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Sequences of timestamped events are currently being generated across nearly

every domain of data analytics, from e-commerce web logging to electronic health

records used by doctors and medical researchers. Every day, this data type is re-

viewed by humans who apply statistical tests, hoping to learn everything they can

about how these processes work, why they break, and how they can be improved

upon.

To further uncover how these processes work the way they do, researchers often

compare two groups, or cohorts, of event sequences to find the differences and sim-

ilarities between outcomes and processes. With temporal event sequence data, this

task is complex because of the variety of ways single events and sequences of events

can differ between the two cohorts of records: the structure of the event sequences

(e.g., event order, co-occurring events, or frequencies of events), the attributes about

the events and records (e.g., gender of a patient), or metrics about the timestamps

themselves (e.g., duration of an event). Running statistical tests to cover all these



cases and determining which results are significant becomes cumbersome.

Current visual analytics tools for comparing groups of event sequences empha-

size a purely statistical or purely visual approach for comparison. Visual analytics

tools leverage humans’ ability to easily see patterns and anomalies that they were

not expecting, but is limited by uncertainty in findings. Statistical tools empha-

size finding significant differences in the data, but often requires researchers have a

concrete question and doesn’t facilitate more general exploration of the data.

Combining visual analytics tools with statistical methods leverages the benefits

of both approaches for quicker and easier insight discovery. Integrating statistics

into a visualization tool presents many challenges on the frontend (e.g., displaying

the results of many different metrics concisely) and in the backend (e.g., scalability

challenges with running various metrics on multi-dimensional data at once). I begin

by exploring the problem of comparing cohorts of event sequences and understanding

the questions that analysts commonly ask in this task. From there, I demonstrate

that combining automated statistics with an interactive user interface amplifies the

benefits of both types of tools, thereby enabling analysts to conduct quicker and

easier data exploration, hypothesis generation, and insight discovery. The direct

contributions of this dissertation are: (1) a taxonomy of metrics for comparing

cohorts of temporal event sequences, (2) a statistical framework for exploratory

data analysis with a method I refer to as high-volume hypothesis testing (HVHT),

(3) a family of visualizations and guidelines for interaction techniques that are useful

for understanding and parsing the results, and (4) a user study, five long-term case

studies, and five short-term case studies which demonstrate the utility and impact



of these methods in various domains: four in the medical domain, one in web log

analysis, two in education, and one each in social networks, sports analytics, and

security.

My dissertation contributes an understanding of how cohorts of temporal event

sequences are commonly compared and the difficulties associated with applying

and parsing the results of these metrics. It also contributes a set of visualizations,

algorithms, and design guidelines for balancing automated statistics with user-driven

analysis to guide users to significant, distinguishing features between cohorts. This

work opens avenues for future research in comparing two or more groups of temporal

event sequences, opening traditional machine learning and data mining techniques

to user interaction, and extending the principles found in this dissertation to data

types beyond temporal event sequences.
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Chapter 1: Introduction

Sequences of timestamped events are currently being generated across nearly

every domain of data analytics. Consider a typical e-commerce site tracking each

of its users through a series of search results and product pages until a purchase is

made. Or consider a database of electronic health records containing the symptoms,

medications, and outcomes of each patient who is treated. Every day, this data type

is reviewed by humans who apply statistical tests, hoping to learn everything they

can about how these processes work, why they break, and how they can be improved

upon.

Human eyes and statistical tests, however, reveal very different things. Sta-

tistical tests show metrics, uncertainty, and statistical significance. Human eyes see

context, confirm what they already know, and discover patterns that are unexpected.

Visualization tools strive to capitalize on these latter, human strengths. For

example, the EventFlow visualization tool [1] supports exploratory, visual analyses

over large datasets of temporal event sequences. This support for open-ended explo-

ration, however, comes at a cost. The more that a visual analytics tool is designed

around open-ended questions and flexible data exploration, the less it is able to ef-

fectively integrate automated, statistical analysis. Automated statistics can provide
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answers, but only when the questions are known.

The opportunity to combine these two approaches lies in the middle ground.

By all accounts, the goal of open-ended questions is to generate more concrete ques-

tions. As these questions come into focus, so too does the ability to automatically

generate the answers. I introduce a visual analytics tool, CoCo (for “Cohort Com-

parison”, Figure 1.1), that is designed to capitalize on one such scenario.

Consider again the information that is tracked on an e-commerce site. From

a business perspective, the users of the site fall into one of two groups: people who

bought something and people who did not. If the goal is to convert more of the

latter into the former, it is critical to understand how these two groups, or cohorts,

are different. Did one group look at more product pages? Or spend more time on

the site? Or have some clear demographic identifier such as gender, race, or age?

Similar questions arise in the medical domain as well. Which patients responded

well to an experimental medication? How did their treatment patterns differ from

the patients who received the standard treatment?

Although comparing two groups of data is a common task, with temporal

event sequence data in particular, the task of running many statistical tests becomes

complex because of the variety of ways the cohorts, sequences, and events can differ.

In addition to the structure of the event sequences (e.g., order, co-occurrences, or

frequencies of events), the attributes about the events and records (e.g., gender

of a patient), and the timestamps themselves (e.g., an event’s duration) can be

distinguishing features between the cohorts. For this reason, running statistical

tests to cover all these cases and determining which results are significant becomes
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Figure 1.1: Two datasets, each containing about a thousand patients as they are

transferred throughout a hospital, are being compared using CoCo: patients who

lived and patients who died (demo dataset; no real data). Along the top are high-

level overviews of each dataset: a scatterplot displaying the sequences in the dataset

and how often they occur and each cohort is visualized as an EventFlow graph.The

bottom panel displays a rich compact view of the results of high-volume hypothesis

testing, ranked by significance with a legend pairing each event with a color. To the

right of the list, details-on-demand for a selected hypothesis (comparing the average

timing between the blue and red event) provides more details and context for the

results. A set of control panels (top right panel) allows analysts to sort and filter the

results by event sequence length, event types, sample size, significance, or metric.
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Figure 1.2: Current approaches to comparing event sequences involve putting two

separate windows side-by-side for a visual comparison.

cumbersome. Based on three years of case studies, I present a taxonomy of metrics

for comparing cohorts of event sequences. Additionally, the factor on which the

cohorts are formed may call for different types of questions to be asked about the

data. For example, in a set of medical records split by date (e.g., last month’s trials

vs. this month’s), a researcher may be interested in how outcomes for the patients

differ between the cohorts, whereas a dataset split by the patient’s outcome (e.g.,

patients who die vs. those who live) would ignore such a metric.

Current tools for cohort comparison of temporal event data (Section 2) empha-

size one of two strategies: 1) purely visual comparisons between groups (Figure 1.2),

with no integrated statistics, or 2) purely statistical comparisons over one or more
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features of the dataset. By contrast, CoCo is designed to provide a more balanced

integration of both human-driven and automated strategies.

Purely statistical methods of comparison would benefit from user interven-

tion. With the sheer number of metrics, it is time consuming to run every metric

ahead of time, especially when not every metric may be required for analysis. Users

with domain knowledge about the datasets would ideally be able to select from the

metrics and easily eliminate unnecessary metrics. Further, questions asked during

cohort comparison may vary based on how the cohorts were divided. If the cohorts

were divided by outcome (e.g., patients who lived versus patients who died), the

sequence of events leading up to them becomes more important. Analysis might

revolve around determining what factors (time or attributes) or events lead to the

outcome by determining how the metrics differ between the groups. Conversely, if

the cohorts were split based on an event type, questions may revolve around finding

distinguishing outcomes (e.g., patients who took Drug A may result in more strokes

than patients who took Drug B). Exploration of cohorts that are split by time (e.g.,

the same patients over two different months) may be more open-ended and require

all metrics. The cohorts can be distinguished by time factors, event attributes, or

events themselves (sequences of events or outcomes).

Results from purely statistical methods can also be difficult to parse and un-

derstand. Analysts may have different priorities and questions, which require dif-

ferent methods for sorting the results. For example, analysts may be interested in

any difference between the datasets, regardless of the direction of the difference,

whereas other analysts may be interested only in results that occur more frequently
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in Cohort A. Integrated interaction techniques would allow analysts to specify their

priorities when viewing results.

The contribution of this thesis is to enable researchers to be far more flexi-

ble in examining cohorts and facilitate human intervention where it can save time

and effort. Because of the pre-defined problem space of comparing temporal event

sequences, analysts can save time by having answers to common questions readily

available and giving them a starting point for their exploration. It is important to

note that CoCo is intended for exploratory data analysis which will reveal areas of

interest to analysts, not as a means of displaying final statistical results, so more

complex controls are left for future work. Analysts are expected to conduct follow-

up (and more controlled) tests after they have identified possible hypotheses - such

as clinical trials in the medical domain or A/B testing in the-commerce domain.

Purely visual tools for temporal event sequences are a good starting point for

developing analysis tools for cohort studies, but can be improved by the inclusion of

the statistical tests used in automated approaches. For example, EventFlow assumes

that each patient record consists of time-stamped point events (e.g. heart attack,

vaccination, first occurrence of symptom), temporal interval events (e.g. medication

episode, dietary regime, exercise plan), and patient attributes (e.g. gender, age,

weight, ethnic background, etc.).

In multiple case studies with EventFlow, the researchers repeatedly observed

users visually comparing event patterns in one group of records with those in an-

other group. In simple terms the question was: what are the sequences of events

that differentiate one group from the other? A common aspiration is to find clues
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that lead to new hypotheses about the series of events that lead to particular out-

comes, but many other simple questions also involved comparisons. Epidemiologists

analyzing the patterns of drug prescriptions [2] tried to compare the patterns of dif-

ferent classes of drugs. Hospital administrators looking at patient journeys through

the hospital compared the data of one month with the previous month. Researchers

analyzing task performance during trauma resuscitation [3] wanted to compare per-

formance between cases where the response team was alerted of the upcoming arrival

of the patient or not alerted. Transportation analysts looking at highway incident

responses [4] wanted to compare how an agency handled its incidents differently from

another. Their observations suggest that some broad insights can be gained by visu-

ally comparing pairs of EventFlow displays (e.g., analysts could see if the patterns

were very similar overall between one month and the next) or very different (e.g., a

lot more red or the most common patterns were different) but analysts repeatedly

expressed the desire for more systematic ways to compare cohorts of records.

My research aims to bridge the gap between statistical and visual analyses

to enable more efficient insight discovery and hypothesis generation. With this

comes many practical challenges of implementing a high-volume hypothesis testing

framework and presenting its result set in an understandable and useful way. On

the backend, I consider the scalability of automatically running metrics on com-

plex event sequences. The problem with scalability is two-fold: first, as the number

of events grows, the number of possible event sequences grows exponentially. Sec-

ond, with large numbers of metrics, developers must think about how to efficiently

and simultaneously apply many metrics to the dataset at once. On the frontend
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are considerations with displaying various metrics in a unified way so analysts can

understand and parse the results. Additionally, with the sheer number of results,

analysts must be given intelligent interaction techniques for parsing, filtering, orga-

nizing, and sorting the results.

On a broader level, my dissertation contributes an understanding of how co-

horts of temporal event sequences are commonly compared and the difficulties as-

sociated with applying and parsing the results of these metrics. It also contributes

a set of visualizations, algorithms, and design guidelines for balancing automated

statistics with user-driven analysis to guide analysts to significant, distinguishing

features between cohorts. This work opens avenues for future research in comparing

two or more groups of temporal event sequences, opening traditional machine learn-

ing and data mining techniques to user interaction, and extending the principles

found in this dissertation to data types beyond temporal event sequences. With

the enormous amount of temporal data being collected in medical trials, consumer

web logs, and sensor-based technologies, the opportunities for gaining insights are

vast. With a tool like CoCo, analysts will be able to improve analysis that will lead

to more efficient processes in medical health, business, education, and many other

areas.

I begin by showing that the task of cohort comparison is specific enough to

support automatic computation against a bounded set of potential questions and ob-

jectives, a method I refer to as High-Volume Hypothesis Testing (HVHT). From this

starting point, I demonstrate that the diversity of these objectives, both across and

within different domains, as well as the inherent complexities of real world datasets,
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still require human involvement to determine meaningful insights. I explore how

visualization and interaction better support the task of exploratory data analysis

and understanding HVHT results (how significant they are, why they are mean-

ingful, and whether the entire dataset has been exhaustively explored). Through

interviews and case studies with domain experts, I iteratively design and implement

visualization and interaction techniques in a visual analytics tool, CoCo, which is

used by real-world analysts performing cohort comparison on their own datasets.

1.1 Contributions

The contributions of this dissertation are:

A taxonomy of metrics for comparing cohorts of temporal event se-

quences. Through a systematic literature review of EventFlow and other case

studies, I identified common questions that analysts ask when comparing two or

more groups of event sequences and organized these questions in a taxonomy of

metrics.

A statistical framework for exploratory data analysis. I implement a subset

of the metrics introduced in the taxonomy and identify and solve the major practical

challenges of applying thousands of statistical tests, a method I refer to as high-

volume hypothesis testing (HVHT),

A family of visualizations and guidelines for interaction techniques. Through

an iterative design process with case study partners, I develop and implement visu-
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alizations and interaction techniques that are useful for understanding and parsing

large sets of hypothesis results.

Evaluations to demonstrate the utility and impact of these methods. I

preform three types of evaluation through the development of CoCo:

• a preliminary user study comparing CoCo to EventFlow for the task of cohort

comparison,

• six long-term case studies, and

• five short-term case studies.

1.2 Dissertation Organization

This dissertation is organized in the following parts: Chapter 2 discusses re-

lated work in event sequence visualization, statistics for comparing cohorts, machine

learning techniques for identifying meaningful event sequences, and methods for ef-

ficient computation on multi-dimensional data. Chapter 3 discusses the taxonomy

of cohort comparison metrics. Chapter 4 discusses the challenges and solutions on

the backend for implementing a high-volume hypothesis framework and Chapter 5

discusses the challenges and solutions on the frontend, including a set of visualiza-

tion design guidelines. Chapter 6 details the evaluation . Chapter 7 concludes the

dissertation and discusses avenues for future work.
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Chapter 2: Background and Related Work

2.1 Event Sequence Visualization and Comparison

Work on visualization of sequential data is described here in two parts: visu-

alizations of a single group of event sequences and visualizations comparing two or

more sequences.

2.1.1 Single Groups

EventFlow [1] (Figure 2.1) and OutFlow [5] (Figure 2.2) visualize a simplified

view of collections of event and interval sequences. Both tools aggregate a single

cohort and the whole sequences of records. EventFlow allows users to explore the

underlying dataset through this visualization. However, they only support visualiz-

ing a single group of records, though comparison can be facilitated by using multiple

instances of the visualize. In this case however, the tools do not provide statisti-

cal information about the differences. CoCo borrows some event icon motifs from

EventFlow (such as using colored markers to represent events).
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Figure 2.1: EventFlow visualizes an aggregated view of a single group of event

sequences. CoCo borrows event icon representations from EventFlow.

Figure 2.2: Outflow visualizes groups of temporal event sequences for outcome anal-

ysis.
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2.1.2 Visual Comparison

Gleicher et al. [6] provide an extensive survey of visual comparison techniques

classified into three categories and combinations thereof: juxtaposition, superpo-

sition, and explicit encoding. This characterization was used as a framework for

exploring designs for visualizing comparison results. Though many visualization

tools have been designed for event sequence visualization [1,7] there has been little

research on visualizing event sequence comparison until recently. Zhao et al. [8]

design MatrixWave, a visualization designed to compare the flow of users in click-

stream datasets. MatrixWave focuses on differences in the occurrence of immediate,

pairwise steps in the event stream, whereas CoCo generalizes to differences in single

events and sequences of any length, as well as differences dealing with time.

Besides finding differences in datasets, event sequence comparison has been

explored in the context of finding similarities. Vrotsou et al. [9] introduce a set of

event sequence similarity measures. They explore using visualization and interactive

data mining to cluster similar groups of event sequences. While CoCo focuses on

difference metrics, this work can be extended to applicable similarity measures.

2.1.3 Event Sequence Comparison

Solutions for comparing sequential data have been explored in many different

fields, including comparative genomics, text mining, and tree comparison. They are

discussed here in the context of event history data and discrete-time models [10].

