
ABSTRACT

Title of dissertation: THERMAL TRACKING AND ESTIMATION
FOR MICROPROCESSORS

Yufu Zhang, Doctor of Philosophy, 2016

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and Computer Engineering

Due to increasing integration density and operating frequency of today’s high

performance processors, the temperature of a typical chip can easily exceed 100

degrees Celsius. However, the runtime thermal state of a chip is very hard to

predict and manage due to the random nature in computing workloads, as well

as the process, voltage and ambient temperature variability (together called PVT

variability). The uneven nature (both in time and space) of the heat dissipation

of the chip could lead to severe reliability issues and error-prone chip behavior

(e.g. timing errors). Many dynamic power/thermal management techniques have

been proposed to address this issue such as dynamic voltage and frequency scaling

(DVFS), clock gating and etc. However, most of such techniques require accurate

knowledge of the runtime thermal state of the chip to make efficient and effective

control decisions. In this work we address the problem of tracking and managing

the temperature of microprocessors which include the following sub-problems: (1)

how to design an efficient sensor-based thermal tracking system on a given design

that could provide accurate real-time temperature feedback; (2) what statistical

techniques could be used to estimate the full-chip thermal profile based on very

limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to

changes in the underlying system’s behavior, since such changes could impact the

accuracy of our thermal estimation.

The thermal tracking methodology proposed in this work is enabled by on-chip

sensors which are already implemented in many modern processors. We first inves-

tigate the underlying relationship between heat distribution and power consump-

tion, then we introduce an accurate thermal model for the chip system. Based on

this model, we characterize the temperature correlation that exists among different

chip modules and explore statistical approaches (such as those based on Kalman

filter) that could utilize such correlation to estimate the accurate chip-level ther-

mal profiles in real time. Such estimation is performed based on limited sensor

information because sensors are usually resource constrained and noise-corrupted.

We also took a further step to extend the standard Kalman filter approach to ac-

count for (1) nonlinear effects such as leakage-temperature interdependency and (2)

varying statistical characteristics in the underlying system model. The proposed

thermal tracking infrastructure and estimation algorithms could consistently gener-

ate accurate thermal estimates even when the system is switching among workloads

that have very distinct characteristics. Through experiments, our approaches have

demonstrated promising results with much higher accuracy compared to existing

approaches. Such results can be used to ensure thermal reliability and improve the

effectiveness of dynamic thermal management techniques.

THERMAL TRACKING AND ESTIMATION FOR
MICROPROCESSORS

by

Yufu Zhang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Joseph JaJa
Professor Donald Yeung
Professor Charles Silio
Professor Jiuzhou Song

Acknowledgments

I owe my gratitude to all the people who have guided me and supported me

unconditionally. Without them this thesis will not be possible.

First and foremost I’d like to thank my advisor, Professor Ankur Srivastava,

who has given me invaluable opportunity to work on challenging and extremely

interesting projects. He has always made himself available when I needed guidance. I

could never forget numerous days and nights spent together in the lab brainstorming

ideas, discussing solutions and evaluating results. He has been a tremendous mentor.

I still remember when he corrected me in an email saying that I do not work ”under”

him, I work together ”with” him. He has also been very patient and understanding

when I was going through a tough period of life and kept trusting me and encouraging

me. I am very lucky to be able to work with such an extraordinary individual and

I cherish this experience forever.

I would also like to thank my dissertation defense committee members, es-

pecially Professor Joseph JaJa and Professor Donald Yeung. Professor JaJa has

personally taught me several courses which proved to be extremely useful in my

research and also later in my career. Professor Yeung has given me valuable advice

during my proposal stage, which has been very helpful for my research. To them I

own deep gratitude.

I want to thank many other professors in our department or university who

have taught me graduate level courses and/or given me valuable advices. I own

my gratitude to Professor Gang Qu, Bruce Jacob, Rajeev Barua, Kazuo Nakajima,

ii

Jiuzhou Song, and etc.

I would like to thank my colleagues and classmates, especially Bing Shi and

Dominic Forte who are very good friends of mine. We spent a few most active years

of our lives together pursuing similar academic goals. We constantly exchanged

ideas. We helped each other evaluating experimental results, and we encouraged

each other a lot in general. We had so many discussions on many shared topics of

interest, both in research and courses. Those discussions have helped me greatly.

I would like to express my gratitude to some of the staff members in our depart-

ment. Especially Melanie Prange, Tracy Chung, Vivian Lu and etc. Throughout

the years, they have never hesitated to provide generous help whenever I seek it

from them. They have made my study and research experience in a foreign country

so much easier.

I own my deepest thanks to my wife, my parents, and my children. When

I was lost they are the beacon so I know where to find home. They have made

tremendous sacrifice to support me. To them I am forever grateful.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out. I appreciate the help that anyone provided me the past a few years. Thank

you all!

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Thermal Challenges 1
1.1 Historical Trends . 1
1.2 Impact of High Temperature . 3

1.2.1 Thermal Hot Spots . 3
1.2.2 Impact on Circuit Timing and Accuracy 5
1.2.3 Impact on Reliability . 7
1.2.4 Impact on Power and Energy 10
1.2.5 Impact on 3D Chip Technology 13

1.3 Runtime Thermal Tracking and Management 13
1.4 Organization of the Thesis . 15

2 Chip Level Thermal Profile Estimation 17
2.1 Motivation . 17
2.2 Preliminary - Modeling Thermal Profile of a Chip System 19
2.3 Problem Description . 22
2.4 Modeling Randomness in Power Density 24
2.5 Estimation Methodology . 27

2.5.1 Formal Problem Statement . 27
2.5.2 Optimal Solution for Jointly Gaussian Distribution 27
2.5.3 Heuristic Solution for Non-Gaussian Distribution 31

2.6 Experimental results . 32
2.6.1 Summary . 35

3 Designing a Sensor-based Thermal Tracking Infrastructure 37
3.1 Motivation . 37
3.2 Sensor & Fusion Center Co-design . 41

3.2.1 Fusion Center . 41
3.2.2 Noisy Thermal Sensor . 45
3.2.3 Fusion Center & Sensor Co-Design 49

3.2.3.1 Problem Formulation 49
3.2.3.2 Co-Design Algorithm 55
3.2.3.3 Noisy Case . 56

3.3 Sensor Placement . 56
3.3.1 Problem Formulation . 57
3.3.2 Sensor Placement Algorithms 58
3.3.3 Incorporating Fusion Center and Sensor Design Considerations 60

3.4 The Complete Design Flow . 62
3.5 Implementation Overhead . 63
3.6 Experimental Results . 64

iv

4 Adaptive and Autonomous Thermal Tracking 73
4.1 Motivation . 73
4.2 Preliminary . 75

4.2.1 Thermal RC Model . 75
4.2.2 Kalman Filter Based Thermal Tracking 77

4.3 Adaptive Tracking Based on Residual Whitening 79
4.3.1 Autonomous Detection . 79
4.3.2 Adaptive Tracking Algorithms 81

4.4 Adaptive Tracking Based on Hypothesis Testing 82
4.5 Qualitative Comparison . 86
4.6 Leakage-aware Kalman Filter . 87

4.6.1 Problem Description . 87
4.6.2 Extended Kalman Filter . 88

4.7 Experimental Results . 92
4.7.1 Autonomous and Adaptive Kalman Filter 92
4.7.2 Leakage-aware Adaptive Kalman Filter 97

5 Statistical Characterization of Chip Power Behavior 101
5.1 Motivation . 101
5.2 Problem Definition and Challenges 102

5.2.1 Joint Temperature/Power Estimation 102
5.2.2 Modeling the Random Power Behavior 103
5.2.3 Problem Formulation . 104

5.3 Power Characterization . 107
5.3.1 Single BGD Characterization 108
5.3.2 Multiple BGDs Characterization 109
5.3.3 Overall Framework and Computational Complexity 111

5.4 Experimental Results . 112

6 Conclusion 115

Bibliography 116

v

List of Tables

2.1 Statistical power density characteristics of different chip modules . . . 25

3.1 RMS error and runtime for different experimental settings 67
3.2 RMS error and runtime comparison for different chip granularities

(“Placement 1” algorithm, 5 sensors, M=16, noisy sensor) 68

4.1 Average RMS error for standard Kalman filter and adaptive filters . . 97
4.2 Average RMS error comparison for different combinations of filters

(HT: hypothesis testing; RW: residual whitening) 100

5.1 Estimation error (unit: W) of our methods for various benchmarks. . 112
5.2 Comparison between the actual µP and the estimated µP (unit W)

for the APSI benchmark. 112

vi

List of Figures

1.1 Moore’s Law for integrated circuit - Intel [1]. 2
1.2 Trend of power consumption - ITRS [2]. 2
1.3 On-die hot spots for a typical microprocessor. 4
1.4 On-die power and temperature variation of a typical processor. 5
1.5 Thermal variation of the ALU unit of a typical processor running

different applications . 6
1.6 The structure on the left is a simple current mirror. The structure

on the right is a cascode current mirror. 6
1.7 Spatial temperature variation causes clock skew. 8
1.8 Illustration of electromigration effect. 9
1.9 Locations where voids and hillocks are normally formed due to elec-

tromigration. 9
1.10 Three major leakage current components. 12
1.11 As we move into the era of 3D integration, the thermal design issue

will become more challenging. 14

2.1 Silicon chip and the associated heat sink. 19
2.2 Source plane and field plane of a silicon chip. 21
2.3 Power density distribution for instruction window module. 25
2.4 Estimation flow. 30
2.5 Real thermal profile . 34
2.6 Estimated thermal profile . 34
2.7 2 dimensional polynomial fit . 34
2.8 RMS error decreases as number of sensor increases 35
2.9 RMS error comparison for different benchmarks 35

3.1 Thermal Sensing Infrastructure . 38
3.2 A simplified chip from a thermal perspective 42
3.3 Ring oscillator as a thermal sensor 45
3.4 Simulated RO frequency distributions for different underlying tem-

peratures ranging from 20 ◦C to 100 ◦C with 20 ◦C increments (105

samples for each curve). 46
3.5 The complete design flow (CR: central register) 63
3.6 A simplified floorplan used in our experiments 65
3.7 Accuracy improvements by refining sensor placement 68
3.8 Error comparison for different central register size (M)) 69
3.9 Error comparison for different settings 70
3.10 Error comparison for noiseless and noisy cases (varying M constraints) 70
3.11 Dynamic temperature tracking: actual vs estimated 72

4.1 Equivalent thermal-RC model of the chip with on-chip thermal sensors 75
4.2 A simplified floorplan used in our experiments 93
4.3 Actual vs estimated temperature using standard Kalman filter 95

vii

4.4 Actual vs estimated temperature using hypothesis testing (multi-sample) . 95
4.5 Actual vs estimated temperature using hypothesis testing (single sample) . 96
4.6 Actual vs estimated temperature using residual whitening 96
4.7 Actual vs estimated temperature using standard Kalman filter (ignoring

leakage) . 98
4.8 Actual vs estimated temperature using adaptive Kalman filter (hypothesis

test with multi-sample) but ignoring leakage 98
4.9 Actual vs estimated temperature using leakage-aware nonadaptive Kalman

filter . 99
4.10 Actual vs estimated temperature using leakage-aware adaptive Kalman

filter (hypothesis test with multi-sample) 99
4.11 Actual vs estimated temperature using leakage-aware adaptive Kalman

filter (residual whitening) . 100

5.1 Temperature tracking results using our dynamically learned model . . 114

viii

Chapter 1

Thermal Challenges

1.1 Historical Trends

The evolution of Very Large Scale Integrated Circuit (VLSI) is one of the most

important technology developments of our times. It has far-reaching influence and

has enabled many advancements in consumer electronics, such as high performance

desktop computers, laptops, tablets, smart phones, music players, game consoles,

and etc. As predicted by Moore’s Law [34], the number of transistors integrated

on a single silicon chip roughly doubles every two years (see figure 1.1, data from

Intel Corp. [1]). This has enabled the performance of integrated circuits and their

form factors to improve dramatically. The computing speed that we used to be

able to achieve with room-sized machines can now be easily achieved by laptops

or even smart phones. This dramatic improvement in computing power is usually

attributed to technology scaling (the shrinking size of device dimensions printed on

silicon). On one hand we can integrate more and more devices onto a single chip to

improve its functionality and capability. On the other hand, the smaller devices can

switch faster and the signal path becomes shorter, thus achieving ever higher clock

frequency (the speed at which the circuit operates). These factors all contributed

to the dramatically improved performance of silicon chips.

While we enjoy the improvements in VLSI technology, we are also facing new

challenges. The traditional way of improving microprocessor performance by simply

scaling down device dimension and increasing the operating frequency does not work

that well any more. Modern processors have now reached a hard ceiling in terms

of power and operating temperature due to the dramatic increase in circuit speed,

integration density and leakage power. The power consumption of a typical modern

microprocessor can easily reach as high as 150W [2] (see figure 1.2), which is now

1

10,000,000

100,000,000

1,000,000,000

10,000,000,000
Moore's Law

1,000

10,000

100,000

1,000,000

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1.1: Moore’s Law for integrated circuit - Intel [1].

approaching the limit of traditional air cooling systems. If the heat removal speed of

a cooling system is outpaced by the heat generation rate of the underlying silicon,

heat will accumulate within the chip package and cause the temperature of the

system to rise quickly. This can lead to many undesirable effects related to the

performance, reliability, and life span of a microprocessor. It is reported that about

50% of circuit failures are caused by overheating [40]. Thermal design is thus a

critical problem that has to be taken into account from the very beginning of the

design process [54].

200

250

300

350
Power (W)

0

50

100

150

2008 2010 2012 2014 2016 2018 2020 2022

Figure 1.2: Trend of power consumption - ITRS [2].

Motivated by this critical constraint, there is an increasing amount of research

2

effort that focuses on solving thermal design and thermal management problems.

Interestingly, such challenges have been pointed out as early as 1965 in the paper

that first introduced Moore’s Law: “Will it be possible to remove heat generated

by tens of thousands of components in a single silicon chip?” [34]. Even though

this problem has been predicted decades ago, it is not until recently that thermal

constraint becomes a real obstacle. As we enter the nanometer era, the continuous

improvement of the processor performance is now fundamentally limited by whether

the cooling system’s heat-removing capability can catch up with the heat generation

rate of the processor. Although some more aggressive cooling schemes such as liquid

cooling or solid-state refrigeration systems are being investigated, the cost, volume

and implementation complexity of such schemes are major factors that hinder their

adoption. Thus, the current challenge is to effectively manage the operating tem-

perature of a processor to guarantee its thermal safety within the capability of cost

effective cooling systems. In the next section, we will discuss some of the impacts

that can be caused by elevated temperature.

1.2 Impact of High Temperature

1.2.1 Thermal Hot Spots

Traditionally, Thermal Design Power (TDP) is often used to guide the design

of a system, such as the selection of the cooling solution, the selection of heat sinking

material, and etc. Essentially, TDP indicates the maximum total sustained power

dissipated by a microprocessor [40]. Recently, it is observed that TDP alone is no

longer sufficient for guiding the thermal design of a system because there exists

significant thermal variation across the chip. Such spatial variation can lead to on-

chip hot spots (see figure 1.3) where power densities of 300+W/cm2 are possible [32].

Note that it is usually required that thermal constraints are satisfied everywhere on

the chip to achieve desired thermal safety. In certain cases, even though TDP may

be within the capability of the cooling system, some hot spots may have already

exceeded a certain thermal threshold. In addition, temperature variation across the

3

die can cause problems such as mechanical stress and circuit timing errors. Thus,

TDP as a lump-sum indicator is no longer adequate, new metrics and approaches

which are finer in granularity are needed so that thermal variation across the silicon

can be properly modeled, monitored and managed.

10 20 30 40 50 60

10

20

30

40

50

60 98

99

100

101

102

103

104

Figure 1.3: On-die hot spots for a typical microprocessor.

Temperature variation in space is not the only challenge that designers have to

face. Today’s high performance microprocessors are often general purpose and need

to handle many different types of applications. Each application can be very different

in its utilization of different circuit components. Some may require integer-heavy

operations, others may demand floating-point heavy operations. Thus, the power

and thermal profile of a typical processor can exhibit significant temporal variation

as well. To demonstrate such variation, we simulated a typical processor using

SPEC-2000 benchmarks. The varying power profile directly leads to fast-changing

temperature distribution on the chip (see figure 1.4). Figure 1.5 shows how the

temperature varies for the arithmetic logic unit (ALU) under different workloads.

If many computationally intensive tasks are scheduled densely in time. The peak

temperature of the chip can quickly rise to unsafe levels. This poses an opportunity

as much as a challenge: if we can schedule the computation tasks well, with heavy

workloads divided into smaller pieces that are interleaved with lighter workloads,

then the temperature of such a processor can be significantly lowered [21, 44, 16].

4

0
5

10
15

20

0

10

20
0

0.2

0.4

0.6

0.8

P
ow

er
 (

W
)

10 20 30 40 50 60

10

20

30

40

50

60

(1) Power profile (application A) (B) Thermal profile (application A)

0
5

10
15

20

0

10

20
0

0.2

0.4

0.6

0.8

P
ow

er
 (

W
)

10 20 30 40 50 60

10

20

30

40

50

60

(C) Power profile (application B) (D)Thermal profile (application B)

Figure 1.4: On-die power and temperature variation of a typical processor.

For reasons mentioned above, the spatial and temporal variations in tempera-

ture can lead to hot spots and can severely impact circuit performance. They have

become important design considerations. If left unaddressed, such variations could

cause serious timing, accuracy and reliability issues which we will briefly explain

next.

1.2.2 Impact on Circuit Timing and Accuracy

Elevated temperature and thermal gradient across the die is particularly detri-

mental to the operation of analog circuits. High thermal gradient can cause mis-

matches between signal levels and bias currents, therefore degrading the accuracy

and reducing the noise margin of such circuits. For example, many analog devices

5

200 300 400 500 600 700 800

75

80

85

90

95

100

105

Time (milliseconds)

T
em

pe
ra

tu
re

 (
de

gr
ee

s
C

el
si

us
)

Figure 1.5: Thermal variation of the ALU unit of a typical processor running dif-

ferent applications

employ a constant current biasing substructure which is often implemented using

current mirrors (see figure 1.6). However, such structures rely on the assumption

that the bias current is very close to the designed value. Unfortunately, due to

thermal variations on the chip, there can be significant drifts in the bias current,

therefore impacting the accuracy and performance of such analog circuits.

0Ibias

0Ibias

Figure 1.6: The structure on the left is a simple current mirror. The structure on

the right is a cascode current mirror.

Thermal variation is undesirable for digital circuit as well since the delay of

each logic gate is a strong function of temperature. Higher temperature can lead

to slower device switching speed. In addition, thermal gradient can cause the delay

6

through similar circuit structures to vary significantly from one chip location to

another. This makes the design more prone to timing errors when it is operating

under heavy thermal stress.

To understand how temperature can impact the operation of digital circuit,

let us take a closer look at the timing behavior of a simple inverter. Equation (1.1)

shows the transition time for the inverter output to switch from supply voltage

(VDD) to ground (0) [48]. Here µn is the electron mobility in silicon for NMOS, Cox

is the capacitance per unit gate area, (W/L)n is the width/length ratio for NMOS,

C is the effective load capacitance that the inverter is driving. VDD is the supply

voltage and Vt is the threshold voltage. The expression for transition time from

ground to supply is similar.

tPHL =
2C

µnCox(W/L)n(VDD − Vt)

[
Vt

VDD − Vt
+

1

2
ln

(
3VDD − 4Vt

VDD

)]
(1.1)

In this equation, we note that Vt and µn are both temperature sensitive. Vt

decreases by about 2mV for every 1◦C increase in temperature, while µn decreases

with an increase of temperature in a more complex relationship [48]. Because the

effect of the latter is a more dominant one, the overall effect of a temperature

increase is a decrease in circuit switching speed [48]. To achieve the desired circuit

operating frequency, we must ensure that there is no timing violation across the chip

and across the entire range of potential operating temperature.

Temperature not only impacts the speed of combinational circuit, but also

has a profound effect on sequential circuits such as latches, flip-flops and register

files. Sequential circuits operate in a synchronous fashion under the control of clock

signal. Large thermal variation across the chip can lead to severe clock skews (see

figure 1.7), which means the clock signals can be propagated out-of-sync to different

chip locations, leading to unexpected timing errors and erroneous circuit behaviors.

1.2.3 Impact on Reliability

Higher operating temperature can lead to a greater possibility of reliability

issues of silicon chips. In fact, many electronic circuit failures are directly caused by

7

10 20 30 40 50 60

10

20

30

40

50

60

H-Tree Clock Distribution

Time
Clock Skew

Figure 1.7: Spatial temperature variation causes clock skew.

or related to elevated temperature or high thermal gradient on die [32]. One obvious

consideration is that significant thermal gradient can cause mechanical stress, which

degrades the reliability of the overall chip system. In addition, temperature impacts

reliability through the effects of electromigration (EM), which can cause long-term

wear-out of interconnect metal wires.

EM is the process of current-induced transport of material at the atomic level

(see figure 1.8). When the current in metal wire is high, current conducting electrons

can form electron wind which leads to high collision rate with the constituent atoms

of metal. This effect will lead to a net flux of metal atoms in the direction of electron

flow, creating voids (depletion of material) upstream and hillocks (accumulation of

material) downstream at locations of divergence [32] (see figure 1.9). Electromigra-

tion can cause uneven redistribution of resistance, dielectric cracking and eventually,

a short between adjacent wires (circuit will fail at this point, marking the end of life

for a microprocessor).

8

Direction of electron flow

Atoms of metal
material Direction of

transport due to EM

Figure 1.8: Illustration of electromigration effect.

Figure 1.9: Locations where voids and hillocks are normally formed due to electro-

migration.

Elevated temperature can accelerate the electromigration effects by increasing

the random thermal vibration of metal atoms, making them more prone to displace-

ment once collided with an electron. This effect of temperature on circuit reliability

is often described and measured using the metric - MTTF (mean time to failure).

MTTF due to EM can be calculated using the well-known Black’s equation [4]:

MTTF = AJ−neQ/kT (1.2)

where A is a process and geometry dependent constant, J is the current density,

exponent n is equal to 2 under normal use conditions, Q is the activation energy

for grain-boundary diffusion and is equal to ∼ 0.7eV for Al-Cu, k is Boltzmann’s

constant, and T denotes the metal temperature.

9

1.2.4 Impact on Power and Energy

Power and temperature are two closely and intricately related attributes. High

power dissipation usually leads to high temperature and vice versa. However, this

correlation does not always hold true since their relationship is also affected by

spatial and temporal effects. For example, if a certain chip component exhibits low

power density, its temperature may not necessarily be low if its surrounding area has

high power density. Also, if a certain chip component dissipates a lot of power for

only a brief period of time, it may not become hot immediately since it takes time

for temperature to rise. On the other hand, temperature could also impact power

dissipation through the leakage effect. In the following, we will discuss several

different forms of power dissipation. This could help us build a solid foundation for

understanding the intricate thermal-power interdependency in later sections.

Total power dissipation in a CMOS circuit can be calculated as:

Ptotal = Pdynamic + Pstatic + Pshort (1.3)

In equation (1.3), Pdynamic represents the dynamic power or switching power

that occurs when a logic gate makes a transition. Pstatic is the static power or

leakage power that is caused by static current drawn from power supply when the

circuit is not switching. Such current is mostly due to gate leakage and threshold

leakage, hence the name leakage current. Pshort represents the power dissipated

during a very brief period when a NMOS and a PMOS transistor are potentially

both conducting, creating a direct path between the supply and the ground. Usually,

Ptotal is dominated by Pdynamic and Pstatic which we explain in more detail below.

1. Dynamic Power: Dynamic or switching power usually dominates the total

power consumption during the active state of a circuit. It can be expressed as

follows [40].

Pdynamic =
1

2
αCloadV

2
DDf (1.4)

10

Here α is the expected number of output transitions in one clock cycle, Cload

is the load capacitance (including gate input and interconnect capacitances),

and f is the clock frequency. When a logic gate makes a transition, its load

capacitance is either charged to VDD or discharged to ground. When charging,

half of the energy supplied by VDD is stored in the load capacitance and the

other half is dissipated as heat. When discharging, that other half previously

stored in the capacitance is dissipated as heat, hence the above equation.

Note that when a transistor operates in the active mode, its drain current

ID is roughly proportional to the square of its gate-to-source voltage VGS

(ID ∝ (VGS−Vt)2). Thus if VGS ≈ VDD and if the threshold voltage Vt is small

compared to the supply voltage VDD, the switching current is approximately

proportional to V 2
DD. This fact leads to the observation that the switching

frequency f is roughly proportional to supply voltage if everything else is kept

constant (f ∝ 1
Tp
∝ ID

VDD·Cload
∝ VDD

Cload
, where Tp is the period of switching

activity and is proportional to the time required to charge/discharge the load

capacitance). Thus, we can see from equation (1.4) that Pdynamic has a cubic

dependency on supply voltage VDD, and therefore on frequency f . Tradition-

ally, the performance of a microprocessor can be improved by increasing its

switching frequency. However, if we double the frequency, it could mean that

Pdynamic will increase roughly 8 times. A modern microprocessor is already

dissipating power in the magnitude of hundred watts. It is apparent that we

have hit a power ceiling where we can not afford the cubic increase in power

to achieve further performance gains. Performance, or the speed of a circuit,

is fundamentally limited by how quickly we can remove the heat generated by

it. Designers have therefore switched to the multi-core paradigm in order to

keep improving computational throughput without dramatic increase in power

consumption and operating temperature [52].

