
ABSTRACT

Title of dissertation: UNDERSTANDING OBJECTS
IN THE VISUAL WORLD

Ejaz Ahmed, Doctor of Philosophy, 2015

Dissertation directed by: Professor Larry S. Davis
Department of Computer Science

One way to understand the visual world is by reasoning about the objects present

in it: their type, their location, their similarities, their layout etc. Despite several suc-

cesses, detailed recognition remains a challenging tasks for current computer vision sys-

tems. This dissertation focuses on building systems that improve on the state-of-the-art

on several fronts. On one hand, we propose better representations of visual categories

that enable more accurate reasoning about their properties. To learn such representations,

we employ machine learning methods that leverage the power of big-data. On the other

hand, we present solutions to make current frameworks more efficient without losing on

performance.

The first part of the dissertation focuses on improvements in efficiency. We first

introduce a fast automated mechanism for selecting a diverse set of discriminative fil-

ters and show that one can efficiently learn a universal model of filter “goodness” based

on properties of the filter itself. As an alternative to the expensive evaluation of filters,

which is often the bottleneck in many techniques, our method has the potential of dra-

matically altering the trade-off between the accuracy of a filter based method and the cost

of training. Second, we present a method for linear dimensionality reduction which we

call composite discriminant factor analysis (CDF). CDF searches for a discriminative but

compact feature subspace in which the classifiers can be trained, leading to an order of

magnitude saving in detection time.

In the second part, we focus on the problem of person re-identification, an important

component of surveillance systems. We present a deep learning architecture that simul-

taneously learns features and computes their corresponding similarity metric. Given a

pair of images as input, our network outputs a similarity value indicating whether the two

input images depict the same person. We propose new layers which capture local rela-

tionships among mid-level features, produce a high-level summary of these relationships

and spatially integrate them to give a holistic representation.

In the final part, we present a semantic object selection framework that uses natural

language input to perform image editing. In the general context of interactive object

segmentation, many of the methods that utilize user input (such as mouse clicks and

mouse strokes) often require significant user intervention. In this work, we present a

system with a far simpler input method: the user only needs to give the name of the

desired object. For this problem we present a solution which borrows ideas from image

retrieval, segmentation propagation, object localization and convolution neural networks.

UNDERSTANDING OBJECTS IN THE VISUAL WORLD

by

Ejaz Ahmed

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor David W. Jacobs
Professor Yiannis Aloimonos
Professor Ramani Duraiswami
Professor Jimmy Lin

c© Copyright by
Ejaz Ahmed

2015

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and because

of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor Larry Davis for providing

me valuable guidance, giving me the freedom to work on different types of problems and

to freely explore my research ideas.

During my Ph.D. I got the opportunity to work at various places in academia and

industry. The work done at these places has played a pivotal role in my thesis. I would

like to thank my mentors at Adobe Research, Dr. Scott Cohen and Dr. Brian Price, for

their guidance on the problem of semantic object selection. I would like to express my

gratitude to Professor Gregory Shakhnarovich and Professor Subhransu Maji with whom I

worked at TTI-Chicago on filter selection. I had meaningful discussions with Dr. Michael

Jones and Dr. Tim Marks at MERL on the problem of person re-identification. Finally, I

would like to thank Dr. Vlad Morariu who helped me during the initial phase of my Ph.D.

I am grateful for the support that my family has provided throughout the ups and

downs of the Ph.D. process. My parents, Mushtaq and Saira, have always understood

the seriousness of Ph.D. workload. They have always sheltered me from various family

responsibilities. My father has filled me with positivity whenever I talked to him. I

would specially like to thank my long time girl friend and soon to be wife, Neha, for

the encouragement that she has provided. She has patiently listened to me recount my

successes and failures and always motivated me whenever I was low-spirited.

My friends and colleagues have made my graduate experience memorable and fun

ii

through discussions. I have had numerous conversations with them over which we used

to discuss anything and everything of life. I would like to thank my UMD cricket team-

mates for organizing regular practice sessions and games. Cricket provided a balance

between academics and sports which helped me relieve stress.

Finally, I thank my committee members for taking time out of their busy schedules

to make the final step of my doctorate possible.

iii

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Efficient Object Detectors . 2
1.2 Deep Learning Architecture for Person Re-Identification 4
1.3 Semantic Object Selection for Image Editing 5
1.4 Organization . 6

2 Using Human Knowledge to Judge Filter Goodness:
Interactive Filter Selection 8
2.1 Introduction and Motivation . 8
2.2 Original Poselet Selection . 11
2.3 Interactive Selection . 12
2.4 Experiments . 12
2.5 Conclusion . 13

3 Knowing a good HOG filter when you see it:
Efficient selection of filters for detection 14
3.1 Introduction . 15

3.1.1 Related work . 16
3.2 Background . 18

3.2.1 An overview of poselets for object detection 19
3.2.2 An overview of exemplar SVMs for object detection 22

3.3 Ranking and diversity . 23
3.3.1 Learning to rank parts . 23
3.3.2 Selecting a diverse set of parts 24
3.3.3 Features for part ranking . 25
3.3.4 The LDA acceleration . 27

3.4 Experiments with Poselets . 28
3.4.1 Training the ranking algorithm 28
3.4.2 Training the diversity model . 29

iv

3.4.3 Selection methods considered 30
3.4.4 Ranking results . 31
3.4.5 PASCAL VOC detection results 32

3.5 Experiments with exemplar SVMs . 35
3.5.1 PASCAL VOC detection results 37
3.5.2 An analysis of bicycle HOG filters 39

3.6 Conclusion . 39

4 Composite Discriminant Factor Analysis 44
4.1 Introduction . 45

4.1.1 Related work . 47
4.2 Partial Least Squares . 49
4.3 Composite Discriminant Factors . 52
4.4 Experiments . 55

4.4.1 Action Recognition: UCF50 . 55
4.4.2 Pedestrian Detection: INRIA Pedestrian Dataset 57
4.4.3 Vehicle Detection: Google 90◦ Satellite Dataset 59
4.4.4 Vehicle Detection: Google 45◦ Satellite Dataset 62
4.4.5 UCI Machine Learning Repository 63

4.5 Discussion and Future work . 65

5 An Improved Deep Learning Architecture for
Person Re-Identification 68
5.1 Introduction . 69
5.2 Related Work . 70

5.2.1 Overview of Previous Re-Identification Work 70
5.2.2 Deep Learning for Re-Identification 71

5.3 Our Architecture . 73
5.3.1 Tied Convolution . 74
5.3.2 Cross-Input Neighborhood Differences 75
5.3.3 Patch Summary Features . 76
5.3.4 Across-Patch Features . 77
5.3.5 Higher-Order Relationships . 77

5.4 Visualization of Features . 78
5.5 Other Deep Architectures . 80
5.6 Training the Network . 81

5.6.1 Data Augmentation . 83
5.6.2 Hard Negative Mining . 84
5.6.3 Fine-tuning . 84

5.7 Experiments . 84
5.7.1 Experiments on CUHK03 . 86
5.7.2 Experiments on CUHK01 . 88
5.7.3 Experiments on VIPeR . 89

5.8 Qualitative Results . 90
5.8.1 Analysis of different body parts 91

v

5.9 Conclusion . 91

6 Semantic Object Selection 96
6.1 Introduction . 96
6.2 Related Work . 99
6.3 Overview . 103
6.4 Localization . 104

6.4.1 Exemplar Retrieval Database . 105
6.4.2 Detection via Object Proposal Validation 106
6.4.3 Location Prior . 108

6.5 Segmentation . 109
6.6 Results . 112

6.6.1 Results on MSRC Dataset . 112
6.6.2 Result on Object Discovery Dataset 114
6.6.3 Results on Imagenet Dog . 117

6.7 Conclusion . 119

7 Conclusion 122

Bibliography 127

vi

List of Tables

2.1 Per Category Results on PASCAL VOC 2007. Best results are highlighted
in bold. Best mean average precision of 29.86 is obtained using our inter-
active method vs 29.03 for oracle. Note that this method resulted in sig-
nificant speed up of the selection pipeline (5-10mins as compared against
15Hrs). Last row (Overlap) shows number of filters common to the two
methods for each category. On average there are around 25 filters com-
mon to the two methods. 9

3.1 The number of common filters in the ranked list for various methods
and the ground truth list based on the poselet detection AP for different
lengths of the list. 32

3.2 Performance of poselet selection algorithms on PASCAL VOC 2007 de-
tection. Table 3.3 shows per category results for various methods using
the poselet framework. 34

3.3 Per Category Results for Poselets. Best results are highlighted in bold.
Best mean average precision of 29.46 is obtained using Rank (ΦLDA) +
Div (2× seeds). Note that this method resulted in 8× speed up of the
training pipeline. 35

3.4 Performance of selection algorithms for detection on the PASCAL VOC
2007 dataset. All these methods provide a speed up of 6.3× relative to the
Oracle as there are on average 630 exemplars per category. Table 3.5
shows per category results for various methods using the exemplar SVM
framework. 38

3.5 Per Category Results for Exemplar SVMs. Note how Freq and Div both
play an important role for esvm along with ranker (result closest to the
Oracle is obtained when all three,i.e. Rank, Freq and Div are used to-
gether). All these methods result in a speed-up of 6.3× relative to the
Oracle. 38

4.1 Group-wise accuracies on the UCF50 Action Recognition dataset. 57
4.2 Performance on the UCI ML datasets measured by Balanced Error Rate

(BER). 65

vii

6.1 Results on MSRC dataset. We compare against Object Discovery [1],
Joulin et al. [2], Kim et al. [3], Joulin et al. [4] and Mukherjee et al. [5].
Our method is slightly better or comparable to Object Discovery which is
state-of-the-art on MSRC. 112

6.2 Results on Object Discovery(OD) and ImageNet Dog. On the Object
Discovery dataset [1] we perform better than the state-of-the-art by a sig-
nificant margin. We also compare against our DPM-based segmentation
baseline method and outperform it by a significant margin. Note that we
beat the upper bound (using ground-truth bounding boxes) on the airplane
category. On ImageNet-dog we perform much better than DPM+Grabcut. 113

viii

List of Figures

2.1 Good-Bad Filters and Seed Image(made by averaging top 10 seeds): Top
2 rows show good filters and bottom 2 rows show bad filters. Categories
from left to right are bicycle, bus, horse, person, bottle and cat. Note the
difference between gradient orientations for good and bad filters. Also
seed images for the good filters are cleaner. 11

3.1 Outline of our approach: Left block shows the training pipeline which
is used to obtain a linear ranker (w) and diversity tradeoff parameter λ
(described in Sect. 3.3) on a set of categories. Our system improves the
bottleneck of the selection procedure by learning to predict the utility of
filters for a new category. 17

3.2 Poselet filters and the average of 10 nearest examples to its seed for vari-
ous categories. 21

3.3 Examples of good and bad filters from the poselets model. Good filters
exhibit less clutter, and stronger correlations among nearby spatial loca-
tions, than bad ones. 25

3.4 Top 10 poselets (filter and seeds) per category discovered using rankSVM
(top 2 rows). Re-ordering using our diversity selection method (bottom 2
rows). Note that parts that are ranked higher by rankSVM might not end
up high in the ordering by diversity. Diversity selection picks diverse set
of parts for instance in case of sheep, instead of just picking faces which
might have high prediction capability by themselves, it also picks side
veiw of sheep (last part). 41

3.5 More examples of visualization of poselets selected by rankSVM and by
rankSVM + diversity. 42

3.6 Top 5 exemplars selected by our method Rank(lda) + Freq + Div .
Categories in row major order - aeroplane, bird, bicycle, cat, bus, cow,
car, dog, horse, person, motorbike and sheep. 43

3.7 An analysis of bicycle filters. (Top-left) Scatter plot of true ranks and the
ranker score of the bicycle poselets. (Top-right) the same for all the ex-
emplars of side-facing bicycles. The high scoring side-facing exemplars
(Bottom row) exhibit high contrast and less clutter than the low scoring
exemplars (Middle row). 43

ix

4.1 PLS Algorithm (NIPALS version) . 51
4.2 CDF Algorithm (Proposed) . 52
4.3 Motivating examples. Left: Example of how initial PLS dimensions are

influenced by input feature covariance. A 3-dimensional dataset is gen-
erated by sampling from a Gaussian distribution with standard deviations
of [.5, 4, 1] on the diagonal, rotating by 45 degrees in the x-y plane, and
shifting the class means apart. The plots show the projection of all points
on the x-y plane. The first PLS factor is visibly influenced by the prin-
cipal axis, causing confusion between the two classes when points are
projected onto the factor. The second factor corrects for this, and the
third reverses some of the correction. Middle: the composites of the fac-
tors on the left. In this toy example two factors are enough to create a
discriminative composite (a single projection vector). Right: compari-
son between classification error obtained by QDA on f PLS factors (an
f -dimensional subspace) versus the composite of the first f factors (a 1-
dimensional subspace); trained and evaluated on the gisette training and
validation subsets, respectively. 52

4.4 Visualization of CDF parameter space. The root signifies the input data
matrix, and each level below the root corresponds deflation by an addi-
tional composite. The highlighted path corresponds to the original PLS
algorithm, so CDF should at least match PLS performance if model se-
lection is sufficiently good. 55

4.5 INRIA Pedestrian dataset performance. Precision-recall curves compar-
ing CDF to baselines involving rigid templates and linear projection. The
CDF curve shown here is obtained using only a single composite (so the
classifier is fully linear). The comparison of cdf (our approach), to pls
and svm (linear kernel) is fair, i.e., the classifiers are trained using ex-
actly the same approach and input features. The comparison to latent
svm is unfair to our approach, because of latent positive selection. Com-
paring latent svm to svm shows the impact of these additional im-
provements. Nevertheless, our single-component model without these
improvements significantly outperforms latent svm. 59

4.6 Sample vehicle detections the Google 90◦ dataset. Color represents the
confidence of detection, red (high confidence) and blue (low confidence)
being the two extremes. c©Google. 60

4.7 Precision-recall curves comparing CDF to the baselines for Google 90◦

dataset. CDF performs better than SVM in terms of accuracy and is better
than PLS in terms of accuracy and efficiency. 61

x

4.8 Per image test-time sliding windows timings (in seconds) on Google 45◦.
Timings were taken on an Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz
with 6GB RAM. CDF with 2 composites is significantly faster than PLS
and is 2 times slower than SVM, but as shown in Figure 4.9, CDF signif-
icantly improves over SVM in terms of precision and recall. The timings
confirm that the number of linear convolutions determine overall compu-
tational expense, since they exhibit a roughly 9:2:1 ratio coinciding with
the number of linear projections, for PLS, CDF, and SVM, respectively. . 63

4.9 Google 45◦ satellite imagery datasets. Left: Precision-recall curves com-
paring CDF to the baselines. Center: Backprojection of weight vector
magnitudes computed by summing for each pixel the absolute values of
the weights it contributed to. PLS captures many variations, but requires
9 factors so is roughly 4.5 times slower than CDF and 9 times slower than
linear SVM. Linear SVM requires a single weight vector but captures
mostly the contour of the car. CDF captures not only information about
the contour of the car, but also the front and rear car windows. Right:
True positives (TP), false positives (FP) and false negatives (FN) detected
by the system. c©Google. 64

4.10 Sample vehicle detections the Google 45◦ dataset. Color represents the
confidence of detection, red (high confidence) and blue (low confidence)
being the two extremes. c©Google. 65

4.11 Google 90◦ satellite imagery datasets. Top: Detection heat map for CDF.
Bottom: Corresponding detection bounding boxes after non-maxima sup-
pression. Color represents the confidence of detection, red (high confi-
dence) and blue (low confidence) being the two extremes. c©Google. . . . 67

5.1 Examples of true positives (first row), false positives (second row), and
true negatives (bottom row) for our trained network on CUHK03. More
results can be found in the supplementary material. 70

5.2 Proposed Architecture: Paired images are passed through the network.
While initial layers extract features in the two views individually, higher
layers compute relationships between them. The number and size of con-
volutional filters that must be learned are shown. For example, in the first
tied convolution layer, 5×5×3→ 20 indicates that there are 20 convolu-
tional features in the layer, each with a kernel size of 5× 5× 3. There are
2,308,147 learnable parameters in the whole network. Refer to section
5.3 for more details. [Note that all of the figures in this paper are best
viewed in color.] . 73

5.3 Visualization of features learned by our architecture. Initial layers learn
image features that are important to distinguish between a positive and a
negative pair. Deeper layers learn relationships across the two views so
that classification performance is maximized. For details, see Section 5.4. 78

5.4 Visualization of the weights learned in the first tied convolution layer.
Each filter has size 5× 5× 3. 80

xi

5.5 Disparity-wise Convolution: The initial layers are the same as our pro-
posed architecture. Only layers that differ are shown. First, cross-input
neighborhood differences are rearranged into disparity-wise groups. Each
group shows feature differences at offset d. For instance, group 1 contains
the values from position (1, 1) of every 5 × 5 block in the grid of cross-
input neighborhood differences, and group 25 contains the values from
position (5, 5) of every block in the grid. Convolution is then applied
on each group separately. This is then passed through a fully connected
layer and then softmax. Instead of explicitly summarizing neighborhood
differences, this architecture directly learns across-patch relationships. . . 82

5.6 Performance on validation set as a function of mini-batch iterations on the
CUHK03 labeled data set. In each row of the legend, the first number is
the rank-1 accuracy, and the second is the number of mini-batch iterations. 83

5.7 CMC curves on CUHK03 data set: a) and b) compare our method with
previous methods on CUHK03 labeled and detected, respectively. Rank-
1 identification rates are shown in the legend next to the method name.
Our method beats the state of the art by a large margin. c) Comparison
of our method with our own variations of deep architectures on CUHK03
labeled. Out of the shown methods, only FPNN is previously mentioned
in the literature. See section 5.7.1 for details. 85

5.8 CMC curves on CUHK01 and VIPeR data sets: a) CUHK01 data set with
100 test IDs: Our method outperforms the state of the art by more than
a factor of 2. b) CUHK01 data set with 486 test IDs: Our method out-
performs all previous methods on this data set with this protocol, as well.
c) VIPeR: Our method beats all previous methods individually, although
a combination of mFilter + LADF performs better than us. Note that (b)
and (c) are especially challenging for deep learning methods since there
are very few positive pairs. See Sections 5.7.2 and 5.7.3 for more details . 86

5.9 Analysis of different body parts: a) Left column shows parts 1 to 4 (from
top to bottom). Right column shows full pedestrian image and part 5.
b) Shows performance of different parts on the CUHK03 data set. Refer
section 5.8.1 for more details. 90

5.10 Example results on the CUHK03 labeled data set. In each row, the left
image is the probe image, and the rest are the top 25 results sorted from
left (1) to right (25). The green box indicates the correct match in each row. 93

5.11 Example results on the CUHK01 data set (100 identities). In each row,
the left image is the probe image, and the rest are the top 25 results sorted
from left (1) to right (25). The green box indicates the correct match in
each row. 94

5.12 Example results on the VIPeR data set. In each row, the left image is the
probe image, and the rest are the top 25 results sorted from left (1) to right
(25). The green box indicates the correct match in each row. 95

xii

6.1 Given an image, the user simply provides the name of the object that
he/she wants to select. The specified object is segmented by our method
without further user input. 98

6.2 Overview of our system: User starts by providing the name of the ob-
ject to segment. Text-based image search is performed to gather positive
exemplars. Positive exemplars along with generalized negatives are then
used localize object in the image. This is done with the help of our object
retrieval based detection framework. Localization information along with
appearance sharing from positive exemplars is used to formulate the seg-
mentation problem as energy minimization. Graph cut is applied on the
constructed graph to obtain the desired segmentation. 102

6.3 Positive exemplar database: Objects on white background and exemplars
from PASCAL VOC (last 2 columns). 104

6.4 Object retrieval with localization: We use object retrieval system of [6]
which returns ranked retrieved images along with the bounding box around
the matched object. 105

6.5 Validation: Each row shows an object proposal and its top 5 retrieved
exemplars. Retrieved exemplars also contain the bounding box around
the matched object. The color of the bounding box specifies whether the
exemplar is considered as positive (green) or negative (red). If the box
is not centered, e.g. in 1st row 4th exemplar, the exemplar is considered
negative. Majority voting decides whether the object proposal contains
the specified object or not. The last row shows an example of a false
positive where an object proposal is incorrectly validated as a dog. The
positive class for each query from top to bottom is dog, person, pug, ball,
person and dog. 107

6.6 Mask Transfer: a) Warping of an exemplar (top right) onto the object
proposal (top left). 2nd row shows sift features for object proposal and
exemplar. 3rd column shows the sift flow correspondence(left) and warp-
ing of exemplar onto the object proposal(right). b) Top 1st column shows
object proposals, 2nd column shows best exemplar warped onto the object
proposal, and 3rdcolumn shows the saliency mask for the warped exem-
plars. c) Input image and aggregated location prior. 108

6.7 Segmentation Framework: Given the input image and the tag, object re-
trieval based localization is performed to obtain a location prior. Using
this location prior, fg and bg probabilities are obtained. These probabili-
ties along with the location prior are used to set the weights of the graph.
Graph cut is applied to obtain intermediate segmentation which is used to
update our models. After a few iterations a final selection is obtained. . . 111

6.8 Comparison of qualitative results on MSRC for various classes. Left to
right, input image, our method, object discovery [1], Joulin et al. [2] and
Joulin et al. [4] . 115

6.9 Qualitative results of our method on MSRC. 116

xiii

6.10 Comparison on the Object Discovery (OD) dataset of our method, OD,
Joulin et al. [4], and DPM+Grabcut. Note how our method is able to
segment non-salient objects while OD picks other areas apart from the
object. DPM is unable to detect some objects. 117

6.11 More comparisons on the Object Discovery (OD) dataset of our method. . 118
6.12 More results of our method on the Object Discovery (OD) dataset. 119
6.13 Qualitative results on MSRC (first two rows) and ImageNet-dog (last

three rows). 120
6.14 More qualitative results on ImageNet-dog. 121

xiv

Chapter 1: Introduction

Automatic methods for detailed understanding of images are essential for various

applications in diverse domains such as, postal service, retail, medicine, robotics, auto-

motive safety, surveillance, entertainment, marketing, etc. One of the ways to understand

the visual world is by reasoning about the objects present in it. One might try to answer

questions like, what type of objects are present in the image, where are they located, how

are they related to each other, what are their exact outline and 3D geometry etc. By finding

answers to these questions, one might infer about the scene. For instance, given an image

of a crossroad, we can start by finding objects like pedestrians and cars in the image. We

can also find their relative positions and then infer whether the car should go ahead or wait

for the pedestrian to cross the road. A typical surveillance scenario arises when there are

multiple cameras installed at airports covering different areas of the airport and one might

want to track and re-identify people as they move from one camera to the other. Another

example is image editing tools, such as Photoshop, which are used to modify objects in

appearance to improve visual quality of the image.

Most of these questions are formulated as various computer vision problems like

object detection, object recognition, object segmentation, semantic segmentation, person

re-identification, tracking etc. Many times the problem at hand is not well defined in the

1

existing literature and one might have to propose their own instantiation of the problem.

Despite several successes, detailed recognition is beyond the current computer vision

systems. This is a challenging task, and to make progress we have to make advances

on several fronts. We need better representations of visual categories that can enable

accurate reasoning about their properties, as well as machine learning methods that can

leverage big-data to learn such representations. For real time systems we need to make

current frameworks more efficient without losing on performance. This work focuses on

building such systems improving the state-of-the-art in terms of accuracy and efficiency,

and proposing new vision problems with wide applicability.

This work introduces the following contributions to the task of object understand-

ing: 1) an efficient automatic mechanism for selecting a diverse set of discriminative

filters for object detection, 2) a deep learning architecture for simultaneously learning

features and a corresponding similarity metric for the problem of person re-identification,

3) a semantic object selection framework which advances image editing via natural lan-

guage input, and 4) a linear dimensionality reduction method, composite discriminant

factor (CDF) analysis, which searches for a discriminative but compact feature subspace.

