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Moths in superfamily Bombycoidea (Lepidoptera) exhibit a range of strongly
divergent life history traits, especially concerning larval herbivory and adult feeding.
Building on Regier et al. (2001), this study aimed to provide a context for investigation
of life history evolution by reconstructing molecular phylogenetic hypotheses of
relationships within one bombycoid family, Sphingidae. Coding nucleotide sequence
data were collected from two genes, Elongation Factor 1-alpha (1,274bp) and Dopa
Decarboxylase (1,373bp), across 65 & 67 sphingids and 40 & 51 lepidopteran outgroups,
respectively. Variation in both genes was concentrated in third codon positions, and
phylogenetic signal between them proved discordant. Analyses under criteria of
Maximum Parsimony and Maximum Likelihood generated six unique hypotheses of
sphingid relatedness, each of which was evaluated for concordance with Kitching &
Cadiou’s (2000) classification. Given weak bootstrap support within and conflicting
basal relationships among these topologies, they are best viewed as novel hypotheses

subject to further testing via collection of new molecular data.
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INTRODUCTION

Extraordinary numerical, morphological and behavioral diversity within insects
(Arthropoda: Hexapoda) has made them potent model systems for examining the
connection between ecological phenomena and evolutionary history (Dobler & Farrell
1999; Farrell 1993, 1998, 2001; Farrell ef al. 2001; Hutbauer & Via 1999; Kelley &
Farrell 1998; Kelley et al. 2000; Mitter et al. 1988; Pierce 1987, 1995; Powell et al. 1999;
Sequeira et al. 2000; Shaw 1996a,b). Studies on insect ecology and evolution are
complementary and synergistic, and can be viewed broadly from two perspectives: (1)
short-term interactions between an organism and its environment (ecology) can influence
long-term patterns and processes of stasis or change in organismal traits (evolution) (e.g.,
Costa et al. 1996; Hawthorne & Via 2001); and (ii) evolutionary history constrains the
genesis of novel ecological habits (e.g., Farrell ef al. 1992; Farrell & Mitter 1994; Mitter
et al. 1991; Mitter & Farrell 1991; Wiegmann et al. 1993). Application of an
evolutionary perspective to long-standing ecological questions may provide insight into
the origin and maintenance of traits considered key elements of an organism’s natural
history. By comparing the observed distribution of ecologically relevant characters with
independently derived estimates of organismal evolutionary history, the link between
pattern and process can be inferred (Harvey & Pagel 1991). Refinement of molecular
phylogenetic methodology has made available robust and novel tools for inferring
evolutionary history. In conjunction with traditional and contemporary ecological
studies, these methods have made feasible the examination of natural history within an

evolutionary context.



Moths in the superfamily Bombycoidea (Lepidoptera: Macrolepidoptera)
represent a potent study system for exploration of the connection between ecology and
life history evolution. Bombycoidea is one of 43 superfamilies in the hyper-diverse
Ditrysia, a lepidopteran clade characterized by explosive diversity in life history
strategies which accounts for approximately 98.5% of the over 200,000 species of
Lepidoptera (Wagner 2001). As currently delimited, Bombycoidea consists of 3,554
described species distributed across nine families, and is presumed monophyletic on the
basis of at least four robust morphological synapomorphies (Lemaire & Minet 1999;
Minet 1991 & 1994; Wagner 2001): (a) ultimate instar prothoracic coxae anteriorly
fused, each having lost its independent mobility; (b) larval abdominal segment VIII with
D1 setae arising from middorsal protuberance, usually a scolus; (c) flexors in valvae of
male genitalia originate on the tegumen, not the vinculum; and (d) forewing with
Rs1+Rs2 closely parallel to or fused to stem Rs3+Rs4. Bombycoid moths and their close
relatives have a cosmopolitan distribution, are among the largest and most conspicuous
Lepidoptera (e.g., Hyalophora, the cecropia silkmoth; Actias, the luna moth) and have in
some cases even acquired cultural significance (e.g., Acherontia, the death’s head
sphinx). They have served as model systems for studies in insect biochemistry and
physiology (Bartholomew & Casey 1978; Casey 1976; Fink 1995; Goldsmith & Wilkins
1995; Gopfert & Wasserthal 1999; Heinrich 1971a,b; Heinrich & Bartholo 1971; Liu et
al. 1998; O’Brien 1999 ; Ojeda-Avila et al. 2001, 2003; Raguso et al. 1996, Raguso &
Light 1998; Raguso & Willis 2002; Scriber 1979; Wasserthal 2001; Willmott & Ellington
1997a,b; Wilmott et al. 1997), development (Hatzopoulos & Regier 1987; Leclerc &

Regier 1993; Mazur et al. 1989; Regier ef al. 1993, 1995; Regier & Kafatos 1991) and



functional morphology (Bullock & Pescador 1983; Buttiker et al. 1996; Fanger 1999;
Fleming 1968; Fullard & Yack 1993; Ghiradella 1998; Gopfert et al. 2002; Gopfert &
Wasserthal 1999; Grant & Eaton 1973; Grodnitsky 1999; Krenn 1990; Miller 1997a,b;
Robinson & Robinson 1972; Roeder 1972; Roeder et al. 1968, 1970; Roeder & Treat
1970; Schmitz & Wasserthal 1999; Scoble 1992; Wannenmacher & Wasserthal 2003;
Yack & Fullard 1993a,b, 2000), with special attention focused on agricultural pests (e.g.,
Manduca, the tobacco & tomato hornworms; Erinnyis, a potent euphorb crop pest in the
New World, see Dillon et al. 1983 and Winder 1976) and species of economic
significance (e.g., Bombyx, the silkmoth; also see Batra 1983; Coffelt & Schultz 1990,
1991, 1993). Furthermore, bombycoid moths have assumed central roles in studies of
insect community ecology (Bernays & Janzen 1988; Janzen 1981,1984,1988; Janzen &
Waterman 1984; Young 1972), nutritional ecology (O’Brien ef al. 2000) and pollination
biology (Darwin 1862; Eisikowitch & Galil 1971; Grant & Grant 1983a,b; Haber 1984;
Haber & Frankie 1982, 1989; Kitching 2002; Miller 1981; Nilsson 1988,1998; Nilsson et
al. 1985, 1987; Paige & Whitham 1985; Raguso & Willis 2002; Wasserthal
1996,1997,1998; White et al 1994).

In a paper entitled “Two ways to be a tropical big moth: Santa Rosa saturniids and
sphingids”, Janzen (1984) highlighted and reformulated interest in bombycoid natural
history in the context of tropical ecology. Janzen identified stark contrasts in life history
strategies between and among moths in two prominent lepidopteran components of a
Costa Rican tropical forest community: the bombycoid families Sphingidae and
Saturniidae. Superficially, Sphingidae and Saturniidae share many similarities. Both

families contain large, conspicuous moths whose larvae struggle to meet demanding



metabolic requirements to support their size. As a result, the larvae of both families can
be quite large and feed externally on plant tissues, making them prime targets for suites
of predators and parasites (Dyer 1995; Janzen 1988; Price 1997; Stamp & Casey 1993).
The biogeographic distribution of both families overlaps both within the Santa Rosa
forest and at broader spatial scales. Finally, the sexes in both families pursue common
strategies: adult males strive to locate reproductively viable females, and mated females
strive to locate suitable plants and/or microhabitats for oviposition. Despite these shared
attributes, however, members of the Sphingidae and Saturniidae have adopted starkly
divergent life history strategies (Table 1).

A critical difference between sphingid and saturniid moths, which broadly
impacts many aspects of their life histories, is the ability for the adult moths to feed
(Miller 1996). Sphingidae are renowned for their impressive proboscises (Krenn
1990,1997,1998,2000; Krenn & Kristensen 2000), which permit penetration into
sometimes deep and morphologically specialized flower corolla tubes to extract nutrient-
rich nectar, and indeed have been prominent figures in studies of pollination biology
(Nilsson 1998; Nilsson et al. 1985, 1987; Raguso & Willis 2002; Wasserthal 1997). In
his treatise, On the Various Contrivances by which British and Foreign Orchids are
Fertilised by Insects, Darwin (1862) predicted that “in Madagascar there must be moths
with proboscises capable of extension to a length of between ten and eleven inches”,
based on his knowledge of the deep-nectary orchid Angraecum sesquipedale. Forty-one
years later, Rothschild & Jordan (1903) described the hawkmoth Xanthopan morgani
praedicta (with a proboscis of length 300 mm or 11.8 inches) as a confirmed pollinator of

this orchid (Kritsky 1991). This case illustrates the impressive development of



specialized mouthpart morphology associated with evolution of the feeding habit in
Sphingidae. In stark contrast, all adult Saturniidae have reduced or functionally vestigial
mouthparts, and the adults are relatively ineffective or incapable feeders.

Potential for adult nutrient intake has been recognized as a critical trait affecting
almost every classically important parameter of insect life history, including life span,
metabolic rate, activity level, sexual dimorphism and reproduction (Price 1997; see Table
1). For example, sphingid moths which feed continuously throughout their adult stage
live much longer than saturniids of comparable size (Janzen 1984). Adult Sphingidae
also sustain much higher activity levels and are capable of more controlled and sustained
flight maneuvers than saturniids (O’Brien 1999; O’Brien & Suarez 2001). Sphingid male
and female adults both share the ability to feed, and they exhibit dampened sexual
dimorphism in size and behavior relative to saturniid males and females (Janzen 1984).
This drastically affects both the mating habits of the adults and the ways in which female
energy is allocated to reproduction. Sphingid males actively court females and are
susceptible to female choice and male-male competition (Price 1997), while saturniid
females mate indiscriminately with the first male encountered (Janzen 1984). Sphingid
females steadily produce eggs throughout their adult lives and oviposit selectively in
small clutches, while saturniid females possess their full complement of mature eggs at
eclosion and oviposit in large clutches relatively indiscriminately (Janzen 1984).

Notable contrasts in life history strategies are not confined to just the adult stage
of Sphingidae and Saturniidae. Janzen (1984) observed a striking series of life history
correlates during sphingid and saturniid larval development. For example, sphingid

larvae eat a much more restricted set of hostplants and develop much faster than



saturniids of comparable size (Janzen 1984). Characteristics of an insect herbivore’s
hostplants have long been regarded as central aspects of their biology. Sphingid larvae
feed on inconspicuous but nutrient-rich plant materials with highly specific and toxic
defensive compounds, including: Asteridae (Asteraceae, Asclepiadaceae, Apocynaceae,
Bignoniaceae, Boraginaceae, Convolvulaceae, Lamiaceae, Rubiaceae, Solanaceae,
Verbenaceae); Dilleniidae (Dilleniaceae, Euphorbiaceae, Flacourtiaceae); Hamamelidae
(Moraceae); Magnoliidae (Lauraceae); and Rosidae (Anacardiaceae, Vitaceae) (Bernays
& Janzen 1988; Janzen 1981; Janzen & Waterman 1984; Mabberley 1997; also see Table
4 in Janzen 1984). In contrast, saturniid larvae feed on more readily apparent plant
materials (e.g., trees) which are nutrient-poor and rich in simpler and less toxic defensive
chemicals (e.g., >50% of saturniids in Santa Rosa feed on Fabaceae [Rosidae]; see Table
3 in Janzen 1984). Finally, the larvae adopt strongly contrasting strategies for defense:
sphingids by passive crypsis and mimicry, saturniids with more aggressive chemical and
morphological defenses.

Janzen (1984) provided not only insightful recognition of bombycoid life history
contrasts, but also a translation of those ecological patterns into a series of questions
exploring insect evolution. For example, he framed the question of character evolution
polarity by asking whether the sphingid “caricature” arose from a saturniid precursor, or
vice versa (Janzen 1984, p.130)? Given that both families are members of the same
putatively monophyletic superfamily, this question of directionality in life history
evolution can be framed as a hypothesis testable via phylogenetic methods (Harvey &
Pagel 1991, Farrell & Mitter 1990; Mitter ef al. 1988, 1991; Wiegmann et al. 1993).

Phylogenetic inference of relationships within the Bombycoidea may reveal which of the



two syndromes more closely represents the ancestral condition, and which is derived.
Assessing such long term evolutionary trends would likewise shed light on a battery of
accompanying questions also raised by Janzen. For example, what factors have
contributed to much stronger intra- and inter-specific polymorphism in Saturniidae vs.
Sphingidae (Janzen 1984, p.113)? Also, what factors (e.g., oviposition constraints,
physiological constraints, top-down and bottom-up regulation) have influenced the
distinct and nonoverlapping patterns of larval hostplant use between these families,
especially when assessed by degree of polyphagy and differential exploitation of various
plant growth forms (Janzen 1984, p.122)? Finally, have the selection pressures favoring
non-feeding in saturniid adults been imposed by environments unfavorable to those
adults, or in habitats conducive to heavy resource accumulation in the larval stage
(Janzen 1984, p.130)? Reconstruction of character evolution on a robust phylogenetic
hypothesis would assign direction to the contrasting syndromes (i.e., sphingid vs.
saturniid) of bombycoid life history evolution, and permit assignment of one habit to the
ancestral condition. This would contribute to a more complete understanding of
characters impacting the notable diversification of this superfamily.

Importance of a historical perspective in this system is heightened by
consideration of one of the three sphingid subfamilies, the Smerinthinae. Though these
moths share morphological synapomorphies which position them resolutely in the
Sphingidae (see below), smerinthines exhibit striking similarity in many aspects of their
life history strategies to saturniids (Janzen 1984; see Table 1). Thus, broad interfamilial
contrasts (i.e., Sphingidae vs. Saturniidae) described in Janzen’s (1984) study can be

considered evolutionarily “replicated” within the Sphingidae (i.e., Smerinthinae vs.



Sphinginae / Macroglossinae). Depending on the relative orientation of the three
subfamilies in a tree of Sphingidae, Smerinthinae may provide an independent contrast to
test the impact of divergent life history traits on diversification rates. Alternatively, a
basal smerinthine position would indicate that the sphingid “caricature” (sensu Janzen
1984) arose once in bombycoid evolution. Regardless of the scenario, robust
determination of sphingid subfamily relationships will provide a critical clue to
investigate the proximate and ultimate factors responsible for the origin and maintenance
of such discrepant life histories in the Bombycoidea.

Construction of a robust phylogenetic hypothesis for the Bombycoidea,
subsuming all taxa in Janzen’s Santa Rosa study system, would provide a powerful
evolutionary backdrop against which to interpret such vast ecological differences
between component families. Such a phylogeny may permit reconstruction of the
presumed ancestral condition, suggesting possible character transformation pathways by
which these relatively closely related families underwent ecological diversification.
Ecological polarity implied by this reconstruction may greatly enhance our understanding
of the opportunities and constraints governing broad scale evolution of insect life history
strategies, with implications for understanding patterns of herbivory, sexual dimorphism,
reproduction, population dynamics and the origin of morphological & behavioral novelty.

The bombycoid system offers a rare opportunity for significant progress in both
construction of a robust molecular phylogeny and application of that phylogenetic
hypothesis to interpretation of the connection between ecology and evolution. Initial
attempts to assess phylogenetic relationships within the Bombycoidea have focused on

the two most prominent members of the superfamily: the Saturniidae and Sphingidae.



The latter has recently benefited from an intersection of comprehensive morphological
(Kitching & Cadiou 2000) and molecular (Regier et al. 2001) systematic treatments.
Kitching & Cadiou (2000) proposed an exhaustive genus-level systematic
revision of Sphingidae based on unpublished cladistic analyses of morphological and
behavioral characters conducted by Kitching (Table 2). Their revision exposed and
resolved many layers of nomenclatural violations and proposed an approximately
phylogenetic arrangement of taxa. However, this coarse treatment left unresolved many
of the relationships across every taxonomic level within the family, including many of
prime ecological relevance. Of greatest relevance to interpretation of contrasting life
history strategies is the monophyly of and relative position among the three subfamilies
recognized by Kitching & Cadiou (2000). Monophyly of the family is considered
extremely well-supported on the grounds of at least nine morphological synapomorphies:
(a) lateral oblique stripes on larval abdominal segments I-VII; (b) exposed hindwings not
reaching pupal abdominal segment [V; (c) ventral arm of adult laterocervicale ending
abruptly in a thin rod; (d) prescutal clefts of the adult mesonotum very close or fused
dorsally; (e) mostly unsclerotized ventral process in tegula; (f) adult forewing vein M2
arising slightly closer to M3 than to M1; (g) adult hindwing margin produced or angulate
at the tip of vein 1A+2A; (h) strong sclerotized lobe on metafurcula secondary arms
reinforcing the thoraco-abdominal intersegmental membrane close to abdominal sternite
IT; and (i) cavity broadly open in ‘tergal rim’ (Minet 1994, p. 85). However, comparable
morphological support has not been established for subfamily concepts, prompting Minet
(1994) to state the “monophyly of each of these three subfamilies is, obviously, less

convincingly established than that of the Sphingidae” (p. 85). It is hoped that a robust



phylogeny based on molecular data will both corroborate the recent classification of
Kitching & Cadiou (2000) and offer clarification in the search for strict morphological
synapomorphies characterizing clades at all levels within the Sphingidae.

In a pilot study, Regier et al. (2001; hereafter called ‘Regier 2001°) established
the efficacy of two unlinked protein-coding nuclear markers in resolving relationships
among sphingid genera. Elongation factor 1-alpha (EF) is involved in the initial stages of
peptide elongation, and promotes GTP-dependent binding of aminoacyl tRNA to the
ribosome A-site during protein biosynthesis (Hovemann et al. 1988; Kamiie et al. 1993).
Dopa decarboxylase (DDC) catalyzes conversion of dopa into dopamine, and ninety
percent of DDC activity occurs in epidermal tissues where dopamine derivatives are
involved in sclerotization and melanization of insect cuticle (Hiruma et al. 1995;
Tatarenkov et al. 1999). Regier 2001 found comparable information content and no
significant conflict in signal between 1,240 bp of EF and 709 bp of DDC across assayed
taxa. After partitioning the data into codon positions, they found that 88% of all variable
sites occurred at third codon positions (nt3). Despite that 96% of all nucleotide changes
were inferred to be synonymous, pairwise divergences at first and second codon positions
(nt1&nt2) increased with increasing taxonomic depth, suggesting character state
saturation at those positions had not yet occurred. Phylogenetic inference was conducted
under two optimality criteria: (i) maximum parsimony (MP) with differential weightings
across partitions; and (ii) maximum likelihood (ML) under general time reversible
models with and without parameters accounting for unequal base frequency. Each
analysis was performed on a variety of partition schemes, including genes and codon

positions both alone and in conjunction. Differential performance of each analytical
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method was assessed via a bootstrap taxon bipartition table, which itemized bootstrap
support for clades of interest across the entire range of bombycoids sampled (see Table 1
of Regier 2001). A single fully dichotomous topology derived from MP analysis on the
nt1&nt2 partition was selected as the best estimate of relationships among taxa sampled
(Figure 1). This fully resolved topology revealed no significant conflict with Kitching’s
morphological hypotheses, however branches of special interest (especially the position
of the “saturniid-like” Smerinthinae) were poorly supported by the data.

The current study was designed as the next step toward ultimately building a
robust phylogenetic hypothesis of the entire superfamily Bombycoidea, to provide an
evolutionary context for interpretation of ecological characters (e.g., those highlighted by
Janzen 1984) as determinants of insect life history evolution. Specifically, this study
aimed to expand taxon and character sampling as a means to improve resolution of
relationships among genera in systematic analyses of the family Sphingidae. While this
work touched on the orientation of Sphingidae within the superfamily, obtaining greater
support for the position of the family relative to other bombycoids was left for future
studies. Establishing a robust hypothesis of genealogical relatedness within the family
Sphingidae has two immediate applications: (1) testing existing hypotheses of sphingid
classification based on analysis of non-molecular characters (viz. Kitching & Cadiou
2000); and (2) interpreting correlations between a diverse suite of morphological and
behavioral traits from an explicitly phylogenetic perspective.

Immediate goals for this work included: (a) testing the broadly accepted concept
of Sphingidae monophyly by exploring robustness of the sphingid node under different

suites of outgroups; (b) building on the pilot analyses conducted in Regier 2001 by
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augmenting their taxon sampling and extending the range of nucleotides collected from
DDC; (c) assessing the degree of corroboration between sphingid phylogenetic
hypotheses derived from molecular versus morphological data, especially the monophyly
of and relationships among subfamilies, tribes & sections delimited by Kitching &
Cadiou (2000); (d) confirming the utility of EF and DDC, both separately and in
conjunction, for providing robust phylogenetic resolution within Sphingidae; (e)
investigating degree of concordance or conflict in phylogenetic signal between EF and
DDC; (f) exploring effects of different taxon samples, character partitions and optimality
criteria employed in phylogeny reconstruction.

Broader goals to which this study is expected to contribute include: (a) testing
Minet’s (1991, 1994) morphologically derived taxonomic hypotheses about relationships
in Bombycoidea, including monophyly of and interrelationships among his nine
recognized families; (b) contributing a robust phylogenetic component toward resolution
of a long-standing polytomy at the base of Macrolepidoptera; (c) establishing a
connection between ecology and evolution of life history strategies across Bombycoidea,
especially through identification of independent contrasts (e.g., adult feeding,
reproductive strategies, sexual dimorphism, larval diet breadth) among bombycoid sister

lineages across all taxonomic levels.
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MATERIALS & METHODS

Taxon Sampling

A prime focus of the present study was to expand the diversity of taxon sampling
beyond that in Regier 2001. That pilot study included representatives of 7 genera across
all three tribes in Macroglossinae, 2 genera in only one of the three tribes in
Smerinthinae, and 5 genera in only one of the three tribes in Sphinginae (Figure 1 and
Table 2). While results of that study were compelling, the current work aimed to
improve the breadth of Sphingidae species in the University of Maryland (UMD)
Lepidoptera Collections available for collection of nucleotide sequence data. To this end,
a global network of collectors was assembled through directed correspondence and the
systematic revision by Kitching & Cadiou (2000) was used as the basis for assigning
target taxa to different collectors.

Choice of outgroups for systematic analyses of the Sphingidae was relatively
straightforward, given the systematic classification of Bombycoidea proposed by Minet,
in which nine families, including Sphingidae, were arranged into putatively monophyletic
groups (Minet 1991, 1994; Lemaire & Minet 1999). Corroboration of Minet’s broader
systematic hypotheses by analysis of molecular evidence is forthcoming (Mitter, pers.
comm.); thus, for the purposes of this study all non-sphingid bombycoids were
considered viable candidates for outgroups to root the tree of Sphingidae. This study was
designed primarily to explore relatedness among genera within Sphingidae, and
conclusions regarding genealogical relatedness across the broader Bombycoidea were

treated only provisionally.
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Specimen Acquisition

To build a grassroots network of sphingid collectors, a list of self-identified
sphingid enthusiasts was compiled from The Lepidopterists’ Society Membership
Directory for years 2000 and 2002 (J.P. Donohue, editor; Los Angeles, CA). In addition,
names of registered collectors of sphingid taxa were compiled from The Lepidopterists’
Society Season Summary for years 1992-2002 (J.P. Tuttle, editor; Tucson, AZ). A letter
summarizing the goals of this project within the context of broader arthropod systematic
research at the Maryland Center for Systematic Entomology (MCSE) was mailed to each
potential collector, soliciting their help in procuring specimens for the upcoming season
and/or providing leads for other collectors. Responses to these solicitations were
compiled and correlated against the list of target taxa. Special emphasis was placed on
enlisting geographically dispersed collectors to maximize sampling diversity across the
North American fauna (see genera shaded in Table 2).

After establishing a collaboration with these parties, collecting kits consisting of
the following items were assembled and mailed to interested collectors:

(a) 15mL and/or 50mL screw-cap centrifuge tubes (Corning Life Sciences, catalog
nos. 430790 & 430291) filled with 100% (200 proof) ethanol and labeled
internally and externally, for preservation of tissues;

(b) 5.9cm x 9.2cm side-opening glassine envelopes (Bioquip Products, catalog no.
1131B) for collection of wing vouchers and/or whole dried voucher specimens;

(c¢) preformatted specimen information data sheets, for recording specimen

information;
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(d) a one-page instruction sheet detailing proper field preservation of insect tissue for

use in molecular systematic studies (Figure 2);

(e) permanent (ethanol-resistant) felt-tip markers;
(f) parafilm sheets, for sealing vial lids after specimen storage;
(g) pre-paid overnight return postage labels.

Special emphasis was made in preparation of the kits to simplify both the
specimen collection/processing and the data recording steps for each collector. The
number and size of vials shipped was customized to the anticipated collecting load and
taxa commonly encountered by each collector. Individual vials were labeled internally
with laser-printed four-digit serial numbers on strips of 65 1b. 96 brightness acid-free
archival quality paper (Wausau Bright White, catalog no. 92101), and externally with the
same serials hand-written in permanent marker. Specimen data sheets accompanying
each kit were pre-labeled with the collectors’ name, the series of numbers for
corresponding tubes, and ample space for recording collection information was provided.

Field-collected specimens were transferred immediately into 100% ethanol in the
provided vials, and kept cool and dark until shipment back to College Park. Ethanol was
selected for specimen preservation in this study for several reasons: (a) low toxicity, (b)
low melting point to facilitate storage at cryogenic temperatures, (c) rapid evaporation
upon removal of specimen tissue for examination, and (d) slow rate of DNA degradation
relative to aqueous solutions. Dessauer ef al. (1996) remarked that prolonged storage of
tissue in at low temperatures and in the absence of oxygen retarded the rate of

degradation. Post ef al. (1993) confirmed that samples stored in any medium at room
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temperature, or in aqueous solution at any temperature, exhibited very poor yields in

DNA extraction.

Specimen Curation

Upon receipt, shipped specimens were processed immediately and curated for end
storage in the UMD Lepidoptera Collections. Spent ethanol preservative was decanted
and the vials were refilled to capacity with fresh 100% ethanol. Extremely large
specimens (e.g., Cocytius, Eumorpha, Manduca, Pachysphinx, etc.) were sectioned or slit
to ensure proper penetration of the preservative into internal tissues. Extremely small
specimens (e.g., Agrius, Erinnyis, Hemaris, Proserpinus, etc.) were transferred to
appropriately sized vials, making every effort to maximize volume of free ethanol while
conserving freezer space. If necessary, wings submersed in ethanol were separated from
the specimen at the basal sclerites, blotted dry on Kimwipes and stored in glassine
envelopes labeled with the same four-digit serial number. Similarly, serial numbers of
wing vouchers processed by the collectors prior to shipment were checked against the
specimen from which they were separated.

Both the pickled tissue specimen and the dried wing voucher were reassigned a
revised UMD Lepidoptera Collections accession number consisting of the original four-
digit random number with a prefix composed of the collector’s initials and a two digit
code for the year in which the specimen was received [e.g., “WIK-02-1941" denotes a
specimen collected by William J. Kelly into vial #1941 and received at College Park in
2002]. Laser-printed labels with these final accession numbers were swapped for the

original vial labels, and wing voucher labels summarizing key collection information for
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each specimen were inserted into corresponding glassine envelopes. Curated specimens
in 100% ethanol were archived into permanent storage at —80 degrees C in the Regier
Laboratory at the University of Maryland Biotechnology Institute (UMBI) Center for
Biosystems Research (CBR), College Park, MD. Wing vouchers were sorted by
accession number and stored in Cornell drawer insect cabinets in the Mitter Laboratory at
UMD Entomology, College Park, MD.

After specimen processing, detailed collections information was compiled from
collectors’ data sheets and entered into a specimen database custom-designed in
FileMaker Pro (version 3.1 and 6.0; FileMaker, Inc.) for management and tracking of
molecular tissues specimens in the UMD Lepidoptera Collections. Species identification
was determined in all cases by the collector and was not independently verified prior to
curation. Other key pieces of information entered into designated fields in the UMD
database included: accession number, collector & determiner name(s), collection date &
time, collection locality, number of specimens, life stage, preservation method, higher
taxonomic assignment of each genus, wing voucher information and freezer storage
location (Figure 3). In addition, specimen physical condition and any oddities in the
collection/curation process were recorded in a notes field. Every effort was made to
compile exhaustive collection records for each specimen, and in many cases collectors

were consulted to post facto verify or clarify specific collection or identification data.

Sequence Collection de novo

Congruence between independent data sets has long been recognized to lend

power to any phylogenetic hypothesis (Brown et al. 1994; Cunningham 1997; Eernisse &
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Kluge 1993; Funk et al. 2000; Mickevich & Farris 1981; Miyamoto & Fitch 1995; Penny
& Hendy 1986; Yeates & Wiegmann 1999). In this spirit, nucleotide sequence data was
gathered from a portion of the coding regions of two separate and unlinked nuclear genes:
(a) Elongation Factor 1-alpha (EF) and (b) Dopa Decarboxylase (DDC). Generation of
novel DNA sequence was a three-tiered process: (A) genomic nucleic acid extraction; (B)
amplification of the region of the genome of interest; and (C) sequencing of the bases

comprising that amplified gene product.

A. Whole Nucleic Acid Extraction

Whole nucleic acids were obtained from insect tissue according to the SV Total
RNA Isolation System (catalog no. Z3100, Technical Manual no. 048; Promega
Corporation). While this kit was intended for extraction of RNA free of genomic DNA
contamination, slight protocol modifications permitted precipitation of both genomic
DNA and RNA from all samples (Otto, 1998). Extractions were conducted in batches of
less than eight specimens, to ensure adequate attention was paid to each sample and to
minimize opportunities for cross-contamination.

