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The goal of this study is to provide a framework for future researchers to understand 

and use the FARSITE wildfire-forecasting model with data assimilation. Current 

wildfire models lack the ability to provide accurate prediction of fire front position 

faster than real-time. When FARSITE is coupled with a recursive ensemble filter, the 

data assimilation forecast method improves. The scope includes an explanation of the 

standalone FARSITE application, technical details on FARSITE integration with a 

parallel program coupler called OpenPALM, and a model demonstration of the 

FARSITE-Ensemble Kalman Filter software using the FireFlux I experiment by Craig 

Clements. The results show that the fire front forecast is improved with the proposed 

data-driven methodology than with the standalone FARSITE model. 
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Chapter 1: Introduction 

 

 

1.1 Motivation 

 

Wildfires common in western United States, Australia, Portugal and other dry, 

forested parts of the world are a threat to people, property, and the environment. 

Understanding and predicting the movement of these destructive fires has many 

positive implications.  Forecast of a wildfire can allow firefighters to effectively and 

safely suppress the flames, housing developers to understand the risks of building in 

certain areas, and communities to timely preplan an evacuation strategy. Modeling 

fires to obtain a forecast requires knowledge of the interaction between physics, 

fluids, chemistry, and thermodynamics. When considering the movement of a 

wildfire, other environmental factors must also be included such as dynamic wind 

properties, topography, and fuel loading. The complex relationship that these factors 

have, in addition to how the fire influences the atmosphere and vice versa, makes 

forecasting a wildfire extremely difficult. However, several wildfire models exist with 

the capability to provide useful insight to predicting fire propagation.  

 

There are two types of existing wildfire models that either serve an 

operational purpose or a research purpose. Operational-level models, used as tools to 

respond to actively burning fires or for “gaming” purposes, include FARSITE 

(Finney, 1998) and PROMETHEUS (Tymstra et al., 2010). Research-level models 
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used as mathematical analogues or statistical data include WFDS (Mell, 2010), WRF-

Fire (Coen, 2013), and FIRETEC (Linn and Harlow, 1998).  These models rely 

heavily on assumptions of initial conditions, which inhibit the ability to simulate a 

fireline location that is entirely accurate with observed data. Advanced computer 

modeling methods are now being explored to improve these wildfire models and 

correct the fireline prediction. Data assimilation is a method that has proven 

successful in numerical weather prediction and is a promising technique in wildfire 

forecast. As previously stated, the benefits from accurately predicting wildfire 

propagation range from firefighter safety to community planning to atmospheric 

pollution reduction. It is of interest to the fire protection community, the atmospheric 

sciences community, and the urban planning community to improve these forecast 

models and increase accuracy of wildfire propagation prediction. 

 

 

1.2 Overview of Data Assimilation 

 

Geophysical modeling of weather, oceanography, atmospheric chemistry, and 

wildfire is comprised of complex physics given heterogeneous and uncertain sources 

of data. Data assimilation (DA) is a method of characterizing the system and its 

evolution by optimizing the various information provided to the model. The technique 

combines numerical models with observed measurements to provide the best possible 

insight into the dynamics of a future state of the given system. Estimation of the state 

variables, functions of space and time, and the field, the system under observation, 
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requires iterating a feedback loop algorithm with a forward model and an inverse 

model, providing a distribution or evolution of variables in three or four dimensions 

(Robinson et al. 2000).  The process is illustrated in Figure 1.1, image by Cong 

Zhang, where control vector 𝑦!!!
!  holds a set of state variables (wind speed, fuel 

properties) to be corrected through DA in a parameter estimation strategy.  The 

forward modeling transformation, H, uses observation vector 𝑦!!, as the target 

destination of the state that contains 𝑦!
!. One run of the transformation is considered a 

deterministic process and produces the new set of state variables, 𝑦!
!. Data 

assimilation occurs when 𝑦!
! undergoes inversion back through H to produce 𝑦!!!!  in 

the previous state, which becomes a more accurate estimate of the true state 𝑦!!!! .  

Then, 𝑦!!!!  is mapped to the 0th state through H again using corrected prior state 

variables to produce 𝑦!!, an updated, more accurate estimate of the observation 𝑦!!.  

 

 
Figure 1.1 Data assimilation presented as an iterative loop that updates forward model 

parameters to provide an optimized state estimation. Image by Cong Zhang, 2015. 



 

 4 
  

The estimates at each time step have an associated uncertainty that must be specified 

in terms of a background error covariance matrix.  Understanding the distribution of 

the probability of this error is a key component to improve the DA method.  The 

background error covariance matrix is defined for a certain number of variables, 

which gives the matrix its dimensions, and is assumed constant over time. The 

average of the errors produced by the DA model over a large number of cases 

accounts for the “windshield wiper” effect, a forecast consistently changing back and 

forth to either side of the actual value or the mean forecast (WMO, 2013). This means 

that the effect is averaged out too, however, the error is still present and now 

unquantifiable when considering a single deterministic run.  One way to overcome 

this effect is by using an ensemble DA approach, in which multiple deterministic 

outputs are produced at once. If an ensemble model has enough members, or 

deterministic inputs, it can reduce the uncertainty of error. 

 

An ensemble DA simulation can be thought of in the context of fire as a fan of 

data points that create a fireline spreading outward from an initial ignition point. 

Incorporating probabilistic physics into the observation forecast at each time step 

creates these data points. As the number of ensembles is increased through a given 

zone, the confidence in forecast accuracy increases, whereas a decreasing percentage 

of ensemble members lessen the probability of fire spread in that zone. The 

computational cost of running a 10 member ensemble model is comparable to the cost 

of running the deterministic model at twice the resolution, but the statistical 

proficiency is greatly improved with the ensemble run (Gall et al., 2013). Inevitably, 
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there are a number of difficulties with DA due to nonlinearities, multiple scales, 

unknown error statistics, and non-reproducibility of the unique forecasts. 

 

 

1.2.1 Ensemble Kalman Filter 

 

There exists a variety of data assimilation schemes featuring different 

feedback loop algorithms and mathematical inverse models. The distribution of 

information from one time step at one location to the next requires knowledge about 

the connection between the variables. The Ensemble Kalman Filter  (EnKF) aids in 

this aspect by carrying out the calculations in the space spanned by the ensemble 

members in a localized and sequential way. It is a mathematical technique used in 

geophysical data assimilation methods to incorporate a Gaussian distribution of 

probability for dynamic events that are unknown.  This recursive ensemble filter is 

used to modify the state as the system runs. The model advances in time with newly 

provided data from the ensemble at each time step. This produces an optimal 

combination of both measurements and model estimation (Rochoux, 2014).  Figure 

1.2, image by Mèlanie Rochoux, displays this process in a flowchart where initial 

conditions and boundary conditions are inputs to the forward model, the model 

outputs are adjusted based on comparison to observation and state estimation, and 

then the updated parameters are fed back into the forward model. The error that 

propagates from the quantified difference of real data to estimate data can be 

explicitly known based on the predetermined error covariance matrix.  
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This simulation is considered a Monte Carlo approximation, in which the user 

understands that the uncertainty in forecasting is based on an ensemble of model 

trajectories and uses repeated random samplings to obtain numerical results. 

Conducting parameter estimation with this approach allows for flow-dependent error 

covariances and accounts for some of the nonlinearities in the spatial and temporal 

integration of the transformation operator H.  The EnKF algorithm approximates the 

mean and the covariance of the background state by the mean and covariance of the 

ensemble, using an assumption that all the probability density functions (PDFs) are 

Gaussian (Durand, 2015).   

 

 

 

Figure 1.2 The procedure of the EnKF in a flowchart. Image by Rochoux. 
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1.2.2 Wildfire Data Assimilation 

 

Data assimilation has been proven to be useful in the context of weather 

forecasting, oceanography prediction, and, in recent years, wildfire propagation 

modeling. Using the EnKF methodology, scientists have been able to successfully 

and accurately predict the movement of wildfires on a 4m by 4m scale with the 

development of Firefly-EnKF (Rochoux, 2014). In addition, WRF-SFire is a data 

assimilation model that has successfully paired a wildfire simulator with an 

atmospheric dynamics simulator, developed by Jan Mandel at al. in 2009.  State 

variables in this field include wind speed, wind direction, topography, fuel type, 

moisture content (in the air and of the vegetation), cloud cover, and canopy height. 

The multiscale physics of a wildfire are affected by nonlinear interactions with other 

natural processes, which pose a complex challenge for data assimilation. There may 

be 5 orders of magnitude of distance to resolve ranging from hundred-kilometer scale 

weather patterns, meter scale eddies and flame lengths, to centimeter or less scales of 

combustion and chemical interactions of pyrolysis.  Time scale variations also exist, 

including firelines that may travel with a velocity on the order of meters per second 

whereas thermal decomposition occurs in seconds or less. The rate of spread (ROS) is 

determined by the change in position of the fireline normal to itself over the time it 

takes to move to the new position. Regional scale zone models simulate a 2D fireline 

that self propagates based on fire dynamics of fuel combustion combined with 

environmental influences such as wind velocity and topography. 
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Chapter 2: FARSITE 

 

 

2.1 Overview of FARSITE 

 

FARSITE, or Fire Area Simulator, is an operational computer simulation 

growth model for wildfires developed by research scientist Mark Finney in Missoula, 

MT in 1998. It computes wildfire behavior using physical equations of fire movement 

combined with spatial and temporal data on weather, topography, and fuel (Finney, 

1998). The deterministic software allows the user to analyze the movement of past 

fires or to predict the propagation of a possible future fire scenario.  FARSITE is 

widely used by federal land management agencies such as the US Forest Service, 

National Park Service, and others to simulate the spread of wildfires for better 

understanding resource use and danger implication.  