2. Static Power: Leakage current is the main reason for static power dissipa-

tion. There are three dominant sources for leakage current (see figure 1.10):

11

(1) reverse-biased junction leakage current (Irev); (2) gate direct tunneling

leakage (Igate); (3) subthreshold leakage (Isub).

P Substrate

Insulator

GateSource Drain

N+ N+

Isub
IrevIgate

Figure 1.10: Three major leakage current components.

There are many different leakage models proposed in recent literature. For

example, in [22], the combined effect of all three leakage currents are approx-

imated using an average current Iavg = Is(T0, V0) · T 2 · eK/T and the total

leakage power can be modeled as follows:

PL = Ngate · VDD · Iavg

= Ngate · VDD · Is(T0, V0) · T 2 · eK/T (1.5)

= L · T 2 · e(K/T) (1.6)

In the above equation, PL represents the total leakage power. Ngate is the total

number of logic gates in a circuit. VDD is the supply voltage. T0 and V0 are

reference temperature and voltage, respectively. Is(T0, V0) is the saturation

current at T0 and V0. L = Ngate · VDD · Is(T0, V0) is a design/technology

dependent constant. K is also a technology-dependent constant for a fixed

supply voltage. As can be seen, the leakage power has a rather complex

relationship with temperature. The overall effect is that the leakage power

increases dramatically with temperature.

Traditionally, leakage power is only a small component in total power con-

sumption and dynamic power is usually the dominant one. However, as the

12

feature size of each technology generation continues to scale down, smaller

devices tend to leak more and therefore the impact of leakage power is becom-

ing more and more significant. It is reported that in 90 nanometer technology

node, 40% or more of total power consumption is due to leakage [32]. This per-

centage is expected to increase even further as chips continue to shrink in size.

Note that as indicated by equation (1.6), higher temperature leads to more

leakage power, and more leakage power will in turn cause higher temperature.

This positive feedback effect can significantly increase the total power con-

sumption of a chip system. In some extreme cases, it may even cause thermal

runaway where such a positive feedback eventually causes the chip system to

fail. Thus, leakage and temperature interdependency poses a serious challenge

for the thermal design and management of a chip system.

1.2.5 Impact on 3D Chip Technology

A recent advancement in VLSI technology is 3D integration. It exploits the

possibility of stacking multiple layers of circuit components along the vertical dimen-

sion to form a denser chip structure (see figure 1.11). This new technology can help

us integrate even more functionality, storage, and etc. into a single chip. However,

the biggest obstacle on the way to 3D integration is the overheating problem. It

can be expected that the power density and operating temperature of such a tightly

integrated system will increase dramatically due to the stacked physical structure

[42]. More heat will be generated in limited space while the area of the cooling

surface stays approximately the same. Innovative thermal management solutions

are thus critical to the adoption and success of this new technology.

1.3 Runtime Thermal Tracking and Management

Due to all the detrimental effects of elevated temperature on a chip system,

many design-time and run-time techniques have been proposed to achieve thermal

safety and maintain a balanced thermal profile in time and space. Thermal-aware

13

Stack of silicon layers
Processor Layer

Memory Layer

Analog Components

RF Circuits

Heat

Heat

Figure 1.11: As we move into the era of 3D integration, the thermal design issue

will become more challenging.

design techniques are special measures that are preventative in nature and should be

taken into consideration when designing a chip. For example, designers can employ

a multi-Vt library so that circuit components with different threshold voltage can be

used on different parts of the circuit. This way leakage power on non-critical paths

can be minimized [58, 19, 61]. Thermal aware floorplanning and placement can be

performed to arrange high power density units and low power density units in a

spatially interleaved fashion to achieve a more balanced thermal profile [42, 23, 38,

47]. Recently, many researchers have investigated possibility of integrating Thermal

Electric Coolers (TEC) into chip design and leverage their heat pumping capability

to reduce chip temperature [12, 66, 55, 60, 59, 28]. In addition to such thermal-aware

design techniques, there are also another set of techniques which are usually applied

at runtime to manage the chip temperature in a reactive fashion. Such techniques

are called dynamic thermal management techniques (DTM) [5, 18, 45, 8, 29, 51]. For

example, dynamic voltage and frequency scaling (DVFS) is a popular technique often

implemented in modern processors. Based on runtime temperature feedback (which

can be sampled by sensors, for example), a central or several distributed control units

will issue commands dynamically to scale down the voltage or frequency (and hence

14

toggle the speed) of those over-heated chip modules, let them cool down, and then

bring them back up to full speed. Clock gating or power gating are also runtime

techniques that are more aggressive in nature. They put the circuit components

which are under thermal emergency into an OFF state to reduce power and bring

down temperature [3, 16]. Runtime thermal management techniques are often very

effective since they act based on the real temperature of the chip at runtime. Such

information would be very hard to predict at design time since it is difficult to

know what kind of workload will be executed and in what sequence. However, as

described above, most DTM techniques make trade-offs between performance and

thermal safety. Thus, it is important that accurate information regarding the true

thermal state of the chip can be obtained so that optimal control decisions can be

made to achieve the best balance between thermal safety and maximum throughput.

1.4 Organization of the Thesis

In this thesis, we focus on several important areas under the general subject

of thermal tracking and estimation. In chapter 2, we propose a chip-level thermal

profile estimation methodology using thermal sensors. This approach is based on

statistical characteristics of the chip power/thermal behavior. It can take advantage

of the correlation that exists among different chip modules and improve the estima-

tion accuracy. It can also overcome the drawbacks of the traditional sensor range

based estimation methods. In chapter 3, we propose a statistical framework for im-

plementing a complete and efficient sensor based thermal tracking system on chip.

We also discuss how to counter sensor noise as well as how to do sensor placement.

In chapter 4, we discuss adaptive approaches that are developed from the theory

of Kalman filter. Such adaptive techniques can autonomously detect any change

in the chip workload characteristics and adjust the filter parameters to adapt to

such changes, therefore providing continuously accurate thermal tracking results.

We will also extend the standard linear Kalman filter formulation to account for

the non-linear leakage-temperature interdependency. In chapter 5, we proposed an

15

methodology for extracting the chip power statistical characteristics automatically.

Finally, in chapter 6 we conclude this thesis.

16

Chapter 2

Chip Level Thermal Profile Estimation

2.1 Motivation

To maximize thermal reliability and avoid detrimental effect of elevated tem-

perature on silicon chips, many thermal management techniques have been proposed.

These techniques are designed to help ensure thermal safety for modern high perfor-

mance processors. The essence of such techniques is to trade off performance for less

power dissipation. For example, the operating frequency and supply voltage could

be scaled down to temporarily reduce power and hence temperature. Components

with low utilization rate can be shutdown periodically. Scheduling algorithms could

also be applied to distribute the workload more evenly in time and among different

CPU cores, thus reducing the peak temperature of the chip [21, 44, 16]. Though

these techniques can be powerful, one fundamental requirement is that they must

know the accurate thermal state of the chip during runtime. If such knowledge is not

available or inaccurate, improper thermal control decisions can be made which could

impact the system performance and reliability in two ways: (1) If the thermal control

decisions are too aggressive, the chip performance could be throttled unnecessarily.

(2) If the thermal control decisions are too conservative, they may not be able to

act in an effective and efficient fashion to quickly resolve a thermal emergency. Due

to above reasons, estimating the accurate thermal state of the chip at runtime has

become a crucial problem which has inspired several new research directions. For

example, several researchers have proposed a simulation based strategy [65, 62, 29]

in which the thermal behavior of the chip is captured using a set of representative

thermal profiles, each of which is simulated based on a typical workload. These

simulated thermal profiles, together with some runtime workload feedback, could

then be used to predict the thermal state of the chip at runtime. These simulation-

17

based methods have several drawbacks: (1) the types of applications and the order

in which they are scheduled to run are highly dynamic for a modern multi-purpose

processor. Different application combinations and sequence of execution could lead

to different thermal profiles which can be difficult to pre-characterize accurately.

(2) Fabrication process and operating environment for a certain chip can introduce

many types of variability such as supply voltage fluctuation, lithography induced

device dimension variations, and etc. Such variability adds another level of uncer-

tainty to the runtime thermal behavior. In order to estimate the thermal state of a

chip accurately at runtime, thermal sensors are placed on chip to provide tempera-

ture sampling at runtime [13, 35, 36, 15, 39, 27, 41, 9]. The readings of these sensors

are good indicators of the real operating temperature and therefore can be send to

a thermal control unit to help it make effective thermal control decisions. However,

such sensor observations are mostly used in a very ad-hoc way [49]. In this chapter

we propose a statistical methodology for recreating the complete chip level thermal

profile based on limited sensor observations.

For any sensor based thermal profile estimation problem, there are several

challenges that need to be addressed: 1) the number of on-chip sensors is limited

due to resource/power considerations; 2) sensor placement is constrained to loca-

tions where there is enough spatial slack (note that it is not practical to put sensors

in pre-designed IP modules); 3) sensors can be noisy due to supply voltage fluctu-

ations, fabrication variability, cross coupling and etc. In this chapter, we focus on

the thermal profile estimation problem where we assume the sensor locations are

predetermined and known. Now, given a few runtime sensor observations, our goal

is to estimate the temperature across the entire chip, in spite of where sensors are

placed. We will discuss a sensor placement methodology in later chapters.

Our proposed approach is inspired from signal detection and estimation theory.

Essentially, we exploit the sensor observations and also the fact that there exists a

high degree of correlation in power dissipation between different chip modules. By

exploiting this correlation, even a few thermal sensors can be used to generate

accurate chip level thermal profile estimates. Our technique is optimal (no other

18

methods can generate a better estimation) if the randomness associated with the

power density of different chip modules is jointly Gaussian. We also develop an

effective heuristic based on moment matching if the power density values exhibit

non-Gaussian nature [75].

2.2 Preliminary - Modeling Thermal Profile of a Chip System

In this section, let us first examine the thermodynamics of a chip system and

model its steady-state thermal state assuming the power density of the design is

given. The typical structure of an integrated chip includes the silicon on which the

circuit is built and the heat sink associated with the silicon within the package (see

figure 2.1).

Heat Sink

Silicon

x

y

z
a

b
d

field plane

source plane

Figure 2.1: Silicon chip and the associated heat sink.

In figure 2.1, the source plane is defined as the thin layer of silicon where

power is dissipated (source of heat generation) and the field plane is defined as the

surface layer on which a thermal profile is of interest. For brevity in description, we

assume that silicon has uniform thermal conductivity. The steady state temperature

distribution inside the chip is governed by Poisson’s equation [65]:

∇2T (r) = −P
′
d(r)

ks
(2.1)

subject to the following boundary conditions:

19


∂T (r)
∂x

∣∣∣
x=0,a

= ∂T (r)
∂y

∣∣∣
y=0,b

= ∂T (r)
∂z

∣∣∣
z=0

ks
∂T (r)
∂z

∣∣∣
z=−d

= h(T (r)|z=−d − T0)
(2.2)

In the above equations, r = (x, y, z) and T (r) is the temperature distribution

in the silicon (in ◦C), P ′d(r) is the volume power density (in W/m3) and ks is the

thermal conductivity of silicon (in W/(m ·◦ C)). The vertical and top surfaces are

assumed to be adiabatic whereas the interface between the silicon and the heat

sink is assumed to be convective with an effective heat transfer coefficient h (in

W/(m2 ·◦ C)). The ambient temperature is denoted by T0. Note that the boundary

conditions highlighted above are specific to the package design. Although different

packages with varying heat sink properties could change the boundary conditions,

the general nature of the solution to the Poisson’s equation will not change. The

partial differential equation (2.1) can be solved using the method of Green’s function.

For brevity we do not go into the details of the derivation of this solution which can

be found in [65, 37]. We only show that the solution can be expressed as follows:

T (r) = T0 +

∫ a

0

∫ b

0

∫ 0

−d
G(r, r′)P ′d(r

′)dx′dy′dz′ (2.3)

G(r, r′) =
∞∑
m=0

∞∑
n=0

Zmn(z, z′)cos(mπx/a)cos(nπy/b)cos(mπx′/a)cos(nπy′/b) (2.4)

Here G(r, r′) is the Green’s function. r = (x, y, z) and r′ = (x′, y′, z′) are the

coordinates of an arbitrary point on the field plane and the source plane, respectively.

P ′d(r
′) is the volume power density at point r′. Zmn is a function of z and z′ and can

be calculated based on the boundary conditions (see details in [65, 37]). For any

specific values of z and z′, the above solution can be simplified to its 2-dimensional

form:

T (x, y) = T0 +

∫ a

0

∫ b

0

G(x, y, x′, y′)Pd(x
′, y′)dx′dy′ (2.5)

G(x, y, x′, y′) =
∞∑
m=0

∞∑
n=0

Cmncos(mπx/a)cos(nπy/b)cos(mπx′/a)cos(nπy′/b) (2.6)

20

Here T (x, y) is the temperature at an arbitrary point on the field plane and

Pd(x
′, y′) is the 2D power density function (in W/m2) for any point on the source

plane. Constants Cmn can be derived from Zmn(z, z′). Note that the only unknown

in these equations is the power density function Pd which depends on the layout,

device dimensions, switching activity, leakage, and etc.

For efficiency purpose and ease of computation, we would like to work in

the discrete space. If we split the source and field planes into J × J and I × I

grids respectively (figure 2.2), then each source grid j can be assumed to have a

constant power density Pd(j) and each field grid i can be represented by the average

temperature T (i) inside the grid (note that these grids can be arbitrarily small).

j

i

Source grids : JxJ Field grids : IxI

bi

ai t

u

Thermal sensor placement

u'

t'

Figure 2.2: Source plane and field plane of a silicon chip.

Assuming we know Pd(j), we are interested in calculating T (i) which can be

expressed as follows:

T (i) =
1

t · u

∫ ai+t

ai

∫ bi+u

bi

T (x, y)dxdy (2.7)

where (ai, bi) are the 2D coordinates of the bottom left corner of the i-th grid cell

(origin being the bottom left corner of the chip). t and u are the width and height of

each cell on the field plane (t = a/I, u = b/I assuming a, b are the chip dimensions).

Since the power density on the source plane is assumed to be a constant Pd(j) in

each grid cell j, we can substitute (2.5) into (2.7) and get

21

T (i) = T0 +
∑
j

Pd(j)

t · u

∫ ai+t

ai

∫ bi+u

bi

∫ aj+t′

aj

∫ bj+u′

bj

G(x, y, x′, y′)dxdydx′dy′ (2.8)

Here t′ and u′ are the dimensions for each grid cell on the source plane (figure

2.2). G(x, y, x′, y′) is again the Green’s function as shown by equation (2.6). It can

be seen that once we know the accurate power density profile, we can calculate the

steady-state thermal profile analytically based on equation (2.8).

2.3 Problem Description

Recently much attention has been given to the subject of placing on-chip

thermal sensors during design time and exploiting the sensor readings at runtime to

perform dynamic thermal/power management [35, 36, 15, 39, 27, 10]. The central

motivation behind such approaches is the growing need for sophisticated runtime

management techniques to control the detrimental effects of unpredictable thermal

hotspots. A key challenge, which is also the focus of this chapter, is how we can

systematically reconstruct the chip-level thermal profile using the thermal sensor

observations. Unfortunately, this problem is not trivial. The challenges are discussed

below.

1. The total number of on-chip thermal sensors is limited and thus cannot cover

all areas of a chip. Indeed, if we have the freedom to place infinite number of

sensors at all locations, there would be no need for thermal profile estimation

since the temperature at any location is accurately known. Unfortunately,

since thermal sensors come with a cost in terms of area and power, we do not

have the luxury to place infinite number of sensors under todays ever pushing

design constraints. In addition, the sensors can not go into the pre-designed

on-chip IP cores should that be the critical area of interest. The thermal

profile estimation problem is thus highly constrained by the number and the

locations of the thermal sensors. The key challenge here is to take the readings

22

of only a few temperature sensors and re-create the chip level thermal profile

as accurately as possible.

2. To solve the thermal profile estimation problem one has to account for the

underlying randomness in power density. Let us consider equation (2.8) again

which is used to compute thermal profile of a chip. Assuming that the silicon

thermal conductivity and heat transfer coefficient are constants, the only un-

known in equation (2.8) is Pd(j). If we knew Pd(j) accurately at design time,

then we would not need any thermal sensors at all since the entire thermal

profile could be computed analytically. However, the power dissipation of a

chip is a strong function of application workload (which is unpredictable until

runtime), device parameters (which are random due to fabrication variability),

the environment (such as the ambient temperature change and supply voltage

fluctuation). All these unpredictable factors make power density a random

quantity in reality. Therefore thermal profile becomes a random quantity as

well. The key challenge here is to develop a probabilistic methodology to

account for the random nature of power density and use it to effectively es-

timate the chip-level thermal profile, when given a few temperature sensor

observations at runtime.

3. As discussed above, the desired methodology must account for the fact that

we only have a few sensors and the underlying power density is random. An

important observation about this randomness is that different parts of the

chip can exhibit highly correlated power behavior due to similarity in their

activity. The random fabrication parameters which indirectly affect power

dissipation (such as channel length, oxide thickness, and etc.) also exhibit

strong spatial correlation. Therefore it can be concluded that the random

power density in different parts of the chip exhibits strong correlation. We can

take advantage of this property and use the power density in certain parts of

the chip to predict the power density in other parts. For this reason, even if the

number of thermal sensors is limited, reasonably accurate thermal profile could

23

be estimated by exploiting this correlation. It is reasonable to assume that

the probabilistic properties of chip power density, such as mean, correlation,

variance, covariance, and etc., can be characterized a priori through extensive

simulations and experiments (this will be demonstrated in the next section).

All in all, the key challenge is to exploit the temperature readings of a few

thermal sensors, along with knowledge of the random characteristics of chip power

density to generate accurate thermal profile estimates. As would be highlighted

in the experimental results, ignoring the correlation information leads to highly

inaccurate estimates of thermal profile even with relatively more sensors whereas

exploiting the correlation information enables high fidelity thermal estimates with

only a few thermal sensor readings.

2.4 Modeling Randomness in Power Density

In order to quantify the correlated power behavior mentioned earlier, we used

Wattch [6] with alpha binary to generate the power consumption results for differ-

ent parts of a processor. We simulated a high performance aggressive out-of-order

processor with pipeline width of 8 instructions and an instruction window of 128

instructions. Level 1 caches (both instruction cache and data cache) are 32KB 4-

way set associative. All the caches in the hierarchy are using LRU replacement

policy and a block size of 64 bytes. For benchmarks, we simulated all the SPEC

2000 CPU benchmark suite [20] compiled with the default parameters provided with

the suite. We bypassed the startup part, based on simpoint [20], and simulated a

representative 250M instructions for each of the benchmarks.

Figure 2.3 highlights the variation of power dissipation across different bench-

marks for the instruction window module. This demonstrates that the power con-

sumption of a chip module is indeed a random quantity whose characteristics can

be captured by a probabilistic distribution. The correlations in power dissipation of

different modules are computed from the benchmark simulation and are presented in

table 2.1. It can be seen that different components have a high degree of correlation

24

0.5

0.4

0.3

0.2

0.1

0

0 5 10 15 20 25 300 5 10 15 20 25 30

(×105 W/m2)

Figure 2.3: Power density distribution for instruction window module.

in power dissipation. For example, the correlation between instruction window and

register rename modules is as high as 0.91. This means that for a given applica-

tion running on the processor, if there is high power density in instruction window

module, then the power density for register rename module is likely to be high as

well.

Table 2.1: Statistical power density characteristics of different chip modules

correlation
branch

predictor
rename

instruction

window

load/store

queue

register

file
ALU Icache Dcache

Dcache 0.42 0.54 0.69 0.98 0.42 0.47 0.56

Icache 0.66 0.97 0.89 0.61 0.58 0.68

ALU 0.36 0.74 0.90 0.51 0.93

register file 0.13 0.63 0.84 0.47

load/store

queue
0.45 0.58 0.74

instruction

window
0.54 0.91

rename 0.61

mean

(105W/m2)
0.34 4.33 12.48 1.09 3.88 3.30 4.71 1.03

std-dev

(105W/m2)
0.18 1.68 4.21 0.42 1.49 1.33 1.87 0.41

To model this random yet correlated power behavior, we discretize the chip

into J × J grids and use Pd(j) to represent the power density in grid cell j (as we

explained in section 2.2). This Pd(j) is a random variable which can be expressed

25

as follows:

Pd(j) = F
(
SW (j), Vt(j), Leff (j), VDD(j), . . .

)
(2.9)

Equation (2.9) highlights the general dependence of the power density Pd(j) on

its local switching activity SW (j), device parameters like threshold voltage Vt(j) and

effective channel length Leff (j), the environment factor like supply voltage VDD(j)

and etc. Because of these random parameters, Pd(j) is random as well. Various

simulation and analytical techniques can be carried out to extract the probabilistic

characteristics of Pd(j) (for ∀j) including the mean, variance and covariance [11, 14,

64].

For example, instruction issue register will exhibit correlated behavior in switch-

ing activity with other computational modules. Similarly, the fabrication variability

of devices in close vicinity would be correlated as well thereby leading to correlation

in their power density. Knowing the correlations in various parameters in equation

(2.9) would allow us to estimate the correlation between different Pd(j) variables.

There are already many existing works on modeling the correlated fabrication vari-

ability [7]. Extensive simulation could also be used to obtain the correlations in the

switching activity, leakage and etc. of different grid cells (similar to the simulation

that we did earlier to extract the correlation data shown in table 2.1). All these

could be used to extract the correlations among various power density variables.

We do not go any further into the details of how this modeling can be done since

the focus of this work is different. We only assume that the J × J random power

density variables could be represented as a random vector ~P with mean ~µp and

covariance matrix Σpp (note that we do not assume the power densities follow any

specific distribution, we just assume that the mean and covariance are known).

Though the values obtained here are not completely accurate, the key idea is

that these approximate values, when combined with the runtime sensor observations,

could significantly increase the accuracy of thermal profile estimation.

26

2.5 Estimation Methodology

2.5.1 Formal Problem Statement

Let us use vector ~P to represent the power density values at all J × J grid

locations. Similarly the thermal profile of the chip can be represented by vector ~T .

~P = [P1, P2, . . . , PJ2]′

~T = [T1, T2, . . . , TI2]
′

Now suppose we have n on-chip temperature sensors at the following locations:

s1 = (x1, y1), s2 = (x2, y2), . . . , sn = (xn, yn)

These sensors provide a vector of n temperature readings ~Ts.

~Ts = [Ts1 , Ts2 , . . . , Tsn]′

We also assume that we have characterized a priori the mean ~µp and covariance

matrix Σpp for ~P . The problem is to find the most probable thermal profile of the

chip (~T) based on such information. According to signal estimation theory [43],

the optimal estimator (in terms of the mean square error) for our problem is the

conditional expectation of ~T given ~Ts, ~µp and Σpp:

E(~T
∣∣~Ts, ~µp,Σpp) (2.10)

Note that we are exploiting both the sensor readings and the probabilistic

characteristics of power density to provide accurate estimation. Exploiting the latter

would enable us to use fewer sensors while providing high fidelity chip level thermal

estimates.

2.5.2 Optimal Solution for Jointly Gaussian Distribution

Now we present an approach that would allow us to solve the problem posed

by (2.10). In this section we consider the case where the power density variables

27

are jointly Gaussian in nature. Let us consider (2.8) once again which could be

rewritten as follows:

T (i) = T0 +
∑
j

αi,jPd(j) (2.11)

where

αi,j =
1

t · u

∫ ai+t

ai

∫ bi+u

bi

∫ aj+t′

aj

∫ bj+u′

bj

G(x, y, x′, y′)dxdydx′dy′

=
1

t · u

∞∑
m=0

∞∑
n=0

Cmn

∫ ai+t

ai

cos
(mπx

a

)
dx

∫ bi+u

bi

cos
(nπy

b

)
dy

∫ ai+t
′

ai

cos

(
mπx′

a

)
dx′
∫ bi+u

′

bi

cos

(
nπy′

b

)
dy′ (2.12)

The infinite summation in variables m and n can be approximated by a finite

summation where m and n are truncated at M and N . In [65], it was demonstrated

that setting M and N to around 64 leads to satisfactory accuracy in thermal es-

timation. Therefore the constants {αi,j, for ∀i, j} can be computed using equation

(2.12) and this approximation. Now equation (2.11) can be rewritten in its vector

form where αi,j (and hence matrix A) is a constant and known:

~T = ~T0 + A~P (2.13)

A =


α1,1 α1,2 · · · α1,J2

α2,1 α2,2 · · · α2,J2

...
...

. . .
...