I draw first on methods to compare collections of general sequences without
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Figure 2.3: MizBee measures the similarity between genomes by visualizing regions

of shared sequences.

the notion of time, most notably the fields of comparative genomics and text mining,

where the data is ordered with respect to some index [11].

Genome browsers [12–17] have been developed to visualize genome sequences.

They compare genomes by visualizing the position of each nucleotide, and consider a

genome as a long and linear sequence of nucleotides. Scientists also compare genomes

at the gene level. However, most of the existing tools are only able to compare ei-

ther only the similarities or only the differences of collections of gene sequences. For

example, MizBee [18] (Figure 2.3) measures the similarity between genomes by visu-

alizing the regions of shared sequences. Variant View [19] (Figure 2.4), cBio [20] and

MuSiC [21] only support displaying sequence variants. Further, genome sequences
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Figure 2.4: Variant View is a genome browser tool that aligns sequences by similar-

ity.

are often compared as a sequence of linear positions, which does not lend itself to

distinctions between point events versus interval durations.

Texts are often compared by extraction of frequent n-grams [22]. FeatureLens

(Figure 2.5) by Don et al. [23] defined n-gram as a contiguous sequence of words and

used a visualization approach to compare the co-occurrences of frequent n-grams of

text. However, it only supports comparison among sections of a single document.

Jankowska et al. [24] proposed to convert documents into vectors of frequent charac-

ter n-grams and designed a relative n-gram signature to encode the distance between

n-gram vectors. Viégas et al. presented history flow [25] (Figure 2.6) to visually

compare between versions of a document. Their approach assumes that the later

version of a document is developed based on the earlier one, which is not applicable

to event history data.
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Figure 2.5: FeatureLens visualizes frequent patterns in text collections.

Figure 2.6: History Flow visualizes changes between versions of the same document.
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Most of the techniques mentioned above (in both genomics and text mining)

only provide a visual comparison between single long sequences, whereas event his-

tory data consists of many, short transactional sequences.

Temporal event sequences are often represented as trees. While many compar-

ison techniques exist for trees, many do not take into account values or attributes of

nodes and none are specifically designed for temporal data. Munzner presented the

TreeJuxtaposer [26] (Figure 2.7) system to help biologists explore structural details

of phylogenetics, but focuses only on structural differences in the trees and not any

attributes about the nodes (such as timestamps). Bremm [27] studied the compar-

ison of phylogenetic trees in a more statistical way by extending the algorithms of

TreeJuxtaposer to compare more than two trees and considers “edge length” which

could be generalized to durations of gaps between sequential events. Holten [28]

presented an interactive visualization method to compare different versions of hi-

erarchically organized data. He proposed two methods of tree comparison: icicle

plot and hierarchical sorting, but does not propose any statistical comparison tech-

nique, and focuses more on “leaf-to-leaf” matching, which considers whole paths (or

sequences) only.

TreeVersity2 [29] (Figure 2.8) compares by tree structure and the node values.

Though TreeVersity2 is general to all trees, it leaves out temporal-specific analysis

such as duration of or between interval events. TreeVersity2 compares two datasets

over time, but assumes these time periods are disjoint. CoCo does not assume that

the datasets are split by a time attribute and treats time of the nodes as another

comparable attribute in the dataset. TreeVersity2 also includes a textual reporting

17



Figure 2.7: The TreeJuxtaposer system to help biologists explore structural details

of phylogenetics and focuses only on structural differences in the trees but not any

attributes about the nodes (such as timestamps).
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Figure 2.8: TreeVersity visually compares trees with similar structures.

tool that highlights outliers in the data.

Many of these comparison techniques also lack a statistical significance test for

the comparisons. In this work, the comparison supports both visual and statistical

approaches.

2.2 Statistics for Comparing Cohorts

In medical cohort studies, the most prevalent approach for comparison is sur-

vival analysis. In survival analysis, survival time is defined as the time from a

defined point to the occurrence of a given event [30], and the Kaplan-Meier method

is often used to analyze the survival time of patients on different treatments and to

compare their risks of death [30–33]. Based on the Kaplan-Meier estimate, survival
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Figure 2.9: The Kaplan-Meier Estimator is used to compare the survival rates of

groups of patients receiving different treatments. The estimator shows the maximum

possible likelihood of survival (as a percentage) for each group as a function of time.

time of two groups of patients can be visualized (Figure 2.9) and compared with

survival curves, which plot the cumulative proportion surviving against the survival

times [30]. Also, the log-rank test is often used to statistically compare two survival

curves by testing the null hypothesis [30]. Dupont et al. applied survival analysis in

their clinical study [32]. Compared with survival analysis, the event sequences data

used in this work is much more complicated, and requires a more advanced analysis

model.

Currently tools that combine visualization and statistics for medical cohort

analysis focus on single cohorts. CAVA [34] (Figure 2.10) is a visualization tool for

interactively refining cohorts and performing statistics on a single group. Recently,

Oracle published a visualization tool for cohort study [35]. Based on patients’ clin-

ical data, it supports interactive data exploration and provides statistics as well
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Figure 2.10: CAVA combines visual analytics and statistics by allowing users to

interactively refining cohorts and perform statistics on a single group.
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as visualization functionalities. These tools similarly focus on combining visualiza-

tion with automated statistics and providing an interactive interface for selecting

cohorts; however, both tools aim at grouping and identifying patient cohorts for

further characterization, while my work focuses on comparing two existing cohorts

based on their event histories.

2.3 Exploratory Hypothesis Testing

John Tukey describes statistical methods for summarizing data set charac-

teristics in Exploratory Data Analysis [36], some of which are employed in CoCo.

As event sequence datasets grow larger and larger, researchers are moving towards

more exploratory methods for hypothesis generation and testing. The statistical

implications of high-volume hypothesis testing (e.g., inevitable false positives) have

been extensively researched [37,38]. CoCo treats each result independently, leaving

the application of statistical corrections for future research.

Liu et al. [39] explore the statistical and technical implications of automati-

cally generating and testing many hypotheses. Similar to this work, they find that

interactive techniques such as sorting and filtering are necessary for parsing these

result sets, but their display is largely textual. This work explores more visual

methods for displaying both the hypothesis and results.
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2.4 Temporal Data Mining

Automated hypothesis testing is closely related to big data mining. Previous

work studying temporal data mining has mostly focused on discovering frequent tem-

poral patterns and computing temporal abstractions of time-oriented data. Gupta

et al. [40] provide a survey on outlier detection for temporal data sets.

There are many established algorithms for frequent sequence mining [41, 42]

and association rule (itemset) mining [43]. The majority of data mining techniques

focus on mining sequences in a single dataset and not comparing across two datasets.

While two data mining techniques can be used in tandem to facilitate similar com-

parisons (e.g. comparing frequent sequence results across two datasets), more spe-

cialized methods are needed to answer “which sequences occur significantly differ-

ently between these datasets?” Bay and Pazzani introduce contrast mining sets [44],

an algorithm for detecting differences between groups based on record attributes,

such as age, gender, or occupation. In addition to record attributes, CoCo also looks

at differences in event sequences, based on both occurrence and timestamps.

Pattern discovery is an open-ended problem which aims to unearth all patterns

of interest [11]. Much of the literature is concerned with developing efficient algo-

rithms to automatically discover frequent temporal patterns and extract temporal

association rules [45–51]. To constrain the search procedure, some algorithms [45,47]

allow users to provide initial knowledge and rules. Many of the algorithms are gen-

eralized to any sequence of tokens, however some tools [52] modify existing sequence

mining algorithms to incorporate temporal attributes as well. To show the results,
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Norén et al. [53] used a graphical approach to visualize temporal associations.

Temporal abstraction focuses on obtaining a succinct and meaningful descrip-

tion of a time series [54]. Klimov et al. [55] developed VISITORS to visualize patient

records by grouping the event attribute values at different temporal granularities.

Moskovitch et al. [54] aggregated values of point data by state and trend, to obtain

its interval representation. Batal et al. [56] converted time series data into vectors of

frequent patterns, which can be used with standard vector-based algorithms. How-

ever, most of the work in this topic only focused on the time and value dimensions of

an event category (a concept), which is considered as event attributes in this work.

Typical data mining algorithms are a blackbox, allowing little user involvement

during the process. Recent work has been done on interactive sequence mining [52,

57–59], though these system focus primarily on mining frequent patterns in a single

dataset. Little work has been done on involving the user in mining differences

between datasets.

2.5 Scalability in Visual Analytics

Scalability in visual analytics has two main components: scaling of the visual-

ization itself when displaying large amounts of data and optimization of algorithms

for processing and analyzing this data.

Approaches for visualizing a large volume of data include displaying only a

sample of the data, providing interaction techniques to “drill-down”, or aggregating

the display. Fishet et al. [60] simplify large data visualization by using random
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Figure 2.11: imMens uses aggregation to scale to large datasets.

sampling to incrementally display results to users. EventFlow [1] and imMens [61]

(Figure 2.11) use aggregation techniques to display a large volumes of data.

There has been less work on optimizing the computation portion of visual

analytics. Stolper et al. [7] introduce Progressive Insights (Figure 2.12), which

allows users to see in-progress visualizations in order to allow users to guide the

algorithm and ignore subspaces of the data that may not be relevant. In databases,

multiple query optimization [62] is a technique to use the results of previous queries

to reduce execution time on future, related query. However, a large part of this

research falls under range queries, where the results of one query might be a subset

of another.
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Figure 2.12: Progressive Insights allows users to see in-progress visualizations in

order to allow users to guide the algorithm and ignore subspaces of the data that

may not be relevant.
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2.6 Summary

This chapter covers the related work for cohort comparison. Event sequence

cohort comparison lies at the intersection of event sequence visualization, statisti-

cal methods, exploratory hypothesis testing, temporal data mining and scalability.

Though much work has been done toward supporting cohort comparison with re-

gard to visualizing single groups of event sequences and the visual comparison of

complex objects, the areas of event sequence comparison and balancing automated

hypothesis testing with an interactive user interface are largely unexplored.
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Chapter 3: A Taxonomy of Metrics for Comparing Cohorts

The first phase of my research was to explore the space of temporal event

sequence comparison and to identify what questions analysts were asking when

performing cohort comparison.

I conducted a literature review of seven case studies with EventFlow [63] and

current methods for cohort comparison. Overwhelmingly, there was a disconnect

between the questions that were being asked and the answers existing tools provided.

The results suggested that some broad insights can be gained by visually com-

paring pairs of EventFlow displays (e.g., analysts could see if the patterns were very

similar overall between two groups) or very different (e.g., a lot more red or the

most common patterns were different) but analysts repeatedly expressed the desire

for more systematic ways to compare cohorts of records. However, existing tools

were not designed to support exploration, but instead focused on answering a con-

crete hypothesis. For instance, analysts were asking simply “What patterns lead to

two different outcomes?” where as the tool supported simple yes or no queries such

as, “Does XYZ lead to a specific outcome?” The who, what, when, and why of the

inquiry was difficult for the analyst to explore.

Following this observation, I looked at what insights analysts had discovered
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through their use of the tools and discovered that a number of common patters of

inquiry existed. The most commonly explored aspect of sequence comparison focuses

on the structure of the sequences (e.g., order of consecutive events, co-occurrences of

non-consecutive events) and the frequency of sequences. However, event and record

attributes (e.g., gender of a patient) and the timestamps themselves (e.g., duration

of an event) can also be distinguishing features between the cohorts.

I constructed a taxonomy based on the observations made through the litera-

ture review and by observing analysts with three overarching goals: (1) support more

open-ended questions that answer the who, what, when, and why when comparing

event sequences, (2) organize these questions in a way that promotes systematic

exploration, and (3) provide a more holistic comparison, beyond looking at only the

structure of the sequences.

The taxonomy is organized in three parts: (1) summary metrics, (2) record

metrics, and (3) event sequence metrics. Though this taxonomy can be applied to

a variety of fields, the dataset used as an example for the remainder of this chapter

consists of records of patients who were admitted to the emergency room and follows

their movement through their stay at the hospital (Figure 3.1): being administered

aspirin, being admitted into the hospital room, transferring between a normal floor

bed and the intensive care unit (ICU), and ultimately being discharged either dead

or alive. The dataset is split into two cohorts: patients who died and patients who

lived.

While this taxonomy is derived from numerous case studies in seven domains

and aims to show the complexity and variety of questions asked during cohort com-
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Figure 3.1: The dataset used as an example for the remainder of this chapter consists

of records of patients who were admitted to the emergency room and follows their

movement through their stay at the hospital: being administered aspirin, being

admitted into the hospital room, transferring between a normal floor bed and the

intensive care unit (ICU), and ultimately being discharged either dead or alive.

parison, it can be expanded upon with the inclusion of more metrics that may be

required for alternate domains and situations (e.g., similarity metrics or metrics

dealing with the absence of events).

3.1 Summary Metrics

Summary metrics deal with the cohorts as a whole and provide a high-level

overview of the datasets.

Number of records. Raw number of records in each cohort (Figure 3.2).

Number of events. Raw number of events in each cohort (Figure 3.3).

Number of unique records. Total number of unique records in each cohort

based on the sequence of events (timestamps are not considered).
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Figure 3.2: Because cohorts do not necessarily need to be the same size, it is im-

portant to report on the number of records in each cohort. An understanding of the

number of records allows analysts to understand broad trends between the cohorts

(e.g., is the selection criteria balanced?) In this example, there are only 4 patients

who died versus 6 who lived.

Figure 3.3: The number of events is the raw number of events in each cohort.

Combined with the number of records metric, this can reveal interesting information

about the frequency of events and the average length of records. In this example,

though there are 50% more patients who lived than those who died, the number of

events is only 20% greater, indicating that patients who died have longer sequences,

on average, than those who live.
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Number of each event. Total number of occurrences for each event cateogry

per cohort.

Minimum, Maximum, and Average length of records. The length of a

record is considered as the number of events in that record.

3.2 Record Metrics

Record-level attributes (such as patient gender or age) compare the cohorts

as population statistics. General statistics across the entire dataset is a problem

already tackled by analytics tools such as Spotfire [64] or Tableau [65], however

these tools look at a single attribute. For example, they might compare the number

of males versus females or patients on Wednesday versus Thursday. There may

be implications about the combinations of record attributes (e.g., the women on

Wednesday versus the women on Thursday versus the men on Wednesday versus

the men on Thursday). In clinical trials, it is important that all patient attributes

are balanced and currently no tools exist for visually confirming that all attribute

combinations are balanced (Figure 3.4).

3.3 Sequence Metrics

Sequence metrics deal with hypotheses at a sequence-level and can refer to (1)

the occurrence of sequences, (2) the timing of sequences, or (3) event-level attributes.

Sequences are differentiated by type and can refer to any number of types:
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Figure 3.4: Prevalence of record attributes reports on the percent of records who

have a particular value. This example is comparing the proportion of male and

female patients between the two groups.

Sequence A record’s entire history.

Subsequence A consecutive part of a record, consisting of two or more events.

Event A subsequence of length one, or a single event category.

Co-occurring pair Two events, that may occur non-consecutively within a single

record.

Outcome The last event in a record.

Many of the metrics can be applied to multiple sequence types, but not to all.

For example, metrics dealing with event gaps can only be applied to sequences of

length 2 (consecutive or non-consecutive). Table 3.1 shows which matrix are appli-

cable to which sequence types and the following sections describe each, organized

by occurrence, time, and attribute metrics.
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Table 3.1: This table shows the applicable metrics for each sequence type (denoted

by an X). Metrics with shaded cells are those that were implemented in the final

version of CoCo.

3.3.1 Occurrence Metrics

Prevalence of an event. The percent of records or total number of events that

a particular event occurs in (Figure 3.5). *Implemented in CoCo.

Prevalence of a subsequence. The percent of records in which the subsequence

appears. For example, patients who lived are given aspirin before going to the

emergency room more often than the patients who died (Figure 3.6). *Implemented

in CoCo.

Prevalence of a whole sequence. Percent of records with a given sequence.

*Implemented in CoCo.
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Figure 3.5: The prevalence of an event is calculated as a percentage of records that

contain that particular event.