 

There exist two open source software downloads of FARSITE: an operational-

level Windows version and a research-level Linux version Dynamic Link Library 

(DLL) installation.  Both versions of the program are utilized for different purposes in 

this project.  The DLL, run through the terminal with a set of commands, can be 

downloaded here: http://sbrittain.net/Farsite/Distrib/Linux/Farsite_Linux.htm. It 

works by calling 3 files: ignition, landscape, and a detailed input file. This procedure 

will be explained in the following section. The Windows version is the graphical user 

interface (GUI) for FARSITE and can be downloaded here: 



 

 9 
  

http://www.firelab.org/document/farsite-software. With this application, the user can 

define inputs and run fire scenarios to visualize the fireline and also extract important 

data on fire perimeter, rate of spread, and more. 

 

A comparative review of wildfire simulators by Papadopoulos and Pavlidou 

(2011) states that FARSITE is considered to be the most precise fire propagation 

simulation model by most researchers around the world. For this reason, its 

capabilities will hereby be further explored in context with data assimilation.  

FARSITE model performance has been validated in comparison with several past 

fires (Finney, 2000). The Rogge wildfire that occurred in the Sierra Foothills in 1996 

and burned 22,000 acres is depicted below in Figure 2.1. The observed fire perimeter 

data in the top image is hand drawn information that has been gathered from direct 

observation in the air or on the ground. The bottom image is the FARSITE simulation 

of the same fire, using archived data to provide inputs on wind, topography, and fuel 

load from the day of the fire initiation. The two fire perimeters are similar in location 

and successfully support that FARSITE has potential to be a satisfactory physical 

foundation for experimenting DA wildfire techniques. 
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2.1.1 Physical Model 

 

FARSITE uses a 2-D spatial methodology that is based on a Lagrangian 1-D 

physical model mapped onto a 2-D grid, ideal for modeling fires that are on a 

moderate size scale. A smaller fire would have critical finite physics that cannot be 

analyzed in the program and a much larger, intense fire may produce fire phenomena 

 
Figure 2.1 Rogge wildfire of 1996 in the Sierra Foothills. The top image is observed fire 

perimeter and the bottom image is FARSITE simulation (Finney, 2000). 
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that, too, cannot be analyzed.  The backbone of the 1-D physical model is 

Rothermel’s classical description of surface spread rate of head-fire (Equation 2.1) 

(Rothermel, 1972). This model was the first to be used by the Forest Service in 1972 

as a quantitative, systematic tool for predicting wildfire spread, and remains to be the 

basis of many models today (Wells, 2008).  

 

 𝑅 =
𝐼!𝜉(1+ 𝜙! + 𝜙!)

𝜌!𝜀𝑄!"
 

 

(2.1) 

 

 

Where R = head fire rate of spread [m/min] 

 IR = reaction intensity [kJ/min m2] 

 𝜉= propagating flux ratio 

𝜙!= wind speed coefficient [dimensionless] 

 𝜙!= slope coefficient [dimensionless] 

 𝜌!= ovendry bulk density [kg/m3] 

 𝜀= effective heating number [dimensionless] 

 𝑄!"= heat of pre-ignition [kJ/kg] 

 

Assumptions of Equation 2.1 include a simplified wildfire scenario in which the 

terrain is uniform and the fuel complex is homogeneous. Supporting models that 

describe more complex features of a wildfire are included in the software, such as 
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crown fire initiation (Van Wagner, 1977), crown fire spread (Rothermel, 1992), post-

frontal combustion (Albini et al., 1995; Albini and Reinhardt, 1995), and dead fuel 

moisture (Nelson, 2000). The semi-empirical FARSITE model also incorporates an 

assumed local ellipsoidal fireline shape to produce a more accurate model of the flank 

fires or rear fires.  

 

Huygen’s principle is a vector or wave approach to fire growth modeling, as 

opposed to a cellular model (Finney, 1998). Essentially the inverse of the cell method, 

Huygen’s principle propagates the fire front at each time step as a continuously 

expanding fire polygon in order to achieve a 2-D spread (Anderson et al., 1982).  The 

fireline is defined as a set of two vertices (X, Y) and expands to many vertices over 

time as the fire spreads. The expansion is calculated based on the time step duration 

multiplied by rate of spread and direction from each vertex. Shown in Figure 2.2, 

graphic (A) displays uniform conditions of the simulation create symmetrical 

wavelets with constant shape and size at each time step, forming an even elliptical 

shape. Graphic (B) displays how non-uniform conditions of the expanding fireline are 

dependent on wavelet size on the local fuel type, and wavelet shape and orientation 

on the local wind-slope vector. This creates a more realistic, uneven fireline. 

Rothermel’s model (Eq 2.1) only accounts for the head rate of spread, which is why 

the mathematical properties of the assumed ellipsoidal shape is used to account for 

the flank spread. 
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2.2 Simulation Inputs 

 

2.2.1 Input Files 

 

The FARSITE DLL is used in order to efficiently run multiple fire scenarios 

with variable wind speed and direction inputs.  The Windows version requires more 

time by the user to input and post process data.  There are three input files required to 

run simulations on the terminal with FARSITE DLL. The process to obtain these files 

requires a few steps as follows. First, an ignition file, which is formatted as a 

shapefile (.shp), is created using the GUI Windows software. Shapefile format is a 

 
Figure 2.2 Huygen’s principle illustrated. (A) Uniform conditions create symmetrical 

wavelets at each time step. (B) Nonuniform conditions create uneven wavelets at each time 
step (Finney, 1998). 
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geospatial vector data format that is used for geographical system information (GIS) 

software. It stores information on location, shape, and attributes of geographical 

features.  The ignition shapefile created in Windows FARSITE is then exported for 

use with the DLL.  Two additional supporting files are automatically downloaded 

with the .shp file. These are the shape index format file (.shx), positional index of the 

feature geometry, and the attribute format file (.dbf), columnar attributes for each 

shape. The files holds data on where the actual or, if no exact coordinates are 

predetermined, predicted ignition of the fire occurred.  If the user is versed in creating 

shapefiles via a text editor or graphical information systems tool (i.e. ArcGIS), then 

the Windows GUI is not necessary. 

 

The next step is to create the landscape shapefile (with extension .lcp), 

similarly to the ignition file, in the Windows GUI. The landscape file holds critical 

information on the domain of the simulation, the fuel type, and the fuel moisture 

content. Once created in the GUI, this file can be exported and used in the input 

directory for the DLL.  Another method of creating the landscape file is to download 

the .lcp file directly from an online national geo-spatial database called LANDFIRE 

(Landscape Fire and Resource Management Planning Tools), managed as a shared 

program between the U.S. Department of Agriculture Forest Service and the U.S. 

Department of the Interior.  This .lcp file can also be altered per user definitions in 

Windows GUI and then exported as explained above for use in the DLL. 
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The final input file required is a text file that can be read and edited directly in 

the terminal. Shown in Figure 2.3, it contains information on time step, weather, 

wind, and fuel model. Table 2.1 is a list of the mandatory inputs that can be toggled in 

this file. The “RAWS” (remote automated weather station) matrix columns show the 

weather input at each time step, including year, month, day, time, temperature, 

humidity, precipitation amount, wind speed, wind direction, and cloud cover. A 

MATLAB code can be used that allows the user to automatically change the 

“RAWS” matrix inputs without ever opening the actual input file. This code found in 

Appendix A.1 is useful for simulations that take place over many time steps, making 

it a tedious task to change, for example, the entire wind speed vector. Once the input 

files contain the necessary, relevant information of the desired fire scenario, the 

simulation can be run in the terminal with a one-line command: ./TestFARSITE 

./Panther/runPanther.txt. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
 Figure 2.3 Sample input file for the FARSITE DLL. 

 
 
Table 2.1 Mandatory switch inputs for FARSITE DLL. 
Line # Name Description 
1 FARSITE INPUTS FILE VERSION File version number 
2 FARSITE_START_TIME Month, Day, Hour, Minute 
3 FARSITE_END_TIME Month, Day, Hour, Minute 
4 FARSITE_TIMESTEP Actual Time Step in minutes 
5 FARSITE_DISTANCE_RES Distance Resolution. FARSITE will 

check for new fire characteristics 
when this distance has been covered 
within a time step. 

6 FARSITE_PERIMETER_RES Perimeter Resolution. Fire vertices 
every X meters along a perimeter 
while burning t each time step. 
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Table 2.1 Mandatory switch inputs for FARSITE DLL. 
Line # Name Description 
7 FARSITE_MIN_IGNITION_VERTEX_

DISTANCE 
The minimum distance between 
vertices in an ignition.  

8 FARSITE_SPOT_GRID_RESOLUTIO
N 

Resolution of the background 
spotting grid. 

9 FARSITE_SPOT_PROBABILITY Represents the probability that an 
ember can survive to intersect the 
landscape. 

10 FARSITE_SPOT_IGNITION_DELAY Represents the delay time in minutes 
before a spot fire is started after an 
ember lands on a burnable substrate. 

