
ABSTRACT

Title of dissertation: EXPRESSIVE KNOWLEDGE RESOURCES
IN PROBABILISTIC MODELS

Yuening Hu, Doctor of Philosophy, 2014

Dissertation directed by: Professor Jordan Boyd-Graber
iSchool, Umiacs

Understanding large collections of unstructured documents remains a persistent

problem. Users need to understand the themes of a corpus and to explore documents

of interest. Topic models are a useful and ubiquitous tool to discover the main

themes (namely topics) of the corpus. Topic models have been successfully applied in

natural language processing, computer vision, information retrieval, cognitive science,

etc. However, the discovered topics are not always meaningful: some topics confuse

two or more themes into one topic; two different topics can be near duplicates; and

some topics make no sense at all. Adding knowledge resources into topic models can

improve the topics. However, how to encode knowledge into topic models and where

to find these knowledge resources remain two scientific challenges. To address these

problems, this thesis presents tree-based topic models to encode prior knowledge, a

mechanism incorporating knowledge from untrained users, a polylingual tree-based

topic model based on existing dictionaries as knowledge resources, an exploration of

regularizing spectral methods to encode prior knowledge into topic models, and a

model for automatically building hierarchies of prior knowledge for topic models.



To encode knowledge resources into topic models, we first present tree-based

topic models, where correlations between word types are modeled as a prior tree and

applied to topic models. We also develop more efficient inference algorithms for tree-

based topic models. Experiments on multiple corpora show that efficiency is greatly

improved on different number of topics, number of correlations and vocabulary size.

Because users decide whether the topics are useful or not, users’ feedback is

necessary for effective topic modeling. We thus propose a mechanism for giving

normal users a voice to topic models by encoding users’ feedback as correlations

between word types into tree-based topic models. This framework, interactive topic

modeling (ITM), allows untrained users to encode their feedback easily and iteratively

into the topic models. We validate the framework both with simulated and real users

and discuss strategies for improving the user experience to adapt models to what

users need.

Existing knowledge resources such as dictionaries can also improve the model.

We propose polylingual tree-based topic models based on bilingual dictionaries and

apply this model to domain adaptation for statistical Machine Translation. We

derive three different inference schemes and evaluate the efficacy of our model on

a Chinese to English translation system, and obtain up to 1.2 BLEU improvement

over the machine translation baseline.

This thesis further explores an alternative way—regularizing spectral methods

for topic models—to encode prior knowledge into topic models. Spectral methods offer

scalable alternatives to Markov chain Monte Carlo and expectation maximization.

However, these new methods lack the priors that are associated with probabilistic



models. We examine Arora et al.’s anchor algorithm for topic models and encode

prior knowledge by regularizing the anchor algorithm to improve the interpretability

and generalizability of topic models.

Because existing knowledge resources are limited and because obtaining the

knowledge from users is expensive and time-consuming, automatic techniques should

also be considered to extract knowledge from the corpus. This thesis further presents

a Bayesian hierarchical clustering technique with the Beta coalescent, which provides

a possible way to build up the prior tree automatically. Because of its computational

complexity, we develop new sampling schemes using sequential Monte carlo and

Dirichlet process mixture models, which render the inference practical and efficient.

This thesis explores sources of prior knowledge, presents different ways to

encode these expressive knowledge resources into probabilistic topic models, and

also applies these models in translation domain adaptation. We also discuss further

extensions in a bigger picture of interactive machine learning techniques and domain

adaptation for downstream tasks.



EXPRESSIVE KNOWLEDGE RESOURCES
IN PROBABILISTIC MODELS

by

Yuening Hu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Jordan Boyd-Graber/Advisor
Professor Hal Daumé III
Professor Héctor Corrada Bravo
Professor Philip Resnik
Professor David M. Blei



c© Copyright by
Yuening Hu

2014



Acknowledgments

I feel very lucky to spend five years in the Department of Computer Science,

University of Maryland. I owe my gratitude to all the people who have made this

thesis possible.

First and foremost, I would like to thank my advisor, Professor Jordan Boyd-

Graber for all the advice and help over the past four years. He gives me flexibility to

choose interesting projects and is very open to hear my ideas and thoughts; he works

closely with me for all the deadlines, no matter it is weekends or midnight; he always

makes himself available whenever I have questions and difficulties; he helps me on

the practice talks again and again, thus I could give good conference talks and job

talks; and he also encourages and gives me opportunities to mentor junior students.

Moreover, his passion to research—being creative, hard-working, responsible and

seeking for perfection—greatly influences me. I feel very fortunate to work with and

learn from such an extraordinary advisor!

I would also like to thank Professor Hal Daumé III for his help on the coalescent

project, the great advice on my talks and jobs, and writing countless reference letters

for me! Thanks are also due to Professor Philip Resnik, Professor Héctor Corrada

Bravo and Professor David Blei for agreeing to serve on my thesis committee and

spending their invaluable time reviewing my thesis!

I was fortunate to be part of the Computational Linguistics and Information

Processing Lab (CLIP), where all the professors and students are open-minded,

creative and willing to collaborate and help. Viet-An Nguyen, a great and responsible

ii



collaborator and a close friend; Alison Smith and Brianna Satinoff, two creative

collaborators who helped and made my favorite interactive topic modeling paper

possible; Thang Nguyen, a smart junior who I collaborated and who I firstly mentored

as a graduate student; Vladimir Edelman, a patient senior who helped me with my

first experience with Machine Translation.

There are a lot of other colleagues that I should give a special mention. Thank

Professor Jimmy Lin, Professor Louiqa Raschid, Professor Naomi Feldman and

Professor Douglas W. Oard for their helpful comments and suggestions; thank Joe

Webster for a lot of technical support and help; thank Leonardo Claudino, Mohit

Iyyer, Alvin Grissom II, John Morgan, Ke Wu, Junhui Li, He He, Xi Chen, Chang

Liu, Hua He, Jiarong Jiang, Taesun Moon, Amit Goyal, Jagadeesh Jagarlamudi,

Snigdha Chaturvedi, Greg Sanders, Arvind Agarwal, and Sudha Rao for their help

and friendship. I would also like to acknowledge help and support from some of the

staff members: Jennifer Story, Fatima Bangura and Arlene E. Schenk.

This thesis cannot be done without the help from outside of Maryland. I

also want to take this chance to thank my mentors Jianfeng Gao, Michael Auli

and Qin Gao at Microsoft Research Redmond, Sinead Williamson at University of

Texas at Austin, Jason Chuang at University of Washington, Julia Lane and Evgeny

Klochikhin at American Institutes for Research.

My dearest friends have enriched my graduate life in many ways and also

deserve a special mention: Teng Long, Qian Zhou, Xuan Yao, Yemei Han, Taotao

Liu, Mingyang Ji, Yijing Lu, Bo Sun, Yangwen Liu, Kangyuan Zhu, Zheng Zhang,

Xiang He, Xiaojie Cong, Dandan Li and Xiqun Chen. Thank them all for their care

iii



and support and for always being there for me.

