
ABSTRACT

Title of thesis: SOFTWARE CRASH STUDY

Yantao Zhang, Master of Science, 2015

Thesis directed by: Professor Tudor Dumitras
Department of Electrical and Computer Engineering

With the development of personal computers, the user experience has become

a vital part of every day work and life of the majority of people on the planet.

Hardware components are usually preconfigured and most people tend not to tune

them. However, the software environments change much more often because of the

configuration by users, the upgrading by vendors and the attacks by hackers. All

of those activities can be a factor in the stability of software. In this work, by

analyzing a sample of 600,000 machine weeks and around 16,000 applications used

on them, we try to derive the relationship between the software environment and the

crashes of software. We mainly used association rule mining and analyzed our data

on Spark. We also examined the predictability of crashes using the association rules

and the difference of predictability between different versions of a same application.

SOFTWARE CRASH STUDY

by

Yantao Zhang

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2015

Advisory Committee:
Professor Tudor Dumitras, Chair/Advisor
Professor Edoardo Serra
Professor Joseph Jaja

c© Copyright by

Yantao Zhang
2015

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, professor Tudor Dumitras

for giving me this opportunity to get hands on experience with valuable real world

data and giving me generous guidance throughout the way. There are so many

things I learned from him during this experience. Research is never easy and the

most important thing is not the intelligence, but the patience and the determina-

tion. Sometimes I can easily be overwhelmed by the complexity of the problem and

numerous failures coming from my seemingly naive ideas, but professor Dumitras

always gives me confidence and encourages me to try.

Apart from research, I learned a lot by getting to know about professor Dumi-

tras. He has great passion about everything he does, marathon, glass-icon painting,

mountain climbing, etc. Life can sometimes have tough moments if we want to

achieve something. The greatest lesson that I learned was that happiness depends

mostly on your attitude for life, not what life brings to you.

I would also like to thank professor Edoardo Serra for discussing interesting

ideas with me throughout the process. There are a lot of times I want to give up

and you give me the courage to keep doing it. Grazie Mille!

I would also like to thank my parents who gave me encouragements throughout

the whole process. Last year has been a very tough one for me. I experienced a lot

of difficulties from both research and life. I had to learn all the fundamentals about

ii

cloud computing in order to run all the algorithms on the clusters. I remembered the

days when I read the tutorial online and tried to configure the pseudo environment

on my own laptop. I read a lot of technical blogs and some of them have very crucial

mistakes inside. There were times that I got stuck by an error the whole day and

could not proceed. I was really worried because I wanted to produce meaning results.

There were a lot of sleepless nights where I felt my work was dead in the water. My

parents told me to take it easy and just try my best to do whatever I can. They

told me that life was not about getting the results, but about the process. I used

to believe that being successful was the most important thing for life. Now I realize

there are so many things that are far more important, love, health, friendship,etc.

Life is about experiencing different things and goals are not important at all.

I would also thank professor Joseph Jaja from Electrical and Computer Engi-

neering department and Katherine C.McAdams from UMD ombuds office. Thanks

for providing support during my study.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out.

There are so many difficulties throughout the process, but I think I get the

most important things in life from it. It helps me become a better person.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Overview . 1
1.2 Related Work . 3

2 DATA AND METHODS 7
2.1 Overview . 7
2.2 Tables from WINE . 8

2.2.1 WINE BINSTAB Schema . 8
2.2.2 WINE DIM Schema . 10

2.3 Data Preprocessing . 10
2.3.1 Extracting Data From WINE 11
2.3.2 Matching Uses with Crashes 11
2.3.3 Processing Numerical Data . 13

3 Data Analysis Methods 15
3.1 Overview . 15
3.2 Problem Definition . 16
3.3 Apriori Algorithm . 17
3.4 Frequent Pattern Tree Growth . 19

3.4.1 Frequent Pattern Tree . 19
3.4.2 FP Growth Algorithm . 20

3.5 Cloud Computing Platforms . 24
3.5.1 Apache Hadoop . 24
3.5.2 Apache Mahout . 25
3.5.3 Parallel FP Growth . 26
3.5.4 Independence Test for Rules 28

iv

4 Implementation Apriori on Spark 32
4.1 Apache Spark . 32
4.2 Apriori Implementation on Spark . 33

5 Results and Analysis 36
5.1 Overview . 36
5.2 Data Preprocessing Result . 36
5.3 Application Crash Distribution . 38
5.4 Internet Browser Statistics . 40
5.5 Googleupdate Statistics . 42
5.6 Microsoft Office Statistics . 42
5.7 Rule Mining Result . 45

5.7.1 Association Rules . 46
5.7.2 September 2012 Data Result Train and Test 47
5.7.3 Likelihood Ratio for Rules . 54

6 Conclusion and Future Work 57

A Association Rules 59

Bibliography 74

v

List of Tables

3.1 Example of FP Growth Algorithm . 21
3.2 Mining FP-Tree . 23

5.1 General Statistics From the Two Sampling Periods 37
5.2 Crash Version Propagation Statistics From the Two Sampling Periods 37
5.3 Internet Explorer Version With Most Machine/Week Presence 39
5.4 Chrome Version With Most Machine/Week Presence 40
5.5 Firefox Version With Most Machine/Week Presence 41
5.6 Googleupdate Crash Ratio . 42
5.7 July 2014 Office Crash Ratio . 43
5.8 Sep 2012 Office Crash Ratio . 44
5.9 Area Under ROC Curve(Internet Explorer) 53
5.10 Jaccard Index for One Item Rules in Train and Test Sep 2012 56

A.1 Internet Explorer 11.00.9600.16428 One Item Rules(Jul 2014) 59
A.2 Internet Explorer 11.00.9600.16428 Two Item Rule(Jul 2014) 60
A.3 Internet Explorer 11.00.9600.16384 One Item Rules(Jul 2014) 61
A.4 Internet Explorer 11.00.9600.16384 Two Item Rules(Jul 2014) 62
A.5 Internet Explorer 10.00.9200.16384 One Item Rules(Jul 2014) 63
A.6 Internet Explorer 10.00.9200.16384 Two Item Rules(Jul 2014) 64
A.7 Internet Explorer 9.00.8112.16421 One Item Rules(Jul 2014) 65
A.8 Internet Explorer 9.00.8112.16421 Two Item Rules(Jul 2014) 66
A.9 Chrome 36.0.1985.125 Rules(Jul 2014) 67
A.10 Googleupdate 1.2.183.21 One Item Rules(Jul 2014) 68
A.11 Googleupdate 1.2.183.21 Two Item Rules(Jul 2014) 69
A.12 Internet Explorer 7.00.6000.16386 One Item Rules(Sep 2012) 70
A.13 Internet Explorer 8.00.6001.18702 One Item Rules(Sep 2012) 71
A.14 Internet Explorer 8.00.7600.16385 One Item Rules(Sep 2012) 72
A.15 Internet Explorer 9.00.8112.16421 One Item Rules(Sep 2012) 73

vi

List of Figures

2.1 Matching Uses With Crashes . 12
2.2 Processing Numerical Data . 14

3.1 Frequent-Item-Header Table and Frequent Pattern Tree 22
3.2 Conditional Pattern Tree for Chrome 22
3.3 Parallel Frequent Growth Algorithm Mahout 27

4.1 Spark Apriori Candidate Generation Diagram 34

5.1 Distinct application crashes VS Number of Machine/Weeks 38
5.2 IE Roc Curve Sep 2012 (Train/Test Separate By Time) 48
5.3 IE Roc Curve Sep 2012 (Train/Test Separate By MachineID) 48
5.4 IE 7.00.6000.16386 Roc Curve Cross Validation 49
5.5 IE 8.00.6001.18702 Roc Curve Cross Validation 50
5.6 IE 8.00.7600.16385 Roc Curve Cross Validation 50
5.7 IE 9.00.8112.16421 Roc Curve Cross Validation 51
5.8 Chrome21 Roc Curve Cross Validation 51
5.9 Firefox 15 Roc Curve Cross Validation 52
5.10 Internet Explorer Versions Cross Validation(Balanced) 53

vii

Chapter 1: Introduction

1.1 Overview

With the development of modern software technology, personal computer us-

age has experienced significant increase in the recent years. During the last twenty

years, the average number of computer uses per 100 people has increased from almost

none to 20 computers and this trend is still going up. And most of the computers

sold each year are consumer PCs. The reliability issue of personal computers has

become a more and more important factor as it impacts the day-to-day work and

life of almost all of us.

Throughout the years, there have been extensive studies on personal computer

reliability. The reliability of a personal computer in general depends on two factors,

hardware and software. The reliability of software is a problem more complex than

hardware reliability. Compared to hardware reliability, the reliability of software

constantly changes. There are a lot of patching and updates after the initial release

of the software. And the hardware environment of the hosts is evolving as the

hardware technology improves. And the variance also comes from the different

behaviors of users. Some users might be interested in configuring software more

often than others. The knowledge about the machines and software technology also

1

varies a lot between different end-users. So factors like user behaviors and software

environments might play a role as important as the code produced by vendors.

[1] gave a review of the a number of models that have been derived based

on the pre and post behavior of the development of software products. The work

pointed out that the reliability of complex software is still not well understood and

remains challenging to quantify. This poses a problem for estimating the overall

reliability that we can expect from the computer. This problem in practice is a very

big issue for personal computer users as software crashes and even operating system

instability will hinder the work efficiency for end-users. Thus understanding the

possible causes for the crashes of software and operating systems are very important

and it will allow users to assess how much they can rely on their own computers

and what they can do in order to increase the stability of software. Good prediction

models of the software reliability will allow the software vendors to allow resources

for the development of software patches and to plan accordingly for future releases.

The software vendors will also be able to address the problem directly if root cause

of the crash can be discovered. It will also be helpful for software testing as it can

provide a standard environment for testing the software.

In this thesis, we look at how the software environment influences reliability.

We will discuss about examples of the coexistence of software causing instability

of one of them. Besides, we will show to what extent we can predict the software

crashes based on this factor. The goal of this study is to provide insight into the

fact that software environment is an important factor that lead to the crash.

All the data is from Worldwide Intelligence Network Environment(WINE)

2

from Symantec, which provides us a wide range of end-hosts across the world. This

makes the result very valuable since it considers the wide variability of different

users and machines.

1.2 Related Work

There have been a lot of empirical studies focusing on the impact of hardware

components to stability of computers. [2] presents the first large-scale analysis of

hardware failure rates on a million consumer PCs. They find that hardware induced

failures are recurrent and not independent. CPU speed and configurations of the

desktop are related to hardware failures. They are also able to spot the spatial

locality of DRAM failures. [3] provides a better understanding of what disk failures

look like in the field. It is the first work to provide a large-scale study of disk

failures in production systems. The work showed that MTTF(mean time to failure),

which is a commonly used formula for disk replacement time estimation, was not

practical according to the field data they have. [4] is the first work to study on the

real DRAM failures in large production clusters. They analyzed measurements of

memory errors in a large fleet of commodity servers over a period of 2.5 years. They

mainly addressed the problem of frequency of memory errors in practice and the

effect of external factors on the DRAM age. These works have proved that there is

a gap between the lab measurements and data collected in the field.