Specimen vials were removed from —80C storage to a wet ice bath, and allowed to
equilibrate to ice temperature. Clean forceps were used to transfer the specimen from the
ethanol preservative to a sterile disposable petri dish. A sterile disposable scalpel blade
was used to section the specimen at the head, prothorax, and/or mesothorax, until
approximately 10-30mg of tissue was obtained. Internal tissues were scraped out of these
sectioned fragments, and antennae, ommatidia, the proboscis, and heavy chitinous

structures (e.g., mandibles, tergites, proleg basal sclerites) were excluded. Ethanol-
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moistened dissected tissue was air dried for several minutes before it was transferred to a
1.5mL eppendorf tube containing 178.5ulL of SV RNA Lysis Buffer (4M guanidine
thiocyanate, 0.01M tris, 0.97% beta-mercaptoethanol; pH7.5). Remaining unused
specimen tissue was immediately returned to its original vial and refilled with fresh 100%
ethanol for long-term storage at —80C.

Dissected tissue in Lysis Buffer was homogenized inside the eppendorf tube by
pulverization using a pre-sterilized polypropylene pestle. Pestle pulverization on ice for
2-5 minutes yielded a brown/red homogenate with some insoluble chitin fragments.
After all samples in a batch had been homogenized, 350uL of blue SV RNA Dilution
Buffer (containing 25-50% guanidinium thiocyanate) was added to each tube and all
tubes were inverted to mix contents gently without mechanically shearing genomic DNA
macromolecules. Tubes were incubated in a 70C water bath for exactly 3 minutes, then
centrifuged at 14,000g for 10 minutes in a fixed-angle rotor centrifuge (Eppendorf AG,
model no. 5417C) to precipitate cellular debris. Supernatant containing dissolved whole
nucleic acids was transferred to fresh 1.5mL eppendorf tubes, taking care not to disturb
the debris pellet; when in doubt, supernatant was left behind rather than introducing
contamination from a loose pellet. Exactly 200uL of 95% ethanol (containing 5% DEPC
water) was added to this supernatant and all tubes were inverted to mix. The entire
volume of fluid was loaded onto a labeled Promega Spin Column Assembly, and
assemblies were spun at 14,000g for 60 seconds. Eluate was discarded, and 600uL of SV
RNA Wash Solution (60mM potassium acetate, 10mM tris-hydrochloride, 60% ethanol;
pH7.5) was loaded onto the dry spin column. After another centrifugation at 14,000g for

60 seconds, eluate was discarded and another 250ulL of SV RNA Wash Solution was
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added to the dry spin column. The manufacturer’s protocol was modified at this stage in
order to preserve genomic DNA bound to the spin column, as digestion of gDNA
“contaminants” with DNAse I was not performed. Centrifugation at 14,000g for 2
minutes completely flushed the SV RNA Wash Solution, and the dry spin column was
transferred to the permanent 1.5mL eppendorf collection tube. Exactly 100uL of
Promega Nuclease-Free Water (catalog no. P119E) was added to the dry spin column and
allowed to incubate at room temperature for approximately five minutes. A final
centrifugation at 14,000g for 60 seconds resulted in approximately 100uL of eluate
containing dissolved whole nucleic acids (RNA & DNA), which was stored immediately
at —80C until further processing.

To minimize the amount of sample manipulation and to conserve extract volume,
aliquots were not loaded onto an agarose gel to assess the yield of RNA and DNA.
Instead, extract quality was assessed indirectly through the success of downstream RT-

PCR reactions.

B.1 Reverse-Transcription Amplification

Products from the genomic whole nucleic acid extraction protocols described
above served as template for selective amplification of target mRNA using the reverse
transcription polymerase chain reaction (RT-PCR; Edwards et al. 1995; Larrick & Siebert
1995; Siebert 1999). This process entailed two stages: (i) hybridization of a single
oligonucleotide primer to the 3’ end of single-stranded mRNA actively transcribed in
vivo, with subsequent reverse transcription (RT) in vitro of those mRNA transcripts into a

double-stranded species; and (ii) polymerase-mediated synthesis of the strand
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complementary to the cDNA, followed by annealing of two primers permitting selective
amplification of target regions (PCR). For the purposes of this study, the key advantage
of RT-PCR relative to direct PCR on genomic whole nucleic acid templates was the
amplification of only coding regions. Because post-transcriptionally modified mRNA
containing only spliced exons acts as template for cDNA synthesis and subsequent
amplification, all amplicons generated in this study were free of intronic sequence and
were readily translated to amino acids.

Oligonucleotide primers used in this study had been designed previously by
members of the Regier Lab for use in amplifying both EF and DDC in taxa across
Arthropoda (Regier & Shultz 1997; Cho et al. 1995; Fang et al. 1997, 2000; Friedlander
et al. 1992, 1998, 2000; Mitchell 1998; Mitchell ef al. 1997, 2000; Regier et al. 2000,
2002). Historically, amplification of EF had been trivial in these taxa and the primers
and amplification strategies developed in the Regier Lab were correspondingly relatively
standardized. In contrast, DDC amplification was technically much more problematic,
and almost every primer developed for this gene had been redesigned multiple times,
sometimes on a taxon-specific basis. A comprehensive review of all documented EF and
DDC primers generated in the Regier Lab was undertaken to compile all known viable
primer sites in the design of amplification strategies for each of these two genes.

Table 3 presents primer pairs used to amplify regions of EF in two studies from
the Regier Lab: an investigation of the utility of this gene in resolving relationships
across Arthropoda (Regier & Shultz 1997) and their original study employing EF to
explore systematic relationships within Heliothinae [Lepidoptera: Noctuoidea:

Noctuoidae] (Cho et al. 1995). Strategies developed in the arthropod work are currently
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standard practice in the Regier Lab, and the four fragments labeled “p”, “A’”, “E” and
“C” were amplified in this study (Table 3). Figure 4 depicts the relative orientation of
these primers along the mRNA molecule of the reference sequence from Bombyx mori
[Bombycoidea: Bombycidae] (GenBank accession no. D13338; Kamiie ef al. 1993). A
single primer, m41.21rc, was used to generate cDNA the length of the desired EF
fragment during the RT phase, with the terminal primer pair 30f/m41.21rc used for
subsequent PCR amplification of that cDNA. Internal primer pairs were then used to
generate smaller amplicons via nested PCR on the purified cDNA template.

Table 4 presents primer pairs used to amplify regions of DDC in four studies, as
well as unpublished oligonucleotides currently used in the Regier Lab to amplify this
gene. These primers are sorted by site along the DDC mRNA molecule, and different
versions of a given primer a re grouped together. Since the complete coding sequence of
DDC for a sphingid, Manduca sexta (Bombycoidea: Sphingidae), had been published
(GenBank accession no. U03909; Hiruma et al. 1995; Figure 5) and was used as the
reference sequence for alignment of this gene, the most stringent (i.e., longest and least
degenerate) primers were assayed first for utility in RT-PCR amplification of DDC from
Sphingidae. In an ideal scenario, a single primer (7.5sR) was used to generate cDNA the
entire length of DDC during the RT phase, and the terminal primer pair 1.0F/7.5sR was
used to PCR amplify that cDNA. However, this primer did not yield adequate product
for all taxa and in these cases a smaller cDNA fragment was generated by use of 4dnR or
4sR (two variants of a primer site upstream of 7.5sR) during the RT phase. Early
attempts were made to evaluate the relative performance of alternative primer variants

listed in Table 4 for both RT (especially [7.5R vs. 7.5sR]) and PCR (especially [1.0F vs.
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1.1vF vs. 1.2F], [1.7F vs. 1.7dF vs. 1.7sF], [1.9dF vs. 1.9sF] and [3.2dF vs. 3.2sF])
phases by assessing amplification efficiency in ethidium-bromide stained agarose gels
(data not shown). Primers eventually selected for use in this study are indicated with an
asterisk (** for RT primers) in Table 4 and are presented in their corresponding pairings
in Table 5a. In contrast, primers preferred by the Regier Lab for amplification from non-
sphingid taxa (Regier, pers. comm.) are labeled with a 1 (I for RT primers) in Table 4
and are presented in their corresponding pairings in Table 5b.

Reagent components and relative concentrations for RT reaction mixtures are
presented in Table 6a. An individual RT reaction consisted of a 10uL. volume, mixed in
the order presented in the table. To help control for intersample variability in reaction
success, the RT reagents were mixed as a “cocktail” consisting of the same ratio of
components multiplied by a factor of (n+1), where n=the number of samples in a batch.
This cocktail was then aliquotted into individual 0.2mL thin-walled reaction tubes prior
to addition of genomic nucleic acid extract template to each. Magnesium Chloride
(MgCl,; 25mM stock solution) and GeneAmp PCR Buffer II (10X stock solution; catalog
no. N8080010) were obtained from Applied Biosystems. Reverse Transcriptase (50
units/ul stock; catalog no. N8080018) with accompanying RNase Inhibitor (20 units/uL;
catalog no. N8080119) was also obtained from Applied Biosystems, and both reagents
were stored at —20C until immediately before addition as the final components in the RT
cocktail. A single oligonucleotide was included (stock 20uM) to hybridize with the 3’
end of targeted mRNA. Water was obtained from Regier Lab stock and was DEPC-

treated, deionized and autoclaved.
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After aliquotting 9.9uL of RT cocktail into each reaction tube, individual nucleic
acid extracts were retrieved from —80C storage and quick-thawed in a room-temperature
water bath for less than 60 seconds. Exactly 0.1uL of raw extract was added to
corresponding reaction tubes and the tubes were centrifuge-pulsed to gather contents into
the bottom. Reaction tubes were loaded onto a precooled (4C) 48-well block of a DNA
Engine thermal cycler (model no. PTC-200; MJ Research, Inc.) and incubated at 42C for
35 minutes, followed by 99C for 5 minutes. During this RT cycling, cocktails for PCR
reactions were prepared so that time between RT and PCR reactions was minimized.

Reagent components and relative concentrations for the PCR reaction mixtures
are presented in Table 6b. An individual PCR reaction consisted of a 50uL volume, 40uL
of which was fresh “cocktail” added to the 10uL RT reaction immediately after RT
thermal cycling was complete. Magnesium Chloride, PCR Buffer II and water were as
above. AmpliTaq thermostable DNA polymerase was obtained from Applied Biosystems
(5 units/uL stock; catalog no. N8080156), and was kept cold at —20C until addition to the
cocktail as the last component. This AmpliTaq solution contained 0.07uM of TaqStart
neutralizing monoclonal antibody (7uM stock; BD Biosciences Clontech, catalog no.
639251) to enable hot-start PCR by inhibiting AmpliTaq activity below 70C. In addition,
two oligonucleotide primers (20uM stock each) bookending the fragment of interest were
included to bind to the 3’ ends of opposite strands in the cDNA synthesized during the
RT reaction. No additional ANTP were added to the PCR cocktail.

Immediately upon completion of the RT cycle, samples were transferred to an ice
bath and 40uL of PCR cocktail was added to each. Tubes were briefly shaken to mix,

centrifuge-pulsed to gather contents in the bottom, and reincubated on a room-
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temperature MJ DNA Engine block. Touchdown thermal cycling was employed in the
PCR amplification of in vitro synthesized cDNA (Table 6¢), in order to minimize
amplification of competitively superior nontarget smaller amplicons (Don et al. 1991).
For the first 25X cycles, annealing temperature was iteratively decreased by 0.4C per
cycle, while extension time was iteratively increased by 2 seconds per cycle. After these
25X touchdown cycles, traditional PCR at a static annealing temperature was conducted
for an additional 13X cycles, increasing the extension time by 3 seconds each cycle. A
final extension at 72C for 10 minutes completed the thermal cycling, followed by
indefinite incubation at 4C.

Amplification conditions for fragments of EF and DDC were very similar, but in
consultation with Regier Lab personnel some modifications were introduced to
accommodate the more troublesome DDC amplifications. All components of the RT
phase were identical between genes, except that stringency was reduced for DDC by
increasing the concentration of reverse primer from 2uM to 3uM. In the PCR phase,
changes to the DDC protocol were more extensive: MgCl, concentration was increased
from 2.5mM to 3.0mM; forward primer concentration was doubled from 0.5uM to
1.0uM; and reverse primer was increased by 50%, from 0.6uM to 0.9uM. These
relaxations permitted more consistent RT-PCR amplification of DDC fragments from the
same extracts as had been assayed for EF under more stringent conditions. In fact,
because the extracts were never assayed via electrophoresis, presence/absence of EF
amplicons through the above procedure served as a de facto check on the quality of the

extraction procedure for a given sample.
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Upon completion of the PCR phase, samples were transferred to ice and exactly
10uL of 60% glycerol loading dye (w/w in 1X TAE) containing trace bromophenol blue
was added to each sample. After brief vortexing, 10uL of this sample was loaded onto a
1.4% agarose analytical gel (w/v in 1X TAE; Fisher DNA Grade High Melting
Electrophoresis Grade, catalog no. BP164-500). This amounted to destructively
sampling 15% of RT-PCR product at a final glycerol concentration of 10%(v/v).
Samples were electrophoresed at approximately 120V for approximately 90 minutes,
until the bromophenol dye band had traveled to approximately 2.5cm from the gel edge.
Transillumination under UV light revealed whether viable RT-PCR product had been
produced, and intensity of bands relative to known bands in a comigrating DNA ladder

permitted rough quantification of product size and concentration.

B.2 Gel Purification of RT-PCR Products

RT-PCR products, which themselves served as template for downstream nested
PCR (see below), were gel purified to insure that the desired fragments and only the
desired fragments were retained. Once analytical gel electrophoresis confirmed
successful RT-PCR amplification, the remaining S0uL of product containing glycerol
loading dye was loaded onto a large well of a 1.1% agarose purification gel (w/v in 1X
TAE; Continental Lab Products AgarGel Low Melt Medium Fragment Agarose, catalog
no. 5413.100). Samples were electrophoresed in fresh 1X TAE, in a cleaned gel
apparatus covered with an opaque dark cloth to prevent UV damage from ambient light,
at approximately 100V for approximately 2 hours. The entire gel was transferred on

plastic wrap to a UV plate, and under brief UV illumination cubes containing the
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fragment of interest were excised from the gel using an autoclaved steel spatula.
Signature banding patterns for each sample in these purification gels were directly
compared against the original RT-PCR analytical gel photos to verify that samples had
not been crossed. These gel cubes were transferred to sterile 1.5mL eppendorf tubes and
massed to quantify the amount of agarose containing the RT-PCR product of interest.
Double-stranded DNA within this excised gel slice was purified via the Promega
Wizard PCR Preps DNA Purification System, exactly according to manufacturer
suggested protocols (Promega Technical Bulletin No. 118). Instead of elution in TE,
however, purified products were incubated at room temperature for approximately 5
minutes and eluted in 50uL. of Promega Nuclease Free Water (part no. P119E). A 7.5uL
aliquot of each purified eluate was transferred to a new eppendorf tube containing 2.5ul.
of 60% glycerol loading buffer (w/w in 1X ABI 10X PCR Buffer II and 2.5mM MgCl,)
containing trace bromophenol blue. This loading buffer more closely mimicked
background composition of all other amplification products run on agarose gels. All
10uL of the gel purification/loading buffer mixture was loaded onto a 1.4% agarose
analytical gel; amounting to destructive sampling of 15% of gel-pure RT-PCR product at
a final glycerol concentration of 15%(v/v). One or both of two DNA ladders was loaded
into an adjacent well: (i) MBI Fermentas pUC Mix Marker 8 (catalog no. SM0302); or
(i1) BioRad Precision Molecular Mass Standard (catalog no. 170-8207). Incorporation of
these ladders permitted finer simultaneous assessment of both gel-purified fragment size
and product concentration. The total mass of DNA in each band of the ladders was
calculated under various loading volumes and used to calibrate an estimation of purified

product concentration by comparing bands of similar intensity. In lieu of other
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quantitation methods (e.g., spectrophotometry, fluorimetry), this approach permitted
calculation of product concentration and tailoring of template amount contributed to

downstream applications (i.e., nested PCR and direct sequencing).

B.3 Nested PCR Amplification

In ideal cases, a primer binding to the 3’ end of targeted mRNA (e.g., m41.21rc
for EF; 7.5sR for DDC) yielded viable RT-PCR amplification through much of the gene’s
coding region. Because this product was large (>1kb) and often extremely weak in
electrophoretic assays, a round of nested PCR amplification based on those purified RT-
PCR templates was pursued to generate fragments of manageable lengths (approximately
500bp) at sufficiently high-copy number for direct DNA sequencing. Nested PCR
provided a powerful technique to amplify desired subsequence from even extremely
weak RT-PCR amplicons, because those products had been gel purified and were
guaranteed to contain the sequence of interest if the RT-PCR had been at all effective.

Nested PCR was most often used to amplify subsequence from within larger RT-
PCR products, using pairs of primers oriented approximately 500bp apart on the
molecule (for EF, see Table 3 & Figure 4; for DDC, see Table 4 & Figure 5). Reagent
compositions for nested PCR reactions are presented in Table 6d; contrary to conditions
for RT-PCR, reagent compositions were identical between EF and DDC fragments.
Ideally, nested PCR reactions received 1.0uL of template (2% of the final RT-PCR gel
purification elution), but this amount was varied per sample to between 0.5-5.0uL for
especially strong or weak RT-PCR templates, respectively. Thermal cycling parameters

for nested PCR were very similar between the two genes, except that the annealing
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temperature for EF was elevated 10C higher than for DDC; this higher annealing
temperature created much more stringent binding conditions between the EF ¢cDNA and
nested primers, but with little reduction in yield.

A related reamplification strategy was used for smaller amplicons for which
recovery of tangible nested PCR product had been difficult. All primers in this study
incorporated 18bp M13 tails for compatibility with sequencing chemistry (see bottom of
Tables 3 &4), so the termini of all nested PCR products were effectively end-labeled with
M13. In cases where insufficient nested product was obtained from RT-PCR template for
sequencing, gel purified nested PCR products were subjected to the same nested PCR
conditions with M13 primers. Reactions of this type generated high copy numbers of

entire nested fragments, and only failed when nested PCR had itself failed.

B.4 Gel Purification of Nested PCR Products

Subsequence amplification via nested PCR with internal primers or terminal M13
primers usually yielded amplification in high copy number. These products were gel
purified using exactly the same protocol as detailed above for RT-PCR products. After
electrophoretic concentration estimation, these products were submitted for direct DNA

sequencing.

C. Automated Sequencing

Electrophoretic assay of purified PCR products against the mass ladders described

above resulted in concentration estimates for every fragment, ranging from 0.67-
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10.67ng/ul.. DNA sequencing along both strands was performed on an Applied
Biosystems DNA Sequencer (model 3100) at the UMBI CBR core sequencing facility.
This facility recommended submission of 15uL of purified template at concentrations
between 5-20ng/ul. Despite these guidelines, template concentrations estimated
electrophoretically as low as 0.67ng/uL by the above method returned viable sequencing
reactions. Templates spanning the range of concentrations were submitted to the core
facility in trial reactions, and a correlation was drawn between template concentration
and sequencing signal intensity for each of the four bases (data not shown). This
permitted prediction of sequencing success on the basis of electrophoretic intensity, and
confirmed that viable sequence could be obtained from 15uL of any template yielding a

band comparable in intensity with even the lightest ladder bands.

D. Sequence Editing

Despite efficient base-calling algorithms in the ABI 3100 analysis software, each
chromatogram was inspected visually to confirm proper translation of electrophoretic
data into a nucleotide text string. Oddities during sequencing reactions or electrophoresis
caused disturbances in the chromatograms which were remedied on a case-by-case basis.
All raw ABI chromatogram files were imported into Sequencher (version 4.1.2; Gene
Codes Corporation 2000) for alignment. Conflicting signal in a particular chromatogram
(e.g., overlapping peaks) was assigned the appropriate binary [IUPAC ambiguity code,
and tertiary and quaternary ambiguities were assigned ‘N’. Both forward and reverse
strands of a given PCR product were edited independently in this way. Forward and

reverse-complemented reverse sequences of a given fragment were then aligned at high
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match percentage thresholds to generate a consensus "double stranded" sequence.
Ambiguities were resolved where possible and ambiguity codes were preserved if the
base could not be resolved. Any gaps inserted by Sequencher’s alignment algorithms
during comparison of forward and reverse strands were resolved by direct inspection of
the opposing chromatograms, and were usually attributed to poor quality in one
chromatogram (e.g., at the end of a sequence) which was readily resolved by the other.
Sequencing single fragments in both directions provided a layer of redundancy which
improved confidence in the deduced consensus sequences.

Gene contigs were assembled by aligning both forward and reverse strands of all
fragments for a sample at high match threshold, anchoring both strands of a single
fragment at regions of overlap with neighboring fragments. Any gaps inserted by
Sequencher’s alignment algorithms during contig assembly were resolved by direct
inspection of overlapping chromatograms. Oligonucleotide primer motifs were tagged in
each alignment, and primer sequence was deleted from all internal fragments to create a
seamless consensus sequence. Terminal primer sites (30f and m41.21rc for EF; 1.0F and
7.5sR for DDC) were retained in the consensus only to provide bookend sequences for
the bounds of mRNA investigated in this study. These primer sequences were truncated
prior to phylogenetic analyses.

For EF, the same four fragments (p, A’, E, C; Table 3 & Figure 4) were obtained
from all 54 ingroup samples and contig assembly resulted in a consensus sequence of
1,274bp, including terminal primers. A single exception applied to Neococytius cluentius

(UMD accession WJK-03-1949), for which viable purified RT-PCR and nested PCR
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products were assayed electrophoretically, but for which every forward and reverse
sequence was illegible due to uniformly and prohibitively high background noise.

For DDC, three fragments (X, Y, Z; Table 4 & Figure 5) were obtained from each
of 42 ingroup samples and contig assembly resulted in a consensus sequence of 1,373bp,
including terminal primers. Interestingly, Neococytius cluentius was among these “well-
behaved” samples, indicating the intractable sequencing for EF in this sample was
particular to that gene. For the remaining 12 samples, a fourth fragment (W; Table 4 &
Figure 5) was sequenced to compensate for difficulty obtaining strong amplification in
the middle of the DDC fragment. This strategy provided effective sequence through the

entire range of a homologous DDC fragment for all 54 ingroup samples.

E. Sequence Alignment

The double stranded consensus sequence from each gene was aligned
independently against an orthologous reference sequence obtained from Bombyx mori for
EF (Figure 4; GenBank accession no. D13338; Kamiie ef al. 1993) and from Manduca
sexta for DDC (Figure 5; GenBank accession no. U03909; Hiruma et al. 1995).

Instances in which novel sphingid sequences contained gaps with respect to the reference
sequences were interpreted as artifacts of the chromatogram editing process. In these
cases, corresponding positions in the original chromatograms were re-examined under the
null hypothesis that the reference sequence contained the “correct” number of bases. In
all cases, reconciliation was possible on the basis of the chromatogram traces, so no
artifactual N’s were introduced to achieve proper sequence length. While this procedure

introduced an obvious bias toward the reference sequences, it was expected that in coding
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regions of genes of such critical biochemical importance, insertions and deletions altering

the entire reading frame for protein translation would be extremely improbable.

After each sample’s consensus sequence had been aligned against the reference
sequence, a final whole-family alignment across 54 samples was performed in
Sequencher. This was a trivial procedure, as each sequence had already been

standardized against the reference sequences and no gaps were inserted by Sequencher.

Sequence Data Collection in silico

In addition to original nucleotide sequence data collected for 54 novel sphingid
samples described above, the National Center for Biotechnology Information (NCBI)
Nucleotides Database (GenBank) was mined for all representatives of Lepidoptera for
which orthologous nucleotide sequence fragments of both nuclear genes had been
submitted. The set of results from each of several search strings submitted to the NCBI
Entrez search engine on 06 April 2004 was downloaded and the union of all unique
sequence accessions was compiled into a master list. This list was filtered for a
nonredundant set of taxa containing both novel sphingid ingroup sequences and a range
of potential outgroup candidates for phylogenetic analyses.

Kristensen (1999) established rigorous systematic hypotheses of monophyly for
lepidopteran families based on analyses of morphological synapomorphies. While the
monophyly of Sphingidae has been regarded as firmly established on morphological
grounds (Lemaire & Minet 1999; Minet 1991, 1994), this study sought an independent
test of that premise using molecular data and modern systematic methods. The aim of

mining GenBank for lepidopteran sequences was to permit multiple phylogenetic
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analyses conducted under different taxon samples. Of special interest was the robustness
of a node depicting monophyletic Sphingidae in trees for which outgroups consisted of
either all other available lepidopteran sequences or all non-sphingid bombycoid
sequences. The classical concept of a monotypic superfamily Sphingoidea has been
collapsed as a single family within superfamily Bombycoidea (Brock 1971; Common
1990; Minet 1986), suggesting the latter may be profitably explored for the sister lineages
to Sphingidae.

Sampling variation in the GenBank Nucleotide Database prevented compilation
of both EF and DDC sequences for a single broad set of lepidopteran taxa. Instead,
sequences were compiled separately for each gene across as broad a taxon set as possible,
according to the following choice hierarchy:

(1) at least one EF and one DDC accession per subfamily across all Lepidoptera was
selected;

(i1) less than five accessions per gene per family were retained to avoid gross
taxonomic overweighting and tree imbalance (especially for Noctuoidea: Noctuidae
and Papilionoidea: Nymphalidae);

(ii1) one accession per tribe throughout Bombycoidea (Lemaire & Minet 1999; Minet
1991, 1994) was selected, these taxa being regarded as most closely related to the
ingroup and representing the best outgroup candidates;

(iv) any sequence from Sphingidae which did not exactly overlap species sequenced

de novo in this study was retained;
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(v) accessions for which both EF and DDC sequences were derived from a single
species or specimen were preferred, if possible, to accessions requiring sampling
from multiple specimens or taxa;

(vi) accessions containing nominate genera of any given tribe, subfamily or family
were preferred over other taxa;

(vii) GenBank accessions containing the longest unambiguous sequences were
preferred to improve data richness;

(viii) if all above criteria did not yield a single unambiguous choice, a GenBank
accession was selected randomly from the remaining candidates.

Even after implementing criterion (vii) above, almost all retrieved GenBank
sequences were shorter than the novel sequences generated in this study. All sequences
were aligned against the Bombyx (EF) or Manduca (DDC) reference sequences under the
same null hypothesis that the reference sequences contained the “correct” number of
bases. Gaps suggested by Sequencher were inspected across all lepidopteran sequences
and persistent indel events were marked with missing data characters (i.e., ‘N’ ambiguity
codes). In addition, terminal ends of sequences were filled with missing characters until
every sequence agreed in length with the reference sequences.

An exception to the above alignment strategy applied to the two DDC sequences
from Nepticuloidea [Glossata: Heteroneura] (GenBank contained no EF sequences for
this superfamily). These sequences aligned against each other and all other Lepidoptera
only at very low match thresholds (approximately 60%). Alignment via the MATCHER
utility of the European Molecular Biology Open Software Suite (EMBOSS) package

through the Nationale Genomforschungsnetz (NGFN) web interface revealed numerous
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gaps relative to all other Lepidoptera, as well as a multi-base indel event near DDC
primer 3.3sF (Figure 5). While an intriguing finding, exploration of these alignment
difficulties was beyond the scope of the current study, so both representatives of
Nepticuloidea were excluded from phylogenetic analyses owing to their difficult
homology assessment. Because sequence sampling from GenBank was an inherently
biased process with broad fluctuations in breadth and depth of taxon sampling across the
Lepidoptera, it was assumed that omission of these sequences would have miniscule
effects on the inclusion of Lepidoptera outgroup sequences to address questions of

Sphingidae monophyly.

Data Matrix Construction

Global alignments of consensus sequences were conducted for each gene,
separately for ingroup Sphingidae (Table 8; 67 samples for EF, 65 samples for DDC) and
outgroup Lepidoptera (Table 9; 51 samples for EF, 40 samples for DDC). These
alignments were then combined into a single master Sequencher file for each gene,
followed by a final round of inspection of suggested gaps. Upon completion, all
sequences were exported into a NEXUS file (Maddison et al. 1997) in preparation for
phylogenetic analyses in PAUP* (version 4.0b10; Swofford 2003). In this way, three
separate nucleotide matrices were assembled for phylogenetic analyses: (a) all EF data;
(b) all DDC data; (c) combined EF&DDC data.

After these nucleotide matrices had been assembled, corresponding amino acid
sequences were derived by conceptual translation in three forward frames using the

standard genetic code. Terminal oligonucleotide sequences were trimmed from each
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sequence and the resulting internal fragment was imported to the TRANSEQ utility of
EMBOSS. Amino acid output was reimported into a parallel set of NEXUS files in

PAUP*.

Character Information Content

Nucleotide data matrices were examined to determine the number of positions at
which character states were invariant (constant) across taxa, were unique to only a single
taxon (autapomorphic), or were suggestive of a taxon bipartition (parsimony
informative). Values were tabulated for each gene individually and for the combined
EF&DDC data matrix, and across four partitions by codon position (ntall, ntl, nt2, nt3).
This operation was repeated separately for each of four taxon sets: (i) All Lepidoptera;
(i1) All Bombycoidea; (iii) Ingroup Sphingidae only; and (iv) Sphingidae with two
outgroups (Bombycidae and Saturniini; see below). This scheme was intended to provide
a first approximation of agreement in the nature of character state change across different
partitions and taxa sets.

