of toxic chemicals (Ali et al., 

2012; Furnkranz et al., 2008). Increasingly, studies focused on human medical conditions 

include a microbial component, as researchers turn toward the microbiome to explain 

differences in human health outcomes (Clemente et al., 2012; Ley et al., 2005; 

Turnbaugh et al., 2007). Microbes make up a substantial portion of our own biomass and 

play an important role in human disease incidence, obesity, and behavior (Flint et al., 

2012; Sampson and Mazmanian, 2015; Turnbaugh et al., 2009). Similarly, plants support 

numerous and diverse microbial communities that are intimately connected to their health 

and function (Berendsen et al., 2012; Bulgarelli et al., 2013; Lakshmanan et al., 2014; 

Lindow and Brandl, 2003; Philippot et al., 2013; Vorholt, 2012).  The large collective 

genome of microbes associated with plants is often termed the plant’s “second genome” 

(Berendsen et al., 2012) due to the importance of microbes in plant growth and response 

to stress.  

 

In regards to crop production, plant-associated microbial communities influence yield, 

quality, safety, and disease management.  Study of the agricultural plant microbiome is 

therefore relevant to consumers, farmers, and health officials due to its influence on 

human health, economic stability, and food safety. Recent advances in molecular 

technology have changed the state of plant microbiome research, allowing for replicated 
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high-throughput studies under manipulated conditions. These advances have allowed 

scientists to characterize microbiota and interpret functional importance for diverse 

habitats. This literature review examines current and classic research on the plant 

microbiome, with a focus on microbial dynamics of the phyllosphere in relation to 

agriculture.  

2. The phyllosphere and rhizosphere 
 
The interactions between plants and their associated microbes are complex and varied. 

One scientist coined the phrase, “Microbes wear their guts on the outside” (Janzen, 1985) 

to emphasize the importance of microbes in plant growth and defense, and the intimate 

relationship that exists between the two. Research into the community structure and 

function of epiphytic bacteria, fungi, and archaea associated with plants is most often 

divided into two plant regions. The phyllosphere constitutes the aboveground surfaces of 

the plant, mostly composed of the leaves but also including blossoms, fruit, and stems, 

while “rhizosphere” describes the area immediately surrounding plant roots (Vorholt, 

2012). Differences in nutrient availability and environmental pressures between the two 

plant regions contribute to their distinct microbial diversity and community distribution. 

While unique, both the phyllosphere and the rhizosphere support complex microbial 

communities (Bodenhausen et al., 2013; Ottesen et al., 2013). Bacteria are the most 

numerous inhabitants of the phyllosphere and rhizosphere (Bulgarelli et al., 2013; 

Vorholt, 2012), although filamentous fungi and yeasts are also present (Andrews and 

Harris, 2000; Inácio et al., 2002). Bacterial volume is estimated at up to 1011 cells per 

gram in the rhizosphere and up to 108 cells per gram in the phyllosphere (Berendsen et 

al., 2012; Lindow and Brandl, 2003).  
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The phyllosphere is an ephemeral environment compared to the rhizosphere; seasonal 

changes in foliage or differences in annual versus perennial lifestyle can lead to drastic 

habitat changes for microbiota in the phyllosphere (Vorholt, 2012). While rhizosphere 

microbiota may survive in the absence of roots, adjusting to survive in the fairly constant 

conditions of the soil, phyllosphere microorganisms would be left without a comparable 

secondary habitat if, for example, a host plant died or dropped its leaves in the winter 

months. The phyllosphere is a harsh environment, characterized by wild fluctuations in 

nutrients, water availability, and temperature, as well as constant exposure to damaging 

ultraviolet radiation and plant-derived reactive oxygen species (Lindow and Brandl, 

2003; Muller and Ruppel, 2014; Vorholt, 2012). Despite these challenging conditions, 

many microorganisms have adapted to survive in the phyllosphere, on the leaf surface, in 

the leaf apoplast, or on the surface of flowers and fruit (Rastogi et al., 2013). The 

phyllosphere provides an enormous surface area for microbial colonization, comprising 

one of the largest microbial habitats on earth (Bulgarelli et al., 2013; Vorholt, 2012).  

3. Drivers of microbial community structure 
 
Microbial life associated with plants differs across multiple scales, from landscape to 

plant genotype to plant organ microsite.  Many studies have sought to establish a 

hierarchy of importance for potential factors influencing bacterial community structure in 

the phyllosphere and rhizosphere, however results have differed across different host 

plants, locations, and environmental factors.  
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3.1 Plant genotype 
 
Plant genotype has a documented influence on microbial community structure in multiple 

systems (Micallef et al., 2009a; van Overbeek and van Elsas, 2008; Whipps et al., 2008). 

In the rhizosphere, root exudates and root morphology differ across plant species and 

cultivars, shaping the structure and function of rhizosphere microbial communities in 

conjunction with soil type (Berg and Smalla, 2009). Root exudates, including nutrients 

and secondary metabolites, may enhance or decrease survival of certain microbial 

constituents of the rhizosphere. Rhizodeposits used as carbon sources, including sugars, 

mucilage, root border cells, and dead root cap cells, vary in composition and volume 

depending on plant genotype and environment (Jones et al., 2009), as do antimicrobial 

and growth-promoting secondary metabolites (Wink, 2003). From the pool of highly 

diverse microorganisms in the soil environment, plants may recruit certain organisms 

suited to the rhizosphere and beneficial for plant growth and protection, allowing these 

organisms to increase in abundance and activity (Berendsen et al., 2012; Kim et al., 2011; 

Micallef et al., 2009b; Philippot et al., 2013). This recruitment extends to the 

phyllosphere as well, where differences in plant exudates drive microbial activity and 

community structure. Even at the cultivar level, leaf and fruit exudate profiles may differ, 

causing differential success for specific bacteria (Han and Micallef, 2014; Han and 

Micallef, 2016). Geographic location has been identified as a driving factor in many 

studies profiling phyllosphere communities (Belisle et al., 2012; Finkel et al., 2011; 

Perazzolli et al., 2014; Rastogi et al., 2012), however other studies have found limited 

influence of geographic location on phyllosphere communities of plants with the same 

genotype (Redford et al., 2010). Studies have shown that different plant species growing 
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close together in the same soil harbor diverse phyllosphere microbial communities 

(Delmotte et al., 2009; Knief et al., 2012), indicating that plant genotype may be a 

stronger driver of microbial community structure than geographic location.   

3.2 Plant organ 
 
Within a specific plant, microbial abundance and diversity differ between the 

phyllosphere and rhizosphere in general, but differences are clear at even finer scales. On 

tomato plants, microbial diversity has been shown to decrease as distance from the soil 

increases, and surface dwelling microbial communities differ between lower, upper, and 

middle leaves, as well as between blossoms, fruits, and roots (Ottesen et al., 2013). While 

abundance and diversity of phyllosphere microbiota may vary based on factors including 

environmental conditions and plant genotype, several dominant phyla, including 

Proteobacteria, Actinobacteria, Bacteriodetes, and Firmicutes, are generally consistent on 

the leaf surface (Bulgarelli et al., 2013; Rastogi et al., 2013; Whipps et al., 2008).  

Flower-associated microbial communities also may support a fairly consistent core 

microbiome, which contains several of the same bacterial taxa as well as additional 

fungal constituents (Aleklett et al., 2014). Fruit and vegetable surfaces support common 

taxa as well, but diversity and community structure vary by plant type; tree fruits such as 

apples and peaches share similar community structure, as do tomatoes and peppers (Leff 

and Fierer, 2013). At the family level, many produce types support a high abundance of 

Enterobacteriaceae, often in conjunction with a relatively low species richness (Leff and 

Fierer, 2013). This has relevance for food safety, as several foodborne pathogens 

commonly associated with fresh produce outbreaks are classified as Enterobacteriaceae, a 

family apparently well adapted to the phyllosphere. 
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3.3 Plant microsite 
 
At even finer spatial levels, such as between the trichomes and stomata of leaves, or 

between the stigma and style of flowers, microbial communities may be distinct, with 

some microbes being preferentially attracted to certain exudates and characteristics 

specific to these microsites (Aleklett et al., 2014; Leveau and Lindow, 2001; Miller et al., 

2001). In fact, individual microbial species may use different strategies to survive on 

diverse microsite habitats. Transcriptional studies have shown that Pseudomonas 

syringae, a common constituent of the phyllosphere, exhibits motility on the leaf surface 

but not in the apoplast, instead expressing genes that enhance resistance to plant defense 

response in the apoplast (Yu et al., 2013).  Similarly, Methylobacterium extorquens 

expression differs between epiphytic leaves, roots, and synthetic growing medium, 

producing more abundant proteins related to stress response and alternative substrate 

utilization in the phyllosphere (Gourion et al., 2006). In flowers, yeast species differ 

significantly between inner and outer corolla, as well as between floral rewards (nectar 

and pollen) and the rest of the flower structure (Pozo et al., 2012). Microbial structure 

and function appears to be highly specialized to microsites within all plant organs, at 

even the smallest scale. 

3.4 Season and development 
 
Microbial communities can be dynamic throughout the seasons or the life cycle of plant 

tissues, adding a temporal component to the study of the plant microbiome. Apple 

flowers host a diverse array of microbes, with community changes occurring consistently 

over time from before flower opening through flower senescence (Shade et al., 2013).  

Similarly, spinach leaves have shown that leaf-surface dwelling microbial communities 
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become more complex and change in structure throughout the life of the leaves (Lopez-

Velasco et al., 2013). In the rhizosphere of Arabidopsis thaliana, differences in 

abundance of certain phyla were observed between several developmental time points 

(Chaparro et al., 2014; Micallef et al., 2009a). Other studies, however, have found that 

leaf surface-dwelling microbes are fairly consistent over the development of the leaf 

(Delmotte et al., 2009). These studies indicate that the microenvironments present on 

plant surfaces are variable enough to support significantly different communities on 

various temporal, developmental, and spatial scales. However, the relative importance of 

these factors in shaping microbial community structure and diversity remains unclear.  

Clarification of the spatiotemporal dynamics of phyllosphere communities could help 

elucidate the when, where, and why of pathogen infection in plants.  

3.5 Environment and agricultural management 
 
In conjunction with the plant habitat over different spatial and temporal scales, different 

environmental factors and agricultural management practices may contribute to bacterial 

community structure in the phyllosphere. Rainfall, for example, has been linked to 

changes in the prevalence of non-pathogenic indicators of fecal contamination in lettuce 

fields (Xu et al., 2016) and also larger scale bacterial community changes (Copeland et 

al., 2015). The use of organic versus conventional management, encompassing a variety 

of differences in pest and nutrient management approaches, may lead to the maintenance 

of distinct phyllosphere (Ottesen et al., 2009) and rhizosphere bacterial communities 

(Bulluck et al., 2002; Esperschuetz et al., 2007). Studies investigating the individual 

components of these management strategies have produced varied results. Biological and 

chemical pesticide application appears to have little influence on phyllosphere microbial 
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community structure in grape systems (Perazzolli et al., 2014), while copper pesticide 

application had a weak but significant effect on tomato phytobiomes (Ottesen et al., 

2015). Biological soil amendments, used in organic agriculture as sources of plant 

nutrition, have shown some influence on rhizosphere communities (Das and Dhar, 2012; 

Esperschuetz et al., 2007; Jangid et al., 2008; Lavecchia et al., 2015; Peiffer et al., 2013), 

however in some cases the influence of soil was inconsistent and unclear (Gao et al., 

2015; Tatti et al., 2012; Tian and Gao, 2014). In the phyllosphere, the influence of soil 

amendment application and many other agricultural management practices remain to be 

investigated.  

4. Microbial adaptation to the phyllosphere  

4.1 Establishment 
 
Inoculum for initial colonization of the phyllosphere may come from a variety of sources 

including air, water, seed, soil, or animal vectors (Aizenberg-Gershtein et al., 2013; 

Bulgarelli et al., 2013; Lopez-Velasco et al., 2013; Rastogi et al., 2012; Ushio et al., 

2015; Vorholt, 2012). Within plant genotypes, specific organs of the phyllosphere have 

demonstrated core communities, with the same, often plant species- and organ-specific, 

phyla appearing year to year despite aging or newly established hosts (Knief et al., 2010). 

This indicates one or more environmental reservoirs of complex microbial inoculum as 

well as plant characteristics that support the establishment of certain microbes on a 

consistent basis (Vorholt, 2012). For most plants, soil and phyllosphere communities fail 

to share many common constituents, exhibiting clear differences in dominant phyla 

(Bodenhausen et al., 2013; Kim et al., 2012; Knief et al., 2012). Air, another potential 

source of inoculum, may be an important factor in early phytobiome establishment, but 
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its influence may be specific to certain developmental time points or plant species 

(Fahlgren et al., 2010; Maignien et al., 2014; Vokou et al., 2012). The consistency of 

plant microbiome communities across seasons and generations could be partially 

explained by transmission from other nearby plants serving as microbial reservoirs 

(Vorholt, 2012).  Vertical transmission from seed to plant represents another potential 

avenue of inoculum, sometimes termed the “maternal effect.” Lopez-Velasco et al. found 

that some core phyla, including Proteobacteria, Firmicutes, and Acidobacteria, are 

present both in seeds and at multiple stages of spinach plant development. The number of 

distinct OTUs nearly tripled between the cotyledon and full-grown plant stages, however, 

indicating that any maternal effect was only a part of a greater picture, necessitating 

additional sources of inoculum (Lopez-Velasco et al., 2013). Microbial inoculum may 

travel between plants through pollinators and other animal visitors, however more 

research is need to clarify these relationships (Aleklett et al., 2014; Pozo et al., 2012; 

Ushio et al., 2015). How these different sources of inoculum work together with the plant 

to craft the microbiome remains unclear.  

4.2 Adhesion and motility 
 
The vast majority of microbes in the phyllosphere are commensal and do not cause an 

immune reaction in the plant. Most phyllosphere bacteria are non-motile and lack 

flagellin, a commonly detected molecular associated molecular pattern (MAMP) that can 

induce plant immune responses. One extensively studied and common phyllosphere 

microorganism, Pseudomonas syringae, is motile and, indeed, is recognized by plants. 

Instead of adapting to the epiphytic leaf environment by using limited available nutrients, 

P. syringae moves to find nutrients through chemotaxis (Yu et al., 2013). In general, 
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phyllosphere bacteria practice adhesion over motility, often forming multi-species 

biofilms for protection from rainfall, desiccation, osmotic stress, UV radiation, and other 

harsh environmental conditions (Morris et al., 1998; Rastogi et al., 2013). These 

aggregates, made of extracellular polysaccharides, also allow for quorum sensing, which 

contributes to epiphytic growth and success (Carlier et al., 2015). Pseudomonas syringae 

maintains both motility and biofilm-forming abilities in the phyllosphere. Studies have 

shown that aggregate formation in the phyllosphere leads to enhanced survival compared 

to a solitary lifestyle (Monier and Lindow, 2003).  

4.3 Survival 
 
Once established in the phyllosphere, microorganisms have several tools at their disposal 

to enhance survival and enable reproduction. Most exhibit oligotrophic (slow-growing) 

characteristics, which help them adapt to the inconsistent and sparse conditions of the 

phyllosphere (Vorholt, 2012). Some of the most prevalent bacterial colonizers of the 

phyllosphere utilize compounds commonly emitted from leaves to support metabolism 

and enhance protection. Bacteria uptake various forms of nitrogen using amino acid 

transporters (Delmotte et al., 2009). Carbon appears to be more limiting than nitrogen in 

the phyllosphere (Wilson and Lindow, 1994), and microbial communities have diverse 

strategies for acquiring enough carbon. Methylobacterium has been identified as part of 

the core microbiota of several plant species (Delmotte et al., 2009), and it produces 

methylotrophic enzymes that allow the bacteria to use plant-released methanol for 

metabolism (Knief et al., 2012). Microbes unable to metabolize methanol may adopt 

another strategy by releasing indole-3-acetic acid, which loosens plant cell walls and 

stimulates the release of saccharides (Fry, 1989; Lindow and Brandl, 2003). Some 
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bacteria in the phyllosphere produce energy from light to supplement their metabolism. 

Light harvesting bacteriorhodopsins, previously described in exclusively aquatic systems, 

have been identified on the surfaces of leaves from several plant genera (Atamna-Ismaeel 

et al., 2012a; Atamna-Ismaeel et al., 2012b) and are a phylogenetically diverse and 

abundant component of the phyllosphere (Atamna-Ismaeel et al., 2012a).  

 

Aggregate formation and exopolysaccharide release help protect microbes from 

desiccation, but water scarcity also contributes to osmotic stress in the phyllosphere. 

Osmoprotectants, small compounds such as choline and trehalose that balance osmotic 

difference between a cell and its surroundings, may be produced by microbes themselves 

or derived from plants (Chen and Beattie, 2008; Freeman et al., 2010). These 

osmoprotectants enhance survival of epiphytic bacteria in the phyllosphere. 

 

Oxygen from plant photosynthesis as well as light exposure can lead to reactive oxygen 

species (ROS)-related damage to microbial cellular components including nucleic acids, 

proteins, and lipids (Vorholt, 2012). Pigmentation is one strategy by which 

microorganisms limit exposure and avoid this type of damage. Some of the most 

successful colonizers of the phyllosphere, Methylobacterium, Sphingomonas, and 

Pseudomonas, are pigmented (Lindow and Brandl, 2003). One study showed that 

Clavibacter michiganensis mutants deficient in pigmentation exhibit reduced survival 

and abundance in the peanut phyllosphere, while other phyllosphere inhabitants showed a 

range of susceptibilities to UV radiation (Jacobs et al., 2005). DNA repair systems, 

including release of photolyase enzymes help microbes recover from UV-associated 
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damage (Vorholt, 2012). Microbes colonizing flowers are somewhat protected from both 

UV exposure and desiccation due to the structure of the flower (Aleklett et al., 2014), but 

they may risk exposure to antimicrobials released by the flower (Pozo et al., 2012).  

 
Phyllosphere microbiota, though usually commensal, may stimulate immune responses 

from the plant or release of antimicrobial compounds from other nearby microorganisms. 

Both leaves and blossoms release a variety of secondary metabolites with antimicrobial 

properties (Pozo et al., 2012; Wink, 2003), necessitating some form of adaptation of 

phyllosphere microbiota to withstand exposure. Some fungi, including Trichoderma, 

produce hydrophobins, hydrophobic proteins that coat their own cell surfaces and protect 

their hyphal tips from degradation by plant-released compounds. Others produce proteins 

that bind to cellulose, enhancing attachment and enabling modification of the plant cell 

wall (Hermosa et al., 2012).  

5. Constituents of the plant microbiome  

5.1 Commensal plant-microbe associations 
 
Symbiotic relationships such as mutualism, parasitism, and commensalism drive the 

dynamic between plants and their associated microbial communities. The vast majority of 

microbes in the phyllosphere and rhizosphere are commensal, exerting no negative 

influence on plant growth and development and, in fact, often confer a positive effect 

(Bulgarelli et al., 2013). Many microbes benefit by associating with plants, receiving a 

habitat for colonization and exudated phytocompounds for metabolism. Plants may 

benefit from increased growth and enhanced response to biotic and abiotic stress factors.  
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In the rhizosphere, nitrogen fixation has been well documented (Berg, 2009; Bulgarelli et 

al., 2013; Chaparro et al., 2012; Esperschuetz et al., 2007). Rhizobia in the root nodules 

of legumes and free-living bacteria and archaea fix atmospheric nitrogen to a form usable 

by plants, receiving carbon exudates and habitat in exchange for providing this service 

(Philippot et al., 2013). Nitrogen fixation has also been described in the phyllosphere, 

although not nearly as extensively (Freiberg, 1998; Furnkranz et al., 2008). In the soil, 

microbes also contribute to enhanced soil stability, which helps increase water retention 

and uptake. Bacteria, fungi, and yeasts have all shown an ability to release indole-3-acetic 

acid (IAA), an auxin hormone that can stimulate root growth in plants (Berendsen et al., 

2012). By stimulating root growth, these microbes increase the available colonizable 

surface area in the rhizosphere, potentially allowing for expansion of their own 

populations. In the rhizosphere, these characteristics have been extensively studied and 

are now being applied in the field. In the phyllosphere, plant growth promotion has not 

been investigated in depth and represents an avenue for future research.  

