

ABSTRACT

Title of Thesis: DATA-DRIVEN WILDFIRE PROPAGATION

MODELING WITH FARSITE-ENKF

 Maria Faye Theodori, M.S., 2016

Thesis Directed By: Professor Arnaud Trouvé,

Department of Fire Protection Engineering

The goal of this study is to provide a framework for future researchers to understand

and use the FARSITE wildfire-forecasting model with data assimilation. Current

wildfire models lack the ability to provide accurate prediction of fire front position

faster than real-time. When FARSITE is coupled with a recursive ensemble filter, the

data assimilation forecast method improves. The scope includes an explanation of the

standalone FARSITE application, technical details on FARSITE integration with a

parallel program coupler called OpenPALM, and a model demonstration of the

FARSITE-Ensemble Kalman Filter software using the FireFlux I experiment by Craig

Clements. The results show that the fire front forecast is improved with the proposed

data-driven methodology than with the standalone FARSITE model.

DATA-DRIVEN WILDFIRE PROPAGATION MODELING WITH FARSITE-ENKF

by

Maria Faye Theodori

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2016

Advisory Committee:
Professor Arnaud Trouvé, Chair
Assistant Professor Michael Gollner
Professor and Department Chair James Milke

 ii

Acknowledgements

I would first like to thank my friend and research partner, Cong Zhang, who

guided me so generously along each step of the way and helped me to grasp every
important detail of this project. I truly appreciate how you went out of your way to
make sure I was prepared with all the material I needed. I cannot thank you enough! I
would also like to thank my defense committee, including my advisor, Professor
Arnaud Trouvè, for the expertise, patience, and instruction as I learned a topic and
skills that I have never been faced with before; my pseudo-co-advisor, Professor
Michael Gollner, who graciously encouraged and helped me to master this project;
and Professor James Milke, who for the past 5 years has given me continuous support
academically, professionally, and personally. Finally, I would like to thank Mèlanie
Rochoux for being the mastermind of development for us throughout the entire
research process. Your skillset is invaluable and none of this would have been
possible without you. Thank you for spending so much of your time to make this
model come to light.

 iii

Table of Contents

Acknowledgements ... ii	

Table of Contents ... iii	

List of Figures .. vi	

Chapter 1: Introduction ... 1	

1.1 Motivation ... 1	

1.2 Overview of Data Assimilation .. 2	

1.2.1 Ensemble Kalman Filter .. 5	

1.2.2 Wildfire Data Assimilation .. 7	

Chapter 2: FARSITE ... 8	

2.1 Overview of FARSITE ... 8	

2.1.1 Physical Model ... 10	

2.2 Simulation Inputs .. 13	

2.2.1 Input Files .. 13	

2.2.2 Wind Data .. 18	

2.3 Limitations of FARSITE .. 20	

Chapter 3: FARSITE with Data Assimilation .. 22	

3.1	
 Overview of the Technical Applications .. 22	

3.2	
 Technical Details of the FARSITE-OpenPALM Application 23	

3.4 Post Processing Data ... 27	

Chapter 4: Model Demonstration with FireFlux I .. 29	

4.1 Overview of the FireFlux I Experiment .. 29	

4.2 Sensitivity Study ... 33	

 iv

4.3 Deterministic Test Case .. 36	

4.3.1 Overview .. 36	

4.3.2 Results .. 37	

4.4 Ensemble Test Case .. 39	

4.4.1 Overview .. 39	

4.4.2 Results .. 39	

4.5 Statistical Model Analysis .. 42	

Chapter 5: Model Demonstration with RxCADRE S5 ... 44	

5.1 Overview of the RxCADRE Experiment .. 44	

5.2 Deterministic Test Case .. 45	

5.2.1 Overview .. 46	

5.2.2 Results .. 46	

5.2 Ensemble Test Case .. 48	

5.2.1 Overview .. 48	

5.2.2 Results .. 48	

Chapter 6: Current and Future Work .. 50	

Chapter 7: Conclusion .. 52	

Appendices .. 55	

Appendix A: MATLAB Scripts .. 55	

A.1: Wind Input Adjustments ... 55	

A.2: Post Processing FARSITE Data.. 59	

Appendix B: Application Installation Procedures .. 62	

B.1: Procedure to install OpenPALM within DeepThought2 62	

 v

B.2: Procedure to install FARSITE within OpenPALM 68	

Bibliography ... 72	

 vi

List of Figures

Figure 1.1 Data Assimilation Loop……………………………………………………3

Figure 1.2 Ensemble Kalman Filter Loop …………………………………………….6

Figure 2.1 FARSITE Validation Example …………………………………………..10

Figure 2.2 Huygen’s Principle ……………………………………………………....13

Figure 2.3 Sample FARSITE DLL Input File ...………………………………….....16

Figure 2.4 Unsheltered WAF Correlation……………………………………………19

Figure 3.1 Single Branch in PrePALM ...…………..………………………….….....26

Figure 3.2 Four Units in PrePALM …………………….………………...….……...26

Figure 4.1 Filippi’s FireFlux I Observed Firelines ………………………………….32

Figure 4.2 Wind Speed Sensitivity Analysis …………………..…………………....34

Figure 4.3 Wind Direction Sensitivity Analysis……………………………………..35

Figure 4.4 FireFlux I Deterministic Test Results ……………………………...…….38

Figure 4.5 FireFlux I Ensemble Test Results …………………………………….….41

Figure 4.6 Wind Speed Probability Distribution ………………………...…...…......43

Figure 4.7 Wind Direction Probability Distribution …….…………………………..43

Figure 5.1 RxCADRE S5 Observed Firelines …….……..………….………………45

Figure 5.2 RxCADRE S5 Deterministic Test Results ………………………...…….47

Figure 5.3 RxCADRE S5 Ensemble Test Results ……………………………….….49

 1

Chapter 1: Introduction

1.1 Motivation

Wildfires common in western United States, Australia, Portugal and other dry,

forested parts of the world are a threat to people, property, and the environment.

Understanding and predicting the movement of these destructive fires has many

positive implications. Forecast of a wildfire can allow firefighters to effectively and

safely suppress the flames, housing developers to understand the risks of building in

certain areas, and communities to timely preplan an evacuation strategy. Modeling

fires to obtain a forecast requires knowledge of the interaction between physics,

fluids, chemistry, and thermodynamics. When considering the movement of a

wildfire, other environmental factors must also be included such as dynamic wind

properties, topography, and fuel loading. The complex relationship that these factors

have, in addition to how the fire influences the atmosphere and vice versa, makes

forecasting a wildfire extremely difficult. However, several wildfire models exist with

the capability to provide useful insight to predicting fire propagation.

There are two types of existing wildfire models that either serve an

operational purpose or a research purpose. Operational-level models, used as tools to

respond to actively burning fires or for “gaming” purposes, include FARSITE

(Finney, 1998) and PROMETHEUS (Tymstra et al., 2010). Research-level models

 2

used as mathematical analogues or statistical data include WFDS (Mell, 2010), WRF-

Fire (Coen, 2013), and FIRETEC (Linn and Harlow, 1998). These models rely

heavily on assumptions of initial conditions, which inhibit the ability to simulate a

fireline location that is entirely accurate with observed data. Advanced computer

modeling methods are now being explored to improve these wildfire models and

correct the fireline prediction. Data assimilation is a method that has proven

successful in numerical weather prediction and is a promising technique in wildfire

forecast. As previously stated, the benefits from accurately predicting wildfire

propagation range from firefighter safety to community planning to atmospheric

pollution reduction. It is of interest to the fire protection community, the atmospheric

sciences community, and the urban planning community to improve these forecast

models and increase accuracy of wildfire propagation prediction.

1.2 Overview of Data Assimilation

Geophysical modeling of weather, oceanography, atmospheric chemistry, and

wildfire is comprised of complex physics given heterogeneous and uncertain sources

of data. Data assimilation (DA) is a method of characterizing the system and its

evolution by optimizing the various information provided to the model. The technique

combines numerical models with observed measurements to provide the best possible

insight into the dynamics of a future state of the given system. Estimation of the state

variables, functions of space and time, and the field, the system under observation,

 3

requires iterating a feedback loop algorithm with a forward model and an inverse

model, providing a distribution or evolution of variables in three or four dimensions

(Robinson et al. 2000). The process is illustrated in Figure 1.1, image by Cong

Zhang, where control vector 𝑦!!!
! holds a set of state variables (wind speed, fuel

properties) to be corrected through DA in a parameter estimation strategy. The

forward modeling transformation, H, uses observation vector 𝑦!!, as the target

destination of the state that contains 𝑦!
!. One run of the transformation is considered a

deterministic process and produces the new set of state variables, 𝑦!
!. Data

assimilation occurs when 𝑦!
! undergoes inversion back through H to produce 𝑦!!!! in

the previous state, which becomes a more accurate estimate of the true state 𝑦!!!! .

Then, 𝑦!!!! is mapped to the 0th state through H again using corrected prior state

variables to produce 𝑦!!, an updated, more accurate estimate of the observation 𝑦!!.

Figure 1.1 Data assimilation presented as an iterative loop that updates forward model

parameters to provide an optimized state estimation. Image by Cong Zhang, 2015.

 4

The estimates at each time step have an associated uncertainty that must be specified

in terms of a background error covariance matrix. Understanding the distribution of

the probability of this error is a key component to improve the DA method. The

background error covariance matrix is defined for a certain number of variables,

which gives the matrix its dimensions, and is assumed constant over time. The

average of the errors produced by the DA model over a large number of cases

accounts for the “windshield wiper” effect, a forecast consistently changing back and

forth to either side of the actual value or the mean forecast (WMO, 2013). This means

that the effect is averaged out too, however, the error is still present and now

unquantifiable when considering a single deterministic run. One way to overcome

this effect is by using an ensemble DA approach, in which multiple deterministic

outputs are produced at once. If an ensemble model has enough members, or

deterministic inputs, it can reduce the uncertainty of error.

An ensemble DA simulation can be thought of in the context of fire as a fan of

data points that create a fireline spreading outward from an initial ignition point.