Mean empirical nucleotide base frequencies, adjusted for missing data, were
calculated in PAUP* as a first step to investigate the potential that base composition bias
could be responsible for perceived phylogenetic signal. Empirical base frequencies were
calculated for every sequence to provide a direct assessment of base compositional bias.
Counts of ambiguous (IUPAC codes) and missing (‘N’) data were also provided to gauge
the variance in data content for each sequence, and was especially important for

heterogeneous accessions obtained from GenBank.
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Parsimony-Based Preliminary Analyses

Analyses based on the criterion of Maximum Parsimony (MP) were conducted
across all four taxon sets on each of four data partitions: (a) ntall for EF; (b) ntall for
DDC; (c) ntall for combined EF&DDC, (d) nt1&nt2 for combined EF&DDC. EF and
DDC data were analyzed separately to tease apart potentially subtle differences in
phylogenetic signal contributed by each gene, as well as to shed light on the robustness of
phylogenetic signal to minor changes in taxon sampling due to nonoverlapping taxa
sampled from GenBank. For the combined data set, ntall versus nt1&nt2 partitions were
analyzed separately to compare the effects of excluding hypervariable third codon
positions, as advocated by Regier 2001. All MP analyses were conducted on unordered
and equally weighted characters, with constant characters excluded (i.e., autapomorphies

and parsimony informative sites both included).

A. PTP Test of Information Content

The Permutation Tail Probability (PTP) test as implemented in PAUP* was
conducted as a crude indicator of the presence of phylogenetic signal in each nucleotide
data matrix (Faith 1991; Faith & Cranston 1991). Distribution of character states across
taxa might be correlated due to either shared ancestry (i.e., phylogenesis has imposed
order on the data) or stochasticity (i.e., order in the data is an artifact of random
nucleotide substitutions independent of evolutionary history). The PTP test was designed
to quantify the degree to which order in character state distributions has an evolutionary

versus a stochastic basis.
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Pseudoreplicate data matrices were constructed by randomly permuting character
states within each nucleotide position across taxa. Using tree length as an indicator of
phylogenetic structure in the fit of data to a topology, the length of the MP topology
obtained under the empirical data was used as the test statistic. A null distribution was
constructed by calculating the lengths of the MP trees recovered under each
pseudoreplicate data set. Under the null hypothesis that character states in the empirical
data matrix were correlated due to chance alone, it was expected that each randomly
permuted data set would result in a tree length comparable to the original test statistic.
The P value gave the proportion of all pseudoreplicated data matrices yielding an MP tree
comparable in length. Small P values indicate that the structure in the empirical data is
not a product of chance, refuting the null hypothesis of no phylogenetic structure. All
PTP tests were calculated with at least 1,000 pseudoreplicates. In addition, the number of
steps separating the original MP tree from the next most parsimonious tree derived from
all permuted data was recorded as an indication of severity in parsimony penalty imposed

by randomizing character states.

B. Parsimony-Based Searches

Phylogenetic analysis under the criterion of Maximum Parsimony (MP) was
conducted across four taxon sets for the four data partitions listed above. There are I1(2i-
5) unrooted bifurcating trees depicting patterns of relatedness among T terminal taxa,
where i varies from 3 to T (Swofford et al. 1996). For the number of taxa investigated in
each data set in this study (ntax > 64), the number of possible topologies in treespace

rendered exhaustive MP search algorithms untenable. Therefore, heuristic search
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algorithms implemented in PAUP* were employed to sample tree and data space for
optimal topologies.

Starting topologies were computed heuristically via at least 1,000 furthest
stepwise addition sequence replicates, holding 10 trees at each step (hold=5 for more
computationally intensive analyses). These starting topologies were permuted via the
tree-bisection-reconnection (TBR) branch-swapping algorithm, employing steepest
descent. All minimal trees were saved (“MulTrees” option) and zero branch lengths were
collapsed.

After each analysis, the set of saved trees was filtered for shortest length. In
addition to tree length, number of MP trees recovered from each search and the number
of islands encountered during the search was also recorded, as an indication of
heterogeneity in data space (Maddison 1991; Page 1993). Existence of multiple islands
of closely related topologies indicates a danger of becoming trapped on a local optimum
when non-exhaustive search algorithms (e.g., heuristic search methods) are used. Small
numbers of encountered islands were taken as a suggestion of uniformity in tree space
pointing to a single globally optimal topology.

To explore the effects of tree space heterogeneity on the ability for heuristic
algorithms to identify globally optimal topologies, four trials of identical heuristic
searches (including the same random number seed) were launched differing only in
number of replicates: 10, 100, 1,000 and 10,000. Results from each trial were filtered for
topologies of shortest length, and the set of recovered trees compared across trials. Trials
completing higher numbers of stepwise addition sequence replicates were expected to

more adequately explore a highly stratified and complex tree space and be more likely to

40



locate globally optimal topologies. For simpler, more homogeneous tree space, trials
completing only 10 or 100 heuristic search replicates were expected to perform equally

well at locating globally optimal topologies.

C. Nonparametric Bootstrap Analysis

Trees recovered from MP heuristic searches depicted taxon relatedness in a series
of nested taxon bipartitions. Branch lengths of individual taxon bipartitions indicated the
number of inferred synapomorphies supporting those relationships, but offered little
information about the robustness of or confidence in the branches. Under the assumption
that an empirical data matrix represents a finite sample from an underlying character
space for the taxa being compared, nonparametric boostrapping is a method developed to
approximate the underlying distribution from which those data arose by random
resampling with replacement from the empirical data (Felsenstein 1985; Harshman 1994;
Sanderson 1989, 1995; Wilkinson 1996). Pseudoreplicate data matrices were constructed
via bootstrap resampling and each was subjected to the same MP heuristic analysis
(except only 10 or 100 random addition sequence replicates were conducted per bootstrap
pseudoreplicate). Optimal trees derived from heuristic searches on each bootstrap
pseudoreplicate were compared across pseudoreplicates and each taxon bipartition was
assigned a percentage indicating the proportion of instances it was recovered. The
resulting percentages do not represent strict confidence statements about the accuracy of
the taxon bipartition, but indicate the relative degree of internal consistency in the data

suggesting that bipartition.
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At least 1,000 pseudoreplicates were constructed for each bootstrap analysis in an
effort to increase the precision of the bootstrap proportion, although this had no impact
the accuracy of the taxon bipartition (Felsenstein & Kishino 1993; Hillis & Bull 1993).
Bootstrap values below 50% were interpreted as insufficient evidence for the inference
method to make an assertion about a particular taxon bipartition given the data at hand.
The number of internal branches in the topology receiving bootstrap support >50% was
tabulated and compared to the total possible number of internal branches in a fully

dichotomous rooted tree: (T-2), where T is the number of terminal taxa.

D. Incongruence Length Difference (ILD) Test

Phylogenetic inferences were drawn from two separate sources of information
(EF vs. DDC), whose patterns of evolutionary change may or may not be congruent. The
Incongruence Length Difference (ILD; also called the partition homogeneity) test was
implemented in PAUP* in an attempt to explore interactions between phylogenetic
information in these data (Darlu & Lecointre 2002; Dowton & Austin 2002; Mason-
Gamer & Kellogg 1996; Swofford 2003). The null hypothesis for the ILD test ignored
the functional distinction between EF and DDC as separate genes, and assumed that both
independent data partitions were derived from the same underlying pool of homogeneous
characters. Assuming that EF and DDC data represent effectively random subpartitions of
a single underlying distribution lead to the expectation that information regarding taxon
relationships contained in both partitions would be fundamentally the same.

Assuming perfect agreement between partitions, the MP score of a tree derived

from a combination of both genes into a single data set (Lgr+ppc) should be
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approximately equal to the sum of lengths of the two trees derived from each partition
separately (Lgr + Lppc). In contrast, the MP score of a tree derived from a combination
of two perfectly disagreeing genes should result in a tree much longer than the sum of
their individual trees, since conflicting (homoplasious) signal will interact negatively to
inflate overall length.

The original EF and DDC components of the combined EF &DDC data matrix
were randomly repartitioned by scrambling characters between genes to produce two
pseudoreplicate data matrices of the same size as the originals. The MP tree of each
pseudoreplicate was determined heuristically and the tree length scores were added
together (L; + L,). If this sum was no greater than the sum of MP trees derived from EF
and DDC individually (Lgr + Lppc), then characters within each original partition were
interpreted as not providing significantly conflicting signal. The proportion of
pseudoreplicates for which random repartitions resulted in MP trees with a better sum of
scores than the original was reported as the test’s P value. Large P values suggest the
ILD test failed to reject the null of partition homogeneity, suggesting the data partitions
contain compatible phylogenetic signal. Small P values refute the null hypothesis,
suggesting the two partitions are in significant conflict. Outcomes of the ILD test have
been used as evidence to argue both for and against combining data into a single analysis
(Bull et al. 1993; Chippindale & Wiens 1994; DeQueiroz ef al. 1995; Huelsenbeck et al.
1996a; Mitchell et al. 2000; Olmstead & Sweere 1994; Weller et al. 1994; Wiens 1998).

ILD tests were conducted with at least 1,000 pseudoreplicates, each of which was
subjected to 10 random stepwise addition replicates, holding 5 trees at each step and TBR

branch swapping. The number of steps difference between the original (Lgr + Lppc) and
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the best pseudoreplicate (L; + L,) was tabulated; negative values of this difference were
taken as support for the null hypothesis of data homogeneity (i.e., some random
repartitions generated better sums of MP tree scores), although the P value may not

reflect this.

Evaluating Alternative Parsimony Topologies

In addition to generating a strongly supported phylogenetic hypothesis of
relationships within the Sphingidae ingroup, the preliminary parsimony analyses
described above were also intended to pare down the broad range of potential outgroup
taxa from the candidate lepidopteran sequences obtained from GenBank. Once a pair of
appropriate outgroup sequences had been selected by the MP criterion, topologies
consisting of the Sphingidae ingroup and 2 outgroups were then used to establish initial
conditions for iterative parameter and topology estimation in Maximum Likelihood (ML)
analyses. Employing a ML model-based approach to phylogenetic analysis was expected
to more accurately reflect the underlying processes of nucleotide substitution producing
the empirical patterns observed in the data matrices (Felsenstein 1973, 1981a; Fukami &
Tateno 1989; Gaut & Lewis 1995; Goldman 1990; Huelsenbeck & Crandall 1997;
Kishino & Hasegawa 1989; Rogers 1997; Saitou 1988, 1990). In addition, it has been
demonstrated that ML-based phylogenetic analyses are both more appropriate than MP
under a wide range of conditions and are also more robust than MP with respect to minor
violations in their underlying models of sequence evolution (Felsenstein 1978, 1981b;
Felsenstein & Sober 1986; Huelsenbeck 1995; Sober 1984; Tateno et al. 1993; Yang

1994, 1996).
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MP analyses on each data matrix generated a set of equally optimal topologies, so
selection of a single tree from among these alternatives was imperative to reduce the
potential number of starting points from which computationally intensive ML searches
would be launched. Each topology was assessed for congruence across data partitions
according to the criterion of maximum parsimony, and the most universally compatible
trees were selected as input starting topologies for maximum likelihood analyses. Using
MP trees as input strongly biased the initial conditions of ML searches in the direction of
MP tree space, but significantly reduced the range of taxon bipartition parameter space
required for evaluation relative to ML searches starting from completely random
topologies.

Character state changes inferred from MP for each partition were mapped onto all
candidate topologies from each data set, and a set of parsimony metrics was calculated to
describe the performance of that topology as an explanation of the character state
distributions for that partition. Raw tree length provided a relative measure of the penalty
imposed by forcing character state distributions from one data set onto another partition’s
MP tree. This penalty was also expressed as a percentage increase in tree length (%diff)
relative to the shortest length score obtained for that partition across all candidate MP
trees; thus, the topology yielding the lowest %diff averaged across all partitions was
selected as the best MP tree for that data set. Similarly, consistency (ci) and retention (ri)
indices (Farris 1989a,b; Kluge & Farris 1969) were calculated for each instance of
character state mapping and the topology with highest mean ci and ri values across all

partitions was selected as the best MP tree for that data set.
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Those MP trees with lowest tree length & %diff, and high ci & ri averaged across
all data partitions were selected as MP-optimal topologies upon which subsequent ML
parameter estimation was conducted. Thus, three “best-guess” topologies were selected
from results of MP analyses on EF, DDC and combined EF&DDC data for a 66-taxon set
(iv) consisting of all 64 sphingid taxa shared between these genes as well as two selected

bombycoid outgroup taxa.

Selection of a Model of Nucleotide Substitution

The key “disadvantage” of conducting phylogenetic analyses under the optimality
criterion of maximum likelihood is decreased feasibility in computing tree scores when
using parameter rich models of nucleotide substitution. At the expense of evaluating a
broad range of more simplistic ML models which may have yielded equally viable
topologies, the present study employed the most generalized and parameter rich model of
nucleotide substitution for ML analysis of these data.

The general time reversible (GTR) model is founded upon a separate
instantaneous relative rate parameter (expressed as number of substitutions per site per
unit branch length) for each of the twelve possible transformations among the four
character states (A,C,G,T) in these nuclear protein coding genes (Lanave et al. 1984;
Rodriguez et al. 1990; Swofford et al. 1996). This model is time-reversible, however, so
forward and backward transformations are assumed to occur at equal rates, reducing the
total number of relative rate parameters to six. In addition, the GTR model assumes that
the four nucleotide bases occur in the data matrix at separate equilibrium frequencies

(i.e., ma # mc# TG # 1), and these frequencies remain unchanged over time. Probability of
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change from nucleotide i to j is assumed to be a Markov process independent of 1, and
proportional to the equilibrium frequency of j.

This nucleotide substitution model makes no allowance for differences in patterns
of character state change between independent sites along the molecule. For example,
different portions of a gene may be subject to variable functional constraints, effectively
altering the degree to which nucleotides in those positions are likely to change. An
extreme example of such among-site rate heterogeneity is the special case where some
sites are constrained to never vary. Ignoring the phenomenon that some sites may never
change while others do effectively biases inference of character state change to
underestimate branch lengths (Churchill ef al. 1992; Hasegawa et al. 1985; Reeves 1992;
Sidow et al. 1992). Therefore, a parameter was included in the GTR model to account
for these invariant sites (I) by assigning a probability that any particular character is free
to vary. Furthermore, characters which are assumed to vary may do so at different rates,
and a parameter can be added to the model to account for these differences in the rates of
character change. A discrete approximation to the gamma distribution provides a range
of potential nucleotide change probabilities, conveniently defined by a single shape
parameter (G). Addition of single shape parameter to the GTR model explicitly
accounted for differences in the propensity for nucleotide change between presumably
independent nucleotide positions along the molecule (Buckley et al. 2001; Felsenstein
1981a; Gaut & Lewis 1995; Gu et al. 1995; Hasegawa ef al. 1991; Sorhannus & van Bell
1999; Steel 1993; Sullivan et al. 1999; Sullivan & Swofford 1997; Yang 1993, 1994).

Character states which are identical between taxa at a given site may have never

changed in the time since those taxa diverged, or they may have changed repeatedly and
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randomly converged on the same state. Incorporation of I and G parameters was
intended to explicitly account for both scenarios generating observed nucleotide
distributions. This highlighted a key distinction between MP and ML analyses, because
likelihood-based inference engines were permitted to make use of all characters, even
those which parsimony deems uninformative (i.e., constant and autapomorphic

characters).

Likelihood-Based Analyses

MP topologies selected from analyses of each data partition were used as
independent starting hypotheses for estimation of GTR+I+G nucleotide substitution
model parameters. The likelihood score for a fixed starting topology was calculated after
parameters for a GTR model (5 relative rate parameters of a 6-class substitution matrix
and 3 of the 4 equilibrium nucleotide frequencies), with assumed proportion of invariable
sites (I) and among-site rate heterogeneity (G; i.e., the alpha shape parameter in a discrete
approximation with 8 categories to the gamma distribution), were all estimated from the
data. Initial branch lengths on the starting topology were estimated via the Rogers-
Swofford approximation method suite of default options in PAUP*. These initial ML
parameter estimates were then fixed in the GTR+I+G model to permit calculation of
likelihood scores during a heuristic search (‘MulPars’ option in effect, steepest descent
off, collapsing branches with length less than or equal to 10™®) employing TBR branch
swapping based on the starting MP topology. This heuristic search resulted in a first-pass
ML topology, the taxon bipartitions of which were then fixed in order to re-estimate

model parameters. Re-estimated parameters were again fixed in a revised GTR+I+G
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model used to calculate likelihood scores on trees generated during 10 random stepwise
addition heuristic searches with SPR branch-swapping, holding 1 tree per step, with all
other settings as above. The topology from these heuristic searches with highest
likelihood (i.e., the second-pass ML topology) was then fixed for parameter re-
estimation. This iterative parameter estimation / ML search cycle was continued through
four passes, and GTR+I+G model parameter values were checked for convergence after
each pass.

The ML search scheme detailed above was conducted nine times: for each of the
three data sets (i.e., EF, DDC, combined EF&DDC) based on each of the three
independently derived MP starting trees. Parameter values and ML topologies for a
given data set derived after four iterations on each of the starting trees were then
compared across starting trees to check for global convergence. The set of all unique ML
topology/parameter values from a given data set was selected as the optimal ML estimate
of relationships within Sphingidae.

Finally, in an attempt to select a single globally optimal topology of relatedness
among sphingid genera, ML scores for every candidate MP and ML topology were
calculated for each data set after convergent GTR+I+G model parameters particular to
those data had been fixed. These likelihood score calculations were performed as above,
except that the discrete approximation to the gamma distribution consisted of 16

categories.
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RESULTS

Taxon Sampling

As of fall 2003, the UMD Lepidoptera Collections Database (FileMaker Pro,
version 6.0) contained 3,608 records containing collections information for more than
5,600 specimens with known determination data across 34 superfamilies, 89 families, 945
genera and 1,477 species of Lepidoptera. A total of 350 specimens across all three
subfamilies of Sphingidae was collected expressly for this research and accessioned into
the UMD Lepidoptera Collections (Table 10). Of these freshly obtained specimens, 55
were processed for genomic nucleic acid extraction, RT-PCR amplification of EF and
DDC fragments and sequencing (Table 8). One specimen [UMD accession number [JK-
02-0107: Compsulyx cochereaui (Smerinthinae: Ambulycini)] failed to produce any
viable RT-PCR products after multiple attempts at extraction from freshly dissected
tissue. Failure to obtain amplification products from this specimen collected in New
Caledonia in April 2001 was attributed to poor preservation conditions, as the detailed
history for this specimen could not verified. One other specimen [accession number
WIK-03-1949: Neococytius cluentius (Sphinginae: Sphingini)] yielded exceptionally
strong RT-PCR products for both EF and DDC, but failed to produce clean sequence for
any EF fragment despite multiple rounds of gel purification; DDC sequence for this
specimen was excellent.

In addition to the 54 ingroup Sphingidae sequenced de novo in this study, EF
sequence for another 14 species and DDC sequence for another 11 species was obtained
from the NCBI GenBank nucleotides database. Almost all of these (13 species for EF, 10

species for DDC) were obtained from the Regier 2001 pilot study. The Manduca sexta
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(Sphinginae: Sphingini) DDC sequence from Regier 2001 was replaced by GenBank
accession number U03909 (Hiruma et al. 1995) and used as the reference sequence
against which all others were aligned. Sequences for the remaining three species in
Regier 2001 [Hyles lineata (Macroglossinae: Macroglossini: Choerocampina), Paonias
myops (Smerinthinae: Ambulycini), Lapara coniferarum (Sphinginae: Sphingini)] were
generated de novo in this work because original specimens from which the sequences had
been derived could not be verified. Finally, EF sequence for Proserpinus clarkiae
(Macroglossinae: Macroglossini: Macroglossina) was obtained from Caterino ef al.
(2001), but comparable DDC sequence from the same species could not be obtained.
Sphingid genera sampled in this study are marked in Table 2, distributed across
the complete genus-level classification scheme provided by Kitching & Cadiou (2000).
Forty-eight (24%) of the 201 recognized genera in Sphingidae were sampled, distributed
heterogeneously across the family. In Smerinthinae 11 (14%) of 78 genera were sampled
overall: 8 genera (14%) inside the Smerinthini, 2 genera (20%) from Ambulycini and a
single genus (Hopliocnema) from Sphingulini. Sampling was much more dense inside
Sphinginae, where 13 (34%) of 38 genera were sampled overall: 10 genera (30%) inside
the Sphingini and 3 genera (60%) from Acherontiini. For the most diverse subfamily,
Macroglossinae, 24 (28%) of 85 genera were sampled overall: 12 genera (46%) from
Dilophonotini, 5 genera (12%) from Macroglossina (Macroglossini), 6 genera (40%)
from Choerocampina (Macroglossini) and a single genus (Eumorpha) from Philampelini.
Homologous sequences from outgroup taxa were obtained by mining the NCBI
GenBank Nucleotides Database under the search parameters and selection criteria

described above. Table 7 presents the number of hits and their distribution across
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taxonomic levels within Lepidoptera for several similar search strings targeting both EF
and DDC sequence. For EF, a single search string (“elongat®* AND
lepidopt*[organism]”) yielded the most inclusive set of 419 hits distributed across only 9
(20%) of the 46 lepidopteran superfamilies. Many other permutations of “<gene> AND
<taxon>" search strings were attempted, but none retrieved any hits not already captured
by this top query (data not shown). Two examples are given to demonstrate that subtle
changes in text strings submitted to the Entrez Browser can have substantial impacts on
the extent of database space explored by the search engine. For example, the slightly
more specific query “elong* fact* AND lepidopt*[organism]” returned all but two hits
from the original 419. In contrast, a relatively simple search string “EF AND
lepidopt*[organism]” returned only 259 (62%) of the hits from the original 419. Similar
results were observed for DDC, for which a single search string (“dopa AND
lepidopt*[organism]”) returned the most inclusive set of 238 hits distributed across 13
(28%)of the 46 lepidopteran superfamilies. No other DDC search strings were found to
return hits not already subsumed by this original query.

Accessions in GenBank for EF and DDC in Lepidoptera were extremely sparsely
distributed across the 46 superfamilies. Table 11 illustrates this distribution by assigning
the number of hits for EF and DDC to each family within a classification of Lepidoptera
compiled from multiple sources (Arnett 2000; Borror 1989; Kristensen 1999; Scoble
1992; Wagner 2001). While there were 76% more accessions for EF than DDC (419 vs.
238), those hits were concentrated in 4 fewer superfamilies. In fact, 89% of all EF
lepidopteran accessions were concentrated in only three superfamilies: 165 (39%) of the

419 hits inside the Papilionoidea (106 in the Nymphalidae alone), 113 (27%) in the
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Bombycoidea, and 94 (22%) in the Noctuoidea. DDC accessions were distributed across
a wider range of superfamilies, especially the ancestral lineages (see top of Table 11), but
75% of all DDC lepidopteran accessions were concentrated in only two superfamilies:
103 (43%) of the 238 hits inside the Noctuoidea (91 in the Noctuidae alone), and 76
(32%) in the Bombycoidea.

Obtaining a broad cross-section of Lepidoptera for which EF and DDC sequences
had both been sampled was challenging, a consequence of the patchy distribution of
GenBank accessions for these markers across superfamilies. This finding was especially
important for outgroup analyses in this study, and was illustrated by the paucity of
superfamilies (5 of 46) and families (12 of 125) for which hits were registered in both EF
and DDC columns in Table 11. Thus, while EF and DDC sequences could be obtained
for 20% and 28% of superfamilies and 16% and 21% of families, respectively, the
intersection of taxa for which both genes were available was only 11% of superfamilies
and 10% of families. This resulted in a significant decrease in taxonomic diversity
available for the combined EF&DDC data set (see below), but was not unexpected given
the wide sampling variance in nucleotide databases such as GenBank.

Working from the master lists used to compile Tables 7 and 11, selection criteria
were applied as described above and resulted in collection of 51 potential outgroups for
EF and 40 potential outgroups for DDC (Table 9). Not surprisingly, 31% (16) of EF
outgroups came from the Noctuoidea, 24% (12) from the Papilionoidea and 22% (11)
from the Bombycoidea. Similarly, 40% (16) of DDC outgroups came from the
Noctuoidea and 20% (8) from the Bombycoidea. Also as expected, DDC outgroups

covered a wider range superfamilies (11) than EF (9), but both sequences could be
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compiled for members of only 5 superfamilies. Also of interest was that 40 (57%) of the
70 taxa for which at least one sequence was collected had been submitted to GenBank by
the Regier Lab (see all taxa for which specimen collection information was available in

Table 9).

Data Matrix Construction

GenBank accession numbers for all publicly available EF and DDC sequences
used in this study are presented in Tables 8 and 9. Alignment of both nuclear protein
coding genes against the reference sequences and against all other taxa was
unambiguous: no insertions, deletions or hypervariable regions were detected in either
gene. Introns were neither detected nor expected, as all of the novel sequences and many
of the publicly available sequences were synthesized via reverse-transcription from native
mRNA. Variation in sequence length for GenBank accessions necessitated filling the
ends of almost every GenBank sequence with missing data characters (‘N’) to standardize
length across the matrix. For EF, all 14 ingroup and 50 of 51 outgroup sequences
collected from GenBank were shorter than the novel sequences generated in this study
(1,223bp and 1,136bp average lengths were 4% and 11% shorter for ingroups and
outgroups, respectively). For DDC, 10 of 11 ingroup and 39 of 40 outgroup GenBank
sequences were shorter than the final matrix length (805bp and 697bp average lengths
were 41% and 49% shorter for ingroups and outgroups, respectively).

Final assembly resulted in three nucleotide data matrices for phylogenetic
analyses with the following dimensions in [number of nucleotides] x [number of taxa]:

(a) EF: [1,274nt] x [118 taxa]; (b) DDC: [1,373nt] x [105 taxa]; and (c¢) combined
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EF&DDC: [2,647nt] x [91 taxa]. The combined nucleotide matrix represented the strict
intersection of taxa for which both EF and DDC sequences had been gathered, and was
obtained by deleting 27 and 14 taxa from the EF and DDC data matrices, respectively.
This represented a significant loss in taxon density (23% reduction for EF; 13% reduction
for DDC), but provided the largest taxon set for which both markers could be
concatenated into a single analysis.

Prior to amino acid translation and all nucleotide-based phylogenetic analyses,
terminal primer sequences were stricken from the matrices (for EF, see Table 3 & Figure
4; for DDC, see Table 4 & Figure 5). This reduced the total number of nucleotides to
1,228 for EF, 1,329 for DDC and 2,557 for the combined data set. Conceptual translation
to amino acids produced three protein data matrices: (a) EF: [409aa] x [118 taxa]; (b)

DDC: [443aa] x [105 taxa]; and (c) combined EF&DDC: [852aa] x [91 taxa].

Information Content

Table 12 itemizes the number (and percentage) of nucleotide positions at which
character states were constant, autapomorphic or parsimony informative, as well as the
mean nucleotide base frequencies for all three matrices: (a) EF; (b) DDC; and (¢)
combined EF&DDC. These calculations were repeated for four taxon sets within each
matrix: (i) all Lepidoptera; (ii) all Bombycoidea (i.e., entire Sphingidae ingroup with all
bombycoid outgroups); (iii) all Sphingidae (i.e., ingroup only); and (iv)
Sphingidae&20G (i.e., 66-taxon final set). This last taxon set included all 64 Sphingidae
ingroup taxa for which EF and DDC sequence had both been collected, plus two

bombycoid outgroups: “Bombycidae” (Bombyx mori) and “Saturniini” (Saturnia
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albofasciata for EF and S. naessigi for DDC). Values in Table 12 are raw uncorrected
measures of variation, which ignore the possibility that multiple substitutions may have
occurred at a given site. Thus, these values underestimate actual amount of evolutionary
change which may have occurred in these markers across the taxa sampled.

Echoing the findings of Regier 2001, the vast majority of nucleotide variability
(autapomorphic and parsimony informative changes) in both genes was harbored in the
third codon position. In the EF matrix, 85.9%, 78.0%, 60.2% and 64.6% of nt3 were
parsimony informative in taxon sets (i), (i), (iii) and (iv), respectively. This accounted
for 90% (352nt3/393allnt), 92% (320nt3/349allnt), 92% (247nt3/269allnt) and 92%
(265nt3/287allnt) of all parsimony informative character state change in these taxon sets
for EF. This trend in high indices of nt3 change was robust across taxon sets, lending
support to Regier et al.’s (2001) assertion that nt3 in these data were saturated and might
be productively ignored for the purposes of phylogenetic analysis. Also echoing a pattern
uncovered in the Regier 2001 pilot data, nt]l were approximately three times as
parsimony informative as nt2 for EF. Looking across taxon sets within EF, the
percentage of parsimony informative character state changes increased and the
percentage of invariant character states decreased with increasing taxonomic depth, as
more ancestral Lepidoptera were added. Autapomorphic character state change was
consistently approximately 5% across taxon sets, although nt3 autapomorphies increased
from 5.4% to 15.1% from sets (i) to (iii).

The proportion of parsimony informative characters in DDC was approximately
50% greater than within EF, but a similar trend in excessive nt3 variation was observed.

For example, 95.5%, 95.3%, 94.4% and 95.0% of nt3 were parsimony informative in
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taxon sets (1), (i), (iii) and (iv), respectively. This accounted for 67% (423nt3/649allnt),
73% (422nt3/576allnt), 77% (418nt3/544allnt) and 76% (421nt3/557allnt) of all
parsimony informative character state change in these taxon sets for DDC. Similarly,
there were approximately twice as many parsimony informative ntl characters as there
were for nt2 in DDC. As with EF, the percentage of parsimony informative character
state changes in DDC increased and the percentage of invariant character states decreased
with increasing taxonomic depth. Autapomorphic character state change in DDC was
consistently approximately 5% across taxon sets, similar to EF, however nt3
autapomorphies were more consistent (~1%).