Software reliability has been studied with respect to different viewpoints for a

long time [5]. Most software reliability studies are focused on the software itself. [6]

3

tries to analyze a modular program as a composition of modules where the transfer

of the control follows a semi-Markov process. The failure of each process is modeled

as a poisson process. Littlewood shows the cost (induced by software failures) with

different program running times. There has been some work focusing on the bugs

for specific software. [7] uses an automatic, static compiler analysis to Linux and

OpenBSD kernels to find the bugs from those operating systems and compared the

bugs across different parts of the operating system and across different versions of

the operating system. This is the first work to automatically find errors in operating

systems based on the software they developed in [8]. Drivers directory is found to

contain up to 7 times more of certain kinds of faults than other directory. After

this, there have been multiple efforts done in improving the reliability of driver code.

Ten years later, [9] transported the experiments to test on new versions of Linux

released between 2003 and 2010. They showed that Linux kernel doubled in size

during the period but the fault per line was decreasing. And the average fault rate

of drivers directory is below the rate of other directories. These two work show that

the research in this field has great impact on the development of software.

Throughout the years, there has been a trend of increasing software reliability

discovered. [10] introduced the idea that the software reliability would increase as the

user got more familiar with the software, which was captured by previous models.

And they found that this kind of growth also comes from the fact that installation

of some products involves installing some new drivers which would help the software

to be more reliable. They included both factors in their model and achieved a better

estimation of the crash of software.

4

However, the current literature of software reliability study faces two problems.

First, the failure of software is defined very broadly and some of them are very

different from user experience. This results in the fact that user-reported failures

are often not compatible with data from elsewhere. Secondly, most field studies

focus on enterprise systems that are professionally monitored and the hardware is

consistent across machines.

In practice, users and vendors rely on certain ad-hoc proposals or popular

beliefs in order to improve the reliability of PCs. To assist those problems better and

considering the fact that consumers consist of a large portion of personal computer

purchases, a study of machines involving wide range of users and software are needed

in order to target the problems.

There is very few work currently that has been done on analyzing software

behaviors and crashes on a large scale in the field. [11] presents the first in-depth

analysis of I/O behavior of productivity applications among home-user applications

in Apple desktop. An instrumentation framework based on the tracing system

DTrace is used to build a benchmark for I/O workload comparison among those

applications. The study reveals the organization of modern files and the lack of pure

sequential accesses. It will help developers better understand the internal behavior

of the applications on the platform and design better local and cloud-based storage

systems. [12] proposed the idea that software reliability is affected by the presence

of other software by a study of installation, usage and crash information on 200,000

machines with Windows in CEIP dataset [13]. The study focuses on 53 most used

applications and explored the interaction between them. Both one to one interaction

5

and many to one interaction are explored. It also showed that mere installation of

an application can affect the reliability of other applications. However, the work is

focused only on a limited number of machines and did not check the consistency

of the findings. Since it only considers the most commonly used applications, the

impact of some uncommon applications is not studied. Since the application crash

itself is rare, it is likely that the major cause can come from those uncommon

applications.

6

Chapter 2: DATA AND METHODS

2.1 Overview

The research conducted in this thesis is based on the data collected by World-

wide Intelligence Network Environment(WINE), a platform for data intensive ex-

periments in cyber security. WINE was developed by Symantec Research Labs

for sharing comprehensive field data withe the research community. It provides a

platform for repeatable experimental research. In order to fulfill the gap of insuffi-

cient data in computer security research, WINE provides a unique way by enabling

external research on field data collected inside Symantec and by promoting rigor-

ous experimental methods. Researchers are able to define the reference data sets

and validate new algorithms or conduct empirical studies and try to establish the

validity of the data sets for cyber security threat. Reproduction of previous exper-

imental results are made possible by the existence of WINE and the comparison

of different algorithms on the same dataset is thus able to be done. What’s more,

WINE also provides researchers a way to do the comparison and examine the re-

sults of algorithms across time. And the use of WINE dataset is not only limited

to cyber security research, it can also be applied to researchers related to software

engineering, software testing, etc.

7

WINE includes filed measured data, aggregated from 240,000 sensors from

all over the world. The sensitive information in the data sets are protected so

that researchers can only have access to the raw data onsite. All the snapshot of

experiments performed are recorded for future reference.

WINE samples and aggregates multiple petabyte-size data sets, which Syman-

tec uses in its day-to-day operations, with the aim of supporting experiments at a

scale. The data we use in this study is archived on the WINE platform and is avail-

able to the research community for independent verification of our results and for

follow-on studies. Because data on software failures is scarce, we believe that the

public availability of the data that accompanies our findings will enable researchers

to further investigate fundamental questions about software designs and testing en-

vironments.

2.2 Tables from WINE

In this section, we will describe the tables that we extract from WINE that is

used to help us understand the software crash behaviors.

2.2.1 WINE BINSTAB Schema

The WINE BINSTAB Schema(the stability telemetry) is a collection of sta-

bility reports and the details of applications related to these stability reports.

The stability telemetry dataset provides us with a lot of information about the

characteristics and configuration of monitored hosts as well as information about the

8

applications installed on them and any application crashes and hangs they experi-

enced. Three reports from this telemetry are used.

• Stability Reports These reports are summaries of different kinds of errors

that occur on hosts. Norton products collect this information on participating

hosts by processing the Windows Event Log. Errors are reported in one of

several categories including application error, application hang, msi installer

error, miscellaneous error, service control manager error and system crash.

Each report covers some period of time, on average a couple of hours.

• Process Reports For all participating hosts, daily summaries of the cumula-

tive runtime of each process are submitted. Each process is identified uniquely

by version and its application name. There is also additional information about

the time of the sampling and other meta information like file version and file

path. Each row contains information about the file as well as the cumulative

runtime of the file during the sampling period of 24 hours.

• FaultingApps Reports These reports are the details of crashes correspond-

ing to Stability Reports during the Stability Report sampling period. They

are also collected by processing the Windows Event Log. This table tells us

the exact number of faults for each application during the sampling period

and the type of errors(application crash or application hang).

9

2.2.2 WINE DIM Schema

The WINE DIM Schema is a collection of mapping for all the ids in the other

schemas to the real values.

• dim.filesha2 This is a mapping from file sha2 id to filesha2.

• dim.filename This is a mapping from file name id to filename.

• dim.filedirectory This is a mapping from file directory id to filedirectory.

• dim.filemd5 This is a mapping from file md5 id to filemd5.

• dim.fileversion This is a mapping from file version id to fileversion.

• dim.url This is a mapping from url id to url.

• dim.filesignerissuer This is a mapping from file signer issuer id to file signer issuer.

• dim.filesignersubject This is a mapping from file signer subject id to file signer subject.

2.3 Data Preprocessing

The raw data from the tables listed above has two problems. The size of the

data is too large and raw data can not be taken directly out of Symantec due to the

policy. Thus we need to do some preprocessing so that the size is feasible and all

the data we taken back is the aggregation results.

10

2.3.1 Extracting Data From WINE

The first step is to extract the data from WINE. And we mainly perform SQL

operations on the following tables and we do not take the information of all the

participating hosts, but only 25% of the total machines.

• Application Usage Information The ProcessRunTime table is used to get

the application usage. We aggregate the total number of instances for each

process on a specific machine on a weekly basis.

• Application Crash Information The FaultingApps table is joined with

StabilityReport table to get the application crash information. We aggregate

the total number of crashes for each process on a specific machine both on a

a weekly basis.

2.3.2 Matching Uses with Crashes

After the aggregation of the two tables, we are going to match the application

usage table and the application crash table. The process procedure is shown in

figure 2.1.

During the application usage aggregation process, we originally proposed three

ways to identify a specific application: name only, name plus sha256, and name plus

version. For the name only way, it is easy to do but it will pose some difficulties

for further analysis since the name itself is not enough to explore which exact dis-

tribution of the application that caused the problem. For the name plus sha256

11

Figure 2.1: Matching Uses With Crashes

way, there are some issues with name and sha256 matching in the database and the

matching between them is many to many, which is very weird. Finally, our choice

is to use name plus version to make up for the defects of the previous two schemes.

The first thing we do is to propagate the version information in the usage table

to the application crash table. This is because Symantec does not include version

information for crash table for some reasons. And this propagation is feasible based

on the following observation: different versions of the same application are not likely

to be used in the same week. We look through the whole fault apps table and the

whole process run time table in WINE and find that only 4% of machines have

process runtime records for more than one version of the same application in a

week.

The second step we do aggregation of the applications, which are identified by

12

name plus version, based on machine week. In this case, we will get a table such

that each row corresponds to one machine in a sampling period. And also there

will be a list of numbers of uses for each application on that machine in the specific

sampling period(a week). We do the same for the crash table and we will get a

table such that each row corresponds to one machine in a sampling period. And

also there will be a list of numbers of crashes for each application on that machine

in the specific sampling period(a week).

Then we match the machine id and the timestamp in both tables. Each

machine id and timestamp pair serve as a unique identifier for our data and is the

basis for further aggregation. After this matching process, we will have a table where

each row corresponds to one machine in a sampling period. And also there will be

a list of numbers of both uses and crashes for each application on that machine in

the specific sampling period(a week).

2.3.3 Processing Numerical Data

The second step is to process the data in a meaningful way for the application

of algorithms. At this stage, we have the use and crash aggregation data for each

week during our five weeks total sampling period. The data is composed of several

thousand features, the uses of different applications, and several thousand targets

for our research, the crashes of those same number of applications.

In order to compare the features on a same scale, we try to dichotomize the

features into binary variables. This can allow easier ways to apply our algorithms.

13

Figure 2.2: Processing Numerical Data

We try difference ways of dichotomizing the data and they represent different per-

spective of the problem. Following is the details about how we dichotomize the

data.

• Application Usage We dichotomize the application usage in two ways. The

first one is dichotomizing by whether the application is launched at least once

in the sampling period on that machine. In this case, after processing, 0 means

the application is not used and 1 means the application is used. The second

one is dichotomized by median. In this case, after processing, 0 means the

application is not heavily used and 1 means the application is heavily used.

• Application CrashesWe dichotomize the application crashes based on whether

it is zero or not. That means if the application crashed at least once in the

period, we denote that it has recorded crash in that period.

14

Chapter 3: Data Analysis Methods

3.1 Overview

Data mining is about finding hidden, unknown and valuable knowledge and

rules in big database or data warehouse. It is the combination of artificial intelligence

and database, and it is one of the most valuable research directions for database and

decision systems based on information. There are a lot of well-researched methods in

data mining, such as pattern classification, association rules, decision tree, clustering

pattern analysis, neural networks, etc.

Association rule mining is a very important research topic in data mining and

it is widely used in almost every field. It is important for two reasons. First, it can

be used to examine the knowledge formed by experience in the field. Secondly, it is

an effective way to find new rules that are not obvious.

R.Agrawal [14] first proposed the problem of mining association rules in cus-

tomer trading database. The key point of their work is to use recursion based on

frequent item set theories. There are a large volume of work afterwards, including

the optimization for Apriori algorithm [15] [16], Multi-level association rule min-

ing algorithms [17], etc to make the efficiency of association rule mining algorithms

better.

15

3.2 Problem Definition

Suppose I = {i1, i2, ..., ik} is a set composed of k different items. We have

a transaction database, we call D, and every transaction T in D is composed of

items from I, we can denote as T ⊂ I, T has a unique transaction identifier in

the database. If X ⊂ I and X ⊂ T , then the transaction T contains itemset X .

Association rule has the form of X ⇒ Y , where X ⊂ I,Y ⊂ I,X ∩ Y = ∅.