1.1 Efficient Object Detectors

Object detection is one of the fundamental problems of computer vision. It has a

wide range of applications and a good detection system can benefit many other related

tasks such as, object retrieval, object segmentation, tracking etc. In this work we tackle

the problem of vehicle detection from aerial images and videos captured from satellite

2

cameras and drones. This is a challenging problem and conventional object detectors,

part based or even deep learning based, are unlikely to be successful since target objects

are quite small and many times in extremely low resolution. We solve this by extracting

very high-dimensional features to represent the object. This makes the number of training

samples to be much smaller than the number of features and the features have high degree

of multi-collinearity. Moreover, developing efficient classifiers for object detection is vital

since object detection has the complexity of searching over various locations, orientations

and scales in an image to find an object.

We have developed a linear dimensionality reduction method called Composite Dis-

criminant Factor (CDF) analysis, which searches for a discriminative but compact feature

subspace. Classifiers can be trained in this compact feature space, so as to avoid the prob-

lems of multicollinearity arising in a high dimensional feature space. This offers better

trade-offs between representation power and efficiency, leading to a compact representa-

tion and orders of magnitude saving in detection time. This class-aware dimensionality

reduction method has scope beyond object detection, our experiments with various ma-

chine learning data sets and multi-class action recognition suggest that CDF is a good

alternative to linear SVM for many state-of-the-art vision and non-vision tasks. We have

also compiled and released a large scale multi-class vehicle detection data set.

One of the common ways to approach object detection, or object recognition in

general, is to represent a visual category as collection of filters. These collections are used

for various vision tasks such as fine-grained classification, pose estimation, segmentation

and detection. The success of these methods relies on how these filters are selected. We

developed an automatic mechanism for selecting a diverse set of discriminative filters.

3

As an alternative to the expensive explicit evaluation that is often the bottleneck in many

methods, such as poselets, this has the potential to dramatically alter the tradeoff between

accuracy of a part based model and the cost of training. Our filter selection method allows

us to quickly discard filters that are not promising, allowing us to improve its detection

performance while speeding up training by an order of magnitude. This work suggests

that it is possible to evaluate the discriminative quality of a set of filters based purely on

their intrinsic properties. Beyond direct savings in training time for filter-based models,

this evaluation may lead to speeding up filter-based detection methods at test time, when

used as an attention mechanism to reduce number of convolutions and/or hashing lookups.

We have also built an interactive framework for poselet selection to show that humans can

help in building better detectors by including their knowledge of good filters.

1.2 Deep Learning Architecture for Person Re-Identification

Deep convolutional neural networks have recently demonstrated excellent results

on various vision problems. This has been possible because of the availability of large

amount of visual information for various tasks and because of the increase in the compute

capabilities of machines. In this work we propose a novel deep convolutional neural net-

work for the problem of person re-identification. Person re-identification is the problem

of identifying people in images that have been taken across different cameras, or across

time using a single camera. Re-identification is an important capability for surveillance

systems as well as human-computer interaction systems. It is an especially difficult prob-

lem, because large variations in viewpoint and lighting across different views can cause

4

two images of the same person to look quite different and can cause images of different

people to look very similar. Our architecture outperforms the state-of-the-art on a large

person re-identification data set (CUHK03) by a significant margin. We also show that

models learned by our method on a large data set can be adapted to new, smaller data sets

as well. We demonstrate this by evaluating our method on small data sets (CUHK01 and

VIPeR). Apart from significant improvements in performance our method gives insight

into questions like ‘What parts are most useful for person matching?’. Variation of this

architecture can be used for other tasks, for example retrieving similar dresses from an

online clothing store.

1.3 Semantic Object Selection for Image Editing

With the current proliferation of natural language interfaces for all sorts of tasks

(e.g. Siri, PixelTone), there is a need for advancing image editing via natural language

input. In PixelTone (a multimodal interface for image editing) a user can make request

such as “Make the *cat* brighter”. Since the system does not know which pixels are cat

pixels, the user has to paint on the image to mark the cat, name the selection, and then the

user can issue semantic editing requests that mention “cat”. One of the primary operations

in image editing is object selection. Many interactive object selection methods have been

proposed which utilize user input in the form of mouse clicks and mouse strokes, and

often require a lot of user intervention.

To this end, we introduced the new problem of Semantic Object Selection in which

a user simply specifies the class of the object to be selected in an image. This results in

5

a system with a far simpler input method for interactive object segmentation and can be

used for image editing tasks. For example, in case of PixelTone requests, our method can

be used to identify the cat pixels to be made brighter without any further input from the

user.

We propose a solution to this problem that scales well with the number of classes.

In order to solve this problem we propose an exemplar-based localization method which

relies on object retrieval. We break the image into object proposals and validate the

presence of the object in the proposal. Location priors obtained in this way are then used

to get an image specific appearance model and both are used to solve the segmentation

problem in an MRF framework.

In order for this system to be practical, we need to design innovative architectures,

both by developing novel parts and by leveraging existing components. Existing com-

ponents such as, object retrieval, object classification, localization, saliency estimation,

energy minimization etc. should be improved in order to make the system efficient and

accurate. In order to improve image editing experience, we should go beyond object se-

lection and exploit semantics from user queries. For example user should be able to issue

more complex queries like, “make the dog next to the tree brighter” or “select the brown

dog” to disambiguate among multiple dogs.

1.4 Organization

The dissertation is organized as follows. In Chapter 2 we present interactive method

for filter selection. We introduce the concept of collection of filters and show that humans

6

can help build better detectors by including their knowledge of good filters. In Chapter 3

we extend the idea of filter selection and present an automatic and efficient method to

select diverse set of discriminative filters. In Chapter 4 we present a linear dimensionality

reduction method, Composite Discriminant Factor (CDF) analysis, which searches for a

discriminative but compact feature subspace. In Chapter 5 we present a deep learning

architecture for simultaneously learning features and a corresponding similarity metric

for the problem of person re-identification. In Chapter 6 we present an object selection

system with a far simpler input method than current systems. We conclude the dissertation

in Chapter 7 and give directions for future work.

7

Chapter 2: Using Human Knowledge to Judge Filter Goodness:

Interactive Filter Selection

It is a common practice to model object detectors as collection of filters. For these

detectors to be effective, it is important to select “good filters” covering most of the vari-

ation of the data. In order to achieve this, these methods invest majority of their time

selecting a good subset of filters from a large pool. Good filters are less cluttered and

their gradients are spatially correlated. Humans can differentiate between a good filter

and a bad one by visualizing them. In addition humans bring with them the knowledge

of diversity and effectiveness of filters, properties which are difficult to model. In this

work, we show that humans can help build better detectors by including their knowledge

of good filters. We show this by building an interactive framework for poselet selection.

Our interactive framework improves the detection performance on the PASCAL VOC

dataset and significantly improves the training time. This work has been published in [7].

2.1 Introduction and Motivation

A common approach to modeling a visual category is to represent it as a composi-

tion of smaller fragments (parts) arranged in a variety of layouts or as library of exemplars,

more generally, as collection of filters. Modeling a category as collection of filters helps

8

aplane bicycle bird boat bottle bus car cat chair cow
Oracle 32.37 50.00 12.82 16.36 31.57 41.30 56.00 20.84 19.20 37.55
Interactive 29.84 50.88 12.57 20.16 31.48 43.59 55.82 19.85 18.29 40.08
Overlap 23 20 31 19 30 31 29 30 20 33

table dog horse mbike person plant sheep sofa train tv
Oracle 14.51 17.04 37.63 35.91 36.65 13.14 31.87 23.35 24.31 28.21
Interactive 15.42 16.66 44.47 35.08 35.56 13.26 31.55 27.03 25.50 30.66
Overlap 16 41 26 33 45 22 17 2 22 14

Table 2.1: Per Category Results on PASCAL VOC 2007. Best results are highlighted in
bold. Best mean average precision of 29.86 is obtained using our interactive method vs
29.03 for oracle. Note that this method resulted in significant speed up of the selection
pipeline (5-10mins as compared against 15Hrs). Last row (Overlap) shows number of
filters common to the two methods for each category. On average there are around 25
filters common to the two methods.

in modeling a large amount of variation in data. In this work our focus is on an architec-

ture which has two major steps (i) Candidate Generation and (ii) Selection. Examples of

such architectures are poselets [8,9], exemplar SVM [10] and discriminative patches [11].

In this paper we investigate poselets.

A common approach to modeling a visual category is to represent it as a composi-

tion of smaller fragments (parts) arranged in a variety of layouts or as library of exemplars,

more generally, as collection of filters. Modeling a category as collection of filters helps

in modeling a large amount of variation in data. In this work our focus is on an architec-

ture which has two major steps (i) Candidate Generation and (ii) Selection. Examples of

such architectures are poselets [8,9], exemplar SVM [10] and discriminative patches [11].

In this paper we investigate poselets.

Candidate generation step involves training many HOG detectors [12] each repre-

senting a part of the object. This step involves training a HOG detector and mining for

hard negatives, and is moderately expensive. The Selection step is most expensive and

involves evaluating each generated part filter (large pool) on a large number of positive

9

and negative examples. The selected parts should be (i) Discriminative - they should fire

only at meaningful locations on the test image and (ii) Diverse - many candidate parts are

highly similar to each other, there is no point in selecting very similar parts twice.

What is a good part? One way to determine the discriminativeness of filters is by

evaluating them on a held-out set [9]. This is very expensive as there are many candidate

parts. However, good discriminative parts have the property that they are less cluttered

and their gradients are spatially correlated. Figure 2.1 shows examples of good and bad

filters. It is easy to tell the difference between the two by visual inspection. For good

filters, neighboring gradient orientation bins are active simultaneously and majority of

them are entirely suppressed. This is due to the fact that the template has to account for

small variations in local gradient directions in order to be robust. Also note that if a certain

gradient orientation is encouraged, its orthogonal counterpart is often penalized. Also,

dominant orientation bins of neighboring cells tend to coincide forming line segments or

disagree by an angle to form curves and corners, or be parallel. This could be attributed

to the fact that the template has to be robust to small spatial variations in alignment of

training samples, which results in neighboring cell show similar patterns. Also, gradient

based nature of HOG features tend to capture object outlines which are often smooth lines

and curves. [13] exploited these properties in a generative framework to come up with

structured prior for the SVM loss function. In addition to these there are certain properties

which are difficult to model. For instance, a filter trained on the legs of a person (parallel

lines) is although a good one, in the sense that gradients might be less cluttered. But in

practice such a filter will not be effective since parallel lines are common in the real world

and such a detector will fire all over the place.

10

Figure 2.1: Good-Bad Filters and Seed Image(made by averaging top 10 seeds): Top
2 rows show good filters and bottom 2 rows show bad filters. Categories from left to
right are bicycle, bus, horse, person, bottle and cat. Note the difference between gradient
orientations for good and bad filters. Also seed images for the good filters are cleaner.

In this work we show that it is possible to select filters with the help of human

knowledge of good filters. Humans bring with them the knowledge about (i) good filters -

by visualizing one can tell the difference between good and bad filters, (ii) diverse filters -

humans know if two filters represent the same part and (iii) effective filters (leg example).

We present an interactive framework to select discriminative and diverse set of filters with

minimal effort.

2.2 Original Poselet Selection

In the original paper [9] selection is performed by evaluating candidate poselets

on the entire training set, and a subset is selected using a greed coverage algorithm that

iteratively picks poselets that offer highest increase in detection accuracy at a fixed false

11

positive rate. This is time consuming and takes 76% (15Hrs) of the total time (20Hrs) to

train. Also note that this is just an approximation to discriminative and diversity criteria.

2.3 Interactive Selection

The idea is to display filters to a user and let it select good and diverse set of filters.

To assist the user a simple heuristic of filter quality (norm) is used. As we know selected

filters should be diverse too, hence we define a measure for similarity between a non

selected filter and a set of selected filters. Initially, we display the filters sorted according

to the descending value of normalized norm (norm
#cells

) of the filter. This acts as a heuristic

of good filter and tends to push good filters higher in the visualization box. The user

then browses through the filters and selects k = 5-10 filters. Then re-ranking of non-

selected filters is done according to their similarity to the selected filters. For obtaining

the similarity we compute the bounding box overlap of top r = 3% of the ordered list

of training examples of poselets. Similarity of a non-selected filter with a set of selected

filters is determined as k-th order value of similarity between candidate part and those

already selected. This helps assist user to select good filters with a minimal effort and

without browsing through all of the candidate filters. The process is then repeated until

desired number of poselets are selected.

2.4 Experiments

We constructed a poselet model by selecting 100 poselets from a set of 800 poselets

using original poselet selection method (Oracle) and using our interactive framework.

12

For our interactive framework, initially user selects 10 poselets and then clicks “process

of diversity”. In the subsequent iterations user selects 5-10 poselets before clicking for

“process of diversity”. These steps are repeated until 100 poselets are selected. It takes

about 5-10mins for selecting 100 poselets for a category. We evaluate these models as

detectors on PASCAL VOC 2007 dataset. To isolate the effect of poselet selection, we

use a simplified implementation that avoids some of the post-processing steps (Q-poselet

models). The results are reported in table 2.1. We achieve an improvement in the detection

performance, ∆(mAP) = +0.86.

2.5 Conclusion

We have presented an interactive framework for selecting discriminative and diverse

set of parts. With our method user knowledge of a good part enters the training pipeline.

Our method significantly improves the training time, it takes about 5-10mins for a user

to interactively select 100 poselets. As compared to 15Hrs (76% of 20Hrs) for computer

to select them. Last but not the least, our method helps in constructing better detectors

(∆(mAP) = +0.86). Moreover this method helps us to understand what a good detector

is and gives direction for developing automatic methods for good part selection.

13

Chapter 3: Knowing a good HOG filter when you see it:

Efficient selection of filters for detection

In this chapter we extend the idea of filter selection and present an automatic and

efficient method to select diverse set of discriminative filters. Collections of filters based

on histograms of oriented gradients (HOG) are common for several detection methods,

notably, poselets and exemplar SVMs. The main bottleneck in training such systems is

the selection of a subset of good filters from a large number of possible choices. We

show that one can learn a universal model of part “goodness” based on properties that

can be computed from the filter itself. The intuition is that good filters across categories

exhibit common traits such as, low clutter and gradients that are spatially correlated. This

allows us to quickly discard filters that are not promising thereby speeding up the training

procedure. Applied to training the poselet model, our automated selection procedure

allows us to improve its detection performance on the PASCAL VOC data sets, while

speeding up training by an order of magnitude. Similar results are reported for exemplar

SVMs. This work has been published in [14].

14

3.1 Introduction

A common approach to modeling a visual category is to represent it as a mixture of

appearance models. These mixtures could be part-based, such as those in poselets [8, 9],

and deformable part-based models [15], or defined globally, such as those in exemplar

SVMs [10]. Histograms of oriented gradient (HOG) [12] features are often used to model

the appearance of a single component of these mixtures. Details on how these mixture

components are defined, and discovered, vary across methods; in this paper our focus

is on a common architecture where a pool of candidate HOG filters is generated from

instances of the category, and perhaps some negative examples, followed by a selection

stage in which filters are, often in a greedy fashion, selected based on their incremental

contribution to the detection performance.

The candidate generation step is, typically, at most moderately expensive. The

selection stage, however, requires an expensive process of evaluating each candidate on

a large set of positive and negative examples. There are two sources of inefficiency in

this: (i) Redundancy, as many of the candidates are highly similar to each other, since

the generation process is driven by frequency of keypoint configurations for poselets, of

examples for exemplar SVMs; (ii) Noise, as many of the candidates are not discriminative,

not localizable (e.g., due to aperture effect) or not repeatable.

In this paper we address both of these inefficiencies, and propose a method that au-

tomatically selects from a large pool of filters generated for a category, a small subset that

is likely to contain non-redundant discriminative ones. We do this by learning to predict

relative discriminative value (quality rank) of a filter from its intrinsic properties, and by

15

combining the ranking scores with a diversity-inducing penalty on inter-filter similarity.

Fig. 3.1 shows an overview of our approach.

The components of this automatic selection mechanism, once learned on a set of

categories, can be applied to a novel target category. In that sense, it is a category-

independent method for part selection. Of course, some information about the target

category enters the process in the form of candidate parts, and our method can not “hal-

lucinate” them from scratch; but it can rank them, as we show in our experiments, as

accurately as a direct evaluation on thousands of examples for the category.

As its main contribution, this paper offers a practical way to speed up training de-

tection architectures based on poselets, and exemplar SVMs, by an order of magnitude,

with no loss, and in fact sometimes a moderate gain, in detection performance. This

eliminates a significant computational bottleneck, as computer vision advances towards

the goal of detecting thousands of categories [16]. As an additional contribution, our

ranking-with-diversity approach may provide insight into what makes a good filter for

object detection, with implications for design of part-based models and in descriptors and

interest operators.

3.1.1 Related work

The most relevant body of work that uses part generation and selection for build-

ing detectors is the poselet model [8, 9, 17] which forms the basis for our work and

which we review in detail in the next section. Alternative methods for generating part

libraries/ensembles include exemplar SVMs [10], where every positive example leads to

16

Figure 3.1: Outline of our approach: Left block shows the training pipeline which is used
to obtain a linear ranker (w) and diversity tradeoff parameter λ (described in Sect. 3.3)
on a set of categories. Our system improves the bottleneck of the selection procedure by
learning to predict the utility of filters for a new category.

a detector (typically for an entire object). The resulting ensemble is very redundant, and

may contain many poor exemplars; the hope is that these are suppressed when votes are

pooled across the ensemble at detection time. In many methods detection is based on

Hough-type voting by part detectors, with a library of parts built exhaustively [18], ran-

domly [19], by a sampling mechanism [11,20] or based on clustering [21–23]. The latter

construction ensures diversity, while the former does not. Our proposal could affect all of

these methods, e.g., by providing a rejection mechanism for hypothesized parts with low

estimated ranking score.

Finally, a family of models in which parts are learned jointly as part of a generative

model, most notably the deformable part model of [15]. Our work could be used to

provide a prior on parts in this framework, as constraint in addition to deformation cost

already in the model.

There has been relatively little work on predictive measures for part or filter quality.

Most notably, in [13] and [24] a structured prior for HOG filters is intended to capture

17

spatial structure typical of discriminative image regions. [13] is the work closest to ours

in spirit, and we evaluate it in our experiments. Our results show that while this “struc-

tured norm” approach is helpful, additional features that we introduce further improve our

ability to distinguish good filters from bad ones.

3.2 Background

We are interested in a sliding window approach to detection [9, 12] in which an

object template is specified by a filter f . An image subwindow is represented by its feature

vector x and is scored by the inner product fTx. Feature vector x is computed by spatially

dividing the subwindow tom×n cells and computing a histogram of oriented gradients for

each cell. Feature vector consists of cell-level features, x = [x1; x2; . . . ; xmn] ∈ Rmnd,

where ∀c ∈ {1, . . . ,mn},xc ∈ Rd and d is the dimension of the cell-level features. In

the same way model parameter can be broken down into f = [f1; f2; . . . ; fmn] ∈ Rmnd.

The template f is learned from labeled training set X ,Y = {(x(i), y(i))}Ni=1 by training a

linear classifier, for instance by an SVM (we refer to such filters as SVM filters) or by a

linear discriminant analysis (LDA filters).

We consider the category-level transfer settings: having learned filters for (training)

categories g = 1, . . . , G we want to predict filter quality for a new (test) category G + 1.

Our pipeline is outlined in Fig. 3.1. For each training category g, we start by constructing

a pool of N candidate filters {fg,i} . Then we train a model which includes only n � N

parts. Once the models are fully trained, we can in hindsight look at the initial set of N

parts and the selected set of n for each category. We train a ranking function with the

18

objective to reproduce the order of filter quality. Furthermore, we tune a weight which

controls tradeoff between estimated rank of a filter and the diversity it adds; we want to

discourage adding a part similar to the ones already selected, even if this part is highly

ranked. The objective in tuning the diversity tradeoff is to as closely as possible reproduce

the selection of n out of N filters done by the expensive full process.

For the test category, we construct the pool of N candidate filters {fg+1,i} in the

same process as for training categories. This stage is typically inexpensive, especially

using the LDA method (Sect. 3.3.4). Then, we apply the learned ranker function to order

the candidate parts according to their estimated relative quality. Finally, we combine

suitably normalized relative scores with a diversity term tuned on training categories, and

select a set of n estimated high quality candidates by a greedy procedure. This small set

is used to train the full model. Thus, the expensive stage only includes n parts, instead of

N . In our experiments these steps are done as part of training a poselet model [8, 9], or

exemplar SVMs [10]. We briefly describe the two models below.

3.2.1 An overview of poselets for object detection

Poselets [8, 9] are semantically aligned discriminative patterns that capture parts

of objects at a fixed pose and viewpoint. For person these include frontal faces, upper

bodies, or side facing pedestrians; for bicycles these include side views of front wheels,

etc. These patterns are discovered from the data using a combination of supervision in

the form of landmark annotations, discriminative filter training, and a selection procedure

that selects a subset of these patterns.

In more detail, each poselet is trained to detect a stable and repeatable configuration

19

of a subset of landmarks (“part”) using HOG features and linear SVMs. This step is iden-

tical to pipelines typically used for training object detectors such as [12]. Technically, a

poselet filter is obtained by randomly sampling a seed window covering a subset of land-

marks in a positive example, then a list of matching windows, sorted by the alignment

error of the landmarks (up to a similarity transform to the landmarks within the seed) is

obtained. Top examples on the list (3% in our implementation) along with some nega-

tive examples are used to retrain the HOG filter, which is retained as a poselet detector.

Fig. 3.2 shows examples of HOG filters, along with visualization of the average of the top

10 matching examples used to train them.

Some of the resulting poselet detectors may not be discriminative. For instance,

limb detectors are often confused by parallel lines. Some others, e.g., detectors of faces

and upper bodies, are more discriminative. In order to identify the set of discriminative

poselets, they are evaluated as part detectors on the entire training set, and a subset is se-

lected using a ‘greedy coverage algorithm’ that iteratively picks poselets that offer highest

increase in detection accuracy at a fixed false positive rate. We can compute the detection

average precision (AP) of each poselet independently, by looking at overlap between pre-

dicted and true (if any) bounding box for the part. This is what we will learn to predict in

our using a discriminative ranker (Sect. 3.3).

Our poselet training and testing baseline. We use an in-house implementation of pose-

lets training that leads to results comparable to those reported elsewhere. To isolate

the effect of poselet selection, we use a simplified model that avoids some of the post-

processing steps, such as, learned weights for poselets (we use uniform weights), and

20

Figure 3.2: Poselet filters and the average of 10 nearest examples to its seed for various
categories.

higher-order Q-poselet models (we use q-poselets, i.e., raw detection score). During

training we learn 800 poselets for each category and evaluate the detector by selecting

100 poselets. Our models achieve a mean AP (MAP) of 29.0% across 20 categories of the

PASCAL VOC 2007 test set. This is consistent with the full-blown model that achieves

32.5% MAP. The combination of Q-poselets, and learned weights per poselet, typically

lead to a gain of 3% across categories. Our baseline implementation is quite compet-

itive to existing models that use HOG features and linear SVMs, such as, the Dalal &

Triggs detector (9.7%), exemplar SVMs (22.7%) [10] and DPM (33.7%). These scores

are without inter-object context re-scoring, or any other post-processing.

Breakdown of the training time. Our implementation takes 20 hours to train a single

model on a 6-core modern machine. About 24% of the time is spent in the initial poselet

training, i.e., linear classifiers for each detector. The rest 76% of the time is spent on pose-

let selection, an overwhelming majority of which is spent on evaluating the 800 poselets

on the training data. The actual selection, calibration and construction of the models takes

less than 0.05% of the time.

