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We consider an LTE network where a secondary user acts as a relay, transmit-

ting data to the primary user using a decode-and-forward mechanism, transparent

to the base-station (eNodeB). Clearly, the relay can decode symbols more reliably

if the employed precoder matrix indicators (PMIs) are known. However, for closed

loop spatial multiplexing (CLSM) transmit mode, this information is not always

embedded in the downlink signal, leading to a need for effective methods to de-

termine the PMI. In this thesis, we consider 2x2 MIMO and 4x4 MIMO downlink

channels corresponding to CLSM and formulate two techniques to estimate the PMI

at the relay using a hypothesis testing framework. We evaluate their performance

via simulations for various ITU channel models over a range of SNR and for different

channel quality indicators (CQIs). We compare them to the case when the true PMI

is known at the relay and show that the performance of the proposed schemes are

within 2 dB at 10% block error rate (BLER) in almost all scenarios. Furthermore,

the techniques add minimal computational overhead over existent receiver structure.



Finally, we also identify scenarios when using the proposed precoder detection algo-

rithms in conjunction with the cooperative decode-and-forward relaying mechanism

benefits the PUE and improves the BLER performance for the PUE. Therefore, we

conclude from this that the proposed algorithms as well as the cooperative relaying

mechanism at the CMR can be gainfully employed in a variety of real-life scenarios

in LTE networks.
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Chapter 1: Introduction

Relaying in wireless networks can be used for several purposes, such as increas-

ing the throughput, improving cellular coverage, as temporary network deployment

and to satisfy increases in the demand from users of the wireless network. In LTE-

A, 3GPP Release 10, relaying is one of the features adopted to improve and extend

cellular coverage. Support for fixed cellular relays was introduced in [1,2]. The fixed

relay node (FRN) is wirelessly connected to the radio-access network via a donor cell,

namely the cell with which the relay is associated. Incorporating such relays into

the LTE network requires a sizeable investment from the cellular operator. These

relays can either be transparent or non-transparent to the user equipment (UE). If

the relay is transparent, the UE is unaware of whether or not it is communicating

with a relay, whereas it is aware of the relay’s presence in the non-transparent case.

Researchers are actively investigating various aspects of LTE-A relay architec-

ture, including mobile relays [3,4]. Furthermore, there is an abundance of literature

on cooperative relay techniques for wireless networks, such as [5–9].

In this thesis, we shall consider only transparent relays. More specifically,

we will explore the use of cooperative relaying techniques amongst mobile users in

LTE systems, rather than FRNs that need to be deployed at fixed locations. This
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has the advantage of needing minimal network infrastructure upgrades, and only

relying on advances in the user equipment (UE), making it easier to deploy. A

similar system was previously studied in [10], focusing on the system architecture.

Here, we consider a cooperative mobile relay (CMR) operating “transparently” to

the eNodeB (i.e. base station), by suitably communicating with the primary user

equipment (PUE), and focus on the decode-and-forward relay mechanism, previously

discussed in several studies [5–7]. In order to ensure that the CMR works properly,

we need certain information at the CMR. The focus of this thesis is to solve the

problems that arise when such information is unavailable at the relay.

The CMR could use various technologies to communicate with the PUE for the

purpose of transmitting the decoded data to the PUE, such as ad-hoc WiFi networks

or LTE. We do not address this aspect of the relay in this work and assume that a

suitable approach is implemented to transmit the data to the PUE. We assume that

the PUE communicates with the eNodeB using Closed Loop Spatial Multiplexing

(CLSM) transmit mode defined in [11], since studies show that spatial multiplexing

outperforms transmit diversity schemes in modern MIMO systems [12]. In this

case, the CMR may need to estimate an unknown precoder used in the downlink

transmission from eNodeB to the PUE, as explained in section 2. Given that the

CMR operates transparently to the PUE, it cannot obtain this information directly

from the PUE. Hence, we focus on the problem of precoder detection at the CMR.

We propose two precoder detection algorithms. Their performance is evalu-

ated using two ITU channel models defined in [13, 14], over a wide range of SNR

and for different Channel Quality Indicators (CQIs). We compare them to the
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case when precoders are known at the CMR. We demonstrate that the performance

is within 2 dB at a block error rate (BLER) of 10% for almost all the cases we

consider, with minimal computational overhead to the existent receiver structure.

Additionally, we also conduct experiments to evaluate the overall benefit of using

the proposed precoder detection algorithms at the CMR in conjunction with the

cooperative decode-and-forward relaying mechanism to improve the performance of

the PUE. To this end, we identify specific scenarios where using the proposed tech-

niques helps improve the performance at the PUE. Through these experiments, we

can conclude that the proposed cooperative relaying mechanism at the CMR using

our precoder detection algorithms can be profitably employed in LTE networks.

The rest of this thesis is organized as follows. We outline the problem in

chapter 2. In chapter 4, we briefly describe the simulator used for performance

evaluation and the modifications we made for our experiments. Chapter 5 explains

our hypothesis testing formulation for precoder detection along with the proposed

algorithms and a brief computational complexity analysis. Our simulation setup

and results are shown in chapter 6. We conclude in chapter 7 and discuss future

work in chapter 8.
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Chapter 2: Problem Formulation

Figure 2.1: Decode-and-forward relay scenario considered for precoder detection.

2.1 Description

In this thesis, we consider the scenario shown in Fig. 2.1. We assume that the

CMR is operating transparently to the eNodeB, as that will ease the implementation

of such a mobile relay node in an LTE system, avoiding the need to modify the

implementation of LTE. We assume that the CMR can pick up the transmission

intended for the PUE and decode and forward the data to the PUE when needed,

such as when the PUE suffers from poor coverage. However, in order to perform the
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decode-and-forward relaying, the CMR needs to have access to some information

that could potentially be unavailable as explained in the next section, in which case

it may not be able to decode the transmitted symbols correctly with high probability.

We cannot directly retrieve this information from the eNodeB due to our assumption

that the CMR is transparent to the base station. Hence, we resort to estimating

the missing information. This provides motivation to our study.

2.2 Motivation

In CLSM, as the name suggests, there is feedback between the base station

and the UE. The UE generates feedback that consists of the Precoder Matrix Index

(PMI), Rank Index (RI), and CQI. This feedback is used by the eNodeB to adapt

the transmission to the UE, such as changing the modulation and coding scheme

(MCS), and changing the precoder used as suggested by the PMI. Unlike in open loop

spatial multiplexing, where no feedback is used and a fixed precoder is employed,

the precoder may change in CLSM.

The downlink transmission in CLSM relies on antenna ports {0, 1, 2, 3} de-

pending on antenna configuration, i.e. whether we use 2x2 MIMO or 4x4 MIMO.