 

Induced systemic resistance has been well characterized in the rhizosphere; rhizosphere 

microbes stimulate plant defenses, priming them for pathogen attack (Bulgarelli et al., 

2013; Haas and Defago, 2005; Shoresh et al., 2010; Yogev et al., 2010; Zamioudis and 

Pieterse, 2012). Induced systemic resistance has not been consistently described in the 

phyllosphere, however phyllosphere microbial communities may reduce pathogen 

colonization by acting as a barrier between the plant surface and the environment. Some 

commensals may be more adapted to scavenging nutrients from the phyllosphere and 

may secrete toxic metabolites that reduce pathogen viability. Studies have shown that 
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axenic (sterile) plants are more susceptible to disease compared to naturally colonized 

plants (Innerebner et al., 2011). While the mechanisms are not yet well characterized, it is 

clear that phyllosphere microbiota play a role in reducing pathogen infection in host 

plants. 

5.2 Plant pathogens 
 
Many plant-microbe associations can be beneficial, however pathogenic bacteria and 

fungi in the phyllosphere and rhizosphere can pose a threat to plant productivity and to 

food security. While these pathogenic organisms make up only a small part of the 

phyllosphere and rhizosphere communities, they can have an enormous impact on crop 

yield. In the United States, approximately 10% of crops are lost to plant pathogens each 

year, resulting in a multi-billion dollar economic loss (Arora et al., 2012). These 

pathogens may reduce marketable yield by decreasing growth, distorting crop shape, 

infecting fruit with toxins, or decreasing shelf life. The dynamics of plant pathogens and 

the host immune system have been extensively reviewed (Dodds and Rathjen, 2010; 

Glazebrook, 2005; Jones and Dangl, 2006) and will not be discussed in detail here. 

However, it is noteworthy that some strategies utilized by plant pathogens may be shared 

by other microorganisms in the phyllosphere. The use of a type III secretion system 

(TTSS) appears to be required for many plant pathogens to establish and maintain 

epiphytic populations in the phyllosphere.  This apparatus delivers effector proteins into 

host cells, suppressing the host defense response if undetected by complementary R 

proteins, or turning on effector-triggered immunity (ETI) if recognized (Jones and Dangl, 

2006). Although TTSS may be required for pathogenesis for many plant pathogens, it can 

also be used by plant-growth promoting bacteria to enhance survival in the phyllosphere. 
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Both pathogenic and non-pathogenic growth-promoting bacteria within the genus 

Pseudomonas utilize a type III secretion system apparatus, and some require it for growth 

(Hirano et al., 1999; Preston et al., 2001).  

5.3 Human pathogens 
 
While crop losses due to plant pathogen infection are important to human health in terms 

of food security, a more direct threat exists in the form of human pathogens, which 

usually are not pathogenic to the plant itself but can cause serious disease or even death 

in humans. Human enteric pathogens including Salmonella enterica and Escherichia coli 

O157:H7 have been identified as the disease-causing agent in many recent gastroenteritis 

outbreaks linked to the consumption of fresh produce such as tomatoes, leafy greens, and 

cucurbits (Greene et al., 2008; Teplitski et al., 2011). Although enteric pathogens are 

primarily adapted to live within the gut of animal hosts, many of the most virulent 

microbes have evolved an ability to, at least temporarily, survive on plants (Teplitski et 

al., 2011; Zheng et al., 2013).  

 

While seasonality may have a stronger effect, certain agricultural management factors 

have been associated with increased food safety risk (Marine et al., 2015; Pagadala et al., 

2015; Strawn et al., 2013). It is becoming increasing clear that certain foodborne 

pathogens, such as Salmonella enterica, may be able to survive long-term in the 

environment, as observed in surface water and sediment (Bell et al., 2015; Micallef et al., 

2012). These enteric pathogens have shown an ability to internalize into plant tissues and 

may persist if introduced to the environment through contaminated irrigation water or soil 

(Barak et al., 2011; Guo et al., 2001; Zheng et al., 2013), or through blossom inoculation 
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(Shi et al., 2009). Salmonella colonization of tomato plants is both cultivar-dependent 

(Barak et al., 2011) and organ-dependent (Zheng et al., 2013). Damage to tomato roots 

has been shown to increase internalization rates, and certain serovars differentially 

colonize the flowers, leaves, and roots (Zheng et al., 2013). Type III secretion systems 

are evolutionarily conserved between plant and animal pathogens (Galan and Collmer, 

1999), and studies have shown that TTSS can enhance survival of human pathogens on 

plants (Barak and Schroeder, 2012).  

 

These pathogens have evolved specific capabilities to adapt to the agricultural 

environment and can influence phyllosphere and rhizosphere dynamics (Barak and 

Schroeder, 2012). Flower contamination with enteric pathogens is associated with 

changes in microbial communities associated with resulting fruits, showing that 

pathogens can shape phyllosphere community structure (Shi et al., 2009). Adaptation to 

the plant environment gives these pathogens a competitive advantage, allowing them to 

use plants as vectors to their next host (Barak and Schroeder, 2012). The AgfD gene is a 

master regulator of aggregative behavior in Salmonella enterica, allowing for enhanced 

leaf attachment (Romling et al., 2000). This gene does not enhance virulence in animal 

hosts but does enhance survival on plants, showing that the ability of enteric pathogens to 

survive on plants is not purely due to the presence of conserved mechanisms between 

plant and animal pathogenicity. The coexistence of human and plant pathogens in the 

field can support enhanced survival for enteric pathogens. For example, Xanthomonas 

perforans, causal agent of tomato bacterial spot, suppresses PTI (PAMP triggered 

immunity); when Salmonella is present during X. perforans infection, survival is 
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increased tenfold (Potnis et al., 2014). A better understanding of the complex 

mechanisms by which human enteric pathogens attach to and persist within crop plants 

may lead to the development of targeted prevention strategies and suggestions to farmers 

as to how to best prevent foodborne outbreaks originating in their fields. 

6. Microbial community characterization 

6.1 Culture-independent methods  
 
In light of the impressive influence that microbes have on plant life, it is clear that efforts 

to improve crop yield, disease resistance, and safety against human pathogens in plants 

should take into account microbial contributions to these processes. Historically much of 

the research designed to characterize microbial communities has been dependent upon 

culturing methods, however culturing selects for only those strains that are able to grow 

in a lab setting and can vastly underestimate the diversity and abundance of microbes in 

the environment (Rappe and Giovannoni, 2003). Today, culture-independent methods are 

becoming more widespread and accessible. Using next generation sequencing 

technology, it is possible to isolate and sequence DNA and RNA directly from 

environmental samples, providing a clearer picture of the actual and relative abundance 

of microbiota in the environment as well as the functional activity of each community. 

Sequencing-based microbial characterization is a growing field, and it is somewhat 

unique in the realm of science today in that many studies using these methods are based 

on data mining rather than hypothesis testing (Wooley et al., 2010). Many studies begin 

by comparing two or more conditions, looking to see what differs between the two before 

forming hypotheses and designing follow-up experiments. Advances in technology and in 

the general body of knowledge of the plant microbiome are making replicated studies 
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more possible and applicable and hypothesis testing more feasible (Beattie, 2015; Knight 

et al., 2012). 

 

Sequencing platforms are available from multiple companies; the MiSeq/HiSeq 

(Illumina, San Diego, CA) and 454 (Roche, Basel, Switzerland) platforms are commonly 

used today for whole genome and microbial community analysis, but alternative such as 

PacBio SMRT Sequencing (Pacific Biosciences, Menlo Park, CA) and MinION (Oxford 

Nanopore Technologies, Oxford, UK), are growing in popularity. Questions to address 

when characterizing microbial communities include:  

1. What is the community structure (identification and abundance of OTUs)?  

2. What functions can be carried out (what genes are present)?  

3. What functions are actively being carried out (what transcripts and/or proteins 

are present)?  

4. How are community and structure related?  

5. How might structure and function change under different treatment conditions?  

 

Different techniques must be utilized to address these questions, and it is important that 

the method chosen is best suited to the hypothesis being tested. 

6.2 Amplicon sequencing (16S/18S/ITS) 
 
Ribosomal RNA may be used to characterize bacterial and fungal communities when 

identity and diversity of microbes is of primary interest to the study. This is often called 

amplicon sequencing, as a small region of microbial DNA is amplified from 

environmental samples using PCR, and sequences are compared to a database or 
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assembled de novo to investigate microbial community structure and diversity (Mizrahi-

Man et al., 2013; Muller and Ruppel, 2014). The 16S and 18S regions of the small 

ribosomal subunit of prokaryotic and eukaryotic organisms, respectively, contain both 

highly conserved and highly diverse sequences, making them ideal for constructing 

phylogenies and identifying microorganisms.  The Internal Transcribed Spacer (ITS) 

region may replace 18S in amplicon sequencing of environmental fungi in future studies 

due to enhanced resolution across a broad range of species (Schoch et al., 2012). 

Amplicon sequencing may not be the most robust choice if the objective is to investigate 

functional diversity in microbial communities or activity on a short time scale. DNA may 

persist in the environment from dormant or dead microorganisms, and live organisms 

may contribute to function in the community disproportionately to their numerical 

abundance (Kuczynski et al., 2010). Furthermore, differences in microbial community 

structure may not necessarily indicate differences in function; resilience and redundancy 

within communities may allow communities to maintain function under changing 

conditions (Allison and Martiny, 2008). While this method is far from perfect, it is the 

most widely used for microbial characterization, and reference databases and data 

analysis pipelines are currently superior to those for other –omics technologies.  

 

7. Phyllosphere research in agriculture: Future directions 
 
An enhanced understanding of the environmental and human-driven factors that influence 

beneficial microbial behavior in the phyllosphere could be used in agriculture to enhance 

productivity and limit environmental impact while maintaining food safety. 

Consideration of the plant’s “second genome” could in the future be incorporated into 
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efforts to improve crop yield and disease resistance (Bakker et al., 2012). Individual 

microbial taxa associated with plants frequently exhibit several unique plant growth and 

health promoting characteristics; a more holistic approach to the use of microorganisms 

in agriculture could be adopted with the use of “plant probiotics,” capitalizing upon these 

stacked characteristics (Berlec, 2012). In the same way that “rhizoengineering” has been 

suggested, “phylloengineering” could be utilized at the interface between the 

environment and the aboveground plant surface. Using this approach, a plant’s 

microbiome would be considered as significantly as the plant’s own genotype and 

phenotype.  

 

The potential of phyllosphere microorganisms to reduce the negative environmental 

impacts of agricultural production is an exciting avenue for future research. Plant 

breeding efforts could focus on those plants that actively recruit microbes efficient in 

phytoremediation (Ali et al., 2012). The use of plant growth promoting microorganisms 

could lead to reduced use of synthetic fertilizers, which in turn would lead to decreased 

runoff and eutrophication of waterways. Harnessing the ability of microorganisms to 

stimulate plant defense and antagonize pathogens could lead to reduced use of pesticides, 

and an associated decrease in human health risk associated with applying and consuming 

these pesticides. Perhaps microbial communities could even be used to enhance the 

healing properties or nutritional content of plants; research has shown that 

phytotherapeutic compounds attributed to medicinal plants are often in fact produced by 

their associated microbial communities (Koeberl et al., 2013).  
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Microbial characterization of plants commonly implicated in food safety incidents may 

assist with the prevention of foodborne outbreaks, as well as increase the speed of trace 

back in the event of an outbreak. Characterization of microbial communities associated 

with plants naturally contaminated with enteric pathogens will provide insight into the 

microbial ecology that allows for the introduction and survival of these pathogens. 

Indicator species may be identified as precursors or sentinels to Salmonella or other 

pathogen infections. If these indicator species are present in larger amounts than the 

contaminant, or if they are easier to detect in field labs, they could be valuable resources 

for prevention and detection of foodborne disease. Tomatoes have frequently been 

associated with Salmonella outbreaks, and at least twice in the past 11 years the outbreak 

strain has been traced back to on-site irrigation ponds (Greene et al., 2008). California is 

another major tomato-producing state, and yet out of the 17 outbreaks of Salmonella in 

tomatoes in the US over the past 13 years, only 1 originated in California (Ottesen et al., 

2013). Analysis of the microbial communities across these geographical areas may 

provide clues as to the biological factors that cause the disparity between east coast and 

west coast food safety risks. Another potential benefit of characterization of microbes 

associated with at-risk food crops is the discovery of biocontrol organisms. If some 

organisms seem to be highly enriched in healthy, disease-free plants and deficient in 

infected plants, these could be investigated for commercial potential as microbial 

inoculants to encourage plant growth and prevent pathogen infection. Biocontrols for 

plant pathogens do not appear to have lasting effects on phyllosphere and rhizosphere 

microbial communities and could represent an environmentally sound approach to 

foodborne pathogen control in the field (Perazzolli et al., 2014; Sylla et al., 2013).  
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While the rhizosphere has been studied more extensively than the phyllosphere, the 

importance of phyllosphere communities and their relationship to crops should not be 

overlooked.  The phyllosphere exists at the interface between the aboveground 

environment and, in most cases, the marketable portion of crops. There are many avenues 

for pathogen infection in the phyllosphere, including water, air, soil particles, rain splash, 

animal vectors, and human workers in the field (Barak and Schroeder, 2012). If the goal 

of agricultural research is to increase yield and decrease human and plant pathogen 

infection, the phyllosphere is an essential component to consider for future technological 

advances.  Investigations into how farming practices influence phyllosphere communities 

at different spatial and temporal scales will allow for better predictive capabilities and 

risk assessment.  
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Chapter 3: Solanum lycopersicum (tomato) hosts robust 
phyllosphere and rhizosphere bacterial communities when 
grown in soil amended with various organic and synthetic 
fertilizers 
 

1. Introduction 
 
Plants support diverse microbial communities above and belowground that are uniquely 

suited to the plant habitat and intimately connected to plant health. Microbial 

communities living on plant surfaces are species- and sometimes genotype-specific 

(Bulgarelli et al., 2012; Micallef et al., 2009a; Peiffer et al., 2013), and vary across spatial 

and temporal scales.  In the rhizosphere, the region of soil closest to the root structure, 

root exudates drive composition and structure of bacterial communities, distinguishing 

them from those of the surrounding bulk soil (Bais et al., 2006; Micallef et al., 2009b). In 

the phyllosphere, dominated by leaves but also including stem, blossom, and fruit 

surfaces, harsh and fluctuating environmental conditions present challenges to bacterial 

epiphytes (Vorholt, 2012). Phyllosphere microbiota may initially be gleaned from air 

(Fahlgren et al., 2010; Maignien et al., 2014), nearby plants (Vorholt, 2012), or even 

from seed (Lopez-Velasco et al., 2013) early in life.  As the plant develops, the influence 

of these factors may diminish, with other factors such as plant host and insect visitation 

becoming more influential (Aleklett et al., 2014; Ushio et al., 2015; Vorholt, 2012).  In 

addition to differing across plant species (Knief et al., 2010; Leff and Fierer, 2013), 

microbial assemblages vary widely by micro-niche. Within a single tomato plant, leaf, 

blossom, fruit, stem, and root surfaces hosted unique bacterial and fungal communities, 

and leaf community diversity decreased with increasing distance from the soil (Ottesen et 

al., 2013), suggesting that soil may be a source for microbial communities in the 
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phyllosphere. At an even smaller scale, bacterial communities on specific plant organs 

may shift in response to nutrient gradients and water availability, such as in close 

proximity to stomata and leaf trichomes (Leveau and Lindow, 2001; Remus-Emsermann 

et al., 2012), or on particular floral structures within blossoms (Aleklett et al., 2014). 

Phyllosphere diversity is consistently lower than in the nutrient-rich rhizosphere, which is 

not as subject to extreme stresses such as UV exposure and desiccation (Bodenhausen et 

al., 2013; Ottesen et al., 2013). Both phyllosphere and rhizosphere bacterial community 

structures shift over time, showing clear successional dynamics throughout growing 

seasons and plant growth stages (Micallef et al., 2009a; Redford and Fierer, 2009; Shade 

et al., 2013; van Overbeek and van Elsas, 2008).  

 

While plant host is known to be a strong driving factor of bacterial community 

composition in the rhizosphere and phyllosphere, the relative contributions of agricultural 

management practices are less clear. One such management practice is the incorporation 

of biological soil amendments of animal origin, which are economical, environmentally 

friendly, and effective sources of soil nutrients for agricultural production. These 

amendments, including fresh and composted manure, are often incorporated before 

planting and sometimes used as side dressing throughout the season.  In addition to 

accruing organic matter and improving soil health, biological soil amendments could 

serve as a source of bacteria for the plant microbiome.  Amendments could introduce 

beneficial microorganisms that directly or indirectly reduce plant pathogen and insect 

damage (Hadar and Papadopoulou, 2012; Liu et al., 2007; Mehta et al., 2014), or human 

pathogens that could undermine food safety (Islam et al., 2005; Mootian et al., 2009; Oni 
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et al., 2015). Investigations into the influence of soil amendment application on plant 

microbiota have focused primarily on the rhizosphere. Compost or manure has been 

reported to affect rhizosphere microbial community structure and diversity in some cases 

(Das and Dhar, 2012; Esperschuetz et al., 2007; Jangid et al., 2008; Lavecchia et al., 

2015; Peiffer et al., 2013), but in many studies these effects are inconsistent or seasonally 

dependent (Gao et al., 2015; Tatti, 2012; Tian and Gao, 2014).  On the other hand, the 

influence of fertilizer application on phytobiomes remains to be studied in depth. Diverse 

soil microbiomes and soil management strategies cause specific shifts in leaf metabolome 

composition, and in Brassica plants these shifts in turn influenced herbivorous insect 

damage and diversity of insect pests (Badri et al., 2013; Staley et al., 2010).  We 

hypothesize therefore that amendments applied to the soil may seed the phyllosphere with 

new microbes, especially in lower parts of the plant close to or touching the ground, and 

also potentially lead to changes in plant physiology, all of which could influence the 

diversity of microbes on plant surfaces.  