Figure 3.6: The prevalence of a subsequence is calculated as a percentage of records

that contain that particular subsequence.

35



Figure 3.7: Co-occurring events are a pair of events which occur within a single

record, and may or may not have other events between them.

Prevalence of Co-occurring Events. The percent of records containing both

events A and B (with any number of events between them, Figure 3.7). *Imple-

mented in CoCo.

Prevalence of Outcomes. If a single event is prevalent as an “outcome” (i.e.,

the last event in the sequence). This metric in particular applies only to cohorts

that are not already split on an outcome event.

Frequency of an event. The number of times per record an event occurs. Be-

cause this is a distributed numerical metric, the system can report on minimum,

maximum, mean, median, mode, and the distribution as a histogram. *Implemented

in CoCo.

Order of consecutive events in a subsequence. The percent of records con-

taining event A directly preceding event B versus B preceding A. For example,

perhaps patients who go to the ICU before the floor are more likely to live than
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Figure 3.8: Absolute time metrics look at the timestamp of a particular event. For

example, the prevalence of the day of the week can differ between the two cohorts.

patients who have these events in the reverse order. *Implemented in CoCo.

3.3.2 Time Metrics

Time metrics deal with the timestamps at both the event and sequence levels

– relative and absolute. All of these metrics result in distributed numerical values,

so the system can report on minimum, maximum, mean, median, mode, and the

distribution as a histogram for each.

Cyclicity The time between repeat occurrences of a sequence.

Gap The gap between two events.

Duration The duration a sequence takes to complete.

Absolute time of an event. Prevalence of a particular timestamp of an event or

multiple events (e.g., if all events in one cohort occurred on the same day, Figure 3.8).
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Duration from a fixed point in time. The length of time from a user-specified,

fixed point – aligned by either a selected event or absolute date-time.

Duration of interval events. The duration of a particular interval event. For

example, this can be the length of exposure to a treatment or the duration of a

prescription.

Duration of a subsequence. The length of time from the beginning of the first

event in a subsequence to the end of the last event in the subsequence.

Duration of overlap in interval events. The overlap (or lack thereof) of inter-

val events. For example, the overlap of Drug A and Drug B could be more common

in the cohort of patients who lived versus those who died.

Event Gap between consecutive events. The time between the end of one

event and the beginning of the next. For example, the average length of time

between hospital patients entering the emergency room and being transferred to the

ICU is under two hours in patients who lived and over two hours in those who died.

*Implemented in CoCo.

Event Gap between co-occurring (non-consecutive) events. The length of

time between non-consecutive events (two events with some number of other events

occurring between them, Figure 3.10). *Implemented in CoCo.

Cyclic events. The duration between cyclic events and sequences.
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Figure 3.9: Relative time metrics involve comparing the average gap between two

consecutive events.

Figure 3.10: Relative time metrics involve comparing the average gap between two

events.
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Figure 3.11: Attribute metrics are similar to other event metrics, but the events are

further broken down by the attribute’s value. In this example, the doctor that is

on-call when the patient arrived at the emergency room is noted. Dr. Smith was

on-call more often in patients who lived than those who didn’t.

3.3.3 Event Attribute Metrics

Any of the above metrics can be applied over values of an attribute of the

events instead of the event category itself. This can be done by swapping an event

category by the values of a particular attribute. For example, in a medical dataset,

analysts might be interested in seeing how a particular emergency room doctor

might be related to the outcome of a patient. Analysts would then switch all events

of “Emergency” with the value of its “doctor” attribute. If there are three doctors,

this would create 3 new pseudo-event categories. Analysts can use the metrics from

above to see the difference in event sequences, times, or prevalence of each doctor

in either cohort (Figure 3.11).
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3.4 Combining Metrics

The number of metrics is further multiplied because any combination of the

above metrics is a new metric.

Survivor analysis. Survivor analysis is a common metric in cohort comparison

studies in the medical field, for understanding how an event or sequence occurs or

diminishes over time. This is equivalent to combining prevalence with time – how

does the prevalence of an event occur over time.

3.5 Summary

This chapter presents Contribution 1: a taxonomy of metrics for comparing

cohorts of event sequences. Although comparing two groups of data is a common

task, with temporal event sequence data in particular, the task becomes complex

because of the variety of ways the cohorts, sequences (entire records), subsequences

(a subset of events in a record), and events can differ. Through a literature review

of seven case studies of EventFlow and evaluation of cohort comparison, I work to

understand how analysts perform cohort comparison and categorize their common

questions. Though much work has been done in differentiating between the structure

of the event sequences (e.g., order, co-occurrences, or frequencies of events), many

analysts and tool miss the opportunity to explore the attributes about the events and

records (e.g., gender of a patient), and the timestamps themselves (e.g., an event’s

duration) as distinguishing features between the cohorts. In this chapter, I present
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a taxonomy of 23 metrics of how cohorts can differ organized by cohort summary

metrics, event sequences, and record attributes. While this taxonomy aims to be

a holistic view of the cohort comparison space, there is the potential for expansion

to many more metrics not mentioned here (Section 7.2). This taxonomy serves

as an example of the complexity of questions that are possible when comparing

cohorts of event sequences and to demonstrate that these questions can be asked

systematically.
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Chapter 4: Statistical Framework for High-Volume Hypothesis Test-

ing

In any form of high-volume data analysis, wait times are a given, but this prob-

lem is especially prevalent when dealing with groups of event sequences because of

the exponential number of unique sequences that exist in a single dataset. Consider

the simple case of a dataset with only two events: A and B. Without considering

repetitions, there are 5 unique event sequences that can occur:

A B A→ B B → A AB,

where AB represents two events occurring concurrently (at the same times-

tamp). When allowing repetition, the number of event sequences becomes infinite:

A → A B → B A → A → B AB → B . . .

Further, each event sequence can have multiple metrics applied to it. For ex-

ample, with the sequence A → B, we can consider the prevalence among records

(i.e., percent of records containing this sequence), frequency (i.e., average number of

occurrences per record, duration (i.e., average time from A to B). When comparing

cohorts, the application of each of these metrics to each cohort is equivalent to a
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Figure 4.1: A chart of the average runtime to find all sequences (a) versus the

number of unique sequences and (b) versus the number of records. Finding all

subsequences within both datasets grows proportionally with the number of records

in the dataset, whereas the number of unique sequences has no effect.

hypothesis. Does A → B occur similarly in both cohorts, or does it occur signif-

icantly more in one than the other? Is the duration of A → B the same in both

cohorts, or is it longer in one than the other? Thus, a simple dataset with only five

event categories can have hundreds of hypotheses applied to it and larger datasets

quickly become challenging to process.

To provide a sense of timing, I conducted timing tests with the final version

of CoCo with datasets of varying numbers of records (250, 500, 1000, 1500, 3000,

6000, 9000, 18,000, 36,000, and 72,000) and numbers of unique sequences (250, 500,

1000, 1500, 3000) in each cohort. I collected the runtimes for 100 runs each of

finding all sequences within the datasets and calculated all the metrics. All tests

were performed on a machine with an 2.2 GHz Intel Core i7 processor with 8 GB of

memory. No multithreading was used.
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Figure 4.2: A chart of the average runtime to calculate all hypotheses (a) versus

the number of unique sequences and (b) versus the number of records. Calculating

all hypotheses depends both on the number of records and the number of unique

sequences in the dataset.

Figure 4.1 provides a chart of the average runtime to find all sequences (a)

versus the number of unique sequences and (b) versus the number of records. Find-

ing all subsequences within both datasets grew proportionally with the number of

records in the dataset, with the largest dataset (9000 records in each cohort) taking

about 6.4 seconds to complete, regardless of the number of unique sequences. The

number of unique sequences (and therefore, the number of events) did not have an

effect on the time to find all sequences, because all sequences are mined based on

the existing patterns in the dataset. That is, all sequences that are mined are a

subsequence of each record as a whole, so every record must be checked.

Figure 4.2 provides the results for the average runtimes to calculate all hy-

potheses (a) versus the number of unique sequences and (b) versus the number of

records. Calculating the metrics scaled proportionally with the number of unique

sequences found, more rapidly than linearly. This is due to the fact that as for each
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new unique sequence, the number of new subsequences is potentially more than one,

so every new sequence introduces at least two new subsequences. The effect is fur-

ther multiplied by applying numerous metrics to a single sequence (e.g., prevalence

AND time). Overall, the time to calculate hypotheses took much longer than the

time to find all subsequences, with the largest dataset (9000 records and 3000 unique

sequences in each cohort) taking over 27 seconds to calculate, due to the fact that

approximating p-values requires the most time.

Because calculating the p-values is the most time-consuming aspect of hypoth-

esis calculation, it becomes more important to present analysts with methods for

reducing wait times, both on front- and back-ends. Through case studies with users,

I identified five scalability guidelines for extending high-volume hypothesis testing

to large datasets (Table 4.1).

Table 4.1: The 5 Scalability Guidelines for extending high-volume hypothesis testing

to large datasets.

In this chapter I describe the implementation of CoCo’s statistical framework

and how the components in its web-based client-server system are designed and

organized. Lastly, I present five guidelines for performing high-volume hypothesis

testing on event sequences to address these five issues.
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4.1 System Overview: Backend

CoCo is a web application that uses the client-server method to divide the

frontend and the backend. This section provides an overview of the architecture

used in the backend, which was written in Python 2.7. Python was chosen because

the extensive availability of packages, ability for fast development, and flexible,

multi-paradigm nature. Flask [66] was chosen as the webserver framework for being

easy-to-install and lightweight. For computing statistics, the well-known package

SciPy [67] was used.

4.1.1 Code Structure and Organization

CoCo is organized into four main packages: (1) the main controller, (2) data

processing, (3) metric computation, and (4) utilities. Figure 4.3 lays out each of the

packages and the classes they contain.

1. Main controller. The main controller contains the necessary elements for

setting up the main server, providing web endpoints for the frontend, and housing

all variables needed on the server-side. All data is kept in memory with simple

objects and native Python data structures, though it is organized such that future

work may adapt it to a relational database backend (Section 7.2.4). A database

backend was not implemented in the prototype in order to minimize the number

of package dependencies when case study partners were installing CoCo on their

machines. Additionally, the use of native Python lists and dictionaries allowed for
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Figure 4.3: Code structure and organization.
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fluid data transfer between the JavaScript-based frontend and the Python-based

backend.

Variables. Each cohort is represented by a global variable as a dictionary

mapping record IDs to Record objects, named alpha and beta. The dictionary

allows for rapid looking for particular records, as well as quick collection of the

records themselves. An attribute dictionary maps event attribute keys to a set

of event attribute values. The record attribute list maps record attribute keys to

another dictionary, for each cohort. The second dictionary maps the record ID to the

record’s attribute value. This allows for easy look-up by attribute, attribute value,

cohort, and specific record. The event legend is a set of all event categories found

in the datasets. The sequence counts for every sequence are stored in a list because

it is the most accessed metric category. This datastructure is used by the sequence

scatterplot, as well as to calculate all prevalence metrics, so it was important to

store this data after it is calculated once.

Lastly, the metrics object is a dictionary which defines metrics by category

and granularity. Each metric stores its title (e.g., “most differentiating events”), a

description which is used in the tooltip, and results, which are empty to start. Each

result object contains a list of hypothesis results, represented as 3-tuple containing

value in cohort A, value in cohort B, and the p-value.

Web endpoints. The CoCo backend has four main endpoints:

• / – This is the index which renders the CoCo HTML template.
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• / upload files – This endpoint is called when the analysts select and up-

load their data files. It is responsible for parsing all the input files into their

respective data structures.

• /get sequence counts – After the data files are loaded and parse, the main

JavaScript controller access this endpoint to retrieve the data for the sequence

scatterplot.

• /calculate metrics – This endpoint calls all necessary methods to automat-

ically compute all hypotheses.

Other endpoints are used for shutting down the system cleanly (/shutdown)

and serving and streaming server-sent events (/stream).

2. Data processing. This package contains classes dealing with processing the

data in CoCo, including loading files and preparing data for visualizations.

File processing.. Within this package are methods for processing the files

inputted by the user. Processing includes reading the data file, creating the cohort

objects, assigning which cohort is which (left vs. right cohort), parsing the file name

and giving it a human readable name, and processing any attribute and configuration

files, if applicable.

Sequence extraction. This package computes the counts all the sequences and

subsequences of length 1 to 10, and records how many times each sequence appears in

each cohort record. The result is provided to the sequence scatterplot visualization.
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EventFlow tree builder. This package processed data for the EventFlow visu-

alization and returns an object that can displayed. This includes

3. Metric Computation. All methods dealing with computing metrics are

grouped into this package, and organized by metric type: prevalence, time, fre-

quency, record attributes, and event attributes.

Prevalence. There are three main methods for computing prevalence: con-

secutive sequences, single events, and non-consecutive pairs. This class also contains

many helper functions which are used for counting each of these types of sequences

in each dataset. All prevalence metrics are compared using chi-squared.

Time. This package calculates metrics dealing with time using a Wilcoxon

rank-sum test to compare means.

Frequency. This package calculates metrics dealing with frequency of events

using a Wilcoxon rank-sum test to compare means.

Attributes. This package uses chi-squared to run metrics dealing with record

and event attributes.

4. Utilities.

Models. CoCo defines two simple classes, as explained in the previous section:

Event and Record. The Event class contains:
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event – the event category,

time – the timestamp of the event,

recordID – the ID of the record which this event is a part of, and

attributes – a dictionary mapping event attributes to values.

Record contains:
recordID – the record’s unique identifier,

eventList – a nested list of Event objects, sorted by time. Each new event is

inserted into its sorted position. Each inner list is a group of events with the

same timestamp, which represent concurrent events, and

attributes – a dictionary mapping record attributes to values.

Helpers. This package contains various helper functions that are used through-

out the system.

Messaging. This package contains the class and methods for creating and

sending server-sent events (SSEs), which allows the server to communicate with the

frontend.

4.1.2 Data Processing Pipeline

This section presents an overview of the data processing pipeline for CoCo

(Figure 4.4).

CoCo reads in two files (one for each cohort) in the same format as EventFlow:

5-column, tab-delimited text file where each column is as follows:

1. Record ID. The ID of the record to which the event belongs. Each record
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Figure 4.4: CoCo data processining pipeline. CoCo processes data in five major

steps: (1) Analysts select two datasets from the interface. (2) The data files are

sent to the server. (3) Sequences and counts are extracted. (4) The results for the

sequence counts are sent back to the client. (5) CoCo begins (a) calculating metric

results and (b) sends them back as they are completed, until all metrics have been

calculated.
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should have a unique ID. Record IDs do not have to be unique between the

two cohorts.

2. Event Category. The type of event.

3. Start Time. The start timestamp of the event.

4. End Time (optional). The end time of an interval event, left blank if a point

event.

5. Attribute List (optional). Attributes for this event. Each attribute is semi-

colon separated and defined as “attribute=value”

After the analysts load both datasets, CoCo identifies all sequences of lengths

1 to 10. The sequences are mined using n-grams. Next, all pairs of non-consecutive

events are found in each sequence. The sequences are stored in a dictionary that

also counts the number of times each sequence occurs in the datasets.

Next, the metrics are applied to each of the sequences. As each metric is com-

pleted, the server returns the set of results to the frontend using Server-Sent Events

(SSEs). Though the result list is not shown until all metrics have finished calcu-

lating, a table shows progress of which metrics have been calculated, and overview

visualizations are shown.

4.2 Guidelines for Scaling HVHT to Large Event Sequence Datasets

Due to the complexity of mining sequences in multiple event sequence cohorts

and running hypothesis tests on all of them, many challenges arise dealing with wait
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times, result set size, and statistical errors. In this section, I describe the five major

guidelines for scaling a statistical framework to larger datasets.

Guideline 1: Reduce wait times during computation.

I applied two different methods for computing the hypothesis tests: (1) per-

forming all calculations ahead of time and providing results only when all results

are complete, and (2) calculating hypothesis tests by category (e.g., single event

frequency, sequence frequency, time gaps, etc) and allowing analysts to see results

as they are available.

The first method resulted in long wait times, but allowed the results to be

ranked in a more meaningful way. That is, by waiting for all results to be completed,

the most “differentiating” or significant results can be displayed first, thus offering

more guidance to the analysts about which results are important.