11 FARSITE_MINIMUM_SPOT_DISTAN
CE 

The distance an ember must travel 
before it can start a spot fire. 

12 FARSITE_ACCELERATION_ON If on, accelerates the rate of spread. 
13 FARSITE_FILL_BARRIERS Where X is either 0 for false (no 

barrier fill) or 1 for true (fill the 
barriers). FARSITE DLL will set all 
of the pixels inside a barrier polygon 
to non-burnable. 

14 SPOTTING_SEED The seed to be used to initialize the 
random number generator for 
spotting. 

17 FUEL_MOISTURES_DATA Default moistures to use when a fuel 
model is encountered in the lcp file 
that does not have an entry in the 
inputs file. 

18 Fuel Moistures Data Matrix Model, FM1, FM10, FM100, FM 
Live Herb, FM Live Woody 

19 RAWS_ELEVATION The elevation of the RAWS data in 
feet or meters.  

20 RAWS_UNITS Units English or Metric 
22 RAWS The number of RAWS weather 

entries in the succeeding matrix. 
23-27 RAWS Matrix Month, Day, Precipitation, Minimum 

Temperature hour 0-2400, Maximum 
Temperature hour 0-2400, Minimum 
Temperature, Maximum 
Temperature, Maximum Humidity, 
Minimum Humidity, Elevation, 
Precipitation Start Time, Precipitation 
End Time 

29 FOLIAR_MOISTURE_CONTENT Default 100% Moisture Content 
30 CROWN_FIRE_METHOD Finney or Scott Rhienhardt 
31 NUMBER_PROCESSORS The number of processors used to run 

the simulation. 
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2.2.2 Wind Data 

 

Wildfire spread and growth depends on three primary physical parameters: 

wind, topography, and fuel characteristics.  On a contained time scale that spans the 

duration of a wildfire, topography and fuel load at a specific location are measurable 

and static.  Wind, however, may change at every second, every day in terms of speed 

and direction. In addition, large wildfires have the ability to produce their own wind 

field, which further affects the dynamics of fire spread and growth.  Any of the above 

input files containing these physical parameters may be altered per the simulation 

requirements, but of most interest and of most consequence are the wind variations. 

 

Observational wind data for wildfires is collected at the height of the weather 

instrumentation, the US standard for RAWS being 20 feet above bare ground or 

vegetation (Andrews, 2012). Wind data collection for structure fires follows alternate 

standards. To account for spatial differences in wind speed, FARSITE automatically 

calculates a midflame wind velocity using the provided observation data and a wind 

adjustment factor correlation (WAF).  The “effective” midflame wind speed, relevant 

in the context of Rothermel’s model, encompasses the combined effect of slope and 

wind on head fire spread rate (Finney, 1998). It is not specifically calculated at the 

mid-height of the flame, however, the term is used to distinguish between the free 

wind above vegetation and the reduced wind that is used in Rothermel’s equation 

(2.1). There are two WAF correlations, one for unsheltered wind speed (no overstory) 

(Eq. 2.2) and the other for sheltered wind speed (with overstory vegetation) 
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(Andrews, 2012).  For this project, only unsheltered conditions were examined and 

thus sheltered correlations will not be considered.   To calculate the midflame wind 

speed given the WAF equation 2.2, multiply the WAF by the 20-ft wind speed, 

producing a new wind value in miles per hour. Figure 2.4 displays how the midflame 

wind speed changes depending on the fuel bed depth (H) for the unsheltered case, 

given a 20-ft wind speed of 15 mph.  

 𝑊𝐴𝐹 =
1.83

ln  (20+ 0.36𝐻0.13𝐻 )
 

 

(2.2) 

 

Where WAF = Wind Adjustment Factor 

      H = Fuel Bed Depth [ft] 

 

 

 
Figure 2.4 Given a 15 mph wind speed at 20-ft height, the midflame wind speed is 

dependent on the fuel bed depth. 
 



 

 20 
 

2.3 Limitations of FARSITE 

 

Although FARSITE is the most commonly used and accepted wildfire 

simulation program, it bears limitations that are important to consider. One notable 

limitation is the restriction on the domain size. The program is intended to be used 

with large-scale fires and will not accept a domain smaller than 30 m by 30 m, based 

on landscape compatibility constraints. This makes it impossible to resolve small-

scale data, finite physical interactions, and near-surface dynamics. In addition, the 

program is not capable of modeling extreme fire behavior such as fire whirls or 

convection columns. If a fire is categorized as conflagration, it is possible that it 

produces its own fire-induced winds, which is not modeled with FARSITE.  

 

Limitations of the program also arise from the real-world topography data that 

is extracted from the online government database LANDFIRE. The user is restricted 

to the landscape details provided within those data files. The landscape may change 

gradually due to erosion, drought, wildlife habitation, etc., or it may change very 

rapidly due to a fire, man-made deconstruction, or construction. The LANDFIRE data 

is only updated every 3 years, causing a lot of these changes to go unreported in the 

provided landscape file and thus the wildfire simulation is not as accurate as possible.  

This can affect community planning or firefighter preparedness.  Another issue with 

the LANDFIRE files is that the wildland-urban interface (WUI) by definition means 

that there are houses and/or urban properties in the potential hazard area. The physics 

of the program cannot yet incorporate the complexity of a WUI fire in which a 
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wildfire transitions to a structural fire, or vice versa, and how the two interact and 

“fuel” each other. The landscape file that may be used from LANDFIRE will consider 

structures as “non-burnable area”, which is not the case in real life. 

 

Finally, the limitation that poses the most accuracy concerns is that the current 

version of FARSITE DLL does not use a spatialized wind field. The wind is assumed 

to be uniform at any height across the given topography.  This will lead to inevitable 

error because wind is a dynamic field that varies over terrain, vegetation, and even 

with height above the ground.  However, with the small-scale experiment examined 

within this paper, the terrain and vegetation are uniform meaning that the wind need 

not be spatialized across the domain. In addition, static wind speed versus height 

above the ground is accounted for within the physical model using a Wind 

Adjustment Factor (WAF) as explained in the previous section.   
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Chapter 3: FARSITE with Data Assimilation 

 

 

3.1	
  Overview of the Technical Applications  

 

Integrating the physical model, FARSITE, with the statistical model, EnKF, 

requires a third party dynamic code coupler called OpenPALM, developed by 

CERFACS (Centre of Basic and Applied Research Specialized in Modeling and 

Numerical Simulation) in Tolouse, France. OpenPALM allows for two programs to 

run and communicate with each other simultaneously based on a combination of 

application-provided and user-written code.  The capabilities of a dynamic coupler 

such as OpenPALM include data exchange, intermediate computations, grid-to-grid 

interpolation, and parallel data redistribution (Piacentini, 2003).  These functions are 

possible through the libraries that are provided with the coupler program installation. 

PALM is a dynamic algebraic toolbox library that allows the application to exchange 

data, parallel compute, and redistribute the information to the appropriate component.  

CWIPI (Coupling with Interpolation Parallel Interface) is a static library that 

incorporates mesh-based coupling in 1D, 2D, or 3D exchange zones that can be 

discretized according to the user demands. CWIPI connects the communication gaps 

between the different meshes.  

 

There are two main procedures for reconstructing the FARSITE DLL to use 

with DA. The first part is to access a super computer cluster and install the parallel 
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coupler program, OpenPALM. The second part is to integrate FARSITE within 

OpenPALM for use with the EnKF algorithm. For large, parallel jobs such as this, the 

University of Maryland provides students and faculty with a supercomputer called 

Deepthought2 (DT2) High-Performance Computing (HPC). DT2 is powerful enough 

to concurrently run multiple simulations over many processors.  Detailed instructions 

for accessing this HPC and completing these implementation procedures are listed in 

Appendix B.1.  Downloading and using OpenPALM on DT2 requires the installation 

of a Secure Shell (SSH) client. Once the application is downloaded, the OpenPALM 

environment variables must be configured according to the DT2 pathways, as 

explained in Appendix B.2.  After the setup is complete, jobs can be run through the 

terminal on DT2 using a queue system designed to evenly allocate CPUs amongst its 

users. Running a simulation requires model parameters to be defined in the input files 

and placed in the correct directory path. The easiest way to modify an input file 

before a simulation run is to download a secure FTP client, such as Fetch or FileZilla, 

so the user has access to transfer files to the remote HPC.  

 

 

3.2	
  Technical Details of the FARSITE-OpenPALM Application  

 

The parallel implementation of FARSITE with EnKF completed with 

OpenPALM allows data assimilation by intercommunication between the programs to 

optimize the simulation outputs. The goal is to simulate the fireline at pre-specified 

time intervals given the initial conditions and use the inverse loop to recover from the 
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propagation errors. The EnKF works by making amplitude corrections in wind speed 

or direction, rather than position corrections (Mandel et al., 2009). The physical 

model takes in the error correction and generates a new fireline based on a 

probabilistic best fit for each ensemble member.  These action items must be user-

coded and are not pre-loaded within the OpenPALM environment.  

