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This dissertation deals with the problem of short term travel time prediction. Traffic 

dynamics models and traffic measurements are in particular the tools in approaching 

this problem. Effectively, a data-driven traffic modeling approach is adopted. 

Assimilating key traffic variables (flow, density, and speed) under standard 

continuum traffic flow models is fairly straight-forward. In current practice, travel 

time (space integral of pace or inverse of speed) is obtained through trajectory 

construction methods. However, the inverse problem of estimating speeds based on 

travel times is generally under-determined. In this dissertation, appropriate dynamic 

model and solution algorithms are proposed to jointly estimate speeds and travel 

times. This model essentially paves the way to assimilate travel time data with other 

traffic measurements. The proposed travel time prediction framework takes into 

account the fact that in reality neither traffic models nor measurements are flawless. 

Therefore, optimal state estimation methods to solve the resulting state-space model 



  

in real-time are proposed. Alternative optimality criterion such as minimization of the 

variance of estimate errors and minimization of the maximum (minmax) estimate 

errors are considered. Practical considerations such as occurrence of missing data, 

delayed (out of order) arrival of measurements and their impact on solution quality 

are addressed. Proposed models and algorithms are tested on datasets provided under 

NGSIM project. 
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Chapter 1: Introduction and Motivation 

 
This dissertation deals with the problem of vehicular traffic modeling and assimilation of field 

measurements in presence of travel time data. In particular, novel travel time models are derived 

which makes the assimilation of field measured travel times and conventional traffic models 

straight-forward. The proposed travel time models make the joint estimation of speed and travel 

times possible. Using proposed models, travel times in both anticipative (predictive) and 

retrospective modes can be integrated into the estimation process. Applications of the proposed 

models in offline and real-time estimation processes are presented. Numerical experiments on 

real-world datasets are presented and discussed. 

Traditionally, local traffic state is described by density, speed, and flow measures. However, 

travel time experienced by vehicles over a distance has both spatial and temporal aspects and in 

that sense is not a local measure of traffic state. In a forward estimation setting, travel times are 

estimated by post-processing given standard traffic state (speed) estimates. Proposed methods for 

travel time estimation in essence attempt to construct vehicle trajectories based on given speeds. 

Simply put, trajectory construction methods perform numerical integration of speed domain to 

achieve travel time estimates. In general, these methods are numerically expensive. Besides, they 

are only as good as their input speed data. 

With increasing access to the field travel time measurements, it is desirable to incorporate travel 

times into the traffic estimation process. This requires development of appropriate framework 

and models to relate global travel time measures with local traffic states such as speed. 

Essentially, this is what this dissertation sets out to accomplish. The following are three major 

hypotheses that form the basis of this research.  

• There is a relationship between travel times and local speeds; or more accurately, between local 
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travel time variations and speeds. 

• Inherently, there is value in field measurements. Incorporating travel time measurements into 

traffic estimation will increase the accuracy of estimations. 

• Better estimates lead to better predictions. Travel time can be predicted more accurately when 

currently realized travel times are taken into account. 

The underlying concept pursued in this research is that in order to achieve a good prediction the 

following two ingredients: a good estimate of the current state of the system, and an accurate 

model to propagate the current state into the future are needed. Traffic dynamics models and 

traffic data are in particular the tools in approaching this problem. Effectively, the proposed 

solution to this problem is a data-driven traffic modeling approach. 

Intentionally, the framework proposed in this dissertation can accept and make use of any 

conceivable traffic data source. There are two reasons for this decision. First, each data source 

has an additional value and can potentially improve both the estimation and prediction quality. 

Second, a framework that is general enough to include all different possibilities of data 

availability is preferred because in practice it is not clear how much of each traffic data type will 

be available and how that will change over time. This would make the proposed models and 

methods more robust against changes in data availability and therefore makes it transferable. 

The remainder of this chapter is dedicated to addressing various questions about travel time, its 

value as traffic data, and its measurement and prediction. The answers to these questions serve as 

motivation for this research. Also, the proposed approach in this research and its contributions 

are summarily discussed. Finally, an overview of the other chapters included in this dissertation 

concludes this chapter. 
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1.1 Why is travel time important? 

Travel time is a crucial performance measure of any transportation system. Travel time is an 

indicator of congestion and the associated delay incurred by the system users. It also indirectly 

serves as a measure of how much fuel is being wasted in the system as well as how much 

pollutant is being released into the environment. Therefore, it is a common practice to use travel 

time as proxy for travel cost, including externalities, in most traffic studies. 

Travel time as a measure of congestion overall has been on the rise. The congestion epidemic is 

an ever-increasing problem throughout the developed and developing world. In the United 

States, in 2007 a typical peak traveler on average has experienced up to 51 hours of delay which 

indicates a nearly 20% increase compared to just a decade ago. In terms of the extra cost incurred 

by average peak travelers due to congestion, this amount of delay translates into $1,081 which is 

roughly a 60% increase over the congestion cost a decade ago (Research and Innovative 

Technology Administration 2010). 

A once popular solution to congestion problem, building extra capacity to existing road 

infrastructure is becoming more difficult. From a sustainability point of view which advocates a 

balanced approach to economy, environment and social equity we are reminded that we should 

not feed the fire of congestion solely with the fuel of added capacity. In addition, soaring land 

prices and construction costs in most congested urban areas would make it difficult to financially 

justify such widening projects. 

Figure 1 illustrates the role of different factors in creating congestion nationwide (Cambridge 

Systematics, Texas Transportation Institute 2004). It should be noted that recurrent congestion 

which is primarily due to demand levels surpassing available capacity comprises about 40 

percent of congestions (bottlenecks) overall, while non-recurrent congestion due to traffic 
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incidents, bad weather and work zones are responsible for other 50 percent altogether. This in 

fact suggests that adding capacity alone is not going to solve the congestion problem. 

 
Figure 1. The national summary of the congestion sources (Cambridge Systematics, Texas Transportation Institute 2004). 

It seems that a multipronged approach to congestion problem is more acceptable. The basic 

underlying notion in these solutions is to make a better use of existing capacities rather than 

adding new capacity to the system. To achieve this goal, road users’ decisions have to be 

informed with accurate and reliable information regarding their planned trips and its associated 

costs. This entails provision of Advanced Traveler Information Systems (ATIS) off- and en-

route. Likewise, system managers need to know what the traffic situation is and where it is 

heading in order to be able to make best decisions to optimize utilization of the existing facilities 

and to minimize the associated overall costs of system use. In this context, it is easy to recognize 

that travel time is the most essential variable that influences the decisions of both users and 

managers alike. For instance, at an operational level, it is commonly believed that road users 

consider travel time in their activity, destination, mode and route choice decisions. System 

managers, on the other hand, set traffic light timings, speed limits, ramp metering control 

parameters, and determine lane assignments, usage and pricing to minimize system wide travel 
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times. 

1.2 How is travel time measured? 

In the past it has been very difficult to measure travel time directly in the field. In order to 

measure travel time directly it is necessary to capture both spatial and temporal features of 

vehicle movements. Therefore measuring travel time is much more difficult than measuring 

cross sectional variables such as flow and time mean speed, or longitudinal variables such as 

density and space mean speed. In general, traditional methods of travel time measurement aside 

from being inaccurate for the most part are labor intensive, time consuming and therefore very 

expensive. This has been the root cause of limited travel time studies in practice in the past. 

In the past two decades, however, advent of new technologies such as Global Positioning System 

(GPS) and cell-phone tracking has led to increased accuracy and more widespread travel time 

data availability in practice to the extent that today real-time travel time data is available on all 

major highways and urban facilities nationwide at an affordable price. Currently, traffic data 

industry is a multi-billion dollar industry and growing. Apart from public sector’s interests in 

accurate travel time data for applications in performance measurement, traffic monitoring, 

management and traveler information systems, private sector has been the leading force in the 

traffic data market. Web-based mapping and travel guidance solutions pioneered by giant IT 

companies such as Yahoo! and Google, in-vehicle navigation systems marketed by TomTom and 

Garmin, and more recently by all major auto manufacturers such as General Motors, Ford, 

Lexus, and Toyota are only examples of this growing interest in traffic data and its value-added 

applications that are common-place today. 

To make things even more interesting it should be noted that in recent years, travel time data has 

become much easier to obtain. For decades, classic Automatic Vehicle Location (AVL) 
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technologies such as probe and cellphone tracking complemented by a growing number of 

Automatic Vehicle re-Identification (AVI) technologies such as Automatic License Plate 

Readers (ALPR), and Radio Frequency Identification (RFID) have been part of traffic engineers’ 

toolbox for travel time measurement. However, cost and privacy concerns associated with these 

technologies have limited these applications primarily to toll roads and certain corridors. The 

new wave of AVI technologies based on tagging consumer electronics carried inside vehicles in 

the traffic stream are more promising in this regard. Bluetooth as a short range wireless 

communication protocol has received widespread acceptance in consumer electronics devices 

such as cellphones, hands-free earpieces, navigation systems, laptops, gaming systems, cameras, 

etc. The Media Access Control (MAC) identity of each Bluetooth antenna is a unique 

hexadecimal number which potentially can serve as a proxy signature of the vehicle carrying that 

device in traffic stream. The Bluetooth MAC address is not tied to any database and therefore 

provides a high level of privacy protection for the public. Recent studies show that travel time 

samples in the order of three to five percent of hourly traffic volume can be obtained using 

Bluetooth sensors in the United States depending on the time of day and location of the highway 

(Haghani et al. 2010). Wireless traffic monitoring, such as Bluetooth and Wi-Fi, could 

potentially provide a low cost source of travel time measurements that can be spread throughout 

the road network without any serious requirements for periodic calibration or other maintenance 

concerns. Such systems are already implemented in some major metropolitan areas (Houston 

TranStar 2011). 

1.3 How is travel time estimated? 

For the most part of the 20th century, travel time has been indirectly estimated from other traffic 

variables such as volume or speed at a planning level. For instance, performance functions such 
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as well-known Bureau of Public Roads (BPR) type functions essentially establish a simple 

nonlinear relationship between hourly flow rates, nominal capacity and travel time in a highway. 

Later, Dynamic Traffic Assignment (DTA) and micro-simulation traffic models have been 

introduced in an attempt to take into account the time variability of traffic and its impacts on 

decisions made by system users. In these models travel time is implicitly obtained from the 

interaction between platoons of vehicles or individual vehicles, respectively. DTA uses 

mesoscopic traffic flow models while micro-simulations are typically based on car-following and 

lane changing models. (Transportation Network Modeling Committee 2010). 

It should be noted that despite widespread use of these models in practice to formulate and 

evaluate various policies, designs and planned improvements still they are not accurate enough to 

closely reproduce any of operational level traffic measures including travel time. 

1.4 Two types of travel time: retrospective (measured) or anticipative (predicted) 

It is necessary to highlight the distinction between measured travel time data and what is 

anticipated to be experienced travel time in the future. Figure 2 illustrates this point where 

measured travel times are obtained when a vehicle is leaving the segment of interest, while the 

anticipated travel time is assigned to the time vehicle is entering the segment. Even though 

anticipated travel times are most useful for real time decisions it is currently common to use 

retrospectively measured travel times instead in all major applications. 

There are several good reasons for such strong bias toward measured travel times in real world 

applications. First, travel time field measurements are more accurate than its predictions. Second, 

measured travel times maintain the causality conditions. The causality property suggests that 

reported travel time at any given time should reflect the existing traffic conditions that resulted in 

a vehicle taking so much time to traverse the segment of interest. The predicted travel times on 
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the other hand are based on hypothetical traffic conditions that are nonexistent yet but are 

anticipated to take place in the future times. Third, in practice travel time is reported as discrete 

values over consecutive time intervals. Obviously, the larger time intervals become the 

potentially larger variations in travel time within the time interval are masked by the smoothing 

effect of expected values or averaging operation. Therefore, at some granularity levels, the 

difference between measured and predicted travel times may not be of practical interest. 

However, over longer distances and shorter time intervals and in presence of congestion these 

differences may be very significant. Currently, as the best practice in freeway systems travel 

times are reported in real-time every minute over approximately one mile long segments. 

 
Figure 2. Observed versus anticipated travel times at a given time. (τ is the anticipated travel time of vehicle entering the 
segment at t, and θ is the observed travel time of vehicle leaving the segment at t) 

Based on the above discussion and the existing trend to provide public and system managers 

with quality real-time travel time data, as well as major legislative mandates such as SAFETEA-

LU and MAP-21, it is inevitable that in the near future travel time data in its measured 

retrospective and predicted anticipative forms is going to become a focal point of advanced 
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traffic operation and control applications as well as form the basis of informed decision making 

from both user and manager perspectives. 

1.5 What are the sources of error in travel time data? 

In general, any error in travel time estimation or prediction can be attributed to three different 

sources. First, any model is ultimately an attempt in representing the reality. Traffic models are 

primarily conservation laws expressed in the partial differential equation form. These models 

have originated from hydrodynamics which primarily deals with movements of continuous 

fluids. Application of these models to vehicular traffic which is essentially a discrete flow system 

with human drivers in it is a bit of stretch. However, in absence of better theories for vehicular 

traffic the conservation based models are the best available so far to model the evolution of 

traffic and to capture various phenomena known to be present in the traffic stream. 

Second, input data are typically outcome of some physical measurement processes followed by 

transmission of data packets to a central processing unit. Accuracy, frequency and timeliness of 

the measurements greatly depend on the measurement and transmission technology used. 

Equipment calibration and maintenance have a great impact on data quality. 

Third, estimation and prediction methodology plays an important role in getting the best results 

out of the model specification and its associated input data. The method should be optimal in 

some sense. Typically estimation methods seek to optimize one of several well-known objective 

functions representing least squares, maximum likelihood, and min-max. 

1.6 What is accomplished in this research? 

This dissertation is aimed at identifying and addressing all three error sources mentioned above 

in the context of travel time estimation and prediction. In this respect, it is necessary to develop a 

better understanding of vehicular travel times and their evolution in a typical highway system 
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according to existing vehicular traffic models. These models essentially conceptualize and define 

the evolutionary relationships of various traffic variables such as flow, speed and density. Even 

though travel time is theoretically related to speed, travel time has never been explicitly 

incorporated into traffic flow models. As mentioned before, this is partly due to the fact that 

calculating travel time based on speed leads to a line integral which is a function of both spatial 

and temporal movements of vehicles and as such depends on the trajectory of vehicles. 

This dissertation proposes to model the relationship between travel time and speed as a partial 

differential equation. This equation is derived from first principles of kinematics. This modeling 

framework would relieve the need for trajectory data, but it requires that a continuity and 

derivability assumption be made on the travel time function. Note that these assumptions are not 

too strong in the case of travel time due to its definition as the line integral of speeds. 

Both traffic and travel time models proposed in this dissertation are boundary value partial 

differential equations. Two major approaches exist to solve these equations numerically and 

efficiently. Finite Difference Methods (FDM) result in a piecewise constant approximation in the 

solution domain. This is a zero order approximation. Finite Element Method (FEM) on the other 

hand can be used to increase the order of approximation. This increased solution accuracy comes 

at the cost of solution efficiency. Therefore, a trade-off between approximation order and 

efficiency has to be considered. To keep solution methods scalable and to avoid unnecessary 

complications, in this dissertation FDM solution methods are pursued. 

The state-space modeling framework is used to represent the traffic system dynamics in presence 

of different field measurements over time. The dynamics equations are non-linear in this setting. 

Therefore, optimal linear stochastic dynamic least square estimation method known as Discrete 

Kalman Filter (DKF) is not directly applicable to this case. Also, note that traffic dynamic 
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models are highly nonlinear; hence linearization does not provide accurate estimates of the 

system state. Therefore, conventional Extended Kalman Filter (EKF) cannot be used for this 

purpose. However, Ensemble Kalman Filter (EnKF) or Unscented Kalman Filter (UKF) which 

avoid linearization are applicable in this case. In particular, UKF method which repeatedly draws 

from the error distributions and sends them through the nonlinear equations to propagate the 

estimation mean and error covariance is adopted. 

In this dissertation an alternative estimation method is also explored. Unscented H-infinity Filter 

(UHF, the min-max counterpart of UKF) attempts to minimize the maximum estimation error. 

This method virtually makes it possible to directly enforce an intelligently selected bound on the 

errors. 

1.7 What are the contributions of this research? 

Contributions of this research are briefly summarized in the following bullets: 

• Deriving a partial differential equation that relates speed and travel times independent of vehicle 

trajectory, 

• Deriving finite difference solutions of coupled first-order velocity-based traffic continuum 

models and travel time equation, 

• Introducing a framework to systematically and explicitly assimilate travel time measurements in 

traffic estimation process, 

• Extending an existing linear state-space model estimation method based on min-max paradigm to 

the case of highly non-linear joint traffic and travel time models, 

• Proposing a delayed filter to explicitly take into account the delayed nature of anticipative travel 

time measurements with respect to the current time, and in general out-of-order arrival of traffic 

measurements, 

• Sensitivity analysis of travel time estimates and predictions to the presence of various traffic data 
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sources, error types, and their respective magnitudes, 

• Improving short-term travel time predictions 

1.8 Preview of the rest of this document 

The remainder of this dissertation is organized into six chapters. The following provide a brief 

description of the topics that are addressed in each chapter. 

1.8.1 Chapter 2: Literature Review 

First, a comprehensive review of the existing literature on the broad topic of travel time 

estimation and prediction is provided. In doing so, existing literature in this area is grouped into 

four main categories based on the type of measurements used. Specifically, methods based on 

Eulerian (spot speeds, counts), Lagrangian (probe trajectory), and integrated Lagrangian (vehicle 

re-identification) traffic data measurements are addressed. A brief review of state-space models 

used in optimal traffic estimation and prediction is provided. This review shows that state of the 

art in this area is far from perfect and there is substantial room for new and meaningful 

contributions. 

1.8.2 Chapter 3: First-Order Continuum Traffic Flow Model 

In this chapter, first a well-known first-order continuum traffic flow model is adopted to 

represent the dynamics of the system. An equivalent form of this model in terms of speed is 

derived. This model provides a theoretical framework to describe and analyze traffic processes 

on a variety of roadway facilities. A finite difference method for numerical solution of the 

velocity based equivalent of the first-order continuum traffic flow model is proposed. 

1.8.3 Chapter 4: Travel Time Model 

In this chapter, a first-order Partial Differential Equation (PDE) model relating local variations of 

travel time with local speeds is derived. At any point along the trip two travel times either with 

respect to the start or the end of the trip can be defined. The former definition amounts to a 
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retrospective view of travel time, while the latter leads to an anticipative or predictive definition 

of travel time. The proposed PDE model is capable of dealing with both travel time definitions 

with very slight variations required in the underlying model. In addition, some desirable 

properties of travel time such as stability and first-in first-out (FIFO) are briefly presented and 

their implications in terms of the proposed travel time models are discussed. Efficient finite 

difference approximations of the proposed PDE models are presented. 

1.8.4 Chapter 5: Estimation Method 

In this chapter, the joint traffic and travel time dynamics model is presented. The joint model is 

cast into a state-space form. All components of the proposed state-space model are specified. 

Optimal state estimation concept is introduced, and unscented methods to deal with nonlinear 

state propagation and conditioning steps are identified. An efficient method is introduced to 

enforce common-sense physical constraints on travel time states. Two optimal estimation 

methods capable of dealing with highly nonlinear state-space models are proposed. A delayed 

filtering approach is proposed to assimilate current travel time measurements as delayed 

predictive travel times. 

1.8.5 Chapter 6: Numerical Experiments 

NGSIM datasets are used to run different numerical experiments. Results of these experiments 

under different data assimilation and solution scenarios are presented. Estimation and prediction 

error measures are reported and computation times of different scenarios are investigated. 

Discussions on the impacts of estimation method, delayed filter, space-time aggregation level, 

speed-density relation, and traffic measurements used are provided. 

1.8.6 Chapter 7: Conclusions and Future Directions for Research 

This chapter outlines the contributions in this dissertation. It summarizes the high-level 

conclusions reached. And, it presents a set of directions to be pursued for future research.  
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Chapter 2: Literature Review 

 
Travel time estimation and prediction problem can be classified in many different ways: 

First, they can be grouped based on the facility type on which the problem needs to be solved. 

For instance, travel time estimation in facilities with interrupted flow should be treated 

differently from estimations performed on facilities with uninterrupted flows. While a lot of 

effort in the past has been spent to estimate travel times in the latter facility types (e.g. freeways), 

very few studies report on methods to estimate or predict travel times over the interrupted 

facilities (e.g. arterials). 

Second, in many practical cases, proposed methods are limited to data readily available from 

existing traffic sensing technologies. This would include stationary sources such as inductive 

loop detectors and road side microwave radars. Vehicle re-identification data from license-plate 

or toll-tag readers can provide a sample of travel times. Finally, probes are capable of not only 

providing a travel time sample but they also will give insight to the evolutions of traffic 

conditions over space and time inside the segment under study. Methods to fuse data from 

different sources and to establish a hybrid estimate of travel time are gaining more popularity. 

The third aspect that can be used to distinguish between different travel time estimation and 

prediction methodologies is the inductive (non-parametric) or deductive (parametric) nature of 

the proposed methods. In broad terms, inductive methods are data-driven and make extensive use 

of historic observations. Given a representative data set, inductive methods are shown to have a 

good performance in predicting travel times under recurrent traffic conditions. On the other 

hand, deductive methods take into account physical principles governing traffic operations and 

resulting interactions between different traffic parameters and various external factors affecting 

traffic. Therefore, deductive methods are capable to handle unforeseen traffic situations and are 
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equally useful in traffic control applications due to their normative nature as opposed to 

inductive models which have mere descriptive powers. 

The fourth characteristic of reported models can be defined with regard to their adaptive or non-

adaptive nature. In general, adaptive methods have more flexibility and are able to discern 

temporal changes in the traffic system under both recurrent and non-recurrent conditions. This is 

a very desirable feature since accurate travel time estimates are most needed when unforeseen 

conditions due to incidents, construction, inclement weather, and such arise. 

Last, but not least, property of travel time models is the inclusion of a sound vehicular traffic 

model in the estimation process. Unfortunately, the majority of methods reported in the literature 

are solely based on generic statistical techniques and do not make any effort to take advantage of 

the existing knowledge on traffic flow theory. 

Travel time estimation and prediction methods reported in the literature can be broadly classified 

into three groups according to their adopted methodology. 

1. Conservation of flow 
2. Kinematics 
3. Statistical 
4. Hybrid 

2.1 Models Based on Eulerian Data 

2.1.1 Conservation of Flow (Input-Output Curves) 

The first group of methods for travel time estimation is based on the conservation of flow 

principle. Generally speaking, this principle states that vehicles entering a segment at upstream 

over some time along with the ones initially existing inside the segment are the ones that will 

leave the segment at the downstream during the same time or will remain in it at the end of the 

time period. This gives rise to the idea of obtaining travel times by comparing N-curves 

representing cumulative number of vehicles passing upstream (entering) and downstream 
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(exiting) of the segment. This idea was first presented by Newell (1993) in which cumulative 

number of vehicle arrivals at a sequence of locations on a highway are used to estimate travel 

times, flow variations and shockwave creation and propagation. Cassidy and Windover (1995) 

described a similar method for assessing the dynamics of freeway traffic. The methodology is 

more descriptive rather than normative (prescriptive). Figure 3 further illustrates the concept. In 

this figure, slope of the cumulative curves is equal to traffic flow (𝑞); the vertical distance 

between two curves at each time represents the accumulation of vehicles on the segment (𝑆) 

while the horizontal distance is equal to travel time (𝑇) on the segment under study. 

 

Figure 3. Cumulative input-output curves concept. 

𝑞(𝑥, 𝑡) = 𝑁̇(𝑥, 𝑡) (2.1) 

𝑁(𝑈, 𝑡) = 𝑁(𝐷, 𝑡 + 𝑇(𝑡)) (2.2) 

𝑇(𝑡) = 𝑁−1(𝐷,𝑁(𝑈, 𝑡)) − 𝑡 (2.3) 

It may seem that counting the number of vehicles passing a point of the highway should be an 
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easy process. Inductive loop detectors and a variety of stationary sensors are used to accomplish 

this task, but it is well-known that counts obtained using these technologies are less than perfect. 

In fact, ILDs which are not calibrated properly are susceptible to a phenomenon called drifting in 

which passage of some vehicles are missed. Such technological deficiencies along with the 

necessary knowledge of the initial number of vehicles in the segment for these methods to work 

have been the main impediments in widespread use of these methods. To this we can add the fact 

that the concept is primarily suitable for segments with no access/egress points in the middle. 

Otherwise, number of vehicles entering and exiting in the middle of the segment should be taken 

into account. 

Assuming that cumulative curves are continuous and smooth everywhere, Astraita (1996) took 

the derivative of both sides of equation (2.2) and derived the following relation between flow 

rates at upstream, downstream and travel time on the segment. It should be noticed that flow 

rates are easier to obtain and to work with than the cumulative number of vehicles. 

𝑞(𝐷, 𝑡 + 𝑇(𝑡)) = 𝑞(𝑈,𝑡)
1+𝑇′(𝑡)

 (2.4) 

Carey et al. (2003) proposed a dynamic link travel time model based on the assumption that 

travel time is a non-decreasing function of the average surrounding flow experienced by a 

vehicle while traveling along the segment. They approximated this average flow as a linear 

combination of flow at the entrance and at the exit points of the segment as experienced by the 

vehicle. 

𝑇(𝑡) = 𝑓(𝛽𝑞(𝑈, 𝑡) + (1 − 𝛽)𝑞(𝐷, 𝑡 + 𝑇(𝑡)))  (2.5) 

After substituting for downstream flow rate using equation (2.4), they got the following model. 