21

3.2.2 An overview of exemplar SVMs for object detection

Exemplar SVMs [10] is a method for category representation where each positive

example of a category is used to learn a HOG filter that discriminates the positive example

from background instances. Thus, the number of exemplar SVMs for a given category

is equal to the number of positive examples in the category, similar in the spirit to a

nearest neighbor classifier. At test time each of these SVMs are run as detectors, i.e.,

using a multi-scale scanning window method, and the activations are collected. Overall

detections are obtained by pooling spatially consistent set of activations from multiple

exemplars within an image.

By design, the exemplars are likely to be highly redundant since several examples

within a category are likely to be very similar to one another. Hence, a good model may

be obtained by considering only a subset of the exemplars. Experimentally, we found

that using only 100 best exemplars (based on the learned weights of the full model), a

small fraction of the total, we obtain a performance of MAP = 21.89%, compared to

MAP = 22.65%. We use publicly available models 1 for our experiments, and report

results using E-SVM + Co-occ method reported in [10].

The training time scales linearly with the number of exemplars in the model. Hence,

we would save significantly in training time we could quickly select a small set of relevant

exemplars. We describe the details of the experimental setup in Sect. 3.5.

1https://github.com/quantombone/exemplarsvm

22

https://github.com/quantombone/exemplarsvm

3.3 Ranking and diversity

One could attempt to predict the AP value of a filter, or some other direct measure

of filter’s quality, directly in a regression settings. However this is unlikely to work2

due to a number of factors: noisy estimates of AP on training filters/categories, systemic

differences across categories (some are harder than others, and thus have consistently

lower performing parts), etc.

3.3.1 Learning to rank parts

Our approach instead is to train a scoring function. Given a feature representation

of a part, this function produces a value (score) taken to represent the quality of the filter.

Ordering a set of filters by their scores determines the predicted ranking of their quality;

note that the scores themselves are not important, only their relative values are.

Let φ(f) be a representation of a filter f in terms of its intrinsic features; we describe

the choice of φ in Sect. 3.3.3. We model the ranking score of f by a linear function

〈w,φ(f)〉. The training data consists of a set of filters {fg,i} for g = 1, . . . , G (training

categories) and i = 1, . . . , N , where N is the number of filters per category (assumed

for simplicity of notation to be the same for all categories). For each fg,i we have the

estimated quality yg,i measured by the explicit (expensive) procedure on the training data

of the respective categories. Let fg,i be ordered by descending values of yg,i. For i > j,

we denote ∆g,i,j
.
= yg,i − yg,j; this measures how much better fg,i is than fg,j .

2and indeed did poorly in our early experiments

23

We train the ranking parameters w to minimize the large margin ranking objective

min
w

1

2
‖w‖2 + C

G∑
g=1

N−1∑
i=1

N∑
j=i+1

[
1−

〈
w, δφg,i,j

〉]
+

∆g,i,j (3.1)

where δφg,i,j
.
= φ(fg,i) − φ(fg,j). and [·]+ is the hinge at 0. The value C determines

the tradeoff between regularization penalty on w and the empirical ranking hinge loss.

Additionally, per-example scaling by ∆g,i,j is applied only to pairs on which the ranking

makes mistakes; this is known as slack rescaled3 hinge loss [25]. We minimize (3.1) in

the primal, using conjugate gradient descent [27].

3.3.2 Selecting a diverse set of parts

A set of parts that are good for detection should be individually good and comple-

mentary. We can cast this as a maximization problem. Let xi ∈ {0, 1}, i ∈ {1, . . . , N},

denote the indicator variable that part i is selected. Let ŷi denote the (estimated) score of

part i, and Aij denote the similarity between parts i, j; we defer the details of evaluating

Aij until later. Then the problem of selecting n parts can be cast as:

max
x∈{0,1}N ,

∑
i xi=n

∑
i

ŷixi − λ
∑
i

max
j 6=i

Aijxixj. (3.2)

This is a submodular function, which can be made monotone by additive shift in the

values of ŷ. For such functions, although exact maximization of this function subject to

cardinaty constraint
∑
xi = n is intractable, the simple greedy agorithm described below

3In our experiments slack rescaling performed better than margin rescaling, consistent with results re-
ported elsewhere [25, 26].

24

Figure 3.3: Examples of good and bad filters from the poselets model. Good filters exhibit
less clutter, and stronger correlations among nearby spatial locations, than bad ones.

is known [28] to provide near-optimal solution, and to work well in practice.

First part selected is argmaxi ŷi. Now, suppose we have selected t parts, without

loss of generality let those be 1, . . . , t. Then, we select the next part as

argmax
i

{
ŷi − λ max

j=1,...,t
Ai,j

}
.

We can further relax the diversity term, by replacing the max with the k-th order value of

similarity between candidate part and those already selected. For instance, if k = 10, we

select the first ten parts based on scores ŷ only, and then start penalizing candidates by

the tenth highest value of similarity to selected parts. Suppose this value is σ; this means

that ten parts already selected are similar to the candidate by at least σ. This makes it less

likely that we will reject a good part because a single other part we selected is somewhat

similar to it.

3.3.3 Features for part ranking

Recall that filter f is considered to be good if during prediction it does not confuse

between a negative sub-window and a sub-window belonging to the object class. Or in

25

other words it results in high average precision for that object/part/poselet. Fig. 3.3 shows

some examples of good and bad filters. We propose to capture the properties of a good

filter by considering various low level features that can be computed from the filter itself

which are described below.

• Norm: The first feature we consider is the `2-norm of the filter
√

fT f . Intuitively,

high norm of filter weights is consistent with high degree of alignment of positive

windows similar to the seed that initiated the part, and may indicate a good part.

• Normalized norm: The norm is not invariant to the filter dimension (m×n), which

may vary across filters. Therefore we introduce normalized norm
√

fT f/(mn).

• Cell covariance: For good filters, the activations of different gradient orientation

bins within a cell are highly structured. Neighboring gradient orientation bins are

active simultaneously and majority of them are entirely suppressed. This is because

the template has to account for small variations in local gradient directions in or-

der to be robust, and if a certain gradient orientation is encouraged, its orthogonal

counterpart is often penalized. For each filter f ∈ Rmnd, a d × d feature vector is

obtained which captures average covariance of the filter weights within a cell.

• Cell cross-covariance: Similarly, there is also a strong correlation between filter

weights in nearby spatial locations. Dominant orientations of neighboring cells

tend to coincide to form lines, curves, corners, and parallel structures. This could

be attributed to the fact that the template has to be robust to small spatial variations

in alignment of training samples, and that contours of objects often exhibit such

26

traits. We model 4 types of features: cross-covariance between pairs of cells that

are (a) horizontal (b) vertical, (c) diagonal 1 (+45◦), and (d) diagonal 2 (−45◦).

This leads to a 4d× d dimensional feature vector.

Our covariance features are inspired by [13] who used them in a generative model

of filters that served as a prior for learning filters from few examples. In contrast, we use

these features in a discriminative framework for selecting good filters. Our experiments

suggests that the discriminative ranker outperforms the generative model (Sect. 3.4).

3.3.4 The LDA acceleration

Instead of ranking SVM filters, one can also learn to rank the filters that are obtained

using linear discriminant analysis (LDA) instead [29]. The key advantage is that this can

be computed efficiently in closed form as Σ−1(µ+−µ−), where Σ is a covariance matrix

of HOG features computed on a large set of images, and µ+ and µ− are the mean positive

and negative features respectively. The parameters Σ and µ− need to be estimated once

for all classes. In our experiments the LDA filter by itself did not perform very well. The

LDA based detector with poselets was 10% worse in AP on bicycles, but we found that

the performance of the LDA filters and that of the SVM filters are highly correlated. If the

selection is effective using the LDA filters we can train the expensive SVM filters only

for the selected poselets, providing a further acceleration in training time. We consider

additional baseline where the ranker is trained on the LDA filters instead of the SVM

filters in our experiments.

27

3.4 Experiments with Poselets

We perform our poselet selection on the models described in Sect. 3.2.1. For each

category we have a set of 800 poselets, each with learned HOG filter trained with a SVM

classifier, and its detection AP computed on the training set. We evaluate our selection in

a leave-one-out manner – for a given category the goal is to select a subset (say of size

100) out of all the poselets by training a ranker on the remaining categories. The code can

be downloaded from our project page 4.

We compare the various selection algorithms in two different settings. The first

is ranking task where algorithms are evaluated by comparing the predicted ranking of

poselets to the true ranking according to their AP. We report overlaps at different depths

of the lists to measure the quality. In addition, we also evaluate the selected poselets in the

detection task, by constructing a detector out of the selected poselets and evaluating it on

the PASCAL VOC 2007 test set. All the poselets are trained on the PASCAL VOC 2010

trainval set for which the keypoint annotations are publicly available, and the images in

our training set are disjoint from the test set.

3.4.1 Training the ranking algorithm

As described in Sect. 3.3.1 for each category we train a ranking algorithm that learns

to order the poselets from the remaining 19 categories according to their detection AP. We

normalize the APs of each class by dividing by maximum for that category to make them

comparable across categories. Note that this does not change the relative ordering of

4http://www.umiacs.umd.edu/˜ejaz/goodParts/

28

http://www.umiacs.umd.edu/~ejaz/goodParts/

poselets within a class.

The learning is done according to 3.1. From the pool of all the poselet filters

(19×800) we generate ordering constraints for pairs of poselets i, j for which ∆c,i,j >

0.05; this significantly reduces computation with negligible effect on the objective.5 The

cost of reversing the constraint is set proportional to the difference of the APs of the

pair under consideration. The constant of proportionality C in Eqn. 3.1 is set using

cross-validation. We consider values ranging from 10−13 to 103. As a criteria for cross-

validation we check for ranking on the held-out set. We consider the ranked list at depth

one fourth of the number of samples in the held-out set. The cross-validation score is

computed as follows, listpredicted∩listactual
listpredicted∪listactual

, and set using 3 fold cross validation. Note, that

at any stage of the learning, the filters for the target class are not used.

3.4.2 Training the diversity model

The actual set of filters selected by the poselet model is not simply the top per-

forming poselets, instead they are selected greedily based on highest incremental gain

in detection AP. We can model this effect by encouraging diversity among the selected

poselets as described in Sect 3.3.2. To do so, we first need a model of similarity between

poselets. In our experiments we use a simple notion of similarity that is based on the

overlap of their training examples. Note that poselets use keypoint annotations to find

similar examples and provide an ordering of the training instances. For two different

poselets i, j we compute the overlap of the top r = 3% (which is used for training the

filters) of the ordered list of training examples Topi and Topj to compute the similarity,

5The results are not sensitive to the choice of threshold on ∆

29

i.e., Aij =
Topi∩Topj
Topi∪Topj

. We ignore the actual filter location and simply consider the overlap

between indices of training examples used. More sophisticated, but slower, versions of

similarity may include computing the responses of a filter on the training examples of

another.

The only parameter that remains is the term λ (Eqn. 3.3.2) controlling the tradeoff

between diversity and estimated AP rank. We tune it by cross-validation. Note that unlike

the previous setting for ranking where we learn to match the AP scores, here we train

the diversity parameter λ to match the set of “poselets” that were actually picked by

the poselet training algorithm. This process closely approximates the true diversity based

selection algorithm. For each category, we pick a λ that matches the predicted list of other

categories best on average. In practice, we found λ to be very similar across categories.

3.4.3 Selection methods considered

Below are the methods we consider for various ranking and detection tasks in the

poselets framework:

• Oracle - poselets ordered using the poselet selection algorithm (Sect 3.2.1).

• 10% - only 10% of the training images are used for poselet selection.

• Random - select a random subset of poselets.

• Norm (svm) - poselets ordered in descending order of `2-norm of their SVM filter.

• Σ-Norm (svm) - poselets ordered in descending order on SVM filters, according to

fT (I− λsΣs)f , where λs is set such that the largest eigenvalue of λsΣs = 0.9 as

defined in [13]. We construct Σs from top 30 filters (according to AP) from each

30

category to create a model of a good filter. While constructing Σs for one category

we consider all the other category’s filters.

• Rank (svm) - poselets ordered according to the score of the ranker trained on the

SVM filters (Sect. 3.4.1).

• Rank (lda) - poselets ordered according to the score of the ranker trained on LDA

filters (Sect 3.3.4).

In addition we consider variants with diversity term added (Sect. 3.4.2), which is

shown as + Div appended to the end of the method name.

3.4.4 Ranking results

Tab. 3.1 displays the performance of various ranking methods on the ranking task.

Ranked list was looked at various depths (top 50, 100 etc.) and its overlap was found with

top 100 poselets in the groundtruth ranking (i.e. ranking according to actual AP, Sec. 3.2).

Table shows number of poselets in top 100 groundtruth by considering various depths in

the ranked list, averaged across categories. Note that Rank (svm) performs best at all the

depths considered, and is closely matched by ranking using the LDA filter Rank (lda).

It is worth noting that the ranking task is a proxy for the real task (detection). In the

next section we examine how the differences (some of them minor) between methods in

Table 3.1 translate to difference in detection accuracy.

31

Methods 50 100 150 200
Norm (svm) 30.25 52.80 68.60 80.00
Σ-Norm (svm) 29.30 52.20 67.85 79.70
Rank (lda) 31.50 54.30 70.20 80.20
Rank (svm) 31.55 55.35 71.20 81.10

Table 3.1: The number of common filters in the ranked list for various methods and the
ground truth list based on the poselet detection AP for different lengths of the list.

3.4.5 PASCAL VOC detection results

Tab. 3.2 summarizes the accuracy of the detectors, reported as the mean average

precision (MAP) across the 20 categories using the model constructed from the top 100

poselets using various algorithms. We also report the speedups and relative MAP (δMAP =

MAP− MAPoracle), that various methods can provide over the actual implementation for

training model consisting of 100 poselets from a pool of 800 poselets.

Ranking with SVM filters. The Random baseline performs poorly with δMAP = −2.37%.

Norm based ordering does well – the `2-norm based ordering already comes close with

a δMAP = −1.65%, while the structured norm, Σ-Norm (svm) is slightly better with a

δMAP = −1.50%. Our learned ranker outperforms the norm based methods (not surpris-

ing since the features include norm and the co-variance structure of the HOG cells). The

ranker trained on the SVM filters achieves a δMAP = −1.22%.

Adding diversity term leads to improvements across the board. Notably, the perfor-

mance of the Rank (svm) + Div is indistinguishable from the original model δMAP =

+0.01%. Examination of the sets of 100 filters obtained with and without diversity with

Rank (svm) reveals that on average (across categories) 40% of the filters are different.

32

All these methods provide a speedup of 8× in the poselet selection step relative

to Oracle, and an overall speed up of 3×, since the initial training of expensive SVM

filters still has to be done which consumes 24% of the overall training time as described

in Sect. 3.2.1 (except for Random which provides a speedup of 8×, but at significant loss

of accuracy). Finally, an alternative way to achieve such speedup is to evaluate the AP of

the filters directly, but on only the fraction of the data; this 10% method does significantly

worse than our proposed methods, and provides a smaller speedup of 2.4× since all the

filters need to be evaluated on 10% of the data. One likely reason for the low performance:

most poselets, including useful ones, are rare (hence the pretty low APs even for the top

performing parts), and subsampling the training set might remove almost all true positive

examples for many parts, skewing the estimated APs. Larger subsets, e.g., 25% would

lead to even smaller speedups, 1.9× in this case.

Ranking with LDA filters. Next we consider LDA filters, and we find the the perfor-

mance of the selection of poselets based on the LDA filters is slightly worse. The diversity

based ranker trained on the LDA filters, Rank (lda)+Div, achieves a δMAP = −0.84%.

The key advantage of ranking using the LDA filters is that it speeds up the initial poselet

training time as well, since only 100 poselets are further trained using SVM bootstrap-

ping and data-mining. Thus the overall speed up provided by this procedure is 8×, almost

an order of magnitude. On a six-core machines it takes about 2.5 hours to train a single

model, compared to 20 hours for the original model. Note that we only use the LDA

filter for ranking as we found that the LDA filters themselves are rather poor for detec-

tion on a number of categories. Notably, the bicycle detector was 10% worse – the LDA

33

VOC 2007 test Training speedup
Method MAP δMAP Initial Selection Overall
Oracle 29.03
Random 26.66 −2.37 8× 8× 8×
10% 27.78 −1.25 1× 4.4× 2.4×
Norm (svm) 27.38 −1.65 1× 8× 3×
Norm (svm) + Div 28.34 −0.69 1× 8× 3×
Σ-Norm (svm) 27.53 −1.50 1× 8× 3×
Σ-Norm (svm) + Div 28.51 −0.52 1× 8× 3×
Rank (svm) 27.81 −1.22 1× 8× 3×
Rank (svm) + Div 29.04 +0.01 1× 8× 3×
Rank (lda) + Div 28.19 −0.84 8× 8× 8×
Rank (lda) + Div (2× seeds) 29.46 +0.43 8× 8× 8×

Table 3.2: Performance of poselet selection algorithms on PASCAL VOC 2007 detection.
Table 3.3 shows per category results for various methods using the poselet framework.

based wheel detector has many false positives on wheels of cars, which the hard-negative

mining stage of SVM training learns to discriminate.

The 2× poselets experiment. We can select twice as many seeds and select an even bet-

ter set of 100 poselets using the diversity based ranker based on the LDA filters. This has

a negligible effect on the training time as the seed generation and LDA filter computation

takes a small amount of additional time (< 1%). However, this improves the performance

which is better than the original model with δMAP = 0.43%, while still being an order of

magnitude faster than the original algorithm.

PASCAL VOC 2010 results. We evaluated the oracle and the best performing method

(Rank (lda) + Div (2x seeds)), on the PASCAL VOC 2010 detection test set and

achieved a δMAP = 0.56%.

34

Oracle Rand 10% Norm Norm + Div Σ-Norm Σ-Norm + Div Rank Rank + Div Rank + Div Rank (ΦLDA)
(ΦSV M) (ΦSV M) (ΦSV M) (ΦSV M) (ΦSV M) (ΦSV M) (ΦLDA) +Div (2× seeds)

aeroplane 32.37 30.37 31.10 29.08 29.39 27.83 27.34 25.62 26.20 28.30 31.29
bicycle 50.00 47.75 49.81 43.46 47.08 44.69 48.49 43.76 53.57 50.79 47.49
bird 12.82 10.51 11.24 13.54 13.34 13.42 13.22 11.74 12.02 11.38 10.74
boat 16.36 14.30 14.30 17.90 17.47 17.61 16.41 17.76 17.32 16.70 15.17
bottle 31.57 29.85 26.76 32.37 33.06 32.94 33.16 32.15 31.14 29.72 31.43
bus 41.30 41.98 40.98 37.61 37.62 37.05 37.74 42.59 39.00 40.06 41.80
car 56.00 52.48 53.24 54.05 55.66 52.84 56.50 52.62 54.75 54.97 55.46
cat 20.84 16.37 19.59 20.52 20.62 20.52 20.05 20.52 19.43 19.80 20.31
chair 19.20 15.63 17.70 18.76 19.34 18.84 18.64 17.45 17.27 16.90 17.48
cow 37.55 32.73 37.68 32.31 35.43 32.97 34.14 38.32 37.22 35.59 39.13
diningtable 14.51 11.71 14.87 14.63 16.41 14.73 15.94 14.56 18.11 14.69 15.41
dog 17.04 11.19 15.15 14.12 15.35 14.94 15.57 15.14 15.27 14.91 16.72
horse 37.63 33.01 36.38 37.37 41.25 38.84 42.47 41.91 40.28 36.73 43.03
motorbike 35.91 34.30 36.86 31.07 31.47 30.93 33.87 33.82 37.50 38.64 39.27
person 36.65 30.75 34.81 34.43 33.95 34.59 34.50 35.23 35.96 33.06 34.82
pottedplant 13.14 11.79 11.61 12.25 12.78 12.25 12.84 12.72 13.06 13.21 13.90
sheep 31.87 29.56 26.81 30.10 31.43 31.01 31.88 28.52 33.51 31.14 31.89
sofa 23.35 23.46 25.80 22.08 21.99 22.08 22.53 20.92 23.50 23.12 28.77
train 24.31 25.60 22.52 19.84 21.18 19.91 21.75 20.30 25.29 25.42 24.94
tvmonitor 28.21 29.77 28.30 32.03 32.03 32.67 33.16 30.50 30.34 28.72 30.06
mean AP 29.03 26.66 27.78 27.38 28.34 27.53 28.51 27.81 29.04 28.19 29.46

Table 3.3: Per Category Results for Poselets. Best results are highlighted in bold. Best
mean average precision of 29.46 is obtained using Rank (ΦLDA) + Div (2× seeds). Note
that this method resulted in 8× speed up of the training pipeline.

Visualization of Selected Poselets. Figures 3.4 and 3.5 show visualization of parts se-

lected by rankSVM and rankSVM+diversity. Figures show top 10 filters along with their

seeds (positive chips).

Affect of k in max-k criteria for Diversity. We tested different values of k in the max-

k criteria for diveresity selection as described in the paper. We got ∆(AP) = −0.75,

∆(AP) = −0.50 and ∆(AP) = +0.01 for k = 1,k = 5 and k = 10 respectively. Here

∆(AP) = APmethod − APoracle and APoracle = 29.03.

3.5 Experiments with exemplar SVMs

Here we report experiments on training exemplar SVMs. As described in Sect. 3.2.2,

exemplar SVMs’ training time scales linearly with the number of positive examples in the

category. On the PASCAL VOC 2007 dataset, each category has on average 630 exem-

plars. Our goal is to select a set of 100 exemplars such that they reproduce the perfor-

35

mance of the optimal set of 100 exemplars. This is obtained as follows: we use the model

trained using all the exemplars and use the weights learned per exemplar in the final scor-

ing model as an indicator of its importance. The oracle method picks the 100 most

important exemplars, and obtains a performance of MAP = 21.89%.

Unlike poselet filters, some of these exemplars are likely to be rare. Thus even

though the filter looks good, it may not be useful for detection since it is likely to detect

only a small number of positive examples. Hence, we need to consider the frequency of

the filter, in addition to its quality as a measure of importance. We use a simple method

for frequency estimation. Each exemplar filter is evaluated on the every other positive

instance, and the highest response is computed among all locations that have overlap >

50%. Let, sij , denote the normalized score of exemplar i on instance j, i.e, sii = 1. Then,

the frequency of the ith filter is the number of detections with score > θ, where θ is set

to be the 95 percentile of the entries in s. The overall quality of the filter f is the sum of

score obtained from the ranker and is frequency, Rank(f) + Freq(f).

The same metric can be used for diversity. In our experiments we say that τ =

5% of the nearest exemplars are considered similar. For each category the ranker itself

was trained on the poselets of the other 19 categories, i.e., we use Rank(lda) model

described in Sect. 3.4.3. The diversity tradeoff parameter λ is estimated again by cross-

validation within the 19 categories.

To summarize, our overall procedure for exemplar selection is, (a) we train an LDA

filter for each exemplar, (b) using the ranker (trained on poselet model for the training

categories) select a set of 100 filters and associated exemplars, (c) train the full model

with SVM filters for these 100 exemplars. Steps (a) and (b) are relatively inexpensive,

36

hence the training time is dominated by step (c). Compared to the oracle model with 100

exemplars, our fast selection procedure offers a 6.3× speedup.

3.5.1 PASCAL VOC detection results

Here we compare several selection strategies listed below:

• Oracle - top 100 filters picked according to learned weights (as described earlier)

• Random - a random set of 100 filters.

• Freq - the set of 100 most frequent filters.

• Rank(lda) - the set of 100 highest ranked filters according to the LDA ranker.

• Rank(lda) + Freq - the set of 100 filters according to the rank and frequency.

• Rank(lda) + Freq + Div - previous step with diversity term added.

Tab. 3.4 shows the performance of various methods on the PASCAL VOC 2007

dataset reported as the mean average precision (MAP) across 20 categories. The Oracle

obtains 21.89%, while Random does poorly at 18.53%. Frequency alone is insufficient,

and does even worse at 16.23%. Similarly rank alone is insufficient with performance of

17.93%. Our ranker combined with frequency obtains 18.75%, while adding the diversity

term improves the performance to 19.62%. Figure 3.6 shows top 5 selected exemplars

by Rank(lda)+Freq+Div. Note that we obtain this result using the model trained on the

poselet filters and using LDA for training the exemplars. Replacing this with SVM filters

may close the gap even further as we observed in the poselet based experiments.