 

The GUI of the parallel application, PrePALM, allows for visualization of the 

EnKF and a better understanding of how it communicates to the different components 

within itself.  It is used to enter and control the many units of a program that need to 

cooperate. This section will further explain how the framework of the application is 

laid out and what it is that the GUI presents. The application shown in Figure 3.1 is a 

single unit program on one branch, in this case FARSITE. The sequence of 

elementary actions within a unit follows the logic of a programming language in 

which contains declared variables, instructions, and control structures (loops and 

conditional switches) (Piacentini, 2003).  If there are multiple units in an application 

the PALM driver interprets in run-time the code and schedule of execution for each 

unit.  Figure 3.2 displays the FARSITE ensemble application with three branches that 

hold four units. The branches are in task level parallelism and the blue branch 

displays internal parallelism; parallel in this context meaning the tasks are divided 

into a number of processors to simultaneously carry out their functions.  More 

specifically, the first unit of the blue branch manages the FARSITE program and 

parameter inputs. It tells the red branch to run the simulation. The red branch contains 

1 master and 4 slave processors that run simultaneous integrations of the forward 
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model. The outputs from the red branch go back into the blue branch and are now 

inputs for the blue ensemble unit. This is where the ensemble members are created for 

data assimilation. The green branch receives information from the ensemble unit and 

slave processors to create a simulated front data ensemble.  

  

 The next step of the algorithm is the observation comparison to prior forecast 

ensemble data from the green branch. In this step, a background covariance error 

matrix is produced based on user defined standard deviation and mean ensemble 

output. The observation comparison and error is then used to update state and 

posterior parameter estimation through the inverse model. One challenge with the 

FARSITE inverse model is that the Lagrangian method of fire propagation creates an 

inconsistent number of “markers” that characterize the fire front for each ensemble 

member and at each time step.  When the analysis and inverse update steps occur, the 

number of markers in the fire front needs to be identical for proper parameter and 

state comparison.  To overcome this dysfunction, a defined number of markers are 

chosen to assimilate each front similarly.  The algorithm is coded to produce 100 

markers for each front. If the front has fewer than 100 markers, the space in between 

the markers is interpolated to produce more points. If the front has greater than 100 

markers, the excess amount is discarded. 
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Figure 3.1 A single-unit program displayed in the OpenPALM interface. This unit is the 

FARSITE DLL and is capable of running a deterministic simulation. 

 
Figure 3.2 A four-unit program displayed in PrePALM. The blue units manage the 

FARSITE application, the red unit holds the master and slaves, and the green unit receives 
the simulation data. This configuration is capable of running ensemble members of a 

FARSITE simulation. 
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3.4 Post Processing Data 

 

Post processing the simulation data is done in two different but similar ways, 

outside of the DT2 environment and within the DT2 environment. Outputs can be 

extracted in spatial, linear, and tabular forms, increasing the options for analysis.  

With the standalone FARSITE DLL outside of DT2, the output data is dumped into 

an output folder in the form of many different files, each containing important data 

for post processing.  To plot the simulated fireline, the shapefile “Perimeters.shp” can 

be opened in MATLAB using functions “shaperead” and “geoshow” available with 

the MATLAB mapping toolbox. This is useful for mapping a predicted fireline over 

an observed fireline and comparing the differences. If the two lines are very 

dissimilar, this tells the user that the simulation is far off from actual data.  The file 

“SpreadRate.asc” can be used to determine the maximum rate of spread for a 

simulation. This is an ActionScript Communication (.asc) text file that contains an 

array of data, of which the highest value is the maximum ROS.  The array can be 

copied into MATLAB and the function “max” is an easy way to find this maximum 

value. Other information that can be extracted in post processing includes spotting 

outcome, heat per unit area, flame length, and crown fire ignition. This data is 

secondary to determining how well simulation matches observation and therefore was 

not analyzed in the scope of this project. 

 

Within the DT2 environment, the same output files are received as the 

standalone FARSITE. However, a streamlined process for plotting the fireline has 
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been incorporated into the DA OpenPALM scheme.  The program is coded in such a 

way that data points are extracted as (X,Y) coordinates at each time step, making it 

straightforward to plot the fireline within MATLAB. This MATLAB code is included 

in Appendix A.2. 
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Chapter 4: Model Demonstration with FireFlux I 

 

 

4.1 Overview of the FireFlux I Experiment 

 

One of the major difficulties of validation of wildfire forecasting models is the 

lack of observational data available to the scientific community. There is high 

possibility of endangering personnel and damaging instrumentation in order to collect 

the necessary observations. Aerial sensors and infrared technology are other methods 

of collecting data, but these are expensive and still cannot capture all the observations 

needed for analysis. Initial attempts at overcoming this challenge include setting up 

prescribed, controlled burn trials with intent to collect physical data and 

measurements.  These trials are typically less intense than an accidental wildfire, but 

are sufficient to provide a basis for model validation.  FireFlux I is the first field-scale 

wildfire experiment conducted by Craig Clements of the Fire Weather Research 

Laboratory to “simultaneously measure fine-scale atmospheric circulations, 

turbulence structure, and plume thermodynamics” (Clements et al., 2007). The 

experiment, performed in 2006 at the Houston Costal Center, remains one of the most 

comprehensive grass-fire experiments to this day.  

 

The FireFlux I experiment was conducted on a 0.63 km2 flat terrain plot of 

homogeneous, tall-grass prairie land that is maintained by annual mowing. Specific 

vegetation in the plot was big bluestem (Andropogon gerardi), little bluestem 
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(Schizachyrium scoparium), and long spike tridens (Tridens strictus) (Clements et al., 

2007). Table 4.1 outlines the input parameters for the ROS model that FARSITE uses 

in its input files. The wind speed input data was collected from Clements and 

Kochanski, who provided an analysis of the experiment using the model WRF-SFire. 

Anemometers were set up at 2 meters high, 10 meters, 20 meters and 43 meters on an 

instrumented tower. Data from these instruments reveal that the wind speed varied 

from 3 m/s near the 2 m height anemometer to 7 m/s near the 43 m height 

anemometer. Because FARSITE automatically adjusts a 20 ft (6 m) wind speed to a 

wind speed at midflame height, and the observation data showed that wind speed 

changes drastically around the fire front, the wind speed input chosen to run the 

simulation is 4.5 m/s (10 mph).  The rate-of-spread of the fire was determined to be 

approximately 1 m/s for the 15-minute duration of the experiment.  

 

Table 4.1 Fuel and wind input parameters for the FireFlux I experiment. 
Fuel and Wind Parameters for FireFlux I 

Fuel Loading 1.08 kg/m2 

Fuel Depth 1.5 m 

Fuel Particle Density 400 kg/m2 

Fuel Surface-to-Volume Ratio 5000 m-1 

Dead Fuel Moisture Content 9% 

Heat of Combustion 15.4 MJ/kg 

Wind Speed (20-ft) 4.5 m/s 

Wind Direction 10o south-west 
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 While the experiment instruments recorded sufficient data for analysis of the 

smoke plume, one limitation is that fireline information with suitable spatial and 

temporal resolution was not captured.  However, Jean-Baptiste Filippi at the 

University of Corte in Corsica, France was able to produce surrogate firelines using 

arrival time of the fire front.  ForeFire/Meso-NH, the coupled wildfire-atmospheric 

model that Filippi used to simulate FireFlux I, provides good agreement between 

numerical result and observation data.  Figure 4.1 shows the results from Filippi’s 

simulation where the front is plotted at 120-second time intervals in a domain that 

covers the size of the experimental burned grass area, 380 m in the x-direction and 

790 m in the y-direction. This plot will be used a basis for comparison of FireFlux I 

observations to the FARSITE-EnKF simulations.  
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Figure 4.1 Observed firelines of the FireFlux I experiment produced by Filippi using front 
arrival time data in ForeFire/Meso-NH. The time step between each front is 120 seconds.  
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4.2 Sensitivity Study  

 

A one-dimensional sensitivity analysis of a “black box” type application is a 

critical step in model validation to discern how a slight change of inputs will affect 

the corresponding outputs. In this case, wind speed and wind direction were both 

studied under a sensitivity analysis using FARSITE DLL and the FireFlux I 

experiment.  The wind speed was varied in increments of 0.447 m/s (1 mph) from 0 

m/s to 10 m/s and graphed versus the corresponding rate of spread outcome, as seen 

in Figure 4.2.  Wind direction was plotted using the same fireline ignition for 5 trials 

at varying degrees of -50o, -25o, 0o, 25o, and 50o, as seen in Figure 4.3. Because ROS 

is reported in an ASCII grid file format with extension “.asc”, MATLAB was used to 

extract the highest value from this output file. This number is given by default in 

ft/min, so a metric conversion gives the ROS in m/s, as graphed.  

 

 The results of the wind speed sensitivity analysis show that for each 

increasing unit, the head fire ROS also slightly increases. With zero wind speed input, 

the fire will not spread in the FireFlux I simulation. Based on Rothermel’s model, it is 

possible the ROS can be nonzero with no wind conditions as long as the other 

parameters are conducive (dry, dense fuel) for fire spread. The results of the wind 

direction sensitivity analysis show that 25o increments are enough to significantly 

change the course of fire propagation. It is important to correctly choose the input 

parameters as any small deviation in the inputs can cause inaccuracy from the desired 

outputs. However, initial condition and boundary data is not always available and 
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must be user-selected, which is why the data assimilation scheme is used to smooth 

out those estimates and provide a best fit of the parameters. 