We have two criteria in order to form a valid rule X ⇒ Y . The first one is the

support for the rule should be at least S. That means among all the transaction in

the database, we should have at least S% of them containing both X and Y . The

second one is confidence C. For all the transactions that contain X , there should

be at least C% of them containing Y .

Association rule mining is to find association rules from the transaction database

D that satisfies the minimum support minsup and minimum confidence minconf.

Association rule mining can be divided into the following two sub-problems.

The first one is finding all the itemsets X such that the support of X is higher

than the minsup, and those X are called large itemsets.

The second one is generating association rules by the large itemsets found in

step one. For each large itemset A, if B ⊂ A,B 6= ∅, and support(A)
support(B)

) ≥ minconf ,

then we have an association rule B ⇒ (A−B).

The second problem is easy to solve [14]. Most of the research is on the first

sub-problem. In the next few sections, we will introduce several algorithms that we

applied to our problem.

16

3.3 Apriori Algorithm

Apriori algorithm is an iterative algorithm for obtaining frequent itemsets that

satisfy minsup level by level, that is, frequent itemsets with k+1 items are obtained

using frequent itemsets with k items. First, we get frequent 1-itemset, denote as

L1. L1 is used to get frequent 2-itemset L2, and L2 is used for finding L3, so on and

so forth, until there we reache k-itemset Lk where Lk is empty. The algorithm is

not very efficient since we need to search the whole database once for each level in

order to generate the frequent itemsets. This is necessary since we need to know the

support for each of the candidate itemsets and filter the ones below minsup. In order

to compress the search space, Apriori algorithm uses the following two important

properties:

1. If X is a frequent itemset, then all the subsets of X are frequent itemsets.

2. If X is not a frequent itemset, then all the supersets of X are not frequent

itemsets.

There are a couple of bottlenecks for Apriori Algorithm:

1. The number of scans of the whole database is too big. When the transaction

database has a huge amount of transaction data, it will pose a great load on

I/O if the memory is limited. In each iteration, each element in candidate set

must be scanned through the transaction database and filter using minimum

support in order to add into frequent itemsets. If there is a candidate itemsets

containing 10 items, we need to scan the transaction database 10 times. This

17

Algorithm 1 Apriori Algorithm

1: procedure AprioriAlgo(D,minsup)

2: L1 = FindFrequentOneItemset(D)

3: for k = 1; Lk not empty; k++ do

4: Ck+1 = CandidateGen(Lk);

5: for each candidate t in D do

6: for each candidate c in Ck+1 do

7: if c is in t then

8: c.count = c.count+ 1

9: Lk+1 = {c ∈ Ck+1|c.count ≥ minsup}

10: Return ∪kLk

11: procedure CandidateGen(Lk, k)

12: CandidateSet = {}

13: for C1, C2 in L do

14: if C1 6= C2 then

15: c = C1 ∪ C2

16: if c.size() == k + 1 then

17: CandidateSet.add(c)

18: Return CandidateSet

18

will cause the scan step taking a lot of time and reducing the efficiency of

Apriori.

2. It will cause the generation of candidate sets with large size. The step from

Lk−1 to Ck has exponential growth in size, for example, 103 one-item frequent

itemset will have a possibility of generating 105 two-item candidate set. Thus if

we want to get a rule with too many items, the intermediate elements generated

in the process will be extremely large.

3. There are some rules that satisfy the minimum support and confidence but

have no real significance. If we increase the minimum support, the information

we get will be limited and we might be unable to find some meaningful rules.

3.4 Frequent Pattern Tree Growth

In order to solve the problem of Apriori’s inefficiency in mining long rules,

Han [18] proposed the Frequent Pattern Tree Growth algorithm(FP Growth). This

algorithm only scans the whole database twice, which significantly boosts the effi-

ciency of the algorithm. It does not need to do the iterative candidate generation like

Apriori does. And due to some properties of the algorithm, it is easier to parallelize

the algorithm.

3.4.1 Frequent Pattern Tree

Frequent Pattern Tree is a prefix tree which contains a root with Null value,

children (the frequent prefix patterns) and a frequent pattern header which has

19

pointers to the nodes in the tree. Han [18] defines the FP-tree as follows:

1. One root labeled as ”null” with a set of item-prefix subtrees as children, and

a frequent-item-header table.

2. Each node in the item-prefix subtree consists of three fields:

(a) Item-name: registers which item is represented by the node.

(b) Count: the number of transactions represented by the portion of the path

reaching the node.

(c) Node-link: links to the next node in the FP-tree carrying the same item-

name, or null if there is none.

3. Each entry in the frequent-item-header table consists of two fields:

(a) Item-name: as the same to the node.

(b) Head of node-link: a pointer to the first node in the FP-tree carrying the

item-name.

3.4.2 FP Growth Algorithm

The following table 3.1 is an example of mining the frequent item-sets using

FP-tree growth. We use examples related to our data and each transaction cor-

responds to the list of applications used on that machine in the sampling period.

We set the minimum support in the example to be 2. In this example, we have 7

machines and 5 applications in total: ie, word, ppt, googleupdate and chrome.

20

Table 3.1: Example of FP Growth Algorithm

Machine ID Applications Used Reordered Applications

1 {ie, word, chrome} {word, ie, chrome}

2 {word, googleupdate} {word, googleupdate}

3 {word, ppt} {word, ppt}

4 {ie, word, googleupdate} {word, ie, googleupdate}

5 {ie, ppt} {ie, ppt}

6 {word, ppt} {word, ppt}

7 {ie, ppt} {ie, ppt}

8 {ie, word, ppt, chrome} {word, ie, ppt, chrome}

9 {ie, word, ppt} {word, ie, ppt}

• Step 1: Scan the whole database one to get the counts of 1-itemsets. In our

case, we get ie:6, word:7, ppt:6, googleupdate:2, chrome:2. All of them satisfy

the minimum support.

• Step 2: Sort the list of applications by their frequency. Then we have this

ordering: word, ie, ppt, googleupdate, chrome.

• Step 3: Reorder the database based on the ordering.

• Step 4: Initialize the frequent-item-header table, all the links are initialized to

NULL. Initialize the frequent pattern tree with a root node as null.

• Step 5: Read in the transactions and build the tree. The tree and the frequent-

21

Figure 3.1: Frequent-Item-Header Table and Frequent Pattern Tree

Figure 3.2: Conditional Pattern Tree for Chrome

item-header table is shown in figure 3.1. Increase the count of the node vis-

ited(if not visited, create the node and set the count to be 1) in the frequent

22

Table 3.2: Mining FP-Tree

Item Conditional Pattern Conditional FP-tree Frequent Itemsets

chrome (word, ie):1,
(word, ie, ppt):1

(word : 2, ie : 2) word chrome : 2,
ie chrome : 2,
word ie chrome : 2

gupdate (word, ie):1,
(word):1

(word : 2) word gupdate : 2

ppt (word):2,
(ie):2,
(ie, word):2

(word : 4, ie : 2),
(ie : 2)

word ppt : 4,
ie ppt : 2,
word ie ppt : 2

ie (word):4 (word:4) word ie : 4

pattern tree and add a pointer to the node at the end of node-link.

• Step 6: Starting from the last item(the one with the smallest support) in the

frequent-item-header table and find all the path that contains the item. In

this case, we start from chrome and we have two path in the tree that leads

to it. And we update the count of the nodes so that the count only involves

the path considered. And the updated prefix paths will be: word, ie, chrome

having count 1 and word, ie, ppt, chrome having count 1. And we can build a

subtree based on these nodes, where word has count 2, ie has count 2 and ppt

has count 1. We then delete the nodes having count less than the minimum

support. We finally get the conditional pattern tree for chrome to be word, ie

having count 2. The conditional pattern tree for chrome is shown in figure 3.2.

• Step 7: Step 6 is done for each node and we are able to get all the frequent

itemsets satisfying the minimum support.

Table 3.2 shows the final result from FP growth algorithm in our example.

23

Algorithm 2 FP Growth Algorithm

1: procedure FPGAlgo(Tree T , Pattern P)

2: if T contains a single path then

3: for each combination C of the nodes in the path do

4: generate pattern C ∪ P with support to be MinSup of nodes in C

5: else

6: for each i in the header of T do

7: generate pattern C = i ∪ P with support to be support of i

8: construct the conditional pattern base of C and its conditional FP

Tree TC

9: if TC is not empty then

10: FPGAlgo(TC , C)

3.5 Cloud Computing Platforms

In this research, considering the number of machines and the number of appli-

cations that we are mining on, the dimensionality of the data makes it impossible

for us to run algorithms locally. In order to efficiently get as much rules as possible

out of the large amount of data, we used mainly two platforms: Apache Hadoop

and Apache Spark.

3.5.1 Apache Hadoop

Apache Hadoop is an open-source cloud computing platform implemented in

Java for distributed storage and processing of large datasets on computer clusters.

24

It is composed of two main parts: the distributed storage system(HDFS) and pro-

cessing modules(MapReduce).

The Hadoop Distributed File System(HDFS) is a distributed file system that

supports high fault tolerance and thus can be deployed to very low-cost hardware.

The HDFS provides high throughput access to data and is thus suitable for problems

with large datasets.

The files in HDFS are stored in blocks across machines. Each block is repli-

cated several times on different machines in order to have good fault tolerance. By

default, each block is 64MB. Each block is replicated three times by default. The

block size and replication factor can be configured for each file.

HDFS employs a master/slave mechanism. There is one namenode(master)

and a lot of datanodes(worker). The namenode is responsible for storage of the

metadata about the storage place of the blocks of information(mapping information

about which datanode stores a specific block). It also executes file system operations

for opening, closing and renaming files and directories. The datanodes will serve

read and write requests from the client and also perform file operation instructions

from namenode.

3.5.2 Apache Mahout

Apache Mahout is an open source library for machine learning on a large scale

implemented in Java and MapReduce. It supports most of the machine learning

algorithms in literature and can be run both in sequential mode and in mapreduce

25

mode.

3.5.3 Parallel FP Growth

Frequent pattern tree growth algorithm is implemented in mahout versions

before 0.8. The algorithm is based on the work in [19].

Figure 3.3 shows the procedure of the algorithm in Mahout. The implemen-

tation is based on the following steps, and in total there are three mapreduce pro-

cedures:

• Step 1: Split the database into several data shards and distribute to P nodes.

• Step 2: MapReduce1. Using the same approach as WordCount [20] and get

the frequent 1-itemsets. Then sort them decreasingly based on the support

and get a table, we call it F-List.

• Step 3: Separate the items in F-List into Q groups and assign a unique group

id to each one. Then we have all the items along with its group id, we call

this the G-List.

• Step 4: MapReduce2. Take the data shards from Step 1 as the input to map-

per. For each transaction Ti, go through items in the transaction({a1, ..., an})

from the last one. If we are currently processing aL and it is the first time

that its group id in G-List is scanned, then we output a key value pair. Key is

the group id and value is the itemset {a1,aL}. Otherwise, we do not ouput

anything. And the reducer takes the key value pair output from the mapper,

26

[key = groupid, value = {{valuelist1}, ...{valuelistN}}]. The reducer will do

a recursive FP Growth mining on the value-list it receives. Instead of directly

returning all the itemsets, it will put them into maximum heaps. Each maxi-

mum heap corresponds to one item. And the output key value pair of the re-

ducer will be [key = groupid, value = {top K frequent patterns containing the item}].

