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Our visual system can efficiently extract behaviorally relevant information from 

ambiguous and noisy luminance patterns. Although we know much about the 

anatomy and physiology of the visual system, it remains obscure how the 

computation performed by individual visual neurons is constructed from the neural 

circuits. In this dissertation, I designed novel statistical modeling approaches to study 

hierarchical neural computation, using electrophysiological recordings from several 

stages of the mammalian visual system.  

In Chapter 2, I describe a two-stage nonlinear model that characterized both 

synaptic current and spike response of retinal ganglion cells with unprecedented 

accuracy. I found that excitatory synaptic currents to ganglion cells are well described 

by excitatory inputs multiplied by divisive suppression, and that spike responses can 

be explained with the addition of a second stage of spiking nonlinearity and 

refractoriness. The structure of the model was inspired by known elements of the 



  

retinal circuit, and implies that presynaptic inhibition from amacrine cells is an 

important mechanism underlying ganglion cell computation. 

In Chapter 3, I describe a hierarchical stimulus-processing model of MT 

neurons in the context of a naturalistic optic flow stimulus. The model incorporates 

relevant nonlinear properties of upstream V1 processing and explained MT neuron 

responses to complex motion stimuli. MT neuron responses are shown to be best 

predicted from distinct excitatory and suppressive components. The direction-

selective suppression can impart selectivity of MT neurons to complex velocity fields, 

and contribute to improved estimation of the three-dimensional velocity of moving 

objects. 

In Chapter 4, I present an extended model of MT neurons that includes both 

the stimulus-processing component and network activity reflected in local field 

potentials (LFPs). A significant fraction of the trial-to-trial variability of MT neuron 

responses is predictable from the LFPs in both passive fixation and a motion 

discrimination task. Moreover, the choice-related variability of MT neuron responses 

can be explained by their phase preferences in low-frequency band LFPs. These 

results suggest an important role of network activity in cortical function. 

Together, these results demonstrated that it is possible to infer the nature of 

neural computation from physiological recordings using statistical modeling 

approaches.  

 

 

  



  

 
 
 
 
 
 
 
 
 

HIERARCHICAL NEURAL COMPUTATION IN THE MAMMALIAN VISUAL 
SYSTEM 

 
 
 

By 
 
 

Yuwei Cui 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2015 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Prof. Daniel A. Butts, Chair 
Prof. David W. Jacobs 
Prof. Patrick O. Kanold 
Prof. Joshua H. Singer 
Prof. Jonathan Z. Simon 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Yuwei Cui 

2015 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Preface 

The work presented in this dissertation reflects collaborative efforts between my 

advisor Daniel Butts, numerous experimental collaborators and myself. I wrote he 

introduction and conclusion chapters. The three main chapters (Chapter 2-4) were 

adapted from manuscripts that are published or under preparation for publication. In 

all cases, DAB helped design the experiment, suggested analyses, contributed to the 

interpretation of the results and supervised the production of the manuscript.  

Chapter 2 arose from collaboration with Jonathan Demb’s lab at Yale 

University. JDB and WYV designed and conducted the experiments. DAB and I 

developed the model, analyzed the data and wrote the manuscript. The manuscript is 

under preparation for publication. Part of the work has been presented at peer-

reviewed conferences (Cui et al., 2013c).  

Chapter 3 and 4 arose from collaboration with Chris Pack’s lab at McGill 

University. DAB, CCP, LDL and myself designed the experiments. LDL performed 

the experiments. I analyzed the data, developed the model, and wrote the manuscript. 

Chapter 3 has been published (Cui et al., 2013b). Chapter 4 has been presented at 

conferences (Cui et al., 2014; Cui et al., 2013a, 2015) and is under preparation for 

publication. 
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Chapter 1 Introduction 

 

“What does it mean to see? The plain man’s answer would be, to know what is where 

by looking. In other words, vision is the process of discovering from images what is 

present in the world, and where it is.” 

-- David Marr 

 

The problem of vision 

Human beings are predominately visual creatures. Vision makes it possible for us to 

move though the world, catch or avoid moving objects, and base immediate decisions 

on a detailed understanding of the world around us. In our nervous system, there are 

more fibers dedicated to transmitting the output from the eyes to the brain than from 

any other peripheral sense organs. Roughly one third of human cortex and half of the 

cortex in macaques is related to processing of visual information, consisting of more 

than thirty visual and visual-association areas (Felleman and Van Essen, 1991).  

 

There is a reason for the large amount of brain machinery dedicated to vision (Kaas, 

1989). In natural environment, visual systems faced the daunting task of extracting 

relevant information from the ambiguous, noisy, and constantly changing patterns of 

light falling through a tiny aperture at the back of our eye. The physicist Richard 

Feynman once illustrated the problem of vision with an extraordinary analogy of a 

water bug floating on the surface of a swimming pool, which is confronted with the 
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task of reconstructing the position and motion of all the people swimming in the pool 

using only information comes from the movements of its body caused by the water 

waves (McIlwain, 1996). Although the water bug analogy sounds a bit of an 

exaggeration because we humans are so good at vision, scientists started to appreciate 

the difficulty of vision as they tried to develop computer vision system in the 1960-

70s. The common feeling of despair shared amongst the early investigators of 

computer vision was that “practically anything could happen in an image and further 

more that practically everything did.” (Marr, 1982).  

 

Despite the difficulty of natural vision, biological visual systems have been highly 

successful through evolution. As we look at the world around us, we have immediate 

access to the composition of the visual scene into objects, as well as our relationship 

in space to those objects. The entire processing must take place in a fraction of second 

to be behaviorally relevant. Biological vision thus represents an amazing feat of 

natural intelligence. Understanding the computational principles underlying 

biological vision will not only guide development of machine vision systems, but also 

shed light onto the nature of intelligence.  

 

Vision as an information-processing task: computation vs. 

representation 

From a theoretical perspective, vision can be regarded as an information-processing 

task. There are two aspects of this task: (1) extracting behaviorally relevant 

information through a cascade of neuronal processing (i.e., computation); and (2) 
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forming internal representations of visual information, thus making it readily 

available for decisions about our actions (representation). Our brain processes 

information much differently than computers do. A modern computer can easily store 

the hue and luminance of every pixel of thousands of images at high resolution, but 

even with the best available computer vision algorithm, it cannot segment an arbitrary 

natural image into its underlying components. In other words, the ability to capture 

and accurately store visual scenes does not mean understanding content of the image.  

 

Many studies in visual neuroscience equate visual computation with the ability to 

represent visual scenes through spikes of neurons in the visual cortex. For example, a 

number of studies showed that visual scenes could be reconstructed from responses of 

visual neurons (Bair et al., 1997; Kelly and Lee, 2004; Stanley et al., 1999) or brain 

activities by fMRI (Miyawaki et al., 2008; Nishimoto et al., 2011). While these 

studies are no doubt interesting from an engineering perspective (e.g., for 

development of brain-reading devices), they do not reveal the underlying 

computational principles in the visual system. Moreover, several theoretical 

frameworks stated the goal of visual information processing as maximizing 

information transmission (Kastner et al., 2015) or minimizing stimulus reconstruction 

error (Boerlin et al., 2013). Although these theoretical frameworks provide insightful 

predictions and explanations of neuron response properties of early visual system, it 

is hard to extend them to higher visual areas. In fact, except for processing in the 

early stages of the visual pathway, the goals of visual computation is likely quite 

different from image representation. To illustrate this difference, consider a thought 
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experiment where subjects are asked to judge whether a dot is present on an empty 

screen with a "yes" or "no" answer. The answer to this question relies on information 

extracted from the image, but may not be useful for reconstructing the image: placing 

a dot in the wrong location is worse than placing not dot at all. We can of course try 

to memorize the exact size, color and location of the dot if it is necessary for the 

completion of the task. But in real life, such detailed information is often not 

important. Instead, visual computation extracts very particular information from an 

image that is crucial for segmenting natural images into objects or for the completion 

of certain behavior task, while ignoring information that is not relevant to the answer. 

Visual neuroscientist Edward Adelson describing this distinct aspect of biological 

vision as: “Our world contains both things and stuff, but things tend to get the 

attention” (Adelson, 2001). 

 

For decades, visual neuroscientists have tried to understand vision in physiological 

terms by tracing visual signals throughout the visual system: from the retina, to LGN, 

to primary visual cortex, and to many other downstream visual areas. Neural 

responses in early visual systems can be reasonably well characterized with 

phenomenological models. However, it is extremely challenging to develop 

functional models for later stages of visual processing. One reason for this difficulty 

is that throughout most, if not all, of the visual system, it is not clear what the goal of 

computation is. In a recent interview, Nobel laureates David Hubel and Torsten 

Wiesel identified it as “the next big question in the field” (Hubel and Wiesel, 2012): 

“We have almost no examples of neural structures in which we know the difference 
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between the information coming in and what is going out--what the structure is for. 

We have some idea of the answer for the retina, the lateral geniculate body, and the 

primary visual cortex, but that’s about it. It is one thing to know that Broca’s area has 

to do with language, but that is far from having any idea of the transformations of 

information taking place there.” In fact, even for early visual systems, detailed 

analysis often reveal that the standard phenomenological models miss important 

elements of the response properties of sensory neurons (Butts et al., 2011; Carandini 

et al., 2005; Olshausen and Field, 2005), suggesting inadequate understanding of the 

underlying neural computation.  

 

In this dissertation, I tried to tackle these difficult problems with a goal of 

understanding the nature of computation along the visual hierarchy. By using a 

combination of the state-of-the-art statistical modeling techniques and 

electrophysiological recordings from various stages of the mammalian visual system, 

I tried to explain the detailed response properties of visual neurons and understand 

how they are constructed from elements of the neural circuits. In Chapter 2 and 3 of 

the dissertation, I developed nonlinear functional models that provide detailed 

characterizations of how stimulus selectivity of visual neurons in the retina and in 

area MT is constructed from the neural  circuits. These functional models addressed 

Hubel’s concern and described “the difference between the information coming in 

and what is going out”. By extending these models to a population level, important 

insights may be gained regarding what information is being represented in a visual 

area, or “what the structure is for”.  
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Modeling stimulus processing of visual neurons 

Neural encoding and receptive field models 

A fundamental problem in sensory neuroscience is to characterize the relationship 

between sensory stimulus and the electrical activity of sensory neurons. This is 

known as the problem of neural encoding (Dayan and Abbott, 2005) (Fig. 1-1). 

Understanding the neural encoding process represents an important first step to 

revealing the underlying neural computation in the visual system. Over the past few 

decades, neuroscientists and statisticians have devoted much effort to the 

development of accurate neural encoding models. Lying at the heart of many of the 

encoding models is the concept of receptive field (RF). A broad definition of 

receptive field is “a portion of sensory space that can elicit neuronal responses when 

stimulated” (Alonso and Yao, 2009; Sherrington, 1906). In general, this sensory 

space can only be accurately defined with multiple dimensions, such as space, time, 

and luminance patterns, etc. It would require an improbable large amount of 

experimental data to fully capture the receptive field of single visual neurons. Instead, 

to simplify the problem, many investigators assumed a neuron’s response only 

depend on a low-dimensional projection of the high-dimensional stimulus. The 

templates for this low-dimensional projection are known as linear receptive field. In 

this section, I review previous studies on neural encoding and receptive field models. 
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Figure 1-1 The problem of neural encoding.  
In typical studies of the neural encoding, experimenters present sensory stimulus s(t) 
to the subject while recording visual neuron response r(t) from a neuron in the brain. 
The problem of neural encoding is to establish the relationship between stimulus and 
neural response. 

 

Linear receptive field model 

The simplest possible neural encoding model is a linear one. Mathematically, the 

stimulus input s, was assumed to be linearly related to the observed response r via 

projection onto a linear receptive field k, 

 r = k·s (1.1) 
 

The linear receptive field models have been widely used through out multiple sensory 

systems (DiCarlo et al., 1998; Eggermont et al., 1983; Ramirez et al., 2014; Wilson, 

2001; Wu et al., 2006). In the visual system, such models are known as 

spatiotemporal receptive field. Specifically, the linear receptive field k(x, 𝜏) is a 

function of space x and time lag 𝜏. The linear prediction of neural response at time t 

given a stimulus is given by: 

 𝑔 𝑡 = 𝑘(𝐱
!𝐱

, τ)s(𝐱, 𝑡 − 𝜏) (1.2) 
 

s(t)

Stimulus

Neural
Response

...
r(t)

?

Sensory
Stimulus

Neural
Response
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The output of the linear model can be mapped to a firing rate prediction through a 

static nonlinearity F[] to account for nonlinear properties of spike generation, such as 

spike threshold and response saturation. The predicted response is then given as, 

𝑟 𝑡 = F[𝑔 𝑡 ] (1.3) 
 

This structure yields the canonical LN (Linear-Nonlinear) model (Chichilnisky, 2001; 

Hunter and Korenberg, 1986; Paninski, 2004). The linear receptive field can be 

efficiently estimated with reverse correlation techniques (Ringach and Shapley, 

2004), such as spike-triggered averaging (Chichilnisky, 2001; Pillow and Simoncelli, 

2006). 

 

Linear RF models have been successfully applied to various stages in the visual 

system, from the retina (Chichilnisky, 2001; Gollisch and Meister, 2010), to the LGN 

(Cai et al., 1997; Reid et al., 1997), and to simple cells in V1 (DeAngelis et al., 1993; 

Ringach et al., 2002a). Despite the multiple levels of neural processing, the early 

visual system seems surprisingly linear at first glance, presumably due to specialized 

ribbon synapse in the retina (Shapley, 2009) and interplay between excitation and 

inhibitory  in the primary visual cortex (Isaacson and Scanziani, 2011; Okun and 

Lampl, 2009; Priebe and Ferster, 2005; Wehr and Zador, 2003). However, detailed 

analysis revealed that even in the early retinal pathway, several important aspects of 

neural response properties were not captured by such linear models, most notably 

contrast adaptation (Kim and Rieke, 2001; Meister and Berry, 1999; Ozuysal and 

Baccus, 2012; Shapley and Victor, 1978) and the high temporal precision (Passaglia 
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and Troy, 2004; Uzzell and Chichilnisky, 2004). The inadequacy of linear models is 

because that stimulus selectivity of single neuron is constructed from distinct 

excitatory and suppressive elements. The linear model can not describe neurons that 

are selective to more than one visual feature in principle: a linear model that is 

“selective” to two features k1 and k2 is mathematically the same as being selective to 

their average: 

r = k1·s + k2·s = (k1+ k2)· s (1.4) 
 

As a result, the linear model would not identify either feature properly. 

 

Nonlinear neural encoding models 

Due to the fundamental limitation of linear models, much effort has been devoted to 

the development of nonlinear encoding models. Unfortunately, the space of possible 

nonlinear models is unbounded. On the one hand, applying advanced machine 

learning techniques (e.g., multi-layer artificial neural network models) to neural data 

could yield good predictions with sufficient data, but the resulting model fits can be 

very hard to interpret and map to the elements of neural circuits, therefore not 

providing insight into how computation is constructed from the neural circuit. On the 

other hand, one might be inclined to include much detailed anatomical and circuitry 

information into the model. However, more complicated models generally require 

more data for parameter estimation, and often involve poorly behaved or intractable 

optimization problems. As a result, there is a tradeoff between model complexity and 

biological plausibility when developing such nonlinear encoding models.  
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To address the issue of model complexity, one common approach is to assume that 

neurons are selective to a small number of stimulus features. One can then identify 

the low dimensional “feature subspace” and predict neural responses with a nonlinear 

function applied only to these stimulus features (Fig. 1-2 A). In this framework, the 

predicted neural response is, 

r = F[sTk1, sTk2, ….], (1.5) 
 

where (k1, k2, …) collectively define the feature subspace. Examples of this approach 

include dimensionality reduction approach such as spike-triggered covariance (STC) 

analysis (de Ruyter van Steveninck and Bialek, 1988; Schwartz et al., 2006) and 

information-theory-based approaches such as maximally informative dimensions 

(MID) analysis (Sharpee et al., 2004).  

 

Another approach is to impose assumptions on the form of nonlinearities in the 

system. Examples include application of neural network models (Lau et al., 2002; 

Prenger et al., 2004) and using second-order and higher-order approximation of the 

nonlinear stimulus-response relationship, such as the Wiener-Volterra expansion 

(Deweese, 1996; Eggermont, 1993; Marmarelis and Marmarelis, 1978): 

𝑟 = 𝑘!
(!)𝑠!

!

+ 𝑘!"
(!)𝑠!𝑠!

!,!

+ 𝑘!"#
(!)𝑠!𝑠!𝑠!

!,!,!

+⋯ (1.6) 
 

Theoretically, the Wiener-Volterra expansion can capture arbitrarily nonlinear 

computations with the addition of higher order kernels. However, the number of 

parameters in this type of nonlinear model increases exponentially with the degree of 

the kernel, thus suffering from “the curse of dimensionality”. In practice, the degree 

of the kernel considered is generally limited to be one or two (Wu et al., 2006). A 
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common problem of this approach and the subspace approach mentioned earlier is the 

difficulty to link resulting model components to physiological terms that present in 

the neural circuit.  

 

Finally, some investigators have directly incorporated relevant nonlinearities into the 

linear model to capture specific response properties, such as using spike-history terms 

to explain refractoriness and precision (Berry and Meister, 1998; Keat et al., 2001; 

Paninski, 2004; Truccolo et al., 2005), using feedback terms to explain contrast 

adaptation (Mante et al., 2008; Meister and Berry, 1999; Shapley and Victor, 1978), 

and other type of nonlinearities to capture response properties such as sensitivity to 

local context (Ahrens et al., 2008a) and stimulus intensity (Carandini and Heeger, 

2012; Heeger, 1992). While such approaches are often successful at describing the 

particular nonlinear effects targeted, they necessarily lump all nonlinear sources into 

the single nonlinear description, and usually can only explain the specific responses 

properties targeted. 

 

Hierarchical models of sensory processing and the nonlinear input model  

It is well known that visual system has a hierarchical organization (Felleman and Van 

Essen, 1991). Throughout the visual hierarchy, neurons in higher cortical areas 

receive inputs from neurons in lower areas. The receptive field size, as well as the 

complexity of the receptive field structure increases at successive stages of the visual 

pathway (Alonso and Yao, 2009). As a result, neural response in earlier stages of the 
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visual system is generally better understood and may be used to infer functions of 

later stages.  

 

Hierarchical models has a long history since Hubel and Wiesel’s seminal studies of 

simple and complex cells in the primary visual cortex (Hubel and Wiesel, 1962). In 

Hubel and Wiesel’s model, RF of a simple cell is constructed by pooling over LGN 

inputs with center-surround RFs along a preferred axis of orientation. At the next 

stage, complex cells pool over afferent simple cells with the same preferred 

orientation to build translation-invariance of the preferred stimuli. Since then, many 

studies use hierarchical models to explain the organization and physiological 

properties of the visual system (Poggio and Serre, 2013), such as object and face 

recognition in the ventral visual pathway (Axelrod and Yovel, 2012; Riesenhuber and 

Poggio, 1999; Serre et al., 2007) and motion processing in the dorsal visual pathway 

(Mineault et al., 2012; Rust et al., 2006; Simoncelli and Heeger, 1998). One of the 

key principles in such hierarchical processing models is the RFs of neurons at one 

level of the hierarchy are constructed by first pooling a large number of inputs from 

neurons at a lower level, and then processing the combined signal with a set of 

canonical nonlinear functions, such as exponentiation (a form of thresholding) and 

normalization (Carandini and Heeger, 2012). Similar computational principles have 

been developed somewhat independently in machine learning field, such as the 

Neocognitron (Fukushima, 1980), the convolutional neural network (Lecun, 1998) 

and other deep learning architectures (Schmidhuber, 2014). The impressive 
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performance of such models on image recognition tasks also demonstrate the power 

of hierarchical computation.  

 

In this dissertation, I use a statistical model for sensory processing, the “Nonlinear 

Input Model” (NIM) (McFarland et al., 2013), which was inspired by the hierarchical 

nature of sensory processing. In the NIM framework, the complex computations 

performed by sensory neurons are assumed to arise in large part from the 

accumulation of relatively simple nonlinear operations across the sensory processing 

hierarchy. At each level of the hierarchy, the NIM describes neuronal processing as a 

sum over excitatory and inhibitory inputs (Fig. 1-2 B). The space of nonlinear 

functions are limited with the assumption that nonlinearities in sensory processing are 

dominated by spike generation, which causes both rectification of the inputs to the 

neuron, as well as rectification of the neuron’s output. Because the form of NIM is 

consistent with the basic description of neural computation in terms of the integrate-

and-fire neuron, model selection and parameter estimation can be guided by 

knowledge about the inputs to a given neuron, and the elements of the resulting 

model can often be related to specific physiological terms.  
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Figure 1-2 Schematics of the nonlinear input model (NIM). 
A. Schematic diagram of a general LN model, with multiple filters (k1, k2, ...) that 
define the linear stimulus subspace. The outputs of these linear filters (g1, g2, ...) are 
then transformed into a firing rate prediction r(t) by the static nonlinear function 
F[g1,g2,...], depicted at right for a two-dimensional subspace. Note that while the 
general LN model thus allows for a nonlinear dependence on multiple stimulus 
dimensions, estimation of the function F[.] is typically only feasible for low (one- or 
two-) dimensional subspaces. B. Schematic illustration of a generic neuron that 
receives input from a set of ‘upstream’ neurons that are themselves driven by the 
stimulus s. Each of the upstream neurons provides input to the model neuron that is 
rectified due to spike generation (inset at left), and thus is either excitatory or 
inhibitory. The model neuron then integrates its inputs and produces a spiking output. 
C. Block diagram illustrating the structure of the NIM, based on (B). The set of inputs 
are represented as (one-dimensional) LN models, with a corresponding stimulus filter 
ki, and ‘‘upstream nonlinearity’’ fi(.). These inputs are then linearly combined, with 
weights wi, and fed into the spiking nonlinearity F[.], resulting in the predicted firing 
rate r(t). The NIM thus has a ‘second-order LN’ structure (or LNLN), with the 
neuron’s own nonlinear processing shaped by the LN nature of its inputs. Adapted 
from (McFarland et al., 2013). 

 
In Chapter 2 and 3 of the dissertation, I describe the applications the NIM framework 

to the retina, and the motion processing area MT, respectively. In each case, I 

modified the original NIM model based on physiological and anatomical knowledge 

of the specific parts of the visual system. For the application to the retina, I utilized 

the fact that retinal ganglion cells (RGCs) receive synaptic inputs from bipolar cells, 

which are under the influence of presynaptic modulation mediated by amacrine cell 

(Euler et al., 2014; Wässle, 2004). The excitatory synaptic inputs to ganglion cells 
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were captured by a divisive suppression model, which provided an accurate 

description of both the intracellular and extracellular response of RGCs across 

contrasts. For the MT application, I incorporated the knowledge that MT receives 

inputs from direction-selective cells in V1 (Movshon and Newsome, 1996), which 

exhibit nonlinear response properties that are well characterized in literature. The 

resulting models for RGC and MT computation not only explain response properties 

not captured by the linear model, but also shed light onto the underlying computation 

along the visual pathway. 

 

Variability of cortical neuron responses 

Predictive power of feedforward models is limited by cortical variability 

We have focused on the feedforward stimulus processing models so far. Indeed, in 

the standard framework of systems neuroscience, the activity of neurons in sensory 

cortex is assumed to be a fixed function of the stimulus, which is typically 

characterized by their “receptive field”. This dominant view is manifested in the 

claim of “we know what the visual system does once we can predict neural responses 

to arbitrary stimuli” (Carandini et al., 2005). Such “receptive-field” based stimulus 

processing models are very successful in predicting neural responses in early visual 

system such as the retina (Pillow et al., 2005) (Chapter 2) and the LGN (Butts et al., 

2011; Mante et al., 2008). Nevertheless, the ability of these models to explain neural 

responses is severely limited in visual cortex, even in principle. This is because 

neurons through out the cortical visual systems exhibit a remarkably high degree of 
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variability in response to repeated presentations of the same stimulus (Shadlen and 

Newsome, 1998; Softky and Koch, 1993; Tolhurst et al., 1983), which by definition 

cannot be captured in any type stimulus-processing models. 

 

Intrinsic noise does not explain cortical variability 

The high variability of cortical response was once thought to be intrinsic noise due to 

the stochastic nature of spike generation and neural transmission. Nevertheless, in 

vitro studies showed that spike responses to intracellular current injections occur with 

high fidelity (Mainen and Sejnowski, 1995). Although unreliability of synaptic 

transmission may have a bigger impact (Faisal et al., 2008), it is possible overcome 

this source of variability by integrating from many of them (Masquelier, 2013), and 

under some experimental conditions neural response does exhibit high degree of 

reliability (Haider et al., 2010; Herikstad et al., 2011; Kayser et al., 2010; Panzeri and 

Diamond, 2010). Therefore, it is improbable that the high variability of cortical 

neuron response is due to the intrinsic inaccuracy of biological systems. Instead, 

“randomness is only a measure of our ignorance of the different causes involved in 

the production of events” (Laplace, 1825), the reported high degree of cortical 

variability likely reflects our limited, incomplete understanding of the function of 

visual systems (Masquelier, 2013).  
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Non-stimulus-driven inputs to sensory neurons 

Despite the focus on studying feedforward processing, the visual system is not an 

automatic machine that passively responds to the stimuli. Instead, visual processing 

must constantly adapt to changing in behavioral context and task demands. Indeed, as 

scientists start to study vision in more natural, behaviorally relevant conditions, visual 

system appears to be much more complex than the passive visual stimulus processing 

system that was originally imagined. Recent studies showed that responses of neurons 

in primary visual cortex are modulated by many factors beyond sensory stimulation, 

such as attention (Harris and Thiele, 2011; Reynolds and Heeger, 2009; Roberts et al., 

2007), reward timing (Shuler and Bear, 2006), neuromodulatory signals (Avery et al., 

2014; Goard and Dan, 2009), behavioral states (Niell and Stryker, 2010), locomotion 

signals (Ayaz et al., 2013; Keller et al., 2012; Saleem et al., 2013) and perceptual 

decisions (Britten et al., 1996; Nienborg et al., 2012). Even without any visual 

stimulation, visual cortex exhibits a rich set of spontaneous activities (Arieli et al., 

1996; Buzsaki and Draguhn, 2004; Fiser et al., 2004), which is related with prior 

expectations (Berkes et al., 2011), changes in behavioral and cognitive state (Engel et 

al., 2001; Fries, 2005; Lakatos et al., 2005) and visual perception (Busch et al., 2009; 

Chakravarthi and VanRullen, 2012; Dugue et al., 2011).  