Similar trends were observed in the combined data set constructed by
concatenating EF and DDC sequences for the set of taxa possessing both sequences. One
difference between this study and the pilot work of Regier 2001 was that the novel DDC
fragment (1,329bp) sequenced across Sphingidae in this study was 620bp longer than the
fragment in Regier 2001 and 101bp longer than the EF fragment. Thus, while the
contribution of characters from each gene to the combined matrix was balanced (48% EF
vs. 52% DDC), the systemic increased nucleotide variation in DDC relative to EF may
have shifted the relative contribution of information from each gene in this study from
that in Regier 2001.

Relative nucleotide variability between the genes was also reflected in proportions
of variable amino acids observed after conceptual translation. For EF, 12.2%, 6.1%,
3.9% and 4.4% of amino acids were variable (parsimony informative or autapomorphic)
in taxon sets (1), (ii), (iii) and (iv), respectively. These values were much higher for

DDC: 42.2%, 31.1%, 25.7% and 28.9% variable amino acids in taxon sets (1), (i1), (iii)
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and (iv), respectively. Alignment of all variable amino acid characters for EF are
presented in Table 13 and for DDC in Table 14. Contrasting patterns of variation
between EF and DDC could be observed by searching for common “amino acid
haplotypes” in the alignments in Tables 13 and 14. Across all 105 taxa in DDC matrix
(1), 104 amino acid sequences were unique, and 64 of 65 Sphingidae sequences were
unique (both Cautethia sequences were identical). In contrast, only 81 of 118 EF amino
acid sequences were unique across all Lepidoptera, and 34 of 67 EF amino acid
sequences were unique across Sphingidae. Even after reducing matrix sizes by culling
duplicate EF haplotypes, MP phylogenetic analyses via random addition heuristic
searches on amino acid data across these taxa proved too computationally intensive and
could not be completed.

Mean empirical base frequencies averaged across all codon positions and adjusted
for missing data hovered between 20-30% for each nucleotide across genes and taxon
sets (Table 12). For EF ntall, frequencies ranged from: A(.2478-.2526), C(.2852-.2935),
G(.2510-.2548), T(.2039-.2112) across taxon sets. For DDC ntall, frequencies ranged
from: A(.2499-.2555), C(.2245-.2309), G(.2521-.2579), T(.2613-.2681) across taxon sets.
This apparent base composition homogeneity was deconstructed by inspecting EF and
DDC codon positions individually. For example, taxon set Sphingidae (iii) within the EF
matrix harbored extreme fluctuations in base composition: ntl ranged from 14.94% for T
vs. 37.61% for G; nt2 ranged from 15.84% for G vs. 32.52% for A; nt3 ranged from
12.79% for A vs. 44.61% for C. Such base composition heterogeneity was less

pronounced in every nucleotide position for the Sphingidae taxon set (ii1) in DDC: ntl
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ranged from 20.58% for T vs. 34.56% for G; nt2 ranged from 19.73% for G vs. 29.66%
for T; nt3 ranged from 21.34% for G vs. 30.18% for T.

Tables 15 (Ingroup) and 16 (Outgroups) present raw empirical base frequencies
calculated for all codon positions across every sequence collected in this study, including
percentage of missing or ambiguous character states. As expected from above, because
these values combined data from codon positions, base composition homogeneity
appeared to hold as a working assumption within these genes. For example, base
composition across all ingroup taxa for EF ranged from: A(.1971-.2598), C(.2288-.3143),
G(.2174-.2622), T(.1669-.2182), with standard deviations of .0078(A), .0125(C),
.0054(G), .0090(T) [see Table 15]. For DDC, comparable values ranged from: A(.1272-
.2694), C(.1106-.2476), G(.1362-.2603), T(.1362-.2852), with standard deviations of
.0418(A), .0342(C), .0362(G), .0427(T) [see Table 15]. In contrast, base composition
across all outgroup taxa for EF extended over much broader ranges: A(.0969-.2826),
C(.1189-.3021), G(.0993-.2630), T(.0717-.2492), with standard deviations of .0334(A),
.0364(C), .0277(G), .0321(T) [see Table 16]. For DDC, comparable values ranged from:
A(.0429-.2536), C(.0504-.2340), G(.0451-.2521), T(.0459-.2724), with standard
deviations of .0403(A), .0336(C), .0374(G), .0438(T) [see Table 16]. While these
contrasts in minimum and maximum mean base frequencies revealed no systematic trend
toward base composition bias in these genes, frequencies in Tables 12, 15 & 16
highlighted two phenomena evident in these data: (a) inspection of all codon positions as
a single data set suggested only minor fluctuations around base composition
homogeneity; (b) inspection of individual codon positions revealed more extreme base

composition heterogeneity; and (c) quantitative differences in patterns of base
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composition between EF and DDC across all taxon sets may be expected to affect
patterns of observed nucleotide change in these genes.

Pairwise distance matrices calculated in PAUP* based on raw uncorrected
pairwise divergence estimates from amino acids and separately for the three nucleotide

codon positions across EF and DDC are presented in Tables 17 and 18, respectively.

Parsimony-Based Preliminary Analyses

Results of preliminary parsimony analyses contributing to conclusions below are
compiled in Table 19. Results from only a single series of analyses from each matrix are

presented in Figures 6, 7 & 8.

A. Testing for Information Content

All four PTP tests conducted separately on EF and DDC returned extremely low P
values, implying significant rejection of the null hypothesis that observed character state
distributions in taxon sets of both matrices were the result of purely stochastic processes.
For the EF matrix, 1,125 PTP replicates were completed on the ingroup Sphingidae taxon
set (ii1), returning a P value of 0.000889 and the next most parsimonious tree 871 steps
longer than the MP tree (length=1,525 steps). In addition, 1,316 PTP replicates were
completed on the Sphingidae&20G taxon set (iv), returning a P value of 0.00076 and the
next MP tree 898 steps longer than the MP tree (length=1,736 steps). For the DDC
matrix, 3,821 PTP replicates were completed on the Sphingidae taxon set (iii), returning a

P value 0of 0.000262 and the next MP tree 3,305 steps longer than the MP tree
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(length=4,117 steps). In addition, 3,984 PTP replicates were completed on the
Sphingidae&20G taxon set (iv), returning a P value of 0.000251 and the next MP tree
3,336 steps longer than the MP tree (length=4,566 steps). These results were taken as
evidence of phylogenetic structure within both EF and DDC, as interpreted via the
maximum parsimony criterion. PTP tests were not conducted on the combined EF&DDC

data matrix.

B. Parsimony Searches

The first MP analyses conducted were heuristic searches on the EF, DDC and
combined EF&DDC data matrices for the All Lepidoptera (i) taxon set. These trial
exploratory searches were intended primarily to pare down the list of potential outgroups
in Table 9, not to generate viable hypotheses of relationships among all Lepidoptera.
Two hundred random sequence addition replicates on EF data yielded 680 equally
parsimonious trees confined to a single island, the strict consensus of which displayed
excellent resolution in non-sphingid groups but produced many polytomies in the
Sphingidae. Similarly, one thousand replicates on DDC data yielded 240 equally
parsimonious trees across two islands, the strict consensus of which displayed excellent
resolution throughout both ingroup and outgroups. One thousand replicates on combined
EF&DDC data yielded 2 equally parsimonious trees on a single island, differing only in
the relative placement of subfamilies within Noctuidae. Finally, codon position nt3 was
excluded from matrix EF&DDC and taxa with identical EF amino acid haplotypes were

deleted; 421 replicates on the resulting matrix returned 243 MP trees distributed across
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43 islands, the strict consensus of which suggested an almost completely unresolved but
monophyletic Sphingidae.

Many taxon bipartitions from the initial MP analyses agreed with well-established
morphological taxonomic hypotheses, while others were nonsensical. For example, the
EF MP tree suggested a polyphyletic Bombycoidea, and placed a papilionoid
(Lycaenidae: Polyommatinae) next to the base of the tree with Micropterigoidea. The
DDC MP tree also suggested a polyphyletic Bombycoidea and paired Papilionoidea with
Gracillarioidea. Bootstrap support across all trees was very poor. Importantly, all three
of these searches generated trees containing a monophyletic Sphingidae with modest
bootstrap support, and all analyses suggested at least some combination of
macrolepidopteran taxa as sister lineages to Sphingidae.

In an attempt to reduce heuristic search computation time, all non-bombycoid taxa
were pruned from the three matrices and the above analyses repeated. All analyses again
yielded trees with a monophyletic Sphingidae supported by moderate bootstrap values,
but they differed in their suggestion of the most basal sphingid lineages, those most
closely recently derived from the bombycoid outgroups. As with the Lepidoptera taxon
set, EF data across All Bombycoidea (i) yielded the largest set of equally parsimonious
trees (n=280) and the least resolution in strict consensus. In contrast, DDC returned a
manageable number of MP trees (n=20) and the combined EF&DDC matrix returned a
single optimal topology.

These preliminary analyses confirmed that the sphingid taxa sampled in this study
probably comprised a monophyletic group and that some members of Macrolepidoptera,

usually Bombycoidea, were the most closely related outgroup(s). For this reason, an
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effort was made to further decrease computation time by minimizing the number of taxa
required to be informative about sphingid ingroup. The list of potential outgroups was
pruned down to two (‘Bombycidae’ and ‘Saturniini’ in Table 9) to provide a means of
rooting a tree of the 64 Sphingidae for which DDC and EF sequences had both been
obtained. This resulted in the 66-taxon set Sphingidae&20G (iv), on which further MP
analyses for the EF, DDC and EF&DDC matrices was based. These outgroups were
selected because they had demonstrated a “near-sister” relationship with the sphingid
ingroup in all analyses based on the Lepidoptera (i) and Bombycoidea (ii) taxon sets, and
because these two sequences collected in silico had the least number of missing
characters relative to the 1,228bp of EF and 1,329bp of DDC sequences collected de
novo. The EF sequence for ‘Bombycidae’ was in fact complete and had served as the
reference sequence during all EF alignments.

Parallel MP analyses of the original nonoverlapping EF and DDC matrices tested
the effects of adding three (ProserpinusGB, PachysphinxGB, PaoniasGB) and one
(Neococytius1949) ingroup taxa to the Sphingidae&2OG (iv) analyses, respectively (see
Table 8). Results of these analyses were unremarkable in the sense that inclusion of a
few additional taxa had very little impact on global topological arrangements (data not
shown). Supplementary EF sequences in the Regier 2001 pilot study from the
smerinthine genera Pachysphinx and Paonias paired with their newly sequenced
congeners (Pachysphinx1528 and Paonias1540, respectively) with extremely strong
bootstrap support in all EF trees. While genus monophyly was preserved, however,
inclusion of these taxa did impact the basal intergenus relationships in a clade consisting

of Smerinthus, Paonias and Pachysphinx. The EF sequence for the macroglossine genus
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Proserpinus (Caterino et al. 2001) consistently formed a clade with Sphecodina in
analyses of the EF matrix, confirming their close orientation in Kitching & Cadiou’s
(2000) classification (see Table 2). Similarly, the novel DDC sequence obtained for
Neococytius consistently proved most closely related to Cocytius, confirming a grouping
explicitly predicted by Kitching & Cadiou (see vertical bar joining these taxa in Table 2).
The occasionally large number of equally parsimonious trees distributed across
many islands encountered by the trial heuristic searches suggested the possibility of
significant heterogeneity in the data space for the Bombycoidea taxon set (iii). Under
these conditions, the heuristic search strategy (even with many random addition sequence
replicates followed by TBR) may have had difficulty locating globally optimal
topologies. To explore this phenomenon, a series of four heuristic searches with identical
starting conditions (including random seed) but differing in number of replicates was
performed for each of the three matrices (Table 19). As the number of random addition
sequence replicates was increased, the heuristic search algorithms investigated more
rearrangements and continued to find more equally MP trees distributed across more and
more islands. However, when a filter was applied to retain only those topologies with
optimal score, the same set of MP trees across the same few islands was retained
regardless of the number of replicates. This suggested that the heuristic search settings
(starting from a random addition sequence, employing TBR, with MulPars active,
holding 10 trees at each step and steepest descent on) in this study generated a high-
performance algorithm capable of identifying optimal solutions, in many cases even with

just 10 replicates.
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C. Nonparametric Bootstrap Analysis

Maximum parsimony nonparametric bootstrap analyses across all taxon sets and
data matrices revealed significant variation in internal consistency for these data.
Majority rule bootstrap consensus topologies consistently included moderate bootstrap
proportions (i.e., greater than or equal to 50%) for a small percentage of internal
discussed below. EF&DDC analyzed without nt3 consistently resulted in the weakest
bootstrap support measures, probably a result of the relatively low number of parsimony

informative characters in this partition.

D. ILD Test

A single test was performed to evaluate homogeneity of phylogenetic signals
from EF vs. DDC across all nucleotides for just the ingroup Sphingidae taxon set (iii).
The ILD test implemented in PAUP* (1,164 replicates) revealed statistically significant
heterogeneity in signal between these genes within Sphingidae (P=0.000859), suggesting
that the two genes were contributing conflicting phylogenetic signal. To test whether
intergene conflict was a consequence of the extremely high variability and possible
saturation in nt3, an attempt was made to repeat this test with only nt1&2. However, the
progress of computations prevented accumulation of enough replicates to make a robust
inference about statistically significant heterogeneity between the genes when nt3 was

eliminated from the analysis.
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Evaluating Alternative Parsimony Topologies

Having settled on a standard taxon set (Sphingidae&20G, ntax=66), all three
matrices were analyzed according to the criterion of maximum parsimony with the aim of
selecting a single optimal MP topology from each for use in seeding iterative model
parameter estimation / heuristic searches under the criterion of maximum likelihood.

For the Sphingidae&20G taxon set (iv), MP analyses on the EF matrix resulted in
161 equally parsimonious trees distributed across three islands. The strict consensus of
these equally viable trees was a poorly resolved topology retaining just 43 (67%) of a
possible 64 nodes in a rooted, fully bifurcating tree with 66 taxa. Because the iterative
ML parameter estimation / heuristic search strategy required as input a fully resolved
(bifurcating) starting topology, it was important to determine a way to select a single tree
from among the 161 MP alternatives. A much less stringent consensus tree building
algorithm, the 50% majority rule, was employed to generate a more well-resolved
topology consisting of 61 (95%) nodes. This topology was imported as a constraint tree,
and filtering the original set of 161 MP trees for compatibility with it resulted in retention
of only 2 MP trees. The strict consensus of these two trees was selected for input into
ML analyses, with the understanding that starting tree algorithms in PAUP* would
randomly resolves polytomies to produce a fully bifurcating topology. Both trees were
also evaluated more rigorously according to the parsimony-based selection criteria
described below.

MP analyses on the DDC matrix were much less difficult to interpret and resulted
in only 10 equally parsimonious trees confined to a single island. The strict consensus of

these equally viable trees was well-resolved, retaining 61 (95%) of a possible 64 nodes.
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Polytomies were confined to two terminal groups: [Ceratomial870, CeratomiaGB,
Paratreal939] and [Laparal 670, Sphinx1532, SphinxGB, Sphinx1938]. MP analyses on
the combined EF&DDC matrix yielded only 3 equally parsimonious trees confined to a
single island. The strict consensus of these trees was also well-resolved, retaining 62
(97%) of a possible 64 nodes, with all polytomies confined to a single clade,
Dilophonotina: [Aellopos2399, AelloposGB, Nyceryx2378, Perigonia2191,
Callionima0966, Erinnyis1542, Isognathus1646, Pachylial 644].

Table 20 itemizes the parsimony scores obtained by mapping each data matrix’s
character state distribution onto every candidate MP topology recovered by independent
heuristic searches across the separate matrices. Parsimony penalty incurred by
constraining one data set onto a suboptimal topology was assessed by increase in length
(expressed as % of the original), CI and RI, and mean values of each measure averaged
across all data matrices for a given topology were used to select the optimal candidate
MP tree for each data matrix. For example, of the 161MP trees generated from analyses
of the EF matrix for the Sphingidae&2OG taxon set, 2 MP trees (i, ii; length=1705,
CI=0.300, RI=0.549) were retained after filtering for compatibility with the 50% majority
rule consensus topology. When DDC data and combined EF&DDC data were mapped
onto each of these topologies, topology (ii) had a lower mean % increase in parsimony
score (%diff=3.31), while both topologies had identical mean CI (0.261) and mean RI
(0.565) when averaged across all three data matrices. On this basis, tree (i1) was chosen
as the optimal topology generated from the EF data (marked with a * in Table 20 and
shown in Figure 6). Neither topology could be distinguished on the basis of these criteria

when the same cross-mapping exercise was performed after excluding nt3.
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In similar fashion, topology (v) was chosen as the optimal candidate from among
the 10 MP trees (i-x; length=4484, C1=0.249, R1=0.611) produced by the MP analyses of
DDC data matrix (see * in Table 20 and Figure 7). When EF data and combined
EF&DDC data were mapped onto each of these topologies, topology (v) had the lowest
mean % increase in parsimony score (%diff=1.83) and one of the four highest RI (0.571),
while all ten topologies had identical mean CI (0.264) when averaged across all three
data matrices. In addition to tree (v), trees (vi) and (ix) emerged as equally optimal
choices when nt3 was excluded from cross-mapping exercises.

Finally, topology (i) was chosen as the optimal candidate from among the 3 MP
trees (i,11,111; length=6280, CI=0.259, RI=0.588) produced by the combined EF&DDC
data matrix (see * in Table 20 and Figure 8). When EF data were mapped onto each of
these topologies, topology (ii) was one step shorter than the original EF tree, while this
same topology was one step longer than the DDC tree when DDC data were mapped. All
three indices (%diff, CI, RI) were similarly unconvincing, so topology (i) was selected
randomly. None of the three topologies could be distinguished by these criteria when nt3

was excluded from the cross-mapping.

Qualification of Parsimony-Based Topologies

The optimal topology selected from MP analyses of EF for the Sphingidae&20G
taxon set is presented in Figure 6. Two subfamilies (Sphinginae and Macroglossinac)
were recovered as monophyletic, though neither had bootstrap support greater than 50%,
nor were they supported by many synapomorphies (4 and 6, respectively). The

phylogram illustrates how widely branch lengths varied both between and within clades,
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raising concern over artifacts stemming from long branch attraction (Felsenstein 1978;
Hendy & Penny 1989). For example, one of the shortest branches in the tree (7
synapomorphies) separated the ingroup from the sister outgroup lineages. Since the most
basal sphingid (Marumba0118) and both bombycoid outgroups have accumulated at least
ten times as many autapomorphies as the branch separating them, the position of
Marumba as the most ancestral sphingid must be interpreted cautiously. In addition, only
32 (50%) of 64 internal nodes had bootstrap support greater than 50%, with 19 of those
nodes consisting of sister terminal lineages. In other words, bootstrap support for internal
nodes was extremely poor and this topology can be considered only suggestive of
relationships among super-generic taxonomic groups within the Sphingidae. Despite this,
EF seemed efficient at placing taxa in proper subfamilial orientation, rendering only
Smerinthinae paraphyletic and inserting monophyletic Ambulycini between Sphinginae
and Macroglossinae.

The optimal topology selected from MP analyses of DDC is presented in Figure 7.
Two subfamilies (Sphinginae and Smerinthinae) were recovered as monophyletic, with
excellent and modest bootstrap support, respectively. Both subfamilies were also
supported by many synapomorphies (57 and 93, respectively), and all of the deep
branches within the family were longer than the more derived lineages. Derived groups
within the Sphinginae and Macroglossinae formed clusters of especially short branches,
highlighting potential hotspots for accelerated evolution among those lineages (e.g.,
Sphinx, Xylophanes). As with EF, branch lengths varied widely across the tree, but
generally became shorter from the root toward the tips. One glaring exception was the

branch separating ingroup from outgroup (13 synapomorphies), again suggesting long
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branch attraction may have resulted in an artifactual placement of the [Hemaris,
Cephonodes] clade as the most basal sphingid lineages. As with EF, the branch leading
to this most basal sphingid clade and both terminal branches of the bombycoid outgroups
had accumulated at least ten times as many autapomorphies as the branch separating
them, suggesting the interpretation of [Hemaris, Cephonodes] as the most ancestral
sphingid may be incorrect. Bootstrap support for the DDC tree was more impressive than
for EF, with 46 (72%) of 64 internal nodes receiving bootstrap support greater than 50%,
and 17 of those nodes uniting sister terminal lineages. In an absolute sense, bootstrap
support was again extremely poor and this topology can be considered only suggestive of
relationships among super-generic taxonomic groups within the Sphingidae. However,
like EF, DDC retained proper expected subfamilial orientations, rendering only
Macroglossinae paraphyletic and inserting Hopliocnema between Sphinginae and other
Smerinthinae.

Not unexpectedly, the optimal topology selected from MP analyses of the
combined EF&DDC data set contained elements found in both the EF and DDC trees
(Figure 8). The same two subfamilies (Sphinginae and Macroglossinae) were recovered
as monophyletic as for EF, this time with excellent and modest bootstrap support,
respectively. Both subfamilies were also supported by many synapomorphies (59 and
110, respectively), and like the DDC tree the deep branches within the family were
generally longer than the more derived lineages (with the exception of some
macroglossines). Derived groups within the Sphinginae and Macroglossinae (e.g.,
Sphinx, Xylophanes, respectively) again formed clusters of especially short branches, but

many of these also received modest bootstrap support. Interpretation of the root suffered
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from the same potential long branch attraction pitfall, as the branch separating ingroup
from outgroup was supported by only 23 synapomorphies. Consistent with the EF data,
Marumba reassumed the role of most basal sphingid, with the most basal sphingids from
DDC analyses (Cephonodes and Hemaris) instead constituting a very long branch nested
terminally within a monophyletic Macroglossinae. Bootstrap support for the combined
tree was as poor as for EF, with only 31 (48%) of 64 internal nodes receiving bootstrap
support greater than 50%, and 18 of those nodes uniting sister terminal lineages. This
lack of internal consistency was surprising, given that heuristic searches settled on only
very few MP trees, in stark contrast to heuristic searches on the EF data. Such weak
bootstrap support suggests that resolution of deeper relationships among sphingid genera
will continue to be only speculative when relying on phylogenetic analysis of these
markers under the criterion of maximum parsimony.

Despite poor bootstrap support, a few themes emerged consistently across the
suite of parsimony analyses described above. A monophyletic Sphinginae was recovered
by all three analyses, with strong bootstrap support from DDC and the combined
EF&DDC data. In addition, the sister group to Sphinginae in all analyses was
Hopliocnema, the sole representative of the smerinthine tribe Sphingulini. This
unexpected result was supported by very high bootstrap proportions in the DDC and
combined trees. The sphingine tribe Acherontiini was also recovered with strong
support, however the position of Coelonia was malleable across trees. Despite the
paraphyly of Smerinthinae in the EF and combined trees, all three analyses returned an
extremely strongly supported monophyletic smerinthine tribe Ambulycini. Similarly,

Macroglossinae was rendered paraphyletic in EF and combined analyses, yet several of
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its subgroups were consistently retained with high support. Section Choerocampina and
its sister relationship with Darapsa was very highly supported in all analyses. Section
Hemarina was also consistently recovered at high support values. Some form of section
Dilophonotina was also consistently recovered in all analyses, although the positions of
Cautethia, Enyo, Sphecodina and Unzela were extremely unstable and occasionally
rendered the tribe polyphyletic. In addition, the tribe Philampelini (represented by only
three Eumorpha species) was consistently nested within the dilophonotine assemblage.
Finally, the majority of congeneric samples did in fact form monophyletic groups.
Exceptions occurred in the three hyperdiverse sphingid genera for which four species
each were included in this study: (a) while the four included species of Sphinx (56 species
worldwide) were consistently monophyletic, the single representative of Lapara (4
species worldwide) was always inserted among them; (b) the four included species of
Manduca (88 species worldwide) were monophyletic in all trees except EF, but in every
case the monotypic Dolba was always inserted among them; (c) the four included species
of Xylophanes (96 species worldwide) were monophyletic in every MP tree, but for DDC
and the combined analyses one of two sampled species of Darapsa (Darapsal778) was

inserted among them.

Likelihood-Based Parameter Estimation

The three MP topologies selected and described above (* in Table 20) and
depicted in Figures 6, 7 & 8 were used as starting topologies for estimating nucleotide
substitution model parameters for the Sphingidae&20G taxon set (ntax=66). Maximum

likelihood scores of these initial trees were estimated under the GTR+I+G model, and
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resulting parameter estimates were used to heuristically search for an ML tree via branch
swapping on the initial MP tree. Iterative parameter re-estimation and ML heuristic
searches resulted in convergence to equilibrium parameter values in most cases after only
the second of four iterations. Table 21 presents the results from every iteration for
likelihood estimation of every data matrix on every starting topology. Rapid
convergence to equilibrium parameter values (see boldface lines in Table 21) was taken
to indicate relative simplicity of the likelihood surface and high accuracy in parameter
estimates. In the fourth and final iteration of each analysis, converged parameter values
were fixed and more extensive heuristic searches with more replicates were launched to
locate the globally ML tree.

Of special interest was not only the efficient parameter convergence within a
given series of iterations of one data matrix on any given starting topology, but the global
convergence of parameter values for a given data matrix across all three starting
topologies. Table 21 demonstrates that for the EF and DDC data matrices, starting
topology had an effect on the rapidity of parameter convergence but not on the final
parameter values themselves. The EF data converged after only two iterations when the
EF MP tree was used to seed the iterative searches; these same data converged after three
iterations when the combined EF&DDC MP tree was the start topology, and after four
iterations when the DDC MP tree was the start topology. In contrast, the DDC data
converged to stable parameter values after only two iterations regardless of the starting
topology. The combined EF&DDC data behaved slightly differently, converging to
identical sets of parameter values after two iterations on the DDC starting topology and

after three iterations on the EF starting topology. However, likelihood optimization of
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the same data on the EF&DDC MP tree resulted in convergence after two iterations to a
different set of parameters. While very similar, these values varied enough that the
iterative ML searches on the EF&DDC data based on the EF&DDC MP starting topology
produced a ML tree of slightly different topology and slightly higher likelihood than
when EF or DDC starting topologies were used.

Equilibrium base frequencies estimated under the GTR+I+G model (Table 21)
deviated slightly from base composition homogeneity (i.e., Ta= nc= ng= nr~ 0.25),
reflecting the trend of empirical base frequencies in the three original data matrices
(Tables 12, 15 & 16). For EF, globally convergent base frequency parameters suggested
a slight excess in adenine and deficiency in guanine: 27.2%(A), 26.1%(C), 22.4%(G),
24.3%(T). Globally convergent base frequency parameters revealed a more symmetrical
and greater AT bias in DDC than for EF: 27.4%(A), 21.9%(C), 21.6%(G), 29.1%(T).
The greatest differences between gene base composition was in proportions of C (4.2%
greater in EF) and T (4.8% greater in DDC), and not unexpectedly the convergent
parameter values for the combined EF&DDC data set reflected this with intermediate
values for these bases (Table 21).

Global relative rate parameter estimates of the 6-class GTR substitution model
revealed a stark contrast in molecular evolution of these two genes. Relative rate
parameters for EF were extremely varied across substitution classes, with an enormous
excess in transitions (AG: 13.998, CT: 25.062) and transversion rates which varied
fivefold between classes (AC: 2.262, AT: 5.386, CG: 2.310, GT: 1.0). In contrast,
relative rate parameters for DDC were of both lower magnitude and greater homogeneity

across classes. DDC revealed a more modest excess in transition substitutions (AG:
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5.571, CT: 6.839) with more homogeneous transversion rates across classes (AC: 1.503,
AT: 1.333, CG: 1.151, GT: 1.0). Given the widely differing pictures these values
suggested about molecular evolution of EF and DDC, it was perhaps not unexpected that
the convergent relative rate parameter values for the combined data set could not be
predicted from the two genes independently (Table 21).

Two parameters of the nucleotide substitution model augmenting the 6-class GTR
framework were the proportion of sites assumed to be invariant (I) during evolution and
the one-parameter descriptor of the gamma distribution (G) describing among-site rate
heterogeneity along each molecule. Values of I varied from 0.616 for EF and 0.510 for
DDC to 0.574 for the combined data. These values were each lower than the empirical
proportion of invariant sites calculated in Table 12, demonstrating the deviation from
observation often encountered when likelihood parameters are optimized to an explicit
model of nucleotide substitution. While this value suggested DDC is a slightly more
variable and perhaps less evolutionarily constrained molecule than EF, the magnitude of
invariant sites between them did not in itself suggest these genes are evolving under
grossly different regimes. In contrast, there was a two-fold difference in alpha shape
parameter of the gamma distribution between these genes (G=0.680 for EF, G=1.400 for
DDC). A difference of this magnitude indicated gamma distributions with very different
shapes against which the substitution model for each gene assumed independent sites
were likely to vary, suggesting strongly that these two genes have accumulated variation
under very different evolutionary scenarios. The value of the gamma shape parameter for
the combined EF&DDC data (G=1.039-1.044) was intermediate between these two

extremes, suggesting that concatenation of data caused the model to effectively average

75



the patterns of two separate genes experiencing very different regimes of among-site rate

heterogeneity.

Evaluating Topologies from Likelihood Analyses

In addition to providing a means of efficient convergence to stable nucleotide
substitution model parameter values, the ML iterative estimation / search routine
discussed above was also very effective at identifying convergent topologies optimized
under the criterion of maximum likelihood. Individual trees were saved after each
iteration and the topologies compared for concordance after the analysis was complete.
Identical topologies are indicated in Table 21 with shared symbols under the ‘Tree’
column. Similar to results of parameter estimation, ML topologies not only converged
within iterations of a given analysis but converged globally across all analyses for a given
data matrix. Optimizing the GTR+I+G substitution model for the EF data matrix on the
starting topology derived from the MP EF analyses resulted in four identical trees across
all iterations. This tree also matched those derived from the last two and last three
iterations when the EF data was fit to the DDC and EF&DDC MP starting trees,
respectively (Figure 9). Global convergence to a single ML topology was even more
impressive for the DDC data set, for which every ML tree across every iteration was
identical (Figure 10). For the combined data, EF and DDC MP starting topologies
resulted in convergence to the same tree (‘cl’, -InL. = 31221.47311). However, when the
EF&DDC MP tree was used as the starting topology, a slightly different topology was
found to be optimal (‘c2’, -InL = 31221.29642). These two topologies differed only in

arrangements within the [ Paonias, Pachysphinx, Smerinthus]| clade, mirroring results of
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MP analyses under nonoverlapping taxon sampling. Strictly speaking, topology’c2’ was
selected as the optimal tree because it had higher likelihood (Figure 11).