These antenna ports only use Cell-specific Reference Signals (CRSs) [15, section 6.10],

which are added to the transmit signal after precoding is performed [15, section 6.3.4.2].

One CRS is added per antenna port. The UE can estimate the radio channel using

the received CRSs, since the CRS is a known signal to the receiver. However, be-

cause the CRSs are not multiplied with the precoder, the UE additionally needs to
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know the precoder used by the eNodeB in order to demodulate the received signal

and reconstruct the data. Unfortunately, the eNodeB need not explicitly specify the

PMI in the Downlink Control Information (DCI) [16, section 5.3.3.1.5].

For this reason, the CMR may not be aware of the employed PMIs and needs

to determine them based on the received signals in order to be able to decode the

transmitted data. We need to design a computationally efficient precoder detector

for the CMR, to accurately decode the user data and forward it to the PUE. By

directly estimating the precoder, we can reduce the signaling overhead needed be-

tween the PUE and the relay, as well as make sure that the relay operates truly

transparently to the eNodeB.

2.3 Problem statement

We can now state our problem succinctly. Once again, we consider the scenario

presented in Fig. 2.1, wherein the PUE is communicating with the eNodeB using

CLSM and the CMR operates transparent to the eNodeB and the PUE. The CMR

decodes-and-forwards the data to the PUE, so that in case the PUE has poor channel

conditions with the eNodeB, it can still decode the data due to the transmission

from the CMR. Our goal is to design a computationally efficient algorithm at the

CMR such that it can detect the precoder matrix used by the eNodeB by observing

the received data. It then uses the precoder matrix along with the channel estimate

to decode the data and then subsequently forward the decoded data to the PUE. We

stress that we do not consider the transmission between the CMR and PUE in this
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work. We assume that the CMR can transmit the data to the PUE using a suitable

approach, such as ad-hoc WiFi, and that this transmission is relatively error-free,

because typically the relay would have good channel conditions for the user.

In chapter 5, we propose two hypothesis testing based approaches to design

such a precoder detection algorithm.
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Chapter 3: Related Work

There is extensive research available currently that deals with the problem of

blind source separation (BSS), which is a concept that is related to the problem

posed in this thesis. In essence, BSS is the task of separating a set of source signals

from a set of mixed signals, when there is little to no information about the source

signals or the mixing process. A standard example to illustrate this problem is the

so-called “cocktail party problem”, where we want to recover the speech signals of

multiple speakers who are simultaneously talking in a room.

The problem that we focus on, of detecting the unknown precoder matrices, is

similar to BSS. The precoder matrices correspond to the unknown mixing process

that combines the signals from the various antennas. Given these mixed signals at

the receiver, we need to identify the correct precoder matrix and hence recover the

original signals. Hence, we shall explore some of the existent literature on BSS to

understand the available solutions and the issues faced in extending these approaches

for our problem.
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3.1 Blind source separation

The work done by Hyvärinen et al. [17] discusses Independent Component

Analysis (ICA) and motivates the study by considering the cocktail party problem.

ICA is one approach to tackle BSS. An important assumption made in ICA is

that the subcomponents in the multivariate, mixed signals are non-Gaussian and

statistically independent.

3.1.1 Constant Modulus-based algorithms

In [18], Godard introduces a type of blind, “self-recovering” equalizer using the

framework of BSS, which recovers the transmitted signal from the received signal by

minimizing a nonconvex cost function that characterizes the inter symbol interfer-

ence (ISI) in the received signal. The paper considers PAM and QAM modulations

for the source signals. Using a steepest decent algorithm, the proposed equalizer

updates its weights till the gradient of the cost function is minimized. A special

case of the algorithm discussed in [18] is Constant Modulus Algorithm (CMA) [19].

In [19], the author discusses the use of CMA in connection to phase modulated

signals such as FM signals and QPSK signals. However, these algorithms introduce

a phase ambiguity in the recovered signals.

As noted by several researchers, the CMA technique doesn’t work very well for

non-constant modulus signals, such as QAM. Hence, in [20], the authors discuss a

multistage equalizer that performs CMA and AMA (Alphabet Matched Algorithm)

in separate stages to detect wireless signals (denoted to as CMA/AMA). The paper
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also discusses the local convergence property of AMA. This algorithm does signifi-

cantly better than just CMA, as the second stage of AMA explicitly uses the actual

constellation used for the signal, such as QAM. This allows the algorithm to min-

imize the distance between the equalized symbols and the original symbols in the

constellation, hence improving the likelihood of correct detection. Likewise, in [21],

the authors consider a CMA+AMA equalizer which minimizes a linear combina-

tion of the CMA and the AMA cost function. In our implementation of these two

algorithms, we found both provide similar performance.

There are several drawbacks to using CMA type of approaches to solve the

problem we proposed, such as an inherent phase ambiguity in the recovered signals,

slow convergence time, high sensitivity to gradient descent parameters used in the

algorithm, as well as poor performance in the case of frequency selective channels.

Some modifications have been proposed in the literature for this algorithm, such as

the modified CMA (MCMA) [22], where the cost function is separated out in terms

of the real and imaginary parts of the complex signals, allowing for simultaneous

blind equalization and carrier phase recovery. Furthermore, in [23], the authors add

variable step size to MCMA for improved convergence time.

We initially tested the efficacy of such a MCMA/AMA algorithm, where we

used MCMA and AMA in two stages. While the algorithm worked reasonably for

frequency flat channels, it failed completely for frequency selective scenarios. Still,

there was much to be desired with regard to BLER performance. Additionally, the

algorithm had an inherent phase ambiguity for which additional pilot signals were

needed, which would modify the LTE specification.
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3.1.2 Other blind equalization methods

Furthermore, we explored the use of blind and “semi-blind” MIMO channel

estimation techniques to estimate the channel and the precoder matrices combined

such as [24–26], and then recover the signals. Likewise, we also explored a semi-BSS

approach developed for a MIMO-OFDM communication system [27]. While the

BLER performance was better compared to the CMA-based approach, it was still

insufficient to improve upon the performance of the primary user, and many of the

same issues remained as with CMA-based approach, such as the phase ambiguity.

Furthermore, we note that due to the presence of reference signals embedded

in the LTE downlink signal, it is unnecessary to resort to blind channel equalization

as one can utilize the known reference signals to obtain the channel matrix. Hence,

in the following chapters, we will detail a technique that utilizes all the pertinent

information present in the downlink signal and detect the unknown precoders using

a hypothesis testing approach.
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Chapter 4: System Model

Our LTE simulator is based on the LTE Downlink link-level simulator (v1.7r1089)

[28] from the Vienna University of Technology, written in MATLABR©. The MATLABR©

based simulator simulates the base station, a mobile user, the channel conditions

between them as well as the scheduling behavior of the base station. The simula-

tor [28] can create a variety of scenarios, including multi-user scenarios, multi-cell

scenarios and also create interference. For the purpose of our research, we focus on

the single-user, single cell scenario and neglect inter-cell interference.