Incorporating probabilistic physics into the observation forecast at each time step

creates these data points. As the number of ensembles is increased through a given

zone, the confidence in forecast accuracy increases, whereas a decreasing percentage

of ensemble members lessen the probability of fire spread in that zone. The

computational cost of running a 10 member ensemble model is comparable to the cost

of running the deterministic model at twice the resolution, but the statistical

proficiency is greatly improved with the ensemble run (Gall et al., 2013). Inevitably,

 5

there are a number of difficulties with DA due to nonlinearities, multiple scales,

unknown error statistics, and non-reproducibility of the unique forecasts.

1.2.1 Ensemble Kalman Filter

There exists a variety of data assimilation schemes featuring different

feedback loop algorithms and mathematical inverse models. The distribution of

information from one time step at one location to the next requires knowledge about

the connection between the variables. The Ensemble Kalman Filter (EnKF) aids in

this aspect by carrying out the calculations in the space spanned by the ensemble

members in a localized and sequential way. It is a mathematical technique used in

geophysical data assimilation methods to incorporate a Gaussian distribution of

probability for dynamic events that are unknown. This recursive ensemble filter is

used to modify the state as the system runs. The model advances in time with newly

provided data from the ensemble at each time step. This produces an optimal

combination of both measurements and model estimation (Rochoux, 2014). Figure

1.2, image by Mèlanie Rochoux, displays this process in a flowchart where initial

conditions and boundary conditions are inputs to the forward model, the model

outputs are adjusted based on comparison to observation and state estimation, and

then the updated parameters are fed back into the forward model. The error that

propagates from the quantified difference of real data to estimate data can be

explicitly known based on the predetermined error covariance matrix.

 6

This simulation is considered a Monte Carlo approximation, in which the user

understands that the uncertainty in forecasting is based on an ensemble of model

trajectories and uses repeated random samplings to obtain numerical results.

Conducting parameter estimation with this approach allows for flow-dependent error

covariances and accounts for some of the nonlinearities in the spatial and temporal

integration of the transformation operator H. The EnKF algorithm approximates the

mean and the covariance of the background state by the mean and covariance of the

ensemble, using an assumption that all the probability density functions (PDFs) are

Gaussian (Durand, 2015).

Figure 1.2 The procedure of the EnKF in a flowchart. Image by Rochoux.

 7

1.2.2 Wildfire Data Assimilation

Data assimilation has been proven to be useful in the context of weather

forecasting, oceanography prediction, and, in recent years, wildfire propagation

modeling. Using the EnKF methodology, scientists have been able to successfully

and accurately predict the movement of wildfires on a 4m by 4m scale with the

development of Firefly-EnKF (Rochoux, 2014). In addition, WRF-SFire is a data

assimilation model that has successfully paired a wildfire simulator with an

atmospheric dynamics simulator, developed by Jan Mandel at al. in 2009. State

variables in this field include wind speed, wind direction, topography, fuel type,

moisture content (in the air and of the vegetation), cloud cover, and canopy height.

The multiscale physics of a wildfire are affected by nonlinear interactions with other

natural processes, which pose a complex challenge for data assimilation. There may

be 5 orders of magnitude of distance to resolve ranging from hundred-kilometer scale

weather patterns, meter scale eddies and flame lengths, to centimeter or less scales of

combustion and chemical interactions of pyrolysis. Time scale variations also exist,

including firelines that may travel with a velocity on the order of meters per second

whereas thermal decomposition occurs in seconds or less. The rate of spread (ROS) is

determined by the change in position of the fireline normal to itself over the time it

takes to move to the new position. Regional scale zone models simulate a 2D fireline

that self propagates based on fire dynamics of fuel combustion combined with

environmental influences such as wind velocity and topography.

 8

Chapter 2: FARSITE

2.1 Overview of FARSITE

FARSITE, or Fire Area Simulator, is an operational computer simulation

growth model for wildfires developed by research scientist Mark Finney in Missoula,

MT in 1998. It computes wildfire behavior using physical equations of fire movement

combined with spatial and temporal data on weather, topography, and fuel (Finney,

1998). The deterministic software allows the user to analyze the movement of past

fires or to predict the propagation of a possible future fire scenario. FARSITE is

widely used by federal land management agencies such as the US Forest Service,

National Park Service, and others to simulate the spread of wildfires for better

understanding resource use and danger implication.

There exist two open source software downloads of FARSITE: an operational-

level Windows version and a research-level Linux version Dynamic Link Library

(DLL) installation. Both versions of the program are utilized for different purposes in

this project. The DLL, run through the terminal with a set of commands, can be

downloaded here: http://sbrittain.net/Farsite/Distrib/Linux/Farsite_Linux.htm. It

works by calling 3 files: ignition, landscape, and a detailed input file. This procedure

will be explained in the following section. The Windows version is the graphical user

interface (GUI) for FARSITE and can be downloaded here:

 9

http://www.firelab.org/document/farsite-software. With this application, the user can

define inputs and run fire scenarios to visualize the fireline and also extract important

data on fire perimeter, rate of spread, and more.

A comparative review of wildfire simulators by Papadopoulos and Pavlidou

(2011) states that FARSITE is considered to be the most precise fire propagation

simulation model by most researchers around the world. For this reason, its

capabilities will hereby be further explored in context with data assimilation.

FARSITE model performance has been validated in comparison with several past

fires (Finney, 2000). The Rogge wildfire that occurred in the Sierra Foothills in 1996

and burned 22,000 acres is depicted below in Figure 2.1. The observed fire perimeter

data in the top image is hand drawn information that has been gathered from direct

observation in the air or on the ground. The bottom image is the FARSITE simulation

of the same fire, using archived data to provide inputs on wind, topography, and fuel

load from the day of the fire initiation. The two fire perimeters are similar in location

and successfully support that FARSITE has potential to be a satisfactory physical

foundation for experimenting DA wildfire techniques.

 10

2.1.1 Physical Model

FARSITE uses a 2-D spatial methodology that is based on a Lagrangian 1-D

physical model mapped onto a 2-D grid, ideal for modeling fires that are on a

moderate size scale. A smaller fire would have critical finite physics that cannot be

analyzed in the program and a much larger, intense fire may produce fire phenomena

Figure 2.1 Rogge wildfire of 1996 in the Sierra Foothills. The top image is observed fire

perimeter and the bottom image is FARSITE simulation (Finney, 2000).

 11

that, too, cannot be analyzed. The backbone of the 1-D physical model is

Rothermel’s classical description of surface spread rate of head-fire (Equation 2.1)

(Rothermel, 1972). This model was the first to be used by the Forest Service in 1972

as a quantitative, systematic tool for predicting wildfire spread, and remains to be the

basis of many models today (Wells, 2008).

 𝑅 =
𝐼!𝜉(1+ 𝜙! + 𝜙!)

𝜌!𝜀𝑄!"

(2.1)

Where R = head fire rate of spread [m/min]

 IR = reaction intensity [kJ/min m2]

 𝜉= propagating flux ratio

𝜙!= wind speed coefficient [dimensionless]

 𝜙!= slope coefficient [dimensionless]

 𝜌!= ovendry bulk density [kg/m3]

 𝜀= effective heating number [dimensionless]

 𝑄!"= heat of pre-ignition [kJ/kg]

Assumptions of Equation 2.1 include a simplified wildfire scenario in which the

terrain is uniform and the fuel complex is homogeneous. Supporting models that

describe more complex features of a wildfire are included in the software, such as

 12

crown fire initiation (Van Wagner, 1977), crown fire spread (Rothermel, 1992), post-

frontal combustion (Albini et al., 1995; Albini and Reinhardt, 1995), and dead fuel

moisture (Nelson, 2000). The semi-empirical FARSITE model also incorporates an

assumed local ellipsoidal fireline shape to produce a more accurate model of the flank

fires or rear fires.

Huygen’s principle is a vector or wave approach to fire growth modeling, as

opposed to a cellular model (Finney, 1998). Essentially the inverse of the cell method,

Huygen’s principle propagates the fire front at each time step as a continuously

expanding fire polygon in order to achieve a 2-D spread (Anderson et al., 1982). The

fireline is defined as a set of two vertices (X, Y) and expands to many vertices over

time as the fire spreads. The expansion is calculated based on the time step duration

multiplied by rate of spread and direction from each vertex. Shown in Figure 2.2,

graphic (A) displays uniform conditions of the simulation create symmetrical

wavelets with constant shape and size at each time step, forming an even elliptical

shape. Graphic (B) displays how non-uniform conditions of the expanding fireline are

dependent on wavelet size on the local fuel type, and wavelet shape and orientation

on the local wind-slope vector. This creates a more realistic, uneven fireline.

Rothermel’s model (Eq 2.1) only accounts for the head rate of spread, which is why

the mathematical properties of the assumed ellipsoidal shape is used to account for

the flank spread.

 13

2.2 Simulation Inputs

2.2.1 Input Files

The FARSITE DLL is used in order to efficiently run multiple fire scenarios

with variable wind speed and direction inputs. The Windows version requires more

time by the user to input and post process data. There are three input files required to

run simulations on the terminal with FARSITE DLL. The process to obtain these files

requires a few steps as follows. First, an ignition file, which is formatted as a

shapefile (.shp), is created using the GUI Windows software. Shapefile format is a

Figure 2.2 Huygen’s principle illustrated. (A) Uniform conditions create symmetrical

wavelets at each time step. (B) Nonuniform conditions create uneven wavelets at each time
step (Finney, 1998).

 14

geospatial vector data format that is used for geographical system information (GIS)

software. It stores information on location, shape, and attributes of geographical

features. The ignition shapefile created in Windows FARSITE is then exported for

use with the DLL. Two additional supporting files are automatically downloaded

with the .shp file. These are the shape index format file (.shx), positional index of the

feature geometry, and the attribute format file (.dbf), columnar attributes for each

shape. The files holds data on where the actual or, if no exact coordinates are

predetermined, predicted ignition of the fire occurred. If the user is versed in creating

shapefiles via a text editor or graphical information systems tool (i.e. ArcGIS), then

the Windows GUI is not necessary.

The next step is to create the landscape shapefile (with extension .lcp),

similarly to the ignition file, in the Windows GUI. The landscape file holds critical

information on the domain of the simulation, the fuel type, and the fuel moisture

content. Once created in the GUI, this file can be exported and used in the input

directory for the DLL. Another method of creating the landscape file is to download

the .lcp file directly from an online national geo-spatial database called LANDFIRE

(Landscape Fire and Resource Management Planning Tools), managed as a shared

program between the U.S. Department of Agriculture Forest Service and the U.S.