Analyses based on the EF data matrix produced a ML tree which retained only a
single subfamily (Macroglossinae) as monophyletic. Similar to MP analyses for this
gene, super-generic groups within this subfamily were preserved, including Hemarina,
Choerocampina and Dilophonotina with nested Philampelini. Smerinthinae was rendered
paraphyletic because Ambulycini was suggested as the sister lineage to the
macroglossines, with a monophyletic Smerinthini the sister lineage to that group.
Members of the Sphinginae were the among the most basal lineages in the family, with
the smerinthine Hopliocnema assuming the most basal position. In contrast to the MP
analyses, the length of the branch separating outgroup from ingroup was the longest
internode in the entire tree, with extremely long terminal branches for each outgroup
taxon. After the Hopliocnema split, branch lengths throughout the remainder of the
ingroup appeared to become longer toward more derived taxa and almost every terminal
branch was longer than the internode from which it arose.

Analyses based on the DDC data matrix produced a ML tree much more
appealing from a taxonomic point of view, as all three subfamilies were retained as
monophyletic. Two exceptions included: (a) Hopliocnema, oriented as sister to
Sphinginae, with the remaining smerinthines sister to that lineage; and (b) the sphingine
Coelonia was embedded on a long branch inside Macroglossinae. The same super-
generic groups within all subfamilies were also preserved, except that only a subset of
Dilophonotina remained monophyletic. Branch lengths within and between subfamilies

were heterogeneous, with no global trends like those in the EF ML tree. Sphinginae
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branches were more often short, Macroglossinae branches were more often long, and
Smerinthinae branches were intermediate. Unlike the EF ML tree, not every terminal
branch was longer than the internode from which it arose. Similar to the EF ML tree, the
length of the branch separating outgroup from ingroup was the longest internode in the
entire tree, with extremely long terminal branches for each outgroup taxon. Because all
three subfamilies were monophyletic, the DDC ML tree permitted the first assessment of
genealogical relationships among subfamilies. Macroglossinae was the most diverse and
most basal subfamily in the tree, with the sister lineages Sphinginae and Smerinthinae
more derived.

Analyses of the combined EF&DDC data matrix produced a ML tree globally
similar to the DDC ML tree, with some extensive differences in fine structure. All three
subfamilies were again retained as monophyletic in the same orientation:
[Macroglossinae,(Sphinginae, Smerinthinae)], with Hopliocnema and Coelonia the same
two exceptions. A broader monophyletic Dilophonotina consistent with the EF ML tree
was retained. Unlike either single-gene analysis, Smerinthinae was broken into two
monophyletic sister tribes Ambulycini and Smerinthini. Branch lengths within and
between subfamilies were heterogeneous: Sphinginae branches were often short,
Macroglossinae branches were often long, and Smerinthinae branches were intermediate.
Every terminal branch was longer than in the DDC tree, though not always longer than
the internode from which it arose. Finally, consistent with both individual gene trees, the
branch separating outgroup from ingroup and the terminal branches of both outgroup taxa

were the longest in the entire tree.
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Evaluating the Likelihood of All Candidate Topologies

Table 22 presents the results of ML cross-calculations obtained after fixing both
the model parameters optimized for each data set and each candidate topology recovered
from MP and ML analyses. Four distinct versions of the GTR+I+G model of nucleotide
sequence evolution were evaluated, corresponding to the globally convergent parameter
values presented in Table 21d. For each unique GTR+I+G model, corresponding data
were fit to every MP and ML candidate topology presented in Tables 20 & 21.
Comparison of likelihood scores across topologies within a given data & model
parameter set (i.e., down each column of Table 22) provided a probabilistic evaluation of
the relative effectiveness of each topology at explaining the observed distribution of
character states, in the context of the assumed underlying model of nucleotide sequence
evolution.

Among the four alternative ML topologies presented in Table 21, likelihood
scores under the EF GTR+I+G model were optimal for the EF ML topology and worst
for the DDC ML topology (-InL difference = 197.47847). The converse was true for the
DDC GTR+I+G model (-InL difference = 515.23907), underscoring the trend toward
discordant phylogenetic information between the EF and DDC data sets. Interestingly,
likelihood scores under both combined EF&DDC GTR+I+G models were slightly better
for ML topology ‘c2’ than for ‘c1’ in Table 21 (mean -InL difference = 0.16639), and in
both cases were worst for the EF ML topology (-InL difference = 361.24008).

Among the fifteen alternative MP topologies presented in Table 20, likelihood
scores under the EF GTR+I+G model were optimal for the EF MP topology presented in

Figure 6 and were worst for the DDC MP topologies (max -InL difference = 161.07546).
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For all other GTR+I+G models, likelihood scores were optimal for the second MP
topology derived from combined EF&DDC data, and in every case were worst for the
first EF MP topology (mean -InL difference = 425.04928).

When the fifteen MP topologies and four ML topologies were pooled into a single
set of alternative hypotheses, the ML topologies had superior likelihood scores under all
four sets of GTR+I+G model parameters. For the EF model, the EF ML topology was
better than the MP tree with highest likelihood (-InL difference = 24.2507), but both EF
MP topologies were better than the three other ML topologies. In contrast, under the
DDC model, the MP tree with highest likelihood was worse than three of the four ML
topologies (mean -InL difference = 25.581). The same held true when MP and ML trees

were compared under both combined EF&DDC models.

DISCUSSION

Building on pilot work of Regier ef al. (2001), the present study offered some
important contributions in the next phase toward more fully resolving the phylogeny of
the Bombycoidea and using those phylogenetic hypotheses to interpret life history
evolution in this diverse group of Lepidoptera. Confirming earlier findings in studies
employing EF and DDC in phylogenetic resolution of macrolepidopteran groups (Cho et
al. 1995; Fang et al. 1997, 2000; Friedlander et al. 1992, 1998, 2000; Mitchell 1998;
Mitchell et al. 1997, 2000; Regier et al. 2000, 2002), the present work demonstrated that
EF and DDC, both separately and in combination, harbored significant phylogenetic
information for the resolution of relationships among genera of Sphingidae. However,

both genes differed in signatures of variation and in the phylogenetic hypotheses drawn
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from them, providing distinct glimpses into the molecular evolutionary history of
Sphingidae.

The vast majority of nucleotide variation in both genes was concentrated in the
third codon position, and of the remaining variation ntl was thrice and twice as variable
as nt2 in EF and DDC, respectively. Nucleotides in DDC were approximately 50% more
variable than in EF, an observation paralleled by an ML estimate of invariant sites
approximately 20% lower for DDC than EF. Amino acids in DDC were several fold
more variable than the protein sequences for EF. Differences in nucleotide base
composition between these genes were more subtle, but both empirical nucleotide
frequencies and maximum-likelihood estimates of equilibrium base composition
suggested that EF harbored an excess of adenine (27.2%) with a deficiency in guanine
(22.4%), while DDC demonstrated a more classic signature of AT bias (27.4% and
29.1%, respectively, versus 21.9% C and 21.6% G).

Maximum likelihood estimates of nucleotide substitution relative rate parameters
also provided a powerful means to contrast the differences in molecular evolution
between these two genes. The estimated increase in rates of transition versus
transversion substitutions was much higher for EF (14.0 purine transitions and 25.1
pyrimidine transitions, versus 2.7 average transversion rate) than for DDC (5.6 purine
transitions and 6.8 pyrimidine transitions, versus 1.2 average transversion rate), as was
the degree of variation in rates of change among the 6 substitution classes (standard
deviation in rate parameters: 9.5 for EF and 2.6 for DDC). The twofold difference (DDC:
1.4 > EF: 0.7) in ML estimates of the shape parameter for a gamma distribution modeling

among-site rate heterogeneity also revealed striking differences in patterns of substitution
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between these genes. While the amount of data, in number of nucleotides, contributed by
each gene in this study was balanced (48.1% EF and 51.9% DDC), taken together the
above observations suggested strongly that patterns of nucleotide substitution and
resulting information content of both genes seemed to be strongly heterogeneous.
Differences between EF and DDC in signatures of molecular evolution were
mirrored by differences in phylogenetic information content from each of these genes.
Parsimony-based permutation tail probability (PTP) tests revealed highly significant
phylogenetic structure for both genes, confirming their utility in phylogenetic studies in
insect groups. This was not surprising, given that their utility had already been
demonstrated experimentally in previous studies employing one or both genes in
resolution of lepidopteran groups (Cho et al. 1995; Fang et al. 1997, 2000; Friedlander et
al. 1992, 1998, 2000; Mitchell 1998; Mitchell et al. 1997, 2000; Regier et al. 2000,
2002). However, despite their proven utility in phylogenetic analyses, consistent
generation of congruent gene trees from EF and DDC had not been conclusively
demonstrated. In this study, across all taxon samples, data partitions, optimality criteria
and methods of analysis, the phylogenetic hypotheses inferred from EF and DDC were
strikingly discordant. Disagreement in suggested relationships extended across all
taxonomic levels, including monophyly and relative orientation of the three subfamilies,
monophyly and relative composition of individual tribes and sections, and even patterns
of relatedness among congeneric species. Consistent and reliable phylogenetic patterns
from analyses of one gene were seldom both consistently and reliably recovered from

analyses of the other gene. Thus, distillation of a universal genus-based family
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phylogeny from these two divergent individual gene phylogenies was a formidable
challenge.

Broad discordance in phylogenetic hypotheses drawn from EF and DDC
simultaneously increased the relevance of a whole-data approach (i.e., constructing a
phylogenetic estimate from a combined data set), and also challenged the notion that
concatenation of two such conflicting genes into a single analysis was theoretically
justified (Bull et al. 1993; Chippindale & Wiens 1994; DeQueiroz et al. 1995;
Huelsenbeck et al. 1996; Mitchell et al. 2000; Olmstead & Sweere 1994; Weller et al.
1994; Wiens 1998). MP analyses on the combined data matrices in this study were
noticeably more analytically efficient and less ambiguous than for either gene separately,
generating fewer equally parsimonious trees in shorter computation times. Results from
these analyses incorporated elements of both EF and DDC topologies, as well as novel
rearrangements not viewed in either independent tree. At the deepest levels, the topology
in Figure 8 suggested a sister relationship between Sphinginae and Macroglossinae,
consistent with the EF MP tree. However, Figure 8 also placed Ambulycini as the most
derived lineage within a paraphyletic Smerinthinae grade, more consistent with
smerinthine monophyly illustrated by the DDC tree. At terminal levels, the combined
EF&DDC tree demonstrated greater fidelity to the DDC MP topology, especially in
relationships among species of the three included hyperdiverse genera: Manduca, Sphinx
and Xylophanes.

Difficulty interpreting the stark differences in suggested genealogical relatedness
among sphingid lineages stemming from these two independent markers was diminished

somewhat when viewed in the context of support for individual nodes in each topology.
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Nonparametric bootstrapping, a technique designed to quantify the internal consistency
of the data on the basis of individual taxon bipartitions, was the prime means of assessing
node support in this study. Bootstrap values on all three parsimony trees suggested
strongly that these data alone were grossly insufficient to establish strongly supported,
phylogenetically robust nodes against which existing taxonomic hypotheses could be
rigorously evaluated. EF, DDC and combined EF&DDC data were able to generate
topologies with only 50%, 72% and 48% of all possible nodes receiving even moderate
(i.e., values greater than or equal to 50%) bootstrap support, respectively. Even more
telling was that the majority of the sparse bootstrap support was concentrated among
relatively “obvious” terminal nodes, for example, those uniting congeneric species into a
single monophyletic genus. The most critical nodes for a systematic study of the family,
those deep nodes describing the interrelationships between sections, tribes and
subfamilies, were in fact the most weakly supported. While there were consistent
patterns to be gleaned from MP analyses (see below), results of this study made it clear
that EF and DDC in conjunction provided insufficient information to adequately and
robustly resolve the phylogeny of the Sphingidae. While improved taxon sampling
beyond that employed here remains a viable possibility to extract more robust
phylogenetic hypotheses from these markers, pursuit of other independently evolving
gene sequences seems a justified and promising line of further research for this group.
Given the poor performance of these genes to produce strongly support nodes
under the criterion of maximum parsimony, pursuit of optimal topologies according to
the criterion of maximum likelihood proved productive. Discordance between the three

MP trees in Figures 6, 7 & 8 became an asset in a sense, as these topologies expanded the
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range of treespace used to seed three independent cycles of maximum likelihood
parameter estimation and heuristic searches. Using the MP trees as initial conditions
biased the likelihood search toward taxon bipartitions recovered in MP analyses, but
permitted more efficient model parameter estimation than would have been possible if
starting from random trees. For all three data sets, convergence to a stable set of model
parameters was striking for two reasons. First, parameters converged to stable values
after only the second iteration in 6 out of 9 estimation/search cycles listed in Table 21.
This demonstrated the efficacy of MP topologies as starting points to launch ML searches
determining model parameters and globally optimal topologies. Second, in all but one
case, parameter values converged globally for a given data set regardless of the MP
starting topology used to seed the searches. This suggested that, while discordant in
relationships among subgroups, the differences among the three MP starting topologies
were not so vast as to extend the ML searches into widely dispersed areas of parameter
and tree space. Alternatively, global convergence of this sort suggested a relatively
smooth likelihood surface efficiently traversed by SPR branch swapping in the heuristic
search algorithm.

It was not clear why the combined EF&DDC data globally converged to
parameter values when seeded by the EF or DDC MP trees, but converged to a distinct
set of parameters when the combined EF&DDC MP tree was the seed topology. While
both sets of parameters were similar in absolute values, the latter set resulted in a ML tree
with slightly higher likelihood (Figure 11 and Tree ‘c2’ in Table 21). This topology
differed from that obtained by seeding with the EF or DDC MP trees in the orientation of

a single terminal lineage: the smerinthine clade [Paonias, Pachysphinx, Smerinthus].

85



Minor rearrangements among these genera (though each remained monophyletic) were
encountered throughout every analysis using both optimality criteria, demonstrating these
relationships have yet to be adequately defined and suggesting an area in which increased
taxon sampling may be warranted.

Exploration of topological differences between trees derived from a given data set
via maximum likelihood versus maximum parsimony provided a glimpse into the ways
these data were differentially interpreted under different optimality criteria. Most
noticeably, ML analyses incorporating an underlying model of nucleotide substitution did
a much better job of reconstructing a reasonable scenario between Sphingidae and their
bombycid and saturniid outgroups. While MP trees separated these outgroups from
basal sphingid lineages (Marumba or Hemarina) by short internal and long terminal
branches, ML trees reconstructed outgroup branches as the longest in the entire tree, with
a comparably long branch leading to the monophyletic Sphingidae. This stark difference
provided another empirical example of the ability for maximum likelihood to more
reasonably reconstruct evolutionary history in scenarios of long-branch attraction when
maximum parsimony could be positively misleading (Felsenstein 1978, 1985). Another
consistent difference between MP and ML trees was relocation of the root from within a
paraphyletic assemblage (in MP) to the base of a monophyletic assemblage (in ML). In
every case, this had dramatic consequences on the overall tree structure and especially on
interpretation of relationships among the three subfamilies. In fact, only the ML trees in
Figures 10 and 11 suggested concepts of three strictly monophyletic subfamilies, in the
orientation [Macroglossinae, (Smerinthinae, Sphinginae)]. All three MP analyses and

even the EF ML analysis rendered at least one subfamily as a basal paraphyletic grade
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leading to a sister relationship between the other two subfamilies. Interestingly, at some
point in all six trees presented in Figure 6-11 every subfamily assumed that basal
paraphyletic position! Given the vast disagreement between trees regarding an issue as
basic as subfamily relatedness, the trees presented in this study should be viewed as a
new set of phylogenetic hypotheses derived from molecular data, subject to further
testing through collection of novel data and implementation of novel analytical
techniques.

Despite the fundamental discordance between trees, there were a few areas of
agreement which gained some strong support in this study. First, all trees except one (the
EF ML topology) suggested a monophyletic Sphinginae whose closest relative was
Hopliocnema, a single taxon from the smerinthine tribe Sphingulini. The consistency
with which this hypothesis recurred suggested the assignment of Sphingulini to the
Smerinthinae warrants further scrutiny. However, because this finding was based on
sampling a single species, future studies should focus on including several sphingulines
before a taxonomic revision is undertaken. Second, the sphingine tribe Acherontiini was
reconstructed as monophyletic in every analysis. However, of the three genera sampled
in this study, Coelonia was part of the tribe only in the EF analyses and switched
subfamilies (to Macroglossinae) in analyses involving DDC. Third, the smerinthine tribe
Ambulycini was recovered as a monophyletic pair of sister genera in every analysis.
However, the position of this tribe relative to other smerinthines was malleable, and its
placement often rendered the tribe Smerinthini and/or the entire subfamily Smerinthinae
paraphyletic. Fourth, the macroglossine tribe Philampelini, sampled for three species of

only one genus (Eumorpha), was recovered as monophyletic in every analysis. This was
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in fact the only tribe in Macroglossinae supported by phylogenetic analysis in this study.
While members of Dilophonotini and Macroglossini consistently clustered together, they
never formed monophyletic clades. The dilophonotine section Hemarina was recovered
within every analysis, and large portions of Dilophonotina were often recovered, but
these were never in a sister relationship. The most stable assemblage in Macroglossinae
was section Choerocampina, recovered in every analysis. Interestingly, taxa in this
section are characterized by a morphological synapomorphy involving development of
functionally viable sound detection apparati on their mouthparts (Roeder 1972; Roeder et
al. 1968, 1970; Roeder & Treat 1970). The other macroglossine section, Macroglossina,
was never recovered as a monophyletic group in any analysis, echoing findings from the
Regier 2001 study and calling into question its taxonomic legitimacy. Finally, with the
exception of Darapsa, all congeneric species sampled in this study grouped together in
monophyletic assemblages in almost every analysis. While Darapsa was reconstructed
as monophyletic in EF, all analyses involving DDC not only embedded Darapsal778
within Xylophanes (i.e., in a different section), but consistently separated it from its
congener and a sample sequenced in Regier 2001, DarapsaGB. Given this extreme
behavior, a reidentification of specimen GS-02-1778 and clarification of the specimen(s)
used in Regier 2001 seems warranted.

In addition to redefining and solidifying the classically recognized taxonomic
groups in the Sphingidae, Kitchin & Cadious’s (2000) classification provided a handful
of finer grain hypotheses of relationships among sphingid genera (see vertical bars in
Table 2). Of sixteen such hypotheses, nine were testable given the taxon sample used in

this study and six provisional support by analyses from all three data matrices:
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a. within Smerinthini: (Pachysphinx, Smerinthus, Paonias), but see above for
difficulty interpreting the arrangement among these genera;

b. within Ambulycini: (Protambulyx, Adhemarius), as discussed above;

c. within Acherontiini: (4grius, Acherontia), with confusing placements of
Coelonia, as discussed above;

d. within Dilophonotina: (Nyceryx, Perigonia, Aellopos);

e. Hemarina, within Dilophonotini: (Hemaris, Cephonodes), as discussed above;

f. Choerocampina, within Macroglossini, as discussed above.
Kitching & Cadiou’s (2000) larger assemblage within Dilophonotina received support
with all analyses involving DDC, but EF trees also included Unzela, Cautethia and
Philampelini (Eumorpha) in this clade, rendering such a delimitation too restrictive. As
with many groupings, the two markers sampled in this study were discordant with respect

to this group, so it warrants further investigation.

DIRECTIONS FOR FURTHER ANALYSIS

The suite of analyses in this study represented only a sample of the available
analytical tools which could use the EF and DDC data to shed new light on phylogenetic
relatedness within the Sphingidae. Other approaches which might be productively
applied to these data include:

(1) A comprehensive molecular evolutionary analysis of nucleotide substitution in these
genes. Corrected estimates of transition vs. transversion and synonymous Vvs.
nonsynonymous nucleotide changes would help refine relative rate parameter

estimates. In addition, model-based distance corrections would permit pairwise
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divergence plots to assess degree of saturation across all codon positions in a
quantitative fashion.

(2) Differences in empirical base frequencies and uncorrected empirical information
content between codon positions suggest they may evolve at different rates. ML
relative rate parameter estimates and topology searches could be conducted for each
codon position separately as another way to assess the congruence and reliability of
phylogenetic signal from each partition.

(3) Topologies derived from ML analyses suffered for having no rigorous assessment of
robustness for taxon bipartitions. Convergent model parameters could be fixed and
used to generate simulated data sets for use in parametric bootstrapping (Huelsenbeck
et al. 1996b).

(4) ML estimates of relative rate parameters could be converted to a step matrix for use in
6-parameter parsimony, capitalizing on the differences between optimality criteria
and analytical methods to strengthen each approach.

(5) Increased diversity in starting topologies input for ML iterative parameter
estimation/searching. Corrected distance-based topologies, morphological
hypotheses, and a broader range of MP trees would seed ML analyses in more
extensive areas of tree space and permit more exhaustive exploration of the
dependence of parameter estimate convergence on initial conditions.

(6) Application of the likelihood ratio tests to assess partition incongruence between
various data partitions, especially EF vs. DDC and ntl vs. nt2 vs. nt3, and

combinations thereof.
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(7) Expansion of taxon and character sampling, through continued collection of rare
sphingid taxa and selection of novel nuclear coding genes informative at lepidopteran

family levels.
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Table 1. Selected life history contrasts between Sphingidae and Saturniidae (Lepidoptera:
Bombycoidea). Compiled from observations cited in Janzen (1984) and Bernays & Janzen (1988).
Members of Smerinthinae generally share many life history traits with Saturniidae, despite strong
morphological evidence for their inclusion in Sphingidae.

Life History SPHINGIDAE SATURNIIDAE &
Parameter (Sphinginae&Macroglossinae) SPHINGIDAE (Smerinthinae)
adult foraging & feeding - constant diet of nectar and water (male & - no adult feeding; nutrition from larval fat
female) and water reserves
proboscis - functional - vestigial
neural capacity - large head and eyes - small head and eyes
- memory
adult lifespan - weeks - days
adult flight - streamlined wing shape - broad ornate wing shape
- powerful, agile, sustained flight - weak flight
- speed dash escape behavior - varied avoidance maneuvers
- seasonal migration - no seasonal migration
- diurnal, matinal, crepuscular, nocturnal - crepuscular, nocturnal
adult coloration - crypsis - crypsis
- hindwing flash coloration - mimetic & aposematic coloration
intra/interspecific - low (color, size, wing shape) - high (color, size, wing shape)
polymorphism
adult sexual dimorphism - reduced - pronounced
(size & behavior) - female larger at eclosion, weights - female larger at eclosion and throughout
eventually equalize development
attraction to light - females arrive all night - females arrive before midnight
- male & female loosely attracted, stray - male and female tightly attracted, sessile
- 10 males : 1 female - >100 males : 1 female
mating - courtship & female choice mediated by - indiscriminate mating
male secondary sex organs
- multiple female matings, days after female - single female mating, immediately after
eclosion eclosion
egg maturation in female - continuous maturation - full complement at eclosion
- eggs 3X smaller than saturniids - eggs 3X larger than sphingids
oviposition - single egg per oviposition event - large egg clutch per oviposition
- weeks/months - approx. 50% egg load in first night;
remainder within | week
time to egg hatch - fast: 4-8 days - slow: 6-15 days
larval develop t - fast: 2-5 weeks - slow: 4-10 weeks
larval defense - crypsis - crypsis
- eyespot mimicry - aposematic coloration
- no sequestration - urticating spines and urticator mimicry
larval mandibles - intricate morphology - simple morphology
- masticating action - snipping action
larval relative head mass - twice that of saturniids - half that of sphingids
larval gut contents - intense processing of little material - light processing of ample material
- heterogeneous, macerated particles - large, homogeneous, intact particles
- effectively digested into slurry - only edges effectively digested
larval diet breadth - oligophagous - polyphagous
- diverse range of growth forms - few growth forms, especially trees
larval hostplant - low density, low apparency - high density, high apparency
syndrome - small, immature - large, mature
- high nutrition and water content - low nutrition and water content
- small toxic qualitative defensive chemicals - large nontoxic quantitative defensive
chemicals
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Table 2. Taxonomic classification and phylogenetic sequence of genera in Sphingidae (Lepidoptera: Bombycoidea) presented by Kitching & Cadiou
(2080} Order of genera is approximately phylogenetic and matches that reported in Kitching & Cadiou 2000 (pp. 16-19); putative clades advocated by these

dicated by nested vertical bars to the left of the genus name. Number of worldwide recognized species units within each genus, including distinct
subspecies, indicated in ‘ssp column single species na.mes given for monotyp]l: genera only. Genera for which specimens have been accessioned in the UMD
Lepidoptera Collections and are a for mol ked with *X" in the ‘Coll’ column. Genera for which EF and DDC sequence
have been obtained indicated in the ‘EF’ and ‘DDC’ colunns asterisks mark sequences collected de novo in this study; ‘R’ marks sequences submitted to
GenBank by Regier, et al. (2001); *C" marks the sequence submitted to GenBank by Caterino, et al. (2001). Genera containing species which occur in North
America (not necessarily endemics) are shaded, and were determined by consulting Hodges (1971) and Ferguson & Opler (1999).