αI2,1 αI2,2 · · · αI2,J2

 (2.14)

Again, ~T0 is the ambient temperature. Equation (2.13) highlights that the

dependency between temperature and power density can be approximated with a

linear transformation [65]. Since ~P is a random vector with mean ~µp and covariance

matrix Σpp, ~T is a random vector too with mean and covariance as follows [43]:

~µT = T0 + A~µp (2.15)

ΣTT = AΣppA
T (2.16)

Now that we know the relationship between ~T and ~P is linear, estimating

the thermal profile can be simplified to estimating the power density due to the

28

following:

E(~T
∣∣~Ts) = T0 + AE(~P

∣∣~Ts) (2.17)

Equation (2.17) is obtained by taking the conditional expectation of equation

(2.13) on both sides. Note that for brevity we have omitted ~µp and Σpp from the

notation. It can be seen that the problem posed by (2.10) can be solved optimally

by finding the optimal estimator for the following:

E(~P
∣∣~Ts) (2.18)

The advantage of first solving (2.18) and then (2.10) is that in general the

statistical properties such as correlation are easier to extract for power density (as

we demonstrated in section 2.4). After generating an estimate for power density, we

can then easily obtain the desired thermal estimate through (2.17).

Now we present an optimal solution to (2.18) when the power density vector is

jointly Gaussian. This is a reasonable assumption in reality due to the principle of

Central Limit Theory [43] (also see the simulation result in figure 2.3). A heuristic

solution for the non-Gaussian distribution case will be presented in the next section.

As mentioned earlier, ~Ts is the vector of sensor readings. Since we know the location

of these sensors, we can relate ~Ts to ~P as follows.

~Ts = T0 + As ~P (2.19)

where As is a submatrix of A formed by selecting the rows corresponding to sensor

grids. For example, if we have 3 sensors placed at the {5, 11, 23}th grid cells, then

As is simply formed as follows:

As =


α5,1 α5,2 . . . α5,J2

α11,1 α11,2 . . . α11,J2

α23,1 α23,2 . . . α23,J2

 (2.20)

Now given the sensor observations ~Ts, the statistical power density character-

istics {~µp,Σpp}, and the linear transformation between ~Ts and ~P shown by (2.19),

we would like to estimate the value of the power density vector ~P . This can be

29

achieved by calculating the conditional expectation which is the optimal estimator

in terms of the mean square error. Under the assumption that the randomness in

power density ~P is jointly Gaussian, we have the following closed form solution:

E(~P
∣∣~Ts) = ~µp + ΣpsΣ

−1
ss (~Ts − ~µs) (2.21)

= ~µp + ΣppA
T
s (AsΣppA

T
s)−1(~Ts − As~µp − T0) (2.22)

In equation (2.21), ~µs is the average of ~Ts across all observations and ~µs =

T0 + As~µp based on (2.19). Σps is the covariance matrix between ~P and ~Ts, Σss is

the covariance matrix for ~Ts itself. These two covariance matrices can be calculated

based on (2.19) as well (Σps = ΣppA
T
s , Σss = AsΣppA

T
s), therefore we have the

final solution (2.22). Note that this is the analytical solution to (2.18) and hence

is the optimal estimator for the power density vector ~P given sensor observations

~Ts (for detailed proof, please see [43]). Also note that ΣpsΣ
−1
ss in equation (2.21) is

a constant matrix that can be computed in advance. Therefore this solution is a

simple linear estimator and can be computed very efficiently for each observation

~Ts. Once E(~P
∣∣~Ts) is computed, estimating the thermal profile (vector ~T) can be

simply done using equation (2.17) which we restate here:

E(~T
∣∣~Ts) = T0 + AE(~P

∣∣~Ts)
Equation (2.22) is the crux of our work. Its optimality indicates that no other

linear estimator can perform better in terms of the mean square error. In this

sense our methodology gives the optimal solution for the thermal profile estimation

problem for the jointly Gaussian case. The general flow of our method is shown in

Fig. 2.4.

Optimal
Linear

Estimator

μp, Σpp

Sensor
Observations

Linear
Transformation

E(P|Ts) E(T|Ts)Ts

Figure 2.4: Estimation flow.

30

2.5.3 Heuristic Solution for Non-Gaussian Distribution

When the underlying randomness of power density does not exhibit Gaussian

nature, the estimator presented in equation (2.22) is not optimal anymore. How-

ever, for a non-Gaussian distribution, a closed form solution is often hard to find,

sometimes even impossible. In this section, we present a heuristic algorithm to ap-

proximate the solution to (2.18) when the power density variables have non-Gaussian

distribution.

In general, real data is not far from a Gaussian distribution due to Central

Limit Theory [43]. Under these scenarios, we can approximate the actual joint prob-

ability of the power density vector with a Gaussian distribution. The approximation

is based on the moment-matching approach. This enables us to use the estimator

of equation (2.22) to approximate the result of (2.18).

Suppose the power density vector ~P has non-Gaussian joint probability den-

sity function (abbr. JPDF) fN(~P). We would like to approximate fN(~P) using

a simplified Gaussian JPDF fG(~P). The approximation is done by matching the

characteristic functions of fN(~P) and fG(~P). The characteristic function is defined

as the Fourier transform of any JPDF function. For brevity, here we only show the

two variable case (where the vector ~P has 2 elements), the multi-variable case can

be generalized easily. The characteristic function of any JPDF fX1,X2(x1, x2) is

φ(y1, y2) =

∫ ∞
−∞

∫ ∞
−∞

ei(y1x1+y2x2)fX1,X2(x1, x2)dx1dx2 (2.23)

Expanding the exponential term in the above equation gives a series representation

of φ(y1, y2):

φ(y1, y2) =1 + iy1

∫∫
x1fX1,X2(x1, x2)dx1dx2 + iy2

∫∫
x2fX1,X2(x1, x2)dx1dx2

− y2
1

2

∫∫
x2

1fX1,X2(x1, x2)dx1dx2 −
y2

2

2

∫∫
x2

2fX1,X2(x1, x2)dx1dx2

− y1y2

∫∫
x1x2fX1,X2(x1, x2)dx1dx2 + . . . (2.24)

In the above equation, the coefficients of y1 and y2 are defined as the moments of

31

fX1,X2 and can be formalized below:

mij = E(xi1x
j
2) =

∫ ∞
−∞

∫ ∞
−∞

xi1x
j
2fX1,X2(x1, x2)dx1dx2 (2.25)

Therefore the characteristic function of fX1,X2(x1, x2) can be represented as an infi-

nite series in terms of the moments:

φ(y1, y2) = 1 + iy1m10 + iy2m01 −
y2

1

2
m20 −

y2
2

2
m02 − y1y2m11 + . . . (2.26)

Note that m10 = E(x1) = µx1 is simply the mean of x1. Similarly m01 = µx2 ,

m11 = E(x1, x2) = Cov(x1, x2) + µx1µx2 , m20 = E[x2
1] = V ar(x1) + µ2

x1
and so on.

Now let us suppose that we want to approximate fX1,X2 with fGX1,X2
where

fGX1,X2
is a bivariate Gaussian distribution. For this we match the moments of the

two distributions so as to evaluate the unknowns of fGX1,X2
. Since fGX1,X2

is Gaussian,

it has 5 unknowns {µx1 , µx2 , σx1 , σx2 , ρx1,x2} which can be obtained by matching the

first 5 moments of fX1,X2 , i.e.

m10 = mG
10, m01 = mG

01, m20 = mG
20, m02 = mG

02, m11 = mG
11 (2.27)

Thus in order to approximate fN(~P) with fG(~P), the moments of the two distribu-

tions are matched, or equivalently the characteristic functions are matched. Further,

because the Gaussian JPDF fG(~P) is completely determined by its mean vector (n

unknowns) and covariance matrix (n(n + 1)/2 unknowns). Here we assume n is

the number of elements of ~P . Hence there are a total of n(n + 3)/2 unknowns.

By matching the first n(n + 3)/2 moments, we can determine the Gaussian JPDF

approximation.

In this way, we can take the prior knowledge of the non-Gaussian distribution

of ~P and fit a Gaussian model to it. This enables us to use the estimator of equa-

tion (2.22) as an approximation. The accuracy of this heuristic algorithm will be

demonstrated by our experimental results.

2.6 Experimental results

In this section we present the results obtained using our estimation method-

ology. We simulated a high performance aggressive out-of-order processor with

32

pipeline width of 8 instructions and an instruction window of 128 instructions. Level

1 caches (both instruction and data) are 32KB 4-way set associative. The shared

level 2 cache is 1MB and 8-way set associative. All the caches in the hierarchy are

using LRU replacement policy and a block size of 64 bytes. Firstly we simulated

this architecture using Wattch [6] and all the SPEC 2000 CPU benchmark suite

[20]. The power distribution data was generated for each functional module of the

processor across all different benchmarks. Using this data, we extracted the mean,

variance, and covariance (data illustrated in table 2.1). Note this variance in power

dissipation is due to the fact that we do not know which mix of benchmarks will

be executed by the processor. We used the techniques described in section 2.5.3 to

approximate the data with a Gaussian distribution. We created an ad-hoc floorplan

of the processor with dimensions 2mm × 2mm × 0.5mm. In the experiments, we

set the thermal conductivity ks and the effective heat transfer coefficient h to 148

W/(m ·◦ C) and 8700 W/(m2 ·◦ C) respectively (consistent with the values used in

[65]).

We then tried to address the problem of estimating the thermal profile of the

chip, given the power density probabilistic characteristics and a few sensor observa-

tions. For a specific benchmark, we calculated the real power density map (through

Wattch simulations) and therefore the real thermal profile which was used as a basis

for comparison. Then we placed 5 sensors in modules like I-Cache, Instruction Win-

dow, ALU and etc. arbitrarily and noted the temperature at these points. Finally

we used the method proposed in section 2.5.2 to estimate the thermal profile. We

also used regression to fit a 2 dimensional second order polynomial onto the sen-

sor observations. This regression-based thermal profile was used as a reference to

compare the quality of our estimate.

Figures 2.5, 2.6 and 2.7 show the real thermal map, our estimated thermal

map and the one generated using polynomial regression for the EON benchmark.

We used only 5 sensors in our technique whereas the regression based technique

needed 16 sensors. It is obvious that even with fewer sensors, the accuracy of our

estimation methodology far exceeds that of the regression based approach.

33

Figure 2.5: Real thermal profile

Figure 2.6: Estimated thermal profile Figure 2.7: 2 dimensional polynomial fit

In figure 2.8, we highlight the relationship between RMS error of our ap-

proach and number of sensors utilized. As the number of sensors increases, the

error decreases as expected. Figure 2.9 compares the RMS error obtained using our

approach and using polynomial fit for various SPEC benchmarks. As can be seen,

our approach has significantly smaller error with even fewer sensors. These results

clearly highlight the effectiveness of our method.

34

Figure 2.8: RMS error decreases as number of sensor increases

Figure 2.9: RMS error comparison for different benchmarks

2.6.1 Summary

In this chapter, we addressed the problem of estimating the chip-level thermal

profile using only a few on-chip sensor observations. The underlying random na-

ture of the thermal/power characteristics are well accounted for. We proposed two

methodologies for solving this problem: 1) When the probability density function

governing the power density variables exhibits jointly Gaussian distribution, we pre-

sented an optimal estimator for recreating the chip-level thermal profile. 2) When

such a probabilistic property does not exist we presented a heuristic algorithm to ap-

proximate the optimal solution. The experimental results demonstrated significant

35

advantage (as much as 100x more accurate) of our method over a simple 2 dimen-

sional 2nd order polynomial regression strategy. Our approach for accurately esti-

mating the chip-level thermal profile can be used to guide dynamic thermal/power

management.

36

Chapter 3

Designing a Sensor-based Thermal Tracking Infrastructure

3.1 Motivation

In this chapter, we propose a statistical framework for designing a complete

and accurate sensor-based on-chip thermal tracking infrastructure. Such a tem-

perature tracking or monitoring system is very important because most of today’s

dynamic thermal management (DTM) techniques rely on it to make judicious con-

trol decisions. DTM technique usually works by throttling voltage or operating

frequency in exchange for less power dissipation. Essentially they are trading off

performance for lower operating temperature. If they are too aggressive or if they

receive false alarms, chip performance could suffer. On the other hand, if such tech-

niques are too conservative, thermal reliability is at jeopardy. Therefore, they must

receive accurate and efficient feedback regarding a chip’s thermal state at runtime

to come up with the optimal thermal control decisions. For this purpose, several

on-chip thermal sensor placement algorithms have been proposed in [35, 27, 33] to

systematically deploy sensors across the chip. Although such work is promising,

very few researchers have investigated the development of a complete framework

that enables accurate and efficient thermal sensing and estimation. In this chapter,

we will try to address this problem.

On chip thermal sensing infrastructure consists of several important design

components which have strong interplays among each other [30, 71, 67]. These

components include sensor placement, individual sensor design/compression and

data fusion (as shown in figure 3.1). To see why these components are important and

how they interact with each other, let us first take a look at the normal information

flow in any sensor network infrastructure. First the sensors will collect information

which reflects its local environment (temperature in our case). The data collected

37

by each sensor will undergo preliminary processing/compression (digitalization for

example). When we have local resource constraints such as area and transmission

overhead, data compression at each sensor is highly desirable. In addition, sensors

(especially in on-chip environment) can be particularly susceptible to noise and

fabrication variability. Therefore we must take these effects into consideration when

we compress and use the sensor data. The compressed sensor readings will then be

collected at a data fusion center to generate a complete thermal profile of the entire

system. Within the fusion center, all sensor readings will be stored in a central

register. A high-level coordinator (which could be implemented either in hardware

or software) will take these sensor readings for information extraction purposes (eg.

noise removal, signal filtering and estimation, etc.). The final outcome would be

accurate knowledge of the thermal state of the entire chip.

Figure 3.1: Thermal Sensing Infrastructure

Partly due to the nature of the thermal sensing problem and partly due

to global area/power constraints, each of these individual design components are

strongly inter-dependent. For example, the size of the central register, which de-

pends upon the amount of area available, will impact the number of sensors we can

38

place and the degree of compression necessary at each sensor. The local area slack

to fit individual sensors is another constraint. It may be easier to fit more sensors

with high compression ratios than fewer sensors with no compression. The overall

complexity of this sensor infrastructure can be determined as a tradeoff between the

degree of accuracy desired and the implementation overhead.

In this thesis, we develop a unified statistical methodology for instantiating

such a thermal sensing infrastructure: we decide sensor locations, degree of sensor

compression and the design of fusion center in a unified way. Our methodology

is capable of enforcing constraints such as the area available for each design com-

ponent and also accounts for the intricate interplay between them. The specific

contributions of this thesis are as follows:

1. Sensor placement: We develop a statistical methodology for deciding the

sensor locations. Most existing works on this topic assign a range for each

sensor [27, 35, 33, 31] and allocates sensors so as to cover all the potential

hotspots. The metrics of range and cover are inaccurate for thermal sensors

since sensor measures only the temperature of the location where it is placed

(unlike cameras which have a field of view). Instead, our method uses the

statistical correlation between sensor and hotspot temperature to predict the

probability of capturing all the hotspots. This probability, which is a more

sound metric than range, is used to drive sensor placement.

2. Sensor design and compression: Due to the potential lack of space to

fit thermal sensors and the associated wiring, local compression of data is

necessary. Compression of sensor data is also needed due to limited space for

storing the sensor readings in the central register at the fusion center. Sensors

are also prone to noise caused by fab-variability, supply voltage fluctuation

etc. Our sensor design and compression methodology accounts for all the

above considerations. To achieve our goals we use concepts from compression,

signal estimation theory, optimization and VLSI design.

3. Fusion center design: Based on the thermal correlations, we develop statis-

39

tical techniques to accurately estimate the temperatures at all chip locations

by exploiting the possibly compressed and noise-corrupted sensor observations.

4. Exploiting the interdependency: As discussed earlier, in order to obtain

the best thermal sensing infrastructure solution which also has the minimal

overhead (area, power etc), we will exploit the interplay between the above-

mentioned aspects. For example, while deciding the sensor locations, our

method will avoid areas where fitting sensors is difficult. Also, the finite num-

ber of bits available at the central register to store all sensor readings should be

a limiting factor when deciding the total number of sensors allocated on chip

and their compression rates. When designing the sensor placement schemes

we introduce a feedback mechanism for incorporating the effects of compres-

sion. Essentially the compressed sensors will not provide thermal readings as

accurately as it is assumed in the initial placement attempt and such effects

must be accounted for. The sensor placement is thus an iterative designing

process, refining the sensor locations in each iteration by understanding the

compression effects from the later design stage.

To the best of our knowledge, such a complete and unified methodology for designing

an on-chip thermal sensing infrastructure has not been investigated in the past.

To demonstrate the effectiveness of our methods, we did experiments assuming

the sensors are either noiseless (in ideal scenarios) or noisy (in realistic situations

where fabrication variability can affect the sensor operation). Our results showed

that having more sensors with compressed observations outperformed having fewer

sensors with no compression when given the same space constraint at the global

fusion center. On average our sensor placement and compression schemes can achieve

about 35% reduction in the overall RMS error as compared to the range-based

placement scheme and uniform compression (with about equivalent overhead). Our

algorithms only took around 9 seconds in the worst case to develop the overall

solution for placement, compression and data fusion. It is also noteworthy that our

framework is general enough to incorporate different statistical models.

40

3.2 Sensor & Fusion Center Co-design

3.2.1 Fusion Center

A global fusion center collects and combines the sensor readings in order to

estimate the chip’s thermal state at any given time. It has two distinct components:

central register and fusion algorithm. The central register is basically a register that

holds all the thermal sensor readings (it could be a single or a combination of several

actual registers). The fusion algorithm utilizes the combined sensor observations to

estimate the complete thermal profile of the chip. The design of the entire thermal

sensing infrastructure depends critically on how a few thermal sensor readings are

used to predict the thermal profile. In this section we use a variant of the statisti-

cal approach presented in chapter 2. This approach is more straightforward and it

combines the information provided by a few on-chip thermal sensors with the ther-

mal statistical information (such as the thermal correlations among different chip

locations) to generate accurate temperature estimates at all chip locations. The

idea is that by exploiting such thermal correlations between different chip modules,

the temperature sampled at the sensor locations can be used to predict the thermal

state at other chip locations as well. We will describe this fusion algorithm in more

detail below.

An integrated system on chip consists of multiple functional modules that all

dissipate power (ALU, branch predictor, instruction window, cache and etc.). When

a certain application is running on the chip, heat is generated in different rates at

various modules and each of these modules will have an associated power density.

In the ideal case if we can find out the power density profile of the chip accurately

at runtime then we can use analytical methods to calculate the thermal profile with-

out the need for sensors [65, 53]. However in reality the unpredictable workloads

and the variability in transistor and interconnect parameters cause randomness in

the chip thermal behavior. Thus the real thermal profile at runtime is highly ran-

dom. If we divide the entire chip into N ×N grids (see figure 3.2) and approximate

the temperature within each grid cell as uniform (note the grids can be arbitrarily

41

Figure 3.2: A simplified chip from a thermal perspective

small), the entire thermal profile of the chip can be modeled as a random vector ~T

with dimension N2 × 1. Each element Ti of this vector represent the temperature

in the i-th grid cell and is a random variable with an associated probability den-

sity function (PDF). Note that since the thermal behavior of a chip is affected by

many independent sources of randomness (such as unpredictable workloads, supply

voltage fluctuation and various fabrication induced circuit parameters variability),

their collective effects are reasonably close to a Gaussian distribution (see Central

Limit Theory). Based on this observation we can model ~T as a Gaussian vector with

mean ~µT and covariance matrix ΣTT . The advantage of a Gaussian model is that it

is reasonably close to reality in most cases and we can obtain the analytical form of

the optimal estimator for ~T (complete thermal profile) given ~Ts (the sensor obser-

vations). This optimal estimator is simply the conditional expectation E(~T |~Ts) (see

equation (3.1)). The interested readers can refer to chapter IV.B of [43] for proof.

In practice, even if the actual temperature distribution is not strictly Gaussian, it

will be reasonably close to Gaussian as long as there are many independent tasks

running on the chip, which is the case for most of today’s general-purpose proces-

sors. Thus equation (3.1) can be expected to generate accurate thermal estimates

42

in practice.

E(~T |~Ts) = ~µT + ΣTSΣ−1
SS(~Ts − ~µS) (3.1)

Σ̂ = ΣTT − ΣTSΣ−1
SSΣST (3.2)

Here the thermal sensors are assumed to be placed in some of the grid cells (say,

subset S). Therefore, at runtime, we can observe the temperatures at these grids

(~Ts) by simply sampling the sensors. ΣSS represents the covariance matrix for the

sensor grids and is a submatrix of ΣTT where each row/column in ΣSS corresponds

to a grid where a sensor has been placed. By the same logic, ΣTS is the covariance

between all grids (represented by set T) and sensor grids (set S). Also, ~µS is the

mean temperatures of sensor grids S. Note that thermal correlations are exploited

in this approach to generate thermal estimates. Such correlations are reflected in

the covariance matrix ΣTT and ΣTS and they exist due to physical proximity and

also similar power behaviors of different functional units. Equation (3.1) takes the

deviation of our sensor observations from their average values (~Ts−~µS) and maps this

difference to other chip locations based on the thermal correlation. Equation (3.2)

shows the conditional covariance (Σ̂) of ~T given sensor readings ~Ts. This essentially

captures the new reduced uncertainty associated with our thermal estimates, now

that we know the readings ~Ts from sensors. The diagonal elements of Σ̂ give us the

reduced variance at the corresponding grid cells. The trace (sum of the diagonal

elements of a matrix) of Σ̂ is thus the total variance for the entire chip which is an

indicator of how good our thermal estimation is. From equation (3.2) we can see

this trace depends on sensor locations, i.e. the selection of set S and hence ΣTS/ΣSS

(we discuss more on sensor placement in subsequent sections). It is noteworthy that

this statistical approach is more sound than the existing range-based approaches

[35, 27, 33]: instead of assuming a range for each sensor and ignoring the thermal

gradient within such range (as well as discarding the information outside the range),

it calculates the conditional expectation of the temperatures at all grid locations. It

also gives the variance associated with such estimates which reflects our confidence

in our estimated temperatures. From the expectation and variance we can easily

deduce the possibility of capturing the potential hotspots. The above presented

43

fusion algorithm works by first combining all sensor readings into a central register

at the fusion center and then computing the thermal estimates based on the value

in this register.

Overall error: Note that trace(Σ̂) is not the only error that needs to be considered

in our framework. Sensor compression also contributes to the overall error. In

the formulation below we will try to summarize the overall optimization problem

posed by our framework in simple mathematical terms. The details and further

explanations will be given in the subsequent sections.

Erroroverall =
∑
i

E
(

(T ei − T ri)2
)

(3.3)

= Errorest + Errorcom (3.4)

s.t.

 |S| ≤ n∑n
i=1 si ≤M

In equation (3.4), T ei and T ri are the estimated temperature and the real tem-

perature at grid i respectively. n is the total number of sensors allowed to be placed

on chip. M is the size constraint at the central register (the total number of storage

bits available). si is the number of bits allocated to sensor i.

The first component of the overall error Errorest is the error associated with

the estimation. It will be affected by the estimator we choose, the constraint n

on the total number of sensors and the actual sensor placement scheme. For the

estimator we just introduced, this error is simply trace(Σ̂) where Σ̂ is given in

equation (3.2) (assuming we have the correct value of ΣTT). Note that the sensor

placement scheme will affect our selection of subset “S”, which in turn affects ΣSS

and ΣTS and therefore the estimation error. In the ideal case if sensors are placed

at all locations of the chip, we have ΣTS = ΣSS = ΣTT which leads to equation (3.2)

evaluating to zero (no estimation error if we have sensors everywhere).

The second error component is the compression induced error Errorcom which

captures how much impact the compression has on the final estimated thermal map.

This error is given in equation (3.13) and will be discussed in more detail in section

44

3.2.3. It is a strong function of {si} (the bit allocation scheme). The overall error

term shown in equation (3.4) guides the design of our entire sensing infrastructure.

3.2.2 Noisy Thermal Sensor

In this section, we focus on thermal sensor design and compression. To make

things more concrete, we use ring oscillator based thermal sensor as an example to

describe our method. Note that our methodology is general and can be applied to

any types of sensor equally well. A ring oscillator (RO) simply consists of an odd

number of inverters. The change in temperature will affect the delay of each inverter

and hence change the frequency of the RO. We can have a counter at the output

of the RO to count the number of state flips within a fixed period of time tp (see

figure 3.3). The output of this counter at the end of the counting period reflects the

frequency of the RO. Due to the fact that the frequency of an RO has a close-to-linear

relationship with its local temperature, ROs are often used to implement thermal

sensors. The number of bits needed to represent the counter output captures the

precision of the sensor.

Figure 3.3: Ring oscillator as a thermal sensor

In the ideal case where a sensor is noiseless, it gives the same sensor reading for

the same grid temperature irrespective of its location and time of sampling. In such

a case the sensor readings present no ambiguity whatsoever and could be relied upon

completely. Since the number of bits b of the counter output is limited, the sensor

cannot provide infinite precision. If we uniformly divide the potential temperature

range Htotal of a sensor into n = 2b sub-ranges {H1, H2, . . . , Hn}, then the sensor

can report the specific sub-range Hi that the sensor grid is experiencing. The finite

45

size of the counter output imposes a small quantization error.