Department of the Interior. This .lcp file can also be altered per user definitions in

Windows GUI and then exported as explained above for use in the DLL.

 15

The final input file required is a text file that can be read and edited directly in

the terminal. Shown in Figure 2.3, it contains information on time step, weather,

wind, and fuel model. Table 2.1 is a list of the mandatory inputs that can be toggled in

this file. The “RAWS” (remote automated weather station) matrix columns show the

weather input at each time step, including year, month, day, time, temperature,

humidity, precipitation amount, wind speed, wind direction, and cloud cover. A

MATLAB code can be used that allows the user to automatically change the

“RAWS” matrix inputs without ever opening the actual input file. This code found in

Appendix A.1 is useful for simulations that take place over many time steps, making

it a tedious task to change, for example, the entire wind speed vector. Once the input

files contain the necessary, relevant information of the desired fire scenario, the

simulation can be run in the terminal with a one-line command: ./TestFARSITE

./Panther/runPanther.txt.

 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 Figure 2.3 Sample input file for the FARSITE DLL.

Table 2.1 Mandatory switch inputs for FARSITE DLL.
Line # Name Description
1 FARSITE INPUTS FILE VERSION File version number
2 FARSITE_START_TIME Month, Day, Hour, Minute
3 FARSITE_END_TIME Month, Day, Hour, Minute
4 FARSITE_TIMESTEP Actual Time Step in minutes
5 FARSITE_DISTANCE_RES Distance Resolution. FARSITE will

check for new fire characteristics
when this distance has been covered
within a time step.

6 FARSITE_PERIMETER_RES Perimeter Resolution. Fire vertices
every X meters along a perimeter
while burning t each time step.

 17

Table 2.1 Mandatory switch inputs for FARSITE DLL.
Line # Name Description
7 FARSITE_MIN_IGNITION_VERTEX_

DISTANCE
The minimum distance between
vertices in an ignition.

8 FARSITE_SPOT_GRID_RESOLUTIO
N

Resolution of the background
spotting grid.

9 FARSITE_SPOT_PROBABILITY Represents the probability that an
ember can survive to intersect the
landscape.

10 FARSITE_SPOT_IGNITION_DELAY Represents the delay time in minutes
before a spot fire is started after an
ember lands on a burnable substrate.

11 FARSITE_MINIMUM_SPOT_DISTAN
CE

The distance an ember must travel
before it can start a spot fire.

12 FARSITE_ACCELERATION_ON If on, accelerates the rate of spread.
13 FARSITE_FILL_BARRIERS Where X is either 0 for false (no

barrier fill) or 1 for true (fill the
barriers). FARSITE DLL will set all
of the pixels inside a barrier polygon
to non-burnable.

14 SPOTTING_SEED The seed to be used to initialize the
random number generator for
spotting.

17 FUEL_MOISTURES_DATA Default moistures to use when a fuel
model is encountered in the lcp file
that does not have an entry in the
inputs file.

18 Fuel Moistures Data Matrix Model, FM1, FM10, FM100, FM
Live Herb, FM Live Woody

19 RAWS_ELEVATION The elevation of the RAWS data in
feet or meters.

20 RAWS_UNITS Units English or Metric
22 RAWS The number of RAWS weather

entries in the succeeding matrix.
23-27 RAWS Matrix Month, Day, Precipitation, Minimum

Temperature hour 0-2400, Maximum
Temperature hour 0-2400, Minimum
Temperature, Maximum
Temperature, Maximum Humidity,
Minimum Humidity, Elevation,
Precipitation Start Time, Precipitation
End Time

29 FOLIAR_MOISTURE_CONTENT Default 100% Moisture Content
30 CROWN_FIRE_METHOD Finney or Scott Rhienhardt
31 NUMBER_PROCESSORS The number of processors used to run

the simulation.

 18

2.2.2 Wind Data

Wildfire spread and growth depends on three primary physical parameters:

wind, topography, and fuel characteristics. On a contained time scale that spans the

duration of a wildfire, topography and fuel load at a specific location are measurable

and static. Wind, however, may change at every second, every day in terms of speed

and direction. In addition, large wildfires have the ability to produce their own wind

field, which further affects the dynamics of fire spread and growth. Any of the above

input files containing these physical parameters may be altered per the simulation

requirements, but of most interest and of most consequence are the wind variations.

Observational wind data for wildfires is collected at the height of the weather

instrumentation, the US standard for RAWS being 20 feet above bare ground or

vegetation (Andrews, 2012). Wind data collection for structure fires follows alternate

standards. To account for spatial differences in wind speed, FARSITE automatically

calculates a midflame wind velocity using the provided observation data and a wind

adjustment factor correlation (WAF). The “effective” midflame wind speed, relevant

in the context of Rothermel’s model, encompasses the combined effect of slope and

wind on head fire spread rate (Finney, 1998). It is not specifically calculated at the

mid-height of the flame, however, the term is used to distinguish between the free

wind above vegetation and the reduced wind that is used in Rothermel’s equation

(2.1). There are two WAF correlations, one for unsheltered wind speed (no overstory)

(Eq. 2.2) and the other for sheltered wind speed (with overstory vegetation)

 19

(Andrews, 2012). For this project, only unsheltered conditions were examined and

thus sheltered correlations will not be considered. To calculate the midflame wind

speed given the WAF equation 2.2, multiply the WAF by the 20-ft wind speed,

producing a new wind value in miles per hour. Figure 2.4 displays how the midflame

wind speed changes depending on the fuel bed depth (H) for the unsheltered case,

given a 20-ft wind speed of 15 mph.

 𝑊𝐴𝐹 =
1.83

ln (20+ 0.36𝐻0.13𝐻)

(2.2)

Where WAF = Wind Adjustment Factor

 H = Fuel Bed Depth [ft]

Figure 2.4 Given a 15 mph wind speed at 20-ft height, the midflame wind speed is

dependent on the fuel bed depth.

 20

2.3 Limitations of FARSITE

Although FARSITE is the most commonly used and accepted wildfire

simulation program, it bears limitations that are important to consider. One notable

limitation is the restriction on the domain size. The program is intended to be used

with large-scale fires and will not accept a domain smaller than 30 m by 30 m, based

on landscape compatibility constraints. This makes it impossible to resolve small-

scale data, finite physical interactions, and near-surface dynamics. In addition, the

program is not capable of modeling extreme fire behavior such as fire whirls or

convection columns. If a fire is categorized as conflagration, it is possible that it

produces its own fire-induced winds, which is not modeled with FARSITE.

Limitations of the program also arise from the real-world topography data that

is extracted from the online government database LANDFIRE. The user is restricted

to the landscape details provided within those data files. The landscape may change

gradually due to erosion, drought, wildlife habitation, etc., or it may change very

rapidly due to a fire, man-made deconstruction, or construction. The LANDFIRE data

is only updated every 3 years, causing a lot of these changes to go unreported in the

provided landscape file and thus the wildfire simulation is not as accurate as possible.

This can affect community planning or firefighter preparedness. Another issue with

the LANDFIRE files is that the wildland-urban interface (WUI) by definition means

that there are houses and/or urban properties in the potential hazard area. The physics

of the program cannot yet incorporate the complexity of a WUI fire in which a

 21

wildfire transitions to a structural fire, or vice versa, and how the two interact and

“fuel” each other. The landscape file that may be used from LANDFIRE will consider

structures as “non-burnable area”, which is not the case in real life.

Finally, the limitation that poses the most accuracy concerns is that the current

version of FARSITE DLL does not use a spatialized wind field. The wind is assumed

to be uniform at any height across the given topography. This will lead to inevitable

error because wind is a dynamic field that varies over terrain, vegetation, and even

with height above the ground. However, with the small-scale experiment examined

within this paper, the terrain and vegetation are uniform meaning that the wind need

not be spatialized across the domain. In addition, static wind speed versus height

above the ground is accounted for within the physical model using a Wind

Adjustment Factor (WAF) as explained in the previous section.

 22

Chapter 3: FARSITE with Data Assimilation

3.1	
 Overview of the Technical Applications

Integrating the physical model, FARSITE, with the statistical model, EnKF,

requires a third party dynamic code coupler called OpenPALM, developed by

CERFACS (Centre of Basic and Applied Research Specialized in Modeling and

Numerical Simulation) in Tolouse, France. OpenPALM allows for two programs to

run and communicate with each other simultaneously based on a combination of

application-provided and user-written code. The capabilities of a dynamic coupler

such as OpenPALM include data exchange, intermediate computations, grid-to-grid

interpolation, and parallel data redistribution (Piacentini, 2003). These functions are

possible through the libraries that are provided with the coupler program installation.

PALM is a dynamic algebraic toolbox library that allows the application to exchange

data, parallel compute, and redistribute the information to the appropriate component.

CWIPI (Coupling with Interpolation Parallel Interface) is a static library that

incorporates mesh-based coupling in 1D, 2D, or 3D exchange zones that can be

discretized according to the user demands. CWIPI connects the communication gaps

between the different meshes.

There are two main procedures for reconstructing the FARSITE DLL to use

with DA. The first part is to access a super computer cluster and install the parallel

 23

coupler program, OpenPALM. The second part is to integrate FARSITE within

OpenPALM for use with the EnKF algorithm. For large, parallel jobs such as this, the

University of Maryland provides students and faculty with a supercomputer called

Deepthought2 (DT2) High-Performance Computing (HPC). DT2 is powerful enough

to concurrently run multiple simulations over many processors. Detailed instructions

for accessing this HPC and completing these implementation procedures are listed in

Appendix B.1. Downloading and using OpenPALM on DT2 requires the installation

of a Secure Shell (SSH) client. Once the application is downloaded, the OpenPALM

environment variables must be configured according to the DT2 pathways, as

explained in Appendix B.2. After the setup is complete, jobs can be run through the

terminal on DT2 using a queue system designed to evenly allocate CPUs amongst its

users. Running a simulation requires model parameters to be defined in the input files

and placed in the correct directory path. The easiest way to modify an input file

before a simulation run is to download a secure FTP client, such as Fetch or FileZilla,

so the user has access to transfer files to the remote HPC.