Top K means the top k itemsets with the largest support.

Figure 3.3: Parallel Frequent Growth Algorithm Mahout

• Step 5: MapReduce 3. Since the mapreduce procedure in step 4 used group

ID to divide the data, we can expect that the same item may end in several

different heaps. This is because each group of itemset list can possibly contain

this item. That means the output of Step 4 will possibly have key value pairs

with same item as key. And we need to merge those key value pairs to get

one heap rather than a couple of heaps. The mapper in this step will take the

output of step 4 as input. For each key value pair, we get all the items appeared

27

in the value. Then for each of these items, it outputs [key = item t, value =

all the frequent itemsets containing item t on this node]. The reducer will

then merge the values(which is list of frequent itemsets) with the same key.

3.5.4 Independence Test for Rules

One of the problems brought by the association rule mining is the explosion

of frequent itemsets. And it is very important to eliminate rules that are of low

importance. It is both crucial for prediction reasons and for the understanding of

the real causes of the problem we are researching on.

[22] discussed the fact that we should care about how likely the association

of the left-hand side(LHS) of the rule and the right-hand side(RHS) is real. They

can appear together on a random chance or due to a systematic effect. But neither

support nor confidence tells us that LHS and RHS are independent or not. If they

happen to be independent, then the rule is meaningless to us. So we can employ

some statistical measures to tell us if a rule is important or not.

Statistical tests usually use the p-value to tell whether the result is significant

or not. In the case of association rules, the p-value is the probability of the LHS

and RHS are independent. If the p-value is high enough, then we can say that LHS

and RHS have a high chance to co-occur even if they are independent. And these

rules are the ones that should be excluded from analysis. For instance, if we only

take the rules having p-value over 0.001, then that means we have 0.1% of the rules

after this filtering can contain items that are completely independent. Adjusting

28

this cut-off threshold will allow us to reduce false-positives. On the other hand, if

we only use support and confidence as thresholds for the rules, then we can either

miss very important rules or get too much rules whose LHS and RHS happen to be

together by chance.

In computational linguistics study [23], several important statistics have been

used to check if two words in a bigram happens to be together at random. If they

do not happen at random, then they are very likely to be collocations. For example,

we tend to say ”powerful computers” to describe computer with strong computing

abilities. And statistical tests are able to reject the independence null hypothesis in

these scenarios.

In general, Student’s t−test, Pearson’s chi−square test and Dunning’s likeli-

hood ratio test are used in testing the significance of independence.

The t−test computes the mean and variance of the samples of measurements.

The defect of t−test is that it always assumes a normal distribution and it is not

true in general cases. The χ2 test is an alternative that doesn’t assume normal dis-

tribution. [24] has examined the effectiveness of applying the test for independence

test of association rules. The key idea is to do comparisons of the observed frequen-

cies and the expected frequencies given the two items are independent. If we have

a large discrepancy between the two, then we are able to reject the null hypothesis.

However, χ2 test is problematic when any of those frequencies are very small. And

because of that, it is not very suitable for our case.

We will instead use a method called likelihood ratio test, which can deal with

sparse data and can work with data that does not have the normal distribution

29

assumption.

We have the null hypothesis and alternative hypothesis as follows for the rule

W1 → W2.

H0 : P (W2|W1) = P (W2|¬W1) (3.1)

H1 : P (W2|W1) 6= P (W2|¬W1) (3.2)

We use W12 to denote the rule W1 → W2. Let c1, c2 and c12 to be the

frequencies of W1, W2 and W12. We assume a binomial distribution for the proba-

bility(denote as Px) of observing W12 out of all the cases when we observe W1 and

the probability(denote as Py) of observing only W2 out of the all the cases when W1

is not observed . For binomial distribution in the following context, we will denote

as b(k;n, x), that is n choose k with probability x.

We use the multiplication of the two probabilities as the likelihood of observing

the real data under the hypothesis. Then if the likelihood under H0 is way larger

than H1, then we say the H0 is far more likely to happen than H1

L(H) = PxPy (3.3)

Under H0,

Px = b(c12; c1, p), Py = b(c2 − c12;N − c1, p) (3.4)

Under H1

Px = b(c12; c1, p1), Py = b(c2 − c12;N − c1, p2) (3.5)

30

where p, p1 and p2 are the expected probabilities under the hypothesis. p is

P (W2|W1) and P (W2|¬W1) underH0, p1 is P (W2|W1) underH1 and p2 is P (W2|¬W1)

under H1:

p =
c2
N
, p1 =

c12
c1

, p2 =
c2 − c12
N − c1

(3.6)

Then the likelihood would be

L(H0) = b(c12; c1, p)b(c2 − c12;N − c1, p) (3.7)

L(H1) = b(c12; c1, p1)b(c2 − c12;N − c1, p2) (3.8)

And the final likelihood ratio is calculated as

Likelihood Ratio = −2 log λ = log
L(H0)

L(H1)
(3.9)

If we use the same notation to get the confidence, the confidence would be

Conf =
P (W12)

P (W1)
=

c12
c1

(3.10)

31

Chapter 4: Implementation Apriori on Spark

In our first few tries of rule mining, we mainly used the mahout package.

However, one of the problems we find is that the frequent pattern tree growth

algorithm is not able to get rules with low support very efficiently. If we feed it with

a low minimum support threshold, the candidate set explodes and the algorithm

never finishes. However, we think that rules with low support but high confidence

might be interesting since there are so many factors that influences the software and

none of them should be very prevalent and dominant.

So we turn to Apriori algorithm. As described in Chapter 3, Apriori goes level

by level. And thus we can get fewer levels but lower minimum support for each

level. That is the reason why we try to implement Apriori on Spark.

4.1 Apache Spark

Apache Spark is an open source cloud computing framework developed in

scala by AMP Lab at University of California Berkeley. Spark uses a multi-stage

in-memory computation model rather than Hadoop’s two stage disk-based model.

For some specific applications, Spark performs 100 times faster than Hadoop. Since

all the data are loaded into the cluster’s memory, users are able to do iterative

32

algorithms without having to load and save files into disks in each iteration. This

makes a lot of fast implementation of machine learning possible.

In general, Spark uses the cluster management systems similar to Hadoop like

YARN, Apache Mesos, etc. And Spark is able to be mounted on a couple of differ-

ent distributed storage systems. And Spark is mainly composed of four components

except Spark core, MLib(a machine learning library for Spark), GraphX(graph al-

gorithms library for Spark), Spark SQL and Spark Streaming(streaming application

library).

Spark uses Resilient Distributed Datasets (RDDs) for programming abstrac-

tion. In this way, it is able to do logical collections of data across machines. And it

also allows coarse-grained transformations. All the process follows lazy execution,

that is, Spark will do all the computation when it sees fine-grained transformations.

This ensures high throughput of the whole program.

4.2 Apriori Implementation on Spark

Before switching to Spark, we have implemented a version of Apriori on

Hadoop. The idea is a very simple extension of word count. However the algorithm

is rather slow because in each iteration, we have to write the candidate itemsets to

disk and load it in the next iteration. That means for each iteration, we have to

perform a mapreduce task. This makes the computation extremely expensive since

there are too much overhead in writing to disk.

Spark Mlib does not have Apriori algorithm. We use the same approach and

33

implement the algorithm in Spark. [21] has discussed about similar approaches.

Since the result of each level are stored in RDD, we are able to read the result of

last level directly from memory.

In this implementation, we mainly do two optimizations. One is to set the

output of the previous level to be a broadcast variable. Another one is to use the

data structure BitSet to store the original transactions. In this case, we are able

to shrink the storage by a huge amount. And storing by BitSet makes it easier to

look up by using bit manipulations. This is especially efficient when the candidate

set is very huge, which is the case in our dataset. Figure 4.1 shows the diagram

Figure 4.1: Spark Apriori Candidate Generation Diagram

for the candidate generation from the previous level to the current level. All the

34

optimizations we did are shown in the graph.

35

Chapter 5: Results and Analysis

5.1 Overview

In this chapter, we will apply the machine learning algorithms to derive knowl-

edge about software crashes. We will analyze the results of the algorithms and do

comparisons. There are two sampling period used: two weeks in the middle of July

2014 and the whole month of September 2012.

As described in Chapter 2, we have the following preprocessing.

• Each application is identified uniquely by the executable name plus executable

version.

• The crash data and usage data are dichotomized by greater than zero or not.

• Each sampling unit is a specific machine on a specific week.

5.2 Data Preprocessing Result

Table 5.1 and 5.2 summarizes the general data statistics about the two months

of data that we are working on. Table 5.1 shows the unique machine/weeks of usage

and crashes in the use table and in the crash table. Table 5.2 shows the detailed

statistics about the version propagation steps when we use the version information

36

Table 5.1: General Statistics From the Two Sampling Periods

Period Weeks Unique Mach/Weeks
in Usage Table

Unique Mach/Weeks
in Crash Table

July 2014 2 134248 37773

Sep 2012 5 641882 127991

Table 5.2: Crash Version Propagation Statistics From the Two Sampling Periods

Period Total Number No Match
Number

Multiple Ver-
sion Number

Match Num-
ber

July 2014 58438 11668 3133 43637

Sep 2012 190560 20574 22450 147536

in the usage table to get the version information in the crash table. The unit in table

5.2 is crash record number, that is the crash information of a specific application on

a machine/week.

After we do a dichotomization of the uses and crashes based on greater than

zero or not, we got the list of all used and crashed applications used on a specific ma-

chine/week. In order to reduce the number of applications to consider as a factor,

we filter the applications such that they should have at least 100 machine/weeks

presence in order to be considered. Before this filter, we have 268236 applica-

tions(name+version) used during July 2014 and 641882 applications(name+version)

used during September 2012. After filtering, we have 9229 for July 2014 and 24672

for September 2012.

37

5.3 Application Crash Distribution

We first try to see how many distinct applications crash on each machine/week.

For July 2014 data, we see that on average there are 0.273 distinct application crash

for one machine/week. For September 2012 data, we see that on average there

are 0.283 distinct application crash for one machine/week. Figure 5.1 shows the

histogram of the number of machine/weeks having specific number of crashes, July

2014 and September 2012 respectively. The number of machine/weeks is normalized

and represented in percentage. From the histogram, we can see that over 80% of the

0 1 2 3 4 5 6 7 8 9 >10
Number of distinct application crashes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc
e
n
ta
g
e
 o
f
m
a
ch
in
e
/w
e
e
ks

July 2014

0 1 2 3 4 5 6 7 8 9 >10
Number of distinct application crashes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc
e
n
ta
g
e
 o
f
m
a
ch
in
e
/w
e
e
ks

September 2012

Figure 5.1: Distinct application crashes VS Number of Machine/Weeks

machine/weeks have zero crashes. And most of the machine/weeks that experience

application crashes have less than or equal to 4 distinct application crashes. This

means that if we are able to analyze the crash causes for most crashed applications(in

terms of machine/weeks that it crashed on), we will be able to explain most of

38

the crashes in this period. And we removed the machines which have more than 4

distinct application crashes in the sampling period so that we are excluding machines

that themselves are buggy(tons of application crashes).