𝑇(𝑡) = 𝑓(𝛽𝑞(𝑈, 𝑡) + (1 − 𝛽) 𝑞(𝑈,𝑡)
1+𝑇′(𝑡)

)  (2.6) 

And, after inverting and rearranging they got the following first-order ordinary differential 
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equation. 

𝑇′(𝑡) = − 𝑓−1(𝑇)−𝑞(𝑈,𝑡)
𝑓−1(𝑇)−𝛽𝑞(𝑈,𝑡)  (2.7) 

Carey (2004) showed that this model has some desirable properties, such as causality, first in 

first out (FIFO) and similarity to the static model when flows are constant. Carey and Ge (2007) 

examined several discrete time approximation methods for numerical solution of their proposed 

model (2.5). These approximations are in fact simple forward and backward differencing 

methods that are widely used for solving differential equations with no closed form analytical 

solutions. They point out that simple approximate solutions may be violating FIFO property. 

Therefore, to keep the FIFO property in approximate solutions, regardless of the size of discrete 

time intervals, an alternate differencing method is suggested which applies the backward 

differencing method while moving forward in time. They concluded that this model can be 

equivalently solved as a simple optimization problem at each time interval. The optimization 

problem can be solved using simple line search algorithms such as golden section search. 

Vanajakshi and Rillet (2006) proposed an adjustment algorithm based on generalized reduced 

gradient (GRG) method to fix problems associated with accuracy of inductive loop detector 

records. In essence, this method attempts to make smallest changes in the readings while 

maintaining the condition that cumulative flow at successive detector points should be smaller or 

equal to that amount at upstream points. Also, the constraint for allowing practically possible 

maximum number of vehicles on any road segment at any time is enforced under this 

methodology. These two conditions in fact hold up conservation of flow principle in the traffic 

stream. Vanajakshi et al. (2009) used these adjusted detector readings to improve on the travel 

time estimation method originally proposed by Nam and Drew (1996, 1998, and 1999). 

Vanajakshi et al. (2009) suggest that the congested flow model (Nam and Drew 1998) should be 
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used throughout, and that density to be estimated based on a source other than cumulative flows. 

They use the relationship between occupancy and density to estimate the latter. They report 

between 9 to 16 percent error in travel time estimates on a segment between two detector stations 

in their test case. This error increases up to 20 percent on a 2 mile corridor. 

Waller et al (2007) adopted an ARIMA(3,1,2) to forecast inflows to the freeway segment under 

study, then they used a meso-simulation technique called cell transmission model (CTM) to 

simulate propagation and movements of vehicles inside the segment. Later, based on cumulative 

flow curves at the segment endpoints they were able to forecast travel time. On a 3 mile freeway 

segment, they reported 10 to 23 percent RMSE on travel times predicted 5 minutes ahead using 

this method when compared with travel times obtained from VISSIM micro-simulation. 

2.1.2 Approximate Kinematic Models 

The second group is comprised of kinematic models. Kinematics is a branch of mechanics which 

deals with motion without regard to forces or energies that may be exerted on the objects under 

study. The basic notion of kinematics is that point speed of a vehicle at any given time is equal to 

the derivative of its trajectory at that time. Therefore, we can derive the relation between distance 

traveled, speed and travel time in an integral form, 

𝑋̇(𝑡) = 𝑣(𝑋(𝑡), 𝑡) (2.8) 

𝑋(𝑇) = 𝑋(0) + ∫ 𝑣(𝑋(𝑠), 𝑠)𝑑𝑠𝑇
0  (2.9) 

where, 

𝑋(𝑡) is the vehicle position at time 𝑡, and 

𝑣(𝑋(𝑡), 𝑡) is the vehicle speed at time 𝑡. 

The integral in equation (2.9) is difficult to estimate since in most cases the speed profile of a 

vehicle during its trip is not known. Instead, it is common to approximate this integral with point 
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speed measurements at multiple points along the segment over which travel time is to be 

estimated. Specifically, in highway applications, speeds at upstream and downstream of the 

segment are usually available. 

𝑋(𝑇) ≅ 𝑋(0) + �𝑣(𝑋(0),0)+𝑣(𝑋(𝑇),𝑇)
2

� 𝑇 (2.10) 

Therefore, travel time can be estimated as 

𝑇 ≅ 2𝐿
𝑣(𝑋(0),0)+𝑣(𝑋(0)+𝐿,𝑇)

 (2.11) 

where, 𝐿 is distance traveled or length of the segment [𝐿 = 𝑋(𝑇) − 𝑋(0)]. 

Equation (2.11) essentially suggests an iterative method to estimate travel times which is called 

dynamic time slice method in the literature (Waller, et al. 2007). A further approximation of this 

formula would result in what is called instantaneous method in which downstream speed at the 

time vehicle enters the segment is used, 

𝑇 ≅ 2𝐿
𝑣(𝑋(0),0)+𝑣(𝑋(0)+𝐿,0)

 (2.12) 

Figure 4 illustrates the times and locations for which speeds are available and are being used to 

predict travel times versus what speeds should be used. Obviously, these approximations only 

work under stable traffic conditions when there is not much change in vehicle speeds over space 

and time. 

Lindveld et al. (2000) employed the harmonic mean of speeds to substitute the integral in 

equation (2.9) 

𝑋(𝑇) ≅ 𝑋(0) + � 2
1

𝑣(𝑋(0),0)+
1

𝑣(𝑋(𝑇),𝑇)
� 𝑇 (2.13) 

which results in the following estimate of travel time 

𝑇 ≅ 𝐿
2
� 1
𝑣(𝑋(0),0) + 1

𝑣(𝑋(𝑇),𝑇)
� (2.14) 
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Figure 4. Illustration of typical speed-based travel time prediction concepts. 

Further, they evaluated several kinematics based and flow correlation methods for travel time 

estimation and prediction in three different European sites (Amsterdam, Paris, and Padua-

Venice). The input data for these methods generally comes from inductive loop detectors. 

Evaluation results show that these methods produce RMSEP in travel time estimation/prediction 

well above 10% under free flow conditions, while as congestion increases their performance 

rapidly deteriorates. 

The kinematics methods are easy to use and provide inexpensive travel time estimation solutions 

which generally make use of existing sensing technologies and readily available data. However, 

they lose their accuracy as distances between consecutive sensing stations become large. Also, 

they are most accurate when traffic condition along the segment is stationary. As traffic 

conditions begin to change abruptly over time and/or space estimates from these methods 

become less reliable. 

Various technologies are in use to measure vehicle speeds passing a given point on the highway. 

Inductive loop detectors are among the earliest sensors used for this purpose. In the single loop 
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setting the relationship between detector occupancy, volume, and vehicle length can be used to 

estimate spot speeds. For a single vehicle, relationship between time it has kept the detector in 

presence mode (𝑡𝑖), detector length (𝑙𝑑) , vehicle length (𝑙𝑖) and its speed (𝑣𝑖) is as follows, 

𝑡𝑖 = 𝑙𝑑+𝑙𝑖
𝑣𝑖

 (2.15) 

However, one should keep in mind that data usually is not available at a single vehicle level; 

instead aggregate data (20~30 seconds) is typically provided by detectors. Therefore, occupancy 

of detector measured as fraction of time detector has been in presence mode in an interval is 

defined as below. 

𝑂 =
∑ 𝑡𝑖
𝑞
𝑖=1
∆𝑡

= 1
∆𝑡
∑ 𝑙𝑑+𝑙𝑖

𝑣𝑖
𝑞
𝑖=1  (2.16) 

where, ∆𝑡 is the time interval, and 𝑞 represents the number of detected vehicles in that same 

interval. 

Kurkjian et al. (1980) used an approach based on the first-order method of moments to estimate 

spot speeds using a single inductive loop detector. They effectively set the summation in (2.16) 

equal to its average times number of vehicles resulting in the following 

𝑞. 𝑙𝑑+𝑙𝑣
�

𝑣�
= ∑ 𝑙𝑑+𝑙𝑖

𝑣𝑖
𝑞
𝑖=1  (2.17) 

where, 𝑙𝑣� , is the mean effective vehicle length, and 𝑣̅ is the average speed during the interval. 

Substituting (2.17) into (2.16) the following relationship between spot speed, flow and 

occupancy may be obtained. 

𝑣̅ = 𝑞. 𝑙𝑑+𝑙𝑣
�

𝑂.∆𝑡
 (2.18) 

It should be noted that in this setting average vehicle length is not directly measured. Normally, a 

constant average vehicle length is considered in the above equation. This is a biased estimator. 

Hall and Persaud (1989) proposed to adjust the estimator by multiplying a correction constant, 
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however they pointed out that the effect of the bias is not uniform and a constant adjustment 

factor is not sufficient. 

Dailey (1999) applied the Taylor’s expansion up to the first two moments of the space-mean 

speed measurements, resulting in a non-linear function of the population speed parameter. This 

function was then linearized and used as the observation equation of a state-space model which 

was then solved by Kalman filter for population speed parameter. Ye et al. (2006) pointed out 

that the expansion approach is not robust and greatly depends on the linearization, the choice of 

initial guess and/or changes in vehicular speed. Ye et al. (2006) and Bickel et al. (2007) also used 

Kalman filter method to estimate vehicular speeds. Hazelton (2004) performed Bayesian analysis 

and applied Markov Chain Monte Carlo (MCMC) approach based on the assumption that speed 

in consecutive intervals follow a random walk. This method simulates the posterior distribution 

of vehicle speeds with a great improvement on accuracy; however, this offline approach is not 

practical for online estimation. Li (2009a, b) proposed a non-Gaussian Kalman filter and a 

recursive method for online vehicular speed estimation 

Ahmed and Cook (1977) proposed a Box-Jenkins type model for flow and occupancy time series 

obtained from inductive loop detectors. Their model is essentially an ARIMA(0, 1, 3) model. 

They compared the performance of this model with three different smoothing algorithms; 

namely, moving average, double exponential smoothing, and exponential smoothing with 

adaptive response (Trigg-Leach method). However, they did not report on any modeling effort 

based on either travel time or speed data. 

In a double loop setting, ILDs are able to provide an accurate estimate of vehicle speed based on 

the passage time lapse and distance between two loops. D’Angelo et al. (1999) proposed a non-

linear time series to predict point speeds at the location of dual loop detectors on freeway 
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segments in the short term. Then these point speeds are simply extended to an area from 

midpoint of the upstream segment to the midpoint of the downstream segment to evaluate travel 

times. Ishak and Al-Deek (2002) made a comprehensive analysis of this method. However, in 

their evaluation they did not use any ground-truth travel time or speeds. Instead, they compared 

predicted point speeds with observations from loop detectors. One of the major findings of Ishak 

and Al-Deek (2002) is that increasing rolling horizon (the duration of traffic evolution prior to 

current time used in predictions) would increase the relative error of travel time predictions. This 

is a counter-intuitive observation, since we expect a model should perform better when it uses 

more historical data as input. Additionally, they found that this method produces substantial 

errors under congested flow conditions. Relative errors of up to 30 percent are reported in less 

than 20mph range. In 20 to 50mph range errors are as high as 20 percent. Only, at free flow 

speeds higher than 50mph, relative errors are reported to be less than 5 percent. 

Based on a simple shock wave analysis procedure and basic kinematic principle (8), Coifman 

(2002) proposed a method to build vehicle trajectories around the location of a dual loop detector 

placed in the middle or on either end of a basic freeway segment. These trajectories then can be 

used to estimate travel times on the freeway segment. Compared to the naïve travel time 

estimates such as (2.12) or (2.14), this method reduces the errors by almost half, but the average 

absolute error still remains at around 10 percent of the ground truth travel times. The accuracy of 

this method falls with increase in the length of the freeway segment under study. This method is 

based on the stationary assumption for traffic conditions all over the freeway segment and at all 

times. Therefore, under normal conditions where queues are formed and later dissipate, one 

detector depending on its location may not capture all the existing shock waves in the segment 

and time period of interest. 
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Sun et al., 2008 proposed a method based on interpolating point speeds read in three consecutive 

detector stations to estimate travel time on the segment between detectors. This method simply 

fits a quadratic speed trajectory on three point speeds at these detector stations. For any departure 

time at first station, it is not clear how one should determine the arrival times at two downstream 

stations. This is essential in building the speed trajectory. The reported test case exhibits errors of 

up to 55% in travel time estimates using this method. 

2.1.2.1 Non-linear filtering 

Treiber and Helbing (2002) proposed an adaptive smoothing method which is essentially a non-

linear filter that transforms input stationary detector data into the smooth spatio-temporal 

functions. The non-linear filter is, in fact, an adaptive linear combination of two linear 

anisotropic low-pass filters each representing either free-flow or congested traffic status. Weight 

system in the linear filters is based on exponential functions with scaled relative space-time 

coordinates. The weight system in the upper combination level is a non-linear hyperbolic tangent 

function with bias toward congested traffic filter results. No quantitative measure for accuracy of 

travel time predictions using this method is given. However, visual evidence is given as to 

accuracy of estimations and predictions. 

2.2 Models Based on Lagrangian Data 

Lagrangian data is comprised of vehicle trajectory data obtained from tracing probe vehicles 

inside the road segment of interest. For this reason, this data type may also be called internal 

data. In this sense, full/partial vehicle trajectories and speed profiles are an example of such data. 

Full trajectory data is considered very rich since it basically provide a complete record of a 

vehicle movement and the speeds and travel time it has experienced. In general, trajectory data is 

both expensive and brings about a host of privacy issues. Therefore, in practice, internal data are 

still very rare even though GPS and cellphone tracking applications are becoming more popular 
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as traffic data sources. To address some of the privacy issues, some cellphone companies are 

using Virtual Trip Lines (VTL) concept to detect passage speed of a sample of vehicles at a set 

of pre-specified locations which amounts to Eulerian data similar to speed data collected at loop 

detectors. However, (near) real-time trajectory data as a bi-product of fleet management 

operations has become available in recent years in certain corridors. The latter provides a major 

source of Lagrangian traffic data at an affordable cost for travel time estimation for commercial 

purposes. 

2.3 Models Based on Integrated Lagrangian Data 

2.3.1 Automatic Vehicle Re-Identification (AVI) 

Automatic license plate reader (ALPR), toll-tag readers and video processing systems capable of 

matching passing vehicles signatures between a pair of locations along the road are examples of 

these technologies. AVI data directly reflects realized travel times between two observation 

points, but at the same time it is more difficult to obtain compared to point measurements. 

Generally speaking, established traffic sensing technologies that are able to provide AVI data are 

both expensive and controversial in terms of exposing general public to privacy risks and 

therefore have found very limited geographical reach. As a result, earlier studies in this area tend 

to make use of widely available point sensors and to show that matching data from a pair of, for 

instance, loop detectors can result in accurate travel time estimates. In recent years, new 

emerging technologies have proved to be more effective in providing AVI data. Magnetic and 

Bluetooth matching sensors are examples of the new wave of AVI technologies. 

Hoffman and Janko (1990) are the first who reported on implementing a travel time prediction 

system using AVI data. In their study, data was obtained from infra-red transmitter/receivers 

installed at over 230 signalized junctions and 10 locations on urban freeways in West Berlin. A 

small fleet of vehicles were equipped with the same infra-red capability as well as position 
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finding devices so that their passage time in front of static devices could be recorded. Their 

proposed prediction methodology mainly consists of forming a historic data set and estimation of 

average travel time for each time interval, then a correction factor in the form of ratio of the 

observed travel time in the last interval to that same interval’s historic average is used to predict 

current interval’s travel time. Unfortunately, no measure of accuracy for this method is reported. 

Dailey (1993) proposed a signature matching method for travel time estimation which uses 

cross-correlations between 5 sec vehicle counts from upstream and downstream inductive loop 

detectors at relatively short distances (0.5 mile is used in the reported example). In this method 

no effort is made to evaluate speeds from occupancy and therefore there is no need to estimate 

average length of vehicles. The method chooses the lag associated with the maximum cross-

correlation value as the mean travel time between two consecutive detectors. The minimum 

acceptable cross-correlation value is reported as 0.4 which is shown to correspond to the 15 

percent occupancy level. It is postulated that with increase in the congestion level beyond this 

point, the rigidity in flow of traffic between two points diminishes. Therefore, the method is not 

suitable for congested situations. No effort to validate the results of this method against ground-

truth data has been reported. 

Coifman and Ergueta (2003) proposed an algorithm along with four separately designed filters to 

match signals between two consecutive dual loop detector stations on a single lane. The 

algorithm identifies a set of feasible upstream pulses for each downstream pulse; each pulse 

representing the passage of a vehicle. Then all vehicles in this set which have an estimated length 

range that includes that of the corresponding downstream vehicle are incorporated into a vehicle 

match matrix. Visual inspection of this matrix suggests that, under stable traffic conditions, 

correct matches should form a long vertical sequence of entries in the matrix. The method is 
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therefore based on finding the longest vertical sequence. To eliminate false positives, four tests 

are introduced; filter test, cone test, travel time test and multiple lane change test. Results of a 

reported test study on two separate 0.55 km freeway segments demonstrate the accuracy of the 

method to be extremely good in comparison with ground truth. A mere 1.45 percent average 

absolute percent error in travel time is reported in a case where there is no on/off ramp between 

two detector stations. However, in a setting where an off ramp exists on the studied segment no 

error measure is reported. 

Coifman (2003) considered the case of a pair of double loop detectors located at two ends of a 

freeway lane. In order to detect the start of congestion, he suggested that outstanding vehicle 

length estimates from downstream station be compared with length estimates from upstream 

station within a time window reflecting free flow travel times on the segment. If in consecutive 

time intervals such matches are not found then it is suggested that traffic is in congested mode. 

However, if a match is found then it provides a travel time estimate. This method works best 

when larger number of trucks (or any longer vehicles) is present in the mix. In his numeric test, 

Coifman managed to match 5% of traffic using this method. In its basic case, this may not be 

very valuable information since free-flow travel time is more or less a known constant (small 

variation). Therefore, he extends this method to the congested case by considering different 

travel speed ranges which results in a rudimentary method for travel time estimation under any 

traffic condition using existing point sensor technology. It should be noted that quantity of 

matches and also quality of estimates will decrease as congestion increases because during 

congestion more vehicles change lanes. 

2.3.1.1 Time Series Analysis/(Non)Linear Filtering 

Generally, methods falling in this category are based on signal processing ideas. It is conceived 

that travel time observations when ordered on the basis of the sequence of time intervals at which 
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they have been measured provide a history of the evolution of a system. 

𝒀 = [𝑦𝑡] (2.19) 

Box, Jenkins, and Reinsel (1970) proposed statistical techniques to analyze time series. Auto 

Regressive Integrated Moving Average (ARIMA) models provide a standard modeling 

framework in a typical time series analysis. The 𝐴𝑅𝐼𝑀𝐴(𝑆,𝑑, 𝑞) model is expressed as, 

�1 −∑ 𝜑𝑖𝐵𝑖
𝑝−𝑑
𝑖=1 �(1− 𝐵)𝑑𝑦𝑡 = �1 + ∑ 𝜃𝑖𝐵𝑖

𝑞
𝑖=1 �𝜀𝑡 (2.20) 

where, 

𝑆, is the order of auto-regressive terms, 

𝑑, is the number of sequential differencing needed to stationarize the time series 

𝑞, is the order of moving average terms, 

𝜑, are the parameters of the auto-regressive part, 

𝜃, are the parameters of the moving average part, 

𝐵, is the lag operator defined as 𝐵𝑖(𝑦𝑡) = 𝑦𝑡−𝑖, and 

[𝜀𝑡], are the error terms series assumed to be independent and identically distributed (i.i.d.) 

random normally distributed variables with mean equal to zero (white noise). 

Dion and Rakha (2006) proposed a real-time adaptive exponential low-pass filtering algorithm 

for travel time estimation and prediction using very small sample AVI data (less than one percent 

of traffic volume) from toll-tag readers. They used toll-tag data from TransGuide system in San 

Antonio to demonstrate the method performance in predicting two minute time intervals. Aside 

from graphs, no other concrete measure of prediction accuracy is reported. 

They assume that travel time is log-normal distributed. This algorithm uses a simple smoothing 

technique to forecast the future average and variance of travel time. The predicted average travel 

time is estimated according to the following equation, 
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𝑙𝑛(𝑦�𝑡+𝑘) = �
𝛼. 𝑙𝑛(𝑦𝑡) + (1 − 𝛼). 𝑙𝑛(𝑦�𝑡)                    ,𝑘 = 1
𝛼. 𝑙𝑛(𝑦𝑡) + (1 − 𝛼). 𝑙𝑛(𝑦�𝑡+1)               ,𝑘 = 2
𝛼. 𝑙𝑛(𝑦�𝑡+𝑘−2) + (1 − 𝛼). 𝑙𝑛(𝑦�𝑡+𝑘−1)  ,𝑘 > 2

 (2.21) 

where, 

𝑦𝑡, is the observed travel time at time interval 𝑡, 

𝑦�𝑡, is the estimated travel time at time interval 𝑡, 

𝛼, is the smoothing factor to linearly combine log-normal of travel times at time interval 𝑡, and 

𝑘, is the number of time steps ahead for which prediction is being performed. 

Based on the predicted travel time average and variance a range for valid travel time 

observations in the next time interval can be specified. Observations that fall outside this validity 

window are dismissed as outliers. Essentially, in this method, specification of the validity range 

is performed based on the following four factors: 

• Expected average trip time and trip time variability in future time interval, 
• Number of consecutive intervals without any readings since the last recorded trip time, 
• Number of consecutive data points either above or below the validity range, and 
• Variability in travel times within an analysis interval. 

2.3.1.2 State-Space Models 

Chen and Chien (2001) used probe vehicle travel times as measurements in a trivial Kalman 

filter to predict travel times on a freeway path segment. They use historic travel time data to 

estimate transition parameter,𝜙(𝑡), in the system model. 

𝑥(𝑡) = 𝜙(𝑡 − 1). 𝑥(𝑡 − 1) + 𝑤(𝑡 − 1) (2.22) 

𝑧(𝑡) = 𝑥(𝑡) + 𝑣(𝑡) (2.23) 

where, 

𝜙(𝑡) = 𝑚�𝐻(𝑡+1)
𝑚�𝐻(𝑡)  (2.24) 

and, 𝑥�𝐻(𝑡) is the historic travel time associated with time interval 𝑡. 
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The CORSIM simulations are the source of their probe travel time measurements. They report 

maximum relative errors of 5 percent in their travel time predictions when probe vehicles 

represent 1% of traffic. Their prediction accuracy does not improve proportionally by increasing 

probe vehicles to 3% of traffic though. 

Barcelo et al. (2009) proposed a discrete Kalman filter (DKF) similar to Chen and Chien (2001) 

to estimate and predict travel times on a 40 km long freeway segment of AP-7 Motorway 

between Barcelona and the French border. However, the state transition function adopted in this 

work is set as the ratio of travel time estimates in the last two time intervals. 

𝑥(𝑡) = 𝜙(𝑡 − 1). 𝑥(𝑡 − 1) + 𝑤(𝑡 − 1) (2.25) 

𝑧(𝑡) = 𝑥(𝑡) + 𝑣(𝑡) (2.26) 

where, 

𝜙(𝑡) = 𝑚�(𝑡)
𝑚�(𝑡−1) (2.27) 

They used travel time measurements obtained from 6 Bluetooth vehicle re-identification sensors 

on each direction that were deployed anywhere from 4 to over 15 kilometers apart from each 

other. Raw travel time samples first have been filtered and aggregated in one minute time 

intervals. It is these one minute mean travel time estimates that are used in the DKF framework 

to predict travel times. Later, predictions are aggregated and reported in 5 minute time intervals. 

A very high correlation coefficient (𝑅2 = 0.9863) between the observed and predicted time 

series and a prediction MARE equal to 3.54% are reported. It should be noted that long distance 

and intercity nature of the data used to evaluate this method, to a large extent, would explain the 

high quality performance of this method in forecasting travel times. In this study, speeds below 

70 km/h (45mph) are assumed to signal a congested condition which in itself reflects the high 

speed nature of operations on the facility under study. 
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2.4 Models Based on Eulerian and Integrated Lagrangian Data 

In cases where both Eulerian data from two endpoints of the segment and travel time (integrated 

Lagrangian) observations between them are available then it is possible to investigate the 

relationship between the two data types. The effects of Eulerian data on travel time can be 

modeled and evaluated using Eulerian data as independent (descriptive) variables and travel time 

data as dependent variable. Essentially, in this setting, travel time can be modeled as an 

implicit/explicit function of the available Eulerian data. 

𝑦 = 𝑓(𝐱) (2.28) 

When function 𝑓(. ) is not explicitly defined, inductive or statistical methods can be used to draw 

conclusions on the relationship between travel time and other Eulerian data. Non-parameteric 

models such as k-Nearest Neighbor (k-NN) are specifically of this type. On the other hand, when 

function 𝑓(. ) is assumed to take a linear form then linear regression models can be adopted to 

specify the relationship between travel time and the Eulerian data. However, in general, this 

relationship may be non-linear in nature. Therefore, general non-linear functions such as 

Artificial Neural Networks (ANN) may be used for this purpose. 

Downside to these methods is that huge historic data sets are needed to calibrate the associated 

models. The results will highly depend on the extent of the historic data set and its representation 

of recurrent and non-recurrent traffic conditions. Moreover, these models tend to be site 

dependent, a property which limits the transferability of the estimated models. 

2.4.1 Inductive/Statistical (Historic Data Based) Models 

2.4.1.1 k-Nearest Neighbor Methods (k-NN) 

These methods belong to the non-parametric category of travel time prediction methods. This 

implies that no assumption is necessary to be made on error distributions. Even though large 

historic data sets are necessary to make good predictions using k-NN, it is anticipated that over 
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time historic data set gets richer and therefore performance of the k-NN method in predicting 

travel times is expected to improve. In this method, given the input vector 𝐱, the following 

inference on the prediction error magnitude is made.  