In reality, thermal sensors are highly susceptible to fabrication variability, sup-

ply voltage fluctuations and etc. [53, 68, 69]. To understand the effect of such sensor

noise, we experimented with Monte Carlo simulation and graphed the randomness

we observed in RO frequency (figure 3.4) caused due to various noise factors. We

assumed 5% variation in threshold voltage, channel length/width, oxide thickness

and supply voltage. As shown, for each underlying actual temperature, the sensor

frequency is a random quantity and can take a range of values. This example illus-

trates the worst-case spread of noisy sensor readings because some of the variation

can be eliminated by calibration. For example, the process parameter variations do

not change after manufacture and can be compensated with post-manufacture cal-

ibration. However, noise due to voltage fluctuations and cross-coupling will persist

and can be treated with our technique. Additionally, post-manufacture calibration

may be expensive. Our noise reduction technique can reduce the required sensor

accuracy and thus the cost of calibration.

Figure 3.4: Simulated RO frequency distributions for different underlying temper-

atures ranging from 20 ◦C to 100 ◦C with 20 ◦C increments (105 samples for each

curve).

46

Now, for a given sensor reading, the actual temperature that caused the read-

ing cannot be decided deterministically because of sensor noise. In order to estimate

the temperature for a given sensor reading, we formulate the problem in a hypothesis

testing framework [43]. Hypothesis testing has the advantage that it can generate

accurate thermal estimates for any type of noise distribution. It can also be eas-

ily extended to handle the sensor compression and bit allocation problems as well

(which we will discuss in later sections).

As mentioned earlier, we can divide the thermal range Htotal into n = 2b

sub-ranges {H1, H2, . . . , Hn}. We are interested in estimating which sub-range the

sensor temperature falls within. We can assume each Hi is a hypothesis for the

temperature of this sensor with an associated prior probability (Pi for hypothesis

Hi). Prior probability captures the likelihood of having sub-range Hi as the sensor

temperature before any observation is made. Such prior probability can be obtained

by simulating benchmarks or typical chip workloads (for details please see the result

section). As explained earlier, for a given thermal hypothesis Hi at the sensor grid,

the reading from this sensor is random due to sensor noise. The randomness in sensor

observation for each underlying hypothesis can be modeled as a PDF as illustrated

in figure 3.4. This modeling could be obtained using various statistical schemes that

characterize the behaviors of the thermal sensor under different thermal conditions.

Given a sensor observation To, our goal is to choose one of the hypotheses as our

best prediction for the actual sensor temperature such that the expected prediction

error is minimized.

Formal problem formulation: Let us define Pi as the prior probability of hy-

pothesis Hi. Note that
∑

i Pi = 1 since one of these n hypothesis must be true.

Now, given the set of all observations Ω (which for a thermal sensor with b output

bits would contain 2b values), we would like to partition Ω into n (number of hy-

potheses) subsets {Γ1,Γ2, . . . ,Γn} such that each subset corresponds to a specific

hypothesis prediction (i.e. if the observation falls within a certain subset it means

the corresponding hypothesis must be true). The challenge is to come up with this

47

partition/decision rule δ such that the expected prediction error is minimized.

Hp = δ(To) =



H1 To ∈ Γ1

H2 To ∈ Γ2

· · ·

Hn To ∈ Γn

(3.5)

Here To is the sensor observation. Hp is the predicted hypothesis. The prediction

error is simply the absolute difference between the real and the predicted hypothesis

|Hp −Hreal|. The expected penalty is defined as follows.

E(|Hp −Hreal|
∣∣To) (3.6)

=
n∑
i=1

|Hp −Hi| × prob(Hreal = Hi|To) (3.7)

where Hreal, To and Hp represent the real sensor hypothesis (basically real tempera-

ture), the noisy sensor observation and our prediction respectively. Since sensors are

noisy, several different hypotheses could have caused the same observation To. This

fact is captured by the probability prob(Hreal = Hi|To) which could be computed as

follows:

prob(Hreal = Hi|To)

=
prob(To|Hreal = Hi)× Pi

prob(To)
(Bayes-Rule)

=
prob(To|Hreal = Hi)× Pi∑n
j=1 prob(To|Hreal = Hj)× Pj

(3.8)

Here prob(To|Hreal = Hi) is simply the probability of obtaining a specific sensor

reading To for a given hypothesis Hi. It could be computed a-priori using statistical

schemes (for example, as we illustrated in figure 3.4). Based on equation (3.8) we can

easily compute (3.7). Now, the overall expected cost associated with the decision

rule can be defined as follows:

E(|Hp −Hreal|) =
∑
∀To∈Ω

E(|Hp −Hreal|
∣∣To) · prob(To) (3.9)

The optimal overall expected cost can be achieved by minimizing E(|Hp −

Hreal|
∣∣To) for each To separately since prob(To) is simply a constant for each fixed

48

To. Thus, we can generate our optimal decision rule for minimizing the overall cost

in equation (3.9) as follows:

1. For each To ∈ Ω, select the hypothesis that minimizes equation (3.6). This

could be done using a simple O(n) complexity search through all possible

hypotheses (H represents the set of all hypotheses).

δ(To) = argmin
Hp∈H

E(|Hp −Hreal|
∣∣To) (3.10)

2. Store the optimal prediction for each observation (To → Hp) in a look up table.

The above decision rule can be pre-determined quite easily for all possible sensor

observations given the required statistical information. Thus our decision rule can

be easily implemented in hardware as an encoder stage of the sensor as shown in

figure 3.3. Essentially this encoder stage is responsible for translating the noisy

sensor readings into our predictions.

When we have multiple sensors, the observations from them can be treated as

a vector and the real temperature predictions for this set of sensors can be made

in a vector form as well. The same hypothesis testing methodology applies with

the only difference being that we have a larger solution space since we are handling

vectors instead of individual sensor observations/predictions. By putting multiple

sensors observations together, any correlation information among these sensors can

be exploited by our hypothesis testing method to make thermal predictions.

3.2.3 Fusion Center & Sensor Co-Design

Now, we extend our hypothesis testing based approach for co-design of the

fusion center and the sensors.

3.2.3.1 Problem Formulation

For clarity of exposition let us first assume that sensors are noiseless (the noisy

sensor case is similar and will be discussed later). The fusion center design problem

49

essentially boils down to how to allocate the total number of bits in the central regis-

ter to all sensors. A larger central register implies more bits for sensors which in turn

implies more precise sensor readings and more accurate overall estimates (assuming

a fixed sensor placement). However more bits in the central register would also

imply more area overhead for storing these bits and also communicating more data

from sensors thereby complicating the wiring. Note that the exact implementation

of the central register (one big or many small actual registers) is not of concern here.

We are just trying to address the finite total space for storing sensor data. In this

section, we assume that the number of sensors and their placement is fixed so we

focus primarily on the central register size.

For a given size of M bits and a given placement scheme (as determined by

our placement algorithm discussed in section 3.3), we can have several policies for

distributing them among the sensors. A uniform policy would imply the same level

of precision for each sensor. Interestingly, some sensors are more informative than

others (ones that have a higher correlation with hotspot locations) and therefore

should be given more precision (number of bits). Also, some sensors, if given more

bits, may not have the space available for routing the extra wires to the central

register. These considerations need to be accounted for while distributing the total

M bits. The choice of M itself is more complex since it depends critically on how

much area/power penalty we can tolerate, how much accuracy is desirable and sensor

locations as well. In general M can be specified by designers based on various design

goals.

Let us suppose each sensor i can have at most bi bits. Here bi depends on the

space available for the sensor and its wiring. Based on the informativeness of the

sensors and their space constraints (parameter bi), we would like to distribute the

total M bits to sensors such that the thermal estimates produced by our framework

(see equation (3.1)) are as accurate as possible. Now letting ~T as and ~T cs represent

the accurate (without M constraint) and the compressed (due to a finite M) sensor

observations respectively, the thermal estimates obtained for these two situations

are E(~T |~T as) and E(~T |~T cs) respectively (see equation 3.1). Note that ~T is a vector

50

that consists of the thermal estimates at all grid locations. The error in the i-th

grid caused by compression is simply |E(Ti|~T cs)−E(Ti|~T as)|. Our goal is to allocate

the total M bits to sensors such that the total error
∑

i |E(Ti|~T cs) − E(Ti|~T as)| is

minimized. If we use si to represent the allocated number of bits for sensor i, then

the error is a function of (s1, s2, . . . , sn) which is our bits allocation scheme. Thus

our co-design problem can be formulated as follows:

minimize E
(
error(s1, s2, . . . , sn)

)
(3.11)

s.t.

 mi ≤ si ≤ bi∑n
i=1 si ≤M

(3.12)

Here mi is the minimum number of bits any sensor must be given (generally set to

0), and once again si is the number of bits assigned to sensor i and bi is the maximum

number of bits for a sensor. Note that error itself is a random variable since the

underlying observations are random. Therefore the expected error E(error) should

be used as the cost function for our optimization problem. If M was not a limiting

constraint and all sensors worked at their perfect precision (i.e. si = bi for ∀i), then

the expected error should be zero. Otherwise the error creeps in due to compression

of the sensor observations. For a fixed sensor placement, this error depends explicitly

on how the total M bits is allocated among sensors and implicitly on how each sensor

is compressed locally. Hence allocating the total M bits and designing individual

sensors (so that the allocated bits are used most effectively) must be done hand in

hand. Now let us focus on the error term below:

error(s1, s2, . . . , sn)

=
∑
∀grids:i

(|E(Ti|~T cs)− E(Ti|~T as)|) (3.13)

=
∑
∀rows

(|ΣTSΣ−1
SS(~T cs − ~T as)|) (3.14)

=
∑
∀rows

(|ΣTSΣ−1
SS∆~Ts|) (3.15)

Here (3.14) is obtained by substituting equation (3.1) into (3.13). ∆~Ts = ~T cs − ~T as

is a vector representing the difference between the compressed sensor observations

51

and the uncompressed ones. The product of ΣTSΣ−1
SS is a coefficient matrix with

dimension N2×n which represents the sensitivity of the error on sensor compression

(here N is the grid dimension of the chip and n is the number of sensors). If we

assume the element at the d-th row and the k-th column of this coefficient matrix is

represented by ad,k, then the above error function can be written in its scalar form:

error =
N2∑
d=1

|
n∑
k=1

ad,k∆Tk| (3.16)

where ∆Tk is the k-th element of the ∆~Ts vector and represent the compression error

at sensor k. Note that some grids may be more important than others. Therefore, we

can assign different weights to different chip grids to reflect this design consideration.

Thus the error can be redefined as:

error =
N2∑
d=1

wd|
n∑
k=1

ad,k∆Tk| (3.17)

By introducing this weight coefficient wd we can account for the fact that different

chip regions may have different thermal constraints and hence should be given dif-

ferent importance in the error function. Now, the overall expected error mentioned

in our problem formulation (equation (3.11)) can be defined as follows:

cost = E(error) (3.18)

= E(
N2∑
d=1

wd|
n∑
k=1

ad,k∆Tk|) (3.19)

≤ E(
N2∑
d=1

wd

n∑
k=1

|ad,k∆Tk|) (3.20)

= E(
N2∑
d=1

wd

n∑
k=1

|ad,k||∆Tk|) (3.21)

=
N2∑
d=1

wd

n∑
k=1

|ad,k|E(|T ck − T ak |) (3.22)

=
n∑
k=1

gkE(|T ck − T ak |) (3.23)

Here in equation (3.23), gk =
∑N2

d=1 wd|ad,k| can be viewed as the sensitivity of the

overall expected error on the local compression error at sensor k.

52

Now let us focus on the term E(|T ck − T ak |). This is the local expected error

at the sensor k caused by compression. Note that this error depends explicitly on

how the total M bits are allocated among sensors and implicitly on how each sensor

is actually compressed. Let us address the second problem first since the first one

depends on the second one.

Sensor Compression: In principle and form, the expected error E(|T ck − T ak |) can

be defined in a hypothesis testing framework similar to the one we described in

section 3.2.2 (see equation (3.9)).

E(|T ck − T ak |) =
∑
∀To∈Ω

E(|T ck − T ak |
∣∣To) · prob(To) (3.24)

Here subscript k represents the k-th sensor. Initially this sensor has bk bits (its

local maximum). Let us define a (2bk × n) matrix Q where n is the number of

hypotheses (grid temperatures) that the sensor can experience. Each row of this

matrix corresponds to a specific observation. The element Q[i, j] stores the joint

probability of getting observation i when hypothesis j is true. When the sensor

is noiseless, there can only be exactly one hypothesis with non-zero probability

for each observation. All other hypotheses have zero probability (note that this

can only happen when 2bk = n). Now we compress this sensor by, say, 1 bit.

This means that the sensor will lose some fidelity and will have to be compressed

from a larger set of fine-grained observations to a smaller set of coarse-grained

observations. This implies some rows (observations) in Q should be combined. Let

us suppose that we combine row i and row l into one row. Now the probability

of getting this new combined observation under hypothesis j is simply Q[i, j] +

Q[l, j]. Thus the compression of sensor observations amounts to combining and

adding the corresponding rows. The objective of the compression scheme is to

decide which rows to combine and which hypotheses to predict for the new set of

compressed observations such that the cost function (3.24) is minimized. Now, let

Qnew be the new matrix after compression which has 2sk rows. Note that in our case

the cost of predicting hypothesis i while hypothesis j is true is simply |Hi − Hj|.

Given the compressed matrix Qnew, we would like to generate a decision rule that

53

translates each observation into a predicted hypothesis such that the expected cost

is minimized. Just like in the noisy sensor case (section 3.2.2), the same sensor

reading can be observed under multiple hypotheses. The best decision rule that

achieves the minimum cost can be generated using the techniques discussed earlier

(basically equation (3.10)). The cost of this optimal decision rule is given by equation

(3.24) and depends on how we compress the sensor observations. This cost can be

calculated in the same way as we calculate equation (3.9) based on (3.6) – (3.8).

Note that the underlying probabilities needed by these equations can be obtained

by calculating the matrix Qnew. The compression at each sensor will generate a

Qnew from Q by combining 2bk rows into 2sk rows such that (3.24) is minimized.

The compression policies generated could be implemented in the encoder stage of

the sensor (see figure 3.3). Given an observation that has bk bits, it outputs a new

code of length sk bits where sk is the number of bits allocated to the sensor. Also,

several observations that have been compressed into one are given the same output

code of length sk bits. The details of the algorithm for generating this Qnew are

described in Algorithm 1.

Bit Allocation: As explained above, when given a fixed number of bits for a

certain sensor k, we can come up with a compression scheme as well as a prediction

policy for any observation so that the expected local misprediction error at this

sensor (E(|T ck − T ak |)) is minimized. Now we present our scheme for allocating the

total M bits among sensors such that the overall expected error for the entire chip

(equation (3.18)) is minimized. This part is relatively easy since in our problem

formulation we have already established the relationship between a sensor’s local

compression error and the overall expected error as highlighted in equation (3.23).

We can start by assuming the maximum bits si = bi for each sensor i and gradually

reduce them until the constraint in (3.12) is met. This can be done in a greedy

fashion by reducing one bit at a time at the sensor which results in the least cost

increase in each iteration (compression causes increase in cost). Based on the way in

which we construct the overall cost function (3.23), our greedy bit allocation scheme

will allocate fewer bits to the less informative sensors while giving more precision to

54

the more important ones.

3.2.3.2 Co-Design Algorithm

Now we present an algorithm for simultaneous fusion center and sensor co-

design. Our technique estimates the overall error for any bit allocation scheme by

generating the best compression scheme at each sensor and then evaluating equation

(3.23). The results are then used to drive the bit allocation process. The final

outcome includes both a bit allocation scheme and a compression policy at each

sensor. The algorithm is shown below:

Algorithm 1 Sensor & Fusion Center Co-Design:

Require: Initially si ← bi for each sensor i

Ensure: Bit allocation and sensor compression schemes

1: while
∑n

i=1 si ≥M do

2: Choose sensor k with the least sensitivity gk to the overall cost (see equation (3.23))

3: If sk == mk then choose the next sensor

{// Compress this sensor by one bit in the following}

4: Let Q be the matrix for sensor k such that Q[i, j] is the probability of getting

observation i with hypothesis j

5: Generate all possible Qnew (by combining the rows of Q) such that the number of

rows in Qnew is 1/2 of Q (one bit reduction)

6: For each Qnew select the optimal decision rule using equation (3.10) and use the

associated cost to determine the best Qnew = Qnewbest

7: Q← Qnewbest ; sk ← sk − 1; update the overall error (equation (3.23))

8: end while

We start with all sensors allocated the maximum bits. Then in each iteration,

we select a sensor which has the least sensitivity to the overall expected error and

compress it by 1 bit. We repeat this process until we reach a feasible solution that

satisfy the global “M” constraint.

55

3.2.3.3 Noisy Case

When the sensors are noisy, for a given observation there could be several hy-

pothesis possible. Hence, in the uncompressed case, the Q matrix is such that for

each observation i, the row Q[i] can have several hypothesis with non-zero probabil-

ities. Fundamentally, algorithm 1 can simply take this new Q matrix and perform

the compression in a similar fashion as the noiseless case. Hence the same algorithm

can be applied to the noisy case as long as the Q matrix is updated appropriately.

3.3 Sensor Placement

In this section we describe a thermal sensor placement approach that is very

different from most existing placement algorithms [27, 33, 35]. As explained earlier

most existing placement algorithms assume that each sensor has a “coverage region”

around it and the temperature within this region can be accurately monitored;

yet a sensor have no or very little knowledge of the temperature outside of this

region. Thus the goal is to place as few on-chip sensors as possible so that all pre-

identifiepd hotspots fall within the coverage region of a certain sensor. In reality

thermal sensors only measure the temperatures of the grids that they are located in.

Defining a range on them, therefore, becomes problematic: on one hand the thermal

gradient within the sensor range is ignored. On the other hand the information

about locations outside the sensor coverage region is discarded. Thus the accuracy

of the range-based methods highly depends on how large or small this sensor range

is. Granted, if the range is chosen to be small it can achieve reasonable accuracy.

However such accuracy comes with a cost: more sensors need to be placed on chip

due to the smaller range each sensor can cover. Our method does not have such

drawbacks, it exploits the thermal correlation to place sensors so that the sensors

not only provide thermal information for its local area but also provides information

for remote locations as long as there exists certain amount of correlation. Thus

our methods can provide better thermal sensing accuracy with even fewer sensors.

In this thesis we use statistical techniques (equation (3.1)) to estimate the entire

56

thermal profile from limited sensor observations. The fundamental error associated

with a placement scheme is given by the variance shown in equation (3.2). The

overall error also depends on the degree of compression imposed on the sensors. As

discussed earlier, the more spatially constrained a sensor is, the more we will have

to compress its readings since we do not have ample space available for routing data

wires. Generally sensors that have high compression factors could be undesirable

since either the sensors are less informative (leading to compression in favor of

others) or do not have sufficient space. Hence sensor placement is a complex design

problem which needs to consider not only how much information a potential sensor

location can provide but also the available space slack at that location. It also has

to account for the finite size M of the central register.

3.3.1 Problem Formulation

The purpose of the sensor placement algorithm is to choose optimal locations

for a limited number of sensors such that the entire thermal profile (or certain critical

regions of interests) can be estimated as accurate as possible. Let S be a subset of

the grids with size m representing the sensor locations. As mentioned earlier, there

are two kinds of errors associated with a sensor placement: the fundamental error

given by equation (3.2) and the compression error. A solution with low fundamental

error might have high compression error. For example, the sensor locations chosen

might not have sufficient space to fit the routing wires. Given a sensor count, m,

the sensor placement problem is to find the optimal locations for these sensors such

that the overall error is minimized. Note that since the compression error accounts

for the area constraint at sensor locations and the size constraint of the central

register, minimizing the compression error implies accounting for both such space

limitations.

For simplicity in exposition, let us ignore the compression error for the moment

and focus primarily on the fundamental error. Finding a sensor placement that

57

minimizes this error can be formulated as follows:

choose S ⊂ T with |S| = m (3.25)

such that trace(Σ̂) is minimized (3.26)

Here Σ̂ is given by equation (3.2) and represents the conditional covariance associ-

ated with our thermal estimates E(~T
∣∣~Ts). Thus the i-th diagonal element of Σ̂ is the

potential variance of the estimated temperature at the i-th grid cell. The trace of Σ̂

is the sum of all diagonal elements and hence is a good indicator for the fundamental

error since it reflects the total variance in the estimated thermal profile. Our goal

is to choose a subset S of size m (from all grid locations T) as our sensor locations

such that trace(Σ̂) is minimized. As can be seen from equation (3.2), the value of

this selected cost function only depends on the sensor locations S through terms

ΣTS and ΣSS. Optimizing this cost function is a very complex task and the problem

is in general NP-hard. In the following we will present two heuristic algorithms for

generating sensor placement schemes.

3.3.2 Sensor Placement Algorithms

Our first placement algorithm works by directly minimizing the cost function

(see Algorithm 2). It chooses one sensor at a time by trying all potential sensor lo-

cations and then selecting the one with the minimum cost calculated using equation

(3.2). This algorithm has relatively higher computational cost (compared to our

second algorithm to be explained next) since it has to calculate equation (3.2) in

each iteration and for every candidate location. On the other hand it has very good

solution quality since it directly minimize the expected variance of the estimated

thermal profile.

Our second algorithm tries to minimize trace(Σ̂) indirectly (see Algorithm 3).

It uses the thermal correlation as the guidance when choosing sensor locations. In-

tuitively, we would like to select those sensor locations that provide the maximum

information about places where sensors do not exist. Also, in order to minimize

redundancy, the sensors themselves should have little information about each other.

58

Algorithm 2 Placement 1

Require: The desired number of sensors m, all grid location set T and the covariance

matrix ΣTT

Ensure: Sensor location set S with |S| = m

1: S ← ∅

2: while |S| < m do

3: for all i ∈ T \ S do

4: Snew ← S ∪ i

5: Calculate the new Σ̂ using Snew (equation (3.2))

6: end for

7: Select imin so that it results in the minimum trace(Σ̂) among all i

8: S ← S ∪ imin

9: end while

The degree of mutual information between two arbitrary grid locations can be cap-

tured by their thermal correlation: if a sensor grid is highly correlated with other

non-sensor grids then in general it is a good candidate. If a sensor location has high

correlation with other sensors yet lower correlation with non-sensor locations, then

it should not be included. Following this intuition we can simplify the cost function

as follows: ∑
∀grids:i

max

(
0, 1−

∑
∀sensors:j

c2
ij

)
(3.27)

Here cij is the thermal correlation between grid i and j. For each grid location i,

the expression max(0, 1−
∑
∀sensors:j c

2
ij) captures the uncertainty of grid i given the

set of sensors. If a lot of sensors have high correlation with i, then this expression

should evaluate to almost 0. Note that if i is a sensor location itself, then this

expression would always be equal to 0 since cii = 1. Choosing a set of sensors that

maximizes the correlation between sensors and non-sensors will be encouraged by

this cost function. On the other hand, due to the inherent max function, it will avoid

picking too many sensors that have high correlation with the same grid (this could

indicate redundancy). This cost function will also discourage choice of sensors which

have high correlation among each other (which is wasteful). This is because the cost

59

of a sensor grid i is 0 regardless of the presence of other sensors. This placement

algorithm will not put more sensors to improve the prediction accuracy at another

sensor location since its contribution to the overall cost function is 0 anyway. The

efficiency of this algorithm is very high since it avoided the costly matrix operations

but instead uses a very simple objective function as the optimization target. The

experimental results presented in section 3.6 will demonstrate the effectiveness of

this cost function. In general the results produced by this algorithm are not always

as good as the first algorithm but they are quite close.

Algorithm 3 Placement 2

Require: The desired number of sensors m, all grid location set T and the thermal

correlations between all pairs of grids

Ensure: Sensor location set S with |S| = m

1: S ← ∅

2: while |S| < m do

3: for all i ∈ T \ S do

4: Snew ← S ∪ i

5: Based on Snew, calculate the new cost (eqn. (3.27)):

cost =
∑
∀i∈T

max

0, 1−
∑

∀j∈Snew

c2
ij


6: end for

7: Select imin which results in the minimum cost among all i

8: S ← S ∪ imin

9: end while

Note the two heuristics described in Algorithms 2 and 3 ignore the compression

error at this stage. The technique for incorporating the compression error will be

discussed in the next section.

3.3.3 Incorporating Fusion Center and Sensor Design Considerations

Once a sensor placement is decided, the techniques presented in section 3.2 are

used to control the granularity of the information transmitted from these sensors to

60

the central register. The finite size M of this register and the finite wiring space as

well as the lack of informativeness of the located sensors force us to perform this

compression. After compression, some sensors may be compressed to a very high

degree. This is because while placing sensors we did not account for these physical

limitations. Also the placement algorithm is a heuristic and may not reach the global

optimal solution. We would like to use compression rates of the placed sensors to re-

place some sensors with the target of improving the quality of the solution. Basically,

we would like to account for the compression error while performing the placement.