Table 5.3: Internet Explorer Version With Most Machine/Week Presence

Version Mach/Week Uses
Count

Mach/Week
Crashes Count

Mach/Week
Crash Ratio

Internet Explorer July 2014

11.00.9600.16428 41168 4417 10.73%

11.00.9600.16384 10238 1312 12.82%

9.00.8112.16421 9566 969 10.13%

8.00.6001.18702 6256 345 5.5%

10.00.9200.16384 5355 964 18.00%

10.00.9200.16521 1905 165 8.67%

8.00.7600.16385 1329 132 9.93%

Internet Explorer September 2012

9.00.8112.16421 325584 29941 9.19%

8.00.6001.18702 92213 5873 6.36%

8.00.7600.16385 32687 3283 10.04%

7.00.6000.16386 10141 1287 12.69%

7.00.6000.17112 4027 135 3.35%

6.00.2900.2180 1944 228 11.72%

6.00.2900.5512 1460 78 5.34%

7.00.6000.17114 1553 49 3.15%

7.00.6000.17055 964 48 4.98%

9.00.8112.16443 308 32 10.38%

39

5.4 Internet Browser Statistics

We obtained the usage and crash information of three most commonly used

internet browsers. From our observation, browsers are among the most commonly

used applications on those Windows hosts.

Table 5.4: Chrome Version With Most Machine/Week Presence

Version Mach/Week Uses
Count

Mach/Week
Crashes Count

Mach/Week
Crash Ratio

Chrome July 2014

31.0.1650.63 594 31 5.22%

32.0.1700.107 241 11 4.56%

36.0.1985.125 39033 624 1.6%

34.0.1847.131 259 3 1.16%

34.0.1847.116 234 2 0.85%

35.0.1916.153 22018 175 0.79%

Chrome September 2012

21.0.1180.89 144116 2159 1.5%

20.0.1132.57 544 4 0.74%

21.0.1180.79 690 5 0.72%

21.0.1180.83 25800 161 0.62%

22.0.1229.79 30575 116 0.38%

Internet Explorer is the most often used applications among all the applications

in our dataset. And its number of mach/week crashes is the largest among all

applications. Table 5.3 shows the statistics about the number of mach/weeks of

usage and number of mach/weeks of crash for each version of Internet Explorer in

40

Table 5.5: Firefox Version With Most Machine/Week Presence

Version Mach/Week Uses
Count

Mach/Week
Crashes Count

Mach/Week
Crash Ratio

Firefox July 2014

26.0 190 5 2.63%

28.0 320 5 1.56%

27.0.1 137 2 1.46%

30.0 20592 38 0.18%

29.0.1 743 1 0.13%

31.0 2476 1 0.04%

Firefox September 2012

15.0.1 48771 1223 2.51%

10.0.2 1924 26 1.35%

11.0 3280 35 1.07%

12.0 6776 71 1.05%

15.0 16421 108 0.66%

9.0.1 2097 12 0.57%

13.0.1 4318 15 0.35%

14.0.1 30020 60 0.2%

8.0.1 1491 2 0.13%

July 2014 and September 2012 respectively. The average crashing rate of Internet

Explorer in terms of mach/week is around 10%.

As a comparison, we also list the same statistics about Chrome in Table 5.4

and Firefox in Table 5.5. We can see from the statistics that although the crash

ratio between different versions many vary a little bit, the crash ratio of Chrome

and Firefox are much less than Internet Explorer.

41

5.5 Googleupdate Statistics

Googleupdate is another software that is commonly used and has a fair amount

of crashes. The table 5.6 below shows the crash statistics in July 2014 and September

2012. It is very interesting that the same version do not crash a lot in September

2012 starts to crash more often in July 2014.

Table 5.6: Googleupdate Crash Ratio

Version Mach/Week Uses
Count

Mach/Week
Crashes Count

Mach/Week
Crash Ratio

July 2014

1.2.183.21 38800 1757 4.53%

1.2.183.9 13534 399 2.95%

1.3.21.103 49001 1437 2.93%

1.2.131.7 3170 91 2.87%

1.3.25.0 893 2 0.22%

September 2012

1.2.183.9 133568 28 0.02%

1.3.21.103 58903 5 0.01%

1.2.183.21 290478 24 0.01%

1.2.131.7 37115 3 0.01%

5.6 Microsoft Office Statistics

Microsoft office is one of the production softwares that are both commonly

used and crucial to people’s work and life. We calculated the same statistics and we

find that the average rate of office applications are actually very low compared with

42

Table 5.7: July 2014 Office Crash Ratio

Version Mach/Week Uses
Count

Mach/Week
Crashes Count

Mach/Week
Crash Ratio

Microsoft Word

14.0.7125.5000 12644 70 0.5%

12.0.6700.5000 10417 75 0.7%

15.0.4631.1000 4949 60 1.2%

12.0.4518.1014 2198 13 0.59%

Microsoft Excel

14.0.7125.5000 8950 64 0.73%

12.0.6683.5002 7126 81 1.1%

15.0.4631.1000 3447 51 1.5%

12.0.4518.1014 1696 32 1.9%

11.0.8404 1317 3 0.2%

15.0.4623.1000 831 11 1.3%

Microsoft Powerpoint

14.0.6009.1000 2215 9 0.4%

12.0.6600.1000 1521 5 0.4%

15.0.4627.1000 768 4 0.5%

15.0.4454.1000 421 4 0.95%

12.0.4518.1014 346 4 1.2%

14.0.4754.1000 113 1 0.88%

Microsoft Outlook

14.0.7113.5000 7302 105 1.4%

12.0.6691.5000 4894 64 1.3%

15.0.4631.1000 2420 50 2.1%

11.0.8326 1229 14 1.14%

12.0.4518.1014 815 15 1.8%

15.0.4623.1000 746 19 2.5%

43

Table 5.8: Sep 2012 Office Crash Ratio

Version Mach/Week Uses
Count

Mach/Week
Crashes Count

Mach/Week
Crash Ratio

Microsoft Word

12.0.6661.5000 89618 463 0.52%

14.0.6024.1000 70496 358 0.51%

12.0.4518.1014 11821 53 0.45%

11.0.8345 20707 54 0.26%

Microsoft Excel

12.0.4518.1014 8125 67 0.82%

14.0.4756.1000 1859 15 0.81%

14.0.6117.5003 40984 292 0.71%

12.0.6661.5000 49809 297 0.6%

9.0.2719 1941 10 0.52%

11.0.8346 11376 12 0.11%

10.0.6871 2375 2 0.08%

10.0.2614 1242 1 0.08%

11.0.5612 3715 2 0.05%

Microsoft Powerpoint

14.0.6009.1000 18022 121 0.67%

12.0.4518.1014 2910 13 0.45%

12.0.6600.1000 21010 85 0.4%

11.0.5529 911 3 0.33%

11.0.8335 3210 2 0.06%

Microsoft Outlook

11.0.8326 9948 129 1.3%

14.0.6117.5001 30162 391 1.3%

12.0.4518.1014 4006 50 1.25%

12.0.6661.5003 30286 373 1.23%

14.0.4760.1000 1265 13 1.03%

11.0.5510 2251 15 0.67%

44

browser applications, most of the versions have less than or close to 1% of crash

rate. Table 5.7 and Table 5.8 lists the statistics for Microsoft Office applications in

July 2014 and in September 2012. In general, outlook has the largest crash ratio

among office applications.

5.7 Rule Mining Result

The dataset size poses a great problem for rule mining. In terms of total num-

ber of transactions(mach/weeks) in our dataset, we have 134248 unique mach/weeks

and 9229 unique items that can appear in our transactions in July 2014 and 641882

unique mach/weeks and 20574 unique items.

For Apriori Rule Mining, we want to keep the minimum support as low as

possible so we are able to discover the rules that do not have a large amount of

support. This is very meaningful for two reasons. First of all, the crash of Inter-

net Explorer itself is not a frequent event with around 10% probability. Secondly,

users have different using behaviors and thus the reason for software to crash may

be compound effects. Uncommon use cases that lead to high crash rates can be

significant in this sense.

For Apriori algorithm, the amount of data and the low support we wish to

achieve poses a big problem in computing. Even if we tried to implement algorithms

on Spark, this issue is still very big. The large number of items can easily cause the

candidates set to explode very easily. Thus we decide to get the rules only limited

to two levels, that is we are trying to find rules with one items and two items on

45

the left hand side.

In order to mine rules as meaningful as possible and mine as efficient as pos-

sible, we do two optimizations to reduce the size of the data. First, when we are

targeting the crash of a specific application, say application A, we only extract those

transactions containing usage of A. Second, when we mine the frequent itemsets, we

only use transactions that contain the crash of A. And when we got all the frequent

itemsets, we turn back to the transactions that contain A to calculate the confidence

for the specific rule.

5.7.1 Association Rules

We present the one item and two item rule mining results obtained by our

implementation of Apriori algorithm. We only list the rules with the highest confi-

dence. They are in the tables in attachments.

One important observation from the Internet Explorer results is that the rules

with high confidence are composed of mostly adwares and browser extensions. The

adwares and browser extensions are written in bold for one item rules. Compared

with the average crash rate of those Internet versions, the rate is brought up by

several times. This suggests that they are a very important factor in the crash of

those Internet Explorer versions. And the results hold if we take a look at the rules

for the chrome version.

We also list the rules for one of the most commonly used googleupdate versions

in July 2014. As can be seen from the rules, the rules are mainly composed of driver

46

programs or software service programs. For instance, evteng.exe is supporting soft-

ware for Intel wireless LAN adapters, riconman.exe is a card reader driver to enable

various Realtek PCIE Card Readers and ravcpl64.exe is Realtek High Definition

Audio Driver.

5.7.2 September 2012 Data Result Train and Test

For September 2012 result, we have five weeks of data and we are interested

in if we are able to use some of the data for training and testing on the rest. In this

way, we are able to use the data to answer the following questions.

The first question we want to answer is how consistent the rules are over time.

In order to do this, we divide the data into training and testing datasets based on

time. We separate the five weeks of data into two groups. The first three weeks of

data is used for training rules and the next two weeks of data are used for testing.

We use Apriori to extract one item and two item rules from the first three weeks and

tested using these rules to predict the next two weeks of data. We tried different

thresholds for minimum confidence when we select the rules. As we decrease the

threshold, we are able to cover more crashes, but the false positive number also

increases.

For Internet Explorer, we plot Receiver Operating Characteristic(ROC) curve

for four most frequently used versions in Figure 5.2. Minimum confidence threshold

is tuned to get different true positive rate and false positive rate.

As we can see in the graph, our model predicts better than the random clas-

47

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

iexplore_9.00.8112.16421

iexplore_8.00.6001.18702

iexplore_8.00.7600.16385

iexplore_7.00.6000.16386

Figure 5.2: IE Roc Curve Sep 2012 (Train/Test Separate By Time)

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

iexplore_8.00.6001.18702

iexplore_9.00.8112.16421

iexplore_8.00.7600.16385

iexplore_7.00.6000.16386

Figure 5.3: IE Roc Curve Sep 2012 (Train/Test Separate By MachineID)

sifier, especially for the case of version 8.00.6001.18702 and 9.00.8112.16421. As for

version 8.00.6001.18702, we can achieve around 80% of true positive ratio with false

positive rate of 40%.

48

The second question we want to answer is how consistent the rules are over

machines. In order to do this, we divide the data into training and testing datasets

based on machine ID. We also separate the data into the same portion of 60%

training and 40% testing as the experiment with time. We tried different threshold

for minimum confidence when we select the rules. As we decrease the threshold, we

are able to cover more crashes, but the false positive number also increases.