 

To investigate whether the use of organic fertilization on fields prior to planting can 

induce above and belowground changes in the harvest-time tomato microbiome, we 

evaluated synthetic fertilization and three organic fertilizers during tomato cultivation: 

fresh poultry litter, commercially available sterilized poultry litter pellets, and 

vermicompost. The impact of these organic fertilizers on tomato rhizobacterial 

communities, and  blossom and fruit-associated bacterial communities was described 

using Illumina-based 16S rRNA gene sequencing. 
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2. Materials and Methods 

2.1 Field design 
 
Field studies were conducted at the University of Maryland’s Wye Research and 

Education Centre (WyeREC) in Queenstown, MD, USA. In both 2013 and 2014, soil 

amendments appropriate for both organic and conventional growing operations were 

applied in spring, 2 weeks prior to planting. In 2013, 4 rows (randomly chosen from a 

total of 8 rows) were amended with fresh poultry litter mixed from 2 anonymous Eastern 

Shore sources (Appendix 2, Figure 1). In 2014, research plots were located in the same 

field, but 5 new rows were prepared between 2013 row locations, so there was no 

additive effect of amendment application over 2 seasons (Appendix 2, Figure 2). Within 

each row in 2014, 3 soil amendments and a synthetic fertilizer treatment were assigned 

randomly and applied to 1 of 4 plots within each row. The following soil amendments 

were chosen for their ready availability to local growers and for their potentially diverse 

bacterial profiles: fresh poultry litter (mixed from 2 anonymous local sources), sterile 

poultry litter pellets (microSTART60, Perdue AgriRecycle, LLC, Seaford, DE), and 

vermicompost (locally produced from domestic vegetable waste through windrow 

composting and subsequent digestion by red wriggler worms). One small bag of each soil 

amendment was transported back to the lab on ice and frozen at -80°C for bacterial 

community analysis. In both 2013 and 2014, mineral fertilization was applied as an 

inorganic fertilizer control. Nutrient levels were equalized as much as possible across 

treatments, using supplemental mineral fertilizer as needed to reach a target nutrition 

profile of 140N:56P:84K kg/ha). To reduce the probability of drift, rows were spaced 4.6 

m apart, with a 1.5 m buffer zone between plots within rows. Field plots were mulched 

with black plastic and drip irrigated. Treatments had 4 (2013) or 5 (2014) independent 
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replicate plots, each planted with 8-10 tomato plants.  The tomato cultivar used was 

‘BHN602’, a commonly used commercial, indeterminate variety with resistance to 

Verticillium wilt, Fusarium wilt, and tomato spotted wilt virus. Plants were started from 

seed in the greenhouse and transplanted into the field after approximately 6 weeks of 

growth and 2 weeks after soil amendment.   

2.2 Sampling for microbial community analysis 
 
Field samples were collected in August 2013 and September 2014, when plants had 

blossoms and fruit at varying levels of maturity. Three red-ripe fruit, 6-10 blossoms, and 

the full root ball with adhering soil were randomly sampled from one plant within each 

plot. Fruit and blossom samples were aseptically collected into Ziploc bags using gloved 

hands and ethanol-sterilized pruners. After fruit and blossom sampling, each tomato plant 

was cut at the lower stem and removed from the plot. Soil around the roots was loosened 

using an ethanol-sterilized trowel, and the roots were manually pulled from the ground 

with gloved hands. Loosely adhering bulk soil was firmly shaken from the root ball into a 

Ziploc bag (to be discarded), and the remaining root with closely adhering rhizosphere 

soil was moved into the final sample bag. Plant samples were transported on ice to the 

lab, where they were stored at 4°C and processed within 24 h. In 2013 only, bulk soil was 

collected from each plot for microbial community analysis.  For each plot, a composite of 

10 soil cores, collected 10 cm from the base of each tomato plant at a depth of 15-20 cm, 

was collected at planting date in early June using ethanol-sterilized soil corers. Bulk soil 

samples were transported on ice to the lab, where they were hand-homogenized and 

frozen at -80°C.  
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2.3 Plant surface washing, DNA isolation and amplicon sequencing 
 
Aseptically collected samples were washed with sterile deionized water and sonicated for 

6 min to dislodge microbial cells from the plant surface. Rhizosphere washes were 

pelletized at 1773 g for 30 min at 4°C using a Sorvall centrifuge with an SA-600 rotor. 

Blossom and fruit washes were filtered through sterile 0.22 µm nitro-cellulose filters 

(Nalgene Nunc International Corporation, Rochester, NY). Pellets and filters were frozen 

at -80°C until further processing. Total community DNA was extracted from frozen 

rhizosphere pellets and bulk soil samples using the Powerlyzer Powersoil kit (MoBio 

Laboratories, Carlsbad, CA) and from plant surface-wash filters using the Powerwater kit 

(MoBio Laboratories). Bacteria represent the most abundant inhabitants of the 

phyllosphere, therefore community profiling targeted the 16S region of the prokaryotic 

30S small ribosomal subunit, which contains both highly conserved and highly variable 

regions. In 2013, the V4 region of the 16S rRNA gene was amplified using 515F-806R 

primers as recommended by the Earth Microbiome Project (Caporaso et al., 2012), and 

libraries were sequenced on an Illumina MiSeq (v2) using 251 bp paired-end sequencing. 

In 2014, the V1-V3 region of the 16S rRNA gene was chosen with the aim of obtaining a 

higher resolution within the Enterobacteriaceae, a group with high significance for food 

safety and plant pathology. This region was amplified using 8F-533R primers (Ottesen et 

al., 2013), and sequencing was carried out using 300 bp paired-end sequencing on the 

Illumina MiSeq (v3), following Illumina’s protocol for 16S Metagenomic Sequencing 

Library Preparation (Illumina part # 15044223 rev. B). PhiX (50% in 2013; 25% in 2014) 

was spiked into each run to provide diversity necessary for cluster generation.  
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2.4 Sequencing data analysis 
 
Quality filtering and sequence analysis were carried out using QIIME v. 1.8 (Caporaso et 

al., 2010b) and Mothur v. 1.34 (Schloss et al., 2009). Alignment was performed using 

PyNAST (Caporaso et al., 2010a) and the Greengenes Core reference alignment 

(DeSantis et al., 2006; McDonald et al., 2012), and taxonomy assignment utilized the 

RDP Classifier 2.2 (Wang et al., 2007). Reads that failed to match the reference database 

were clustered de novo using UCLUST (Edgar, 2010). Prior to alignment, sequences 

went through several quality filtering steps to remove chimeras (Edgar et al., 2011), non-

target sequences (chloroplast and mitochondria), and sequences less than 100 bp in 

length. A final operational taxonomic unit (OTU) table was created excluding unassigned 

sequences and singletons.  

 

To ensure comparability between samples, within each comparison all samples were 

rarefied to a common sequencing depth as recommended by Weiss et al. (Weiss et al., 

2015). After analyzing the data at several rarefaction depths, numbers were chosen that 

allowed the inclusion of as many replicates as possible without loss of statistical signal. 

Plant organ types were analyzed separately to assess the influence of soil amendment 

treatment and bulk soil properties on microbial diversity for each of these diverse niches. 

Comparisons across all sample types from 2014 were performed at a depth of 2,450 

sequences per sample. When analyzing plant parts separately, the rarefaction level was 

adjusted: 1,670 for fruit, 1,980 for blossoms, and 5,950 for the rhizosphere. Rhizosphere 

communities tended to have higher alpha diversity compared to phyllosphere 

communities, and as such higher thresholds were chosen for rhizosphere samples when 
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possible. In 2013, rarefaction was employed as follows: 5,570 for soil, 4,545 for 

rhizosphere, 6,330 for blossom, 3,875 for fruit samples. Comparisons including the full 

set of samples were carried out with 3,606 sequences per sample..  

 

UniFrac was utilized in QIIME to calculate beta diversity metrics weighted by 

phylogenetic distance (Chang et al., 2011; Lozupone and Knight, 2005). After filtering to 

include only OTUs present in at least 75% of samples, as recommended by QIIME 

documentation, significant differences in relative abundance among OTUs were assessed 

through a Kruskal-Wallis test utilizing an FDR correction (group_significance.py in 

QIIME). ANOSIM, an analysis of similarity test, was implemented using R’s Vegan 

package (Oksanen et al., 2013) to assess significance of treatment influence on microbial 

community structure (999 permutations per test). Pairwise comparisons within treatments 

were carried out using a 2-sided 2-sample t-test of distance through QIIME’s 

make_distance_boxplots.py script. Within the blocking factor of row, the influence of 

soil amendment treatment was assessed in PC-ORD v.6 (McCune and Mefford, 1999) 

using 4,999 permutations of a nested PERMANOVA with a Bray-Curtis distance 

measure at the genus level. Pearson’s correlation coefficients were generated to assess 

soil texture and water activity gradient influence on rhizosphere genus-level beta 

diversity using PC-ORD. Principal coordinate analysis (PCoA) plots were created to 

visualize beta diversity across treatments utilizing a weighted UniFrac distance matrix. A 

tree displaying the differences between plant organs and soil amendments was created 

using FastTree (Price et al., 2009) and visualized using FigTree v1.4.2 

(http://tree.bio.ed.ac.uk/software/figtree/). 
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Sequencing data were deposited in the NCBI Sequence Read Archive (SRA) database 

under accession number SRP074759. 

2.5 Soil properties 
 
In 2014, bulk soil was collected from the top 10 cm of each plot using ethanol-sterilized 

scoops. Soil samples were sent to Waters Agricultural Lab, Inc. (Camilla, GA) for 

analysis. The following soil properties were measured for soil from each plot: available 

P, exchangeable K, Mg, Ca, and H, soil pH, cation exchange capacity (CEC), percent 

base saturation of cation elements, organic matter, and soil texture (% sand, silt, and 

clay). Water activity (Aw) was assessed using a Pawkit water activity meter (Aqualab, 

Pullman, WA). Significant differences between treatments were assessed using ANOVA 

and pairwise comparisons utilized Tukey’s HSD test (JMP Pro v.11).  

 

3. Results  

3.1 Sequencing run metrics 
 
Sequencing of samples collected over two years was performed separately. Sequencing of 

2014 samples resulted in 9.3 million total sequences for each of the forward and reverse 

reads (for the 60 samples taken through the full analysis). Reads 1 and 2 were merged at 

an average efficiency of 58%. For all unmerged read pairs, read 1 was included for 

further analysis. After removing low quality or non-target sequences (less than 100 bp 

long, sequences identified as phiX, chimeric, chloroplast, or mitochondrial), 3.4 million 

reads remained for OTU picking. For 2013 samples, sequencing on the MiSeq v2 

platform resulted in 1.4 million total sequences for the 56 samples included in this study. 
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Merging efficiency was 84%, and after quality filtering 1.3 million sequences remained 

for further analysis.  

3.2 Plant organ as a driver of bacterial communities 
 
Principal Coordinates Analysis (PCoA) performed through QIIME and analysis by R-

Vegan function ANOSIM showed that rhizosphere, blossoms, and fruit supported distinct 

bacterial communities, with the greatest distance observed between rhizosphere soil and 

the two phyllosphere groups (Figure 1). Plant organ drove variation in bacterial 

community structure more than any other factor in 2013 (R=0.87, p=0.001, n=56) and 

2014 (R=0.93, p=0.001, n=60). When 2013 and 2014 data were analyzed together, 

sample type (soil, rhizosphere, blossom, fruit) consistently explained the majority of 

variation among samples (R=0.69, p=0.001, n=116). Year also had a significant, albeit 

weaker, effect on bacterial community composition (R=0.37, p=0.001, n=116).  

 

At the phylum level, the largest difference between above- and below-ground bacterial 

communities was observed in the Proteobacteria, which were much more dominant on 

fruit and blossoms compared to bulk soil and rhizosphere in both 2013 and 2014. In 

2013, blossom and fruit surfaces were dominated by Pseudomonadaceae (50% on 

blossom and 40% on fruit) and Enterobacteriaceae (39% and 26%, respectively). 

Dominant taxa in rhizobacterial communities in 2013 belonged to the Bacillaceae 

(13.6%) and Pseudomonadaceae (12.5%), both of which were highly enriched compared 

to the surrounding bulk soil. In 2014, Pseudomonadaceae were elevated in blossoms 

compared to roots, however they were much less prevalent than in 2013, at 9% relative 

abundance. Instead, Xanthamonadaceae dominated on blossoms (32.6%), while fruit 
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supported a high relative abundance of Rhizobiaceae (14.3%), mostly explained by the 

genus Agrobacterium, at 13.6%. Both the Pseudomonadaceae and Xanthamonadaceae 

families contain pathogens that can infect tomato; it is possible that these pathogens 

occurred in the field, however resolution is not high enough to differentiate between 

pathogenic and non-pathogenic members of this taxa.  

 

Members of the Paenibacillaceae, a group known to include several bacteria with 

biocontrol activity against plant and human pathogens, were detected in all sample types 

over both years, with highest prevalence in the rhizosphere (~1% relative abundance both 

years).  The rhizosphere samples harbored the highest phylogenetic diversity, with an 

average of 1,764 unique OTUs (97% identity) identified at a rarefaction level of 2,450 

sequences per sample in 2014. Alpha (within sample) diversity in blossoms and fruit was 

significantly lower, with 357 and 693 OTUs identified at the same rarefaction level, 

respectively (p=0.003) in 2014. 

 

Figure 1. Principal Coordinates Analysis (PCoA) illustrating differences in bacterial 

community structure on the surfaces of tomato blossoms, fruit, rhizosphere, and soil in 

2013 (A) and 2014 (B). A distance matrix weighted by abundance and utilizing UniFrac 
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distances was used to calculate principle coordinates. Percent variation explained by each 

principle coordinate is marked on each axis. For each year, the strength of the sample 

type grouping is denoted by p values for the ANOSIM R statistic, representing the 

strongest correlation as it approaches 1.  

3.3 Influence of soil amendment on tomato-associated bacterial communities 
 
The data from 2013 indicated a potentially weak influence of poultry litter amendment on 

tomato blossom (R=0.34, p=0.076, n=8) and rhizosphere (R=0.16, p=0.051, n=16), but 

not fruit (R=0.04, p=0.319, n=16), bacterial communities (Figure 2). Bacterial 

communities profiled from bulk soil did not respond to soil amendment (R=0.02, 

p=0.293, n=16), however row location in the field appeared to influence bulk soil 

bacterial community structure (R=0.58, p=0.002, n=16).  

 

In 2014, to better control for the confounding influence of soil parameters and strengthen 

the study design, the field was blocked by row (with all treatments incorporated into plots 

within each row).  We were also able to introduce greater replication and two more soil 

amendment treatments. Despite these changes and the use of a longer 16S rRNA gene 

fragment for sequencing, no effect of soil amendments on the tomato microbiome was 

observed in 2014. Soil amendment was not a significant factor for bacterial community 

structure in the rhizosphere (Figure 2), and no significant differences were observed at 

any taxonomic level. Likewise, in 2014, blossom and fruit surfaces hosted convergent 

bacterial communities across soil amendment treatments (Figure 2). When analyzed 

within field row in a nested perMANOVA utilizing a Bray-Curtis distance measure, soil 

amendment had no influence on 2014 bacterial community structure on any tomato plant 
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surface studied (p>0.05). To verify that the 2013 detection of a weak soil amendment 

treatment effect on blossom-associated bacterial community structure was not attributable 

to a higher sampling depth in 2013, 2013 blossom data was reanalyzed at the 2014 

rarefaction level of 1,980 sequences per sample. The weak effect of poultry litter 

application on blossom microbiome remained (R=0.34, p=0.095, n=8).   

 

Figure 2. Influence of soil amendment application on tomato plant surface-associated 

bacterial communities at time of tomato harvest in 2013 (top) and 2014 (bottom). 

Principle Coordinates Analysis utilizing a distance matrix weighted by OTU abundance 

and UniFrac distance between related taxa was performed to compare the beta diversity 

between tomato rhizosphere, fruit, and blossom bacterial communities from plots 

amended with poultry litter (L), poultry pellets (P), vermicompost (V), or mineral 
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nutrition (C). To compare similarity between groups, R and p values were generated using 

ANOSIM. As R approaches 1, samples collected from plots treated with the same soil 

amendments are more similar to each other than to those collected from differently 

amended plots.  

3.4 Microbiome analysis of organic soil amendments 
 
The soil amendments themselves supported phylogenetically diverse bacterial 

assemblages (p<0.001, UniFrac Monte Carlo significance test).  Vermicompost harbored 

a highly diverse bacterial community most similar to that of the rhizosphere, while the 

poultry litter and poultry pellets were characterized by a less diverse community 

dominated by several shared families (Figure 3).  Dominant taxa in vermicompost were 

Hyphomicrobiaceae, Acidimicrobiales and Bacillaceae.  On the other hand, the most 

predominant groups in poultry manure and poultry litter pellets were the 

Staphylococcaceae, Dermabacteraceae, Lactobacillaceae and Aerococcaceae (Figure 3). 

While bacterial assemblages in poultry pellets were most similar to those in fresh poultry 

litter, a large proportion of the DNA isolated from the former samples could likely have 

persisted from non-viable organisms killed during the sterilization process.  

 

Despite differences in bacterial communities among these diverse soil amendments, a 

significant differential shift in bacterial community structure or diversity in the mature 

plant rhizosphere or phyllosphere at harvest was not observed. Additionally, application 

of diverse soil amendments did not lead to changes in most physico-chemical soil 

characteristics, the only measurable difference being an elevated Cation Exchange 

Capacity (CEC) in vermicompost-amended plots (Table 1).  
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Figure 3. Phylogenetic relationship of tomato plant organ surfaces and starting soil 

amendments. The top 20 most abundant families within each sample type are shown, 

scaled up to 100%, at the tips of the tree. The tree was created in FastTree and R utilizing 

UniFrac distances. 
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3.5 Impact of edaphic factors on tomato-associated bacterial communities 
 
While soil amendment application did not exert a drastic influence on tomato-associated 

bacterial communities, soil physico-chemical characteristics may have played a role. 

Rhizosphere samples taken from field rows 4 and 5 supported phylogenetically similar 

bacterial communities, as did those from rows 2 and 3, and both pairs differed from row 

1, regardless of soil amendment treatment applied (Figure 4B).   

 

Table 1. Differences in soil characteristics among 2014 tomato plots considering application of different soil 

amendments and field location by row and column, as determined by ANOVA (p values are shown).    

Soil Factor Soil Amendmenta Rowb Columnb Trends 

Sand (%) 0.399 0.002*  0.752 Decreasing from row 1 to 5 

Clay (%) 0.678 0.108 0.642 

 Silt (%) 0.572 0.0003* 0.574 Increasing from row 1 to 5 

pH 0.414 0.408 0.35 

 Organic Matter (%)  0.178 0.435 0.456 

 CEC (meq/100g) 0.031* 0.713 0.491 Highest in vermicompost plots 

Water Activity (Aw) 0.794 0.084 0.297 Highest in rows 4 and 5 

P (kg/ha) 0.343 0.488 0.315 

 K (kg/ha) 0.991 0.401 0.021* Increasing from column 1 to 4 

Ca (kg/ha) 0.207 0.193 0.976 

 ENR (kg/ha) 0.224 0.382 0.469 

 

Mg (kg/ha) 0.061 0.018* 0.983 

Higher in row 5 than 2 and 3; Higher in 

amended plots compared to controls  

aBlocked by row 
bBlocked by soil amendment 
*p<0.05	
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Analysis of bulk soil collected from all plots showed a clear gradient in soil texture 

(p<0.001) and Mg concentration (p=0.016) through the field, coupled with a weakly 

significant gradient in water activity (p=0.080) (Table 1, Figure 4A). Shifts in 

rhizosphere beta diversity were correlated with continuous silt (R2=0.52, p=0.005) and 

inversely correlated with sand (R2=0.48, p=0.009) gradients in the field.  A weak 

association with the water activity gradient was also observed but was not statistically 

supported (R2=0.12, p=0.14). These soil characteristics could be important factors 

affecting bacterial community structure in the rhizosphere; both water availability (Fierer 

et al., 2003; Reichel et al., 2014) and soil texture (Schreiter et al., 2014) have been 

previously identified as drivers of rhizosphere community structure, and both of these 

factors likely modulate the availability of nutrients such as Mg.  