Finally, I owe my deepest thanks to my family - my mother, father, sister, my

other relatives, particularly my husband Ke Zhai. Ke is not only my closest friend

in life but also my best partner at work. Words cannot express my gratitude to Ke

and how fortunate that I am to have Ke. It would be very hard to finish this thesis

without his support. Thank Ke and my whole family for their support!

iv



Table of Contents

List of Tables viii

List of Figures ix

1 The Need for Prior Knowledge in Probabilistic Models 1
1.1 Encoding Correlations into a Tree Prior for Topic Models . . . . . . . 3
1.2 Obtaining Prior Knowledge from Users to Improve Topics . . . . . . . 4
1.3 Using Existing Prior Knowledge to Assist Machine Translation . . . . 6
1.4 Alternative Spectral Methods to Encode Prior Knowledge . . . . . . . 8
1.5 Learning Prior Knowledge Automatically using Beta Coalescent . . . 9
1.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Existing Probabilistic Models for Encoding Prior Knowledge 13
2.1 Vanilla LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Generative Process . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Tree-based Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Encoding Correlations in a Tree . . . . . . . . . . . . . . . . . 19
2.2.2 Generative Process . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Relationship to Other Topic Models . . . . . . . . . . . . . . . 26
2.2.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Efficient Inference for Tree-based Topic Models 31
3.1 Sparse LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Efficient Sampling for Tree-based Topic Models . . . . . . . . . . . . 34
3.3 Sorting Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Efficient Sampling with Coarse-to-Refined Buckets . . . . . . . . . . . 40
3.5 Measuring Inference Time Efficiency . . . . . . . . . . . . . . . . . . 41
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Interactive Topic Modeling 47
4.1 How Users Can Benefit from Interactive Topic Models . . . . . . . . . 48

4.1.1 Example A: Joining Two Topics with Similar Content . . . . . 50
4.1.2 Example B: Splitting a Topic with Mixed Content . . . . . . . 51
4.1.3 Example C: Joining and Splitting . . . . . . . . . . . . . . . . 53
4.1.4 Improvement or Impatience? . . . . . . . . . . . . . . . . . . . 55

4.2 Making Topic Models Interactive . . . . . . . . . . . . . . . . . . . . 56
4.3 Users in the Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Simulated Users . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Real Users from Mechanical Turk . . . . . . . . . . . . . . . . 69

4.4 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



4.4.1 Legislative Corpus . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Introduction of ITM Interface . . . . . . . . . . . . . . . . . . 76
4.4.3 User Population . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.4 User Study Analysis . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Automatically Suggesting Correlations . . . . . . . . . . . . . . . . . 86
4.5.1 Generating New Correlations . . . . . . . . . . . . . . . . . . 86
4.5.2 Human Evaluation over Automatically Generated Correlations 88

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Polylingual Tree-based Topic Models for smt Domain Adaptation 94
5.1 Topic Models for Machine Translation . . . . . . . . . . . . . . . . . 95

5.1.1 Statistical Machine Translation . . . . . . . . . . . . . . . . . 96
5.1.2 Inducing Domains with Topic Models . . . . . . . . . . . . . . 97
5.1.3 Beyond Vanilla Topic Models . . . . . . . . . . . . . . . . . . 100

5.2 Polylingual Tree-based Topic Models . . . . . . . . . . . . . . . . . . 101
5.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 How do Topic Models Help smt? . . . . . . . . . . . . . . . . 110
5.5.2 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5.3 Improving Language Models . . . . . . . . . . . . . . . . . . . 113
5.5.4 External Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Regularized Anchor Methods for Topic Models to Encode Priors 116
6.1 Anchor Words: Scalable Topic Models . . . . . . . . . . . . . . . . . 117
6.2 Adding Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 L2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.2 Beta Regularization . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Initialization and Convergence . . . . . . . . . . . . . . . . . . 125

6.3 Regularization Improves Topic Models . . . . . . . . . . . . . . . . . 126
6.3.1 Grid Search for Parameters on Development Set . . . . . . . . 128
6.3.2 Evaluating Regularization . . . . . . . . . . . . . . . . . . 129
6.3.3 Informed Regularization . . . . . . . . . . . . . . . . . . . . . 130

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Automatically Building Hierarchical Prior Trees from Data 138
7.1 Bayesian Clustering Approaches . . . . . . . . . . . . . . . . . . . . . 139
7.2 Beta Coalescent Belief Propagation . . . . . . . . . . . . . . . . . . . 142
7.3 Sequential Monte Carlo Inference . . . . . . . . . . . . . . . . . . . . 144
7.4 Efficiently Finding Children Sets with dpmm . . . . . . . . . . . . . . 146

7.4.1 DPMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.2 Attractive Properties of dpmms . . . . . . . . . . . . . . . . . 148
7.4.3 Incorporating dpmm in smc Proposals . . . . . . . . . . . . . 149

vi



7.4.4 Example Transition Kernel: Brownian Diffusion . . . . . . . . 151
7.5 Experiments: Finding Bushy Trees . . . . . . . . . . . . . . . . . . . 152

7.5.1 Synthetic Hierarchies . . . . . . . . . . . . . . . . . . . . . . . 153
7.5.2 Human Tissue Development . . . . . . . . . . . . . . . . . . . 155
7.5.3 Clustering 20-newsgroups Data . . . . . . . . . . . . . . . . . 157

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Conclusion and Future Work 160

A Titles of the ten bills used in the user study (Chapter 4.4) 164

B Questions list in the user study (Chapter 4.4) 165

C Variational Inference for Tree-based Topic Models 166
C.1 Variational Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . 167
C.2 Hybrid Stochastic Inference . . . . . . . . . . . . . . . . . . . . . . . 168

D Comparing Coalescent Models on Synthetic Data 171
D.1 Tree1: n = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
D.2 Tree2: n = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
D.3 Tree3: n = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
D.4 Tree4: n = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
D.5 Tree5: n = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

vii



List of Tables

2.1 Example topics from Vanilla LDA . . . . . . . . . . . . . . . . . . . . 18

3.1 Average number of non-zero paths in New York Times corpus . . . . 45

4.1 Example topics of adding one positive correlation . . . . . . . . . . . 52
4.2 Example topic of adding one negative correlation . . . . . . . . . . . 53
4.3 Example topics of more correlations with blue words in Topic 25 . . . 54
4.4 Example topics of more correlations with red words in Topic 25 . . . 54
4.5 Users votes for Topic 5 and Topic 19 in each round . . . . . . . . . . 92

6.1 Notations in anchor methods . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Statistics of three datasets . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3 Topic comparison between anchor and informed anchor-L2 . . . . . 132
6.4 Comparing topics from anchor and anchor-beta with M = 100 . . 134
6.5 Comparing topics between anchor and anchor-beta . . . . . . . . . 135

7.1 Comparing the performance of beta, kingman and hac . . . . . . . 156

viii



List of Figures

2.1 Examples of building prior tree with correlations . . . . . . . . . . . . 20
2.2 Prior Tree of Russia Example . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Examples of generating process for tree-based topic models . . . . . . 24

3.1 Comparing inferences between vanilla LDA and sparse LDA . . . . . 33
3.2 An example of inference between vanilla LDA and sparse LDA . . . . 36
3.3 An example of efficient sampling with coarse-to-refined buckets . . . . 42
3.4 20 Newsgroups’ average running time . . . . . . . . . . . . . . . . . . 43
3.5 New York Times’ average running time . . . . . . . . . . . . . . . . . 44

4.1 Interactive topic modeling . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Four different strategies for stat eablation . . . . . . . . . . . . . . . 59
4.3 Accuracy comparison using different ablation strategies . . . . . . . . 66
4.4 Accuracy by different strategies and iterations . . . . . . . . . . . . . 68
4.5 Interface for Mechanical Turk experiments . . . . . . . . . . . . . . . 70
4.6 Performance of the best Mechanical Turk user session . . . . . . . . . 71
4.7 Start page of ITM interface . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 Topics displaying page of ITM interface . . . . . . . . . . . . . . . . . 77
4.9 Refining topics in ITM interface . . . . . . . . . . . . . . . . . . . . . 78
4.10 Test page of ITM interface . . . . . . . . . . . . . . . . . . . . . . . . 79
4.11 Comparing users using variation of information . . . . . . . . . . . . 82
4.12 Statistics extracted from users logs . . . . . . . . . . . . . . . . . . . 84
4.13 Users votes for each topic . . . . . . . . . . . . . . . . . . . . . . . . 89
4.14 Evolution of Topic 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Constructing prior tree from a bilingual dictionary . . . . . . . . . . . 105
5.2 Comparing various models’ performance on smt . . . . . . . . . . . . 108
5.3 An example where topic models improve smt . . . . . . . . . . . . . 111
5.4 An example where ptlda improves smt . . . . . . . . . . . . . . . . 112

6.1 Grid search for document frequency M . . . . . . . . . . . . . . . . . 126
6.2 Selection of λ based on hl and ti . . . . . . . . . . . . . . . . . . . . 129
6.3 Comparing anchor-beta and anchor-L2 against baselines . . . . . . 130
6.4 Convergence of anchor coefficient C for anchor-beta . . . . . . . . . 133
6.5 How beta regularization influences the topic distribution . . . . . . . 136

7.1 Comparing beta coalescent against Kingman’s coalescent . . . . . . . 142
7.2 Comparing beta against kingman and hac . . . . . . . . . . . . . . 154
7.3 Comparing inference with dpmm against exhaustive enumeration . . 155
7.4 One sample hierarchy of human tissue from beta . . . . . . . . . . . 157
7.5 One sample hierarchy of the 20newsgroups from beta . . . . . . . . . 158

ix



Chapter 1

The Need for Prior Knowledge in Probabilistic Models

Understanding large collections of unstructured text remains a persistent

problem. Unlike information retrieval, where users know what they are looking for,

sometimes users need to understand the high-level themes of a corpus and explore

documents of interest. Probabilistic models have been widely applied to explore

the large corpora, especially the topic models, one of the most popular probabilistic

models, offer a formalism for exposing a collection’s themes, and have been applied

to aid information retrieval (Wei and Croft, 2006), understand scientific ideas (Hall

et al, 2008), and discover political perspectives (Paul and Girju, 2010). In addition,

topic models have also been applied outside text to learn natural scene categories

in computer vision (Li Fei-Fei and Perona, 2005); discover patterns in population

genetics (Shringarpure and Xing, 2008); and understand the connection between

Bayesian models and cognition (Landauer et al, 2006; Griffiths et al, 2007).