The second method allows analysts to see partial results as soon as they are

ready. When a metric is fully calculated, the analysts can select that metric to see

all results in that category. In early case studies, this enabled analysts to narrow

their focus, although they found that they weren’t necessarily interested in specific

metrics, just the most major differences – regardless of metric type. The metrics were

structured to first calculate the most simple metrics first, e.g., single event metrics,

which enabled analysts to understand their datasets on a broader level before going

into detailed sequence metrics. Additionally, the metrics should be calculated in an

order conducive to both the analysis and optimal time. Through case studies, users

55



common process models were observed. Combined with timing tests to determine

the results which are quickest to compute, a recommended computation order is

suggested:

• Prevalence – Events

• Prevelence – Non-consecutive pairs

• Time – Consecutive pairs

• Time – Non-consecutive pairs

• Frequency – Events

• Prevalence – Consecutive subsequences

• Record Attributes – prevalence

Guideline 2: Reduce time testing all hypotheses.

Long wait times can cause an analyst to lose concentration and incur more

time recalling their task. In an effort to minimize long waits, I implemented a

sequence length limit on the sequence mining step in the CoCo pipeline.

The original version of CoCo counted every sequence that appeared in the

loaded datasets. However, in the weblog clickstream data, there were some records

that had as many as 320 events. Based on observations of the previous three case

studies, the analysts often did not look at results of sequences of length more than

four. Typically, longer sequences were more obscure and analysts were not able to
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derive meaningful insights from them. Sequences are limited to length 10, to be

adequately long enough for the longer sequences found in clickstreams. In the use

of this new limited version, analysts still looked mostly at sequences of length 45 at

most, so there was no need to extend the range beyond length 10. The limit was

not further reduced because performance at this stage was reasonable. Limiting the

sequence length offered a speed up of about 15x. If future datasets would benefit

from a shorter limit, I leave determining the ideal limit for future work.

Guideline 3: Minimize data sizes when transferring to browser

Larger datasets require more hypotheses to be tested, thus larger result sets to

return to the browser. Aside from the computation time, this results in a much large

space requirement. Due to some browser limitations, it is not possible to send data

over a certain size. Thus, to reduce the volume of the result set, those sequences

that occur in less than 1% of the records are automatically filtered. Additional

hypothesis results can be loaded on demand.

Guideline 4: Highlight chance of false positives.

The potential for false positives are highlighted by providing the distribution of

p-values to the analysts in a filterable table. Two statistical experts that I consulted

with suggested this, because with any statistical test that is applied many times

to a single dataset, there is some likelihood of false positives. By providing the

analysts the distribution of the resulting p-values, the analysts can see if the actual
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distribution of p-values is what would be expected by random chance or if it is in

fact affected by the content of the dataset.

The chance of statistical uncertainty is further highlighted by providing context

to the analysts about each result. For example, by providing related statistic results

for the same sequence and showing the prevalence of subsequence results.

Lastly, we place an emphasis on effect size, rather than p-value ,by primarily

showing and sorting by the difference and grouping the p-values into broad ranges.

Guideline 5: Enable filtering of event categories unimportant to anal-

ysis.

By default, CoCo starts by showing only the results for single event categories

(sequences length 1) so analysts can make informed decisions about which events

occur frequently and which might be important to the analysis. After determining

if any events can be dismissed, analysts can filter out those events that they deem

unrelated or unimportant to their questions. In our example case study, the analysts

were able to reduce their number of events from over 100 events to under 20.

4.3 Summary

This chapter presents Contribution 2: a statistical framework for performing

high-volume hypothesis testing when comparing cohorts of event sequences. The

nature of event sequences present unique challenges, including an exponential vol-

ume of sequences, increased chance of false positives and statistical errors, and long
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wait times for analysts to begin analysis. Towards addressing these challenges, I

designed a system to better support statistical event sequence comparison tasks and

presented an overview of its implementation (Section 4.1). Through case studies, I

confirmed the usefulness of these techniques and present the lessons learned as five

guidelines for scaling HVHT to large datasets (Section 4.2).
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Chapter 5: Design of CoCo: Frontend

After running thousands of hypothesis tests, analysts must then be able to

parse through the large result set. In doing so, there are two main challenges:

1) the sheer volume of the result set makes it difficult to identify meaningful and

significant results, and 2) when running a large number of statistical tests on a single

dataset, the chance of false positives increases.

Through a user study and ten case studies, I aimed to solve these challenges

and understand how to leverage the benefits of user-guided exploration to parse

high-volume hypothesis results. To develop the initial design and icons, I conducted

interviews with three analysts experienced with event sequence visualization: a

medical researcher from a local hospital, a graduate student at the University of

Maryland, and a business school professor. All had used EventFlow [1] extensively

and had active research projects comparing cohorts of patients. An initial version

was implemented. After the three analysts had used the initial version with their

own data and analytic goals, I interviewed them during a period of a month to collect

feedback on the benefits and pitfalls of the initial version, and analysts’ needs when

reviewing hypothesis results. Feedback was also collected from a eighteen other

short-term detailed demonstrations, some of which lead to long-term case studies.
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I distill lessons learned into seven design guidelines for balancing automated

high-volume hypothesis testing with integrated visualization and interaction (Ta-

ble 5.1).

Table 5.1: The 7 Design Guidelines for balancing automated high-volume hypothesis

testing with integrated visualization and interaction (Section 5.2).

In this chapter, I provide an overview of the final interface of CoCo. From

there, I describe seven design guidelines learned from the design process and the

rationale behind the design decisions that led to CoCo’s final design. Appendix 8

provides details on previous versions of CoCo and the changes between each iterta-

tion.

5.1 Description of the User Interface

CoCo (Figure 5.1) is comprised of five main panels: sequence scattergram,

cohort overviews, result filters, results panel, and sequence details.
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Figure 5.1: CoCo is comprised of five main panels: sequence scattergram and filters,

cohort overviews, result filters, results panel, and sequence details.

5.1.1 Sequence Scattergram and Sequence Filters

The first panel provides an overview of all the sequences in the dataset, as

well as a method for filtering the sequences by length and by type (consecutive,

non-consecutive). Each dot represents a sequence that is found in the datasets and

is placed on the axes according to the number of records that contain that sequence

in each cohort. Sequences of length 1 are single event categories. A consecutive

sequence is one that occurs in the dataset with no events between them, and a non-

consecutive sequence may contain extra events within it. Consecutive sequences are

indicated with a solid black circle and non-consecutive sequences are represented by

a circle divided by a white line. Analysts can filter the results based on the sample
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sizes to exclude rows with very low or very high sample sizes. This can be used as a

method for quality control (e.g., removing results with an insufficient sample size) or

as a method for segmenting the results into more manageable pieces. For example,

analysts may want to evaluate more frequent sequences first (e.g., sequences with

50% or more record coverage), before moving viewing less frequent sequences.

5.1.2 Cohort Overviews

The second panel provides a high-level overview of the sequences contained in

each cohort using an EventFlow [1] display. The heights of the cohorts are adjusted

in proportion with the number of records in each dataset (e.g., the dataset with

more records will take up more vertical space).

5.1.3 Result Filters

The third panel (Figure 5.2) provides methods for filtering, sorting, and cor-

recting the hypothesis test results.

Results can be filtered by two ways using a table that shows the number of

hypotheses that were tested according to metric and sequence type. Analysts can

choose to see only time, frequency, or prevalence metrics. Similarly, analysts might

be interested in only single events, whole record histories, or partial subsequences.

The table further breaks down the results based on p-value into three groups: ≤ 0.01,

≤ 0.05, and > 0.05. Each cell contains the total number of hypotheses currently

shown out of the total number of hypotheses testing for that metric, sequence type,
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Figure 5.2: Methods for sorting and filtering the result set. Results can be filtered

by two ways using a table that shows the number of hypotheses that were tested

according to metric and sequence type. The table further breaks down filtering the

results based on p-value into three groups: ≤ 0.01, ≤ 0.05, and > 0.05.
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and p-value group.

Analysts can sort the results based on what they find most important:

• Ratio and significance. Sort first by the significance level (p-value in three

groups: ≤ 0.01, ≤ 0.05, and > 0.05) then within each group, by magnitude of

the difference (descending). This is the default sorting option.

• Significance only. Sorted by the raw p-value (descending).

• Ratio only. Sorted by the absolute ratio (ascending or descending)

• Alpha value. Sorted by the absolute value in alpha (descending).

• Beta value. Sort by the absolute value in beta (descending).

Lastly, analysts can apply a Bonferroni correction [68] to the results.

5.1.4 Results Panel

The main results panel (Figure 5.3) displays all the results of the hypothesis

tests according to the sorting and filtering preferences set by the analyst. To the

left is a legend which each event category that is found in the dataset, assigned a

color.

Each result is encoded as a row, where the center shows the hypothesis that

was tested. Colored bars in the center indicate the sequence that the hypothesis

refers to and the icons to the left indicate the corresponding metric. Depending on

the value of the result, a bar grows out from the center in the direction where the

value is larger, on a ratio scale. The bar is then colored by the p-value of the result:
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Figure 5.3: The main results panel (Figure 5.3) displays all the results of the hypoth-

esis tests according to the sorting and filtering preferences set by the analysts. To

the left is a legend which each event category that is found in the dataset, assigned

a color. Each result is encoded as a row, where the center shows the hypothesis that

was tested. Colored bars in the center indicate the sequence that the hypothesis

refers to and the icons to the left indicate the corresponding metric. Depending on

the value of the result, a bar grows out from the center in the direction where the

value is larger, on a ratio scale. The bar is then colored by the p-value of the result.

• Black indicates a p-value ≤ 0.01.

• Grey indicates a p-value ≤ 0.05.

• White indicates p-value > 0.05.

When reviewing a large list of results, it is unclear to analysts when everything

has been reviewed, especially when they use filtering methods to view smaller pieces

of the results at a time. A simple progress bar at the right of the results shows

the analysts progress through the result set. It is a heatmap where each result is a
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single line and color indicates:

• Grey: result has been reviewed.

• Red: result has been calculated and is not reviewed.

To make it more obvious that the analysts has not missed potentially signif-

icant results, CoCo also encodes the p-value using a colored border, matching the

above p-value colors.

The progress bar serves as the scrollbar and minimap for the result set. An-

alysts can page through the data by scrolling along the progress bar. A thickened

border indicates the portion of the data that is currently being viewed. The order

in the progress bar matches the order of the detailed results and is determined by

the analyst, based on the sort options provided.

5.1.5 Sequence Details

Context is given using details on demand. Analysts are able to see the under-

lying data for a selected result. Depending on the type of metric, analysts will see

different information. Because metrics dealing with prevalence are only a matter of

percentage, all this data is shown in the result snapshot and the details on demand

don’t show any additional information. For metrics that show an average (e.g., all

time metrics and frequency metrics), the details on demand show the exact distribu-

tion for all values (Figure 5.9). Additionally, the details on demand show high-level

statistics about the distribution: sample size (n), average, minimum, maximum, and

standard deviation.
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Figure 5.4: Analysts can view details about a result by clicking it. Results that cor-

respond to comparing averages (such as average duration or average frequency) will

show the distributions of all the values and statistics about the average, minimum,

maximum, and standard deviation in both cohorts.
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5.2 Design Guidelines for HVHT Visual Analytics Tools

Guideline 1: Convey hypotheses succinctly.

In an initial implementation, the LifeLines2 [69] triangle scheme was used to

display event sequences and organized results by metric (e.g., all results dealing

with the occurrence of sequences were grouped together; all results dealing with co-

occurrences of events were grouped together, etc.). With this organization scheme,

the metric selected by the analysts implied a lot about the sequences in its result set

and all sequences looked identical. In feedback on this design, many analysts felt

that only visualizing the sequence (with no indication of what the hypothesis was),

was confusing and they would often have to remember which metric was selected.

I conducted interviews with three domain experts to determine how to distin-

guish between various event sequence features. In the interviews, each expert was

asked how they would visually differentiate the following types of sequences and

their properties:

• Whole record sequence

• Concurrent events

• Consecutive vs. non-consecutive sequence

Mockups of responses are shown in Figure 5.5. Analysts suggested differenti-

ating whole record sequences (a) by adding markers indicating the beginning and

end of the sequence, to signify no events occur before or after the sequence. Square
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markers were chosen over the angled brackets to avoid ambiguity with the notion

of a “set.” Analysts showed concurrent events (b) by either overlapping them or

grouping them with a circle. The overlapping method was preferred because it was

more compact. Analysts had more variation in how they chose to differentiate con-

secutive (c) vs. non-consecutive (d) events. Two analysts chose to keep consecutive

sequences the same, while differentiating non-consecutive sequences by placing a

marker between events. The third analyst suggested the opposite: show no dif-

ferentiation between non-consecutive events, but place a bar to join consecutively

occurring events.

In a later version, the event icons were changed from triangles to slim rectangles

to conserve screen real estate (and give analysts the option to toggle between the

two versions). The current scheme is shown in Figure 5.6.

Guideline 2: Visualize statistical results and differences.

In designing the result displays, the design needed to convey information about

the difference in value (both magnitude and direction) and the statistical significance

of the result. Additionally, color was already used to encode the event categories

and needed to be avoided. The three methods of visual comparison outlined by

Gleicher et al. [6] were tried to encode this data: juxtaposition, superposition, and

explicit encoding. Figure 5.8 shows the designs that were considered. Juxtaposition

(a) showed the absolute values in each cohort, and worked well for values that had

a fixed range (e.g., percentages for 0% to 100%). However, it was not adaptable
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for variable range values (e.g., time, where a difference can be as small as 1 minute

or as large as 3 months) or for displaying time and prevalence metrics in the same

view. It is also not ideal for scanning for differences easily because the difference

is not explicitly encoded. Superposition (b) has the advantage of displaying the

raw values and direction of difference more clearly, but had similar problems to

juxtaposition in displaying time and prevalence results on the same axes; because

it is axis dependent, it is not possible to display time and percentage in the same

view. I found that an explicit encoding only (c) offered the best option by allowing

analysts to easily see and interpret differences between the datasets, despite the

absolute values in each cohort are obscured. The absolute value information was

available using interactions such as hover or details-on-demand to display them.

With the explicit encoding method, it is also able to explore different meth-

ods for encoding the differences: absolute difference, relative difference, and ratio.

The values in datasets can be categorized in three groups. Take for example, the

occurrence of a sequence:

1. Occurs in both datasets the same way (no difference)

2. Occurs in both datasets, but more in one

3. Occurs in only one dataset

Again, providing the absolute difference is sufficient when presenting prevalence

results, because percentages are bounded to 100%. However, with results dealing

with time, a single scale does not accurately convey differences because 1) time

is unbounded, and 2) simply scaling the axis does not always work because even
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within a single dataset, different time granularity may exist (e.g., a hospital stay

is on the order of days whereas a prescription is on the order of months). Relative

differences and ratios eliminate the problems of multiple units and granularities,

however I found analysts understand ratios more clearly than relative differences.

For example, it is easier to interpret “hospitals stays are two times longer in cohort

A than cohort B” rather than “hospitals stays are 100% longer.” Because ratios

can be anywhere from 1 (in case 1) to infinity (case 3), I bound the axis to an

analyst-defined maximum (default: 4x). If the ratio is above the maximum, the bar

grows off the side, and if it is infinite, an infinity symbol is displayed next to the

ratio bar.

Guideline 3: Allow flexible methods for organizing results.

I explored four methods for organizing the results, each with its own benefits:

1. Metric hierarchy. This was the approach taken in the initial version and it

worked well in guiding the analysts. Analysts typically started based on se-

quence length looking at single events before looking at longer sequences,

then progressing based on their specific questions. This method worked best

when analysts had specific questions about the datasets (e.g., if they were only

concerned with whole record sequences).

2. Flattened. In open-ended and unstructured exploration, the analysts do not

seem to care about what the metric is, just how important or distinguishing

the result is. A flat design displays all hypothesis results in a single list view,
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regardless of metric or sequence type, and orders them by the significance and

magnitude of difference.

3. Sequence. Some researchers may have questions about a specific sequence of

events. For these questions, it is best to group results by event sequence.