We present a simple yet effective feedback system by defining a scaling factor Scalei

for each placed sensor i which is proportional to the degree of compression (small

Scalei implies high compression). We get rid of all sensors (say k) whose scaling

factor is below a threshold. If doing this removes all the sensors then the threshold

is too high. Now, for all the leftover sensors, we change ci,j (the thermal correlation

between a sensor grid i and a non-sensor grid j) to ci,j × Scalei. This implies that

due to the compression, the information provided by sensor i gets reduced as well.

We recompute the placement cost using the new correlations in equation (3.27)

(after removing k sensors). Now we add exactly k new sensors in the same greedy

fashion as described above. We then re-evaluate the compression policy and iterate

if necessary.

To choose an appropriate threshold for the scaling factor, let us first define a

simple scaling factor for illustrative purposes:

Scalei =
2si

2bi
(3.28)

Here si is the number of bits allocated to sensor i. bi is the maximum possible

number of bits for this sensor. The above equation defines a scaling factor for the

i-th sensor and it satisfies the general requirement. Note that if a sensor is allocated

0 bits then Scalei will evaluated to a value close to zero (e.g. 1/28, which intuitively

means instead of reporting 256 potential temperature values with all 8 bits in the

non-compressed case, the sensor can now report only one single value - the sensor

is useless). If the sensor is not compressed at all then Scalei is equal to 1 (full

61

information available). Now the threshold could be chosen, for example, to be 0.1

which means all sensors with less than 10% of the full information should be removed

to give room in favor of other potentially better sensor locations. This means with

a maximum of 8 bits for each sensor, all those with less than 5 bits allocated should

be removed to give space for new (potentially better) sensors for the next iteration

of the placement algorithm. In practice this threshold could be further tuned based

on the experience of the designer.

3.4 The Complete Design Flow

In order to develop this sensing infrastructure, we first generate all the neces-

sary statistical information for the grids and sensors [68, 69]. Then we generate an

initial sensor placement while ignoring the compression factors of sensors. Using this

sensor placement, we decide the sensor compression factors. The maximum number

of bits that a sensor can get (bi in equation (3.12)) depends on how much space

we have to route its data. In general, sensor locations which are further from the

central register and/or in congested areas could be given a smaller bi. In this way

the area and routing overhead can easily be incorporated by appropriate choice of M

and bi. The compression algorithm distributes the bits to sensors globally and also

decides the compression policy locally at each sensor (which observations to com-

press), thereby giving design specifications to the encoder stage of the sensor. This

information is then fed back to the placement engine which accounts for the com-

pression by scaling the correlation information of the sensors appropriately. Then

it generates a new placement while accounting for the compression. This process is

repeated until the solution converges.

It is noteworthy that our approach accounts for sensor design, compression,

fusion and sensor placement in one unified perspective. It also accounts for the

space available for placing sensors, central register and routing the data wires. The

complete design flow is illustrated in figure 3.5 below.

In some cases it is also possible that the thermal correlation map could change

62

Figure 3.5: The complete design flow (CR: central register)

at runtime. One possible solution for this scenario is to summarize the system

thermal behavior using several correlation maps (for example, each representing a

different configuration of a reconfigurable system, or each representing a different

workload cluster for a multi-core system). Our framework could then be applied to

generate a design for each such potential correlation map. Every design generated

this way should be evaluated on all possible correlation maps to determine its overall

performance. The selection criteria is a choice of the designer. For example, we

can select the desirable design based on either its average performance or worst-

case performance across all correlations maps. We leave the possibilities of other

potential better solutions for future work.

3.5 Implementation Overhead

Based on MATLAB implementation, our statistical framework could generate

a complete thermal sensing infrastructure (placement, compression, data fusion) in

less than 10 seconds. Note that this process is needed only once when designing the

infrastructure. Once implemented the runtime overhead is very small: the sensor

compression is done in a distributed fashion at each sensor locally (as a simple

63

encoder stage which consists of 2-level gate logic). The hypothesis testing part can

be implemented using look-up tables. Fusion center only needs to process the simple

linear equation (3.1) which can be computed in about 0.006 seconds for 16 × 16

granularity with our MATLAB implementation (a C/C++ implementation should

be even faster). Data parity check is not necessary since all communication happens

in an on-chip environment which means the transmission error is unlikely. Even if

there are rare occurrence of such errors, its impact on the overall estimation accuracy

would not be too high since the estimation is based on thermal data collected from

multiple sensors. In reality, using the results generated by such a carefully designed

sensing system would improve the control decisions made by the DTM unit.

3.6 Experimental Results

In this section we present our experimental results. One practical way of gen-

erating the required statistical information (mean, variance, correlation and prior

probability of hypotheses) is through simulation of typical chip workloads, though

other approaches are also possible. For example, there are existing well-accepted

power and thermal simulation tools which can be utilized to achieve this purpose.

In this thesis we used Wattch and HotSpot respectively. First, by feeding the typ-

ical chip workloads or programs into Wattch, we can obtain module-wise power

dissipation information of the chip for each potential workload/program. Then we

can feed such power information (in proportion to how often they are executed in

practice) into the HotSpot model to simulate the chip thermal dynamics. The dy-

namic thermal map can then be sampled at fixed intervals to provide us a sample

set of realistic thermal maps of the chip from which we can calculate the sample

mean, sample variance and correlation information etc. They can also be used to

obtain the relative frequency of appearance for each hypothesis (which essentially

represents prior probabilities of the hypotheses). Alternatively such information can

be obtained by having a test chip running typical applications and having infrared

photos taken (more on this please see [39] [26]). Such photos would be more realistic

64

thermal data from which we can also extract the statistical information in a similar

fashion. For the following experiments we used the simulation-based approach. To

make our experiments more practical we separated the training set and the testing

set. An important point to note is that even if such estimated statistical information

is not 100% accurate, we could still generate a better thermal estimate of the chip

than the range-based method (see table 3.1).

Next we will describe our experimental settings: Firstly, we used Wattch with

Alpha binary to generate the power consumption data for each functional unit. We

configured a high performance aggressive processor with pipeline width of 8 instruc-

tions and an instruction window of 128 instructions. Level 1 caches (both instruction

cache and data cache) are 32KB 4-way set associative. All the caches in the hier-

archy are using LRU replacement policy and a block size of 64 bytes. The physical

dimension of the chip is 10mm (length)×10mm (width)×0.5mm (thickness). The

average overall power dissipation of this processor is 60W (similar to Pentium 4). We

assumed a simplified floorplan of the processor core for this illustrative experiment

(see figure 3.6).

Register file
Load/store

queue

ALU
(INT and FP)

Data cache

Rename
Instr. cache

DTLB

ITLB

Instr.
window

Branch
predictor

Figure 3.6: A simplified floorplan used in our experiments

For benchmarks, we arbitrarily chose 10 benchmarks from SPEC-2000 suite as

65

our training set (facerec, ammp, applu, bzip2, crafty, art, apsi, eon, equake, fma3d).

They are compiled with the default parameters provided with the suite and are

simulated for 30 minutes duration. In this process we randomly choose and run a

different benchmark every 5 seconds (to make our simulation more realistic). Then

we fed the obtained module-wise power consumption data into a HotSpot thermal-

RC model to simulate the temperature profile of the chip for the entire 30 minutes

duration. The thermal dynamics for the entire chip are then sampled to provide

us with a sample set from which we could generate an estimate for the system

statistical information required by our approaches. The same simulation process is

carried out for the testing set (gap, gcc, gzip, lucas, mcf, mesa, mgrid, parser, perl,

sixtrack, swim, twolf, vortex, vpr, wupsie) to generate the actual temperature of the

chip (based on which we could calculate the RMS error in table 3.1). The model

parameters are in line with the values shown in [53]: the thermal conductivity

(inverse of thermal resistance) per unit volume is 100W/(m · K). The thermal

capacitance per unit volume is 1.75× 106J/(m3 ·K). For the overall effect of heat

sink the thermal resistance is 0.026K/W and the thermal capacitance is 8.8J/K.

For the effect of convection the equivalent thermal resistance is 1.0K/W and the

thermal capacitance is 140.4J/K.

We conducted a set of experiments for both the noiseless and the noisy sen-

sor cases while assuming the sensors can be either infinitely precise (each sensor is

assigned 10 bits to approximate this assumption) or are bounded by a total num-

ber of 16 bits altogether. We compared the solution (placement, compression and

fusion) given by our statistical design framework and that of a range-based method

similar to those described in [33, 36] (when the total number of bits are limited we

uniformly distribute the bits among all sensors). We used a 16x16 grid granularity

for both methods. For fair comparison, we only calculate and compare the average

RMS error for all hotspot locations whose temperature is above a certain threshold

(say, 80% of the peak temperature across the chip). This is because most of the

range-based methods only allocate sensors to monitor the temperatures at such hot

chip areas. In our experiments, for range-based method we look at each of these

66

hotspot grid cells and use the sensor observation in its closest vicinity to approx-

imate the hotspot temperature. For our methods we use our design framework to

obtain sensor placement/compression and then use our fusion algorithm to estimate

the temperatures at the same set of hotspot locations. The sensor noise character-

istics were obtained using Monte Carlo simulation assuming 3% standard deviation

(normally distributed) in sensor parameters W,L, Vth and tox and this noise is super-

imposed to the actual temperatures to obtain noisy sensor readings. The RMS error

is computed by comparing the thermal estimates (based on limited sensor readings)

to the actual samples we obtained earlier from simulation. The average error (across

all hotspots) are reported in table 3.1. Note that in this table we compared three

different experimental settings:

1. NC/NL: The sensors are assumed to be infinitely precise (no sensor compres-

sion, abbr. NC) and noiseless (NL).

2. C/NL: The sensors are assumed to be noiseless but are compressed so that

their combined readings can be fitted into the central register of 16 bits.

3. C/N: The sensors are assumed to be both noisy and compressed so that their

combined readings can be fitted into the central register of 16 bits.

Table 3.1: RMS error and runtime for different experimental settings

#sensors
RMS for range-based

method (◦C)

RMS for our method

(placement1) (◦C)

RMS for our method

(placement2) (◦C)

Improvement

(for C/N case)

Runtime (s)

NC/NL C/NL C/N NC/NL C/NL C/N NC/NL C/NL C/N placemt.1 placemt.2 placemt.1 placemt.2

2 14.75 14.78 16.55 11.81 11.92 12.13 11.85 11.90 13.31 26.71% 19.58% 3.98 2.17

3 13.45 13.49 15.11 10.53 10.61 11.24 11.02 10.18 12.24 25.61% 19.00% 5.46 2.86

4 12.84 13.06 14.63 9.46 9.57 9.93 9.79 10.01 11.37 32.12% 22.28% 5.82 3.57

5 11.81 12.58 14.09 8.62 8.99 9.41 8.86 9.42 11.15 33.22% 20.87% 6.96 4.23

6 11.41 13.15 14.73 7.89 8.81 9.23 8.18 9.26 10.90 37.33% 26.00% 8.10 5.30

7 11.32 13.84 15.50 7.34 8.73 8.92 8.04 9.23 10.98 42.45% 29.16% 9.19 6.36

Table 3.1 highlights the RMS error comparison for various experimental set-

tings. We can see from this table that as we increase the number of sensors the

error generally goes down. Another important observation is that our methodology

can achieve higher accuracy even with fewer compressed sensor observations when

67

compared to the range-based method (with no compression and more sensors). Our

method requires at most 9 seconds to generate the overall solution and thus can

be easily implemented at design time with little extra effort. The worst-case esti-

mation error for our method and the ranged-based method (with 5 sensors and 16

bits size constraint of central register) are 18.35◦C and 13.24◦C respectively. These

worst-case values could be used when considering temperature guardbands for a

design. In table 3.2 we also report our runtime for designing the complete sensing

infrastructure for different chip granularities.

Table 3.2: RMS error and runtime comparison for different chip granularities

(“Placement 1” algorithm, 5 sensors, M=16, noisy sensor)

granularity 8× 8 16× 16 32× 32

Runtime 4.27s 6.36s 10.48s

RMS error (◦C) 10.13 8.56 8.24

Figure 3.7: Accuracy improvements by refining sensor placement

The overall estimation accuracy obtained using both of our placement heuris-

tics are compared in figures 3.7, 3.8 and 3.9. As explained in section 3.3.3, if we

incorporate the sensor compression information from the later design stage into the

placement engine, we can re-allocate some of the sensors and achieve better overall

accuracy. Such a placement refinement process is repeated until convergence. It can

68

Figure 3.8: Error comparison for different central register size (M))

be observed from figure 3.7 that we can indeed reduce the overall RMS error by coop-

eratively designing the sensor placement and compression schemes (the compression

is required by the limited central register size). The improvement usually converge

in less than 5 iterations. In figure 3.8 we highlight how the RMS error changes as we

fix the sensor placement scheme (number and location) while increasing the total

number of bits at the central register. It can be seen the error goes down as each sen-

sor are allocated more bits. Note that the RMS error for the range-based placement

scheme is 12.84 ◦C even with no compression. The accuracy improvement clearly

demonstrate the effectiveness of our thermal sensing infrastructure. This becomes

more clear as we plot all data in the same graph (see figure 3.9). It can be observed

that if we increase the total number of sensors the error generally goes down. The

only exception is the case for range-based method with 16 bits central register size

constraint. The error actually increases a little bit after 5 sensors. This is because

there is a fundamental limitation on how precise each sensor can be posed by the

central register size constraint. As the number of sensor increases, the precision of

each sensor degrades since the bits are uniformly distributed among all sensors. This

is not a problem for our method since we have an explicit scheme for compressing

sensors. Specifically we look at the relative importance of each sensor and determine

69

Figure 3.9: Error comparison for different settings

how they should be compressed in order to achieve the best accuracy. The sensors

which provide more information than others get more bits allocated whereas the less

important sensors are compressed further. Thus if we increase the number of sensor

beyond 5, the error tends to converge instead of increasing. This signifies that no

more information can be obtained given the 16 bits limitation in the central register

size.

Figure 3.10: Error comparison for noiseless and noisy cases (varying M constraints)

Figure 3.10 highlights how the RMS error changes when we increase the central

register size constraint M from 4 to 32 while fixing the number of sensors to 6 (with

a fixed placement scheme). We can observe a steady decrease in the RMS error for

70

the noiseless case and a first-decrease-then-converge curve for the noisy case. This is

because in the noiseless case the sensors can accurately reflect its local temperatures,

the more bits we have the more accurate our estimates will be. However in the noisy

sensor case, because the sensor observations are corrupted by noise, more bits at

each sensor do not necessarily help us gain extra information and hence the error

tends to converge after a certain point.

In the following we demonstrate how our thermal sensing infrastructure per-

forms when applied to the dynamic chip system. We used the popular thermal-RC

model (with parameters set similar to those used in HOTSPOT tool [53]) in the

following experiment. In this model each grid cell i has an associated thermal resis-

tance Ri (or equivalently a thermal conductance Gi = 1/Ri). Each grid cell i also

has a thermal capacitance Ci. Between any two neighboring grid cells i and j there

is a cross thermal resistance Rij (or Gij = 1/Rij). The grid temperature is modeled

by the node voltage. The differential equation governing the transient temperature

Ti(t) at grid cell i can be expressed as follows (Ni is the set of all neighboring grids

for i): ∑
j∈Ni

(Ti(t)− Tj(t))Gij + Ci
dTi(t)

dt
− Pi(t) = 0 (3.29)

We simulated an randomly chosen sequence of SPEC 2000 benchmarks using

Wattch and then feed the power dissipation data into equation (3.29). By solving

this equation we could obtain the dynamic temperature change of the system [63].

This is used as the reference for comparing the accuracy of our methods. We ap-

plied both our schemes (including sensor placement, compression and fusion) and

the ranged-based method (with uniform sensor compression) and report the results

in figure 3.11. The data was obtained for a randomly chosen hotspot chip location

(which does not coincide with the sensor locations). The actual temperatures (solid

blue curve in the figure) are obtained from the solution of equation (3.29). For our

method we placed 7 sensors on the chip and for range-based method 10 sensors are

deployed. A total number of 32bits is assumed to be the size constraint of the cen-

tral register. As a result the sensors get compressed and the observed temperatures

71

become discrete. Such discrete and compressed temperature observations are sam-

pled from sensors every second and then combined into the central register. The

data from this register is subsequently used to generate thermal estimates based

on our fusion algorithm (see [74] and equation (3.1)). As can be seen, our results

(green segmented curve) follows the real temperature more closely as compared to

the results generated by the range-based method (red dotted curve). This demon-

strates the effectiveness of our statistical framework in estimating the dynamic chip

temperature.

0 500 1000 1500
20

40

60

80

100

120

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual Temperature
Our Estimates
Ranged-based Estimates

Figure 3.11: Dynamic temperature tracking: actual vs estimated

Though the results demonstrated in this section are generated on a single-

core processor, our approaches can be applied to multi-core processors as well. Our

framework exploits the thermal correlation map to drive sensor placement and data

fusion. In a multi-core scenario, the correlation are likely to be stronger within each

core and weaker between different cores. Thus, driven by our placement algorithm,

each core will essentially get its own sensors which will then be placed at the most

informative locations within the core.

72

Chapter 4

Adaptive and Autonomous Thermal Tracking

4.1 Motivation

In this chapter, we propose a methodology for adaptive and autonomous ther-

mal tracking. Many existing work on the general topic of temperature tracking

focus on estimating chip thermal state with a few given sensors. Any change in the

underlying workload characteristics are largely ignored. Some of the existing effort

are discussed below. Cochran et al. used spectral methods [15] to characterize the

thermal profile of a chip. Zhang et al. exploited the logical/spacial correlations

in temperature between sensors and other chip locations to estimate the thermal

profile. Sharifi et al. used Kalman filter (KF) based method [50] to track the

dynamic change in chip temperature. Jung et al. also developed a Kalman filter

based approach to issue alerts for potential thermal hot spots [24]. Among all these

methods, Kalman filter based techniques are quickly gaining popularity since they

are capable of exploiting the statistical power characteristics to improve the esti-

mation accuracy (note that a chip’s temperature is a strong function of its power

dissipation). They also explicitly account for sensor noise when generating thermal

estimates. Though the standard Kalman filter based approach is quite effective, it

also has several drawbacks which we will discuss below.

First of all, despite the fact that the statistical workload characteristics may

change at runtime (which will in turn cause the statistical power characteristics to

change), the standard Kalman filter could not detect or adapt to any such changes.

This can lead to erroneous results or degraded performance of the filter. In practice,

the change in statistical power characteristics (mean, variance and etc.) is often

caused by varying workload characteristics (e.g. switching from multimedia process-

ing to word processing, or from integer-heavy operations to floating-point heavy

73

operations). Such changes can also be caused by various dynamic power manage-

ment policies taking effect at runtime (e.g. switching from low-power/sleep mode

to full-speed mode, etc.). In such a scenario, the traditional Kalman filter based

approach could no longer produce the desired estimation accuracy. In this thesis,

we address the problem of real-time adaptive thermal tracking by accounting for

dynamic changes in the statistical power characteristics caused by various factors.

Using Kalman filter as the core estimation engine, we first develop schemes for au-

tonomous detection of changes in the underlying power characteristics. We then

propose adaptive techniques to tune our filter at runtime in order to continuously

produce optimal estimation results. Such awareness of system’s power state can

prove to be critical in tracking the thermal state of today’s general-purpose proces-

sors. To achieve our goal, we proposed two adaptive schemes which are based on

the concept of residual whitening and hypothesis testing respectively. The former

is more suitable for relatively stable systems (the statistical characteristics of power

do not change too quickly). The latter is designed for systems that switch among

different applications very frequently. Experimental results showed that our adap-

tive method is capable of achieving 60% accuracy improvement over the traditional

approaches which do not adapt to changes in system’s power characteristics. The

implementation overhead for our adaptive filter is also very small. For the residual

whitening based method only a set of linear operations are involved. The hypothesis

testing based approach can be implemented using table lookup strategy.

Another drawback of the standard Kalman filter is that it is built upon a

linear system model which ignores the nonlinear dependency of leakage power on

temperature. As technology continues to scale down, this nonlinear effect of leakage

is no longer negligible. It is reported in [25, 46] that the leakage power can con-

tribute to about 50% of the total power consumption under the current technology

node. Note that leakage power has the undesirable characteristic that it could in-

creases exponentially with temperature [22, 56]. More leakage power will in turn

lead to higher chip temperature, thus making today’s silicon chip a positive feedback

system. Ignoring this important phenomenon could lead to underestimation of the

74

real temperature experienced by a chip. In this chapter we introduce the extended

Kalman filter theory to explicitly model and account for the nonlinear leakage effect

in our Kalman filter formulation. By doing so the estimation accuracy could be

improved significantly compared to the traditional approach. Such a leakage-aware

extended Kalman filter could be easily combined with our adaptive approaches to

further improve the thermal tracking accuracy.

4.2 Preliminary

In this section we first explain how to model the dynamic thermal behavior of

a silicon chip as well as its thermal sensors. We then introduce the Kalman filter

based estimation framework.

4.2.1 Thermal RC Model

Tamb

T1 T2 T3

Tn

P1 P2 P3

Pn

Thermal

Sensors

Figure 4.1: Equivalent thermal-RC model of the chip with on-chip thermal sensors

Due to the well-known duality between heat flow and electrical phenomena, the

thermal dynamics of a chip system can be modeled by a thermal-RC circuit [63, 53],

see figure 4.1. Each node in this circuit corresponds to a chip grid location (there

75

are also nodes representing the heat sink/package). The temperature Ti at node i

can be represented by the voltage at that node. Similarly, the power dissipation Pi

can be modeled by a current inflow at node i. There is also a thermal capacitance

Ci associated with each node which represents its ability to hold heat. Between any

neighboring nodes i and j (and between any node and the package) there is also

thermal resistance Rij (or conductance Gij = 1/Rij) which captures how quickly

heat can be transferred between the two nodes. In this way, the thermal dynamics

at each grid location i can be described by the following differential equation (see

details in [63, 53]): ∑
j∈Ni

Gij(Ti(t)− Tj(t)) + Ci
dTi(t)

dt
− Pi(t) = 0 (4.1)

In equation (4.1), t represents the time and Ni is the set of all neighbors of

node i. Ti(t) and Pi(t) are respectively the thermal state and the power consumption

of node i at time t. Converting to discrete-time state space, the above differential

equation can be approximated by the following difference equation (see [63, 50]):

T [n] = AT [n− 1] +BP [n− 1] (4.2)

Here T [n] and P [n] are vectors representing the temperature and power values

for all chip grids at time n. The coefficient matrices A and B are determined by the

circuit parameters (Gij and Ci) and the chosen length of time steps. They can be

computed as shown by [53]. Equation (4.2) essentially captures how the system’s

thermal state at time n depends on its thermal state and power dissipation at an

earlier time n− 1.

Due to unpredictability of workloads (vector P [n] is unknown until runtime)

and fabrication/environmental variabilities, the exact value of T [n] at runtime can

be very hard to predict. This has motivated designers to place sensors at various

chip locations to monitor chip temperature at runtime (see figure 4.1). These on-

chip sensors can provide us with an observation vector S[n] which is essentially a

subset of T [n] plus some sensor noise v[n]:

S[n] = HT [n] + v[n] (4.3)

76

In equation (4.3), H is simply a transformation matrix determined by the sensor

placement. It has dimension s×m if vectors S[n] and T [n] each has s and m elements

respectively. As explained earlier, sensors can be quite noisy, especially in on-chip

environments. v[n] is a Gaussian random vector with zero mean which is used to

represent sensor noise [50]. Note that sensors come with power and area overheads.

This means their number and placement are highly constrained (s << m). The

problem of estimating the entire thermal profile (vector T [n]) based on very limited

sensor observations (S[n]) at runtime is rather complex.

Recently, many techniques have been proposed to solve the above problem

[15, 74, 50, 24]. Among these techniques, Kalman filter based method is a very

promising research direction: it is capable of generating thermal estimates for all

chip locations while countering sensor noise. It is also quite efficient and could

be applied to real-time thermal tracking problems. In the next section we briefly

introduce the Kalman filter methodology.

4.2.2 Kalman Filter Based Thermal Tracking

Typically, the power dissipation P [n] can be viewed as a random quantity

which are determined by many factors. For example, P [n] depends on the applica-

tion being executed, input data patterns, task scheduling, dynamic frequency scaling

and etc. The sensor noise v[n] is also affected by various factors such as supply volt-

age fluctuation, cross coupling, fabrication variability and etc. According to Central

Limit Theorem, the collective effect of many different and independent sources of

randomness will approximate a Gaussian distribution. The Kalman filter theory

[17] states that if the randomness in P [n] and v[n] has Gaussian nature, Kalman

filter could generate optimal estimates for T [n] given the linear model described in

equations (4.2) and (4.3).