Taxonomy ssp Genus species Genus Author Synonyms Coll EF DDC
l.epidopwPHetemnwrlen-yﬁDApodln-ysly b a>Macrolepid a>Bombycoidea>SPHINGIDAE
SMERINTHINAE
Smerinthini 4 Langia Moore, 1872
8 Laothoe Fabricius, 1807 Amarpha X * .
- T ‘_}-E' X * -
X | *R | *R
2 X |*R | *R
I Poliodes roseicornis Rothschild & Jordan, 1903
I Xenosphingia Jjansei Jordan, 1920
3 Ceridia Rothschild & Jordan, 1903
2 Craspedortha Mell, 1922
I Parum colligata Rothschild & Jordan, 1903
1 Amambulyx elwesi Rothschild & Jordan, 1903
38 |Marumba Moore, [1882] Burrowsia Kayeia Sichia X i L
2 |Paphnusa Walker, 1856 Allodaphnusa
6 Gymoeryx Carcasson, 1968
2 |Likoma Rothschild & Jordan, 1903
2 pilosph Swinhoe, 1897
B T T 5 ~ Hubner | X " -
2 Mimas Hubner, [1819] X | * 1 *
4 Lophostethus Butler, 1876 Euclea
3 Andriasa Walker, 1856 Devilzia,Pseudosmeninthus X
| Microclanis langeri C 1968
4 Falcatula Carcasson, 1968
2 Chieroclanis Carcasson, 1968 X
8 Platysphinx Rothschild & Jordan, 1903
I Neoclanis basalis Carcasson, 1968
I Afrosphinx amabilis Carcasson, 1968
1 ¥ king Aarvik, 1999
7 Rufoclanis Carcasson, 1968
2 Coequosa Walker, 1856 Metamimas
2 |Rhodambutyx Mell, 1939
6 |Rhodoprasina Rothschild & Jordan, 1903
I |Copoides chinensis Matsumura, 1921 Amorphulus
13 |Cypa Walker, [1865]
7 Smerinthulus Huwe, 1895
2 |Degmaptera Hampson, 1896
| Grillotius bergeri Rougeot, 1973
I Opistoclanis hawkeri Jordan, 1929
2 Agnosia Rothschild & Jordan, 1903
11 Callambilyx Rothschild & Jordan, 1903
6 |Sataspes Moore, [1858] Myodezia
I |Afrosataspes galleyi Basquin & Cadiou, 1986
I |Pseudopolyptych foli C; 1968
2 |Afroclanis Carcasson, 1968
2 |Malgassoclanis Carcasson, 1968
I Pseudandriasa mutata Carcasson, 1968
2 |Rhadingpasa Karsch, 1891
5 |Leucophlebia Westwood, 1847 Rasphele
1 |Leptoclanis pulchra Rothschild & Jordan, 1903
10 |Phyllexiphia Rothschild & Jordan, 1903 A is,Li is, Typhosia
18 |Clanis Hubner, [1819] Basiana Melagasies
1 Clanidopsis exusta Rothschild & Jordan, 1903
1 Acanthosphis feldti Aurivillius, 1891
10 |Nespolyptychus Carcasson, 1968
18 |Pseudoclanis Rothschild, 1894 Larunda X . .
7 |Polyptychoides Carcasson, 1968 X
44 Polyptychus Hubner, [1819] X
3 Polyptychopsis Carcasson, 1968
1 | Lycosphing hild & Jordan, 1903
1 inofffi holland, Clark, 1929
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Table 2. (continued)

Taxonomy ssp__ Genus peci Genus Author Synonyms Coll EF DDC
Sphingulini 1 h Rothschild & Jordan, 1903
1 Coenotes eremophilae Rothschild & Jordan, 1903
1 opli brachy thschild & Jordan, 1903 X i ko
1 Te h Rothschild & Jordan, 1903
3 Pentateucha Swinhoe, 1908
3 Kentrochrysalis Staudinger, 1887 Centrochrysalis
7  Dolbina Staudinger, 1877 Delbinopsis.Elegodolba
1 Sphingulus mus Staudinger, 1887
| Monarda oryx Druce, 1896
Ambulycini 63 [ Ambulyx Westwood, 1847 Orxyambulyx
1 Barbeurion lemaii Clark, 1934
6 | |Amplypterus Hubner, [1819] Calymnia Compsogene
1 Compsuly h Holloway, 1979 X
1 | |Akbesia davidi Rothschild & Jordan, 1903
6 | |Batocnema Rothschild & Jordan, 1903
X - -
5 | |Orecta Rothschild & Jordan, 1903 [
x - -
1 mum Rothschild & J 1903 |
SPHINGINAE
Sphingini
R R
*R | *R
- -
S R | *R
Rothschild & Jordan, 1903
*R | *R
*R | *R
8 Euryglotis Boisduval, [1875] LA
1 Apocalypsis velox Rothschild & Jordan, 1903
3 FPseudodolbina Rothschild, 1894
3 Praedora Rothschild & Jordan, 1903
1 Ellenbecki Rothschild & Jordan, 1903
1 Litosphingia corticea Jordan, 1920
2 Hoplistopus Rothschild & Jordan, 1903
1 Oligographa Jjuniperi Rothschild & Jordan, 1903
2 Deovania Rothschild & Jordan, 1903 X
1 Lomocyma oegrapha Rothschild & Jordan, 1903
4 Panogena Rothschild & Jordan, 1903
6 Macrepoliana Carcasson, 1968
5 Poliana Rothschild & Jordan, 1903 Taboribia
14 Meganoton Boisduval, [1875]
5 Psilogramma Rothschild & Jordan, 1903 X o ¥
1 Leucomonia bethia Rothschild & Jordan, 1903
3 Pantophaea Jordan, 1946
2 | Xanthopan Rothschild & Jordan, 1903
1 oea walkeri Rothschild & Jordan, 1903
x *
x - -
Acherontiini 2 Me a Rothschild & Jordan, 1903
e x [ - | -
I |Callesphingia circe Rothschild & Jordan, 1916
5 Coelonia Rothschild & Jordan, 1903 X ®: i
4 |Acherontia [Laspeyres], 1809 Atropos Brachyglossa.Manduca X 3 o
MACROGLOSSINAE
Dilophonotini
Dilophonotina X K i
] x - -
Boisduval, 1870
‘Walker, 1856 X * *
1 x - -
Rothschild & Jordan, 1903 |
Rothschild & Jordan, 1903 [
s \ x - -

Skinner, 1923

Walker, 1856
Hubner, [1819]

111



Table 2. (continued)

Taxonomy Genus species Genus Author Synonyms Coll EF DDC
N Boisduval, [1875] | I I
Lichy, 1981
ch-SchS X . *
X *R | *R
x - -
x - -
Hemarina X *R | *R
x - -
Philampelini X *R | *R
Macroglossini
Macroglossina A X | R[R
X C
it Neogurelca Hogenes & Treadaway, 1993
£ Sphingonaepiopsis ‘Wallengren, 1858 Pierodonta
1 Microsphil I: Rothschild & Jordan, 1903
2 Odontosida Rothschild & Jordan, 1903
9 Antinephele Holland, 1889
4 Hypaedalea Butler, 1877
1 FPseudeny b Holland, 1889
72 Temnora Walker, 1856 Aspledon, Dicdosida, Eulophura, X
Gurelca,Lophura. Lophuron, Ocvion
1 Temnoripais lasti Rothschild & Jordan, 1903
26 Nephele Hubner, [1819] Omeus Zonilia X
3 aassenia Sallmuller, 1884
5 |Angonyx Boisduval, [1875]
8 Rethera Rothschild & Jordan, 1903 Borshomia
2 Cizara ‘Walker, 1856 Abrisa Microlophia
1 |Hayesiana Fletcher, 1982 Rhodosoma
T |Eurypteryx R. Felder, [1874] Indiana
1 Giganteopalpus mirabilis Huwe, 1895
6 Gnathothlibus Wallengren, 1858 Chromus
1 astyanor Rothschild & Jordan, 1903
14 Hubner, [1819) Histriosphinx Regia O
5 Bremer & Grey, 1853
Tutt, 1903
3 a8 el X | *m | *r
Cadiou & Holloway, 1989
Rothschild & Jordan, 1903
Walker, 1856
Mell, 1922
6 Boisduval, [1875)
1 Mell, 1922
1 Oberthur, 1904
1 Joicey & Kaye, 1917
6 Bryk, 1944
1 Moore, 1888
1 Rothschild & Jordan, 1903
111 Macroglossum Scopoli, 1777 Bombylin.Macroglossa Psithyros, x| * -
2 Leu s Rothschild & Jordan, 1903
Choerocampina X | *R | *R
| P I Rothschild & Jordan, 1903
B X *R | *R
2 (Rhodafra Rothschild & Jordan, 1903
5 |Deilephila [Laspeyres], 1809 gmmuﬁnom.nilephﬂ.. X . -
5 Basiothia Walker, 1856 X i *
4 Chaerocina Rothschild & Jordan, 1903 X
3 |Euch Boisduval, [1875] Chlorina X
43 Hippotion Hubner, [1819] Lilina Panacrs X *: -
2 Centroctena Rothschild & Jordan, 1903
I |Pergesa acteus Walker, 1856 Rhyncholaba
59 |Theretra Hubner, [1819] Florina is,Hathia. Oreus X |+ [+
2 |Griseosphinx Cadiou & Kitching, 1990
19 (Rhagastis Rothschild & Jordan, 1903
11 Cechenena Rothschild & Jordan, 1903
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Table 3. Elongation Factor 1-alpha (EF) Primers. Compilation of select oligonucleotide primers developed
in the Regier Lab and used to amplify EF (i) across Arthropoda and (ii) within Lepidoptera. Primers are
grouped into pairs generating overlapping fragments which have been successfully assembled to obtain
continuous sequence for this gene. ‘f* suffix in the Primer Name denotes forward primer, which anneals to the
antisense strand and promotes synthesis of the sense strand. ‘rc” prefix or suffix in the Primer Name denotes
reverse primer, which anneals to the sense strand and promotes synthesis of the antisense strand. First four
primer pairs were used in this study (abbreviated p, A’, E and C), nested within purified templates obtained by
reverse transcription with m41.21rc (marked with an asterisk). (iii) lists the forward and reverse M13 primers
used in sequencing reactions. ‘Position in Figure 4’ denotes coordinate of the 5 end of the primer relative to
the sense strand in the Bombyx mori EF reference sequence shown in Figure 4; coordinate ‘1’ corresponds to the
66™ nucleotide in the original GenBank accession D13338. Oligonucleotide primer sequence is written 5° to 3’,
irrespective of orientation in Figure 4 (i.e., reverse primers can be oriented by taking their reverse complement).
“‘Notes’: (a) 30f is a more degenerate version of M3; (b) replacing m40.71f with m40.6f generates an amplicon
42 bp longer; (c) m52f is a more degenerate version of M51.9.

Primer Primer Position in Fragment
Name Sequence (5° = 3°) Length  Figure4 Note Size
(i) Regier & Shultz (1997)
30f CAY ATY AAY ATH GTS GTI ATH G& 23 1 a ..
mds7ic TCC ATY TTR TIN CAN SCNAC 20 449 4@
md40.6f ATY GAR AAR TTY GAR AAR GAR GC 23 97 b 6 (A’
mskc CCD ATY TTR TANACRTCY TG 20 752 956(A)
m45.71f GTN GSN GTN AAY AAR ATG GA 20 430 656 (E)
m53.5rc ATR TGV GMN GTR TGR CAR TC 20 __________ 1085 ______________________________
m52f CAR GAY GTN TAY AAR ATH GG 20 733 C 542 (C
*m4l2lrc TGY CTC ATR TCD CGV ACR GCR AA 23 1274()
m40.71f TCN TTY AAR TAY GCN TGG GT 20 139 b
m52.4f TCN GTN GAR ATG CAY CAY G 19 853 ha
(ii) Cho, et al. (1995) L
M3 CAC ATY AAC ATT GTC GTS ATY GG 23 1 a 282
rcM449 CTT GAT GAA ATC YCT GTG TCC 21 28
M44.1 GCT GAG CGY GAR CGT GGT ATC AC 23 175 411
rcM51.1  CAT RTT GTC KCC GTG CCA kcc 21 58 .
M46.1 GAG GAA ATY AAR AAG GAA G 19 484 392
rcM52.6 GCY TCG TGG TGC ATYTCSACZOS?S
M51.9 CAR GAC GTA TAC AAA ATC GG 20 733 c 356
rcM53.2 GCA ATG TGR GCI GTGTGGCJ\ZO ___________ 1088 T
M52.7 GTC AAG GAR YTG CGT CGT GG 20 931 356
rcM4 ACA GCV ACK GTY TGY CTC ATR TC 23 1286
(iii) M13 Sequencing Primers e,
M13-21 TGT AAA ACG ACG GCC AGT 18 - -
M13-rev CAG GAA ACA GCT ATG ACC 18 =

[UPAC Ambiguity Codes: R=AG, Y=CT, M=AC, K=GT, $=CG, W=AT | H=ACT, B=CGT, V=ACG, D=AGT
| N=ACGT | I=inosine
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Table 4. Dopa Decarboxylase (DDC) Primers. Exhaustive compilation of oligonucleotide primers developed
in the Regier Lab and used historically to amplify DDC across Arthropoda. Primers are sorted by position
along the reference sequence in Figure 5, and alternate versions of a single primer are grouped together. ‘F’
suffix in the Primer Name denotes forward primer, which anneals to the antisense strand and promotes synthesis
of the sense strand. ‘R’ suffix in the Primer Name denotes reverse primer, which anneals to the sense strand
and promotes synthesis of the antisense strand. Primers used in this study are marked with an asterisk (*) and
those used in the RT phase are marked with **. Primers preferred in Regier Lab protocols are marked with a
cross (1) and those used in the RT phase are marked with 1. Oligonucleotide primer sequence is written 5’ to
3, irrespective of orientation in Figure 5 (i.e., reverse primers can be oriented by taking their reverse
complement). Underlined nucleotides mark sites of mismatch with the Manduca sexta DDC sequence
(GenBank accession U03909). Bases at these positions exhibit high variability across Lepidoptera in multiple
sequence alignments, so conflict with Manduca was not unexpected. Italicized bases indicate cases in which
degeneracy has been increased at that position in past primer orders (e.g., I substituted for N; N substituted for
B). Stricken 7.5sR primer contains an error (underlined).

Primer Primer  Position in
Name Sequence (5’ = 3%) Length  Figure5  Ref Note
*10F TTY AAR GAY TTY GCW AAR RCD ATG 24 1 2  a
"1InF ACI GAY TAY ATH RCI GAN T 19 25 5
MI1.1F G GAC TAY ATC GCG GAA TAT TTG G 23 27 5 b
) T 1LIvF B G)\YTAY ATY R_CR GAR TA 17 28 5
" Y¥12F GAR AAY ATY AGA GAY AGR CAR GT 33 49 s
S I4F TTT CAT GCT TAT TTT CCT ACT GC " """"23 211 1 e
T%17F T GCT ATT GCT TGT ATT GGT TTT ACT TGG AT 29 274 1
1 1.7sF GCH TGY ATY GGN TTY WCN TGG AT 23 280 4 d
1.7dF GCY TG! ATY GGW TTY ACY TGG AT 23 280 1
¥18R T CAT NAC NAC YTC IAR YTC IGT RCA 24 316 5
¥190sF ATG HTN GAY TGG YTV GGY CAR ATG 24 331 4
* 1.9dF ATG YTR GAY TGG YTR GGY CAR ATG 24 337 1
1.9°dF GAY TGG CTN GGN CAR ATG 18 343 2 e
$19sR  CAT YTG RCC BAR CCA RTC NAD CAT 24 337 (4]
*19dR CAT YTG RCC TAR CCA RTC YAR CAT 24 337 2
¥32sF TGG YTN CAY GTN GAY GCN GCN TAY GC 26 784 4
* 3.2dF TGG YTR CAY GTS GAY GCD GCY TAY GC 26 784 1 f
3.2dR TAR GC?I___(_;-CR TCS__@_(_:R TGY__J_\}_Q_C CA L ‘23 806 l“__
"¥33sF TTY AAY TTY AAY CCN CAY AAR TGG 247 874 [4]
3.3°F AAY TTY AAY CCN CAY AAR TGG 21 877 2 g
*t3.3sR CCA YTT RTG NGG RTT RAA RTT RAA 24 874 4
3.3R CCA YTT RTG NGG RTT RAA RTT 21 877 2
"#14sRGGD ATY TGC CAR TGH CKR TAR TC 23 1012 4
4ddR GGK ATY TGC CAR TGM CGR TAR TC 23 1012 1 h
"‘*4an GGE §TT TGC_W TGA CGR TAR TC 23 1012 1
" 70sRGTR AAN CGN GAR CAD ATN GC 20 1324 370
75R TCC CAR GAN ACR TGV ATR TC 20 1354 3
**1 7.5sR TCC CAN GAN ACR TGV ATR TC 20 1354 3 J
T5sR TCC CAN GAN ACR TGV TAR TC 20 1354 X
M13-21 TGT AAA ACG ACG GCC AGT 18 - =
M13-rev CAG GAA ACA GCT ATG ACC 18 = -
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Table 4 (continued)

IUPAC Ambiguity Codes: R=AG, Y=CT, M=AC, K=GT, S=CG, W=AT | H=ACT,
B=CGT, V=ACG, D=AGT | N=ACGT | I=inosine

‘Position in Figure 5’ denotes coordinate of the 5’ end of the primer relative to the sense
strand in the Manduca sexta DDC reference sequence shown in Figure 5; coordinate * 1’
corresponds to the 192nd nucleotide in the original GenBank accession U03909.

References. (1) Fang, et al. (1997); (2) Friedlander, et al.(1998); (3) Mitchell (1998); (4)
Mitchell, et al.(2000); (5) Regier Lab Optimized Protocols.

Notes:

(a) 1.0F primer nt15 (W) conflicts with G at position 206 in U03909.

(b) 1.1vF isthe least degenerate and most consistent version of this primer. Version
1.1nF (unknown author) includes an extra 3nt at the 5’ end and excludes 1nt at the 3’
end. Version M1.1F (unknown author) includes an extra 1nt at the 5’ end and 5nt at the
3’ end, and has five direct conflicts with U03909: G at primer nt1 with T at position
218; G'sat nt11& 13 with A’s at positions 228& 230; A at nt16 with G at position 233;
and T at nt20 with C at position 237.

(c) 1.4F isanchored at position 424 (3’ end), according to Table 2 (Fang 1997, p. 272).
In this orientation, T's at primer nt3,6,9& 15 conflict with C's at positions
404,407,410& 416 in U03909; and T’ s at primer nt18& 21 conflict with G’ s at positions
419& 422 in U03909.

(d) Version 1.7dF is nested entirely within 1.7F (6nt shorter on the 5 end) and
incorporates more degeneracy. Version 1.7sF isamore degenerate version of 1.7dF.

(e) Version 1.9sF retains apurine (V = C+R) at nt15, but R conflicts with C at position
542 in U03909. Isthis possibly acarryover error from version 1.9dF (Fang 1997)?
Version 1.9'dF (Friedlander 1998) is nested entirely within 1.9dF (6nt shorter on the 5
end) and dlightly more degenerate. Version 1.9sRC (Mitchell 2000) slightly increases
degeneracy at nt10,19& 21, relative to 1.9dRC.

(f) 3.2dRC isthe reverse complement of 3.2dF, excluding 3nt onthe 5 end (i.e., it ends
at nt997 in U03909).

(g9) Version 3.3sRC includes an additional 3nt on 3' end relative to 3.3RC (Friedlander
1998). Version 3.3sF is simply the reverse complement of 3.3sRC (Mitchell 2000), and
includes an additional 3nt on 5’ end relative to 3.3'F (Friedlander 1998).

(h) Version 4ddRC is adlightly more degenerate version of 4dnRC, but G or K at primer
nt3 in both 4dnRC and 4ddRC conflicts with the T complement at position 1223 in
U03909. Version 4sRC incorporates more degeneracy, and retains the keto (D = A+K)
at primer nt3 which does not complement with T at position 1223 in U039009.

(i) "Two additional DDC primers, allowing the amplification of an extra 312 bp or 342
bp of the 3-end of DDC, became available during this study. These primers are 7.0sRC
(5-GTR AAN CGN GAR CAD ATN GC-3) and 7.5sRC (5-TCC CAN GAN ACR
TGV ATR TC-3), respectively.” (Mitchell 1998, p. 77?)

() Version 7.5sRC replaces R with N at nt6 to slightly increase degeneracy relative to
7.5RC. Note that atypo in some versions of 7.5sRC switches AT to TA at primer nt16-
ntl7 (TCC CAN GAN ACR TGV TAR TC; unknown author).
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Table 5. Amplification strategies for DDC employed (a) in this study and (b) in the Regier Lab. Primers
are grouped into pairs generating overlapping fragments which have been successfully assembled to obtain
continuous sequence for DDC. Primer pairs used in RT-PCR and nested PCR phases of amplification are
indicated separately. ‘Fragment Size’ indicates the amplicon size for each primer pair along with amplicon
abbreviation in parentheses, where a naming convention has been established. Table 4 describes all other
notations and presents more detailed information about individual DDC primers.

(a) Primer pairs employed in this study

Primer Primer  Position in Fragment
Name Sequence (5° = 3?) Length  Figure5  Ref Size
. RI-PCR Amplification
1.0F TTY AAR GAY TTY GCW AAR RCD ATG 24 1 2 1373

7.5sR  CAT YTG RCC BAR CCA RTC NAD CAT 24 1354 [4 "7
~ 1.0F TTY AAR GAY TTY GCW AAR RCD ATG 24 1 2 1034
4dnR GGG ATT TGC CAR TGA CGR TAR TC 23 1012 1 """
'32dF TGG YTR CAY GTS GAY GCD GCY TAY GC 26 784 1 —~
7.5sR TCC CAN GAN ACR TGV ATR TC 20 1354 3
____________________________________________________ Nested PCR Reamplification
1.0F TTY AAR GAY TTY GCW AAR RCD ATG 24 1 2 360 (X)
1.9dR CAT YTG RCC TAR CCA RTC YAR CAT 24 337 2 WM
"17F T GCT ATT GCT TGT ATT GGT TTT ACT TGG AT 29 274 1 624 (Y)
33sR__ _CCA YTT RTG NGG RTT RAA RTT RAA 24 874 4 ™" "7
""32dF TGG YTR CAY GTS GAY GCD GCY TAY GC 26 784 1" ego @
7.5sR _TCC CAN GAN ACR TGV ATRTC = 20 1354 3 “""%%
"1.9dF ATG YTR GAY TGG YTR GGY CAR ATG 24 337 1 e W)
4sR  GGD ATY TGC CAR TGH CKR TAR TC 23 1012 4
(b) Primer pairs employed in Regier Lab protocols
Primer Primer  Position in Fragment
Name Sequence (5’ = 3%) Length  Figure5  Ref Size
T L o e
1.1vF GAY TAY ATY RCR GAR TA 17 28 5 333 (A)
1.9sR CAT YTG RCC BAR CCA RTC NAD CAT . 24 . 37 . (4
"17sF T GCH TGY ATY GGN TTY WCN TGG AT 23 280 H—— ®)
4sR _GGD ATY TGC CAR TGH CKR TARTC 23 1012 4  """"7
""'326F TGG YTN CAY GTN GAY GCN GCN TAY GC 26 784 4 o ©
7.5sR TCC CAN GAN ACR TGV ATR TC 20 1354 3
... Nested PCR Reamplification
1.IvF  GAY TAY ATY RCR GAR TA 17 28 5 312 (2)
1.8R CAT NAC NAC YTC IAR YTC IGTRCAZ43165
"1.7sF GCH TGY ATY GGN TTY WCN TGG AT 23 280 4 618 (y)
3.3sR CCA YTT RTG NGG RTT RAA RTT RAA 24 874 . s S
““““ 1.9sF ATG HTN GAY TGG YTV GGY CAR ATG 24 337 4 698 (w)
4sR  GGD ATY TGC CAR TGH CKR TAR TC 23 1012 4 TV
33sF TTY AAY TTY AAY CCN CAY AAR TGG 24 874 (41 500 -
7.55R TCC CAN GAN ACR TGV ATR TC 20 1354 3

IUPAC Ambiguity Codes: R=AG, Y=CT, M=AC, K=GT, S=CG, W=AT | H=ACT, B=CGT, V=ACG, D=AGT
| N=ACGT | I=inosine
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Table 6. RT-PCR and Nested PCR reaction conditions. Composition of individual
reverse transcription (RT) reactions and subsequent polymerase chain reactions (PCR) is
presented in (a) and (b), respectively. Concentration of stock components, volume of that
stock added to asingle reaction, and the resulting final component concentration in each
reaction is given separately for each gene. RT thermal cycling conditions were identical
for both genes and consisted of a 42C incubation for 35 minutes followed by a 99C
incubation for 5 minutes. Touchdown thermal cycling parameters used in the PCR
portion of these RT-PCR reactions were also identical for both genes, and are presented
in (c). Composition of individual Nested PCR reactions and thermal cycling conditions
are presented separately for each genein (d) and (e), respectively.

(a) Composition of RT reactions

EF DDC
Component [stock] Volume [reaction] Volume [reaction]
MgCl, 25mM 2.0uL 5SmM 2.0uL 5mM
dNTP 10mM ea 2.0uL 2mM ea 2.0uL 2mM ea
PCR Buffer 10X 1.0uL 1X 1.0uL 1X
RT primer 20uM 1.0uL 2uM 1.5uL 3uM
RNase Inhibitor 20U/uL 0.5uL 1U/uL 0.5uL 1U/uL
Reverse Transcriptase  50U/uL 0.5uL 2.5U/uL 0.5uL 2.5U/uL
Purified Water - 2.9uL - 2.0uL -
Nucleic Acid extract - 0.1uL - 0.5uL -
total RT reaction 10.0uL 10.0uL
(b) Composition of PCR reactions
EF DDC
Component [stock] Volume [reaction] Volume [reaction]
MgCl, 25mM 3.0uL 2.5mM 4.0uL 3mM
PCR Buffer 10X 4.0uL 1X 4.0uL 1X
forward primer 20uM 1.25uL 0.5uM 2.5uL 1uM
reverse primer 20uM 0.5uL 0.6uM 1.25uL 0.9uM
AmpliTag DNA Polymerase  5U/uL 0.5uL  0.05U/uL 0.5uL  0.05U/uL
with TagStart Antibody 7uM 0.07uM 0.07uM
Purified Water - 30.75uL - 27.75uL -
RT reaction contents - 10uL - 10uL -
total RT reaction 50.0uL 50.0uL
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Table 6. (continued)

(c) Touchdown PCR thermal cycling parameters

first 25X cycles last 13X cycles
Phase Temp (°C) Time (sec) Temp (°C) Time (sec)
Denaturation 9 30 9 30
. 55
Annealing (-0.4/cycle) 30 45 30
. 60 120
Extension 2 Goleyde) 2 (43lcyde)
(d) Composition of nested PCR reactions
EF or DDC
Component [stock] Volume [reaction]
MgCl, 25 mM 4.0uL 2.0mM
PCR Buffer 10X 5.0uL 1X
dNTP 10mM (each) 1.0uL  0.2mM (each)
forward primer 20uM 1.25uL 0.5uM
reverse primer 20uM 1.25uL 0.5uM
AmpliTag DNA Polymerase 5U/uL 0.5uL 0.05U/uL
with TagStart Antibody 7uM 0.07uM
Purified Water - 36uL -
gel pure RT-PCR template - 1.0uL -
total RT reaction 50.0uL
(e) Nested PCR thermal cycling parameters
EF DDC
22X cycles 22X cycles
Phase Temp (°C) Time (sec) Temp (°C) Time (sec)
Denaturation 9 30 9 30
Annealing 60 30 50 30
. 60 60
Extension 72 (+2/cycle) 72 (+2/cydle)
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Table7. Survey of GenBank accessionsfor EF and DDC across L epidoptera.
Number of hits recovered from various search strings requesting (a) EF or (b) DDC
sequences for al Lepidopterain the NCBI GenBank Nucleotides Database, entered into
the Entrez Search Engine on 06 April 2004. General format of each search string was
“<gene> AND <taxon>[organism]”. Distribution of hits across Superfamilies, Families
and Generaindicates the range of taxonomic diversity recovered from each search string.
Compiling results from several searches results in a more exhaustive exploration of

database contents.

(a) GenBank hitsto EF in Lepidoptera

Search String Hits Superfamilies Families Genera
"elongat* AND lepidopt*[organism]" 419 9 20 248
"elong* fact* AND lepidopt*[organism]" 417 9 20 247
"EF AND lepidopt*[organism]" 259 9 17 184

(b) GenBank hitsto DDC in Lepidoptera

Search String Hits Superfamilies Families Genera
"dopa AND lepidopt* [organism]” 238 13 26 150
"decarboxylas* AND lepidopt*[organism]" 237 10 25 148
"dopa decarb* AND lepidopt*[organism]" 234 10 25 148
"DDC AND lepidopt*[organism]" 133 3 8 81
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Table 8. (continued)
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Table 10. New Sphingidae specimens. Novel material (350 specimens) collected

expressly for this study was accessioned into the University of Maryland Lepidoptera

Collections and is available for molecular sequence data collection (see Figures 2 and 3).

Number of specimens and their distribution across taxonomic levels was tabulated for

each collector.
Collector Series Subfamilies Genera Species Specimens
JamesK. Adams JKA-02 3 11 19 21
CharlesW. Bordelon CWB-02 3 8 12 28
David Boucher DB-03 2 4 4 4
John DeBenedictis JAD-02 2 2 2 4
lan J. Kitching 1JK-02&03 3 32 58 99
Daniel H. Janzen DHJ02 3 9 18 30
William J. Kelly WJIK-02&03 3 16 37 42
Peter J. Landolt PJL-02 1 2 2 6
AndreA. Mignault  AAM-02 1 3 3 21
CharlesW. Mitter CWM-02 1 1 1 1
MarcelaMore MM-03 2 7 13 17
Mogens C. Nielsen MCN-03 3 4 5 5
James Oberfoell JO-03 2 3 3 5
Richard S. Peigler RSP-02 1 1 1 1
D. Craig Rudolph DCR-02 2 7 9 14
Glen Smart GS-02 3 10 14 19
James P. Tuttle JPT-02 3 10 18 20
J. Bruce Walsh JBW-02 3 8 10 13
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Table 11 Distribution of EF and DDC sequence accessions in GenBank across Lepidoptera. Search strings querying EF
and DDC sequences across Lepidoptera were submitted tot he Entrez Browser in the NCBI GenBank Nucleotides Database on 06
April 2004 (see Table 7). Hits to these queries are plotted separately for each gene across all families in a classification of
Lepidoptera [Hexapoda: Ectognatha(Insecta): Dicondylia: Pterygota: Neoptera: Holometabola(Endopterygota): Panorpoidea:
Amphiesmenoptera] compiled from Borror 1989, Wagner 2001, Amett 2000, Kristensen 1999, Scoble 1992. Raw and cumulative
numbers of described species per superfamily and family are also included to provide diversity measures.