37

Method MAP on VOC 2007 test
Oracle 21.89
Random 18.53
Freq 16.23
Rank(lda) 17.93
Rank(lda) + Freq 18.75
Rank(lda) + Freq + Div 19.62

Table 3.4: Performance of selection algorithms for detection on the PASCAL VOC 2007
dataset. All these methods provide a speed up of 6.3× relative to the Oracle as there are
on average 630 exemplars per category. Table 3.5 shows per category results for various
methods using the exemplar SVM framework.

Oracle Rand Freq Rank(lda) Rank(lda) + Freq Rank(lda) + Freq + Div
aeroplane 23.58 10.63 10.44 9.66 9.91 21.83
bicycle 41.72 42.56 34.82 38.86 40.66 40.30
bird 9.23 9.18 9.25 9.14 9.12 9.13
boat 13.56 10.53 9.49 10.18 9.36 10.04
bottle 11.54 9.34 9.18 9.46 9.19 9.23
bus 39.56 33.05 30.87 32.77 34.84 36.38
car 37.96 33.92 17.34 29.89 32.39 32.41
cat 9.41 9.38 9.36 9.53 9.15 9.21
chair 9.98 9.68 9.36 9.22 9.11 9.12
cow 19.58 14.64 14.69 15.24 18.66 18.54
diningtable 10.07 9.47 10.29 9.91 9.96 9.81
dog 10.03 9.41 9.32 9.31 9.23 9.22
horse 41.70 35.93 27.38 30.17 33.32 32.34
motorbike 33.26 32.28 25.33 31.67 32.64 32.64
person 15.58 10.08 9.65 9.90 10.40 11.04
pottedplant 9.62 9.51 9.62 9.41 9.10 9.23
sheep 24.33 18.69 14.47 18.51 20.23 22.07
sofa 13.30 9.95 9.77 11.07 11.22 11.26
train 33.23 25.20 26.14 28.09 26.98 28.08
tvmonitor 30.49 27.16 27.82 26.70 29.47 30.58
mean AP 21.89 18.53 16.23 17.93 18.75 19.62

Table 3.5: Per Category Results for Exemplar SVMs. Note how Freq and Div both play
an important role for esvm along with ranker (result closest to the Oracle is obtained
when all three,i.e. Rank, Freq and Div are used together). All these methods result in a
speed-up of 6.3× relative to the Oracle.

38

3.5.2 An analysis of bicycle HOG filters

Finally, we look at the bicycle category to get some insight into the ranker. We take

the filters obtained from the poselets model, as well as exemplar SVMs. To decouple the

effect of frequency we only consider side-facing bicycle exemplars. The assumption here

is that all side-facing exemplars have the same frequency.

Fig. 3.7 (top) shows a scatterplot of the score obtained by the ranker (higher is

better) and the true ranks of the filters (lower is better) for poselets and exemplar SVMs.

For poselets there is a strong (anti) correlation between the predicted score and quality

(correlation coefficient = -0.64). For exemplar SVMs, the prediction is weaker, but it does

exhibit high (anti) correlation (correlation coefficient = -0.42). Fig. 3.7 (bottom) shows

the 10 least and highest ranked side-facing exemplars. The ranker picks the exemplars

that have high figure-ground contrast revealing the relevant shape information and little

background clutter.

3.6 Conclusion

We described an automatic mechanism for selecting a diverse set of discriminative

parts. As an alternative to the expensive explicit evaluation that is often the bottleneck in

many methods, such as poselets, this has the potential to dramatically alter the tradeoff

between accuracy of a part based model and the cost of training. In our experiments, we

show that combined with LDA-HOG, an efficient alternative to SVM, for training the part

candidates, we can reduce the training time of a poselet model by an order of magnitude,

while actually improving its detection accuracy. Moreover, we show that our approach

39

to prediction of filter quality transcends specific detection architecture: rankers trained

for poselets allow efficient filter/exemplar ranking for exemplar SVMs as well. This also

reduced the training time for exemplar SVMs by an order of magnitude while suffering a

small loss in performance.

The impact of such a reduction would be particularly important when one wants to

experiment with many variants of the algorithm – situation all too familiar to practitioners

of computer vision. Our work suggests that it is possible to evaluate the discriminative

quality of a set of filters based purely on their intrinsic properties. Beyond direct savings

in training time for part-based models, this evaluation may lead to speeding up part-based

detection methods at test time, when used as an attention mechanism to reduce number of

convolutions and/or hashing lookups.

Our plans for future work include investigation of the role of class affinity in gen-

eralization of part quality; e.g., one might benefit from using part ranking from vehicle

classes when the test class is also a vehicle.

40

Figure 3.4: Top 10 poselets (filter and seeds) per category discovered using rankSVM
(top 2 rows). Re-ordering using our diversity selection method (bottom 2 rows). Note
that parts that are ranked higher by rankSVM might not end up high in the ordering
by diversity. Diversity selection picks diverse set of parts for instance in case of sheep,
instead of just picking faces which might have high prediction capability by themselves,
it also picks side veiw of sheep (last part).

41

Figure 3.5: More examples of visualization of poselets selected by rankSVM and by
rankSVM + diversity.

42

Figure 3.6: Top 5 exemplars selected by our method Rank(lda) + Freq+ Div . Cate-
gories in row major order - aeroplane, bird, bicycle, cat, bus, cow, car, dog, horse, person,
motorbike and sheep.

−0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

300

350

400
Bicyle poselets, corr: −0.64

Predicted score

T
ru

e
 r

a
n
k

−0.5 0 0.5 1 1.5
0

50

100

150

200

250

300

350

400
Bicycle exemplars, corr: −0.25

Predicted score

T
ru

e
 r

a
n
k

0 0.5 1 1.5
0

50

100

150

200

250

300

350
Bicyle (side facing) exemplars: corr: −0.42

Predicted score

T
ru

e
 r

a
n
k

−0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

300

350

400
Bicyle poselets, corr: −0.64

Predicted score

T
ru

e
 r

a
n

k

−0.5 0 0.5 1 1.5
0

50

100

150

200

250

300

350

400
Bicycle exemplars, corr: −0.25

Predicted score

T
ru

e
 r

a
n

k

0 0.5 1 1.5
0

50

100

150

200

250

300

350
Bicyle (side facing) exemplars: corr: −0.42

Predicted score

T
ru

e
 r

a
n

k

low scoring

high scoring

Figure 3.7: An analysis of bicycle filters. (Top-left) Scatter plot of true ranks and the
ranker score of the bicycle poselets. (Top-right) the same for all the exemplars of side-
facing bicycles. The high scoring side-facing exemplars (Bottom row) exhibit high con-
trast and less clutter than the low scoring exemplars (Middle row).

43

Chapter 4: Composite Discriminant Factor Analysis

In this chapter we present a linear dimensionality reduction method, Composite

Discriminant Factor (CDF) analysis, which searches for a discriminative but compact

feature subspace that can be used as input to classifiers that suffer from problems such

as multi-collinearity or the curse of dimensionality. The subspace selected by CDF max-

imizes the performance of the entire classification pipeline, and is chosen from a set of

candidate subspaces that are each discriminative. Our method is based on Partial Least

Squares (PLS) analysis, and can be viewed as a generalization of the PLS1 algorithm,

designed to increase discrimination in classification tasks. We demonstrate our approach

on the UCF50 action recognition dataset, two object detection datasets (INRIA pedes-

trians and vehicles from aerial imagery), and machine learning datasets from the UCI

Machine Learning repository. Experimental results show that the proposed approach im-

proves significantly in terms of accuracy over linear SVM, and also over PLS in terms

of compactness and efficiency, while maintaining or improving accuracy. This work has

been published in [30].

44

4.1 Introduction

Dimensionality reduction methods have been popular in the computer vision com-

munity [31] as preprocessing tools that deal with the increasing dimensionality of input

features. The literature includes linear methods [32–34]; non-linear methods, some of

which are kernelized versions of linear methods [35–38]; and feature selection meth-

ods [31]. We focus on linear feature construction methods that obtain compact but pre-

dictive features by linear transformations, motivated by the task of object detection, which

involves high-dimensional features constructed from dense feature grids (e.g., HOG [39,

40], pyramidal HOG [41], dense SIFT [42]) and a sliding window detection step that re-

peatedly applies classifiers to features constructed from image sub-windows at varying

scales, translations, and rotations. The sliding window detection process benefits from

linear projections in various ways. For instance, new samples are efficiently projected

into the subspace by matrix multiplication and the high-dimensional training data does

not need to be stored as it is for kernel methods, reducing memory and computational

requirements. Additionally, linear projection can be performed efficiently by first extract-

ing a feature grid for the entire image and then performing linear convolution [40], thus

avoiding redundant computation of features included in multiple windows at different off-

sets. Consequently, many state-of-the-art approaches use linear classifiers, typically linear

SVM [35], not only for detection but also for other tasks (e.g., action recogntion [43]).

Motivated by these trends, we propose a new approach, Composite Discriminative

Factor (CDF) analysis, that selects one or more linear projection vectors to produce a

compact and discriminative subspace, optionally followed by a non-linear classification

45

step (which is computationally cheap on low-dimensional inputs). This process is based

on Partial Least Squares (PLS) [44, 45], a class of methods which model the relationship

between two or more sets of observed variables via a set of latent variables chosen to

maximize the covariance between the sets of observed variables. More specifically, our

approach is based on the most frequently used variants of PLS [45], PLS1 and PLS2, both

of which are used for regression by a process that iteratively obtains a projection vector

that maximizes covariance between the input and response variables. Instead of using

PLS directly, as has been done previously [46, 47], we use PLS internally to generate

compact subspaces that improve the performance of our entire classification pipeline.

Our approach is based on the observations that 1) maximizing covariance between

the input features and response variables does not necessarily yield a compact feature

space for the purpose of classification, and 2) linear combinations of PLS factors obtained

by performing regression from the latent space to the response variables are much more

compact and almost as discriminative as the factors themselves. For binary classification,

the composite is a projection vector. By varying how many factors are used to create

a composite, we create a number of candidate projection vectors. Taking advantage of

the PLS deflation operation, we iteratively alternate between the selection of a composite

direction and deflation to obtain multiple projection vectors that define a multidimensional

latent subspace. The number of composites we deflate by and the number of PLS factors

per each composite parametrize a set of candidate subspaces. Using cross-validation and

best-first search, we select from these subspaces the one that maximizes performance for

the entire classification pipeline.

One appealing property of our approach is that the set of candidate CDF subspaces

46

includes the original PLS subspace, so it can be viewed as a generalization of PLS. In

addition, subject to mild constraints, approaches other than PLS can be used to propose

projection vectors at each iteration. We show empirically that our process not only out-

performs PLS and other state-of-the-art baseline approaches on a number of datasets, but

it does so with only one- or two-dimensional subspaces. We demonstrate the performance

of our approach on the tasks of pedestrian detection on the INRIA Pedestrian dataset [39],

vehicle detection in aerial images that we will make publicly available, and action recog-

nition on the UCF50 [48] dataset. In addition, we demonstrate our approach on four

public datasets from the UCI Machine Learning repository [49]. Our experiments sug-

gest that many algorithms could be improved by replacing linear SVM with CDF, since

linear SVM is a common component of many state-of-the-art computer vision algorithms

that depend on linear projections of high-dimensional data.

4.1.1 Related work

Linear methods have been used in the field of computer vision for dimensionality

reduction or directly for classification. For example, Principal Component Analysis has

been used as a dimensionality reduction approach for face recognition by [50], followed

by Linear Discriminant Analysis (LDA) for face [51], pedestrian, and object recogni-

tion [52]. Other methods, such as Canonical Correlation Analysis (CCA) have also been

applied to vision [53].

A popular linear classifier and descriptor combination currently employed by a large

number of state-of-the-art vision approaches is linear SVM [32] and Histograms of Ori-

47

ented Gradients (HOGs), initially applied by Dalal and Triggs [39] to detect pedestrians.

Subsequently, improved human detectors have been proposed that can handle partial oc-

clusion [54]. More general deformable part models (DPM) have been proposed that

model objects as a set of part filters anchored to a root filter that are applied to modi-

fied HOG features, and trained using an extension of linear SVM, called Latent SVM.

Recently, Malisiewicz et al. train linear SVM classifiers on HOG descriptors of each

in a one-vs-all fashion to every positive instance (or exemplar) available in the train-

ing set [55]. Other approaches using these building blocks include: branch-and-bound

detection applied to linear SVMs for efficient search [56]; coarse-to-fine object localiza-

tion [41, 57]; scale invariant detection at multiple resolutions, in which small instances

are detected with rigid templates and large instances are detected by deformable part

models [58]; active learning [59], where a linear classifier is used to identify uncertain

windows that need to be labeled manually; and pose-estimation [60] using an approach

similar to DPM. Linear SVM has also been used in other state-of-the-art applications that

do not rely on HOG, e.g., multiclass action recognition using ActionBank features [43],

among many others.

Other linear classifier approaches have been proposed as well. In particular, Partial

Least Squares (PLS) [44], has been recently applied to the problem of human and vehicle

detection [46, 47], largely due to its ability to efficiently handle high dimensional data.

Unlike PCA [33], PLS can be used as a class-aware dimension reduction tool, and unlike

other class-aware dimension reduction tools, such as LDA [33, 34] or CCA [34], it can

handle very high-dimensional data and its associated problems (multi-collinearity, in par-

ticular). While many PLS extensions exist such as Canonical PLS (CPLS) and Canonical

48

Power PLS (CPPLS) [61], Kernel PLS [62], and others [45], we will focus on extensions

to the standard linear PLS approach with the goal of improving existing linear approaches

that are used in many of the vision systems described above. Our work is motivated by our

observation that PLS often outperforms linear SVM but that it also requires a larger linear

subspace (linear SVM can be seen as projecting into a single-dimensional subspace).

Our contribution consists of a new approach, CDF, which is based on PLS but

yields more compact linear subspaces that can be used for training classifiers. The ben-

efit of lower dimensional subspaces, provided that they preserve discriminability, is not

just computational–more complex classification approaches often generalize better if pre-

sented with samples that lie in a lower dimensional subspace. In the following sections,

we will briefly summarize PLS, introduce our approach, and present experimental results

on pedestrian detection, vehicle detection, action recognition, and benchmark machine

learning datasets.

4.2 Partial Least Squares

A number of Partial Least Squares (PLS) variants model relations between two

or more sets of observed variables through a set of latent variables; many of these are

discussed in detail in [44, 45]. We briefly summarize the most frequently used variants,

PLS1 and PLS2 [45], which relate two sets of observed variables X ∈ Rn×p and Y ∈

Rn×q, and are generally used for regression problems. Here, n is the number of observed

samples, p is the dimensionality of samples from X and q is the dimensionality of samples

from Y. PLS1 is the special case where q = 1, while PLS2 is the more general case where

49

q > 1. PLS decomposes the zero-mean matrices X and Y as follows:

X = TPT + E

Y = UQT + F

where T and U are n× f matrices containing f latent vectors ti and ui (the coefficients

obtained by projecting into the latent space), P ∈ Rp×f and Q ∈ Rq×f contain the

loadings (the basis vectors which minimize squared reconstruction error), and E ∈ Rn×p

and F ∈ Rn×q are the residuals that result from using only f latent vectors to reconstruct

X and Y (a low rank approximation similar to keeping only the dominant f eigenvectors

for PCA). Usually the PLS decomposition is obtained by the nonlinear iterative partial

least squares (NIPALS) algorithm [44], summarized in Algorithm 4.1, which iteratively

constructs T, U, W, and C one column at a time by finding at each iteration i the weight

vectors wi and ci that maximize the covariance between latent coefficients ti = Xwi and

ui = Yci:

[cov(Xwi,Yci)]
2 = max

||r||=||s||=1
[cov(Xr,Ys)]2.

The NIPALS algorithm finds the wi and ci that maximize the covariance from above by

obtaining the leading eigenvector of XTYYTXwi = λwi. The vector ci, which is the

leading eigenvector of a related problem, can be computed from wi, and is also obtained

by NIPALS in Algorithm 4.1 via the power iteration loop on lines 2–8. Once weight

vectors w and c are obtained, the normalized score vector ti = Xwi/||Xwi|| is computed.

The matrix X is deflated by its rank-one reconstruction from ti, and Y is deflated by the

50

Figure 4.1: PLS Algorithm (NIPALS version)

1: for i = 1, . . . , f do
2: ui ← y1/||y1||
3: repeat
4: wi ← XTui/||XTui||
5: ti ← Xwi/||Xwi||
6: ci ← YTti/||YTti||
7: ui ← Yci

8: until convergence
9: X← X− titi

TX
10: Y ← Y − titi

TY
11: end for

rank-one component of the regression of Y on ti (Alg. 4.1, lines 9–10). The deflation step

guarantees that subsequent weight vectors wi+1 and resulting score vectors ti+1 explain

only the residuals, and thus are independent, i.e. TTT = I and WTW = I, where ti

and wi are the ith colums of T and W. It can be shown that P = XTT minimizes

reconstruction error ||E||2. Because the columns of W are computed from deflated data,

we compute a matrix W∗ = W(PTW)−1 that corrects for the deflation step so that we

can obtain the latent scores (or coefficients) of X by a linear projection, T = XW∗.

PLS classification can be performed by letting X be the input features and Y be

the n × c class indicator matrix for multiclass classification or a n × 1 indicator vector

for the binary case. If PLS is used for feature extraction, then f factors are extracted

as linear combinations of the input features, and some other classifier (e.g., QDA) is

applied to the factors T = XW∗. Note that because TTT = I, the projected data is also

whitened in the process, a preprocessing step that often improves classifier performance.

Alternatively, classification can be performed by linear regression, predicting the indicator

matrix from the input features by Y = XB + G, where B = W(PTW)−1TTY =

W∗T
TY and G is a residual matrix. In subsequent sections, we denote the vector B by

51

Figure 4.2: CDF Algorithm (Proposed)

1: for i = 1, . . . , f do
2: wi ← pls composite(X,Y, ni)
3: wi ← wi/||wi||
4: ti ← Xwi/||Xwi||
5: X← X− titi

TX
6: Y ← Y − titi

TY
7: end for

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

factor 1
factor 2
factor 3

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

composite of 1-2
composite of 1-3

0 5 10 15 20
f

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
is

cl
as

si
fic

at
io

n
er

ro
r(

va
lid

at
io

n
se

t)

pls(f) (f factors)
cdf(f) (1 composite of factors 1-f)

Figure 4.3: Motivating examples. Left: Example of how initial PLS dimensions are in-
fluenced by input feature covariance. A 3-dimensional dataset is generated by sampling
from a Gaussian distribution with standard deviations of [.5, 4, 1] on the diagonal, rotat-
ing by 45 degrees in the x-y plane, and shifting the class means apart. The plots show the
projection of all points on the x-y plane. The first PLS factor is visibly influenced by the
principal axis, causing confusion between the two classes when points are projected onto
the factor. The second factor corrects for this, and the third reverses some of the correc-
tion. Middle: the composites of the factors on the left. In this toy example two factors are
enough to create a discriminative composite (a single projection vector). Right: compar-
ison between classification error obtained by QDA on f PLS factors (an f -dimensional
subspace) versus the composite of the first f factors (a 1-dimensional subspace); trained
and evaluated on the gisette training and validation subsets, respectively.

pls composite(X,Y, f). The only parameter for PLS is the number of factors f needed

for regression or feature extraction, and is usually set by cross-validation.

4.3 Composite Discriminant Factors

While PLS has been successfully used to select subspaces that are discriminative

for classification tasks, the factors that are chosen are not very compact. For example,

in Figure 4.3 the initial factor is affected by the covariance of the data X, which in this

52

case is not informative for discrimination. By extracting sufficient factors, PLS even-

tually overcomes this problem. The middle plot shows the composite projection vector

B = pls composite(X,Y, f), a single vector computed as a linear combination of the

f PLS factors (which is why we call it a composite) by PLS regression. It is evident that

because PLS regression maps from the latent space to the class indicator, the composite

is able to encode the discriminative direction in a single vector. The two plots on the

left of Figure 4.3 are toy examples, but the pattern appears in real data as well–the third

plot is only one of many examples where a single composite matches and even outper-

forms Quadratic Discriminant Analysis (QDA) applied to the f factors from which the

composite is computed. These examples suggest that while a large set of latent factors

that maximize covariance may lead to good discrimination, it is possible to achieve the

same results with a more compact set of factors, motivating our approach, Composite

Discriminant Factors (CDF).

Just as the PLS algorithm alternates between computing a factor and deflating the

data matrices, we can iterate CDF as well, in this case between computing a composite

and deflating by that composite. It is easy to show that as long as the composite is a linear

combination of the rows of the deflated X, the properties of the PLS deflation process

are satisfied, i.e., WTW = I and TTT = I. The composite B is in the row span of X,

since it is a linear combination of factors which are each in the row span of X. CDF is

parameterized by a length f list (n1, n2, . . . , nf) of the number of factors ni to use for the

ith composite, and proceeds in a similar fashion to PLS, as shown in Algorithm 4.2.

The parameter space is now much larger than that of PLS, each parameter list rep-

resenting a linear subspace obtained from the row span of X, and is depicted visually

53

as a tree in Figure 4.4. The root node corresponds to the original input data X, edges

correspond to candidate composites, and child nodes correspond to parent nodes de-

flated by the composite along the edge. In Figure 4.4 we denote PLS and CDF, along

with their parameters, by pls(f) and cdf(n1, . . . , nf), respectively. It is easy to see that

cdf(n1 = 1, . . . , nf = 1) = pls(f), so PLS can be represented in the CDF parameter

space. Because this parameter space is so large, we propose a best-first search algo-

rithm for the CDF subspace that is optimal for a classification task, potentially with some

bounded depth. The search process proceeds by opening children of the node that has so

far yielded the best cross-validation score. Here, “opening” a node means that CDF with

the corresponding parameters is instantiated and evaluated by cross-validation. Once the

search terminates, the parameters corresponding to the node with the best cross-validation

score are chosen. Alternatively, to take advantage of parallelism and allow training on a

cluster, we can explore all parameters given a maximum number of composites and fac-

tors per composite using standard cross-validation. For example, if we consider up to 2

composites with up to 3 pls factors per composite, we would predict the cross-validation

error of 12 models: cdf(1), cdf(2), cdf(3), cdf(1, 1), cdf(1, 2), cdf(1, 3), cdf(2, 1),

cdf(2, 2), cdf(2, 3), cdf(3, 1), cdf(3, 2), cdf(3, 3). Contrast this with cross-validation

for a PLS model with at most three factors, where we need to choose between three mod-

els: pls(1), pls(2), or pls(3). Training PLS or a single-composite CDF is fast (similar

to training a linear SVM model), but it is easy to see that training time could increase

significantly with the number of composites; while it is sometimes acceptable to sacri-

fice time during training, we have found empirically that CDF generally achieves its peak

performance using up to two composites.

54

pls(2)
pls(1)

pls(2) pls(fmax)

pls(1)
pls(2)

pls(fmax)

pls(1)
pls(fmax)

X0

deflate

X1

deflate

X1

Figure 4.4: Visualization of CDF parameter space. The root signifies the input data ma-
trix, and each level below the root corresponds deflation by an additional composite. The
highlighted path corresponds to the original PLS algorithm, so CDF should at least match
PLS performance if model selection is sufficiently good.

Although CDF composites have so far been obtained by nested iterations of PLS,

other projection directions can be considered as well. For example linear SVM weight

vectors are linear combinations of support vectors, so they are also in the row span of

X. In this case, a copy of original uncentered Y indicator matrix is needed at line 2 of

Algorithm 4.2, instead of the deflated Y matrix used for PLS. Other approaches, such

as CPLS or CPPLS [63] could be used to propose projection directions. We will focus

on CDF with composites obtained by PLS in this paper, leaving other methods for future

work.