For Internet Explorer, we plot Receiver Operating Characteristic(ROC) curve

for four most recently used versions in Figure 5.3. Minimum confidence threshold

is tuned to get different true positive rate and false positive rate.

The curves look very similar to the experiment in Figure 5.2.

With the richness of machines, we are able to perform a cross validation in

terms of machine IDs.

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

iexplore_7.00.6000.16386/output_train1

iexplore_7.00.6000.16386/output_train3

iexplore_7.00.6000.16386/output_train5

iexplore_7.00.6000.16386/output_train7

iexplore_7.00.6000.16386/output_train9

Figure 5.4: IE 7.00.6000.16386 Roc Curve Cross Validation

We do a five fold cross validation. We separate the data into five groups, each

49

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

iexplore_8.00.6001.18702/output_train1

iexplore_8.00.6001.18702/output_train3

iexplore_8.00.6001.18702/output_train5

iexplore_8.00.6001.18702/output_train7

iexplore_8.00.6001.18702/output_train9

Figure 5.5: IE 8.00.6001.18702 Roc Curve Cross Validation

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

iexplore_8.00.7600.16385/output_train1

iexplore_8.00.7600.16385/output_train3

iexplore_8.00.7600.16385/output_train5

iexplore_8.00.7600.16385/output_train7

iexplore_8.00.7600.16385/output_train9

Figure 5.6: IE 8.00.7600.16385 Roc Curve Cross Validation

cover 20% of the data. And the five groups have no machines IDs in common. This

is done having the machine ID mod 10. For one specific Internet Explorer version,

we take one of the groups as testing dataset each time and four others as training

50

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

iexplore_9.00.8112.16421/output_train1

iexplore_9.00.8112.16421/output_train3

iexplore_9.00.8112.16421/output_train5

iexplore_9.00.8112.16421/output_train7

iexplore_9.00.8112.16421/output_train9

Figure 5.7: IE 9.00.8112.16421 Roc Curve Cross Validation

dataset. Thus we will have five roc curves for one single Internet Explorer version.

They are presented in Figure 5.4, 5.5, 5.6, 5.7.

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

chrome_21.0.1180.89/output_train1

chrome_21.0.1180.89/output_train3

chrome_21.0.1180.89/output_train5

chrome_21.0.1180.89/output_train7

chrome_21.0.1180.89/output_train9

Figure 5.8: Chrome21 Roc Curve Cross Validation

We also did the same cross validation for chrome 21.0.1180.89 and firefox

51

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC Curve

random

firefox_15.0.1/output_train1

firefox_15.0.1/output_train3

firefox_15.0.1/output_train5

firefox_15.0.1/output_train7

firefox_15.0.1/output_train9

Figure 5.9: Firefox 15 Roc Curve Cross Validation

15.0.1, which are the most commonly used chrome and firefox version in our dataset.

They are shown in figure 5.8, 5.9. The result shows that we are able to achieve very

similar prediction results and better than the random classifier.

The dataset for the training and testing is very unbalanced and we have far

more cases with no crash than cases with crash. We do another cross validation on a

balanced dataset by sampling the cases with no crash. Figure 5.10 shows the results

for the Internet Explorer Versions. And it is very similar to that of unbalanced

cases. To illustrate this, we calculate the average area under the ROC curve for

each version in both the unbalanced dataset and balanced dataset. The results are

shown in table 5.9.

In this set of training and testing as well as the cross validation, we can see

that adwares and browser plugins play an important role in the crash of internet

browsers. And the prediction result is consistent across time and machines.

52

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

random

iexplore_7.00.6000.16386/output_train1

iexplore_7.00.6000.16386/output_train3

iexplore_7.00.6000.16386/output_train5

iexplore_7.00.6000.16386/output_train7

iexplore_7.00.6000.16386/output_train9

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

random

iexplore_8.00.6001.18702/output_train1

iexplore_8.00.6001.18702/output_train3

iexplore_8.00.6001.18702/output_train5

iexplore_8.00.6001.18702/output_train7

iexplore_8.00.6001.18702/output_train9

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

random

iexplore_8.00.7600.16385/output_train1

iexplore_8.00.7600.16385/output_train3

iexplore_8.00.7600.16385/output_train5

iexplore_8.00.7600.16385/output_train7

iexplore_8.00.7600.16385/output_train9

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

random

iexplore_9.00.8112.16421/output_train1

iexplore_9.00.8112.16421/output_train3

iexplore_9.00.8112.16421/output_train5

iexplore_9.00.8112.16421/output_train7

iexplore_9.00.8112.16421/output_train9

Figure 5.10: Internet Explorer Versions Cross Validation(Balanced)

Table 5.9: Area Under ROC Curve(Internet Explorer)

Version Area

Unbalanced

7.00.6000.16386 0.64

8.00.6001.18702 0.74

8.00.7600.16385 0.68

9.00.8112.16421 0.69

Balanced

7.00.6000.16386 0.63

8.00.6001.18702 0.73

8.00.7600.16385 0.66

9.00.8112.16421 0.69

53

5.7.3 Likelihood Ratio for Rules

We calculate the likelihood ratio for the rules from each of the Internet Explorer

versions. So what is the meaning of the likelihood ratio in terms of the rules we find

out? For example, in the case of Internet Explorer version 9.00.8112.16421 crash

in September 2012, we have a rule mwssvc ∗ ∗1, 0, 0, 5 => crash with confidence

20% and support 0.87% which tops likelihood ratio, but only ranked 523th if we use

confidence. The confidence says in every 100 cases where we spot the application

mwssvc 1.0.0.5 together with Internet Explorer 9.00.8112.16421, we will see 20 cases

that lead to the crash. And the likelihood ratio is 1348. This likelihood ratio value

means that two two events, use of mwssvc1.0.0.5 and crash of Internet Explorer

9.00.8112.16421 are e0.5∗1348 = 5∗10292 times more likely to be together than random

occurrence. According to virusTotal [25], this is a very notorious adware popup with

16/57 detection rate from vendors.

We also find that rules are more consistent between the training and testing

dataset. For the one item rules obtained from training set and testing set in Septem-

ber 2012 data, we calculate the Jaccard index between them for the top 100 rules.

Jaccard index is a statistic used for comparing the similarity and diversity of sample

sets. And it is defined as the size of the intersection divided by the size of the union

of the sample sets.

J(A,B) =
|A ∩B|

|A ∪B|
(5.1)

We compare the one-item rules ranked by confidence and the case ranked by

54

likelihood ratio. The result is shown in table 5.10. We can find that likelihood

ratio gives a more consistent results between the training and testing dataset as the

Jaccard index value is much larger.

This shows that the ranking by the rules provide a better explanation of the

crashes.

We then use the likelihood ratio value to perform tests to see if any rules are

rejected by the test. The likelihood ratio follows a χ2 distribution. We set the

confidence level to be α = 0.005, and the critical value is 7.88.

We are able to eliminate unnecessary rules whose likelihood ratio is below the

critical value. And fortunately, the rules with high confidence all pass the test. For

example, for Internet Explorer version 9.00.8112.16421, we have 6445 one-item rules

and 255840 two-item rules. Among the one-item rules, confidence level ranges from

0.01 to 0.473. Among the two-item rules, confidence level ranges from 0.01 to 0.733.

And rules with confidence higher than 0.18 all pass the test.

Thus with rules ranked by likelihood ratio gives a better balance between the

support and confidence and enables us to achieve the same prediction results with

much less rules. That is to say, it helps us to find the most important rules.

55

Table 5.10: Jaccard Index for One Item Rules in Train and Test Sep 2012

Fold J-Index(Confidence) J-Index(Likelihood)

Internet Explorer 9.00.8112.16421

1 0.117 0.563

2 0.117 0.471

3 0.190 0.527

4 0.176 0.515

5 0.130 0.613

Internet Explorer 8.00.7600.16385

1 0.058 0.235

2 0.047 0.220

3 0.026 0.220

4 0.026 0.212

5 0.031 0.136

Internet Explorer 8.00.6001.18702

1 0.015 0.410

2 0.020 0.418

3 0.058 0.449

4 0.042 0.449

5 0.042 0.429

Internet Explorer 7.00.6000.16386

1 0.051 0.187

2 0.027 0.100

3 0.034 0.158

4 0.045 0.147

5 0.030 0.131

56

Chapter 6: Conclusion and Future Work

In this work, we used association rule mining to study the cause of software

crashes and our focus is on the software environment. The data we work on is a

sample of 600,000 machines and 16,000 applications from Worldwide Intelligence

Network Environment(WINE) from Symantec. Our main goal is to use the associ-

ation rules to explain the crashes of certain commonly used softwares.

To obtain the data that we need, we mainly used the process runtime ta-

ble and faulting applications table from WINE and do the aggregation and prop-

agation to match the instances. After dichotomizing the numerical data, we feed

the data to both Apriori(implemented on Spark by us) and frequent pattern tree

growth(implemented by Mahout on Hadoop). For the frequent pattern tree growth,

we find out that we are not able to push the minimum support low enough because

of candidate set explosion. Thus, we put our emphasis on Apriori and mined out the

rules for a couple of commonly used applications. We mainly worked on browsers

since in our dataset they are the ones that crashed the most often and have the

most number of crashes. We also take a look at other categories of applications like

Microsoft Office, etc. But in general, their crash ratio is very low, implying that

they are fairly stable.

57

We find out that the adwares and browser plugins are a main cause of Internet

browsers, especially Internet Explorer. And we try to do a five fold cross validation

by separating the machines by their IDs into 5 groups. We used roc curves to show

the results. The figures suggest that we are able to predict the crashes to some

extent, but not very impressive. The reason behind this would be the complexity

of stability of softwares. Some other reasons besides environment might be self-

bugginess, resource exhaustion, compatibility of platforms, etc.

This work provides a lot of valuable future directions. First, it is very inter-

esting to see whether the plugin architecture itself is problematic. We can take at

other softwares like IDEs which have the same plugin architecture. Secondly, we can

examine at a deeper level for the cause of crashes like dynamic linked libraries(dlls).

Thirdly, the adwares and browser plugins itself is very interesting to look at for

browsers since most people must have experienced those annoying software. It will

significantly enhance the user experience of browsers.