3.2	
 Technical Details of the FARSITE-OpenPALM Application

The parallel implementation of FARSITE with EnKF completed with

OpenPALM allows data assimilation by intercommunication between the programs to

optimize the simulation outputs. The goal is to simulate the fireline at pre-specified

time intervals given the initial conditions and use the inverse loop to recover from the

 24

propagation errors. The EnKF works by making amplitude corrections in wind speed

or direction, rather than position corrections (Mandel et al., 2009). The physical

model takes in the error correction and generates a new fireline based on a

probabilistic best fit for each ensemble member. These action items must be user-

coded and are not pre-loaded within the OpenPALM environment.

The GUI of the parallel application, PrePALM, allows for visualization of the

EnKF and a better understanding of how it communicates to the different components

within itself. It is used to enter and control the many units of a program that need to

cooperate. This section will further explain how the framework of the application is

laid out and what it is that the GUI presents. The application shown in Figure 3.1 is a

single unit program on one branch, in this case FARSITE. The sequence of

elementary actions within a unit follows the logic of a programming language in

which contains declared variables, instructions, and control structures (loops and

conditional switches) (Piacentini, 2003). If there are multiple units in an application

the PALM driver interprets in run-time the code and schedule of execution for each

unit. Figure 3.2 displays the FARSITE ensemble application with three branches that

hold four units. The branches are in task level parallelism and the blue branch

displays internal parallelism; parallel in this context meaning the tasks are divided

into a number of processors to simultaneously carry out their functions. More

specifically, the first unit of the blue branch manages the FARSITE program and

parameter inputs. It tells the red branch to run the simulation. The red branch contains

1 master and 4 slave processors that run simultaneous integrations of the forward

 25

model. The outputs from the red branch go back into the blue branch and are now

inputs for the blue ensemble unit. This is where the ensemble members are created for

data assimilation. The green branch receives information from the ensemble unit and

slave processors to create a simulated front data ensemble.

 The next step of the algorithm is the observation comparison to prior forecast

ensemble data from the green branch. In this step, a background covariance error

matrix is produced based on user defined standard deviation and mean ensemble

output. The observation comparison and error is then used to update state and

posterior parameter estimation through the inverse model. One challenge with the

FARSITE inverse model is that the Lagrangian method of fire propagation creates an

inconsistent number of “markers” that characterize the fire front for each ensemble

member and at each time step. When the analysis and inverse update steps occur, the

number of markers in the fire front needs to be identical for proper parameter and

state comparison. To overcome this dysfunction, a defined number of markers are

chosen to assimilate each front similarly. The algorithm is coded to produce 100

markers for each front. If the front has fewer than 100 markers, the space in between

the markers is interpolated to produce more points. If the front has greater than 100

markers, the excess amount is discarded.

 26

Figure 3.1 A single-unit program displayed in the OpenPALM interface. This unit is the

FARSITE DLL and is capable of running a deterministic simulation.

Figure 3.2 A four-unit program displayed in PrePALM. The blue units manage the

FARSITE application, the red unit holds the master and slaves, and the green unit receives
the simulation data. This configuration is capable of running ensemble members of a

FARSITE simulation.

 27

3.4 Post Processing Data

Post processing the simulation data is done in two different but similar ways,

outside of the DT2 environment and within the DT2 environment. Outputs can be

extracted in spatial, linear, and tabular forms, increasing the options for analysis.

With the standalone FARSITE DLL outside of DT2, the output data is dumped into

an output folder in the form of many different files, each containing important data

for post processing. To plot the simulated fireline, the shapefile “Perimeters.shp” can

be opened in MATLAB using functions “shaperead” and “geoshow” available with

the MATLAB mapping toolbox. This is useful for mapping a predicted fireline over

an observed fireline and comparing the differences. If the two lines are very

dissimilar, this tells the user that the simulation is far off from actual data. The file

“SpreadRate.asc” can be used to determine the maximum rate of spread for a

simulation. This is an ActionScript Communication (.asc) text file that contains an

array of data, of which the highest value is the maximum ROS. The array can be

copied into MATLAB and the function “max” is an easy way to find this maximum

value. Other information that can be extracted in post processing includes spotting

outcome, heat per unit area, flame length, and crown fire ignition. This data is

secondary to determining how well simulation matches observation and therefore was

not analyzed in the scope of this project.

Within the DT2 environment, the same output files are received as the

standalone FARSITE. However, a streamlined process for plotting the fireline has

 28

been incorporated into the DA OpenPALM scheme. The program is coded in such a

way that data points are extracted as (X,Y) coordinates at each time step, making it

straightforward to plot the fireline within MATLAB. This MATLAB code is included

in Appendix A.2.

 29

Chapter 4: Model Demonstration with FireFlux I

4.1 Overview of the FireFlux I Experiment

One of the major difficulties of validation of wildfire forecasting models is the

lack of observational data available to the scientific community. There is high

possibility of endangering personnel and damaging instrumentation in order to collect

the necessary observations. Aerial sensors and infrared technology are other methods

of collecting data, but these are expensive and still cannot capture all the observations

needed for analysis. Initial attempts at overcoming this challenge include setting up

prescribed, controlled burn trials with intent to collect physical data and

measurements. These trials are typically less intense than an accidental wildfire, but

are sufficient to provide a basis for model validation. FireFlux I is the first field-scale

wildfire experiment conducted by Craig Clements of the Fire Weather Research

Laboratory to “simultaneously measure fine-scale atmospheric circulations,

turbulence structure, and plume thermodynamics” (Clements et al., 2007). The

experiment, performed in 2006 at the Houston Costal Center, remains one of the most

comprehensive grass-fire experiments to this day.

The FireFlux I experiment was conducted on a 0.63 km2 flat terrain plot of

homogeneous, tall-grass prairie land that is maintained by annual mowing. Specific

vegetation in the plot was big bluestem (Andropogon gerardi), little bluestem

 30

(Schizachyrium scoparium), and long spike tridens (Tridens strictus) (Clements et al.,

2007). Table 4.1 outlines the input parameters for the ROS model that FARSITE uses

in its input files. The wind speed input data was collected from Clements and

Kochanski, who provided an analysis of the experiment using the model WRF-SFire.

Anemometers were set up at 2 meters high, 10 meters, 20 meters and 43 meters on an

instrumented tower. Data from these instruments reveal that the wind speed varied

from 3 m/s near the 2 m height anemometer to 7 m/s near the 43 m height

anemometer. Because FARSITE automatically adjusts a 20 ft (6 m) wind speed to a

wind speed at midflame height, and the observation data showed that wind speed

changes drastically around the fire front, the wind speed input chosen to run the

simulation is 4.5 m/s (10 mph). The rate-of-spread of the fire was determined to be

approximately 1 m/s for the 15-minute duration of the experiment.

Table 4.1 Fuel and wind input parameters for the FireFlux I experiment.
Fuel and Wind Parameters for FireFlux I

Fuel Loading 1.08 kg/m2

Fuel Depth 1.5 m

Fuel Particle Density 400 kg/m2

Fuel Surface-to-Volume Ratio 5000 m-1

Dead Fuel Moisture Content 9%

Heat of Combustion 15.4 MJ/kg

Wind Speed (20-ft) 4.5 m/s

Wind Direction 10o south-west

 31

 While the experiment instruments recorded sufficient data for analysis of the

smoke plume, one limitation is that fireline information with suitable spatial and

temporal resolution was not captured. However, Jean-Baptiste Filippi at the

University of Corte in Corsica, France was able to produce surrogate firelines using

arrival time of the fire front. ForeFire/Meso-NH, the coupled wildfire-atmospheric

model that Filippi used to simulate FireFlux I, provides good agreement between

numerical result and observation data. Figure 4.1 shows the results from Filippi’s

simulation where the front is plotted at 120-second time intervals in a domain that

covers the size of the experimental burned grass area, 380 m in the x-direction and

790 m in the y-direction. This plot will be used a basis for comparison of FireFlux I

observations to the FARSITE-EnKF simulations.

 32

Figure 4.1 Observed firelines of the FireFlux I experiment produced by Filippi using front
arrival time data in ForeFire/Meso-NH. The time step between each front is 120 seconds.

 33

4.2 Sensitivity Study

A one-dimensional sensitivity analysis of a “black box” type application is a

critical step in model validation to discern how a slight change of inputs will affect

the corresponding outputs. In this case, wind speed and wind direction were both

studied under a sensitivity analysis using FARSITE DLL and the FireFlux I

experiment. The wind speed was varied in increments of 0.447 m/s (1 mph) from 0

m/s to 10 m/s and graphed versus the corresponding rate of spread outcome, as seen

in Figure 4.2. Wind direction was plotted using the same fireline ignition for 5 trials

at varying degrees of -50o, -25o, 0o, 25o, and 50o, as seen in Figure 4.3. Because ROS

is reported in an ASCII grid file format with extension “.asc”, MATLAB was used to

extract the highest value from this output file. This number is given by default in

ft/min, so a metric conversion gives the ROS in m/s, as graphed.

 The results of the wind speed sensitivity analysis show that for each

increasing unit, the head fire ROS also slightly increases. With zero wind speed input,

the fire will not spread in the FireFlux I simulation. Based on Rothermel’s model, it is

possible the ROS can be nonzero with no wind conditions as long as the other

parameters are conducive (dry, dense fuel) for fire spread. The results of the wind

direction sensitivity analysis show that 25o increments are enough to significantly

change the course of fire propagation. It is important to correctly choose the input

parameters as any small deviation in the inputs can cause inaccuracy from the desired

outputs. However, initial condition and boundary data is not always available and

 34

must be user-selected, which is why the data assimilation scheme is used to smooth

out those estimates and provide a best fit of the parameters.

Figure 4.2 Rate of spread for the head fire of FireFlux I versus increasing wind speed in

meters per second.

 35

Figure 4.3 Varying wind direction effects on FireFlux I experiment.