4.4 Experiments

4.4.1 Action Recognition: UCF50

We evaluate our method on the task of multiclass action recognition using the

UCF50 dataset [48], which consists of realistic YouTube videos that span 50 action cat-

egories. We represent each video as a 14965 dimensional vector of ActionBank fea-

55

tures [43], and we predict which of the 50 categories each video belongs to. We perform

5-fold group-wise cross-validation as done in [43] and compare the average accuracy of

the following algorithms: 1) linear SVM, 1-vs-all - linear SVM trained on 14965 di-

mensional feature vectors using a 1-vs-all multiclass scheme. This is the state of the art

reported by [43]. 2) linear SVM, 1-vs-1 - a linear SVM is trained for each pair of classes

(50 classes, 1225 total pairs). A test sample is assigned to the class with the most votes,

where the vote count for class i is the number of i-vs-j models (49 of them) which clas-

sify the sample as class i. Ties are resolved recursively by counting votes again but only

among classes with tied vote counts. 3) RBF SVM, 1-vs-1 - standard RBF SVM of lib-

svm on the full 14965 dimensional feature vectors. Multiclass classification is performed

by 1-vs-1 voting. 4) PLS, 1-vs-1 Pairwise PLS factors are obtained, and each sample is

projected onto all factors. RBF SVM with 1-vs-1 voting is applied to the transformed

samples for multiclass classification. 5) CDF, 1-vs-1 - Same as 2) but using CDF instead

of linear SVM.

Table 4.1 shows the cross-validation accuracy of each approach. The comparison

to linear SVM and PLS shows that CDF produces more informative projections for multi-

class classification. The comparison against RBF SVM and PLS shows that CDF also

outperforms approaches that make use of non-linear classifiers. While libsvm uses the

same multiclass scheme as CDF (1-vs-1), liblinear uses a 1-vs-all scheme by default, so

we also implemented linear SVM with a 1-vs-1 scheme. CDF outperforms linear SVM

regardless of multiclass scheme, thus suggesting that the performance improvements over

linear SVM are indeed due to CDF and not to the multiclass scheme. Finally, prediction

with one CDF composite is just as fast as linear SVM 1-vs-1, and is much faster than

56

Table 4.1: Group-wise accuracies on the UCF50 Action Recognition dataset.

Average Accuracy
linear SVM, 1-vs-all [43] 57.90

linear SVM, 1-vs-1 54.48
RBF SVM, 1-vs-1 56.31

PLS, 1-vs-1 55.43
CDF, 1-vs-1 59.01

PLS, which has 8-12 factors per class pair and has higher linear projection cost.

4.4.2 Pedestrian Detection: INRIA Pedestrian Dataset

We also evaluate our classifier as part of a human detector on publicly available

INRIA Pedestrian Dataset [39], using the modified HOG features proposed in [40]. We

evaluate results using the standard PASCAL scheme based on bounding box overlap that

produces precision-recall curves and Average Precision (AP) measures, as done by [40]

and [64]. State-of-the-art results on this dataset involve improved features (irregular HOG

grids, additional channels, etc) [65,66] and use non-linear classifiers [65,66], deformable

parts [40], or context [67]. However, we focus on rigid templates of HOG features on a

regular grid [40], and linear SVM for two reasons: 1) to isolate the contribution of CDF

(as opposed to additional machinery such as deformable parts, context, exemplars), 2)

simple HOG features and linear SVM are still prevalent as building blocks in state-of-the-

art approaches (as is evident in section 4.1.1). We believe that many of these approaches

can benefit from the replacement of linear SVM with CDF but leave this for future work.

One of our baseline approaches is Felzenszwalb’s DPM root model [40], which

consists of two components (two direction-specific detectors) trained using Latent SVM,

a framework that automatically adjusts positive bounding boxes during training (from

57

initial manual annotations) to better align HOG features. Our detector does not model

latent variables, but it does use the same HOG parameters as the root model of [40]:

windows have a size of 5 × 15 grid cells, and each grid cell contains 32 features for

a total of 2400 features per window. As an initial training set, we randomly sample in

scale and translation from the negative training images to obtain two negatives per image.

We resize annotated training bounding boxes by their height, and add a vertically flipped

duplicate to the positive training set (we learn a single symmetric filter). We then train the

classifiers–linear SVM, PLS, and CDF–setting parameters by 20-fold cross-validation.

We consider up to 10 PLS factors for both CDF and PLS, and use QDA as the subsequent

classifier when considering multiple composites/factors. Once each classifier is trained,

we perform sliding window detection, followed by non-maximal suppression and hard-

negative mining (up to 50 hard negatives are added each iteration). Multi-scale detection

proceeds by sliding window on an image pyramid with 12 intervals per octave.

As Figure 4.5 shows, CDF outperforms the DPM root model, even though CDF

uses unmodified positive bounding boxes and trains a single symmetric model, with no

latent variables. CDF also outperforms the LDA model of Bharath et al., which achieves

an AP of .75 [52] (not drawn in Figure 4.5). In addition, CDF outperforms both PLS

and SVM in terms of AP using only a single composite; since overall computational

complexity is dominated by high-dimensional linear convolutions at detection time, and

PLS has 5 factors (chosen by cross-validation), CDF is just as fast as linear SVM and is

5 times faster than PLS.

58

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

svm (AP = 0.76)
latent svm (no parts) (AP = 0.77)
pls (AP = 0.81)
cdf (AP = 0.84)

Figure 4.5: INRIA Pedestrian dataset performance. Precision-recall curves comparing
CDF to baselines involving rigid templates and linear projection. The CDF curve shown
here is obtained using only a single composite (so the classifier is fully linear). The
comparison of cdf (our approach), to pls and svm (linear kernel) is fair, i.e., the clas-
sifiers are trained using exactly the same approach and input features. The comparison to
latent svm is unfair to our approach, because of latent positive selection. Comparing
latent svm to svm shows the impact of these additional improvements. Neverthe-
less, our single-component model without these improvements significantly outperforms
latent svm.

4.4.3 Vehicle Detection: Google 90◦ Satellite Dataset

We evaluated the performance of our system on satellite images taken from Google.

The dataset consists of 24 high resolution satellite images (RGB) at a resolution of 2048

x 2048 pixels. Train and test sets contain 12 images each with 708 and 1054 vehicles

respectively. Training is done by selecting negatives using hard negative mining. We

sampled 100 negatives per training image at random locations and orientations giving us

59

Figure 4.6: Sample vehicle detections the Google 90◦ dataset. Color represents the con-
fidence of detection, red (high confidence) and blue (low confidence) being the two ex-
tremes. c©Google.

1200 initial negatives and 708 positives for training the bootstrap model. We select up to

800 hard negatives in each retraining iteration. We use multi-scale HOG features similar

to [41]. Features are calculated for blocks ranging from a size of 12 x 12 pixels to 30 x 66

pixels (window size). Each block yields a 36D feature vector resulting in a total length of

8424. For training, we consider up to 8 PLS factors for PLS and CDF training. Parameters

are selected by 20-fold cross validation. Following the example of [46], we use QDA as

the classifier after projection. We use horizontal and vertical step size of 1 pixel and we

consider every 10 degrees of rotation. Approximately 144 million windows are processed

60

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

svm (AP = 0.8)
pls (AP = 0.87)
cdf (AP = 0.88)

Figure 4.7: Precision-recall curves comparing CDF to the baselines for Google 90◦

dataset. CDF performs better than SVM in terms of accuracy and is better than PLS
in terms of accuracy and efficiency.

per image. Our proposed approach outperforms linear SVM by a large margin and also

outperforms PLS in the high recall region Figure 4.7. PLS training chose 8 factors during

cross-validation, thus is significantly slower during test time. We also tested PLS by

increasing the factors to 20 and still found that classifier with 8 factors was chosen during

training. The 2 composites of CDF were obtained by obtaining the composite of first 6

PLS factors, deflating by this composite and then using 1 PLS factor from the deflated

data. Figure 4.6 shows detection results on a test image. Figure 4.11 shows the heat map

where the detector fires and the corresponding detections after non-maxima suppression.

The weight vectors in Figure 4.9 show us that CDF and PLS capture finer details of the

vehicle like windows of the car, while SVM just captures contour of the car. To asses the

61

variation in performance due to the initial random negative set, we repeated the retraining

process 10 times, and found that the average precision of the 10 resulting PR curves had

a standard deviation of 0.00366.

4.4.4 Vehicle Detection: Google 45◦ Satellite Dataset

We also evaluate on a vehicle dataset of high resolution 45◦ oblique view Google

satellite images of seven cities: Boston, Houston, Jacksonville, New Orleans, Phoenix,

Salt Lake City, and San Francisco. Our goal is to obtain a large dataset of a relatively

rigid object (more rigid than pedestrians), allowing us to better evaluate the effectiveness

of CDF at modeling appearance statistics that are caused by sources other than non-rigid

structural deformations (which generally require deformable parts, exemplars, or other

sophisticated machinery on top of the classifier). Images are captured at a 45◦ angle, so

vehicle appearance variation abounds in addition to occlusions (due to tree cover) and

image artifacts (due to aerial image stitching). We label vehicles that are occluded, have

artifacts, or are larger than a van (e.g., trucks, buses) as ”hard”, and ignore them during

training and testing as in [64]. The dataset contains 1104 RGB images at a resolution of

1920 x 1080, divided into a training set (552 images, 6956 vehicles) and a test set (552

images, 8635 vehicles). We train and evaluate the detector as for the pedestrian detection

experiments, but we consider multiple rotations (in increments of 10◦) instead of multiple

scales. We use a window size of 64 x 112 pixels and Felzenszwalb HOG features with

a bin and stride of 8. Both PLS and CDF outperform SVM by a large margin as shown

in Figure 4.9. CDF yields roughly the same accuracy as PLS, but it does so with only 2

62

0 50 100 150 200 250

PLS

CDF

SVM

281.85

62.19

31.06

Figure 4.8: Per image test-time sliding windows timings (in seconds) on Google 45◦.
Timings were taken on an Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz with 6GB
RAM. CDF with 2 composites is significantly faster than PLS and is 2 times slower than
SVM, but as shown in Figure 4.9, CDF significantly improves over SVM in terms of pre-
cision and recall. The timings confirm that the number of linear convolutions determine
overall computational expense, since they exhibit a roughly 9:2:1 ratio coinciding with
the number of linear projections, for PLS, CDF, and SVM, respectively.

composites, making CDF significantly faster than PLS during test time (see Figure 4.8),

by a factor of roughly 9/2 = 4.5 since sliding window time is dominated by the number

of high dimensional linear convolutions. We plan to make the vehicle dataset publicly

available.

4.4.5 UCI Machine Learning Repository

To test if CDF outperforms linear SVM and PLS on non-vision datasets, we eval-

uate the performance of CDF on four standard benchmark datasets from the NIPS 2003

Feature Selection Challenge [31]: arcene, dexter, dorothea, and gisette, available from the

UCI Machine Learning Repository [49]. Table 4.2 shows the results. While non-linear

approaches outperform CDF and our selected baselines, as in the previous experiments,

we restrict our attention to linear SVM and PLS+QDA because the main operation in both

63

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

svm (AP = 0.77)
pls (AP = 0.86)
cdf (AP = 0.86)

Figure 4.9: Google 45◦ satellite imagery datasets. Left: Precision-recall curves compar-
ing CDF to the baselines. Center: Backprojection of weight vector magnitudes computed
by summing for each pixel the absolute values of the weights it contributed to. PLS cap-
tures many variations, but requires 9 factors so is roughly 4.5 times slower than CDF and
9 times slower than linear SVM. Linear SVM requires a single weight vector but captures
mostly the contour of the car. CDF captures not only information about the contour of the
car, but also the front and rear car windows. Right: True positives (TP), false positives
(FP) and false negatives (FN) detected by the system. c©Google.

is linear projection, and neither requires the storage of training samples (e.g., as support

vectors). We select parameters for CDF, PLS, and SVM using 20-fold cross-validation,

selecting up to 11 PLS factors per CDF composite, up to 20 factors for PLS, and a value

for the SVM C parameter between 10−7 to 107 in powers of 10. We use QDA as the non-

linear classifier after PLS or CDF projection. We bound our CDF search at a depth of two

(so we find at most two factors), since CDF already matches the performance of SVM and

PLS with only one or two composites. Our classification results are relatively invariant to

scaling for all but the arcene dataset, which we normalize by scaling each feature by its

standard deviation (the relative performance between SVM, PLS, and CDF remains fixed

even when arcene is not scaled). A noteworthy result is that CDF achieved the reported

error rates with 1 composite for arcene and dexter and 2 composites for dorothea and

gisette. PLS required 6, 4, 6, and 17 factors for the four datasets (in order).

64

Figure 4.10: Sample vehicle detections the Google 45◦ dataset. Color represents the
confidence of detection, red (high confidence) and blue (low confidence) being the two
extremes. c©Google.

Table 4.2: Performance on the UCI ML datasets measured by Balanced Error Rate (BER).

Arcene Dexter Dorothea Gisette
Dimensionality 10000 20000 100000 5000
Train #pos/neg 44/56 150/150 78/722 3000/3000
Val. #pos/neg 44/56 150/150 34/316 500/500
svm BER .148 .067 .340 .021
pls BER .144 .063 .145 .025
cdf BER .141 .060 .150 .020

4.5 Discussion and Future work

We proposed and evaluated a new approach, CDF, which yields surprisingly good

performance compared to PLS and SVM, and yields much more compact subspaces than

PLS, leading to improved speed at runtime. The improvement is especially noticeable in

the vehicle and human detection tasks, as well as on the multiclass action recognition task,

suggesting that CDF is a good alternative to linear SVM for many state-of-the-art vision

65

approaches. Our experiments, however, raise some questions that still need to be investi-

gated. In particular, why do PLS and CDF seem to perform so well against linear SVM?

This is still unclear, though we can see that the margin of improvement is much larger

for the vision datasets than for the machine learning datasets. A possible explanation is

that samples away from the decision boundary have a significant and positive contribu-

tion to the projection direction. This can be both an advantage and a disadvantage: more

samples contributing to the projection direction can yield a better boundary, but only if

the probability mass away from the boundary provides useful information. Other areas

that deserve further investigation include the use of additional composite candidates (e.g.,

SVM), other subsequent classifiers, and extension to a kernel method for applications

where kernel methods are practical.

66

Figure 4.11: Google 90◦ satellite imagery datasets. Top: Detection heat map for CDF.
Bottom: Corresponding detection bounding boxes after non-maxima suppression. Color
represents the confidence of detection, red (high confidence) and blue (low confidence)
being the two extremes. c©Google.

67

Chapter 5: An Improved Deep Learning Architecture for

Person Re-Identification

In this work we propose a method for simultaneously learning features and a corre-

sponding similarity metric for person re-identification. We present a deep convolutional

architecture with layers specially designed to address the problem of re-identification.

Given a pair of images as input, our network outputs a similarity value indicating whether

the two input images depict the same person. Novel elements of our architecture in-

clude a layer that computes cross-input neighborhood differences, which capture local

relationships among mid-level features that were computed separately from the two input

images. A high-level summary of the outputs of this layer is computed by a layer of patch

summary features, which are then spatially integrated in subsequent layers. Our method

significantly outperforms the state of the art on both a large data set (CUHK03) and a

medium-sized data set (CUHK01), and is resistant to overfitting. We also demonstrate

that by initially training on an unrelated large data set before fine-tuning on a small target

data set, our network can achieve results comparable to the state of the art even on a small

data set (VIPeR). This work has been published in [68].

68

5.1 Introduction

Person re-identification is the problem of identifying people in images that have

been taken across different cameras, or across time using a single camera. Re-identification

is an important capability for surveillance systems as well as human-computer interaction

systems. It is an especially difficult problem, because large variations in viewpoint and

lighting across different views can cause two images of the same person to look quite

different and can cause images of different people to look very similar. See Figure 5.1

for some difficult examples. The problem of re-identification is usually formulated in a

similar way to face recognition. A typical re-identification system takes as input two im-

ages, each of which usually contains a person’s full body, and outputs either a similarity

score between the two images or a classification of the pair of images as same (if the two

images depict the same person) or different (if the images are of different people). In this

paper, we follow this approach and use a novel deep learning network to assign similarity

scores to pairs of images of human bodies. Our network architecture includes two novel

layers: a neighborhood difference layer that compares convolutional image features in

each patch of one input image to the same features computed on nearby patches in the

other input image, and a subsequent layer whose features summarize each patch’s neigh-

borhood differences. These novel aspects of our network lead to large improvements

over the previous state of the art on the CUHK03 and CUHK01 data sets. We also show

that our method is less prone to overfitting on small training sets. We show results on

CUHK01 and VIPeR which demonstrate its effectiveness on smaller data sets.

69

Figure 5.1: Examples of true positives (first row), false positives (second row), and true
negatives (bottom row) for our trained network on CUHK03. More results can be found
in the supplementary material.

5.2 Related Work

5.2.1 Overview of Previous Re-Identification Work

Typically, methods for re-identification include two components: a method for ex-

tracting features from input images, and a metric for comparing those features across

images. Research on re-identification usually focuses either on finding an improved

set of features ([69–71]), finding an improved similarity metric for comparing features

([72–76]), or a combination of both ([77–79]). The basic idea behind the search for

better features is to find features that are at least partially invariant to lighting, pose

70

and viewpoint changes. Features that have been used include variations on color his-

tograms [72–74, 76–78], local binary patterns [72–74, 77, 78], Gabor features [73], color

names [69], and local patches [70]. The basic idea behind metric learning approaches is

to find a mapping from feature space to a new space in which feature vectors from same

image pairs are closer than feature vectors from different image pairs. Metric learning

approaches that have been applied to re-identification include Mahalanobis metric learn-

ing [72], Locally Adaptive Decision Functions [75], saliency weighted distances [74],

Local Fisher Discriminant Analysis [77], Marginal Fisher Analysis [77], and attribute

consistent matching [78]. Our approach is to learn a deep network that simultaneously

finds an effective set of features and a corresponding similarity function.

5.2.2 Deep Learning for Re-Identification

To our knowledge, there have been two previous papers that also used a deep learn-

ing approach for re-identification: Yi et al. [80] and Li et al. [79]. In [80], a ”siamese”

convolutional network is presented for metric learning. Their network architecture con-

sists of three independent convolutional networks that act on three overlapping parts of

the two input images. Each part-specific network consists of two convolutional layers

with max pooling, followed by a fully connected layer. The fully connected layer pro-

duces an output vector for each input image, and the two output vectors are compared

using a cosine function. The cosine outputs for each of the three parts are then fused to

get a final similarity score.

Li et al. [79] use a different network architecture that begins with a single con-

71

volutional layer with max pooling, followed by a patch-matching layer that multiplies

convolutional feature responses from the two inputs at a variety of horizontal offsets.

(The response to each patch in one input image is multiplied separately by the response

to every other patch sampled from the same horizontal strip in the other input image.)

This is followed by a max-out grouping layer that keeps the largest response from each

horizontal strip of patch-match responses, followed by another convolutional layer with

max pooling and finally a fully connected layer and softmax output.

Our architecture differs substantially from these previous approaches. Our net-

work begins with two layers of convolution and max pooling to learn a set of features for

comparing the two input images. We then use a novel layer that computes cross-input

neighborhood difference features, which compare the features from one input image with

the features computed in neighboring locations of the other image. This is followed by a

subsequent novel layer that distills these local differences into a smaller patch summary

feature. Next, we use another convolutional layer with max pooling, followed by two

fully connected layers with softmax output. Along with our new layers which have learn-

able parameters in them, our network has three convolutional layers as compared to just

two in [79] and [80], making our network deeper than previously presented networks for

re-identification in the literature. In addition, our network introduces a more powerful

way to compare the features learned in the early layers.

Our deep network’s re-identification performance exceeds that of all previous ap-

proaches on both the large CUHK03 [79] data set and the smaller CUHK01 [81] data

set. In addition, even though small data sets can make effective training of large networks

difficult or impossible [79], our network performs comparably with the state of the art on

72

Input

Image

Pair

5x5x320

5x5x320

5x5x2025

5x5x2025

50

3
7
 x

 5

Tied Conv.

Max Pooling

Tied Conv.

Max Pooling

Cross-Input

Neighborhood

Differences

Patch

Summary

Features

5x5x2525

3x3x2525

Fully

Connected

50

3
7

50

1
8

500

1
6

0

1


x


12

1

37

y

3
7

25

25

1
6

0

20

7
8

20

7
8

SoftMax

D
if

fe
re

n
t

S
a
m

e

3
7

x

y

x

y

x

y

5x5x2525





3x3x2525





Across Patch

Features

Figure 5.2: Proposed Architecture: Paired images are passed through the network. While
initial layers extract features in the two views individually, higher layers compute relation-
ships between them. The number and size of convolutional filters that must be learned
are shown. For example, in the first tied convolution layer, 5× 5× 3→ 20 indicates that
there are 20 convolutional features in the layer, each with a kernel size of 5×5×3. There
are 2,308,147 learnable parameters in the whole network. Refer to section 5.3 for more
details. [Note that all of the figures in this paper are best viewed in color.]

the much smaller VIPeR data set.

5.3 Our Architecture

In this paper, we propose a deep neural network architecture that formulates the

problem of person re-identification as binary classification. Given an input pair of im-

ages, the task is to determine whether or not the two images represent the same person.

Figure 5.2 illustrates our network’s architecture. As briefly described in the previous sec-

tion, our network consists of the following distinct layers: two layers of tied convolution

73

with max pooling, cross-input neighborhood differences, patch summary features, across-

patch features, higher-order relationships and finally a softmax function to yield the final

estimate of whether the input images are from the same person not. Each of these layers

is explained in the following subsections.

5.3.1 Tied Convolution

To determine whether two input images are of the same person, we need to find

relationships between the two views. In the deep learning literature, convolutional fea-

tures have proven to provide representations that are useful for a variety of classification

tasks. The first two layers of our network are convolution layers, which we use to compute

higher-order features on each input image separately. In order for the features to be com-

parable across the two images in later layers, our first two layers perform tied convolution,

in which weights are shared across the two views, to ensure that both views compute the

same features. As shown in Figure 5.2, in the first convolution layer we pass input pairs

of RGB images of size 60 × 160 × 3 through 20 learned filters of size 5 × 5 × 3. The

resulting feature maps are passed through a max-pooling kernel that halves the width and

the height of features. These features are passed through another tied convolution layer

where we use 25 learned filters of size 5 × 5 × 20, followed by a max-pooling layer that

again decreases the width and height of the feature map by a factor of 2. At the end of

these two feature computation layers, each input image is represented by 25 feature maps

of size 12× 37.

74

5.3.2 Cross-Input Neighborhood Differences

The two tied convolution layers provide a set of 25 feature maps for each input

image, from which we can learn relationships between the two views. Let fi and gi,

respectively, represent the ith feature map (1 ≤ i ≤ 25) from the first and second views.

A cross-input neighborhood differences layer accumulates differences in feature values

around a neighborhood of each feature location across the two views and produces a set

of 25 neighborhood difference maps Ki. Since fi, gi ∈ R12×37, Ki ∈ R12×37×5×5, where

5 × 5 is the size of the square neighborhood. Each Ki is a 12 × 37 grid of 5 × 5 blocks,

in which the block indexed by (x, y) is denoted Ki(x, y) ∈ R5×5, where x, y are integers

(1 ≤ x ≤ 12 and 1 ≤ y ≤ 37). More precisely,

Ki(x, y) = fi(x, y)1(5, 5)−N [gi(x, y)] (5.1)

where

1(5, 5) ∈ R5×5 is a 5× 5 matrix of 1s,

N [gi(x, y)] ∈ R5×5 is the 5× 5 neighborhood of gi

centered at (x, y).