 

 

 

 

 
Figure 4.2 Rate of spread for the head fire of FireFlux I versus increasing wind speed in 

meters per second. 
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Figure 4.3 Varying wind direction effects on FireFlux I experiment.  
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4.3 Deterministic Test Case 

 

4.3.1 Overview 

 

Before data assimilation can be utilized for the FireFlux I experiment, a 

deterministic test case must be run to analyze how the stand-alone physical model 

FARSITE predicts wildfire propagation within the OpenPALM application, prior to 

incorporating the statistical EnKF model. The deterministic cause and effect 

optimization can only be produced for a short- or medium-range prediction. The data 

produced further out from present time of the observation results in less accurate 

forecast. The inputs used in the FARSITE application were based on the observation 

data from the FireFlux I experiment, as given in section 4.1. The deterministic test 

case is not expected to have high accuracy to the observed data. The high error may 

derive from the equations within the model not fully incorporating atmospheric 

physics, the model resolution not sufficient to capture finite thermodynamic 

processes, and inaccurate or incomplete initial observations.  

 

More so, the deterministic test case is a verification of the forward model 

using known control parameters in the control vector. The computational domain of 

the simulation was constructed to be as close to Filippi’s observations as possible, but 

FARSITE is restricted to 30 m grid increments. Therefore, the domain is 390 m long 

in the x-direction and 780 m long in the y-direction, and the landscape resolution is 

30 m. The perimeter resolution and distance resolution are both 10 m. The total time 
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of the simulation is 720 seconds, with a fire front produced at every time step of 120 

seconds.  

 

 

4.3.2 Results 

 

Figure 4.4 displays the simulated fire front, the dotted line, versus the 

observed fire front, the solid line. The simulated maximum ROS is 0.8 m/s whereas 

the observation ROS is 1 m/s. The error is likely based on incorrect initial conditions 

such as initial ignition coordinates or wind speed input. However, FARSITE is 

limited to integer wind speed inputs and multiple tries of “guessing” the correct 

inputs will not produce anything more accurate than what is presented below. 

Another reason why the firelines do not match well on this plot could be attributed to 

the 10 m shorter difference in the y-direction domain of the simulated front. The 

flanking of the fireline in the east and west (x) direction is an improvement to 

previous forward models that did not incorporate the physics of the elliptical shape of 

wildfire spread. As expected, the deterministic run of FARSITE does not provide a 

highly accurate forecast.  
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Figure 4.4 Deterministic run of the FireFlux I experiment as simulated by 
FARSITE and compared to observation data produced by Filippi. The time 

step between each front is 120 seconds. 
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4.4 Ensemble Test Case 

 

4.4.1 Overview 

 

 Providing an ensemble test case is the first step in the data assimilation 

method. The algorithm configured in OpenPALM produces 60 ensemble members 

over 4 slave processors at each time step of 120 seconds. The standard deviation for 

the wind speed and direction inputs are user defined in the file “wind_ens.input”. This 

tells the system for each ensemble member how much to vary the given input wind 

speed and wind direction in order to later assimilate the stochastic outputs and 

produce a best estimate to observation.  For the FireFlux I simulation, mean wind 

speed input is 4.5 m/s with a selected standard deviation of 3 m/s. Mean wind 

direction input is 10o with selected standard deviation of 4o. The domain is again 390 

m long in the x-direction and 780 m long in the y-direction, and the landscape 

resolution is 30 m. The perimeter resolution and distance resolution are both 10 m. 

The total time of the simulation is 720 seconds. 

 

 

4.4.2 Results 

 

 The ensemble simulation produced output data for 60 members at 6 time 

steps. Figure 4.5 presents 8 of 60 ensemble members on the same plot as the 

deterministic result and observed fireline data at time step 2, 240 seconds. These 



 

 40 
 

members were randomly chosen to be displayed in the plot for readability, rather than 

plotting all 60 members. The number of markers of each member is based on the size 

of the fireline, which is dependent on the magnitude of the wind speed. A faster wind 

speed will produce a fireline that travels farther and has more data points, or marker 

numbers, to plot.  It is clearly visible that the model produced members with varying 

wind directions (i.e. members 1 and 11) and varying wind speeds (i.e. members 1 and 

16).  This shows that the ensemble algorithm is working correctly. The stochastic 

outputs of the ensemble show results that a newly created state estimate at time step 2 

will align more closely with observed data than did the deterministic run. The inverse 

loop of the EnKF, not yet in the algorithm, will recursively run the forward model 

with an updated parameter estimate and assimilate the members to provide a best-fit 

state output. Sources of error, defined as distance between the observed and projected 

front, may come from unknown initial conditions.  The goal of data assimilation is to 

smooth out those uncertainties and provide a better parameter estimate, regardless of 

how inaccurate the initial parameters are.  
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Figure 4.5 Comparison of 8 randomly selected ensemble members to the deterministic 

result and to the observed fireline data at time = 240 seconds. 
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4.5 Statistical Model Analysis 

 

The Ensemble Kalman Filter has the best performance when the control 

vector is generated with Gaussian distribution. Demonstrated in this section is an 

evaluation that the statistical model is set up correctly in the OpenPALM 

environment. The following figures of the probability density function (PDF) provide 

proof that the EnKF is using proper Gaussian distribution for probability of events. 

The bar graphs display distribution in which the sum of y over all values of x gives a 

probability value of 1. Figure 4.6 shows the wind speed distribution given a mean 

value of 4.5 m/s with a standard deviation of 3 m/s. The probability density is plotted 

versus the various wind speed values that are extracted from each of the 60 ensemble 

members. Figure 4.7 shows the probability density versus wind direction distribution, 

given a mean value of 10o and a standard deviation of 4o. The “bell-shaped” curve in 

both figures is indicative that the statistical algorithm is applied correctly. The 

distribution would be more similar to a smooth Gaussian distribution in both figures 

if a greater number of ensemble members were produced.  
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Figure 4.6 Probability density evaluation of wind speed given a mean value of 

4.5 m/s and a standard deviation of 3 m/s. 

 
Figure 4.7 Probability density evaluation of wind direction given a mean 

value of 10o and a standard deviation of 4o. 
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Chapter 5: Model Demonstration with RxCADRE S5 

   

 

5.1 Overview of the RxCADRE Experiment 

 

Demonstration of FARSITE-EnKF capabilities continues with another model 

comparison to RxCADRE S5 experiment. The series of RxCADRE experiments, 

Prescribed Fire Combustion and Atmospheric Dynamics Research Experiments, were 

a collaborative effort funded by the Joint Fire Science Program conducted in 2008, 

2011, and 2012 at the Eglin Air Force Base in Florida.  The purpose of the multiple 

experiments was to systematically collect measurements on fire behavior, fire effects, 

smoke chemistry, and dynamics in order to provide data for improving fire model 

validation. A comprehensive database was compiled using state-of-the-art 

instrumentation and technology that has never previously been used for fire research 

(Wells, G., 2013).  

 

The S5 experiment examined here is a small-scale burn with block size of 

approximately 100 m by 200 m.  The fuel burned was a patchy, heterogeneous mix of 

grass with light shrub. Further details on the fuel characteristics can be found below 

in Table 5.1.  Observed firelines, shown in Figure 5.1 were produced using video and 

infrared technology to capture images of the flaming fire front. The fire develops 

flanks at three minutes into the experiment. The maximum ROS of the fire front was 

0.25 m/s. 
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Table 5.1 Fuel and wind input parameters for the Fireflux I experiment. 
Fuel and Wind Parameters for RxCADRE S5 

Fuel Loading 0.28 kg/m2 

Fuel Depth 0.2 m 
Fuel Particle Density 513 kg/m2 

Fuel Surface-to-Volume Ratio 9000 m-1 

Dead Fuel Moisture Content 10% 
Heat of Combustion 18.6 MJ/kg 
Wind Speed (20-ft) 2.5 m/s 
Wind Direction 345o south-east 

 

  

 
Figure 5.1 Observed firelines of the RxCADRE S5 experiment. The block size is 

approximately 100 m by 200 m. 
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5.2 Deterministic Test Case 

 

5.2.1 Overview 

 
The deterministic test case is run with a domain size of 100 m in the x-

direction and 200 m in the y-direction. The landscape resolution of the simulation is 

30 m, whereas the perimeter and distance resolutions are both 1 m. The total time of 

the simulation is 540 seconds, with a fire front produced at every time step of 60 

seconds. The fuel was input as dry, mixed grass with shrub. The wind speed was 

input as 4 m/s, rather than the observed 2.5 m/s, to account for the difficulty in 

characterizing the fuel since there was no data on spatialization of the vegetation 

mixture. Wind direction was input as 345o southeast, as observed. 

 

5.2.2 Results 

 
 The result of the deterministic FARSITE run without data assimilation shows 

good comparison between the predicted front to the observed fire front. For all 9 time 

steps, the free-run firelines appear to have a slightly faster ROS than the observed 

maximum ROS of 0.25 m/s. However, even though the simulated wind speed input 

was 4 m/s, which was faster than the observed average wind speed of 2.5 m/s, the 

simulated maximum ROS was 0.1 m/s. The disagreement of ROS could be attributed 

to the fuel characterization in the input file.  In addition, the FARSITE model over-

predicts the flank spread as compared with observation flank spread.  
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Figure 5.2 Deterministic run of the RxCADRE S5 experiment as simulated by FARSITE 

and compared to observation data. The time step between each front is 60 seconds. 
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5.2 Ensemble Test Case 

 

5.2.1 Overview 

 

 The ensemble test case uses the same model simulation inputs as the 

deterministic test case. The domain is 100 m by 200 m, the landscape resolution is 30 

m, and the distance and perimeter resolutions are 1 m. The simulation produces 60 

ensemble members over 4 slave processors at each time step of 60 seconds, for a total 

simulation time of 540 seconds. The standard deviation for the mean 4 m/s wind 

speed is 3 m/s and the standard deviation for the mean 345o wind direction is 10o.  