‖𝐱 − 𝐱𝑘‖ ≤ 𝜀𝑘 ⟹ ‖𝑦 − 𝑦𝑘‖ ≤ 𝛾𝑘          𝑘 = 1, … ,𝐾 (2.29) 

where, 

𝐱𝑘, is the 𝑘-th nearest neighbor to input vector, 

𝜀𝑘, is the measured distance between input vector 𝐱 and its historic 𝑘-th nearest neighbor 𝐱𝑘, 

𝑦𝑘, is the historic travel time associated with vector 𝐱𝑘, and 

𝛾𝑘, is the anticipated distance between predicted travel time 𝑦 and its corresponding historic 𝑘-th 

nearest neighbor 𝑦𝑘. 

Basically, equation (2.29) states that if input vector, 𝐱, is close enough to its 𝑘-th nearest 

neighbor, 𝐱𝑘, then its output, 𝑦, will be close enough to the historic output associated with the 𝑘-

th nearest neighbor, 𝑦𝑘. Therefore, output 𝑦 may be written as the sum of the 𝑘-th nearest 

neighbor’s output, 𝑦𝑘, and (an unknown) function of the measured distance between input 

vectors, 𝑔𝑘(𝜀𝑘). 

𝑦 = 𝑦𝑘 + 𝑔𝑘(𝜀𝑘)          𝑘 = 1, … ,𝐾 (2.30) 

The output, 𝑦, then can be approximated as a function of all 𝐾 nearest neighbor outputs. 

𝑦 ≅ ℎ(𝑦1,𝑦2, … ,𝑦𝐾) (2.31) 

Use of average function is a popular choice for function ℎ(. ) in most circumstances. 

𝑦 ≅ ∑ 𝑦𝑘𝐾
𝑘=1 𝐾⁄  (2.32) 

Handley et al. (1998) reported the first application of k-NN method to forecast travel times on a 

25 mile southbound segment of I-5 in San Diego. The method takes into account weekday versus 

weekend, day of week, time of day, and the 30 second average traffic speeds reported from 116 
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loop detectors along this segment as four features based on which similarity between current 

conditions and historic observations are determined. In this application three nearest neighbors 

are selected and the average of their associated travel time is reported as predicted travel time for 

current time interval. This method resulted in a MARE of up to 20% during peak period and up 

to 7% during off-peak period. 

Clark (2003) proposed a k-NN approach to forecast 10 minute time mean speeds from a set of 

loop detectors on the outer loop of London beltway M25. He used a set of four consecutive speed 

observations in the matching process to find 8 nearest neighbors in the historic database. The 

distance metric used in this study is the weighted sum of squares of distances between current 

and historic observations contributed from each parameter included in the analysis domain. 

Results show that speed forecasts will be best if only speeds are included in the process. A best 

MARE of 5% is reported for this method in predicting speeds 10 minutes ahead. However, based 

on the reported results, it seems that a naïve forecast (the current observation) will perform as 

well as the proposed method. 

Robinson and Polak (2005) tested both isolated and combined effects the choice of distance 

metric, value of 𝑘, and local estimation measure will have on the performance of k-NN method 

in forecasting an urban arterial travel times. Observed travel time data in this study are obtained 

using a pair of license plate matching cameras installed at two ends of a one kilometer long 

segment in central London. They found that k-NN method is not too sensitive to the choice of 

distance metric, and that a robust local estimation method is preferable to other methods. Also, 

they found that the optimal value of 𝑘 depends on the size of the historical database. In their case 

study, a k-NN method with 𝑘 equal to 2160 using standardized Euclidean with variance as 

weights for distance measurement and a locally weighted scatter plot smoothing (LOWESS) as 
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estimation method was found to perform optimally. This method produced MARE equal to 18% 

in 15 minute travel time forecasts. 

You and Kim (2000) reported on an early application of k-NN method on both freeway and 

arterial segments in Korea. The segments they studied, however, do not seem to reflect any 

serious congestion conditions. Similarly, Bajwa et al. (2005) reported on an application of k-NN 

method on data from five long freeway segments in Tokyo metropolitan area. They reported 

RMSEP more than 10% for their applications in congested segments. 

2.4.1.2 Linear Regression Methods 

When function in equation (2.28) is assumed to be of linear type, then it can be written as 

follows. 

𝑦 = 𝐴𝐱 (2.33) 

where, 𝐴 is the coefficients vector and can be estimated using linear regression methods such as 

least squares. 

Kwon et al. (2000) proposed a prediction method based on linear regression with stepwise 

variable selection. In their model historic travel time measurements are used as dependent 

variable against which flow and occupancy data from loop detectors are regressed as 

independent variables in a least squares error sense. They used data gathered on a 6.2 mile 

segment of I-880 south of Oakland, California for model evaluation. This data set includes 

measurements from double loop speed stations located at approximately one-third of a mile apart 

as well as probe travel time data (364 trips) from 20 weekday mornings. At 5 minute ahead, this 

linear regression method resulted in 9-15% MARE in travel time predictions. Obviously, this 

model is site specific and should be re-estimated for other segments using their corresponding 

data sets. 

Zhang and Rice (2003) proposed a time varying coefficient (TVC) linear model to improve upon 
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a naïve predictor based on current speeds at two ends of a freeway segment. The method requires 

a large historic database to calibrate prediction model’s coefficients. They reported on the 

method’s performance on the north-bound direction of I-880 data set which was used by Kwon 

et al. (2000). While using historic dataset provides a slightly more than 10 percent MARE on 

travel time prediction, the TVC model has roughly 6% error in current travel time estimation and 

about 11% error at 30 minute forecasts. 

Chakroborty and Kikuchi (2004) proposed a simple linear regression model to estimate auto 

travel times based on measured bus running travel times. The latter is obtained using GPS 

devices installed on buses and is equal to total bus travel time minus times bus spends stopped at 

stations along the segment. The method evaluations on five arterial segments in northern New 

Castle County, Delaware revealed that in the worst case 77% of predictions made were within 

10% of floating car measurements. In this study, there were 28 to 30 travel time measurements 

made at each site. 

Liu and Chang, 2006 reported on attempts to calibrate single linear regression models to account 

for increase in travel time due to accumulations on segments with constant and variable capacity 

drops at the downstream. Data obtained from CORSIM micro-simulation runs is used to estimate 

the models. Applying the method in practice is difficult since model calibration requires a large 

historic database and the count data to be used in the method are not accurately available. 

2.4.1.3 Artificial Neural Network (ANN) Methods 

ANN is a general non-linear function approximation system that is inspired by generic functions 

of biological neural networks. The idea behind ANN is that data processing happens at many 

simple data processing units called neurons. Typically, in an ANN these neurons are organized in 

layers in a feed-forward network. Associated with each link in the network is a weight that 

should be determined using a training procedure such as error back-propagation. Input to each 
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neuron is the weighted sum of outputs from neurons in the previous layer. Neurons act as a 

switch and depending on the input strength produce an output determined by an activation 

function. Identity, linear, binary step and sigmoid (S-shaped) functions such as logistic and 

hyperbolic tangent functions are among popular activation functions (Fausett, 1994). A feed 

forward ANN with 𝐿 layers can be concisely represented as the following recursive equation. 

𝑦 = 𝑓𝐿�𝐰𝑳−𝟏,𝑳
′ 𝑓𝐿−1�… 𝑓1�𝐰𝟎,𝟏

′ 𝐱 + 𝒃𝟏�… + 𝒃𝑳−𝟏� + 𝒃𝑳� (2.34) 

where, 

𝐰𝒍,𝒍+𝟏, is the specified weight matrix between neurons in consecutive layers 𝑙, and 𝑙 + 1, 

𝒃𝒍, is the bias vector in neurons of layer 𝑙, and 

𝑓𝑙(. ), is the vector of activation functions belonging to neurons of layer 𝑙. 

Park and Rilett (1998) proposed a clustering and artificial neural network method to forecast 

travel times on an urban freeway. They use AVI travel time data on link segments from just over 

one mile to 5 mile long on eastbound US-290. This is part of the automatic tolling system 

TranStar in Houston, Texas. Application of this method resulted in 5 minute travel time forecasts 

with over 8% MARE. Errors nearly doubled in 25 minute forecasts when MARE reached 16%. 

Rilett and Park (2001) report on applying a spectral basis neural network to directly forecast 

freeway corridor travel times. In this method an extra layer is added to the front of ANN which 

implements Fourier transform. The transformed basis functions then will be used in a series of 

hidden layers to build a forecast for corridor travel times. Again, performance of the method on a 

12.8 km segment of eastbound US-290 in Houston is reported. MAPE in 5 minute forecast has 

been about 6% while this same measure for 25 minute ahead forecasts has been more than 15% 

which is not that different from their older results. 

In recent years, ANN methods with transformed input data have become more common place. 
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Hamad et al. (2009) used Hilbert-Huang decomposition of the ILD speed signals as input to a 

speed predicting ANN. They tested this method on I-66 data. Their prediction MARE for 5 to 25 

minute ahead during morning peak hour ranged from 6 to 10 percent. 

2.4.2 Traffic Flow Theory Models 

Traffic flow theory models can be categorized into two major groups. This classification is based 

on the level of detail at which a traffic stream is being modeled. Microscopic models track the 

movements of individual vehicles in traffic. These movements typically fall under two umbrella 

categories: car following and lane changing models. Microscopic models are computationally 

intensive and very difficult to calibrate and verify. 

On the other hand, macroscopic traffic models deal with characteristics of a group of vehicles at 

an aggregate level. Variables such as flow and density are passage rate of vehicles at a cross 

section and their presence rate over a stretch of highway, respectively. Based on definition, these 

variables can be shown to be related through a third variable, namely space mean speed. This 

constitutive relationship along with an assumption on the form of dependence between speed and 

density leads to the so-called Fundamental Traffic Diagram (FTD). 

Macroscopic models are in fact conservation laws expressed in the form of Partial Differential 

Equations (PDE). These models can be solved using exact methods such as method of 

characteristics. In real world applications, in general, it is difficult to obtain the exact solutions. 

Mesoscopic models approximate solutions to these conservation laws by breaking the solution 

domain into a series of smaller sub-domains. Finite Difference (FD) methods such as up-winding 

and Finite Element (FE) methods such as Galerkin are typically used to approximate the 

evolution of traffic variables over time and space. 

2.4.2.1 Microscopic Simulation Models 

Liu et al. (2006) reported on an online travel time prediction system customized for Ocean City, 
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Maryland. The system receives data from 10 stationary sensors sparsely located along 30 miles 

of US-50 and MD-90 between Salisbury and Ocean City, Maryland. In their study they used a 

calibrated micro-simulation model based on CORSIM software package to predict travel times in 

the system. Forecast traffic volumes at detector locations needed for micro-simulation module 

are determined from a historic database using a nearest neighbor method. No specific measure of 

accuracy regarding predicted travel times is reported. 

2.4.2.2 Mesoscopic Simulation Models 

Waller et al. (2007) adopted an ARIMA(3,1,2) to forecast inflows to the freeway segment under 

study, then they used a meso-simulation technique called cell transmission model (CTM) to 

simulate propagation and movements of vehicles inside the segment. Later, based on cumulative 

flow curves at the segment endpoints they were able to forecast travel time. On a 3 mile freeway 

segment, they reported 10 to 23 percent RMSE on travel times predicted 5 minutes ahead using 

this method when compared with travel times obtained from VISSIM micro-simulation. 

2.4.2.3 Hybrid Models 

Zou et al. (2007) proposed a method for travel time estimation over long freeway segments. 

Their method is an extension of Coifman (2002), which makes use of occupancy and speed data 

from stationary detectors located at either end of the segment. They first identify different 

recurrent traffic patterns based on a historic data set. Then for each pattern, they calibrate a 

parameterized model to estimate travel times over the segment assuming that speeds at each 

detector can be extended using a linear relationship to represent the average travel speeds on 

each half segment. Later, based on a piecewise exponential speed-occupancy relationship and the 

assumption that traffic conditions at detectors will propagate with a constant speed within the 

segment, an iterative method for trajectory approximation is proposed. Performance of this 

method is reported in comparison with travel times obtained from vehicle re-identification 
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conducted on two days’ worth of video recordings at the endpoints of an over 10 mile long 

segment of I-70 between US-40 and I-695 east of Baltimore, Maryland. Results are counter-

intuitive in the sense that the proposed method resulted in higher errors in free flow and heavy 

congestion conditions rather than in moderately congested periods. In free flow conditions errors 

up to 8.7% in travel time estimation are reported. 

Yu et al. (2008) developed a hybrid model to predict travel times on a 7 mile long segment of 

US-50 leading to Ocean City, Maryland. They decomposed travel time to a trend and a variation 

component. A fuzzy weighted average of clusters in the historic data base is used to estimate the 

trend term, while a cluster-based artificial neural network calibrated again on historic data base is 

used to predict travel time variations. Performance of the proposed hybrid model is compared 

with results obtained from micro-simulation software CORSIM. An average error of 8.7% in 

predicted travel times throughout the day is reported. 

2.5 State Space Models 

State space models provide a systematic general framework to represent the dynamics of the 

system no matter how complicated the system under investigation is. Additionally, it allows for 

incorporation of various measurements that become available dynamically over time into the 

estimation process. In general, a state space model consists of a system and a measurement 

equation. The idea is, in some cases it is difficult to make direct observations of a system state, 

instead it might be easier to observe and measure its correlated variables. Then the problem is to 

dynamically obtain best estimates of the system state by observing the correlated variables’ 

evolution over time. 

In its simplest form both the system and measurement equations in a state space model are linear. 

The following is an example of a discrete-time linear state space model: 



 

41 
 

𝑣𝑛+1 = 𝑀𝑛𝑣𝑛 + 𝑤𝑛 (2.35) 

𝑦𝑛 = 𝐻𝑛𝑣𝑛 + 𝑢𝑛 (2.36) 

where, 

𝑣𝑛, is the 𝑁 × 1 column vector of state variables at time step 𝑛 

𝑦𝑛, is the 𝑀 × 1 column vector of measured variables at time step 𝑛 

𝑀𝑛, is the 𝑁 × 𝑁 square transition matrix representing dynamics of the system at time step 𝑛, 

𝐻𝑛, is the 𝑀 × 𝑁 state to measurement transition matrix of the system at time step 𝑛, 

𝑤𝑛, is the 𝑁 × 1 column vector of state dynamics errors at time step 𝑛, and 

𝑣𝑛, is the M× 1 column vector of measurement errors at time step 𝑛. 

The best linear estimate of a state space model in the least square sense is obtained by Kalman 

filtering (Kalman, 1960 and 1961). 

Nanthawichit et al., 2003 applied standard Kalman filter to the linearized approximation of a 

discretized version of the Payne’s traffic model. The method primarily uses loop detector volume 

and speed measurements to estimate density and speed in a set of cells over time. Measurements 

from probe vehicles also may be included in this method in a very simplistic way. Average probe 

vehicle speed in each cell is regarded as measurement from an imaginary loop detector, if the 

cell in question does not include a loop detector. However, if a loop detector exists in the cell and 

we have two measurements from loop detector and probe vehicle in that cell at the same time 

interval, then the average of two measurements is used as measurement from the cell. Data 

generated by simulation software INTEGRATION has been used to evaluate methodology’s 

accuracy. The suggested combined use of a traffic model along with stationary sensor and probe 

data in a Kalman Filter is shown to improve the travel time predictions by up to 36% compared 

to the autoregressive Kalman filter method proposed by Chen and Chien, 2001 which only uses 
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probe data. 

Sun et al., 2004 proposed a Monte Carlo method based on a binary switching mode traffic model 

that only distinguishes between free-flow and congestion modes. In this method, first a fixed 

number of mode sample sequences with highest probability are identified, and then on each of 

these mode sample sequences a time varying Kalman filter is applied to estimate continuous 

traffic states (density). The a posteriori estimates of the continuous states are then computed as 

the weighted average of estimates from each Kalman filter. They use real stationary data from 

PeMS as well as simulation results from VISSIM to evaluate their method. They offer visual 

evidence that their proposed method is working well in estimating traffic mode; no quantitative 

measures are given though. 

Chu et al, 2005 assumed traffic flow and density are homogeneous on a freeway segment which 

may even include multiple on/off ramps. Also, they assume that all entering and exiting 

boundary flows to and from the segment are measured by means of stationary traffic sensors 

such as loop detectors, and they receive travel time measurements from probe vehicles traversing 

the segment every once in a while. An adaptive Kalman filter is proposed in which density is 

adopted as state variable and travel time measurements are simply related to the average density 

on the segment through a time-varying coefficient. A simple method for estimation of noise 

statistics (mean and variance of errors in system and measurement equations) based on an earlier 

work is given. Data generated using PARAMIC simulation at 30 second intervals on a 0.82 mile 

freeway segment with one on- and one off- ramp is used to evaluate the proposed method. They 

reported 8% mean relative errors in travel time estimates under recurrent morning peak 

conditions with a 5% probe rate, while under non-recurrent conditions (10 minute long incident 

blocking the right lane of freeway) this error measure is increased to about 10%. 
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Wang and Papageorgiou, 2005 reported on using an extended Kalman filter to estimate density 

and speed on 500 meter freeway segments every 10 seconds. In their system equation a modified 

Payne-Witham model for dynamic speed estimation is used. Taylor series expansions are used to 

linearize the model equations at each point in time. Flow and speed measurements used in the 

estimation come from stationary traffic sensors at the boundaries of the freeway segment. Traffic 

data is generated using simulation based on the same traffic models as in the Kalman filter. In 

other words, Kalman filter is utilized o estimate traffic states given that we have full knowledge 

of actual traffic dynamics in the system. However, Kalman filter is used as a tool to identify the 

system state in presence of model and measurement noise. In their application, root mean square 

errors of the order 20% and 14% are reported for density and speed estimates, respectively. In 

the case of speed estimates, average absolute RMSE has been about 14 kilometers per hour 

(almost 9mph) on a 5 kilometer stretch of freeway. In a later work, Wang et al., 2007 used 

collected data from a 4.1 kilometer German highway to demonstrate the performance of their 

proposed methodology. In this case, no quantitative error measures for state estimates are 

reported. 

Work et al., 2008 proposed an Ensemble Kalman filtering (EnKF) approach for highway traffic 

estimation in the presence of both stationary and probe vehicle data. They used a Velocity based 

Cell-Transmission Model (CTM-v) with a Greenshield’s type fundamental diagram which makes 

it possible to work directly with measured speeds. They ran tests on a simulation model 

calibrated for I-880. This method resulted in 25% average relative error on speed estimates at 5% 

probe penetration rate. 

Herrera and Bayen, 2009 used Cell-Transmission Model (CTM) with a triangular fundamental 

diagram to estimate density given a combination of boundary and probe measurements. Newton 
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relaxation and discrete Kalman filter are two methods that they used to estimate traffic 

conditions. They used data collected in Next Generation SIMulation (NGSIM) project on US 

highway 101 in California, as well as GPS probe data from Mobile Century data collection effort 

on interstate 880 in California. 

Claudel and Bayen, 2008 proposed a method based on viability theory in optimal control to 

estimate a lower and upper bound for the number of vehicles that are initially present on the road 

segment under investigation based on both stationary and probe data. Then, using the 

conservation of vehicles principle this method is capable of estimating a range for travel time 

between the two end points of the segment. This method does not take into consideration 

presence of on and off ramps between the two end points. They tested their proposed method on 

US-101 dataset from NGSIM and I-880 from Mobile Century data collection effort. A mean 

relative error higher than 8% on travel time estimates is reported using this method. 

Chen et al. (2011), and Sadek and Rakha (2012) proposed shock-fitting approach for a general 

flux function. Since, the PDE in general form is not conservative, Godunov upwind scheme 

cannot be directly applied. Instead, a Courant-Isaacson-Reece (CIR) scheme in regions where no 

shocks are present is adopted. In presence of shocks (discontinuities or jumps) the Rankine-

Hugoniot jump condition should be still satisfied (LeVeque 1992). A shock-fitting procedure is 

introduced to adjust the CIR speeds at suspect points near a shock which in turn requires tracing 

individual characteristic wave speeds at all points and at all times. For this reason, while the 

method is theoretically appealing it cannot be readily applied in large-scale practical cases. 

Mihaylova and Boel, 2004 used a Particle Filter (PF) to estimate traffic variables from a 

nonlinear state-space model. PF is essentially a Bayesian recursive estimation approach 

analogous to a Monte Carlo simulation. Therefore, PF is computationally expensive but is most 



 

45 
 

accurate in the case of nonlinear state-space models. Their numerical experiments on an 

undisclosed 0.5 kilometer long four lane freeway segment reported errors up to 10% in speed 

estimates. 

Table 1 summarizes the distinctive features of relevant traffic state estimation studies reported in 

the literature which are particularly based on state-space models. Based on this table a few points 

should be noted. First, not many studies reported on the accuracy of travel time predictions. 

Second, as expected, time interval size plays a significant role in the accuracy of estimates. 

Third, travel time data has never been systematically incorporated into the estimation process. 

The only reported work that directly combines probe data as travel time with stationary data 

(Chu et al. 2005) does so through a simplifying assumption that travel time is an adaptive 

coefficient of density in the segment under study. 

This dissertation builds on Work (2010) by incorporating travel time measurements into the 

estimation process. The CTM-v model coupled with a novel travel time model enable the direct 

assimilation of travel time measurements along with boundary speed measurements. Unscented 

approach is adopted to optimally filter the resulting nonlinear state-space model. Both Kalman 

and H-infinity type filters are considered. This setting allows for the joint speed and travel time 

estimations and predictions. Real world data from NGSIM project (US-101) is used to evaluate 

the performance of the proposed models and methods at very fine granularity levels (2 sec and 4 

sec time intervals). 
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Table 1. Summary features of traffic speed/travel time estimation studies using state-space models. 

Author(s) Year Traffic 
Model 

Measurement(s) Estimation 
Method 

Data Source Facility Type Time 
Interval 

Estimation 
Variable 

Prediction 
Variable 

Accuracy 

Chen, Chien 2001  -Probe 
(travel time) 

Auto-
Regressive 
Kalman 

CORSIM Freeway 
(I-80 in NJ) 

5 min Travel 
Time 

Travel Time 
(5 min) 

MARE ~2% @ 1-
3% probe 

Treiber, 
Helbing 

2002  -Stationary (flow, 
speed, density) 

Adaptive 
Smoothing 

Double ILD Freeway 
(A8, A9, A5, 
Germany) 

1 min Density Density 
(20 min) 

Visual 

Nanthawichit 
et al. 

2003 Payne 
(linearized, 
and 
discretized) 

-Stationary 
(flow, speed) 
-Probe 
(speed) 
-Combined 

Kalman Filter INTEGRATION Freeway 
(Yokohane, 
Japan) 

10 sec 
est., 
 3 min 
pred. 

Speed -Speed 
-Travel 
Time 

MARE<3-26% 
MARE <4% @ 
3% probe 

Mihaylova, 
Boel 

2004  -Stationary 
(flow, speed, 
density) 

Particle Filter METANET  10 sec Flow 
Speed 
Density 

  

Sun et al. 2004 SMM  -Stationary 
(flow, density) 

Mixture 
Kalman Filter 

PeMS (ILD) 
VISSIM 

Freeway 
(I-210 in CA) 

2 sec Speed  Visual 

Chu et al. 2005 LWR 
(discretized) 

-Stationary 
(flow, density) 
-Probe 
(travel time) 
-Combined 

Adaptive 
Kalman Filter 

PARAMICS Freeway 
(I-405 in CA) 

30 sec   MARE ~10% @ 
5% probe 

Wang, 
Papageorgiou 

2005 Modified 
PW 
(linearized) 

-Stationary 
(flow, speed) 

Extended 
Kalman Filter 

Kalman Filter  10 sec Density 
Speed 

 MARE <19-21% 
MARE ~14% 

Wang, 
Papageorgiou 

2007 Modified 
PW 
(linearized) 

-Stationary 
(flow, speed) 

Extended 
Kalman Filter 

ILD Freeway 
(A92, 
Germany) 

10 sec Flow 
Speed 
Density 

 Visual 

Herrera, 
Bayen 

2008 CTM 
(triangular 
flux) 

-Stationary 
(density) 
-Probe 
(position, speed) 

-Newton 
Relaxation 
-Kalman 
Filter 

NGSIM 
Mobile Century 

Freeway (US-
101, I-880 in 
CA) 
 

1.2 sec 
8 sec 

Density  ? 

Claudel, 
Bayen 

2008 Moskowitz 
HJ PDE 

-Stationary 
(density) 
-Probe 
(position, speed) 

LP NGSIM 
Mobile Century 
PeMS 

Freeway (US-
101, I-880 in 
CA) 
 

 Travel 
Time 

 MARE >8% @ 
5% probe 

Work et al. 2008 CTM-v -Stationary 
(speed) 
-Probe 
(position, speed) 

Ensemble 
Kalman Filter 

PARAMICS 
Mobile Century 

Freeway (I-
880 in CA) 

2 sec Speed  MARE 25% @ 
5% probe 

Barcelo et al. 2009  -Probe 
(travel time) 

Auto-
Regressive 
Kalman 

Pilot project Freeway (AP-
7 in Spain) 

5 min Travel 
Time 

Travel Time MARE 3.5% 
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Chapter 3: First-Order Continuum Traffic Flow Model 

 
In this chapter, first a well-known first-order continuum traffic flow model is adopted to 

represent the dynamics of the system. The proposed traffic flow model is a hyperbolic Partial 

Differential Equation (PDE) which specifies a conservation law. To be well-posed this PDE 

needs to be solved in presence of initial and/or boundary conditions. An equivalent form of this 

model in terms of speed is derived. This model provides a theoretical framework to describe and 

analyze traffic processes on a variety of roadway facilities. Currently, this model is used in an 

array of traffic operation and control applications worldwide. Therefore, it is essential to have 

both efficient and accurate solution methods for this model. A finite difference method for 

numerical solution of the velocity based equivalent of the first-order continuum traffic flow 

model is proposed. Two major speed-density relationships are introduced for use in the 

formulation and solution of the proposed traffic flow model. 