In words, the 5 × 5 matrix Ki(x, y) is the difference of two 5 × 5 matrices, in the first

of which every element is a copy of the scalar fi(x, y), and the second of which is the

5 × 5 neighborhood of gi centered at (x, y). The motivation behind taking differences in

75

a neighborhood is to add robustness to positional differences in corresponding features

of the two input images. Since the operation in (5.1) is asymmetric, we also consider

the neighborhood difference map K ′i, which is defined just like Ki in (5.1) except that the

roles of fi and gi are reversed. This yields 50 neighborhood difference maps, {Ki}25i=1 and

{K ′i}25i=1, each of which has size 12× 37× 5× 5. We pass these neighborhood difference

maps through a rectified linear unit (ReLu).

5.3.3 Patch Summary Features

In the previous layer, we have computed a rough relationship among features from

the two input images in the form of neighborhood difference maps. A patch summary

layer summarizes these neighborhood difference maps by producing a holistic represen-

tation of the differences in each 5 × 5 block. This layer performs the mapping from

K ∈ R12×37×5×5×25 → L ∈ R12×37×25. This is accomplished by convolving K with 25

filters of size 5 × 5 × 25, with a stride of 5. By exactly matching the stride to the width

of the square blocks, we ensure that the 25-dimensional feature vector at location (x, y)

of L is computed only from the 25 blocks Ki(x, y), i.e., from the 5× 5 grid square (x, y)

of each neighborhood difference map Ki (where 1 ≤ i ≤ 25). Since these are in turn

computed only from the local neighborhood of (x, y) in the feature maps fi and gi, the

25-dimensional patch summary feature vector at location (x, y) of L provides a high-level

summary of the cross-input differences in the neighborhood of location (x, y). We also

compute patch summary features L′ from K ′ in the same way that we computed L from

K. Note that filters for the mapping K → L and K ′ → L′ are different and not tied like

76

in the first two layers of the network. Both L and L′ are then passed through a rectified

linear unit (ReLu).

5.3.4 Across-Patch Features

So far we have obtained a high-level representation of differences within a local

neighborhood by computing neighborhood difference maps and then obtaining a high-

level local representation of these neighborhood difference maps. In the next layer, we

learn spatial relationships across neighborhood differences. This is done by convolving

L with 25 filters of size 3 × 3 × 25 with a stride of 1. The resultant features are passed

through a max pooling kernel to reduce the height and width by a factor of 2. This yields

25 feature maps of size 5 × 18, which we denote M ∈ R5×18×25. We similarly obtain

across-patch features M ′ from L′. Filters for the mapping L → M and L′ → M ′ are not

tied.

5.3.5 Higher-Order Relationships

We apply a fully connected layer after M and M ′. This captures higher-order rela-

tionships by a) combining information from patches that are far from each other and b)

combining information from M with information from M ′. The resultant feature vector

of size 500 is passed through a ReLu non-linearity. These 500 outputs are then passed to

another fully connected layer containing 2 softmax units representing the probability of

the image pair containing the same person or different people.

77

Figure 5.3: Visualization of features learned by our architecture. Initial layers learn image
features that are important to distinguish between a positive and a negative pair. Deeper
layers learn relationships across the two views so that classification performance is max-
imized. For details, see Section 5.4.

5.4 Visualization of Features

Figure 5.3 gives a visualization of feature responses at each layer (L1–L6) of the

network. The left and right sides of the figure display responses to a positive (same)

and negative (different) input pair, respectively. The response maps labeled L1 for the

positive pair show the response of one of the 20 features after the first tied convolution

layer (see Section 5.3.1). This feature responds strongly to bright white regions of the

image, highlighting shirt regions of the person in both views. The maps labeled L1 for

the negative pair show the response of a different one of the 20 first-layer features. This

feature responds strongly to black regions, highlighting the shirt of the person in view 1

and the pants of the person in view 2. The label L2 indicates feature responses after the

second tied convolution layer, which show a pair of feature maps fi and gi. The L2 feature

shown for the positive pair captures tan and skin-color regions, giving higher responses

to the legs, hands and face of the person. Since this is a positive pair, similar parts of the

image are highlighted in the two views. In contrast, the L2 feature for the negative pair

78

activates for different portions of the image across the two views: the legs (pink shorts

and pinkish skin) of the person in view 1, versus the torso (pink shirt and pinkish arms)

of the person in view 2.

The images labeled L3 are responses of a feature from the cross-input neighbor-

hood differences layer (see Section 5.3.2). Recall from (5.1) that this layer computes the

differences of feature maps from the two views in a neighborhood. The resultant fea-

ture difference map is then passed through a ReLu, which clips all negative responses to

zero. For a positive pair, ideally the neighborhood difference map should be close to zero.

Nonzero values should be small and relatively uniform across the map, mainly because

the two feature maps compared are very similar. This is illustrated in the L3 map on the

left in the positive pair (one of the Ki maps), which has small but non-zero values dis-

tributed throughout the map. The image just to its right, which is its complement K ′i, has

values that are all zero or close to zero. For the negative pair, different regions are high-

lighted by fi than by gi, soKi gives a strong response to legs but zeros elsewhere, whereas

K ′i responds only to the person’s torso. A similar pattern is observed in the patch sum-

mary feature for the negative pair (see Section 5.3.3), labeled L4. Higher-order relations

across summarized neighborhood difference maps are captured in L5 (see Section 5.3.4).

Finally, L6 shows features after the first fully connected layer (section 5.3.5). Notice

that this feature representation of a positive pair is quite different than that of a negative

pair. This top-layer feature is discriminative and can be used as input to an off-the-shelf

classifier.

Figure 5.4 shows a visualization of the weights learned by the first tied convolution

layer. The weights shown were learned on the CUHK03 data set. In addition to capturing

79

Figure 5.4: Visualization of the weights learned in the first tied convolution layer. Each
filter has size 5× 5× 3.

some low-level texture information, several of these learned filters exhibit a strong color

specialization.

5.5 Other Deep Architectures

In Figure 5.7 (right), we compare our presented network with other variations to

gain insights into how much each of our network’s novel features contributes to its overall

performance. We describe some of these variations here.

Element-wise difference: This architecture illustrates the benefit of comparing with the

neighborhood in cross-image comparisons. In this architecture, we perform two layers

of tied convolution followed by max pooling. We then compute a cross-input element-

wise difference (rather than cross-input neighborhood differences) of the corresponding

feature maps. This difference is passed through another layer of convolution followed by

a fully connected layer and then softmax.

Disparity-wise convolution: This architecture illustrates the benefit of computing patch

summary features. As in our presented network, this architecture performs two tied con-

volutions followed by max pooling, after which cross-input neighborhood differences are

computed. But in this network, the 50 neighborhood difference maps of size R12×37×5×5,

80

are rearranged to give 25 groups of 50 feature maps, where each feature map has size

R12×37. A convolution is then applied to each of these groups. This is then passed

through a fully connected layer and then softmax. Rather than explicitly summarizing

neighborhood differences, this architecture instead directly learns across-patch relation-

ships. Figure 5.5 shows the layers which differ from our proposed network.

4 layer convnet: This architecture illustrates the benefit of having a total of four convo-

lutional layers, rather than two as in previous deep approaches to re-identification. We

implemented a siamese type network similar to [80], but built the network with 4 layers

of convolution rather than 2.

FPNN: We also created our own implementation of FPNN [79] to facilitate comparisons

with their results.

5.6 Training the Network

We pose the re-identification problem as binary classification. Training data con-

sist of image pairs labeled as positive (same) and negative (different). The optimization

objective is average loss over all pairs in the data set. As the data set can be quite large,

in practice we use a stochastic approximation of this objective. Training data are ran-

domly divided into mini-batches. The model performs forward propagation on the current

mini-batch and computes the output and loss. Backpropagation is then used to compute

the gradients on this batch and network weights are updated. We perform stochastic

gradient descent [82] to perform weight updates. We start with a base learning rate of

η(0) = 0.01 and gradually decrease it as the training progresses using an inverse policy:

81

50

3
7
 x

 5

Fully

Connected

10

1
8

500

1


x


12

1

37

y

SoftMax

D
if

fe
re

n
t

S
a
m

e

3
7

50

x

y

3
7

50

x

y

50

x

d

1

25 3
7
 y

10

1
8

10
1
8

Disparity Wise

Convolution

Cross-Input

Neighborhood

Differences

Disparity Wise Grouping

R
e
a
rr

a
n

g
e

Figure 5.5: Disparity-wise Convolution: The initial layers are the same as our proposed
architecture. Only layers that differ are shown. First, cross-input neighborhood differ-
ences are rearranged into disparity-wise groups. Each group shows feature differences at
offset d. For instance, group 1 contains the values from position (1, 1) of every 5×5 block
in the grid of cross-input neighborhood differences, and group 25 contains the values from
position (5, 5) of every block in the grid. Convolution is then applied on each group sep-
arately. This is then passed through a fully connected layer and then softmax. Instead of
explicitly summarizing neighborhood differences, this architecture directly learns across-
patch relationships.

η(i) = η(0)(1+γ · i)−p where γ = 10−4, p = 0.75 and i is the current mini-batch iteration.

We use a momentum of µ = 0.9 and weight decay λ = 5 × 10−4. With more passes

over the training data, the model improves until it converges. We use a validation set to

evaluate intermediate models and select the one that has maximum performance. Figure

5.6 shows the performance on the validation set as a function of mini-batch iterations on

the CUHK03 labeled data set. Each mini-batch contains 100 training samples.

82

0 5 10 15
0.3

0.4

0.5

0.6

0.7

0.8

0.9

rank

id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

32.29% 30K

40.80% 60K

43.31% 90K

45.39% 120K

46.56% 150K

46.14% 180K

50.55% 210K

Figure 5.6: Performance on validation set as a function of mini-batch iterations on the
CUHK03 labeled data set. In each row of the legend, the first number is the rank-1
accuracy, and the second is the number of mini-batch iterations.

5.6.1 Data Augmentation

There are not nearly as many positive pairs as negative pairs, which can lead to

data imbalance and overfitting. To reduce overfitting, we artificially enlarge the data set

using label-preserving transformations [83]. We augment the data by performing random

2D translation, as also done in [79]. For an original image of size W ×H , we sample 5

images around the image center, with translation drawn from a uniform distribution in the

range [−0.05H, 0.05H]× [−0.05W, 0.05W]. For the smallest data set (see Section 5.7.3),

we also horizontally reflect each image.

83

5.6.2 Hard Negative Mining

Data augmentation increases the number of positive pairs, but the training data set

is still imbalanced with many more negatives than positives. If we trained the network

with this imbalanced data set, it would learn to predict every pair as negative. Therefore,

we randomly downsample the negative set to get just twice as many negatives as positives

(after augmentation), then train the network. The converged model thus obtained is not

optimal since it has not seen all possible negatives. We use the current model to classify

all of the negative pairs, and identify negatives on which the network performs worst. We

retrain the fully connected (top) layer of the network using a set containing as many of

these difficult negative pairs as positive pairs1.

5.6.3 Fine-tuning

For small data sets that contain too few positives for effective training, we initialize

the model by training on a large data set. After hard negative mining on the large set,

the parameters of the converged model are then adapted on the new, small data set. For

this new network learning, we begin stochastic gradient descent with learning rate η(0) =

0.001 (which is 1/10th the initial pre-training rate).

5.7 Experiments

We implemented our architecture using the Caffe [84] deep learning framework,

adapting various layers from the framework and writing our own layers that are specific

1We also tried retraining the entire network, but retraining just the top layer was more effective.

84

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

20.65% FPNN

 5.64% Euclid

 5.53% ITML

 7.29% LMNN

10.42% RANK

13.51% LDM

 5.60% SDALF

 8.76% eSDC

14.17% KISSME

54.74% Our

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

19.89% FPNN

 4.94% Euclid

 5.14% ITML

 6.25% LMNN

 8.52% RANK

10.92% LDM

 4.87% SDALF

 7.68% eSDC

11.70% KISSME

44.96% Our

0 5 10 15 20 25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

42.19% 4 layer conv

27.66% element wise

41.70% disparity wise

19.61% fpnn (our impl.)

20.65% fpnn (original)

50.19% our (no hnm)

54.74% our (hnm)

Figure 5.7: CMC curves on CUHK03 data set: a) and b) compare our method with previ-
ous methods on CUHK03 labeled and detected, respectively. Rank-1 identification rates
are shown in the legend next to the method name. Our method beats the state of the art
by a large margin. c) Comparison of our method with our own variations of deep ar-
chitectures on CUHK03 labeled. Out of the shown methods, only FPNN is previously
mentioned in the literature. See section 5.7.1 for details.

to our architecture. Network training converges in roughly 12–14 hours on NVIDIA

GTX780 and NVIDIA K40 GPUs.

We present a comprehensive evaluation of our approach by comparing it to the state-

of-the-art methods on various data sets. The experiments are conducted with five random

splits, and all of the Cumulative Matching Characteristics (CMC) curves are single-shot

results. We first report results on the largest re-identification data set in the literature,

CUHK03 [79]. Next we report results on the CUHK01 data set [81], using two distinct

settings: a) 100 identities in the test set, as reported in [79], and b) 486 identities in the test

set, as reported in most previous work on the CUHK01 data set. We also report results on

the VIPeR data set [85]. VIPeR and the 486-identities setting of CUHK01 are small data

sets, making it difficult for deep networks to learn their parameters without overfitting.

Because of this, [79] does not report results on these two data sets.

85

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

27.87% FPNN

10.52% Euclid

17.10% ITML

21.17% LMNN

20.61% RANK

26.45% LDM

 9.90% SDALF

22.83% eSDC

29.40% KISSME

65.00% Our

2 4 6 8 10 12 14

10

20

30

40

50

60

70

80

rank

id
e

n
ti
fi
c
a

ti
o

n
 r

a
te

 (
%

)

34.30% mFilter

28.45% SalMatch

20.39% PatMatch

20.00% genericmetric

15.98% ITML

13.45% LMNN

19.67% eSDC

 9.90% SDALF

 9.84% l2−norm

10.33% l1−norm

44.03% visWord

47.53% Our

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

rank

id
e

n
ti
fi
c
a
ti
o
n
 r

a
te

 (
%

)

43.39% mFilter + LADF

29.11% mFilter

30.16% SalMatch

26.90% PatMatch

29.34% LADF

24.18% LF

19.60% KISSME

19.27% PCCA

16.14% aPRDC

15.66% PRDC

26.31% eSDC

20.66% eBiCov

19.87% SDALF

30.70% visWord

20.00% LMNNR

14.00% PRSVM

12.00% ELF

34.81% Our

Figure 5.8: CMC curves on CUHK01 and VIPeR data sets: a) CUHK01 data set with
100 test IDs: Our method outperforms the state of the art by more than a factor of 2. b)
CUHK01 data set with 486 test IDs: Our method outperforms all previous methods on
this data set with this protocol, as well. c) VIPeR: Our method beats all previous methods
individually, although a combination of mFilter + LADF performs better than us. Note
that (b) and (c) are especially challenging for deep learning methods since there are very
few positive pairs. See Sections 5.7.2 and 5.7.3 for more details

5.7.1 Experiments on CUHK03

The CUHK03 data set contains 13,164 images of 1,360 pedestrians, captured by

six surveillance cameras. Each identity is observed by two disjoint camera views. On

average, there are 4.8 images per identity in each view. This data set provides both man-

ually labeled pedestrian bounding boxes and bounding boxes automatically obtained by

running a pedestrian detector [86]. We report results on both of these versions of the data

(labeled and detected).

Following the protocol used in [79], we randomly divide 1360 identities into non

overlapping train (1160), test (100), and validation (100) sets. This yields about 26K

positive pairs before data augmentation. We use a mini-batch size of 150 samples and

train the network for 210K iterations. We use the validation set to design the network

architecture.

We compare our method against KISSME [72], eSDC [87], SDALF [88], ITML [89],

86

logistic distance metric learning (LDM) [90], largest margin nearest neighbor (LMNN) [91],

metric learning to rank (RANK) [92], and directly using Euclidean distance to com-

pare features. When using metric learning methods and Euclidean distance, dense color

histograms and dense SIFT are used [87]. We also compare against the deep network

FPNN [79], which is the current state of the art on this data set.

Figure 5.7 (left) plots the CMC curves of all these methods on the CUHK03 labeled

image data set. We outperform the previous deep learning method, FPNN, by a large

margin. Our rank-1 accuracy is more than double that of the previous state of the art

(54.74% vs. 20.65%). Figure 5.7 (middle) plots performance on the CUHK03 detected

image data set. Although the performance of our method on CUHK03-detected is less

than on CUHK03-labeled, mainly due to misalignment caused by the detector, our method

still greatly outperforms the state of the art (44.96% vs. 19.89%). Figure 5.1 shows some

true positive, false positive, and true negative example results of our system.

We also experimented with different rates of dropout after the fully connected layer.

Rank-1 accuracy on the validation set for different values of dropout rate are as follows:

46.1% (no dropout), 46.9% (10% dropout), 47.1% (20% dropout), 47.6% (30% dropout),

51.3% (40% dropout) and 50.5% (50% dropout).

We also implemented a variety of other deep network architectures, explained in

Section 5.5, to illustrate the benefits of various features of our architecture. We compare

with these methods in Figure 5.7 (right). The top two performing methods are our archi-

tecture with and without hard negative mining (HNM). Note that other than FPNN, none

of the methods in Figure 5.7 (right) has been previously discussed in the literature.

87

5.7.2 Experiments on CUHK01

The CUHK01 data set has 971 identities, with 2 images per person in each view.

We report results for two different settings of this data set: 100 test IDs, and 486 test IDs.

a) 100 test IDs: In this setting, 100 identities are used for testing, with the remaining

871 identities used for training and validation. This protocol is better suited for deep

learning because it uses 90% of the data for training. FPNN [79] uses this setting on

this data set. Figure 5.8 (left) compares the performance of our network with previous

methods. Our method outperforms the state of the art in this setting by a wide margin,

with a rank-1 recognition rate of 65% (vs. 29.40% by the next best method). Notice that

the second best method on this data set is KISSME, and not the deep network FPNN. This

can be attributed to a decrease in training data as compared to CUHK03, causing FPNN

to overfit. In contrast, our method is able to generalize even with this smaller data set.

b) 486 test IDs: Most previous papers report results on the CUHK01 data set by consid-

ering 486 identities for testing. We compare our approach against mid-level filters (mFil-

ter) [71], saliency matching (SalMatch) [76], patch matching (PatMatch) [76], generic

metric [81], ITML [89], LMNN [91], eSDC [87], SDALF [88], l2-norm, l1-norm [71],

and co-occurrence model using visual word (visWord) [70]. With 486 identities in the

test set, only 485 identities are left for training. This leaves only 1940 positive samples

for training, which makes it practically impossible for a deep architecture of reasonable

size not to overfit if trained from scratch on this data. One way to solve this problem is

to use a model trained on CUHK03, then test on the 486 identities of CUHK01. This is

unlikely to work well since the network does not know the statistics of the test data set,

88

and in fact, our model trained on CUHK03 and tested on CUHK01 gave rank-1 accuracy

of around 6%, which is far below the state-of-the-art. Instead, we pre-train a network

on CUHK03 and adapt it for CUHK01 by fine-tuning (see Section 5.6.3) it on CUHK01

with 485 training identities (non-overlapping with the test set). The performance of the

network after fine-tuning for 210K iterations increases dramatically, to a rank-1 accuracy

of 40.5%. Using this model, we search for hard negatives and use them to retrain the

top layer of the network (see Section 5.6.2). After 210K iterations, we achieve a rank-1

accuracy of 47.5%, beating the state of the art. See Figure 5.8 (middle) for a comparison

with other methods.

5.7.3 Experiments on VIPeR

The VIPeR data set contains 632 pedestrian pairs in two views, with only one im-

age per person in each view. The testing protocol is to split the data set into half, 316 for

training and 316 for testing. In addition to the methods listed in section 5.7.2 and 5.7.1,

we compare our method against local Fisher discriminant analysis (LF) [93], PCCA [94],

aPRDC [95], PRDC [96], eBiCov [97], LMNNR [98], PRSVM [99], and ELF [100]. This

data set is extremely challenging for deep network architectures for two reasons: a) there

are only 316 identities for training with 1 image per person in each view, giving a total of

just 316 positives, and b) the resolution of the images is lower (48× 128 as compared to

60 × 160 for CUHK01). We train a model using the CUHK03 and CUHK01 data sets,

then adapt the trained model to the VIPeR data set by fine-tuning on 316 training identi-

ties. Since the number of negatives is small for this data set (90K), hard negative mining

89

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

26.18% part−1

22.27% part−2

19.73% part−3

18.25% part−4

 6.83% part−5

50.19% full

Figure 5.9: Analysis of different body parts: a) Left column shows parts 1 to 4 (from top
to bottom). Right column shows full pedestrian image and part 5. b) Shows performance
of different parts on the CUHK03 data set. Refer section 5.8.1 for more details.

does not improve results after fine-tuning because most of the negatives were already used

during fine-tuning. Figure 5.8 (right) compares performance of our approach with other

methods. Our method obtains 34.81% rank-1 accuracy, beating all other methods individ-

ually, although a combination of two approaches (mFilter [71] + LADF [75]) performs

better than ours with a rank-1 accuracy of 43.4% as reported in [71]. The deep-metric-

learning-based method [80] also reports results on the VIPeR data set, with a lower rank-1

accuracy of 28.2%.

5.8 Qualitative Results

Figures 5.10, 5.11, and 5.12 show our system’s ranking results on 15 randomly

selected identities from the CUHK03 labeled, CUHK01 (100 identities), and VIPeR data

sets, respectively. The top 25 results are sorted from left to right.

90

5.8.1 Analysis of different body parts

To understand the contribution of different body regions to identification, we trained

5 different networks on different body parts, as shown in Figure 5.9 (left). The experiment

was performed on the CUHK03 labeled data set, and the performance of each part is

shown in Figure 5.9 (right). The best-performing part is the upper region of the body

including the face. As we move down the body, the performance decreases, with legs

capturing minimum discriminative information. This experiment suggests a direction for

future work in which different models can be trained for different parts of the body, and

the scores from different part pairs can then be accumulated to reach a final decision. Such

a system may be helpful in handling severe occlusions and to identify people in images

that have been taken across time (e.g., sitting in one view and standing in the other).

5.9 Conclusion

We have presented a novel deep architecture for person re-identification. We have

proposed a novel architecture for finding relationships between two views, by designing

cross-input neighborhood differences layer and a subsequent layer that summarizes these

differences. We demonstrate the effectiveness of our method by performing a comprehen-

sive evaluation of our approach on various data sets. On the large CUHK03 data set, our

method outperforms the state-of-the-art by a huge margin. On the smaller CUHK01 data

set (100 test IDs setting), whereas other deep methods overfit [79], our method is able

to generalize and produce state-of-the-art results. We also show that models learned by

our method on a large data set can be adapted to new, smaller data sets. We demonstrate

91

this by evaluating our method on two small data sets. On CUHK01 (486 test ids setting),

we outperform all previous methods, and on VIPeR, our results are comparable to the

state-of-the-art.

92

Figure 5.10: Example results on the CUHK03 labeled data set. In each row, the left image
is the probe image, and the rest are the top 25 results sorted from left (1) to right (25).
The green box indicates the correct match in each row.

93

Figure 5.11: Example results on the CUHK01 data set (100 identities). In each row, the
left image is the probe image, and the rest are the top 25 results sorted from left (1) to
right (25). The green box indicates the correct match in each row.

94

Figure 5.12: Example results on the VIPeR data set. In each row, the left image is the
probe image, and the rest are the top 25 results sorted from left (1) to right (25). The
green box indicates the correct match in each row.

95

Chapter 6: Semantic Object Selection

Interactive object segmentation has great practical importance in computer vision.

Many interactive methods have been proposed utilizing user input in the form of mouse

clicks and mouse strokes, and often requiring a lot of user intervention. In this paper,

we present a system with a far simpler input method: the user needs only give the name

of the desired object. With the tag provided by the user we do a text query of an image

database to gather exemplars of the object. Using object proposals and borrowing ideas

from image retrieval and object detection, the object is localized in the target image. An

appearance model generated from the exemplars and the location prior are used in an

energy minimization framework to select the object. Our method outperforms the state-

of-the-art on existing datasets and on a more challenging dataset we collected. This work

has been published in [101].