 

While row and its associated soil characteristics tended to influence beta diversity both in 

the rhizosphere and on ripe fruit surfaces (Figure 4B), statistically significant differences 

were observed at the family level only in the rhizosphere (Figure 5). Rhizosphere soil 

collected from rows 4 and 5 hosted lower percentages of Bacillaceae and 

Mycobacteriaceae and higher percentages of Oxalobacteriaceae and Pseudomonadaceae 

compared to the other rows. Shifts in fruit-associated beta diversity differed by row as 

well, with samples from rows 1 and 5 clustering together and rows 3 and 4 forming 

another cluster, with both clusters diverging from row 2. While row did not significantly 

drive blossom-associated bacterial beta diversity, rows 3 and 4 tended to cluster more 

closely together, as did rows 1 and 2.  
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A closer look at the relative abundance of taxa across rows in each sample type revealed 

that common trends in beta diversity across plant organs could not be attributed to shifts 

in the abundance of the same taxa (Figure 5). Although levels of Xanthomonadaceae 

were consistent across all rhizosphere samples, relative abundance appeared to be slightly 

higher on blossoms, increasing by at least 20% in rows 4 and 5 compared to the rest of 

the field (although this variation was not significant). On fruit, Xanthomonadaceae was 

highest in rows 3 and 4 compared to the rest of the field, with row 5 being lowest. While 

row was used as a blocking factor throughout sample processing, no other factor 

(placement on PCR plate, DNA extraction date/lot of kit, indexing primers used) had a 

significant influence on beta diversity. Location in the field based on the perpendicular 

gradient (column) also had no significant effect on any sample type, and only one soil 

characteristic, K, differed significantly between columns in the field (Table 1).  
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Figure 4. Soil texture (bars) and water activity (line graph) by tomato row in the field (A), 

and within plant organ beta diversity by row, represented by PCoA plots (B). Letters in 

bars representing sand and silt fractions in panel (A) denote significant differences in 

those soil components (p<0.05). Legend in panel (B) shows symbols for rows 1-5.  R and 

p values were calculated through ANOSIM using a Bray-Curtis distance metric. As R 

approaches 1, samples within a row are more similar to each other than to samples from 

other rows. 
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Figure 5. Mean relative abundance of families identified from tomato rhizosphere, fruit, 

and blossom surfaces from rows 1-5 in 2014. Families with a relative abundance greater 

than 0.01 for at least one row within each tomato organ are shown (after filtering to 

OTUs present in >25% of each sample type). FDR-corrected p values from a Kruskal-

Wallis test are given for differences within a row. Relative abundances are coded by 

color, with the highest abundances marked in dark green and the lowest abundances 

marked in light yellow.  

 

4. Discussion 
 
Using a phylogenetic approach, this study found that the application of three locally 

available organic soil amendments—fresh poultry litter, sterile poultry litter pellets, and 

Family FDR_P 1 2 3 4 5 Family FDR_P 1 2 3 4 5
Bacillaceae 0.035* 0.156 0.102 0.110 0.060 0.050 Xanthomonadaceae 0.268 0.247 0.339 0.263 0.457 0.661
Hyphomicrobiaceae 0.110 0.072 0.077 0.075 0.072 0.061 Pseudomonadaceae 0.598 0.070 0.150 0.033 0.113 0.182
Sphingomonadaceae 0.849 0.076 0.065 0.059 0.062 0.060 Microbacteriaceae 0.396 0.248 0.087 0.127 0.016 0.016
Micrococcaceae 0.054 0.060 0.059 0.015 0.022 0.020 Enterobacteriaceae 0.332 0.020 0.020 0.228 0.171 0.025
Bradyrhizobiaceae 0.091 0.031 0.024 0.024 0.042 0.039 Sphingomonadaceae 0.396 0.123 0.067 0.119 0.070 0.025
Streptomycetaceae 0.041* 0.018 0.038 0.048 0.033 0.018 Rhizobiaceae 0.407 0.118 0.059 0.087 0.010 0.006
Rhodospirillaceae 0.057 0.016 0.023 0.029 0.024 0.030 Shewanellaceae 0.396 0.025 0.021 0.082 0.073 0.035
Gaiellaceae 0.376 0.018 0.029 0.026 0.021 0.022 Gammaproteobacteria;Other 0.191 0.066 0.103 0.007 0.014 0.009
Microbacteriaceae 0.501 0.026 0.027 0.017 0.022 0.024 Pseudomonadales;Other 0.616 0.037 0.034 0.045 0.028 0.014
Comamonadaceae 0.047* 0.037 0.014 0.011 0.024 0.028 Comamonadaceae 0.534 0.006 0.018 0.001 0.034 0.017
Oxalobacteraceae 0.035* 0.018 0.010 0.011 0.030 0.031 Methylobacteriaceae 0.268 0.016 0.020 0.001 0.003 0.007
Mycobacteriaceae 0.040* 0.023 0.025 0.025 0.013 0.010 Phyllobacteriaceae 0.326 0.003 0.015 0.000 0.001 0.000
Xanthomonadaceae 0.412 0.015 0.014 0.017 0.024 0.018 Burkholderiales;Other 0.191 0.003 0.015 0.000 0.000 0.000
Paenibacillaceae 0.081 0.019 0.015 0.027 0.014 0.012 Bradyrhizobiaceae 0.276 0.003 0.011 0.000 0.000 0.000
Acidobacteria-6;o__iii1-15;f__ 0.141 0.013 0.014 0.017 0.020 0.021
Rhizobiales;f__ 0.055 0.022 0.013 0.013 0.018 0.018 Rhizobiaceae 0.423 0.105 0.206 0.116 0.228 0.207
Rhizobiales;Other 0.092 0.013 0.019 0.021 0.016 0.012 Sphingomonadaceae 0.222 0.243 0.155 0.121 0.131 0.208
Chitinophagaceae 0.354 0.017 0.013 0.015 0.019 0.015 Microbacteriaceae 0.105 0.194 0.084 0.232 0.068 0.246
Burkholderiaceae 0.069 0.027 0.010 0.004 0.017 0.013 Pseudomonadaceae 0.772 0.126 0.131 0.080 0.080 0.094
RB41;f__ 0.055 0.017 0.003 0.005 0.019 0.023 Xanthomonadaceae 0.137 0.039 0.037 0.132 0.158 0.036
Nocardioidaceae 0.058 0.003 0.013 0.012 0.013 0.010 Enterobacteriaceae 0.230 0.061 0.077 0.135 0.034 0.019
Alphaproteobacteria;Other 0.037* 0.014 0.012 0.011 0.006 0.006 Shewanellaceae 0.100 0.007 0.038 0.074 0.083 0.003
Phyllobacteriaceae 0.091 0.008 0.006 0.007 0.015 0.014 Pseudomonadales;Other 0.121 0.033 0.071 0.046 0.016 0.020
Solibacteraceae 0.291 0.010 0.008 0.009 0.010 0.013 Methylobacteriaceae 0.137 0.021 0.056 0.012 0.064 0.024
Solirubrobacterales;f__ 0.102 0.009 0.012 0.012 0.008 0.007 Oxalobacteraceae 0.243 0.030 0.049 0.005 0.009 0.026
Solibacterales;f__ 0.060 0.007 0.008 0.009 0.011 0.011 Gammaproteobacteria;Other 0.222 0.006 0.030 0.013 0.014 0.006
Caulobacteraceae 0.206 0.006 0.011 0.010 0.008 0.009 Comamonadaceae 0.156 0.017 0.006 0.003 0.015 0.021
Pirellulaceae 0.145 0.005 0.007 0.008 0.010 0.010 Sphingobacteriaceae 0.222 0.018 0.013 0.002 0.000 0.011
Burkholderiales;Other 0.037* 0.004 0.005 0.004 0.010 0.017 Bradyrhizobiaceae 0.521 0.002 0.001 0.000 0.034 0.002
Actinomycetales;Other 0.280 0.010 0.008 0.007 0.008 0.005 Alcaligenaceae 0.222 0.002 0.012 0.009 0.014 0.000
Pseudomonadaceae 0.035* 0.005 0.002 0.001 0.010 0.019 Micrococcaceae 0.103 0.015 0.001 0.001 0.001 0.017
Betaproteobacteria;o__;f__ 0.042* 0.004 0.005 0.007 0.008 0.011 Rhodobacteraceae 0.121 0.025 0.000 0.000 0.004 0.003
Alphaproteobacteria;o__;f__ 0.037* 0.004 0.002 0.004 0.013 0.011 Rhizobiales;Other 0.250 0.007 0.002 0.004 0.016 0.005
Enterobacteriaceae 0.265 0.001 0.002 0.000 0.003 0.003 [Weeksellaceae] 0.262 0.004 0.012 0.002 0.000 0.005

Actinomycetales;Other 0.105 0.001 0.000 0.004 0.013 0.002

Row Row
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vermicompost—did not exert a remarkable differential influence from synthetic fertilizer 

on tomato rhizosphere, blossom or fruit-associated bacterial communities when applied 

before planting. At harvest time, tomato plants supported bacterial communities that were 

plant organ-specific but generally independent of soil amendment. This finding indicates 

that tomato plants are robust hosts to epiphytic bacteria with the ability to maintain a 

consistent selective pressure on plant-associated microbiota, despite changing agricultural 

inputs. Although we observed no effect attributable to soil amendment, our study was 

limited to one time point, and differences in plant-associated microbiomes in response to 

soil amendment may have existed earlier during plant development.  Studies of the 

cucumber and bean rhizosphere found that microbial community response to compost 

amendments was strong during early plant establishment but decreased throughout the 

season as plants matured (Copeland et al., 2015; Gao et al., 2015).  This suggests that 

over time plant-mediated pressures override the influence exerted by the soil 

amendments, however, additional research is needed to determine the contribution of 

such agricultural inputs to the crop microbiome early in plant development.  

 

Above-ground, the use of diverse organic soil amendments did not lead to consistent 

changes in microbial community structure or relative abundance of bacterial taxa. In 

2013, the application of poultry manure may have shifted blossom- and rhizosphere-

associated bacterial community structure but not relative abundance of specific taxa. This 

effect was not detected in 2014. Weather patterns and field management practices were 

similar between 2013 and 2014 sampling periods, but the field setup in the first year of 

sample collection did not include replication within rows. It is possible that the difference 
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in effect could be attributed to field gradients, or other factors that we did not measure. In 

any case, our findings do suggest that interactions with one or more unidentified factors 

may occur that could augment the influence of the organic fertilizers used in this study.  

 

Although fertilizer type appeared to be a less significant factor than expected, by contrast, 

location in the field exerted a measurable effect on crop-associated bacterial assemblages. 

Statistically significant increases in silt and sand content across the field from rows 1 to 5 

were associated with gradual changes in soil water activity, which in turn were paralleled 

with shifts in rhizobacterial community structure. Relative abundance measures of some 

taxa were significantly different across these soil characteristic gradients. Previous work 

has reported the effect of edaphic factors on the rhizosphere.  Soil organic matter was a 

factor for cucumber rhizobacterial community structure, whereas compost use exerted no 

long-term impact (Tian and Gao, 2014).  On the other hand, a study of the grape 

microbiome showed that the use of compost over several years, leading to changes in 

physico-chemical soil characteristics, did not induce changes in the rhizosphere 

microbiome (Tatti, 2012).  Shifts in phyllosphere bacterial communities from different 

rows were less dramatic compared to rhizosphere samples, with significant differences in 

beta diversity but not relative abundances of bacterial taxa observed. Soil conditions, 

such as C:N ratio and pH have previously been shown to influence phyllosphere 

microbial community structure (Zarraonaindia et al., 2015). Our results support this 

trend, although we observed a weaker response in the phyllosphere compared to the 

rhizosphere. Fruit surface bacterial community groupings somewhat followed the 

gradient of increasing water activity and changing soil texture from rows 1 to 5, but 
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additional associations were noted, showing that at least one additional factor (again 

associated with field location) was a strong driver of the tomato microbiome above-

ground. Microbial communities collected from fruit surfaces from rows 1 and 5 were 

statistically similar, sharing a high prevalence of certain families such as 

Sphingomonadaceae and Microbacteriaceae. While border rows were employed in the 

study design to attenuate any edge effect, rows 1 and 5 were still closest to the edge of 

the field, which was flanked on each side by roads used by farm vehicles. Dust from 

passing vehicles may have influenced microbial diversity on fruit surfaces on the outer 

rows, causing them to host similar bacterial communities despite different soil conditions. 

 

In this study, soil amendments were applied to supplement existing bulk soil nutrition as 

an alternative to synthetic nutrition alone. Manure- or compost-based amendments may 

be chosen for nutrient management in organic or conventional growing operations due to 

their widespread availability, affordable cost, and effectiveness in releasing nutrients 

slowly throughout the season. Many organic growers use animal-derived fertilizer (fresh 

or composted manure) as a primary source of plant nutrition, and it has been posited that 

organically grown produce could therefore have a higher risk of contamination with 

enteric human pathogens. Many consumers on the other hand assume that organically 

grown produce is “safer” than its conventional counterpart (Berlin et al., 2009; Williams 

and Hammitt, 2001).  In actual fact, studies do not tend to support this – many studies 

comparing the microbiological safety of conventional versus organic produce tend to 

show no differences in microbiological safety risk (Bourn and Prescott, 2002; Diez-

Gonzalez and Mukherjee, 2009; Magkos et al., 2006; Marine et al., 2015; Pagadala et al., 
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2015). Many of these studies have used bacterial indicators of fecal contamination, such 

as generic E. coli and fecal coliforms, to assess risk, however these indicators have been 

shown to have little to no correlation with the presence of pathogens (Pachepsky et al., 

2014; Wu et al., 2011). Better and more comprehensive methods are needed to assess the 

relative risk of agricultural management practices, including use of manure, on produce 

safety.  

 

By understanding the ecological influence of biological soil amendment use on plant-

associated microbial communities, we will come closer to understanding how certain 

nutrient management practices influence food safety risk in agriculture. Samples of soil 

amendments and rhizosphere soil, blossoms and fruit were analyzed for the foodborne 

pathogens Salmonella enterica and Listeria monocytogenes (data not shown).  No 

foodborne pathogens were detected from the soil amendments used in this study, so the 

potential for transmission to the field and survival throughout the season could not be 

assessed. Instead, we investigated the potential for soil amendment application to directly 

or indirectly influence the makeup of bacterial assemblages in the tomato rhizosphere, 

and on blossom and fruit surfaces, finding that location of the plant in the field and plant 

organ were much more influential. 

 

5. Conclusions 
 
Investigating the impact of soil edaphic characteristics on the tomato microbiome was not 

the aim of this study, but the effect of row (and its associated soil texture and water 

activity gradients) was notable, especially in contrast to the apparent lack of influence of 
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soil amendments. While the plant host itself, and the organ-specific niches it provides, 

regulated bacterial community structure to a large extent, this study showed that field 

location and associated soil characteristics had a stronger influence than poultry litter 

fertilizer or vermicompost.  The effect was more marked belowground, but certain shifts 

were also observed in phyllosphere communities.  This study suggests therefore that in 

the short term, poultry litter-based manure and vermicompost amendments applied to soil 

before transplanting of seedlings are not important determinants of the tomato 

microbiome at the time of harvest.  On the other hand, location in the field, which may be 

subject to variable environmental conditions such as changes in soil characteristics or air 

quality, may be important factors to evaluate.  This segues to possible effects of long-

term organic fertilization, which tends to build organic matter over time and alters 

physical characteristics, which would be expected to exert important influences.  Long–

term studies are needed to test this hypothesis, determine whether such changes are also 

specific to plant developmental stage, and how these complex factors contribute to crop 

health and safety.   
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Chapter 4: Response of tomato and cucumber epiphytic 
microbiomes to rainfall 
 

1. Introduction 
	
Microbiome analyses of fruits and vegetables are revealing diverse bacterial assemblages 

associating with various plant organs (Jackson et al., 2013; Leff and Fierer, 2013; Ottesen 

et al., 2013).  Plant microbiomes are dynamic and undergo successional changes with 

plant development (Micallef et al., 2009a), possibly with new introductions occurring 

throughout the plant life cycle.  Several bacterial reservoirs for the phyllosphere 

microbiome have been reported, including the air (Vorholt, 2012), insect pollinators 

(Ushio et al., 2015), seed (Lopez-Velasco et al., 2013), other nearby plants (Vorholt, 

2012), and meteorological conditions (Rastogi et al., 2012).  The impact of the latter on 

fresh produce crop microbiomes is of particular interest, due to the highly variable nature 

of weather-related events, variation due to geography, and anticipated changes in 

precipitation patterns in the coming years due to climate change (Huntington, 2006).  

Increased rainfall and humidity often favor the development of plant disease 

(Lamichhane et al., 2015; Thompson et al., 2013). Similarly, the prevalence of several 

foodborne pathogens including pathogenic Escherichia coli, Campylobacter jejuni, 

Salmonella enterica, and Bacillus cereus has been correlated with elevated environmental 

temperature and humidity (Kim et al., 2015; Semenza et al., 2012). In trials assessing the 

fate of E coli, fecal coliforms and enterococci applied to the lettuce phyllosphere, 

bacterial decline rates were slower under moderate and regular rain patterns, and faster 

following a heavy rain event (Xu et al., 2016). At the community level, one study 

suggested that rainfall events may coincide with drastic changes in the leaf surface 
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microbiomes of canola plants, although changes due to plant development could not be 

detangled in this study (Copeland et al., 2015).  Some soil microbial communities are 

influenced by drying and wetting frequencies, especially those not normally exposed to 

large fluctuations in soil moisture (Bapiri et al., 2010; Fierer et al., 2003).  

Rainfall may shift the microbial profile of phyllosphere communities through direct 

seeding of microbes present in rainwater, splash from surrounding soil, increasing water 

availability, or by washing off loosely adhered microbes, creating opportunities for others 

to fill their former niche. Airborne biological particles, including bacteria and fungi, may 

act as ice or cloud nuclei, particles around which rain droplets form. Levels of 

bioaerosols are elevated during rain events (Huffman et al., 2013), and in fact plants have 

been suggested as “cloud seeders” (Morris et al., 2004). Airborne microbes, classified as 

bioaerosols, may be transferred to plant surfaces directly via rainfall or indirectly from 

standing water after rainfall. Salmonella enterica serovar Typhimurium is capable of 

aerosolizing from puddles and colonizing tomato plants following simulated rain events 

(Cevallos-Cevallos et al., 2012b).  Rain splash dispersal can facilitate the transfer of 

human enteric bacteria from bulk soil to leaf and fruit surfaces (Monaghan and 

Hutchison, 2012) even with the use of plastic mulch as a barrier (Cevallos-Cevallos et al., 

2012a). Other microbes including plant pathogens are similarly capable of aerosolizing 

and retaining viability, sometimes incorporating aerosolization as part of their lifecycle 

(Morris et al., 2004; Morris et al., 2008).  To garner a more comprehensive understanding 

of the impact of rain on the phytobiome of fresh produce crops that are vulnerable not 

only to plant disease but also colonization by human pathogens, we characterized the 

epiphytic bacterial communities dwelling on two commercially important fresh produce 
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crops.  A temporal assessment of the epiphytic microbiomes of commercially cultivated 

tomato fruit (carpoplane) and leaves (phylloplane) surrounding two rain events and 

cucumber carpoplane surrounding one rain event was conducted.  

2. Materials and Methods 
	

2.1 Sample collection 
	
Samples were collected from an established Maryland farm, under agricultural cultivation 

for 40 years. Tomato (Solanum lycopersicum  cultivar ‘Christa’) and cucumber (Cucumis 

sativus cultivar ‘Sweet Success’) plants were grown on black plastic mulch and drip 

irrigated throughout the season. Pest control and fertilizer management were conducted 

according to typical management practices for the farm. Samples were collected in 

September 2015, on 5 dates surrounding 2 rain events. At each sampling, tomato fruit 

(n=7, 3 fruits per sample) and leaves (n=7, 2 compound leaves per sample) and cucumber 

fruit (n=8, 1 fruit per sample, first 3 dates only) were aseptically collected in Ziploc bags 

and transported on ice in a cooler to the lab, where they were stored at 4°C until 

processing on the following day.  