Some of the time-intensive operations in the simulator have been implemented

in C via MEX functions [29], including bit interleaving, convolutional encoding/decoding,

rate matching, symbol demapping, as well as our proposed precoder detection algo-

rithms (see chapter 5). Here, we briefly describe the setup of the simulator along

with our modifications to enable our experiments. For a more detailed description

of the simulator, refer to [28, 30].

4.1 Setup

We consider a Single-User MIMO (SU-MIMO) scenario, with a single eNodeB

and a PUE. A secondary mobile user acts as a CMR for the PUE, using a decode-
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and-forward relay mechanism. The eNodeB transmits data using CLSM, thereby

adapting the MCS, the precoder matrix and the number of layers used for trans-

mission according to the CQI, PMI and RI feedback from the PUE. In our setup,

we consider both 2x2 and 4x4 MIMO modes supported by CLSM. For simulating

the mobile relay, we consider various channel models between the eNodeB and the

CMR, which have different power delay profiles (PDP), along with the speed and

SNR at the CMR as explained in section 6.1.

The simulator simulates the time-varying multipath fading corresponding to

different channel models using a sum-of-sinusoids statistical simulation model de-

scribed in [31]. The simulator can take in various parameters including the transmit

and receive antenna correlations and the speed of the user along with the PDP for

the channel model to generate the multipath fading characteristics for the channel

considered.

User Feedback

LTE Transmitter

LTE Receiver

MIMO Channel

Channel output

eNodeB outputSignaling

Delay

Feedback trace

Data trace

Figure 4.1: Overall structure of the LTE simulator, with our modifications in blue.

We use the SU-MIMO simulation setup to test our proposed precoder detection
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algorithms, while neglecting the effect of interference and the impact of scheduling,

as a starting point. We leave the more elaborate setup for our future work.

4.1.1 Overall simulator structure

The main portions of the simulator, as used for the SU-MIMO scenario, are

shown in Fig. 4.1, with our modifications shown in blue. The simulator simulates

the transmission of the Downlink Shared Channel (DL-SCH), which consists of the

transmitted symbols along with the reference signals (CRSs), as well the control

information. For the feedback, the simulator simulates an error-free uplink feed-

back channel with an adjustable delay [28], rather than a realistic feedback channel.

However, given that the feedback channel is protected by error correction mecha-

nisms the feedback is less susceptible to errors than the transmitted data. Moreover,

because we are primarily interested in analyzing the performance of our precoder

detection algorithms, the idealistic implementation of the feedback channel does not

impact this performance analysis.

4.1.2 LTE transmitter

The structure of the LTE transmitter is described in Fig. 4.2. As mentioned

in [28, table 1], the user feedback has not been completely incorporated into the

CLSM transmit mode of the simulator, as per v1.7r1089. We explain the changes

we made to the simulator to incorporate such feedback in section 4.2. The simulator

uses the convolution encoder from [32] for the turbo encoder at the transmitter to
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User Feedback

LTE Transmitter

Scheduler
Channel coding & scrambling of user data bits

user 1

Precoding user symbols

Coding

MIMO TX and OFDM Mapping

SignalingTX Signal

Resource Block

user 2 user i

Modulation & layer mapping 
Feedback params

params

Assignment

Figure 4.2: Structure of the LTE transmitter, with our modified user feedback
implementation in blue.

perform the channel coding.

For each user, after the channel coding and scrambling of the data bits, the

transmitter modulates the data, using an MCS corresponding to the CQI given by

the feedback, in CLSM mode. It then maps the data to the correct number of layers,

as specified by the RI feedback, and applies a precoder matrix based on the rank

indicator and Precoding Control Information (PCI) feedback from the UE. Finally,

the individual precoded symbols to be transmitted on each antenna are mapped to

the appropriate elements of the resource blocks (RBs) scheduled for the user. The

LTE simulator (v1.7r1089) supports either static or round robin scheduling. Since

we are considering a SU-MIMO scenario, we are not concerned with scheduling.
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4.1.3 LTE receiver
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user i

LTE ReceiverResource block

Channel Resource block

Precoder 

MIMO RX and OFDM demapping

Channel Decoding

    User Decoded  BER Throughput

Estimation disassembling

Detection

Feedback data bits BLER

grid

Figure 4.3: Modified structure of the LTE receiver, with our precoder detector in
blue.

The structure of the LTE receiver is described in Fig. 4.3, with the precoder

detection block, in blue, only applicable to the CMR. First, the receiver determines

the RBs assigned for the user to retrieve the data sent to the user, and then cal-

culates the received SNR by estimating the signal power and noise variance using

regularly transmitted pilot signals. Next, it compensates for the carrier frequency

offset (CFO) and timing offset (if they are introduced in the simulation). The

channel is estimated using the CRSs present in the received signal, along with the

estimated noise variance. The channel estimate is used for both user feedback cal-

culation and subsequent demodulation and soft-demapping of the transmitted data

symbols. These tasks are performed at both the PUE and CMR.
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In addition to the above steps that are common to both the PUE and CMR, the

CMR also employs our proposed precoder detection algorithms, in the block shown

in blue in Fig. 4.3. It then uses the detected precoder matrix for soft-demapping of

the transmitted symbols and the channel decoding.

In MIMO mode, the simulator uses a C implementation of a soft-output sphere

decoder algorithm with a single tree search [33] for the soft-demapping. However,

we observed that this implementation suffers from high computational requirements

in case of 4x4 MIMO using 64 QAM. Hence, in order to avoid unreasonably long

computation times for the simulations, we consider only lower modulation schemes

for 4x4 MIMO, though our results can be extrapolated for 64 QAM as well.

4.2 Modifications

In this section, we explain the modifications we made to the simulator (v1.7r1089)

to account for the user feedback in CLSM (shown in blue in Fig. 4.2) and to capture

the feedback from the PUE and the data transmitted to it (shown in blue in Fig.

4.1), which is then played back when we simulate the CMR. We explain the precoder

detection shown in Fig. 4.3 in chapter 5.

4.2.1 Transmitter

We modify the “LTE TX.m” MATLABR© function to use the feedback pro-

vided by the user as follows. For each simulation run, we fix the MCS (correspond-

ing to a particular CQI) used by the transmitter, along with the number of layers
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used for each antenna configuration, i.e., 2x2 and 4x4 MIMO. Specifically, we send

2 codewords to the user, using 2 layers in 2x2 MIMO and 4 layers in 4x4 MIMO.