4. Metric/flat list hybrid. In this view, the top 10 results for each metric are

displayed. A hybrid view will give a good overview of the most important

features of the dataset.

In the initial implementation, results were organized based on their category

(Method #1). However, interviews with domain experts and analysts indicated

that in their analyses, they didn’t always care which metric was significant they

wanted all the significant results in one place, regardless of what type of metrics they

corresponded to. Method #2 is the most flexible for most uses and that analysts

can use result filters if they have specific questions dealing with a particular sequence

or metric.

Guideline 4: Provide flexible interactions for parsing results.

Displaying large result sets presents challenges in parsing them. Three in-

teraction techniques are provided in Coco for parsing the results. First, with so

many hypotheses, not every hypothesis will apply to the dataset or domain. Re-

searchers might have different priorities based on questions they already have. For

example, some analysts might only be concerned with whole record sequences, while

others want to see patterns across shorter subsequences. Some analysts might be
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concerned with only metrics dealing with prevalence, whereas others are interested

in both time and prevalence metrics. Filtering and sorting provides flexibility by

allowing analysts to manage their data based on what is relevant to their questions.

Second, as analysts sort through the results, they might easily disregard some

hypothesis given their domain knowledge (e.g., results that are spurious correla-

tions) and would need some way to keep track of everything they care about or

have hidden. For this, I suggest simple journaling options: starring, hiding, and

annotating (Section 7.2.7).

Lastly, when there are thousands of tested hypotheses, it is difficult for analysts

to keep track of how many hypotheses they have viewed, how many are left to view,

and of those results that are unviewed, which are significant. A progress bar that

indicates analysts’ progress through the result set, so analysts feel comfortable that

all possibly meaningful results have been reviewed.

Guideline 5: Provide context.

As analysts progress through the result set, it is difficult to understand if a

result is meaningful based on a single result, especially when dealing with event

sequences. For example, if patients visit the ICU after the emergency room more

often in a cohort of patients who died versus lived, it may only be significant because

the “ICU” event occurs more often in the cohort of patients who died. CoCo provides

details on demand and provides the analysts with an overview of their progression

through the result set.

74



Analysts are able to see the underlying data for a selected result. Depending

on the type of metric, analysts will see different information. Because metrics deal-

ing with prevalence are only a matter of percentage, all this data is shown in the

result snapshot and the details on demand don’t show any additional information.

For metrics that show an average (e.g., all time metrics and frequency metrics), the

details on demand show the exact distribution for all values (Figure 5.9). Addition-

ally, the details on demand show high-level statistics about the distribution: sample

size (n), average, minimum, maximum, and standard deviation.

Guideline 6: Provide an overviews of both cohorts

With a large dataset, an analyst may not know what his or her data looks

like. EventFlow displays are embedded for each cohort to provide this overview.

EventFlow was chosen because many of the analysts are familiar with it, and its

aggregate display provides an overview of the most frequent patterns across the

cohorts in a compact view that will scale to large datasets without using more

space.

Guideline 7: Provide guidance on beginning analysis

With hundreds of thousands of hypothesis results, it might be daunting for

analysts to know where to start with their analysis. To simplify this process, I

suggest two methods.

First, follow a recommended process model and arrange the layout to match
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this process. The panels on CoCo to suggest the order in which analysts should ex-

plore their dataset. CoCo first provide methods for seeing an overview of the all the

data (scattergram and cohort overviews) on the top left, followed by more detailed

views of the result set. Controls for filtering and sorting this list are prominently

displayed on the top right.

Second, CoCo provide default values for all result filters and sorting methods.

While these result filters are customizable, the default values provide the simplest

starting point for the analysts. It is important that the default values are carefully

chosen. For example, for sequence length, I decided to start with length 1, since

analysts are often overwhelmed after looking for at the long results list. Starting

with length 1 allows analysts to get a bearing on the events in their cohorts and

allowing them to choose when they are ready to move onto the next result set.

5.3 Summary

In this chapter, I present Contribution 3: A family of visualizations and guide-

lines for interaction techniques. High-volume hypothesis testing results in large

result sets which are difficult for analysts to parse. Through an interactive user

interface, analysts are able to more easily identify important results. I provide an

overview of the visual analytics tool, CoCo, and discuss the design decisions that

lead to its development. Through case studies with CoCo, I explore the utility

of these designs and interactions and distill the lessons learned into seven design

guidelines.
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t

Figure 5.5: Analysts’ responses.

(a)

t

Figure 5.6: Current scheme.

Figure 5.7: Mockups of expert analysts’ responses (left) and resulting glyphs (right)

for visually differentiating four properties of event sequences: (a) whole record se-

quences, (b) concurrent events, (c) consecutive sequences, and (d) nonconsecutive

sequences.
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Figure 5.8: Designs considered for presenting difference results between cohorts and

: (a) juxtaposition (directly comparing two bars), (b) superposition (overlaying bars

darkened area is the shared amount while the lightened area indicates the difference),

and (c) explicit encoding only, which encodes only information about the direction

and magnitude of the difference.
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Figure 5.9: Analysts can view details about a result by clicking it. Results that cor-

respond to comparing averages (such as average duration or average frequency) will

show the distributions of all the values and statistics about the average, minimum,

maximum, and standard deviation in both cohorts.
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Chapter 6: Evaluation and Case Studies

6.1 Preliminary User Study

To refine CoCo’s design and to observe actual practice of analyzing real-world

dataset using a combined CoCo and EventFlow tool, we conducted an early, pre-

liminary user study with volunteers who expressed interest in learning about data

visualization and about a new form of statistical analysis.

6.1.1 Method

Our evaluation design was based on the VDAR scenario [70]. More specifically,

the goals of our user study were as follows:

1. To learn about the insights users would find.

2. To gain insights into the strategies users would follow.

Before this study, we tested our materials with four participants, where they

used either CoCo or EventFlow and we counted the number of insights. We observed

that they tended to report everything from CoCo as insights, without considering

their actual meanings and importance. In this study, we asked participants to

provide further suggestions based on the their insights to guide research at the
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hospital. As a result, participants were more engaged in the analysis and on average

provided 3.5 (SD = 1.07) suggestions.

Participants and Settings. We recruited 10 computer science graduate students

(7 male, 3 female) through our university’s mailing list. The participants’ ages

ranged from 23 to 29(M = 26, SD = 2.06). All participants had normal color

vision.

We ran CoCo and EventFlow on the same computer. CoCo was displayed on

a 1440× 900 screen while two side-by-side EventFlow windows were displayed on a

1920× 1200 screen (Figure 1.2).

For simplicity, we began by implementing only a subset of all possible metrics

that users may want:

• Prevalence of events, subsequences, and record sequences.

• Duration between sequentially occurring event pairs.

• Prevalence of events and subsequence by attribute.

Procedure. Each 45-minute session included training, data analysis and post-

study interview. Training started with a 2-minute introduction on each interface’s

features. For each interface, participants performed 5 simple tasks and were en-

couraged to ask questions. We used a pair of synthetic datasets for the training.

Questions included clarifying the difference between a “sequence” and a “subse-

quence” (CoCo), the difference between an event category and attribute (CoCo)
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and the meaning of gaps between bars (EventFlow) were frequently asked. After

the training, all participants said they understood everything.

In the 30-minute data analysis session, a different pair of datasets (representa-

tive of hospital room transfer data) were used: patients discharged alive or patients

who died. Participants were asked to play the role of a data scientist and analyze

the datasets using both CoCo and EventFlow. Their job was to provide insights into

the similarities and differences between the paths of the two groups in the hospital.

We encouraged thinking aloud and an experimenter took notes of their findings. In

particular, we asked them to provide a reason when they switched between CoCo

and EventFlow.

During the post-study interview, participants provided comments and reflec-

tions about their experience.

6.1.2 Results

During the analysis, no participant asked any interface-related questions and

instead concentrated on finding insights. Every participant used both interfaces. In

particular, three said they prefer CoCo, while two said they prefer EventFlow. Five

expressed no preference. On average, eleven (SD = 3.67) insights were reported

and four (SD = 1.12) interface switches were made per participant. During the

interview, all participants stated they wanted to use both interfaces. Below we

summarize the results in the context of our user study goals.
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Types of Insights. All insights can be categorized into four categories: events,

whole record sequences, subsequences and time (Figure 6.1).

Seven out of the ten participants mentioned that it is easier to find subsequence

patterns with CoCo while it is easier to find whole record sequence patterns with the

side-by-side EventFlow display. They thought EventFlow didn’t actually support

detecting subsequence patterns because it only showed records as sequences, and

they had to visually scan each record to compare subsequences. On the other hand,

CoCo specifically provided a metric for subsequences. As a result, significantly

more subsequence insights were found by using CoCo than EventFlow (p < 0.05)

(Figure 6.1).

As for whole record sequences, they preferred EventFlow and stated that it

visually encoded the number of records into the heights of color bars, which made

it more comprehensive, e.g., “I just have no feeling about the numbers in CoCo.

EventFlow is more interesting.” Meanwhile, six out of the ten participants men-

tioned that it was hard to compare a specific sequence using the side-by-side windows

of EventFlow because they had to search for that sequence on each side separately

and had to visually compare them by height, which was not very accurate. In con-

trast, a participant noted that “CoCo does the comparison for me.”. There are no

significant differences between the two interfaces for the number of insights under

the whole record sequence category (p = 0.39) (Figure 6.1).

Participants found most of the insights in the event category by using CoCo.

This might be related to the fact that CoCo specifically provides a metric for com-

paring the distribution of events. “It shows numbers and details.” One participant
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said when he surprisingly found in CoCo that the Intermediate Care event only

occurred in the group of patients who died. “I didn’t notice that in EventFlow!” he

added. Also, as the event metric was listed at the top of the metric list in CoCo, all

participants started using CoCo by looking at that metric.

As for the time metric, six out of the ten participants mentioned that they liked

the way EventFlow combined gaps with sequences together. They also mentioned

that in CoCo, they had to switch back and forth between the time metric and the

sequence metric to look for insights. “It provides a better big picture and the time

is more visible,” one participant commented when he was looking at EventFlow to

help himself understand the time gaps in the dataset. More insights in the time

category were found by using CoCo but it was not significant (p = 0.25). One

potential reason might be that CoCo was able to average the gap between event

pairs, while those pairs were more difficult to find in EventFlow since they are not

aggregated and could appear in multiple places in the visualization.

Description of Strategies. During the study, participants were allowed to switch

freely between the two interfaces, but we asked participants to describe why they

switched.

Nine out of ten participants chose to start with EventFlow. Of these nine

participants, three said EventFlow provided a better overview, four said Event-

Flow seemed simpler and more comprehensive than CoCo (e.g., “EventFlow is more

friendly to my eyes!”), and the other two said they wanted to look at the actual

data with EventFlow before doing the analysis. The only participant who chose to

84



Figure 6.1: Average number of insights per participant per category using EventFlow

versus CoCo. The only statistically significant difference (p < 0.05) is in insights

about subsequences, where participants found more insights using CoCo.

start with CoCo said he liked the statistical summary provided by CoCo. “It looks

like a dashboard,” he added.

After exploring for five to fifteen minutes, the nine participants who had

started with EventFlow switched to CoCo. Three spent about fifteen minutes before

making the switch. They explained that they preferred to find everything with one

interface first. Four said they got stuck with EventFlow and wanted to get some in-

spirations from CoCo. Two said EventFlow didn’t support comparing subsequences

very well, so they temporarily switched to CoCo to do the comparison. The only

participant who started with CoCo also switched to EventFlow. He mentioned that

he had found an interesting pattern so he switched to EventFlow to have a look at

the actual data, which might help to confirm the finding.

After the first switch, all participants were familiar with both interfaces and
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on average made three more switches. The reasons they provided mainly fell into

three categories: (1) switching from CoCo to EventFlow for the overview of event

sequences and gaps, (2) switching from CoCo to EventFlow to “get a sense” of the

patterns they found in CoCo, and (3) switching from EventFlow to CoCo to see the

statistical information and to confirm their findings. “I like the fact that you give

me two different tools. I can look at the data in different ways,” one participant

commented at the end of his analysis session.

Usability of CoCo. During the post-study interview, all 10 participants stated

that training was important to CoCo. In particular, 8 said they could use CoCo

skillfully after the training and 2 said they needed more practice. Nine participants

liked the visualization of CoCo. The other 1 said he thought traditional scatter plot

was more effective. Background knowledge in statistics, especially in p-value was

critical to understanding CoCo. Eight participants said the statistics was easy to

understand while the other 2 said they didn’t get the idea of the p-value. How-

ever, the 2 participants added they remembered the rule that black dots were more

important than gray or white ones, and it helped a lot in the analysis. 8 partici-

pants thought the sequence aggregation feature was useful, because it provided an

overview and could show details on demand. One participant commented he seldom

expanded it but added that “It helped me to focus though.”. The other 1 said he

had difficulty locating the main sequences after doing expansions. Nine participants

liked the layout and navigation of CoCo. However, 2 of them commented the inter-

face was not impressive (e.g., “The gray background is boring.”, “It didn’t catch my
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eyes.”). The other 1 disliked the layout because several panels were seldom used in

his analysis.

6.2 Case Studies: Introduction

To investigate the strengths and limitations of CoCo as an automated cohort

comparison tool, we conducted case studies following the procedure of a Multi-

Dimensional, Long-term In-depth Case Study (MILCS) [71]. This methodology was

chosen for its emphasis on evaluating the use of the entire system with partners who

are real-world analysts using their own data, outside a traditional laboratory study.

The MILCS process begins with understanding the partners’ data, needs, and

analysis objectives through an introductory questionnaire and interview. From

there, we set a schedule for regular meetings and observation, where the analyst

is able to explore their data and provide feedback, while I iterate over the design of

the system, fix bugs, and address the analysts’ feedback. At the end of the speci-

fied period (which may range from a few weeks to several months), I reflect on the

outcomes of the study and lessons learned for both the analyst and my own work.

Fifteen groups expressed interest in using CoCo for their analysis purposes for

a total of eighteen case studies. Eight were aborted for various reasons: incompati-

ble problem, lack of time, or the data wasn’t prepared. The remaining eleven were

successful case studies performed with CoCo at different stages, over the course of

two years. Five of these successful case studies were long-term (CS1 – CS5) and five

were short-term (CS6 – CS10). Table 6.2 summarizes all eighteen case studies. Sec-
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tions 8–6.7 describe the successful long-term case studies in detail, Sections 6.8–6.12

describe short-term, one-time use case studies, and Section 6.13 discusses aborted

case studies.

6.3 CS1: Exploring Adherence to Advanced Trauma Life Support

Protocol

Figure 6.2: Analysts at Children’s National Medical Center used CoCo to under-

stand potentially distinguishing attributes between patients who are treated accord-

ing to the Advanced Trauma Life Support (ATLS) protocol versus those who are

not.

Participants. I worked with Dr. Rachel Webman at Children’s National Medical

Center, a pediatric care provider in the Washington, D.C. area.
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Procedure. After an initial phone conversation to discuss potential analyses, I

provided the partners with a demonstration and tutorial of CoCo to Dr. Webman.

After converting the data to the CoCo format and installing CoCo on her machine,

we meet weekly thereafter to discuss the analysis process, which included data clean-

ing, visualization (in both EventFlow and CoCo), and data analysis (using Stata). I

met with Dr. Webman for two sessions to observe her use of CoCo. The case study

ran from August 2014 to December 2014.

Analysis goals. In a previous study [3], they found that about 50% of resusci-

tations did not follow the ATLS protocol. As a follow-up, the researchers’ were

interested in:

1. What percent of patients are treated in adherence to protocol?
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2. Are there distinguishing attributes (e.g., time of day, patient gender, team

lead) between protocol adherence and non-adherence?

3. What are the most common deviations from the protocol?

Dataset. We began by cleaning the data. Based on the question at hand, the

original dataset included many extra event categories and attributes that weren’t

relevant to the analysis. This initial filtering was done in excel and reduced the

number of event categories from 22 to 6. All twenty patient attributes were retained,

because they did not add any complexity to the visual display and were important in

determining associated attributes for protocol deviation. Patient attributes included

injury severity score (ISS), the day of week, length of hospital stay, time between

notification and arrival at the hospital, and if the patient was admitted to the

hospital, among others.