 36

4.3 Deterministic Test Case

4.3.1 Overview

Before data assimilation can be utilized for the FireFlux I experiment, a

deterministic test case must be run to analyze how the stand-alone physical model

FARSITE predicts wildfire propagation within the OpenPALM application, prior to

incorporating the statistical EnKF model. The deterministic cause and effect

optimization can only be produced for a short- or medium-range prediction. The data

produced further out from present time of the observation results in less accurate

forecast. The inputs used in the FARSITE application were based on the observation

data from the FireFlux I experiment, as given in section 4.1. The deterministic test

case is not expected to have high accuracy to the observed data. The high error may

derive from the equations within the model not fully incorporating atmospheric

physics, the model resolution not sufficient to capture finite thermodynamic

processes, and inaccurate or incomplete initial observations.

More so, the deterministic test case is a verification of the forward model

using known control parameters in the control vector. The computational domain of

the simulation was constructed to be as close to Filippi’s observations as possible, but

FARSITE is restricted to 30 m grid increments. Therefore, the domain is 390 m long

in the x-direction and 780 m long in the y-direction, and the landscape resolution is

30 m. The perimeter resolution and distance resolution are both 10 m. The total time

 37

of the simulation is 720 seconds, with a fire front produced at every time step of 120

seconds.

4.3.2 Results

Figure 4.4 displays the simulated fire front, the dotted line, versus the

observed fire front, the solid line. The simulated maximum ROS is 0.8 m/s whereas

the observation ROS is 1 m/s. The error is likely based on incorrect initial conditions

such as initial ignition coordinates or wind speed input. However, FARSITE is

limited to integer wind speed inputs and multiple tries of “guessing” the correct

inputs will not produce anything more accurate than what is presented below.

Another reason why the firelines do not match well on this plot could be attributed to

the 10 m shorter difference in the y-direction domain of the simulated front. The

flanking of the fireline in the east and west (x) direction is an improvement to

previous forward models that did not incorporate the physics of the elliptical shape of

wildfire spread. As expected, the deterministic run of FARSITE does not provide a

highly accurate forecast.

 38

Figure 4.4 Deterministic run of the FireFlux I experiment as simulated by
FARSITE and compared to observation data produced by Filippi. The time

step between each front is 120 seconds.

 39

4.4 Ensemble Test Case

4.4.1 Overview

 Providing an ensemble test case is the first step in the data assimilation

method. The algorithm configured in OpenPALM produces 60 ensemble members

over 4 slave processors at each time step of 120 seconds. The standard deviation for

the wind speed and direction inputs are user defined in the file “wind_ens.input”. This

tells the system for each ensemble member how much to vary the given input wind

speed and wind direction in order to later assimilate the stochastic outputs and

produce a best estimate to observation. For the FireFlux I simulation, mean wind

speed input is 4.5 m/s with a selected standard deviation of 3 m/s. Mean wind

direction input is 10o with selected standard deviation of 4o. The domain is again 390

m long in the x-direction and 780 m long in the y-direction, and the landscape

resolution is 30 m. The perimeter resolution and distance resolution are both 10 m.

The total time of the simulation is 720 seconds.

4.4.2 Results

 The ensemble simulation produced output data for 60 members at 6 time

steps. Figure 4.5 presents 8 of 60 ensemble members on the same plot as the

deterministic result and observed fireline data at time step 2, 240 seconds. These

 40

members were randomly chosen to be displayed in the plot for readability, rather than

plotting all 60 members. The number of markers of each member is based on the size

of the fireline, which is dependent on the magnitude of the wind speed. A faster wind

speed will produce a fireline that travels farther and has more data points, or marker

numbers, to plot. It is clearly visible that the model produced members with varying

wind directions (i.e. members 1 and 11) and varying wind speeds (i.e. members 1 and

16). This shows that the ensemble algorithm is working correctly. The stochastic

outputs of the ensemble show results that a newly created state estimate at time step 2

will align more closely with observed data than did the deterministic run. The inverse

loop of the EnKF, not yet in the algorithm, will recursively run the forward model

with an updated parameter estimate and assimilate the members to provide a best-fit

state output. Sources of error, defined as distance between the observed and projected

front, may come from unknown initial conditions. The goal of data assimilation is to

smooth out those uncertainties and provide a better parameter estimate, regardless of

how inaccurate the initial parameters are.

 41

Figure 4.5 Comparison of 8 randomly selected ensemble members to the deterministic

result and to the observed fireline data at time = 240 seconds.

 42

4.5 Statistical Model Analysis

The Ensemble Kalman Filter has the best performance when the control

vector is generated with Gaussian distribution. Demonstrated in this section is an

evaluation that the statistical model is set up correctly in the OpenPALM

environment. The following figures of the probability density function (PDF) provide

proof that the EnKF is using proper Gaussian distribution for probability of events.

The bar graphs display distribution in which the sum of y over all values of x gives a

probability value of 1. Figure 4.6 shows the wind speed distribution given a mean

value of 4.5 m/s with a standard deviation of 3 m/s. The probability density is plotted

versus the various wind speed values that are extracted from each of the 60 ensemble

members. Figure 4.7 shows the probability density versus wind direction distribution,

given a mean value of 10o and a standard deviation of 4o. The “bell-shaped” curve in

both figures is indicative that the statistical algorithm is applied correctly. The

distribution would be more similar to a smooth Gaussian distribution in both figures

if a greater number of ensemble members were produced.

 43

Figure 4.6 Probability density evaluation of wind speed given a mean value of

4.5 m/s and a standard deviation of 3 m/s.

Figure 4.7 Probability density evaluation of wind direction given a mean

value of 10o and a standard deviation of 4o.

 44

Chapter 5: Model Demonstration with RxCADRE S5

5.1 Overview of the RxCADRE Experiment

Demonstration of FARSITE-EnKF capabilities continues with another model

comparison to RxCADRE S5 experiment. The series of RxCADRE experiments,

Prescribed Fire Combustion and Atmospheric Dynamics Research Experiments, were

a collaborative effort funded by the Joint Fire Science Program conducted in 2008,

2011, and 2012 at the Eglin Air Force Base in Florida. The purpose of the multiple

experiments was to systematically collect measurements on fire behavior, fire effects,

smoke chemistry, and dynamics in order to provide data for improving fire model

validation. A comprehensive database was compiled using state-of-the-art

instrumentation and technology that has never previously been used for fire research

(Wells, G., 2013).

The S5 experiment examined here is a small-scale burn with block size of

approximately 100 m by 200 m. The fuel burned was a patchy, heterogeneous mix of

grass with light shrub. Further details on the fuel characteristics can be found below

in Table 5.1. Observed firelines, shown in Figure 5.1 were produced using video and

infrared technology to capture images of the flaming fire front. The fire develops

flanks at three minutes into the experiment. The maximum ROS of the fire front was

0.25 m/s.

 45

Table 5.1 Fuel and wind input parameters for the Fireflux I experiment.
Fuel and Wind Parameters for RxCADRE S5

Fuel Loading 0.28 kg/m2

Fuel Depth 0.2 m
Fuel Particle Density 513 kg/m2

Fuel Surface-to-Volume Ratio 9000 m-1

Dead Fuel Moisture Content 10%
Heat of Combustion 18.6 MJ/kg
Wind Speed (20-ft) 2.5 m/s
Wind Direction 345o south-east

Figure 5.1 Observed firelines of the RxCADRE S5 experiment. The block size is

approximately 100 m by 200 m.

 46

5.2 Deterministic Test Case

5.2.1 Overview

The deterministic test case is run with a domain size of 100 m in the x-

direction and 200 m in the y-direction. The landscape resolution of the simulation is

30 m, whereas the perimeter and distance resolutions are both 1 m. The total time of

the simulation is 540 seconds, with a fire front produced at every time step of 60

seconds. The fuel was input as dry, mixed grass with shrub. The wind speed was

input as 4 m/s, rather than the observed 2.5 m/s, to account for the difficulty in

characterizing the fuel since there was no data on spatialization of the vegetation

mixture. Wind direction was input as 345o southeast, as observed.

5.2.2 Results

 The result of the deterministic FARSITE run without data assimilation shows

good comparison between the predicted front to the observed fire front. For all 9 time

steps, the free-run firelines appear to have a slightly faster ROS than the observed

maximum ROS of 0.25 m/s. However, even though the simulated wind speed input

was 4 m/s, which was faster than the observed average wind speed of 2.5 m/s, the

simulated maximum ROS was 0.1 m/s. The disagreement of ROS could be attributed

to the fuel characterization in the input file. In addition, the FARSITE model over-

predicts the flank spread as compared with observation flank spread.

 47

Figure 5.2 Deterministic run of the RxCADRE S5 experiment as simulated by FARSITE

and compared to observation data. The time step between each front is 60 seconds.

 48

5.2 Ensemble Test Case

5.2.1 Overview

 The ensemble test case uses the same model simulation inputs as the

deterministic test case. The domain is 100 m by 200 m, the landscape resolution is 30

m, and the distance and perimeter resolutions are 1 m. The simulation produces 60

ensemble members over 4 slave processors at each time step of 60 seconds, for a total

simulation time of 540 seconds. The standard deviation for the mean 4 m/s wind

speed is 3 m/s and the standard deviation for the mean 345o wind direction is 10o.

5.2.2 Results

 The ensemble test case result shows that, similar to the FireFlux I ensemble

test, the FARSITE-EnKF is capable of producing a predicted fireline that more

closely matches the observed fireline. While the deterministic run already showed

that the FARSITE model forecasted the fire front similar to observation, the EnKF

will be able to correct and account for input errors in the simulation. Specifically, the

difference in wind speed input and the difficulty in characterizing the heterogeneous,

patchy fuel could attribute to the error.

 49

Figure 5.3 Comparison of 8 randomly selected ensemble members to the deterministic

result and to the observed fireline data at time = 240 seconds.

 50

Chapter 6: Current and Future Work

The preliminary FARSITE-EnKF model, without inverse capability,

demonstrates an improvement in fireline prediction as compared with the standalone

FARSITE model. In progress for this model now is the completion of the EnKF

inverse loop integration within OpenPALM. The work requires Fortran and shell

computer coding within the OpenPALM environment to allow communication

between the forward model and the inverse algorithm. The error between the

observation and predicted fireline is corrected in this step and the ensemble is

assimilated to recursively produce a best-estimate parameter control vector and

corresponding forecast.