Hence we consider full rank transmission in all simulations. The PMI is varied

dynamically using the PCI feedback from the user, and the corresponding matrix

is chosen from the codebook [15, section 6.3.4.2.3]. With this setup, for a given

antenna configuration (i.e. 2x2 or 4x4 MIMO) and CQI, we evaluate the BLER of

the proposed precoder detection methods for a range of SNR and compare them to

the case where the precoder is known at the CMR.

4.2.2 Overall simulator structure

In order to simulate a secondary receiver that acts as a CMR, we first run

a simulation between the eNodeB and the PUE and capture the user feedback

generated by the “LTE RX.m” MATLABR© function and the data transmitted to

the PUE as a trace. In this case, the PMI is considered known at the PUE. Then,

in the second run, we playback the trace to simulate the CMR and evaluate our

precoder detection methods, as shown in Fig. 4.1, where we consider the PMI as

unknown to the CMR. In this case, we also change the channel realization in the

second run in order to simulate different channel conditions between the eNodeB

and the CMR, as compared to that between the eNodeB and the PUE.
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Chapter 5: Precoder Detection

As depicted in Fig. 4.3, we consider the problem of precoder detection after

certain processing of the received signal is done, such as the CFO and timing offset

compensation, and channel estimation. For a particular LTE subframe, we work

with the received OFDM data symbols in frequency domain, which can be concisely

represented as

yi = HiPxi + ni, (5.1)

where i indexes the symbols in the subframe, yi is the ith received data symbol

vector, P is the precoder matrix used by the transmitter for the subframe, Hi is

the frequency domain channel gain matrix observed by the ith transmitted data

symbol vector, xi, and ni is the observed noise vector assumed to be Additive

White Gaussian Noise (AWGN). The elements of xi come from at most two different

complex constellations, for the two different codewords sent by the transmitter.

The dimension of yi is equal to the number of receive antennas, r, and that of

xi is equal to the number of layers used by the transmitter, l. The dimension of the

channel gain matrix, Hi, is r × t where t is the number of transmit antennas. The

dimension of the precoder matrix, P, is t× l, with the constraint l ≤ t.

In our setting, the channel gain matrix, Hi, and noise variance, σ2, are es-
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timated, but the precoder matrix, P, is unknown. Our goal is to estimate P

based on the observation of M received data symbol vectors in the subframe,

y := (y1, . . . ,yM). To this end, we propose two methods – simplified Maximum

Likelihood (ML) detection and cluster variance algorithm – under a hypothesis

testing framework.

5.1 Hypothesis testing framework

We formulate the problem under the framework of hypothesis testing, by defin-

ing the following hypotheses:

Hj := {Precoder Pj is used} , ∀j ∈ {1, . . . , N} , (5.2)

where N is the size of the precoder codebook, i.e., the number of available precoder

matrices, which depends on t and l. Since the prior distribution over the codebook

may be time-varying, it is unlikely to be known in advance. For this reason, we

assume that the adopted precoder is uniformly distributed over the codebook. Under

this assumption, the optimal Bayesian hypothesis test that minimizes the error

probability is the ML detector.

We wish to develop an ML hypothesis test to detect the precoder matrix,

P, based on the observation y = (y1, . . . ,yM). To realize this ML detector, we

would require the knowledge of a prior distribution on xi. Since the coded bits are

scrambled at the transmitter to uniformly distribute them, it is reasonable to assume

that the transmitted symbols are chosen according to a discrete uniform distribution
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over constellations. Thus, we express the likelihood function for hypothesis Hj as

L (Pj|Hi,yi) =
1

|X |
∑

xi∈X

f (yi|Hi,Pj,xi) ,

L (Pj|H,y) =
M
∏

i=1

L (Pj|Hi,yi) ,

(5.3)

where H = (H1, . . . ,HM), X is the set of all possible transmit symbol vectors, and

f (yi|Hi,Pj,xi) is the conditional probability density of received symbol vector yi

given channel gain matrix Hi, precoder matrix Pj, and transmitted symbols xi.

This conditional distribution is Gaussian with mean HiPjxi and variance σ2.

Conceptually, we can substitute the estimates Ĥi and σ̂2 of the channel gain

matrix and noise variance, respectively, in (5.3) to compute the likelihood function.

Then, we can estimate P by maximizing (5.3) with respect to Pj. However, this

approach is computationally impractical due to the summation over all possible

transmit symbol vectors.

To skirt this issue, we propose a modified ML detector that first decodes

xi, for an observed yi, by assuming that the true precoder matrix is Pj, for each

Pj. Then, we treat the decoded symbols as the actual transmitted symbols and

formulate a simplified likelihood function for each hypothesis, Hj , thereby avoiding

the summation in (5.3). We elaborate on this technique, called as simplified ML

detection, in the following section.

5.1.1 Simplified ML detection algorithm

First, we construct an MMSE filter, GMMSE,i, using the estimated channel

gain matrix Ĥi and the estimated noise variance σ̂2 to equalize the channel as
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follows:

GMMSE,i :=
(

ĤH
i Ĥi + σ̂2I

)−1

ĤH
i ,

ỹi := GMMSE,iyi,

(5.4)

where (·)H denotes the Hermitian transpose, and I is the t × t identity matrix.

Next, in order to compute the likelihood function for hypothesis Hj , we obtain

a hard decision, x̂
(j)
i , of the transmitted symbol vector assuming that the actual

precoder is Pj under hypothesis Hj , i.e.,

x̂
(j)
i := argmin

x∈X

∣

∣

∣

∣P+
j ỹi − x

∣

∣

∣

∣ , (5.5)

where P+
j is the pseudoinverse of Pj. Therefore, this means that if Pj is indeed

the actual precoder matrix used in (5.1), then x̂
(j)
i would be the best estimate of

the transmitted symbol vector. In fact it is the ML estimate or equivalently the

minimum distance estimate of the transmitted symbol vector. We then formulate

the following likelihood functions:

L
(

Pj|Ĥi,yi, x̂
(j)
i

)

= f
(

yi|Ĥi,Pj, x̂
(j)
i

)

,

L
(

Pj|Ĥ,y, x̂(j)
)

=

M
∏

i=1

L
(

Pj|Ĥi,yi, x̂
(j)
i

)

,

(5.6)

where x̂(j) =
(

x̂
(j)
1 , . . . , x̂

(j)
M

)

, and Ĥ =
(

Ĥ1, . . . , ĤHM

)

. Note that the difference

between (5.3) and (5.6) is that we take the hard decisions, x̂
(j)
i , to be the correct

transmitted symbols. Using (5.6), we obtain the log-likelihood function as

logL
(

Pj|Ĥ,y, x̂(j)
)

= −
M
∑

i=1

1

2σ̂2

∣

∣

∣

∣

∣

∣
yi − ĤiPjx̂

(j)
i

∣

∣

∣

∣

∣

∣

2

+K, (5.7)
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where K is a constant independent of j. Since logarithm is a strictly increasing

function, we can maximize (5.7) to obtain the detected precoder as

P := argmax
Pj

logL
(

Pj|Ĥ,y, x̂(j)
)

. (5.8)

The above analysis provides us with the simple ML algorithm, with (5.8)

showing us what the algorithm essentially does. Algorithm 1 describes the steps

performed in this approach. We implemented this in MATLAB, using C to improve

the efficiency.