58

Appendix A: Association Rules

Table A.1: Internet Explorer 11.00.9600.16428 One Item Rules(Jul 2014)

Antecedent Confidence Support

idmsq 49.18% 0.073%

smu 2.1.0.92 47.92% 0.056%

datamngrcoordinator 5.0.0.13251 47.31% 0.107%

datamngrui 5.0.0.13251 47.31% 0.107%

gentray 44.64% 0.061%

severeweatheralertsapp 1.0.9.0 43.04% 0.083%

datamngrcoordinator 5.0.0.13277 42.86% 0.102%

datamngrui 5.0.0.13277 42.86% 0.102%

shopathomehelper 7.0.3.15 42.65% 0.07%

shopathomewatcher 7.0.3.15 42.03% 0.07%

adblock 1.0.0.0 42.03% 0.07%

smi64 41.51% 0.053%

smi32 40.68% 0.058%

pctechhotline 3.0.0.4 40% 0.049%

59

Table A.2: Internet Explorer 11.00.9600.16428 Two Item Rule(Jul 2014)

Antecedent Confidence Support

flashutil64 activex 14.0.0.145
severeweatheralertsapp 1.0.9.0 62.86% 0.053%

versioncheck
hpsaobjutil7 1.0.0.30 61.77% 0.051%

flashutil64 activex 14.0.0.145
datamngrcoordinator 5.0.0.13251 61.54% 0.078%

flashutil64 activex 14.0.0.145
datamngrui 5.0.0.13251 61.54% 0.078%

googletoolbaruser32 7.5.5111.1712
datamngrcoordinator 5.0.0.13277 60.61% 0.049%

googletoolbaruser32 7.5.5111.1712
datamngrui 5.0.0.13277 60.61% 0.049%

flashutil64 activex 14.0.0.145
severeweatheralerts 1.21.0.0 57.90% 0.053%

adblock 1.0.0.0
monitor 7.0.0.373 56.76% 0.051%

flashutil64 activex 14.0.0.145
datamngrcoordinator 5.0.0.13277 55.10% 0.066%

flashutil64 activex 14.0.0.145
datamngrui 5.0.0.13277 55.10% 0.066%

flashutil64 activex 14.0.0.145
shopathomehelper 7.0.3.15 53.85% 0.051%

monitor 7.0.0.373
autocare 7.0.0.19 53.49% 0.056%

60

Table A.3: Internet Explorer 11.00.9600.16384 One Item Rules(Jul 2014)

Antecedent Confidence Support

plsapp 2.2.7.6 54.05% 0.195%

pureleadstray 2.0.17 52.63% 0.195%

servicelocator 21.8.0.261 51.90% 0.4%

toolbar 21.8.0.261 51.90% 0.4%

pureleadssvc 2.0.17 51.28% 0.195%

pureleads.service 2.0.6.0 51.28% 0.195%

couponprinterservice 6.0.1.0 36.84% 0.273%

yahoomessenger 11.5.0.0228 36.54% 0.371%

ymsgr tray 11.5.0.0228 36.364% 0.273%

reminderhelper 2.0.1.1 35.71% 0.195%

ytbb 2014.6.3.01 35.51% 0.371%

versioncheck 33.784% 0.244%

solutolauncherservice 1.3.1067.1 32.91% 0.254%

yahooauservice 1.0.0.53 32.215% 1.407%

soluto 1.3.1193.1 31.65% 0.244%

solutoservice 1.3.1193.1 30.67% 0.225%

61

Table A.4: Internet Explorer 11.00.9600.16384 Two Item Rules(Jul 2014)

Antecedent Confidence Support

mdnsresponder 3.0.0.10
plsapp 2.2.7.6 68.97% 0.195%

pureleadssvc 2.0.17
mdnsresponder 3.0.0.10 64.52% 0.195%

pureleadstray 2.0.17
mdnsresponder 3.0.0.10 64.52% 0.195%

pureleads.service 2.0.6.0
mdnsresponder 3.0.0.10 64.52% 0.195%

googlecrashhandler64 1.3.24.15
servicelocator 21.8.0.261 59.46% 0.215%

googlecrashhandler64 1.3.24.15
toolbar 21.8.0.261 59.46% 0.215%

msfeedssync 11.00.9600.16384
plsapp 2.2.7.6 58.82% 0.195%

cleanmgr 6.3.9600.17031
toolbar 21.8.0.261 58.49% 0.303%

cleanmgr 6.3.9600.17031
servicelocator 21.8.0.261 58.49% 0.303%

62

Table A.5: Internet Explorer 10.00.9200.16384 One Item Rules(Jul 2014)

Antecedent Confidence Support

makecert 6.1.7600.16385 49.18% 0.56%

hotkeyutility 3.0.3001.0 42.424% 0.784%

stacsv64 1.0.6417.0 41.063% 1.587%

virtualdrive 8.0.1.1926 40.146% 1.027%

hpservice 4.2.7.1 40.132% 1.139%

couponprinterservice 6.0.1.0 40.0% 0.373%

sttray64 1.0.6417.0 38.5% 1.438%

yahooauservice 1.0.0.53 36.429% 1.905%

gamesappintegrationservice 4.0.31.21 36.364% 0.373%

hpmsgsvc 3.0.3.0 35.843% 2.222%

power2goexpress8 8.0.3.2527 34.783% 0.448%

communicator 34.118% 0.542%

nasvc 11.0.0028 34.0% 1.587%

atieclxx 6.14.11.1126 33.454% 5.191%

fuel.service 1.0.0.0 33.381% 4.388%

atiesrxx 6.14.11.1126 33.373% 5.229%

ytbb 2014.6.3.01 32.787% 0.373%

appintegrator64 1.0.6.21 32.394% 0.859%

39barsvc 1.0.1.0 32.353% 0.411%

63

Table A.6: Internet Explorer 10.00.9200.16384 Two Item Rules(Jul 2014)

Antecedent Confidence Support

yahooauservice 1.0.0.53
hpmsgsvc 3.0.3.0 67.742% 0.392%

yahooauservice 1.0.0.53
rndlresolversvc 67.742% 0.392%

fuel.service 1.0.0.0
appintegrator64 1.0.7.183 62.0% 0.579%

glcnd 6.2.9200.20780
fuel.service 1.0.0.0 57.143% 0.373%

fuel.service 1.0.0.0
virtualdrive 8.0.1.1926 56.757% 0.784%

hotkeyutility 3.0.3001.0
ccc 3.5.0.0 56.41% 0.411%

yahooauservice 1.0.0.53
riconman 1.5.0.0 56.25% 0.672%

mom 2.0.0.0
hotkeyutility 3.0.3001.0 55.0% 0.411%

stacsv64 1.0.6417.0
fuel.service 1.0.0.0 54.962% 1.345%

fuel.service 1.0.0.0
epowersvc 7.0.3006.0 54.717% 0.542%

epowertray 7.0.3006.0
fuel.service 1.0.0.0 54.717% 0.542%

sttray64 1.0.6417.0
fuel.service 1.0.0.0 54.622% 1.214%

yahooauservice 1.0.0.53
hpwmisvc 3.0.1.0 53.521% 0.71%

makecert 6.1.7600.16385
flashutil activex 14.0.0.145 53.191% 0.467%

yahooauservice 1.0.0.53
atiesrxx 6.14.11.1126 52.874% 0.859%

yahooauservice 1.0.0.53
atieclxx 6.14.11.1126 52.874% 0.859%

fuel.service 1.0.0.0
hotkeyutility 3.0.3001.0 52.727% 0.542%

64

Table A.7: Internet Explorer 9.00.8112.16421 One Item Rules(Jul 2014)

Antecedent Confidence Support

mahostservice 1.0.0.1 28.767% 0.439%

39srchmn 1.0.1.0 26.667% 0.251%

node 0.10.4 26.316% 0.209%

appintegrator64 1.0.7.183 25.362% 0.366%

14barsvc 1.0.0.9 25.0% 0.24%

iaanotif 8.7.0.1007 24.8% 0.324%

iaantmon 8.7.0.1007 23.944% 0.355%

pccmservice 7.3.0.11 23.913% 0.23%

14brmon 1.0.0.1 23.81% 0.209%

searchprotection 2009.1.30.1 23.009% 0.272%

39barsvc 1.0.1.0 22.485% 0.397%

39brmon 1.0.2.0 22.0% 0.345%

hpwucli 4.0.14.1 21.739% 0.261%

datamngrui 21.56% 0.491%

bingbar 7.3.132.0 20.812% 0.429%

acrobroker 9.5.5.316 20.712% 0.669%

pcmagent 5.0.0.0 20.588% 0.22%

bingapp 7.3.132.0 20.398% 0.429%

inbox 2.0.1.90 20.093% 0.45%

65

Table A.8: Internet Explorer 9.00.8112.16421 Two Item Rules(Jul 2014)

Antecedent Confidence Support

yahooauservice 1.0.0.53
inbox 2.0.1.90 48.889% 0.23%

acrobroker 9.5.5.316
agcp 5.1.30214.0 38.889% 0.22%

mahostservice 1.0.0.1
msfeedssync 9.00.8112.16561 36.765% 0.261%

yahooauservice 1.0.0.53
agcp 5.1.30214.0 33.088% 0.47%

wincal 6.0.6000.16386
rndlresolversvc 30.38% 0.251%

googlecrashhandler 1.3.24.15
39srchmn 1, 0, 1, 0 30.0% 0.22%

mwssvc 1, 0, 0, 5
msfeedssync 9.00.8112.16561 30.0% 0.22%

googlecrashhandler 1.3.24.15
iaanotif 8.7.0.1007 29.703% 0.314%

hphc service 3.1.10.1
msfeedssync 9.00.8112.16561 29.63% 0.251%

flashutil32 activex 14,0,0,145
searchprotection 2009, 1, 30, 1 29.268% 0.251%

hphc service 3.1.9.1
agcp 5.1.30214.0 29.213% 0.272%

flashutil32 activex 14.0.0.145
mahostservice 1.0.0.1 29.126% 0.314%

logon 6.0.6000.16386
datamngrui 29.114% 0.24%

66

Table A.9: Chrome 36.0.1985.125 Rules(Jul 2014)

Antecedent Confidence Support

dsrlte 1.3.0.0 15.493% 0.056%

dnkt 7.843% 0.072%

wrtc 1.0.0.1 7.643% 0.092%

dmwu 7.348% 0.105%

silverlight.configuration 5.1.30514.0 5.871% 0.077%

agcp 5.1.30514.0 4.439% 0.179%

skypec2cpnrsvc 7.3.16540.9015 4.375% 0.072%

updatus.18722395 runasuser 3.945% 0.051%

gameoverlayui 02.32.45.01 3.68% 0.09%

wrtc 1.0.0.1
mdnsresponder 3,0,0,10 8.661% 0.056%

mdnsresponder 3,0,0,10
dmwu 8.224% 0.064%

dnkt
dmwu 7.977% 0.072%

dnkt
wrtc 1.0.0.1 7.843% 0.072%

wrtc 1.0.0.1
dmwu 7.759% 0.092%

armsvc 1.701.3.3014
dmwu 7.746% 0.056%

nacl64 36.0.1985.125
apsdaemon 2.3.4.36 7.092% 0.051%

silverlight.configuration 5.1.30514.0
mdnsresponder 3,0,0,10 6.604% 0.054%

silverlight.configuration 5.1.30514.0
agcp 5.1.30514.0 6.048% 0.077%

nacl64 36.0.1985.125
flashutil activex 14,0,0,145 5.804% 0.067%

67

Table A.10: Googleupdate 1.2.183.21 One Item Rules(Jul 2014)

Antecedent Confidence Support

evteng 15, 1, 0, 0 10.135% 0.077%

riconman 1.3.4.1 10.12% 0.152%

hpmsgsvc 2.6.3.0 10.096% 0.054%

adobecollabsync 10.1.10.18 9.955% 0.057%

ravcpl64 1, 0, 0, 639 9.881% 0.064%

igfxsrvc 8.15.10.2476 9.739% 0.106%

pdfsvc 4.0.35.2001 9.73% 0.093%

tcrdkbb 1, 0, 1, 64 9.719% 0.098%

hpmsgsvc 2.5.2.0 9.677% 0.077%

atiesrxx 6.14.11.1088 9.677% 0.108%

stacsv64 1.0.6292.0 9.653% 0.064%

syntpenh 15.2.4.4 15Dec10 9.589% 0.072%

atieclxx 6.14.11.1088 9.557% 0.106%

kenotify 2, 0, 50, 8 9.524% 0.108%

sttray64 1.0.6292.0 9.524% 0.057%

syntphelper 15.2.4.4 9.524% 0.072%

atiesrxx 6.14.11.1102 9.465% 0.059%

68

Table A.11: Googleupdate 1.2.183.21 Two Item Rules(Jul 2014)