# SUPERFAMILY spp % cum cum% Family spp Common Name EF DDC
Zeugloptera
I MICROPTERIGOIDEA 121 0.07 121 0.07  Micropterigidae 121 mandibulate archaic moths L2]2
Aglossata
2 AGATHIPHAGOIDEA 2 0.00 123 0.07  Agathiphagidae 2 kauri moths 1
Heterobathmiina
3 HETEROBATHMIOIDEA 9 0.01 132 0.07  Heterobathmiidae 9 valdivian archaic moths | |
Glossata
4 ERIOCRANIOIDEA 24 0.01 156 0.09 Eriocraniidae 24 sparkling archaic sun moths | | 2
Glossata>Coelolepida
5 ACANTHOPTEROCTETOIDEA 5 000161 0.09__ Acanthopteroctetidae___5___archaic sun moths
6 LOPHOCORONOIDEA 6 0.00 167 0.09 Lophocoronidae 6 australian archaic sun moths | I
Glossata>Coelolepida>Myoglossata
7 NEOPSEUSTOIDEA 11 0.01 178 0.10  Neopseustidae 11 archaic bell moths | [ |
8§  HEPIALOIDEA 569 032 747 042  Anomosetidae | australian primitive ghost moths
Hepialidae 550  ghost moths & swifts 2
Neotheoridae 1 amazonian primitive ghost moths
Palaeosetidae 8 miniature ghost moths
P idae 9 african primitive ghost moths
9  MNESARCHAEOIDEA 14 0.01 761 043 Mnesarchaeidae 14 new zealand primitive moths
Glossata>C tera>Heteroneura
10 NEPTICULOIDEA 902 0.51 1,663 093  Nepticulidae 800  leaf miners & pygmy moths !
O g 102  eye-cap moths 1
11 INCURVARIOIDEA 594 033 2257 127 Adelidae 300 long-homed fairy moths 3
Cecidosidae 7 gall moths 2
Crinopterygidae I
Heliozelidae 106  shield bearers & leaf miners 2
Incurvariidae 100 leaf-cutter moths 1
Pr 80 yucca moths 7
12 PALAEPHATOIDEA 60 0.03 2,317 1.30  Palaephatid: 60 gond land moths 1
13 TISCHERIOIDEA BO 0.04 2,397 1.35  Tischeriidae 80  apple-leaf trumpet miners 2
Glossata>C ida=M: =N era>Heteroneura=>Dit
14 SIMAETHISTOIDEA 4 0.00 2,401 1.35  Simaethistidae 4
15 TINEOIDEA 4,350 245 6,751 379  Acrolophidae 270 tube moths
Arrhenophanidae §  tropical lattice moths
Eriocottidae 71 old world spiny-winged moths
Lypusidae 1
Psychidae 1,000 bag worm moths 1
Tineldae 3,000 fungus & clothes moths 2
16 GELECHIOIDEA 16,631 9.35 23382 13.14  Amphisbatidae 65
Autostichidae 308
Batrachedridae 100
Chimabachidae 6
Coleophoridae 1,418 casebearer moths
Cosmopterigidae 1,628 cosmet moths
Deoclonidae 4
Elachistidae 3,270 grass miner moths
Gelechiidae 4,530  twirler moths
Glyphidoceridae 50
Lecithoceridae 875  tropical longhomed moths
Oecophoridae 3,150 concealer moths
Peleopodidae 25
Schistonoeidae 2
Xyloryctidae 1,200
17 GRACILLARIOIDEA 2316 130 25,698 1444 Bucculatricidae 250  ribbed coccoon-maker moths
Douglasiidae 26  douglas moths
Gracillariidae 2,000 leaf miner moths 1
Roeslerstammiidae 40
18 YPONOMEUTOIDEA 1,869 1.05 27,567 1549  Acrolepiidae 95  false diamond-back moths
Bedelliidae 18
Glyphipterygidae 390  sedge moths
Heliodinidae 55  sunmoths
Lyonetiidae 210 lyonet moths
Plutellidae 380  diamond-back moths
Yponomeutidae 591  ermine moths
‘Ypsolophidae 130
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Table 11. (continued)

Gl Y Yy D ysia
19 ALUCITOIDEA 164 0.09 27,731 15.59  Alucitidae 146 many-plumed moths
Tineodid 18 false plume moths
20 PTEROPHOROIDEA 986 0.55 28,717 16.14 _ Pterophoridae 986  plume moths
2] CHOREUTOIDEA 415 0.23 29,132 16.37 _ Choreutidae 415  metalmark moths
22 COSSOIDEA 676 0.38 29,808 16.75 Cossidae 670  carpenter & goat moths
Dudgeoneidae 6 dudgeon carpenter worm moths
23 SESIOIDEA 1,372 0.77 31,180 17.53  Brachodidae 100 little bear moths
Castniidae 137  giant butterfly moths
Sesiid 1,135  clearwing moths
24 ZYGAENOIDEA 2,783 1.56 33,963 19.09 Aididae 6
Anomoeotidae 40
Cyclotornidae 12 australian parasite moths
Dalceridae 50 tropical slug caterpillar moths
Epipyropidae 55  planthopper parasite moths
Heterogynidae 10  mediterranean burnet moths
Himantopteridae 40  long-tailed burnet moths
Lacturidae 125  tropical burnet moths
Limacodidae 1,080 slug & saddleback caterpillar moths
Megalopygidae 265 flannel moths
Somabrachyidae 2 mediterranean flannel moths
Zy id. 1,100 smoky moths & burnets
25 EPERMENIOIDEA 83 0.05 34,046 19.14  Epermeniid 83  fringe-tufted moths
26  GALACTICOIDEA 17 0.01 34,063 19.15  Galacticidae 17
27  SCHRECKENSTEINIOIDEA 5 0.00 34,068 19.15  Schr 5 bristle-legged moths
28 TORTRICOIDEA 8,000 4.50 42,068 23.65 Tortricidae 8,000 leafroller moths
29 URODOIDEA 80 0.04 42,148 23.69 Urodidae 80 false burnet moths
G! ysia>Apoditrysia
30 COPROMORPHOIDEA 330 0.19 42,478 23.88  Carposinidae 275  fruitworm moths
Copromorphidae 55 tropical fruitworm moths
31 HYBLAEOIDEA 18 0.01 42,496 23.89  Hyblaeidae 18 teak moths
32 IMMOIDEA 246 0.14 42,742 24.02  Immid 246 imma moths
33 PYRALOIDEA 17,763 9.98 60,505 3401 Crambidae 11,630 close-wings & grassmoths
Pyralidae 6,133 snout & grass moths 27 1
34 THYRIDOIDEA 760 0.43 61,265 34.44  Thyrididae 760  picture-winged leaf moths
35 WHALLEYANOIDEA 2 0.00 61,267 3444 Whalleyanidae 2
Gl >C yogl oneura>Ditry. P ysia: a
36 BOMBYCOIDEA 3,553 2.00 64,820 36.43 Bombycidae 350  silkworm moths 4 3
Brahmaeidae 20  brahmin moths 2 2
Carthaeidae 1 australian silkworm moths
Endromidae 1 glory moths 1
Eupterotidae 300 giant lappet moths
Lemoniidae 20  autumn silkworm moths 1
Mirinidae 2
Saturniidae 1,590 emperor & giant silkworm moths 76 | 53
Sphingid. 1,269 hawk, hormworm & sphinx moths 29 | 18
37  LASIOCAMPOIDEA 2,125 1.19 66,945 37.63 Anthelidae 75  australian lappet moths
Lasi pid 2,050 tent caterpillars & lappet moths 13
38  MIMALLONOIDEA 255 0.14 67,200  37.77 _Mimal 255  sack-bearer moths
39 NOCTUOIDEA 70,000 39.35 137,200 77.12  Arctiidae 11,000 tiger, footman & wasp moths 4 4
Ctenuchidae ? wasp moths
Doidae 2
Lymantriidae 2,500 tussock & gypsy moths 3 3
Noctuidae 35,000 dagger, owlet & forester moths 81 | 91
Nolidae ?
Notodontidae 2,800 prominent moths 6 5
Oenosandridae ?
Pantheid. 2
40 DREPANOIDEA 815 0.46 138,015 77.58 Drepanidae 790  hook-tip moths
Epicopeiid: 25 oriental swallowtail moths
41 GEOMETROIDEA 21,740 12.22 159,755 89.79 Geometridae 21,000 measuringworms, cankerworms 1
Sematuridae 40  american swallowtail moths
Uraniidae 700  swallowtail moths
42  AXIOIDEA 6 0.00 159,761 89.80 Axiidae 6 gold moths
43 CALLIDULOIDEA 60 0.03 159,821 89.83  Callidulid: 60 old world butterfly moths
44 HEDYLOIDEA 40 0.02 159,861 89.85 Hedylidae 40 american butterfly moths 1
45 HESPERIOIDEA 3,675 2.07 163,536 91.92  Hesperiidae 3,675 skippers 3
46  PAPILIONOIDEA 14,375 8.08 177911  100.00 Lycaenidae 6,575 blues, coppers, hairstreaks 2
Nymphalidae 6,000 fritillaries,ch atyrs 106 | 27
Papilionidae 575  swallowtails & parnassians 41 1
Pieridae 1,225 yellow-white & orange-tips, sulfurs 16
total no. species total no. species EF _DDC

(superfamily estimates) : 177,911

(family estimates) : 151,411

total GenBank hits :
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Table 12. Summary of character information content and nucleotide composition in data matrices
by gene, taxon set and partition. For the (a) EF, (b) DDC and (c) EF&DDC combined data matrices,
the number (‘chars’) and percentage (‘%’) of invariant, autapomorphic and parsimony informative amino
acid and nucleotide characters is tabulated for each partition across four taxon sets: (i) all Lepidoptera, (ii)

all Bombycoidea, (iii) all Sphingidae and (iv) shared Sphingidae (n=64) along with Bombycidae and

Saturniini outgroups. Mean nucleotide base frequencies for each partition were calculated in PAUP* and

are adjusted for missing data. Complete empirical nucleotide base composition for every ingroup and

outgroup sequence is available in Tables 15 and 16, respectively.

(a) EF: Elongation Factor 1-alpha (1,228nt; 409aa)

INVARIANT AUTAP PARS INF BASE FREQUENCIES (%)

TAXON SET PART TOTAL  chars % chars % chars % A C G T

(i) Lepidoptera aa 409 359 87.8% 29 7.1% 21 5.1%

ntax=118 ntall 1,228 776  63.2% 59 4.8% 393 32.0% 25.26 2852 25.10 21.12
ntl 409 361 88.3% 18 4.4% 30 7.3% 29.03 1837 37.73 14.86
nt2 409 379 92.7% 19 4.6% 11 2.7% 3247 2500 1580 26.73
nt3 410 36 8.8% 22 5.4% 352 85.9% 1428 42.18 21.79 21.76

(ii) Bombycoidea aa 409 384 93.9% 11 2.7% 14 3.4%

ntax=82 ntall 1,228 830 67.6% 49 4.0% 349  28.4% 25.14 2880 2526 20.80
ntl 409 376 91.9% 10 2.4% 23 5.6% 29.03 1840 37.60 14.96
nt2 409 396 96.8% 7 1.7% 6 1.5% 32.51 25.00 15.84 26.65
nt3 410 58 14.1% 32 7.8% 320 78.0% 13.87 4299 2236 20.78

(iiii) Sphingidae aa 409 393 96.1% 5  1.2% 1 27%

ntax=67 ntall 1,228 890 72.5% 69 5.6% 269 21.9% 24.78 2935 2548 20.39
ntl 409 388  94.9% 4 1.0% 17 4.2% 29.03 1843 37.61 1494
nt2 409 401 98.0% 3 0.7% 5 1.2% 32,52 25.01 15.84 26.63
nt3 410 101  24.6% 62 15.1% 247  60.2% 12.79 4461 23.01 19.59

(iv) Sphingidae aa 409 391 95.6% i/ 1.7% 11 2.7%

&20G ntall 1,228 871 70.9% 70 5.7% 287 23.4% 24.85 29.28 2541 20.46

ntax=66 ntl 409 386 94.4% 6 1.5% 17 4.2% 29.03 1843 37.58 14.96
nt2 409 399  97.6% 5 1.2% S 1.2% 32.53 25.03 15.83 26.61
nt3 410 86 21.0% 59 14.4% 265 64.6% 13.00 4437 22.84 19.80

(b) DDC: Dopa Decarboxylase (1,329nt; 443aa)

INVARIANT AUTAP PARS INF BASE FREQUENCIES (%)

TAXON SET PART TOTAL  chars % chars % chars % A C G T

(i) Lepidoptera aa 443 256 57.8% 57 12.9% 130  29.3%

ntax=105 ntall 1,329 599 45.1% 81 6.1% 649 48.8% 2499 23.09 2579 26.13
ntl 443 251  56.7% 42 9.5% 150 33.9% 2233 22.03 3538 20.26
nt2 443 330 74.5% 37 8.4% 76 17.2% 29.15 21.7 19.72 29.43
nt3 443 18 4.1% 2 0.5% 423 95.5% 235 2555 2227 28.68
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Table 12. (continued)

Table 12. (continued)
(ii) Bombycoidea aa 443 305 68.8% 40 9.0% 98 22.1%
ntax=73 ntall 1,329 693 52.1% 60 4.5% 576 43.3%  25.55 2245 2524 26.76

ntl 443 302 68.2% 36 8.1% 105  23.7% 22.85 2196 34.67 2053
nt2 443 372 84.0% 22 5.0% 49 11.1% 29.21 2139 19.76 29.65

nt3 443 19 4.3% 2 05% 422 953% 246 24 2128 30.12
(iii) Sphingidae aa 443 329 743% 29 6.5% 85  19.2%
ntax=65 ntall 1,329 736 554% 49  3.7% 544 40.9% 2548 22.51 2521 26.80

ntl 443 326 73.6% 26 5.9% 91  20.5% 22.88 2199 34.56 20.58
nt2 443 391 88.3% 17 3.8% 35 7.9% 29.15 2147 19.73 29.66

nt3 443 19 43% 6 1.4% 418 94.4% 2442 2406 21.34 30.18

(iv) Sphingidae aa 443 315 71.1% 37 84% 91  20.5%
&20G ntall 1,329 711 53.5% 61 4.6% 557 41.9% 2546 2250 2523 26.81
ntax=66 ntl 443 313 70.7% 35 7.9% 95 21.4%  22.84 2201 3457 20.57
nt2 443 379  85.6% 23 52% 41 9.3% 29.16 2144 19.73 29.67
nt3 443 19  43% 3 0.7% 421  95.0% 2438 24.04 2138 30.20

(c) EF&DDC: Combined Data (2,557nt; 852aa)

INVARIANT AUTAP PARS INF BASE FREQUENCIES (%)
TAXON SET PART TOTAL  chars % chars % chars % A & G T
(i) Lepidoptera aa 852 651 76.4% 76 8.9% 125  14.7%
ntax=91 ntall 2,557 1449 56.7% 148  5.8% 9260 37.5% 25.19 26.01 2530 23.51

ntl 852 646 758% S8  6.8% 148 174% 2597 2006 3641 17.56
nt2 852 736 864% 53 6.2% 63 74% 3099 2340 17.63 27.99
nt3 853 67  7.9% 37 43% 749 87.8%  18.61 3457 21.85 24.97

(i) Bombycoidea  aa 852 695 81.6% 47  5.5% 110 12.9%

ntax=72 ntall 2,557 1546 60.5% 108 4.2% 903 353% 2528 2579 2527 23.66
ntl 852 687 80.6% 42  4.9% 123 144% 2597 2017 36.16 17.71
nt2 852 770 904% = 28  3.3% 54 63% 3089 2322 17.77 28.13
nt3 853 89  [04% 38  45% 726 851% 1899 3397 2191 25.13

(iii) Sphingidae aa 852 723 849% 33 3.9% 9% 11.3%

ntax=64 ntall 2,557 1630 63.7% 116 45% 811 31.7% 2512 2595 2535 23.59
ntl 852 716 84.0% 29  3.4% 107 12.6% 2593 2023 3607 17.77
n2 852 792 93.0% = 20  2.3% 40  47% 3084 2324 1779 28.14
nt3 853 122 143% 67 79% 664 77.8%  18.57 3439 2220 24.84

(iv) Sphingidae aa 852 706 82.9% 44 5.2% 102 12.0%
&20G ntall 2,557 1582 61.9% 131 51% 844  33.0% 25.16 25.88 2532 23.65
ntax=66 ntl 852 699  82.0% 41 4.8% 112 13.1% 2592 2023 36.07 17.78

nt2 852 778 91.3% 28 3.3% 46 5.4% 30.83 2323 17.79 28.15
nt3 853 105 12.3% 62 7.3% 686 80.4% 18.71 34.18 22.11 25.00
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Table 13. (continued)
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Table 14. Amino acid alignment for DDC. All variable positions from the complete 443 amino acid DDC matrix are presented across all 40 outgroup taxa and 65 ingroup taxa. The

d;

amino acid seq of M

sexta (ob

5

ined by ptual i

sexta

indicates identity with the M

Lepidoptera. ‘? designates a missing amino acid, at residues for which missing

of GenBank Nucleotides accession number U03909) was used as the standard sequence for alignment. A ‘.’
at a particular residue. Honzontal lines separate taxa into three blocks: Sphmg1dae other Bombycoidea and all other

de data (‘N’) p
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Table 14. (continued)

Amino Acid Position in DDC Matrix
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Table 17. Empirical pairwise distance matrix for EF data. Ui

distances tabulated separately for each codon posit

Values in each cell below the diagonal are nucleotide
obtained after conceptual translation of nucleotide data.

15) are separated from other Lepidoptera by a line after taxon #82 (Saturniini).
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Table 17. (continued)
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Table 18. Empirical pairwise distance matrix for DDC data. Uncorrected pairwise distances are reported for every comparison of the 1,329bp DDC sequences across the 105 taxon EF data matrix. Values in each cell below the
diagonal are nucleotide distances tabulated separately for each codon position, in the format ‘nt1.nt2.nt3". Values above the diagonal are amino acid distances calculated from the comparisons of the 443 residue sequences obtained
after conceptual translation of nucleotide data. Intra-Sphingidae comparisons (ntax=65) are boxed in the upper left quadrant of the matrix. Intra-Bombycoidea comparisons (ntax=8) are separated from other Lepidoptera by a line
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= 98 Pantheinse 285137 309146 287.147 319144 319145 327.155 296139 206142 308151 275131 2912139 307140 295145 30.11.145 306.142 62

T 99 Papilionidae 50.48 1046 1046 5150 4044 1040 3148 4050 3042 3045

£ 100 Phalerinae 22 33.12.127 3915122 39.15.122 4 32

S 101 Prodoxinae 44 42.15.151 51

S 102 Psychidae 43 40.14.152 38, 145

§ 103 Stictopterinae 51 31 141

S 104 Tineidse 25 33.15.139 3:.62_ 146 39.19.129 39, 34.16.137 35.20.149 37.20.152 35.20.147 36.18.128 33 16,147 33.16.144 38.18.135 3815139 37.18.139 36.1

105 Tischerioidea we::a 36.16.144 40.12.153 44.12155 39.18.148 37.16.139 38.14.152 43.14.147 4318.142 ﬁ:o.b 4515153 39.17.152 38.17.148 43.15.142 37.16.145 BN_ 147 37.14.152 38.16.142 37.14.158 40.16.149 4218.161 41.14.155 38.17.152 38.17.147 38.17.150 37.17.153 43.16.154 43.16.155 35.14.148 38.14.141 38.16.148 40.15.147
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Table 18. (continued)

a1 38 39 “© 4 42 ) “ 45 a1 4 4 50 51 52 54 55 6 51 59 60 61 62 63 64 65
13 13 19 20 13 2 Fa) ] 29 25 13 El 30 20 14 25 9 i 16 F3) 31 31 2 % S 34
18 19 2 21 15 18 2 2 29 16 17 32 12 21 2 16 1 2 22 21 2 38 33 37 29 37 40
38 37 39 a7 2 37 41 10 15 3 37 12 43 35 37 £ 21 3 41 E3 12 28 2% 2 15 2% 28
19 20 21 19 18 20 2 3 4 14 19 5 19 20 21 1 19 21 22 19 13 19 i 14 16 17 18
7 7 14 14 10 20 17 32 28 21 7 32 24 17 10 19 5 7 10 9 21 3 30 2 2 32 3
19 18 2 20 10 10 23 32 2 18 17 32 18 23 17 16 10 19 20 19 19 3 29 29 3 29 £
37 £ £ 36 25 33 39 2% 19 33 35 28 38 39 35 35 22 35 3% 33 13 8 18 1 6 ] )
31 £ 3 31 20 29 36 9 5 25 30 13 u 30 30 25 17 3 35 30 12 21 18 22 16 22 2
40 39 41 41 31 4 a5 2 28 40 39 32 45 32 3* 40 2 37 40 38 21 s 2 35 23 35 37
40 39 a1 4 31 4 45 29 28 40 39 2 45 32 36 40 2 37 40 38 21 3 29 35 23 35 37
40 39 a1 40 2 38 4 27 28 33 39 24 40 35 37 33 22 40 42 a1 21 39 31 37 £ 39 41
7 5 12 10 15 18 19 £ 28 24 5 £ < 2 12 2 4 9 8 7 25 3 33 29 25 31 2
5 5 1 9 13 18 17 3 28 21 3 £ 20 2 10 20 4 6 7 6 25 0 0 27 24 2 31
15 17 21 21 18 2 10 3% 33 2 16 £ 21 £ 21 20 13 17 17 18 21 2 3 32 3 32 2
28 27 2 £ 2 32 0 2 2% 2 27 2 33 2 27 27 21 27 2 2 13 2 2 18 13 22 24
35 o 38 37 £ 35 37 2 24 39 £l 31 42 £ 38 37 2% 37 £l u 18 2 20 21 16 20 2
3 32 32 32 2 u 3 27 2 u 0 2 39 £ 31 35 2 33 u 31 3 [ 16 5 3 s 2
2 2 2 2 25 2 25 17 i 21 2 19 2 23 2 2 2 2 2% 24 12 10 4 9 9 8 9
£l £ u EJ 27 Ed 35 2 2 35 3 31 41 37 ES) a7 % 32 £ ES) 17 4 17 13 8 12 1
15 " 1 1" 17 22 2 £ 29 2 13 36 % 29 16 2 12 16 15 14 2 30 2 29 2 2 31
38 a7 a7 37 27 35 3 28 2 33 37 27 40 37 38 31 24 38 40 38 14 2 16 27 17 2 %
35 u 35 33 20 33 38 19 12 31 2 19 35 3* u 31 2 3% 38 3 14 27 25 2 18 2 21
£ 33 32 34 25 30 32 23 21 2% 3 k< ¥ 31 35 2% 2 £ £ 3 12 18 9 3 18 20 2
22 2 2 22 20 21 21 12 14 13 2 12 21 19 24 i 2 22 2 2% 1 15 7 16 17 14 15
32 31 £l 2 28 30 21 19 2 31 21 35 29 33 2% 2 32 u 3 1 18 7 21 17 18 2
4 6 " 13 20 15 33 29 20 5 u 19 21 12 20 3 7 7 6 2 u 3 31 24 33 £
31 33 20 31 k2 21 20 25 30 18 3 27 28 2 18 31 33 32 14 29 21 27 2 29 31
18 20 17 19 20 9 12 13 7 17 16 18 " 18 18 19 20 i 23 " 17 2 20 21
38 35 27 36 39 31 2 38 B 41 39 £l 40 % a7 38 35 15 12 21 1 6 8 10
1 15 13 13 16 3 26 19 3 17 2% 15 19 9 15 15 14 22 33 £ 31 2% 31 s
0 30 2 31 32 28 22 3 30 37 3 33 21 2 30 27 15 8 17 s 4 4 3
3 32 2% 31 35 2 19 3 27 37 33 35 21 32 33 30 13 10 14 7 6 5 7
17 20 19 19 23 7 4 15 9 20 2 17 18 2 21 18 15 18 15 16 17 17 18
1 24 " 18 2 2 27 8 27 15 2% 8 10 21 22 21 17 40 31 38 25 38 41
5 16 4 20 18 35 30 2 35 22 2 3 5 5 8 25 35 o 31 2% 33 35
30 25 32 30 22 19 u E<} 37 31 31 21 £ 32 13 15 16 1 13 15 17
12 19 15 % 2 20 u 17 22 20 3 6 7 23 3 3 31 2 33 35
g 18 17 35 28 21 35 20 21 5 8 7 24 3 2 o 25 2 u

22 21 35 31 23 35 25 22 10 15 12 23 u 3 £ z 2 u

18 21 35 29 22 35 22 20 8 15 12 £ 3% 3 £ 2 32 u

14 19 21 19 10 21 15 10 13 12 14 19 28 2 2 2 24 25

< u 27 18 3 18 18 " 21 2 22 £ 28 3 2% 32 3

35 23 35 2 2 1" 17 17 20 35 31 3 27 £ 3%

28 4 2% 19 »u *® 1 21 20 24 16 2% £

. 27 13 27 16 31 3 13 21 18 20 15 20 2

27 5 " 18 18 15 32 26 2 22 2 u

28 6 13 2 2 4 u 27 * 22 u *

1517 35 21 2 8 7 23 33 32 29 E 31 32

2% 19 u £ 1 29 20 2 18 2 32

17 " E<d 2 23 38 37 39 28 3 41

. 24 i 2 24 20 37 29 33 27 £ 37

5126 2712203 27.3203 19 9 9 12 21 33 32 2 23 31 33

166110 11388 11878 122110 - 1 13 13 14 16 2 16 21 2% 2 2

214.163 2511193 214171 188161 161201 1.1.11 12 2 2 15 £ 27 35 25 £ 38
196,113 177111 104107 157.111 5365 93103 82106 5 5 23 25 3 21 25 2 2
20.7.161 2615194 246,194 24.10.196 95132 154.188 7 32 ) 30 24 2 u
227185 28.16.190 227.192 3 36 35 31 2 3 35
2. 2514197 235.188 . 33 £ 28 21 0 32
13294 245105 1 17 " 15

12 8 9 10

18 1" 15 19

6 6 6

2228 --- 3 4

178114 5550 3015 - 6

159.111

5223149 50.23.147 5024153 51.26.148 5327.149 54.27.152 53.26.145 :ﬁ;. 50.23.148 46.24.150 48.21.148 50.
47.24.142 50.26.147 50. 51.27.147 50,

36.13.134 33.11.130
298137 238130

26.12.133 27.12.133 2912135 29.13.136 27.13.145 26.
279123 289.124 3012139 29.1

29.10.130 33.12.142
237128 289.148
35.13.134 39.13.143
244148 276145
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Table 18. (continued)