In Kalman filter two sequential steps are carried out repetitively: predict &

correct. They are described by equations (4.4) to (4.8) below:

77

predict:

T [n|n− 1] = AT [n− 1|n− 1] +Bµp (4.4)

C[n|n− 1] = AC[n− 1|n− 1]AT +BQBT (4.5)

correct:

T [n|n] = T [n|n− 1] +K[n](S[n]−HT [n|n− 1]) (4.6)

K[n] = C[n|n− 1]HT (R +HC[n|n− 1]HT)−1 (4.7)

C[n|n] = (I −K[n]H)C[n|n− 1] (4.8)

In the above equations, R is the covariance matrix of sensor noise v[n]. C[n|n−

1] and C[n|n] are the error covariance matrices associated with T [n|n−1] and T [n|n]

respectively. I is the identity matrix. K[n] is the Kalman gain which is chosen to

minimize the expected estimation error at each time step.

The Kalman filter works in the following way: in the “predict” stage the

filter uses the average power dissipation µp and the temperature history to predict

the current temperature (T [n|n − 1] in equation (4.4)). As soon as a new sensor

observation becomes available, the filter adjusts its prediction in the “correct” stage

using the new sensor input S[n] to produce a more accurate thermal estimate T [n|n]

(see equation (4.6)). These two stages are carried out iteratively as time progresses,

thus continuously tracking the dynamic thermal profile of the system. The filter

also updates the error covariance matrices C[n|n − 1] and C[n|n] associated with

the estimates T [n|n − 1] and T [n|n] at each step based on the variance of power

and sensor noise (see equations (4.5) and (4.8)). Such error covariance matrices are

indicators of the potential error of the filter at each step. They are also used to

calculate the optimal Kalman gain K[n] in equation (4.7).

Note that usually R (the covariance of sensor noise) does not change for a

relatively long period of time. It is also noteworthy that if the system is only running

a set of similar applications, the statistical characteristics of P [n] stay relatively

stable as well. In such a scenario, the Kalman filter will quickly stabilize which

78

means C[n|n− 1], C[n|n] and K[n] will all converge to static values. This is called

the steady-state of Kalman filter. During the steady state, even though our thermal

estimates may change time to time, the error covariance C[n|n] stays the same. In

a highly dynamic chip environment, however, this assumption becomes problematic

for reasons we explained earlier. In the next section we discuss how to overcome this

drawback of standard Kalman filter using our adaptive thermal tracking techniques.

4.3 Adaptive Tracking Based on Residual Whitening

4.3.1 Autonomous Detection

In this subsection we first explain how we can autonomously detect any po-

tential change in system’s statistical power characteristics. Let us start by defining

a power state k as the state of the system in which the statistical power parameters

of the chip (mean µP and covariance Q) stay stable. This implies that µPk and Qk

are both constants for a certain power state k. As explained earlier, each state k

essentially captures the system’s power behavior for a set of similar applications.

We further assume that the statistical parameters {µPk , Qk} for each state can be

pre-characterized by simulating typical chip workloads/benchmarks (for example,

as what we did for the experiments in section 4.7). Such statistical parameters are

provided as input to our methods. Our residual whitening based approach takes

advantage of a useful property of the residual process e[n] which is defined below:

e[n] = S[n]−HT [n|n− 1] (4.9)

= HTreal[n] + v[n]−HT [n|n− 1] (4.10)

= −Hx[n] + v[n] (4.11)

Here (4.10) is obtained by plugging (4.3) into (4.9). x[n] = (T [n|n − 1] −

Treal[n]) represents the error of our thermal prediction T [n|n− 1]. The autocorrela-

tion function of the residual process is defined as

aci = E(e[n] · e[n− i]T) (4.12)

79

Essentially aci is the autocorrelation of the error process between time n and n− i.

Our residual whitening based approach described in this section is only appro-

priate for the case where the system stays in each power state for relatively long

period of time, so that the Kalman filter can enter its steady-state between succes-

sive power state switch. There is a useful property of Kalman filter which states

that once the filter has entered steady state, the autocorrelation aci of the residual

process will be zero for all i except i = 0 as long as the filter is operating with the

correct statistical parameters µP and Q. This is called the whitening of the residual

process (interested readers can refer to chapter 5 of [17] for detailed proof).

Now, the autocorrelation of the residual process can be easily estimated using

a combination of the Kalman filter outputs and the sensor observations based on

the following equation:

âci =
1

N

N∑
n=1

(e[n] · e[n− i]T) (4.13)

=
1

N

N∑
n=1

(
(S[n]−HT [n|n− 1]) · (S[n− i]−HT [n− i|n− i− 1])T

)
(4.14)

Thus, during the filter operation, we can keep record of a running window of

past sensor observations & Kalman filter predictions and then use them to estimate

the autocorrelation of the residual process in an online fashion [70]. If the estimated

aci is sufficiently close to zero, then the residual-whitening property is satisfied and

we know the statistical power parameters µP and Q that were used to operate

Kalman filter is correct. Otherwise a power state switch must have occurred and

we must update the filter with new parameters. Based on this principle of residual

whitening we can design our adaptive Kalman filter in the following way: the filter

stores the most recent N+1 data samples (if we choose i = 1 in equation (4.14)) and

keeps updating the autocorrelation function aci based on (4.14). As soon as the value

of aci exceeds a certain threshold act, the filter knows that a power state change has

happened and can react accordingly. This approach does not require any external

interference and the filter can detect the change in power state autonomously.

80

4.3.2 Adaptive Tracking Algorithms

Once our adaptive filter detects the power state change, there are two things

that need to be done: 1) we need to be able to predict the correct new state k∗ and

2) the filter parameters (µp, Q) need to be updated to their correct values (µPk∗ , Qk∗).

To predict the new power state we could do the following: for each potential power

state k, we rewind the filter to the point where the power state change happened

and re-compute acki using µpk, Qk. Then we could simply choose the state k∗ which

results in the smallest |acki − 0|:

k∗ = argmin
k
|acki − 0| (4.15)

In the simplest case i can be chosen as 1. Essentially this scheme chooses the

state that minimizes acki (the one closest to zero) as our predicted new state. There

is one more complication though. If we only know that a switch in power state has

occurred but do not know where exactly it happened in time, we would not be able

to compute the correct value of acki for each state k. As long as we know the exact

state switching time tsw, rewinding Kalman filter to this point and computing acki for

for each state k is relatively easy. Next we give a divide-and-conquer algorithm for

detecting the switching time of the power state change (see Algorithm 4). Given the

most recent N + 1 data samples (within which the state change has been detected)

and the previous power state l before the switch happened, the algorithm predicts

the switching point to fall within the first half or the second half of the N + 1

data samples based on the autocorrelation computed on each half respectively. We

recursively divide this sub-range in half until the switching point is predicted to fall

within a reasonably small range (minlength in the algorithm). Algorithm 5 gives

the overall adaptive thermal tracking procedure. Note that for these algorithms we

assume Kalman filter is used as our underlying estimation engine.

81

Algorithm 4 Autonomous Detection

Require: sequential data samples {S[n]} and {T [n|n− 1]} for n = tb to te, desired

detection resolution minlength

Ensure: the approximate switching time tsw

1: tm ← b te−tb2
c // compute the middle point

2: /* minlength: desired detection resolution */

3: if te − tb < minlength then

4: return tsw = tm

5: end if

6: for n = tb to tm do

7: compute residual e[n] = S[n]−HT [n|n− 1]

8: end for

9: estimate âc1 = 1
(tm−tb)

∑tm
n=tb+1(e[n] · e[n− 1]T) for the first half data samples

10: if âc1 > threshold then

11: /* âc1 6≈ 0: the switching point falls in [tb, tm] */

12: return swdetect(tb, tm)

13: else

14: /* âc1 ≈ 0: the switching point falls in [tm + 1, te] */

15: return swdetect(tm + 1, te)

16: end if

4.4 Adaptive Tracking Based on Hypothesis Testing

The previous approach was based on computing the autocorrelation value for

the residual process for all the potential power states and choosing the one which

was closest to 0. In this section we present an alternative approach which is based on

hypothesis testing. In this framework, we treat each power state k of the K potential

states as a hypothesis Hk. It has a probability pk of occurrence. we always check the

probability of each power state using the most recent sensor observations to see if

the assume power state has changed. We would like to choose the power state which

has the highest probability of occurrence based on the current sensor observations.

82

Algorithm 5 Adaptive Tracking Algorithm Based on Residual Whitening

Require: The sequential sensor inputs S[n] and the potential power statistics

{(µpk, Qk)} for k = 1 to K

Ensure: The adaptive Kalman filter thermal estimates

1: initialize µp ← µpk, Q← Qk with any k

2: while (1) do

3: operate Kalman filter as normal

4: if (n%N == 0) then

5: compute ac1 = 1
N

∑n
i=n−N+1(e[i] · e[i− 1]T)

6: // detect power state change

7: if |ac1| > threshold then

8: tsw = swdetect(n−N, n) // switching time

9: // predict the new system state

10: for k = 1 to K do

11: µp ← µpk, Q← Qk

12: rewind Kalman filter and re-compute ack1 assuming state k is true

13: end for

14: k∗ = argmin
k
|ack1 − 0|

15: update filter parameters: µp ← µpk∗ , Q← Qk∗

16: end if

17: end if

18: n← n+ 1

19: end while

Given the sensor reading S[n], the posterior probability for each hypothesis Hk is

defined as prob(Hk|S[n]). In this framework, we would like to choose the power

state or hypothesis with maximum posterior probability.

Hp = δ(S[n]) = argmax
Hk∈H1..HK

{prob(Hk

∣∣S[n])} (4.16)

Here δ(S[n]) is our decision rule and it is a function of the sensor observation

S[n] only: Given a certain S[n], we evaluate prob(Hk

∣∣S[n]) for each potential Hk

83

and then choose the one with the highest probability. The problem is really how we

can obtain the value of prob(Hk

∣∣S[n]). Note that according to Bayes’ theorem we

have the following relationship:

prob(Hk

∣∣S[n]) =
prob(Hk, S[n])

prob(S[n])

=
prob(S[n]|Hk)× prob(Hk)

prob(S[n])
(4.17)

where prob(Hk) is the prior probability of Hk (prob(Hk) = pk). Note that the

denominator in the above equation stays the same for each different hypothesis Hk.

This means we can focus on the numerator only and simplify our decision rule to

the following:

Hp = δ(S[n]) = argmax
Hk∈H

{prob(S[n]
∣∣Hk)× pk} (4.18)

where H = {H1, . . . , HK}. Now we can use the following process to compute the

value of prob(S[n]
∣∣Hk). Let us assume that until time n− 1 we knew exactly which

power state we were in. Hence we know T [n−1|n−1] and C[n−1|n−1] accurately. At

time n, we detect a change in power state and have an associated new sensor sample

S[n]. Since the power state has changed we do not know T [n|n− 1] and C[n|n− 1]

accurately. For each hypothesis k, we can use equations (4.4) to (4.8) in time step

n to compute new potential Tk[n|n− 1] and Ck[n|n− 1] for each hypothesis k. Now

let the error be xk[n] = T [n]− Tk[n|n− 1] for each hypothesis k. Thus Ck[n|n− 1]

is the covariance matrix of xk[n].

Based on equation (4.3) we have the following:

S[n] = HT [n] + v[n]

= H(xk[n] + Tk[n
∣∣n− 1]) + v[n] (4.19)

where v[n] is the sensor noise (normally distributed with zero mean and covariance

R). Since S[n] is a linear combination of Gaussian random variables, it should be

normally distributed as well whose mean and covariance can be derived as follows

84

(assuming xk and v are uncorrelated):

µSk = E
[
H(xk[n] + Tk[n

∣∣n− 1]) + v[n]
]

= HTk[n
∣∣n− 1] (4.20)

ΣS
k = Hcov(xk[n])HT + cov(v[n]) = HCk[n

∣∣n− 1]HT +R (4.21)

Here cov(·) represents the covariance of a certain random vector. Now that

(given a certain hypothesis Hk) we know S[n] has Gaussian distribution with mean

µSk and covariance ΣS
k , the probability prob(S[n]

∣∣Hk) can be easily obtained based

on the following multivariate Gaussian density function:

prob(S[n]
∣∣Hk)

=
1

(2π)N/2|ΣS
k |1/2

exp{−1

2
(S[n]− µSk)T (ΣS

k)−1(S[n]− µSk)} (4.22)

Once we have prob(S[n]
∣∣Hk) the decision rule in equation (4.18) can be easily

evaluated (note that prob(Hk) = pk is the prior probability).

Though the above described method is effective, its accuracy relies heavily on

the amount of noise in the system and also how accurately we can determine the

switching time of the power states. This is because the above scheme depends too

much on S[n]: the information sampled at a single time instance. It tends to make

mistakes if such a S[n] is erroneous due to noise. We can improve the accuracy of this

method by considering m sequential sensor observations {S[n], S[n − 1], . . . , S[n −

m+1]}. By exploiting the information sampled at multiple time instances, the noise

associated with each one gets canceled out and a more accurate prediction can be

achieved. In such a scenario our decision rule is similar:

Hp = δ(S[n], S[n− 1], . . . , S[n−m+ 1])

= argmax
Hk∈H

{prob(Hk

∣∣ S[n], . . . , S[n−m+ 1])} (4.23)

= argmax
Hk∈H

{prob(S[n], . . . , S[n−m+ 1]
∣∣ Hk)× prob(Hk)} (4.24)

Note equation (4.24) is obtained by applying the Bayes’ theorem and noting

the fact that the denominator stays the same for each hypothesis Hk. To evaluate

85

this decision rule we can expand the conditional probability as follows:

prob(S[n], S[n− 1], . . . , S[n−m+ 1]
∣∣ Hk)

= prob(S[n−m+ 1]
∣∣Hk)× prob(S[n−m+ 2]

∣∣S[n−m+ 1], Hk)

× . . .× prob(S[n]
∣∣ S[n− 1], . . . , S[n−m+ 1], Hk) (4.25)

=
n∏

i=n−m+1

prob(S[i]
∣∣ Tk[i∣∣i− 1], Ck[i

∣∣i− 1], Hk) (4.26)

Note that at a certain time i, Kalman filter uses all previous sensor observa-

tions up to time i − 1, combined with the statistical information Hk ∼ N (µpk, Qk)

to generate Tk[i
∣∣i− 1] and Ck[i

∣∣i− 1], which is then used to derive the conditional

probability of S[i] (see equations (4.20), (4.21) and (4.22)). This leads to the sim-

plification in the last step. Note that each term in (4.26) can be computed in

exactly the same way as we showed earlier when computing the conditional prob-

ability of a single observation (prob(S[n]
∣∣Hk)). Once we know how to compute

prob(S[n], S[n− 1], . . . , S[n−m+ 1]
∣∣ Hk), the decision rule for multiple sequential

sensor observations (equation (4.24)) can be easily obtained.

4.5 Qualitative Comparison

In general the hypothesis-testing based scheme operates at a much finer granu-

larity in time than the residual-whitening based method. The latter method usually

has lower overhead: it is activated every N steps and only tries to predict the new

system state if an actual change has been detected). It also has higher accuracy

(more sensor observations are used to test the whiteness of the residual process:

N >> m). However it is constrained to the case where the system stays in each

state for relatively long period of time so that Kalman filter has entered steady-state.

The hypothesis-testing based method has the flexibility of changing the number of

sequential observations exploited (the value m). Thus it can adapt to any switch-

ing frequency of the system. However it has higher implementation overhead: the

probability in equation (4.24) needs to be updated and decision rule needs to be eval-

uated at each time step. We are providing both methods here so that in practice

86

the most appropriate scheme can be selected based on the nature of the application

(yet another level of adaptivity).

4.6 Leakage-aware Kalman Filter

4.6.1 Problem Description

In this section we discuss how our Kalman filter based adaptive-and-autonomous

thermal tracking schemes can be extended to explicitly account for the leakage effect

[72]. As shown by equation (4.2), the entire standard Kalman filter theory is based

on a linear system model. Under this assumption, Kalman filter theory is theoreti-

cally sound and can generate optimal thermal estimates efficiently using equations

(4.4) to (4.8). However, as VLSI fabrication technology continues to scale down,

leakage power is contributing more and more to the total power dissipated by a

chip. As reported in [25, 46] leakage power can take up to 50% of the total chip

power consumption. Note that leakage has the non-linear nature that it can increase

exponentially with the chip temperature. Therefore, in reality, the standard Kalman

filter tends to under-estimate the actual chip temperature due to the assumed linear

model. It needs to be modified or extended to account for the nonlinear leakage-

temperature dependency. It is also desirable that doing so will not incur too much

computational overhead since thermal tracking is usually done in real-time. In this

section, we use extended Kalman filter to explicitly model the nonlinear leakage

power. We then modify the standard Kalman filter formulation accordingly to ac-

count for this change. The techniques are primarily based on linearization schemes

in order to keep the computational overhead to a minimum. Next, let us first explain

the nonlinear leakage-temperature relationship in more detail.

There are several leakage model proposed in the existing literature. Some

models use a quadratic approximation [56]. Here we use a more accurate leakage

87

model as described in [22]:

PL = Ngate · Vdd · Iavg

= Ngate · Vdd · Is(T0, V0) · T 2 · e((614.98·Vdd−3528.43)/T) (4.27)

= L · T 2 · e(K/T) (4.28)

In the above model, PL represents the leakage power. Ngate is the total number

of gates within a certain chip area under consideration. Vdd is the supply voltage.

T0 and V0 are reference temperature and voltage, respectively. Is(T0, V0) is the sat-

uration current at T0 and V0. L = Ngate · Vdd · Is(T0, V0) is a design/technology

dependent constant. K = 614.98 · Vdd − 3528.43 is also a technology-dependent

constant for a fixed supply voltage. As can be seen, the leakage power has a rather

complex dependency on temperature. The overall effect is approximately an expo-

nential increase in leakage as temperature rises. There are other models for leakage

power as well. We found the model described above quite effective in capturing the

leakage-temperature dependency and we will use it to explain our method. Note

that our approach is general and can handle other nonlinear leakage-temperature

models as well [72].

4.6.2 Extended Kalman Filter

Now let us take leakage power into the picture and derive the new system

model (equations (4.29) to (4.32)). Note that T [n] still depends on T [n − 1] and

P [n − 1] (the temperature and power history). However power P [n − 1] has two

components now: dynamic power PD[n−1] and leakage power PL[n−1]. The latter

is a nonlinear function in temperature.

T [n] = AT [n− 1] +BP [n− 1] (4.29)

= AT [n− 1] +B(PD[n− 1] + PL[n− 1]) (4.30)

= AT [n− 1] +BPD[n− 1] +BL · elem
(
T [n− 1]2eK/T [n−1]

)
(4.31)

= f(T [n− 1]) +BPD[n− 1] (4.32)

88

where

f(T [n− 1]) = AT [n− 1] +BL · elem
(
T [n− 1]2eK/T [n−1]

)
(4.33)

For simplicity in notation we used elem(·) to denote the element-wise opera-

tions (the computation is carried out in an element-by-element fashion for the entire

vector or matrix; for example, elem([1 2 3]2) = [1 4 9]). This is because the leakage

power generated at a certain grid location only depends on the local temperature

at that location. In the above equations f(T [n − 1]) is a nonlinear function. PD

and PL represent the dynamic and leakage power respectively. Equation (4.31) is

obtained by substituting (4.28) into (4.30).

Based on this new nonlinear system model, we should now update T [n|n− 1]

(the projected/predicted temperature at time n) as follows:

T [n
∣∣n− 1] = E(T [n]

∣∣ T [n− 1|n− 1]) (4.34)

= f(T [n− 1
∣∣n− 1]) +BµPD (4.35)

where µPD represents the average value of dynamic power. Since T [n|n − 1] is our

prediction for T [n] before any sensor observations are made at time n, the best

guess we have is simply the expected value of T [n] given the observations up to time

n− 1, hence the above equation. Note that (4.35) is derived based on the nonlinear

model (4.32) and should now replace equation (4.4) in the standard Kalman filter

to account for the leakage effect.

We have shown that computing T [n|n−1] in the predict stage of Kalman filter

is relatively easy. However, given a nonlinear system described in (4.32), computing

the error covariance matrix C[n
∣∣n−1] is much harder. Note that with a linear model

(which is the case when ignoring the leakage), a Gaussian input (vector T [n − 1]

and P [n − 1] in equation (4.2)) will always produce a Gaussian output (T [n] in

(4.2)). Thus C[n
∣∣n − 1] can be easily computed using equation (4.5). However

this does not hold true any more due to the nonlinear function f(·) in equation

(4.32) which makes computing the covariance matrix C[n
∣∣n−1] much more difficult.

This covariance matrix is critical because the Kalman gain (see equation (4.7)) and

therefore the accuracy of the entire filter depends critically on the correct value of

89

it. Various linearization techniques can be used to help us approximate the value of

this covariance matrix. Next we introduce two such schemes.

Extended Kalman filter is a popular approach that has been successfully ap-

plied to many nonlinear systems over the past many years. Here we introduce this

technique to the realm of thermal tracking to address the nonlinear leakage effect.

The fundamental concept of this method revolves the notion that, at each time step,

the true temperature is sufficiently close to the estimated temperature. Therefore,

we can perform a first-order Taylor expansion of the nonlinear term in equation

(4.32) at each time step around the most recent temperature estimate. Based on

this linearized model, the error covariance matrix C[n
∣∣n − 1] can be computed ac-

cordingly.

Notice that in equation (4.32), the nonlinear function f(·) is differentiable.

Thus if we perform a Taylor expansion of the term f(T [n − 1]) around a certain

point Tc (note that Tc is a vector), we can approximate T [n] as follows:

T [n] = f(T [n− 1]) +BPD[n− 1] (4.36)

≈ f(Tc) + f ′
∣∣
Tc

(T [n− 1]− Tc) +BPD[n− 1] (4.37)

= f(Tc) + A′c(T [n− 1]− Tc) +BPD[n− 1] (4.38)

Here the matrix A′c = f ′
∣∣
Tc

is the Jacobian of f evaluated at Tc. Both A′c and

f(Tc) are constants whose values are determined once Tc is chosen. To ensure the

accuracy of this approximation, Tc should be chosen as close to T [n− 1] as possible.

Note that the estimate T [n − 1
∣∣n − 1] produced by the filter at time n − 1 is the

conditional expectation of T [n − 1] given all sensor observations up to time n − 1;

it is naturally our best guess (statistically) for T [n − 1] and should be sufficiently

close to it in value as long as the filter is operating correctly. Thus, to approximate

C[n
∣∣n−1], we can choose Tc = T [n−1|n−1] in equation (4.38) and then substitute

90

it into the definition of covariance matrix, as shown by the following equations:

C[n
∣∣n− 1]

=E
(
(T [n

∣∣n− 1]− T [n]) · (T [n
∣∣n− 1]− T [n])T

)
(4.39)

=E

((
A′n−1(T [n− 1]− T [n− 1|n− 1]) +B(PD[n− 1]− µPD)

)
·
(
A′n−1(T [n− 1]− T [n− 1|n− 1]) +B(PD[n− 1]− µPD)

)T)
(4.40)

=E
(
A′n−1(T [n− 1]− T [n− 1|n− 1])

· (T [n− 1]− T [n− 1|n− 1])TA
′T
n−1

)
+ E

(
B(PD[n− 1]− µPD)(PD[n− 1]− µPD)TBT

)
(4.41)

=A′n−1C[n− 1
∣∣n− 1]A

′T
n−1 +BQBT (4.42)

where

A′n−1 = f ′
∣∣
T [n−1|n−1]

(4.43)

Here equation (4.40) is obtained by substituting (4.35) and (4.38) (with Tc =

T [n− 1|n− 1]) into (4.39). Equation (4.41) can be obtained by noting the fact that

the randomness in estimation error (T [n− 1]− T [n− 1|n− 1]) and the randomness

in dynamic power (PD[n − 1] − µPD) are generally independent. The former is

usually caused by sensor noise and modeling error. The latter is usually caused by

workload variability. Thus the expectation of the cross products in equation (4.40)

evaluates to zero, hence the equation (4.41). Finally (4.42) can be obtained using

the definitions of Q (covariance matrix of dynamic power) and C[n− 1
∣∣n− 1] (see

equation (4.44)):

C[n− 1
∣∣n− 1]

=E
(
(T [n− 1

∣∣n− 1]− T [n− 1]) · (T [n− 1
∣∣n− 1]− T [n− 1])T

)
(4.44)

The remaining parts (correct stage: equation (4.6) – (4.8)) of standard Kalman

filter stay the same due to the fact that they handle the sensor observations only

(which have nothing to do with leakage). Thus, to incorporate nonlinear effect

of leakage power we simply need to replace the predict stage equations (4.4) and

91

(4.5) with the new equations (4.35) and (4.42). The extended Kalman filter can be

summarized as follows:

predict:

T [n
∣∣n− 1] = f(T [n− 1

∣∣n− 1]) +BµPD (4.45)

C[n
∣∣n− 1] = A′n−1C[n− 1

∣∣n− 1]A
′T
n−1 +BQBT (4.46)

correct:

T [n|n] = T [n|n− 1] +K[n](S[n]−HT [n|n− 1]) (4.47)

K[n] = C[n|n− 1]HT (R +HC[n|n− 1]HT)−1 (4.48)

C[n|n] = (I −K[n]H)C[n|n− 1] (4.49)

4.7 Experimental Results

In this section we demonstrate the effectiveness of our adaptive and leakage-

aware Kalman filters. To show the impact of each approach, we first ignore the leak-

age power and report the accuracy improvement achieved by our adaptive methods

alone. We then take leakage into consideration and compare the accuracy of (1)

standard Kalman filter; (2) leakage-aware standard Kalman filter and (3) leakage-

aware adaptive Kalman filter. The simulations setup used in these experiments are

described below.