Topic models are attractive because they discover groups of words that often

appear together in documents. These are the namesake “topics” of topic models and

are multinomial distributions over the vocabulary words.1 The word types which

have the highest probability in a topic evince what a topic is about. In addition,

each document can be represented as an admixture of these topics, a low-dimensional

1To avoid confusion, we will henceforth avoid using “words”. We adopt the linguistic convention
of referring to we refer the Platonic exemplars of words as “types” or “word types” and particular
instances of words in a document as “tokens”.

1



shorthand for representing what a document is about.

The strength of topic models is that they are unsupervised. They do not require

any a priori annotations. The inputs that a topic model requires are only the text

divided into documents and the number of topics you want it to discover, although

there are models and heuristics for selecting the number of topics automatically (Teh

et al, 2006).

This is clearer with an example. A “technology”2 topic has high probability

for the words “computer, technology, system, service, site, phone, internet, machine”;

a topic about “arts” has high probability for the words “play, film, movie, theater,

production, star, director, stage”. These topics are “good” topics since they have

semantic coherence, which means the top words are meaningful enough for users

to understand the main theme of this topic. The judgment of “good” topics is not

entirely idiosyncratic. Chang et al (2009) showed that people mostly agree on what

makes a good topic.

Despite what you see in topic modeling papers, the topics discovered by

topic modeling do not always make sense to ostensible end users. From the users’

perspective, there are often “bad” topics. These bad topics can confuse two or more

themes into one topic; two different topics can be (near) duplicates; and some topics

make no sense at all. This is a fundamental problem, as even if everything went

perfectly, the objective function that topic models optimize does not always correlate

with human judgments of topic quality (Chang et al, 2009). A closely related issue

2Topic models do not name the topics that they discover; for discussion, it’s convenient to talk
about topics as if they were named. Automatic techniques for labeling (Lau et al, 2011) exist,
however. In addition, we italicize the topic names to distinguish these abstractions from the actual
words in a topic, which are in quotes

2



is that topic models—with their bag-of-words vision of the world—simply lack the

information needed to create the topics end-users expect.

One way to solve this fundamental problem is to add expressive knowledge

resources, which are also considered as prior knowledge, into the probabilistic

topic models. There has been a thriving cottage industry to make topic models

better fit users’ expectations by adding various information to topic models, including

modeling perspective (Paul and Girju, 2010; Lin et al, 2006), syntax (Gruber et al,

2007; Wallach, 2006), authorship (Rosen-Zvi et al, 2004; Dietz et al, 2007), etc.

While topic models consider documents as “bag of words”, ignoring the corre-

lations between words, one type of important prior knowledge is the correlations

between words within a topic (Petterson et al, 2010), which when appropriately

constructed, can create topics that improve topic coherence (Newman et al, 2009,

2010; Mimno et al, 2011).

To consider the correlations between words in topic models, there are two main

problems: how to model the correlation prior into topic models; and where to get

the prior knowledge of word correlations.

1.1 Encoding Correlations into a Tree Prior for Topic Models

Trees are intuitive methods for encoding prior knowledge. For example, Word-

Net (Miller, 1990), an online lexical reference system, can be treated as a large tree

structure, where word types that have similar meaning are put in the same synset,

which implies the correlations between words. Using the tree from WordNet, Abney

3



and Light (1999) used tree-structured multinomials to model selectional restrictions,

which was later put into a Bayesian context for topic modeling (Boyd-Graber et al,

2007).

While correlations are mathematically impossible to represent with a symmet-

ric Dirichlet prior, in this dissertation, we organize these correlations into a tree

structure (Boyd-Graber et al, 2007; Andrzejewski et al, 2009) and apply the tree

prior to topic models, which is called tree-based topic models. In the tree-based

topic models, good topics can be encouraged by having correlations that link together

words the model separated; and a bad topic can be discouraged by correlations that

split topics that combine words that should not have been together.

Note that these correlations only form “soft” constraints for the topic model,

which means the results will match the correlations if and only if the correlations

supported by the underlying statistical model of the text. Also, tree prior preserves

conjugacy, making inference using Gibbs sampling (Heinrich, 2004) straightforward.

However, while inference is indeed straightforward, it is not cheap. In Chapter 3,

we develop an efficient tree-based topic modeling framework, which dramatically

improves the efficiency of inference.

1.2 Obtaining Prior Knowledge from Users to Improve Topics

The next question is where to obtain the correlations. Generally, users of topic

models are the ultimate judge of whether a topic is “good” or “bad”. A user might

echo one of the many complaints lodged against topic models: these documents

4



should have similar topics but do not (Daumé III, 2009); this topic should have

syntactic coherence (Gruber et al, 2007; Boyd-Graber and Blei, 2008); this topic

makes no sense at all (Newman et al, 2010); this topic shouldn’t be associated with

this document but is (Ramage et al, 2009); these words shouldn’t be the in same

topic but are (Andrzejewski et al, 2009); or these words should be in the same topic

but are not (Andrzejewski et al, 2009).

These complaints or user feedback can be considered as the sources of corre-

lations, which can be modeled as the tree prior so that the results of topic models

would better match with users’ expectation. Notice, unlike Andrzejewski et al (2009),

these correlations need not come from experts.

However, Andrzejewski et al (2009)’s assumption of a priori correlations is

inefficient. Users’ attempting to curate coherent topics need to see where the topic

models go wrong before they can provide useful feedback. This suggests that topic

models should be interactive—users should be able to see the output, give feedback,

and continue refining the output. This whole process should be simple enough to

allow these non-expert users to craft models that make sense for them.

Then the next question is how do we support interactivity in a principled

way? In Chapter 4, we create Interactive Topic Models (ITM), a framework that

does not throw away the previous effort users have put in the topic models but that

can also adapt to the new feedback users supply.

5



1.3 Using Existing Prior Knowledge to Assist Machine Translation

In addition to the prior knowledge from users, there are various existing

resources which can be used as prior knowledge to improve the topic models. For

example, dictionaries group words in similar meaning as synonyms, while group

words with opposite meanings as antonyms. These group information can also be

used as prior knowledge.

These resources are not limited to one language. They can cross languages.

For example, bilingual dictionaries connect words in different languages, and the

word pairs, which mean the same thing but in different languages, can also be used

as correlations. If bilingual dictionary tells “电脑” in Chinese means “computer”

in English, these two words form one correlation which can connect Chinese and

English together. As a result, we can also build up tree-based topic models across

languages to extract multilingual topics, which enable multilingual applications.

However, the tree-based topic models with correlations across languages only

connect multiple languages on the word level. The polylingual topic models proposed

by Mimno et al (2009) connect multiple languages on the document level, since they

assume the parallel documents share the same topic distributions. Based on these

two models, we develop a new topic model, polylingual tree-based topic models that

combine the insights of both models and connect multiple languages on both word

level and document level.