Algorithm 1: The overall simple ML algorithm to detect the precoder matrix

at the CMR.

1 algorithm Simplified ML (Ĥ,y, σ̂2):

Input : The channel estimates, Ĥ, the received symbols, y, and the noise

variance estimate, σ̂2, in addition to the precoder matrix codebook

Output: The detected precoder matrix, P

2 Compute the MMSE filter, GMMSE,i, and equalized received symbols, ỹi for

i = 1, . . . ,M using (5.4);

3 foreach Precoder matrix in the Precoder codebook do

4 Evaluate the hard decision, x̂
(j)
i , using (5.5);

5 Compute the likelihood function and log-likelihood function using (5.6)

and (5.7);

6 end

7 Evaluate the detected precoder by maximizing the log-likelihood function

using (5.8);

5.1.2 Cluster variance algorithm

A variation of the simplified ML detector can be obtained as follows: For each

Pj, j = 1, . . . , N , define

l
(

Pj; Ĥ,y, x̂(j)
)

:=

M
∑

i=1

∣

∣

∣

∣

∣

∣
x̂
(j)
i −P+

j ỹi

∣

∣

∣

∣

∣

∣

2

. (5.9)

23



The cluster variance scheme chooses the precoder given by

P := argmin
Pj

l
(

Pj; Ĥ,y, x̂(j)
)

. (5.10)

Notice the similarity of the cluster variance approach to the minimum dis-

tance decision rule. Intuitively, for the true precoder P, P+ỹi should lie near the

constellation point, xi, as GMMSE,i is designed to nullify the effect of the channel,

Hi. Thus, we expect that (5.9) is minimized for the true precoder matrix, which is

indeed the case for the minimum distance decision rule.

Here, however, the decision rule defined in (5.10) is not the minimum distance

rule, because (5.9) is not a sufficient statistic for the given problem. This is be-

cause the modified noise term in the hard decision, x̂
(j)
i , obtained after applying

(5.4) and (5.5), namely P+
j GMMSE,ini, does not consist of i.i.d. random variables.

For this reason, the performance of this algorithm is slightly poorer than that of

the first scheme. On the other hand, as we will demonstrate below, this scheme

enjoys lower computational requirements, and hence can be more practical in some

scenarios, especially when the performance degradation compared to the simplified

ML algorithm is not significant.

We describe the steps taken in the cluster variance algorithm in Algorithm 2.

This algorithm is very similar to Algorithm 1, except for line 5 and 7.

5.2 Complexity

The computational complexity for both algorithms is O (MNC), where C is

the size of the symbol constellation (i.e., 4-, 16- or 64-QAM), because (5.7) and (5.9)
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Algorithm 2: The overall cluster variance algorithm to detect the precoder

matrix at the CMR.

1 algorithm Cluster Variance (Ĥ,y, σ̂2):

Input : The channel estimates, Ĥ, the received symbols, y, and the noise

variance estimate, σ̂2, in addition to the precoder matrix codebook

Output: The detected precoder matrix, P

2 Compute the MMSE filter, GMMSE,i, and equalized received symbols, ỹi for

i = 1, . . . ,M using (5.4);

3 foreach Precoder matrix in the Precoder codebook do

4 Evaluate the hard decision, x̂
(j)
i , using (5.5);

5 Compute the cluster variance metric, l
(

Pj; Ĥ,y, x̂(j)
)

, using (5.9);

6 end

7 Evaluate the detected precoder by minimizing the cluster variance metric

using (5.10);

are performed once for each of the N precoders, and C comparisons are needed for

the hard decision x̂
(j)
i , i = 1, . . . ,M , j = 1, . . . , N . To better discern the difference

in computational requirements, we need to consider the number of floating point

operations needed in these two equations, assuming all operations consume the same

number of processor cycles. We find that (5.7) needs M (2t (l + r) + 2r − t) floating

point operations, while (5.9) needs only 3Ml − 1 operations. Thus, for 2x2 MIMO,

(5.7) needs (4l+10)M floating point operations, while it needs (8l+36)M operations

for 4x4 MIMO. Hence, the first scheme is computationally more demanding than the

second scheme. Note that both the algorithms have lower complexity than a Soft

Sphere Decoding (SSD) receiver, which is O (M3) [34] (note: N,C ≪ M). Hence,

these algorithms are computationally feasible.
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5.3 Ambiguity in precoders in 4x4 MIMO with 4 layers

In the case of the 4x4 MIMO, when using 4 layers, there are 16 different 4×4

precoder matrices [15, table 6.3.4.2.3-2]. These 16 precoders can be grouped into

3 sets of 4 precoders, and 2 sets of 2 precoders, with the property that each set of

precoders are “permutations” of each other, i.e., if Pi and Pj belong to the same

set, then Pi = APj, where matrix A rearranges the rows of Pj with possible sign

changes. Due to this structure of the precoder matrices, an algorithm that solely

relies on received symbols, including ours, will be unable to resolve the precoder

matrix any further than these sets. The reason for this can be intuitively observed

through the symmetry of the transmit symbol vectors set, X , and the symmetry in

the above mentioned precoder sets. As a consequence of this symmetry, (5.7) and

(5.9) evaluate to the same quantity for each precoder, Pj, within a precoder set.

For this reason, our proposed schemes are augmented with an additional step,

in the 4x4 MIMO case, to utilize the channel coding, built into the LTE communi-

cation scheme, to resolve this ambiguity as follows. Once our algorithm identifies

a set of precoders, P, which solve (5.8) (or (5.10)), we pass each of the precoders,

Pj ∈ P, to the subsequent stages of the receive chain at the CMR. The CMR tries

to decode the transmitted symbols using each of the precoders, Pj ∈ P, in parallel

receive chains, applies the turbo decoder and verifies the Cyclic Redundancy Check

(CRC) bits. It chooses the precoder that passes the CRC verification as the detected

precoder P.
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Chapter 6: Simulation Results

In this chapter, we will discuss two sets of experiments that we have conducted

using the MATLABR© based LTE simulator described in chapter 4. In the first set of

experiments, we investigate the performance of the two proposed precoder detection

algorithms detailed in chapter 5. In this experiment, using the data and feedback

traces captured from a simulation between the eNodeB and the PUE, we simulate

a scenario between the eNodeB and CMR for two different channel models and

compare the performance at the CMR when it knows the PMI versus estimates it

using our algorithms. This allows us to compute the performance penalty due to

the precoder detection algorithms.