4.7.1 Autonomous and Adaptive Kalman Filter

Simulation Settings: The test processor we used in our simulation is a high

performance aggressive out-of-order processor with pipeline width of 8 instructions

and an instruction window of 128 instructions. Both instruction cache and data

cache are 32KB 4-way set associative. All the caches in the hierarchy use LRU

92

replacement policy and have a block size of 64 bytes. The physical dimension of the

chip is 10mm× 10mm× 0.5mm. We used a simplified floorplan (see figure 4.2) and

16× 16 grid granularity in all our following experiments.

Register file
Load/store

queue

ALU
(INT and FP)

Data cache

Rename
Instr. cache

DTLB

ITLB

Instr.
window

Branch
predictor

Figure 4.2: A simplified floorplan used in our experiments

As a basis for comparison, we first simulated the actual temperature trace of

the test processor based on equation (4.2). In this equation the power consumption

P [n] at any given time n only consists of the dynamic power component PD[n]. We

will ignore leakage power for the time being in order to demonstrate the advantage

of our adaptive approach alone. To obtain the dynamic power trace of the test

chip, we simulated the SPEC-2000 CPU benchmark suite using Wattch [6]. These

benchmarks are scheduled in a random sequence and each benchmark is executed for

a random time duration within range 0s ∼ 60s. The coefficient matrices A and B in

equation (4.2) can be derived (see [63]) using the HotSpot thermal-RC model. The

model parameters are in line with the values given in [53]: the thermal conductivity

(inverse of thermal resistance) per unit volume is 100 W/(m · K). The thermal

capacitance per unit volume is 1.75× 106 J/(m3 ·K). For the overall effect of heat

sink the thermal resistance is 0.026 K/W and the thermal capacitance is 8.8 J/K.

For the effect of convection the equivalent thermal resistance is 1.0 K/W and the

93

thermal capacitance is 140.4 J/K. Now given equation (4.2), coefficient matrices A

& B and the dynamic power trace (P [n], for ∀n), we simulated the dynamic thermal

profile of the test processor for a duration of 1500 seconds (at startup, the chip is

assumed to have the ambient temperature of 25◦C). This simulated thermal trace

is assumed to be the real chip temperature and is used to measure the estimation

accuracy.

For thermal tracking, we assumed that 5 sensors are uniformly scattered on

the chip. The matrix H in equation (4.3) can be easily determined based on sensor

placement. These sensors can report the actual temperature (generated from the

above simulation) of the grid cells that they reside in. In reality sensors are always

affected by various types of noise such as supply voltage fluctuation, fabrication vari-

ability, cross coupling and etc. To reflect this reality, we superimposed 5% Gaussian

random noise onto sensor readings. Given such noise-corrupted observations from

the five sensors (sampled at 1 second intervals), our goal is to estimate the entire

thermal profile of the chip as accurately as possible.

To compare our adaptive filter with the standard Kalman filter, we extracted

the statistical power characteristics (µpk, Qk) for each benchmark k. Each pair

(µpk, Qk) essentially represents a potential power state (hypothesis) that our sys-

tem could be in. To obtain this information, we simply simulated each benchmark

separately for a representative 250M instructions to obtain its runtime dynamic

power trace. We then superimposed 5% variation onto such simulated power data

to reflect the runtime uncertainties such as supply voltage fluctuation, environmen-

tal randomness and etc. Based on this data, parameters µpk and Qk can be easily

computed from the sample mean and sample covariance. The statistical power in-

formation for all benchmarks form a base set that represents all potential system

power states. Each state is assumed to have the same prior probability. Given this

information as well as the runtime sensor input, our adaptive filter is capable of au-

tonomously detecting any underlying power state change and automatically adjust

the filter parameters to adapt to such changes. Awareness of the varying system

power state, and furthermore adapting to each new state in an online fashion can

94

prove to be very beneficial in improving the thermal tracking accuracy. For the tra-

ditional non-adaptive Kalman filter, we simply used the average (µpavg, Qavg) across

all benchmarks to operate the filter. All other inputs to these two different filters

are the same. The tracking results for the ALU unit are reported in figures 4.3 to

4.6.

0 500 1000 1500
20

30

40

50

60

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.3: Actual vs estimated temperature using standard Kalman filter

0 500 1000 1500
20

30

40

50

60

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.4: Actual vs estimated temperature using hypothesis testing (multi-sample)

95

0 500 1000 1500
20

30

40

50

60

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Time (seconds)

Actual temperature
Estimated temperature

Figure 4.5: Actual vs estimated temperature using hypothesis testing (single sample)

0 500 1000 1500
20

30

40

50

60

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.6: Actual vs estimated temperature using residual whitening

It can be seen from these figures that our adaptive approaches can predict

and adapt to the system power state at runtime and can always generate highly

accurate thermal estimates compared to the traditional non-adaptive Kalman filter.

The average RMS error across the chip for the entire 1500 second duration are

compared in table 4.1. Note that this is average error, the worst-case error for

non-adaptive KF can be as high as 8.29◦C which would require significant safety

96

guard-band from the DTM unit. On the other hand our adaptive filter produced a

much better worst-case error of 3.05◦C.

Table 4.1: Average RMS error for standard Kalman filter and adaptive filters

Settings Average RMS error (◦C)

Standard Kalman filter 2.66

Hypothesis test (single sample) 1.33

Hypothesis test (multi-sample) 1.28

Residual whitening 1.09

4.7.2 Leakage-aware Adaptive Kalman Filter

The experimental settings used for testing the leakage-aware adaptive Kalman

filter is largely the same as those described in section 4.7.1, with the only exception

being the inclusion of the leakage power component. For this purpose we used the

system model shown in equation (4.30) to obtain the real temperature of the chip.

In this equation the power consumption P has two component PD and PL. The

former is still generated by simulating SPEC-2000 benchmarks using Wattch. For

leakage PL, we use the nonlinear leakage-temperature model as described in [22]

(see equations (4.27) and (4.28)). The supply voltage Vdd is assumed to be 1 V to

determine the parameter K. Parameter L is scaled such that on average, leakage

power consists of around 40% of the total power consumption. We applied our

leakage-aware Kalman filter as described in section 4.6. In figures 4.7 to 4.11 we

compare the thermal tracking results of the following four different settings: (1) non-

adaptive standard Kalman filter with no leakage consideration; (2) adaptive Kalman

filter with no leakage consideration; (3) leakage-aware non-adaptive Kalman filter

and (4) leakage-aware adaptive Kalman filter.

It can be seen from figures 4.7 to 4.11 that after the inclusion of leakage power,

the chip temperature increased about 15◦C. The traditional Kalman filter based

estimations schemes do not consider the nonlinear leakage-temperature dependency

97

0 500 1000 1500
20

30

40

50

60

70

80

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.7: Actual vs estimated temperature using standard Kalman filter (ignoring

leakage)

0 500 1000 1500
20

30

40

50

60

70

80

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.8: Actual vs estimated temperature using adaptive Kalman filter (hypothesis

test with multi-sample) but ignoring leakage

and therefore tends to under-estimate the true chip temperature. With the extended

leakage-aware adaptive Kalman filter we can achieve a much higher thermal tracking

accuracy. The average RMS error across the chip for each setting is compared in

98

0 500 1000 1500
20

30

40

50

60

70

80

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.9: Actual vs estimated temperature using leakage-aware nonadaptive Kalman

filter

0 500 1000 1500
20

30

40

50

60

70

80

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.10: Actual vs estimated temperature using leakage-aware adaptive Kalman filter

(hypothesis test with multi-sample)

table 4.2. The worst-case estimation error of the standard KF is 10.23◦C whereas

the worst-case error of our leakage-aware adaptive filter is only 3.27◦C. It can be

seen the improvement is more significant once we include the leakage effect. This

99

0 500 1000 1500
20

30

40

50

60

70

80

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 4.11: Actual vs estimated temperature using leakage-aware adaptive Kalman filter

(residual whitening)

clearly demonstrate the effectiveness of our methods.

Table 4.2: Average RMS error comparison for different combinations of filters (HT:

hypothesis testing; RW: residual whitening)

Settings Average RMS error (◦C)

Traditional standard Kalman filter 3.09

Leakage-unaware adaptive KF 2.73

Leakage-aware non-adaptive KF 2.56

Leakage-aware adaptive KF (using HT) 1.24

Leakage-aware adaptive KF (using RW) 1.15

100

Chapter 5

Statistical Characterization of Chip Power Behavior

5.1 Motivation

In earlier chapters, we explained why thermal sensing and estimation are nec-

essary for efficient thermal control schemes. However, most of existing temperature

estimation approaches depend heavily on the availability of the statistical power

characteristics. Such required statistical information includes the mean, variance

and correlation of the power consumption in different chip modules. In most of

the previously proposed estimation schemes, such statistical power information is

assumed to be known ([50, 70, 74, 24]). Many have argued that such information

can be obtained through simulations or experimenting with benchmarks. However,

to the best of our knowledge, no systematic approach has been proposed so far for

modeling and extracting the statistical characteristics of the system power behav-

ior. We propose an methodology in this chapter to fill such a gap. Moreover, the

extracted statistical power information is not limited to only this application. It

can also be used to provide guidelines to many other design considerations. For

example, such information can be helpful in computing the expected life span of the

battery life for embedded systems, or to estimate the severity and probability of the

appearance of on-chip hot spots, just to name a few.

In this chapter we propose two approaches for extracting the statistical power

characteristics using realistic workloads at a post-fabrication testing stage [73]. To

extract the statistical model of the chip power behavior we need some way of ob-

serving the system power consumption. Our approach is based on taking infra-red

thermal pictures of the chip as it is running realistic workloads with dynamic power

management unit in effect. The feasibility of using infra-red camera to monitor the

temperature map of the chip at a test stage has been demonstrated and verified in

several works [39, 26]. Other ways of capturing the thermal profile of the chip are

101

also possible and can be used as an input for our learning algorithms. In our first

approach we present an analytical solution for the case where the system statistical

characteristics stay relatively stable (for example data center servers) and hence can

be represented by a single Gaussian distribution. Our second approach is inspired

from machine learning techniques and is based on the Expectation-Maximization

(EM) algorithm. This algorithm can be used to characterize systems that are run-

ning highly heterogenous applications (for example desktop computers) and hence

are best represented by a mixture Gaussian model. To motivate and provide a back-

ground for our approach, we will use the popular Kalman filter based temperature

tracking framework as an example to demonstrate: (1) why obtaining the statis-

tical power information is important and (2) how such information can be used

in runtime power and temperature estimation algorithms. Kalman filter based es-

timation scheme is very popular due to its optimality and convergence properties

[50, 24, 70, 73]. By exploiting the statistical power characteristics of a chip obtained

using our methods, a Kalman filter based approach is capable of generating accu-

rate thermal and power estimates for all chip modules based on limited and possibly

noise-corrupted sensor observations, thus enabling (or improving the performance

of) many sophisticated runtime power and temperature optimization schemes.

5.2 Problem Definition and Challenges

5.2.1 Joint Temperature/Power Estimation

This chapter will again use some of the preliminary knowledge of thermal RC

modeling and Kalman Filter. Please refer to section 4.2 for details. The thermal

estimate for T [n] generated using sensors and a-priori knowledge of the statistical

characteristics of P [n] could be used to manage the hotspots and improve the overall

reliability of the system. On another front we would also be interested in knowing

the runtime power dissipation profile P [n] and tracking the same. Using system

thermal model which relates temperature and power, as well as the KF generated

thermal estimates of T [n], we can estimate the runtime power profile by solving the

102

following equation:

T [n|n] = AT [n− 1|n− 1] +BP [n− 1] (5.1)

Using the current and previous thermal profile estimate T [n|n], T [n− 1|n− 1]

(which was generated using thermal sensor measurements as discussed earlier) we

can estimate P [n − 1]. The chip power profile P [n − 1] is an important parameter

we would like to estimate during runtime. Knowledge about which parts of the chip

is dissipating how much power could be used by the OS to make more informed

decisions about the scheduling of tasks, dynamic thermal and power management

policies etc. Unusual distribution of power across the chip which is significantly

different that expected could also be used to detect the presence of trojan horses.

Thermal sensors and the underlying KF theory could be used to estimate both the

current thermal and power state of the chip.

5.2.2 Modeling the Random Power Behavior

Much of the sensor based approaches assume a-priori knowledge of statistical

characteristics of the power dissipation profile P [n] to perform estimation. If the

underlying characteristics are known, a KF [50] or adaptive KF [70] based approach

has been shown to perform reasonable well for estimating the dynamic chip thermal

profile T [n] (and even the power profile P [n]). However, in reality, it is extremely

tough to obtain the statistical characteristics of P [n] a-priori. The fidelity of thermal

and power tracking critically depends on how good our a-priori estimates of P [n]

statistical characteristics are. In the context of KF based thermal/power tracking,

knowing the µp and Q is sufficient. In the context of adaptive KF based tracking

which supports dynamic changes in the P [n] statistical characteristics, knowing the

mixture Gaussian model parameters {(µp0, Q0), (µp1, Q1), . . . , (µpK , QK)} is sufficient.

The problem is that this a-priori knowledge is extremely hard to generate since it

is highly dependent on the runtime characteristics of the application, data etc.

In this thesis we present a learning algorithm for generating the required in-

formation pertaining to the statistical characteristics of P [n] which could then be

103

used by either a KF or adaptive KF based approach. We assume that at the post-

fabrication characterization stage, the infra-red camera can provide thermal pictures

(i.e. the complete temperature vector T [n]) of the test chip at fixed time intervals.

In formal mathematical terms, our methods seek to learn the following parameters

of the underlying statistical power model from the thermal pictures of the chip as

it is running typical workloads.

ΘK =



BGD1 ∼ N (µp1, Q1) : π1

BGD2 ∼ N (µp2, Q2) : π2

. . .

BGDK ∼ N (µpK , QK) : πK

(5.2)

Here K is the number of potential statistical power states (i.e. base Gaussian

distributions, BGD) the system could be in. Also µpi , Qi is the mean and co-variance

of the BGDi. Conceptually each of these different BGDs could represents the power

behavior of a cluster of similar application.The parameter πi represents the proba-

bility of system being in the i − th BGD at a given time. Thus
∑K

i=1 πi = 1 since

the system must be in one of the BGDs. If the system are relatively stable and its

workloads are homogeneous then one BGD is enough which means K = 1. Once

the appropriate parameters for the model represented in equation (5.2) have been

learned, they could be provided as input to any statistical estimation approaches

for thermal/power estimation.

5.2.3 Problem Formulation

As mentioned earlier the system we are working with can be described as

follows:

T [n] = AT [n− 1] +BP [n− 1] (5.3)

S[n] = T [n] + v[n] (5.4)

Note that we know the complete observation vector S[n] (from infra-red ther-

mal pictures), the dimension of S[n] is the same as T [n]. Equations (5.3) and (5.4)

104

describe the system dynamics and the observation vector. v[n] represents the poten-

tial error in the infra-red pictures. Such noise characteristics do not depend on the

workloads and are therefore relatively stable. We assume the camera noise vector

v[n] follows a Gaussian distribution with known mean µS and known covariance

matrix R. Now given such mean and variance information, we would like to dy-

namically learn the power characteristics of the system, i.e. the mixture Gaussian

model illustrated in equation (5.2), using the observed thermal pictures (i.e. S[n]

for all n). It can be expected that the optimal set of model parameters would be

the ones that best fit the observed data. Thus this problem can be formulated in

a optimization framework in which the target function we want to maximize is the

probability of getting the set of observation vectors (S[0] to S[n]) given the under-

lying mixture Gaussian model. The variables that need to be determined are the

statistical parameters of this model presented in equation (5.2). The problem can

be formulated mathematically as follows:

maximize: F = prob(S[n], S[n− 1], . . . , S[1]
∣∣S[0],ΘK) (5.5)

variables: ΘK = {µp1, . . . , µ
p
K , Q1, . . . , QK , π1, . . . , πK} (5.6)

subject to:
∑
j

πj = 1 (5.7)

where ΘK represents the set of parameters of the K overlapping BGDs in our

mixture Gaussian model. The set of temperature observations is represented by

{S[0], . . . , S[n]} where S[0] is our initial observation (when we just started taking

thermal pictures) and S[n] is the sensor observations at time n. Since one of the

distribution must always be true we have
∑

j πj = 1. There is no other constraint

on the parameters of ΘK except the fact that the mean power dissipation vectors

should be positive. One important point to note is that different model parameters

would result in different overall probability F because the temperature change are

mainly caused by the underlying power behavior. In other words thermal maps are

the observed surface of the system and the power behavior is the underlying driving

force behind the surface phenomenon. Once we maximized the target function F by

adjusting the model parameters we would have captured an optimal model for the

105

underlying statistical power characteristics. This relationship between observation

vectors and the underlying power model will become more obvious once we make

the following transformations to F :

F = prob(S[n], S[n− 1], . . . , S[1]
∣∣S[0],ΘK) (5.8)

= prob(S[n]
∣∣S[n− 1],ΘK)× prob(S[n− 1]

∣∣S[n− 2],ΘK)

× . . .× prob(S[1]
∣∣S[0],ΘK) (5.9)

= prob(D[n]
∣∣S[n− 1],ΘK)× prob(D[n− 1]

∣∣S[n− 2],ΘK)

× . . .× prob(D[1]
∣∣S[0],ΘK) (5.10)

where

D[n] = S[n]− AS[n− 1] (5.11)

= T [n] + v[n]− A(T [n− 1] + v[n− 1])

= AT [n− 1] +BP [n− 1] + v[n]− A(T [n− 1] + v[n− 1])

= BP [n− 1] + v[n]− Av[n− 1] (5.12)

We can transform equation (5.8) to (5.9) because of the markovian nature of

the system dynamics in equation (5.3). Essentially S[n] depends only on S[n − 1]

and the model ΘK . Next we transform equation (5.9) to (5.10). This is because it

can easily be shown that prob(S[n]|S[n−1],ΘK) = prob(D[n]|S[n−1],ΘK). This is

because there is a one to one mapping between D[n] and S[n] for a given S[n− 1].

After the above transformation, the target function F is described by the probability

of getting {D[1], . . . , D[n]} given {S[0], S[1], . . . , S[n]} and ΘK . Equation (5.12) is

obtained by plugging equations (5.3) and (5.4) into (5.11). It can be seen in (5.12)

that D[n] is a linear combination of Gaussian random variables. Hence D[n] is

Gaussian as well. Now based on the linear relationship shown in (5.12), if we are

given any mixture model ΘK for P [n] as described by (5.2) we can easily find out

the corresponding mixture model for D:

106

ΘD
K =



BGD1 ∼ N (Bµp1, BQ1B
T +R + ARAT) : π1

BGD2 ∼ N (Bµp2, BQ2B
T +R + ARAT) : π2

. . .

BGDK ∼ N (BµpK , BQKB
T +R + ARAT) : πK

(5.13)

For any model parameters ΘK we know the corresponding ΘD
K as shown above

which describes the probabilistic distribution for D. Based on ΘD
K we can easily

compute the target function F based on (5.10). Thus the optimal power model

can be obtained by maximizing the new target function (5.10). As would become

clear subsequently, this transformation is essentially for seamless optimization of our

objective function. We rewrite this objective for the sake of clarity.

maximize: prob(D[n]
∣∣S[n− 1],ΘK)× prob(D[n− 1]

∣∣S[n− 2],ΘK)

× . . .× prob(D[1]
∣∣S[0],ΘK)) (5.14)

5.3 Power Characterization

In this section we present techniques for automatically learning the ΘK from

thermal pictures. We present two techniques which are applicable in two different

scenarios. The first one deals with the case where the statistical characteristics of

P [n] do not change very often. Under this scenario, the underlying power dissipa-

tion profile and therefore the thermal observations are generated from a single BGD

associated with P [n]. Basically K = 1 in ΘK . This scenario is suitable for cases

where the application class does not change too often (data centers for example).

The other scenario represents the case where the statistical characteristics of P [n]

change quickly. For example, in a general purpose desktop processor, the charac-

teristics of P [n] would change quickly if heterogeneous application are scheduled at

a fast pace. Hence ΘK would represent the set of K BGDs that P [n] could be in

along with the associated prior probability of each BGD. The observation vector

S[n] collected over a large period of time would represent these different statistical

107

power states and the problem is to learn the parameters of ΘK from this data. The

next two subsections develop methods for learning the power characteristics in these

two distinct situations.

5.3.1 Single BGD Characterization

In this subsection we discuss the situation where the power statistical char-

acteristics stay relatively stable. Note that the system power can still vary from

time to time but its mean and variance µP and Q stays the same (which is what we

wish to estimate from the thermal pictures). In other words the mixture Gaussian

model ΘK is reduced to a simple Gaussian model where only one BGD is present

(essentially K = 1). In such a scenario, we could derive the model parameters an-

alytically. As explained earlier in section 5.2 (equations (5.11) to (5.12)), once we

have the observation vectors S[0] to S[n] we can easily compute the corresponding

D[1] to D[n] as follows:

D[i] = S[i]− AS[i− 1] for i = 1 to n

= BP [i− 1] + v[i]− Av[i− 1] (5.15)

Based on (5.15) and the fact that P [i − 1], v[i − 1] and v[i] are independent

(camera noise is assumed to be independent of the chip power dissipation), the

statistical characteristics of D are related to the statistical characteristics of P [n] in

the following ways:

µD = BµP + (I − A)µS (5.16)

ΣD = BQBT +R + ARAT (5.17)

Since we know the noise characteristics µS and R, if we know µD and ΣD, we

can analytically compute µP and Q. Using equation (5.15), consecutive observation

vectors S[i] and S[i − 1] can be used to compute samples of D[i]. Sample of S[i]

and therefore samples of D[i] collected over a period of time could then be used to

108

estimate the sample mean µD and sample covarianceΣD as follows.

µD =
1

n

n∑
i=1

D[i] (5.18)

ΣD =
1

n− 1

n∑
i=1

(D[i]− µD)(D[i]− µD)T (5.19)

This estimate can then be used to estimate µP and Q as follows.

µP = B−1(µD − (I − A)µS) (5.20)

QP = B−1(ΣD −R− ARAT)(BT)−1 (5.21)

5.3.2 Multiple BGDs Characterization

In this section we propose a heuristic algorithm for learning the parameters

of ΘK from the thermal observations when the statistical characteristics of P [n] are

from several overlapping BGDs. In this case the observation vectors are caused by

multiple statistical power states in the mixture Gaussian model. As indicated earlier

ΘK represents the set of possible statistical power states that the system switches

between. Once ΘK is known, methods such as [70] could be used to jointly track

the power and temperature. The heuristic is inspired from the fields of machine

learning and artificial intelligence.

Let us first assume that we know the number of BGDs K in such a mixture

model ΘK . Usually by looking at the typical workloads information we know how

many different BGDs are needed to model the power behavior of the system. If

K is not known we can simply try K = 1, 2, 3, . . . until satisfactory accuracy is

reached (i.e. target function F does not change much as K is further increased).

Now assuming K is fixed our goal is to determine the set of model parameters based

on the thermal map observations. Our algorithm is an Expectation-Maximization

(EM) algorithm which is a popular algorithm used in machine learning [57]. At the

beginning of the algorithm, all model parameters (see equation (5.2)) are initialized

(in a systematic way). The convergence rate of our algorithm is a function of this

initialization. Usually one method of initialization could be to uniformly split the

109

potential range of power uniformly into K slots and assign each to a specific BGD.

Let us suppose we have collected n + 1 observation vectors. Then the algorithm

iteratively carries out the following two steps until convergence:

Expectation:

rij = prob(BGDj

∣∣D[i]) (5.22)

=
prob(D[i]

∣∣BGDj) · πj∑K
m=1 prob(D[i]

∣∣BGDm) · πm
(5.23)

Maximization:

µDj =
1∑n
i=1 rij

n∑
i=1

rijD[i] (5.24)

ΣD
j =

1∑n
i=1 rij

n∑
i=1

rij(D[i]− µPj)(D[i]− µPj)T (5.25)

µPj = µDj − µS (5.26)

QP
j = B−1(ΣD

j −R− ARAT)(BT)−1 (5.27)

πj =
1

n

n∑
i=1

rij (5.28)

Expectation Step: In equation (5.23), the parameter rij represents the probability

that the system is in statistical state represented by BGDj given the i-th observation

D[i]. Note that using the observation vectors S[i] and S[i−1], D[i] can be computed

easily (see equation (5.15)). Our algorithm is an iterative process where we start

with some parametric assumption on the values of ΘK . These values are then

refined to fit the observed thermal data. To compute rij for all observations D[i] in

the current iteration we use equation (5.23) which simply is an application of Bayes

theorem. The parameters of ΘK in the current iteration can be used to compute

prob(D[i]
∣∣BGDj) for all the BGDs. This computation is performed as follows. For

BGDj with parameters µPj and QP
j for the current iteration are known. Then using

equations (5.16) and (5.17), we can obtain the mean and variance of the parameter

D assuming BDGj is the underlying power statistic. From here, we can compute

prob(D[i]
∣∣BGDj). Hence, using the ΘK parameters in the current iteration we can

compute rij for all data samples D[i].