6 70 4l 72 73 74 5 76 ” 82 83 84 85 86 o7 88 8 % 9 92 93 9 95 % o1 9% 9 100 101 102 103 104
51 3 29 ko 52 40 21 2 25 24 52 2 2 45 44 26 22 60 3 28 29 27 32 27 39 28 2 B 46 40 2 35
50 31 27 29 53 38 2 2 20 2 a8 2 20 44 40 27 21 61 2 % 2 21 29 2 37 24 1 2 39 0 19 £
50 £ 27 27 50 37 25 25 2 27 46 29 % 38 38 0 24 62 0 2 2 2 £ 2 a7 24 [ 31 39 3 24 a7
3 2 2% 2 28 37 23 2 22 25 47 30 24 38 36 0 22 60 2 27 27 21 32 2 37 2 [ 2 40 2 2 35
50 32 27 32 50 39 22 2 2 25 51 2 23 a5 45 2% 2 60 32 2 27 2% 31 2 38 27 2 32 46 £ 21 £
50 33 2 32 52 38 2 19 21 29 52 25 18 a8 a5 28 20 62 £ 27 2 2% 31 21 37 2% 4 £ 44 35 2 £
55 32 27 2 49 3 2% 2 24 31 46 2% 21 42 42 31 % 62 £ 2 32 £ 32 2 3% 2% 3 35 43 35 2 43
49 27 2 2 48 8 23 3 2 25 47 2 2 38 38 31 21 62 29 27 27 2 32 23 37 2 0 29 39 31 2 u
52 28 28 £ 50 a1 £ 2 2 28 a4 33 0 a1 37 37 £ 6 33 28 £ 28 39 29 40 2 0 39 a1 37 31 3
52 28 28 £ 50 4 30 2 32 28 4 33 3 41 37 37 30 64 33 28 £ 28 39 2 40 2 0 39 @ a7 31 35
50 31 29 30 50 35 £l 2 2 31 a5 3 25 4 40 30 2 61 31 27 25 23 37 2 40 27 3 27 40 a7 2% *
52 3 31 £ 53 40 25 27 27 2 54 2 25 45 a7 2 25 62 35 31 30 28 35 27 42 29 2 £ 46 40 2 a7
53 1 31 3 51 40 23 25 27 2% 52 2 2% 44 45 2 24 61 3 29 2 28 3 21 41 28 2 £l 4 40 22 %
54 32 2 32 55 37 2 25 2 31 48 2 20 44 4 2 2 59 3 2% 29 2 £ 2 u 29 3 31 46 u 20 37
54 28 2 2 47 <) % 25 25 £ 44 22 2 38 41 £ 26 62 38 28 2 2 31 24 33 23 1 37 43 Ed 2% 39
50 26 2 27 a7 42 32 32 31 37 46 29 27 4 4 a7 ) 67 4 £ 37 3 37 29 35 31 3 3% 46 42 27 42
52 29 25 21 46 £ 2 2 23 29 45 23 2 a2 a2 28 2 62 35 2 30 £ 0 2 35 2% 3 ) 43 38 22 41
£ 26 24 2 31 £ 2 2% 21 29 45 22 21 a 41 28 2% 60 £ 27 2 2 32 21 3 21 2 35 42 37 23 3
51 29 27 29 44 38 2% 28 2% 30 45 2 2 a1 41 31 21 62 35 31 35 3 3 2 E3 27 2 38 4 38 27 42
52 2 29 31 48 38 27 28 28 2% 49 31 2 45 a4 33 2% 63 33 2 0 27 £ 28 38 2 3 32 4“4 3 25 £
48 2% 2 25 45 41 25 2% 2 2 45 2% 23 44 4 31 24 &3 33 30 2 £ 2 22 37 27 A 32 4“4 £ 2% 38
47 2 2 23 48 38 19 21 18 2 46 2% 21 39 35 2% 17 63 2 27 26 2 30 20 38 2 1 28 38 2 21 37
48 2% 24 27 44 40 25 2 23 2 43 2% 22 41 40 32 24 63 £ 29 28 27 2 23 3 28 2 31 43 B 24 38
u 2 24 26 27 39 2 2 22 27 42 2 21 40 39 31 23 62 33 28 27 27 28 22 3 27 1 0 42 2 2 a7
46 2% 24 % 42 39 24 23 22 27 42 25 21 40 39 31 23 62 33 28 27 27 28 2 3 27 1 o 42 32 2 a7
52 32 2 31 54 40 22 2 2 25 51 2 2 43 45 % 22 60 32 28 27 25 32 24 39 27 1 31 44 a7 19 £
48 28 25 2 45 35 25 22 2 26 45 28 24 43 “ 29 25 61 31 27 2 23 % 21 39 2 1 30 4 u 2 2
N 28 25 25 2 35 25 2 2 2% 45 28 2 43 a1 2 2 61 31 27 2 2 4 21 39 23 1 30 41 £ 2 32
52 2 25 27 48 36 2 2% 22 2 46 22 21 42 40 29 2 64 3 31 3 31 0 2 37 25 3 36 a2 3 z 45
48 30 27 29 52 40 23 2 2 27 52 27 20 44 45 27 21 61 32 27 24 2% 3 2 38 28 2 27 4 £ 21 3
52 29 25 27 44 37 27 28 25 3 46 2 22 a4 a4 30 21 63 37 29 31 31 31 2% 37 % 3 35 a4 38 24 41
52 30 21 2 46 35 27 26 25 31 4 3 22 41 41 31 2% 62 37 2 31 30 32 2% E 27 3 35 43 S 2 40
31 27 2% 25 34 39 2 2 21 24 48 29 2 41 39 29 2 61 28 28 2 2 32 3 38 2 [ 2 42 32 2 4
48 30 2 2% 51 38 2 19 21 2% 48 21 20 45 41 2 20 62 30 25 24 20 2 20 37 2 1 27 38 30 18 30
51 32 2 3 53 4 2 25 2 2 53 27 2 45 47 27 2 61 31 29 2% 2 31 2 41 2 2 2 46 38 20 35
51 28 25 2 46 3 2% 25 25 30 44 2 2 38 41 £ 26 62 35 28 29 28 31 24 3 2 1 37 43 S % £
53 32 29 32 55 40 2 2 25 2% 52 27 2 4 46 27 E= 61 33 2 28 2 33 2 40 28 2 2 45 38 20 35
52 3 30 33 54 41 23 2% % 27 53 28 2 45 47 28 B 62 34 30 29 27 34 2% 4 2 2 33 46 £ 2 £
52 34 28 £ 53 38 2 25 2% 27 51 2% 21 47 45 0 2 6 S 2 26 2% 33 21 40 0 3 32 47 3 2 38
50 32 27 30 53 38 25 24 25 27 52 2 2 a6 45 29 2 63 u 2 2% 2 33 2% 41 28 3 29 45 35 2 35
35 32 % 32 37 41 23 22 22 2% 54 28 2 48 45 2 21 62 32 31 29 2 2 25 36 28 4 30 44 £ 2 35
50 32 2 30 53 40 25 22 22 30 50 29 19 48 45 30 2 63 2 0 2 21 31 22 £ 2 4 29 42 35 21 31
54 32 2 32 54 4 22 25 2 27 50 30 k< 47 42 % 24 60 u 25 2 2% 3 2% 35 31 3 29 46 38 21 37
51 28 24 2% 50 3 2 22 21 2 46 2 £ 39 37 30 20 61 28 26 2% 2 31 22 3 22 [ 0 40 31 2 35
49 27 25 2 48 37 2 2 23 2% 48 28 22 37 39 32 22 63 £ 28 28 2 3 2 36 24 1 0 40 2 2 35
48 32 2 28 50 £ 2 17 19 21 46 25 19 44 38 23 18 60 28 23 2 18 27 20 £ 2 1 2% 38 28 17 31
49 32 2% 27 51 37 21 18 2 45 27 18 45 40 25 19 59 29 25 24 20 27 19 £ 2 2 % 40 30 17 33
52 32 29 32 54 39 2 25 2% 52 27 2 a4 46 27 E< 61 33 29 28 2 33 25 40 28 2 32 45 38 20 35
51 30 2% 28 52 38 22 21 2% 48 28 2 41 39 £ 20 61 30 28 26 2 31 22 38 24 0 2 42 31 2 35
55 33 30 32 59 36 25 27 48 2% 21 43 40 27 23 64 28 27 25 2 s 23 36 27 2 2 39 32 20 32
54 £ 32 33 54 40 25 26 48 27 2% 42 38 28 25 59 29 29 2 2% 31 2 £ 2 [ 31 43 38 20 35
53 33 27 32 52 39 20 23 53 29 2 49 43 2 21 62 2 29 28 2 33 2% 40 % 3 3 45 39 25 35
31 31 25 27 30 38 2 2 48 27 21 45 39 2 2 61 0 25 2 21 28 20 u 2 1 27 38 29 20 31
49 30 24 % 52 37 21 23 a7 2 20 46 40 25 19 61 2 2 23 20 27 19 35 21 1 27 39 30 19 31
39 33 £ M 39 37 2 % 50 2 23 42 44 29 2 60 3 2 2 2 33 2% 40 27 3 33 43 £ 2 £
54 u 29 3 54 39 21 2 51 27 23 45 4“4 27 2 60 31 27 28 27 33 25 40 2 2 s 45 38 2 35
56 35 0 35 56 40 2% 27 53 2 2 a7 47 28 2 60 3 £ 27 2 32 2 4 29 2 33 48 3 2 38
53 32 29 32 53 39 25 2 52 2 25 44 46 27 25 63 33 2 0 2% 3 27 40 28 2 £ 45 40 2 a7
32 29 3 2 27 41 20 25 49 27 20 45 39 2 22 62 32 29 2 25 2 21 35 2 1 2 42 33 2 £
53 3 29 31 49 37 25 28 4“4 2 2 40 40 32 26 62 34 30 u 32 3 2% 36 % 2 38 43 38 26 42
45 % 23 2 41 41 23 30 47 26 21 45 43 2 22 61 36 28 28 29 27 22 a7 2 2 31 a5 35 22 £
51 2 25 28 45 34 2 28 48 22 2 4 4 27 2 3 £ 27 29 28 31 25 £ 2 2 £ 42 37 23 40
42 32 29 31 31 38 28 33 49 27 2 43 42 £ 27 (3 37 32 £ 33 0 2% 39 2 3 a7 47 39 26 45
52 30 % 28 46 37 26 30 46 24 2 43 43 29 26 3 36 29 31 30 31 2 £ 21 3 u 44 38 2 42
54 31 27 29 48 37 27 31 a7 25 2 43 43 0 27 6 37 30 32 31 32 % 37 21 3 35 44 39 2 43
2 i 16 12 16 54 38 37 56 36 3% 52 50 33 38 7% a5 37 36 32 39 3 46 35 2 37 51 47 33 50
46 28 24 27 45 38 20 22 49 27 2 40 38 2 21 6 2% 2 30 25 31 19 ¥ 19 0 31 43 31 25 38
35 u £ 30 31 39 2 2 45 31 29 44 40 25 0 58 27 27 30 2 32 2 37 % 3 3 45 38 2 39
19 18 14 2 53 33 3 60 40 £ 56 52 32 32 74 42 £ 32 27 37 31 47 33 3 33 52 43 2 46

9.10.55 10 14 41 30 31 44 30 30 4 4 35 31 & a7 3 35 2 £ 2 37 29 0 38 44 35 29 £

141063 131075 9 1 38 2 2 42 27 2 42 38 32 2 58 32 29 31 30 2 2 35 25 0 3 43 30 2 38

10691 7757 12476 --- 8 46 29 0 54 3 27 48 46 30 30 7 £ 31 3 2% 35 2% 42 2% 2 33 47 4 % a4

2110118 7659 12453 8280 ... a7 32 32 56 £ 30 50 48 33 33 70 39 32 35 2 a7 28 43 30 2 36 51 41 31 48

5325160 3525100 352299 4824.151 5223.158 - @ 39 2 43 38 27 32 43 40 57 40 38 42 £ a7 38 £ 35 8 50 37 3 38 46

3017136 201885 18.19.86 27.18.137 27.17.129 4519185 - 18 54 23 18 45 40 19 10 63 2 23 2 25 21 18 43 20 [ 30 45 3 17 40

3415138 231992 211690 30.15.137 32.16.134 42.16.144 124.96 20 47 2 15 45 39 18 12 3 22 22 2 25 2 16 40 18 1 29 4 31 16 u

2316137 18.19.96 16.17.90 23.16.134 25.16.145 4520.140 14.5.121 11 22 53 21 14 47 43 18 9 63 23 27 20 2 21 1 43 17 2 2% 46 3 16 42

49.32.143 41 48 47 44 2% 31 45 44 60 45 44 43 40 50 40 42 6 50 35 45 42 48

22 49 34 32 44 40 3 2 60 25 29 31 2% * 44 % 3 40 a5 35 29 40

53 48 52 49 38 40 52 48 6 49 50 44 43 51 46 45 8 56 a2 42 49 51

49 58 52 51 3 56 58 52 i 48 51 49 43 50 54 51 12 57 53 58 48 54

e 48 2 26 45 3 28 2 6 17 0 2% 20 32 41 21 2 35 39 s 2 40

53 52 38 38 53 55 61 48 49 50 38 58 40 50 12 54 45 46 49 50

e 46 46 2% 20 68 2 31 27 33 29 43 25 3 37 46 37 25 44

4 44 22 13 3 31 25 18 % 17 38 24 4 2% 46 32 18 40

2 50 48 59 45 47 48 40 54 32 43 6 50 31 41 44 51

- 46 42 58 35 40 42 u 49 u 37 5 47 2% ) 40 a5

18 6 32 2 22 24 % a7 2 1 32 a7 41 17 45

65 25 25 21 2 21 45 19 2 28 45 u 18 9

e 54 &3 64 62 10 68 3 62 62 61

28 38 42 23 3 39 41 36 0 40

2 £ 42 24 4 32 42 3 2 38

2 21 4 % 1 28 4 3% 2 a7

27 24 [ 27 35 3 21 31

£ 5 31 52 41 2 47

34 40.18.145 2010117 216.116 128116 3923146 2210.107 45.25.127 14 2 2 43 32 17 39

39.21.142 38.20.144 34.17.110 41.17.148 40.16.143 37.16.141 33.16.142 38.17.130 40.20.118 47 6 40 41 37 41 a1
3113135 31.13.139 41.15.132 21.8136 246113 216120 4222146 259.116 47.21.137 3 35 38 3 k) 40
3042 4044 8239 3046 4039 4041 oo 2 6 7 1 5
34.18.132 33.18.132 48.22.133 32 51 41 27 a1

4322133 27.10.120 4226123 289.108 )
5625142 3718135 5327.156 40.21 144 4322146 48.27.156 3624147 40.25.138 3722128 6335150 46.20.138 3822148 39.20.140 26.21.98 4525141 39.18.132 39.20,153 42.17.125 6341 4122128 4124142 37.21.140 3722156

33 47.21.156 31.24.133 36.20.122 4

32 E
4123157 282492 31.19.102 38.19.146 4220160 36.20.140 40.17.152 41.15.138 35.15.142 36.19.143 36.17.168 44.1!
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5224137 3313148 43.24.149 39.14.158 39.14.147 35.20.150 34.16.152 39.17.154 43.15.153 57.32.159 36.12.144 43.19.148 30.17.144 33.17.93 35.16.147 38.15.153 32.12.145 39.15.146 6.1.47 47.16.145 34.18.156 42.16.156 39.15.137 442315 -
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Table 19. (continued)
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Table 20. Performance of data on alternative topologies, evaluated under the criterion of maximum parsimony (MP). Variable (i.e.,
autapomorphic and parsimony-informative) characters from EF, DDC and combined EF&DDC data matrices were mapped onto the sets of
MP topologies derived from independent analyses on the Sphingidae&20G taxon set from each data matrix. Each row in the data table
indicates a unique topology: for EF, 2 of 16 1MP trees filtered for compatibility with the 50% majority rule consensus tree; for DDC, all
10MP trees; for combined EF&DDC, all 3MP trees. Data from the three matrices was optimized onto each topology, and four parsimony-
based performance measures were recorded: ‘length’ indicates total of all inferred character state changes across a topology, and is
minimized when the original data set is mapped onto its own tree (see shaded cells); ‘%diff’ indicates the percentage increase in tree length
incurred for a given data set relative to the minimal observed length (shaded cells); ‘ci’ and ‘ri’ are the consensus and retention indices,
respectively. Mean values for all four measures were calculated across the three data matrices for each tree, as a measure of overall
parsimony penalty imposed by mapping one data set on another’s topology. That topology with lowest mean ‘length’ and ‘%diff> and
highest ‘ci’ and ‘ri’ was selected as the optimal MP tree for a given data set. These trees are indicated by an asterisk and were used as seed
topologies for maximum likelihood parameter estimation and heuristic searches. The procedure was repeated for (a) all nt and (b) nt1 & nt2
only within each data set.

(a) all nt positions

Data Partition
EF DDC ED Mean Values
Trees length %diff ci ri length %diff ci ri length %diff  ci ri length %diff  ci ri

EF i 1705 0.00 0.300 0.549 4785 6.71 0.233 0.576 6490 3.34 0.251 0.570 4327 3.35 0.261 0.565
*i 1705 0.00 0.300 0.549 4782 6.65 0.233 0.577 6487 3.30 0.251 0.570 4325 3.31 0.261 0.565
DDC i 1802 569 0284 0512 4484 0.00 0249 0611 6286 0.70 0259 0.588 4191 1.93 0.264 0.570

ii 1808 6.04 0283 0.510 4484 0.00 0249 0.611 6292 0.19 0259 0.587 4195 2.08 0.264 0.569
iii 1800 5.57 0.284 0.513 4484 0.00 0.249 0.611 6284 0.06 0.259 0.588 4189 1.88 0.264 0.571
iv. 1807 598 0.283 0.510 4484 0.00 0249 0.611 6291 0.18 0.259 0.588 4194 2.05 0.264 0.570
*v 1798 545 0284 0.514 4484 0.00 0249 0.611 6282 0.03 0259 0.588 4188 1.83 0.264 0.571
vi 1800 557 0284 0.513 4484 0.00 0.249 0.611 6284 0.06 0.259 0.588 4189 1.88 0.264 0.571
vii 1805 587 0.283 0.511 4484 0.00 0.249 0.611 6289 0.4 0259 0.588 4193 2.00 0.264 0.570
viiik 1806 5.92 0.283 0.511 4484 0.00 0.249 0.611 6290 0.16 0.259 0.588 4193 2.03 0.264 0.570
ix 1800 557 0.284 0.513 4484 0.00 0.249 0.611 6284 0.06 0259 0.588 4189 1.88 0.264 0.571
x 1806 5.92 0283 0.511 4484 0.00 0.249 0.611 6290 0.16 0.259 0.588 4193 2.03 0.264 0.570

E+Dntall *i 1787 4.81 0.286 0.518 4493 0.20 0.248 0.610 6280 0.00 0.259 0.588 4187 1.67 0.264 0.572
ii 1786 4.75 0.286 0.518 4494 0.22 0.248 0.610 6280 0.00 0.259 0.588 4187 1.66 0.264 0.572
iii 1787 4.8/ 0286 0.518 4493 0.20 0.248 0.610 6280 0.00 0.259 0.588 4187 1.67 0.264 0.572

(b) ntl & nt2 positions only (nt3 excluded)

Data Partition, excluding nt3

EFnt12 DDCnt12 EDnt12 Mean Values
Trees length %diff ci ri length %diff  ci ri length %diff  ci ri length %diff  ci ri
EF i 135 0.00 0267 0610 643 9.17 0.350 0.678 778 6.87 0.335 0.667 519 535 0.317 0.652
i 135 0.00 0267 0610 643 9.7 0.350 0.678 778 6.87 0.335 0.667 519 535 0.317 0.652
DDC i 139 296 0259 0594 590 0.17 0381 0.719 729 0./14 0358 0.699 486 1.09 0.333 0.671

i 139 296 0259 0594 591 0.34 0381 0718 730 0.27 0.358 0.698 487 119 0.333 0.670
iii 139 296 0.259 0.594 590 0./7 0381 0719 729 0./14 0358 0.699 486 1.09 0.333 0.671
iv 139 296 0259 0.594 591 0.34 0381 0.718 730 0.27 0.358 0.698 487 119 0.333 0.670
*v 138 222 0261 0598 589 0.00 0.382 0.720 727 -0.14 0.359 0.700 485 0.69 0.334 0.673
vi 138 222 0261 0598 589 0.00 0.382 0720 727 -0./14 0.359 0.700 485 0.69 0.334 0.673
vii 138 222 0.261 0598 590 0.7 0.381 0.719 728 0.00 0359 0.699 485 0.80 0.334 0.672
viii 138 222 0.261 0.598 590 0.7 0381 0.719 728 0.00 0.359 0.699 485 0.80 0.334 0.672
ix 138 222 0261 0598 589 0.00 0382 0720 727 -0./14 0.359 0.700 485 0.69 0.334 0.673
x 138 222 0.261 0.598 590 0./7 0.381 0.719 728 0.00 0.359 0.699 485 0.80 0.334 0.672

E+Dntall  *i 140  3.70 0.257 0.591 588 -0.17 0.383 0.721 728 0.00 0359 0.699 485 118 0.333 0.670
i 140  3.70 0.257 0.591 588 -0.17 0.383 0.721 728 0.00 0359 0.699 485 118 0.333 0.670
iii 140  3.70 0.257 0.591 588 -0.17 0.383 0.721 728 0.00 0.359 0.699 485 1.18 0.333 0.670
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Table 21. (continued)
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Table 22. Performance of data on alternative topologies, evaluated under the
criterion of maximum likelihood (ML). Parameters of the GTR+I+G model specific to

each data matrix were fixed (see Table 21d) and used to calculate likelihood scores by
fitting the EF, DDC and combined EF&DDC data to the sets of (a) four ML topologies
(Table 21) and (b) fifteen MP topologies (Table 20) derived from separate analyses on

the Sphingidae&20OG taxon set. Each row in the data table indicates a unique topology,
and the columns correspond to the single models optimized for EF and DDC, and the two
models optimized for the combined EF&DDC data. Values in bold indicate topologies
with maximum likelihood, which best explain the observed distribution of character
states given the specified model of nucleotide substitution.

(a) Maximum Likelihood topologies

Model
Topology EF DDC EF&DDCi EF&DDCii
EF 9831.17404 21287.25301 31582.35831 31582.35202
DDC 10028.65251 20772.01394 31238.01742 31238.00865
EF&DDC 1 9986.24572  20784.15003 31221.28558 31221.27737
EF&DDC ii 9989.40732 20782.12303 31221.11648 31221.11370

(b) Maximum Parsimony topologies

Topology

Model

EF

DDC

EF&DDCi

EF&DDCii

EF

i
i

9855.42474
9857.96464

21315.95287
21310.96800

31639.78980
31637.28333

31639.79569
31637.28812

DDC

1

11
1ii
v
\Y
vi
vii
viii
X

10010.20405
10016.50019
10008.63221
10014.91693
10008.63221
10010.20405
10014.91693
10016.50020
10010.20405
10016.50020

20811.23203
20811.86241
20811.54285
20812.17336
20809.34130
20809.34130
20809.97158
20809.97158
20809.34130
20809.97158

31267.72705
31275.90706
31265.84700
31274.03314
31264.49019
31265.77540
31272.67753
31273.95927
31265.77540
31273.95927

31267.71504
31275.89242
31265.83585
31274.01942
31264.47856
31265.76321
31272.66333
31273.94445
31265.76321
31273.94445

EF&DDC

11
iii

10004.78418
10001.32864
10003.75880

20808.06890
20805.01000
20809.61940

31262.74412
31257.69963
31264.33443

31262.72189
31257.68088
31264.31172
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Figure 1. Phylogenetic relatedness among fourteen genera of Sphingidae
(Lepidoptera: Bombycoidea) presented in the pilot study of Regier, ef al. (2001).
Topology derived from phylogenetic analysis under the criterion of maximum parsimony
for combined EF&DDC nucleotide data (1,240bp EF; 709bp DDC), excluding third
codon positions (nt3). Number of parsimony-informative characters was 502 for all
nucleotides, and 84 when nt3 were excluded. Bootstrap proportions and decay indices
compiled from analyses on all data and excluding nt3 are presented above each internal
branch. Number of synapomorphies and percentage average pairwise difference are
mapped below each branch, calculated separately for each codon position within EF and
DDC partitions. Outgroups consisted of two genera each from two other bombycoid
families, Brahmaeidae and Saturniidae. Monophyletic recognized higher taxonomic
groups and selected life history traits of special interest are mapped onto the topology.
Copied from Figure 1 of Regier, et al. 2001.
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Figure 2. Instructions distributed to sphingid collectors. The following one-page

instruction sheet was distributed to participating collectors in Fall 2002 and Spring 2003
as part of a Sphingidae collection kit containing labeled vials filled with 100% ethanol,
glassine envelopes, blank data sheets and return postage. Special emphasis was placed
on conveying the importance of complete immersion in 100% ethanol immediately after

death to ensure viable tissue for nucleic acid extraction (see guideline #2).

Collecting Adult Sphingidae for DNA Analysis

UNIVERSITY OF MARYLAND
Department of Entomology (MCSE)
Plant Sciences Building, room 4138
College Park, MD 20742 USA

Project Description:

In conjunction with my advisors, Drs. Charlie Mitter and Jerry Regier, I am pursuing a molecular
phylogeny of the Sphingidae (Lepidoptera: Bombycoidea) to provide a foundation for understanding life
history evolution in this spectacular group. I am collecting adult moths from every sphingid genus
worldwide, as delineated in Kitching & Cadiou’s (2000) comprehensive taxonomic revision, with special
emphasis on obtaining all North American species because of their notably diverse life history strategies.

Collection Guidelines:

1. Only one to three specimens of each taxon freshly collected into 100% ethanol are required for this
project. I would gladly accept surplus specimens collected in glassine envelopes in the traditional
manner for pinning and incorporation into the collection as voucher specimens.

2. As soon as a moth dies, its nucleic acids (DNA and RNA) begin to break down. This process is rapid
and irreversible, and jeopardizes our ability to obtain useful molecular data from a specimen. It is
critical that as soon as possible after death the moth be processed into 100% ethanol, a non-toxic
preservative which desiccates the specimen and retards processes of cellular degradation. Obtaining
viable molecular data from a freshly processed specimen is nearly foolproof. Specimens long-dead or
preserved in a medium containing any water may still be useful, but chances for success are diminished.

3. After capturing a moth, store it in a cool place to keep it alive until processing. Immediately after
killing the moth, carefully remove the wings from the body* (e.g., via forceps or surgical scissors) and
place them into a glassine envelope labeled in pencil or waterproof pen. Insert the wingless body into
a numbered vial of 100% ethanol provided for you. The body of an extremely large specimen may be
cut into smaller fragments and placed into several vials. Also, multiple smaller specimens (e.g., of the
same genus or species) may be safely fit into a single vial to save space.

* [ realize this unconventional collecting method requires more time and effort than you may be able to invest. If the entire

moth can be inserted into the ethanol vial without destroying its wings then I can process the wings after receiving it. Again,
it is most critical that the body (with or without wings) be submerged into the ethanol as soon as possible after death.

4. Record specimen collection information as specifically as possible. Location, date and time of
collection are crucial. Moth identification, sex, method of collection, time since death or other notes of
interest (e.g., weather, elevation) are also most welcome if you have the occasion to record them.

5. These vials hold liquid quite well if the caps are screwed on snugly (paraffin is included to wrap the
caps if any doubt). Once the specimen has been sealed in the vial and its wings stored in a labeled
envelope, it requires no further processing. Preservation is enhanced by keeping specimens cold and
dark, but storage at room temperature is fine if refrigeration/freezing is not possible.

6. Return the vials containing moth bodies preserved in 100% ethanol, the corresponding envelopes
containing wings and/or voucher specimens and field collection data for each specimen.

Please contact me if you have any questions or comments regarding the procedures described above, or
details of the project as a whole. Your participation and input is greatly appreciated, and I look forward to
continued correspondence with you. Many thanks for your invaluable aid in this project!

ANDRE MIGNAULT

tel: 301-405-2089

fax: 301-314-9290

email: mignault@wam.umd.edu
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Figure 3. Data entry page of the University of Maryland Lepidoptera Collections
Database. One of several screens available for viewing records in the UMD Lepidoptera
Collections, the main data entry page displays fields in seven modules for all critical
information about every specimen available for collection of molecular sequence data.
Codes in the ‘Identification’ module provide unique serial identifiers for every specimen
in the collections. Higher taxonomic information in the ‘Taxonomy’ module is
autopopulated upon entry of a valid genus name, via relational lookup to a companion
database of all valid genus names in Lepidoptera compiled from varied sources. Detailed
collections information is compiled in the ‘Specimen Profile’ module, including a notes
text field to accommodate special information. All specimens are stored at —80C,
indexed by coordinates in the ‘Specimen Location’ module. Individual buttons for each
gene in the ‘Sequences’ module lead to a separate screen detailing information about
collected nucleotide sequence, including amplicon primers and GenBank numbers.
Function buttons at the top of the screen perform customized scripts, including generation
of reports sorted by taxonomy or accession number, and printing of preformatted labels
for vials and wing vouchers. The database was created in FileMaker Pro version 3.1,
customized for management of the UMD Lepidoptera Collections, and is presently

available in FileMaker Pro version 6.0.
I UNIVERSITY OF MARVYLAND LEPIDOPTERA COLLECTIONS

Identification Specimen Profile

PNTITTN WIK-02-1941 Quatty |__emely T 1 epecimency

Life Stage  [Adult
Lot

Sex [uploown ]
01d Accession I

Specimen Type fuickled in 100% Ethanol stored at -307C
Collectors)  |Felly, William J.

CodeName I
Taxonomy Kiiching 2000 Determiner(s)  [Kelly, William J.
Order [LEPIDOPTERA |
Superfarnity |B0111bycoidea Dy Math e
Py |Sp11ingida . M2 Date Collected | exactly [ 22 [Sen |[ 2002
S |g e — COUNTEY [U.5.4
v ¥ |sphunginac : Locality Data  [Blackberry IMountain, Gilmer County,
Trihe |Acherontiuu 2 Georgia
Section | [ ?
Geniss |Agn’ru' e Elewation meters
e |cing1dma o2 Specirmen Motes  Jcollected at mereury vapor light
Extraction
Nucleic Acids Extracted Wing Voucher [ 1941 prepared by [ AAM
1st 2nd 31d
Preparer AAM | | A — B
. Teeiel’ ac. 0
Date | 15Jan 2003 | | Specimen
Tissue head | | Location
Location 53 [ [ | Old: I I
Hotes |RMA&DN & prep (Promega kit #23100, lot #146082) |2 Loan Information
=] Oves ®

Sequences

Data Inputhy P 30 Oct 2002
Daia Modified hy PPN 27 Sen 2003
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Figure 6. Exemplar most parsimonious phylogram reconstructed from phylogenetic

inference on EF ntall data for the Sphingidae&2OG taxon set. Single topology was

one of two selected from 161 equally MP trees by filtering for consistency with the 50%

majority rule consensus tree. Gray branches denote regions of conflict between the 161
alternative EF MP trees, and these collapse in the strict consensus. Number of inferred

synapomorphies is plotted above each branch. Bootstrap proportions (1,145
pseudoreplicates) are italicized and plotted below each branch. Monophyletic recognized
higher taxonomic groups are boxed and shaded; outlier taxa deviating from their
traditional taxonomic placement are left unshaded. Paraphyletic Smerinthinae is

indicated by a dashed bar.
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Figure7. Exemplar most parsimonious phylogram reconstructed from phylogenetic
inference on DDC ntall data for the Sphingidae& 20G taxon set. Single topology was
selected from among 10 equally MP trees on the basis of parsimony mapping criteria (see
asterisk in Table 20) . Gray branches denote regions of conflict between the 10
alternative DDC MP trees, and these collapse in the strict consensus. Number of inferred
synapomorphiesis plotted above each branch. Bootstrap proportions (1,248
pseudoreplicates) areitalicized and plotted below each branch. Monophyletic recognized
higher taxonomic groups are boxed and shaded; outlier taxa deviating from their
traditional taxonomic placement are left unshaded. Paraphyletic Macroglossinaeis
indicated by a dashed bar.
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Figure8. Exemplar most parsimonious phylogram reconstructed from phylogenetic

inference on combined EF& DDC ntall data for the Sphingidae& 20G taxon set.
Single topology was selected randomly from among 3 equally MP trees, as parsimony

mapping criteriawere equivocal (see Table 20) . Gray branches denote regions of

conflict between the 3 alternative EF& DDC MP trees, and these collapse in the strict

consensus. Number of inferred synapomorphiesis plotted above each branch. Bootstrap
proportions (2,160 pseudoreplicates) are italicized and plotted below each branch.

M onophyletic recognized higher taxonomic groups are boxed and shaded; outlier taxa
deviating from their traditional taxonomic placement are left unshaded. Paraphyletic

Smerinthinae isindicated by a dashed bar.
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Figure9. Maximum likelihood phylogram from phylogenetic inference on EF ntall

data for the Sphingidae& 20G taxon set. Single globally convergent topology (Tree
‘e in Table 21) derived from four cycles of iterative parameter estimation / heuristic

searches, using each of the MP treesin Figures 6, 7 and 8 as starting topologies. Branch

length values, expressed as 1,000X number of substitutions per site along EF, are

indicated above branches. Monophyletic recognized higher taxonomic groups are boxed

and shaded; outlier taxa deviating from their traditional taxonomic placement are left

unshaded. Paraphyletic Sphinginae and Smerinthinae are indicated by dashed bars. Inset

contains maximum likelihood score of this topology and optimized parameters of the
underlying GTR+1+G substitution model.
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Figure 10. Maximum likelihood phylogram from phylogenetic inference on DDC
ntall data for the Sphingidae& 20G taxon set. Single globally convergent topology

(Tree'd inTable 21) derived from four cycles of iterative parameter estimation /
heuristic searches, using each of the MP treesin Figures 6, 7 and 8 as starting topologies.
Branch length values, expressed as 1,000X number of substitutions per site along EF, are
indicated above branches. Monophyletic recognized higher taxonomic groups are boxed

and shaded. Inset contains maximum likelihood score of this topology and optimized

parameters of the underlying GTR+I+G substitution model.
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Figure 11. Exemplar maximum likelihood phylogram from phylogenetic inference

on combined EF& DDC ntall data for the Sphingidae& 20G taxon set. One of two
globally convergent topologies (Tree ‘c2' in Table 21) derived from four cycles of

iterative parameter estimation / heuristic searches, using the combined EF&DDC MP tree

in Figure 8 as a starting topology. This ML topology differsfrom Tree‘cl’ only in the
relative placement of Pachysphinx and Paonias. Branch length values, expressed as

1,000X number of substitutions per site along EF, are indicated above branches.
M onophyletic recognized higher taxonomic groups are boxed and shaded. Inset contains
maximum likelihood score of this topology and optimized parameters of the underlying

GTR+1+G substitution modd!.
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