 

Understanding the properties of the various non-stimulus-related inputs to visual 

cortical neurons presents a major challenge to the study of visual processing, both 

experimentally and computationally. This is because, during typical visual 
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experiments, investigators can only record from a very small fraction of neurons in a 

given area and often have no experimental control on the non-stimulus related input. 

However, several recent studies have demonstrated the possibility of inferring cortical 

network states from the local field potential (Arieli et al., 1996; Haslinger et al., 2012; 

Kelly et al., 2010; Kisley and Gerstein, 1999; Lakatos et al., 2005), a common 

element of extracellular recordings (Buzsaki and Draguhn, 2004). In Chapter 4 of the 

dissertation, I describe the problem of cortical variability in awake, behaving 

macaques under both passive and active conditions. Using sophisticated statistical 

models, I estimated the amount of cortical variability and quantified to what extent 

cortical variability can be accounted for by ongoing cortical network dynamics 

inferred from the LFPs (Chapter 4). By studying variability in a motion 

discrimination task, I found that the observed correlation between single neuron 

responses and perceptual decisions could be explained by slow oscillations in the 

cortex. These results provide unique insights into the source and functional 

significance of neural variability.  

 

Linking visual neuron responses with perception.  

Neural correlates of perceptual decision 

The information carried by sensory neurons is ultimately used to create perception, 

our ability to interpret and understand the surrounding environment from sensory 

inputs (Schacter, 2011). The relationship between sensory neuron activity and 

perception remains one of the most important and intriguing problems in 
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neuroscience (Parker and Newsome, 1998), and understanding this relationship is 

essential for establishing a scientific account of the neural mechanisms underlying 

our mental life. In the past few decades, much effort has been devoted to search for 

perceptually relevant signals within the cerebral cortex. In this section, I review 

several landmark studies in this field and discuss how the work presented in this 

dissertation (Chapter 4) contribute to the understanding of the link between visual 

neuron responses and perceptual behaviors. 

 

In 1989, Newsome et al. carried out a landmark study where neural responses and 

perceptual behaviors were simultaneously measured: single neuron responses in area 

MT were recorded while the subject performed a visual motion discrimination task 

(Newsome et al., 1989). The stimulus consists a field of dots, a fraction of which 

moves coherently in one direction while the rest moves randomly (Fig. 1-3 A). The 

subject has to report the motion direction with a saccade at the end of the stimulus 

presentation. By changing the fraction of dots that moved coherently, the 

investigators manipulated the difficulty of the task. The behavioral performance of 

the subject, quantified with a psychometric curve (Fig. 1-3 C), was found to be, on 

average, comparable to that of a hypothetical observer who performs the same task 

with decision based on responses of single MT neurons (i.e., the neurometric curve). 

This result demonstrated that single MT neuron responses are sufficient to explain the 

behavioral performance of the subject. Many subsequent studies have reported that 

when measured in appropriate perceptual decision tasks, behavioral performance can 

be explained by single or small number of neurons in sensory cortices, including V1 
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(Geisler and Albrecht, 1997; Nienborg and Cumming, 2006; Palmer et al., 2007), V2 

(Nienborg and Cumming, 2006), S1 (Romo et al., 1998) S2 (Romo et al., 2004), MT 

(Andersen and Bradley, 1998; Croner and Albright, 1999; Uka and DeAngelis, 2004), 

MST (Celebrini and Newsome, 1994) and LIP (Law and I., 2008).  In subsequent 

studies, investigators manipulated responses of relevant neurons with 

microstimulation (Britten and van Wezel, 1998; Cohen and Newsome, 2004; Romo et 

al., 1998; Salzman et al., 1990; Tehovnik et al., 2004) or chemical inactivation 

(Dürsteler and Wurtz, 1988; Newsome and Pare, 1988; Yamasaki and Wurtz, 1991), 

to show that activity of certain groups of sensory neurons are necessary for perceptual 

decisions. 

 

 

Figure 1-3 Neural correlates of perceptual decision. 
A. The original motion discrimination task used in Newsome et al., 1989. The 
strength of the motion stimulus is controlled by varying the proportion of the dots 
moving coherently: at 0% coherence, the dot motion is completely random, at 100% 
coherence, all the dots are moving in the same direction. The monkey has to report 
the overall motion direction with a saccade at the end of the trial to get a liquid 
reward. B. The responses of a directionally selective MT neuron at three different 
motion strength levels. The hatched bars indicate responses to the preferred motion 
and the solid bars indicate responses to the null motion. C. Comparison of the 
psychophysical performance of the monkey (solid circle) with that of a hypothetical 
ideal observer who based its decision on the single neuron response shown in (B). 
(A): adapted from (Wohrer and Machens, 2013) (B-C): adapted from Newsome et al. 
(1989).  
 

A B C
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Choice probability for sensory neurons 

Because the tight relationship between sensory neuron activity and perceptual 

decisions, it is natural to ask whether the high degree of response variability in 

sensory cortices is manifested in the behavior. Britten et al. first investigated this 

problem using data from the same motion discrimination task described above 

(Britten et al., 1996). This time the investigators turned their attention to the 0% 

coherence trials where the stimulus was completely ambiguous and reward was given 

randomly. Even though the behavioral performance was at chance level, the subject 

was not aware of the lack of motion signal and still tried to make the best guess of the 

motion direction on those trials. Because the stimulus-driven component of the 

response was the same regardless of the decision, this condition was ideal to isolate 

the decision relevant component of neural response. The researchers thus quantified 

how well responses of single MT neurons predicted perceptual decisions on a trial-

by-trial basis using a novel non-parametric metric called “choice probability” (CP). 

CP was defined as the area under the receiver operating characteristic (ROC) curve 

calculated using the choice-conditioned distributions of neural responses. CP ranges 

from zero to one, and takes a value of 0.5 if the two choice-conditioned distributions 

of neural responses are completely overlapping. Conceptually, CP represents how 

well a hypothetical ideal observer can predict the subject’s decision based on 

responses of single MT neurons. The critical finding of Britten et al., 1996 was that at 

the population level, CP significantly (though just slightly) above the chance level of 

0.5 (mean=0.555), meaning that MT neuron activity is correlated with decision on a 
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trial-by-trial basis. Significant CP have been reported in a variety of cortical areas, 

including visual areas V1 (Nienborg and Cumming, 2014; Palmer et al., 2007), V2 

(Nienborg and Cumming, 2006), MT (Bradley et al., 1998; Cohen and Maunsell, 

2009; Purushothaman and Bradley, 2005), MST (Gu et al., 2007), IT (Uka et al., 

2005), LIP (Roitman and Shadlen, 2002; Shadlen and Newsome, 2001), 

somatosensory cortex (Romo et al., 2002), motor and premotor cortex (de Lafuente 

and Romo, 2006; Romo et al., 2004), auditory cortex (Niwa et al., 2013) and 

subcortical vestibular neurons (Liu et al., 2013).  

 

Relationship between choice probability and network activity 

CPs for sensory neurons are typically small (<0.6). However, it is remarkable that 

they are detectable at all. A sensory stimulus typically activates many thousands of 

cortical neurons. If all of them contribute to the decision independently, the chance of 

finding one neuron that shows significant correlation with the behavior is vanishingly 

small. This apparent paradox can be resolved if activity of nearby cortical neurons 

fluctuate in a correlated manner (Haefner et al., 2013; Nienborg et al., 2012; Shadlen 

et al., 1996). This is indeed the case in sensory cortex. The correlation between the 

trial-to-trial fluctuations in activities of a pair of neurons, which is often termed as the 

noise correlation (Bair et al., 2001), is positive (but weak) for nearby neurons with 

similar stimulus tuning properties (Cohen and Kohn, 2011). Recent experiment 

evidences and theoretical analysis further showed that CP does not simply depend on 

the overall level of correlation; instead, it depends on the structure of these 

correlations (Bondy and Cummings, 2013; Haefner et al., 2014). Specifically, CP will 
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arise when correlations within a pool supporting one decision are higher than those 

between pools (Haefner et al., 2013; Nienborg et al., 2012).  

 

The origin of noise correlation that contributes to CP is highly debatable. Originally, 

it is thought to reflect shared, feed-forward sensory noise (Shadlen et al., 1996), such 

as noise of sensory receptors, synaptic transmission, and action potential generation. 

However, recent studies found that noise correlation in V1 can present over much 

larger distance in the V1 (Smith and Kohn, 2008) than in the retina (Greschner et al., 

2011), suggesting that feedforward sensory noise cannot be the only source of noise 

correlation. Another potential source of shared inputs is the intrinsic connections 

within a cortical area. A number of recent studies demonstrated a preference of 

connections between neurons with similar stimulus tuning properties (Ahmed et al., 

2012; Ko et al., 2011). Although intrinsic connection is likely a source of noise 

correlation, it cannot explain how the correlation structure in the cortex can flexibly 

change depending on the task context (Bondy and Cummings, 2013; Cohen and 

Newsome, 2008) and spatial attention (Cohen and Maunsell, 2009; Mitchell et al., 

2009). Instead, these results are consistent with a third possibility that noise 

correlations and CPs reflect a top-down signal (Nienborg et al., 2012). In this top-

down explanation of CP, a feature-selective feedback signal occurs after the decision 

is formed (Nienborg and Cumming, 2009), which may contribute to perceptual 

stability when the sensory signals are weak and ambiguous. 
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In Chapter 4 of the dissertation, I tested whether the choice related shared inputs to 

local population of sensory neurons that underlies noise correlation in perceptual 

discrimination tasks could be inferred from elements of the local field potentials 

(LFPs). I found that CP of single MT neuron could be well predicted by the phase of 

ongoing delta oscillation (<4 Hz). Moreover, over a wide range of stimulus strength, 

slow (delta-band) oscillations in the LFPs contain more information of the perceptual 

decisions than the stimulus. This result not only makes delta band LFP signals a 

potential candidate for perceptually relevant signal, but also has profound 

implications on the correlation structure between neurons across the cortex. 
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Chapter 2 : Divisive suppression describes retinal ganglion 
cell responses with high precision 

 

Introduction 

Neural computations in the retina are generated by complex circuits specific to each 

ganglion cells type (Masland, 2001). Despite the multiple levels of processing within 

the retina shaping the output layer of retinal ganglion cells, retinal processing appears 

to be surprisingly linear, and as a result, ganglion cells have typically been modeled 

using linear-nonlinear (LN) cascade model, where a linear spatiotemporal receptive 

field is combined with a static nonlinearity that captures the spike threshold and 

response saturation (Baccus and Meister, 2002; Chichilnisky, 2001). However, many 

aspects of ganglion cell spike trains deviate from predictions of the LN model – 

especially when studying responses at time resolution higher than the stimulus itself 

(Butts et al., 2007), most notably contrast adaptation (Kim and Rieke, 2001; Meister 

and Berry, 1999; Shapley and Victor, 1978) and the high temporal precision 

(Passaglia and Troy, 2004; Uzzell and Chichilnisky, 2004).  

 

To explain the various nonlinear aspects of ganglion cell responses, a multitude of 

nonlinear descriptions of retinal computation have been proposed, and in general have 

taken two approaches. The first describes the nonlinear function between stimulus 

and response as a mathematical expansion, expanding from the linear receptive field 

(Chichilnisky, 2001) to second-order quadratic terms, using spike-triggered 

covariance (Fairhall et al., 2006; Gollisch, 2013; Vaingankar et al., 2012) or 
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maximally informative dimension analyses (Sharpee et al., 2004). While such 

“expansion terms” can lead to better predictions of the spike train, they are 

challenging to interpret both functionally and with respect to the underlying circuit 

(Butts et al., 2011; McFarland et al., 2013). A second approach targets specific 

aspects of the response, such as spike-refractoriness (Berry and Meister, 1998; Keat et 

al., 2001; Pillow et al., 2005), gain changes associated with contrast adaptation 

(Bonin et al., 2005; Mante et al., 2008; Meister and Berry, 1999; Shapley and Victor, 

1978) and the interplay of excitation and inhibition (Butts et al., 2011). While such 

approaches are often successful at describing the particular nonlinear effects targeted, 

they necessarily lump all nonlinear sources into the single nonlinear description, and 

usually can only explain the specific responses properties targeted. 

 

Here we derive a novel nonlinear modeling framework inspired by a physiological 

description of retinal circuitry, constrained by recordings at two stages of retinal 

processing: synaptic input currents (using voltage clamp) and spike output (through 

cell-attached loose patch) of ON-Alpha ganglion cells. These recordings reveal that 

temporal precision and some elements of contrast adaptation are already present in 

the synaptic current input. We thus devise a tractable model of excitatory currents that 

incorporates a nonlinear structure based on the relevant circuit elements, In particular, 

by including a divisive suppression mechanism meant to capture presynaptic 

inhibition from amacrine cells, the model captures the detailed structure of synaptic 

current response and explained and contrast adaptation in the synaptic current. We 

then extend this model to explain spike outputs of the ganglion cell with the inclusion 
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of a spike history term and the spiking nonlinearity. The multiple nonlinear elements 

in the model accurately captured the precision of the spike outputs and also predicted 

the observed contrast adaptation of the spike output. Therefore, our study established 

a unified model of nonlinear processing within ganglion cells that accurately captured 

both the generation of temporal precision and contrast adaptation, providing a 

foundation for understanding in more complex circumstances.  

 

Methods 

 

Neural recordings 

Data were recorded from identified types of retinal ganglion cells from mouse retinas 

using whole cell recording techniques that have been described previously (Wang et 

al., 2011). Spikes were recorded in the loose-patch configuration using a patch pipette 

filled with external Ames medium and synaptic currents were recorded using a 

second pipette filled with intracellular solution. The targeted cell was voltage 

clamped at ECl (-67 mV) to record excitatory currents after correcting for the liquid 

junction potential. Cells in the ganglion cell layers with large somas (20-25 µm 

diameter) were recorded to target the Y/alpha-type ganglion cells. Recorded cells 

were confirmed to be On-Alpha cells based on previously established criteria 

(Borghuis et al., 2013): (1) each cell had a relatively wide dendritic tree (300-400 µm 

diameter) and (2) each cell stratified on the vitreal side of the nearby ON cholinergic 

(starburst) amacrine cell processes. All procedures were conducted in accordance 
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with National Institutes of Health guidelines under protocols approved by the Yale 

University Animal Care and Use Committee.  

 

Visual Stimulation 

The temporally modulated spot stimulus were described in (Wang et al., 2011). The 

retina was stimulated by UV LEDs (peak, 370 nm; NSHU-550B; Nichia America) to 

drive cone vision. UV LEDs were diffused and windowed by an aperture in the 

microscope’s fluorescence port, with intensity controlled by pClamp 9 software via a 

custom noninverting voltage-to-current converter using operational amplifiers 

(TCA0372; ON Semiconductor). The stimulus was a flickering spot (1000 µm 

diameter), with intensity generated from low pass Gaussian noise with a 30 Hz cutoff 

frequency. We used a contrast-switching paradigm (Baccus and Meister, 2002; Kim 

and Rieke, 2001; Zaghloul et al., 2005), where the temporal contrasts alternate 

between high and low every 10 sec. The contrast of the stimulus is defined by the 

standard deviation of the Gaussian noise. The stimulus comprised 10 cycles of 10 sec 

for each contrast. The first 7 sec were unique in each cycle, and the last 3 sec were 

repeated across cycles. The stimuli were programmed in Matlab (Mathworks, Natick) 

using the Psychophysics Toolbox (Brainard, 1997). 

The center-surround stimuli (Fig. 2-4B) were generated using custom-written 

language (Stim-Demo, C language), and presented with video projector (M109s DLP; 

Dell, or identical HP Notebook Companion; HP), modified to project UV light (single 

LED NC4U134A, peak wavelength 385 nm; Nichia)(Borghuis et al., 2013). In this 

stimulus, a spot covered the receptive field center (e.g., 0.3 mm), and an annulus 



 

 29 
 

extended into the surround (e.g., inner/outer diameters of 0.35/1.0 mm). The center 

and surround stimuli were independently generated Gaussian noise with 30 Hz cutoff 

frequency. For all methods of stimulation, the gamma curve was corrected to linearize 

output, and stimuli were centered on the cell body and focused on the photoreceptors. 

 

Statistical modeling for synaptic current response 

In the traditional linear-nonlinear (LN) cascade model (Paninski, 2004; Truccolo et 

al., 2005), the transformation of the stimulus s(t) to the synaptic current response c(t) 

was described as,  

c(t)= f1[klin·s(t)] + c0, (2.1) 

where klin denoted the linear filter, f1(·) denoted a static nonlinearity and c0 is a 

baseline offset.  

To incorporate a second synaptic pathway into the model, we first considered 

a two-dimensional nonlinearity F[·,·], with  

c(t)=F[ke·s(t), ks·s(t)], (2.2) 

where ke and ks denoted the excitatory and suppressive filters respectively. To limit 

the number of parameters, we fit the filters klin, ke, ks using a family of 

orthonormalized basis functions suggested by (Keat et al., 2001): 

𝜁(t) = sin[𝜋n(2t/tF – (t/tF)2)], (2.3) 

where tF=250 ms. The filters can be alternatively optimized for a given choice of 

nonlinearity using gradient-descent based method to minimize the mean-squared 

error, 
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MSE = ∑t [c(t) – cobs(t)]
2 (2.4) 

The 2-D nonlinearity was represented using piece-wise planar surfaces and can be 

estimated non-parametrically for a given choice of filters. Specifically, we divided the 

2D space into a set of uniform squares, and applied the same triangulation scheme to 

all squares to subdivide each square into two triangles. Each basis function was 

defined as a hexagonal pyramid function centered at one of the vertices. The 2-D 

nonlinearity function was expressed as a combination of the basis,  

F[x,y]= ∑i,j wij fij(x,y), (2.5) 

where fij(x,y) is the basis centered at the ijth grid vertex, and wij is the weight 

coefficient, which can be optimized by minimizing MSE for a given choice of filters.  

There is degeneracy in the combined optimization of stimulus filters and 2D 

nonlinearity. For example, one can choose a linear combination of the two stimulus 

filters and achieve the same model performance by refitting the 2D nonlinearity. To 

alleviate this problem, we constrained the 2D nonlinearity to be monotonically 

increasing along the first dimension, i.e., 

If x>x’, then F[x,y]≥F[x’,y], ⩝ y (2.6) 

Therefore, the first dimensions in the nonlinearity can be interpreted as excitatory 

dimension. No constraint was applied on the second dimension, as suppression was 

found to exhibit selectivity to both ON and OFF stimuli. 

While this formulation of nonlinear model is general, the structure of the 2-D 

nonlinearity is generally not straightforward to interpret. To determine if there is 

simpler computational structure underlying F[·,·], we considered a low-rank 
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decomposition of the 2-D nonlinearity as the sum of one-dimensional divisive 

interactions 

c(t)=fe[ke·s(t)] × fs[ks·s(t)] + c0. (2.7) 

Each divisive term is in the form of a 1-D LN model. Although in principle a large 

number of divisive terms were required to fully capture the 2-D nonlinearity, we 

found in practice that only one term was sufficient. The resulting divisive suppression 

model (DS model) often has comparable performance as the 2-D model with much 

less parameters. To enhance the interpretability of the model, we constrained the 

excitatory nonlinearity fe to be monotonically increasing, and the suppressive 

nonlinearity fs be one when the input is zero, and less than or equal to one everywhere 

else. By alternatively optimizing the filters and the nonlinearities until convergence, 

and sampling different filter initializations, we can robustly find filters that minimize 

the MSE.  

 

Statistical modeling for spike response 

We have applied several statistical models to describe the spike response of ganglion 

cells. We first considered the generalized linear modeling (GLM) framework 

(Paninski, 2004; Simoncelli et al., 2004; Truccolo et al., 2005). The GLM makes 

prediction of the instantaneous firing rate of the neuron r(t) based on both the 

stimulus s(t) and the recent history of observed spike train R(t): 

r(t)= Fspk[klin·s(t) + hspk· R(t) - 𝜃], (2.8) 
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where klin is the linear receptive field, hspk is the spike history term and 𝜃 is the 

spiking threshold. Here, the parameters of the model are all linear functions inside the 

spiking nonlinearity Fspk. The linear-nonlinear (LN) model consists of only the linear 

receptive field and the spiking threshold; the full GLM further includes the spike 

history term (denoted as LN+RP in figures). The spiking nonlinearity has a fixed 

functional form Fspk[g] = log[1+exp(g)], satisfying conditions for efficient 

optimization (Paninski, 2004). The model parameters are estimated using maximal-

likelihood optimization. The log-likelihood (LL) of the model parameters given the 

observed neural response is (Paninski, 2004): 

LL=∑t[robs(t) log r(t) - r(t)] (2.9) 

Given a set of model parameters, the LL and its gradient can be directly calculated. 

The optimal model parameters can be found using gradient-descent based 

optimization of LL.  

To capture nonlinear properties of the spike response, we modified the 

Nonlinear Input Model (NIM) (McFarland et al., 2013). The NIM framework 

incorporates nonlinear processing underlying a neuron’s inputs. The predicted firing 

rate is given as, 

r(t)= Fspk[∑ifi[s(t)] + hspk· R(t) - 𝜃], (2.10) 

where f[] represents a set of nonlinear subunits reflecting upstream processing. In this 

case, base on knowledge of nonlinear processing in synaptic current response, we 

assumed the nonlinear subunit takes the form of a DS model, 

f[s(t)] = fe[ke·s(t)]× fs[ks·s(t)]. (2.11) 
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Similar to parameter estimation of the DS models of synaptic current response, we 

alternatively estimated the filters and nonlinearities until converge. The same set of 

constraints was applied to the excitatory and suppressive nonlinearities.  

 

Quantification of contrast adaptation with LN analysis 

We performed LN model analysis to ganglion cell responses across contrasts and 

subsequently quantified the change of linear filter to gauge the extent of contrast 

adaptation. We used a shared nonlinearity and separate linear filters for the low and 

high contrast condition such that contrast adaptation effects are attributable entirely to 

changes in linear filter. The two linear filters can be simultaneously fit to the data 

using the shared nonlinearity, and the nonlinearity can then be estimated with the 

filters fixed. This approach is similar to earlier attempts to “align” nonlinearities 

across contrasts and applied the associated scaling factor to the linear filters (Chander 

and Chichilnisky, 2001). For the synaptic current data, we further introduced an offset 

factor to compensate for the change in the overall mean of the response (Baccus and 

Meister, 2002). 

 Once the linear filters at both contrasts were obtained, we identified the global 

peak and valley of the filters denoted as kpeak and kvalley respectively, and then 

calculated the percentage change of peak-to-valley amplitude (kpeak- kvalley) and 

biphasic index (|kvalley/kpeak|). These indices reflect the change of filter magnitude and 

shape across contrasts. 
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Evaluation of model performance  

Because complex models, such as the DS model, are more prone to overfitting than 

simpler models. It is important to evaluate model performance on datasets not used 

for model fitting (i.e., cross-validation). We used cross-validation throughout the 

paper and evaluated model performance on the 3-seconds repeat trials that are set 

aside for model fitting.  Several complementary metrics were used for performance 

evaluation. First, we used predictive power, or percent of explainable variance (David 

and Gallant, 2005; Sahani and Linden, 2003), to quantify how well the model 

captured the trial-averaged response for both intracellular and extracellular 

recordings. This metric corrects for noise-related bias due to limited number of trials. 

Second, we used cross-validated likelihood for the spike models. This metric 

concerns the timing of spikes on a trial-by-trial basis. For example, LN model with 

and without the spike refractoriness term have similar predictive power but very 

different cross-validated likelihood.  

 

Coherence analysis of synaptic current response 

The general model performance metrics such as predictive power and cross-validated 

likelihood do not reflect which aspect of the response does the model not capture. We 

thus devised a new coherence-based metric to quantify how well the model performs 

across frequencies. The coherence between the model predicted current response c(t) 

and the recorded current response on the ith trial c!"#! (𝑡) is (Butts et al., 2007): 

𝛾!! 𝜔 =
|  C!"#! (𝜔)C(𝜔)|!

|  C!"#! (𝜔)|! |C(𝜔)|!
 

(2.12) 
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where C(𝜔) and   C!"#! (𝜔) are the Fourier transforms of c(t) and c!"#! (𝑡) respectively, 

and the bar denotes complex conjugate. We used angular frequency 𝜔 = 2𝜋𝑓 instead 

of f to be consistent with common conventions. Once we get the coherence measure 

on individual trials, we average it across repeat trials for each cell.  

 Because the observed response on each trial contains noise, a coherence of 

one throughout the frequency is not a realistic target. To correct for this bias, we 

calculated the coherence between the trial-averaged current response (i.e., the ideal 

predictor of response) and the recorded current on each trial. This noise corrected 

coherence metric represents an upper bound of coherence that can be achieved by any 

stimulus-processing model. It also reflects the consistency of current response at each 

frequency range. For example, in the low contrast condition, the response contained 

little high frequency component (Fig. 2-7A-B), the measured coherence was then 

close to zero above 30 Hz.  

 

Event analysis of spike trains 

We modified a previously established method to identify short spiking episodes 

“events” in the spike train (Butts et al., 2010). Analyses in the same spirit have been 

previously applied by (Berry et al., 1997; Kumbhani et al., 2007). Specifically, events 

were first defined in the peristimulus time histogram (PSTH) as times of firing 

interspersed with periods of silence lasting ≥ 8 ms. Each resulting event was further 

analysis by fitting the PSTH with a two-component Gaussian mixture models. An 

event was broken into two events if the differences of means of the two Gaussian 

components exceed two times the sum of standard deviations. Event boundaries were 
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defined as the midpoint between neighboring event centers and were used when 

assigning event labels to simulated spikes. Events were excluded from further 

analysis if no spike was observed on more than 50% of the trials during the event 

window. This criterion excluded spontaneous spikes that occur only on a few of the 

trials. Event analysis was first performed on responses at high contrast condition. 

Once the events in high contrast were determined, events at low contrast were then 

defined using the event boundaries obtained from high contrast data. These particular 

methods were chosen because they gave the most reasonable results with regards to 

visual inspection, but the results presented here do not qualitatively depend on the 

precise methods. 

 Once event were parsed, we measured a variety of properties associated with 

the spikes that comprised them (Fig. 2-6). The first-spike SD measured the standard 

deviation of the first spike of the event on each trial, which reflects the precision of 

event. The event time scale is estimated as the standard deviation of all spike times in 

each event, which is related to the duration of each event. The event Fano factor 

measures the ratio between the variance of spike count and the mean spike count in 

each event.  