110

Maximization Step: In this step, the estimated rij values are used to refine the

ΘK parameters to fit the observed data. Let us suppose we have collected n + 1

samples of S[i] and therefore have n samples for D[i]. Equation (5.24) computes

µDj which represents the mean of D assuming BGDj is the underlying power state.

Basically
∑n

i=1 rij represents the total probability that all D[i] samples belong to

BGDj. Similarly ΣD
j in equation (5.25) represents the associated covariance matrix.

This is computed for all BGDs in ΘK . Using this information and equations (5.20)

and (5.21) we can refine µPj and QP
j . This is represented in equations (5.26) and

(5.27). Finally equation (5.28) refines of the prior probabilities of BGDs. These

refined estimates are once again improved in the next iteration of the expectation

and maximization loops.

This process is repeated until an acceptable convergence criterion is met. Usu-

ally if the change in the ΘK parameters is small then further iterations are not

needed.

5.3.3 Overall Framework and Computational Complexity

K = 1: When the power characteristics do not change too much then it is reasonable

to assume K = 1. A KF based thermal/power tracking approach as presented in

[50, 24] needs to know µP and QP . Such information could be generated using our

approach presented in section 5.3.1. The number of data samples directly controls

the complexity of our approach. More data samples implies more accurate charac-

terization but higher complexity as well. The error in estimating the parameters of

a Gaussian distribution usually decreases at the rate of 1/n where n is the number of

samples. In our results we experimented with about 500 data samples and observed

an error within 3%.

K > 1: In this case, the system can run highly heterogeneous workloads. Basically,

P [n] follows a particular BGD for a while and then changes to another BGD at a

fast pace (which depends on how often different applications are switched). The

approach presented in [70] develops adaptive techniques for thermal tracking when

the underlying statistical power characteristics follow a mixture Gaussian model. It

111

assumes a library of choices (basically ΘK) is available. Our methods can generate

ΘK using based on the observed thermal data. The algorithm presented above is an

iterative process that starts from an initial estimation of ΘK which is then refined.

The complexity of the algorithm is a function of the number of observation vectors

and also the number of iterations needed. For 500 data samples, we needed only 5

iterations to converge.

Overall, there is certainly some computational overhead imposed by the al-

gorithms that automatically learn ΘK . This complexity is acceptable since the

characterization only needs to be performed once at a post-fabrication stage. The

complexity and accuracy of our approach can be controlled by the number of obser-

vation samples used.

5.4 Experimental Results

Table 5.1: Estimation error (unit: W) of our methods for various benchmarks.

apsi/eon bzip2/crafty art/crafty art/apsi bzip2/fma3d applu/eon

avg absolute error in µP (fast) 0.11 0.06 0.34 0.05 0.88 0.05

avg absolute error in Q (fast) 0.07 0.98 1.19 0.10 1.27 0.06

applu bzip2 crafty art apsi eon

avg absolute error in µP (slow) 0.06 0.03 0.04 0.04 0.03 0.07

avg absolute error in Q (slow) 0.06 0.07 0.11 0.05 0.23 0.28

Table 5.2: Comparison between the actual µP and the estimated µP (unit W) for

the APSI benchmark.

Initialization 1st iter. 2nd iter. 3rd iter. 4th iter 5th iter. actual µP

rename 0.56 0.84 0.82 0.81 0.80 0.79 0.78

instr. cache 1.38 2.52 2.46 2.41 2.36 2.35 2.32

ALU 2.72 5.28 5.23 5.19 5.14 5.14 5.03

runtime (s) 0.02 1.54 2.04 2.06 2.05 2.08 –

To carry out our experiments, we used Wattch with Alpha binary [6] to gen-

erate the power consumption data for each functional unit. We configured a high

112

performance aggressive processor with pipeline width of 8 instructions and an in-

struction window of 128 instructions. Both instruction cache and data cache are

32KB 4-way set associative. All caches are using LRU replacement policy and a

block size of 64 bytes. The physical dimension of the chip is 15mm(length) ×

15mm(width) × 0.5mm(thickness). For benchmarks, we simulated all the SPEC

2000 CPU benchmark suite compiled with the default parameters provided with the

suite. The power consumption data obtained through simulation for each benchmark

are then superimposed 30% variation to represent the collective effect of supply volt-

age fluctuation and the impact of runtime DPM actions, etc. Such random power

consumption data generated for each benchmark is used to compute the actual sta-

tistical parameters (mean and variance) for each underlying BGD in our mixture

Gaussian model ΘK . These parameters are used as the foundation for accuracy

comparison in our experiments. Our goal is to learn the model parameters of ΘK

based on only the infra-red pictures observed at a post-fabrication testing stage. To

obtain the dynamic temperature change of the chip, we used the popular thermal

RC model described in HotSpot [53]. The model parameters we used are similar to

the values shown in [53].

Our experiments are carried out as follow: 1) we randomly executed the two

arbitrarily chosen benchmarks (from the SPEC 2000 pool) in an interleaved fashion

for a total of 500-second duration. 2) We then superimpose 30% variation to the

power data generated in the previous step to represent the runtime variability (volt-

age fluctuation and DPM actions, etc.). Such random power consumption data are

then provided to the thermal-RC model (equation (5.3)) to generate the dynamic

temperature trace of the chip. 3) We then assume the infra-red cameras can provide

thermal map observations of the chip at 1 second intervals. A white Gaussian noise

with zero mean and 2 degrees of standard deviation are superimposed onto the ob-

servation vectors to model the observation error. 4) We use both of our proposed

techniques in section 5.3 to learn the statistical power characteristics (i.e. model

parameters of ΘK) (500 data samples are used). The results are reported in table

5.1.

113

As can be seen from table 5.1, both of our methods generates accurate esti-

mates for the statistical power characteristics (note that the average power in each

module is around 6.7W which means our results are within 3% of error). Table

5.2 reports the convergence rate of our EM algorithm in the estimated mean of the

BZIP2 benchmark. The convergence rate for other chip modules and benchmarks

are similar. The results in table 5.2 demonstrated that within 5 iterations the error

of our EM algorithm was able to converge to 0.12W from the initial values which

has an error of 3.43W. The runtime for each iteration is also listed in the table. It

can be seen our algorithm took a total of less than 10 seconds to learn the power

characteristics of the system.

0 500 1000 1500
20

30

40

50

60

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

ci
us

)

Actual temperature
Estimated temperature

Figure 5.1: Temperature tracking results using our dynamically learned model

In figure 5.1 we demonstrate the thermal tracking results obtained using a

Kalman filter (see [70]) based on our dynamically learned power statistical charac-

teristics. Our test system switched among several benchmarks and the KF based

approach can give consistently accurate thermal tracking results. A adaptive KF

based tracking system could take advantage of the mixture model and adapt to the

BGD switches, thus continuously providing accurate thermal estimates.

114

Chapter 6

Conclusion

In this thesis, we discussed several different areas under the general topic

of temperature tracking and estimation in an on-chip environment by exploiting

thermal sensors and the probabilistic characteristics of workload and randomness

in fabrication variability, and etc. We presented our own approaches for address-

ing each different issue and compared their effectiveness with the state of the art

research effort in each specific field. In chapter 2, we described an approach for

chip-level thermal profile estimation based on limited sensor readings by exploiting

the correlation in power density exhibited by different chip modules. In chapter 3,

we went further and introduced a statistical framework for designing a complete

and accurate thermal tracking infrastructure which can be instantiated on any chip

and assist dynamic thermal management schemes to make optimal thermal control

decisions. We discussed how to do sensor placement, how to counter sensor noise,

how to account for the space and power constraint locally and globally by strategi-

cally compressing each sensor, and combining their readings into a central register

in order to achieve global optimality. In chapter 4, we extended the popular Kalman

filter based dynamic thermal tracking framework to specifically tackle the problem

of changing workload characteristics (a property often observed for today’s general

purpose high performance processors), therefore further improving the accuracy and

adaptability of any Kalman filter based thermal tracking system. In addition, we

extended the standard Kalman filter to address the nonlinear effect of leakage power.

In chapter 5, we proposed an methodology for extracting the chip power statisti-

cal characteristics automatically. The experimental results clearly demonstrate the

effectiveness of each proposed methodology.

115

Bibliography

[1] Moore’s law backgrounder, intel corp.

[2] International technology roadmap for semiconductors, semiconductor industry

assoc., 2011.

[3] Raid Ayoub and Tajana Rosing. Predict and act: Dynamic thermal manage-

ment for multi-core processors. Proc. of IEEE/ACM International Symposium

on Low Power Electronics and Design, pages 99–104, 2009.

[4] J. R. Black. Electromigration - a brief survey and some recent results. IEEE

Transactions on Electron Devices, 16:338–347, 1969.

[5] David Brooks and Margaret Martonosi. Dynamic thermal management for

high-performance microprocessors. Proc. of IEEE/ACM International Sympo-

sium on High-Performance Computer Architecture, pages 171–182, Janurary

2001.

[6] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework

for architectural-level power analysis and optimizations. Proc. of International

Symposium on Computer Architecture, 2000.

[7] Hongliang Chang and Sachin S. Sapatnekar. Statistical timing analysis consid-

ering spatial correlations using a single pert-like traversal. Proc. of IEEE/ACM

International Conference on Computer-Aided Design, pages 621–625, Novem-

ber 2003.

[8] Thidapat Chantem, X. Sharon Hu, and Robert Dick. Online work maximiza-

tion under a peak temperature constraint. Proc. of IEEE/ACM International

Symposium on Low Power Electronics and Design, pages 105–110, 2009.

[9] Poki Chen, Chun-Chi Chen, Chin-Chung Tsai, and Wen-Fu Lu. A time-to-

digital-converter-based cmos smart temperature sensor. pages 1642–1648, 2005.

116

[10] Qikai Chen, M. Meterelliyoz, and K. Roy. A cmos thermal sensor and its

applications in temperature adaptive design. Proc. of IEEE/ACM International

Symposium on Quality Electronic Design, pages 6 pp.–248, March 2006.

[11] Lerong Cheng, Jinjun Xiong, and Lei He. Non-linear statistical static timing

analysis for non-gaussian variation sources. Proceedings of the 44th annual

Design Automation Conference, pages 250–255, 2007.

[12] Ihtesham Chowdhury, Ravi Prasher, and et. al. On-chip cooling by superlattice-

based thin-film thermoelectrics. Nature Nanotechnology, pages 235–238, Jan-

uary 2009.

[13] Joachim Clabes, Joshua Friedrich, Mark Sweet, Jack DiLullo, Sam Chu, Donald

Plass, James Dawson, Paul Muench, Larry Powell, Michael Floyd, Balaram

Sinharoy, Mike Lee, Michael Goulet, James Wagoner, Nicole Schwartz, Steve

Runyon, Gary Gorman, Phillip Restle, Ronald Kalla, Joseph McGill, and Steve

Dodson. Design and implementation of the power5 microprocessor. pages 670–

672, 2004.

[14] Brian Cline, Kaviraj Chopra, David Blaauw, and Yu Cao. Analysis and mod-

eling of cd variation for statistical static timing. Proceedings of the 2006

IEEE/ACM international conference on Computer-aided design, pages 60–66,

2006.

[15] Ryan Cochran and Sherief Reda. Spectral techniques for high-resolution ther-

mal characterization with limited sensor data. Proc. of IEEE/ACM Design

Automation Conference, pages 478–483, July 2009.

[16] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C. Gross. Proac-

tive temperature management in mpsocs. Proc. of IEEE/ACM International

Symposium on Low Power Electronics and Design, pages 165–170, 2008.

[17] John L. Crassidis and John L. Junkins. Optimal Estimation of Dynamic Sys-

tems. CRC Press, 2004.

117

[18] Thomas Ebi, Mohammad Abdullah Al Faruque, and Jörg Henkel. Tape:

thermal-aware agent-based power economy for multi/many-core architectures.

Proceedings of the 2009 International Conference on Computer-Aided Design,

pages 302–309, 2009.

[19] Lei He Fei Li, Yan Lin and Jason Cong. Low-power fpga using pre-defined

dual-vdd/dual-vt fabrics. Proceedings of the ACM/SIGDA 12th International

Symposium on Field Programmable Gate Arrays, pages 42–50, 2004.

[20] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0:

Faster and more flexible program analysis. Workshop on Modeling, Benchmark-

ing and Simulation, June 2005.

[21] Vinay Hanumaiah, Ravishankar Rao, Sarma Vrudhula, and Karam S. Chatha.

Throughput optimal task allocation under thermal constraints for multi-core

processors. Proc. of IEEE/ACM Design Automation Conference, pages 776–

781, 2009.

[22] Lei He, Weiping Liao, and Mircea Stan. System level leakage reduction con-

sidering the interdependence of temperature and leakage. Proc. of IEEE/ACM

Design Automation Conference, pages 12–17, 2004.

[23] W-L. Hung, Y. Xie, N. Vijaykrishnan, C. Addo-Quaye, T. Theocharides, and

M. J. Irwin. Thermal-aware floorplanning using genetic algorithms. Proceedings

of the 2005 International Symposium on Quality of Electronic Design, pages

634–639, 2005.

[24] Hwisung Jung and Massoud Pedram. A stochastic local hot spot alerting tech-

nique. Proc. of the IEEE Asia and South Pacific Design Automation Confer-

ence, pages 468–473, 2008.

[25] Nam Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztian Flautner, Jie

Hu, Mary Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan. Leakage

current: Moore’s law meets static power. Computer, pages 68–75, 2003.

118

[26] Eren Kursun and Chen-Yong Cher. Variation-aware thermal characterization

and management of multi-core architectures. ACM International Conference

on Computer Design, pages 280–285, 2008.

[27] ByungHyun Lee and Taewhan Kim. Optimal allocation and placement of ther-

mal sensors for reconfigurable systems and its practical extension. Proc. of the

IEEE Asia and South Pacific Design Automation Conference, pages 703–707,

2008.

[28] Kong Hoon Lee and Ook Joong Kim. Simulation of the cooling system us-

ing thermoelectric micro-coolers for hot spot mitigation. 26th International

Conference on Thermoelectrics, pages 279 –282, june 2007.

[29] Hang Li, Pu Liu, Zhenyu Qi, Lingling Jin, Wei Wu, Sheldon X. D. Tan, and

Jun Yang. Efficient thermal simulation for runtime temperature tracking and

management. Proceedings of the 2005 International Conference on Computer

Design, pages 130–136, 2005.

[30] J. Long, S. Ogrenci Memik, G. Memik, and R. Mukherjee. Thermal monitoring

mechanisms for chip multiprocessors. ACM Transactions on Architecture and

Code Optimization, 5(2), August 2008.

[31] J. B. MacQueen. Some methods for classification and analysis of multivariate

observations. 1:281–297, 1967.

[32] Ravi Mahajan, Chia-Pin Chiu, and Greg Chrysler. Cooling a microprocessor

chip. Proc. of the IEEE, pages 1476–1486, 2006.

[33] S. Ogrenci Memik, R. Mukherjee, and J. Long M. Ni. Optimizing thermal

sensor allocation for microprocessors. IEEE Transactions on Computer Aided

Design of Integrated Circuits and Systems, 27(3):516–527, March 2008.

[34] Gordon Moore. Cramming more components onto integrated circuits. Elec-

tronics, pages 114–117, 1965.

119

[35] R. Mukherjee, S. Mondal, and S. Ogrenci Memik. Thermal sensor allocation

and placement for reconfigurable systems. Proc. of IEEE/ACM International

Conference on Computer-Aided Design, pages 437–442, November 2006.

[36] Rajarshi Mukherjee and Seda Ogrenci Memik. Systematic temperature sensor

allocation and placement for microprocessors. Proc. of IEEE/ACM Design

Automation Conference, pages 542–547, July 2006.

[37] Ali M. Niknejad, Ranjit Gharpurey, and Robert G. Meyer. Numerically stable

green function for modeling and analysis of substrate coupling in integrated

circuits. IEEE Transactions on Computer-aided Design of Integrated Circuits

and Systems, 17:305–315, 1998.

[38] Vidyasagar Nookala, David J. Lilja, and Sachin S. Sapatnekar. Temperature-

aware floorplanning of microarchitecture blocks with ipc-power dependence

modeling and transient analysis. Proceedings of the 2006 International Sympo-

sium on Low Power Electronics and Design, pages 298–303, 2006.

[39] Abdullah Nazma Nowroz, Ryan Cochran, and Sherief Reda. Thermal monitor-

ing of real processors: techniques for sensor allocation and full characterization.

Proc. of IEEE/ACM Design Automation Conference, pages 56–61, 2010.

[40] Massoud Pedram and Shahin Nazarian. Thermal modeling, analysis, and man-

agement in vlsi circuits: Principles and methods. Proc. of the IEEE, pages

1487–1501, 2006.

[41] M.A.P. Pertijs, K.A.A. Makinwa, and J.H. Huijsing. A cmos smart temperature

sensor with a 3 sigma inaccuracy of plus/minus 0.1 degrees from -55 degrees to

125 degrees celcius. pages 2805–2815, 2005.

[42] Zhouyuan Li Robert P. Dick Li Shang Hai Zhou Xianlong Hong

Pingqiang Zhou, Yuchun Ma and Qiang Zhou. 3d-staf: scalable temperature

and leakage aware floorplanning for three-dimensional integrated circuits. Pro-

120

ceedings of the 2007 IEEE/ACM International Conference on Computer-Aided

Design, pages 590–597, 2007.

[43] H. Vincent Poor. An Introduction to Signal Detection and Estimation. Springer-

Verlag, 2nd edition, 1998.

[44] Ravishankar Rao and Sarma Vrudhula. Efficient online computation of core

speeds to maximize the throughput of thermally constrained multi-core pro-

cessors. Proc. of IEEE/ACM International Conference on Computer-Aided

Design, pages 537–542, 2008.

[45] Ravishankar Rao, Sarma Vrudhula, Chaitali Chakrabarti, and Naehyuck

Chang. An optimal analytical solution for processor speed control with ther-

mal constraints. Proc. of IEEE/ACM International Symposium on Low Power

Electronics and Design, pages 292–297, 2006.

[46] Stefan Rusu. Trends and challenges in vlsi technology scaling towards 100nm.

Proc. of the European Solid-State Circuits Conference, pages 194–196, 2001.

[47] Karthik Sankaranarayanan, Sivakumar Velusamy, Mircea Stan, Charles L, and

Kevin Skadron. A case for thermal-aware floorplanning at the microarchitec-

tural level. Journal of Instruction Level Parallelism, 7, 2005.

[48] Adel S. Sedra and Kenneth C. Smith. Microelectronic Circuits. Oxford Uni-

versity Press, 5th edition, 2004.

[49] S. Sharifi, ChunChen Liu, and T.S. Rosing. Accurate temperature estimation

for efficient thermal management. Proc. of IEEE/ACM International Sympo-

sium on Quality Electronic Design, pages 137–142, March 2008.

[50] Shervin Sharifi, Chun Chen Liu, and Tajana Simunic Rosing. Accurate tem-

perature estimation for efficient thermal management. Proc. of IEEE/ACM

International Symposium on Quality Electronic Design, pages 137–142, March

2008.

121

[51] Bing Shi, Yufu Zhang, and Ankur Srivastava. Dynamic thermal management

for single and multi-core processors under soft thermal constraints. Proc. ACM

International Symposium on Low Power Electronics and Design, pages 165 –

170, August 2010.

[52] Bing Shi, Yufu Zhang, and Ankur Srivastava. Accelerating gate sizing using

graphics processing units. IEEE Trans. on Computer-aided Design of Integrated

Circuits and Systems, pages 160 – 164, Jan. 2012.

[53] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei huang,

Sivakumar Velusamy, and David Tarjan. Temperature-aware microarchitec-

ture: Modeling and implementation. ACM Transactions on Architecture and

Code Optimization, pages 94–125, March 2004.

[54] Ankur Srivastava, Sachin Sapatnekar, Bing Shi, and Yufu Zhang. Encyclopedia

of thermal packaging: Vol 4 - thermally-informed design of microelectronic

components. 2014.

[55] M. Strasser, R. Aigner, M. Franosch, and G. Wachutka. Miniaturized ther-

moelectric generators based on poly-si and poly-sige surface micromachining.

Sensors and Actuators A: Physical, 97-98:535–542, 2002.

[56] Haihua Su, Frank Liu, Anirudh Devgan, Emrah Acar, and Sani Nassif. Full

chip leakage estimation considering power supply and temperature variations.

Proc. of IEEE/ACM International Symposium on Low Power Electronics and

Design, pages 78–83, 2003.

[57] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data

mining. 2005.

[58] James Tschanz Liqiong Wei Steven Burns Venkatesh Govindarajulu Vivek De

Tanay Karnik, Yibin Ye and Shekhar Borkar. Total power optimization by

simultaneous dual-vt allocation and device sizing in high performance micro-

122

processors. Proc. of the IEEE/ACM Design Automation Conference, pages

486–491, July 2002.

[59] R.A. Taylor and G.L. Solbrekken. Comprehensive system-level optimization of

thermoelectric devices for electronic cooling applications. IEEE Transactions

on Components and Packaging Technologies, 31(1):23 –31, march 2008.

[60] Peng Wang, Avram Bar-Cohen, Bao Yang, Gary L. Solbrekken, and Ali Shak-

ouri. Analytical modeling of silicon thermoelectric microcooler. Journal of

Applied Physics, 100(1):014501 –014501–13, 2006.

[61] Qi Wang and Sarma B. K. Vrudhula. Static power optimization of deep sub-

micron cmos circuits for dual vt technology. Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pages 490–496, 1998.

[62] Ting-Yuan Wang and Charlie Chung-Ping Chen. 3-d thermal-adi - a linear-time

chip level transient thermal simulator. IEEE Transaction on Computer-Aided

Design Integrated Circuits System, 2002.

[63] Yonghong Yang, Changyun Zhu, Zhenyu Gu, Li Shang, and Robert P. Dick.

Adaptive multi-domain thermal modeling and analysis for integrated cir-

cuit synthesis and design. Proc. of IEEE/ACM International Conference on

Computer-Aided Design, pages 575–582, November 2006.

[64] Jing-Jia Liou Ying-Yen Chen. Extraction of statistical timing profiles using test

data. Proc. of the IEEE/ACM Design Automation Conference, pages 509–514,

July 2007.

[65] Yong Zhan and Sachin S. Sapatnekar. A high efficiency full-chip thermal simu-

lation algorithm. Proc. of IEEE/ACM International Conference on Computer-

Aided Design, pages 635–638, November 2005.

[66] Yanliang Zhang, Yunfei Chen, Changmeng Gong, Juekuan Yang, Ruiming

Qian, and Yujua Wang. Optimization of supelattice thermoelectric materials

123

and microcoolers. Journal of microelectromechanical systems, pages 1113–1119,

2007.

[67] Yufu Zhang, Bing Shi, and Ankur Srivastava. Statistical framework for design-

ing on-chip thermal sensing infrastructure in nano-scale systems. IEEE Trans.

on Very Large Scale Integration Systems, pages 270 – 279, April 2013.

[68] Yufu Zhang and Ankur Srivastava. Accurate temperature estimation using

noisy thermal sensors. Proc. of IEEE/ACM Design Automation Conference,

pages 472–477, July 2009.

[69] Yufu Zhang and Ankur Srivastava. Accurate temperature estimation using

noisy thermal sensors for gaussian and non-gaussian cases. IEEE Trans. on

Very Large Scale Integration Systems, pages 1617 – 1626, June 2010.

[70] Yufu Zhang and Ankur Srivastava. Adaptive and autonomous thermal tracking

for high performance computing systems. Proc. of IEEE/ACM Design Automa-

tion Conference, pages 68 – 73, June 2010.

[71] Yufu Zhang and Ankur Srivastava. A statistical framework for designing on-chip

thermal sensing infrastructure in nano-scale systems. Proc. of IEEE Interna-

tional Symposium on Physical Design, pages 169 – 176, March 2010.

[72] Yufu Zhang and Ankur Srivastava. Leakage-aware kalman filter for accurate

temperature tracking. Proc. of IEEE International Green Computing Confer-

ence, pages 1 – 7, July 2011.

[73] Yufu Zhang and Ankur Srivastava. Statistical characterization of chip power

behavior at post-fabrication stage. Proc. of IEEE International Green Com-

puting Conference, pages 1 – 6, July 2011.

[74] Yufu Zhang, Ankur Srivastava, and Mohamed Zahran. Chip level thermal

profile estimation using on-chip temperature sensors. Proceedings of IEEE In-

ternational Conference on Computer Design, pages 432–437, October 2008.

124

[75] Yufu Zhang, Ankur Srivastava, and Mohamed Zahran. On-chip sensor driven

efficient thermal profile estimation algorithms. ACM Transactions on Design

Automation of Electronic Systems, pages 25:1–25:27, May 2010.

125