One possible application for this new model is domain adaptation in statistical

machine translation (Koehn, 2009, smt). Domains are genres that group documents

6



with the similar style. Translations within one domain are better than translations

across domains since they vary dramatically in their word choices and style. A

correct translation in one domain, may be inappropriate in another domain. For

example, if you see “潜水” in newspaper, it usually means “underwater diving”. If

you see it on social media, it means a non-contributing “lurker” in online forums.

Training a smt system using the data from various different domains is referred

as the problem of domain adaptation. Early efforts focused on building separate

models (Foster and Kuhn, 2007) and adding features (Matsoukas et al, 2009) to model

domain information. Chiang et al (2011) combines these approaches by directly

optimizing genre and collection features by computing separate translation tables

for domain. However, all these approaches consider domains as a hard constraint,

which are imposed externally and hand-labeled. Obtaining such domain information

may be expensive or even unreasonable.

Eidelman et al (2012) used the vanilla topic models as unsupervised approaches

for domain adaptation, where they treat the topics as soft domain labels, thus the

document topic distribution defines a soft assignment of a document to domains.

However, Eidelman et al (2012) induced these topic model domains from source

documents only, thus they ignored a wealth of information from the target documents

that could improve topic models’ ability for discovering domains to help machine

translation. As a result, in Chapter 5, this dissertation applies the new multilingual

topic models, and learns domains from both source and target documents to improve

the smt results.

7



1.4 Alternative Spectral Methods to Encode Prior Knowledge

Traditional posterior inference for topic models use mcmc (Griffiths and

Steyvers, 2004) or variational em (Blei et al, 2003b), which can be viewed as local

optimization: searching for the latent variables that maximize the data likelihood.

An exciting vein of new research provides provable polynomial-time alternatives.

These approaches provide solutions to hidden Markov models (Anandkumar et al,

2012c), mixture models (Kannan et al, 2005), and latent variable grammars (Cohen

et al, 2013). The key insight is not to directly optimize observation likelihood but to

instead discover latent variables that can reconstruct the moments of the assumed

generative model. Unlike search-based methods, which can be caught in local minima,

these techniques are guaranteed to find global optima.

These general techniques can be improved by making reasonable assumptions

about the models. For example, Arora et al (2012b)’s approach for inference in

topic models assume that each topic has a unique “anchor” word (thus, we call this

approach anchor). This approach is fast and effective; because it only uses word

co-occurrence information, it can scale to much larger datasets than mcmc or em

alternatives.

Despite their advantages, these techniques are not a panacea. They do not

accommodate the rich priors that modelers have come to expect. The other shortcom-

ing is that these models have not been scrutinized using standard nlp evaluations.

Because these approaches emerged from the theory community, anchor’s evaluations,

when present, typically use training reconstruction.

8



In Chapter 6, we regularize the anchor method to trade-off the fidelity of the

reconstruction with the penalty terms that mimic Gaussian and Dirichlet priors. We

also evaluate these spectral methods against the traditional mcmc and variational

em by held-out likelihood (Blei et al, 2003b) and topic interpretability (Chang et al,

2009; Newman et al, 2010). We also show that our extension to the anchor method

enables new applications: for example, using an informed priors to discover concepts

of interest.

1.5 Learning Prior Knowledge Automatically using Beta Coalescent

While obtaining prior knowledge from users are expensive and time-consuming,

automatic technique to extract prior knowledge from the corpus should also be consid-

ered. One possible direction is to construct prior trees automatically by hierarchical

clustering techniques, which group similar nodes together into a hierarchy. These

nodes sharing the same parent node are similar to each other, which can reflect the

correlation between words, if we treat each node as a word. Thus this automatically

built tree can be used as prior tree for topic models. Hierarchical clustering has been

applied various areas, including natural language processing (Brown et al, 1990),

computer vision (Bergen et al, 1992), graphics (Yvart et al, 2005), and network

analysis (Girvan and Newman, 2002). In all of these cases, it is crucial to be able to

model hierarchies that are non-binary (have a branching factor > 2).

Recent hierarchical clustering techniques have been incorporated inside statis-

tical models; this requires formulating clustering as a statistical—often Bayesian—

9



problem. Heller and Ghahramani (2005) build binary trees based on the marginal

likelihoods, extended by Blundell et al (2010) to trees with arbitrary branching

structure. Adams et al (2010) propose a tree-structured stick-breaking process to

generate trees with unbounded width and depth, which supports data observations

at leaves and internal nodes.3 However, these models do not distinguish edge lengths,

an important property in distinguishing how “tight” the clustering is at particular

nodes.

Hierarchical models can be divided into complementary “fragmentation” and

“coagulation” frameworks (Pitman, 1999). Both produce hierarchical partitions of

a dataset. Fragmentation models start with a single partition and divide it into

ever more specific partitions until only singleton partitions remain. Coagulation

frameworks repeatedly merge singleton partitions until only one partition remains.

Pitman-Yor diffusion trees (Knowles and Ghahramani, 2011), a generalization of

Dirichlet diffusion trees (Neal, 2003a), are an example of a bushy fragmentation

model, and they model edge lengths and build non-binary trees.

Instead, our focus is on bottom-up coalescent models (Berestycki, 2009), one

of the coagulation models and complementary to diffusion trees, which can also

discover hierarchies and edge lengths. One appealing example is Kingman’s co-

alescent (Teh et al, 2008; Görür and Teh, 2009; Görür et al, 2012), a standard

genealogical population model (Kingman, 1982; Berestycki, 2009). However, it is

limited to binary trees. In Chapter 7, we generalize Kingman’s coalescent to the

3This is appropriate where the entirety of a population is known—both ancestors and descendants.
We focus on the case where only the descendants are known.

10



beta coalescent (Pitman, 1999; Berestycki, 2009), which is used as a prior over trees

with arbitrary branching factors, and propose a more efficient inference in the belief

propagation framework (Teh et al, 2008) using the beta coalescent.

While this hierarchical clustering can be applied in various areas which support

a multi-branch hierarchical structure, it can also be used as the tree prior for topic

models. Since it is a fully statistical Bayesian model, it gives the option to jointly

learning the tree structures and downstream tasks.

1.6 Structure

Given the problems with the existing probabilistic topic models, this dissertation

discusses where to get the prior knowledge, how to provide the prior knowledge

to topic models efficiently, and how to evaluate these models. This dissertation is

organized as follows:

• Chapter 2 reviews the vanilla topic models and tree-based topic models, and

show how they can be used to model the correlations between word types;

• Chapter 3 presents a more efficient inference scheme for tree-based topic models,

and shows the proposed model dramatically improve the efficiency of inference

by showing the empirical comparison on two different datasets;

• Chapter 4 creates a framework for non-expert end users to provide feedback

and update the topics interactively and iteratively; we validate the framework

both with simulated and real users, and discuss the strategies for improving

the user experience to adapt models to what users need;

11



• Chapter 5 introduces the polylingual tree-based topic models based on the

existing knowledge resource, and develops different inference schemes for this

model; we further apply this model into domain adaptation in statistical

machine translation, and improve the translation BLEU scores;

• Chapter 6 explores spectral methods for topic models with regularization, an

alternative way to encode prior knowledge to topic models; we regularize the

anchor spectral method to trade-off the fidelity of the reconstruction with the

penalty terms that mimic Gaussian and Dirichlet priors;

• Chapter 7 presents a Bayesian hierarchical clustering technique using the beta

coalescent to construct the prior knowledge automatically; we generalize an

existing belief propagation framework for the beta coalescent, and develop new

sampling schemes using sequential Monte Carlo and Dirichlet process mixture

models to reduce the computational complexity;

• Chapter 8 concludes this dissertation and discusses the possible applications

and future extensions of the research work in this dissertation.

12



Chapter 2

Existing Probabilistic Models for Encoding Prior Knowledge

This chapter begins by reviewing Latent Dirichlet Allocation (LDA, Blei et al

(2003b)), one of the most popular topic models. We refer this LDA as vanilla LDA

to distinguish it from more complicated models later. However, vanilla LDA is

a bag-of-words model, which ignores the correlations between word types. This

lacuna can be addressed through tree-based topic models (Boyd-Graber et al, 2007;

Andrzejewski et al, 2009), which we also review in this chapter. We describe the

generative process for tree-based topic models and the detailed inference scheme.