Next, the data was displayed in EventFlow. Further data manipulation was

performed here. Because Coco only accepts point events, we converted the secondary

scan interval event into a single point event representing the start of the interval.

Additionally, there were two types of pulse events which were merged into a single

event. Lastly, 7 records that had inconsistencies in the dataset, such as the secondary

scan ending before it begins, or the patient arriving after other events had happened

were removed after verifying the data in the original data sheets.

The resulting dataset consisted of 171 patient records, with event categories

for the five steps in the ATLS protocol: airway evaluation, listening for breath

sounds, assessment of circulation, evaluation of neurological status disability, and
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temperature control.

6.3.1 System Use

The first observational session was three hours. Over the course of the 3 hours,

we split the dataset in six ways to load six different pairs of cohorts in CoCo as they

explored different hypotheses:

1. Patients treated in adherence to the ATLS protocol versus those that showed

any deviation.

2. Patients admitted to the floor versus ICU (with discharged patients removed).

3. Resuscitations where the trauma team received at least 5 minutes advanced

notice and teams where there was fewer than 5 minutes notice (“now” resus-

citations).

4. Patients with a high (> 15) versus low ISS.

5. Patients treated on the weekend versus on a weekday.

6. Patients treated during the day versus at night.

In every comparison group, the analysts began by looking at the prevalence

of single events, to determine how often they occurred. The analysts then looked

at the most differentiating entire record sequences, because the subsequences were

less informative about how the protocol was followed. They would then make their

way down the provided metrics list, in the order that they appeared: most differ-
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entiating time gaps and then prevalence of record attributes. They did not look at

the prevalence of record attribute combinations for any of the datasets.

6.3.2 Outcomes

For analyst. For this dataset, the analysts expected to see that each patient

record contained every event category. However in two of the comparisons, (1) cor-

rectly treated patients versus those with deviations and (2) day versus night patients,

the latter of both groups received the airway check significantly less than former.

In the day versus night group, the analyst also found that the “most differentiating

sequence” was the correct order, meaning that the nighttime patients were treated

in the correct order significantly less often than daytime patients. Additionally, pa-

tients treated at night had more variance in the procedure, with 26 unique sequences

in the 83 patients versus 20 unique sequences in the 101 daytime patients. A possi-

ble reason for this finding is that during the day, nurse practitioners perform these

procedures, but at night, junior residents, who may have less experience with this

type of task at this particular institution, are on-call instead. From these results,

the analysts presented these findings at an internal symposium on pediatric care

and a city-wide conference on trauma care.

For CoCo. In the closing interview, one analyst said, “We don’t need to solve

everything with EventFlow and CoCo. These tools let us explore the data and narrow

our hypothesis.” This early case study was indication that CoCo can be effective for

exploratory analysis and hypothesis generation. Additionally, through observation
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of the analyst, we were able to develop the basis for a process model that was

implemented and tested in later versions of CoCo.

Overall, the analysts noted that CoCo was useful for their needs, and without

it, the analysis would have been possible, but much more difficult to perform. One

area that CoCo could be improved is to include multivariate analysis, as this is a

central need for their analyses.
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6.4 CS2: Student Course Enrollments

Figure 6.3: An analyst at the University of British Columbia (UBC) was interested

in using CoCo to better understand the pathways UBC’s students typically pursue

towards degree completion

Participants. I worked with Dr. Leah MacFadyen who is the Program Director

of Evaluation and Learning Analytics in the Faculty of Arts at the University of

British Columbia (UBC).

Procedure. All sessions, except one, were conducted remotely, through Skype

and screensharing. These sessions were at irregular intervals that were scheduled

as needed. The sessions would consist of troubleshooting, guidance on how to use

CoCo, feedback from Dr. MacFadyen on her experience, as well as observation of

how CoCo was used. In between these sessions, Dr. Macfadyen used CoCo inde-

95



pendently and would regularly email her thoughts, experiences, results, questions,

and requests related to CoCo.

Analysis goals. The University of British Columbia (UBC) permits students to

register in and complete courses towards their degree without a required or pre-

specified order. Some temporal ordering in course enrollments is imposed by re-

quiring “core” courses to be completed first or by requiring pre-requisites. Beyond

these constraints, however, flexibility of enrollment results in a complex and highly

heterogeneous record of student enrollment patterns.

Dr. Macfadyen was interested in using both EventFlow and CoCo to better

understand the pathways UBC’s students typically pursue towards degree comple-

tion. Major research questions included:
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• Are some enrollment pathways more common than others?

• Are some course sequences more frequently associated with success in a given

degree program or specialization?

• Do certain course combinations or sequences seem to channel students towards

or away from Majors or Honours programs?

• Which course sequences have the highest rates of attrition?

In understanding student enrollment (and dropout) patterns over time could,

the results could inform curriculum, course planning, and student advising.

Dataset. The dataset consisted of the course enrollment records and selected de-

mographic and graduation data of 796 students in the enrolled in three departments

in the School of Library and Information Science (iSchool):

• Masters of Library and Information Studies (MLIS),

• Masters in Archival Studies (MAS), and

• a joint Library and Information Studies/Archival Studies Degree Program

(MASLIS).

The course enrollments were all in the period 2004-2013. Each event category

was a course the student had enrolled in, aggregated by department (e.g., Archival

Studies, Information & Society, etc). Record attributes imported from the student

records included:

97



• Degree program: MLIS, MAS, MASLIS

• “Grad Group:” 1 = bottom 50% by graduation average grade, 2 = top 50%

by graduation average grade

• International/Domestic status

• Student citizenship

• Student gender

The iSchool was interested in enrollment pathway differences between male and

female students, domestic and international students, and any relationship between

course enrollment patterns and student performance, as represented by weighted

average on graduation.

6.4.1 System Use

Three paired sets of data for exploration were then exported from these data

sets:

1. MLIS students distinguished by gender

2. MLIS students differentiated by achievement (graduation group 1 or 2)

3. iSchool students differentiated by degree program (MLIS vs MASLIS)
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6.4.2 Outcomes

For analyst. Dr. Macfadyen was able to make numerous insights about the stu-

dents’ enrollment behavior.

1. Gender differences in MLIS student course enrollment choices. Female

students are over-represented in the MLIS cohort by a ratio of 2:1 (as in the Faculty

of Arts as a whole). CoCo analysis suggested that female students are significantly

more likely to complete courses in Library Services for Children (p = .002) and

Professional courses (p = .036).

Analysis of most differentiating subsequences suggested that male students are

more likely to complete multiple IT & Systems courses alongside their LIBR core

courses, while female students are more likely to combine LIBR core courses with

Library Services for Children courses.

In line with these observations, analysis of “most differentiating co-occurrences”

showed that female students are significantly more likely to combine Library Services

for Children courses (yellow) with selected other courses.

2. Top 50% versus Bottom 50% of MLIS students by graduation GPA. The

only moderately significant (p < 0.05) differentiating event (course enrollment) be-

tween these two groups is that the lower-achieving group are more likely to have

enrolled in Information & Society courses. There were no significantly different

sequences or subsequences of courses were observed between the two groups, and

co-occurrence of two Professional courses is significantly more likely (p = .012) in
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the higher-achieving group.

3. Comparing course enrollment choices of MLIS and MASLIS students. For

these comparisons, Archival Studies (ARST) courses were excluded, since MLIS

students do not complete ARST courses. Analysis of most differentiating events

indicates that MASLIS students are significantly more likely to complete Library

Services and Texts & Collections courses than MLIS students (p < .01).

Meanwhile, a range of co-occurring event combinations involving Text & Col-

lections and Professional courses are observed significantly more frequently for MASLIS

students.

For CoCo. Because students take multiple courses on a semesterly basis, the

dataset naturally contained many concurrent events. This was CoCo’s first major

case study that involved concurrent events and because of this, this case study was

the single most helpful in determining the requirements for dealing with concurrent

events. On the backend, this introduced the need for an altered datastructure and

new metrics.The data structure only provided a minor change: instead of including

all events in a flat list, the list was converted to nested lists, where events are

bucketed by timestamp.

The addition of new metrics provided more challenges in dealing with how

concurrent events should be treated in the context of subsequences. First, when

two events occur at the same timestamp, it is unclear whether to count it as a

sequence of length 1 or length 2, because as there is only one timestamp, this may
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not necessarily be considered a “sequence.” We chose to count this as a sequence

of length 1, because it provides additional insight into how often two events occur

concurrently, versus on its own. Second, it is not immediately clear how to handle

concurrent events in the context of subsequences. For example, suppose we have

the sequence (AB)D, where A and B occur concurrently and are followed by D.

Depending on the analysis, it may or may not be necessary to count the sequence

as an instance of “AD” or “BD” on its own. We added the new metrics to the

taxonomy, but leave their implementation for future work.

On the frontend, CoCo needed to be adjusted to show sequences that have

overlap. Section 5.2 shows our method for determining how to represent concurrent

events.

Along the way, Dr. Macfadyen also provided valuable feedback for usability

and bug fixes, such as allowing customizable colors and adjusting the display for

multiple screen sizes.
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6.5 CS3: Medication Adherence Patterns of Hypertension Patients

Figure 6.4: Researchers at the University of Maryland used CoCo to compare

whether drug adherence affected the cost that patients incurred over a year. In

other words: Could taking medication as prescribed result in lower overall medical

costs?

Participants. I worked with Dr. Margrét Bjarnadóttir and Dr. Eberechukwu

Onukwugha for this case study. Dr. Bjarnadóttir is a Professor at the Smith School

of Business specializing in operations research methods using large scale data. Dr.

Onukwugha is a Professor at the Department of Pharmaceutical Health Services Re-

search and specializes in cost-effectiveness analysis, health disparities, and medical

decision-making by individuals.
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Procedure. The analysis was done in chauffer-mode, with me using Coco and

being advised by Dr. Bjarnadóttir and Dr. Onukwugha based on the results.

Analysis goals. The researchers were analyzing the medication adherence pat-

terns of patients on diuretics (i.e. are patients taking their drugs as prescribed, in

which combinations, what characterizes the gaps between prescriptions, etc.). In

particular they are interested in the differences between high-cost versus low-cost

diuretics patients and want to know what patterns are representative of each group.

The researchers wanted to compare whether drug adherence affected the cost

that patients incurred over a year. In other words: Could taking medication as

prescribed result in lower overall medical costs?
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Current methods for adherence analysis consist merely in calculating a Med-

ication Possession Ratio (MPR) [72] or similar aggregated measures that do not

represent the diversity of patterns found in the data. The MPR for a pre-defined

period is calculated as:

MPR =
number of days prescribed

days elapsed over period
.

For example, if patients only refilled one 30-day prescription over a period of 90 days,

their MPR is 30/90, or 1/3. This method oversimplifies a patient’s prescription

history into a single number, which may not provide an accurate representation.

A patient might refill prescriptions early when planning to leave on vacation, thus

leaving a larger-than-usual gap in their refill history, when in fact they were taking

their medication regularly. Conversely, a patient who switches to another medication

after a recent prescription refill may have a history that incorrectly indicates that

the patient regularly took their prescription.

Dataset. The data these researchers gathered consisted of prescription refill his-

tories of five drugs commonly used to treat hypertension. The data spanned one

year and contained over 1 million patients. The data also included the total cost of

all prescription costs over the year.

We report here only on the analysis of the adherence patterns of patients who

took medications from only one drug class: diuretics, which consisted of a total

of 113,401 patients. The dataset consisted of two event categories: diuretic and

gap, where diuretic indicated the start time of a prescription and gap indicated

the start time of no medication usage. The patients were categorized into “HIGH”
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Table 6.1: Number of hypotheses generated by metric and sequence type.

versus “LOW” cost patients based on the distribution of prescription costs for the

patients. Patient costs ranged from $0 to $9,528 (USD). Most patients (55%) had

no prescriptions costs and the average cost was $25.39. We excluded patients with

$0 costs and patients with more than $380 (top %1), to exclude outliers due to

multiple prescriptions or medical costs that were not associated with hypertension

(e.g., automobile accident).

The final dataset consisted of 3,958 patients categorized as HIGH cost and

38,175 patients categorized as LOW cost.

6.5.1 System Use

The third version of CoCo was used to compare prescription patterns of high-

versus low-cost patients. In total, CoCo generated results for a total of 94 hypothe-

ses. The hypotheses are broken down by metric and sequence type in Table 6.1.

The analysts first used the Sequence Occurrence panel to review only results

with a sufficient sample size. The threshold was set at 10% of each cohort, or 395 in

the HIGH cost group and 3,817 in the LOW cost group, which reduced the number
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of hypotheses to review to 24. Next, the remaining insignificant results (p > 0.05)

were removed using the Filter by Significance feature, leaving a more simplified

display of 21 results.

Finally, the results were Filtered by Sequence Length, to view only sequences

of length 1 (single events) or 2 (event pairs). Because there are only two event

categories in the dataset, longer sequences were just repetitions of length 2 or less,

so this was all that was necessary to view all unique patterns. Thus, there were 10

remaining hypotheses to review in detail. The final result display and settings are

shown in Figure 6.5.

The analysts then evaluated the remaining hypotheses one by one, using con-

text information provided in the details on demand panel.

6.5.2 Outcomes

For analyst. This made it easy to conclude that high-cost patients tended to have

longer sequences, with more gaps and prescription refills, whereas low-cost patients

had shorted sequences, most commonly filling only a single prescription. Low-cost

patients also took significantly longer gaps between prescription refills. As a follow-

up, analysts will incorporate medical claims data to understand the more serious

medical implications of medication adherence, such as heart attacks or stroke.

For CoCo. Better understanding on having all metrics in a single view. First

testing of prescribed analysis process. This case study provides an illustrative ex-

ample of the challenges that researchers and analysts encounter, and describes how
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Figure 6.5: Final results and usage of drug pattern case study. Analysts used the

Sequence Occurrence panel (c) to control sample size, and the Filter panel (b) to

control significance and sequence length. This resulted in only 10 hypotheses (a) for

the researchers to manually review.
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the implementation of new visualization interaction techniques for event sequence

hypotheses in CoCo enables the automatic analysis of two groups of records.
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6.6 CS4: Customer Web Logs

Figure 6.6: Analysts at Adobe were interested in comparing user click logs using

CoCo to understand which events lead to a product purchase versus don’t.

Participants. I worked with Dr. Eunyee Koh, a Senior Research Scientist at

Adobe Research. Her research focuses on semantic analysis and metadata extraction

from media, and how to visualize those extracted metadata interactively for people.

Procedure. I worked with Dr. Koh to train her on the use of CoCo and form

the objective on the analysis. We met biweekly over Skype, where she provided

feedback dealing with the scalability of CoCo. After becoming an advanced user of

CoCo, Dr. Koh then performed independent evaluations of CoCo with two analysts

at Adobe.
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Analysis goals. The analysts were interested in understanding user behaviors

and exploring the data in a free-form way.

Dataset. The dataset contained users’ events on a product website, such as view-

ing the display ads, signing up for promotions or free trials, and purchasing products.

6.6.1 System Use

All three analysts used the same dataset to compare the group of users who

purchased the products without using trials versus with using product trials. In

particular, the analysts explored the occurrence of the display ads and retargeting

events (e.g., an ad for a product the user has already viewed) between the two

cohorts. By exploring events that are statistically significant in the result panel,
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analysts found one group viewed display ads more than the other group, and that

group also contained more retargeting events than the other group. By investigating

more on other events such as product trial and adoption using CoCo, analysts

hypothesized that the first group, who viewed the display ads more, seemed fairly

new to the websites’ product offerings (“explorers”) while the other group, who were

exposed to fewer display ads and retargeting, seemed to have good knowledge about

the websites’ products and offerings (“experience users”).

Since the datasets contained a lot of events (over 120), the analysts found the

event filtering panel most helpful and they were able to focus the analysis on specific

events. In addition, the reduced metric calculation time provided a much better

user experience for data analysis, as the analysts did not need to wait for CoCo to

load data and finish hypothesis testing before they could begin their explorations.

Analysts all mentioned that they would like to explore the individual event sequences

in the dataset more freely. They said that the results were a bit linear, and they

would prefer to have freeform exploration and interactions.