2.2 DNA isolation and amplicon sequencing  
	
Sterile deionized water was added to sample bags. Submerged samples were hand 

massaged through the bag for 30 s then sonicated for 3 min to dislodge bacterial cells 

from the carpoplane and phylloplane. Samples were hand massaged again and sonicated 

for an additional 3 min before filtration. Carpoplane and phylloplane washes were filtered 

through sterile 0.22 µm nitro-cellulose filters (Nalgene, Rochester, NY), and filters were 

frozen at -80°C until further processing. Total community DNA was extracted from 
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filters using the MoBio Powerwater kit (MoBio Laboratories, Carlsbad, CA). The V1-V3 

region of the 16S rRNA gene was chosen for use in bacterial community profiling 

because preliminary use suggests a high resolution within Enterobacteriaceae, a group 

with high significance for food safety and plant pathology. This region was amplified 

using 8F-533R primers (Ottesen et al., 2013), and sequencing was carried out using 300-

bp paired-end sequencing on the Illumina MiSeq (v3). Illumina’s protocol for 16S 

Metagenomic Sequencing Library Preparation was followed for all samples (Illumina 

part # 15044223 rev. B). PhiX (25%) was spiked into each run to provide diversity 

necessary for cluster generation.  

2.3 Sequencing data analysis  
	
Quality filtering and sequence analysis were carried out using QIIME v. 1.8 (Caporaso et 

al., 2010b) and Mothur v. 1.34 (Schloss et al., 2009). Prior to alignment, sequences went 

through several quality filtering steps to remove chimeras (Edgar et al., 2011), non-target 

sequences (chloroplast and mitochondria), and sequences less than 100 bp in length. 

Sequences were aligned to the Greengenes Core Set (DeSantis et al., 2006; McDonald et 

al., 2012) using PyNAST (Caporaso et al., 2010a), and taxonomy assignment utilized the 

RDP Classifier 2.2 (Wang et al., 2007). Reads that failed to match the reference database 

were clustered de novo using UCLUST v. 1.2.22 (Edgar, 2010).  

 

To ensure comparability between samples, sample datasets within each comparison were 

subsampled to the lowest common sequencing depth (Weiss et al., 2015). Sample types 

(cucumber fruit, tomato fruit, tomato leaves) were analyzed separately to assess the 

influence of rainfall events on bacterial diversity for each of these niches. The rarefaction 
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level was adjusted for each sample type to: 28,685 for cucumber fruit, 15,440 for tomato 

fruit, and 17,375 for tomato leaves. For comparisons of all sample types, rarefaction was 

set at 15,440.  

 

Beta (between sample) diversity was assessed using both unweighted distance matrices 

and matrices weighted by relative taxon abundance. Phylogenetic distance was 

incorporated into both distance matrices using UniFrac (Chang et al., 2011; Lozupone 

and Knight, 2005), both produced in QIIME.  Adonis (999 permutations), a 

nonparametric MANOVA from R’s Vegan package, was implemented to assess 

significance of treatment influence on bacterial community structure. A 2-sided 2-sample 

t-test was employed for pairwise comparisons of bacterial community structure on 

specific dates. Using Nonmetric Multidimensional Scaling (NMDS) in R’s Vegan 

package, plots were created to visualize beta diversity across treatments, with 95% 

confidence ellipses added using R’s ggplot package. A summary tree showing the 

UniFrac distances between the average bacterial community structure of each sample 

type by sampling date combination was created using neighbor joining through FastTree 

(Price et al., 2009) and visualized using FigTree v1.4.2 

(http://tree.bio.ed.ac.uk/software/figtree/). 

 

Alpha (within sample) diversity was assessed in QIIME by Faith’s phylogenetic diversity  

(PD) metric (Faith, 1992), calculated using Fast UniFrac (Hamady et al., 2010).  Alpha 

rarefaction curves showing OTU count by sampling depth were generated by repeatedly 

(10 iterations), randomly sampling subsets of OTU tables in increasing number from 10 
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sequences to the specified maximum sampling depth. To compare alpha diversity 

between groups of samples, 2-sample t-tests were conducted using 999 permutations per 

comparison in a Monte Carlo approach with a Bonferroni correction. Alpha diversity 

analyses were performed at sampling depths equal to those used for beta diversity 

comparisons.   

2.4 Weather data 
	
Daily precipitation measurements were obtained from the National Oceanic and 

Atmospheric Administration website (www.noaa.gov), using climatological data 

collected at the Damascus, Maryland weather station, located 9 km from the sample site. 

Only limited weather data was available from the Damascus station, so additional 

weather measurements, including temperature, barometric pressure, and wind speed, 

were acquired from the Montgomery County Airport Automated Weather Observing 

Station in Gaithersburg, Maryland. The weather station is operated by the Federal 

Aviation Administration, and administered by NOAA (National Centers for 

Environmental Information, Asheville, NC), and data was accessed through Weather 

Underground (www.wunderground.com). 

3. Results 
	

3.1 Sequencing metrics 
	
Sequencing on MiSeq v3 resulted in 3.7 million reads from the 94 multiplexed samples 

included in this study. Reads averaged a length of 463 bases, with an average Q score of 

35 and an average of 46,605 reads per sample (±15,136). Reads 1 and 2 were merged at 

an average efficiency of 83%. For the unmerged reads, read 1 was included for further 
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analysis. Quality filtering for low quality and non-target sequences removed ~6% of the 

dataset, leaving 3.6 million reads for downstream analysis. 

3.2 Weather 
	
Before the study began, limited rainfall (~1 mm) had fallen since a 21 mm rain event on 

8/20, 3 weeks prior to Rain 1. The first rain event (Rain 1) resulted in 9.14 mm of 

precipitation, and the second event (Rain 2) reached 9.65 mm. Fluctuations in 

temperature, barometric pressure and wind speed were also noted (Figure 1).  The highest 

daily temperature was recorded on 9/9, and a wind gust occurred 9/13 around sampling 

time. Barometric pressure was low on 9/9 and 9/13 compared to the other sampling dates. 

Rain 1 was accompanied by thunder and lightning.  

 

Figure 1. September 2015 weather data from Montgomery County Airport in 

Gaithersburg, MD, located 71 km from the study site.  Base image was provided by 

Weather Underground (www.wunderground.com/history/), with source data from 

NOAA’s Global Surface Hourly database (National Centers for Environmental 

Information, Asheville, NC).  Dates of sampling (month/date) and Rain 1 (R1) and Rain 

2 (R2) are marked. 
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3.3 Cucumber carpoplane 
	
On the cucumber carpoplane, alpha diversity increased significantly following Rain 1, as 

measured by both Faith’s Phylogenetic Diversity (PD) (p=0.033) and observed OTUs 

(p=0.030), surging from an average of 1,293 (±306) to 1,743 (±138) OTUs (Operational 

Taxonomic Units with 97% sequence similarity) per sample, a 34.8% increase (Figure 2A 

and B). Four days after Rain 1, alpha diversity remained elevated compared to pre-rain 

levels (p=0.024 and p=0.030 for PD and observed species, respectively), with an average 

of 1,766 (±281) OTUs per cucumber.  

				 				

1	

R1 R2
9/9 9/13 9/17 9/22 9/25
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Figure 2: Alpha diversity across sampling dates for cucumber fruit and tomato fruit and 

leaves. In panel A, the number of OTUs classified at the 97% identity level for each 

sampling date are marked at 10 intervals approaching the maximum sampling depth, with 

the variation between 10 iterations marked with error bars. In panel B, box and whisker 

plots show Faith’s Phylogenic Diversity metric for each sampling date, with the median 

marked as a horizontal line, the box encompassing the interquartile range, and the 

whiskers showing range excluding outliers. Different letters denote significantly different 
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(Bonferroni-corrected p<0.05 from a 2-sample t-test) PD measures, as between sampling 

dates within each sample type. 

 

In addition to an increase in the bacterial OTU count on cucumber fruit following rain, a 

significant change in bacterial community structure was observed for both weighted 

(R2=0.251, p=0.001) and unweighted (R2=0.140, p=0.001) analyses (Figure 3A-B). 

Cucumber fruit samples collected 4 days prior to Rain 1 supported bacterial communities 

distinct from those identified 1 day after Rain 1 (p<0.001, Bonferroni-corrected from 2-

sample t-test). However, although alpha diversity remained elevated 4 days after Rain 1, 

beta diversity largely returned to pre-rain community structure. Samples collected 4 days 

after Rain 1 hosted communities indistinguishable from pre-rain (p=1) and 1-day post-

rain (p=0.150) samples (Figure 3A-B).   
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Figure 3: NMDS plots reveal influence of rain on cucumber and tomato-associated 

bacterial community structure. Non-Metric Multidimensional Scaling was applied to 

unweighted (including taxal identification only) and weighted (including taxal 

abundance) UniFrac distance matrices to compare bacterial community structure before, 

1 day after, and 4 days after two rain events. One sampling date, 9/17/15, is represented 

in Rain 1 as the 4 Day Post-rain sample group and in Rain 2 as the Pre-rain sample group. 

R2 values, generated through 999 iterations of Adonis, a non-parametric MANOVA, 

represent the percent variation explained by differences in sampling date for Rain 1 and 

Rain 2.  
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Forty-three genera not observed in pre-rain cucumber carpoplane samples were identified 

in samples collected 1 day post-rain (Figure 4, Supplementary Table 1). Of these, 28 

genera were detected 4 days post-rain as well. By contrast, 35 genera observed in pre-rain 

samples were not detected 1 day post-rain, but 19 of these were observed again 4 days 

post-rain. All of the potentially introduced or eliminated genera were present at less than 

0.01% relative abundance.  

 

 

Figure 4. Bacterial genera associated with cucumber and tomato carpoplanes on 3 dates 

surrounding Rain 1. Genera present on 1, 2, or all 3 dates from 9/9 to 9/17 were tallied 

and represented in a Venn diagram. The list of ephemeral (present on only 1 or 2 dates) 

genera summarized here can be found in Supplementary Tables 1 and 2.  

 

In addition to the introduction of new taxa, changes in the abundance of established taxa 

were observed following Rain 1 (Figure 5). Xanthamonadaceae increased from 0.7% to 

5.8% relative abundance following rain, dropping to 1.5% 4 days after rain (FDR-
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corrected p=0.041). Oxalobacteriaceae experienced a similar increase, from 0.6% to 

6.5%, but in this case abundance remained high after 4 days, at 5.4% relative abundance 

(FDR-corrected p=0.011). Similarly, Paenibacilliaceae and Comamonadaceae, initially 

present at less than 0.1% relative abundance, at least quadrupled in relative abundance 

following rainfall, remaining elevated 4 days later (FDR-corrected p=0.041 and 0.011, 

respectively). Relative abundances for several of the most dominant bacterial families on 

the cucumber surface declined or increased following rainfall, though these differences 

were not statistically significant. Sphingomonadaceae decreased from 20% to 9% relative 

abundance following rainfall, but recovered 4 days later to 14%. Similarly, the abundance 

of the Microbacteriaceae diminished following rainfall, resurging to even higher levels 

later. Enterobacteriaceae demonstrated an opposite shift, increasing 1 day after rain from 

13% to 16%, later returning to 12% relative abundance (Figure 5). 

 

At the genus level, Enterobacter was significantly different across sampling dates, 

growing in relative abundance from 0.002% to 0.05% 1 day post-rain and then reducing 

to 0.03% 4 days post-rain (FDR-corrected p=0.035).  Acidovorax, a genus including the 

causative agent of bacterial fruit blotch on cucurbits, was not detected in pre-rain samples 

but was detected at low levels 1 day (0.01%) and 4 days (0.006%) post-rain (FDR-

corrected p=0.035).  
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Figure 5: Phylogenetic relatedness and family-level taxonomic profiles of all sample 

types across the study period. A summary tree, including all taxa present at more than 

0.1% relative abundance, was created for each sampling date from the average taxonomic 

profiles of cucumber fruit (n=8), tomato leaf (n=7), and tomato fruit (n=7) surface 

washes. The tree was created using the neighbor joining method from a weighted UniFrac 

distance matrix in QIIME v1.8 and visualized in FigTree v1.4.2. Summarized taxonomic 

profiles created by QIIME v1.8 are shown at the tips of the trees, also excluding taxa 

present at less than 0.1% relative abundance.  

3.4 Tomato carpoplane 
	
Following Rain 1, alpha diversity on the tomato carpoplane resembled the dynamics seen 

on cucumbers. Observed OTU count increased from 885 (±148) to 1,161 (±84) OTUs per 

sample (p=0.050) from 9/9 to 9/13, however this increase was not statistically supported 

(p=0.200) when phylogenetic relatedness and abundance metrics were included using the 

PD measure (Figures 2C and D). Four days after Rain 1, alpha diversity by both measures 
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was indistinguishable from pre-rain and 1 day post-rain levels (p>0.05), at 1,079 (±177) 

OTUs per sample. Following Rain 2, observed OTU count remained elevated compared 

to pre-Rain 1 (p=0.03 and p=0.02 for 9/22 and 9/25, respectively) but did not 

significantly increase beyond 9/17 levels. Analysis of the same dates by PD suggested 

that across the sampling period, alpha diversity was statistically significantly different 

only between 9/9 and 9/25 (p=0.04).    

 

Beta diversity of the tomato carpoplane did not necessarily follow the same trend 

observed on cucumber fruit. There was a weak overall effect of sampling date on 

bacterial community structure (R2=0.172, p=0.028). Pairwise comparisons reveal that 

tomato fruit samples collected on the first sampling date 9/9, 1 day prior to Rain 1, hosted 

communities that differed in structure only from those collected on 9/22 (p=0.025), 1 day 

after Rain 2, and 9/25 (p=0.041), 4 days after Rain 2.  When tomato fruit data were 

analyzed separately for Rain 1 and Rain 2, weighted comparisons revealed no differences 

between samples collected before, immediately after, and 4 days following rain.  

However, when NMDS was applied to unweighted distance matrices on composition data 

only, a weak effect was observed for both rain events (Figures 3C-F), with pre-rain and 4 

day post-rain samples differing significantly for Rain 2 (p=0.009).  

 

At the genus and family level, several low abundance (<1%) taxa differed in relative 

abundance across sampling date, but fluctuations in relative abundance did not appear to 

be related to rain event proximity. At the family level, relative abundance of 

Burkholderiaceae, Xanthobacteriaceae, and Beijerinkiaceae were significantly different 
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across sampling dates (FDR-adjusted p=0.025 for all). Relative abundance of 

Burkholderiaceae and Beijerinkiaceae steadily increased (0.0003% to 0.005% for 

Burkholderiaceae, 0.001% to 0.01% for Beijerinkiaceae) over the course of the sampling 

period. Relative abundance of Xanthobacteriaceae increased over the first 3 dates but 

decreased for the last 2 dates.   For the 3 dates surrounding Rain 1, tomato fruits collected 

on each day supported unique genera not observed on any other date, with 9/17 hosting 

the most unique genera (Figure 4, Supplementary Table 2).   

3.5 Tomato phylloplane 
	
On tomato leaf surfaces, both alpha and beta diversity remained largely consistent 

regardless of proximity to rainfall, with an average of 982 OTUs per sample (Figures 2E 

and F). Across the full sampling period, date collected did not significantly influence 

bacterial community structure at a rarefaction level of 17,375 sequences per sample 

(R2=0.124, p=0.384), however unweighted NMDS analysis of Rain 2 data suggests a 

difference between tomato phylloplane bacterial community structure collected pre-rain 

and 4 days post-rain (R2=0.113, p=0.044) (Figure 3J).  No taxa shifted in relative 

abundance throughout the sampling period, however 4 days following Rain 2, tomato leaf 

sample communities were more varied compared to those collected either before 

(p=0.001) or immediately after (p=0.004) Rain 2 (Figure 3I-J). The UniFrac distance 

between averaged sample groups from each collection date suggest a weak shift in 

community structure over the course of the sampling period. UniFrac distance of samples 

collected on subsequent dates from 9/9 increased modestly but steadily (Figure 5), 

however this was not statistically supported by Adonis. 
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3.6 Cucumber versus tomato fruit 
	
The 2 fruit species studied hosted comparable numbers of bacterial OTUs, supporting an 

average of 1,118 (±196) OTUs on tomato and 1,208 (±255) on cucumber fruit (p=0.278 

for observed OTUs, p=0.851 for PD). Bacterial community structure, however, differed 

significantly between the 2 fruit types (R2=0.282, p=0.001). Several of the most dominant 

taxa differed in relative abundance between cucumber and tomato fruit surfaces, 

including Psuedomonadaceae, Xanthomonadaceae, Sphingomonadaceae, and 

Moraxellaceae (FDR-adjusted p<0.001 for all). Tomato fruit were dominated by 

members of the Pseudomonadaceae (23.8%) and Microbacteriaceae (15.4%), while 

cucumbers supported high levels of Microbacteriaceae (14.6%), Enterobacteriaceae 

(14.0%), and Sphingomonadaceae (14.6%) (Figure 5). Cucumber carpoplane bacterial 

community evenness was higher compared to tomato carpoplane communities ; the five 

most abundant taxa on tomato fruit surfaces made up 72.3% of total bacterial diversity, 

compared to 61.2% on cucumber.  

4. Discussion and Conclusions 
	
In this study, phytobiome analysis of cucumber and tomato plant surfaces using 16S 

rRNA gene amplicon sequencing allowed us to assess the impact of rainfall on epiphytic 

bacterial communities at the time of crop harvest.  This analysis demonstrated an increase 

in bacterial species diversity on cucumber and tomato fruit surfaces following rain 

events, potentially accompanied by shifting bacterial community dynamics. On the 

cucumber and tomato carpoplanes, several new bacterial species were introduced 

following rainfall, maintaining populations with low abundance in the days following 

rain. On cucumber fruit surfaces, several of the most dominant taxa increased or 
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decreased in relative abundance following rainfall, often fully or partially returning to 

pre-rain levels within 4 days.  Furthermore, overall bacterial community structure on 

cucumber fruits shifted significantly in response to rain, when measured both when 

incorporating phylogenetic diversity of bacteria present (unweighted UniFrac) and when 

assessing only the relative abundance and relatedness of bacterial OTUs (weighted 

UniFrac). On the other hand, despite the observed sustained increase in diversity, 

bacterial community profiles of the tomato fruit surface were statistically similar before 

and immediately following rain events for comparisons including both phylogenetic 

relationships and relative abundance of taxa. Tomato fruit samples collected 1 and 4 days 

after the second rain event supported bacterial communities distinct from the first pre-rain 

sampling date. An additive effect considering multiple rain events could explain these 

differences, however other environmental or developmental factors could have played a 

role as well. Unlike fruit surface communities, tomato leaf surface community structure 

and diversity remained largely consistent across all sampling dates. A weak shift in 

community structure was observed in the phylloplane over the course of sample period, 

similar to that seen on tomato fruits, however no significant differences were detected. 

The diminished effect on leaves could have been due to the variation in texture on leaves 

compared to fruits, resulting in heightened protection from rain and rain-associated 

environmental factors.  

 

Compared to results seen on tomato, microbiota living on the cucumber carpoplane 

seemed to be more responsive to weather-related changes. Exposure to the elements 

could explain this effect. Cucumbers were grown on plasticulture on the ground, while 
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tomatoes were staked upright; while tomato fruit were somewhat shielded by foliage, 

cucumber fruit were much less protected. Cucumber fruit lying directly on plastic mulch 

were left both more exposed to direct rainwater contact and closer to the soil, increasing 

the potential for splash.  Newly introduced species may have originated from rain or 

transferred via splash or wind from soil or nearby plant parts. While the sampling dates 

were selected to surround rain events, other weather dynamics during the sampling period 

could not be controlled for and likely influenced phytobiomes as well. Differences in 

barometric pressure and wind speed (Figure 1) or reduced UV stress due to cloud cover 

could have influenced phytobiome dynamics or interacted with the factor of rain. 