Based on this tree-based topic models, we further develop an efficient inference

scheme in Chapter 3, which is further used as the backend model for interactive

topic modeling in Chapter 4.

2.1 Vanilla LDA

Topic models, exemplified by Latent Dirichlet Allocation (LDA, Blei et al

(2003b)), discovers a set of topics, which are distributions of all words. These topics

are usually semantically coherent, and describe the main themes of a corpus. In

addition, it also discovers the topic proportion–a distribution over all topics– for

each document, from which we know the main themes of a document.

Currently, topic models have been widely applied to aid information re-

13



trieval (Wei and Croft, 2006), understand scientific ideas (Hall et al, 2008), discover

political perspectives (Paul and Girju, 2010), learn natural scene categories in com-

puter vision (Li Fei-Fei and Perona, 2005), and understand the connection between

Bayesian models and cognition (Landauer et al, 2006; Griffiths et al, 2007).

2.1.1 Generative Process

We first review the generative process of vanilla LDA with K topics of V words

(Blei et al (2003b) and Griffiths and Steyvers (2004) offer more thorough reviews):

• For each topic k = {1 . . . K}

– draw a V−dimensional multinomial distribution over all words: πk ∼

Dir(β)

• For each document d

– draw a K−dimensional multinomial distribution that encodes the proba-

bility of each topic appearing in the document: θd ∼ Dir(α)

– for each token wd,n of this document d

∗ draw a topic zd,n ∼ Mult(θd)

∗ draw a token wd,n|zd,n = k, π ∼ Mult(πk)

where α and β are the hyperparameters of the Dirichlet distribution. Given observed

documents, posterior inference discovers the latent variables that best explain an

observed corpus.

However, the generative process makes it clear that LDA does not know what

individual words mean. Tokens are mere draws from a multinomial distribution.

14



LDA, by itself, has no way of knowing that a topic that gives high probability to

“dog” and “leash” should also, all else being equal, give high probability to “poodle”.

That LDA discovers interesting patterns in its topic is possible due to document

co-occurrence. Any semantic or syntactic information not captured in document

co-occurrence patterns will be lost to LDA.

2.1.2 Inference

We use Gibbs sampling for posterior inference (Neal, 1993; Resnik and Hardisty,

2010) to uncover the latent variables that best explain observed data. For vanilla

LDA, the latent variables of interest are the topic assignment of each token zd,n, the

per-document distribution over topics θd, and the topic distributions over words πk.

The joint probability is

p(Z,W, π, θ;α, β) =
∏

k

p(πk|β)
[∏

d

p(θd|α)
[∏

n

p(zd,n|θd)︸ ︷︷ ︸
assignment

p(wd,n|π, zd,n)︸ ︷︷ ︸
token

]]
, (2.1)

where d is the document index; n is the token index in document d; Z are the

topic assignments for all tokens; W represents all tokens; α is Dirichlet prior for

document-topic distributions θ; and β is Dirichlet prior for topic-word distributions

π.

Because the conjugate prior of the multinomial is the Dirichlet, we can integrate

out the topic-word distributions π and the per-document topic distributions θ in the

15



conditional distribution

p(zd,n = k|Z−,W;α, β) =
p(zd,n = k,Z−, wd,n;α, β)

p(Z−;α, β)
(2.2)

=

∫
θ
p(zd,n = k,Z−|θ)p(θ;α)dθ∫

θ
p(Z−|θ)p(θ;α)dθ︸ ︷︷ ︸
topic assignment

∫
π
p(wd,n,W−|zd,n,Z−, π)p(π; β)dπ∫

π
p(W−|Z−, π)p(π; β)dπ︸ ︷︷ ︸

token

= p(zd,n = k|Z−;α)︸ ︷︷ ︸
topic assignment

p(wd,n|W−,Z−, zd,n; β)︸ ︷︷ ︸
token

where Z− are the topic assignments excluding the topic assignment for the current

word zd,n, W− represents the tokens excluding the current token wd,n. Using conju-

gacy, the two integrals—canceling Gamma functions from the Dirichlet normalizer

that appear in both numerator and denominator—are

p(wd,n|W−,Z−, zd,n; β) =

Γ(nwd,n|k + β + 1)
Γ(n.|k + βV + 1)

Γ(nwd,n|k + β)
Γ(n·|k + βV )

(2.3)

p(zd,n = k|Z−;α) =

Γ(nk|d + αk + 1)
Γ
(∑

k′(nk′|d + αk′) + 1
)

Γ(nk|d + αk)
Γ
(∑

k′(nk′|d + αk′)
) (2.4)

where nk|d is topic k’s count in the document d; Z− are the topic assignments

excluding the current token wd,n; nwd,n|k is the count of tokens with word wd,n

assigned to topic k; V is the vocabulary size, and n·|k is the count of all tokens

assigned to topic k.

With additional cancellations, we can remove the remaining Gamma functions

16



to obtain the conditional distribution

p(zd,n = k|Z−,W;α, β) ∝ (αk + nk|d)
β + nwd,n|k

βV + n·|k
. (2.5)

To sample a topic for a token in a document, we compute the probability of all

topics according to Equation 2.5, and then randomly sample a topic according to

the probability mass. This process can be continued for each token till the model is

converged.

2.1.3 Example

Now let’s run this vanilla LDA on a corpus of about 2000 New York Times

editorials from 1987 to 1996 and see what topics we can get. We start by finding 20

initial topics from this corpus.

The topics that we get are shown in Table 2.1. As we can see, these 20 topics

mostly capture the main themes of this corpus, including “Security”, “politics”,

“economy”, etc. However, there are two topics both deal with “Russia” (broadly

construed). Topic 20 is about the “Soviet Union”, but Topic 1 focuses on the

development of “Russian Federation” after the collapse of the Soviet Union.

This might be acceptable for some users; other users, however, may view both

as part of a single historical narrative, so may want everything related with Russia

to appear in the same topic.

Vanilla LDA cannot fix this problem, since it treats each document as a bag of

words and no relations between words are considered. We will return to this “Russian”

17



example in later sections after we review tree-based topic models in Section 2.2,

which will give us the tools we need to solve this problem in Chapter 4.

Topic Words

1 election, yeltsin, russian, political, party, democratic, russia, president, democracy, boris,
country, south, years, month, government, vote, since, leader, presidential, military

2 new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph,
dinkins, lead, need, governor, legislature, pataki, david

3 nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary,
would, control, korea, intelligence, test, nation, country, testing

4 president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic,
iraq, congress, america, iraqi, policy, aid, international, military, see

...

20 soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, com-
munist, know, old, right, human, washington, western, bring, party

Table 2.1: Five topics from 20 topics extracted by vanilla LDA on the editorials from
the New York times. The Russian words (colored in red) and Soviet words (colored
in blue) appear in Topic 1 and Topic 20 respectively.

2.2 Tree-based Topic Models

To consider the correlations between words, we turn to tree-structured distri-

butions. Trees are a natural formalism for encoding lexical information. Word-

Net (Miller, 1990), a resource ubiquitous in natural language processing, is organized

as a tree based on psychological evidence that human lexical memory is also repre-

sented as a tree. The structure of WordNet inspired Abney and Light (1999) to use

tree-structured distributions to model selectional restrictions. Later, Boyd-Graber

et al (2007) also used WordNet as a tree structure and put it into a fully Bayesian

model for word sense disambiguation. Andrzejewski et al (2009) extended this

statistical formalism to encode “must link” (positive correlations) and “cannot link”

(negative correlations) correlations from domain experts.

We adopt Andrzejewski et al (2009)’s formalism for these two correlations to

18



encode feedback to topic models. The first are positive correlations (PC), which

encourage words to appear in the same topic; the second are the negative correlations

(NC), which push words into different topics. In the remaining part of this section,

we assume these correlations are from WordNet or dictionaries, and we introduce

how to encode the correlations into a tree structure, the generative process and also

the inference scheme. In Chapter 4, we discuss how to get these correlations from

real users of topic models.