 

 

5.2.2 Results 

 

 The ensemble test case result shows that, similar to the FireFlux I ensemble 

test, the FARSITE-EnKF is capable of producing a predicted fireline that more 

closely matches the observed fireline.  While the deterministic run already showed 

that the FARSITE model forecasted the fire front similar to observation, the EnKF 

will be able to correct and account for input errors in the simulation. Specifically, the 

difference in wind speed input and the difficulty in characterizing the heterogeneous, 

patchy fuel could attribute to the error.  
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Figure 5.3 Comparison of 8 randomly selected ensemble members to the deterministic 

result and to the observed fireline data at time = 240 seconds. 
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Chapter 6: Current and Future Work  
 

The preliminary FARSITE-EnKF model, without inverse capability, 

demonstrates an improvement in fireline prediction as compared with the standalone 

FARSITE model. In progress for this model now is the completion of the EnKF 

inverse loop integration within OpenPALM. The work requires Fortran and shell 

computer coding within the OpenPALM environment to allow communication 

between the forward model and the inverse algorithm. The error between the 

observation and predicted fireline is corrected in this step and the ensemble is 

assimilated to recursively produce a best-estimate parameter control vector and 

corresponding forecast. 

 

After the FARSITE-EnKF model is completely integrated and the inverse 

loop is running properly, wind spatialization should be accounted for within the 

forward model. WindNinja, developed by Jason Forthofer et al. in 2007, is a 

computer application that is used within Windows FARSITE to allow for 

computation of spatially varying wind fields, however, it is not yet integrated with the 

FARSITE DLL. Another consideration for wind input is allowing the model to use 

non-integer wind speeds. As of now, when an ensemble is produced with FARSITE-

EnKF, the input members do not recognize any decimal wind speeds and 

automatically correct themselves to input the wind to the nearest integer velocity. 

Using wind speeds to the 10th decimal place would allow for greater input variation in 

the ensemble and, therefore, a wider array of state estimation outputs. 
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 Another way to increase state estimation outputs is to simply increase the 

number of input ensemble members. For the purpose of saving computer cost and 

quickly running simulations, this project demonstrated FARSITE-EnKF forecast 

capability with 60 ensemble members. More ensemble members require more CPUs 

and a longer simulation running time, but would produce more forecasted firelines at 

each time step. In addition, the distribution of probability for the control parameters 

would more closely align with a Gaussian distribution, increasing the chances for a 

more accurate state estimation. 

 

After validation of the FARSITE-EnKF model using wind speed and wind 

direction in the parameter control vector, other variables may be explored for model 

validation. Moisture content, vegetation type, and fuel bed depth are among other 

parameters that may be spatialized and perturbed at each time step within the 

simulation. This type of model validation would require the use of data for a larger 

fire with more independent variables.   
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Chapter 7:  Conclusion 

 
The motivation for this research is the need for an operational wildfire 

forecast model that produces data faster than real-time to improve fire management 

and fire suppression techniques. With such a tool, the threat of wildfires taking lives, 

destroying property, and releasing harmful emissions is drastically reduced.  

However, modeling wildfires is a difficult task, as the model must incorporate fire 

dynamics, weather data, topography, fuel characterization, and atmospheric 

interactions. There are few existing research-level models that couple wildfire-

atmospheric forecast capabilities, but the data assimilation scheme in these models is 

computationally expensive and the outputs are at a low resolution. Data assimilation 

is a validated technique for other geophysical modeling and the methodology needs to 

be improved for wildfire models.  

 

There are many ways to perform data assimilation for wildfire models. The 

FARSITE-EnKF method presented in this work is an improvement to the existing 

models in a few ways. FARSITE, being the most widely used operational wildfire 

model, simulates flank-spread of the fire front better than previous coupled programs. 

In addition, the model has been validated against many past fires, which supports that 

it provides a robust backbone for the physical description of fire dynamics (Finney, 

2000). The EnKF, which relies on a stochastic description of the model behavior, is 

the selected data assimilation technique because it uses polynomial representation of 

the FARSITE forward model to the varying input parameters. This reduces computer 

cost and provides large sample of realizations, or ensemble members, while also 
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characterizing the model uncertainties. With a description of error provided in the 

model, the user can understand how accurate the simulated forecast is. 

  

 OpenPALM is the chosen dynamic coupling program for FARSITE-EnKF 

because it provides an environment that is pre-loaded with parallel computing 

capabilities. It allows for data exchange, intermediate computations, grid-to-grid 

interpolation, and parallel data redistribution. The algorithm of FARSITE-EnKF in 

OpenPALM is constructed with a combination of application-provided and user-

written code. The final steps in the implementation of the inverse model is still 

pending. However, the statistical ensemble model is completed and provides results 

that support this research with a demonstration using FireFlux I data.   

 

 FireFlux I is a comprehensive, field-scale experiment that has been used to 

validate other wildfire-atmospheric coupled models. It is also used in this work to 

examine the forecast capabilities of the coupled FARSITE-EnKF model.  Although it 

was conducted on a flat, homogeneous, grassland plot, eliminating independent 

variables such as vegetation type and topography, the experiment allows for a wind- 

focused model comparison.  Therefore, only wind speed and wind direction are the 

parameters studied in the control vector because they most affect the position of the 

fire front. Deterministic test results show that FARSITE has the capability to spread 

head fire and flank fire, but it does not produce firelines that are entirely accurate with 

observed data.  The ensemble test case results show that a 60-member stochastic 

output of the state at each time step produces forecast firelines that align closely with 
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observation. This is a critical foundation for validation of the FARSITE-EnKF. When 

the inverse loop is completed, the 60 ensemble members will be recursively 

assimilated to 1 best-fit state output. In addition, the required statistical model of 

probability density is demonstrated to be functioning correctly according to the 

Gaussian distribution of outputs.  

 

 Another model demonstration is given in this project using the RxCADRE S5 

experiment. This experiment is a smaller scale than FireFlux I, but shows that 

FARSITE has good forecast capability when the simulation inputs are perturbed. The 

EnKF, when completed, will be able to account for input error correction and find 

best-fit prediction using normal probability distribution of the control parameters at 

each time step. 

 

Current and future work on the FARSITE-EnKF software includes the 

following objectives: completing the inverse model algorithm; validating the model 

for a large-scale fire; spatializing the wind field to account for variations in the x and 

y directions; parameterizing other inputs such as fuel moisture, fuel depth, fuel 

density, etc.; and parallelization with an atmospheric model to improve the 

understanding of wildfire-atmosphere interactions.    
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Appendices 

 
 

Appendix A: MATLAB Scripts 

 

A.1: Wind Input Adjustments 

 

The following three scripts serve the purpose of automatically adjusting the 

wind speed and wind direction inputs in the FARSITE input file “name.input”. The 

first script, Read Custom Input, uses the existing input file and reads the matrix that 

contains the wind data directly into MATLAB.   The second script, Write Custom 

Input, copies the input file into a new file, but replaces the wind data with the data 

provided by the user. The third script, FARSITE Input, is where the user defines what 

inputs to vary and by what magnitude in Write Custom Input. 

 

1. Read Custom Input 
 
function Raws = ReadCustInput(InputFilename) 
  
[fin,errmsg] = fopen(InputFilename,'rt');  %Open the file, in read-
only text mode. 
if(fin < 0)  %Make sure the file was actually opened.  Otherwise, 
error. 
    error(errmsg);end; 
  
%Read up to the target matrix 
  
CurLine = fgetl(fin); %Read the first line 
while(ischar(CurLine)) %Make sure a line was read 
    if((length(CurLine) > 5) && (strcmp(CurLine(1:5),'RAWS:'))) 
%Look for the line beginning with "RAWS:" 
        break;end; %If found, stop looping 
    CurLine = fgetl(fin); %If not found, read the next line and 
repeat. 
end; 
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if(~ischar(CurLine)) %If the end of the file was hit, fgetl return a 
non-string. 
    fclose(fin); 
    error('RAWS section not found.'); 
end; 
  
NumRaws = str2double(strtrim(CurLine(6:end)));  %Use the remainder 
of the RAWS: line to determine how many rows to scan. 
  
Raws = textscan(fin,'%u %u %u %u %u %u %f %u %u %u',NumRaws); %Read 
in the array. 
%Each of "NumRaws" rows is read formatted according to the funky 
looking string. 
%The string says read 10 columns, all of them unsigned integer 
numbers 
%except column 7, which has a decimal place (fixed point notation) 
  
fclose(fin);  %Close the file - we've read what we needed. 
  
for i = 1:10 
    Raws{i} = double(Raws{i}); %Convert all the integers to floating 
point numbers - matlab doesn't like integers 
end 
  
Raws = [Raws{:}];%Group the answer into a single matrix. 
 