Furthermore, rainfall may have been correlated with larger scale ecosystem changes. For 

example, insect visitation may have been limited during the rain event but elevated in the 

days following precipitation.  

 

Pesticides were applied to tomato plots during the sampling period, on the evenings of 

9/9 and 9/16.  It is possible that these applications could have influenced microbiome 

structure and diversity, however phyllosphere bacterial communities tend to be fairly 

robust in the face of pesticide application (Ottesen et al., 2015; Perazzolli et al., 2014). 

Furthermore, although pesticides were not applied to the cucumber plot, similar response 

to rainfall was observed on cucumbers. 

 

Another factor to consider is that prior to Rain 1, the area experienced a long drought, 

with negligible rainfall since the last major rain event (21 mm) 3 weeks before the study 

began. The increase in diversity observed following Rain, 1 but not Rain 2, could be 
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explained by drought-induced suppression of bacterial diversity at the start of sampling, 

not replicated prior to Rain 2, which occurred only 9 days later. Due to the close 

proximity of the rain events, it is possible that bioaerosols were less prevalent during the 

second rain. Plants release microbes into the atmosphere preferentially on sunny, dry 

days (Lindemann and Upper, 1985), and there were few of those between the two rain 

events. Unfortunately, cucumber data for Rain 2 was not collected due to seasonality and 

a lack of availability of high quality samples, so we cannot address whether this 

difference between R1 and R2 would have been mirrored on cucumber. The shifts in 

bacterial OTU richness and in some cases community structure that we did observe 

following rain events could have been the result of direct inoculation by rainwater-

associated microbiota or by other factors associated with rainfall. Rain could physically 

remove microbes from the plant surface, opening up a niche for others to fill. 

Alternatively, increased moisture and relative humidity in the air before, during, and after 

rain events could favor rapid growth of certain taxa at the expense of others. Changes in 

other factors, such as decreased UV exposure and altered animal visitation could 

contribute to the growth and establishment of bacterial populations on the plant surface as 

well.  

 

While it is important to understand the local influence of isolated rainfall events on 

microbial dynamics in agriculture, in the future it will also be important to consider the 

influence of weather patterns on a larger scale. In addition to the direct impact of rainfall 

on phytobiomes, prolonged wet or dry periods could influence plant immune response, 

and storms could lead to wounding, creating opportunities for pathogens to infiltrate plant 
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tissues. Climatic changes could lead to expanded ranges for plant pathogens due to 

favorable wet and warm conditions in higher latitudes and changing dispersal patterns 

influenced by intensified rain and wind and shifting vector habitats (Sutherst et al., 2011). 

Many factors associated with climate change, including elevated temperatures, increased 

periods of drought, intensified storms, and elevated CO2 will likely influence the health 

of our crops directly (Pautasso et al., 2010), but also indirectly by shifting the balance of 

microbes that may inhabit them, including plant pathogens, human pathogens, and 

beneficial or non-detrimental organisms. For some plant-pathogen pairs, weather-based 

forecasting models are already in use, helping growers time pesticide applications 

efficiently for the highest effectiveness and lowest environmental impact (Bakeer et al., 

2013; Isard et al., 2015; Shtienberg, 2013). Similar decision support systems could be 

implemented for use in food safety, providing recommendations to growers on safest 

harvest times following single and repeated rain events. The first step in achieving this 

goal is amassing an understanding of the community-level dynamics on harvestable fresh 

produce preceding and following rain events.  
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Chapter 5: Insect exclusion limits variation in tomato blossom 
and fruit microbiomes 
 

1. Introduction 
 
The phyllosphere, characterized by aboveground plant surfaces including leaves, 

blossoms, and fruit, is a dynamic environment supporting diverse microbiota including 

bacteria, fungi, and archaea (Aleklett et al., 2014; Delmotte et al., 2009; Lindow and 

Brandl, 2003; Maignien et al., 2014; Rastogi et al., 2013; Vorholt, 2012). In agriculture, 

fruits represent a large share of consumable specialty crops, and blossoms are intimately 

connected to the development of those crops. Both blossoms and fruit support active 

microbial communities, with bacteria as some of the most dominant constituents 

(Bulgarelli et al., 2013; Vorholt, 2012). However there is limited research into the 

dynamics of bacterial communities on blossoms and fruit and the driving forces that 

shape the structure of these communities (Leff and Fierer, 2013; Perazzolli et al., 2014; 

Shade et al., 2013; Zarraonaindia et al., 2015).  The phyllosphere microbiome may be 

influenced by a variety of factors including environmental conditions, host genotype, 

plant developmental stage, and plant organ (Bodenhausen et al., 2014; Bulgarelli et al., 

2013; Micallef et al., 2009a; Ottesen et al., 2013; Rastogi et al., 2012). Various plant 

organs (blossoms, leaves, and fruit) have consistently been shown to host distinct 

bacterial communities on the same plant (Junker et al., 2011; Ottesen et al., 2013). 

 

The tomato blossom habitat offers protection from phyllosphere stressors such as UV and 

provides relatively high humidity and consistent nutrient availability due to the presence 

of nectar and pollen (Aleklett et al., 2014). Tomato fruit are comparatively more exposed 
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to environmental stresses but release plant surface compounds, such as sugars, that may 

support specific communities of microbes. In fact, different cultivar-specific exudate 

profiles influenced the survival of Salmonella enterica on tomato fruit (Han and Micallef, 

2016), and grape, plum and nectarine exudates have been shown to influence Botrytis 

cinerea growth (Fourie et al., 1998; Padgett and Morrison, 1990). This physiological 

variation may explain some of the differences between phyllosphere microbiota found on 

blossom and fruit surfaces, but differences in the types of insects that visit these plant 

organs may play a role as well. Insect visitors, whether they be pollinators or pests, likely 

host distinct microbiomes, both in their guts and on their body surfaces. There is strong 

evidence that microbes may be transmitted to plant organs through insect feeding (Caspi-

Fluger et al., 2012; Sugio et al., 2015), excretion (Mitchell and Hanks, 2009; Soto-Arias 

et al., 2014), or body contact (Martinson et al., 2012; Ushio et al., 2015). 

 

Recent studies have shown that insects can transmit bacteria, including human and plant 

pathogens, to flowers. Pollinators can carry over a million microbial cells on their 

surfaces, and during flower visitation leave a microbial fingerprint (Aizenberg-Gershtein 

et al., 2013; de Vega and Herrera, 2013; Ushio et al., 2015). Both naturally- and 

artificially- infected flies can act as hosts and vectors for foodborne pathogens including 

Cronobacter, Salmonella enterica, and Listeria monocytogenes (Holt et al., 2007; Olsen, 

1998; Pava-Ripoll et al., 2015). After transmission to the flower, these pathogens may 

internalize into fruit and persist as part of the internal fruit microbiome (Guo et al., 2001; 

Zheng et al., 2013). Herbivorous insects, more often found on leaves, can transmit 

phytopathogenic or commensal bacteria and fungi through feeding, potentially acting as 
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both host and vector (Nadarasah and Stavrinides, 2011). Moreover, droppings from 

phytophageous insects feeding on nearby leaves could come into contact with developing 

fruit, serving as a potential source of microbial inoculum.  

 

More research is needed to characterize the importance of insect visitation on blossom 

and fruit surfaces for fruit crops commonly consumed raw.  In this study, we investigated 

the influence of insect exclusion on bacterial microbiota associated with field-grown 

tomato blossom and developing fruit surfaces. We used 16S rRNA gene sequencing to 

assess variation in bacterial community diversity and structure and examine the dynamics 

of specific bacterial taxa on fruit and blossoms collected from plants completely covered 

in netting, to exclude insects, or exposed to the environment throughout blossom and fruit 

development.  

 

2. Materials and Methods 

2.1 Field setup 
 
This study was conducted concurrently with the soil amendment study (Chapter 3). Four 

plants, located in rows 3 and 4 (Supplementary Figure 1), were covered in nylon 

mosquito netting when plants began to blossom. Before installing netting, all blossoms 

and developing fruit were removed to ensure that during subsequent sampling only 

blossoms and fruit produced under netted conditions would be collected. Netting was 

adjusted throughout the season to allow for plant growth.  Non-netted plants were 

selected for bacterial community profiling from the same plot containing netted plants. 
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2.2 Sample collection and processing 
 
Blossom and green fruit samples were collected and processed in August 2014, as 

detailed in Chapter 3. Briefly, blossom and green fruit were collected aseptically into 

Ziploc bags and transported back to the lab on ice, where surface wash microbes were 

collected onto 0.22 micron filters (Nalgene Nunc International Corporation, Rochester, 

NY). DNA extractions were performed using MoBio’s Powerwater kit (MoBio, Carlsbad, 

CA), and the V1-V3 portion of the 16S rRNA gene was amplified using Illumina’s 

library preparation guidelines (Illumina, Part#15044223 rev. B). Amplicons were 

multiplexed with samples from Chapter 3 and run on the Illumina MiSeq v3 platform. 

2.3 Microbial community analysis 
 
Quality filtering of sequences and bacterial community structure and diversity analyses 

were performed as described in Chapter 3. NMDS plots were created in R and statistical 

analyses were conducted using weighted UniFrac distance matrices produced through 

QIIME v1.8.  

3. Results 

3.1 From blossom to green fruit 
 
Green fruit supported significantly more phylogenetic diversity compared to blossoms, as 

measured by both Operational Taxonomic Unit (OTU) richness (p=0.001) and Faith’s 

Phylogenetic Diversity measure (p=0.004) (Figure 1). Blossom and green fruit hosted 

distinct epiphytic bacterial communities, both in terms of overall bacterial community 

structure (R2=0.27, p=0.001, Adonis nonparametric PERMANOVA) (Figure 2A) and in 

terms of specific taxonomic differences (Appendix 1 Table 3). One of the most dominant 

phyllosphere families, Xanthomonadaceae, differed significantly in relative abundance 
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between blossom and fruit surfaces, constituting 35% of bacteria identified on blossom 

and only 14% on fruit (FDR-p=0.038). At the order level, green fruit supported more 

members of Rhizobiales compared to blossoms (FDR-p=0.029). Most of this difference 

could be explained by a high relative abundance (20%) of bacteria classified as 

Agrobacterium on fruit surfaces; relative abundance of this organism was only 6% on 

blossoms (FDR-p=0.054).  Several other highly abundant taxa differed in abundance 

between blossom and fruit surfaces, however these differences were not significant 

(Appendix 1 Table 3).  

 

 

Figure 1. Alpha diversity of bacterial communities collected from insect-excluded or 

control tomato blossom and green fruit surfaces. Panel A shows the number of 

operational taxonomic units identified at 97% sequence identity at a depth of 1,210 

sequences per sample for each sample type. Panel B displays Faith’s PD measure at the 

same sampling depth. The median for each set of samples is marked as a horizontal red 

line, the box encompasses the interquartile range, and the whiskers show range excluding 
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outliers. Bonferroni-corrected p values calculated from two-sample t-tests for each 

comparison (netted vs. non-netted for each sample type, blossom vs. green fruit 

regardless of sample type) are shown below the graphs.  

 

Figure 2. Community structure and within-treatment heterogeneity. Nonmetric 

Multidimensional Scaling (NMDS) was applied to a weighted UniFrac distance matrix to 

visualize clustering of samples by treatment, and Adonis nonparametric MANOVA was 

applied to assess significance between treatments (Panel A). The average phylogenetic 

distance between netted and non-netted samples of each sample type is shown in Panel B 

(with standard deviations), as measured from the weighted UniFrac distance matrix. 

Significance (Bonferroni-corrected p<0.05 reached by 2-sided 2-sample t-test) is shown 

for each sample type with an asterisk.  
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3.2 Insect exclusion did not significantly alter taxonomic richness in the phyllosphere 
 
Within sample (alpha) diversity was assessed through direct counts of OTUs at 97% 

sequence identity and through Faith’s Phylogenetic Diversity measure (PD), which 

incorporates the phylogenetic difference between OTUs (Faith, 1992). While OTU 

richness did not differ between netted and non-netted samples for both blossom 

(p=0.893) and green fruit (p=0.779) (Figure 1A), the inclusion of phylogenetic 

relatedness in the analysis with the use of Faith’s PD measure revealed some distinction 

between netted and non-netted samples. Non-netted samples supported higher average 

PD, although the differences were not statistically significant for either blossoms 

(p=0.258) or fruit (p=0.215) (Figure 1B).  

3.3 Insect exclusion limits variation between blossom and fruit microbiomes 
 
Netted blossom surfaces did exhibit some differences in bacterial communities compared 

to non-netted blossoms (R2=0.22, p=0.103, Adonis nonparametric PERMANOVA). 

Differences were most marked in the spread of samples collected from netted and non-

netted plants (Figure 2A). Blossoms shielded from insect visitation via netting supported 

much more consistent community structure compared to those left exposed. Average 

similarity in community structure among netted blossom samples was double that of non-

netted samples, as measured by average UniFrac distance between sample pairs 

(p=0.004) (Figure 2B). Similar trends were observed on green tomato fruit as those seen 

on blossoms.  No statistically significant influence of netting was detected for bacterial 

community structure on green fruit surfaces (R2=0.20, p=0.148, Adonis nonparametric 

PERMANOVA).  However, fruit samples collected from non-netted plants supported 
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bacterial communities with approximately 10% higher dissimilarity than those from 

netted plants (p=0.038) (Figure 2B).  

 

Construction of a phylogenetic tree through neighbor joining revealed that blossom 

samples hosted bacterial communities that were more phylogenetically similar to each 

other than to those on non-netted blossoms, however netted and non-netted fruit did not 

consistently follow this trend (Figure 3). 
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0.05 (UniFrac distance)
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Not netted
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Figure 3. Neighbor joining tree showing phylogenetic relatedness of netted and non-

netted blossom and fruit surface microbiomes. All OTUs (97% identity) present at more 

than 0.1% relative abundance were included in construction of the tree, which was 

created using the neighbor joining method from a weighted UniFrac distance matrix in 

QIIME v1.8 and visualized in FigTree v1.4.2. Blossom samples are represented in yellow 

boxes and green fruit samples in green boxes, with netting treatment marked with a 

boxed overlay. Tree branches are colored by netting treatment.  

3.4 Relative abundances of specific bacteria on netted and non-netted phyllosphere 
samples 
 
Non-netted blossom surfaces supported consistently higher, consistently lower, or more 

variable abundances compared to netted blossoms for several taxa (Figure 4, Appendix 1 

Table 4). On netted blossoms, the relative abundance of the Pseudomonadaceae was 

consistent, between 8.7% and 10.7%.  By contrast, non-netted blossom surfaces 

supported more variable Pseudomonadaceae abundances, ranging from 0.6% to 15.1% 

(Figure 5). Non-netted blossoms also supported elevated relative abundances of 

Sphingobacteriaceae and Shewanellaceae.  Non-netted fruit displayed similar patterns, 

supporting higher populations of Bacillaceae and Methylobacteriaceae, and less variable 

levels of  Rhizobiaceae, compared to their netted counterparts.  Enterobacteriaceae, a 

bacterial family including several important foodborne and plant pathogens, was 

consistently elevated on non-netted blossom surfaces, ranging from 3.2% to 6.5% relative 

abundance compared to 1.6%-3.4% on netted samples. This effect was not mirrored on 

green fruit surfaces, where Enterobacteriaceae levels varied widely across both netted and 

not netted samples, ranging from 0.9% to 34.3% relative abundance (Figure 5).  
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On non-netted blossoms, often one sample displayed an elevated relative abundance in a 

certain taxa compared to the rest of the samples. For the four non-netted blossom 

samples, Microbacteriaceae, Rhizobiaceae, Psuedomonadaceae, and Xanthamonadaceae 

were highly elevated in relative abundance for samples 1, 2, 3, and 4, respectively but 

lower and fairly consistent for the other 3 samples (Figure 5). For netted blossoms, 

screened from insect visitation, no such extreme variations were observed.  On fruit, both 

non-netted and netted samples had relatively high variation between samples of the same 

treatment group, however non-netted fruit samples did show slightly more variation in 

relative abundance for several taxa. Individual non-netted samples supported greatly 

decreased Microbacteriaceae (sample 4), elevated Sphingobacteriaceae (sample 1), and 

elevated Comamonadaceae (sample 4) and well as the sample with the highest relative 

abundance of Enterobacteriaceae (sample 2), at 34.3% (Figure 5).  Non-netted fruit 

sample 3 had elevated Pseudomonadaceae, however the netted fruit sample from the 

same plot had similarly high abundance of this taxa, as did the non-netted blossom 

sample from the same plot (Figure 5).  
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Figure 4. Family-level bacterial community profiles of netted and non-netted blossom 

and fruit samples. Families with relative abundance >1% were scaled up to 100% to 

visually represent the family-level diversity of all sample types. The full taxonomy of 

represented families is listed in the legend.  

 

Family Order Class Phylum

Microbacteriaceae Actinomycetales Actinobacteria Actinobacteria

Methylobacteriaceae
Rhizobiales

Alphaproteobacteria

Proteobacteria

Rhizobiaceae

Sphingomonadaceae Sphingomonadales

Comamonadaceae Burkholderiales Betaproteobacteria

Other Other

Gammaproteobacteria

Shewanellaceae Alteromonadales

Enterobacteriaceae Enterobacteriales

Other
Pseudomonadales

Pseudomonadaceae

Xanthomonadaceae Xanthomonadales
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Figure 5. Relative abundance of select bacterial taxa on netted and non-netted blossom 

and green fruit surfaces. Families with >0.1% relative abundance in at least one sample 

type were examined and selected if they exhibited variation between netted and non-

netted samples. Conditional formatting was applied in Excel to color highest abundances 

for each taxon in dark green and less abundant taxa along a gradient toward yellow. The 

gradient is unique to each row to best highlight differences between netted and non-

netted samples within each sample type for each family shown. Columns marked with the 

same numbers denote samples collected from the same plots. Average relative 

abundances are shown for each sample for all taxa.  