2.2.1 Encoding Correlations in a Tree

Given the priors, the first question is how do we go from positive or negative

correlations to a tree? Any correlations (either positive or negative) without over-

lapping words can easily be encoded in a tree. Imagine the symmetric prior of the

vanilla LDA as a very flat tree, where all words are children of the root directly with

the same prior, as shown in Figure 2.1(a). To encode one correlation, replace all

correlated words with a single new child node of the root, and then attach all the

correlated words as children of this new node. Figure 2.1(b) shows how to encode a

positive correlation between “constitution” and “president”.

When words overlap in different correlations, one option is to treat them

separately and create a new internal node for each correlation. This creates multiple

paths for each word. This is often useful, as it reflects that tokens of the same word

in different contexts can have different meanings. For example, when “drive” means

a journey in a vehicle, it is associated with “ride”, but when “drive” refers to the

19



Symmetric Prior

nasashuttle space tea bagel god constitution president

β1 β1 β1 β1β1 β1β1 β1

(a) Tree with symmetric prior

constitution

president

constitution

president

god

constitution

β1 2β1

president

β2 β2

Positive correlation: {constituion, president}

...

Tree Prior

god...god...

(b) Tree with one positive correlation

space

β1

tea

nasa

β1 β1

3β1 ...

Tree Prior

β3 2β3shuttle

Negative correlations: {tea, space}, {tea, nasa}

space

shuttle

tea nasa

...

space

shuttle

tea nasa

...

(c) Tree with two negative correlations

space

Tree Prior

shuttle

bagel god

constitution

β1β14β1 2β1

tea president

β3 3β3 β2 β2

β2 β2
nasa

β1 2β1

Positive correlations:
{constituion, president}
{shuttle, space}

Negative correlations:
{tea, space}
{tea, nasa}

space space

shuttle

tea

nasa

space

shuttle

bagel god

constitution

tea

president

nasashuttle

bagel god

constitution

tea

president

nasa

bagel god

constitution

president

positive
normal
negative

connected 
component

clique

(d) Tree with multiple correlations

Figure 2.1: Given a flat tree (2.1(a)) as in vanilla LDA (with hyperparameter
β = 0.01 for the uncorrelated words), examples for adding single/multiple positive(in
green)/negative(in red) correlations into the tree: generate a graph; detect the
connected components; flip the negative edges of components; then detect the cliques;
finally construct a prior tree. Figure 2.1(b) add one positive correlation, connect
“constitution” and “president” to a new internal node, and then link this new node
to the root, set β2 = 100; Figure 2.1(c): add two negative correlations, set β3 = 10−6

to push “tea” away from “nasa” and “space”, and use β1 = 0.01 as the prior for the
uncorrelated words “nasa” and “space”. Figure 2.1(d) add two positive correlations
and two negative correlations. A positive correlation between “shuttle” and “space”
while a negative correlation between “tea” and “space”, implies a negative correlation
between “shuttle” and “tea”, so “nasa”, “space”, “shuttle” will all be pushed away
from “tea”; {“space”, “shuttle”} and {“constitution”, president”} are pulled together
by β2.

act of applying force to propel something, it is more connected with “thrust”. As

in lexical resources like WordNet (Miller, 1990), the path of a word in our tree

represents its meaning; when a word appears in multiple correlations, this implies

that it has multiple meanings. Each token’s path represents its meaning.

Another option is to merge correlations. For positive correlations, this means

that correlations are transitive. For negative correlations, it is a little more complex.

20



If we view negative correlations as completely transitive—placing all words under a

sparse internal node—that would mean that only one of the words could appear in

a topic. Taken to the illogical extreme where every word is involved in a negative

correlation, each topic could only have one word.

Instead, for negative correlations, Andrzejewski et al (2009) view the negative

correlations among words as a correlation graph; each word is a node and an edge

is a negative correlation. To create a tree from this graph, we find all the connected

components (Harary, 1969; Hopcroft and Tarjan, 1973) in the graph, and then for

each component, we flip the edges between each pair of nodes: keep the positive

edges, remove the negative edges, and add normal edges between any pair of nodes. 1

Then we run the Bron and Kerbosch (1973) algorithm to find all the cliques (a clique

is a subset of vertices where every two vertices are connected by an edge) on the

complement of the component (where nodes without an edge in the primal graph are

connected in the complement and vice versa). To construct the tree, each component

will be a child of the root and each clique will be child of the component.

This whole process is shown with examples in Figure 2.1(c): if we want to split

“tea” and “space”, “tea” and “nasa” at the same time, one graph component has

three nodes for “tea”, “space” and “nasa” and two negative edges between “tea” and

“space”, “tea” and “nasa”. After flipping the edges of this component, there is only

one edge left, which is between “space” and “nasa”. So there are two cliques in this

component: one includes “space” and “nasa”, and the other is “tea”, and the tree

1The normal edges between “A” and “B” should not be added, if there is a negative edge
between “A” and “C”, and a positive edge between “B” and “C”. For example, in Figure 2.1(d),
there is not a normal edge between “tea” and “shuttle”, because there is a negative edge between
“tea” and “shuttle”, and a positive edge between “space” and “shuttle”.

21



yeltsin russian russia boris soviet gorbachevmikhail communistunion

election political party president

...
9�1 �1 �1 �1 �1

�2 �2 �2 �2 �2 �2 �2 �2 �2

Figure 2.2: Prior tree for Russia Example: one positive correlation is added between
the Russia words (in red) and Soviet words (in blue), and the constructed prior tree
based on this correlation encourages the red words and blue words to appear in the
same topic.

can be constructed as Figure 2.1(c).

Figure 2.1(d) shows a more complex example when there are overlapping

words between positive and negative correlations. We first extract all the connected

components; for components with negative edges, we do a flip (remove the negative

edges, and add all possible normal edges); remove the unnecessary edges: there

should be a normal edge between “tea” and “shuttle”, but “tea” should be away

from “space”, while “space” and “shuttle” have a positive edge, so the edge between

“tea” and “shuttle” is removed; then we detect all the cliques, and construct the prior

tree as shown in Figure 2.1(d).

Now it is easy to fix the problem in “Russian” example in Section 2.1.3. To

encourage the words related with “Russian Federation” (in red) and the words related

with “Soviet Union” (in blue) to appear together in the same topic, we can simply

add one positive correlation between the red words and blue words, and the tree

prior can be constructed as Figure 2.2.

22



2.2.2 Generative Process

Given the prior tree structure that encodes correlations, words in positive

correlations have high probability to be selected in the same topic. For example,

in Figure 2.3, “drive” and “ride” are positively correlated and they both have high

probability to be selected in Topic 1, while “drive” and “thrust” are both likely to

be drawn in Topic 2. On the other hand, if two words are negatively correlated,

when one word has high probability to appear in one topic (“space” in Topic 1 in

Figure 2.3), the other word turns to unlikely be selected in the same topic (“tea” in

Topic 1 in Figure 2.3).

These tree-structured distributions replace multinomial distributions for each

of the K topics. Instead, we now have a set of multinomial distributions arranged in

a tree (we will go deeper and describe the complete generative process that creates

these distributions soon). Each leaf node is associated with a word, and each of the

V words in vocabulary must appear in at least (and possibly more than) one leaf

node.

One tree structure that satisfies this definition is a very flat tree with only

one internal node with V leaf nodes, a child for every word. This is identical to

vanilla LDA, as there is only a one V -dimensional multinomial distribution for each

topic. The generative process for a token is simple: generate a word according to

wd,n ∼ Mult(πzd,n,root).

Now consider the non-degenerate case. To generate a token wd,n from topic k,

we traverse a tree path ld,n, which is a list of nodes starting at the root: we start at the

23



......

Doc1
Topic  
Path
Token

T1
n0    n2    n7
drive

T1
n0    n2    n8
ride

T2
n0    n3
movie

T1
n0    n1    n6
space

T1
n0    n2    n7
drive

...

......

...

β12β12β1 2β1

β2β3
1

0

β3 movie

tea   space  drive    ride        drive    thrust

β2 β2 β2
2 3

5

4

6 7 8 9 10

0.3 0.689 0.01 0.001

0.0003  0.2997 0.3445 0.3445         0.0004  0.0006

0.1 0.001 0.099 0.8

0.0999 0.0001  0.0006 0.0004   0.3920    0.4080

Topic 1 Topic 2

prior

draw multinomial distributions

Doc2
Topic  
Path
Token

T2
n0    n4    n9
drive

T2
n0    n4    n10
thrust

T1
n0    n3
movie

T2
n0    n1    n5
tea

T2
n0    n4    n10
thrust

...