 

Results 

We recorded spikes from identified ON-Alpha ganglion cells in the mouse retina with 

a loose-patch configuration, during the presentation a temporally modulated 1-mm 

spot that was centered on the neuron’s receptive field (Fig. 2-1A, top). Contrast was 

changed between two levels every 10 seconds. In high contrast (HC), the stimulus 
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yielded spike responses that were precisely timed from trial to trial (Fig. 2-1A, left), 

as observed in numerous previous studies (Berry and Meister, 1998; Butts et al., 

2007; Passaglia and Troy, 2004; Reinagel and Reid, 2000; Uzzell and Chichilnisky, 

2004). Typically, ganglion cell responses are predicted using a cascade model based 

on the neuron’s linear receptive field (RF) (Chichilnisky, 2001; Hunter and 

Korenberg, 1986). For the linear-nonlinear (LN) model, the neural response is 

predicted by the degree that the stimulus s(t) matches the linear receptive field k (Fig. 

2-1B, left), and then scaled to a firing rate through the spiking nonlinearity (right). 

Although the LN model predicts the coarse dynamics of firing rate fluctuations, it 

does not capture the fine temporal features of the response (Fig. 2-1A). Specifically, 

using an established “event” analysis that divides the spike train into separate 

episodes of firing separated by silence (Butts et al., 2010), we compared both the 

average first-spike jitter and overall event duration between LN model and observed 

data (see Methods), demonstrating the failure of the LN model to capture either (Fig. 

2-1C). 

 

In the low contrast (LC) condition, the overall firing rate was comparable to the HC 

condition, consistent with many previous studies demonstrating contrast adaptation in 

the retina (Baccus and Meister, 2002; Rieke, 2001; Zaghloul et al., 2005). This is 

reflected in the LN model fits as the change of the temporal filter magnitude across 

contrasts (Fig. 2-1B, left). On the other hand, the response precision degraded 

significantly in LC condition (Fig. 2-1A, right): individual events were much broader 

than the HC condition, and the first spikes in each event were less precise. As a result, 
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there was no significant difference in the precision of the measured ganglion cell 

spike trains and the LN model predictions for low contrast, suggesting the adequacy 

of the linear model in LC, and thus a change in the amount of nonlinearity across 

contrast. 

 

Nonlinear processing distributed across two stages of retinal processing 

To understand whether temporal precision and contrast adaptation are generated 

within ganglion cells – as suggested in models using spike-refractoriness (Berry and 

Meister, 1998; Gaudry and Reinagel, 2007a; Keat et al., 2001) – or arise earlier in the 

retinal circuit and inherited by ganglion cells, we recorded excitatory synaptic current 

inputs from the same ganglion cells as those recorded with spikes (Fig. 2-1D). The 

resulting excitatory current could also be fit with an LN model (Baccus and Meister, 

2002; Zaghloul et al., 2005), which for the HC condition resembled that of the spike-

based model (Fig. 2-1E, left), except that its nonlinear stage was not rectifying and 

relatively linear (right), as expected. 

 

Like the comparison between the spike response and LN model prediction, the 

excitatory currents also had more precise features than the LN model prediction. At 

the same time – like the spike responses also – the LC excitatory current was well 

described by the LN model. The precision in excitatory currents relative to the LN 

model suggests the currents have higher frequency content than the stimulus. To test 

this, we measured the coherence between trial-averaged response and responses on 

individual trials (see Methods), which reflects the consistency of the response at 
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different frequency bands across repeats. Indeed, there was appreciable coherence at 

frequencies higher than the stimulus in HC, while the LN model did not have 

frequency content any higher than that of the stimulus (Fig. 2-1F). In contrast, in LC 

the coherence of the excitatory current matched that of the LN model prediction. 

Together, these observations suggest that precision in ON-Alpha ganglion cell spike 

responses is generated (at least in large part) by retinal circuitry upstream of ganglion 

cells. 

 

While the temporal structure of excitatory currents ad spike trains appears similar, 

they had markedly different adaptation to contrast, as gauged by comparing the linear 

receptive fields of the LN model (Fig. 2-1B). While the contrast was decreased by a 

factor of three between HC and LC conditions, the magnitude of the spike response 

did not undergo a similar decrease, reflecting contrast gain (Shapley and Victor, 

1978). This gain is reflected in the magnitude of the linear receptive field (Fig. 2-1B) 

(Chander and Chichilnisky, 2001). In contrast, the decrease in stimulus amplitude was 

directly reflected in a similar decrease in the magnitude of excitatory current (Fig. 2-

1D), reflecting very little gain change in the LN model (Fig. 2-1E). Therefore, much 

of the contrast adaptation observed in the spike outputs was not inherited from 

upstream processing, and is likely due additional processing and intrinsic mechanisms 

at the level of the ganglion cell (Kim and Rieke, 2001). 
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Figure 2-1 Nonlinear processing distributed across two stages of retinal 
processing. 
A Spike response of an ON-Alpha cell to 10 repeated presentations of a temporally 
modulated noise stimulus (top) across two contrast levels (left vs. right). Colors in the 
spike raster label separate spike “events” using established analyses (middle). The 
firing rate predictions of the LN model (blue) are compared with the PSTH of the 
neuron’s response (black) at the bottom. B. The linear filters of the LN model exhibit 
contrast adaptation (left). A shared spiking nonlinearity function is used across 
contrast (right) so that contrast adaptation effect is solely reflected in changes of 
temporal filters. We used a parametric mathematical from of the spiking nonlinearity 
(solid black line, see Methods), which agrees well with the non-parametric estimation 
(dashed line). The shaded areas are distribution of the filtered stimulus at high (red) 
and low (blue) contrasts. C. Temporal properties of real and LN-model simulated 
spike events. Left: SD of first spike in each event. Right: Event time scale as 
estimated by the SD of all spikes in the event. The LN model has much worse 
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precision than observed at high contrast. This difference is diminished at low contrast. 
D. Excitatory synaptic current response from the same cell with the same stimulus 
(black) compared with the LN model predictions (blue). The gray shaded area 
indicates SD of the response across trials, reflecting minimal variability in the 
recording. E. LN model fits to the current data. The temporal filters (left) show less 
contrast adaptation effect than the spike data (Fig. 2-1B). The nonlinearity in the LN 
model is close to a linear function (Fig. 2-1E). F. The coherence between response on 
individual trials and trial-averaged current response (black) or LN model predictions 
(LN). This data measures the consistency of responses across frequencies, and the 
model predicted coherence (blue) reflects how well the model captured each 
frequency components. The LN model fails to capture high frequency component in 
the current response at high contrast (left), but agrees well with the data at low 
contrast (right). 
 

The nonlinear computation underlying synaptic inputs to ganglion cells 

Knowledge of retinal circuitry greatly informs the ability to understand the sources of 

nonlinear computation in ganglion cells (Fig. 2-2A). Ganglion cells receive excitatory 

inputs solely from bipolar cells. Because voltage responses of bipolar cells are well 

described by an LN model (Baccus and Meister, 2002), the nonlinear mechanisms 

observed in the excitatory current to ganglion cells are likely localized at the bipolar-

ganglion cell synapse (Fig. 2-2A). In particular, many studies showed that glutamate 

release from the bipolar cell terminal is subject to presynaptic inhibition provided by 

amacrine cell (Euler et al., 2014; Schubert et al., 2008; Wässle, 2004), representing a 

likely source of nonlinear computation. Note that an alternative mechanism, 

considered later, is synaptic depression at the bipolar cell terminal (Jarsky et al., 

2011; Ozuysal and Baccus, 2012).  

 

We thus constructed a “divisive suppression” (DS) model to capture the computations 

potentially performed by presynaptic inhibition mediated by amacrine cells (Fig. 2-

2A, bottom left). We modeled both the bipolar cell excitation and amacrine cell 
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inhibition each as an LN model, with a multiplicative interaction of the amacrine LN 

output on the bipolar LN output (Fig. 2-2A, bottom right). In this formalization, the 

amacrine model has an output that drops below one when the stimulus matches the 

suppressive filter, causing a proportional decrease in excitatory current. Such a model 

could be tractably fit to current data using recent advances in statistical modeling 

(Ahrens et al., 2008b; McFarland et al., 2013). Note that the DS model reduces to the 

LN model if the suppressive nonlinearity is estimated to be one over the entire range 

of suppressive filter output. 

 

The DS model fits were highly consistent across the population, with an excitatory 

filter and closely matching, but delayed, suppressive filter (Fig. 2-2B). The 

suppressive filters were delayed relative to the excitatory filters for every cell (mean 

delay = 8.9±1.4 ms, p=0.002, Fig. 2-2C). The excitatory nonlinearity was linear over 

the range tested (Fig. 2-2D, left), whereas the suppressive nonlinearity decreased 

below one when the stimulus either matched or was opposite to the suppressive 

kernel  (Fig. 2-2D, right), resulting in both ON and OFF selectivity. 

 

The DS model assumed a particular mathematical form of interaction between 

excitation and suppression (i.e., separable and multiplicative). We also tested more 

general forms of nonlinear interactions by directly estimating the two-dimensional 

function, which maps each combination of the outputs of the excitatory and 

suppressive filters to a predicted current (Fig. 2-2E, left; see Methods). Although this 

2D model contains many more parameters than the DS model, it did not have 
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significantly better model performance (Fig. 2-2F), and the estimated 2D 

nonlinearities were well approximated by the separable mathematical form of the 

divisive suppression model (R-squared for 2D nonlinearity reconstruction = 

0.94±0.02; Fig. 2-2G). We also tested an additive suppression (AS) model, where 

suppression interacts with excitation additively (see Methods), but this had 

significantly worse predictive performance (Wilcoxon signed rank test, p=0.002; Fig. 

2-2F) and less resemblance to the 2D nonlinearities than the DS model (Wilcoxon 

signed rank test, p=0.002; Fig. 2-2G). Therefore, the DS model gives a parsimonious 

description of the nonlinear computation at the bipolar-ganglion cell synapse and 

yields more interpretable model components. 

 

 

Figure 2-2 The divisive suppression (DS) model of synaptic currents. 
A. Diagram of retinal circuitry: light is detected by cone photoreceptors (top), which 
excite bipolar cells (cyan), which in turn excite ganglion cells (yellow). Amacrine 
cells (red) are interneurons that receive excitatory input from bipolar cells and can 
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inhibit presynaptic terminals of ganglion cell. The presynaptic inhibition from 
amacrine cells is modeled as a divisive suppression model (bottom inset), where 
amacrine cell outputs multiplicatively modulates excitatory inputs from the bipolar 
cell. B. The excitatory (green) and suppressive (red) temporal filters of an example 
cell. C. Distribution of latencies for the excitatory and suppressive filter (left). Across 
the population, suppression is consistently delayed relative to excitation (right), with 
a mean delay = 8.9±1.4 ms (Wilcoxon signed rank test, p=0.002). D. Excitatory (left) 
and suppressive nonlinearities (right) for the DS model. The solid line indicates 
model fits for the example cell, and the gray lines are from other cells in the 
population. For each nonlinearity, the distribution of filtered stimuli is also shown as 
the shaded area for HC (red) and LC (blue). Note that suppression occurs for both 
stimuli that match the kernel or are opposite, implying that it is ON-OFF. E. To 
validate the divisive assumption of the DS model, a more general model is fit using a 
2-D nonlinearity, which makes no assumptions about the interaction between the 
filters (see Methods). For the example ON Alpha cell, the filters are identical (left), 
and the measured 2-D nonlinearity (middle) matches that predicted (right) by 
multiplying the two 1-D nonlinearities shown in (B). F. The performance of the 
different models of the ON Alpha cell is tested on the three-second repeats that were 
not used for model fitting. The DS model significantly outperforms the LN model and 
an additive suppression model (AS), and the 2-D model does no better. ** Wilcoxon 
signed rank test, p=0.002. G. Accuracy of 2-D nonlinearity reconstruction with DS 
model and AS model. The multiplicative interaction assumed in the DS model 
performs significantly better than the additive assumption (** Wilcoxon signed rank 
test, p=0.002). 
 

Divisive suppression explains temporal precision and contrast adaptation in the 

synaptic current input 

In addition to the nearly perfect performance in predicting the excitatory synaptic 

current in the HC condition (Fig. 2-2), the DS model also generalized across contrast. 

A single set of parameters was fit to HC and LC conditions, and the resulting model 

performance in both conditions was similarly accurate (Fig. 2-3A). In contrast, the 

LN model with a single set of parameters fit to both contrasts (“LN-HL”) performed 

much worse. Indeed, contrast adaptation is often measured by comparing the LN 

model filter in HC versus LC conditions (e.g., Fig. 2-1E), with the change in their 

temporal filter implying the presence of contrast adaptation (Chander and 
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Chichilnisky, 2001). Likewise, separately fit models (“LN-H” and “LN-L”) 

performed better than LN-HL, but were still outperformed by the DS model in both 

conditions. As this implies, the DS model predicted the fine time scales of the 

excitatory current in HC (Fig. 2-3B, left), and also predicted the lack of fine time 

scales – past what was predicted by the LN model – in LC (right). This demonstrates 

that the DS model implicitly adapts to contrast with no associated changes in 

parameters. 

 

How does divisive suppression explain the fine temporal features of the excitatory 

current in HC, and yet predicts their absence in LC? To understand this, we consider 

a typical cross-validated response and how it is predicted by the DS model in both 

contrasts (Fig. 2-3C, top). The stimulus is first processed by the excitatory and 

(delayed) suppressive filter. The output of the filters represents how closely each 

matches the stimulus as a function of time (second row). Note that because the 

stimulus contrast is three times smaller in the LC condition, the filter output is 

proportionately smaller, but otherwise identical. Because the nonlinearity that is 

processing the excitatory term is roughly linear (Fig. 2-2D, left), the excitatory output 

is proportional to the excitatory filter output (bottom row, green). 

 

Maximal suppression occurs at both positive (orange) and negative (purple) peaks of 

the suppressive filter output, corresponding to ON and OFF suppression, respectively. 

In HC, the presence of these suppressive peaks results in large deviations of the DS 

prediction from the excitatory filter output both before and after peak excitation 



 

 46 
 

(bottom row). However, in LC, the much smaller values of the suppressive filter 

output scale down the amount of suppression (gray), and thus the output of the 

suppressive term (third row) barely deviates from unity. As a result, the DS model in 

LC barely deviates from an LN model that matches the output of the excitatory 

current (bottom row, right). 

 

The close match between observed data and DS predictions across contrasts suggest 

that the DS model should “adapt” to contrast similarly to the recorded currents on a 

cell-by-cell basis, as measured by LN analysis (e.g., Fig. 2-1E). Indeed, the model 

predicted filters are very similar to the observed ones in each case (Fig. 2-3D). In the 

LC condition, the linear filters generally are more biphasic (increase of biphasic 

index=15.2%±16.7%, p=0.034, Wilcoxon signed rank test) and have larger peak-to-

valley amplitude (increase of peak-to-valley amplitude=9.9%±16.7%, p=0.034, 

Wilcoxon signed rank test). These effects are accurately captured by the DS model 

predictions (Fig. 2-3E,F). 
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Figure 2-3 DS model explains temporal precision and contrast adaptation in the 
synaptic currents. 
A. The predictive power of models across contrasts. A single DS model is fit to both 
contrasts, and outperforms both the LN model fit separately to each contrast (LN-H 
and LN-L). The LN model fit to both contrasts (LN-HL) performs even worse, as the 
LN model of course would ideally change with contrast. B. Average coherence 
between model predictions and recorded synaptic currents on individual trials (n=10). 
The DS model prediction (red) is almost identical with using the trial-averaged 
response (Data), suggesting that it captured all the current response across all 
frequency ranges. C. DS model explains precision and contrast adaptation through the 
interplay of excitation and suppression. Top: comparison of predictions of synaptic 
current response of the LN model (blue) and the DS model (red) for the cell shown in 
Fig. 2-1. 2nd row: normalized output of the excitatory (green) and delayed suppressive 
(red) filter. 3rd row: suppressive modulation is obtained by passing the filtered output 
through the suppressive nonlinearity (middle inset). Bottom: excitatory output of the 
DS model before (green) and after (red) the suppressive modulation. D. Comparison 
of the measured (left) and DS model predicted (right) filters across contrasts. E-F. 
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The DS model captured changes of both peak-to-valley amplitude (E) and biphasic 
index (F) of the temporal filters across contrasts. 

 

Divisive suppression arises largely from the surround of the receptive field 

We have suggested the delayed divisive suppression is due to presynaptic inhibition 

mediated by amacrine cells. However, another mechanistic explanation of the divisive 

suppression is synaptic depression (Jarsky et al., 2011; Ozuysal and Baccus, 2012), 

because depletion of a signaling mechanism can lead to a multiplicative decline of 

response amplitude (Zucker and Regehr, 2002). In this sense, the DS term that we fit 

could be capturing either the effects of presynaptic inhibition or synaptic depression, 

as both would lead to a multiplicative suppression on the synapse. Indeed, we 

evaluated this alternative explanation by applying the linear-nonlinear-kinetic model 

(LNK model), which fits ganglion cell intracellular recordings using a LN model with 

additional terms that simulate synaptic depression (Ozuysal and Baccus, 2012). The 

LNK model also outperforms the LN model and was able to capture fine time scale 

features of the observed currents (data not shown), although not good as the DS 

model (Fig. 2-4A).  

 

These two mechanistic explanations might be distinguished by their spatial profiles: 

because synaptic depression acts on the same inputs that drive excitation (i.e., it is a 

reduction in the amount of excitation), suppression should have the same spatial 

footprint as excitation. In contrast, presynaptic inhibition reflects modulation through 

a separate pathway and may have a different spatial profile. We thus presented stimuli 
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with two independently varying spatial components – a center and an annulus – to 

measure the spatial profiles of excitation and suppression (Fig. 2-4B, left). We found 

that the DS term indeed has a very distinct spatial profile than excitation, and it is 

more driven by the surround annulus, while excitation is mostly from the center (Fig. 

2-4B). Moreover, the LNK model failed to capture the nonlinear response in this 

scenario, with no better model performance than the LN model (Fig. 2-4C). These 

experiments thus support presynaptic inhibition as a mechanistic explanation of DS 

for ON-Alpha ganglion cells, although does not preclude the presence or role of 

synaptic depression elsewhere in the retinal circuit. 

 

 

Figure 2-4 Probing mechanism with center-surround stimuli. 
A. Cross-validated performance of the LN, the DS, and the Linear-Nonlinear-Kinetic 
model (LNK) applied during temporal only stimuli (note that DS models match form 
in Fig. 2-2). B. Separate modulation of center and surround (left) allows for the two 
different mechanistic explanations for divisive suppression to be distinguished.  The 
spatiotemporal DS model finds different spatial footprints for excitation (green) and 
suppression (red), with excitation largely driven by the center (solid) and suppression 
by the surround (dashed), which is inconsistent with synaptic depression as an 
explanation for this suppression. C. Consistent with this, the performance of the 
spatiotemporal LNK model does no better than the LN model, and the DS model 
shows large improvement (n = 2).  
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Nonlinear mechanisms underlying spike outputs of ganglion cell 

We next applied the nonlinear computation governing the inputs to the ganglion cell 

to a full model of the observed ganglion cell spike trains. Following previous 

likelihood-based models of ganglion cell spikes (Butts et al., 2011; McFarland et al., 

2013; Paninski, 2004; Pillow et al., 2005) the output of a spike-refractoriness term 

was added to our previous model of the current, and the final result passed through a 

spiking nonlinearity (Fig. 2-5A), to yield the final predicted firing rate. Using this 

likelihood-based framework, all terms of the model – including the excitatory and 

suppressive LN models that comprised the current prediction – could be tractably fit 

using spike data alone.  

 

The first stage of the resulting spike DS model fits closely resembled the DS model of 

the excitatory currents made from the same neurons (e.g., Fig. 2-2B,D). Suppression 

was consistently delayed relative to excitation (Fig. 2-5B), and exhibited both ON and 

OFF selectivity (Fig. 2-5C). The spike history term was mostly suppressive and had 

two distinct components, a strong “absolute refractory period” that last 1-2 ms and a 

second “relative refractory period” lasting more than 15 ms, similar in scale to that 

found by previous studies of neural refractoriness (Berry and Meister, 1998; Keat et 

al., 2001; Paninski, 2004; Pillow et al., 2005). 

 

The resulting DS model successfully captured nearly all the predictable variance in 

the firing rate (Fig. 2-5G, predictive power = 95%), representing the best model of 

ganglion cell spike trains considered at millisecond resolution. In contrast, the 
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standard LN model has a predictive power of 64%, and modestly increases to 69% 

upon inclusion of a spike-history term. This suggests that the exceptional 

performance of the DS model is mostly due to the presence of the divisive 

suppression term.  

 

 

Figure 2-5 Divisive suppression model for spiking response. 
A. Model schematics for divisive suppression model of spike trains. In addition to the 
DS model for the current data (i), the spike DS model further included spike history 
term and a rectifying spiking nonlinearity. (B-E) The model components for the same 
example neuron considered in Fig. 2-1-3. B. The excitatory and suppressive filters. C. 
The excitatory and suppressive nonlinearities. The filters and nonlinearities are 
similar to the DS model fit from current data (Fig. 2-2B). D. The spike history term, 
demonstrating an absolute and relative refractory period. E. The spiking 
nonlinearities, with shaded area indicating the distribution of generating signals. F. 
Left: predictive power of different models applied to the spike data. The DS model 
has much better performance than other models tested, including the LN model, the 
LN model with spike history term (LN+RP), and the excitation only model (Exc-
only). Right: cross-validated likelihood (LLx) of different models reflects model 
performance on a trial-by-trial basis. There is a big improvement in cross-validated 
likelihood (LLx) with the inclusion of the spike history term, which is not reflected by 
the predictive power metric. 
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Precision of spike trains arises from complementary mechanisms of divisive 

suppression and spike refractoriness 

Precision of spike trains depends on the interplay of multiple nonlinear mechanisms, 

including spike refractoriness and divisive suppression. To evaluate the contribution 

of the different model terms in capturing the detailed structure in the ganglion cell 

spike trains, we simulated spike trains using different combinations of the model 

components, and performed event analysis on both real and simulated spikes (Fig. 2-

6A). We first tested what the effect of the spike history term was, by comparing 

models fit to the data with and without it. The Fano factor for each event, which is a 

measure of response variability, is much higher for models without a spike history 

term (Fig. 2-6B), and the inclusion of the spike history term also shapes the interspike 

interval (ISI) distribution to closely resemble the measured distribution (Fig. 2-6C).  

 

We next compared models with and without the divisive suppression term to evaluate 

its effect. The spike history term alone (LN+RP) is clearly not sufficient to explain 

precision in the spike train. The LN model predicts firing rate varies at a slower time 

scale than observed even with the inclusion of the history term (Fig. 2-6A, red and 

green)(Butts et al., 2011). As a result, the LN model predicted duration of each 

response event is much longer than observed (Fig. 2-6B), and the precision of the first 

spike in each event is significantly worse than the real data (Fig. 2-6C). In contrast, 

the full DS model predicts sharp change in firing rate that matches the observed 

response through the interplay between excitation and suppression in the DS model, 
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which creates brief time windows for the neuron to respond (Fig. 2-6A). As a result, 

the DS model generated spikes resembles the real spikes more closely (Fig. 2-6A-C).  

 

 

Figure 2-6 Spike patterning is shaped by a combination of nonlinear 
mechanisms. 
A. Top: Spike rasters recorded over ten repeats for an example cell (“Data”) 
compared with simulated spikes from three models: LN, LN model with spike history 
(refractory period) term (LN+RP), and the DS model with spike history (“Full”). 
Colors in the raster label separate spike “events” consistent across multiple trials in 
the data (see Methods). Bottom: The PSTH for each model, demonstrating that 
suppressive terms are important in shaping the overall envelope of the firing rate 
(models with suppression: gray shaded area). (B-E). Using event labels, spike 
statistics across repeats for the data and each model were compiled to gauge the 
impact of different model components. B. The Fano factor for each event is a measure 
of reliability, which is increased (Fano factor decreased) for models with a spike 
history. C. The spike history term has the clearest effect on spike patterns, as gauged 
by the interspike interval distribution: models with a spike history term (blue, red) 
most closely resemble the measured distribution (black). D: The event scale is the 
standard deviation of spikes in each event, with the median and 25-75% range across 
events shown by the boxes. E. First spike STD measures the precision of each event. 
The suppressive terms have the largest effect on the time scale of the event, whereas 
the refractory period has little effect. 
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Contrast adaptation is enhanced via spike refractoriness in ganglion cell output 

In addition to accurate reproduction of precise spike outputs of ganglion cells, the 

spike DS model also captured the effects of contrast adaptation observed in the 

ganglion cell spike trains. In both contrast conditions, the simulated spike trains from 

the DS model are almost indistinguishable from the real data (Fig. 2-7A), which the 

DS model accomplishes with a single set of parameters fit to both contrasts. Like with 

the fits of excitatory current (Fig. 2-3), it outperforms LN models that are separated 

fit for each contrast level (Fig. 2-7B). The change of temporal precision across 

contrast is largely inherited from the synaptic current inputs and thus arises from the 

DS term of the model (Fig. 2-3C). Similar to the currents, the resulting spikes in the 

LC condition do not drive the suppression mechanism strongly and the DS model 

predicts the same time scales as the LN model (Fig. 2-7C). 

 

However, contrast adaptation of spikes is different in that there is a much larger effect 

of contrast gain (Shapley and Victor, 1978), meaning the firing rate is proportionally 

higher in LC than expected from the reduction in stimulus contrast.  The full spike DS 

model predicts the filter change across contrasts observed in the real data (Fig. 2-7D). 

We found that the contrast gain control effect is a result of the spike history term. as 

the gain control effect is largely diminished if we eliminated the spike history term 

from the DS model (Fig. 2-7D, right). This is because at HC, individual response 

event has shorter time scale and the impact of spike history term has much stronger 

effect on subsequent spikes within the event (Fig. 2-7E). Indeed, although the average 

number of spikes is comparable across the contrasts, the effect of spike history term 
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in LC is significantly smaller when the cell received excitatory current because spikes 

are dispersed over longer period (Fig. 2-7F). 