Next, we aim to evaluate the overall benefit of using the precoder detection

algorithms in conjunction with the cooperative decode-and-forward relaying mech-

anism at the CMR for improving the performance of the PUE. We identify specific

real world channel conditions at the PUE and CMR when it is beneficial for the PUE

to make use of the cooperative relaying mechanism with the CMR employing our

proposed algorithms. This helps us demonstrate real scenarios where our solution

is valuable.
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6.1 Simulation setup

The simulator operates at a carrier frequency of 2110 MHz with a system

bandwidth of 1.4 MHz, which is the lowest system bandwidth in the LTE specifi-

cations. For this bandwidth, there are 12 RBs in each subframe of the LTE frame.

The transmitter schedules all 12 RBs to the PUE via static scheduling as we are

only considering a single user scenario, and 1000 subframes are simulated in each

run. The maximum HARQ (Hybrid Automatic Repeat reQuest) retransmissions are

set to 0 in the presence of the CMR. The CMR uses an MMSE channel estimator

and an SSD receiver, as they are well known to outperform other methods such as

Least Squares (LS) channel estimator [35] and linear equalizers [36], respectively.

The proposed precoder detection methods use M = 500 in (5.7) and (5.9) and per-

form the detection for every subframe. In addition, we also considered a system

bandwidth of 10 MHz and observed similar results to those for 1.4 MHz, and hence

we omit these results for brevity.

6.1.1 Channel models

We model the channel PDP using the ITU channel models described in [13,14].

Specifically, we consider the following channel models in our experiments, namely

Extended Pedestrian A (EPA), Extended Typical Urban (ETU), Extended Vehicular

A (EVA), Vehicular A (VA) and Vehicular B (VB), which incorporate three degrees

of spatial correlation between the antennas for MIMO conformance testing.
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6.2 Experiment 1

In the first set of experiments, as explained at the beginning of this chapter,

we investigate the performance penalty observed because of using our proposed

precoder detection algorithms to identify the PMI at the CMR. We consider low

antenna correlation level as defined in [14, table B.2.3.2-1], which is part of the

minimum performance test conditions specified in [14] for multi-layer CLSM. This

condition can be met at eNodeB in practice, while it can be justified at the CMR

by assuming cross polarized antennas [37]. We simulate both 2x2 and 4x4 MIMO

modes and consider two channel conditions – (1) EPA at user speed of 3km/h, and

(2) ETU at user speed of 60km/h. These two speeds correspond to a maximum

Doppler frequency of 5 Hz (low), and 120 Hz (high), respectively. For each scenario,

we evaluate the BLER with the precoder detectors and compare them to the case

where the precoder is known at the CMR. For each CQI and MIMO mode, we

generate a trace of the PMI feedback and transmitted data of the PUE with the

same channel PDP as the CMR, but with a different channel realization by changing

the random seed, and playback this trace in our simulations with the CMR.

In Fig. 6.1 and Fig. 6.2, we observe that the simplified ML detection algorithm

experiences a performance degradation of at most 2 dB at a BLER of 10% for both

EPA and ETU channel models, for all CQIs we consider. Similarly, in Fig. 6.3

and Fig. 6.4, we again note that there is at most a 2 dB degradation in BLER

performance for the proposed simplified ML algorithm compared to the known PMI

case. Moreover, the performance for high CQIs is very close to the “known PMI”
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Figure 6.1: BLER performance for EPA at 3km/h, 2x2 MIMO. Solid lines – “known
PMI”; dashed lines – “simplified ML detection”.
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Figure 6.2: BLER performance for ETU at 60km/h, 2x2 MIMO. Solid lines – “known
PMI”; dashed lines – “simplified ML detection”.
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Figure 6.3: BLER performance for EPA at 3km/h, 4x4 MIMO. Solid lines – “known
PMI”; dashed lines – “simplified ML detection”.
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Figure 6.4: BLER performance for ETU at 60km/h, 4x4 MIMO. Solid lines – “known
PMI”; dashed lines – “simplified ML detection”.
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case, especially for CQI 9 and above in 2x2 MIMO. Recall that we do not consider

CQIs 10 through 15 (corresponding to 64 QAM) in 4x4 MIMO for the reason stated

at the end of section 4.1.

While we did compute the confidence intervals for all the figures shown in

this section, we do not show them in the above figures to keep them readable. We

ran each simulation 5 times, and we used the data from these 5 runs to compute

the confidence intervals. We limited ourselves to no more than 5 runs due to the

prohibitively long simulation times. We calculated the sample mean, x̄, for the

BLER data in each simulation, and then computed the sample standard deviation,

σ̄. Then, we computed the margin of error using the formula

Margin of error = z∗
σ̄√
n
, (6.1)

where the critical value, z∗ = 1.96, for a 95% confidence interval. Here, n = 5, for

our 5 runs. Plugging in the values for sample mean and sample standard deviation

for each scenario, we obtained a margin of error, for a 95% confidence interval, of

about 1.5% of BLER for the ETU channel model scenarios in both 2x2 and 4x4

MIMO, for both the simplified ML and cluster variance algorithms, seen in Figs.

6.2 and 6.4, as well as Figs. 6.6 and 6.8, discussed later on.

However, for the EPA channel model, in Figs. 6.1, 6.3, 6.5 and 6.7, the margin

of error for a 95% confidence interval was higher, nearly 4% of BLER for the lower

CQI, from CQI 1 to 7. At higher CQI, beyond CQI 7, the margin of error for a

95% confidence interval is about 1% of BLER. While we are not certain as to the

reason for the higher margin of error in the EPA scenarios, it appears to be due to
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the non-monotonicity issue at the lower CQI, discussed later, which mainly occurs

with the EPA channel model. Nevertheless, our primary claim that the performance

degradation is at most 2 dB at a BLER of 10% remains valid, as the high margin

of error in EPA scenario occurs only at below 10% BLER.

We find it interesting that the performance degradation due to unknown PMIs

tends to diminish with increasing SNR and CQI. We suspect that this is because

when the CMR enjoys high SNR it can obtain more accurate channel estimates

using the CRSs. This enables the precoder detectors to determine the employed

precoders more reliably, thereby leading to a smaller performance gap.