3.1 Traffic Model (LWR-v) 

Continuum traffic flow theory is a powerful tool to describe the evolution of macroscopic traffic 

parameters over time and space. This is in contrast to microscopic models of traffic flow which 

generally require meticulous handling of individual vehicles movements in the traffic stream. 

The most basic continuum traffic flow theory builds on two basic physical principles that is 

conservation of vehicles and the fundamental relationship between flow rate, density and speed. 

Conservation principle states that no vehicle is added or lost in traffic at any time other than the 

ones that enter or exit through the boundaries. This basic continuum theory was first proposed by 

Lighthill and Whitham (1955) and Richards (1956). Despite its simplicity, and therefore its 

inherent limitations (Daganzo, 1997), the so called kinematic wave theory or LWR model 

provides a good approximation to the dynamics of traffic flow which has proved to be useful for 
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most practical purposes. 

Even though our ability to directly measure different traffic parameters has dramatically 

increased over the years, measurements are still widely different in terms of their accuracy and 

reliability. For instance, flow rate and density both can be obtained as a result of simple counting 

processes performed at a single point or at a pair of points, respectively. However, it is ironic that 

in practice, large inconsistencies between counts in consecutive stations (with no exit or entrance 

in between) exist. In the case of loop detectors this “drift” phenomenon is well known. In 

addition, at a macroscopic level, definition of density is a bit ambiguous in the sense that the 

length over which concentration of vehicles would affect a driver’s behavior under normal 

conditions is not specified.  

In contrast, speed measurements which theoretically are expected to be more difficult to obtain 

have proved to be a far more reliable source of traffic data. That is why, in this dissertation, a 

velocity-based equivalent of the LWR model is adopted to model traffic dynamics. 

The rest of this section is organized as follows. First, the first-order continuum traffic flow model 

known as LWR model is briefly presented. Second, the finite difference based numerical 

solution to LWR model known as Cell Transmission Model (CTM) is presented. Two invertible 

speed-density relations are described. Finally,  the derivation of the first-order speed based 

continuum traffic flow model based on LWR model is presented. Also,  for the sake of 

completion, the speed based finite difference method equivalent to CTM presented by Work 

(2010) is summarized.  

3.1.1 LWR Model 

The first-order continuum traffic flow model proposed by Lighthill, Whitham and Richards 

(LWR) is considered in its differential from: 

𝜌𝑡(𝑥, 𝑡) + 𝑞𝑚(𝑥, 𝑡) = 0 (3.1) 
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where, 

𝜌(𝑥, 𝑡) denotes traffic density at time 𝑡 and at point 𝑥 along the highway, and 

𝑞(𝑥, 𝑡) denotes traffic flow rate at time 𝑡 and at point 𝑥 along the highway. 

This is the conservation law which essentially implies that no vehicle is born or lost along the 

highway. This Partial Differential Equation (PDE) is originally borrowed from hydrodynamics 

but has found widespread use in modeling vehicular traffic flow despite obvious differences 

between the two fields. 

3.1.2 Cell Transmission Model 

In practice, the LWR model presented in the previous section has to be approximated. In this 

section an approximation to LWR model proposed by Daganzo (1994) is briefly presented. Cell 

Transmission Model (CTM) is a finite difference PDE solution method which adopts a Godunov 

numerical scheme in order to approximate flow rates across cell boundaries. 

Similar to any finite difference approach, in CTM both time and space dimensions are 

discretized. Time is divided into 𝑁 time intervals {𝑡𝑛|𝑛 = 0,1, … ,𝑁} each of length ∆𝑡 = 𝑇/𝑁, 

and space is divided into 𝑀 space cells {𝑥𝑖|𝑇 = 0,1, … ,𝑀} each of length ∆𝑥 = (𝑏 − 𝑆)/𝑀. To 

each space cell 𝑥𝑖 at time interval 𝑡𝑛, an average density 𝜌𝑛𝑖  is assigned. Then, density evolution 

at each space cell over time is given by, 

𝜌𝑛+1𝑖 = 𝜌𝑛𝑖 −
∆𝑡
∆𝑚
�𝐺�𝜌𝑛𝑖 ,𝜌𝑛𝑖+1� − 𝐺�𝜌𝑛𝑖−1,𝜌𝑛𝑖 �� (3.2) 

where the flow rate 𝐺 between the two states 𝜌1 and 𝜌2 is defined as, 

𝐺(𝜌1,𝜌2) =

⎩
⎨

⎧
𝑄(𝜌2)                         if 𝜌𝑐 ≤ 𝜌2 ≤ 𝜌1 
𝑄(𝜌𝑐)                         if 𝜌2 ≤ 𝜌𝑐 ≤ 𝜌1
𝑄(𝜌1)                         if 𝜌2 ≤ 𝜌1 ≤ 𝜌𝑐
min (𝑄(𝜌1),𝑄(𝜌2))      if 𝜌1 ≤ 𝜌2   

 (3.3) 

where 𝜌𝑐 is the density corresponding with the maximum of the concave flux function 𝑄(𝜌). 
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Figure 5 provides a graphical representation of the Godunov flux function in the ordered pair 

density (𝜌1,𝜌2) domain. Note that when upstream (sending) cell is congested (𝜌𝑐 ≤ 𝜌1) and 

downstream (receiving) cell is not congested (𝜌2 ≤ 𝜌𝑐), then Godunov flux at the boundary of 

two cells is constant at the maximum possible flow (capacity). In other cases, Godunov flux is 

variable and equals either upstream or downstream flow rates. The line connecting (𝜌𝑐 ,𝜌𝑐) and 

(0,𝜌𝑚𝑚𝑚) is where standing shockwaves form, and therefore the Godunov function is not 

differentiable. 

 

Figure 5. Godunov flux function representation in the density domain. 

Bardos et al. (1979) have shown that nonlinear hyperbolic conservation laws of type (3.1) with 

strictly concave flux and initial condition (3.4) and the weak boundary conditions (3.5) and (3.6) 

in space ]𝑆, 𝑏[ × ]0,𝑇[ are well-posed. 

𝜌(𝑥, 0) = 𝜌0(𝑥)        ,∀𝑥 ∈ ]𝑆, 𝑏[ (3.4) 

�
𝜌(𝑆, 𝑡) = 𝜌𝑚(𝑡) or                                                                                     
𝑄′�𝜌(𝑆, 𝑡)� ≤ 0 and 𝑄′�𝜌𝑚(𝑡)� ≤ 0 or                                                
𝑄′�𝜌(𝑆, 𝑡)� ≤ 0 and 𝑄′�𝜌𝑚(𝑡)� > 0 and 𝑄(𝜌(𝑆, 𝑡)) ≤ 𝑄�𝜌𝑚(𝑡)�

 (3.5) 

𝜌𝑚𝑚𝑚  

𝜌𝑚𝑚𝑚  
𝜌1 

𝜌2 

 

𝐺(𝜌1,𝜌2) = 
𝑄(𝜌1) 

𝜌𝑐  

𝜌𝑐  

𝐺(𝜌1,𝜌2) = 
𝑄(𝜌2) 

𝐺(𝜌1,𝜌2) = 
𝑄(𝜌𝑐) 

Depends on flux 
function 𝑄 

0 
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�
𝜌(𝑏, 𝑡) = 𝜌𝑏(𝑡) or                                                                                     
𝑄′�𝜌(𝑏, 𝑡)� ≥ 0 and 𝑄′�𝜌𝑏(𝑡)� ≥ 0 or                                                
𝑄′�𝜌(𝑏, 𝑡)� ≥ 0 and 𝑄′�𝜌𝑏(𝑡)� < 0 and 𝑄(𝜌(𝑏, 𝑡)) ≤ 𝑄�𝜌𝑏(𝑡)�

 (3.6) 

Note that above boundary conditions are in the weak form (designed to ensure that entropy 

solution to LWR PDE exists and is unique). The first line in each case is however, in the strong 

case where solution at boundary takes the value of the boundary condition. The second and third 

lines in each case attempt to maintain the condition that no outside waves enter the solution 

domain. 

3.1.3 Speed-Density Relations 

In vehicular traffic flow it is generally believed that speed and density are negatively correlated.  

Different empirical relationships between traffic speed and density are introduced over the years. 

(Del Castillo and Benitez, On the Functional Form of the Speed-Density Relationship-I: General 

Theory 1995). The first speed-density relationship proposed by Greenshields (1935) has a simple 

linear form: 

𝑣 = 𝑉𝐺𝑆(𝜌) = 𝑣𝑓(1 − 𝜌 𝜌𝑚𝑚𝑚⁄ ) (3.7) 

where, 𝑣𝑓 is the free flow speed, and 𝜌𝑚𝑚𝑚 is the jam density of highway under prevailing 

conditions. Also, under stationary traffic conditions, by definition the following relationship 

between flow, speed and density holds: 

𝑞 = 𝜌 𝑣 (3.8) 

Substituting for speed from (3.3) in (3.4), the following quadratic relation between flow and 

density is obtained: 

𝑞 = 𝑄𝐺𝑆(𝜌) = 𝑣𝑓(𝜌 − 𝜌2 𝜌𝑚𝑚𝑚⁄ ) (3.9) 

Recently, more sophisticated speed-density models are proposed. For instance, triangular 

fundamental diagram (Daganzo-Newell) is a two-regime model which assumes a constant free-
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flow speed throughout the uncongested regime and a hyperbolic speed in the congested phase:  

𝑣 = 𝑉𝐷𝑁(𝜌) = �
𝑣𝑚𝑚𝑚                              ,𝜌 ≤ 𝜌𝑐
−𝑤𝑓(1 − 𝜌𝑚𝑚𝑚 𝜌⁄ )       ,𝜌 > 𝜌𝑐

 (3.10) 

where, 𝑤𝑓 is a parameter indicating the wave speed. Note that to assure continuity of speed at 

critical density 𝜌𝑐 the following should hold: 

𝑤𝑓 = 𝑣𝑚𝑚𝑚(𝜌𝑚𝑚𝑚 𝜌𝑐⁄ − 1) (3.11) 

A close alternative to the triangular fundamental diagram (in fact a combination of Greenshields 

and triangular models) is the multi-regime hyperbolic-linear model. In the uncongested regime, 

this model maintains a linear relationship between speed and density, while in the congested 

regime it takes a hyperbolic form: 

𝑣 = 𝑉𝐻𝐿(𝜌) = �
𝑣𝑚𝑚𝑚 �1 − 𝜌

𝜌𝑚𝑎𝑥
�       ,𝜌 ≤ 𝜌𝑐

−𝑤𝑓 �1 − 𝜌𝑚𝑎𝑥
𝜌
�        ,𝜌 > 𝜌𝑐

 (3.12) 

And, the corresponding continuity condition is now given by the following expression: 

𝑤𝑓 = 𝑣𝑚𝑚𝑚(𝜌𝑐 𝜌𝑚𝑚𝑚⁄ ) (3.13) 

3.1.4 Velocity-Based Cell Transmission Model 

Given an invertible speed-density relationship, at each discrete point (space cell 𝑇, and time step 

𝑛) the CTM model can be rewritten in terms of the traffic speeds: 

𝑣𝑛+1𝑖 = 𝑉�𝜌𝑛+1𝑖 � = 𝑉 �𝑉−1�𝑣𝑛𝑖 � −
∆𝑡
∆𝑚
�𝐺��𝑣𝑛𝑖 , 𝑣𝑛𝑖+1� − 𝐺��𝑣𝑛𝑖−1, 𝑣𝑛𝑖 ��� (3.14) 

where, 

𝜌 = 𝑉−1(𝑣) (3.15) 

denotes the density as a function of speed, and 

𝐺�(𝑣1, 𝑣2), is the speed-based Godunov type numerical flux function defined as 
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𝐺�(𝑣1, 𝑣2) =

⎩
⎪
⎨

⎪
⎧𝑄
�(𝑣2)                      if 𝑣1 ≤ 𝑣2 ≤ 𝑣𝑐
𝑄�(𝑣𝑐)                       if 𝑣1 ≤ 𝑣𝑐 ≤ 𝑣2
𝑄�(𝑣1)                      if 𝑣𝑐 ≤ 𝑣1 ≤ 𝑣2
min �𝑄�(𝑣1),𝑄�(𝑣2)�       if 𝑣1 ≥ 𝑣2

 (3.16) 

where 𝑣𝑐 is the speed corresponding with the maximum of the concave flux function 𝑄�(𝑣). Note 

that CTM-v model (3.14) is in general highly nonlinear in terms of the speed arguments. 

Figure 6 provides a graphical representation of the Godunov flux function in the ordered pair 

speeds (𝑣1, 𝑣2) domain. Note that when upstream (sending) cell is congested (𝑣1 ≤ 𝑣𝑐) and 

downstream (receiving) cell is not congested (𝑣𝑐 ≤ 𝑣2), then Godunov flux at the boundary of 

two cells is constant at the maximum possible flow (capacity). In other cases, Godunov flux is 

variable and equals either upstream or downstream flow rates. The line connecting (𝑣𝑐 , 𝑣𝑐) and 

(𝑣𝑚𝑚𝑚, 0) is where standing shockwaves form, and therefore the Godunov function is not 

differentiable. 

 

Figure 6. Godunov flux function representation in the speed domain. 

Similar to the CTM case, the CTM-v model (3.14) with the initial condition (3.17) and the weak 

boundary conditions (3.18) and (3.19) in space ]𝑆, 𝑏[ × ]0,𝑇[ is well-posed. 

𝑣𝑚𝑚𝑚  

𝑣𝑚𝑚𝑚  
𝑣1 

𝑣2 

 
𝐺�(𝑣1, 𝑣2) = 
𝑄�(𝑣1) 

𝑣𝑐  

𝑣𝑐  

𝐺�(𝑣1, 𝑣2) = 
𝑄�(𝑣2) 

Depends on flux 
function 𝑄�  

0 

𝐺�(𝑣1, 𝑣2) = 
𝑄�(𝑣𝑐) 
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𝑣(𝑥, 0) = 𝑣0(𝑥)        ,∀𝑥 ∈ ]𝑆, 𝑏[ (3.17) 

�
𝑣(𝑆, 𝑡) = 𝑣𝑚(𝑡) or                                                                                     
𝑄�′�𝑣(𝑆, 𝑡)� ≤ 0 and 𝑄�′�𝑣𝑚(𝑡)� ≤ 0 or                                                
𝑄�′�𝑣(𝑆, 𝑡)� ≤ 0 and 𝑄�′�𝑣𝑚(𝑡)� > 0 and 𝑄�(𝑣(𝑆, 𝑡)) ≤ 𝑄��𝑣𝑚(𝑡)�

 (3.18) 

�
𝑣(𝑏, 𝑡) = 𝑣𝑏(𝑡) or                                                                                     
𝑄�′�𝑣(𝑏, 𝑡)� ≥ 0 and 𝑄�′�𝑣𝑏(𝑡)� ≥ 0 or                                                
𝑄�′�𝑣(𝑏, 𝑡)� ≥ 0 and 𝑄�′�𝑣𝑏(𝑡)� < 0 and 𝑄�(𝑣(𝑏, 𝑡)) ≤ 𝑄��𝑣𝑏(𝑡)�

 (3.19) 

3.2 Summary 

In this chapter a first-order and velocity-based continuum traffic flow model was introduced. 

Possible model and input data were discussed. Also, potential output from proposed modeling 

effort has been generally identified. Various features of desirable solution approaches to the 

proposed research problem in terms of prediction horizon, efficiency and accuracy have been 

generally specified. 
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Chapter 4: Travel Time Model 

 
In this chapter, a first-order partial differential equation (PDE) model relating local variations of 

travel time with local speeds is presented. Travel time can be defined relative to either the start 

point or the end point of a trip. At any point along the trip, the former definition amounts to a 

retrospective (a posteriori) view of travel time, while the latter leads to an anticipative or 

predictive (a priori) definition of travel time. The proposed PDE model is capable of dealing with 

both travel time definitions with very slight variations required in the underlying model. 

In addition, some desirable properties of travel time such as stability and first-in first-out (FIFO) 

are briefly presented and their implications in terms of the proposed travel time models are 

discussed. Efficient numerical solution schemes based on finite difference approximation of 

partial differentials are introduced. Also, appropriate boundary and initial value conditions 

required in solving the proposed PDE models are derived and presented. Finally, a discussion on 

the benefits and potential applications of proposed models is presented. 

4.1 Preliminaries 

A vehicle travel time can be defined as the line integral of inverse of vehicle speed along its 

trajectory. Based on this definition, it is clear that either the vehicle trajectory should be known, 

or the inverse problem of finding speeds based on travel time will be under-determined. 

𝜏 = ∫ 1
�1+𝑣(𝑋(𝑠),𝑠)2

𝑑𝑠 (4.1) 

Given the speed field, constructing vehicle trajectory and travel time estimation is a direct 

problem. Theoretically, travel time estimation given speeds is a straight-forward process. 

However, in practice this process is very inefficient since it requires numerical approximations to 

the above line integral. Also, travel time estimates based on trajectory construction tend to have 
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poor quality since errors in speed estimates quickly add up in the process. Instances of this 

method resulted in errors up to 10 percent in travel time estimates over a half a mile segment. 

Alternatively, in this dissertation, instead of the integral representation the focus is on the local 

travel time variations. In other words, differential equations relating travel time and local speeds 

seem to be more useful in this setting. 

Similar to other traffic states, predictive (retrospective) travel time 𝜏 (𝜃) can be defined on the 

space-time domain as the minimum distance from (to) any given point (𝑥, 𝑡) in the solution 

domain to (from) the downstream (upstream) boundary 𝑥𝑑 (𝑥𝑢). Figure 7 illustrates the travel 

time definitions at a given point (𝑥, 𝑡) with respect to the upstream and downstream of a 

segment. 

 

Figure 7. Travel time definitions. 

Figure 8 illustrates the space-time domain with iso-distance contours representing the set of 

points from which travel time to the downstream boundary are the same. Also, this 

representation suggests that travel times observed at upstream (or any other point along the 

highway) is in fact a cross-section of various contours.  

(𝑥, 𝑡) 

𝑡 

𝑥 

𝑥 = 𝑥𝑑 
𝜃(𝑥, 𝑡) 𝜏(𝑥, 𝑡) 

𝑥 = 𝑥𝑢 

𝑢(𝑥, 𝑡) 
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Figure 8. Concept of travel time as distance from downstream boundary in a wave propagation paradigm. 

These definitions along with the assumption of smoothness (of underlying travel time function) 

result in partial differential equation representation of travel time variations in the space-time 

domain. Finite difference schemes may be used to numerically solve the proposed travel time 

model. 

In the following sections derivation of first-order travel time PDE models are presented. Then, 

some desirable properties of travel time such as stability and first-in first-out (FIFO) are 

discussed. It is shown that proposed travel time models under certain circumstances uphold these 

properties. Finite difference schemes along with appropriate boundary conditions to efficiently 
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solve the proposed travel time models are presented. 

4.2 First-Order Travel Time Model Derivation 

Let 𝜏(𝑥, 𝑡) represent travel time from a point (𝑥, 𝑡) in space 𝑥 and time 𝑡 coordinates to a given 

downstream point 𝑥𝑑. This definition specifies the so called a priori travel time since at point 

(𝑥, 𝑡) travel time 𝜏(𝑥, 𝑡) has not yet realized. It should be noted that in what follows derivations 

and proposed solution schemes are based on this definition of travel time. However, it will be 

trivial to derive similar models in the case of a posteriori travel times. 

Assuming smoothness and therefore existence of derivatives we can use Taylor’s function 

expansion to obtain the travel time near a point (𝑥, 𝑡) as 

𝜏(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡) = 𝜏(𝑥, 𝑡) + 𝜏𝑡𝑑𝑡 + 𝜏𝑚𝑑𝑥 + 𝑂((𝑑𝑡)2) + 𝑂((𝑑𝑥)2) (4.2) 

Figure 9 illustrates these definitions and the above relationship where the pair of points (𝑥, 𝑡) and 

(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡) are located on a single vehicle trajectory. In this case, it is obvious that travel 

time to downstream at the second point has a simple relationship with the travel time at the first 

point, or more specifically the difference between the two travel times is equal to 𝑑𝑡: 

 
Figure 9. Schematic illustration of a vehicle trajectory in space-time domain. 

𝜏(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡) = 𝜏(𝑥, 𝑡) − 𝑑𝑡 (4.3) 

𝑑𝑑 
(𝑥, 𝑡) 
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𝑑𝑑 
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𝑥 
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𝜏(𝑥 + 𝑑𝑑, 𝑡 + 𝑑𝑑) 
𝜏(𝑥, 𝑡) 
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Substituting (4.2) into (4.1), 𝜏(𝑥, 𝑡) term cancels out on both sides, and then moving derivative 

terms to the right hand side, the following is obtained: 

𝜏𝑡𝑑𝑡 + 𝜏𝑚𝑑𝑥 = −𝑑𝑡 + 𝑂((𝑑𝑡)2) + 𝑂((𝑑𝑥)2) (4.4) 

Now dividing both sides of (3) by 𝑑𝑡, the following expression is obtained: 

𝜏𝑡 + 𝜏𝑚 �
𝑑𝑚
𝑑𝑡
� = −1 + 𝑂(𝑑𝑡) + 𝑂 �(𝑑𝑚)2

𝑑𝑡
� (4.5) 

As 𝑑𝑡 goes to zero, in the limit 𝑑𝑚
𝑑𝑡

 goes to speed 𝑣(𝑥, 𝑡) which in vehicular traffic is typically 

assumed to be bounded from above by a known free flow speed 𝑣𝑓. Therefore, taking the limits 

from both sides of (4.4) the following first-order PDE equation is obtained: 

𝜏𝑡 + 𝑣𝜏𝑚 = −1 (4.6) 

Note that equation (4.6) is hyperbolic with a non-zero right hand side. Hence, it is not 

conservative. Also, equation (4.6) suggests that gradient of a priori travel time (𝜏𝑚, 𝜏𝑡) and the 

gradient of vehicle trajectory (𝑣, 1) are pointing to opposite directions. This means that as 

vehicle travels along its trajectory a priori travel time decreases. 

Denoting travel time from an upstream point 𝑥𝑢 to a point (𝑥, 𝑡) in the solution domain by 

𝜃(𝑥, 𝑡), the following first-order PDE equation for a posteriori travel times can be obtained: 

𝜃𝑡 + 𝑣𝜃𝑚 = 1 (4.7) 

Note that equation (4.7) is also non-conservative. Also, according to (4.7) the gradient of a 

posteriori travel time (𝜃𝑚,𝜃𝑡) and the gradient of vehicle trajectory (𝑣, 1) are overlapping at all 

times. This implies that as vehicle travels along its trajectory a posteriori travel time increases. 

Also, note that summing up models (4.6) and (4.7) and substituting total travel time between 

upstream and downstream 𝑢 = 𝜃 + 𝜏, the following conservative equation for total travel time of 

a vehicle along its trajectory can be obtained: 

𝑢𝑡 + 𝑣𝑢𝑚 = 0 (4.8) 
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Equation (4.8) suggests that the gradient of total travel time along the segment (𝑢𝑚,𝑢𝑡) and the 

gradient of vehicle trajectory (𝑣, 1) are perpendicular to each other at all times. In other words, 

total travel time of a vehicle stays constant along its trajectory. While an interesting result, and 

perhaps useful in certain cases, model form (4.8) is not as informative as model forms (4.6) and 

(4.7) as the latter provide more information about the vehicle travel time changes as it goes 

through the segment of interest. 

4.3 Travel Time Model Properties 

Note that travel time models (4.6) and (4.7) suggest a close relationship between local travel time 

variations and spot speeds exist. In other words, using these models travel time variations may be 

further characterized. In this section, proposed models behavior in terms of stability conditions, 

and first-in first-out properties of traffic are explored. 

4.3.1 Stability 

Under stable traffic flow condition, speeds over time and space do not change. In terms of travel 

times, stability in time direction suggests that travel time at a given point on the highway will be 

constant over time. In other words,  

𝜏𝑡 = 0 (4.9) 

𝜏𝑡𝑡 = 0 (4.10) 

In the space direction, however, stability has a different interpretation. Under stable conditions 

(constant speeds), at any given time, it takes a vehicle ∆𝑡 = ∆𝑥 𝑣⁄ = 𝑛∆𝑥 additional time units to 

cover a distance ∆𝑥 in front of it, where 𝑛 is the speed inverse (pace). Given stable conditions, 

this time lapse is effectively the difference in travel time between two points along the space 

coordinate: 

∆𝜏 = 𝜏(𝑥 + ∆𝑥, . ) − 𝜏(𝑥, . ) = −∆𝑡 = −∆𝑥 𝑣⁄ = −𝑛∆𝑥  (4.11) 
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Therefore, in the limit as ∆𝑥 goes to zero, the derivative of travel time with respect to space can 

be obtained: 

𝜏𝑚 = −1 𝑣⁄ = −𝑛 (4.12) 

𝜏𝑚𝑚 = 0 (4.13) 

It is straight-forward to show that model (4.6) maintains the pair of first-order stability 

conditions given by equations (4.9) and (4.12). Similarly a set of stability conditions for a 

posteriori (retrospective) travel times can be derived: 

�

𝜃𝑡 = 0             
𝜃𝑡𝑡 = 0            
𝜃𝑚 = 1 𝑣⁄ = 𝑛
𝜃𝑚𝑚 = 0            

 (4.14) 

4.3.2 First-In-First-Out (FIFO) 

The FIFO condition implies no passing takes place in traffic. While this may not be a realistic 

assumption, existence of passing suggests that there has been a possibility for the front vehicle to 

go faster. For all practical purposes, sequence of vehicles in the entrance to and at the departure 

from the segment can be easily re-arranged in order to maintain the FIFO condition. 