 

 

Phylum Class Order Family 1 2 3 4 1 2 3 4
Actinobacteria Acintobacteria Actinomycetales Microbacteriaceae 13.53% 17.01% 11.94% 10.72% 10.92% 7.76% 11.79% 3.88%

Flavobacteria Flavobacteriales Weeksellaceae 0.15% 0.02% 0.00% 0.01% 0.07% 0.07% 0.00% 3.39%
Sphingobacteria Sphingobacteriales Sphingobacteriaceae 0.40% 2.56% 0.01% 0.00% 5.20% 0.07% 0.00% 0.83%

Bacillaceae 0.05% 0.27% 0.01% 0.12% 1.93% 0.07% 0.29% 0.83%
Paenibacillaceae 0.01% 0.07% 5.99% 0.18% 1.15% 0.07% 0.15% 0.17%
Methylobacteriaceae 2.68% 2.71% 0.26% 1.28% 0.95% 4.95% 4.22% 4.29%
Rhizobiaceae 23.34% 22.01% 11.87% 17.42% 23.62% 7.25% 9.61% 33.36%
Phyllobacteriaceae 0.13% 0.00% 0.05% 0.37% 0.01% 0.00% 0.24% 1.45%

Rhodobacterales Rhodobacteraceae 0.14% 0.16% 0.00% 0.00% 1.01% 0.07% 0.00% 0.83%
Alcaligenaceae 0.00% 2.27% 0.00% 0.04% 1.12% 3.80% 0.00% 1.90%
Comamonadaceae 0.01% 0.11% 0.78% 2.18% 1.66% 0.10% 3.06% 13.13%
Oxalobacteraceae 0.07% 3.31% 0.07% 0.15% 0.00% 0.75% 0.15% 0.25%

Alteromonadales Shewanellaceae 3.02% 1.47% 4.98% 5.02% 5.54% 4.07% 0.44% 0.74%
Enterobacteriales Enterobacteriaceae 26.42% 3.33% 9.84% 12.37% 2.10% 34.34% 0.87% 1.24%
Pseudomonadales Pseudomonadaceae 1.65% 3.99% 21.81% 8.42% 4.29% 4.68% 25.91% 3.63%
Xanthomonadales Xanthomonadaceae 16.54% 9.40% 4.64% 18.08% 10.58% 12.31% 12.37% 7.51%

Phylum Class Order Family 1 2 3 4 1 2 3 4
Actinobacteria Acintobacteria Actinomycetales Microbacteriaceae 8.01% 7.22% 0.15% 1.51% 27.90% 8.39% 3.34% 0.47%

Flavobacteria Flavobacteriales Weeksellaceae 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.02% 0.00%
Sphingobacteria Sphingobacteriales Sphingobacteriaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 0.10% 0.03%

Bacillaceae 0.00% 0.00% 0.03% 0.01% 0.03% 0.22% 0.02% 0.06%
Paenibacillaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Methylobacteriaceae 0.40% 1.06% 0.27% 0.34% 0.17% 0.05% 0.42% 0.28%
Rhizobiaceae 0.67% 2.52% 8.87% 4.73% 1.28% 24.03% 4.52% 0.54%
Phyllobacteriaceae 0.14% 0.37% 0.04% 0.01% 5.64% 0.07% 0.15% 0.17%

Rhodobacterales Rhodobacteraceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.03% 0.00%
Alcaligenaceae 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.96% 0.03%
Comamonadaceae 0.05% 0.12% 0.03% 6.60% 0.14% 0.11% 12.07% 0.88%
Oxalobacteraceae 0.08% 0.00% 0.09% 1.17% 0.04% 0.00% 0.04% 1.33%

Alteromonadales Shewanellaceae 9.39% 23.42% 20.00% 28.94% 10.91% 4.00% 11.77% 0.38%
Enterobacteriales Enterobacteriaceae 1.81% 3.40% 1.63% 2.53% 5.23% 3.24% 4.17% 6.54%
Pseudomonadales Pseudomonadaceae 8.72% 10.62% 9.20% 8.81% 6.12% 2.30% 15.08% 0.57%
Xanthomonadales Xanthomonadaceae 24.69% 32.92% 20.05% 26.69% 30.30% 26.88% 30.80% 75.87%

Bacteriodetes

Firmicutes Bacilli Bacillales

Proteobacteria

Alphaproteobacteria Rhizobiales

Betaproteobacteria Burkholderiales

Gammaproteobacteria

Gammaproteobacteria

Bacteriodetes

Firmicutes

Proteobacteria

Taxonomy Blossom	samples:	Netted Blossom	samples:	Not	netted

Taxonomy Fruit	samples:	Netted Fruit	samples:	Not	netted	

Bacillales

Rhizobiales

Burkholderiales

Bacilli

Alphaproteobacteria

Betaproteobacteria
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4. Discussion and Conclusions 
 
Enhanced knowledge of the relationships between insects, the plants they visit, and the 

microbiota they may transmit will increase our understanding of what factors influence 

microbial assemblages associating with crops and, consequently, plant health and food 

safety. With this study, we investigated the influence of insect exclusion on the bacterial 

microbiota associated with field-grown tomato blossom and fruit surfaces. We found that 

blossom and green fruit hosted unique bacterial communities, and these communities 

responded to restricted insect visitation at different scales.  

 

Field-grown green tomato fruit supported significantly higher taxonomic diversity and 

distinct bacterial community structure compared to blossoms grown on the same plants, 

mimicking differences seen between blossoms and red fruits (Ottesen et al., 2013).  

Although blossoms provide a protected and nutritious habitat for microorganisms, they 

also can release secondary metabolites that may limit microbial success, effectively 

preserving nectar and pollen for pollinators (Pozo et al., 2012). This antimicrobial effect 

could account for the difference observed in operational taxonomic richness between 

blossom and fruit surfaces.  

 

Insect exclusion from tomato plants had a more dramatic effect on blossom-associated 

bacterial communities compared to green fruit-associated communities. Blossoms 

collected from the 4 plants covered in mosquito netting shared very similar bacterial 

profiles, while the 4 plants exposed to insect visitation supported a more diverse array of 

bacterial community profiles. Notably, non-netted blossoms supported consistently 
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higher relative abundances of the Enterobacteriaceae, a family including several enteric 

pathogens of concern for human health. Indeed, studies have shown that insects can host 

and transmit members of this family, such as Salmonella enterica and Cronobacter, and 

foodborne pathogens from other families, such as Listeria monocytogenes of Listeraceae 

(Holt et al., 2007; Olsen, 1998; Pava-Ripoll et al., 2015). The blossom is a potential point 

of entry for foodborne pathogens to reach fruit, the marketable portion of tomato plants. 

Due to the documented potential of foodborne pathogen internalization from blossom to 

fruit (Zheng et al., 2013), the environmental transmission of Enterobacteriaceae by 

insects may be of concern for food safety. 

 

Insects have been confirmed as vehicles for microbial inoculation to flowers, not only for 

individual taxa but for diverse assemblages of microbes (Ushio et al., 2015). Honeybees, 

important pollinators of many economically important agricultural crops, may support 

microbial community structures indistinguishable from the flowers that they visit 

(Aizenberg-Gershtein et al., 2013), and wild bees similarly acquire bacteria from flowers 

(McFrederick et al., 2012). On grapefruit and sweet almond trees, netted and non-netted 

flowers supported significantly different bacterial communities, with non-netted flowers 

and honeybees sharing similar community structure (Aizenberg-Gershtein et al., 2013).  

The less dramatic effect observed in our study could be explained by the structure of the 

tomato flower. Tomato flowers have the potential to self-fertilize, and reproductive 

structures are more shielded compared to other flowers with more easily accessible floral 

rewards. Unlike flowers that host more specialist pollinators, tomato flowers are visited 

by a wide variety of generalist insects. Exposure to diverse flower habitats could lead to a 
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diversity of microbial profiles later transmitted to the tomato flower upon visitation. 

Although the environment does seem to be a source for bee-associated microbiota 

(McFrederick et al., 2014), bee microbiome structure may not be correlated with 

visitation to certain floral habitats (Aizenberg-Gershtein et al., 2013; McFrederick and 

Rehan, 2016).  Moreover, this study examined the blossom as an entire entity, but it 

would be interesting to investigate whether the introduction of non-core taxa is specific to 

particular floral components, which can host unique microbial fingerprints (Andrews and 

Harris, 2000; Junker and Keller, 2015; Pozo et al., 2012). Nectar in particular has been 

studied extensively and contains a diverse array of fungal and bacterial species (Alvarez-

Pérez et al., 2012; Pozo et al., 2012) that can differ in community structure by plant 

species (Fridman et al., 2012).  

 

Green fruit are less likely to attract insect visitors compared to blossoms due to their 

tough, waxy exterior and lack of easily accessible food source for insects. If insects did 

visit the fruit, they would likely leave visible feeding damage, reducing marketability of 

fruit. In this study, we only harvested marketable fruit, so none of the samples collected 

here were visibly afflicted with insect feeding. Any differences in non-netted versus 

netted bacterial profiles on fruit would likely be the result of blossom-associated 

differences persisting through fertilization and fruit development, or differences in 

contact with herbivorous insect appendages, or insects releasing droppings onto fruit. In 

general, we found that bacterial communities on fruit surfaces were similar between 

netted and non-netted plants. Similar to blossoms, netted fruit samples were significantly 

more similar to each other than non-netted fruit were to each other, however this effect 
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was less pronounced on fruit. Relative abundance of many taxa varied widely between 

non-netted fruit samples, leading to between-sample variation in bacterial community 

structure comparable to that of non-netted blossoms.  Variation in netted fruits, however, 

was slightly higher than variation observed between netted blossom samples, so the 

difference between netted and non-netted fruit sample variation was diminished. While 

the introduction of taxa through insect visitation may be important in establishing diverse 

blossom microbiomes throughout fields, this seems less important for fruits, although the 

effect cannot be disentangled from carryover in microbial constituents from blossom to 

fruit.   

 

This study revealed an insect exclusion effect on tomato-associated bacterial 

communities, an effect that was stronger on blossoms but partially conveyed to the green 

fruit surface. A study with more replication over space and time may be able to tease out 

some of the dynamics and clarify the relationships between insect visitors and 

phyllosphere bacterial structure.  
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Chapter 6: Conclusions and future directions 
	
In today’s world, agriculture faces formidable challenges. Global climate change may 

lead to increased dispersal of pathogens, plant stress, and crop loss (Scholthof, 2007). 

The world population continues to grow, as does world hunger and the demand for fresh 

produce. Foodborne disease outbreaks linked to fresh produce are common worldwide. 

With enhanced understanding of plant-associated microbial community dynamics, 

manipulation of microbial communities to maximize plant growth, defense, and nutrient 

uptake efficiency will be possible, allowing more efficient use of limited resources and 

reduced side effects of agricultural inputs. Recent advances in genomic technology have 

made investigations into the diversity and community structure of microbial communities 

possible in many systems and at multiple scales, creating exciting opportunities to 

increase our understanding of microbial dynamics in agriculture.  

 

In this study, plant genotype and plant organ were the strongest drivers of overall 

bacterial community structure in the specialty crop phyllosphere and rhizosphere despite 

exposure to diverse nutritional and environmental treatments. Environmental factors did 

influence plant-associated microbiomes, as was seen with field location in Chapter 3,  

rainfall in Chapter 4, and insect exclusion in Chapter 5. However these factors never 

caused differences in bacterial community structure greater than those between blossoms, 

fruit, and roots, or between tomato and cucumber fruits. Although the influences of these 

factors were somewhat subtle, they should not be discounted.  
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Although the same methods and even in some cases the same fields were used for the 3 

studies, the scale and character of microbial changes were unique for each objective, as 

were the specific analyses required to tease out these changes. In the soil amendments 

study, the application of microbiologically diverse soil amendments did not result in any 

measurable change in bacterial communities associated with tomato roots, blossoms, and 

fruit. Instead, existing soil texture and water activity gradients were more influential on 

bacterial community structure than the agricultural management practice investigated. 

When assessing the influence of rain, one of the most striking effects observed was the 

increase in taxonomic richness following the first rainfall, observed for both cucumber 

and tomato fruits. For both fruit types, distance matrices considering all taxa at equal 

abundances detected a stronger rainfall effect compared to those with OTUs weighted by 

abundance, suggesting that the additional taxa identified following rain were large in 

number but not abundant enough to cause significant community-level shifts. Still, many 

of these taxa were retained in the days following rainfall, showing that taxa introduced 

following rainfall can persist in the carposphere. In Chapter 5, overall bacterial 

community structures were statistically similar between blossom and green fruit samples 

collected from plants grown under insect exclusion or exposed to insect visitation. 

However, an investigation into the spread of diversity between treatments revealed that 

netted blossom and fruit-surface bacterial communities were highly similar to each other, 

while non-netted samples supported a wider array of bacterial profiles. This again 

suggests that certain environmental exposures can lead to sustained changes in plant 

microbiomes. These changes may occur at a small scale, but the influence of the rare 

biosphere may be proportionally larger than specific bacterial abundances suggest, and 
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given supportive conditions these low abundance microbial populations could grow at 

any time (Elshahed et al., 2008; Lynch and Neufeld, 2015; Pedrós-Alió, 2007). 

Furthermore, if plant or human enteric pathogens were to be part established through 

these environmental routes, even small abundances could have a large impact on human 

and plant health (Brandl, 2006).  

 

Just as pharmaceutical companies are investigating the power of microbes as alternative 

medicine to treat human disease (Reardon, 2014), interest in manipulating plant-

associated microbial communities is growing in terms of agricultural biotechnology 

(Berg, 2009). Microbial dynamics of the rhizosphere have been studied much more 

extensively compared to those of the phyllosphere, and as a result rhizosphere research 

has moved forward more substantially from description to application in the field. 

Physical, chemical, and biological characteristics of soils have been investigated in 

connection to their influence on rhizosphere community structure and diversity across 

many systems (Bossio et al., 1998; Liu et al., 2007; Termorshuizen et al., 2006; Wu et al., 

2008). This robust characterization has led to a greater understanding of how microbes 

can be used to enhance agricultural production and environmental sustainability (Bakker 

et al., 2012; Berg, 2009; Chaparro et al., 2012).  Further research into the basic dynamics 

of the phyllosphere in response to varied agricultural practices will lead to similar 

advances in practical application. Some potential uses of microorganisms to enhance 

agricultural productivity include biological control, disease suppressive soils, and plant 

growth promotion. 

 



	 92	 	

Bacterial and fungal biocontrols are becoming an important part of agricultural 

management, and demand for them is steadily increasing (Berg, 2009). The natural 

tendency of some microbes to enhance plant response to abiotic and biotic stresses may 

be utilized by isolating and applying these beneficial microbes in higher-than-endemic 

concentrations in the field.  Several microbes have been investigated as potential 

biocontrols for foodborne pathogen infection (Allard et al., 2014), however biocontrols 

used to control plant pathogens are much more widely studied. Microbial community 

characterization using –omics technologies represent a new avenue for discovery of 

potential biocontrol microorganisms. In addition to specific strains of microorganisms 

with antimicrobial activity, microbiome analysis could help characterize the effectiveness 

of assemblages of microbes with demonstrated biocontrol characteristics, such as disease-

suppressive soils. Several biological, chemical, and physical soil characteristics are 

correlated with disease suppressiveness (Liu et al., 2007; Termorshuizen et al., 2006); in 

the future predictive models may be able to forecast compatibility and effectiveness with 

different systems based on these characteristics as well as microbiome profiles. Due to 

the complexity and specificity of plant-pathogen-environment interactions, use of disease 

suppressive soils will be most effective if tailored specifically based on host, pathogen, 

and environment. With these concerns addressed, disease suppressive composts and 

biological control agents have potential as environmentally friendly, safe, and effective 

approaches to disease control. The added benefits associated with biocontrols and disease 

suppressive soil application may also be explored; in addition to disease suppression 

these often support enhanced nutrient uptake by host plants (Berg, 2009; Harman, 2000).  
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Continuing efforts to assess the balance between plants, their associated microorganisms, 

and the environment will lead to a richer understanding of the potentially far-reaching 

influences of crop management choices and environmental conditions on agricultural 

productivity and food safety. As we continue to characterize environmental and human-

driven factors in crop production that may lead to large- and small-scale microbial 

changes with consequences for agricultural production, we will move toward innovations 

in produce safety, plant pathogen management, and sustainability. Microorganisms are a 

vast and diverse force on Earth, intimately connected to our own bodies, the food we eat, 

the homes we live in, and virtually all of our planet’s processes. As we work toward 

enhanced food safety and security and strive toward environmental sustainability, it is 

crucial that we not only consider how our actions may influence our microbial neighbors, 

but also how we can harness their power to realize our vision for a better world.  
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Appendix 1: Supplementary tables 
 
Table	1:	Low	abundance	taxa	absent	from	cucumber	fruit	samples	collected	on	1	or	
2	dates	surrounding	Rain	1	
	

Present only 9/9 (4 days pre-Rain 1) 
Phylum Class Order Family Genus 

Actinobacteria Actinobacteria Actinomycetales 
Kineosporiaceae 

Unclassified 
Unclassified 

Micrococccaceae Microbispora 
Thermomonosporaceae Unclassified 

Firmicutes 
Bacilli 

Bacillales Listeraceae Listeria 
Lactobacillales Leuconostocaceae Unclassified 

Clostridia Clostridiales [Tissierellaceae] Unclassified 

Proteobacteria 

Alphaproteobacteria 
Rhizobiales Methylocystaceae Unclassified 
Rickettsiales mitochondria Unclassified 

Gammaproteobacteria 

Enterobacteriales Enterobacteriaceae Xenorhabdus 
Oceanospirillales Halomonadaceae Candidatus Portiera 
Oceanospirallales Unclassified Unclassified 

Thiotrichales Piscirickettsiaceae Unclassified 
Xanthamonadales Xanthamonadaceae Luteibacter 
Xanthamonadales Xanthamonadaceae Xanthomonas 

Vibrionales Vibrionaceae Vibrio 

     
Present only 9/13 (1 day post-Rain 1) 

Phylum Class Order Family Genus 
Actinobacteria Actinobacteria Actinomycetales Gordoniaceae Millisia 
Bacteriodetes Cytophagia Cytophagales Cytophagaceae Rhodocytophaga 

Cyanobacteria 
Oscillatoriophycideae Oscillatoriales Phormidiaceae Phormidium 

Synechococcophycideae Pseudanbaenales Pseudanabaenaceae Leptolygbya 

Firmicutes 
Bacilli 

Bacillales Bacillaceae Geobacillus 
Lactobacillales Enterococcaceae Unclassified 

Clostridia Clostridiales 
Lachnospiraceae Unclassified 

Ruminococcaceae Unclassified 

Proteobacteria 

Alphaproteobacteria 
Rickettsiales mitochondira Trebouxia 
Rhizobiales Rhizobiaceae Rhizobium 

Betaproteobacteria Burkholderiales 
Alcaligenaceae Kerstersia 

Burkholderiaceae Unclassified 

Gammaproteobacteria 
Xanthomonadales Unclassified Unclassified 
Pseudomonadales Moraxellaceae Alkanindiges 

Chloroflexi Anaerolineae SBR1031 A4b Unclassified 

      

Present only 9/17 (4 days post-Rain 1) 
Phylum Class Order Family Genus 

Actinobacteria 
Actinobacteria Actinomycetales 

Actinosynnemataceae Unclassified 
Dietziaceae Dietzia 
Frankiaceae Frankia 
Jonesiaceae Jonesia 

Propionibacteriaceae Propionibacterium 
ACK-M1 Unclassified 

Nocardioidaceae Propionicimonas 
Propionibacteriaceae Unclassified 

Thermoleophilia Solirubrobacterales Unclassified Unclassified 

Bacteriodetes 
[Saprospirae] [Saprospirales] Chitinophagaceae Niabella 
Cytophagia Cytophagales Cytophagaceae Adhaeribacter 

Firmicutes Bacilli Bacillales 
Unclassified Unclassified 

Paenibacillaceae Aneurinibacillus 
Planococcaceae Planococcus 
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Thermoactinomycetaceae Unclassified 

Lactobacillales 
Lactobacillaceae Unclassified 

Unclassified Unclassified 
Clostridia Clostridiales Eubacteriaceae Pseudoramibacter_Eubacterium 

Proteobacteria 

Alphaproteobacteria Rhizobiales 
Methylocystaceae Pleomorphomonas 
Phyllobacteriaceae Nitratireductor 

Rhodospirillales Rhodospirillaceae Unclassified 

Betaproteobacteria 
Unclassified Unclassified Unclassified 

Burkholderiales 
Comamonadaceae Limnohabitans 
Oxalobacteraceae Massilia 

Deltaproteobacteria 
Bdellovibrionales Bdellovibrionaceae Bdellovibrio 

Myxococcales 
Unclassified Unclassified 

Myxococcaceae Unclassified 

Gammaproteobacteria 

Alteromonadales 
Alteromonadaceae Marinimicrobium 

HTCC2188 HTCC 
Enterobacteriales Enterobacteriaceae Buchnera 

Legionellales 
Unclassified Unclassified 
Coxiellaceae Unclassified 

Pasteurellales Unclassified Unclassified 
Chloroflexi Thermomicrobia JG30-KF-CM45 Unclassified Unclassified 