 

 

Figure 2-7 Contrast adaptation in the spike depends on both divisive suppression 
and spike refractoriness. 
A. The full DS model accurately captured ganglion cell outputs across contrasts. Top: 
observed (“Data”) and simulated (“DS model”) spikes across at both high and low 
contrasts. Bottom: the model predicted firing rate (dashed line) agrees well with the 
PSTH of the neuron’s response (solid line). B. The predictive power of models across 
contrasts. A single DS model is fit to both contrasts, and outperforms both the LN and 
LN+RP models that are fit separately to each contrast. C. The DS model captured 
temporal precision of the spike outputs, as measured by event time scale (left) and 
first spike STD (right), across both contrasts. D. The full DS model predicted change 
of temporal filter shape and magnitude across contrasts as observed in the data (left 
and middle). This prediction relies on spike refractoriness. There is little predicted 
change in temporal filter across contrasts if the spike history is removed from the DS 
model (right). E. Output of the spike history term during the same time window as in 
(A). Spike history term has stronger suppressive effects during firing events (dashed 
line). F. The suppressive effect from the spike history term is much stronger at high 
contrast condition (red) when the ganglion cell responds to the stimuli. 
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Discussion 

In this study we derived a retina-circuit-inspired model for ganglion cells 

computation using recordings of both the synaptic inputs and spike outputs of the 

ON-Alpha ganglion cell, coupled with nonlinear statistical modeling whose structure 

was inspired by details of the retinal circuitry. The physiological data were used to fit 

model parameters and evaluate different hypotheses of how the retinal circuit 

processed visual stimuli. The result model explains both high temporal precision and 

contrast adaptation properties of their responses with unprecedented accuracy. We 

provide evidence that precise timing is already present in the excitatory synaptic 

current inputs, and can be explained by divisive suppression, which is likely due to 

presynaptic inhibition from amacrine cells. The interplay between nonlinear 

mechanisms, including divisive suppression, spike refractoriness and spiking 

nonlinearity, accurately captured detailed structures in both the synaptic current and 

spike response across contrast levels, and thus explained a variety of nonlinear 

properties of retinal processing. 

  

Generation of temporal precision in the retina 

One important nonlinear response property of early sensory neurons is high temporal 

precision. Temporal precision of spike responses has been observed in the retinal 

pathway with both noise stimuli (Berry et al., 1997; Reinagel and Reid, 2000) and 

natural movies (Butts et al., 2007). Presence of precise spike timing has been 

suggested to be evidence for temporal coding in the nervous system (Berry et al., 

1997), or simply reflects that analog processing in the retina must be “oversampled” 
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in order to preserve information about the stimulus (Butts et al., 2007). Temporal 

precision also has been shown to play an important role in downstream processing of 

information provided by ganglion cells (Stanley et al., 2012; Usrey et al., 2000).  

 

The generation of temporal precision involves nonlinear mechanisms within the 

retina; which may include both spike-refractoriness within ganglion cells (Berry and 

Meister, 1998; Keat et al., 2001; Pillow et al., 2005) and the interplay of excitation 

and inhibition (Baccus, 2007; Butts et al., 2011). Such distinct mechanisms 

contributing to ganglion cell computation are difficult to distinguish using recordings 

of the spike outputs alone, which naturally reflect the total effects of these various 

factors. By recording at two stages of the ganglion cell processing, we were thus able 

to demonstrate that high temporal precision already present in the synaptic current 

inputs in the HC condition, and temporal precision of both current inputs and spike 

outputs can be accurately explained by the divisive suppression model. 

 

For models of both current inputs and spike outputs, divisive suppression is 

consistently delayed relative to excitation and exhibits selectivity to both ON and 

OFF stimuli. The same suppression mechanism is also likely underlying high 

temporal precision of LGN responses, which can be captured by a model with 

delayed suppression (Butts et al., 2011). Indeed, there is evidence that precision of 

LGN responses is inherited from the retina and enhanced across the retinogeniculate 

synapse (Carandini et al., 2007; Casti et al., 2008; Rathbun et al., 2010; Wang et al., 

2010). Therefore, our results demonstrate that the temporal precision in the early 
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visual system likely originates from nonlinear processing in the inputs to retinal 

ganglion cells. 

 

Our results shows that the contribution of spike history term to precision – as 

measured by the time scale of events and first-spike jitter – seems minor, consistent 

with an earlier study in the LGN (Butts et al., 2011). Nevertheless, spike history term 

does play an important role in spike patterning within the event (Pillow et al., 2005) 

and the resulting neuronal reliability (Berry and Meister, 1998). In fact, we could not 

fit the divisive suppression term robustly without the spike history term in place, 

suggesting that both nonlinear mechanisms are important to explain ganglion cell 

responses.  

 

Contrast adaptation relies on both divisive suppression and spike refractoriness 

The visual system continuously adjusts its sensitivity to efficiently encode the visual 

stimuli. It has long been known that retinal ganglion cell adapts its response to 

contrast, the range of intensity fluctuations around the mean. Ganglion cells respond 

with proportionately lower firing rates in a high contrast environment than in low 

contrast environment (Sakai et al., 1995; Shapley and Victor, 1978). Many 

experimental studies have shown that contrast adaptation in ganglion cells arises 

through multiple cellular mechanisms (Demb, 2008), including presynaptic inhibition 

of the bipolar cell terminal by amacrine cell (Zaghloul et al., 2007), synaptic 

depression in bipolar cell output (Jarsky et al., 2011; Manookin and Demb, 2006), 

and intrinsic cellular properties of ganglion cells (Kim and Rieke, 2003). Previous 
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models of contrast adaptation suggests different underlying explanations, such as 

feedback gain control (Shapley and Victor, 1978), spike refractoriness (Gaudry and 

Reinagel, 2007a, b), presynaptic inhibition (Zhang et al., 2015) and synaptic 

depression (Ozuysal and Baccus, 2012).  

 

Here we modeled contrast adaptation at the level of synaptic currents and spikes from 

the same ganglion cell. We found there is contrast adaptation in the synaptic current 

inputs of ganglion cells, consistent with previous studies (Zaghloul, Boahen et al. 

2005, Beaudoin, Borghuis et al. 2007), which could be explained by divisive 

suppression, which takes a mathematical form similar to previously proposed gain 

control models (Shapley and Victor 1979, Heeger 1992). Because the suppressive 

nonlinearity has very different shape than the excitatory nonlinearity, divisive 

suppression has much stronger effect in HC and result in a decrease of filter 

magnitude and a change in filter shape. Moreover, the same divisive suppression 

mechanism may also explain nonlinear spatial summation properties of ganglion cells 

(Shapley and Victor 1979) because suppression generally has broader spatial profiles 

than excitation. 

We found that divisive suppression alone is not sufficient to explain contrast 

adaptation in the spike outputs. Instead, the effect of contrast adaptation is amplified 

in the spike outputs mostly due to spike refractoriness and changes of neural precision 

across contrast. At high contrast, neural response has higher precision and occurs 

within shorter event windows (Butts et al., 2010). As a result, the accumulated effect 

of spike refractoriness is stronger within each response events. Note that the effect of 
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the spike history term is highly dependent on the ability of the model to predict high 

temporal precision in the HC condition, which is largely originated from the divisive 

suppression term as discussed earlier. Therefore, the two nonlinear properties of 

retinal processing, contrast adaptation and temporal precision, are tightly related 

mechanistically and can be simultaneously explained by the DS model. 

 

Circuits and mechanisms underlying the divisive suppression  

Divisive suppression has been observed in many places in both peripheral and central 

nervous system, such as the invertebrate olfactory system (Olsen and Wilson, 2008), 

the lateral geniculate nucleus (Bonin et al., 2005), the primary visual cortex (Heeger, 

1992), and higher visual areas like  area MT (Carandini and Heeger, 2012; Simoncelli 

and Heeger, 1998). A number of biophysical and cellular mechanisms that could give 

rise to divisive suppression have been proposed in the literature, including shunting 

inhibition (Carandini et al., 1997; Hao et al., 2009), synaptic depression (Abbott et al., 

1997), presynaptic inhibition (Olsen and Wilson, 2008) and fluctuation in membrane 

potential due to ongoing activity (Finn et al., 2007).  

 

We evaluated different mechanistic explanations of the divisive suppression 

identified in this study. Divisive suppression underlying synaptic inputs to ganglion 

cells cannot be attributable to fluctuations in membrane potential or shunting 

inhibition since we recorded synaptic current responses under voltage-clamp 

conditions that minimize inhibitory inputs. Although synaptic depression could also 

explain fast transient responses and contrast adaptation (Ozuysal and Baccus, 2012), 
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it would predict excitation and suppression has the same spatial profile, which is not 

the case as we found suppression largely arise form the surround while excitation is 

mostly from the center of the receptive field. Therefore, the divisive suppression in 

our model is most likely due to presynaptic inhibition from amacrine cells, which is 

consistent with the retinal circuitry (Euler et al., 2014; Schubert et al., 2008; Wässle, 

2004). Indeed, the response properties of the divisive suppression, including delayed 

response, larger spatial summation area and selectivity to ON-OFF stimuli matches 

properties of some classes of amacrine cells in the retina (Kaneko, 1973; Lin and 

Masland, 2006; Miller et al., 2006) and would be directly verifiable through 

pharmacological blockage of inhibitory synapses from amacrine cells (Beaudoin et 

al., 2007). 

 

Notably, we specifically focused on one ganglion cell type, ON-Alpha cells, and 

these results might be specific to this cell type. Indeed, different manifestations of 

contrast adaptation (Kastner and Baccus, 2013) as well as underlying mechanisms, 

likely exist in different cell types. Our models were very consistent for ON-Alpha 

cells, but will show different nonlinear structure for other cell types (data not shown).  
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Chapter 3 : Diverse suppressive influences in area MT and 
selectivity to complex motion features 

 

3.1 Introduction 

Our ability to perceive natural scenes relies on efficient extraction of higher-order 

structure, which permits the decomposition of the visual scene into objects and 

surfaces. The extrastriate cortex of primates is devoted to such higher-order 

processing of visual signals (Maunsell and Newsome, 1987; Orban, 2008). 

Consequently, characterizing the relationship between extrastriate cortical activity 

and complex visual scenes can reveal a great deal about the neuronal computations 

underlying sensory processing. However, such stimuli often have very high 

dimensionality and necessarily involve complicated spatiotemporal correlations, 

making it difficult to isolate those potentially complex aspects of the stimulus that are 

driving neuronal responses. 

 

One of the most thoroughly studied regions of the extrastriate cortex is the middle 

temporal (MT) area. MT is somewhat unusual among extrastriate regions in that the 

vast majority of its neurons are highly selective within a low-dimensional stimulus 

feature space. Specifically, MT neurons are selective for motion, which in natural 

vision occurs in the context of optic flow, comprising the spatiotemporal stimuli 

observed during translations and rotations of objects in the environment relative to the 

observer. However, most previous explanations of MT stimulus selectivity have 

focused on a subset of optic flow patterns that corresponds to the two-dimensional 
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velocities of objects translating within a single depth plane (Lisberger and Movshon, 

1999; Nishimoto and Gallant, 2011; Perrone and Thiele, 2001; Simoncelli and Heeger, 

1998). While this is a very important aspect of MT responses, such studies implicitly 

neglect the effect of different velocities at different positions within the visual field, 

which is an important component of optic flow. 

 

There has been much evidence that MT is also selective for complex motion patterns, 

given the observation of the powerful suppressive surrounds (Allman et al., 1985; 

Born, 2000; Rust et al., 2006; Tsui and Pack, 2011; Xiao et al., 1997). Previous 

studies have isolated various aspects of suppression, including its contrast sensitivity 

(Pack et al., 2005; Hunter and Born, 2011), direction tuning (Allman et al., 1985), and 

spatial structure (Xiao et al., 1995, 1997), but these experiments have focused on a 

subset of properties of suppression, often using highly tailored stimuli. Thus, it has 

been left unclear how the multiple forms of suppression combine with excitation in 

more natural contexts – where stimuli driving each element are related due to the 

statistics of optic flow – in order to potentially result in higher-order selectivity.  

 

Here, we use a continuously varying optic flow stimulus to measure the combination 

of excitation and multiple forms of suppressive tuning, using a nonlinear modeling 

approach that can be fit to the recorded neuronal spike trains. Our analysis reveal the 

full spatial and temporal structure of excitatory and suppressive influences for MT 

neurons, and demonstrates the diversity of computation in MT from this perspective. 

Using simulations, we show that these nonlinear properties of MT receptive fields are 
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functionally useful for extracting information about the three-dimensional velocities 

of moving objects, and hence directly facilitate further motion processing in higher 

cortical areas (Mineault et al., 2012; Zemel and Sejnowski, 1998). 

 

3.2 Methods 

3.2.1 Electrophysiology Recordings and Behavioral Task 

Data were recorded from two adult rhesus macaque monkey (one female, one male, 

referred to as M1 and M2 hereafter), prepared using standard surgical techniques that 

have been described previously (Mineault et al., 2012). Animals were trained to fixate 

within 2° of a small fixation point on a computer monitor in return for a liquid 

reward. Eye movements were monitored at 500 Hz by an infrared eye tracker 

(EyeLink II; SR Research). Extracellular recordings were performed on 102 well-

isolated single units in area MT, which was located using exterior cranial landmarks, 

anatomical images from magnetic resonance imaging (MRI), and/or physiological 

properties. Data were recorded using either single electrodes (n=63, M1; n=18, M2) 

or a multi-site linear electrode array (n=21, M1). Signals were amplified, bandpass 

filtered, sorted on-line and resorted off-line, using spike-sorting software (Plexon) to 

identify single units. All aspects of the experiments were approved by the Animal 

Care Committee of the Montreal Neurological Institute and were conducted in 

compliance with regulations established by the Canadian Council on Animal Care. 
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3.2.2 Visual Stimuli 

Upon isolation of a single MT unit, we measured the neuron’s direction tuning, speed 

tuning, and size tuning using random-dot motion stimuli. We then presented a 

continuously varying optic flow stimulus composed of moving dots whose velocity 

varied over space as well as time (Mineault et al., 2012). The velocity field was 

generated as a random combination of six optic flow components: horizontal/vertical 

translation, expansion, rotation and horizontal/vertical shears. The magnitude of each 

optic flow components varied independently based on low-pass filtered Gaussian 

noise with a cutoff of 2 Hz or 5 Hz. For the majority of cells (n=84), the stimulus was 

displayed in a slowly moving aperture with a diameter ranging from 8° to 20° 

(depending on size of the receptive field), the position of which was determined by 

another pair of low-pass filtered Gaussian noise with a cutoff of 0.05-0.10 Hz, with 

its mean at the center of the receptive field, and its standard deviation ranging 

between 3-10°, depending on the size of the receptive field. The other neurons (n =18, 

recorded from monkey M2) used the same optic flow stimulus, although it remained 

centered on the neurons’ receptive field (location estimated from hand-mapping), and 

there was no moving aperture; instead, stimuli were displayed either on the full screen 

or in a very large static aperture with 30° diameter. The stimuli were presented on a 

LCD monitor (Dell 2707WFP) with a display resolution of 1,600×1,000 pixels 

(49°×36° of visual field at a distance of 50 cm) and a refresh frame rate of 60 Hz 

(n=73, M1) or 75 Hz (n=11, M1; n=18, M2). There were no notable differences for 

cells recorded with different refresh rate. In all cases, the dots were 0.1° in diameter 
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against a black background. The luminance of white dots was 194 cd/m2 and the 

luminance of black background was 0.2 cd/m2. 

 

During the experiment, the stimulus was displayed in 6 min or 8 min blocks until the 

animal stopped behaving or the unit was lost. The stimulus presented in each block 

was different, and the data were thus combined to form a longer continuous stimulus 

with a median length of about 18 min per unit. The stimuli would revisit a given 

spatial position an average of 36 times. For a subset of recordings (n=20), we showed 

a repeated short segment of the stimulus (5 sec) that had its aperture centered on the 

cell’s receptive field, in order to measure the response reliability and to calculate the 

explained variance (R-squared) of the model. 

 

3.2.3 Data Analysis 

The measured spike trains were binned at 25 ms temporal resolution to obtain the 

observed response rate robs(t). We excluded data from 100 ms before fixation breaks 

(when the animal’s gaze location deviated by more than 1.5° from the fixation point) 

to 500 ms after the recovery of fixation. To avoid any saccade-related effects or 

transients, only periods with fixations that were longer than 1 sec were used. The total 

recording of each neuron was broken into 10 sec segments, which were randomly 

divided into two groups: 80% of these segments were used to estimate model 

parameters (“training set”), and model performance was evaluated on the remaining 

20% of the data (“cross-validation set”). The use of cross-validation ensures that the 

improved model performance is truly due to an increased ability to capture the 
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relationship between the stimulus and response, rather than a tendency to characterize 

random fluctuations (noise). 

 

Of the 102 units recorded, we excluded 8 units for the following reasons. From 

monkey M1, two units were excluded because they did not have a consistent 

stimulus-dependent response, which meant that a stimulus-independent “null model” 

(that only predicted the average firing rate) outperformed all stimulus-dependent 

models tested. We also excluded six units recorded from monkey M2, where the 

measured receptive field did not align with the hand-mapped receptive field center 

(less than 30% of the excitatory weights were within 7.5° of the receptive field 

center). Although we did obtain significant model fits for these neurons, the spatial 

elements of the model were hard to interpret because the stimuli were not centered on 

the receptive field. The remaining 94 units were included for this study. 

 

Finally, because units recorded from the same electrode often had very similar 

relationships between excitation and suppression, we only included a single neuron 

from each multi-site electrode experiment (n=5/21) in the figures relating to the 

overall distribution of MT neuron properties (Figs. 5F,G), in order to avoid sampling 

bias. 

 

We also carefully controlled for the effects of fixational eye movements on the 53 

recordings for which there were eye signals of sufficient quality, including both 

fixational drift and microsaccades (Martinez-Conde et al., 2013). The speed of 
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fixational drift was small during fixation (median = 1.515±0.090 °/sec) compared to 

the typical speed of the stimulus (~20 °/sec), which had an undetectably small effect 

on the neuronal response (data not shown). Microsaccades were detected using the 

algorithm proposed by (Engbert and Mergenthaler, 2006) and were observed to occur 

with a frequency of 1.77±0.10 Hz during the experiment. The impact of 

microsaccades on the neural response was direction dependent as previously reported 

(Bair and O’Keefe, 1998). However, we found this effect was largely unrelated to the 

stimulus-dependent terms of the model and had no impact on the results presented. As 

a result, we did not include these further analyses here. 

 

3.2.4 Modeling of MT neurons 

To understand how MT units respond to the complex motion stimuli, we developed a 

hierarchical modeling framework. We assumed that MT neuron responses are 

generated by an inhomogeneous Poisson process with an instantaneous rate r(t). The 

log-likelihood of the model is then given by (up to an additive constant): 

 

𝐿𝐿 𝑟!"# 𝑡 , 𝑟 𝑡 = [𝑟!"# 𝑡   log
!

𝑟 𝑡 − 𝑟(𝑡)], (3.1) 
  

 

where robs(t) is the measured neuronal response, and r(t) is the model predicted firing 

rate  (Paninski, 2004). 
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All models we consider use a fixed spiking nonlinearity F[·] that acts on the stimulus-

dependent terms of the model, which we refer to as the generating signal g(t), 

 

r(t) = F[g(t) −b], (3.2) 
  

 

where b is the spiking threshold, and we choose the spiking nonlinearity function F[·] 

to be of the form log[1+exp(·)]. This functional form resembles a familiar rectified-

linear function, and additionally facilitates well behaved model optimization 

(McFarland et al., 2013; Paninski, 2004). To validate the use of this parametric form 

of F[·], we also measure the spiking nonlinearity using non-parametric histogram 

method (Chichilnisky 2001, Paninski 2004). In all cases, we find the chosen form of 

nonlinear function gives good description of the measured spiking nonlinearity. Other 

nonlinear functions, such as the power law transformation (Ghose and Bearl 2010, 

Nykamp and Ringach 2002) can fit the measured spiking nonlinearity equally well 

(data not shown), but have additional parameters, and are not as well behaved for 

parameter optimization (Paninski, 2004). 

 

The model acts on the continuously varying optic flow stimulus, which is described 

by a local motion speed 𝜌(t, x, y) and direction 𝜃(t, x, y), sampled at a spatial 

resolution of 2°. This local motion signal is first processed by a set of subunits, which 

are described by a speed tuning function fv[·] and a direction tuning function 𝑓![·]. 

The subunit output is thus given by, 
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subunit(t, x, y) = fv[𝜌(t, x, y)]𝑓![𝜃(t, x, y)]. (3.3) 
 

 

In order to test the idea that V1 neurons are detectors of one-dimensional velocity, we 

also implemented an alternative formulation for the subunit, in which velocity was 

first projected onto the preferred direction of the subunit before being processed by 

the subunit nonlinearity, 

 

subunit(t, x, y) = f[𝜌(t, x, y)cos(𝜃(t, x, y)−  𝜃pref)]. (3.4) 
  

 

This formulation is consistent with the assumptions of various models of MT (e.g., 

Simoncelli and Heeger, 1998). However, because direction tuning and speed tuning 

are entangled in this formulation, the resulting models were more difficult to fit and 

interpret. Thus, because we did not find any significant difference in model prediction 

for these two formulations, we used the first subunit model (Eq. 3) for the majority of 

this work. 

 

The generating signal of the model is computed by integrating the subunit outputs 

over space and time. In the motion-opponency model (MO model), this is given as, 

 

𝑔!" 𝑡 = 𝑘!
!

𝜏 [ 𝑤 x, y subunit(𝑡, 𝑥,𝑦)]
!,!

 (3.5) 
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where 𝑘! is the temporal kernel and w is the spatial weighting function. With a fixed 

speed tuning function, the temporal kernel and the spatial kernel can be efficiently 

estimated with the GLM framework (Paninski, 2004). The nonlinear speed tuning 

function can also be efficiently optimized by expressing it as a linear combination of 

basis functions 𝑓! 𝑥 =    𝛼!𝜉!(𝑥)! , which were chosen to be overlapping tent-basis 

functions (Ahrens et al., 2008b). We chose the center of the tent-basis to be equally 

spaced on a logarithmic scale.  

 

The nonlinear direction-tuning functions can be similarly optimized by expressing 

them using the tent basis functions. However, in practice we found it was more 

reliable to assume a parametric form for the direction tuning functions. To mimic the 

local motion opponency mechanism (Qian and Andersen, 1994), we used the von 

Mises function as the direction tuning function, 

 

𝑓! 𝜙 = exp[𝑏 cos 𝜙 − 𝜙! ], (3.6) 

 

where 𝜙! denotes the preferred direction and b controls the direction tuning width. 

The cosine function implements local opponency, because a non-preferred stimuli 

will lead to suppressed output. These functions are always rectified (positive) because 

of the use of the exponential function. Speed tuning, direction tuning, spatial weights 

and temporal kernels can be alternatively optimized with appropriate choice of initial 

guesses. 
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For the excitation-suppression model (ES model), the stimulus processing is 

performed separately by excitatory and suppressive components, each using their own 

direction tuning functions and rectified spatial weighting functions. Here, the 

superscripts ‘E’ and ‘S’ denote the excitatory and the direction selective suppressive 

(DS-Sup) components, respectively. The generating signal is then given as: 

 

𝑔!" 𝑡 = 𝑔! 𝑡 + 𝑔! 𝑡

= 𝑘!
!

!

𝜏 𝑤!(𝑥,𝑦)𝑓!
! ρ t− 𝜏, x, y 𝑓!

![θ t− 𝜏, x, y ]
!,!

+ 𝑘!
!

!

𝜏 𝑤!(𝑥,𝑦)𝑓!
! ρ t− 𝜏, x, y 𝑓!

![θ t− 𝜏, x, y ]
!,!

, 

 

 

 
 

(3.7) 
 

 

where 𝑘!
!  and 𝑘!

!  are the temporal kernels, 𝑤!  and 𝑤!  the spatial weighting 

functions, 𝑓!
![·] and 𝑓!

![·] the speed tuning functions, 𝑓!
![·] and 𝑓!

![·] the direction 

tuning functions. For some models, an additional non-direction selective suppression 

(NS-Sup) is included, which takes the form of: 

 

𝑔!" 𝑡 = 𝑘!
!"

!

𝜏 𝑤!"(𝑥,𝑦)𝑓!
!" ρ t− 𝜏, x, y

!,!

. (3.8) 

 

Because this component lacks a direction tuning function, its output is independent of 

stimulus direction. 
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This model is thus structured as a multilinear model of functions of the stimulus 

(Ahrens et al., 2008b), and each set of parameters can be efficiently optimized while 

holding the others constant. Because the overall multilinear optimization procedure 

can get stuck in local optima, it was important to choose an appropriate initialization 

of these parameters for the optimization procedure. The excitatory component was 

first optimized as the only model component, and then different types of suppressive 

components were added to the model to improve its performance. For the excitatory 

component, the temporal kernel was initialized to unity over the range of 50 ms to 

150 ms, and was zero for all other time lags; based on the typical response latency of 

MT cells. The direction tuning parameter b (Eq. 6) was initialized to be 1, 

corresponding to a standard deviation of 42.6° for the direction tuning function 

(similar to measured tuning width using random dot patterns, Snowden et al., 1992: 

46.5°), and the speed tuning function was initialized to be linear over a logarithmic 

scale. The direction preference was initialized to be one of 8 possible directions, 

equally spaced from 0° to 360°. Spatial weighting functions were optimized for each 

direction, and the best one was selected for further refinement. We then alternatively 

optimized the direction tuning parameters, the temporal kernel, the speed tuning 

functions, and the spatial weights. 

 

Similar procedures were carried out when a DS-Sup component was added to the 

model: the suppressive direction that could most improve the model was selected, and 

then other model components were refined alternatively. For models with NS-Sup 

components, NS-Sup was simultaneously optimized with the other model 
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components. To determine which components to include in the model of a given 

neuron, four separate models were fit and compared for each cell: models with (1) 

only excitation; (2) excitatory and DS-Sup; (3) excitation and NS-Sup and (4) 

excitatory and both type of suppression. We selected the model with the best cross-

validated performance.  

 

Each component of the model has 225 parameters (15×15) for the spatial weighting 

function, 40 parameters for the temporal kernel, 10 parameters for the speed tuning 

function, and 2 parameters for the direction tuning function (preferred direction and 

tuning width). There is an additional parameter for the spiking nonlinearity for each 

model. The MO model thus contains 307 parameters, an NS-Sup component adds an 

additional 306 parameters, and an NS-Sup component adds an additional 304 

parameters. A model with both DS-Sup and NS-Sup thus has 917 parameters. Note 

that such models are well constrained by the median stimulus duration of 18 mins, 

which corresponds to 43,200 different stimuli at a sampling rate of 25 ms. Note that 

the evaluation of model performance using a cross validation dataset avoids bias 

towards models with more parameters. 

 

Due to the complexity of the model, regularization techniques were used to prevent 

over-fitting. A penalty term was added to the log-likelihood proportional to the 

second derivative or the Laplacian of the temporal kernel and the speed tuning 

function, e.g., -  𝜆 Σt𝜕!𝑘!/𝜕𝜏!. For the two-dimensional spatial weighting function, 

we used both “smoothness” and “sparseness” penalty. The smoothness penalty was 
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proportional to the sum of the squared slope relative to four nearest neighbors (up, 

down, left right), and the sparseness penalty was proportional to the sum of absolute 

value of the weighting function. The use of regularization techniques imposes certain 

prior distributions on model parameters and reduces the “effective” number of free 

parameters. For example, although we used 225 parameters to describe each spatial 

weighting function to make it flexible enough, the usage of smoothness and 

sparseness regularization ensure that only a small fraction of the parameters will be 

non-zero, and these non-zero weights usually vary smoothly across space. 