Let 𝐷(𝑥, 𝑡) denote departure time at the downstream point of a vehicle that entered the segment 

at a point 𝑥, and at time 𝑡. Clearly, 𝐷(𝑥, 𝑡) can be expressed in terms of the vehicle entrance time 

𝑡 and the vehicle anticipative travel time: 

𝐷(𝑥, 𝑡) =  𝑡 + 𝜏(𝑥, 𝑡) (4.15) 

The FIFO condition asserts that if a pair of vehicles enter the segment at times 𝑡 and 𝑡 + ∆𝑡, then 

their departure times should follow the same order: 

𝐷(𝑥, 𝑡) ≤ 𝐷(𝑥, 𝑡 + ∆𝑡) (4.16) 

Substituting from (4.15) into both sides of (4.16) and simplifying the following can be obtained: 

𝜏(𝑥, 𝑡) ≤ ∆𝑡 + 𝜏(𝑥, 𝑡 + ∆𝑡) (4.17) 
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Rearranging (4.17) and taking the limit as the difference between the entrance times of two 

vehicles goes to zero, in order for FIFO condition to hold, the derivative of anticipative travel 

time with respect to time will have to be greater than or equal to negative one: 

𝜏𝑡 = lim∆𝑡→0 �𝜏(𝑥, 𝑡 + ∆𝑡) − 𝜏(𝑥, 𝑡)� ∆𝑡⁄  ≥ −1 (4.18) 

Similarly, and denoting entrance time at the upstream point of a vehicle that departed the 

segment at point 𝑥 and at time 𝑡 by 𝐴(𝑥, 𝑡), the FIFO condition on a pair of vehicles departing 

the segment at times 𝑡 and 𝑡 + ∆𝑡 can be written as 

𝐴(𝑥, 𝑡) ≤ 𝐴(𝑥, 𝑡 + ∆𝑡) (4.19) 

Noting that entrance times can be expressed in terms of the departure time t and retrospective 

travel time 

𝐴(𝑥, 𝑡) =  𝑡 − 𝜃(𝑥, 𝑡) (4.20) 

By substituting (4.20) into (4.19), then simplifying and taking the limit, the upper limit on 

retrospective travel time derivative with respect to time can be derived: 

𝜃𝑡 = lim∆𝑡→0 �𝜃(𝑥, 𝑡 + ∆𝑡) − 𝜃(𝑥, 𝑡)� ∆𝑡⁄ ≤ 1 (4.21) 

Also, no passing condition of FIFO implies that anticipative travel time of a vehicle at a given 

point (𝑥, 𝑡), 𝜏(𝑥, 𝑡), should be greater than or equal to the anticipative travel time of a vehicle 

which at the same time 𝑡 is ∆𝑥 distance units ahead of it, independent of front vehicles speed: 

𝜏(𝑥, 𝑡) ≥ ∆𝑥 𝑣(𝑥, 𝑡)⁄ + 𝜏(𝑥 + ∆𝑥, 𝑡) (4.22) 

Rearranging and taking the limit, it can be shown that in order to maintain FIFO condition, at 

any given point (𝑥, 𝑡) the derivative of anticipative travel time with respect to space has to be 

smaller than or equal to the negative inverse of the local speed (pace): 

𝜏𝑚 = lim∆𝑚→0 �𝜏(𝑥 + ∆𝑥, 𝑡) − 𝜏(𝑥, 𝑡)� ∆𝑥⁄ ≤ −1 𝑣(𝑥, 𝑡)⁄ = −𝑛 (4.23) 

𝜃(𝑥, 𝑡) + ∆𝑥 𝑣(𝑥, 𝑡)⁄ ≤ 𝜃(𝑥 + ∆𝑥, 𝑡) (4.24) 



 

 
 

63 
 

𝜃𝑚 = lim∆𝑚→0 �𝜃(𝑥 + ∆𝑥, 𝑡) − 𝜃(𝑥, 𝑡)� ∆𝑥⁄ ≥ 1 𝑣(𝑥, 𝑡)⁄ = 𝑛 (4.25) 

Considering travel time models (4.6) and (4.7), it can be shown that if conditions (4.18) and 

(4.21) on the corresponding travel time derivatives with respect to time are satisfied, the 

proposed models will satisfy FIFO conditions. 

4.4 Numerical Solution 

Travel time models (4.6) and (4.7) can be solved numerically using a forward-time backward-

space (FTBS) finite difference scheme. For this purpose we need to discretize the solution 

domain into cells. First, time duration 𝑇 is divided into 𝑁 time intervals {𝑡𝑛|𝑛 = 0,1, … ,𝑁} each 

of length ∆𝑡 = 𝑇/𝑁 and the highway length 𝑋 is divided into 𝑀 space cells {𝑥𝑖|𝑇 = 0,1, … ,𝑀} 

each of length ∆𝑥 = 𝑋/𝑀. To each space cell 𝑥𝑖 at time interval 𝑡𝑛, a discrete average speed 𝑣𝑛𝑖  

and travel times 𝜏𝑛𝑖  (anticipative) and 𝜃𝑛𝑖  (retrospective) are assigned. Therefore, under smooth 

conditions the pair of travel time evolution equations at each space cell over time is given by, 

𝜏𝑛+1𝑖 = 𝜏𝑛𝑖 −
∆𝑡
∆𝑚
𝑣𝑛𝑖 �𝜏𝑛𝑖 − 𝜏𝑛𝑖−1� − ∆𝑡 (4.26) 

𝜃𝑛+1𝑖 = 𝜃𝑛𝑖 −
∆𝑡
∆𝑚
𝑣𝑛𝑖 �𝜃𝑛𝑖 − 𝜃𝑛𝑖−1� + ∆𝑡 (4.27) 

4.5 Boundary Conditions 

Based on definition, some boundary values are easy to determine. For instance, at the 

downstream point the value of anticipative travel time function is constantly equal to zero: 

𝜏(𝐿, 𝑡) = 0 (4.28) 

Similarly, retrospective travel time function at downstream point is constantly equal to zero: 

𝜃(0, 𝑡) = 0 (4.29) 

Initial conditions are also assumed to be known at every point along the segment under 

consideration: 

𝜏(𝑥, 0) = 𝐹(𝑥) (4.30) 
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𝜃(𝑥, 0) = 𝐺(𝑥) (4.31) 

Travel time data provided by AVI technologies such as Bluetooth detection units can serve as 

additional boundary, initial or internal conditions. In our specific application such data sources 

are considered as boundary conditions since the pair of detectors are assumed to be placed at 

both ends of the segment of interest 

𝜏(0, 𝑡) = 𝐻(𝑡) (4.32) 

𝜃(𝐿, 𝑡) = 𝑀(𝑡) (4.33) 

 

Figure 10. Space-time grid representation of the solution domain. 

Figure 10 shows a typical grid in which initial and downstream boundary conditions on travel 

times are represented by dark nodes, while red nodes represent occasional travel time 

measurements at the upstream boundary. 

According to travel time models (4.26) and (4.27), at the upstream cell (𝑇 = 0), the travel time 

update equations will require an estimate of travel time in the ghost cell (𝑇 = −1). The following 

𝜏(𝐿, 𝑡) = 0 
𝑥𝑑 = 𝐿 

𝑥𝑢 = 0 
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boundary conditions give an estimate of travel time in the ghost cell based on the upstream 

speed, upstream travel times, and the cell size: 

𝜏𝑛−1 = 𝜏𝑛0 + ∆𝑥 𝑣𝑛0⁄  (4.34) 

𝜃𝑛−1 = 𝜃𝑛0 − ∆𝑥 𝑣𝑛0⁄  (4.35) 

4.6 Summary 

A first-order travel time model was derived. This model relates the local speeds with local 

variations of travel time. The proposed travel time model has a non-conservative PDE form. 

Travel time can be defined relative to either the start point or the end point of a trip. At any point 

along the trip, the former definition amounts to a retrospective view of travel time, while the 

latter leads to an anticipative or predictive definition of travel time. With a slight modification 

the proposed PDE model is capable of dealing with both retrospective and anticipative travel 

times. Stability and first-in-first-out properties of the proposed travel time models were 

investigated and conditions under which these properties hold were identified. The proposed 

numerical solution for this model was obtained by substituting the relevant travel time partial 

derivatives with their corresponding first-order finite-difference approximations. Appropriate 

boundary and initial value conditions required in solving the proposed PDE models were derived 

and presented. 
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Chapter 5: Estimation Method 

 
In this chapter, the joint traffic and travel time model is cast into a state-space modeling 

framework. Different components of the corresponding state-space model including state vector, 

input vector, measurements vector, dynamic model, and measurement equations are specified. 

The state-space model specification provides a framework to assimilate field measurements with 

the state dynamics models. 

The proposed state-space model state estimation procedures are statistical tools that are optimally 

designed to achieve a pre-specified performance objective. Optimal state estimations are 

typically two-step state update processes. These methods are usually derived based on a set of 

assumptions about the nature of model and measurement errors. In their standard form, optimal 

state estimation methods are applicable to linear state-space models. Different methods are 

proposed to extend the optimal state estimation methods to the nonlinear case. In this 

dissertation, given the highly nonlinear nature of the proposed state-space model, unscented state 

and error covariance estimation methods are adopted. 

Note that optimal state estimation methods are general procedures. Other than the modeled 

dynamics, some physical constraints may be known about the state of the system. For instance, 

in the proposed joint traffic and travel time model it is desirable that at all times estimated 

retrospective travel times at upstream and predictive travel times at downstream be equal to zero. 

A general Maximum Likelihood Estimation (MLE) method is adopted to enforce these perfect 

measurement constraints at each time step. This MLE method in fact performs a post-process of 

the general optimal state estimation results. 

Retrospective travel time measurements at the current time are treated as delayed anticipative 

travel time measurements. Therefore, a delayed filtering method is proposed to condition the 
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current state estimates based on the additional information that is contained in these delayed 

measurements. 

The rest of this chapter is organized as follows. First, the state-space model corresponding to the 

proposed joint traffic and travel time dynamics models is specified. Taking into account the 

nonlinearity of the proposed model, methods to optimally estimate the system state vector are 

identified. Then, a MLE method is presented to enforce the relevant perfect measurement 

constraints on the travel time estimates at the boundaries of the road segment. A pair of adaptive 

nonlinear filtering methods is presented which can handle the highly nonlinear form of the 

proposed dynamic models efficiently. A delayed filtering approach is proposed to assimilate the 

delayed upstream anticipative travel time measurements. 

5.1 State Space Model 

The most general representation of a discrete dynamical system can be given as: 

�
𝑥𝑛+1 = 𝑓(𝑥𝑛,𝑢𝑛,𝑤𝑛)
𝑦𝑛 = ℎ(𝑥𝑛, 𝑣𝑛)             (5.1) 

where, 

𝑥𝑛, is the system state vector at time interval 𝑛, 

𝑢𝑛, is the system input (parameters, boundary conditions) vector at time interval 𝑛, 

𝑤𝑛, is the system process error (noise) vector at time interval 𝑛, 

𝑦𝑛, is the system measurements vector at time interval 𝑛, 

𝑣𝑛, is the measurement error (noise) vector at time interval 𝑛, 

𝑓, is the multi-dimensional system dynamics function (model) , and 

ℎ, is the multi-dimensional measurement equation. 

If 𝑓(.) and ℎ(.) are explicit functions of time interval 𝑛 then the system is time-varying. 

Otherwise, the system is time invariant. 
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In this dissertation, traffic dynamics and the corresponding state estimation problem is cast as a 

state space model. In the following sub-sections different components of the state space model 

pertaining to the current traffic estimation problem are defined. 

5.1.1 System state vector 

State of the traffic on a given segment broken into 𝑀 spatial cells at time interval 𝑛 can be 

expressed by three 𝑀 × 1 sub-vectors components representing speeds, retrospective, and 

anticipative travel times in each cell. The system state vector is a 3𝑀 × 1 vector: 

𝑥𝑛 = [𝑉𝑛 Θ𝑛 Τ𝑛]𝑇 (5.2) 

where, 

𝑉𝑛 = [𝑣𝑛1 … 𝑣𝑛𝑀]𝑇 (5.3) 

Θ𝑛 = [𝜃𝑛1 … 𝜃𝑛𝑀]𝑇 (5.4) 

Τ𝑛 = [𝜏𝑛1 … 𝜏𝑛𝑀]𝑇 (5.5) 

Equations (5.3)-(5.5) specify the speeds, retrospective and anticipative travel time state sub-

vectors, respectively. 

5.1.2 System input vector 

Input to the model include the discretization (PDE solution stencil) parameters (∆𝑡,∆𝑥), speed-

density relationship parameters �𝑣𝑚𝑚𝑚, 𝑣𝑐,𝑤𝑓�, and set of traffic and travel time PDE solution 

boundary conditions (𝑣𝑛0, 𝑣𝑛𝑀+1,𝜃𝑛0, 𝜏𝑛0): 

𝑢𝑛 = �Δ𝑡 Δ𝑥 𝑣𝑚𝑚𝑚 𝑣𝑐 𝑤𝑓 𝑣𝑛0 𝑣𝑛𝑀+1 𝜃𝑛0 𝜏𝑛0�
𝑇
 (5.6) 

5.1.3 System measurement vector 

In this dissertation measurements at the boundaries of the road segment are considered. Spot 

speed measurements from a pair of loop detectors installed at the two boundaries �𝑣𝑛
1,𝑚, 𝑣𝑛

𝑀,𝑚�, 
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and retrospective travel time measurement at the downstream �𝜃𝑛
𝑀,𝑚� are included in the 

measurement vector: 

𝑦𝑛 = �𝑣𝑛
1,𝑚 𝑣𝑛

𝑀,𝑚 𝜃𝑛
𝑀,𝑚�

𝑇
 (5.7) 

5.1.4 Dynamic model 

System dynamic model is comprised of speed and travel time update models given in the earlier 

chapters. Model errors are assumed to be additive. Similar to the system state vector, the vector 

of dynamic models can be broken down into three distinct components: 

𝑓𝑛(. ) = [𝑓𝑉,𝑛(. ) 𝑓Θ,𝑛(. ) 𝑓Τ,𝑛(. )]𝑇 + 𝑤𝑛 (5.8) 

where, set of speed update models 𝑓𝑉,𝑛(. ) is given by the following for every cell {𝑇 = 1, … ,𝑀}: 

𝑣𝑛+1𝑖 = 𝑉 �𝑉−1�𝑣𝑛𝑖 � −
∆𝑡
∆𝑚
�𝐺��𝑣𝑛𝑖 , 𝑣𝑛𝑖+1� − 𝐺��𝑣𝑛𝑖−1, 𝑣𝑛𝑖 ��� (5.9) 

Similarly, set of travel time update models 𝑓Θ,𝑛(. ) and 𝑓Τ,𝑛(. ) are given by the following set of 

equations for every cell {𝑇 = 1, … ,𝑀}: 

𝜏𝑛+1𝑖 = 𝜏𝑛𝑖 −
∆𝑡
∆𝑚
𝑣𝑛𝑖 �𝜏𝑛𝑖 − 𝜏𝑛𝑖−1� − ∆𝑡 (5.10) 

𝜃𝑛+1𝑖 = 𝜃𝑛𝑖 −
∆𝑡
∆𝑚
𝑣𝑛𝑖 �𝜃𝑛𝑖 − 𝜃𝑛𝑖−1� + ∆𝑡 (5.11) 

And, 𝑤𝑛 is the 3𝑀 × 1 model error vector at time interval 𝑛. 

Note that all the system dynamic equations are nonlinear in system state variables. While speed-

density relationship 𝑉(. ) and its inverse 𝑉−1(. ) as well as Godunov flux function 𝐺�(. , . ) 

introduced in Chapter 3 are the source of nonlinearity in the speed update equations (5.9), both 

travel time update equations (5.10) and (5.11) include multiplicative terms of speed and travel 

time variations over space. 

5.1.5 Measurement equations 
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Measurement equations considered in this dissertation reflect direct measurement of some of the 

state variables. Error terms are assumed to be additive. Therefore, measurement equations have a 

linear form: 

ℎ(𝑥𝑛, 𝑣𝑛) = 𝐻𝑥𝑛 + 𝑣𝑛 (5.12) 

where, 

𝐻, is a binary (0 or 1) matrix of the size 3 × 3𝑀 with only one nonzero element in each row 

(columns 1, 𝑀, and 2𝑀 in rows 1, 2, and 3, respectively), and 

𝑣𝑛, is a 3 × 1 measurement error vector. 

5.2 Optimal State Estimation 

In presence of dynamic models and measurements, state of the system can be estimated by 

following a two-step approach. In the first step, given the initial state of the system, the dynamic 

model can be used to propagate (usually mean and covariance of) the state of the system into the 

next time step. In the second step, the a priori state estimates will be updated according to the 

new measurements. This can be regarded as the conditioning of the estimated system state based 

on the measurements. 

Figure 11 summarizes the two principal steps involved in optimal state estimations. The 

variables used follow the same notation specified in the general definition of state-space models 

earlier in this chapter. Minus and plus signs indicate the a priori and a posteriori nature of state 

estimates, respectively. 
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Figure 11 Optimal state estimation steps. (1-state and covariance propagation, 2-measurement update) 

Usually state estimation is performed to achieve a desired performance. The Kalman type filters 

are designed to minimize the expected value of the state estimate error covariance. On the other 

hand, H-infinity filters are designed to minimize the worst-case estimation error. 

Most filters used in optimal state estimation are designed with linear state-space models in mind. 

In order to apply the optimal state estimation methods to nonlinear cases two general approaches 

are identified. First, in the case of nonlinear models (especially the ones with a low degree of 

nonlinearity) the models can be linearized and then standard filters can be applied to the 

approximate linear models. The second group of methods involves approximating the state error 

distributions and performing the optimal state estimations on the set of points used in the 

approximation. 

In this dissertation, to deal with highly nonlinear joint traffic and travel time model, unscented 

methods are used to approximate the mean and covariance of nonlinearly transformed random 

variables.  

5.3 Unscented State and Covariance Propagation 

Based on the insight that it is easier to approximate a probability distribution than it is to 

approximate a random nonlinear function or transformation, Julier et al. (2000) proposed an 

𝑥�𝑛+ 𝑥�𝑛+1−  

𝑃𝑛+ 𝑃𝑛+1−  

𝑥�𝑛+1+  

𝑃𝑛+1+  

𝑛 𝑛 + 1 𝑇𝑇𝑇𝑇 

𝑦𝑛+1 

(1) 

(2) 
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unscented method to approximate the mean and covariance of a nonlinearly transformed random 

vector. This method forms the basis of the Unscented Kalman Filter (UKF) estimators which are 

presented in the next section. An unscented transformation takes advantage of the fact that a set 

of individual points (sigma points) in the state space can closely approximate the true distribution 

of a state vector, and nonlinear transformation on a single point can be easily performed.  

The following equations propagate the mean 𝑥�𝑛+ and covariance 𝑃𝑛+ of the state estimates from 

one time interval 𝑛 to the next time interval 𝑛 + 1. Note that to perform the time propagations, 

sigma points 𝑥�𝑛
(𝑠) are added to the current (mean) state estimates 𝑥�𝑛+ (note: in this dissertation 

state vector has 3𝑀 elements): 

𝑥�𝑛
(𝑠) = 𝑥�𝑛+ + 𝑥�𝑛

(𝑠)    𝑠 = 1, … ,2 × 3𝑀 (5.13) 

where, 

𝑥�𝑛
(𝑠) = ��(3𝑀)𝑃𝑛+�

𝑠

𝑇
    𝑠 = 1, … ,3𝑀 (5.14) 

𝑥�𝑛
(3𝑀+𝑠) = −��(3𝑀)𝑃𝑛+�

𝑠

𝑇
    𝑠 = 1, … ,3𝑀 (5.15) 

Note that √𝐴 is the matrix square root of 𝐴 such that �√𝐴�
𝑇
�√𝐴� = 𝐴, and subscript 𝑠 indicates 

the 𝑠th row of the matrix. 

Once, the ensemble of state vectors (5.2)-( 5.5) are drawn, the known nonlinear system equation 

𝑓(. ) can be used to transform the sigma points into next time interval state estimate 𝑥�𝑛+1
(𝑠)  

vectors: 

𝑥�𝑛+1
(𝑠) = 𝑓�𝑥�𝑛

(𝑠),𝑢𝑛�    𝑠 = 1, … ,2 × 3𝑀 (5.16) 

Now, the 𝑥�𝑛+1
(𝑠)  vectors can be combined to obtain the a priori state estimate (mean and error 

covariance) at time 𝑛 + 1: 



 

 
 

73 
 

𝑥�𝑛+1− = 1
2(3𝑀)

∑ 𝑥�𝑛+1
(𝑠)2(3𝑀)

𝑖=1  (5.17) 

𝑃𝑛+1− = 1
2(3𝑀)

∑ ��𝑥�𝑛+1
(𝑠) − 𝑥�𝑛+1− ��𝑥�𝑛+1

(𝑠) − 𝑥�𝑛+1− �
𝑇
�2(3𝑀)

𝑖=1 + 𝑄𝑛 (5.18) 

5.4 Unscented Measurement Error and Covariance Estimation 

Again, new sigma points 𝑥�𝑛+1
(𝑠)  based on the current best estimates of the mean and error 

covariance of the state are selected: 

𝑥�𝑛+1
(𝑠) = 𝑥�𝑛+1− + 𝑥�𝑛+1

(𝑠)     𝑠 = 1, … ,2 × 3𝑀 (5.19) 

where, 

𝑥�(𝑠) = ��(3𝑀)𝑃𝑛+1− �
𝑠

𝑇
    𝑠 = 1, … ,3𝑀 (5.20) 

𝑥�(3𝑀+𝑠) = −��(3𝑀)𝑃𝑛+1− �
𝑠

𝑇
    𝑠 = 1, … ,3𝑀 (5.21) 

Note that in general updating sigma points can be expensive. In case estimate accuracy is not 

heavily impacted, the sigma points that were obtained from the time update can be reused to save 

on computational burden. In this dissertation updated sigma points are used. 

The known measurement equation ℎ(. ) is used to transform the sigma points into measurement 

prediction vectors 𝑦�𝑛+1
(𝑠) : 

𝑦�𝑛+1
(𝑠) = 𝐻𝑥�𝑛+1

(𝑠)  (5.22) 

Now, the 𝑦�𝑛+1
(𝑠)  vectors can be combined to obtain the measurement predictions (mean and error 

covariance) at time 𝑛 + 1: 

𝑦�𝑛+1 = 1
2(3𝑀)

∑ 𝑦�𝑛+1
(𝑠)2(3𝑀)

𝑠=1  (5.23) 

𝑃𝑦𝑦 = 1
2(3𝑀)

∑ ��𝑦�𝑛+1
(𝑠) − 𝑦�𝑛+1��𝑦�𝑛+1

(𝑠) − 𝑦�𝑛+1�
𝑇
�2(3𝑀)

𝑠=1 + 𝑅𝑛+1 (5.24) 

Also, the cross covariance between 𝑥�𝑘− and 𝑦�𝑘 can be readily estimated based on the current 

estimates and their corresponding sigma points: 
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𝑃𝑚𝑦 = 1
2(3𝑀)

∑ ��𝑥�𝑛+1
(𝑠) − 𝑥�𝑛+1− ��𝑦�𝑛+1

(𝑠) − 𝑦�𝑛+1�
𝑇
�2(3𝑀)

𝑠=1  (5.25) 

5.5 Perfect Measurement and Constraint Enforcement 

In general it is possible that some constraints on the state variables are known to exist. Also, for 

some state variables perfect measurements might be available. These cases can be treated as a set 

of perfect measurements: 

𝑑𝑛 = 𝐷𝑛𝑥𝑛 + 𝟎 (5.26) 

where, 

𝑑𝑛, is the 𝑃 × 1 vector of perfect measurements at time interval 𝑛, 

𝐷𝑛, is the 𝑃 × 3𝑀 matrix of binary (0,1) coefficients at time interval 𝑛, and 

𝟎, is the 𝑃 × 1 vector of zero measurement errors. 

In this dissertation, the perfect measurements at each time interval 𝑛 include the retrospective 

travel time at upstream (𝜃𝑛1), and the anticipative travel time at downstream (𝜏𝑛𝑀) which are both 

equal to zero. Therefore, the corresponding perfect measurement vector 𝑑𝑛 is a 2 × 1 vector of 

zeroes, and the 2 × 3𝑀 coefficient matrix 𝐷𝑛 has only two non-zero elements (column 𝑀 + 1 in 

row 1, and column 3𝑀 in row 2) 

Conceptually it is possible to augment measurement equations (5.12) with perfect measurement 

equations (5.26) and use the augmented set of measurements in state estimation. However, this 

approach results in a singular error covariance matrix (𝑅𝑛) which increases the possibility of 

numerical problems. 

In this dissertation, an alternative approach to incorporate perfect measurements into estimation 

process is adopted. The approach is based on maximum likelihood estimation (MLE) of state 

variables subject to the set of perfect measurement constraints. Solving the Lagrangian of the 

optimization problem the following update equation for state variables are derived: 
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𝑥�𝑛 = 𝑥�𝑛 − 𝑃𝑛𝐷𝑛𝑇(𝐷𝑛𝑃𝑛𝐷𝑛𝑇)−1(𝐷𝑛𝑥�𝑛 − 𝑑𝑛) (5.27) 

Note that this update equation maintains that at a time interval 𝑛, the constrained state estimate 

𝑥�𝑛 is equal to the unconstrained state estimate 𝑥�𝑛, minus a correction term which depends on the 

current state estimate error covariance, and the current error with regards to the perfect 

measurements. Also note that this correction method is general and can be applied to both cases 

of a priori and a posteriori state estimates. 