6.6.2 Outcomes

For user. The work was useful for analysts to discover attributes about user

behaviors. In the exit interview, analysts stated that the use of CoCo made finding

these insights much easier than with the use of other tools and they would use CoCo

again in the future.
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For CoCo. Previous versions of CoCo had only been used on relatively small

datasets of up to 2,000 records per cohort and up to 50 event categories. Web

log datasets, on the other hand, record millions of users who access the website

per day and hundreds of clickstream events per user. The increased volume of

records and variety of event categories presented new challenges for CoCo on both

the front- and back-ends. Through an iterative process over six weeks, we proposed

solutions, implemented them into CoCo, and received feedback from analysts. The

scalability techniques used were formalized into guidelines that were presented in a

joint paper [73].
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6.7 CS5: In-Classroom Student Behaviors

Figure 6.7: An analyst at the University of British Columbia (UBC) used CoCo to

compare the in-classroom behaviors of students in the top quartile versus bottom

quartile.

Participants. I worked with Dr. Macfadyen, Program Director of Evaluation and

Learning Analytics in the Faculty of Arts at the University of British Columbia.

Procedure. All sessions were conducted remotely, through Skype and screenshar-

ing. These sessions were at irregular intervals that were scheduled as needed. The

sessions would consist of troubleshooting, guidance on how to use CoCo, feedback

from Dr. Macfadyen on her experience, as well as observation of how CoCo was

used. In between these sessions, Dr. Macfadyen used CoCo independently and
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would regularly email her thoughts, experiences, results, questions, and requests

related to CoCo.

Analysis Goals. In 2013, Smith et al. [74] outlined their development and use of

a new tool called COPUS, which stands for the Classroom Observation Protocol for

Undergraduate STEM. As part of a focus on improving student learning, they devel-

oped COPUS to facilitate the collection of information on the range and frequency

of in-class teaching practices at department-wide and institution-wide scales. They

and others have subsequently reported results generated through use of the tool,

but almost exclusively present this data in pie chart form indicating student and

instructor activity as percent of total time or activity intervals.

To date, analyses appear to have ignored the sequential element of the data.
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Dr. Macfadyen wanted to explore and compare the actual sequencing of in-class

activity in relation to student learning.

Specifically, her question in comparing two classes was to undercover correlat-

ing in-classroom behaviors with student performance across different classes.

Dataset. The COPUS data comprised manually collected observational data for

student and instructor in-class activity in 14 different biology courses.

Each class has an outcome variable, “performance,” which has been computed

for each class as an average “% learning gain” based on pre- and post-tests. Perfor-

mance is computed as normalized changes in test performance per class per student.

The class histories were then grouped based on their performance quartile and

Dr. Macfadyen compared the top quartile against the bottom quartile.

The dataset contained 8 event types, grouped into “passive” and “active”

actions for both students and instructors.

6.7.1 System Use

After intitially exploring the dataset in EventFlow, Dr. Macfadyen used CoCo

to conduct two comparisons of top and bottom quartile students. The first com-

parison was of all courses, whereas the second was filtered by first year courses

only.
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6.7.2 Outcomes

For analyst. Overall, Dr. Macfadyen found CoCo to be useful, though early

iterations of CoCo struggled to analyst the dataset. Dr. Macfadyen found that

the frequency of use of clicker questions (CQ) and moments of independent student

work (SIW) are significantly higher in top quartile-achieving courses. As a result of

this exploration, Dr. Macfadyen presented her work with EventFlow and CoCo at

a workshop on Learning Analytics and Knowledge (LAK) [75].

For CoCo. This case study deepened CoCo’s ability to handle concurrent events.

Because the COPUS data is bucketed into 2-minute timeslots, all events are concur-

rent. Significant changes to CoCo, as a result of this case study, include extending

“sequences of length 1” to include concurrent events. That is, the occurrence of

overlapping events is shown as a sequence of length 1 because they occur at a single

timestamp. In doing so, analysts can more easily see which events commonly occur

with other events and which do not.

This case study also served as an example of CoCo’s usefulness in datasets

with a low-volume of records but a high-volume of events. Though there were only

43 classroom histories, the volume of the events allowed for sufficient sample sizes

and showed that CoCo is still suitable for relatively low-volume datasets.
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6.8 CS6: Distinguishing Types of Radiation to the Bone

We worked with partners at the Department of Pharmaceutical Health Ser-

vices Research at the University of Maryland School of Pharmacy in Baltimore.

In previous work, the researchers were interested in developing an algorithm using

claims data to differentiate between radiation delivered to the bone versus radiation

delivered to the prostate gland, because billing codes available in claims data do

not distinguish the site of radiation. Reliable measures for identifying the receipt of

radiation to the bone are important in order to avoid bias in estimating the preva-

lence and/or mortality impact of skeletal-related events, including radiation to the

bone.

Studies using healthcare claims employ various claims-based algorithms to

identify radiation to the bone and mostly condition on prior claims with a bone

metastasis diagnosis (billing) code [76–78]. They developed three classification al-

gorithms that were compared using CoCo and EventFlow to investigate the timing

of possible radiation to the bone among patients diagnosed with incident metastatic

and nonmetastatic prostate cancer. One algorithm was based on prior literature

while the other two were based on insights gained from data visualization software.

Based on clinical input regarding the duration of palliative [79, 80] versus curative

radiation, the researchers investigated the length of radiation episodes and found dif-

ferences between cohorts in terms of the length of radiation. As expected, patients

diagnosed with metastatic disease received shorter course radiation than patients

diagnosed with nonmetastatic disease.
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The feedback on CoCo was positive and the team valued the opportunity

to visually compare cohorts of patients using summary statistics that pertained

to the timing and frequency of events. The graphical results were shared with

clinicians on the research team in order to determine whether the patterns were

consistent with their expectations. The researchers felt the meaning of metrics could

be explained more clearly; it was sometimes unclear what the x-axis represented

and what statistical tests were used. They also suggested always showing the event

labels, particularly for single-event metrics, to make understanding the icons a bit

easier. The researchers expressed a need to be able to sort the rows of results

with different factors, including by raw percentage of values in each cohort. We

implemented this feature before the formal case study.

6.9 CS7: Children’s AIM2

After the initial case study with Children’s National Medical Center (Sec-

tion 8), we began working on another dataset. Similar to how the ATLS protocol

is standardized for the trauma bay, researchers were interested in seeing if similar

patterns emerge during resuscitations dealing with head injuries which might guide

in the development of guidelines or protocol.

The case study lasted about two months, while the analysts and I worked

together to clean the data. Because this was a relatively new dataset however,

there weren’t enough records to form statistically significant conclusions (n < 20).

However, CoCo was helpful in finding errors in the datasets and determining what
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remained to be cleaned. Although ultimately the case study didn’t provide signif-

icant insights, it was helpful to understand CoCo’s limitations in terms of number

of records and number of event categories that can be supported and it helped the

Children Hospital team understand how CoCo may be helpful in the future when

the number of records increases.

6.10 CS8: Computer Activity Logs

Fan Du, a PhD student in Computer Science at the University of Maryland,

used CoCo to identify patterns to detect insider threats using computer activity logs.

The dataset contained approximately 180 million events from monitoring computer

usage of employees, consisting of 6 event categories (e.g., login, email, web browsing,

etc). The users were divided into “suspicious” versus “normal” users. After much

data cleaning, the data was reduced to only several thousand events. The analyst

was interested in identifying event categories which indicate suspicious user activity,

in order to further simplify the datasets.

For each subset, CoCo identified event categories that occurred significantly

more or less prevalently in high scored days than low scored days. Thus, analysts

inspected a display that used only these differentiating event categories. For the

above medium size subset, this strategy further reduced the number of events by

92% (from 462 to 24), and the number of unique complete sequences by 74% (from

27 to 7). Comparisons in temporal patterns between days with high and low scores

were made based on the simplified visualization.
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While differences were found we believed that the data itself was not complete

or detailed enough to make inferences about might constitute suspicious event se-

quences. This case study resulted in the analyst using this dataset as an example

for methods for cleaning and simplifying temporal event sequence data [81].

6.11 CS9: Social Media Messages

Cody Buntain, a PhD candidate in Computer Science at the University of

Maryland, used CoCo to identify differences in structures for credible versus non-

credible Twitter messages. The dataset used was CREDBANK, a large-scale corpus

of social media messages collected between mid October 2014 and end of February

2015. It is a collection of streaming tweets tracked over this period, topics in this

tweet stream, topics classified as events or non-events, and events annotated with

credibility ratings [82]. Each record is an “event” that happened (e.g. the Boston

marathon bomping) and events (in the context of CoCo) are individual tweets or

messages.

Using the credibility ratings, the data was divided into credible (i.e., true)

versus non-credible tweets, and CoCo was used to determine whether there are any

structural differences between these two datasets to help identify features that may

be used in developing automated credibility detection for Twitter messages.

CoCo revealed several differences in the structure of credible versus non-

credible events [83]:

• First, credible events had a statistically significant higher frequency (p < 0.01)

120



of tweets than non-credible events.

• Breaking down the tweet type, credible events also exhibited a twice as many

of retweets and tweets with media and four times as many web links (p < 0.01),

while non-credible events had a higher frequency of hashtags and mentions of

other users.

• Credible events showed a significantly higher proportion of media posts than

non-credible events (p < 0.01).

6.12 CS10: Baseball Career Trajectories

Sean Barnes, an Assistant Professor of Operations Management in the Robert

H. Smith School of Business at the University of Maryland, College Park. Dr.

Barnes was interested in understanding how to determine characteristics that indi-

cate promising players. Using a baseball-reference.com [84] dataset, which calculates

a yearly Wins Above Replacement (WAR) average per player per year. The WARs

are categorized into five groups, which show the player’s demonstrated ability. The

player’s WAR is calculated once per year.

The initial analysis compared pitchers versus batters. Because of the very

long histories of the players (in some instances, over 15 years), Dr. Barnes found

the most useful metric to be the non-consecutive and consecutive subsequence results

(e.g., long-term or multiyear patterns). The explicit way that CoCo breaks down

each unique sequence was also helpful in quantifying the variety of player’s career

trajectories. Though variety is expected across all players, one key insight was that
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pitchers had more unique patterns than batters, possibly due to a higher potential

for injuries.

6.13 8 Incomplete Case Studies

include figure/list again here?

There were eight other groups that expressed interest in using CoCo for analy-

sis and received a demo of CoCo. Five in the healthcare domain, two in business, and

one in transportation. However, these were not completed for a variety of reasons

(Table 6.2c):

• Data quality deemed unsatisfactory - In three cases, the data required too

much cleaning to continue with the case study. In the transportation case

study, there were hundreds of event categories because they had been typed

by operators instead of selected among a list of possible event names (e.g.,

they included the names of individuals being contacted instead of the job

title). After the categories had been aggregated, the analyst realized that

the procedure and timing of the recording of events events was different for

different agencies so no valid comparisons could be made. The analyst effort

was then redirected to attempting to change the way data is recorded.

• No suitable comparison - Three case studies were not completed because

though data existed and was cleaned for event sequence analysis, there was

no suitable comparison. In all three cases, the analysts had used EventFlow

or CoCo for a previous trial and were successful in finding results, and were
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invited to try CoCo. However, we found that although cohort comparison

seemed like the next logical step, there was no driving hypothesis which sup-

ported pre-defined subpopulations in the dataset to be compared. For ex-

ample, in the case of the head trauma dataset, analysts were interested in

understanding if there was a pattern that emerges consistently when treating

head trauma patients and thus wanted to compare “similarly treated” pa-

tients versus “deviations.” However, a central issue was that defining these

subpopulations was part of the task and CoCo is not suited for clustering

tasks. Although cohort comparison is relate to clustering and classification

problems, CoCo is designed for exploratory analysis and open-ended ques-

tions, and there still must be a driving hypothesis that allows analysts to split

the dataset into groups. Thus, CoCo is best suited for retrospective cohort

analysis where the splitting method involves comparing outcomes, treatments

(existence of an event), or record attributes.

• Aborted - In the remaining three cases, the case study partners became busy

or unavailable after expressing interest and receiving a demo.

6.14 Summary

This chapter covers Contribution 4: Evaluations to demonstrate the utility

and impact of these methods. Through a user study and a series of five long-term

and five short-term case studies. The early, preliminary user study refined CoCo’s

design and allowed me to observe anaylysts’ actual practice of analyzing real-world
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dataset using a combined CoCo and EventFlow tool. Following the procedure of a

Multi-Dimensional, Long-term In-depth Case Study (MILCS) [71]. All case studies

with CoCo illustrated the strengths of the system and highlighted limitations, which

allowed me to iterate on its design. Though at each step, many improvements were

necessary, each case study partner was able to understand their data and answer

questions about cohort comparison better using CoCo than they had previously

been able to.
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Chapter 7: Discussion and Future Work

Event sequence data is being collected more and more, in a wide range of

domains. With this increased volume of data, developing new, efficient methods

for analyzing it is paramount. Despite the commonality of the data type, existing

analysis tools for cohort comparison fail to address the unique challenges that come

with comparing event sequences. My work aims to bridge this gap by providing

an understanding of the complex task of event sequence comparison and provides

a visual analytics tool that combines statistics with an interactive visualization to

enable more rapid data exploration, hypothesis generation, and insight discovery.

The direct contributions of this dissertation are:

A taxonomy of metrics for comparing cohorts of temporal event se-

quences. Through a systematic literature review of EventFlow and other case

studies, I identified common questions that users ask when comparing two or more

groups of event sequences and organized these questions in a taxonomy of metrics.

A statistical framework for exploratory data analysis. I implemented a

subset of the metrics introduced in the taxonomy and identify and solve the major

practical challenges of applying thousands of statistical tests, a method I refer to as
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high-volume hypothesis testing (HVHT),

A family of visualizations and guidelines for interaction techniques. Through

an iterative design process with case study partners, I develop and implement visu-

alizations and interaction techniques that are useful for understanding and parsing

large sets of hypothesis results.

Evaluations to demonstrate the utility and impact of these methods. I

preform three types of evaluation through the development of CoCo:

• a preliminary user study comparing CoCo to EventFlow for the task of cohort

comparison,

• six long-term case studies with case study partners: three in the medical

domain, two in education, and one in web log analysis, and

• five short-term case studies: two in the medical domain and one each in sports

analytics, social networks, and security.

7.1 Limitations

Though CoCo has shown to be a powerful analysis tool for analysts in a wide

array of domains, there are some limitations to its application. Section 7.2 discusses

avenues for future research,
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7.1.1 Difference Metrics

CoCo focuses on differences between the cohorts, but metrics to show similarity

between cohorts can also be useful. Additionally, CoCo focuses exclusively on events

and sequences which do occur in a dataset.

7.1.2 Statistical False Positives

When running thousands of statistical tests on a single dataset, the chance of

false positives and erroneous correlations increases. We attempt to mitigate these

risks by providing options for statistical corrections, making the distribution of p-

values more transparent, and allowing users to see hypothesis results in the context

of other related sequences. Despite these considerations, however, advanced domain

expertise of statistics is required to truly appreciate the associated pitfalls of this

type of analysis. It is important to note that CoCo is intended for exploratory data

analysis and that any significant results should be followed with a formal, controlled

study to confirm or deny any hypotheses.

7.2 Future Work

7.2.1 Supporting Comparison of Three or More Groups

Extending CoCo to support comparison of three of more groups would require

changes to the statistical methods and to its visualizations. On the statistics side,

using a method such as one-way Analysis of Variance (ANOVA) [85] or linear re-

127



gression would allow comparing three or more groups. Currently CoCo uses t-tests,

which are adequate for but limited to comparing only two groups.

Extending CoCo to three or more groups would also require changes to its

display. The current method of using left versus right columns for each of the

cohorts works well for two groups, because each hypothesis result can be ranked

and listed. However, extending to three or more groups would require losing the

ability to rank and list the results, or require new displays entirely. One option

for the display would be to use a lower triangle matrix to show multiple pairwise

comparisons for each group pair, similar to the Simplified Overviews method [86].