 

Because the temporal kernels and the speed tuning functions usually had a 

stereotyped shape, we used the same regularization parameters for these functions 

across all cells. In contrast, the smoothness regularization parameters were adjusted 

for each cell and each model component individually using a nested cross-validation 

scheme. Specifically, 20% of the fitting data were randomly selected and reserved 

during the optimization of the spatial weights (note that this was different from the 

cross-validation data, which was never used during model estimation). The 

regularization parameters that gave best performance on the reserved data were used 

for the final fits to the data. 

 

3.2.5 Measurement of the properties of suppressive components 

Properties of the DS-Sup components were analyzed when detectable (n=62/94). The 

spatial profiles, direction tuning strengths and temporal dynamics of DS-Sup and NS-

Sup components were also compared when both were detectable (n=33/94).  
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Following the fitting procedure described above, we investigated our assumptions 

about the direction tuning of each component by refitting the direction tuning curves 

using tent-basis functions (Ahrens et al., 2008b; Butts et al., 2011), which yields a 

non-parametric estimate of each direction tuning function. The direction tuning 

strength was then measured using circular variance (Ringach et al., 2002b), defined as 

Var=1-|R|, where R is given by 

  

𝑅 =
𝑓! 𝜌! 𝑒!!!!

𝑓!(𝜌!)!
, 

(3.9) 

 

where 𝜌! are the centers of the tent basis, and angles are expressed in radians. The 

value of circular variances ranges from 0 to 1, with lower values indicating tighter 

clustering around a single mean. A circular variance close to 1 indicates no direction 

tuning. 

 

Three indexes were calculated to describe spatial profiles of suppression. First, we 

calculated the center of mass of the excitatory weights and the suppressive weights. 

The weighted distance between suppression and excitation was then calculated as: 

 

𝐷!" = 𝑤!(𝑥,𝑦)
!,!

𝑥 − 𝑥!! ! + 𝑦 − 𝑦!! !, (3.10) 
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where (𝑥!!, 𝑦!!) is the center of excitation. This distance reflects how far suppression 

is from the receptive field center. A second index was calculated to reflect the 

dispersion of suppression: 

 

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑤!(𝑥,𝑦)
!,!

𝑥 − 𝑥!! ! + 𝑦 − 𝑦!! ! (3.11) 

 

where (𝑥!!, 𝑦!!) is the center of suppression. Both indexes were separately calculated 

for DS-Sup and NS-Sup components. Finally, an overlap index was calculated as 

 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = −
𝑤! 𝑥,𝑦 𝑤! 𝑥,𝑦!,!

𝑤! 𝑤!
, 

(3.12) 

 

where the minus sign is introduced because the suppressive weights 𝑤! 𝑥,𝑦  are 

negative. 

 

The temporal kernel was specified at 25 ms resolution. To more accurately measure 

the latency of a given model component, we used cubic spline interpolation with five 

points around the peak of the temporal kernel, and used the peak of the cubic spline 

function as the component’s latency. 
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3.2.6 Measurement of the selectivity of MT neurons for non-translational optic 

flow. 

To gauge the selectivity of MT neurons to non-translational optic flow, we calculated 

the correlation coefficient ρ between each optic flow component and the neural 

response. For a given optic flow component, we computed the difference between the 

measured correlation coefficient and that predicted by the model, which reveals how 

well the models predicted the actual optic flow selectivity of the neuron.  

 

We also compared the responses of the MO and ES models directly to optic flow 

stimuli, where each model was presented with a randomly selected combination of 

optic flow components centered on its receptive field, and the fraction of non-

translational stimuli was systematically varied from 0 to 1, with 200 random stimulus 

samples drawn at each level. For each simulation, we calculated the correlation 

coefficient between model outputs, and also calculated the correlation coefficient 

between model response and the translational optic flow component.  

 

3.2.7 Population Decoding Simulations 

To simulate an MT population response to different stimuli, we “cloned” each model 

fit by replicating it across space (translating its position) and direction (rotating its 

spatial features and direction selectivity). For each of the 33 cells for which both 

types of suppression were detected, the MO model and the ES model fits were shifted 

on a 5×5 grid with spacing of 5° and rotated to include the anti-preferred direction 

and both perpendicular directions. Therefore, we generated 25×4=100 virtual models 
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for each cell. We pooled all virtual models together to create an entire virtual 

population of 3,300 cells.  

 

We simulated the response of this population to velocity field induced by 3D motion 

in different directions. For these simulations, an object covering the central 20° of the 

visual field was simulated undergoing 3D motion in 200 directions sampled from a 

spherical distribution randomly. For the purposes of the simulation, we assumed the 

distance from the observer to the object was 5 m, and the speed of the object was 

uniformly distributed in the range of 0.87 m/sec to 2.62 m/sec, matching the speed 

range we explored with the optic flow stimuli (10 °/sec~30 °/sec). The spiking 

threshold of different model types was re-adjusted to give the same average firing rate 

(20 Hz) across all stimulus patterns. 

 

We compared the capacity of an optimal linear decoder to extract information 

relevant to behavior, which were the physical parameters of the stimulus (3D velocity 

(vx, vy, vz)), given the output of a population of model MT cells. Specifically, we 

computed a weight vector w to minimize the mean squared error between the 

parameter to decode (e.g. vx) and the estimated parameter of the decoder Xw, where 

X is the matrix with one row for each stimulus and one column for each simulated 

MT response. At each repeat, we randomly selected 200 virtual models from the 

entire population or from a subset of the population and evaluated the reconstruction 

error as the ratio between the root mean squared error (rMSE) and the range of the 
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physical parameter. The procedure was repeated 20 times to estimate the error of our 

evaluation. 

 

3.3 Results 

To explore the selectivity of MT neurons to complex motion stimuli, we recorded 

from single units in area MT during the presentation of a continuous optic flow 

stimulus composed of a random dot field with the velocity field specified by a 

random combination of six optic flow dimensions (Fig. 3-1A) (Mineault et al., 2012). 

MT neurons generally responded very reliably to this stimulus, as demonstrated by 

the reproducible patterns of spikes in response to multiple repeats of the same 

stimulus sequence (Fig. 3-1B).  

 

MT neurons are thought to primarily be selective for the direction of motion of 

stimuli in their receptive field (Albright, 1984; Maunsell and Van Essen, 1983; 

Mikami et al., 1986), as characterized by their average firing rate as a function of 

motion direction (Fig. 3-1C). Such “first-order” tuning is also reflected in more 

complex stimulus contexts such as during the continuous optic flow stimulus, which 

can be demonstrated by fitting a linear model to explain responses in this context 

(Fig. 3-1D) (Richert, 2008; Weber et al., 2010). Measurements of tuning in this 

stimulus context have the added advantage that the optic flow stimulus can reveal 

more complex aspects of MT tuning, because the stimulus incorporates different 

combinations of velocities across space and time. Indeed, as we show, more accurate 

models of stimulus processing are necessary to capture these details. 
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Figure 3-1 Response of MT neurons to continuous optic flow stimuli.  
A. The naturalistic optic flow stimuli used in this study is composed of six 
independently varying optic flow components: horizontal and vertical translation 
(Trans-X and –Y), expansion rotation, and shear along both axes. Each optic flow 
component is independently specified by low-passed Gaussian noise (bottom), and 
displayed over a circular aperture is moving around slowly to explore the spatial 
profile of MT receptive field. The resulting velocity fields explore different types of 
flow, as shown by four example velocity fields that occur over the 5 second period 
shown. While stimulus is displayed at high spatial resolution, the models use the 
velocity field sampled over a uniform grid at a resolution of 2°. B. Response of an 
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example MT neuron to the optic flow stimulus shown. The repeated spike responses 
are represented in a raster plot (top), with each vertical bar indicating a spike, and the 
peristimulus time histogram (PSTH) is shown at the bottom. C. The direction tuning 
curve of this example MT neuron, measured as the average firing rate in response to 
random dot motion in the receptive field. D. Spatial kernel of the linear model fit to 
the continuous optic flow stimuli for the same MT neuron. 
 

3.3.1 Hierarchical modeling framework for MT neurons 

To interpret the neuronal response in this complex motion context, we adopt a 

hierarchical modeling framework (Fig. 3-2A). Receptive fields of MT cells are much 

larger than those at earlier stages of the visual hierarchy, and thus likely reflect 

aggregated responses of a large number of V1 neurons. We therefore choose an 

analysis resolution that gives fine detail for MT spatial receptive fields, by dividing 

them into smaller subunits, each presumably representing pooled responses of V1 

neurons from that location. We assume that speed and direction are separately 

processed within each subunit (Hammond and Reck, 1980; Movshon et al., 1986; 

Rodman and Albright, 1987), such that subunit output is given by its direction tuning 

acting on the velocity (magnitude and direction) at each spatial location (Fig. 3-2B), 

multiplied by its speed tuning function (Fig. 3-2C). 

 

The output of each subunit is then integrated across space with a spatial weighting 

function (Fig. 3-2D), and integrated over time with a temporal kernel (Fig. 3-2E). Our 

model assumes the same direction and speed processing at all relevant positions 

across space, in part because we found that relaxing these constraints does not 

improve model predictions (data not shown, although see Discussion). The final 
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signal after integrating over space is converted into a spike rate through a spiking 

nonlinearity (Fig. 3-2F).  

 

Note that the structure of this model follows earlier models of MT responses (Qian et 

al., 1994), which assumes that the response of each subunit is enhanced by the 

preferred stimulus and suppressed by the non-preferred stimulus, followed by a 

rectified nonlinearity (Fig. 3-2B, top). This is often called “motion opponency”, since 

the direction preference of suppression is always opposite from that of excitation 

(Adelson and Bergen, 1985; Simoncelli and Heeger, 1998); earlier studies showed 

that this opponent-direction suppression is local (Pack et al., 2006; Qian and 

Andersen, 1994). We thus refer to this model as the “motion opponency” (MO) 

model. 

 

The parameters of this model structure can be tractably optimized using maximum 

likelihood estimation methods, in which parameters representing the stimulus 

selectivity of individual subunits, the spatial weights, and the temporal kernels can be 

fit to the observed neuronal response (see Methods). Alternative formulations of MT 

processing, such as ones in which V1 cells only respond to the velocity component 

projected onto their preferred velocities (Movshon et al., 1986), do not substantively 

change the model performance (Wilcoxon rank sum test on the cross-validated 

likelihood across the population between models of each type, p>0.1), but the 

resulting model is more difficult to fit and interpret because speed tuning and 

direction tuning become entangled. 
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In general the model fitted from data recorded in the context of complex optic flow 

stimuli has direction preferences that correlate with the neuron’s preferred direction 

measured using the standard approaches (see Methods). (Fig. 3-2H, R=0.97).  

 

 

Figure 3-2 Analysis of MT neurons with the motion-opponency (MO) model. 
A. MO model schematic: motion is first processed by local subunits with direction 
and speed tuning functions (top), and then is pooled across space (2nd row), with the 
resulting output integrated over time (3rd row). Finally, a spiking nonlinearity is 
applied on this signal to transform it into a firing rate prediction (bottom). B-F: The 
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model components for the example MT neuron with standard deviation of the fits 
(indicated as gray shaded area) calculated using bootstrapping techniques (100 
repeated resampling with replacement). B. The direction tuning function for the 
subunits. The model is fit by assuming a von Mises function (dashed), which contains 
a motion opponency stage followed by a rectified nonlinearity (top). This can be 
validated by non-parametrically fitting the direction tuning directly (solid), which is 
in close agreement. C. The speed tuning function for the subunits (solid), compared 
with the distribution of stimulus speed (shaded gray). D. Spatial weighting function. 
E. Temporal kernel. F. The measured spiking nonlinearity (dashed) is fit 
parametrically (solid), with the distribution of the generating signal indicated in 
shaded gray. G. The model has nearly identical direction tuning curve (generated 
through simulation; dashed) as that of the neuron (solid). H. The model predicted 
direction preferences are highly correlated with the measured ones across the 
population of neurons in the study (R=0.97, p<10-49, N = 84). 
 

3.3.2 Extension of the Hierarchical Modeling framework with Suppression 

While the MO model provides a good description of MT neurons’ direction tuning 

(Fig. 3-2G), it only incorporates a single form of suppression, which is always 

spatially localized with excitation, and with opposite direction tuning. In contrast, 

numerous studies that probed stimulus selectivity with more than one spatially 

localized motion component have observed suppression outside the classical 

receptive field – in the “surround” – in a majority of MT neurons (Allman et al., 

1985; Born, 2000; Tsui and Pack, 2011; Xiao et al., 1997). This suggests an extension 

of the MO model in order to include suppression that is not simply co-localized with 

excitation. 

 

We thus extend the hierarchical framework to model a spatially distinct suppressive 

influence (Fig. 3-3A) in addition to the excitation described above, comprising what 

we call the “excitation-suppression model” (ES model). Motivated by detailed studies 

of suppression in V1, where suppression can have both an orientation-selective 
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component (Ringach et al., 2002) and a non-selective component (Sengpiel et al., 

1997), we incorporate both forms of suppression into the ES model: a direction 

selective component (DS-Sup, blue) and a non-selective component (NS-Sup, green). 

The DS-Sup component has a direction tuning function, which is potentially distinct 

from the excitatory direction tuning, while the NS-Sup responds equally to all 

directions. The excitatory, DS-Sup, and NS-Sup components are pooled across space 

and integrated over time with their own spatial weighting functions and temporal 

kernels. The excitatory weights are constrained to be positive and the suppressive 

weights (both DS and NS) to be negative. As a result, the contribution of each is 

distinct, and simultaneous optimization of these components is tractable, resulting in 

a single optimal description of the excitatory and suppressive substructure of the MT 

receptive field of this form. 
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Figure 3-3 Incorporation of suppressive components into the description of MT 
processing. 
A. Model schematic for the Excitation-Suppression (ES) model, which inputs 
excitation (Exc, red), as well as direction selective suppression (DS-Sup, blue) and 
non-selective suppression (NS-Sup, green). The DS-Sup component has the same 
computational structure as the excitatory component, but with the spatial weights 
constrained to be negative. The NS-Sup component is like DS-sup, but does not have 
a direction tuning function, and thus responds equally to all directions. B. Each 
component has its own speed tuning function, but they are all very similar in this 
case. Note gray lines around each curve show standard deviation estimated with 
bootstrapping techniques. C. Subsequent unconstrained fits of the direction tuning 
functions for each model component validates the forms used in fitting them, with 
Exc (red) and DS-Sup (blue) with very similar (antagonistic) tuning, and NS-Sup 
component tuning (green) not selective for direction. D. Temporal kernels of Exc 
(red), DS-Sup (blue) and NS-Sup (green), demonstrating a slight delay of suppressive 
components. E. The measured spiking nonlinearity (dashed) and the corresponding 
parametric fit (solid), relative to the distribution of the generating signal (shaded 
gray). F. The improvement of cross-validated likelihood of ES models with each (or 
both) suppressive components added over the MO model, expressed as a fraction of 
the performance of the model with both DS-Sup and NS-Sup. G. Spatial footprints of 
Exc (red), DS-Sup (blue) and NS-Sup (green). The arrows on the left indicate 
direction preference of excitation and DS-Sup. A vertical slice of the weighting 
function is shown on the right, with the gray lines indicating standard error of each 
function over multiple model fits. 
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Across the population of MT neurons, we find that excitation, DS-Sup and NS-Sup 

typically have different spatial profiles and direction preferences, and in some cases, 

different temporal dynamics. For example, the previously considered neuron (Fig. 3-2) 

has a DS-Sup component with similar direction preference as excitation (Fig. 3-3C), 

but forms an asymmetric surround structure that is largely non-overlapping with the 

excitatory region (Fig. 3-3F). Furthermore, there is also a distinct NS-Sup component, 

which has spatial weights in two areas: a central area that is largely overlapping with 

the excitatory component, and a surround component that is further away from the 

receptive field center than the DS-Sup. The temporal kernels of both suppressive 

components are slightly delayed relative to excitation (Fig. 3-3D). Although the ES 

model does not predict a different excitatory tuning of the neuron, it has a much better 

cross-validated performance than the MO model (Fig. 3-3E). 

 

To gain additional insight into the degree of model performance improvement, for a 

subset of the recorded neurons, we also presented repeats of a short segment of the 

stimulus (e.g., Fig. 3-1B), allowing us to evaluate model performance using both 

cross-validated log-likelihood (LLx) and more traditional peristimulus histogram 

(PSTH)-based methods such as explained variance (R2). This analysis reveals that the 

models can explain 34.5±3.1% of the variance of the response, comparable with the 

performance of other models of MT processing (Nishmoto et al. 2011). Furthermore, 

the improvement of model performance after inclusion of suppression is significant 

using both metrics, and corresponds to a median of 25.3% of explained variance and 

26.2% of LLx (Figs. 4A,B). Moreover, there is a correlation between log-likelihood 
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and R2 (Fig. 3-4C), indicating a consistency of the two metrics. Because it provides a 

much more reliable metric of model performance in this case and does not require 

repeated stimulus presentations, we will only use cross-validated log-likelihood to 

measure accuracy of model predictions in the rest of the study. 

 

 

Figure 3-4 Model prediction accuracy.  
A. Fraction of explained variance (R2) for the MO and ES models (left). Paired 
comparisons (right) demonstrate significant improvement: 22.0%±11.7% (p<0.05, 
Wilcoxon signed rank test). B. Cross-validated likelihood (LLx) for the MO and ES 
models, showing a similar trend as (A). Percentage improvement is 21.7%±5.0% 
(p<0.05, Wilcoxon signed rank test). C. A comparison between the two metrics 
shows the correlation between them (R=0.55, p<0.05). 

 

3.3.3 Properties of suppressions in MT 

Across the population of cells we recorded from, the addition of one or both types of 

suppression improves model prediction for most of the neurons (81/94). For one third 

of the neurons, the best model has both DS-Sup and NS-Sup (33/94, LLx 

improvement=14.6±3.2%). For the rest of the neurons in the population, the best 
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model either only has DS-Sup (29/94, LLx improvement=11.9±5.3%), or only has NS-

Sup (19/94, LLx improvement=15.8±9.1%). Because a model with more components 

requires more data to fit and is more susceptible to overfitting, the fraction of cells 

that have both suppressive components might be underestimated using our criteria of 

requiring better cross-validated likelihood. For the neurons with both DS-Sup and 

NS-Sup components, we verified that there was a significant improvement in model 

performance over models with only one suppressive component (Fig. 3-5A), 

suggesting that DS-Sup and NS-Sup are describing different aspects of neuronal 

selectivity. 

 

The two forms of suppression thus appear to be distinct contributions to the 

computation performed by the neuron. To explore this further, we first tested whether 

we correctly assumed the forms of DS-Sup and NS-sup tuning by relaxing constraints 

on the tuning functions and fitting these functions using non-parametric methods 

directly (see Methods). The resulting direction tuning of the NS-Sup components are 

indeed flat in almost every case, reflected as a circular variance very close to unity 

(Fig. 3-5B). In contrast, the direction tuning of DS-Sup fit in the same way has a 

circular variance comparable with that of the excitatory component (Fig. 3-5B). 

 

The two components also typically have different spatial profiles (e.g., Fig. 3-3F), 

with the spatial weights of NS-Sup usually located further from the excitatory center 

(Fig. 3-5D) and with more dispersion than that of the DS-Sup (Fig. 3-5E). Both DS-

Sup and NS-Sup temporal integration is significantly delayed relative to the 
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excitatory components (relative latency of DS-Sup=12.6±4.0 ms, relative latency of 

NS-Sup=25.5±6.9 ms). The latency of DS-Sup is consistent with previous 

observations of MT surrounds (Perge et al., 2005), 

 

In summary, the NS-Sup shares many characteristics of the previously described MT 

surround (Born and Bradley, 2005; Hunter and Born, 2011), which is further from the 

center, covers a larger area, and is very broadly tuned and delayed. In contrast, DS-

Sup is more likely to influence stimulus selectivity directly within or close to the 

receptive field. The different direction selectivity and spatial profiles of DS-Sup and 

excitation, however, can lead to local tuning differences in subregions of the RF, seen 

for example in (Richert, 2008). In the rest of the paper, we will thus focus on the 

properties of MT neurons imparted by DS-Sup. 
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Figure 3-5 Properties of the suppressive components.  
A. Box plots showing the improvement of cross-validated likelihood (LLx) over the 
MO model, applied to MT neurons with detectable DS-Sup and NS-Sup components 
(n=33). Including only DS-Sup on average increases the LLx by 12.4% (left); the 
improvement is 12.1% for a model with only NS-Sup (middle), and 20.7% for a 
model with both DS-Sup and NS-Sup (right). B. Circular variance, which measures 
direction-tuning width, of the direction-tuning curve for excitation (left), DS-Sup 
(middle) and NS-Sup (right). DS-Sup has comparable tuning variance as excitation, 
while NS-Sup is almost completely non-selective to motion direction (circular 
variance close to 1). C. Both types of suppression are delayed relative to excitation, 
with latency relative to excitation for DS-Sup (left, 12.6±4.0 ms, p<0.001) and for 
NS-Sup (right, 25.5±6.9 ms, p<0.001). NS-Sup is further delayed relative to DS-Sup 
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(p<0.05) D. Average distance from the receptive field center for DS-Sup (x-axis) and 
NS-Sup (y-axis), in units of receptive field size. NS-Sup is further away from the 
center than DS-Sup (p<0.001). E. NS-Sup is more dispersed than DS-Sup, as 
demonstrated by measuring the distance from the centroid of DS-Sup (x-axis) and 
NS-Sup (y-axis) (p<0.001). F. The population of MT neurons demonstrates a 
diversity of relationship between excitation and suppression, as shown by plotting 
each neuron’s direction difference between excitation and DS-Sup (horizontal) and 
amount of spatial overlap between them (vertical) (n=55). Each dot shows an 
individual neuron; while the distribution is continuous, we draw color-coded 
distinctions in order to analyze different regimes of tuning (green: antagonistic 
suppression, blue: orthogonal suppression, red: overlapping opponent suppression). 
Marginal distributions over direction difference and overlapping extent are shown at 
the bottom and the left respectively. 

 

3.3.4 Diversity of MT selectivity reflected in direction-selective suppression 

The combination of their excitatory and suppressive influences can potentially give 

MT neurons selectivity to complex motion. To understand such selectivity, we first 

characterize the relationship between excitation and DS-Sup with two parameters: the 

differences of direction preferences and the overlap extent of spatial weights (Fig. 3-

5F). Note that here we only consider cells with DS-Sup detected, and only include a 

single neuron from each multi-site electrode experiment (see Method), resulting in a 

population size of 55. It is most common for MT neurons to have suppression and 

excitation with matching tuning (antagonistic suppression, green), as well as with 

opposite preference (opponent suppression, red). Nevertheless, this distribution is 

continuous – with no apparent holes – and there are also many cells with suppression 

orthogonal to excitation (orthogonal suppression, blue). However, the distribution 

also shows a certain degree of diversity, especially for cells with orthogonal 

suppression. In order to highlight examples from different parts of this distribution 

and further investigate the diversity of neuron computation pictured, we divide cells 
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into three groups based on their position within this two-dimensional distribution (Fig. 

3-5F). Example model fits for cells in each group are shown in (Fig. 3-6).  

 

Cells with antagonistic suppression represent the majority of our population (23/55). 

Spatially, DS-Sup has an asymmetric surround structure around excitation (Fig. 3-6A). 

Note that the lack of observed neurons in the upper-left corner of Fig. 3-5F, 

corresponding to overlapping antagonistic suppression, is likely due to the model’s 

inability to detect overlapping suppression that has similar selectivity as excitation, 

because that adding excitation and suppression with identical tuning at the same 

position will have no effect on the model output in the stimulus contexts we studied. 

In contrast, other studies have observed overlapping, antagonistic suppression using 

tailored stimuli (DeAngelis et al., 1992; Cavanaugh et al., 2002). In most cases, NS-

Sup can also be detected at a further distance from the center, suggesting that MT 

surrounds can be decomposed into a direction-selective and a more distant non-

selective component. In principle, both suppressive components could contribute to 

classically measured “size tuning” (Allman et al., 1985). However, we find that size 

tuning is not limited to cells with antagonistic suppression, and only the strength of 

NS-Sup is significantly correlated with the extent of size tuning (R=0.50, p<0.05). 

This is also consistent with earlier reports of broader direction tuning of the surround 

than that of the center (Born and Bradley, 2005; Hunter and Born, 2011). On the other 

hand, the spatial footprint of DS-Sup resembles the asymmetric antagonistic surround 

seen in other studies (Orban, 2008; Raiguel et al., 1995; Xiao et al., 1995), and may 

contribute to selectivity for complex motion features such as speed gradients and 
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surface orientation (Gautama and Van Hulle, 2001; Sanada et al., 2012; Xiao et al., 

1997). 

 

Orthogonal suppression is found in a proportion of MT neurons (17/55) (Fig. 3-6B). 

This type of suppression is not as well documented as the other type of suppressions, 

presumably because previous studies of MT surround usually restrict motion in the 

same or the opposite direction as the preferred direction. The spatial footprint of 

orthogonal DS-Sup is generally very different than excitation, and exhibits a large 

degree of diversity across neurons with orthogonal suppression. Usually this 

suppression is confined to one side of the receptive field. In addition to image 

discontinuities, this arrangement may provide selectivity to curvature in the motion 

field, which is an important aspect of natural motion. 