However, there are some discrepancies in the figures above. As seen from the

simulations with the EPA channel model in Figs. 6.1 and 6.3, specifically for the

lower CQI, the performance of the simplified ML algorithm is not monotonous as the

SNR increases. The performance deteriorates at moderate SNR before improving at

higher SNR. This non-monotonicity is reduced as we averaged more simulation runs;

the figures were obtained by averaging the data from 5 separate simulation runs of

1000 subframes each. We couldn’t consider more runs due to the prohibitively long

simulation times. Additionally, at lower CQI the BLER is limited by errors caused

by the simplified ML algorithm for the EPA channel model, rather than errors due

to transmission. These errors are not eliminated by increasing the SNR and hence,

the performance of the algorithm levels out at higher SNR.

Furthermore, by comparing Figs. 6.1–6.4 to those in Figs. 6.5–6.8 that show

the analogous results for the cluster variance algorithm, we observe that this algo-

rithm performs poorer than simplified ML detection for low CQI, especially for 2x2
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Figure 6.5: BLER performance for EPA at 3km/h, 2x2 MIMO. Solid lines – “known
PMI”; dashed lines – “cluster variance”.

MIMO, while its performance is typically closer to that of the simplified ML detec-

tion at higher CQIs. Moreover, the performance of both schemes is nearly identical

for 4x4 MIMO for all CQIs considered. We expect such behavior since (5.9) ignores

the effect of the modified noise term and the effect of this approximation is lessened

at higher SNRs. Also, in case of 4x4 MIMO, each codeword is transmitted on 2

antennas, slightly increasing diversity and hence diminishing the performance gap.

The confidence interval for these scenarios is as explained earlier. Furthermore,

we again note, as before, that for the low CQI scenarios depicted in Figs. 6.5 and

6.7, the BLER performance is non-monotonic as SNR is increased. Again, this issue

occurs only for the EPA channel model. We offer a similar explanation as before, and

note that for EPA channel model the errors caused due to the algorithm outweigh
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Figure 6.6: BLER performance for ETU at 60km/h, 2x2 MIMO. Solid lines – “known
PMI”; dashed lines – “cluster variance”.
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Figure 6.7: BLER performance for EPA at 3km/h, 4x4 MIMO. Solid lines – “known
PMI”; dashed lines – “cluster variance”.
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Figure 6.8: BLER performance for ETU at 60km/h, 4x4 MIMO. Solid lines – “known
PMI”; dashed lines – “cluster variance”.

that due to transmission and hence the performance of the algorithm plateaus at

higher SNR, for the lower CQI scenarios.

6.3 Experiment 2

Going forward, we are keen to find out if the proposed cooperative relay-

ing technique at the CMR, using the precoder detection algorithms, is valuable in

real-life scenarios. We already found out that the precoder detection algorithms

themselves perform quite well in detecting unknown PMI. We know aim to identify

specific real world channel conditions at the PUE and CMR where the CMR can

obtain a better BLER performance compared to the PUE. Then, in such circum-

stances, it would be beneficial for the PUE to utilize the mobile relay to improve its
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performance.

Note that in order to fully evaluate the performance of the relay mechanism,

we should also consider the transmission between the CMR and PUE, after the

CMR decodes the data. However, we do not study this aspect, due to the limitation

of our simulation setup. We assume that the transmission between the eNodeB and

CMR is the bottleneck and hence focus on this aspect.

We consider a 2x2 MIMO channel setup in all our simulations. We use a

similar setup to the previous section and consider a low antenna correlation level at

both the PUE and CMR. We simulate a 2x2 MIMO channel between the eNodeB

and PUE as well as between the eNodeB and CMR. We consider several channel

models at both the PUE and CMR, namely the EPA, ETU, EVA, VA and VB

channel models. We consider a pedestrian speed of 3km/h for the user experiencing

the EPA channel model and a vehicular speed of 60km/h for the user experiencing

the other channel models. All our simulations consider the simplified ML algorithm

at the CMR for detecting the precoders due to its better performance. However, we

expect similar results with the cluster variance algorithm as well.

6.3.1 Channel model interpretation

The above channel models can be interpreted as specific real world scenarios.

Given the setup considered when developing the channel models in [13, 14], we can

consider the EPA channel to represent an indoor environment, characterized by

small cells and low transmit power. The ETU channel model can be treated as
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an urban environment, with a high density of tall buildings, and a relatively large

delay spread, where the user is in a moving vehicle. The large delay spread causes

poor performance, so the user is likely at the edge of the cell. The EVA channel

model is again a vehicular scenario with large cells and medium delay spread, usually

urban or sub-urban. The VA and VB models are similar to EVA, except that VB is

more extreme with a much larger delay spread (maximum excess delay of 20, 000ns).

Therefore, VB depicts a user who is at the edge of the cell.

With this interpretation in mind, we note that each simulation setup corre-

sponds to a real world scenario, albeit approximately, which we shall explain in the

text.

6.3.2 Simulation setups and results

For each scenario, we first simulate the transmission between the eNodeB

and the PUE and capture the feedback and data traces. Then, we simulate the

transmission between the eNodeB and the CMR by replaying the captured traces.

We vary the channel models at the PUE and CMR to create different scenarios and

then compute the BLER performance for both of them for various SNR and CQI.

Figs. 6.9–6.11 depict scenarios where the CMR performs better than the

PUE. Firstly, we note that we do not show the confidence intervals to keep the

figures readable. As before, we computed the 95% confidence intervals by taking

the results from 5 simulation runs. We plot the figures by averaging the results from

these 5 simulation runs. The margin of error is about 3% of BLER, in Fig. 6.9, for
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Figure 6.9: BLER performance: both PUE and CMR with EPA channel model, 2x2
MIMO. Solid lines – PUE; dashed lines – CMR using simplified ML detection.
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Figure 6.10: BLER performance: PUE with VB channel model, CMR with VA
channel model, 2x2 MIMO. Solid lines – PUE; dashed lines – CMR.
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Figure 6.11: BLER performance: PUE with EPA channel model, CMR with EVA
channel model, 2x2 MIMO. Solid lines – PUE; dashed lines – CMR.

lower CQI below CQI 7, whereas it is about 1% of BLER at CQI above 7. On the

other hand, the margin of error is in the range of 1−1.5% for the other scenarios in

this section. Once again, the higher margin of error primarily occurs with the EPA

channel model at the CMR.