 

2. Write Custom Input 
 
function WriteCustInput(InputFilename, OutputFilename, RawsMatrix) 
  
if(size(RawsMatrix,2) ~= 10)  %Make sure we have 10 columns given to 
us.  (We'll check rows later) 
    error(['Provided RAWS matrix is the wrong size!  Expected 10 
columns, given ', num2str(size(RawsMatrix,2))]); 
end 
  
[fin,errmsg] = fopen(InputFilename,'rt');  %Open the file, in read-
only text mode. 
if(fin < 0)  %Make sure the file was actually opened.  Otherwise, 
error. 
    error(errmsg);end; 
[fout,errmsg] = fopen(OutputFilename,'wt');  %Open the file for 
writing in text mode. 
if(fout < 0)  %Make sure the file was actually opened.  Otherwise, 
error. 
    fclose(fin); 
    error(errmsg); 
end; 
  
%Read up to the target matrix 
  
CurLine = fgets(fin); %Read the first line, keeping the carriage 
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return at the end. 
while(ischar(CurLine)) %Make sure a line was read 
    fwrite(fout,CurLine); %Write the line to the output. 
    if((length(CurLine) > 5) && (strcmp(CurLine(1:5),'RAWS:'))) 
%Look for the line beginning with "RAWS:" 
        break;end; %If found, stop looping 
    CurLine = fgets(fin); %If not found, read the next line and 
repeat. 
end; 
if(~ischar(CurLine)) %If the end of the file was hit, fgetl return a 
non-string. 
    fclose(fin); 
    fclose(fout); 
    error('RAWS section not found.'); 
end; 
  
NumRaws = str2double(strtrim(CurLine(6:end)));  %Use the remainder 
of the RAWS: line to determine how many rows to scan. 
  
if(NumRaws ~= size(RawsMatrix,1)) 
    fclose(fin); 
    fclose(fout); 
    error(['Provided RAWS matrix is the wrong size!  Expected ', 
num2str(NumRaws), ' rows, given ', num2str(size(RawsMatrix,1))]); 
end 
  
for(i = 1:NumRaws) 
    fgets(fin); %Read an input line, and discard it. 
    fprintf(fout,'%u %u %u %04u %u %u %.2f %u %u %u 
\n',RawsMatrix(i,:)); %Write out the array 
end 
%Each of "NumRaws" rows is written formatted according to the funky 
looking string. 
%The string says write 10 columns, all of them unsigned integer 
numbers 
%except column 7, which has a decimal place (fixed point notation) 
with two 
%significant figures after the decimal 
  
CurLine = fgets(fin); %Read the next line, keeping the carriage 
return at the end. 
while(ischar(CurLine)) %Make sure a line was read 
    fwrite(fout,CurLine); %Write the line to the output. 
    CurLine = fgets(fin); %If not found, read the next line and 
repeat. 
end; 
  
fclose(fin);  %Close the file - we've read it all. 
fclose(fout);  %Close the file - we've written it all. 
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3. FARSITE Input 
 
close all; 
clear; 
clc; 
format short; 
  
%- SIMULATION PATH NAME --------------------------------------------
------- 
fin = './fireflux_in/fireflux.input';  
fout = './fireflux_in/fireflux.input'; 
% Read original wind data 
Raws = ReadCustInput(fin); 
Raws(:,8)= ((Raws(:,8))+4); %wind speed column 
Raws(:,9)= ((Raws(:,9))+25); %wind direction column 
  
% Output new wind data 
WriteCustInput(fin,fout,Raws); 
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A.2: Post Processing FARSITE Data 

 The following script, Compare Front Ensemble, is for use with the folder 

“OUT_ENSEMBLE”, which contains 420 files of the 60 ensemble member outputs at 

each of the 6 time steps. The outputs in these files have been extracted in a delineated 

form to represent X and Y coordinates for ease in MATLAB plotting.  

 

1. Compare Front Ensemble 

clear all; 
close all; 
clc; 
format long; 
ind_fig = 0; 
  
  
% PARAMETER SETTINGS -----------------------------------------------
------- 
%%% pathname 
pathname = './OUT_ENSEMBLE/'; 
  
%%% time of interest 
time = 2; 
  
%%% number of ensemble members 
ne = 60; 
  
%%% plot parameters 
%%%%% computational domain reframe (-pfr) 
pfr = 20000; 
%%%%% computational domain boundaries [m] 
xmin = 0; 
xmax = 380; 
ymin = 0; 
ymax = 790; 
%%%%% mesh step size [m] 
dx_plot = 76; 
dy_plot = 79; 
%%%%% final plot frame 
size_plot = 30; 
  
  
% PLOT FRONT DATA --------------------------------------------------
------- 
  
%%% colormap 
cmap = colormap(jet(ne)); 
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%%% figure plot: yfr = f(xfr) at a given time 
ind_fig = ind_fig + 1; 
f = figure(ind_fig); 
axesf = axes('Parent',f,... 
    'FontName', 'Times',... 
    'FontSize',16,... 
    'Xtick',[xmin:dx_plot:xmax],... 
    'Ytick',[ymin:dy_plot:ymax],... 
    'DataAspectRatio',[1 1 
1]);set(f,'PaperUnits','centimeters','PaperPosition',[0 0 30 20]) 
hold on; 
box on; 
grid on; 
axis([xmin xmax ymin ymax]) 
title(sprintf('10 Member Front Comparison at Time 
#%d',time),'FontName', 'Times','FontSize',16); 
xlabel('x [m]','FontName', 'Times', 'FontSize',16); 
ylabel('y [m]','FontName', 'Times', 'FontSize',16); 
  
  
  
  
%%% loop over ensemble of members 
for ik = 1:ne 
     
    %%%%% access to the front data for a given time indexed by 'it' 
    filename = [pathname 
sprintf('farsite_front_e%0.5d_MODspace_t=%0.5d.out',ik,time)]; 
    d = importdata(filename); 
    xfr = d(:,1)-pfr; 
    yfr = d(:,2)-pfr; 
    nfr = length(d); 
     
    %%%%% plot over 2D horizontal plane 
    plot([xfr; xfr(:,1)],[yfr; yfr(:,1)],'LineStyle','-
','LineWidth',2,'Color',cmap(ik,:),'Displayname',... 
        sprintf('member = %d, #markers = %d',ik,nfr)); 
    hold on;     
end 
  
%%%Filippi's observation front 
 tcurr = 120; 
    filename = [sprintf(['./filippi_front/fireflux_t', 
sprintf('%0.3d',tcurr) '.txt'])]; 
    cfd_fronts = importdata(filename); 
    b = cfd_fronts(:,[3,4]); 
    N_dis = 1; 
    N_total = length(b); 
    h2 = plot(b(1:N_dis:N_total,1)-380,b(1:N_dis:N_total,2)-
760,'ko','MarkerSize',4,'MarkerFaceColor','k'); 
    hold on; 
  
  
  
%%% add legend on front data plot 
%legend(axesf,'show','Location','SouthEastOutside'); 
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colorbar('peer',axesf,'FontSize',16); 
  
%%% plot settings 
set(gcf,'PaperPosition', [0 0 size_plot size_plot]); 
set(gcf,'PaperSize', [size_plot size_plot]); 
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Appendix B: Application Installation Procedures  

 

B.1: Procedure to Install OpenPALM within DeepThought2 

 

The following are full, detailed instructions for installing OpenPALM on 

DT2, written by Melanie Rochoux. 

 

PART 1: Accessing DeepThought2  
 
1. Obtaining permission to access DeepThought2:��� 

Professor Arnaud Trouve can email the DeepThought2 administrators in order to get 

an account approved for you if you activate your TerpConnect account and provide 

him with your DirectoryID.  

 

2. Download and install an SSH client:��� 

All access to DeepThought2 is done remotely using the Secure Shell (SSH) protocol. 

As such, you need to obtain an SSH client. PuTTY is the most common SSH client and 

can be obtained here, but I prefer to use MobaXterm because it simplifies the X11 

forwarding process. Access to DeepThought2 is restricted to machines on the 

umd.edu domain; therefore, if one wishes to access DeepThought2 from outside the 

UMD campus, one needs to access UMD's virtual private network (VPN) first. 

UMD's VPN client can be obtained through TerpWare.  

 

3. Accessing DeepThought2���: 
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At this point, logging into the DeepThought2 cluster requires proper configuration of 

the SSH client. Use login.deepthought2.umd.edu (Port 22) as the remote host name 

and your TerpConnect credentials.  

NOTE: Online documentation on DeepThought2 is available here: 

http://www.glue.umd.edu/hpcc/help/usage.html  

 

PART 2: Installing OpenPALM  

 

This document is designed to be used alongside documentation from CERFACS found 

here: http://www.cerfacs.fr/globc/PALM_WEB/EN/DOCUMENTS/manuals.html  

 

1. Create a directory to contain the OpenPALM files:  

mkdir $HOME/PalmFiles 
 
2. Obtain the OpenPALM files:���Download a compressed .tar archive containing all 

the OpenPALM files from the CERFACS website: 

http://www.cerfacs.fr/globc/PALM_WEB/EN/BECOMEAUSER/instructions.html  

 

3. Put the distrib.tgz file into the $HOME/PalmFiles directory. (This might require a 

FTP client).  