 

Finally, cells with opponent suppression comprise the rest of MT neurons in the 

population where we detected DS-Sup (15/55). DS-Sup is typically co-localized with 

excitation for these cells (Fig. 3-6C), resembling the organization of the motion 

opponent subunit we used in the MO model (Qian et al., 1994) (Fig. 3-2A). However, 

the ES model still represents a different computation from the MO model due to the 

rectified nonlinearity in the subunit. As a result, the subunits will not give any 

response for non-preferred stimuli, and the MT neuron will respond at its spontaneous 

level, whereas for models with opponent suppression, the neuronal response will be 

truly suppressed below the baseline for non-preferred stimuli. Indeed, we can observe 

this in the measured direction-tuning curve, where we calculated the amount of 
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suppression relative to the baseline firing rate in the non-preferred direction. We find 

that the amount of suppression below baseline is significantly larger for cells with 

opponent suppression compared the rest of the cells in the population (p<0.05, Mann-

Whitney U test). 
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Figure 3-6 Example model fits for different types of tuning. 
A-C: Example fits are shown for different types of tuning: (A) antagonistic 
suppression, (B) orthogonal suppression, and (C) overlapping opponent suppression. 
Each row shows (from left to right) direction preferences of excitation (red), DS-
suppression (blue) and the measured preferred direction (black), spatial weights for 
excitation, DS-Sup, NS-Sup and overlapping of them. 
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3.3.4 Selectivity and coding of complex optic flow 

The diversity of both excitatory and suppressive tuning direction and their spatial 

footprints suggest that MT neurons might be specifically tuned to velocity fields with 

different directions of motion at different spatial locations. Such visual stimuli are 

quite common in more natural settings where velocity fields are due to motion of the 

observer and with objects at different depths. A simple way to reveal optic flow 

selectivity is to ask to what extent the neuron’s firing rate is modulated by a given 

flow component, which we gauge using the correlation coefficient ρ between each of 

the six optic flow components and 1) the actual neural response; 2) the predicted 

response of the MO model 3) the predicted responses of the ES model (i.e., with both 

types of suppression). Because MT responses are significantly correlated with non-

translational flow components in many cases, the models with suppressive 

components predicted their correlation with each optic flow component better than 

the MO model (Fig. 3-7A). Therefore, optic flow selectivity in MT relies at least in 

part on the suppressive influences we characterized before. 

 

We can also gauge the effect of adding suppression by comparing the responses of 

MO and ES models fit to the same neuron, as different amounts of non-translational 

optic flow are presented. First, for stimuli that consist of only translation, the outputs 

of the MO and ES models are highly correlated (R=0.91±0.06), which is expected 

because both models can predict the standard direction tuning properties of the cell. 

However, the correlation between the two models decreases as more non-translational 

optic flow is introduced into the stimulus (Fig. 3-7B). When the stimulus is composed 
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of only non-translational components, the average correlation coefficient is only 0.67, 

with a standard error of 0.06. This implies that, as expected, direction-selective 

suppression results in different responses to more complex motion stimuli. Such 

selectivity to complex optic flow appears to arise from the DS-Sup component rather 

than the NS-sup, because models with excitation and DS-Sup alone (Fig. 3-7B, blue) 

are similar to the full ES models, while models with only excitation and NS-Sup (red) 

are generally more correlated to the MO models. 

 

Next we examine which components of the stimulus are most correlated with the 

predicted response for models with and without suppression. In general, the MO 

model outputs are much more correlated with the translational components than the 

ES models (Fig. 3-7C). The difference is most significant when a moderate amount of 

complex optic flow is introduced (10-40%). Consistent with Fig. 3-7B, we find DS-

Sup alone is enough to explain this difference, while models with only NS-Sup 

mostly resemble behaviors of the MO models. This suggests that the difference 

between model predictions is due to the fact that MO models are only selective to 

translational motion, while the ES models exhibit additional selectivity to more 

complex optic flow stimuli. When more complex optic flow is introduced, both types 

of models are driven by the non-translational flow components, but the responses of 

the two models generally depend on the stimulus in different ways, as reflected by the 

decreased correlation in (Fig. 3-7B). 
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Figure 3-7 Suppression enhances selectivity to complex optic flow. 
A. To gauge the ability of the MO and ES models to capture selectivity of MT 
neurons to different components of optic flow, we calculate the correlation coefficient 
ρ between each flow component and the neuron response, and compare that predicted 
by each model across the population of neurons with measured suppression (n=33). 
There are significant improvements for all six optic flow components with 
incorporation of suppression into the model (** p<0.001, * p<0.05 Wilcoxon signed 
rank test).  B. As a second way to gauge this selectivity, we simulate the response of 
MO and ES models of the same neuron to different combinations of optic flow, and 
measure how correlated the responses are, as a function of the amount of non-
translational optic flow present in the stimulus. Each data point shows the average 
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correlation coefficient between the responses of the MO and ES models over the 33 
MT neurons that have both types of suppression. Responses of the two models, with 
both components included (black) are highly correlated for translational stimuli 
(R=0.92±0.05), but decrease progressively for stimuli that contain more non-
translational optic flow components (black). This trend is highly significant 
(Spearman’s rank correlation coefficient ρ=-0.38, p<10-11). DS-Sup appears to 
contribute to this selectivity to non-translational optic flow, as demonstrated by 
including only the DS-Sup term with excitation (blue) or NS-Sup term with excitation 
(green). Models with only NS-Sup are more correlated with the MO model in general 
(p<0.05 when percentage of non-translational optic flow is not zero, t-test), while 
models with only DS-Sup are similar to the full ES model (Spearman’s rank 
correlation coefficient ρ=-0.36, p<10-11). C. To measure to what extent model output 
is determined by translational component of the stimulus, we also report the 
correlation coefficients between model outputs and the translational components of 
the optic flow stimulus in the same context as (B), as a function percentage of non-
translational optic flow. Significant differences between MO model (red) and ES 
model (black) are revealed when the stimuli contains moderate amount of complex 
optic flow (** p<0.001 * p<0.05, t-test). This difference is also observed for models 
with only DS-Sup (blue), but is absent for models with only NS-Sup (green). 
 

Thus, the suppressive components of the ES model contribute to selectivity to non-

translation components of optic flow stimuli. Does such selectivity allow for a better 

representation of such stimuli by MT neurons? Previous work has shown that 

individual MT neurons exhibit fairly weak tuning for optic flow patterns such as 

expansion and rotation, and that such tuning is highly dependent on stimulus position 

(Lagae et al., 1994). Here we ask whether a population of MT neurons could encode 

three-dimensional motion patterns and to what extent this encoding depended on the 

presence of nonlinear surround suppression. 

 

To address these points we applied an optimal linear decoding framework (DiCarlo 

and Cox, 2007) to recover the velocity of a simulated object moving with different 

3D velocities at a specific position relative to the observer (Fig. 3-8A). This task is 

also related to decoding egomotion, where one typically assumes the visual scene is 
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static and the observer is moving. In this case the “object” is the entire visual for 

egomotion decoding, as we are not examining the more complex case of recovering 

egomotion during simultaneous rotations of the eyes, head, or body. The results we 

report here are not sensitive to the size of the object. 

 

For each simulation we calculate the velocity pattern generated by 3D object motion 

in different directions (Fig. 3-8A-B), and then simulate a population of MT neuron 

responses to these stimuli (see Methods). An optimal linear decoder is trained to infer 

the 3D motion direction based on the simulated neuronal response either using the 

MO models, or the ES models. The reconstruction performance of the decoder 

reflects a lower bound on the information that would be available for a downstream 

brain area (DiCarlo and Cox, 2007; Mineault et al., 2012).  

 

The results of this simulation show that decoding performance using the ES model 

responses is significantly greater (i.e., less decoding error; Fig. 3-8C) compared to 

that using the MO model, while further incorporation of NS-Sup does not further 

improve the performance. Moreover, the decoding performance depends on 

properties of suppression: although significant improvement is observed if we only 

use cells with antagonistic suppression or orthogonal suppression for the decoding 

task, such difference is not observed for cells with opponent suppression (Fig. 3-8D). 

This is likely because spatial offsets between excitatory and suppressive components 

may be instrumental in creating non-translational optic flow sensitivity, but opponent 

suppression tends to have high degree of overlap with excitation and thus little spatial 
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offset (Fig. 3-5F). Note that the performance of both models significantly degrades 

when stimuli are not presented in the center of the receptive field, in marked contrast 

to the same decoding task applied in area MST (Mineault et al., 2012), suggesting 

that computations described in MT represent one element of what is likely a 

hierarchical computation. That is, the initial selectivity developed in MT is further 

refined and generalized across spatial positions in higher-level areas such as MST, as 

has been suggested for analogous computations in other areas (Riesenhuber and 

Poggio, 2000).  

 

 

Figure 3-8 Role of suppressive surround revealed by population decoding of 3D 
velocity.  
A. Schematic of the 3D motion population decoding task. We calculate the optic flow 
pattern generated by object motion in a 3D space, with the motion direction and speed 
randomly selected (see Methods). The resulting velocity field is processed by a 
population of MT models, and a linear decoder is fitted to reconstruct the 3D motion 
based outputs of 200 randomly selected models. B. Example velocity patterns used in 
the decoding task, with the 3D motion direction labeled above each pattern. C. 
Performance of the decoder based on input from MO model (black) and ES model 
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with only DS-Sup (gray) and ES model with both type of suppression (white). Results 
are quantified as the ratio of root mean squared error to the range of the parameter; 
smaller values indicate better performance. Using outputs of ES models gives better 
reconstruction performance along all three dimensions than using the MO models 
population. (p<0.05, t-test). D. Percentage improvement of reconstruction 
performance between MO model and the full ES model for model cells with 
antagonistic suppression (left), orthogonal suppression (center) and opponent 
suppression (right). Significant improvements of reconstruction are observed for cells 
with antagonistic suppression and orthogonal suppression, but not for cells with 
opponent suppression (** p<0.01, n.s. p>0.05, t-test). 

 

3.4 Discussion 

 
In this study, we have recorded the responses of MT cells in the context of naturalistic 

optic flow stimuli. To interpret the neuronal responses in this rich stimulus context, 

we have constructed a hierarchical modeling framework, which describes MT 

processing as integration over excitatory and both direction-selective and non-

selective suppressive inputs. Most previous studies of MT have focused on isolating 

either the excitatory tuning of MT neurons in the receptive field center or individual 

suppressive influences, such as the surround suppression (Xiao et al., 1995; Born 

2000) or motion opponency (Snowden et al., 1991; Qian et al. 1994). For example, 

experimental studies of suppression usually use the preferred stimulus to drive the 

center and gauge the effects of suppression in this simplified context (Snowden et al., 

1991; Xiao et al., 1995; Xiao et al., 1997). At the same time, previous modeling 

studies have largely focused on explaining how MT computes velocity from local 

motion signals (Qian et al., 1994; Rust et al., 2006; Simoncelli and Heeger, 1998) 

within its receptive field.  
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Here, by fitting a hierarchical excitation-suppression (ES) model with both excitatory 

and suppressive components, our results provide the most complete picture of how 

different types of suppressive influences interact with excitation to impart selectivity 

to higher-order motion stimuli. In particular, we find suppression can be divided into 

a direction-selective component, which exhibits diverse structure and imparts 

functionally useful higher-order selectivity, and a non-selective component, which 

seems to play the role of surround suppression and normalization.  

 

3.4.1 The use of complex motion stimuli to probe MT 

The majority of work on MT has explored its role in estimating the velocity of a 

rigidly translating object (Lisberger and Movshon, 1999; Rust et al., 2006; Simoncelli 

and Heeger, 1998). The idea dates back to the discovery that response of MT neurons 

is primarily dependent on the motion direction within a two-dimensional plane (Zeki, 

1974). However, when more complex motion fields are used, selectivity to higher-

order features, such as speed gradients (Treue and Andersen, 1996; Xiao et al., 1997) 

and surface orientation (Nguyenkim and DeAngelis, 2003; Sanada et al., 2012) has 

been observed, raising the question of what features of natural vision are represented 

by MT neurons. Our results show that although excitatory contributions dictate 

direction-selectivity, they are not sufficient to explain responses to motion stimuli 

with different velocities across visual space: suppressive contributions with different 

spatial profiles than excitation also significantly modulate MT responses and thus 

impart selectivity to complex motion features. 
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Here, we focus on understanding the role of spatial heterogeneity in natural motion 

fields, and thus use a stimulus – a random dot field – that produces an unambiguous 

velocity signal as a function of space. This allows us to map the excitatory and 

suppressive influences on an MT neuron across space, and purposefully avoids the 

complexities associated with extracting velocity from texture patterns, which is 

another known aspect of MT processing (Jazayeri et al., 2012; Rust et al., 2006). In 

particular, one recent modeling study (Nishimoto and Gallant, 2011) extended such 

texture-based processing to explain complex motion stimuli, although as a result did 

not focus on the specific roles of spatially distributed suppression in processing such 

stimuli. We thus regard this approach as being orthogonal to understanding motion 

estimation for textures patterns, and expect the models investigated here might be 

consistent with, and/or ultimately combined with models that address those 

complexities (Bradley and Goyal, 2008; Nishimoto and Gallant, 2011). 

 

3.4.2 Different forms of suppression in MT 

Several forms of suppression have been documented in the literature. For example, 

neurons in MT are often suppressed by motion in the anti-preferred direction (Mikami 

et al., 1986). This is often termed “motion opponent suppression”, which is likely 

related to similar phenomena that have been reported in psychophysical studies 

(Levinson and Sekuler, 1975; Qian et al., 1994), single unit recordings (Mikami et al., 

1986; Rodman and Albright, 1987) and functional magnetic resonance imaging 

(Heeger et al., 1999).  
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Surround suppression is another well-studied property of MT receptive fields. Most 

neurons in MT have receptive fields with antagonistic surrounds (Allman et al., 1985; 

Born, 2000; Tanaka et al., 1986; Tsui and Pack, 2011), and the classical view is that 

maximal suppression occurs when the surround stimulus moves in the same direction 

as that in the center (Born and Bradley, 2005; Bradley and Andersen, 1998). Other 

studies have shown that the suppressive surrounds could be quite complex relative to 

the center, exhibiting such properties as asymmetric spatial organization (Raiguel et 

al., 1995; Xiao et al., 1997), different contrast sensitivity (Pack et al., 2005), and less 

direction selectivity (Hunter and Born, 2011).  

 

Although different suppressive mechanisms are often separately studied using 

targeted stimuli, our modeling approach provides a unified framework for 

characterizing suppression. We incorporate the motion opponency assumption at the 

local unit level and allow for both direction-selective suppression and non-selective 

suppression. Interestingly, for the majority of the cells we studied, the best model has 

both selective and non-selective suppression, but with different spatial profiles. The 

direction-selective suppression is closer to the receptive field center and appears to 

directly modulate motion selectivity, while the non-selective suppression is more like 

to be the previously described surround suppression.  

 

Although our model assumes a feed-forward structure, the source of different forms 

of suppression remains unclear. Given the longer latency of suppression, it may be 

that these suppressive contributions actually reflect horizontal connections within MT 
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or feedback from higher areas such as MST. The contribution of different types of 

suppression may also depend on the stimulus (Huang et al. 2007). While the goal of 

this study is to reveal types of suppression that are functionally relevant to processing 

of naturalistic optic flow, other types suppression, such as those that is spatially and 

directionally aligned with excitation (DeAngelis et al., 1992; Cavanaugh et al., 2002), 

may not be revealed by our method. 

 

3.4.3 Spatial heterogeneity of MT processing 

Although the classical view of MT receptive fields is that preferred directions in the 

center are largely homogeneous, and the surround is antagonistic and circularly 

symmetric (Tanaka et al. 1986), a handful of studies have focused on spatial 

heterogeneity of processing, using stimuli that either separately drove center and 

surround regions (Orban, 2008; Raiguel et al., 1995; Xiao et al., 1995), or separately 

mapped direction preferences (Richert et al., 2013) or sensitivity (Britten and Heuer, 

1999) within the classical receptive field.  

 

In our model, the spatial heterogeneity is reflected by the different spatial profiles and 

direction preferences of excitation and suppression. Although we assume the subunit 

selectivity is the same for each model component, different direction selectivity and 

sensitivity could emerge within the receptive field due to the different combinations 

of excitation and suppression across space due to their different spatial footprints. 

This effect is most prominent for cells with orthogonal oriented suppression. The 

complex surround of MT has been shown to play important roles in 3D shape 
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estimation and motion segmentation (Buracas and Albright, 1996; Gautama and Van 

Hulle, 2001). The additional heterogeneity in direction preferences may further 

contribute to selectivity to curvature in the motion field, which is an important aspect 

of natural motion. Indeed, the improvement of accuracy in 3D velocity estimation is 

most significant when orthogonal suppression is introduced to the model (Fig. 3-8D). 

 

3.4.4 The role of MT in visual motion processing 

From a computational perspective, the goal of visual motion processing is much 

broader than estimating 2D velocity. For a behaving animal, motion stimulus not only 

depends on object motion and visual depth, but also results from optic flow patterns 

imparted by ego-motion and eye-movements. Multiple problems are thus involved in 

motion processing, such as detection of independently moving objects, ego-motion 

estimation, 3D velocity estimation, and structure from motion (Beauchemin and 

Barron, 1995; Bradley et al., 1998; Pauwels et al., 2010; Sanada et al., 2012). While 

other cues (e.g., disparity; DeAngelis et al., 1998) are also important, some of these 

problems involve recognition of complex motion patterns (Fermüller and Aloimonos, 

1995) and discontinuities of the motion field (e.g., motion segmentation), which 

likely require selectivity to higher-order motion features. Although motion processing 

is certainly not complete at the stage of MT, our results suggest that such higher-order 

selectivity is already present in feed-forward MT processing and can support 

behaviorally relevant tasks, such as estimation of the 3D velocity of a moving object.  
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MT neurons project to the medial superior temporal area (MST) (Tanaka et al., 1993; 

Ungerleider and Desimone, 1986), which is thought to calculate the heading direction 

of the observer (Perrone and Stone, 1994, 1998) and to estimate 3D velocity (Zemel 

and Sejnowski, 1998). MST neurons are more selective to optic flow components 

than MT neurons (Lagae et al., 1994) and are more invariant to the stimulus shape 

(Geesaman et al., 1997) and position (Duffy and Wurtz, 1995). This selectivity can be 

partly explained in a hierarchical framework using model MT neurons as inputs 

(Mineault et al., 2012), and our results here suggest processing in MT neurons might 

more directly facilitate these ultimate goals of motion processing. 
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Chapter 4 : Cortical variability arising from spontaneous 

and decision-related network activity 

 

4.1 Introduction 

Sensory neuron responses to identically presented stimuli can be highly variable 

(Faisal et al., 2008; Goris et al., 2014; Masquelier, 2013; Softky and Koch, 1993). 

While one source of variability may simply be sensory noise that originates at early 

stages of processing (Faisal et al., 2008; Zohary et al., 1994), another possible source 

is ongoing network activity that is simply not explicitly timed with respect to the 

stimulus (Arieli et al., 1996; Masquelier, 2013). Indeed, cortical neurons receive only 

a fraction of their inputs from upstream sensory areas (Felleman and Van Essen, 

1991), and many areas of cortex have been observed to undergo spontaneous 

fluctuations in activity, particularly in anesthetized animals (Ecker et al., 2014; Kelly 

et al., 2010; Steriade et al., 1993). In awake animals, similar dynamics have been 

observed in conjunction with changes in cognitive and behavioral state (Cohen and 

Newsome, 2008; Engel et al., 2001; Morishima et al., 2009) related to, for example, 

working memory (Mendoza-Halliday et al., 2014) and the allocation of attention 

(Saalmann et al., 2007).  

 

Neuronal variability has repeatedly been found to exhibit substantial correlation 

across a range of spatial and temporal scales (Cohen and Maunsell, 2009; Herrero et 
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al., 2013; Zohary et al., 1994). One way to detect such correlated network activity is 

through the local field potentials (LFPs), which are low-frequency fluctuations in the 

extracellular voltage that are often recorded in combination with single-unit responses 

(Buzsaki and Draguhn, 2004; Einevoll et al., 2013). Indeed, the timing of cortical 

neuron spikes is often biased by the phase of LFP fluctuations in certain frequency 

bands in a task-dependent manner (Fries et al., 2001; Lee et al., 2005). These 

considerations suggest that the LFP signals themselves may contain relevant 

information from a range of sources that is useful for predicting – and understanding 

– variability observable in single neurons. 

 

Here, we relate response variability in the middle temporal area (MT) of macaque 

visual cortex to ongoing network activity, inferred using LFPs and the activity of 

other simultaneously recorded neurons. The stimulus selectivity of neurons in area 

MT has been characterized very thoroughly, and computational models can 

successfully predict their responses to a variety of motion stimuli (Cui et al., 2013b; 

Nishimoto and Gallant, 2011; Rust et al., 2006). Furthermore, MT neuron activity can 

reflect both processes linked with perception and behavior, such as attention (Treue 

and Martinez-Trujillo, 1999) and motion perception (Britten et al., 1992). Indeed, the 

prominent role of area MT linking representation of motion stimuli to perception is 

suggested by correlation between the variability of MT neuron responses (in the 

context of identical or ambiguous stimulus presentations) and perceptual decisions 

(Britten et al., 1996; Nienborg et al., 2012). 
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We use a model-based approach, in which the spiking responses of individual MT 

neurons are predicted using the combinations of the stimulus, LFPs, and activity of 

nearby MT neurons. We find that the inclusion of LFP-related inputs can yield 

dramatic improvements in the ability to predict spiking responses measured during 

the passive viewing of naturalistic optic flow stimuli. This improvement relates 

specifically to their ability to predict response variability; i.e., activity that is not 

locked to the stimulus. Furthermore, we demonstrate that, during the performance of 

a motion discrimination task, the locking of neuronal responses to low-frequency 

bands of the LFP can be used to predict the relationship between neural responses and 

perceptual decisions. These results thus suggest a central role of network inputs in 

linking sensory neuron activity to perceptual choices. 

 

4.2 Methods 

4.2.1 Electrophysiology Recordings 

Data were recorded from two adult rhesus macaque monkeys, prepared using 

standard surgical techniques that have been described previously (Mineault et al., 

2012). Eye movements were monitored at 500 Hz by an infrared eye tracker (EyeLink 

II; SR Research). Extracellular recordings were performed on 134 well-isolated single 

units during a passive fixation task, of which 63 units were recorded with single 

electrodes, and 71 units were recorded using a multi-site linear electrode array with 

16 recording sites with 100 µm spacing. An additional 79 units were recorded during 

performance of a two-alternative motion discrimination task. Signals were amplified, 

bandpass filtered, sorted on-line and resorted off-line, using spike-sorting software 



 

 114 
 

(Plexon) to isolate single units. This system includes a dedicated low-pass filter for 

LFP signals (four-pole high cut at 170 Hz) followed by digitization at 1 kHz. As 

described in an earlier study of our lab (Zanos et al., 2011), this type of filtering can 

introduce spurious correlations into spike-LFP coherence. We therefore obtained 

custom hardware modifications to the acquisition system that included wideband 

analog filters (two-pole high cut at 2.5 kHz) and a higher digitization rate (10 kHz). 

Line noise at 60 Hz and spike waveforms were removed from LFPs using a Bayesian 

spike removal algorithm (Zanos et al., 2011). All aspects of the experiments were 

approved by the Animal Care Committee of the Montreal Neurological Institute and 

were conducted in compliance with regulations established by the Canadian Council 

on Animal Care. 

 
Data for the LGN neurons were recorded extracellularly from anesthetized and 

paralyzed cat performed by the Alonso Lab for other studies (Butts et al., 2010). The 

stimulus consists of a 32x32 pixel natural movie, refreshed at 60 Hz, which was 

recorded from a camera mounted on top of a cat’s head (Kayser et al., 2003). We 

included 52 neurons recorded with repeated presentation of a 10 seconds segment of 

the stimulus, and the stimulus was typically repeated more than 50 times. Responses 

to the first 10 repeats of the stimulus were omitted to avoid non-stationarity resulting 

from stimulus onset (Butts et al., 2011). 

 

4.2.2 Passive Fixation Task 

In the passive fixation task, animals were trained to fixate within 2° of a small 

fixation point on a computer monitor, which displayed a continuous optic flow 
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stimulus. The animals were given a liquid reward periodically for maintaining 

fixation. All stimuli were presented on a CRT monitor with a display resolution of 

1,600×1,000 pixels (49°×36° of visual field at a distance of 50 cm) and a refresh 

frame rate of 60 Hz (n=123/134) or 75 Hz (n=11/134). Stimuli consisted of a 

continuously varying optic flow stimulus (Fig. 3-1A), as described in detail in 

previous studies (Cui et al., 2013b; Mineault et al., 2012). Briefly, the stimulus was 

composed of moving dots whose velocity field was generated as a random 

combination of six optic flow components: horizontal/vertical translation, expansion, 

rotation and horizontal/vertical shears. For the majority of the cells (n=117/134), the 

stimulus was displayed in a slowly moving aperture with a diameter ranging from 8° 

to 20°, the position of which was drawn from a Gaussian noise distribution, low-pass 

filtered in time with a cutoff of 0.05-0.10 Hz, with its mean at the center of the 

receptive field. The other neurons (n=17/134) used the same optic flow stimulus, 

although it remained centered on the neurons’ receptive field. All neurons were 

presented with a long continuous trial lasting between 10 and 36 min (mean=18 min). 

For a subset of recordings (n=86/134), we showed a short segment of the stimulus (5 

sec) that was centered on the cell’s receptive field and repeated between 60 and 240 

times (mean=100 times). We used these repeated presentations to measure the 

response reliability and to calculate the predictive power of the model, as well as 

distinguish between stimulus-locked and trial-variable elements of the response. The 

repeats were presented continuously (with no gap in between successive trials) to 

minimize transients due to onset responses. 
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For both long continuous trials and repeated trials, we excluded all data associated 

with fixation breaks (when the animal’s gaze location deviated by more than 1.5° 

from the fixation point), from 100 ms before the break to 500 ms after the recovery of 

fixation. Only periods with fixations that were longer than 1 sec were used for model 

fitting and evaluation, resulting in an average of 10.1±3.2 min of usable data for each 

unit. The usable data was then broken into 10 sec segments, which were randomly 

divided into two groups: 80% of these segments were used to estimate model 

parameters, and model performance was evaluated on the remaining 20% of the data 

(i.e., for cross-validation). 

 

4.2.3 Motion Discrimination Task  

Animals were trained to perform coarse motion discrimination tasks with Gabor 

patches, illustrated in Fig. 3-8. During this task, Gabor patches with 8-9 contrasts 

were presented in a block of randomly interleaved trials, while the animal maintained 

fixation within a 2°×2° fixation area. The range and spacing of contrasts were chosen 

to sample the linear range of each neuron’s contrast response function. The monkey 

performed between 20-80 repetitions of each distinct stimulus. All incomplete trials 

were excluded from analysis. Model fitting and performance evaluation (Fig. 3-S9) 

was performed also using an 80/20 data partition on all non-zero contrast trials. 

Predictions of CP (described below) were performed on zero-contrast trials, which 

were not used for model fitting.  
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4.2.4 Measuring response variability 

Variability of the neural response was estimated as the ratio between the power of the 

trial-averaged response and the total response power, after correcting for the effect of 

sampling noise and spike refractoriness (see Fig. 3-4-2 for more details).  