In Fig. 6.9, we see that when both the PUE (shown in solid lines) and the

CMR (shown in dashed lines) experience the EPA channel and move at 3km/h,

the CMR observes better BLER performance than the PUE. Specifically, for most

CQI, the CMR sees about 1 dB improvement in error performance at 10% BLER

compared to the PUE. Similarly, in Fig. 6.10, we see that the CMR performs better

when it observes a VA channel and the PUE observes a VB channel, both moving

at 60km/h, especially at higher CQI where it sees several dB of improvement at
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10% BLER. In fact, from our simulations we noted that the VB channel model is

one of the poorest performing scenarios. Finally, in Fig. 6.11, we again see the

CMR performing better when it observes an EVA channel moving at 60km/h, with

about 2-4 dB improvement in performance at 10% BLER compared to the PUE

that observes an EPA channel moving at 3km/h.

Once again, the BLER performance for the EPA channel, shown in Fig. 6.9,

is not monotonous at lower CQI, as discussed in the previous experiment. On the

other hand, in Fig. 6.10, the performance of the VB channel model is very poor.

The reason for this is the extremely high maximum excess delay of the power delay

profile for this model, which is 20, 000ns. In contrast, the maximum excess delay

for other channel models is around 500 − 5, 000ns. One can consider this channel

to represent a user in a moving vehicle at the edge of a cell of the mobile network.

Consequently, the performance is quite poor.

On the other hand, the scenario depicted in Fig. 6.9, with the EPA channel,

can be considered as one where PUE is a pedestrian inside a building with poor

reception, and the CMR is also a pedestrian near the building with better reception.

Furthermore, the scenario in Fig. 6.11 is one where the PUE is again inside a building

and the CMR is in a moving vehicle nearby. As demonstrated by the results, we

would expect better performance from the CMR for these two scenarios.

On the other hand, in Figs. 6.12–6.14, the performance of the CMR is not as

clear-cut as earlier, compared to the PUE. Specifically, in Fig. 6.12, where the PUE

observes an EVA channel and the CMR observes an ETU channel, both moving at

60km/h, the CMR performs poorer than the PUE and sees about 1 dB deterioration
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Figure 6.12: BLER performance: PUE with EVA channel model, CMR with ETU
channel model, 2x2 MIMO. Solid lines – PUE; dashed lines – CMR.
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Figure 6.13: BLER performance: PUE with VA channel model, CMR with ETU
channel model, 2x2 MIMO. Solid lines – PUE; dashed lines – CMR.
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Figure 6.14: BLER performance: PUE with ETU channel model, CMR with EVA
channel model, 2x2 MIMO. Solid lines – PUE; dashed lines – CMR.

in performance at 10% BLER compared to the PUE, especially at higher CQI.

Similarly, in Fig. 6.13, where the PUE observes a VA channel and the CMR sees

an ETU channel, both moving at 60km/h, the CMR sees a 1 dB deterioration in

performance compared to the PUE at 10% BLER at higher CQI, while it performs

comparably at lower CQI. Furthermore, in Fig. 6.14, where the PUE observes an

ETU channel and the CMR observes an EVA channel, both moving at 60km/h, the

CMR performs poorer than the PUE for low CQI, but performs about 1 dB better

at higher CQI.

Once again, if we interpret these scenarios, we note that Figs. 6.12 and 6.13

depict scenarios where the PUE and CMR are moving in a vehicle in an urban area,

but the CMR experiences poorer performance, presumably at the edge of the cell.
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Furthermore, Fig. 6.14 is similar to the previous case but the PUE is the one that

experiences the poorer channel (ETU channel) at the cell edge. Again, we find that

the results match with the interpretation quite well.

We conducted similar experiments for the 4x4 MIMO scenario and observed

similar results.

From these results, we can identify quite a few real world scenarios that we

have simulated, albeit approximately due to the limitations of the simulator, where

the CMR does improve the performance of the PUE using the cooperative relaying

technique with our proposed algorithms. Indeed, the results seem to follow our

intuition based on the interpretation of each setup - such as the cell edge user

being outperformed by one with a better channel. Hence, from these simulation

results, we conclude that our proposed cooperative decode-and-forward relaying

mechanism using a CMR, in conjunction with the precoder detection algorithms,

can be profitably employed in LTE networks.
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Chapter 7: Conclusions

We considered the problem of precoder detection at the CMR under the sce-

nario where the PUE communicates with the eNodeB using CLSM. We formulated

the problem in a hypothesis testing framework and developed two algorithms - sim-

plified ML detection and cluster variance. We described our system setup using the

LTE Downlink link-level simulator [28] and evaluated the performance of detecting

the PMI using the proposed algorithms in comparison to the scenario where it is

known at the CMR. Our results show that the simplified ML detection algorithm

suffers at most a 2 dB deterioration in performance for all CQIs, compared to the

case where the PMI is known at the CMR. Furthermore, the performance improves

for higher CQI and at higher SNR. Moreover, the cluster variance algorithm per-

forms poorly at lower CQI for 2x2 MIMO, but performs almost identically to the

simplified ML detection algorithm for higher CQI and for 4x4 MIMO scenarios,

while being computationally simpler. Furthermore, we note that both algorithms

are computationally feasible and the complexity is linear in M , N , and C.

Additionally, we also performed experiments for both the 2x2 MIMO and 4x4

MIMO scenarios to identify the channel conditions when using the CMR benefits

the PUE and improves its BLER performance. Our aim was to evaluate the overall
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benefit of using the proposed precoder detection algorithms at the CMR in con-

junction with the cooperative decode-and-forward relaying mechanism for improv-

ing the performance at the PUE. We identified several different channel conditions

when the CMR does perform better than the PUE, in some cases observing a 1-2

dB improvement in performance and even observing 4 dB and higher amount of im-

provement in performance depending on the scenario. While we also observed a few

instances when the CMR performs poorly than the PUE, nevertheless we conclude

that there exist a large variety of physical scenarios where using the precoder de-

tection algorithms at the CMR and performing the cooperative decode-and-forward

relaying mechanism can help improve the BLER performance at the PUE. Hence,

our proposed algorithms and the cooperative relaying mechanism at the CMR can

be gainfully employed in LTE networks.
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Chapter 8: Future Work

For our future work, we wish to investigate other techniques to resolve the

ambiguity mentioned in section 5.3. Furthermore, we would like to expand our

simulation setup to include interference from neighboring eNodeBs at the relay and

further study the effect of dynamic scheduling of the primary user’s transmit signal

in a multi-user MIMO scenario. Additionally, we would like to perform simulations

where we transmit meaningful data to the PUE, rather than the random data that

we have used in the simulations presented in this thesis. Doing so would allow us to

additionally verify whether the data is successfully decoded at the PUE and CMR,

and observe any negative effects of errors in the decoding of the data. Furthermore,

we must also address the transmission from the CMR to the PUE in order to analyze

the end-to-end performance for the PUE when using the mobile relay, which we

ignored in this thesis. Finally, we wish to evaluate the performance of the proposed

schemes on a physical LTE channel using a physical testbed.
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