Antecedent Confidence Support

riconman 1.3.4.1
stacsv64 1.0.6381.0 20.863% 0.075%

flashutil64 activex 14,0,0,145
biomonitor 5.1.0.495 20.721% 0.059%

hpqwmiex 6, 1, 16, 1
evteng 15, 1, 0, 0 20.588% 0.054%

hpqwmiex 6, 1, 16, 1
bthsamppalservice 15, 1, 0, 3 20.588% 0.054%

biomonitor 5.3.1.7
msfeedssync 11.00.9600.16428 20.561% 0.057%

truesuiteservice 5.3.1.7
msfeedssync 11.00.9600.16428 20.561% 0.057%

hpqwmiex 6, 1, 16, 1
zeroconfigservice 15.1.0.2 20.388% 0.054%

hpqwmiex 6, 1, 16, 1
bthssecuritymgr 15.1.0.8 20.388% 0.054%

googlecrashhandler 1.3.24.15
stacsv64 1.0.6381.0 20.313% 0.067%

googlecrashhandler64 1.3.24.15
stacsv64 1.0.6381.0 20.313% 0.067%

evteng 15, 1, 0, 0
hpsa service 7.2.45.3 20.192% 0.054%

hpsa service 7.2.45.3
bthsamppalservice 15, 1, 0, 3 20.192% 0.054%

googlecrashhandler 1.3.24.15
sttray64 1.0.6381.0 20.161% 0.064%

googlecrashhandler64 1.3.24.15
sttray64 1.0.6381.0 20.161% 0.064%

hpsa service 7.2.45.3
bthssecuritymgr 15.1.0.8 20.0% 0.054%

googlecrashhandler 1.3.24.15
biomonitor 5.3.1.7 20.0% 0.054%

googlecrashhandler64 1.3.24.15
truesuiteservice 5.3.1.7 20.0% 0.054%

69

Table A.12: Internet Explorer 7.00.6000.16386 One Item Rules(Sep 2012)

Antecedent Confidence Support

gcbarsvc 1.0.0.9 46.809% 0.217%

swhelper 10.2.23 40.506% 0.316%

2jsrchmn 1.0.0.5 40.0% 0.217%

yspservice 2010.6.14.01 39.063% 0.247%

2jbarsvc 1.0.0.9 36.667% 0.217%

2jbrmon 1.0.0.1 36.667% 0.217%

mwssvc 1.0.0.1 35.593% 0.207%

selectrebatesdownload 1.0.0.3 35.366% 0.286%

searchprotection 2009.1.30.1 34.286% 0.237%

yspservice 2010.4.1.01 31.937% 0.602%

14srchmn 1.0.0.12 30.556% 0.217%

2pbarsvc 1.0.0.9 30.303% 0.197%

selectrebates 5.2.0.0 30.137% 0.434%

m3srchmn 1.0.0.5 28.358% 0.937%

70

Table A.13: Internet Explorer 8.00.6001.18702 One Item Rules(Sep 2012)

Antecedent Confidence Support

cmhelper 1.0.0.10 56.716% 0.041%

alotsettings 1.1.3.0 48.649% 0.039%

genieutils 42.647% 0.031%

gentray 42.574% 0.047%

2zbarsvc 1.0.0.9 41.935% 0.028%

v4barsvc 1.0.0.9 41.772% 0.036%

firsttime setup 40.449% 0.039%

pmvservice 1.00.2818 39.286% 0.024%

4jbarsvc 1.0.0.9 38.462% 0.033%

jp2launcher 6.0.110.3 35.714% 0.022%

mwssvc 1.0.0.1 35.165% 0.035%

rthdvcpl 1.0.0.105 35.088% 0.022%

alotsettings 1.0.0.4 34.884% 0.065%

gtbarsvc 1.0.0.9 34.524% 0.031%

71

Table A.14: Internet Explorer 8.00.7600.16385 One Item Rules(Sep 2012)

Antecedent Confidence Support

fightersuiteservice 3.1.186.0 53.191% 0.076%

fighterstray 4.0.64.0 48.077% 0.076%

ezprint 3.15.0.0 47.619% 0.061%

flv runnertoolbarhelper 1.0.1.0 46.939% 0.07%

firsttime setup 46.512% 0.122%

gentray 45.556% 0.125%

coupons.comtoolbarhelper 1.0.1.0 44.444% 0.061%

optprolauncher 3.0.1.0 42.553% 0.061%

genieutils 42.466% 0.095%

mwsoemon 1.2.2.5 41.818% 0.07%

64srchmn 1.0.0.5 41.667% 0.061%

starterw3i 1.00.0001 41.176% 0.064%

winzipbartoolbarhelper 1.0.1.0 40.984% 0.076%

mwssvc 1.0.0.4 40.351% 0.07%

72

Table A.15: Internet Explorer 9.00.8112.16421 One Item Rules(Sep 2012)

Antecedent Confidence Support

wiseconverttoolbarhelper1 1.0.1.0 48.936% 0.007%

dca-ua 1.7.0.8467 41.81% 0.03%

crextp2p 1.0.2.10 40.559% 0.018%

productivity 3.1toolbarhelper 1.0.1.0 36.667% 0.03%

a free ride games bartoolbarhelper 1.0.1.0 36.486% 0.025%

produtools mapstoolbarhelper 1.0.1.0 33.739% 0.034%

coupons.comtoolbarhelper1 1.0.1.0 32.857% 0.007%

codec 32.843% 0.021%

aoltbserver 5.74.1.8383 32.716% 0.016%

road runnertoolbarhelper 1.0.1.0 32.571% 0.018%

whitesmoke us newtoolbarhelper 1.0.1.0 32.422% 0.025%

produtools manuals 2.1toolbarhelper 1.0.1.0 32.397% 0.06%

default tab search results 32.372% 0.031%

startw3i 3.0.1.0 32.37% 0.017%

defaulttabsetup2 32.323% 0.029%

73

Bibliography

[1] Murphy, B. The Difficulties Of Building Generic Reliability Models for Software
In Empirical Software Engineering, 2012

[2] Edmund B. Nightingale and John R Douceur and Vince Orgovan Cycles, Cells
and Platters: An Empirical Analysis of Hardware Failures on a Million Con-
sumer PCs In Proceedings of EuroSys 2011, Awarded ”Best Paper”, April 2011.

[3] Schroeder, Bianca and Gibson, Garth A. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In Proceedings of the
5th USENIX Conference on File and Storage Technologies, San Jose, CA, 2007

[4] Schroeder, B., Pinehiro, E., and Weber, W.-D. Dram errors in the wild: a
large-scale field study. In SIGMETRICS, 2009

[5] Marathe, M. and Cukier, M In Proceedings of the IEEE 21st International
Symposium on Software Reliability, 2011

[6] Littlewood, Bev Software Reliability Model for Modular Program Structure In
IEEE Transactions on Reliability, 1979

[7] Chou, Andy and Yang, Junfeng and Chelf, Benjamin and Hallem, Seth and En-
gler, Dawson An Empirical Study of Operating Systems Errors In Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles, 2001

[8] D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking System Rules Using
System-Specific, Programmer-Written Compiler Extensions. In Proceedings of
Operating Systems In Design and Implementation (OSDI), September 2000

[9] Palix, Nicolas and Thomas, Gaël and Saha, Suman and Calvès, Christophe
and Lawall, Julia and Muller, Gilles Faults in Linux: Ten Years Later In

74

Proceedings of the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2011

[10] Reliability Growth Of Software Products Reliability Growth Of Software Prod-
ucts In Institute of Electrical and Electronics Engineers, Inc., 2004

[11] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci Dusseau,
Remzi H. Arpaci Dusseau A File is Not a File: Understanding the I/O Behav-
ior of Apple Desktop Applications In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, 2011

[12] Christian Bird, Venkatesh-Prasad Ranganath, Thomas Zimmermann, Nachi-
appan Nagappan, and Andreas Zeller Extrinsic Influence Factors in Software
Reliability: A Study of 200,000 Windows Machines In Proceedings of the 36th
International Conference on Software Engineering , 2014

[13] Microsoft Inc. Windows Customer Experience Improvement Program In
http://technet.microsoft.com/en-us/library/ee126127(WS.10).aspx., 2011

[14] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 207–216, Washington D.C., May
1993.

[15] Rakesh Agrawal, Ramakrishnan Srikant Fast algorithms for mining association
rules In Proc 20th Int’l Conf Very Large Database, Santiago, Chile, Sep 1994

[16] Ashoka Savasere,Edward Omiecinski,Shamkant B. Navathe An efficient algo-
rithm for mining association rules in large databases In Proc of the 21th Inter-
national Conference on Very Large Database, Zurich, Switzerland, May 1995

[17] Ramakrishnan Srikant, Rakesh Agrawal Mining Generalized Association Rules
In VLDB ’95 Proceedings of the 21th International Conference on Very Large
Data Bases, San Francisco, CA, 1995

[18] Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree Approach In Data
Mining and Knowledge Discovery, Volume 8 Issue 1, January 2004

[19] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, Edward Y. Chan Pfp: par-
allel fp-growth for query recommendation In Proceedings of the 2008 ACM
conference on Recommender systems,2008

75

[20] Hadoop Tutorial https://hadoop.apache.org/docs/current/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html

[21] Hongjian Qiu, Rong Gu, Chunfeng Yuan, Yihua Huang YAFIM: A Parallel
Frequent Itemset Mining Algorithm with Spark In International Parallel &
Distributed Processing Symposium Workshops, 2014

[22] Liu, Guimei and Zhang, Haojun andWong, Limsoon Controlling False Positives
in Association Rule Mining In Proc. VLDB Endow., 2011

[23] Christopher D. Manning and Hinrich Schtze Foundations of Statistical Natural
Language Processing

[24] Alvarez, Sergio A. Chi-squared computation for association rules: preliminary
results. Technical Report BC-CS-2003-01, Boston College.

[25] www.virustotal.com

76

	List of Tables
	List of Figures
	Introduction
	Overview
	Related Work

	DATA AND METHODS
	Overview
	Tables from WINE
	WINE_BINSTAB Schema
	WINE_DIM Schema

	Data Preprocessing
	Extracting Data From WINE
	Matching Uses with Crashes
	Processing Numerical Data

	Data Analysis Methods
	Overview
	Problem Definition
	Apriori Algorithm
	Frequent Pattern Tree Growth
	Frequent Pattern Tree
	FP Growth Algorithm

	Cloud Computing Platforms
	Apache Hadoop
	Apache Mahout
	Parallel FP Growth
	Independence Test for Rules

	Implementation Apriori on Spark
	Apache Spark
	Apriori Implementation on Spark

	Results and Analysis
	Overview
	 Data Preprocessing Result
	Application Crash Distribution
	Internet Browser Statistics
	Googleupdate Statistics
	Microsoft Office Statistics
	Rule Mining Result
	Association Rules
	September 2012 Data Result Train and Test
	Likelihood Ratio for Rules

	Conclusion and Future Work
	Association Rules
	Bibliography