After the FARSITE-EnKF model is completely integrated and the inverse

loop is running properly, wind spatialization should be accounted for within the

forward model. WindNinja, developed by Jason Forthofer et al. in 2007, is a

computer application that is used within Windows FARSITE to allow for

computation of spatially varying wind fields, however, it is not yet integrated with the

FARSITE DLL. Another consideration for wind input is allowing the model to use

non-integer wind speeds. As of now, when an ensemble is produced with FARSITE-

EnKF, the input members do not recognize any decimal wind speeds and

automatically correct themselves to input the wind to the nearest integer velocity.

Using wind speeds to the 10th decimal place would allow for greater input variation in

the ensemble and, therefore, a wider array of state estimation outputs.

 51

 Another way to increase state estimation outputs is to simply increase the

number of input ensemble members. For the purpose of saving computer cost and

quickly running simulations, this project demonstrated FARSITE-EnKF forecast

capability with 60 ensemble members. More ensemble members require more CPUs

and a longer simulation running time, but would produce more forecasted firelines at

each time step. In addition, the distribution of probability for the control parameters

would more closely align with a Gaussian distribution, increasing the chances for a

more accurate state estimation.

After validation of the FARSITE-EnKF model using wind speed and wind

direction in the parameter control vector, other variables may be explored for model

validation. Moisture content, vegetation type, and fuel bed depth are among other

parameters that may be spatialized and perturbed at each time step within the

simulation. This type of model validation would require the use of data for a larger

fire with more independent variables.

 52

Chapter 7: Conclusion

The motivation for this research is the need for an operational wildfire

forecast model that produces data faster than real-time to improve fire management

and fire suppression techniques. With such a tool, the threat of wildfires taking lives,

destroying property, and releasing harmful emissions is drastically reduced.

However, modeling wildfires is a difficult task, as the model must incorporate fire

dynamics, weather data, topography, fuel characterization, and atmospheric

interactions. There are few existing research-level models that couple wildfire-

atmospheric forecast capabilities, but the data assimilation scheme in these models is

computationally expensive and the outputs are at a low resolution. Data assimilation

is a validated technique for other geophysical modeling and the methodology needs to

be improved for wildfire models.

There are many ways to perform data assimilation for wildfire models. The

FARSITE-EnKF method presented in this work is an improvement to the existing

models in a few ways. FARSITE, being the most widely used operational wildfire

model, simulates flank-spread of the fire front better than previous coupled programs.

In addition, the model has been validated against many past fires, which supports that

it provides a robust backbone for the physical description of fire dynamics (Finney,

2000). The EnKF, which relies on a stochastic description of the model behavior, is

the selected data assimilation technique because it uses polynomial representation of

the FARSITE forward model to the varying input parameters. This reduces computer

cost and provides large sample of realizations, or ensemble members, while also

 53

characterizing the model uncertainties. With a description of error provided in the

model, the user can understand how accurate the simulated forecast is.

 OpenPALM is the chosen dynamic coupling program for FARSITE-EnKF

because it provides an environment that is pre-loaded with parallel computing

capabilities. It allows for data exchange, intermediate computations, grid-to-grid

interpolation, and parallel data redistribution. The algorithm of FARSITE-EnKF in

OpenPALM is constructed with a combination of application-provided and user-

written code. The final steps in the implementation of the inverse model is still

pending. However, the statistical ensemble model is completed and provides results

that support this research with a demonstration using FireFlux I data.

 FireFlux I is a comprehensive, field-scale experiment that has been used to

validate other wildfire-atmospheric coupled models. It is also used in this work to

examine the forecast capabilities of the coupled FARSITE-EnKF model. Although it

was conducted on a flat, homogeneous, grassland plot, eliminating independent

variables such as vegetation type and topography, the experiment allows for a wind-

focused model comparison. Therefore, only wind speed and wind direction are the

parameters studied in the control vector because they most affect the position of the

fire front. Deterministic test results show that FARSITE has the capability to spread

head fire and flank fire, but it does not produce firelines that are entirely accurate with

observed data. The ensemble test case results show that a 60-member stochastic

output of the state at each time step produces forecast firelines that align closely with

 54

observation. This is a critical foundation for validation of the FARSITE-EnKF. When

the inverse loop is completed, the 60 ensemble members will be recursively

assimilated to 1 best-fit state output. In addition, the required statistical model of

probability density is demonstrated to be functioning correctly according to the

Gaussian distribution of outputs.

 Another model demonstration is given in this project using the RxCADRE S5

experiment. This experiment is a smaller scale than FireFlux I, but shows that

FARSITE has good forecast capability when the simulation inputs are perturbed. The

EnKF, when completed, will be able to account for input error correction and find

best-fit prediction using normal probability distribution of the control parameters at

each time step.

Current and future work on the FARSITE-EnKF software includes the

following objectives: completing the inverse model algorithm; validating the model

for a large-scale fire; spatializing the wind field to account for variations in the x and

y directions; parameterizing other inputs such as fuel moisture, fuel depth, fuel

density, etc.; and parallelization with an atmospheric model to improve the

understanding of wildfire-atmosphere interactions.

 55

Appendices

Appendix A: MATLAB Scripts

A.1: Wind Input Adjustments

The following three scripts serve the purpose of automatically adjusting the

wind speed and wind direction inputs in the FARSITE input file “name.input”. The

first script, Read Custom Input, uses the existing input file and reads the matrix that

contains the wind data directly into MATLAB. The second script, Write Custom

Input, copies the input file into a new file, but replaces the wind data with the data

provided by the user. The third script, FARSITE Input, is where the user defines what

inputs to vary and by what magnitude in Write Custom Input.

1. Read Custom Input

function Raws = ReadCustInput(InputFilename)

[fin,errmsg] = fopen(InputFilename,'rt'); %Open the file, in read-
only text mode.
if(fin < 0) %Make sure the file was actually opened. Otherwise,
error.
 error(errmsg);end;

%Read up to the target matrix

CurLine = fgetl(fin); %Read the first line
while(ischar(CurLine)) %Make sure a line was read
 if((length(CurLine) > 5) && (strcmp(CurLine(1:5),'RAWS:')))
%Look for the line beginning with "RAWS:"
 break;end; %If found, stop looping
 CurLine = fgetl(fin); %If not found, read the next line and
repeat.
end;

 56

if(~ischar(CurLine)) %If the end of the file was hit, fgetl return a
non-string.
 fclose(fin);
 error('RAWS section not found.');
end;

NumRaws = str2double(strtrim(CurLine(6:end))); %Use the remainder
of the RAWS: line to determine how many rows to scan.

Raws = textscan(fin,'%u %u %u %u %u %u %f %u %u %u',NumRaws); %Read
in the array.
%Each of "NumRaws" rows is read formatted according to the funky
looking string.
%The string says read 10 columns, all of them unsigned integer
numbers
%except column 7, which has a decimal place (fixed point notation)

fclose(fin); %Close the file - we've read what we needed.

for i = 1:10
 Raws{i} = double(Raws{i}); %Convert all the integers to floating
point numbers - matlab doesn't like integers
end

Raws = [Raws{:}];%Group the answer into a single matrix.

2. Write Custom Input

function WriteCustInput(InputFilename, OutputFilename, RawsMatrix)

if(size(RawsMatrix,2) ~= 10) %Make sure we have 10 columns given to
us. (We'll check rows later)
 error(['Provided RAWS matrix is the wrong size! Expected 10
columns, given ', num2str(size(RawsMatrix,2))]);
end

[fin,errmsg] = fopen(InputFilename,'rt'); %Open the file, in read-
only text mode.
if(fin < 0) %Make sure the file was actually opened. Otherwise,
error.
 error(errmsg);end;
[fout,errmsg] = fopen(OutputFilename,'wt'); %Open the file for
writing in text mode.
if(fout < 0) %Make sure the file was actually opened. Otherwise,
error.
 fclose(fin);
 error(errmsg);
end;

%Read up to the target matrix

CurLine = fgets(fin); %Read the first line, keeping the carriage

 57

return at the end.
while(ischar(CurLine)) %Make sure a line was read
 fwrite(fout,CurLine); %Write the line to the output.
 if((length(CurLine) > 5) && (strcmp(CurLine(1:5),'RAWS:')))
%Look for the line beginning with "RAWS:"
 break;end; %If found, stop looping
 CurLine = fgets(fin); %If not found, read the next line and
repeat.
end;
if(~ischar(CurLine)) %If the end of the file was hit, fgetl return a
non-string.
 fclose(fin);
 fclose(fout);
 error('RAWS section not found.');
end;

NumRaws = str2double(strtrim(CurLine(6:end))); %Use the remainder
of the RAWS: line to determine how many rows to scan.

if(NumRaws ~= size(RawsMatrix,1))
 fclose(fin);
 fclose(fout);
 error(['Provided RAWS matrix is the wrong size! Expected ',
num2str(NumRaws), ' rows, given ', num2str(size(RawsMatrix,1))]);
end

for(i = 1:NumRaws)
 fgets(fin); %Read an input line, and discard it.
 fprintf(fout,'%u %u %u %04u %u %u %.2f %u %u %u
\n',RawsMatrix(i,:)); %Write out the array
end
%Each of "NumRaws" rows is written formatted according to the funky
looking string.
%The string says write 10 columns, all of them unsigned integer
numbers
%except column 7, which has a decimal place (fixed point notation)
with two
%significant figures after the decimal

CurLine = fgets(fin); %Read the next line, keeping the carriage
return at the end.
while(ischar(CurLine)) %Make sure a line was read
 fwrite(fout,CurLine); %Write the line to the output.
 CurLine = fgets(fin); %If not found, read the next line and
repeat.
end;

fclose(fin); %Close the file - we've read it all.
fclose(fout); %Close the file - we've written it all.

 58

3. FARSITE Input

close all;
clear;
clc;
format short;

%- SIMULATION PATH NAME --

fin = './fireflux_in/fireflux.input';
fout = './fireflux_in/fireflux.input';
% Read original wind data
Raws = ReadCustInput(fin);
Raws(:,8)= ((Raws(:,8))+4); %wind speed column
Raws(:,9)= ((Raws(:,9))+25); %wind direction column

% Output new wind data
WriteCustInput(fin,fout,Raws);

 59

A.2: Post Processing FARSITE Data

 The following script, Compare Front Ensemble, is for use with the folder

“OUT_ENSEMBLE”, which contains 420 files of the 60 ensemble member outputs at

each of the 6 time steps. The outputs in these files have been extracted in a delineated

form to represent X and Y coordinates for ease in MATLAB plotting.