6.1 Introduction

Object segmentation is of great practical importance in computer vision, especially

in image editing tasks where operations are restricted to a single object. An important

goal in segmentation is to minimize the effort required to select a desired object.

A common approach to object selection is to require the user to provide mouse

96

(or touch) input to indicate the desired object. Magic Wand [102] requires the user to

click on the image and then it selects all pixels with some tolerance. With Intelligent

Scissors [103], the user traces the boundary of the object. Graph Cut [104] methods

typically require the user to stroke over the object and background. Grabcut [105], a

well-known exception to this, rather requires the user to draw a bounding box around

the object, and only needs strokes to fix any mistakes. Stroke-based methods have been

applied to cosegmentation [106], which also require the collection of similar images with

a common object. Matting methods [107–109] require a trimap to be specified. Due to

the complexity of natural scenes, overlapping object and background color distributions,

and complicated object boundaries, each of these methods often require a lot of tedious

user interaction to accurately select the object.

Another approach to segmentation is to perform the selection automatically. Se-

mantic segmentation methods [110, 111] strive to label each pixel in an image with the

correct object type. This requires the collection of a large dataset and a known fixed vo-

cabulary, and often needs considerable training time. It is not directed toward an object

of user interest, but rather operates on the whole image. Saliency methods [112, 113] are

another approach to automatic object selection, where the object which is most visually

salient is selected. This usually requires the object to be distinct from the background

and quite large in the image. These methods work well if the desired object is in fact the

salient object in the image, but this often is not the case.

The goal of this paper is to greatly reduce the user effort required to select an object.

This is done by enabling the user to simply name the desired object (Fig. 6.1), either

verbally as part of a natural language image processing engine, like PixelTone [114] or

97

Figure 6.1: Given an image, the user simply provides the name of the object that he/she
wants to select. The specified object is segmented by our method without further user
input.

by typing it into a search box. For example, if the user makes a PixelTone request such as

“Make the *cat* brighter”, our method can be used to identify the cat pixels to be made

brighter without any further input from the user (in PixelTone, a user has to paint on the

image to mark the cat, name the selection, and then the user can issue semantic editing

requests that mention “cat”). With the current proliferation of natural language interfaces

for all sorts of tasks (e.g. Siri), we think our method will be very important for advancing

image editing via natural language input. This method is more directed than semantic

segmentation and does not require a large trained database. Unlike saliency methods, our

method can select objects that are small and potentially not salient in the input image as

well as objects in images with several salient objects.

We introduce the new problem of Semantic Object Selection in which a user simply

specifies the class of the object to select in an image. We propose a solution that scales

well with the number of classes, as we do not need to train a detector for each class we

98

wish to recognize. At the core of our system is a novel, robust method using two types

of image search for (i) classifying object proposals in the input image as containing the

selection class or not and (ii) providing localization information and appearance models

for the objects to select. More specifically, a text-based image search, e.g. Google or

Microsoft Bing, is used to provide positive images containing instances of the selection

class. Negative images unlikely to contain the selection class are also gathered. Object

proposals are then computed and used as a query for an image-based search of the positive

and negative examples. The object proposals likely to correspond to the desired object

are used to compute localization and appearance models that are combined in an energy

minimization framework to compute a final selection.

To the best of our knowledge, this tag-based selection system is the first in the lit-

erature. Thus we cannot perform direct comparisons. We have compared our method

against various other state-of-the-art methods for related problems. We also implemented

our own baselines which are competitive by themselves. We have shown results on var-

ious classes of the MSRC dataset and the recently introduced Object Discovery dataset.

We have also collected more realistic and challenging dataset from imageNet containing

dogs. We are comparable to the state-of-the-art on MSRC [115] and beat the state-of-the-

art on Object Discovery [1] and our new dataset by a large margin.

6.2 Related Work

While we are unaware of previous work that addresses the problem of selecting a

named object without further interaction, there are several lines of work that could be

99

used to approach this problem.

Saliency methods aim to select the main object in an image by determining which

image regions are most “salient”. In [112], the saliency is determined by optimizing an

energy function which encourages pixels to be salient if they are contained in regions

that have high contrast to all other regions. The method in [113] uses similar contrast

and location terms, and then computes a binary segmentation by including the computed

saliency in a variant of GrabCut [105]. Since these methods do not select object of interest

but rather select whichever region stands out, they cannot address the general semantic

object selection problem where the object of interest is not the most “salient” object.

Semantic segmentation approaches [110,111] attempt to automatically segment ev-

ery object in an image. This could be extended to our problem by labeling every pixel and

selecting the pixels corresponding to the named object. There are several drawbacks to

this approach. Semantic segmentation methods solve a much large problem than needed,

and do not focus on the object of interest. They require a large amount of pre-labeled

data and require a predetermined label set that may not contain the desired object label.

If the label set contains the desired object, it still may not be found in the image. Many

require training classifiers for every label, which for a sufficiently large label set requires

excessive computation. Exceptions to this are the non-parametric approaches. These use

image retrieval to pull images from the training set for use in transferring labels to the

image. For example, in [110] the nearest neighbors in the training set are retrieved and

SIFT flow is used to transfer labels to the query image. In [111], globally-similar images

are retrieved and the likelihood of each superpixel in query image belonging in each class

according to the retrieved set is computed and used in an MRF to compute a segmentation.

100

There has been much work in object detection, for example [116,117]. Since object

detection localizes a object with a bounding box, it could easily be used to provide a

bounding box around a desired object to initialize a segmentation process using a method

such as Grabcut [105]. We propose this as a baseline method and compare to it in our

results.

Cosegmentation methods [2–5] operate on multiple input images and select in each

image a common object. Such methods could be adapted to our problem by performing

an Internet search on the query object and performing cosegmentation on the results to-

gether with the query image. In fact, Rubenstein et al. [1] propose a method designed to

cosegment sets of images collected from an Internet search. It computes a segmentation

by optimizing over a function with terms emphasizing sparseness and saliency. Because

this method heavily relies on saliency, it is largely restricted to working well on images

where saliency methods also work well.

A method which is related to ours is [118]. In this work, a user takes a relatively

clean, close-up picture of a product and the goal is to find a similar product to the one in

the image. This method iterates between localized image retrieval and selection estima-

tion. The product image database has associated object masks, and the masks of retrieved

images are transferred to the query image to estimate the location of the product within

the query image. The selection is then computed using a voting scheme based on the im-

age search localizations and is refined using [105]. Note that [118] has a similar goal but

simplified input (fairly rigid objects, large and centered in the image with little viewpoint

variation).

Unlike [118], our method does not require a database of images with ground truth

101

Figure 6.2: Overview of our system: User starts by providing the name of the object to
segment. Text-based image search is performed to gather positive exemplars. Positive ex-
emplars along with generalized negatives are then used localize object in the image. This
is done with the help of our object retrieval based detection framework. Localization in-
formation along with appearance sharing from positive exemplars is used to formulate the
segmentation problem as energy minimization. Graph cut is applied on the constructed
graph to obtain the desired segmentation.

masks. Our method can handle object classes with larger appearance variations and ob-

jects that are less rigid than typical product objects since our method warps the retrieved

images to the query image. Our use of object proposals also distinguishes our selection

algorithm from the product search work. Clean images where the object of the image is

quite large are required in [118] since in cluttered scenes it is difficult to retrieve images

that match the object of interest. Our method uses object proposals to make good esti-

mates of where the object may be, which helps avoid background clutter and allows it to

handle more general photos of the world.

102

6.3 Overview

Our method takes as the user input the name of the object as shown in Fig. 6.2. Us-

ing this tag we do a text query into an image database to gather exemplars corresponding

to the object. Along with positive exemplars we also gather generalized negative exam-

ples and put them in an image retrieval database. We then divide our image into object

proposals [119]. Each object proposal queries the image retrieval database (using [6]) to

validate the presence or absence of the object in a given object proposal.

Once we have found object proposals potentially containing the desired object and

their corresponding exemplars, we estimate the location of the object in the corresponding

exemplar. We transfer this information onto an object proposal using SIFT flow based im-

age warping [120] to produce a location prior. We use this location prior to obtain image

specific object and background models. We then combine the image specific appearance

model and location prior in a graph cut energy minimization framework.

Note that any state-of-the-art object detectors like DPM or exemplar-SVM [116,

117] followed by our segmentation algorithm cannot be used here since such object de-

tectors usually have an extremely expensive training phase, involving bootstrapping and

hard negative mining phases. Since our goal is to deal with large number of object classes,

we cannot use pre-trained models. Also in case of DPM, exemplar-based mask transfer

cannot be used since various positive examples are clubbed together to build a model.

Moreover, in our experiments we show that our method performs better than a DPM-

based segmentation algorithm.

103

Figure 6.3: Positive exemplar database: Objects on white background and exemplars from
PASCAL VOC (last 2 columns).

6.4 Localization

Given the tag of the object, our first challenge is to find the location of the object

in the image. Our goal is to obtain an object location prior for the target image. We

first collect positive exemplars corresponding to the object along with some generalized

negative exemplars to build an image retrieval database [6]. We then break the target

image into object proposals using [119] and validate the presence of the object in the

object proposals. We use SIFT flow to transfer the location associated with validating

exemplar areas to the target image. The accumulated location information provides a

location prior.

104

Figure 6.4: Object retrieval with localization: We use object retrieval system of [6] which
returns ranked retrieved images along with the bounding box around the matched object.

6.4.1 Exemplar Retrieval Database

Once the tag of the corresponding object is provided by the user, our system needs

to learn what our object looks like. We collect positive examples on white background for

different classes by querying Google with “<object> on white background”. This gave

us a large database of positive exemplars (Fig. 6.3). We append this dataset with other

publicly available positive sources such as PASCAL VOC. We also use some generalized

negative images from INRIA pedestrian dataset. Note that performance increases if the

negative exemplars are representative of the background in the target image. Although

it is not necessary to accurately represent all background objects, by identifying some

likely background regions we can eliminate some potential false positives and improve

the localization of the foreground.

Having positive and negative exemplars makes this a typical detection problem.

Many state-of-the-art detection systems like [116,117] try to solve this problem by learn-

105

ing a classifier between positives and negatives. While such a method is promising, it has

its limitations in this scenario as they require a very expensive training step. We instead

leverage concepts from image retrieval to obtain the location of the object in an image.

We use the retrieval system from [6] which uses a spatially-constrained similarity

measure to handle rotation, scaling, view point change and appearance deformation. The

similarity measure is calculated by geometrically aligning SIFT visual words indexing

the query and database images; achieving object retrieval and localization simultaneously

(Fig, 6.4). We put positive and negative exemplar images into an exemplar database for

localized search using [6]. This involves computation of SIFT features and creation of an

inverted file that stores feature locations for faster voting map generation during retrieval.

6.4.2 Detection via Object Proposal Validation

For object detection, the current state-of-the-art is based on exhaustive search.

However, to enable the use of more expensive features and classifiers a selective search

is more desired. We use object proposal method proposed in [119]. They have reported

a recall of 96.7% with around 1500 windows per image on PASCAL VOC 2007. We

divide the target image using object proposals. These object proposals contain desired

object, other objects and even background. Our goal is to classify each object proposal as

containing the desired object or not. To solve this, we use the exemplar database created

in the previous step.

We query each object proposal into the exemplar database. When calculating the

voting map for retrieval, we follow the general retrieval framework of [6], i.e., for each

106

Figure 6.5: Validation: Each row shows an object proposal and its top 5 retrieved exem-
plars. Retrieved exemplars also contain the bounding box around the matched object. The
color of the bounding box specifies whether the exemplar is considered as positive (green)
or negative (red). If the box is not centered, e.g. in 1st row 4th exemplar, the exemplar
is considered negative. Majority voting decides whether the object proposal contains the
specified object or not. The last row shows an example of a false positive where an object
proposal is incorrectly validated as a dog. The positive class for each query from top to
bottom is dog, person, pug, ball, person and dog.

visual word k in the query, retrieve the image IDs and locations of k in these images

through the inverted files. Object center locations and scores are then determined and

votes are casted on corresponding voting maps. This results in ranking by similarity

score of all the exemplars in the database along with the potential location of the object in

the exemplars. We consider the top t exemplars for validation. Recall that each image in

the retrieval database is known to be the object of interest or the background. Some of the

107

Figure 6.6: Mask Transfer: a) Warping of an exemplar (top right) onto the object pro-
posal (top left). 2nd row shows sift features for object proposal and exemplar. 3rd column
shows the sift flow correspondence(left) and warping of exemplar onto the object pro-
posal(right). b) Top 1st column shows object proposals, 2nd column shows best exemplar
warped onto the object proposal, and 3rdcolumn shows the saliency mask for the warped
exemplars. c) Input image and aggregated location prior.

exemplars in top t belong to the object (tag), while others might belong to background.

It might also happen that the exemplar belongs to object (tag), but the bounding box

returned by localization is not centered on the exemplar. In this case the exemplar is also

considered as negative. From these top t exemplars, majority voting is performed and the

object proposal is classified as belonging to the object (tag) if most of the exemplars in

top t are positive. See Fig. 6.5.

6.4.3 Location Prior

For each positive retrieved exemplar, we desire to transfer the location of each pixel

belonging to the object to the object proposal. Our retrieved images have no associated

ground truth masks so we must estimate the location of the object in the retrieved images.

108

We use saliency to estimate the object location. Since our object proposals are not usually

not cluttered and often match to uncluttered retrieved images and since we explicitly

search for objects on a white background to collect the retrieval set, we find that saliency

works sufficiently well in this constrained use case.

For each object proposal containing the object, its best positive exemplar (according

to retrieval score) is considered for segmentation transfer. We obtain soft segmentation

mask on the exemplar image by computing saliency map of [121], which gives a score

in [0, 1] to each pixel in the exemplar image. We transfer this mask to the corresponding

object proposal by SIFT flow warping [120]. Note that many positive object proposals

can be shifted versions of the same object and hence their masks can be overlapping on

the target image. All masks are aggregated on the target image and re-normalized to lie

between [0, 1]. Fig. 6.6 shows this process.

6.5 Segmentation

Given the retrieved positive exemplars for each positive object proposal and the

location prior, we compute a binary segmentation of the desired object. We pose the

segmentation problem in a classic energy minimization framework [105, 122, 123]. Our

unary terms consist of an image specific appearance model, an appearance model shared

from exemplars, and a location prior. We iteratively minimize the energy, updating our

models in each iteration.

Let xp be the label of the pixel p in the image and x be the vector of all xp. The

109

energy function given the appearance model A and exemplar data XE can be given by

E(x;A,XE) =
∑
p

Ep(xp;A,XE) +
∑
p,q

Epq(xp, xq) (6.1)

In this the pairwise potential is given by

Epq(xp, xq) = δ(xp 6= xq) · d(p, q)−1 · exp(−γ‖cp − cq‖2), (6.2)

where cp is the color at pixel p. This potential encourages smoothness by penalizing

neighboring pixels taking different labels. The penalty depends on the color contrast

between pixels, being smaller in regions around image edges (high contrast). We consider

an 8-connected pixel grid.

Our unary term is a linear combination of three terms:

Ep(xp,A,XE) = −αI log p(xp; cp,AI) (6.3)

−αXE log p(xp; cp,AXE)− αM logMp(xp;XE).

Each potential p(xp; cp,A) evaluates how likely a pixel of color cp is to take label

xp, according to the appearance model A. The first term uses an image specific image

prior AI. The foreground and background appearances are each separately modeled using

a 5 component GMM. The foreground and background are initialized using the location

prior; all pixels whose location prior is below some threshold γB or above some γF are

assumed to be background or foreground respectively and are included in the respective

110

Figure 6.7: Segmentation Framework: Given the input image and the tag, object retrieval
based localization is performed to obtain a location prior. Using this location prior, fg and
bg probabilities are obtained. These probabilities along with the location prior are used
to set the weights of the graph. Graph cut is applied to obtain intermediate segmentation
which is used to update our models. After a few iterations a final selection is obtained.

appearance model.

The appearance model AXE is obtained from the positive exemplars used to com-

pute the location prior. This appearance model is useful in sharing information from

exemplars and is particularly useful when segmenting object classes whose appearance

does not change over exemplars (particular breed of dog, e.g. brown Labradors).

We obtain the location prior Mp using exemplar-based image retrieval in the pre-

vious step. It is a soft segmentation between [0, 1] and has probabilistic nature. Thus we

directly use Mp(xp;XE) = Mp
xp(1−Mp)1−xp as a unary potential in Eq. 6.3.

Our segmentation framework, shown in Figure 6.7, is inspired by [105, 122]. A

graph is constructed with a node for each pixel and using unary and binary potentials

from Eq. 6.1. Graph cut is then used to compute a binary segmentation. The image-

111

class ours [1] [2] [3] [4] [5]
bike 55.3 54.1 43.3 29.9 42.3 42.8
bird 64.6 67.3 47.7 29.9 33.2 −
car 66.8 66.7 59.7 37.1 59 52.5
cat 70.7 66.2 31.9 28.7 37.6 39.4
chair 60.3 62.2 39.6 28.7 37.6 39.4
cow 78.5 79.4 52.7 33.5 45 26.1
dog 69.1 67.5 41.8 33 41.3 −
plane 58.8 56.7 21.6 25.1 21.7 33.4
sheep 81.2 78.9 66.3 60.8 60.4 45.7
average 67.3 66.5 45.0 34.1 42.0 39.9

Table 6.1: Results on MSRC dataset. We compare against Object Discovery [1], Joulin
et al. [2], Kim et al. [3], Joulin et al. [4] and Mukherjee et al. [5]. Our method is slightly
better or comparable to Object Discovery which is state-of-the-art on MSRC.

specific appearance model is updated given the new foreground. We iterate (5 times)

between solving the energy function using graph cut and updating the models.

6.6 Results

We present both qualitative and quantitative results on various datasets. We set

γB = 0.05, γF = 0.8, αI = 0.6, and αM = 0.4. The trade off between the unary term

and binary term is λ = 50. While for objects with consistent appearance, the exemplar-

specific appearance model can be very useful, we largely tested on objects with a large

variation in appearance and thus set αXE = 0. To report quantitative results we use Jaccard

similarity, i.e. intersection over union of the result and ground truth segmentation.

6.6.1 Results on MSRC Dataset

We report results on the MSRC dataset [115]. We search Google to get objects on

white background as positive exemplars, and append this list with PASCAL VOC 2010

112

Methods OD OD OD ImageNet
airplane car horse dog

Ours 64.27 71.84 55.08 69.91
OD [1] 55.81 64.42 51.65 −

Joulin et al. [4] 15.36 37.15 30.16 28.65
Joulin et al. [2] 11.72 35.15 29.53 24.69
DPM+Grabcut 39.47 68.00 50.12 48.24
CEN+Grabcut 37.29 64.96 48.89 34.53
GT+Grabcut 50.87 80.82 65.99 79.52

(Upper bound)

Table 6.2: Results on Object Discovery(OD) and ImageNet Dog. On the Object Discov-
ery dataset [1] we perform better than the state-of-the-art by a significant margin. We
also compare against our DPM-based segmentation baseline method and outperform it
by a significant margin. Note that we beat the upper bound (using ground-truth bound-
ing boxes) on the airplane category. On ImageNet-dog we perform much better than
DPM+Grabcut.

training positive examples for each class. 9 of the 14 classes of MSRC are present in

PASCAL VOC 2010, we thus compute results on 9 classes of MSRC (around 30 images

per class). We compare our performance with [2–5] as reported in [2]. We also compare

against the recent Object Discovery work [1] which uses dense correspondences between

images to capture the visual variability of common object. This method works well when

the object is salient in the image. The cosegmentation methods use all the test images as

input to the system while the input to our system is just one label and one image. The

quantitative results are given in Table 6.1.

Our method is significantly better than [2–5]. It is also slightly better or comparable

to Object Discovery [1]. The closeness in performance is due to the fact that the MSRC

dataset contains images with a salient target object and uniform background. This acts

as a boon to Object Discovery’s approach which is tuned to work well in cases where

object is the most salient object in the image. Our approach is a more general approach

113

which works well in this scenario but is not limited to images with salient objects only.

Qualitative results can be found in Figures 6.8, 6.9 and 6.13.

6.6.2 Result on Object Discovery Dataset

To prove our claim that our method is more general and works well when the object

is not the only salient object in the image, we test the performance of our method on

the Object Discovery dataset. This dataset was introduced in [1] and consists of images

downloaded from the Internet. There is large variation in style, color, texture, pose, scale,

position and viewing angle. The dataset consists of three classes, car, horse, and airplane,

with around 100 images in each category.

In order to further prove effectiveness of our approach we implemented our own

baselines. For each image, we initialize a centered bounding box covering 25% of the area

of the image and initialize Grabcut [105] using this bounding box. We call this approach

CEN+Grabcut. Next, we compared our approach with a detector-based method. We

trained discriminative part based detectors [116] on the car, horse, and airplane categories

from PASCAL VOC 2010. In order to select a detection threshold we obtained the PR-

Curves and selected a threshold corresponding to f1 score. The detection bounding boxes

obtained by running the detector are used to initialize Grabcut. We call this method as

DPM+Grabcut. Finally, we initialize Grabcut with the ground truth bounding box of the

objects in the image. We call this GT+Grabcut. Note that this is an upper bound of

a detection plus Grabcut approach. Since [116] uses models trained on PASCAL VOC

2010, we only use PASCAL VOC 2010 training images as positive exemplars so that the

114

Figure 6.8: Comparison of qualitative results on MSRC for various classes. Left to right,
input image, our method, object discovery [1], Joulin et al. [2] and Joulin et al. [4]

115

Figure 6.9: Qualitative results of our method on MSRC.

116

Figure 6.10: Comparison on the Object Discovery (OD) dataset of our method, OD, Joulin
et al. [4], and DPM+Grabcut. Note how our method is able to segment non-salient objects
while OD picks other areas apart from the object. DPM is unable to detect some objects.

comparison is fair. We also compared against [1, 2, 4].

The quantitative results can be found in Table 6.2. Since the images contain objects

which are not salient in the image (more realistic images), our approach performs better

than Object Discovery. It performs better than detector-based segmentation DPM+Grabcut,

which has an expensive training phase and is not practical in our scenario. Also note that

for airplanes our approach even performs better than the detector-based method upper

bound. This is evidence of the high quality of our location prior as the initial GMM fore-

ground and background color models derived from the location prior lead to better results

than initializing color models from the correct tight bounding box input. Qualitative com-

parisons can be found in Figures 6.10 and 6.11. Fig. 6.12 shows more qualitative results

on this dataset.

6.6.3 Results on Imagenet Dog

In order to test on a difficult real-world dataset where the object of interest is often

small and not salient, we collected 100 images from ImageNet containing dogs. We show

segmentation results on this dataset in Table 6.2. PASCAL VOC 2010 dog training pos-

117

Figure 6.11: More comparisons on the Object Discovery (OD) dataset of our method.

118

Figure 6.12: More results of our method on the Object Discovery (OD) dataset.

itives were used for training DPM+Grabcut. Qualitative results can be found in Figures

6.13 and 6.14.

6.7 Conclusion

In this paper we have proposed a new system for object selection. Our system has

a far simpler interface for object selection, taking only the object name as input. In order

to solve this problem we propose a exemplar-based localization method which relies on

object retrieval. We break the image into object proposals and validate the presence of the

object in the proposal. Location priors obtained in this way are then used to get an image

specific appearance model and both are used to solve the segmentation problem in an

MRF framework. We have introduced our own imageNet dog dataset and we outperform

the state-of-the-art on a number of other datasets.

119

Figure 6.13: Qualitative results on MSRC (first two rows) and ImageNet-dog (last three
rows).

120

Figure 6.14: More qualitative results on ImageNet-dog.