 

Any firing rate recorded over multiple repeated presentations λ ! (𝑡)  can be 

decomposed into a stimulus-locked rate λ!"#$(𝑡) (i.e., the PSTH) and a trial-variable 

component λ!"#
(!)(t), 

 

λ ! 𝑡 = λ!"#$ 𝑡 + λ!"#
(!)(t) 

 

(4.1) 

The variance (or “power”) of the stimulus-locked rate P[λ!"#$(𝑡)] is estimated 

following Sahani and Linden 2003 (Sahani and Linden, 2003) at 25 ms resolution. 

This time resolution was chosen to sufficiently capture the time scale of the observed 

firing rate fluctuations (Fig. 3-4-1). The power of the trial-variable rate variation 

P[𝛌var] was estimated as the difference of the total response variance between real 

spikes, binned at 25 ms resolution in time, and simulated spikes from a Generalized 

Linear Model that accurately captured the observed stimulus-locked rate and spike 

history dependence (see Fig. 3-4-2). We report the ratio P(𝛌stim)/[P(𝛌stim)+ P(𝛌var)] as 

the “stimulus-locked rate variation”. 

 

For comparison, we also used a dataset recorded in anesthetized cat LGN in response 

to natural movies in the Alonso lab, described in detail in (Butts et al., 2010). This 
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dataset was comprised of 52 neurons recorded with repeated presentation of a 10 

seconds segment of a natural movie stimulus. The stimulus was typically repeated 

more than 50 times. 

 

4.2.5 Statistical modeling framework for describing MT neuron responses 

We used a maximum-likelihood based framework that included both stimulus-

dependent terms and network-activity-dependent terms to model MT neuron 

responses. We assumed that neuron responses are generated by an inhomogeneous 

Poisson process with an instantaneous rate r(t). Measured spike trains were binned in 

time at 5 ms resolution to obtain the observed response rate robs(t). The log-likelihood 

of the model is then given by (up to an additive constant): 

 

𝐿𝐿 𝑟!"# 𝑡 , 𝑟 𝑡 = [𝑟!"# 𝑡   log
!

𝑟 𝑡 − 𝑟(𝑡)], (4.2) 

 

where robs(t) is the measured neuronal response, and r(t) is the model predicted firing 

rate (Paninski, 2004). 

 

All models used a fixed spiking nonlinearity F[·] that acts on both the stimulus-

dependent terms and network activity dependent terms; we refer to these as gstim(t) 

and gnetwork(t) respectively. The model response is given by 

 

r(t) = F[gstim(t)+ gnetwork(t) −b], (4.3) 
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where b is the spiking threshold and the spiking nonlinearity function F[·] was chosen 

to be of the form log[1+exp(·)]. Such a model can be optimized within the maximum-

likelihood framework efficiently (Cui et al., 2013b; McFarland et al., 2013). 

 

4.2.5.1 The stimulus-processing component of MT neuron model 
 
For neurons recorded during the continuous optic flow stimuli, we based the 

stimulus-processing model component on a previously established model fit to this 

stimulus condition (Cui et al., 2013b). Briefly, the stimulus selectivity of MT neurons 

is based on nonlinear combinations of localized processing by V1-like inputs. There 

were three stimulus-processing terms (Fig. 3-1B): direction-selective excitation (Exc), 

direction selective suppression (DS-Sup), and non-direction selective suppression 

(NS-Sup), each with their unique direction selectivity (except NS-Sup), velocity 

sensitivity, and spatial and temporal integration. All components of the stimulus 

model were fit to the data, as previously described (Cui et al., 2013b). 

 

For neurons recorded during the motion discrimination task, we modeled the time-

varying firing rate of the neuron to the brief motion stimulus directly, resulting in the 

following generating signal for trials with contrast level c and motion direction 𝜃: 

 

𝑔!"#$
!,! 𝑡 = 𝑤!,! 𝑘!!𝐵!,! 𝑡 − 𝑡!

!

, (4.4) 

 



 

 120 
 

where 𝑡!"#$ is the stimulus onset time of the current trial, 𝐵!,!(𝑡)’s are a set of piece-

wise linear (i.e., second-order) B-spline basis functions with 10 ms spacing. The 

coefficients 𝑘!! capture the dynamics of the stimulus-triggered response. Because the 

temporal response at different contrasts to a given motion direction was very similar 

up to an overall scaling, we introduce a gain factor 𝑤!,! that scales the temporal 

kernel for each stimulus conditions. The temporal kernel 𝑘! and gain factor 𝑤!,!were 

alternately fit until converged.  

 

4.2.5.2 The network components of the MT neuron model 
 
Our model inferred the relevant network inputs from both the LFPs and MUA 

recorded from the electrode array. To process the LFPs, a continuous wavelet 

transformation was performed either on the LFP signal itself or, in the case of multi-

electrode array recordings, on the second spatial derivative of the LFP signals, using a 

complex Morlet mother wavelet at 16 logarithmic scales from 0.5 Hz to 70 Hz. 

Calculation of the spatial derivatives of the LFPs closely related to current source 

density analysis (Nicholson and Freeman, 1975), and yielded a more localized 

distribution of model weights compared to those without this spatial transform.  

 

The instantaneous phase ϕdb(t) and amplitude ψdb(t) for the (transformed) LFPs at a 

given depth d and frequency band b were given by the phase and amplitude. We used 

amplitude-modulated sine and cosine terms as linear predictors, with model 

coefficients αdb and βdb: 
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𝑔!"# 𝑡 = 𝜓!" 𝑡 [𝛼!" cos 𝜙!" 𝑡 + 𝛽!" sin 𝜙!" 𝑡!,! ] = 𝐤!"# ∙ 𝐗!"#(𝑡), (4.5) 

 

where XLFP(t) is a design matrix with components ψdb(t)cos[φdb(t)] and 

ψdb(t)sin[φdb(t)], and kLFP is the LFP-receptive field vector that contains the 

corresponding model parameters αdb and βdb. Note that by fitting different linear 

weights on the cosine and sine phases of each signal, this implicitly yields the 

reported model weights sqrt(αdb
2+ βdb

2) and preferred phases arctan(βdb/αdb), for each 

frequency band and depth.  

 

We also used simultaneously recorded MUA to predict neuronal responses with a 

causal coupling filter. The generating signal based on MUA is, 

 

𝑔!"#(𝑡) = 𝑘!"𝑟!(𝑡 − 𝜏)
!,!

= 𝐤!"# ∙ 𝐗!"# 𝑡 , (4.6) 

 

where 𝑟!(𝑡) is the MUA from depth d, and 𝑘!" reflects the dependence of the spike 

response from depth d at time 𝜏 before. The MUA from the same depth was always 

excluded to avoid contamination due to imperfect spike sorting, and for channels 

where other single units were isolated, the single unit replaced the MUA signal at 

those depths.  

 

The network components of the model were fit simultaneously with the stimulus-

processing components (described above), and thus the model weights implicitly 

were not redundant with the stimulus-model predictions.  
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4.2.5.3 Regularization of the LFP model 
 
Since we sampled the LFP signal at 16 frequencies, the LFP model has 32 parameters 

for each depth and 512 parameters across 16 depths. The MUA filters include 15 

depths and 15 lags for each unit. To avoid overfitting, we applied L2-regularization to 

the model coefficients (McFarland et al., 2013), using a penalty term added to the LL 

that penalizes non-smoothness of the filter. For the LFP model, this term can be 

expressed as, 

 

𝐿𝐿!"##$!!"# = 𝜂!!"#( 𝐋!𝛼!" ! + 𝐋!𝛽!" !)+ 𝜂!!"#( 𝐋𝐛𝛼!" ! + 𝐋!𝛽!" !), (4.7) 

 

where Ld and Lb are discrete Laplacian operators with respect to the depth and 

frequency dimensions. The hyper-parameters 𝜂!!"#  and 𝜂!!"#  control smoothness 

across frequency bands and across cortical depth respectively. For the MUA filter, the 

penalty term is similarly expressed as, 

 

𝐿𝐿!!""#!
!"# = 𝜂!

!"# 𝐋!𝑘!" ! + 𝜂!
!"# 𝐋!𝑘!" ! (4.8) 

 

The hyper-parameters 𝜂!!"#, 𝜂!!"#,  𝜂!
!"#, and 𝜂!

!"# were adjusted using a nested cross-

validation scheme, where 20% of the fitting data were randomly selected and 

reserved during optimization of the LFP filter. The regularization parameters that 

gave the best performance on the reserved data were used to evaluate performance in 
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the cross-validation data (which thus was neither used to fit model coefficients, nor 

the hyperparameters). 

 

4.2.5.4 Model Evaluation on Repeat Trials 
 
Data recorded with repeated stimuli to were used to calculate predictions of the 

stimulus-driven response and the non-stimulus locked response separately. The 

generating signal of the model was decomposed into a stimulus-locked component 

and a (zero-mean) trial-variable component, 𝑔 ! = 𝑔!"#$ + 𝑔!"#
(!) . We then used either 

the stimulus-locked component 𝑔!"#$  or the residual component 𝑔!"#
(!)  to predict 

responses on the repeat trials. Because overall gain and offset of the spiking 

nonlinearity often drifts over long periods, we refit these two parameters from the 

overall model (fit using long continuous stimuli) using the odd repeat trials. We thus 

excluded the odd repeats from cross-validation, and used only the even repeated trials 

to measure model performance.  

4.2.6 Predicting Choice Probability of MT neurons 

Choice probabilities (CPs) of single MT neurons were calculated on trials with no 

stimulus presented (0% contrast condition), using standard procedures(Britten et al., 

1996). The Receiver Operating Characteristic (ROC) curve was computed using spike 

counts over 100-200 ms after (expected) stimulus onset throughout, except in Figure 

6B where we measured CP over time with a 100 ms sliding window. The area under 

the ROC curve is the choice probability of the neuron. We only used neurons in this 

analysis that showed clear direction-selective motion response (n=79).  
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Predicted CPs were calculated based on the model-predicted response on every zero-

contrast trial. [Note that models were not fit to the zero-contrast trials, and thus these 

represent cross-validated tests.]  

 

4.2.7 Statistical Analyses 

We used robust statistics when comparing performances of different models as the 

log-likelihood were often not normally distributed. Paired comparisons of group 

medians were performed with two-sided Wilcoxon signed rank tests. The variability 

of medians was estimated using bootstrapping techniques (random sampling with 

replacement with 1000 repetitions). Normality of the measured and predicted choice 

probability was confirmed with the One-sample Kolmogorov-Smirnov test, and 

correlations between measured and predicted choice probability were computed using 

Pearson’s product-moment correlation coefficient. Significance of correlation is 

computed by transforming the correlation to create a t statistic having n-2 degrees of 

freedom. Significance of the difference between two correlation coefficients was 

computed using the Fisher r-to-z transformation. 

 

4.2.8 Analysis of the impact of microsaccade on choice probability 

The effect of microsaccades on stimulus processing models during the continuous 

optic flow stimulus was minor, as previously analyzed and reported (Cui et al., 

2013b). However, previous work has demonstrated a link between microsaccades and 

choice probability (Herrington et al., 2009), which we further investigated. In the task 

of the previous study, choice probability was measured in the context of a “zero-
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coherence” stimulus (Britten et al., 1996), and microsaccade induced different effects 

on neural firing rates depending on their direction due to the presence of a stimulus. 

Such effects were not expected in our task, due to the absence of a stimulus in the 

context of computing choice probabilities, but verified this through the following 

analyses. 

 

Microsaccades were detected using an established algorithm (Engbert and 

Mergenthaler, 2006). Across the 22 behavior experiment sessions, the average 

microsaccade frequency was 1.71±0.57 Hz for the zero-contrast conditions 

(calculated from 100 ms prior to the [expected] motion stimulus onset time, to 250 ms 

after the stimulus onset). The frequency of microsaccades was comparable to that 

seen in other studies (Martinez-Conde et al., 2013). We measured the microsaccade-

triggered average neural response as a function of direction in the zero-contrast trials, 

and – as expected – did not observe any direction-selective bias. Moreover, we did 

not observe a difference in the microsaccade rate between the preferred- and null-

choice trials in any of the experiments sessions (p>0.05, 𝜒2 test), meaning that 

microsaccade frequency also could not explain choice probability. Therefore, we 

concluded that microsaccades do not contribute to choice probability in this study. 

 

4.3 Results 

4.3.1 Response variability of MT neurons 

We presented a naturalistic optic flow stimulus (Fig. 4-1A, top), while recording from 

neurons in area MT in macaques during a passive fixation task. This stimulus robustly 
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modulates MT neuron firing rates (bottom), permitting a thorough characterization of 

neuronal selectivity to visual motion (Cui et al., 2013b). As a result, a sophisticated 

stimulus-processing model (Fig. 4-1B) captured a sizeable fraction of the neuron’s 

firing rate response (Fig. 4-1A), as reflected by the predictive power (PP), a measure 

of model performance corresponding to the fraction of stimulus-locked (i.e., firing 

rate) response predicted by the model (Sahani and Linden, 2003). We found a mean 

predictive power of 29.6%±2.7% (n=86), comparable to the performance of other 

models of stimulus processing in visual cortex (David and Gallant, 2005; Nishimoto 

and Gallant, 2011). 

 

However, the fraction of the total response explained by this and previous models is 

in fact much lower, because, by construction, stimulus-processing models cannot 

capture elements of the response that are not stimulus-locked. Across the population, 

we observed a range of trial-to-trial variability, with some neurons showing a great 

deal of stimulus-locked activity, as evidenced by the highly repeatable responses to 

identical stimuli (Fig. 4-1C, right), and other neurons showing much more variability 

(left).  

 

To estimate what fraction of the total response could not be explained from the 

stimulus alone, we partitioned the neuron’s response to repeated presentations of the 

same stimulus into a stimulus-locked component, and a trial-variable component. The 

fraction of MT neuron response power that was stimulus-locked was calculated as the 

ratio of the variance in the PSTH to the total response power, after correcting both for 
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sampling noise and spike history effects (Czanner et al., 2008). We found that there 

was a broad range in the amount of stimulus-locked modulation (Fig. 4-1D), with a 

mean of 51.0%±27.8%. By comparison, a similar analysis of data recorded in the 

LGN of anesthetized cats to natural movies showed that 87.0%±13.7% (n=52) of the 

firing rate modulation was stimulus locked. This is consistent with previous 

observations that the amount of variability grows through successive levels of visual 

processing (Kara et al., 2000), and suggests that stimulus-processing models cannot 

describe more than half of MT neuron activity.  

 

 

Figure 4-1 Response variability of MT neurons.  
A. The responses of two MT neurons to repeated presentations of a continuously 
varying optic flow stimulus, with four example frames from a section of the repeated 
stimulus segment (top). The peristimulus time histograms (PSTHs, bottom, black) are 
compared to the firing rate prediction of the stimulus-processing model (red), labeled 
with the fraction of stimulus-locked response explained by the model (predictive 
power, PP). B. Model schematic illustrating the main components of the stimulus 
processing model: the stimulus composed is first processed locally by direction- and 
speed selective local subunits, and then gets pooled across space separately by 
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excitatory (Exc, left), direction-selective suppressive (DS-Sup, middle) and non-
selective suppressive (NS-Sup, right) components. Red and blue arrows (left) indicate 
direction selectivity for the Exc and DS-Sup terms. Finally, a spiking nonlinearity is 
applied on this signal to transform it into a firing rate prediction (bottom). C. Spike 
rasters of the same neurons as in A, from which the PSTH is generated. The shaded 
areas mark where data excluded from analysis due to periods when eye position was 
outside the 2° fixation window. D. The distribution of stimulus-locked rate variation 
across MT neurons (n=86, mean=51.0%±3.0%) The black arrows indicate the 
location of the two example neurons in (A) (stimulus-locked variance = 16.5% and 
96.4%). 

 

 

Figure 4-2 The amount of stimulus-locked firing rate modulation. 
A. Spike raster (top) showing the responses of an example MT neuron to repeated 
presentations of a continuous optic flow stimulus, with the resulting PSTH (bottom, 
blue) compared with the firing rate predicted by the model described here (red). B. 
Spike raster and PSTHs of an example LGN neuron responding to a natural movie 
stimulus, displayed as in (A). We analyze an LGN dataset recorded from anesthetized 
cat – where little trial-variable firing rates are expected, in order to validate the 
methods described here (and for comparison). C. To address how much of each 
neuron’s response is stimulus-locked, we calculated the ratio of the variance of the 
PSTH to the total variance of the spike-count within each trial, using 25 ms bins. The 
resulting distributions of stimulus-locked variance across neurons for each data set 
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are shown for MT neurons (left, 10.2%±1.0%, n=86) and for LGN neurons (right, 
mean=52.4%±2.5%, n=52). Note that although LGN neuron response are highly 
reliable across repeats, there is still a large fraction of trial-variable spike count 
variance, which is likely due to sampling noise. D. To estimate the amount of this 
sampling noise, we construct a model that explicitly fits the firing rate over time in 
the context of a “spike-history term”, both of which are fit in the context of a 
generalized linear model (model schematic shown). The spike-history term models 
the effect of a spike on subsequent firing rate (lower inset, red). The model is used to 
generate spike counts in each bin that are consistent with the observed stimulus-
locked firing rate – which is the same on every trial – and effect of spike history. 
Because the variances of independent processes are additive (i.e., variance of 
stimulus-locked and trial-variable responses), the additional variance in the observed 
response is what we call the trial-variable firing rate modulation. E. The fraction of 
stimulus-locked rate variation is then given by the ratio of the adjusted stimulus-
locked variance to the total firing rate modulation (that includes both stimulus-locked 
and trial-variable components), and is shown for the population of neurons in MT 
(left, mean=52.7%±3.1%, n=86) and LGN (right, mean=87.0%±1.9%, n=52). 
 

4.3.2 Using network activity to predict MT neuron responses 

In considering such a magnitude of response variability, a fundamental question is 

whether it can be related to any other experimental, or otherwise observable, 

variables. One possibility is that response variability might reflect ongoing activity in 

the cortical network that is coordinated within and/or between cortical areas (Arieli et 

al., 1996; Masquelier, 2013). Such coordinated network activity can often be detected 

in the LFPs (Banerjee et al., 2012). Different frequency bands of the LFP are thought 

to represent unique aspects of network dynamics (Buzsaki and Draguhn, 2004), and 

can be further resolved using LFP profiles across depth (de Cheveigne et al., 2013; 

Schroeder and Lakatos, 2009) (Fig. 4-3). Furthermore, relevant components of 

network activity might also be detected in the multi-unit activity (MUA) recorded 

with multi-electrode recordings (Bair et al., 2001; Kelly et al., 2010). 
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Figure 4-3 Time-frequency analysis of the LFPs. 
Left: LFP signals and spiking activity were recorded with a 16-channel multielectrode 
array, and used as inputs to a model that predicts a given well-isolated single unit on 
the array (described below). Middle: To illustrate how each LFP was processed for 
use in the model, we show an LFP segment band-passed in the gamma (30-70 Hz), 
alpha (8-12 Hz) and delta (1-4 Hz) bands. Right: To process each LFP into input to 
our model, we use a continuous wavelet transform on the LFP signal to dissociate the 
LFP signal into amplitude and phase in each band. To demonstrate how phase relates 
to a given band-passed signal, the delta phase is shown below the delta-band-filtered 
LFP (bottom middle), with times that phase is 180° (blue arrows) corresponding to 
dips in the band-passed signal. 
 
 
In order to examine the relationship between response variability and ongoing 

network activity, we extended our previously developed stimulus-processing model to 

incorporate network components derived from LFPs and MUA (Fig. 4-4A), recorded 

across cortical depth with linear multielectrode arrays (Fig. 4-3). The LFP component 

of the model was composed of a relative weight and preferred phase (Fig. 4-4B) for 

each frequency band and channel (Fig. 4-3), and the MUA component of the model 

used a temporal filter that weighted past MUA activity from each electrode (Fig. 4-

4C). Model parameters of all three components were estimated using a maximum-

likelihood framework (see Methods). By simultaneously fitting all three types of 

model components, this approach automatically accounts for the strong correlations 

between the various model inputs, assigning weights to those elements that best 

explain the MT neuron response.  
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We found that inclusion of the network inputs into the model dramatically improved 

the model performance in explaining the observed MT spike trains, compared to the 

stimulus-processing model alone (LLx improvement = 64.0%±14.0%, p<10-11, 

Wilcoxon signed rank test), which is more than double the performance improvement 

achieved by the sophisticated stimulus processing model in our previous study (Cui et 

al., 2013b). Much of this model improvement was due to inclusion of the LFP 

recorded on the same channel as the recorded unit (LLx improvement = 30.8%±4.5%, 

n=71, p<10-11, Wilcoxon signed rank test), which we verified using separate set of 

recordings with single electrodes (LLx improvement = 37.8%±10.3%, n=63, p<10-10, 

Wilcoxon signed rank test). The full model performance was achieved by including 

LFPs from other channels (LLx improvement = 12.5%±4.8%), and furthermore using 

MUA (LLx improvement = 4.2%±1.6%) (Fig. 4-4D). In order to ensure that the 

improvement in model performance was not due to contamination of the LFPs or the 

MUAs by spike waveforms, we used a robust spike-removal algorithm to subtract 

spikes from the LFP signal (see Methods) and excluded MUA on the same electrode. 

We also validated the LFP components of our models using the LFP signal from a 

different recording channel (Zanos et al., 2012) (Fig. 4-4-5). 

 

To examine which frequency bands in the LFP were important in predicting spiking 

responses, we measured the impact of removing individual frequency bands on model 

performance. This analysis revealed that a broad range of frequency bands were 

predictive of spiking responses (Fig. 4-4E), with large contributions coming from the 
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delta band (1-4 Hz), the beta band (12-30 Hz) and the gamma band (30-70 Hz range). 

Across the population, MT neurons had very consistent preferred phases of the local 

LFP signal (Fig. 4-4F).  

 

While there were a variety of weight profiles across the range of depths spanned by 

the electrode array, LFP weights in a given band were often concentrated at a 

particular depth relative to the channel from which the spikes were obtained (Fig. 4-

4B). The gamma band modulation usually originated at the same depth as the 

recorded neuron relative to other frequency bands while delta band modulation 

tended to originate from more superficial depths. In contrast, the model weights on 

the MUA did not exhibit this rich structure across depth, and weighted nearby 

neurons most strongly (Fig. 4-4C).  
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Figure 4-4 Predicting MT responses from the stimulus and inferred network 
activity. 
A. Schematic of the full MT model, which includes a stimulus-processing component 
(from Fig. 4-1), and two network-based components: using information from LFPs 
and multi-unit activity (MUA). B. There is a diverse array of LFP components, shown 
for six examples, with the red arrow designating the depth of the unit being modeled. 
Model weights (left) and preferred phases (right) are displayed as a function of both 
frequency bands (horizontal axis) and cortical depth (vertical axis). Phase values are 
depicted by hue, with the color brightness representing the corresponding weights in 
order to emphasize bands and depths that are most important. C. Top: example MUA 
model component, showing weights on MUA as a function of time lag (horizontal 
axis) and depth (vertical axis), for the same neuron as the upper-left example in (B). 
Bottom: Average of all MUA model components across population of recorded 
neurons. D. Contribution to model performance of adding the network components, 
using the log-likelihood relative to the full model based on cross-validation data 
(normalized LLx). E. To gauge what frequency bands were important for the LFP, we 
measured the decrease of model performance relative to the full model after removal 
of different frequency bands across neurons (n=71). F. The consistency across 
neurons of phase preferences in each LFP band is demonstrated by two-dimensional 
histograms of each neuron’s preferred phase in each frequency band (n=134; note this 
includes recordings with both single-electrode and multi-electrode array). 
 

A

+

g
stim

g
LFP

g
MUA

P
re

fe
rr

e
d

 p
h

a
s
e

 (
d

e
g

)

N
u

m
b

e
r o

f c
e

lls

 Frequency (Hz) 

1 2 5 10 20 40 70

360

270

180

90

0 0

20

40

Firing rate

C
h

a
n

n
e

l 
#

C

B

0 360
Preferred phase (deg)

Weights Preferred phase

C
h

a
n

n
e

l 
#

E
5

10

15

10

5

15

10

5

15

0.010.00
Relative weight

 Frequency (Hz) 

F

N
o

rm
a

liz
e

d
 w

e
ig

h
t

80

90

100

<4 �ï
�

�ï
��

��
ï�
�

>3
0

D

0

20

40

60

80

100

S
tim

S
tim

+
L
F
P

S
tim

+
m

u
lti
L
F
P

F
u
ll

 N
o

rm
a

li
z
e

d
 L
L x

 (
%

)

p<10-12 p<10-7p<10-6

Stim LFP MUA

Frequency (Hz)

1 2 5 10 20 40701 2 5 10 20 4070
Frequency (Hz)

1 2 5 10 20 40701 2 5 10 20 4070
Frequency (Hz)

1 2 5 10 20 40701 2 5 10 20 4070

C
h

a
n

n
e

l 
#

1800.02

 Time (ms) �5
HO
DW
LY
H�
'
HS
WK
��ȝ

P
�

ï�� ï�� ï��

ï���

0

400

0.00

0.04

0.08

0.12

N
o

rm
a

liz
e

d
 w

e
ig

h
t

1

0.20

0.10

0.00

-0.10

Example

Population Average

ï�� ï�� ï��
 Time (ms) 

+

 N
o

rm
a

li
z
e

d
 L
L x

 (
%

)



 

 134 
 

 

Figure 4-5 Predictions of MT neuron responses are similar between same and 
neighboring electrodes. 
To provide additional evidence that the LFP model components were not simply 
using residual elements of the neuron’s own spiking response, for multi-electrode 
array recordings (n=71), we compared models fit using the same electrode that is used 
for recording spikes (top) versus a neighboring electrode 100 µm away (bottom). Note 
that we expect they will have relatively similar LFPs, but any residual artifacts from 
the single unit spikes will be either gone or at least radically diminished. 
Nevertheless, LFP model weights, preferred phases, and overall performance are 
comparable. A. Cross-validated model performance for stimulus processing models 
and models with LFP signals. There is a highly significant improvement in model 
performance in both cases (p<10-22 for the same electrode, p<10-12 for using a 
different electrode, Wilcoxon signed rank test, n=71). B. Normalized LFP model 
component weights across frequency bands. These are comparable weights overall, 
although the weights in the gamma band were slightly smaller for the model based on 
a different electrode. C. Distribution of the preferred phase across frequency. There 
was no noticeable difference in the preferred distribution across the two conditions. 
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6A). By construction, the stimulus-dependent component of the model had the same 

output on every trial. In contrast, the output of the LFP component had very few 

stimulus-locked features, suggesting that it mainly contributed to trial-variable 

components of the spiking response. Finally, the MUA model component typically 

had both stimulus-locked and trial-variable components, with clear similarities to 

both the stimulus-dependent and LFP component outputs. 