1. Compare Front Ensemble

clear all;
close all;
clc;
format long;
ind_fig = 0;

% PARAMETER SETTINGS ---

%%% pathname
pathname = './OUT_ENSEMBLE/';

%%% time of interest
time = 2;

%%% number of ensemble members
ne = 60;

%%% plot parameters
%%%%% computational domain reframe (-pfr)
pfr = 20000;
%%%%% computational domain boundaries [m]
xmin = 0;
xmax = 380;
ymin = 0;
ymax = 790;
%%%%% mesh step size [m]
dx_plot = 76;
dy_plot = 79;
%%%%% final plot frame
size_plot = 30;

% PLOT FRONT DATA --

%%% colormap
cmap = colormap(jet(ne));

 60

%%% figure plot: yfr = f(xfr) at a given time
ind_fig = ind_fig + 1;
f = figure(ind_fig);
axesf = axes('Parent',f,...
 'FontName', 'Times',...
 'FontSize',16,...
 'Xtick',[xmin:dx_plot:xmax],...
 'Ytick',[ymin:dy_plot:ymax],...
 'DataAspectRatio',[1 1
1]);set(f,'PaperUnits','centimeters','PaperPosition',[0 0 30 20])
hold on;
box on;
grid on;
axis([xmin xmax ymin ymax])
title(sprintf('10 Member Front Comparison at Time
#%d',time),'FontName', 'Times','FontSize',16);
xlabel('x [m]','FontName', 'Times', 'FontSize',16);
ylabel('y [m]','FontName', 'Times', 'FontSize',16);

%%% loop over ensemble of members
for ik = 1:ne

 %%%%% access to the front data for a given time indexed by 'it'
 filename = [pathname
sprintf('farsite_front_e%0.5d_MODspace_t=%0.5d.out',ik,time)];
 d = importdata(filename);
 xfr = d(:,1)-pfr;
 yfr = d(:,2)-pfr;
 nfr = length(d);

 %%%%% plot over 2D horizontal plane
 plot([xfr; xfr(:,1)],[yfr; yfr(:,1)],'LineStyle','-
','LineWidth',2,'Color',cmap(ik,:),'Displayname',...
 sprintf('member = %d, #markers = %d',ik,nfr));
 hold on;
end

%%%Filippi's observation front
 tcurr = 120;
 filename = [sprintf(['./filippi_front/fireflux_t',
sprintf('%0.3d',tcurr) '.txt'])];
 cfd_fronts = importdata(filename);
 b = cfd_fronts(:,[3,4]);
 N_dis = 1;
 N_total = length(b);
 h2 = plot(b(1:N_dis:N_total,1)-380,b(1:N_dis:N_total,2)-
760,'ko','MarkerSize',4,'MarkerFaceColor','k');
 hold on;

%%% add legend on front data plot
%legend(axesf,'show','Location','SouthEastOutside');

 61

colorbar('peer',axesf,'FontSize',16);

%%% plot settings
set(gcf,'PaperPosition', [0 0 size_plot size_plot]);
set(gcf,'PaperSize', [size_plot size_plot]);

 62

Appendix B: Application Installation Procedures

B.1: Procedure to Install OpenPALM within DeepThought2

The following are full, detailed instructions for installing OpenPALM on

DT2, written by Melanie Rochoux.

PART 1: Accessing DeepThought2

1. Obtaining permission to access DeepThought2:���

Professor Arnaud Trouve can email the DeepThought2 administrators in order to get

an account approved for you if you activate your TerpConnect account and provide

him with your DirectoryID.

2. Download and install an SSH client:���

All access to DeepThought2 is done remotely using the Secure Shell (SSH) protocol.

As such, you need to obtain an SSH client. PuTTY is the most common SSH client and

can be obtained here, but I prefer to use MobaXterm because it simplifies the X11

forwarding process. Access to DeepThought2 is restricted to machines on the

umd.edu domain; therefore, if one wishes to access DeepThought2 from outside the

UMD campus, one needs to access UMD's virtual private network (VPN) first.

UMD's VPN client can be obtained through TerpWare.

3. Accessing DeepThought2���:

 63

At this point, logging into the DeepThought2 cluster requires proper configuration of

the SSH client. Use login.deepthought2.umd.edu (Port 22) as the remote host name

and your TerpConnect credentials.

NOTE: Online documentation on DeepThought2 is available here:

http://www.glue.umd.edu/hpcc/help/usage.html

PART 2: Installing OpenPALM

This document is designed to be used alongside documentation from CERFACS found

here: http://www.cerfacs.fr/globc/PALM_WEB/EN/DOCUMENTS/manuals.html

1. Create a directory to contain the OpenPALM files:

mkdir $HOME/PalmFiles

2. Obtain the OpenPALM files:���Download a compressed .tar archive containing all

the OpenPALM files from the CERFACS website:

http://www.cerfacs.fr/globc/PALM_WEB/EN/BECOMEAUSER/instructions.html

3. Put the distrib.tgz file into the $HOME/PalmFiles directory. (This might require a

FTP client).

4. Uncompress the archive with this command:

tar –xvf distrib.tgz

 64

5. Setup environment variables ���In order for OpenPALM to function properly, it must

be told the paths to various softwares on DeepThought2. These include the location of

the MPI files and compilers for FORTRAN, C and C++. Because it is very easy to

mistype the path to a particular directory, it is preferable to set environmental

variables instead in the .cshrc.mine file in the home directory. Add the following lines

in the .cshrc.mine file (csh):

setenv PALM_DIR $HOME/FIREFLY/PalmFiles
setenv PALM_MP $PALM_DIR/PALM_MP
setenv PALMHOME $PALM_MP/linux64r4_intel
setenv PREPALMMPDIR $PALM_DIR/PrePALM_MP
alias prepalm '$PREPALMMPDIR/prepalm_MP.tcl \!* &'
Note that the recommended installation on DeepThought2 relies on Intel compilers.

There are no PGI (Portland Group) compiler licences availible and GNU compilers

have not been tested yet.

6. Install the STEPLANG interpreter ���Instructions are found in chapter 3.3 of the

CERFACS’ linux installation guide. Because Intel compilers are used, make sure to

modify the makefile so that CC = icc.

7. Installing OpenPALM���In order to install OpenPALM, the Makefile file must be

appropriately configured. Use these commands:

 cd $HOME/PalmFiles/PALM_MP

./configure --prefix=/homes/porterw/PalmFiles/PALM_MP/linux64r4_intel --with-
CC=mpiicc –
with-F90=mpiifort --with-
openmpi=/cell_root/software/intel/ics_2013.1.039/impi/4.1.1.036/intel64/ --enable-
64bits --with- shared_lib LDFLAGS=-Wl,-

 65

rpath,/cell_root/software/intel/ics_2013.1.039/composer_xe_2013_sp1.0.080/compile
r/lib/intel64

make clean
make���
make install

NOTE: The configure command that successfully installed OpenPALM on DT2 is

written in the file “config.log.success” in the following directory:

homes/porterw/PalmFiles/PALM_MP/config.log.success

8. Verifying installation and set compilation options ���Verify that the installation is done

properly by completing the first five tutorials in CERFACS' user guide. For all the

tutorials, use the following options (replace PALMHOME with your own home

directory) in the Make.include file:

~~~ #
PALMHOME = /homes/porterw/PalmFiles/PALM_MP/linux64r4_intel/

F90 = mpiifort
F90FLAGS = L
F90FLAGS =
F90EXTLIB =

F77 = mpiifort
F77FLAGS = L
F77FLAGS =
F77EXLIB =

FPPFLAGS = -cpp

CC = mpiicc���
CCFLAGS = -std=c99
LCCFLAGS =���
CCEXTLIB = -lmpi_f90 -lmpi_f77

C++ = mpiicpc���
C++FLAGS = -DMPICH_IGNORE_CXX_SEEK
LC++FLAGS =

 66

���C++EXTLIB = -lifport -lifcpre

OMPFLAGS =���

SOFLAGS = -shared -fpic

INCLUDES = -I/usr/local/include
LIBS =

PYTHON = python���
CYTHON = cython
���PYTHON_INCLUDE = `${PYTHON} -c 'from distutils import sysconfig; print(
sysconfig.get_python_inc())'` MPI4PY_INCLUDE = `${PYTHON} -c 'import
mpi4py; print(mpi4py.get_include())'`���
NUMPY_INCLUDE = `${PYTHON} -c 'import numpy; print(numpy.get_include()
)'`

USERINCF =���
~~~ #

9. Running OpenPALM jobs on DeepThought2���Since DeepThought2 is a shared

supercomputer with a queue system, the procedure to run jobs is important to follow

and running the OpenPALM driver through the stand-alone PALM commands must

be avoided. The following procedure is recommended:

a) Generate PALM service files, either by loading the PrePALM graphical

user interface with the command prepalm or directly with the command:

$PREPALMMPDIR/prepalm_tclsh.tcl –no-make-include –c *.ppl

where * must be replaced by the name of the PrePALM file (whose extension

is ppl). Note that the option –no-make-include avoids to erase the

Make.include file already built with the correct compilation options. Note also

that the prepalm command is recommended when the application is run from

a remote station.

 67

b) Generate the executable program of the OpenPALM driver:

make

c) Run the OpenPALM driver:

• Use the mpdboot command instead of lamboot to launch the MPI

process (mpd &). ���

• Run the following script run.job using sh run.job .

sbatch palm.script���
squeue -A firemodel-hi
sbalance -all --nosuppress0

This script runs the script palm.script that defines the running options

(computational time, number of cores, run directory, etc.). More informations

can be found on the DeepThought2 website

(http://www.glue.umd.edu/hpcc/help/jobs.html). Here is a simple example: ���

#!/bin/tcsh���
#SBATCH -A firemodel-hi
#SBATCH -t 00:15:00
#SBATCH --ntasks=1
module load intel���
set WORKDIR=/homes/....
cd $WORKDIR���
pwd

mpirun -wdir $WORKDIR ./palm_main

 68

B.2: Procedure to Install FARSITE within OpenPALM

Once the setup of OpenPALM is complete and all prerequisite libraries

installed, FARSITE can be implemented and simulations may be commanded from

the DT2 terminal. The following are full, detailed instructions for integrating and

running FARSITE with OpenPALM, written by Cong Zhang and Melanie Rochoux.