 

4. Uncompress the archive with this command:  

 
tar –xvf distrib.tgz 
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5. Setup environment variables ���In order for OpenPALM to function properly, it must 

be told the paths to various softwares on DeepThought2. These include the location of 

the MPI files and compilers for FORTRAN, C and C++. Because it is very easy to 

mistype the path to a particular directory, it is preferable to set environmental 

variables instead in the .cshrc.mine file in the home directory. Add the following lines 

in the .cshrc.mine file (csh):  

setenv PALM_DIR $HOME/FIREFLY/PalmFiles 
setenv PALM_MP $PALM_DIR/PALM_MP 
setenv PALMHOME $PALM_MP/linux64r4_intel 
setenv PREPALMMPDIR $PALM_DIR/PrePALM_MP  
alias prepalm '$PREPALMMPDIR/prepalm_MP.tcl \!* &' 
Note that the recommended installation on DeepThought2 relies on Intel compilers. 

There are no PGI (Portland Group) compiler licences availible and GNU compilers 

have not been tested yet.  

 

6. Install the STEPLANG interpreter ���Instructions are found in chapter 3.3 of the 

CERFACS’ linux installation guide. Because Intel compilers are used, make sure to 

modify the makefile so that CC = icc.  

 

7. Installing OpenPALM���In order to install OpenPALM, the Makefile file must be 

appropriately configured. Use these commands:  

 
 cd $HOME/PalmFiles/PALM_MP  
 
./configure --prefix=/homes/porterw/PalmFiles/PALM_MP/linux64r4_intel --with-
CC=mpiicc –  
with-F90=mpiifort --with-  
openmpi=/cell_root/software/intel/ics_2013.1.039/impi/4.1.1.036/intel64/ --enable-
64bits --with- shared_lib LDFLAGS=-Wl,- 
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rpath,/cell_root/software/intel/ics_2013.1.039/composer_xe_2013_sp1.0.080/compile
r/lib/intel64  
 
make clean  
make��� 
make install  
  
NOTE: The configure command that successfully installed OpenPALM on DT2 is 

written in the file “config.log.success” in the following directory: 

homes/porterw/PalmFiles/PALM_MP/config.log.success  

 

8. Verifying installation and set compilation options ���Verify that the installation is done 

properly by completing the first five tutorials in CERFACS' user guide. For all the 

tutorials, use the following options (replace PALMHOME with your own home 

directory) in the Make.include file:  

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #  
PALMHOME = /homes/porterw/PalmFiles/PALM_MP/linux64r4_intel/  
 
F90 = mpiifort  
F90FLAGS = L 
F90FLAGS =  
F90EXTLIB =  
 
F77 = mpiifort  
F77FLAGS = L 
F77FLAGS =  
F77EXLIB =  
 
FPPFLAGS = -cpp  
 
CC = mpiicc��� 
CCFLAGS = -std=c99  
LCCFLAGS =��� 
CCEXTLIB = -lmpi_f90 -lmpi_f77  
 
C++ = mpiicpc��� 
C++FLAGS = -DMPICH_IGNORE_CXX_SEEK  
LC++FLAGS = 
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���C++EXTLIB = -lifport -lifcpre  
 
OMPFLAGS =��� 
 
SOFLAGS = -shared -fpic  
 
INCLUDES = -I/usr/local/include  
LIBS =  
 
PYTHON = python��� 
CYTHON = cython 
���PYTHON_INCLUDE = `${PYTHON} -c 'from distutils import sysconfig; print( 
sysconfig.get_python_inc() )'` MPI4PY_INCLUDE = `${PYTHON} -c 'import 
mpi4py; print( mpi4py.get_include() )'`��� 
NUMPY_INCLUDE = `${PYTHON} -c 'import numpy; print( numpy.get_include() 
)'`  
 
USERINCF =��� 
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #  
  

9. Running OpenPALM jobs on DeepThought2���Since DeepThought2 is a shared 

supercomputer with a queue system, the procedure to run jobs is important to follow 

and running the OpenPALM driver through the stand-alone PALM commands must 

be avoided. The following procedure is recommended:  

a) Generate PALM service files, either by loading the PrePALM graphical 

user interface with the command prepalm or directly with the command:  

$PREPALMMPDIR/prepalm_tclsh.tcl –no-make-include –c *.ppl  
 

where * must be replaced by the name of the PrePALM file (whose extension 

is ppl).  Note that the option –no-make-include avoids to erase the 

Make.include file already built with the correct compilation options. Note also 

that the prepalm command is recommended when the application is run from 

a remote station.  
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b) Generate the executable program of the OpenPALM driver:  

make 
 

c) Run the OpenPALM driver:  

• Use the mpdboot command instead of lamboot to launch the MPI 

process (mpd &). ��� 

• Run the following script run.job using sh run.job . 

sbatch palm.script��� 
squeue -A firemodel-hi  
sbalance -all --nosuppress0  
 

This script runs the script palm.script that defines the running options 

(computational time, number of cores, run directory, etc.). More informations 

can be found on the DeepThought2 website 

(http://www.glue.umd.edu/hpcc/help/jobs.html).  Here is a simple example: ��� 

#!/bin/tcsh��� 
#SBATCH -A firemodel-hi  
#SBATCH -t 00:15:00  
#SBATCH --ntasks=1  
module load intel��� 
set WORKDIR=/homes/....  
cd $WORKDIR��� 
pwd  
 
mpirun -wdir $WORKDIR ./palm_main  
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B.2: Procedure to Install FARSITE within OpenPALM 

 

Once the setup of OpenPALM is complete and all prerequisite libraries 

installed, FARSITE can be implemented and simulations may be commanded from 

the DT2 terminal. The following are full, detailed instructions for integrating and 

running FARSITE with OpenPALM, written by Cong Zhang and Melanie Rochoux. 

 

1. Create a directory to contain the FARSITE run directory: 

mkdir $HOME/FARSITE 
 

2. Obtain the FARSITE run directory and copy it into “$HOME/FARSITE”. 

Send an email to: cong0129@umd.edu for the latest version. 

 

3. Install the shapefile library: 

Download the shapefile libarary from http://download.osgeo.org/shapelib/. Create a 

new directory (/homes/cong0129/FireLib/) to contain this library, follow README 

instruction to build it. You may need to set lib path in the user profile “.cshrc.mine” 

file. 

 
setenv PATH $PATH\:/homes/cong0129/FireLib/shapelib-1.3.0/bin 
 
 

4. Setup makefile options: 

Use the same Make.include file as for the FIREFLY training sessions: 

 
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 
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PALMHOME = /homes/cong0129/PalmFiles/PALM_MP/linux64r4_intel 
 
F90 = mpiifort 
F90FLAGS = 
LF90FLAGS = -lstdc++ 
F90EXTLIB = -lstdc++ 
 
F77 = mpiifort 
F77FLAGS = 
LF77FLAGS = 
F77EXLIB = 
 
FPPFLAGS = -cpp 
 
CC = mpiicc 
CCFLAGS = -std=c99 
LCCFLAGS = 
CCEXTLIB = -lmpi_f90 -lmpi_f77 
 
C++ = mpiicpc 
C++FLAGS = -DMPICH_IGNORE_CXX_SEEK 
LC++FLAGS = 
C++EXTLIB = -lifport -lifcpre 
 
OMPFLAGS = 
 
SOFLAGS = -shared -fpic 
 
INCLUDES = -I/usr/local/include 
LIBS = /homes/cong0129/FireLib/lapack-3.5.0/*.a 
/homes/cong0129/FireLib/BLAS/blas_LINUX.a 
 
PYTHON = python 
CYTHON = cython 
PYTHON_INCLUDE = `${PYTHON} -c 'from distutils import sysconfig; print( 
sysconfig.get_python_inc() )'` 
MPI4PY_INCLUDE = `${PYTHON} -c 'import mpi4py; print( mpi4py.get_include() 
)'` 
NUMPY_INCLUDE = `${PYTHON} -c 'import numpy; print( numpy.get_include() 
)'` 
 
USERINCF = 
 
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 
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5. Compile FARSITE on DeepThought2: 

a) Generate PALM service files, either by loading the PrePALM graphical 

user interface with the command “prepalm” or directly with the command: 

 
$PREPALMMPDIR/prepalm_tclsh.tcl --c PLATFORM_FARSITE_E.ppl 
 

Note that the  “prepalm” command is recommended when the application is 

run from a remote station. 

b) Generate the executable program of the OpenPALM driver: 
 
make -f makefile_slaves_RUN_FARSITE_E 
make 
 

NOTE: When performing multiple compilations of the source code (due to 

code development for instance), it is important to clean the environment 

through the command make allclean and to compile again the whole 

OpenPALM-based application: the compilation procedure described above 

(5a-b) must be performed again. 

 

6. Run the OpenPALM-based FARSITE application 

• Use the mpdboot command to run the MPI process (mpd &). 

• Run the following script run.job sh run.job. 

 
sbatch Farsite.script 
squeue -A firemodel-hi 
sbalance -all --nosuppress0 
 
This script runs the script Farsite.script that defines the running options 

(computational time, number of cores, run directory, etc.) such as: 
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#!/bin/tcsh 
#SBATCH -A firemodel-hi 
#SBATCH -t 00:60:00 
#SBATCH --ntasks=20 
#SBATCH --ntasks-per-core=1 
 
module unload openmpi 
module load intel/2013.1.039 
limit stacksize unlimited 
 
date 
mpirun -np 1 ./palm_main 
date 
 

NOTE: The additional option “limit stacksize unlimited” is important to increase the 

stack memory. 
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