5.6 Unscented Kalman Filtering 

In this dissertation Unscented Kalman Filter (UKF) is used to estimate the optimal state of the 

system. UKF is an extension of conventional Kalman Filter and is specifically designed to be 

applicable to highly nonlinear state-space models. In the rest of this section a complete 

description of UKF estimation process is presented. 

Consider the discrete time nonlinear system state space model (5.1)-( 5.12) with state vector 𝑥𝑛 

and measurement vector 𝑦𝑛 at each time interval 𝑛, the generally nonlinear system 𝑓(. ) and 

measurement equations ℎ(. ). 

Also, mainly for simplification, make the following set of additional assumptions that system 

and measurement errors are white and not correlated: 

𝐸�𝑤𝑘𝑤𝑗𝑇� = 𝑄𝑘𝛿𝑘−𝑗 ,              ∀𝑘, 𝑗 (5.28) 

𝐸�𝑣𝑘𝑣𝑗𝑇� = 𝑅𝑘𝛿𝑘−𝑗,                ∀𝑘, 𝑗 (5.29) 

𝐸�𝑤𝑘𝑣𝑗𝑇� = 0,                        ∀𝑘, 𝑗 (5.30) 

The UKF estimation method can now be described as the following procedure: 

Initialization: As the first step the UKF can be initialized as follows: 

𝑥�0+ = 𝐸(𝑥0) (5.31) 

𝑃0+ = 𝐸[(𝑥0 − 𝑥�0+)(𝑥0 − 𝑥�0+)𝑇] (5.32) 
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Time Update: Perform time updates using equations (5.13)-( 5.18) to obtain nonlinearly 

propagated mean (𝑥�𝑛+1− ) and covariance of the system state (𝑃𝑛+1− ) as a priori estimates. 

Measurement Update: Now that time updates based on the system model are performed, it is 

time that measurements are taken into account to improve the a priori estimates. In general, a 

procedure similar to the nonlinear time update is adopted. Predicted measurement vector and 

cross-covariance matrix can be estimated using equations (5.19)-( 5.25). 

The measurement gain and state update equations are similar to the normal Kalman filter. The a 

posteriori state update equations (mean and error covariance) take into account improvement in 

state estimates as a result of new information in the measurement: 

𝐾𝑛+1 = 𝑃𝑚𝑦𝑃𝑦𝑦−1 (5.33) 

𝑥�𝑛+1+ = 𝑥�𝑛+1− + 𝐾𝑛+1[𝑦𝑛+1 − 𝑦�𝑛+1] (5.34) 

𝑃𝑛+1+ = 𝑃𝑛+1− − 𝐾𝑛+1𝑃𝑦𝑦𝐾𝑛+1𝑇  (5.35) 

Perfect Measurements Update: Use equations (5.26)-( 5.27) to update a posteriori state estimates 

obtained from equation (5.34). 

5.7 Unscented H-infinity Filtering 

In most applications the nature and size of model and measurement errors are uncertain. Kalman 

filter presented in the previous section is based on a set of strong assumptions on model and 

measurement errors (that they are Gaussian and uncorrelated). These are strong assumptions on 

the nature of model and measurement error terms. In most practical scenarios model and 

measurement errors are not that well behaving. H-infinity filter is specifically designed for robust 

estimation. In fact, H-infinity filter does not make any assumptions on the nature of model and 

measurement errors. 
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Kalman filter is designed to minimize the expected value of the estimation error covariance. But, 

H-infinity filter is designed to minimize the worst-case estimation error. Denoting the squared 

𝐿2-norm of vector 𝑥 weighted by matrix 𝑀 as following: 

‖𝑥‖𝑀2 = 𝑥𝑇𝑀𝑥 (5.36) 

The objective function (to be minimized) in the case of H-infinity filter can be expressed as 

following: 

𝐽 =
∑ ‖𝑧𝑛−𝑧̂𝑛‖𝑆𝑛

2𝑁−1
𝑛=0

‖𝑚0−𝑚�0‖𝑃0−1
2 +∑ �‖𝑤𝑛‖𝑄𝑛−1

2 +‖𝑣𝑛‖𝑅𝑛−1
2 �𝑁−1

𝑛=0
 (5.37) 

where, 𝑃0, 𝑄𝑛, 𝑅𝑛, and 𝑆𝑛 are symmetric positive definite matrices chosen based on the nature of 

specific problem. Note that despite obvious analogies these matrices are not referred to as error 

covariance matrices. This is to stress the fact that in H-infinity filter derivation no use of the 

statistical properties of model and measurement errors are made. 

Also, note that cost function (5.37) provides a game theoretic interpretation of H-infinity filter 

design. In fact, the cost function (5.37) represents the ratio of weighted estimation error 

covariance and the sum of initial estimate and model and measurement normalized error 

covariances. 

While minimization of (5.37) subject to (5.1)-( 5.12) is not tractable, by choosing a performance 

bound (𝛾2) and solving for a dynamic estimation strategy that satisfies the set threshold the H-

infinity filter can be derived. 

𝐽 =
∑ ‖𝑧𝑛−𝑧̂𝑛‖𝑆𝑛

2𝑁−1
𝑛=0

‖𝑚0−𝑚�0‖𝑃0−1
2 +∑ �‖𝑤𝑛‖𝑄𝑛−1

2 +‖𝑣𝑛‖𝑅𝑛−1
2 �𝑁−1

𝑛=0
< 𝛾2 (5.38) 

More details on derivation of H-infinity filter in the case of linear state-space models using 

Lagrange multiplier method to solve the resulting dynamic constrained optimization problem can 

be found elsewhere (Simon 2006). This dissertation extends the H-infinity filter to the nonlinear 
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case based on insights provided in the derivation of adaptive robust filters (Sayed 2003). In the 

rest of this section a complete description of UHF estimation process is provided. 

Consider the discrete time nonlinear system state space model (5.1)-( 5.12) with state vector 𝑥𝑛 

and measurement vector 𝑦𝑛 at each time interval 𝑛, the generally nonlinear system 𝑓(. ) and 

measurement equations ℎ(. ). The UHF method to optimally estimate a linear transform of state 

variables 𝑧𝑛 = 𝐿𝑛𝑥𝑛 (where matrix 𝐿𝑛 is full-rank and user specified) can now be described as 

the following procedure: 

Initialization: As the first step the UHF can be initialized as follows: 

𝑥�0+ = 𝐸(𝑥0) (5.39) 

𝑃0+ = 𝐸[(𝑥0 − 𝑥�0+)(𝑥0 − 𝑥�0+)𝑇] (5.40) 

Time Update: Perform time updates using equations (5.13)-( 5.18) to obtain nonlinearly 

propagated mean (𝑥�𝑛+1− ) and covariance of the system state (𝑃𝑛+1− ) as a priori estimates. 

Measurement Update: Now that time updates based on the system model are performed, it is 

time that measurements are taken into account to improve the a priori estimates. 

The measurement gain and state update equations are similar to the normal H-infinity filter. The 

a posteriori state update equations (mean and error covariance) take into account improvement 

in state estimates as a result of new information in the measurement: 

𝑅0,𝑛+1 = �𝑅 0
0 −𝛾2𝐼� (5.41) 

𝑅𝑒,𝑛+1 = 𝑅0,𝑛+1 + �𝐻𝑛+1𝐿𝑛+1
� 𝑃𝑛+1− [𝐻𝑛+1𝑇 𝐿𝑛+1𝑇 ] (5.42) 

𝑃𝑛+1+ = 𝑃𝑛+1− �𝐼 − [𝐻𝑛+1𝑇 𝐿𝑛+1𝑇 ]𝑅𝑒,𝑛+1
−1 �𝐻𝑛+1𝐿𝑛+1

� 𝑃𝑛+1− � (5.43) 

𝐾𝑛+1 = 𝑃𝑛+1− 𝐻𝑛+1𝑇 (𝑅 + 𝐻𝑛+1𝑃𝑛+1− 𝐻𝑛+1𝑇 )−1 (5.44) 

𝑥�𝑛+1+ = 𝑥�𝑛+1− + 𝐾𝑛+1[𝑦𝑛+1 − 𝑦�𝑛+1] (5.45) 
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This filter will be valid, if and only if, matrices 𝑅0,𝑛+1 and 𝑅𝑒,𝑛+1 have the same inertia at every 

time steps. For this condition to be met, the two matrices must have exactly the same number of 

positive and negative eigenvalues. An investigation of the two matrices reveals that this 

condition will be met if parameter 𝛾2 = 1 𝜃⁄  meets the following condition: 

𝛾2 ≥ max�eig{𝐿𝑛+1((𝑃𝑛+1− )−1 + 𝐻𝑛+1𝑇 𝑅−1𝐻𝑛+1)−1𝐿𝑛+1𝑇 }� (5.46) 

Note that max�eig{𝐴}� denotes the maximum eigenvalue of the matrix 𝐴. Therefore by setting a 

parameter (𝛼 ≥ 1) validity of the filter can be guaranteed at all times: 

𝛾2 = 𝛼max�eig{𝐿𝑛+1[(𝑃𝑛+1− )−1 + 𝐻𝑛+1𝑇 𝑅−1𝐻𝑛+1]−1𝐿𝑛+1𝑇 }� (5.47) 

Note that 𝛾 is a measure of filter performance. It is desirable for 𝛾 to be as small as possible. 

Hence, selection of parameter 𝛼 has to be carried out with care. Optimal parameter 𝛼 depends on 

the model and measurements. In this dissertation, based on trial and error and running multiple 

experiments with the proposed model, value of 𝛾2 is set equal to 500. 

Perfect Measurements Update: Use equations (5.26)-(5.27) to update a posteriori state estimates 

obtained from equation (5.39). 

5.8 Delayed Filtering 

As was stated earlier, every travel time measurement can be regarded as either anticipative or 

retrospective depending on the adopted reference point. In real time, all current travel time 

measurements are retrospective in nature. However, in the proposed model formulation the same 

travel time measurement can be regarded as a delayed anticipative travel time measurement at 

the upstream of the segment. In order to assimilate this delayed measurement a delayed filter can 

be used. This delayed filter will run from the time interval to which the delayed anticipative 

travel time measurement belongs up to and including the current time interval. The proposed 
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delayed filter is expected to increase the accuracy of the current state estimates and therefore 

eventually to improve the state predictions. 

Note that practicality of the delayed filter depends on the computation time of each state update, 

the magnitude of travel time measurements, and the size of time intervals used in model 

discretization. If time intervals are too short and travel times are comparatively too long, then it 

may be the case that delayed filter will take more time than allowed to catch up with the current 

time filter. 

5.9 Summary 

In this chapter the state-space model corresponding to the proposed joint traffic and travel time 

dynamics model was fully specified. Optimal state estimation methods in their most general two-

step form were presented. Due to the highly nonlinear form of the proposed models a standard 

unscented approach to state and error covariance propagation was adopted. Similarly, in the 

second step a standard unscented approach was adopted to condition a priori system state 

estimates according to the estimated measurement error and covariance. A general MLE 

approach was identified to enforce perfect measurement constraints on the retrospective and 

anticipative travel time measurements at the upstream and the downstream boundaries of the 

segment, respectively. This method performs a post-process on optimally estimated states at each 

time step to ensure the above natural constraints hold at all times. Unscented Kalman filtering 

and H-infinity used in this dissertation for optimal state estimation were presented. Note that 

travel time measurements in current time represent retrospective travel times at the downstream. 

At the same time, these measurements represent delayed anticipative travel times at the upstream 

boundary of the segment. A delayed filtering approach was adopted to assimilate the delayed 

upstream anticipative travel time measurements into the proposed estimation process. 
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Chapter 6: Numerical Experiments 

 
In this chapter a series of relevant numerical tests on traffic modeling, traffic data assimilation, 

traffic data estimation, and short-term prediction are presented. The focus will be on field 

measured travel times and assimilating them in the context of the proposed joint traffic and travel 

time dynamics model. Traffic datasets used in numerical experiments are fully described. 

Implementation details of the joint traffic and travel time model are specified. This includes 

specification of the adopted speed-density relations, and discretization levels at which solutions 

are obtained. Model errors are evaluated through an open-loop state estimation process in which 

perfect measurements (no added errors) are used as boundary values in solving the proposed 

finite-difference models. Also, based on literature and field experience, statistical properties of 

the measurement errors including magnitudes and correlations of the error terms are specified. 

Different scenarios representing combinations of traffic datasets, speed-density relations, field 

measurements, space-time discretization schemes, and optimal state estimation methodologies 

are considered. Estimation results are presented for different scenarios when boundary speeds 

and travel time measurements are used in assimilation experiments either separately or together. 

Delayed filter impacts on state estimations are reported when boundary travel time 

measurements have been included in assimilations. Short-term state prediction results are 

presented under different scenarios. Computation times obtained by running scenarios on a 

desktop machine are reported. 

6.1 Traffic Datasets 

In this research standard traffic datasets prepared and made available under Next Generation 

SIMulation (NGSIM) project are used (FHWA 2006). NGSIM datasets provide a rich source of 
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accurate and detailed traffic data over a variety of facilities located in California and Georgia. 

These datasets contain high quality (resolution equal to one-tenth of the second) observations of 

the type, position, speed, and acceleration of every single vehicle that has been part of the traffic 

stream in the segment under study. In this dissertation one NGSIM dataset from California is 

selected to run numerical experiments. The US 101 dataset is fully described in the following 

section. 

6.2 The US 101 Dataset  

This is a 45 minute freeway dataset representing traffic flows on a segment of US Highway 101 

(Hollywood Freeway) in the Universal City neighborhood of Los Angeles, California. The 45 

minute dataset is broken into three smaller 15 minute datasets which display increasingly more 

congested traffic from 7:50AM to 8:35AM on June 15, 2005. The dataset represents vehicle 

trajectory data on a 2100 foot (640 meters) segment of southbound US 101. 

Figure 12 illustrates the NGSIM study area on US 101 and its lane configuration. The segment 

consists of five main lanes throughout the section. The merge/weave section represented in the 

data includes an on-ramp off-ramp connected by an auxiliary lane. The dataset consists of 

detailed vehicle trajectory data, wide-area detector data and supporting data needed for 

behavioral algorithm research. In the rest of this chapter results of experiments on US 101 

dataset are presented. 
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Figure 12 US 101 dataset study area schematic and camera coverage (Source: Cambridge Systematics, Inc. 2005). 

As mentioned before, NGSIM raw data is available at the vehicle trajectory level. This raw 

dataset was processed to estimate speeds and travel times in each space cell and time interval. 

The processed results are used as ground-truth in this study. In the following sub-sections 

ground-truth speed and travel time observations during each 15 minute dataset is presented. In 

each case, ground-truth data is provided at two discretization levels: 

• 210 feet by 2 seconds 

• 420 feet by 4 seconds 

6.2.1 Dataset 1: US 101 at 7:50AM-8:05AM 
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Figure 13 presents the speed ground-truth during the first 15 minute of US 101 dataset. The top 

graphs show the observed speeds at upstream and downstream boundaries as well as throughout 

the segment from 7:50AM to 8:05AM. The top set of graphs represents ground-truth speeds 

when space and time discretization is 210 foot and 2 seconds, respectively. The bottom graphs 

represent ground-truth speeds when space and time discretization is 420 foot and 4 seconds, 

respectively.  

Note that while both discretization levels provide fine granularity, the first set is much more 

detailed. While multiple slow-downs are observed in terms of speed data, only one major 

shockwave is identified towards the end of this time period which was initiated at the 

downstream and propagated backward along the segment to the upstream. Also, as speeds 

hovered above 40 mph initially at the downstream for more than half the duration of this time the 

upstream speeds have been fluctuating as a series of minor shockwaves frequently arrived at the 

upstream. The initial point of these smaller shockwaves roughly corresponds with the end of 

auxiliary lane, therefore these mid-segment slowdowns may be attributed to the weaving 

operations at the area of on- and off-ramps. 

Figure 14 and Figure 15 present the retrospective and anticipative travel time ground-truth 

during this 15 minute time period, respectively. Travel times substantially increase toward the 

end of this time period. Retrospective travel times at upstream and anticipative travel times at 

downstream are strictly equal to zero. Note that retrospective and anticipative travel times at the 

boundaries generally follow the same pattern observed at the opposite boundary. This is due to 

the definition and should be expected.  



 

 
 

86 
 

 

 

Figure 13. Speed ground truth US 101 at 7:50AM-8:05AM.   
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Figure 14. Retrospective travel time ground truth US 101 at 7:50AM-8:05AM.  



 

 
 

88 
 

 

 

Figure 15. Anticipative travel time ground truth US 101 at 7:50AM-8:05AM.  
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6.2.2 Dataset 2: US 101 at 8:05AM-8:20AM 

Figure 16 presents the speed ground-truth during the second 15 minute of US 101 dataset. The 

top graphs show the observed speeds at upstream and downstream boundaries as well as 

throughout the segment from 8:05AM to 8:20AM. The top set of graphs represents ground-truth 

speeds when space and time discretization is 210 foot and 2 seconds, respectively. The bottom 

graphs represent ground-truth speeds when space and time discretization is 420 foot and 4 

seconds, respectively.  

In this time period multiple slow-downs are observed in the segment in terms of speed data. At 

least three major shockwaves are identified during this time period which are initiated at the 

downstream and propagate backward along the segment to the upstream. Also, a number of 

smaller shockwaves are present which originated in the middle of the segment again at the end of 

weaving area. Boundary speeds are generally fluctuating more in the below 40 mph range which 

indicates stop and go traffic conditions are present. 

Figure 17 and Figure 18 present the retrospective and anticipative travel time ground-truth 

during this 15 minute time period, respectively. Travel times go through two major cycles during 

which they double from about 50 seconds to almost 100 seconds. Again, retrospective travel 

times at upstream and anticipative travel times at downstream are strictly equal to zero. Note that 

retrospective and anticipative travel times at the boundaries generally follow the same pattern 

observed at the opposite boundary. This is due to the definition and should be expected.   
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Figure 16. Speed ground truth US 101 at 8:05AM-8:20AM.   
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Figure 17. Retrospective travel time ground truth US 101 at 8:05AM-8:20AM.   
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Figure 18. Anticipative travel time ground truth US 101 at 8:05AM-8:20AM.   
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6.2.3 Dataset 3: US 101 at 8:20AM-8:35AM 

Figure 19 presents the speed ground-truth during the second 15 minute of US 101 dataset. The 

top graphs show the observed speeds at upstream and downstream boundaries as well as 

throughout the segment from 8:20AM to 8:35AM. The top set of graphs represents ground-truth 

speeds when space and time discretization is 210 foot and 2 seconds, respectively. The bottom 

graphs represent ground-truth speeds when space and time discretization is 420 foot and 4 

seconds, respectively.  

In terms of speed ground-truth, in this time period slow-downs are more frequently present and 

almost all of the observed shockwaves extend throughout the segment. At least four major 

shockwaves are identified during this time period which are initiated at the downstream and 

propagate backward along the segment to the upstream. It is conceivable that these shockwaves 

have masked or merged with smaller shockwaves which originate in the middle of the segment 

again due to the mid-section weaving area. Boundary speeds are generally fluctuating in the 

below 40 mph range at downstream and, for the most part, below 20 mph range at upstream 

which indicates heavily congested conditions are present. 

Figure 20 and Figure 21 present the retrospective and anticipative travel time ground-truth 

during this 15 minute time period, respectively. Travel times go through two major cycles during 

this time period. However, the second cycle is more severe and longer-lived than the first cycle. 

Again, retrospective travel times at upstream and anticipative travel times at downstream are 

strictly equal to zero. Note that retrospective and anticipative travel times at the boundaries 

generally follow the same pattern observed at the opposite boundary. This is due to the definition 

and should be expected. 
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Figure 19. Speed ground truth US 101 at 8:20AM-8:35AM.   
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Figure 20. Retrospective travel time ground truth US 101 at 8:20AM-8:35AM.   
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Figure 21. Anticipative travel time ground truth US 101 at 8:20AM-8:35AM.   
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6.3 Traffic Modeling 

In this section the modeling effort as applied to the case of three aforementioned datasets is 

described. First, speed-density relationships used in the modeling and estimation process are 

presented. Then, using the naïve approach traffic and travel time model errors are estimated. 

Later, measurement errors in the case of speed and travel times are specified. The resulting 

model and measurement errors are used as input in the optimal estimation process. 

6.3.1 Speed-density relationships (GS & HL) 

Based on available data speed-density relationship parameters are estimated. Free-flow speed 

and jam density are estimated at 65mph and 200vpmpl, respectively. Hence, the Greenshields 

relationship can be specified as the following: 

𝑉𝐺𝑆(𝜌) = 65(1 − 𝜌 200⁄ )      , 0 ≤ 𝜌 ≤ 200 (6.1) 

Also, the wave speed and critical density are estimated at 15mph and 45vpmpl, respectively. 

Hence, the hyperbolic-linear relationship can be specified as the following: 

𝑉𝐻𝐿(𝜌) = �
65 �1− 𝜌

200
�           ,𝜌 ≤ 45

−15 �1− 200
𝜌 �         ,𝜌 > 45

 (6.2) 

Figure 22 illustrates the estimated speed-density relationships used in this dissertation. 

Greenshields relationship is shown on the left, while the hyperbolic-linear relationship is shown 

on the right. The top row of graphs represent the hypothesized relationships between speed and 

density, while the bottom row of graphs represent the resulting relationships between flow rate 

and density in each case. 
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Figure 22. Speed-density relationships (Left: Greenshields, Right: Smulders, Top: Speed-Density, Bottom: Flow-Density). 

 

6.3.2 Discretization Levels 

Speed and travel time models are solved at two different discretization levels. At the first 

discretization level, space dimension is divided into 210ft (64m) cells, and the time update 

interval is chosen to be equal to two seconds. The second discretization level doubles both space 

and time dimensions. The cell sizes used in the second discretization level are 420ft (128m) long, 

and the time update is performed at every four seconds. It should be noted that in both cases the 

∆𝑚
∆𝑡

 ratio is equal to 105 feet per second (71.6mph) which is slightly higher than the adopted free 

flow speed (65mph) satisfying the stability condition. 
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6.3.3 Modeling Errors 

Models presented in Chapter 4 and ground-truth data are used to estimate model errors. The 

approach can be described as a naïve application of state-space model in which case exact 

measurements (ground-truth) are used as boundary values in solving the proposed finite 

difference traffic and travel time models. At every time interval model equations are used to 

advance the state variable estimates to the next time interval. In this case no attempt is made to 

improve the current estimate by taking into account the correlations between measurements and 

system states. 

To estimate model errors, ground-truth data (no measurement error) is fed into the state-space 

model as initial and boundary conditions. Estimation is performed in the open loop sense; that is, 

no measurement update is performed to correct the model predictions. Estimation results are 

compared against the known ground-truth to evaluate model errors. 

Table 2 summarizes the model error estimates obtained from this process. The top table reports 

the speed estimation errors based on the CTM-v model. The middle and bottom tables report the 

retrospective and anticipative travel time estimation errors using the THETA and TAU models, 

respectively. In these tables mean, standard deviation, and three quartile points of the error 

distributions in each time period are reported. Also, error measures are reported when either 

Greenshields or Smulders speed-density relation is used as well as when problems are solved at 

either of the two discretization levels. 

Note that models are generally biased with error means substantially different from zero. The 

bias in the case of speeds is positive which indicate a tendency for CTM-v model to overestimate 

the speeds. This has naturally resulted in the underestimation of retrospective travel times. On 

the other hand, anticipative travel times are overestimated. 
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Travel time error measures indicate that travel time models are very sensitive to the speed 

quality. It is shown elsewhere (Sadabadi & Haghani, 2012) that travel time model errors are 

much lower when ground-truth speeds are used to estimate travel times. 
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Table 2. Error measures in naïve application of models to US 101 datasets. 

CTM-v 
Cell Size 

Greenshields Smulders 
Error (mph) Absolute Error (mph) Error (mph) Absolute Error (mph) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 2 6 -3 2 7 6 4 3 5 8 8 8 1 6 15 9 7 3 7 15 
420x4 2 6 -2 3 7 6 4 2 5 8 9 8 2 8 16 10 7 3 8 16 

0805am-
0820am 

210x2 2 5 -2 1 5 4 3 1 3 6 2 4 -1 2 4 3 3 1 3 5 
420x4 2 5 -2 1 5 4 3 2 3 5 2 4 -1 2 5 4 3 1 3 5 

0820am-
0835am 

210x2 2 5 -2 1 4 4 4 1 3 6 2 4 -1 2 4 3 3 1 3 5 
420x4 2 5 -1 2 4 4 3 2 3 5 2 4 -1 2 5 4 3 2 3 5 

 

THETA 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -9 6 -12 -8 -4 9 5 4 8 12 -12 7 -18 -12 -6 12 7 6 12 18 
420x4 -10 6 -13 -9 -5 10 6 5 9 13 -14 7 -20 -14 -8 14 7 8 14 20 

0805am-
0820am 

210x2 -10 11 -15 -7 -2 11 10 3 7 15 -10 12 -16 -7 -2 12 11 3 8 16 
420x4 -10 9 -15 -8 -3 10 9 3 8 15 -11 10 -14 -8 -3 11 10 4 8 14 

0820am-
0835am 

210x2 -12 9 -17 -11 -5 12 8 5 11 17 -12 9 -19 -10 -4 12 9 5 10 19 
420x4 -13 9 -19 -12 -6 13 9 6 12 19 -13 9 -20 -11 -6 13 9 6 11 20 

 

TAU 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 8 5 4 8 12 8 5 4 8 12 12 7 6 12 17 12 6 6 12 17 
420x4 9 6 5 9 13 9 6 5 9 13 14 7 8 14 20 14 7 8 14 20 

0805am-
0820am 

210x2 10 9 3 8 16 10 8 3 9 16 10 8 4 9 16 11 7 4 9 16 
420x4 10 9 3 9 16 11 8 4 9 16 11 8 5 10 17 11 8 5 10 17 

0820am-
0835am 

210x2 11 10 3 9 16 12 9 4 10 16 12 8 6 11 16 12 8 6 11 16 
420x4 12 11 4 11 19 13 10 4 11 19 13 9 7 13 18 13 9 7 13 18 
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Figure 23 represents the naïve modeling error boxplots at each cell along the segment in the case 

of Dataset 1 with the finer discretization at 210ft by 2 sec. Spatial trend of speed estimate errors 

indicate that CTM-v produces overestimated speeds over the first half of the segment, while over 

the other half speeds are underestimated. Moving from upstream to downstream, THETA 

generally and increasingly underestimates the retrospective travel times, but towards the end of 

the segment the error distributions become stable. Note that TAU model generated a similar but 

completely opposite pattern by overestimating anticipative travel times with increasing error 

when moving in the direction of traffic along the segment. 