     
Present 9/13 and 9/17 only (1 and 4 days post-Rain 1) 

Phylum Class Order Family Genus 

Actinobacteria 

Actinobacteria Actinomycetales 

Intrasporangiaceae Phycicoccus 
Micrococcaceae Unclassified 

Nocardiaceae Nocardia 
Nocardioidaceae Pimelobacter 

Pseudonocardiaceae Pseudonocardia 
Streptosporangiaceae Nonomuraea 

Thermoleophilia Solirubrobacterales 
Unclassified Unclassified 

Solirubrobacteraceae Unclassified 
Unclassified Unclassified Unclassified Unclassified 

Firmicutes Bacilli 
Bacillales 

Alicyclobacillaceae Alicyclobacillus 

Planococcaceae 
Planomicrobium 

Unclassified 

Lactobacillales 
Carnobacteriaceae Desemzia 
Streptococcaceae Unclassified 

Proteobacteria 

Alphaproteobacteria 

Unclassified Unclassified Unclassified 
Rhizobiales Bradyrhizobiaceae Bosea 

  Methylocystaceae Unclassified 
Rhodospirillales Acetobacteraceae Belnapia 

Betaproteobacteria 
Burkholderiales 

Burkholderiaceae Unclassified 
Oxalobacteraceae Telluria 

MKC10 Unclassified Unclassified 
Rhodocyclales Rhodocyclaceae Unclassified 

Gammaproteobacteria 
Enterobacteriales Enterobacteriaceae 

Serratia 
Trabulsiella 

Oceanospirillales Endozoicimonaceae Unclassified 
Unclassified Unclassified Unclassified Unclassified 

TM7 Unclassified Unclassified Unclassified Unclassified 
[Thermi] Deinococci Deinococcales Trueperaceae Truepera 

     
Present 9/9 and 9/17 only (4 days pre- and 4 days post-Rain 1) 

Phylum Class Order Family Genus 

Actinobacteria 
Actinobacteria Actinomycetales 

Brevibacteriaceae Brevibacterium 
Geodermatophilaceae Unclassified 

Gordoniaceae Unclassified 
Propionibacteriaceae Unclassified 

Thermoleophilia Gaiellales Gaiellaceae Unclassified 
Bacteroidetes Flavobacteriia Flavobacteriales [Weeksellaceae] Unclassified 
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Cyanobacteria Chloroplast Chlorophyta Unclassified Unclassified 

Firmicutes Bacilli 
Bacillales Planococcaceae Lysinibacillus 

Lactobacillales Enterococcaceae Unclassified 
Planctomycetes Planctomycetia Gemmatales Gemmataceae Gemmata 

Proteobacteria 

Alphaproteobacteria 

Caulobacterales Caulobacteraceae Phenylobacterium 
Rhizobiales Bradyrhizobiaceae Unclassified 

Rhodospirillales Rhodospirillaceae Unclassified 
Sphingomonadales Unclassified Unclassified 

Betaproteobacteria Neisseriales Neisseriaceae Unclassified 
Deltaproteobacteria Myxococcales 0319-6G20 Unclassified 

Gammaproteobacteria Xanthomonadales Sinobacteraceae Unclassified 
TM6 SJA-4 Unclassified Unclassified Unclassified 

[Thermi] Deinococci Deinococcales Deinococcaceae Deinococcus 

     
Present 9/9 and 9/13 only (4 days pre- and 1 day post-Rain 1) 

Phylum Class Order Family Genus 
Proteobacteria Alphaproteobacteria Rickettsiales Rickettsiaceae Wolbachia 

	

	 	



	 97	 	

Table	2:	Low	abundance	taxa	absent	from	tomato	fruit	samples	collected	on	1	or	2	
dates	surrounding	Rain	1	
	

Present only 9/9 (4 days pre-Rain 1) 
Phylum Class Order Family Genus 

Actinobacteria Actinobacteria Actinomycetales 

Intrasporangiaceae 
Knoellia 

Phycicoccus 
Micromonosporaceae Virgisporangium 

Nocardioidaceae Pimelobacter 
Thermomonosporaceae Unclassified 

Firmicutes 
Bacilli Lactobacillales Leuconostocaceae Unclassified 

Clostridia Clostridiales Peptostreptococcaceae Tepidibacter 
Planctomycetes Planctomycetia Gemmatales Gemmataceae Gemmata 

Proteobacteria 

Alphaproteobacteria 
Rhizobiales 

Beijerinckiaceae Unclassified 
Methylocystaceae Pleomorphomonas 

Rhodobacterales Rhodobacteraceae Rubellimicrobium 
Betaproteobacteria Neisseriales Neisseriaceae Unclassified 

Deltaproteobacteria 
Bdellovibrionales Bdellovibrionaceae Bdellovibrio 

Myxococcales Myxococcaceae Unclassified 

Gammaproteobacteria 

Enterobacteriales Enterobacteriaceae Proteus 
Legionellales Unclassified Unclassified 

Xanthomonadales 
Sinobacteraceae Steroidobacter 

Unclassified Unclassified 

     
Present only 9/13 (1 day post-Rain 1) 

Phylum Class Order Family Genus 
Acidobacteria Acidobacteria-6 CCU21 Unclassified Unclassified 

Actinobacteria 

Acidimicrobiia Acidimicrobiales EB1017 Unclassified 

Actinobacteria Actinomycetales 
ACK-M1 Unclassified 

Actinosynnemataceae Unclassified 
Microbacteriaceae Cryocola 

Bacteroidetes Cytophagia Cytophagales Cytophagaceae Hymenobacter 

Chloroflexi 
Chloroflexi AKIW781 Unclassified Unclassified 

Thermomicrobia Unclassified Unclassified Unclassified 

Cyanobacteria 
Oscillatoriophycideae Oscillatoriales Phormidiaceae Phormidium 

Synechococcophycideae Pseudanabaenales Pseudanabaenaceae Leptolyngbya 
Unclassified Unclassified Unclassified Unclassified 

Proteobacteria 

Alphaproteobacteria 
Unclassified Unclassified Unclassified 

BD7-3 Unclassified Unclassified 
Rhizobiales Phyllobacteriaceae Nitratireductor 

Betaproteobacteria 
Burkholderiales 

Comamonadaceae Rhodoferax 
Oxalobacteraceae Telluria 

Neisseriales Neisseriaceae Vitreoscilla 
Deltaproteobacteria Myxococcales Haliangiaceae Unclassified 

Gammaproteobacteria 
Aeromonadales Aeromonadaceae Unclassified 

Alteromonadales Alteromonadaceae Marinimicrobium 
Legionellales Coxiellaceae Unclassified 

     
Present only 9/17 (4 days post-Rain 1) 

Phylum Class Order Family Genus 

Acidobacteria 
[Chloracidobacteria] PK29 Unclassified Unclassified 

Acidobacteriia Acidobacteriales Koribacteraceae Unclassified 

Actinobacteria Actinobacteria Actinomycetales 

Bogoriellaceae Georgenia 
Microbacteriaceae Agromyces 
Micrococcaceae Citricoccus 

Micromonosporaceae Couchioplanes 
Nocardiaceae Unclassified 

Propionibacteriaceae Unclassified 
Streptomycetaceae Unclassified 
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Thermomonosporaceae Actinomadura 
Thermoleophilia Gaiellales Gaiellaceae Unclassified 

Bacteroidetes 

[Saprospirae] [Saprospirales] Chitinophagaceae 
Flavisolibacter 

Niabella 

Cytophagia Cytophagales 
[Amoebophilaceae] Candidatus 

Cardinium 

Cytophagaceae 
Rhodocytophaga 

Spirosoma 
Flavobacteriia Flavobacteriales Flavobacteriaceae Myroides 

Chloroflexi Gitt-GS-136 Unclassified Unclassified Unclassified 

Firmicutes 

Bacilli 

Bacillales 

Alicyclobacillaceae Alicyclobacillus 
Bacillaceae Natronobacillus 
Listeriaceae Listeria 

Paenibacillaceae Aneurinibacillus 
Planococcaceae Unclassified 

Thermoactinomycetaceae Unclassified 

Lactobacillales 
Aerococcaceae 

Facklamia 
Marinilactibacillus 

Streptococcaceae Unclassified 

Clostridia Clostridiales 

Unclassified Unclassified 

Clostridiaceae 
Alkaliphilus 
Clostridium 

Lachnospiraceae Dorea 
Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Erysipelothrix 

Gemmatimonadetes Gemm-1 Unclassified Unclassified Unclassified 
Planctomycetes Phycisphaerae Phycisphaerales Unclassified Unclassified 

Proteobacteria 

Alphaproteobacteria 

Caulobacterales Caulobacteraceae Mycoplana 

Rhizobiales 

Bartonellaceae Unclassified 
Bradyrhizobiaceae Afipia 
Phyllobacteriaceae Phyllobacterium 

Rhizobiaceae Rhizobium 
Xanthobacteraceae Azorhizobium 

Rhodobacterales Rhodobacteraceae Dinoroseobacter 
Rickettsiales mitochondria Trebouxia 

Betaproteobacteria Burkholderiales Alcaligenaceae Kerstersia 
Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter 

Gammaproteobacteria 

Enterobacteriales Enterobacteriaceae Xenorhabdus 
Legionellales Coxiellaceae Aquicella 

Oceanospirillales Halomonadaceae 
Candidatus Portiera 

Halomonas 
Vibrionales Pseudoalteromonadaceae Unclassified 

TM7 TM7-3 Unclassified Unclassified Unclassified 

     
Present 9/13 and 9/17 only (1 and 4 days post-Rain 1) 

Phylum Class Order Family Genus 
Acidobacteria Solibacteres Solibacterales Unclassified Unclassified 

Actinobacteria 

Acidimicrobiia Acidimicrobiales Unclassified Unclassified 

Actinobacteria Actinomycetales 

Dermabacteraceae Unclassified 
Kineosporiaceae Unclassified 

Micromonosporaceae Actinoplanes 
Promicromonosporaceae Unclassified 

Propionibacteriaceae Propionibacterium 

Thermoleophilia Solirubrobacterales 
Unclassified Unclassified 

Patulibacteraceae Patulibacter 
Unclassified Unclassified Unclassified 

Bacteroidetes 
Bacteroidia Bacteroidales Porphyromonadaceae Unclassified 

Flavobacteriia Flavobacteriales [Weeksellaceae] Unclassified 
Sphingobacteriia Sphingobacteriale Sphingobacteriaceae Unclassified 

Cyanobacteria 
Unclassified Unclassified Unclassified Unclassified 
Chloroplast Chlorophyta Unclassified Unclassified 

Firmicutes Bacilli Bacillales Staphylococcaceae Jeotgalicoccus 
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Turicibacterales Turicibacteraceae Turicibacter 

Clostridia Clostridiales 
Clostridiaceae Unclassified 

Lachnospiraceae Unclassified 
Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Unclassified 

Proteobacteria 

Alphaproteobacteria 
Rhizobiales 

Brucellaceae Unclassified 
Phyllobacteriaceae Defluvibacter 

Rhodospirillales Acetobacteraceae 
Acetobacter 

Swaminathania 

Betaproteobacteria Burkholderiales Comamonadaceae 
Lampropedia 
Ramlibacter 

Deltaproteobacteria Myxococcales Polyangiaceae Unclassified 
Gammaproteobacteria Enterobacteriales Enterobacteriaceae Serratia 

TM7 TM7-3 EW055 Unclassified Unclassified 

     
Present 9/9 and 9/17 only (4 days pre- and 4 days post-Rain 1) 

Phylum Class Order Family Genus 
Unclassified Unclassified Unclassified Unclassified Unclassified 

Actinobacteria 

Acidimicrobiia Acidimicrobiales C111 Unclassified 

Actinobacteria Actinomycetales 

Cellulomonadaceae Actinotalea 
Frankiaceae Unclassified 

Geodermatophilaceae Geodermatophilus 
Gordoniaceae Millisia 

Pseudonocardiaceae 
Actinomycetospora 

Unclassified 

Firmicutes 
Bacilli 

Bacillales 
Bacillaceae Unclassified 

Planococcaceae Unclassified 
Unclassified Unclassified 

Lactobacillales Unclassified Unclassified 
Enterococcaceae Unclassified 

Clostridia Clostridiales Ruminococcaceae 
Unclassified 

Ruminococcus 

Proteobacteria 

Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bosea 
Rhodospirillales Unclassified Unclassified 

Betaproteobacteria Unclassified Unclassified Unclassified 

Deltaproteobacteria Myxococcales 
Myxococcaceae Corallococcus 
Polyangiaceae Sorangium 

Gammaproteobacteria 

Alteromonadales Alteromonadaceae Cellvibrio 
Chromatiales Ectothiorhodospiraceae Unclassified 

Enterobacteriales Enterobacteriaceae Trabulsiella 
Thiotrichales Piscirickettsiaceae Unclassified 

TM7 TM7-3 Unclassified Unclassified Unclassified 

     
Present 9/9 and 9/13 only (4 days pre- and 1 day post-Rain 1) 

Phylum Class Order Family Genus 
Acidobacteria [Chloracidobacteria] RB41 Ellin6075 Unclassified 

Actinobacteria 
Acidimicrobiia Acidimicrobiales AKIW874 Unclassified 
Actinobacteria Actinomycetales Cellulomonadaceae Unclassified 

Bacteroidetes Cytophagia Cytophagales Cytophagaceae Siphonobacter 
Firmicutes Bacilli Lactobacillales Leuconostocaceae Fructobacillus 

Proteobacteria 

Alphaproteobacteria 
Rhizobiales 

Bradyrhizobiaceae Bradyrhizobium 
Xanthobacteraceae Xanthobacter 

Sphingomonadales Erythrobacteraceae Erythrobacter 

Betaproteobacteria 
Burkholderiales Alcaligenaceae Pigmentiphaga 
Rhodocyclales Rhodocyclaceae Azoarcus 

Gammaproteobacteria Enterobacteriales Enterobacteriaceae Citrobacter 
Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Luteolibacter 
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Table 3. Dominant and significantly different taxa between tomato blossoms and fruit 

 
Taxonomic level Taxon 

Mean relative abundance 

FDR-p Blossom Green Fruit 

Phylum 
Proteobacteria 0.059 92.5% 87.5% 

Actinobacteria 0.059 7.2% 11.8% 

Cyanobacteria 0.038* 0.2% 0.0% 

Class 

Gammaproteobacteria 0.053 67.8% 47.8% 

Alphaproteobacteria 0.062 22.0% 35.6% 

Actinobacteria 0.064 7.2% 11.8% 

Betaproteobacteria 0.279 2.8% 4.1% 

Order 

Xanthomonadales 0.020* 34.8% 13.8% 

Rhizobiales 0.029* 7.1% 24.4% 

Sphingomonadales 0.406 14.9% 11.2% 

Pseudomonadales 0.440 14.0% 11.0% 

Alteromonadales 0.406 14.2% 8.6% 

Actinomycetales 0.128 7.2% 11.8% 

Enterobacteriales 0.635 3.7% 11.0% 

Burkholderiales 0.406 2.8% 4.1% 
Unclassified 
Gammaproteobacteria 0.589 1.0% 3.4% 

Streptophyta 0.046* 0.2% 0.0% 

Family 

Xanthomonadaceae 0.038* 34.8% 13.8% 

Rhizobiaceae 0.064 5.9% 20.3% 

Sphingomonadaceae 0.399 14.8% 11.1% 

Shewanellaceae 0.399 14.0% 8.5% 

Microbacteriaceae 0.155 7.2% 11.6% 

Pseudomonadaceae 0.756 7.3% 7.4% 

Enterobacteriaceae 0.716 3.7% 11.0% 

Unclassified Pseudomonadales 0.390 6.7% 3.6% 

Comamonadaceae 0.716 2.4% 2.8% 
Unclassified 
Gammaproteobacteria 0.633 1.0% 3.4% 

Methylobacteriaceae 0.064 0.4% 2.7% 

Alcaligenaceae 0.128 0.1% 1.0% 

Genus 

Unclassified Xanthomonadaceae 0.026* 31.6% 11.4% 

Unclassified Actinomycetales 0.038* 0.0% 0.2% 

Agrobacterium 0.054 5.9% 20.2% 

Shewanella 0.380 14.0% 8.5% 

Sphingomonas 0.105 13.6% 7.2% 

Microbacterium 0.237 7.0% 9.4% 

Unclassified Enterobacteriaceae 0.701 3.6% 10.1% 

Pseudomonas 0.522 7.0% 5.2% 
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Unclassified Pseudomonadales 0.364 6.7% 3.6% 

Unclassified Comamonadaceae 0.483 2.3% 2.6% 
Unclassified 
Gammaproteobacteria 0.591 1.0% 3.4% 

Luteimonas 0.026* 2.6% 0.4% 
Unclassified 
Methylobacteriaceae 0.048* 0.4% 2.5% 

Unclassified Sphingomonadaceae 0.083 1.0% 1.9% 

Unclassified Pseudomonadaceae 0.048* 0.2% 2.1% 

Curtobacterium 0.045* 0.2% 2.1% 

Novosphingobium 0.048* 0.1% 1.9% 

Xanthomonas 0.026* 0.2% 0.0% 
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Table 4. Summary of taxa differing across netted and non-netted blossoms and green fruit 

 
 
	  

Pseudomonadaceae Family Microbacteriaceae
Unclassified Pseudomonadales Curtobacterium
Shewanella Erwinia
Unclassified Chromatiaceae

Sphingobacteriaceae Bacillaceae
Enterobacteriaceae Methylobacteriaceae
Shewanellaceae Methylobacterium

Sphingobium
Bacillus

Sphingomonadaceae Rhizobiaceae
Pseudomonadaceae
Pseudomonas Unclassified Sphingobacteriaceae
Sphingomonas Agrobacterium
Unclassified Xanthomonadaceae

Microbacteriaceae [Weeksellaceae]
Rhizobiales;Other Sphingobacteriaceae
Phyllobacteriaceae Bacillaceae
Rhizobiaceae Rhodobacteraceae
Comamonadaceae Comamonadaceae
[Weeksellaceae] Phyllobacteriaceae
Alcaligenaceae Chryseobacterium
Xanthomonadaceae Bacillus
Microbacterium Devosia
Agrobacterium Mesorhizobium
Sphingobium Kaistobacter
Bacillus Novosphingobium

Achromobacter

Blossom Family Rhodobacteraceae

Sphingobacterium
Achromobacter

Consistently more relatively abundant on netted samples

Consistently more relatively abundant on non-netted samples

Non-netted samples vary in relative abundance compared to netted samples

1 or 2 non-netted samples have elevated relative abundance compared to other samples

Blossom
Family

Genus

Identified on netted samples only

Fruit

Blossom

Family

Genus
Fruit

Blossom

Identified on non-netted samples only

GenusBlossom

Genus

Family

Family

Genus

Fruit

Fruit

Family

Genus

Blossom

Family

Genus

Family

Genus
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Appendix 2: Field maps 
 

 
Figure 1. 2013 Field map. Rows spaced 4.6m apart were amended with fresh poultry 
litter (L) or mineral fertilizer only (C). Asterisks denote approximate sampling location 
within the rows, ~15m in length and containing ~40 tomato plants each. 
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Figure 2. 2014 Field map. Plots spaced 1.5m apart within 15m rows were amended with 
fresh poultry litter (L), sterile poultry litter pellets (P), vermicompost (V) or mineral 
fertilizer only (C) and planted with 8 tomato plants each. Rows were spaced 4.6m apart.  
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