7.2.2 Integrated Cohort Selection

The first step in every case study partner’s analysis was to determine the two

cohorts that were being compared. Providing methods for cohort selection inte-

grated directly into CoCo would not only be more convenient, but would allow for

more complex analysis. Allowing users to switch between split features will also en-

able them to determine causal relationships. For example, in the Children’s Hospital

case study, the analysts first looked at patients who were treated correctly versus

those who were not. They found that the “now” attribute was a discriminative fea-

ture. To confirm this difference, they then split by “now” versus “not now” patients,

and found that there was indeed a significant difference in protocol adherence.

Analysis can be further aided by integrating tools for cohort selection within

CoCo by provided simple interaction techniques to select the split feature. This

128



problem is interesting in the number of ways a cohort can be selected depending on

the analysis to be performed:

• Record attribute

– Binary values - each value corresponds directly to a cohort

– Categorical values - the user must select which values go into which cohort

(e.g., if attribute is what browser a user was using, we can divide into

mobile vs. desktop)

– Continuous values - choosing binary ranges or ranges that may not be

contiguous (e.g., normal blood sugar level between 70 and 99, abnormal

otherwise)

• Absolute date (e.g., this year vs last year, beginning by..., ending by..., occur-

ring during...)

• Relative time (e.g., lasting longer or shorter than...)

• Outcome

• Event/sequence (“contains”)

Further, by integrating the split type into the tool itself, the algorithm can

make use of this information for optimizing and reducing the subspace for metrics

to calculate, explained more in the Section 7.2.3.

Record Attribute Visualization. The next step, after choosing cohorts, is to

visualize the record attributes. There are two primary use cases for how cohort
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visualizing cohort attributes might be useful: (1) In the case of where cohorts are

already selected (for example, in A/B testing of web sites, where the user is placed in

a group at random or not based on any user-attributes), we might use a visualization

to easily determine whether the groups are balanced in all possible attributes. The

interest in this is not necessarily for any actionable outcome, just to be aware of any

biases or imbalances between the cohorts. (2) In the case of a retrospective study

where cohorts must carefully be chosen for analysis, the visualization can help a user

select the patients for each cohort by providing a real-time, responsive visualization

that shows the attribute balances as the user moves records between the two groups.

Visualizing these attributes is becomes more complex when we take the combination

of attributes.

Secondly, the same problem of visualization the different types of values an

attribute can have occurs. For example, a simple pie chart might be sufficient for

binary values, whereas continuous or categorical values might require some sense of

the minimum, maximum, and average values, as well as an overall distribution.

Automatically Generating Balanced Cohorts Based on Record Attributes.

A natural extension might be automatically suggesting which records to move in or-

der to balance the cohorts best (best could mean fewest number of moves, most

balanced number of total records, etc).
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7.2.3 Optimization

Currently, CoCo will run a metric on the datasets when the user selects the

metric. Because the set of metrics is bounded, users can benefit from automated

computation of every metric in advance. Automatic computation will provide users

guidance in exploring the problem-space and save time during exploratory data

analysis.

When comparing patterns across two or more cohorts, statistical tests are

important for comparing means and proportions. However, calculating the sig-

nificance (e.g., p-value) for a statistical test is a computationally time consuming

approximation problem. Because the number of unique subsequences in a cohort

grows exponentially with the number of event types and records, even small datasets

with 250 records, 10 event types, and under 5,000 unique subsequences can result

in significant wait times for the user. Preliminary timing tests using CoCo indicate

such a dataset would take as long as 1.5 seconds to calculate the significance tests

for prevalence of all 5,000 subsequences in both cohorts.

One visual analytics approach to reducing wait times between user operations

is given in Progressive Visual Analytics. Stolper et al. [7] give design guidelines

which include allowing the user to direct the algorithm via prioritizing subspaces

and designing an algorithm to give meaningful, partial feedback. However, with

statistical data, there are unique methods for the algorithm to prioritize subspaces

automatically. I propose that progressive visual analytics can be improved by self-

directed algorithms.
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Implementing the design guidelines of Stolper et al. provides users feedback

during the computation process and allows them prioritize or ignore subspaces of

interest. Besides user-directed methods, progressive analytics algorithms can “self-

direct” in order to maximize efficiency in computing many metrics.

Prioritizing by P-Value Estimation. Because calculating the exact p-value

is time consuming, we can significantly reduce calculation time by prioritizing se-

quences that are likely to be significant. For example, the χ2 statistic can be calcu-

lated in constant time and from this, we can determine the range that the p-value

will be in using a look-up table of pre-computed values. If the p-value is above 0.1,

it is likely that the user will not care about the exact p-value, and we can skip this

subspace. Similarly, for p-values in the range below 0.1, the algorithm should prior-

itize these results and determine the exact p-value before moving on to potentially

less significant results.

Ignoring Subspaces by Split Feature. All metrics may not be applicable on all

datasets or sequences. For example, the factor on which the cohorts are formed may

call for different types of questions to be asked about the data. Consider a set of

medical patient records split by date (e.g., last month’s trials versus this month’s).

A researcher might see how outcomes for the patients differ between the cohorts,

whereas in a dataset split by the outcome of the record (e.g., patients who die versus

those who live) would ignore such a metric.

CoCo enables users to split cohorts by factors such as:
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• time (patients this month versus last month)

• outcome

• patient attribute (age, gender, location, team, position)

• event occurrence (treatment a versus treatment b)

If the algorithm knows what the cohorts are split by, we can eliminate some

metrics completely. Users can specify the split factor or the algorithm can auto-

matically detect the split factor. For example, if the cohorts are split by a binary

patient attribute, we can expect to see 100% of patients on cohort α to have one

value, and 100% of β to have the other.

7.2.4 Database Backend

CoCo currently, stores all data in memory. As a result, the size of datasets

and results is limited by the size of the user’s machine memory and by browser data

transfer limits. Using a database would allow for more scalable data storage and

more seamless integration with users’ existing tools and databases.

Tables. Such a dataset would require tables in three major areas: (1) raw data

storage for each cohort, (2) intermediary sequence counts and information, and (3)

hypothesis results table.

Cohort Data. The current file input format lends itself nicely to a relational

database. The raw cohort data can be stored in a single Events table, with headings
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that match the current input file schema:

Event ID Cohort Record ID Event Time

The Event ID would be the key that is automatically assigned. If interval

events were introduced, a fourth column could be added for “end time” with an

imposed constraint that it must occur after the “start time.”

Event attributes could be stored in a third table with information of the Event

ID (corresponding to an entry in the Events table), in another three column table:

Event ID Attribute Value

A Record Attributes table would similarly include a Record ID, Attribute, and

Value:

Record ID Attribute Value

Intermediate Sequence Value Tables. In calculating the metrics for the event

sequences in CoCo, the intermediate results should be stored in tables because they

are accessed by many parts of the system. First, a Sequence table should store all

the sequences found in the dataset and the number of times it occurs in each cohort.

Sequence ID Sequence Consecutive Occurrences in A Occurrences in B

The Sequence ID would be automatically assigned by the database. Sequence

would be the sequence of events and consecutive would be a True or False boolean

value. Tables for other metrics would include number of records containing a se-

quence and duration of sequence (from first to last event).
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Results. Hypothesis results would be stored in a table as they are calculated,

based on the count in the intermediary tables.

Sequence ID Metric Value A Value B P-Value

Queries. Queries could then be made from the interface based on users’ selected

sorting and filtering mechanisms. Most importantly, results should be filterable by

p-value, sample size, and values. Sequences should be selectable by sequence length.

7.2.5 Interval Events

Extending to interval data requires considerations on both the backend and the

frontend. Monroe [63] covers these challenges in great detail, from input processing

to data structures and storage to display methods, and many of these issues and

their solutions can be applied to CoCo. For example, the inclusion of interval

events would require additional information about the granularity of timestamps

and consistency checks during the file processing.

Regarding visualizing hypotheses and sequences, adaptations would need to

be made to account for the 13 temporal relationships between two intervals and

5 relationships between intervals and points [63]. A method similar to EventFlow

could be employed, where the start and end events are represented as points and

the interval between the events are shown as a shaded region.

Aside from practical issues for storing and representing intervals, the task of

cohort comparison specifically would require the addition of new metrics. While

point events have the notion of “before” and “after,” interval events introduce the
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concept of “during.” More work would need to be done extend the taxonomy of

metrics for new hypotheses involving intervals, but potential metrics could include:

• Duration of an interval events. Does one interval tend to last longer in one

cohort than the other?

• Duration of interval events. Aside from how often certain intervals overlap,

how long do they overlap for?

• Prevalence of events and sequences that occur during an interval.

7.2.6 Extending to Other Data Types

Though my dissertation focuses on comparing cohorts of event sequences, this

work can be extended to use with other data types, such as network graphs, time se-

ries, or multivariate data. In each case, the metrics, visualizations, and interactions

would have to be adjusted for the appropriate data type.

Take for example extending to network graph data. Metrics can be similarly

divided into “summary metrics” which summarize the networks as a whole (e.g.,

node and edge counts, degree of connectedness, and reciprocity). Additionally,

there are metrics dealing with the node-level, such as degree (including in- and out-

degrees for directed networks), node centrality, and node closeness. The metrics

could also include metrics about specific subgraphs within the graph – for example,

the distance between pairs of nodes, the number of unique paths between the nodes,

and nodes that are on the path between two other nodes.

Metrics would be applied similarly, by mining for all nodes and subgraphs and
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applying the metrics to each in order to find significant difference in the structure

and values of the metrics, and the results could be distilled similarly into two values

(one for each cohort) and a p-value.

Regarding visualization, the same guidelines would stand: it would be nec-

essary to have an overview of both cohorts and a dedicated results view to review

statistical test results in detail, which could remain very similar to the existing work.

However, new representations for displaying the networks and hypotheses would be

necessary. For example, because each node is unique, it would not be possible to

encode the nodes with color. Color could potentially be used to represent node

attributes or additional metric values.

7.2.7 Journaling

Some users expressed needing a method to keep track of progress so far when

exploring a result set. For example, it is important to be able to mark certain

results as “reviewed” versus not and to mark whether reviewed results should be

kept. Users also requested a way to annotate results that they found interesting,

to indicate possible factors for the result. Lastly, users requested a way to export

annotated and results marked as important.

7.3 Conclusion

This dissertation aims to bridge the gap between the unique needs of event

sequence cohort comparison and the limitations of existing tools by providing an
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understanding of the complex task of event sequence comparison and providing a

visual analytics tool that combines statistics with an interactive visualization to

enable more rapid data exploration, hypothesis generation, and insight discovery.

Through implementation of the scalability, design, and interaction principles into

a visual analytics tool, CoCo, I present a ready-to-use tool to support this type of

comparison. Work with real-world analysts using CoCo shows the utility of this tool.

This chapter summarizes the work of my dissertation and discusses the opportunities

for future work that my dissertation opens.
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Appendix 8: Evolution of CoCo

This appendix includes detailed descriptions of the previous versions of CoCo

and highlights the changes made during its evolution.

8.1 Version 1

Figure 8.1: The first version of CoCo was largely textual, with results grouped by

metric type. Analysis could select the results they wished to view using the metric

list in the middle panel.
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The initial version of CoCo (Figure 8.1) focused on how to implement statistics

and organize and display the result set. The initial version was largely textural, with

five panels. Summary statistics were shown on their own, with side-by-side values

for each cohort α and β. The event legend displayed counts for each event and

allowed used to filter by a checkbox.

The middle panel was the main form of navigation for results: a four-tiered

list displayed all possible metrics and the number of hypotheses. The list was static

and included all metrics, even if they were not implemented yet. Users were able to

click on a metric in a list, to view the corresponding results.

There were no methods of filtering, though results that were subsets of another

were grouped together and expanded if a user clicked it. These aggregated results

were denoted by a shaded bar to the left of the sequence.

The result display was based on the type of metric and the axes changed

depending on which metric was selected. For prevalence metric, the axes were

scaled to the largest percentage and grey bars grew from the middle to either side

to indicate the value in each cohort. A circle was placed to indicate the difference

in value for each cohort, placed on the side where the value was greater.

8.2 Version 2

The changes in the second version of CoCo were primarily usability based:

Organized metric list to suggest anaysis order. The metrics list was re-

organized based on our observations in the Children’s ATLS case study (Section 8).
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Figure 8.2: CoCo version two brought a variety of usability fixes.

Within each category, analysts needed to first look at prevalence of single events,

whole sequences, then subsequences.

Custom cohort names. Analysts are able to rename the cohorts.

Hover tooltips for contextual information. It was noted that it was hard to

remember which colors corresponded to which events, so hover tooltip information

was introduced to ease this. Exact values for the hypothesis result are also shown.

Additional display options allowed all tooltips to be shown or hidden (regardless of

hovering).

Filtering by p-value. Filtering by p-value was introduced.

8.3 Version 3

Version 3 added more utility to parsing the result set.
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Figure 8.3: Version 3 added more utility to parsing the result set through methods

for filtering and sorting, layout changes, and explicit difference encodings.

Methods for filtering and sorting. Users were able to sort by sequence length,

in addition to p-value. Methods for sorting the result display were introduced.

Previous versions defaulted to a method based on p-value and difference size, which

remained the default sorting method. However, more controls were provided so

users could sort by p-value only, difference size only, or the raw value of the result

of either cohort A or B.

Usability changes to layout. The layout was rearranged and lightened, to allow

provide more detail to the result view.

Explicit differences in overview statistics. A third column was added to the

summary statistics and event legend to show the percent difference between the two
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cohorts, colored by which cohort was bigger (green = Cohort A, red = Cohort B).

8.4 Version 4

Figure 8.4: CoCo v4 introduced important changes in the way sequences and hy-

pothesis results were displayed.

In previous versions of CoCo, analysts comments on the similarity of CoCo’s

result display to statistical error visualizations. Because of the case study part-

ners’ familiarity with statistical error bars, I explored alternatives for displaying

hypothesis results.

The fourth version of CoCo displayed the common percentage along the middle

of the result row. Then, a bar (colored by p-value group) grew to the left or right

to indicate the size and significance of the difference. In this version, analysts are

more clearly able to see where the major differences in their datasets are.
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This version also introduced iconography for differentiating the different types

of sequences because users expressed wanting to see all results of a metric, regardless

of sequence type. Thus, icons were developed to indicate which sequences were

consecutive versus non-consecutive and whole records versus partial.

8.5 Version 5

Figure 8.5: The fifth version of Coco introduced the most major changes: removing

the metrics list, redesigning hypothesis results, sequence scatterplot, and details on

demand.

The fifth version of Coco introduced the most major changes.

Removal of metrics list. Through case studies with analysts, it became clear

that analysts did not necessarily care which metrics a result was from. That is,

instead of checking each metric result group individually, they wished to answer the
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question ”what are the top 10 differences,” regardless of metric type. In lieu of the

metrics list, filters were added so users could still filter by metric or sequence type.

Redesign of result hypothesis visualization. The most major change as a

result of listing all hypothesis results was the challenge of displaying results that

require different units (percents versus frequency versus elapsed times). As a result,

the axes were changed to ratios and the absolute values of the results were removed

from the visual encoding. The center (where the absolute values were displayed)

were replaced with a visual representation of the hypothesis.

Sequence scatterplot was added. A sequence scatterplot was added to provide

an overview of how individual sequences occur throughout the dataset.

Details on demand. Clicking a result provided details on demand, which include

a histogram for results with a distribution of values and statistics about sample size,

minimum, maximum, and standard deviation.

Event icons converted to rectangles. The event icons were converted to rect-

angles in order to save space.

8.6 Version 6

The final version of CoCo streamlined the process model observed through

the case studies – the layout was rearranged to provide an overview first and details

about specific results last. A stacked EventFlow chart was added to provide high-
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Figure 8.6: The final version of CoCo (v6) streamlined the process model observed

through the case studies.

level overviews of each dataset. Summary and event statistics were removed to focus

the analysis on event metric results, since those statistics were only looked at once

at the beginning of the analysis and could easily be duplicated by other tools.
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Appendix 9: Case Study Questionnaires
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Figure 9.1: Entry questionnaire, page 1.
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Figure 9.2: Entry questionnaire, page 2.
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Figure 9.3: Exit questionnaire, page 1.
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Figure 9.4: Exit questionnaire, page 2.
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Figure 9.5: Exit questionnaire, page 3.
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