......

tea   space  drive    ride movie  drive  thrust tea    space  drive  ride movie drive  thrust

Figure 2.3: Example of the generative process for drawing topics (first row to second
row) and then drawing token observations from topics (second row to third row).
In the second row, the size of the children nodes represents the probability in a
multinomial distribution drawn from the parent node with the prior in the first row.
Different hyperparameter settings shape the topics in different ways. For example,
the node with the children “drive” and “ride” has a high transition prior β2, which
means that a topic will always have nearly equal probability for both (if the edge
from the root to their internal node has high probability) or neither (if the edge from
the root to their internal node has low probability). However, the node for “tea” and
“space” has a small transition prior β3, which means that a topic can only have either
“tea” or “space”, but not both. To generate a token, for example the first token of
doc1 with topic indicator z0,0 = 1, we start at the root of topic 1: first draw a child
of the root n0, and assume we choose the child n2; then continue to draw a child of
node n2, and we reach n7, which is a leaf node and associated with word “drive”.

root ld,n[0], select a child ld,n[1] ∼ Mult(πk,ld,n[0]); if the child is not a leaf node, select

a child ld,n[2] ∼ Mult(πk,ld,n[1]); we keep selecting a child ld,n[i] ∼ Mult(πk,ld,n[i−1])

until we reach a leaf node, and then emit the leaf’s associated word. This walk along

the tree, which we represent using the latent variable ld,n, replaces the single draw

24



from a topic’s multinomial distribution over words. The rest of the generative process

remains the same as vanilla LDA with θd, the per-document topic multinomial, and

zd,n, the topic assignment for each token. The topic assignment zd,n selects which

tree generates a token.

The multinomial distributions themselves are also random variables. Each

transition distribution πk,i is drawn from a Dirichlet distribution parameterized by

βi, where i is the index of internal nodes in the tree structure. Choosing these

Dirichlet priors specifies the direction (i.e., positive or negative) and strength of

correlations that appear. Dirichlet distributions produce sparse multinomials when

their parameters are small (less than one). This encourages an internal node to

prefer few children. When the Dirichlet’s parameters are large (all greater than one),

it favors more uniform distributions.

Take Figure 2.3 as an example. To generate a topic, we draw multinomial

distributions for each internal node. The whole tree gives a multinomial distribution

over all paths for each topic. For any single multinomial distribution, the smaller the

Dirichlet hyperparameter is, the more sparsity we get among children. Thus, any

paths that pass through such a node face a “bottleneck”, and only one (or a few)

child will be possible choices once a path touches a node. For example, if we set β3 to

be very small, “tea” and “space” will not appear together in a topic. Conversely, for

nodes with a large hyperparameter, the path is selected almost as if it were chosen

uniformly at random. For example, “drive” and “thrust” are nearly equally likely

once a path reaches Node 4, if β2 is very large.

25



2.2.3 Relationship to Other Topic Models

Unlike hierarchical LDA (Blei et al, 2010)—which models structure over topics

and each topic is still a distribution over all words—tree-based topic models add

additional structure to topics’ distribution over words, allowing subsets of the

vocabulary to cluster together and expose recurring subtopics.

Tree-based topic models can be viewed as a special case of arbitrary pachinko

allocation models (Li and Mccallum, 2006, PAM), Li and Mccallum (2006), however,

focus on another special case of pachinko allocation models—a fully-connected

hierarchy (four-level PAM). The four-level PAM is very different from tree-based

topic models, because each topic is a distribution over all subtopics, and each subtopic

is distribution over the entire vocabulary. However, tree-based topic models add

structure on individual groups of words (not the entire vocabulary) and are derived

from an external knowledge source.

This same distinction separates tree-based topic models from Polya urn model (Mimno

et al, 2011), although their goals are similar. While Polya urn model does provide

additional positive correlations, these positive correlations are learned from data

and are not restricted to sets of words. In addition, Polya urn model cannot handle

negative correlations.

While the prior tree of tree-based topic models is constructed given the positive

and negative correlations, Polya trees (Lavine, 1992) also provide a prior tree

structure, which imposes a Beta prior on the children and generates binary trees.

However, the prior tree of tree-based topic models allows a “bushier” tree structure,

26



which can also be automatically learned by the beta coalescent model discussed in

Chapter 7.

Adding correlations to topic models can come to either the topic distribution

over words or the document distribution over topics, as in correlated topic models (Blei

and Lafferty, 2005; Mimno et al, 2008) and Markov random topic fields (Daumé III,

2009). While correlated topic models add a richer correlation structure, they have

been shown not to improve perceived topic coherence (Chang et al, 2009).

2.2.4 Inference

Like the inference for vanilla LDA, as introduced in Section 2.1.2, we use Gibbs

sampling for posterior inference (Neal, 1993; Resnik and Hardisty, 2010) to uncover

the latent variables that best explain observed data.

For inference in tree-based topic models, the joint probability is

p(Z,L,W, π, θ;α, β) = (2.6)

∏

k

∏

i

p(πk,i|βi)︸ ︷︷ ︸
transition

[∏

d

p(θd|α)
[∏

n

p(zd,n|θd)︸ ︷︷ ︸
assignment

p(ld,n|π, zd,n)︸ ︷︷ ︸
path

p(wd,n|ld,n)︸ ︷︷ ︸
token

]]
,

where i is an internal node in the tree. The probability of a path, p(ld,n|π, zd,n), is

the tree structured walk described in Section 2.2, and the probability of a token

being generated by a path, p(wd,n|ld,n) is one if the path ld,n terminates at leaf node

with word wd,n and zero otherwise.

Because the conjugate prior of the multinomial is the Dirichlet, we can integrate

out the transition distributions π and the per-document topic distributions θ in the

27



conditional distribution

p(zd,n = k, ld,n = λ|Z−,L−,W;α, β) (2.7)

=
p(zd,n = k, ld,n = λ,Z−,L−, wd,n;α, β)

p(Z−,L−;α, β)

= p(wd,n|λ)

∫
θ
p(zd,n = k,Z−|θ)p(θ;α)dθ∫

θ
p(Z−|θ)p(θ;α)dθ︸ ︷︷ ︸
topic assignment

(2.8)

∏

(i→j)∈λ

∫
πk,i

p((i→ j) ∈ λ,L−|Z−, zd,n, πk,i)p(πk,i; βi)dπk,i∫
πk,i

p(L−|Z−, πk,i)p(πk,i; βi)dπk,i
︸ ︷︷ ︸

path

= I [Ω(λ) = wd,n] p(zd,n = k|Z−;α)︸ ︷︷ ︸
topic assignment

p(ld,n = λ|L−,Z−, zd,n; β)︸ ︷︷ ︸
path

where Z− are the topic assignments, L− are the path assignments excluding the

current token wd,n, and the indicator function ensures that the path λd,n ends in a

path consistent with the token wd,n. Using conjugacy, the two integrals—canceling

Gamma functions from the Dirichlet normalizer that appear in both numerator and

denominator—are

p(ld,n = λ|L−, zd,n = k, wd,n; β) =

∏
(i,j)∈λ

Γ(ni→j|k + βi→j + 1)
Γ
(∑

j′(ni→j′|k + βi→j′) + 1
)

∏
(i,j)∈λ

Γ(ni→j|k + βi→j)
Γ
(∑

j′(ni→j′|k + βi→j′)
) (2.9)

p(zd,n = k|Z−;α) =

Γ(nk|d + αk + 1)
Γ
(∑

k′(nk′|d + αk′) + 1
)

Γ(nk|d + αk)
Γ
(∑

k′(nk′|d + αk′)
) (2.10)

where βi→j is the prior for edge i→ j, ni→j|k is the number of paths that go from

node i to node j in topic k. All the other terms are the same as in vanilla LDA: nk|d

28



is topic k’s count in the document d, and α is the per-document Dirichlet parameter.