 
Figure 23. Error boxplots in naïve application of models to Dataset 1 (210ft x 2sec). 

Figure 24 illustrates the temporal variations of model estimate errors. Clearly, in the mean error 

time series, strong temporal correlations between estimate errors in all models can be observed. 
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Again, note that for the most part, speed and anticipative travel times are overestimated while 

retrospective travel times are underestimated. 

 
Figure 24. A typical temporal variation of mean model errors. 

Taking advantage of error estimates obtained from this open-loop estimation process, model 

error covariance matrices for different lags are calculated. These covariance matrices are used in 

the optimal estimation process that will be presented in the next section. 
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6.3.4 Measurement errors 

In reality, every measurement contains error. Hence, when measurements are taken into account, 

their accuracy levels should also be considered. In traffic applications, the measurement error 

reflects the accuracy of technology, aggregations and assumptions used in field data collections. 

In this dissertation, for simplicity and clarity of analysis, measurements are assumed to 

incorporate an unbiased (zero mean) and uncorrelated Gaussian error (white noise). 

Nevertheless, the proposed models and estimation techniques are capable of handling other 

forms of measurement errors being non-Gaussian, biased, and or correlated of various forms 

(colored noise). 

The white noise assumption also implies that measurement equipment is well-calibrated and 

properly maintained. Therefore, errors associated with measurements of the same state variable 

at different locations and at different times (as long as the same technology is used) can be 

simply specified by a diagonal covariance matrix. 

In this dissertation, spot speed measurements are assumed to come from loop detectors or side-

fire microwave radars located at the boundaries of the segment under investigation. Travel time 

measurements are assumed to come from a pair of automatic vehicle re-identification devices 

(such as Bluetooth traffic monitoring units, or license-plate reader cameras) also placed at the 

two boundaries of the segment. 

Based on previous studies (Zwahlen, et al. 2005 & Ki and Baik 2006), it is assumed that speed 

measurement error has a 3mph standard deviation. Note that under congested conditions 

(effectively speeds less than 30mph) this amounts to Root Mean Squared Errors (RMSE) in 

speed measurements that are larger than 10% of the actual speeds. 

Travel time measurement error using AVI technology such as Bluetooth detection is shown to be 

equal to half the size of reporting time interval used. Note that for obvious reasons, speed and 
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travel time measurement errors are not correlated with each other. Therefore, measurement error 

covariance function defined in section 5.1.5 can be specified as: 

𝑅𝑘 = �
32 0 0
0 32 0
0 0 �∆𝑡

2
�
2� (6.3) 

6.4 Estimation Results 

Table 3 shows different aspects of numerical experiments performed in this study. In total 120 

different experiments are performed. Error measures reported for each experiment is based on 10 

instances generated by adding random errors to the ground-truth input measurements. 

Table 3. Numerical experiments dimensions. 

Item Variations 
Estimation method Unscented Kalman Filter (UKF) 

Unscented H-infinity Filter (UHF) 
Fundamental diagram Greenshields (GS) 

Smulders (HL) 
Discretization size 210 ft x 2 sec 

420 ft x 4 sec 
Datasets 0750am-0805am (D1) 

0805am-0820am (D2) 
0820am-0835am (D3) 

Delay filter (when travel time 
measurements are used) 

Yes 
No 

Input measurement data Speed 
Travel time (theta) 
Speed and travel time 

Number of instances 10 
 

Note that in the case of three US-101 datasets, the free-flow and maximum congested travel 

times between upstream and downstream of the segment are nearly 50 and 100 seconds, 

respectively. Therefore, at four second resolution about four to eight percent of travel time 

estimate errors between the two boundaries can be attributed to the discretization scheme used. 

Similarly, when solutions at two second resolution are considered the discretization errors will 

vary between two to four percent. 
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6.4.1 Boundary Measurements Used as Input: Speed 

Table 4 shows the error in state estimates using UKF estimation method when only boundary 

speed measurements are used as input. As expected, these experiments resulted in very accurate 

speed estimates with maximum mean absolute error (MAE) obtained in all cases is only four 

miles per hour (6.4 km/hr). Travel time estimates on the other hand are more biased and mean 

absolute errors up to 12 seconds are reported during more congested periods. In general, while 

speed estimates using Smulders speed-density relationship are slightly worse than estimates 

using Greenshields relationship, travel time estimates based on the former relation are more 

accurate. Also, results indicate that increasing the discretization size (reducing resolution), in 

general, leads to smaller errors both on average and in the spread. 
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Table 4. Error measures in UKF estimation of state variables in US 101 datasets. (Speed inputs) 

CTM-v 
Cell Size 

Greenshields Smulders 
Error (mph) Absolute Error (mph) Error (mph) Absolute Error (mph) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 4 -1 1 3 3 3 1 2 4 3 4 0 2 5 4 4 1 3 6 
420x4 1 4 -1 0 2 2 3 1 1 3 1 4 -1 0 3 3 3 1 2 4 

0805am-
0820am 

210x2 1 4 -1 0 3 3 3 1 2 4 0 3 -2 0 2 3 2 1 2 4 
420x4 1 4 -1 0 2 2 3 1 1 4 0 3 -1 0 1 2 2 1 1 3 

0820am-
0835am 

210x2 1 4 -1 1 4 3 3 1 2 4 1 3 -1 0 3 3 2 1 2 4 
420x4 1 4 -1 0 2 2 3 1 1 3 0 3 -1 0 1 2 2 1 1 3 

 

THETA 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -1 6 -3 0 2 4 4 1 3 6 -2 5 -4 -1 1 4 4 1 3 5 
420x4 -1 5 -4 -1 1 3 4 1 2 5 -3 4 -5 -2 0 4 3 1 3 5 

0805am-
0820am 

210x2 2 17 -6 0 7 11 13 2 6 15 -1 12 -6 0 5 8 9 2 5 13 
420x4 0 9 -5 0 3 6 6 1 4 9 -1 7 -5 0 2 5 5 1 3 7 

0820am-
0835am 

210x2 5 18 -3 1 12 12 14 2 7 17 1 11 -5 0 6 8 8 2 5 12 
420x4 3 17 -4 1 9 12 13 2 6 18 -1 10 -6 0 3 7 7 1 4 10 

 

TAU 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -1 7 -3 0 3 4 5 1 3 6 -1 6 -3 0 2 4 5 1 3 6 
420x4 -2 6 -5 -2 1 4 4 1 3 6 -2 5 -4 -1 1 4 4 1 2 5 

0805am-
0820am 

210x2 2 16 -5 1 9 11 11 3 7 17 0 12 -5 1 7 9 8 2 6 13 
420x4 -2 10 -5 0 4 7 7 2 5 10 -2 9 -5 0 3 6 6 1 4 8 

0820am-
0835am 

210x2 7 17 -3 4 14 13 13 3 8 17 3 10 -3 2 9 8 7 3 6 12 
420x4 1 14 -7 1 7 10 10 3 7 15 -2 10 -7 -1 3 7 7 2 5 10 
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6.4.2 Boundary Measurements Used as Input: Travel Time 

Table 5 shows the error in state estimates using UKF estimation method when only realized 

travel times measured at downstream (theta) are used as input. Results indicate that travel time 

estimates are generally improved; while speed estimates are generally deteriorated compared to 

when boundary speed measurements are used. Interestingly, the speeds are overestimated 

(positive bias) while retrospective travel times are generally underestimated (negative bias). The 

bias in anticipative travel time estimates varies between negative one and two seconds in all 

scenarios. While compared to Smulders, Greenshields relationship has led to slightly more 

accurate speed estimates in these cases, both relationships overall have resulted in very similar 

travel time estimates. 
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Table 5. Error measures in UKF estimation of state variables in US 101 datasets. (Travel time inputs, no delayed filter) 

CTM-v 
Cell Size 

Greenshields Smulders 
Error (mph) Absolute Error (mph) Error (mph) Absolute Error (mph) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 8 -3 2 6 6 5 2 5 9 2 7 -2 3 7 6 5 2 5 9 
420x4 -1 7 -5 0 4 5 4 2 5 8 0 6 -4 1 5 5 4 2 4 7 

0805am-
0820am 

210x2 3 6 -1 3 7 5 4 2 4 8 6 6 1 5 10 6 5 2 5 10 
420x4 2 5 -2 1 5 4 3 2 4 6 3 5 0 3 7 5 4 2 4 7 

0820am-
0835am 

210x2 4 6 0 4 8 6 4 2 5 8 6 6 2 6 10 7 5 3 6 10 
420x4 2 6 -2 1 5 5 4 2 4 7 4 6 0 4 7 5 4 2 4 7 

 

THETA 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -2 4 -4 -1 0 3 4 0 2 5 -2 4 -4 -1 0 3 4 0 2 5 
420x4 -2 4 -3 -1 0 2 3 0 1 4 -2 4 -3 -1 0 3 3 0 1 4 

0805am-
0820am 

210x2 -4 7 -7 -1 0 5 6 0 2 7 -4 7 -7 -2 0 5 6 1 2 7 
420x4 -2 5 -3 0 0 3 5 0 1 3 -2 5 -3 0 0 3 5 0 1 4 

0820am-
0835am 

210x2 -5 7 -9 -3 0 6 6 1 4 9 -5 7 -9 -3 0 6 6 1 4 9 
420x4 -3 6 -5 0 0 4 5 0 1 6 -3 6 -5 0 0 4 5 0 1 6 

 

TAU 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 5 0 2 4 4 4 1 3 5 1 5 0 2 3 3 4 1 3 4 
420x4 2 5 0 2 4 3 4 0 3 5 2 5 0 2 4 4 4 0 3 5 

0805am-
0820am 

210x2 -1 6 -3 0 3 4 5 1 3 6 -1 6 -3 0 3 4 5 1 3 6 
420x4 0 6 -1 0 2 4 4 0 2 6 0 6 -1 0 2 4 4 0 2 5 

0820am-
0835am 

210x2 0 6 -3 0 5 5 4 1 4 7 1 6 -3 1 5 5 4 1 4 7 
420x4 0 6 -3 0 3 4 4 1 3 6 -1 6 -4 0 3 4 4 1 4 6 
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6.4.3 Boundary Measurements Used as Input: Speed and Travel Time 

Table 6 shows the error in state estimates using UKF estimation method when boundary speeds 

as well as the realized travel times measurements at downstream (theta) are used as input. 

Results indicate that estimate errors increase with congestion, but they tend to decrease with 

increase in the discretization size. Speed estimate bias is between zero and two mph. 

Retrospective travel time estimate bias varies between minus three and minus one seconds, while 

its MAE varies between one and five seconds. Anticipative travel time estimate bias is between 

minus one and four seconds, while its corresponding MAE varies between two and seven 

seconds. 
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Table 6. Error measures in UKF estimation of state variables in US 101 datasets. (Speed and travel time inputs, no delayed filter) 

CTM-v 
Cell Size 

Greenshields Smulders 
Error (mph) Absolute Error (mph) Error (mph) Absolute Error (mph) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 3 -1 1 3 3 3 1 2 4 2 4 0 2 5 3 3 1 2 5 
420x4 1 3 -1 0 2 2 2 1 1 3 1 4 -1 0 3 3 3 1 1 4 

0805am-
0820am 

210x2 1 4 -1 0 3 3 3 1 2 4 0 3 -2 0 2 3 2 1 2 4 
420x4 1 3 -1 0 2 2 3 1 1 4 0 3 -1 0 1 2 2 1 1 3 

0820am-
0835am 

210x2 2 4 -1 1 4 3 3 1 2 4 1 4 -1 0 3 3 3 1 2 4 
420x4 1 4 -1 0 2 2 3 1 1 3 0 3 -1 0 1 2 2 1 1 3 

 

THETA 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -1 3 -2 0 1 2 3 0 1 3 -1 3 -3 0 0 2 3 0 1 3 
420x4 -1 2 -1 0 0 1 2 0 1 2 -1 2 -2 0 0 1 2 0 1 2 

0805am-
0820am 

210x2 -3 7 -5 0 1 4 6 0 2 6 -3 6 -5 0 1 4 6 0 2 6 
420x4 -1 4 -2 0 1 2 3 0 1 3 -1 4 -1 0 1 2 3 0 1 3 

0820am-
0835am 

210x2 -2 7 -5 0 1 5 5 0 3 7 -2 7 -5 0 1 5 5 0 3 7 
420x4 -1 5 -3 0 0 3 4 0 1 5 -1 5 -2 0 0 3 4 0 1 4 

 

TAU 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 0 5 -1 0 2 3 4 0 1 3 0 5 -1 0 2 3 4 1 1 4 
420x4 0 4 -1 0 1 2 3 0 1 3 0 4 0 0 2 2 3 0 1 3 

0805am-
0820am 

210x2 0 10 -3 0 5 7 7 1 4 10 0 8 -2 0 4 5 6 1 4 8 
420x4 -1 6 -2 0 2 4 5 0 2 5 -1 6 -2 0 2 4 5 0 2 5 

0820am-
0835am 

210x2 4 9 0 3 8 7 7 2 5 9 1 7 -2 1 6 5 5 2 4 8 
420x4 0 5 -2 0 3 3 3 0 2 5 -2 5 -4 0 2 4 4 0 2 5 
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6.5 Delay Filter Impact 

This section describes the impact of using delay filter on state variable estimation. Note that 

delay filter can only be applied when boundary retrospective travel time measurements are part 

of the input. 

6.5.1 Boundary Measurements Used as Input: Travel Time 

Table 7 shows the error in state estimates using UKF estimation method with delayed filter 

application when boundary travel time measurements at downstream (theta) are used as input. 

Results indicate that application of delay filter in this case has led to marginal improvements on 

the quality of both speeds and retrospective travel time estimates. However, using the delayed 

filter has led to mixed results in terms of the anticipative travel time estimates. By and large, 

when only travel time measurements are used as the input, using delayed filters has resulted in 

deterioration of the quality of anticipative travel time estimates. 
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Table 7. Error measures in UKF estimation of state variables in US 101 datasets. (Travel time inputs, delayed filter) 

CTM-v 
Cell Size 

Greenshields Smulders 
Error (mph) Absolute Error (mph) Error (mph) Absolute Error (mph) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 8 -3 2 6 6 5 2 5 9 2 7 -2 3 7 6 5 2 5 9 
420x4 -1 6 -5 0 3 5 4 2 4 7 0 6 -3 1 4 5 4 2 4 7 

0805am-
0820am 

210x2 3 6 -1 3 7 5 4 2 4 7 5 6 1 5 9 6 5 2 5 9 
420x4 1 5 -2 1 5 4 3 2 4 6 3 5 0 3 7 5 3 2 4 7 

0820am-
0835am 

210x2 4 6 0 4 8 6 4 2 5 8 6 6 2 6 9 7 5 3 6 9 
420x4 1 6 -3 1 4 4 4 2 4 7 3 5 -1 3 6 5 4 2 4 7 

 

THETA 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -2 4 -4 -1 0 3 4 0 2 5 -2 4 -4 -2 0 3 4 0 2 5 
420x4 -2 4 -3 -1 0 2 3 0 1 3 -2 4 -3 -1 0 2 3 0 1 3 

0805am-
0820am 

210x2 -4 7 -7 -1 0 5 6 0 2 7 -4 7 -7 -1 0 5 6 0 2 7 
420x4 -2 5 -3 0 0 3 5 0 1 3 -2 5 -3 0 0 3 4 0 1 3 

0820am-
0835am 

210x2 -5 7 -9 -3 0 6 6 1 3 9 -5 7 -9 -3 0 6 6 1 4 9 
420x4 -3 6 -5 0 0 4 5 0 1 5 -2 5 -5 0 0 4 5 0 1 5 

 

TAU 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 6 0 2 4 4 4 1 3 5 1 5 0 2 3 4 4 1 3 5 
420x4 2 5 0 1 3 3 4 0 2 4 1 5 0 1 3 3 4 0 2 4 

0805am-
0820am 

210x2 0 10 -3 0 5 7 7 1 4 11 -1 9 -3 0 5 6 7 1 4 10 
420x4 0 7 -1 0 3 5 6 0 2 7 0 7 -1 0 2 4 5 0 2 7 

0820am-
0835am 

210x2 1 9 -4 1 7 7 6 2 5 10 1 9 -4 1 6 7 6 2 5 10 
420x4 0 8 -3 0 5 6 5 1 5 9 0 7 -3 0 5 5 5 1 4 8 
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6.5.2 Boundary Measurements Used as Input: Speed and Travel Time 

Table 8 shows the error in state estimates using UKF estimation method with delayed filter 

application when boundary speeds as well as the realized travel times measurements at 

downstream (theta) are used as input. Results indicate that while speed and retrospective travel 

time estimate qualities for the most part have remained unchanged, applying the delayed filter 

has improved the quality of predictive travel times. 
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Table 8. Error measures in UKF estimation of state variables in US 101 datasets. (Speed and travel time inputs, delayed filter) 

CTM-v 
Cell Size 

Greenshields Smulders 
Error (mph) Absolute Error (mph) Error (mph) Absolute Error (mph) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 1 3 -1 1 3 3 3 1 2 4 3 4 0 2 5 3 3 1 2 5 
420x4 1 3 -1 0 2 2 2 1 1 3 1 4 -1 1 3 3 3 1 1 4 

0805am-
0820am 

210x2 1 4 -1 0 3 3 3 1 2 4 0 3 -2 0 2 3 2 1 2 4 
420x4 0 3 -1 0 2 2 3 1 1 4 0 3 -1 0 1 2 2 0 1 3 

0820am-
0835am 

210x2 1 4 -1 1 3 3 3 1 2 4 1 4 -1 0 3 3 3 1 2 4 
420x4 1 4 -1 0 2 2 3 1 1 3 0 3 -1 0 1 2 2 1 1 3 

 

THETA 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 -1 4 -2 0 1 2 3 0 1 3 -1 3 -3 0 0 2 3 0 1 3 
420x4 -1 2 -1 0 0 1 2 0 1 2 -1 2 -2 0 0 1 2 0 1 2 

0805am-
0820am 

210x2 -3 7 -5 0 1 4 6 0 2 6 -3 7 -5 0 1 4 6 0 2 6 
420x4 -1 4 -2 0 1 2 3 0 1 3 -1 4 -1 0 1 2 3 0 1 3 

0820am-
0835am 

210x2 -2 7 -5 0 1 5 5 0 3 7 -3 7 -5 0 0 5 6 0 3 7 
420x4 -1 5 -3 0 0 3 4 0 1 5 -1 5 -2 0 1 3 4 0 1 4 

 

TAU 
Cell Size 

Greenshields Smulders 
Error (sec) Absolute Error (sec) Error (sec) Absolute Error (sec) 

Time 
Period Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile Mean 

Std-
Dev 

25-
ile 

50-
ile 

75-
ile 

0750am-
0805am 

210x2 0 5 -1 0 1 3 4 0 1 3 0 5 -1 0 1 3 4 0 1 4 
420x4 0 4 -1 0 1 2 3 0 1 3 0 4 0 0 2 2 3 0 1 3 

0805am-
0820am 

210x2 -2 10 -4 0 3 6 8 1 3 8 -2 9 -3 0 3 6 7 1 3 8 
420x4 -1 7 -2 0 2 4 5 0 2 5 -1 7 -2 0 2 4 5 0 2 6 

0820am-
0835am 

210x2 -1 7 -4 0 3 5 5 1 4 7 0 7 -4 0 4 5 5 1 4 7 
420x4 -1 5 -4 0 1 4 4 0 2 5 -1 5 -3 0 2 4 4 0 3 6 
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When boundary speed measurements have been part of the input, invariably it has resulted in the 

best speed estimates. For the most part, speed estimates have been insensitive to the application 

of the delayed filter when retrospective travel times have also been used in the estimation. The 

best travel time estimates (both retrospective and anticipative) are obtained when both speeds 

and retrospective travel times are used as input. Application of delayed filters has had marginal 

impact on the quality of retrospective travel times. However, using the delayed filter has led to 

mixed results in terms of the anticipative travel time estimates. When only travel time 

measurements are used as the input, using delayed filters by and large has deteriorated the 

quality of anticipative travel time estimates. But, when speed and travel time measurements are 

used simultaneously as the input, using delayed filters has resulted in relatively similar or better 

anticipative travel time estimates especially during more congested time periods. 

Also, note that in general errors become larger with increasing congestion, but they become 

smaller with increasing discretization cell sizes and aggregation time intervals. 

Generally speaking, using Smulders relation generally did improve the results especially in the 

case of speed estimates. However, in the case of anticipative travel times the best estimates 

resulting from both relations with speed and travel time measurements as input and using the 

delayed filter ultimately are very similar. 

Table 9. Maximum MAE measures in UKF estimation of state variables in US 101 datasets. 

  Maximum MAE in Estimation 
  Speed Retrospective 

Travel Time 
Anticipative 
Travel Time 

 Input Measurements mph sec sec 
Delay 
Filter 

No Speed 4/3 12/12 13/10 
Retro-Travel Time 7/5 6/4 5/4 
Speed & Retro-Travel Time 3/3 5/3 7/4 

Yes Speed    
Retro-Travel Time 7/5 6/4 7/6 
Speed & Retro-Travel Time 3/3 5/3 6/4 
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Table 9 summarizes the maximum MAE estimates in UKF estimation of three sets of state 

variables in the case of US 101 datasets. It is clear that when each state variable has been 

measured on the boundaries, on average its corresponding estimates have improved. When speed 

and retrospective travel times are both measured on the boundaries speed estimates with 

maximum three mph MAE at both discretization levels are obtained. Maximum MAE in travel 

time estimates are almost halved when discretization level has increased from two seconds to 

four seconds. Retrospective travel time estimates with maximum five and three second MAE are 

obtained in these cases. Anticipative travel time estimates have been slightly worse with 

maximum seven and four second MAE in the two discretization levels, respectively. Taking 

advantage of delayed filter did not have a clear impact on the maximum MAE of speed and 

travel time estimates. 

Figure 25 exhibits the Mean Absolute Percentage Error (MAPE) of speed and travel time 

estimates when Greenshields relation and UKF estimation method is used. Graphs on the left and 

on the right in each case represent error measures when two and four second discretization 

schemes are adopted, respectively. The labels on the horizontal axis represent the index of 15 

minute dataset for which the error estimates are being reported. The colored bars in each graph 

indicate the combination of input measurement and delayed filter scenarios used to estimate the 

three state variables. Note that MAPE reported in these graphs is an average over both space and 

time.  

Figure 26 is similar to Figure 25 except that it exhibits the MAPE of speed and travel time 

estimates when Smulders relation is used. In both cases, note that in general errors become larger 

with increasing congestion, while they become smaller with increasing discretization cell sizes 

and aggregation time intervals.   
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Speed MAPE (%) 

  

Retrospective Travel Time MAPE (%) 

  

Anticipative Travel Time MAPE (%) 

  

 

Figure 25. MAPE of estimates using Greenshields relation and UKF method. (Left: 210ftx2sec; Right: 420ftx4sec) 
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Speed MAPE (%) 

  

Retrospective Travel Time MAPE (%) 

  

Anticipative Travel Time MAPE (%) 

  

 

Figure 26. MAPE of estimates using Smulders relation and UKF method. (Left: 210ftx2sec; Right: 420ftx4sec) 
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Table 10. Overall MAPE estimates using UKF method in US 101 datasets. 

Delayed 

Filter? 

Input 

Data 

Greenshields Smulders 

Speed Theta Tau Speed Theta Tau 

No 

Speed 13/11 
17/13 
22/17 

16/13 
31/21 
30/32 

21/19 
40/24 
43/32 

16/11 
15/11 
19/14 

13/14 
25/17 
21/19 

21/17 
31/21 
30/23 

Theta 28/22 
35/27 
44/33 

13/12 
15/10 
17/13 

22/23 
19/16 
23/20 

29/22 
43/31 
50/39 

13/12 
15/11 
17/13 

20/23 
18/15 
24/21 

Both 12/10 
17/13 
22/18 

9/6 
14/9 

14/11 

11/9 
24/14 
27/15 

15/11 
15/10 
19/14 

8/7 
14/8 

13/10 

12/11 
19/13 
19/13 

Yes 

Speed / 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 

Theta 28/20 
35/25 
43/32 

13/11 
14/10 
16/12 

23/19 
24/18 
27/24 

29/20 
41/27 
49/35 

13/11 
15/10 
17/12 

21/18 
23/16 
27/23 

Both 12/10 
17/13 
22/18 

9/6 
14/9 

14/11 

11/10 
18/13 
16/13 

15/11 
15/10 
19/14 

8/7 
13/8 

13/10 

12/11 
18/13 
16/13 

(210x2)/(420x4) 

Table 10 summarizes the same overall MAPE measures as shown in Figure 25 and Figure 26 in a 

tabular format.  