1. Create a directory to contain the FARSITE run directory:

mkdir $HOME/FARSITE

2. Obtain the FARSITE run directory and copy it into “$HOME/FARSITE”.

Send an email to: cong0129@umd.edu for the latest version.

3. Install the shapefile library:

Download the shapefile libarary from http://download.osgeo.org/shapelib/. Create a

new directory (/homes/cong0129/FireLib/) to contain this library, follow README

instruction to build it. You may need to set lib path in the user profile “.cshrc.mine”

file.

setenv PATH $PATH\:/homes/cong0129/FireLib/shapelib-1.3.0/bin

4. Setup makefile options:

Use the same Make.include file as for the FIREFLY training sessions:

~~~ #

 69

PALMHOME = /homes/cong0129/PalmFiles/PALM_MP/linux64r4_intel

F90 = mpiifort
F90FLAGS =
LF90FLAGS = -lstdc++
F90EXTLIB = -lstdc++

F77 = mpiifort
F77FLAGS =
LF77FLAGS =
F77EXLIB =

FPPFLAGS = -cpp

CC = mpiicc
CCFLAGS = -std=c99
LCCFLAGS =
CCEXTLIB = -lmpi_f90 -lmpi_f77

C++ = mpiicpc
C++FLAGS = -DMPICH_IGNORE_CXX_SEEK
LC++FLAGS =
C++EXTLIB = -lifport -lifcpre

OMPFLAGS =

SOFLAGS = -shared -fpic

INCLUDES = -I/usr/local/include
LIBS = /homes/cong0129/FireLib/lapack-3.5.0/*.a
/homes/cong0129/FireLib/BLAS/blas_LINUX.a

PYTHON = python
CYTHON = cython
PYTHON_INCLUDE = `${PYTHON} -c 'from distutils import sysconfig; print(
sysconfig.get_python_inc())'`
MPI4PY_INCLUDE = `${PYTHON} -c 'import mpi4py; print(mpi4py.get_include()
)'`
NUMPY_INCLUDE = `${PYTHON} -c 'import numpy; print(numpy.get_include()
)'`

USERINCF =

~~~ #

 70

5. Compile FARSITE on DeepThought2:

a) Generate PALM service files, either by loading the PrePALM graphical

user interface with the command “prepalm” or directly with the command:

$PREPALMMPDIR/prepalm_tclsh.tcl --c PLATFORM_FARSITE_E.ppl

Note that the “prepalm” command is recommended when the application is

run from a remote station.

b) Generate the executable program of the OpenPALM driver:

make -f makefile_slaves_RUN_FARSITE_E
make

NOTE: When performing multiple compilations of the source code (due to

code development for instance), it is important to clean the environment

through the command make allclean and to compile again the whole

OpenPALM-based application: the compilation procedure described above

(5a-b) must be performed again.

6. Run the OpenPALM-based FARSITE application

• Use the mpdboot command to run the MPI process (mpd &).

• Run the following script run.job sh run.job.

sbatch Farsite.script
squeue -A firemodel-hi
sbalance -all --nosuppress0

This script runs the script Farsite.script that defines the running options

(computational time, number of cores, run directory, etc.) such as:

 71

#!/bin/tcsh
#SBATCH -A firemodel-hi
#SBATCH -t 00:60:00
#SBATCH --ntasks=20
#SBATCH --ntasks-per-core=1

module unload openmpi
module load intel/2013.1.039
limit stacksize unlimited

date
mpirun -np 1 ./palm_main
date

NOTE: The additional option “limit stacksize unlimited” is important to increase the

stack memory.

 72

Bibliography

Andrews, P L. “Modeling Wind Adjustment Factor and Midflame Wind Speed for
Rothermel’s Surface Fire Spread Model.” USDA Forest Service - General
Technical Report RMRS-GTR 266 (2012): 1–39. Web.

Buehner, Mark et al. “Intercomparison of Variational Data Assimilation and the
Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month
Experiments with Real Observations.” Monthly Weather Review 138.5 (2010):
1567–1586. Web.

Carrassi, Alberto, and Stéphane Vannitsem. “Accounting for Model Error in
Variational Data Assimilation: A Deterministic Formulation.” Monthly Weather
Review 138.9 (2010): 3369–3386. Web.

Clements, Craig B. et al. “Observing the Dynamics of Wildland Grass Fires: FireFlux
- A Field Validation Experiment.” Bulletin of the American Meteorological
Society 88.9 (2007): 1369–1382. Web.

Coen, Janice L. et al. “Wrf-Fire: Coupled Weather-Wildland Fire Modeling with the
Weather Research and Forecasting Model.” Journal of Applied Meteorology and
Climatology 52.1 (2013): 16–38. Web.

Delmotte, Blaise, Charlotte Emery, and Roberto Paoli. “A Regional-Scale Data-
Driven Wildfire Spread Simulator.” 2 (2014): n. pag. Print.

Descombes, G. et al. “Generalized Background Error Covariance Matrix Model
(GEN_BE v2.0).” Geoscientific Model Development 8.2004 (2015): 669–696.
Web.

Durand, Mickael. “Data-Driven Wildfire Spread Modeling.” 1319 (2015): n. pag.
Print.

Filippi, Jean-baptiste, Xavier Pialat, and Craig B Clements. “Assessment of
FOREFIRE / MESONH for Wildland Fire / Atmosphere Coupled Simulation of
the FireFlux Experiment.” (2014) 1–18. Print.

Finney, Mark A. “Efforts at Comparing Simulated and Observed Fire Growth
Patterns.” (2000): 20. Print.

Finney, Mark a, Dai Qin Ã, et al. “FARSITE  : Fire Area Simulator — Model
Development and Evaluation.” Evaluation Research P.February (1998): 47.
Web.

 73

Finney, Mark a, Jack D Cohen, et al. “On the Need for a Theory of Wildland Fire
Spread.” International Journal of Wildland Fire 22.1 (2013): 25–36. Web.

Gall, Robert, David Mccarren, and Fred Toepfer. “Deterministic vs . Ensemble
Forecasts  : The Case from Sandy.” 3.2 (2013): 5–11. Print.

Hyde, Kevin et al. “Research and Development Supporting Risk-Based Wildfire
Effects Prediction for Fuels and Fire Management: Status and Needs.”
International Journal of Wildland Fire 22.1 (2013): 37–50. Web.

Kochanski, A. K. et al. “Evaluation of WRF-SFIRE Performance with Field
Observations from the FireFlux Experiment.” Geoscientific Model Development
6.4 (2013): 1109–1126. Web.

Linn, Rodman R, and Francis H Harlow. “Submitted to S SECOND SYMPOSIUM
ON FIRE AND FOREST.” 836.1 046 (1997): n. pag. Print.

Mandel, J et al. “Data Assimilation for Wildland Fires: Ensemble Kalman Filters in
Coupled Atmosphere-Surface Models.” Control Systems Magazine, IEEE 29.3
(2009): 47–65. Web.

Mell, We, Rj McDermott, and Gp Forney. “Wildland Fire Behavior Modeling:
Perspectives, New Approaches and Applications.” Firescience.Gov (2010): 4.
Web.

Papadopoulos, George D, and Fotini-niovi Pavlidou. “A Comparative Review on
Wild Fi Re Simulators.” 5.2 (2011): 233–243. Print.

Piacentini, Andrea. “High Performance Computing for Computational Science ---
VECPAR 2002: 5th International Conference Porto, Portugal, June 26--28, 2002
Selected Papers and Invited Talks.” Ed. José M L M Palma et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003. 479–492. Web.

Riverain, Marion, Valentine Chatel, and Céline Vargel. “Data Assimilation for
Wildfire Spread Forecasting  : Comparison of Rate of Spread Models.” February
(2015): n. pag. Print.

Robinson, Allan R, and Pierre F J Lermusiaux. “Ocean Science by.” 62 (2000): 1–12.
Print.

Rochoux, M. C. et al. “Towards Predictive Data-Driven Simulations of Wildfire
Spread - Part I: Reduced-Cost Ensemble Kalman Filter Based on a Polynomial
Chaos Surrogate Model for Parameter Estimation.” Natural Hazards and Earth
System Sciences 14.11 (2014): 2951–2973. Web.

 74

Rochoux, Mélanie C. et al. “Data Assimilation Applied to Combustion.” Comptes
Rendus - Mecanique 2013: 266–276. Web.

Rothermel, Richard C. “A Mathematical Model for Predicting Fire Spread in
Wildland Fuels.” USDA Forest Service Research Paper INT USA INT-115
(1972): 40. Web.

Sakov, Pavel, Geir Evensen, and Laurent Bertino. “Asynchronous Data Assimilation
with the EnKF.” Tellus, Series A: Dynamic Meteorology and Oceanography 62
(2010): 24–29. Web.

Scott, Joe H. “Introduction to Fire Behavior Modeling.” (2012): 0–149. Print.

Tymstra, C et al. Development and Structure of Prometheus  : The Canadian Wildland
Fire Growth Simulation Model. N.p., 2010. Web.

USGS. “LANDFIRE.” Accessed 2014 (2014): n. pag. Web.

Welch, Greg, and Gary Bishop. “An Introduction to the Kalman Filter.” Ed. Addison-
WesleyEditor Acm Press. In Practice 7.1 (2006): 1–16. Web.

Wells, Gail. “The Rothermel Fire-Spread Model: Still Running Like a Champ.” Fire
Science Digest 2 (2008): 1–12. Web.

Wells, Gail. “RxCADRE Takes Fire Measurements to Whole New Level.” 16
(2013): n. pag. Web.

“WindNinja Select Publications & Products.” (2014): n. pag. Web.

WMO Weather, World. “Verification Methods for Tropical Cyclone Forecasts.”
November (2013): n. pag. Print.