121

Chapter 7: Conclusion

This dissertation explored the problem of understanding the visual world by reason-

ing about the objects present in it, providing contributions to the following tasks: efficient

selection of filters for object detection (chapter 2 and 3), linear dimensionality reduction

method composite discriminant factor (CDF) analysis (chapter 4), deep learning archi-

tecture for person re-identification (chapter 5), and semantic object selection for image

editing (chapter 6).

In chapters 2, 3 and 4 we focus on providing efficient solutions for object detection.

We start by showing that humans can help build better detectors as they can differenti-

ate between a good filter and a bad one by visualizing them. This is shown by building

an interactive framework for poselet selection. Our method significantly improves the

training time, it takes about 5-10mins for a user to interactively select 100 poselets. As

compared to 15Hrs (76% of 20Hrs) for computer to select them. We then extend the idea

of filter selection and present an automatic and efficient method to select diverse set of

discriminative filters. As an alternative to the expensive explicit evaluation that is often

the bottleneck in many methods, this has the potential to dramatically alter the trade-off

between accuracy of a part based model and the cost of training. In our experiments, we

show that combined with LDA-HOG, an efficient alternative to SVM, for training the part

122

candidates, we can reduce the training time of a poselet model by an order of magnitude,

while actually improving its detection accuracy. Moreover, we show that our approach

to prediction of filter quality transcends specific detection architecture: rankers trained

for poselets allow efficient filter/exemplar ranking for exemplar SVMs as well. Our work

suggests that it is possible to evaluate the discriminative quality of a set of filters based

purely on their intrinsic properties. Beyond direct savings in training time for part-based

models, this evaluation may lead to speeding up part-based detection methods at test time,

when used as an attention mechanism to reduce number of convolutions and/or hashing

lookups. We then presented a linear dimensionality reduction method, Composite Dis-

criminant Factor (CDF) analysis. CDF yields surprisingly good performance compared

to PLS and SVM, and yields much more compact subspaces than PLS, leading to im-

proved speed at runtime. The improvement is especially noticeable in the vehicle and

human detection tasks, as well as on the multiclass action recognition task, suggesting

that CDF is a good alternative to linear SVM for many state-of-the-art vision approaches.

In chapter 5 we have presented a novel deep architecture for person re-identification.

We have proposed a novel architecture for finding relationships between two views, by

designing cross-input neighborhood differences layer and a subsequent layer that summa-

rizes these differences. We demonstrate the effectiveness of our method by performing a

comprehensive evaluation of our approach on various data sets. On the large CUHK03

data set, our method outperforms the state-of-the-art by a huge margin. On the smaller

CUHK01 data set (100 test IDs setting), whereas other deep methods overfit, our method

is able to generalize and produce state-of-the-art results. We also show that models

learned by our method on a large data set can be adapted to new, smaller data sets. We

123

demonstrate this by evaluating our method on two small data sets. On CUHK01 (486 test

ids setting), we outperform all previous methods, and on VIPeR, our results are compara-

ble to the state-of-the-art.

In the final part of the dissertation, we have presented a new system for object

selection. We have presented a system which has far simpler interface for object selection,

taking only the name of the object as input. In order to solve this problem we have

proposed an exemplar-based localization method which relies on object retrieval. We

have introduced our own imageNet dog dataset and we outperform the state-of-the-art on

a number of other datasets. With the current proliferation of natural language interfaces

for all sorts of tasks (e.g. Siri), we think our method will be very important for advancing

image editing via natural language input.

Future directions for the work described in this dissertation include:

• Investigation of the role of class affinity in generalization of part quality; e.g., one

might benefit from using part ranking from vehicle classes when the test class is

also a vehicle.

• The idea of filter selection can be extended for convolution neural networks. There

is a lot of redundancy in CNN filters which can be reduced if diverse set of filters

are selected. For e.g., number of first layer filters in Krizhevsky et al. [83] can be

reduced from 96 to 48.

• The use of additional composite candidates for CDF search (e.g., SVM), other sub-

sequent classifiers, and extension to a kernel method for applications where kernel

methods are practical.

124

• For person re-identification, different models can be trained for different parts of

the body, and the scores from different part pairs can then be accumulated to reach

a final decision section 5.8.1. Such a system may be helpful in handling severe

occlusions and to identify people in images that have been taken across time (e.g.,

sitting in one view and standing in the other).

• Leveraging advancement made in the deep learning based classification literature

for object selection. CNN trained on imagenet 1000 categories classification task

can be used to select an object in an image if the target object is one of the 1000

classes. Concept of related classes and class affinity can be used in a zero shot

setting when the target class is not present in 1000 classes.

• In order to improve image editing experience, we should go beyond object selection

and exploit semantics from user queries. For example user should be able to issue

more complex queries like, “make the dog next to the tree brighter” or “select the

brown dog” to disambiguate among multiple dogs.

This dissertation makes an effort towards better understanding of the visual world

by reasoning about the objects present in it. This is a challenging task, and to make

progress we have to make advances on several fronts. We need better representations of

visual categories that can enable accurate reasoning about their properties, as well as ma-

chine learning methods that can leverage big-data to learn such representations. For real

time systems we need to make current frameworks more efficient without losing on per-

formance. Successful methods for doing so can tremendously improve human interaction

with machines for navigating large amounts of visual data. This is an exciting direction

125

of research with implications for building better systems for various vision tasks, as well

as advancing AI in general.

126

Bibliography

[1] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu, “Unsupervised joint object discovery
and segmentation in internet images,” CVPR, June 2013. viii, xiii, 99, 101, 112,
113, 114, 115, 117

[2] A. Joulin, F. Bach, and J. Ponce, “Multi-class cosegmentation,” in CVPR, 2012.
viii, xiii, 101, 112, 113, 115, 117

[3] G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade, “Distributed cosegmentation via
submodular optimization on anisotropic diffusion,” ICCV, pp. 169–176, 2011. viii,
101, 112, 113

[4] A. Joulin, F. R. Bach, and J. Ponce, “Discriminative clustering for image co-
segmentation,” in CVPR, 2010. viii, xiii, xiv, 101, 112, 113, 115, 117

[5] L. Mukherjee, V. Singh, and J. Peng, “Scale invariant cosegmentation for image
groups,” CVPR, pp. 1881–1888, 2011. viii, 101, 112, 113

[6] X. Shen, Z. Lin, J. Brandt, S. Avidan, and Y. Wu, “Object retrieval and localization
with spatially-constrained similarity measure and k-nn re-ranking,” in CVPR, 2012.
xiii, 103, 104, 105, 106

[7] E. Ahmed, S. Maji, G. Shakhnarovich, and L. S. Davis, “Using human knowledge
to judge part goodness: Interactive part selection,” in CVPR Workshop on Com-
puter Vision and Human Computation, 2014. 8

[8] L. Bourdev and J. Malik, “Poselets: Body part detectors trained using 3d human
pose annotations,” in International Conference on Computer Vision, 2009. 9, 15,
16, 19

[9] L. Bourdev, S. Maji, T. Brox, and J. Malik, “Detecting people using mutually con-
sistent poselet activations,” in European Conference on Computer Vision, 2010. 9,
10, 11, 15, 16, 18, 19

127

[10] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object
detection and beyond,” in International Conference on Computer Vision, 2011. 9,
15, 16, 19, 21, 22

[11] S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of mid-level dis-
criminative patches,” in European Conference on Computer Vision, 2012. 9, 17

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Computer Vision and Pattern Recognition, 2005. 9, 15, 18, 20

[13] T. Gao, M. Stark, and D. Koller, “What makes a good detector?–structured priors
for learning from few examples,” in European Conference on Computer Vision,
2012. 10, 17, 18, 27, 30

[14] E. Ahmed, G. Shakhnarovich, and S. Maji, “Knowing a good HOG filter when
you see it: Efficient selection of filters for detection,” in Computer Vision
- ECCV 2014 - 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I, 2014, pp. 80–94. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10590-1 6 14

[15] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object de-
tection with discriminatively trained part-based models,” IEEE PAMI, 2010. 15,
17

[16] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik,
“Fast, accurate detection of 100,000 object classes on a single machine,” in Com-
puter Vision and Pattern Recognition, 2013. 16

[17] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik, “Using k-poselets for detect-
ing people and localizing their keypoints,” in Computer Vision and Pattern Recog-
nition (CVPR), 2014. 16

[18] D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich, “Viewpoint-
aware object detection and pose estimation,” in International Conference on Com-
puter Vision, 2011. 17

[19] J. Gall and V. Lempitsky, “Class-specific hough forests for object detection,” in
Computer Vision and Pattern Recognition, 2009. 17

[20] Y. Aytar and A. Zisserman, “Immediate, scalable object category detection,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2014. 17

[21] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization and seg-
mentation with an implicit shape model,” in Workshop on Statistical Learning in
Computer Vision, ECCV, 2004. 17

[22] S. Maji and J. Malik, “Object detection using a max-margin hough transform,” in
Computer Vision and Pattern Recognition, 2009. 17

128

http://dx.doi.org/10.1007/978-3-319-10590-1_6

[23] S. Maji and G. Shakhnarovich, “Part discovery from partial correspondence,” in
Computer Vision and Pattern Recognition, 2013. 17

[24] M. Aubry, B. Russell, and J. Sivic, “Painting-to-3D model alignment via discrimi-
native visual elements,” ACM Transactions on Graphics, vol. 33, no. 2, 2014. 17

[25] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” Journal of Machine Learning
Research, 2005. 24

[26] S. Sarawagi and R. Gupta, “Accurate max-margin training for structured output
spaces,” in ICML, 2008. 24

[27] O. Chapelle, “Training a support vector machine in the primal,” Neural Computa-
tion, vol. 19, no. 5, 2007. 24

[28] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations
for maximizing submodular set functions,” Mathematical Programming, vol. 14,
no. 1, 1978. 25

[29] B. Hariharan, J. Malik, and D. Ramanan, “Discriminative decorrelation for clus-
tering and classification,” in European Conference on Computer Vision, 2012. 27

[30] V. I. Morariu, E. Ahmed, V. Santhanam, D. Harwood, and L. S. Davis, “Compos-
ite discriminant factor analysis,” in IEEE Winter Conference on Applications of
Computer Vision (WACV), 2014. 44

[31] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
JMLR, 2003. 45, 63

[32] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, 2011. 45, 47

[33] A. M. Martinez, A. M. Mart’inez, and A. C. Kak, “Pca versus lda,” PAMI, 2001.
45, 48

[34] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor, “Canonical correlation
analysis: An overview with application to learning methods,” Neural Comput.,
2004. 45, 48

[35] C. Cortes and V. Vapnik, “Support-vector networks,” in Machine Learning, 1995.
45

[36] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, 2000. 45

[37] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Comput., 1998. 45

[38] S. Akaho, “A kernel method for canonical correlation analysis,” CoRR, 2006. 45

129

[39] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, 2005. 45, 47, 48, 57

[40] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object detection
with discriminatively trained part based models,” in PAMI, 2010. 45, 57, 58

[41] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection using a
cascade of histograms of oriented gradients,” in CVPR, 2006. 45, 48, 60

[42] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” in CVPR, 2006. 45

[43] S. Sadanand and J. Corso, “Action bank: A high-level representation of activity in
video,” in CVPR, 2012. 45, 48, 56, 57

[44] H. Wold, “Partial least squares,” Encyclopedia of Statistical Sciences, 1985. 46,
48, 49, 50

[45] R. Rosipal and N. Krämer, “Overview and recent advances in partial least squares,”
in SLSFS, 2005. 46, 49

[46] W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis, “Human Detection Using
Partial Least Squares Analysis,” in ICCV, 2009. 46, 48, 60

[47] A. Kembhavi, D. Harwood, and L. S. Davis, “Vehicle detection using partial least
squares,” PAMI, 2011. 46, 48

[48] http://crcv.ucf.edu/data/UCF50.php. 47, 55

[49] A. Asuncion and D. Newman, “UCI machine learning repository,”
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007. [Online]. Available:
http://www.ics.uci.edu/\simmlearn/{MLR}epository.html 47, 63

[50] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive Neuroscience,
1991. 47

[51] P. N. Belhumeur, J. a. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection,” PAMI, 1997. 47

[52] B. Hariharan, J. Malik, and D. Ramanan, “Discriminative decorrelation for clus-
tering and classification,” in ECCV, 2012. 47, 58

[53] T.-K. Kim and R. Cipolla, “Canonical correlation analysis of video volume tensors
for action categorization and detection,” PAMI, 2009. 47

[54] X. Wang, T. X. Han, and S. Yan, “An hog-lbp human detector with partial occlusion
handling,” in ICCV, 2009. 48

[55] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object
detection and beyond,” in ICCV, 2011. 48

130

http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html

[56] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding windows: Ob-
ject localization by efficient subwindow search,” in CVPR, 2008. 48

[57] M. Pedersoli, J. Gonzàlez, A. D. Bagdanov, and J. J. Villanueva, “Recursive coarse-
to-fine localization for fast object detection,” in ECCV, 2010. 48

[58] D. Park, D. Ramanan, and C. Fowlkes, “Multiresolution models for object detec-
tion,” in ECCV, 2010. 48

[59] S. Vijayanarasimhan and K. Grauman, “Large-scale live active learning: Training
object detectors with crawled data and crowds,” CVPR, 2011. 48

[60] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-of-
parts,” in CVPR, 2011. 48

[61] U. G. Indahl, K. H. Liland, and T. Næs, “Canonical partial least squares-a unified
pls approach to classification and regression problems,” Journal of Chemometrics,
2009. 49

[62] R. Rosipal, P. P. Be, L. J. Trejo, N. Cristianini, J. Shawe-taylor, and B. Williamson,
“Kernel partial least squares regression in reproducing kernel hilbert space,” JMLR,
2001. 49

[63] K. J. Worsley, “An overview and some new developments in the statistical analysis
of pet and fmri data,” Human Brain Mapping, 1997. 55

[64] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation
of the state of the art,” PAMI, 2012. 57, 62

[65] R. Benenson, M. Mathias, T. Tuytelaars, and L. V. Gool, “Seeking the strongest
rigid detector,” in CVPR, 2013. 57

[66] J. J. Lim, C. L. Zitnick, and P. Dollar, “Sketch tokens: A learned mid-level repre-
sentation for contour and object detection,” in CVPR, 2013. 57

[67] G. Chen, Y. Ding, J. Xiao, and T. X. Han, “Detection evolution with multi-order
contextual co-occurrence,” in CVPR, 2013. 57

[68] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning architecture for
person re-identification,” in Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. 68

[69] Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Li, “Salient color names for person
re-identification,” in ECCV, 2014. 70, 71

[70] Z. Zhang, Y. Chen, and V. Saligrama, “A novel visual word co-occurrence model
for person re-identification,” in ECCV Workshop on Visual Surveillance and Re-
identification, 2014. 70, 71, 88

131

[71] R. Zhao, W. Ouyang, and X. Wang, “Learning mid-level filters for person re-
identification,” in CVPR, 2014. 70, 88, 90

[72] M. Koestinger, M. Hirzer, P. Wohlhart, P. Roth, and H. Bischof, “Large scale metric
learning from equivalence constraints,” in CVPR, 2012. 70, 71, 86

[73] W. Li and X. Wang, “Locally aligned feature transforms across views,” in CVPR,
2013. 70, 71

[74] N. Martinel, C. Micheloni, and G. Feresti, “Saliency weighted features for person
re-identification,” in ECCV Workshop on Visual Surveillance and Re-identification,
2014. 70, 71

[75] Z. Li, S. Chang, F. Liang, T. Huang, L. Cao, and J. Smith, “Learning locally-
adaptive decision functions for person verification,” in CVPR, 2013. 70, 71, 90

[76] R. Zhao, W. Ouyang, and X. Wang, “Person re-identification by salience match-
ing,” in ICCV, 2013. 70, 71, 88

[77] F. Xiong, M. Gou, O. Camps, and M. Sznaier, “Person re-identification using
kernel-based metric learning methods,” in ECCV, 2014. 70, 71

[78] S. Khamis, C. Kuo, V. Singh, V. Shet, and L. Davis, “Joint learning for attribute-
consistent person re-identification,” in ECCV Workshop on Visual Surveillance and
Re-identification, 2014. 70, 71

[79] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing neural net-
work for person re-identification,” in CVPR, 2014. 70, 71, 72, 81, 83, 85, 86, 87,
88, 91

[80] D. Yi, Z. Lei, and S. Z. Li, “Deep metric learning for practical person re-
identification,” ICPR, 2014. 71, 72, 81, 90

[81] W. Li, R. Zhao, and X. Wang, “Human re-identification with transferred metric
learning,” in ACCV, 2012. 72, 85, 88

[82] L. Bottou, “Stochastic gradient tricks,” in Neural Networks, Tricks of the Trade,
Reloaded, ser. Lecture Notes in Computer Science (LNCS 7700), G. Montavon,
G. B. Orr, and K.-R. Müller, Eds. Springer, 2012, pp. 430–445. [Online].
Available: http://leon.bottou.org/papers/bottou-tricks-2012 81

[83] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 83,
124

132

http://leon.bottou.org/papers/bottou-tricks-2012
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[84] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014. 84

[85] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models for recognition,
reacquisition, and tracking,” in In IEEE International Workshop on Performance
Evaluation for Tracking and Surveillance, Rio de Janeiro, 2007. 85

[86] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2009.167 86

[87] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning for person
re-identification,” in CVPR, 2013. 86, 87, 88

[88] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani, “Person re-
identification by symmetry-driven accumulation of local features,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2010, pp. 2360
–2367. 86, 88

[89] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic
metric learning,” in Proceedings of the 24th International Conference on Machine
Learning, ser. ICML ’07. New York, NY, USA: ACM, 2007, pp. 209–216.
[Online]. Available: http://doi.acm.org/10.1145/1273496.1273523 86, 88

[90] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? metric learning
approaches for face identification,” in ICCV, Kyoto, Japan, Sep. 2009. [Online].
Available: http://hal.inria.fr/inria-00439290 87

[91] K. Weinberger and L. Saul, “Distance metric learning for large margin nearest
neighbor classification,” The Journal of Machine Learning Research, vol. 10, pp.
207–244, 2009. 87, 88

[92] B. Mcfee and G. Lanckriet, “Metric learning to rank,” in In Proceedings of the 27th
annual International Conference on Machine Learning (ICML), 2010. 87

[93] S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian, “Local fisher discriminant
analysis for pedestrian re-identification,” 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition, vol. 0, pp. 3318–3325, 2013. 89

[94] A. Mignon and F. Jurie, “Pcca: A new approach for distance learning from
sparse pairwise constraints.” in CVPR. IEEE, 2012, pp. 2666–2672. [Online].
Available: http://dblp.uni-trier.de/db/conf/cvpr/cvpr2012.html#MignonJ12 89

[95] C. Liu, S. Gong, C. C. Loy, and X. Lin, “Person re-identification:
What features are important?” in ECCV Workshops (1), ser. Lecture
Notes in Computer Science, A. Fusiello, V. Murino, and R. Cucchiara,

133

http://dx.doi.org/10.1109/TPAMI.2009.167
http://doi.acm.org/10.1145/1273496.1273523
http://hal.inria.fr/inria-00439290
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2012.html#MignonJ12

Eds., vol. 7583. Springer, 2012, pp. 391–401. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/eccv/eccv2012w1.html#LiuGLL12 89

[96] W.-S. Zheng, S. Gong, and T. Xiang, “Person re-identification by probabilistic
relative distance comparison,” in Proceedings of the 2011 IEEE Conference
on Computer Vision and Pattern Recognition, ser. CVPR ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 649–656. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2011.5995598 89

[97] B. Ma, Y. Su, and F. Jurie, “Bicov: a novel image representation for person re-
identification and face verification,” in BMVC’12, 2012, pp. 1–11. 89

[98] S. Bak, E. Corvee, F. Bremond, and M. Thonnat, “Multiple-shot human re-
identification by mean riemannian covariance grid,” in Proceedings of the 2011 8th
IEEE International Conference on Advanced Video and Signal Based Surveillance,
ser. AVSS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
179–184. [Online]. Available: http://dx.doi.org/10.1109/AVSS.2011.6027316 89

[99] L. Bazzani, M. Cristani, A. Perina, and V. Murino, “Multiple-shot person
re-identification by chromatic and epitomic analyses,” Pattern Recognition
Letters, vol. 33, no. 7, pp. 898–903, 2012. [Online]. Available: http:
//dx.doi.org/10.1016/j.patrec.2011.11.016 89

[100] N. Gheissari, T. B. Sebastian, and R. Hartley, “Person reidentification using
spatiotemporal appearance,” in Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume 2, ser. CVPR
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 1528–1535.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2006.223 89

[101] E. Ahmed, S. Cohen, and B. Price, “Semantic object selection,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2014. 96

[102] “Adobe system incorp. 2002. adobe photoshop user guide.” 97

[103] E. N. Mortensen and W. A. Barrett, “Intelligent scissors for image composition,”
in SIGGRAPH, 1995, pp. 191–198. 97

[104] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary & region
segmentation of objects in n-d images,” in ICCV, vol. 1, 2001, pp. 105–112. 97

[105] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground extrac-
tion using iterated graph cuts,” in SIGGRAPH, vol. 23, no. 3, 2004, pp. 309–314.
97, 100, 101, 109, 111, 114

[106] D. Batra, C. M. Univerity, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “icoseg:
Interactive co-segmentation with intelligent scribble guidance,” in CVPR, 2010.
97

134

http://dblp.uni-trier.de/db/conf/eccv/eccv2012w1.html#LiuGLL12
http://dblp.uni-trier.de/db/conf/eccv/eccv2012w1.html#LiuGLL12
http://dx.doi.org/10.1109/CVPR.2011.5995598
http://dx.doi.org/10.1109/AVSS.2011.6027316
http://dx.doi.org/10.1016/j.patrec.2011.11.016
http://dx.doi.org/10.1016/j.patrec.2011.11.016
http://dx.doi.org/10.1109/CVPR.2006.223

[107] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, “A bayesian approach to
digital matting,” in CVPR, 2001. 97

[108] A. Levin, D. Lischinski, and Y. Weiss, “A closed form solution to natural image
matting,” in CVPR, 2006. 97

[109] J. Wang and M. Cohen, “Optimized color sampling for robust matting,” in CVPR,
2007. 97

[110] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing via label transfer,”
PAMI, vol. 33, no. 12, pp. 2368–2382, 2011. 97, 100

[111] J. Tighe and S. Lazebnik, “Superparsing: Scalable nonparametric image parsing
with superpixels,” in ECCV, 2010. 97, 100

[112] Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency detection,” in CVPR, 2013.
97, 100

[113] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu, “Global contrast
based salient region detection,” in CVPR, 2011, pp. 409–416. 97, 100

[114] G. P. Laput, M. Dontcheva, G. Wilensky, W. Chang, A. Agarwala, J. Linder, and
E. Adar, “Pixeltone: a multimodal interface for image editing,” in SIGCHI, 2013.
97

[115] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation,”
in ECCV, 2006. 99, 112

[116] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object de-
tection with discriminatively trained part based models,” PAMI, vol. 32, no. 9, pp.
1627–1645, 2010. 101, 103, 105, 114

[117] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object
detection and beyond,” in ICCV, 2011. 101, 103, 105

[118] X. Shen, Z. Lin, J. Brandt, and Y. Wu, “Mobile product image search by automatic
query object extraction,” in ECCV, 2012. 101, 102

[119] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders,
“Segmentation as selective search for object recognition,” in ICCV, 2011. 103,
104, 106

[120] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, “Sift flow: Dense corre-
spondence across different scenes,” in ECCV, 2008, pp. 28–42. 103, 109

[121] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in NIPS 19, 2007,
pp. 545–552. 109

135

[122] D. Kuettel, M. Guillaumin, and V. Ferrari, “Segmentation propagation in ima-
genet,” in ECCV, Oct. 2012. 109, 111

[123] D. Kuettel and V. Ferrari, “Figure-ground segmentation by transferring window
masks,” in CVPR, 2012. 109

136