6.6 Prediction Results 

Figure 27 shows the MAPE of predictive travel time estimates at the upstream of the segment 

under consideration using UKF estimation method. Upstream anticipative travel times are best 

estimated when only retrospective travel times are used as input measurements in the estimation. 

Invariably, using delayed filter in this case has slightly deteriorated results. However, when 

speed and retrospective travel times are both used as input measurements for the most part 

results have been insensitive to the use of delayed filter. Note that upstream predictive travel 

time estimates are significantly better than their corresponding overall estimates. This underlines 

the fact that estimates of travel time in internal cells (other than boundaries) exhibit worse than 

average errors. 
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Greenshields 

  

Smulder 

  

 

Figure 27. MAPE of upstream predictive travel time estimates using UKF method. (Left: 210ftx2sec; Right: 420ftx4sec) 

 
Table 11 summarized the same upstream MAPE measures as shown in Figure 27 in a tabular 

format. 
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Table 11. Upstream anticipative travel time MAPE estimates using UKF method. 

Delayed 

Filter? 

Input 

Data 

Greenshields Smulders 

Speed Theta Tau Speed Theta Tau 

No 

Speed / 
/ 
/ 

/ 
/ 
/ 

18/15 
29/21 
28/24 

/ 
/ 
/ 

/ 
/ 
/ 

14/14 
22/17 
16/16 

Theta / 
/ 
/ 

/ 
/ 
/ 

7/7 
10/9 
8/8 

/ 
/ 
/ 

/ 
/ 
/ 

7/7 
10/9 
8/8 

Both / 
/ 
/ 

/ 
/ 
/ 

10/9 
19/12 
17/10 

/ 
/ 
/ 

/ 
/ 
/ 

10/8 
14/11 
10/9 

Yes 

Speed       

Theta / 
/ 
/ 

/ 
/ 
/ 

9/8 
13/11 
11/10 

/ 
/ 
/ 

/ 
/ 
/ 

8/8 
12/11 
11/10 

Both / 
/ 
/ 

/ 
/ 
/ 

10/9 
15/12 
11/9 

/ 
/ 
/ 

/ 
/ 
/ 

10/9 
14/12 
11/10 

(210x2)/(420x4) 

Figure 28 depicts the prediction speed error quartiles when prediction horizon has varied 

between zero (current time) and 60 seconds (one minute) ahead of the current time. The top, 

middle, and bottom row of graphs represent datasets with increasing congestion levels. Note that 

when speed and retrospective travel time measurement along with a delayed filter are used in 

estimation, resulting predictions errors exhibit highest level of stability. As can be seen in this 

case the prediction bias (median line) and the size of interquartile range is gradually but steadily 

increasing with congestion level. As prediction horizon increases, the errors become more 

skewed toward overestimation. 
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Figure 28. Prediction speed error quartiles. (top: D1, middle: D2, bottom: D3; left: 210x2, right 420x4) 
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Figure 29. Prediction travel time error quartiles. (top: D1, middle: D2, bottom: D3; left: 210x2, right 420x4) 
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Figure 29 exhibits the prediction travel time error quartiles when prediction horizon extends up 

to one minute ahead of the current time. Note that in case of speed and travel time measurement 

input along with a delayed filter, prediction errors invariably have remained unbiased. 

Additionally, the interquartile range in these cases has quickly stabilized even if it initially 

started to grow with the prediction horizon. 

6.7 Computation Time 

The computation times reported in this section are obtained on a machine with Intel Core i7-860 

processor (8M Cache, Quad-Core 2.80 GHz) and 4.00 GB RAM running 64 bit Microsoft 

Windows 7 Enterprise operating system. The algorithm is implemented and run in MATLAB 

R2012b. 

Table 12. Average computation time for one time step estimation in US 101 dataset. (Speed and travel time inputs) 

Delayed Filter Applied? No Yes 

Speed-Density Relation GS HL GS HL 

Time Interval (sec) 

2 

D1 0.106 0.106 1.826 1.807 

D2 0.107 0.107 2.257 2.244 

D3 0.105 0.104 2.526 2.487 

Mean 0.106 0.106 2.203 2.179 

4 

D1 0.028 0.028 0.242 0.229 

D2 0.028 0.028 0.305 0.290 

D3 0.027 0.028 0.324 0.301 

Mean 0.028 0.028 0.290 0.273 
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Doubling the update rate implies that the number of discretization cells in a given segment is 

practically reduced in half to meet the CFL condition. In the case of proposed model in this 

dissertation this leads to a 50 percent reduction in the size of state vector to be estimated. For 

instance, in the US 101 implementation scenarios when time update rate increases from two to 

four seconds, the state vector size is reduced from thirty to fifteen. 

Table 12 summarizes the average computation times experienced for one time step estimation of 

state variables under different scenarios in US 101 dataset when speed and travel time 

measurements have been used as input. In all cases where delayed filter has been off, the average 

computation times at each step has been fraction of a second. Results indicate that in the current 

setting at very fine two second time update rate when delayed filter is used the proposed UKF 

estimation method may not be applied in real time. This is due to the fact that under this scenario 

the average time it takes to update the state vector estimates has been larger than two seconds. 

However, in all other cases the proposed UKF estimations can be performed in real time. 

Congestion level virtually has no effect on the computation times when delayed filter is not used, 

but in presence of delayed filters increasing congestion seems to slightly increase the 

computation times. 

Also, note that at each time step the number of delayed filter updates on average is equal to the 

number of time steps that make for the average travel time on the segment. For instance, in two 

second time steps the forty second average travel time between the two ends of the segment can 

be covered in twenty time steps. This means to update the state vector in presence of a delayed 

filter at each time step roughly twenty simple updates should take place. Similarly, in the case of 

four second time steps, using a delayed filter on average is equivalent to ten single updates. 
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Interestingly, these ballpark estimates closely correlate with the ratio of average computation 

times spent in each pair of corresponding cases where delayed filters are turned on and off. 

6.8 Unscented H-infinity Filter Results 

In all scenarios tested the proposed UHF estimation method resulted in very similar error 

measures as the UKF estimation method. Although much care was spent to adjust the 𝛾2 

parameter in order to obtain the desired constrained worst-case performance of UHF, it turned 

out that in the range of feasible 𝛾2 parameters the performance is not particularly different from 

UKF. This underlines the fact that the joint traffic and travel time model proposed in this 

dissertation is highly nonlinear. Note that this may have been exacerbated by very fine 

discretization levels adopted in numerical experiments reported in this dissertation. 

6.9 Summary 

In this chapter results of the numerical experiments performed with the proposed joint traffic and 

travel time model and estimation algorithms on NGSIM US 101 datasets were reported. 

Different scenarios in terms of estimation algorithm, speed-density relationships, discretization 

sizes, and the use of delayed filter were taken into account. 

Numerical results indicated that in general estimation errors become larger with increasing 

congestion, while they become smaller with increasing discretization cell sizes and aggregation 

time intervals. Also, the best speed estimates were obtained when boundary speed measurements 

have been part of the input. Overall, speed estimates have been insensitive to the application of 

the delayed filter in presence of retrospective travel time measurements. Both speeds and 

retrospective travel times were needed to make better estimates of travel times (both 

retrospective and anticipative). Delayed filter has not been very effective in improving the 

estimates of retrospective travel times, but when speed and retrospective travel time 
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measurements were assimilated in presence of a delayed filter, anticipative travel times during 

congested periods have improved. Finally, using Smulders speed-density relation generally did 

improve the estimation results especially in the case of speed estimates.  

Interestingly, upstream anticipative travel times were best estimated when only retrospective 

travel times were used as input measurements in the estimation. Using the delayed filter in this 

case did not improve the results. A combination of speed and retrospective travel time 

measurements along with the application of a delayed filter seemed to be most effective in 

containing the speed and travel time prediction error bias. 
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Chapter 7: Conclusions and Future Directions for Research 

 
This chapter presents a concise summary of contribution made, conclusions reached, and lessons 

learned in this dissertation. Also future directions of research with the goal of improving upon 

the proposed models and methods in this dissertation are outlined. Different possibilities to apply 

the proposed travel time assimilation concepts to other real world cases are enumerated. 

7.1 Contributions 

The following is a brief outline of the main contributions of this dissertation: 

• Derivation of a first-order PDE relating speeds and travel times independent of vehicle 

trajectory. In Chapter 4, a travel time model was derived. This is a first-order PDE which relates 

the local speeds and local variations in travel time. The proposed model can be applied to both 

retrospective and anticipative travel times with minimal change. Finite-difference approximate 

solutions for the travel time models were proposed. Stability and FIFO properties of the proposed 

travel time model were discussed. 

• Derivation of finite-difference solutions of coupled first-order velocity-based traffic 

continuum models and travel time equation. In Chapter 5, the joint traffic and travel time 

dynamics model was specified. The traffic dynamics was modeled using first-order velocity-

based cell transmission model (CTM-v) introduced in Chapter 3. Retrospective and anticipative 

travel time dynamics were modeled using first-order finite-difference travel time models 

proposed in Chapter 4 (named THETA and TAU, respectively). 

• Introduction of a framework to systematically and explicitly assimilate travel time 

measurements in traffic estimation process. In Chapter 5, the proposed joint traffic and travel 

time model was cast as a state-space model whose state vector incorporate traffic speeds, 

retrospective, and anticipative travel times sub-vectors. The joint system model was shown to be 

highly nonlinear. The proposed framework takes into account additive model and measurement 
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errors. Also, the measurement model is capable of accepting boundary speed and travel time 

measurements. 

• Extension of an optimal state estimation method based on min-max paradigm to the case of 

highly non-linear joint traffic and travel time model. In Chapter 5, the UHF estimation 

method for non-linear state-space models was presented. H-infinity type filters seek to minimize 

the maximum estimation errors in face of adversarial model and measurement errors. Unscented 

methods were adopted to nonlinearly propagate state estimate mean and covariance. Also, 

unscented methods were adopted in the conditioning step to adjust the a priori state estimates 

with information contained in the measurements. H-infinity filtering was proposed as an 

alternative to Kalman filtering in the conditioning step (measurement update). 

• Adoption of a delayed filter to explicitly take into account the delayed anticipative travel 

time measurements. In Chapter 5, a delayed filter was proposed to assimilate any delayed 

anticipative travel time measurements. This is a brute-force approach but computational results 

showed that it works very well in all practical scenarios. In general, the proposed delay filter can 

be used to assimilate any delayed or out-of-order traffic measurements. 

• Sensitivity analysis of speed and travel time estimates/predictions to the presence of various 

traffic measurements, congestion levels, aggregation levels, speed-density relations, delayed 

filter, and optimal estimation methods. In Chapter 6, results of numerical experiments 

conducted on various scenarios were reported. Scenarios were comprised of combinations of the 

following ingredients: three datasets with increasing level of congestion, availability of speed and 

travel time measurements to be used in the assimilations, two discretization schemes, two speed-

density relations, presence or absence of the proposed delayed filter when travel time 

measurements were involved, and two optimal estimation methods applicable to nonlinear state-

space models. 

• Improvement of traffic state estimates and short-term travel time predictions. In Chapter 6, 
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results indicated that incorporation of field measured travel times into the proposed joint traffic 

and travel time model estimation reduced retrospective travel time estimates’ maximum MAE 

from 12 seconds to 3 seconds at 4 second time intervals. Also, under the same conditions 

anticipative travel time estimates’ maximum MAE was reduced from 10 seconds to 4 seconds. 

Note that these maximum MAE measures (3 and 4 seconds) were smaller than the discretization 

time used in their corresponding numerical experiments (4 seconds). The MAPE of upstream 

anticipative travel time (current time predictions) was reduced from 24% to 10% under congested 

conditions when retrospective travel time measurements along with speeds were used in the 

assimilations. 

7.2 Conclusions 

Numerical experiment results indicated that the proposed joint traffic and travel time model and 

estimation algorithms have been successfully used to seamlessly assimilate different field 

measured traffic data and in particular boundary travel time measurements into the traffic state 

estimation process. Speeds and travel times are most accurately estimated when speed and travel 

time measurements at the boundaries have been part of the input to the state estimation process, 

respectively. Increasing the discretization size (reduced granularity) resulted in more accurate 

estimates. 

In general, considering the estimate biases speeds are overestimated while travel times are 

underestimated. The literature search showed that in comparable scenarios state-of-the-art using 

boundary along with five percent probe speed measurements, overall speed estimates MAPE has 

been 25% (Work, et al. 2008). Using boundary speed and travel time measurements resulted in 

speed and anticipative travel time estimate MAPEs varying in the 12%-22% and 11%-27% 

range, respectively. Using the proposed delayed filter in this case brought about an additional 

improvement in the anticipative travel time estimates where MAPEs vary in the 11%-18% range. 
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Smulders speed-density relation resulted in better estimates compared to the Greenshields 

relation. This was more evident in the case of speed estimates. 

When anticipative travel times solely at the upstream of the segment are targeted, using current 

retrospective travel time measurements at the downstream of the segment in assimilation provide 

the best estimates. MAPE reported for the upstream anticipative travel times in this case varies in 

the 7%-10% range. 

A combination of speed and retrospective travel time measurements along with the application of 

a delayed filter are most effective in containing the bias in multi-step ahead speed and travel time 

predictions. These scenarios resulted in unbiased multi-step ahead travel time predictions. At 2 

second discretization, the interquartile range of one-minute-ahead speed and anticipative travel 

time prediction errors varied between -2mph to +10mph, and -10sec to +5sec, respectively. 

Increasing the discretization size to 4 seconds, the interquartile error range of these predictions 

was reduced to -1mph to +8mph, and -7sec to +4sec, respectively. Table 13 provides a summary 

of the results obtained in this dissertation in the same way as was presented earlier in Table 1 at 

the end of literature review chapter. 

Table 13. Summary results of the proposed joint state-space model and estimation algorithms. 

Traffic 
Model 

Data Estimation 
Method 

Data 
Source 

Facility 
Type 

Time 
Interval 

Estimation 
Variable 

Prediction 
Variable 

Accuracy 

CTM-v -Stationary 
(speed) 
-AVI 
(travel time) 

-UKF 
-UHF 

NGSIM Freeway 
(US-101 
CA) 

2 sec 
4 sec 

-Speed 
-Travel 
Time 

-Speed 
-Travel Time 

MARE 12%-22% 
MARE 7%-10% 

 

The proposed model and estimation algorithms can be extended to take into account any gradual 

changes in roadway and traffic conditions. For instance, if free flow speeds or minimum safe 

driving headways are impacted by changes in weather or lighting conditions, the corresponding 

parameters can be adaptively estimated in the proposed model with minor changes. However, 
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abrupt changes in underlying geometry such as lane closure due to incidents or other unexpected 

events with long-term impact on traffic need to be explicitly modeled. Having said that the 

proposed model can be used to identify cases where realities on the ground are substantially 

different from what is modeled. These discrepancies in a calibrated model could be indicative of 

events that have changed the underlying assumptions of the model. Obviously, in such cases all 

assumptions and parameters should be revisited and a new modeling and calibration process will 

be necessary. 

This dissertation presents a modeling and estimation framework that can be used readily to 

integrate private and public sector data and to improve travel time estimations and predictions. 

Currently, travel time estimation and navigation products based on crowd-sourced AVL (probe) 

data are marketed by private sector. While probe data represents speed of traffic, its accuracy and 

coverage heavily depends on market penetration of probes. On the other hand, sparsely installed 

spot traffic detectors are mainly owned and run by public agencies which usually lack funding to 

routinely maintain and calibrate them. Spot detectors measure average local traffic conditions as 

it applies to all vehicles passing that location. Recently, private and public sector are beginning 

to appreciate the value in sharing their respective data. Some companies such as Waze (acquired 

by Google) are in the process of bridging that gap by offering public agencies access to crowd-

sourced and anonymized probe data in return for access to public sector’s road sensor data, as 

well as pre-planned construction and road closures. 

Models and algorithms presented in this dissertation can be adopted by both private and public 

sector with minimum modifications. In the current practice, private sector’s archival crowd-

sourced traffic data is used to generate and update travel speed profiles for individual road 

segments and different day/time combinations. These profiles are used to validate current travel 
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speed measurements on different segments and to identify whether or not they resemble a 

specific existing pattern (past weather or incident events) in the historic data. Also, for the most 

part, any short- or long-term travel time predictions are based on these profiles. While it may not 

be practical to use continuum traffic flow models to represent traffic dynamics in a large 

network, historic speed profiles can be used to generate ad hoc models of traffic speed dynamics. 

These traffic models along with travel time models presented in this dissertation can form an ad 

hoc joint traffic and travel time model. Filtering techniques presented in this dissertation can be 

adopted to jointly estimate and predict traffic speeds and travel times on individual segments as 

well as on paths comprised of multiple segments. 

7.3 Future Directions for Research 

This line of research can be continued in at least five different directions. First, dynamic traffic 

and travel time models used can be improved. Second, proposed models and estimation 

techniques can be easily adjusted to take into account internal traffic measurements in addition to 

boundary measurements addressed in this dissertation. Third, other real world traffic datasets 

may be used to further verify the proposed model and estimation methods’ performances in 

traffic estimation and short-term predictions. Fourth, for practical reasons, it is desirable for the 

proposed model and estimation methods to become capable of handling irregular shaped space-

time discretization schemes. Fifth, different avenues for the use of proposed modeling and 

estimation framework in typical traffic control application can be explored. Each of these 

directions is further discussed in the following sections. 

7.3.1 Model Improvements 

7.3.1.1 Second-Order Traffic Model 

The traffic model used in this dissertation is a first-order conservation law. The CTM-v model 

presented in Chapter 3 simply ensures vehicles are conserved over space and time. Besides, 
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under CTM-v model, speed-density relationship holds at all times. In other words, speeds are 

always at the equilibrium level with respect to the existing density. This practically results in 

abrupt and unrealistic changes in density and speed across shockwaves. 

Second-order macroscopic traffic models improve upon the first-order model by taking into 

account the distinction between equilibrium and non-equilibrium speeds. In fact, the second-

order traffic model while keeping the CTM-v model to describe equilibrium speed evolutions 

includes a second model to represent effects of relaxation, convection, and anticipation on non-

equilibrium traffic speeds. The pair of models to describe equilibrium and non-equilibrium speed 

dynamics can be expressed as following: 

𝑣𝑒,𝑛+1
𝑖 = 𝑉�𝜌𝑛+1𝑖 � = 𝑉 �𝑉−1�𝑣𝑛𝑖 � −

∆𝑡
∆𝑚
�𝐺��𝑣𝑛𝑖 , 𝑣𝑛𝑖+1� − 𝐺��𝑣𝑛𝑖−1, 𝑣𝑛𝑖 ��� (7.1) 

𝑣𝑛+1𝑖 = 𝑣𝑛𝑖 + ∆𝑡
𝜗
�𝑣𝑒,𝑛

𝑖 − 𝑣𝑛𝑖 � + ∆𝑡
∆𝑚
𝑣𝑛𝑖 �𝑣𝑛𝑖−1 − 𝑣𝑛𝑖 � −

𝜓∆𝑡
𝜗∆𝑚

. �𝑉−1�𝑣𝑛𝑖+1� − 𝑉−1�𝑣𝑛𝑖 �� �𝑉−1�𝑣𝑛𝑖 � + 𝜅�� (7.2) 

where, 𝑣𝑛𝑖  and 𝑣𝑒,𝑛
𝑖  denotes the non-equilibrium and equilibrium traffic speeds at cell 𝑇 during 

time interval 𝑛, respectively. Parameters 𝜗,𝜓, 𝜅, should be defined appropriately. In equation 

(7.2) the second term represents relaxation between equilibrium and non-equilibrium speed states 

at each cell, the third term represents the impact of convection from the upstream cell, and finally 

the last term represents the impact of anticipation of downstream congestions on traffic speeds. 

7.3.1.2 Second-Order Travel Time Model 

Travel time model proposed in this dissertation is based on finite-difference approximation of 

first-order travel time partial derivatives with respect to space and time. To improve the proposed 

model accuracy, it is conceivable to use higher-accuracy finite-difference approximations. For 

instance, as was mentioned in chapter 4, travel time models (4.6) and (4.7) can be solved 

numerically using a forward-time backward-space (FTBS) finite difference scheme. Following 
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the same discretization scheme, travel time partials with respect to time and space can be 

approximated by the following: 

𝜏𝑡 ≅ �−𝜏𝑛+2𝑖 + 4𝜏𝑛+1𝑖 − 3𝜏𝑛𝑖 � (2∆𝑡)⁄  (7.3) 

𝜏𝑚 ≅ �3𝜏𝑛𝑖 − 4𝜏𝑛𝑖−1 + 𝜏𝑛𝑖−2� (2∆𝑥)⁄  (7.4) 

Substituting these expressions in (4.6) will provide second-order accuracy to the proposed finite-

difference anticipative travel time model. Similarly, the following pair of approximate partial 

derivatives with respect to time and space will provide second-order accuracy to the proposed 

finite-difference retrospective travel time model. 

𝜃𝑡 ≅ �−𝜃𝑛+2𝑖 + 4𝜃𝑛+1𝑖 − 3𝜃𝑛𝑖 � (2∆𝑡)⁄  (7.5) 

𝜃𝑚 ≅ �3𝜃𝑛𝑖 − 4𝜃𝑛𝑖−1 + 𝜃𝑛𝑖−2� (2∆𝑥)⁄  (7.6) 

7.3.2 Internal Speed and Travel Time Measurements 

In this dissertation, only speed and travel time measurements at the boundaries of the segment 

are used. It is conceivable that in presence of probes, relevant measurements from inside the 

segment can be obtained. Such internal measurements can be easily integrated into the proposed 

estimation and prediction process. The additional measurements potentially will increase the 

accuracy of state estimations and ensuing predictions. 

7.3.3 Other Datasets (NGSIM & Mobile Century) 

In this dissertation, applications of proposed estimation methodology on US 101 datasets are 

reported. It is possible to apply the proposed models and methods on other available datasets to 

examine their performance under different facility types, geometry and driver compositions. 

Under NGSIM project, detailed traffic data on three other facilities in California and Georgia are 

collected. I-80 dataset in San Francisco provides another rich opportunity to test the proposed 

methods on freeway type facilities. Also, two arterial datasets collected on Lankershim 
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Boulevard in Los Angeles, and Peachtree Street in Atlanta are made available through NGSIM 

project. 

In addition, cell phone GPS data collected from 100 probe vehicles driving 6-10 mile loops 

continuously for 8 hours on freeway I-880 near Union City in the San Francisco Bay Area has 

become available (Herrera, Work, et al. 2010). The dataset named Mobile Century in addition to 

GPS logs of 77 mobile devices (at 3 second frequency) provides inductive loop detector data 

installed in the area, ground-truth travel time data on the northbound direction between 

Stevenson Blvd and Decoto Road and between Decoto Road and Winton Avenue. 

7.3.4 Irregular Space/Time Discretization (Application to VPP Data) 

Since 2008, private sector probe based space mean speed (SMS) data has become available to 

states along the I-95 Corridor on the eastern coast of the United States. Vehicle Probe Project 

(VPP) is an ongoing effort and has resulted in a comprehensive archive of speed data at one 

minute resolution on standard segments along the highways and arterials. 

The segment definitions are based on industry developed Traffic Message Channel (TMC) 

standards overseen by Traveller Information Services Association (TISA). The TMC segments 

on freeway facilities are typically defined between consecutive on- and off-ramps. As a result, 

TMC segments are not uniformly sized.  

Concurrent with VPP, automatic vehicle identification (AVI) travel time measurements using 

Bluetooth monitoring systems has been ongoing mainly for validation purposes. These efforts 

have resulted in a large collection of travel time datasets on some of the most congested 

highways in major urban areas in the continental United States. 

This vast archival speed and travel time dataset can be used to further evaluate the proposed 

models and methods in this dissertation. However, in order to do that, it is necessary that 

methods be adjusted to take into account the non-uniform length of TMC segments and unequal 
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data resolutions considering the fact that speeds are reported every one minute while travel times 

are updated roughly every five seconds. Once, accuracy of the proposed methods in these 

conditions is established, it is possible to use them in real-time travel time prediction applications 

along select corridors with active user information services such as variable message signs 

(VMS) and other advisory systems. 

7.3.5 Control Applications 

In this dissertation, proposed models and estimation methods were primarily used in the 

estimation mode. This means speed and travel time measurements were fed to the model in order 

to make real-time estimates of state variables and to make better short-term predictions. This 

approach essentially treats the highway system as an open system. However, the proposed 

models can also be used to model important state variables when some control measures are 

present. Essentially, the proposed model and estimation method can be used to track and to 

evaluate the relevant performance measures (goals) of the closed traffic systems that are to be 

controlled. 

For instance, in a freeway system, the proposed joint models and estimation method can be used 

to make use of travel time measurements in ramp metering (RM) and variable speed limit (VSL) 

control applications to prevent the congestion from developing in the susceptible regions of 

freeway traffic lanes. 

In arterial systems, the major control devices used are traffic signals. The proposed models and 

estimation method can be used to integrate travel time measurements into adaptive signal re-

timing decision makings locally, on a corridor level, and or on a regional basis. 

7.4 Summary 

In this chapter main contributions in this dissertation were briefly outlined. Conclusions reached 

based on experimental results were reiterated. Finally, five possible directions to continue this 
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line of research and to add to the traffic estimation and short-term prediction state-of-the-art were 

identified. 
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