 

To gauge the contribution of each component to model performance, we separated the 

stimulus-locked and trial-variable components of the full model prediction, and 

computed how much each contributed to the likelihood improvement over the 

stimulus-processing model alone (Fig. 4-6B, left). This revealed that the bulk of the 

model improvement gained from adding the network components was attributable to 

ability to better predict trial-variable firing rate, with only a small contribution to 

improvement in predicting the stimulus-locked response. The performance 

improvement of the full model was largely a result of the LFP component, since the 

omission of the MUA term only reduced this contribution slightly (Fig. 4-6B, 

middle). In contrast, the absence of the LFP model component lead to a large decrease 

in the ability to predict trial-variable responses, even with the MUA term present 

(Fig. 4-6B, right). This suggests that – although some information about both the 

stimulus-locked and trial variable response is present in the activity of neighboring 

neurons – such information does not contribute significantly in the presence of 

effective stimulus-processing and LFP model components.  
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Because the contributions of the LFP component were almost entirely trial-variable, 

we expected that the LFP component of the model would increase model performance 

even when the stimulus model was perfect. We tested this using a subset of 

recordings that had enough repeated stimulus presentations to directly fits the 

stimulus-locked rate (see Methods), and thus perfectly predicts the entire stimulus-

locked response (Haslinger et al., 2012). Indeed, the addition of an LFP component to 

this “perfect” stimulus-processing model lead to a comparable level of improvement 

over the stimulus model (Fig. 4-4-7), suggesting that the LFP model was indeed 

capturing the trial-variable fluctuations in firing rate not accessible to even the best 

possible predictions of the stimulus response. 

 

 

Figure 4-6 Network inputs predict trial-to-trial variability. 
A. Spike raster across repeated trials (left), and the output of the three model 
components across repeated trials of the same motion stimulus (right). The stimulus 
component output is identical across trials; the output of the LFP-dependent term is 
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highly variable across trials, and the MUA component has both stimulus-locked and 
trial-variable elements. B. The fractional contribution to model performance of each 
network input (i.e., fraction of LLx improvement between the stimulus-processing 
model to the full model), divided into the stimulus-locked and trial-variable parts of 
the response predicted by the model. The trial-variable component accounts for most 
of the model improvement of the full model (left). Removal of the MUA component 
from the full model only reduced this contribution slightly (middle), whereas the 
absence of the LFP signal leads to a large decrease of the trial-variable component’s 
contribution (right). C. Neurons that had more trial-to-trial variability had larger 
model improvements (R=-0.57, p<10-6, n=71). 
 
 

 

Figure 4-7 Additional evidence that the LFP component improves the 
predictions of trial-variable firing rate. 
For neurons recorded with repeated presentations of the same stimulus (n=86), we 
could use a “perfect” prediction of the stimulus-locked term based on the observed 
PSTH, to verify that the improvements from the LFP component of the model indeed 
predicts trial-variable responses. In other words, if the stimulus-locked response is 
perfectly predicted, any additional model improvements must be in accurate 
prediction of trial-to-trial variability. The LFP model component for each neuron was 
fit as previously described, and then applied to the LFPs during each trial of the 
repeated stimulus, resulting in a the LFP model output gLFP(t). We used half of the 
repeat trials (odd-numbered trials) to fit an optimal gain (multiplier on gLFP) and 
offset to augment the firing rate that matches the PSTH, and then cross-validated on 
the other half of the trials (even-numbered), We found that inclusion of the LFP 
signal yielded a significant improvement of the cross-validated likelihood (LLx 
improvement = 30.9±4.8%, p<10-12, Wilcoxon signed rank test, n=86), measured on 
trials not used for refitting gain and offsets (even trials). Because all the stimulus-
locked response is captured by the stimulus-processing term, the inclusion of the LFP 
component must be contributing to the prediction of the trial-variable response. 
 
 
Overall, these results suggest that much of the trial-variable response in MT neurons 
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result of network inputs. Indeed, the improvement in model performance gained by 

including the LFP component was more substantial for cells that had more trial-to-

trial variability (i.e., smaller percentages of stimulus-locked power) (Fig. 4-6C). This 

suggests that neurons with large trial-to-trial variations – rather than being unreliable 

– are simply more driven by network activity, and obtaining an accurate picture of 

their function requires taking such influences into account. 

 

4.3.4 Predicting choice probability of MT neurons 

Trial-to-trial fluctuations in MT neuron firing rates have also been studied in the 

context of motion discrimination tasks, and trial-variable MT neuron activity has 

famously been shown to correlate with perceptual decisions (Britten et al., 1996; 

Nienborg et al., 2012). We hypothesized that such choice-related variability can be 

inferred from the LFP signals in the same way as during the simple fixation task 

described above, leading to a network-level explanation of the link between MT 

neuron activity and behavior. To test this idea, we recorded from MT neurons during 

a simple two-alternative forced choice motion discrimination task.  

 

In our task, the subject was required to maintain fixation during brief presentation of 

a moving Gabor patch stimulus, and subsequently to saccade to one of two targets 

designating the perceived motion direction (Fig. 4-8A). On each trial, stimulus 

motion was either in the neuron’s preferred direction, or in the opposite “null” 

direction. We controlled task difficulty by adjusting the contrast of the Gabor patch, 

and in a subset of trials used zero contrast (i.e., no stimulus present), with a reward 
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being given on 50% of trials randomly. Typical performance was near chance at 

contrast levels <4%, and increased to about 85% at the highest contrast (Fig. 4-8B).  

 

As with the passive fixation task considered above, we used a model that used both 

the stimulus and LFP to predict neuron responses. For the stimulus-processing 

component of the model, we simply used time-varying rate fit to explain the observed 

PSTH (see Methods), which was fit simultaneously with the LFP component using all 

trials other than the zero contrast condition. The resulting LFP component of the 

models strongly resembled those fit with the continuous optic flow stimulus, and lead 

to a similarly large improvement in model performance over the model that used the 

stimulus-processing component alone (Fig. 4-4-9).  

 

 

Figure 4-8 Motion discrimination task. 
A. A given trial of the motion discrimination task began with the onset of the fixation 
dot. After 300 ms of continued fixation, a Gabor patch moving in one of two 
directions was presented for 50 ms at the location of the MT receptive fields. The two 
possible motion directions were either in the preferred or null direction of the 
recorded group of neurons on the array. After maintaining fixation for 200 ms from 
the stimulus presentation, the subject reported the perceived motion direction through 
a saccade to one of the two choice targets. The subject was required to make a 
saccade to the correct target within 700 ms after stimulus onset in order to receive a 
reward. B. Performance as a function of contrast of the Gabor patch on the motion 
discrimination task. The subjects’ performance was at chance level when the contrast 
of the Gabor patch is low (<4%) and increased to about 85% at the highest contrast 
level. 
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Figure 4-9 Models of MT neurons in the context of the motion discrimination 
task. 
A. The stimulus-processing model component for the motion discrimination task is 
composed of firing rates for preferred (red) and null (blue) stimuli (left), and contrast 
dependent multipliers (right) that scale the firing rate to each contrast condition. All 
parameters (preferred and null firing rate at 10 ms resolution, and gains) are fit along 
with LFP model components. The model accurately captured average response to the 
motion stimuli in the preferred and null direction (left), and overall captured 
0.93±0.01 of the stimulus-locked response. (B,C) LFP model components for the 
motion discrimination task (top) and passive fixation task (bottom) are very similar. 
B. Normalized LFP component weights across frequency for single-electrode LFP 
models (n=79). We considered single-electrode models here because they are less 
dependent on the relative depth of the electrode array (since they only use local 
signals), and thus yield a more fine-grained comparison across different recordings. 
C. Distribution of the preferred phases across frequency band for the same models. D. 
Cross-validated model performance for all models fit to the neurons in the motion 
discrimination task. The LLx is that compared for models with stimulus processing 
alone (Stim), stimulus processing and single electrode LFP model components 
(Stim+LFP), and stimulus-processing and full LFP model components 
(Stim+multiLFP). As with the passive fixation task, the inclusion of the LFP model 
components significantly improved model performance (LLx improvement = 
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29.8%±5.2%, p<10-13, Wilcoxon signed rank test), and inclusion of LFP signal at 
other depths further improved model performance (LLx improvement = 16.5%±3.7%, 
p<10-12, Wilcoxon signed rank test). The magnitude of performance improvement is 
comparable to the passive conditions (Fig. 4-4D). 
 

The correlation between neuron firing rates and decision in the presence of an 

ambiguous (or absent) stimulus is commonly measured using “choice probability” 

(CP), which reflects how well an ideal observer can predict the subject’s choice using 

a given neuron’s response(Nienborg et al., 2012). We calculated CPs with a 100 ms 

sliding window on trials in which no stimulus was present. While there was no 

change in firing rate during the expected stimulus onset time (Fig. 4-10B, top), we 

observed an increase in the mean choice probability over the typical response window 

(bottom), suggesting that trial-to-trial fluctuations in firing rate over this brief time 

window were correlated with the decision. 

 

We thus used this window for subsequent analyses. Similar to previous 

studies(Britten et al., 1996), we found a range of choice probabilities exhibited by 

individual MT neurons (Fig. 4-10C, top). On a neuron-by-neuron basis, the LFP 

model gave a remarkably good prediction of each neuron’s CP (bottom, R=0.53, 

p<1×10-5, n=79), meaning that the trial-to-trial differences in the LFP can predict 

fluctuations in each neuron’s firing rate that are correlated with the perceptual 

decision. Thus, this shows that elements of the LFP signals are predictive of 

perceptual decisions.  
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Figure 4-10 Prediction of choice probability (CP) of MT neurons 
A. The average firing rate in response to the motion stimulus at the preferred (‘P’, 
solid) and null (‘N’, dashed) directions (n=79). Firing rate was normalized by the 
overall mean firing rate for each neuron. Shaded regions show the standard error of 
the mean across neurons. B. The average firing rate (top) and CP (bottom) on the 
zero-contrast trials (n=79). Significant CP was observed at the typical response 
window for trials with a stimulus (* p<0.05, ** p<0.01, t-test), despite the absence of 
a stimulus in the zero-contrast trials. C. The measured CP for each neuron (horizontal 
axis) compared to that predicted by the full model (vertical axis), demonstrating 
strong correlation CP (R=0.53, p<5×10-7, n=79). Each dot represents an individual 
cell. A histogram of measured CP is shown on the top (mean=0.52, n=79, p=0.032, t-
test).  
 
 

To determine which bands of the LFP contained choice-related information, we 

refitted the models with certain frequency bands omitted, and measured the impact on 

model performance. As with the LFP model components fit in the passive fixation 

task (Fig. 4-4E), removal of delta, beta and gamma bands had a large impact on cross-

validated model performance (Fig. 4-11A). However, only the delta band was critical 

for predicting CP: removing the delta band significantly reduced the correlation 

coefficient between the measured and predicted CP (p<0.0013, two-tailed z-test, Fig. 

4-11B). 
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To understand how the activity in the delta band could be used to predict CP, we 

compared the distributions of delta phase between trials at zero contrast in which the 

subject chose the preferred versus null motion direction (Fig. 4-11C). While these two 

distributions varied from experiment to experiment, in many cases they were clearly 

distinct from one another. Indeed, the delta band phases were more predictive of 

decisions than single neuron spiking activity (Fig. 4-11D, bottom, paired t-test, p<10-

11), and the choice-related signals in firing rates and delta phases were correlated 

across neurons (Fig. 4-11D, top, R=0.39, p<0.001). 

 

How does delta band phase relate to CP in single neurons? For an example neuron 

with CP>0.5 (Fig. 4-11C, top), the delta phases on preferred trials were typically 

closer to the optimal delta phase of spiking as inferred from the LFP model fits, 

suggesting that output from the delta-band would result in elevated firing rate 

throughout the relevant time window for trials that the stimulus moved in the 

preferred direction. In contrast, for another neuron with CP<0.5 (Fig. 4-11C, middle), 

the delta phases on the null trials were closer to its optimal delta phase, and thus 

firing rates were lower for choices in the preferred direction. Finally, for a third 

example neuron with CP very close to 0.5, the distributions of delta phases were very 

similar on preferred trials and null trials (Fig. 4-11C, bottom). The link between delta 

band and CP in this case clearly relates to the time scale of the delta band itself (1-4 

Hz). Delta band phase is slowly changing relative to the 100 ms counting window, 

meaning that the phase differences associated with preferred and null choices will 
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produce consistent firing rate modulation throughout the window, and thus a 

correlation with CP.  

 

The observed CP can thus be predicted knowing each neuron’s optimal phase in the 

delta band ϕ0, and the locations of the means of the observed choice-related phase 

distributions for choices in the preferred and null directions (ϕpref and ϕnull). The 

relative distances between ϕ0 and ϕpref versus ϕnull was indeed correlated with each 

neuron’s observed CP (R = 0.37, p<0.001, Fig. 4-11E), with the quality of its 

prediction of CP nearly that derived from the full model. As expected, this predictor 

was valid using delta phase distributions for a range of times throughout the trial (Fig. 

4-11F). Thus, this analysis demonstrates a clear link between the choice probability of 

MT neurons and network activity in the delta band, suggesting both salient network 

signatures of perception- and/or behavior-related modulation of neuron firing, and 

methods to uncover them. 
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Figure 4-11 Choice probability (CP) of neurons predicted by delta band phase. 
A. The contribution of different frequency bands to model performance for the 
motion discrimination task (n = 79), computed in the same way as for the passive 
fixation task (Fig. 4-4E). B. Correlation between predicted and measured CP (e.g., 
Fig. 4-6C) after removal of each frequency band from the model. Only removal of 
delta band affects prediction of CP (p<0.005, two-tailed test),. C. Histograms of the 
delta band phase measured 125 ms after the expected stimulus onset time for zero-
contrast trials that the subject selected the preferred direction (red) versus the null 
direction (blue). The phase preference (dashed line) for three example neurons 
demonstrates why one neuron had a CP>0.5 (top), the other had a CP<0.5 (middle) 
and a third neuron had CP very close to 0.5 (bottom). D. The magnitudes of CP 
calculated using spike counts (horizontal axis) were compared with CP calculated 
from the delta band phase (vertical axis). Delta band phase is more predictive of 
choice than spikes (paired t-test, p<10-11). E. Each neuron’s CP can be predicted 
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using its preferred delta band phase ϕ0 relative to the distributions of delta phases 
shown in (C). Comparison between the predicted CP using a simple metric (see 
vertical axis) and observed CP reveals a significant correlation (R = 0.37, p<0.005). 
F. Delta band phase reliably predicts CP over a range of times in the trial (*, p<0.05). 
Green line shows time of optimal prediction (125 ms), used for delta phase 
measurements in other parts of this Figure. 
 

4.4 Discussion 

While sensory neurons are typically studied with respect to their average responses to 

sensory stimuli, responses in the cortex can be highly variable across repeats of the 

same stimulus (Ermentrout et al., 2008; Goris et al., 2014; Masquelier, 2013). 

Variability can be indicative of noise that is disruptive to cortical function(Faisal et 

al., 2008), as well as unexplored aspects of cortical function that are not stimulus-

locked (Reynolds and Chelazzi, 2004). Central to the question of function is how 

such variability is related to system-level activity, and whether it can be related to 

cognitive processes or behavior. We estimated that, on average, roughly half of the 

total rate modulation in neuronal responses in area MT is variable across trials, and 

showed that much of this variability can be predicted by incorporating network 

activity inferred from LFP recordings. Furthermore, we found that the relationship 

between MT neuron firing and network activity was relatively consistent across tasks, 

and could be used to predict the relationship between MT neuron activity and choice 

in a motion discrimination task. 

 

In order to discover these relationships, we constructed a model that explained MT 

neuron responses using the stimulus, the LFP, and MUA. While all three signals are 

in principle correlated, the modeling framework only assigned weights to the signals 
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that could best predict MT neuron spikes. Thus, due to the effective stimulus-

processing component of the model, the LFP component specifically identified 

contributions to MT neuron firing that were not stimulus-locked, and thus largely 

contributed to predicting variability. It also implicitly singled out particular frequency 

bands and depths that were most important at making these predictions. In contrast, 

given the LFP and stimulus-processing components, MUA from neighboring neurons 

did not contribute significantly to stimulus-locked or trial-variable predictions, even 

though there are raw correlations between all three signals(Burns et al., 2010). Thus, 

the modeling framework allowed us to isolate specific components of these signals 

that contributed to the trial-variable component of neural responses, ultimately 

allowing us to probe its relation to behavior during the motion discrimination task.  

 

4.4.1 Relationships between LFPs, network activity, and cognitive processes 

A fundamental barrier to the investigation of network influences on cortical activity is 

the difficulty in estimating a given cortical neuron’s inputs, which will often come 

from a combination of nearby cortical neurons and those projecting from other brain 

areas. Here, we used recorded LFPs to infer the presence of network inputs relevant 

to recorded cortical neurons, following recent work (Ecker et al., 2014; Haslinger et 

al., 2012; Kelly et al., 2010). While LFPs have numerous sources, they are strongly 

influenced by synchronous synaptic inputs, and as a result can reflect inputs from 

other areas that are not necessarily reflected in local spiking activity (Buzsaki and 

Draguhn, 2004; Einevoll et al., 2013; Khawaja et al., 2009). We analyzed LFPs in the 

frequency domain, because different sources contributing to the LFP will often be 
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overlapping in time but exhibit dynamics on different time-scales (Buzsaki and 

Draguhn, 2004). Furthermore, particular oscillation frequencies have been attributed 

to the activation of different cortical microcircuits, which can have distinctive 

signatures as a function of depth within the cortical column (de Cheveigne et al., 

2013; Schroeder and Lakatos, 2009; Xing et al., 2009). The LFP components of our 

model thus use separate cues available across frequency and depth to best infer the 

components of network activity relevant to a given cortical neuron.  

 

The presence of power in different frequency bands in both LFP and EEG recordings 

has been associated with a variety of processes related to cognitive states, as well as 

behavioral and task-related variables (Buzsaki and Draguhn, 2004; Fries, 2005). In 

this work, we identify frequency bands of the LFP that are relevant for predicting 

neural activity that is not explained by stimulus processing. This analysis goes well 

beyond simple analyses of spike-LFP coupling such as coherence and phase-locking 

(Fries, 2005), in that it is not confounded by correlations such as those between the 

stimulus, other neuron activity, and LFPs, nor correlations across frequency bands 

within the LFP. As a result, our models typically focused on a small subset of 

frequency bands and recorded depths (relative to measures of spike-LFP coherence), 

and largely capture elements of the LFPs that are specifically predictive of the trial-

variable component of the neurons’ responses.  

 

Furthermore, we found that coupling between network activity and MT neuron firing 

was consistent across the conditions tested, including passive fixation in the presence 
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of ongoing visual stimulation, a discrimination task with stimuli presented, and 

behavioral choice without visual stimulation (the zero contrast condition). This 

suggests that a given neuron’s coupling with network activity may be relatively 

constant, while fluctuations in the amount and type of network activity, as well as of 

feedforward visual stimulation, may make it appear otherwise (Tan et al., 2014). Such 

observations suggest the exciting possibility that these results reflect mechanisms by 

which other brain areas can coordinate local populations of sensory neurons for task-

specific reasons (Schroeder and Lakatos, 2009). 

 

4.4.2 Choice probability and network activity 

During tasks involving perceptual decisions, the responses of cortical neurons are 

correlated with the subject’s choice, even if the stimulus is ambiguous or absent. This 

is commonly referred to as choice probability (CP), which measures how well an 

ideal observer can predict the subject’s choice using the neuron response. The 

correlation between neuronal variability and perceptual decisions has been observed 

in a number of sensory areas (Nienborg et al., 2012). In area MT, choice-related 

variability has been found in direction, speed, and disparity discrimination tasks 

(Britten et al., 1996; Liu and Newsome, 2006; Uka and DeAngelis, 2004).  

 

The origin of CP is highly debated (Nienborg et al., 2012). Originally, it was expected 

that CP arose because the subject based its decisions on the responses of sensory 

neurons that were selective for the relevant stimuli (e.g., MT neurons for motion 

discrimination). As a result, noise in these neurons was expected to propagate up to 
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decision-making areas of the brain and is thus correlated with the behavioral outcome 

(Shadlen et al., 1996). However, other effects, such as microsaccades, can also 

contribute to the correlation between neural activity and behavior (Herrington et al., 

2009), although this is unlikely the cause for CP in this study because we used the 

zero-contrast stimulus condition to measure CP and did not observe a difference in 

the microsaccade rate between the preferred trials and null trials in any of the 

experiments (p>0.05, n=22).  

 

Recent work has called into question the directionality of causation, and suggests an 

alternative explanation where other factors could influence both the decision and the 

neural activity (Nienborg and Cumming, 2009). Our results are thus more consistent 

with this latter alternative, insofar as they link this variability related to choice to 

observable network-level activity. We cannot infer where such network influences 

arise based on this study, but by identifying their network signatures in the LFP, we 

hope to inform future work addressing the origin and functional role of such cortical 

modulation. 
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Chapter 5 : Conclusions  

In this dissertation, I have developed a set of novel statistical models to explain 

sensory neuron response properties at various stages of the mammalian visual system. 

These models incorporate knowledge of the anatomy and physiology of the 

underlying neural circuits, with individual model components directly linked to 

physiological interpretations. As a result, these models not only provide 

unprecedented accuracy in predicting the neural response, but also suggest how 

neural computation is constructed from specific elements of the underlying circuit. 

The results provide experimentally testable hypotheses and shed light on the nature of 

neural computations across the visual system.  

 

In this chapter, I summarize several important conceptual and methodological 

advances of the work presented in this dissertation. 

 

5.1 Using nonlinear hierarchical models to characterize neuron 

response 

A central hypothesis in my work is that neural computation in the sensory system 

emerges from nonlinear, hierarchical processing. Sensory processing involves 

nonlinear computations performed on the stimuli. However, characterizations of 

sensory neurons still typically rely on the assumption of linear stimulus processing 

due to the difficulty of construction and estimation of nonlinear models. Although the 

space of possible nonlinear models is unbounded, we may identify relevant types of 
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nonlinearity based on known physiological properties of neurons and anatomy of the 

neural circuits. For example, one dominant source of nonlinearity in the nervous 

system is spike generation, which results in both rectification of the inputs to the 

neuron (which is usually from other spiking neurons), as well as rectification of the 

neuron’s output (McFarland et al., 2013). Other sources of nonlinearity include spike 

refractoriness (Berry and Meister, 1998), synaptic facilitation and depression 

(Ozuysal and Baccus, 2012; Tsodyks et al., 1998) , and presynaptic suppression 

(Euler et al., 2014). The models developed in this work incorporated these nonlinear 

properties when appropriate. By doing so, the models are able to successfully 

characterize complex neural response properties, such as temporal precision of spike 

and synaptic current response (Chapter 2), and selectivity to multiple stimulus 

features (Chapter 3), which cannot be explained in linear models (as discussed in 

Chapter 1).  

 

Hierarchical processing is another important concept that is emphasized throughout 

this dissertation. The key principle of hierarchical processing is that the RFs of 

neurons at one level of the hierarchy are constructed by first pooling a large number 

of inputs from neurons at a lower level, and then processed the combined signal with 

a set of canonical nonlinear functions, most notably rectification due to spike 

generation. I incorporated the principle of hierarchical processing into the models in 

each project, utilizing knowledge of upstream processing. In Chapter 3, I assumed 

MT neurons receive inputs from a large number of V1 neurons with much smaller 

receptive fields. Each V1-like subunit is characterized with the product of a direction-
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tuning function and speed tuning function based on physiology experiments. Similar 

hierarchical models have been developed for other visual cortical areas (Lochmann et 

al., 2013; Mineault et al., 2012; Rust et al., 2006; Willmore et al., 2010).  

 

5.2 Tailored nonlinear models based on knowledge of specific neural 

circuits 

In Chapter 2, I developed a two-stage nonlinear model to characterize the underlying 

computation represented by retinal ganglion cell responses, with both processing 

stages constrained by experimental data. The first stage represents upstream 

processing at the level of inputs from bipolar cells, and is fit to the observed 

excitatory synaptic currents recorded from retinal ganglion cells. The model structure 

reflects known anatomical and physiological properties of the retinal circuit, and 

suggests that presynaptic inhibition mediated by amacrine cells as an important 

component underlying ganglion cells computation. These results thus provide a set of 

testable predictions that guide future studies.  

 

5.3 Identification of signatures of network activity related to cortical 

variability 

The first half of the dissertation focused on feedforward stimulus processing in the 

visual system (Chapters 2-3). While analyzing cortical neural responses over repeated 

presentation of the same stimulus, we noticed a large amount of variability. This was 

consistent with many previous studies, which showed that there is an increase of 
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response variability along the visual hierarchy (Scholvinck et al., 2015; Vogel et al., 

2005). Understanding the variability of cortical neuron response is an important 

problem in system neuroscience. In Chapter 4, I showed that a significant fraction of 

the cortical variability could be explained by distinct elements of the ongoing network 

activity reflected in local field potentials  (LFPs) and multi-unit activity, thus 

establishing a direct link between cortical variability and ongoing network activity. 

This LFP-modeling framework can be readily applied to other cortical areas under 

different behavior conditions, thus representing a versatile tool to study the 

relationship between neural variability and cortical network activity.  

 

5.4 Linking single neural response and network activity with 

perceptual behaviors 

In the second half of Chapter 4, I studied the relationship between simultaneously 

recorded neuron responses, network activity, and perceptual decisions, while the 

subject actively participated in a motion discrimination task. In contrast to most 

studies of the relationship between neural response and perceptual decisions, I 

included into the model framework ongoing cortical network activity, which likely 

reflects non-stimulus driven inputs to cortical neurons. By doing so, I identified a 

novel choice-related component of the network activity, and showed that the widely 

studied correlation between single neuron response and perceptual decisions (i.e., 

choice probability) could be well predicted by network activity. This result has 

profound implications for further study of choice probability.   



 

 155 
 

Glossary 

 

CP 

DS 

fMRI 

LFP 

LGN 

LL 

MID 

MT 

MST 

MUA 

NIM 

RF 

RGC 

ROC 

S1 

S2 

STA 

STC 

V1 

  
 

Choice Probability 

Direction-selective 

Functional Magnetic Resonance Imaging 

Local Field Potential 

Lateral Geniculate Nucleus 

Log-likelihood 

Maximally Informative Dimensions 

Middle Temporal Area 

Medial Superior Temporal Area 

Multi-Unit Activity 

Nonlinear Input Model  

Receptive Field 

Retinal Ganglion Cell 

Receiver Operating Characteristic 

Primary Somatosensory Cortex 

Second Somatosensory Cortex 

Spike Triggered Average 

Spike Triggered Covariance 

Primary Visual Area 
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