With additional cancellations, we can remove the remaining Gamma functions

to obtain the conditional distribution2

p(z = k, lw = λ|Z−,L−, w) ∝ (αk + nk|d)
∏

(i→j)∈λ

βi→j + ni→j|k∑
j′ (βi→j′ + ni→j′|k)

. (2.11)

2.2.5 Problems

Now we can come back to the problem in the ‘Russian” example that we

have discussed in Section 2.1.3. To fix the problem, the first question is where

we can get the correlations to construct the prior tree in Figure 2.2? In

this dissertation, we discuss to get these correlations (prior knowledge) from actual

users of topic models (Chapter 4), existing knowledge resources (Chapter 5) , or

automatically learning the prior knowledge from data directly (Chapter 7).

Given the prior tree as in Figure 2.2, the second problem is how we can learn

topics efficiently? We can certainly run tree-based topic models we just discussed

to learn new topics. However, the complexity of computing the sampling distribution

is increased to O(KLS) for models with K topics, paths at most L nodes long, and at

most S paths per word. In contrast, computing the analogous conditional sampling

distribution for vanilla LDA has complexity O(K). As a result, tree-based topic

models consider correlations between words at the cost of more complex inference.

To do this more efficiently, this dissertation presents an efficient tree-based topic

2In this and future equations we will omit the indicator function that ensures paths end in the
required token wd,n by using lw instead of l. In addition, we omit the subscript d,n from z and l, as
all future appearances of these random variables will be associated with single token.

29



models in Chapter 3; we discuss how to start from the initial topics (Table 2.1) and

update the topics given the new prior (Chapter 4); and we also propose more efficient

spectral methods to consider prior knowledge in topic models (Chapter 6).

The updated topics of this “Russian” example will be given in Table 4.1 in

Chapter 4. Next we discuss about efficient inference for tree-based topic models in

the next chapter (Chapter 3).

30



Chapter 3

Efficient Inference for Tree-based Topic Models

Tree-based topic models consider correlations between words but result in more

complex inference, thus it is not sufficient to serve users in an interactive setting,

which we will introduce in Chapter 4. Any model involving interaction with users

should be as computationally efficient as possible to minimize users’ waiting time.

In particular, Thomas and Cook (2005), summarizing a decade of human-computer

interaction research, argue that a system should respond to a user on the order of

one second for a simple response, such as clicking a web link, and on the order of

ten seconds for a response from a complex user-initiated activity. This requirement

demands that we develop more efficient inference for tree-based topic models.

Two widely used inference for topic models are Gibbs sampling (Neal, 1993) and

variational Bayesian inference (Blei et al, 2003b). While both frameworks produce

good approximations of the posterior, the latter, though with larger throughput, has

higher latency. In addition, Gibbs sampling’s sparsity is another attractive property,

which can be further used to improve efficiency (Yao et al, 2009). As a result, we

focus on improving the efficiency of Gibbs sampling.

SparseLDA (Yao et al, 2009) is an efficient Gibbs sampling algorithm for

LDA based on a refactorization of the conditional topic distribution. However, it is

not directly applicable to tree-based topic models. In this chapter, we first review

31



SparseLDA (Yao et al, 2009) and provide a factorization for tree-based models

within a broadly applicable inference framework that improves inference efficiency.

3.1 Sparse LDA

The SparseLDA (Yao et al, 2009) scheme for speeding inference begins by

rearranging vanilla LDA’s sampling equation (Equation 2.5) as

p(z = k|Z−, w) ∝ (αk + nk|d)
β + nw|k
βV + n·|k

(3.1)

=
αkβ

βV + n·|k︸ ︷︷ ︸
sLDA

+
nk|dβ

βV + n·|k︸ ︷︷ ︸
rLDA

+
(αk + nk|d)nw|k
βV + n·|k︸ ︷︷ ︸

qLDA

.

Following their lead, we call these three terms “buckets”. A bucket is the total prob-

ability mass marginalizing over latent variable assignments (i.e., sLDA ≡
∑

k
αkβ

βV+n·|k
,

similarly for the other buckets). The three buckets are: a smoothing-only bucket sLDA

with Dirichlet prior αk and β which contributes to every topic in every document;

a document-topic bucket rLDA, which is only non-zero for topics that appear in a

document (non-zero nk|d); and the topic-word bucket qLDA, which is only non-zero

for words that appear in a topic (non-zero nw|k). The three buckets sum to one, so

this is a “reshuffling” of the original conditional probability distribution.

Then the inference is changed to a two-step process: instead of computing the

probability mass for each topic, we first compute the probability for each topic in

each of the three buckets; then we randomly sample which bucket we need and then

(and only then) select a topic within that bucket, as shown in Figure 3.1. Because

32



president  energy  world  political  government  ... ...

select a bucketVanilla LDA Sparse LDA

sLDA   rLDA                      qLDA 

Total mass = 1 Total mass = 1
world

samplesample

weight

Figure 3.1: Comparison of inference between vanilla LDA and sparse LDA: vanilla
LDA computes the probability for each topic (sums to 1) and sample a topic; sparse
LDA computes the probability for each topic in the three buckets separately (total
still sums to 1), so it will select a bucket proportional to its weight, and then sample
a topic within the selected bucket. Because sLDA is shared by all tokens and rLDA is
shared by all tokens in a document, both of them can be cached to save computation.
qLDA only includes topics with nonzero count (only the pink and green topics in this
example), which is very sparse in practice, so it saves computation greatly.

we are still sampling from the same conditional distribution, this does not change

the underlying sampling algorithm.

At this point, it might seem counterintuitive that this scheme should improve

inference, as we sample from 3K (three buckets for each topic) possible outcomes

rather than K outcomes as before. However, while all topics have non-zero contribu-

tion to sLDA, this smoothing-only bucket sLDA is shared across the corpus, thus we

only need to compute it once, cache it, and then efficiently update the bucket total

probabilities in constant time (in contrast to O(K) construction of the conditional

distribution in traditional LDA sampling schemes). Similarly, the document-topic

rLDA is shared by all words across a document, and we only need to consider the

topics that have non-zero contributions in this document, thus it can be computed

efficiently and cached for each document and updated easily. The topic-word bucket

33



qLDA has to be computed specifically for each token, but only for the (typically) few

topics that a word has non-zero counts, which is very sparse. Because qLDA often

has the largest mass and has few non-zero terms, this speeds inference.

Yao et al (2009) propose to further speedup by sampling topics within a bucket

in descending probability. The information needed to compute a probability within

a bucket is stored in an array in decreasing order of probability mass. Thus, on

average, after selecting one of the three buckets, only a handful of topics need to

be explicitly considered. To maintain (topic, count) tuples in sorted order within a

bucket more efficiently, the topic and the count are packed into one integer (count in

higher-order bits and topic in lower-order bits). Because a count change is only a

small shift in the overall ordering, a bubble sort (Astrachan, 2003) returns the array

to sorted order in O(n).

3.2 Efficient Sampling for Tree-based Topic Models

While tree-based topic models are more complicated than vanilla LDA, our

model enjoys much of the same sparsity: each topic has a limited number of words

seen in a corpus, and each document has only a handful topics. In this section, we

take advantage of that sparsity to extend the sampling techniques for SparseLDA

to the tree-based topic models.

34



To match the form of Equation 3.1, we first define

Nk,λ =
∏

(i→j)∈λ

∑

j′

(βi→j′ + ni→j′|k)

Sλ =
∏

(i→j)∈λ

βi→j (3.2)

Ok,λ =
∏

(i→j)∈λ

(βi→j + ni→j|k)−
∏

(i→j)∈λ

βi→j.

We call Nk,λ the normalizer for path λ in topic k, Sλ the smoothing factor for

path λ, and Ok,λ the observation for path λ in topic k. Notice Nk,λ and Ok,λ are path

and topic specific, and Sλ is specified for each path. Then we refactor Equation 2.11

as in Equation 3.3, yielding buckets analogous to SparseLDA’s,

p(z = k, l = λ|Z−, L−, w) ∝ (αk + nk|d)
∏

(i→j)∈λ

βi→j + ni→j|k∑
j′ (βi→j′ + ni→j′|k)

(3.3)

∝ (αk + nk|d)N
−1
k,λ[Sλ +Ok,λ]

∝ αkSλ
Nk,λ︸ ︷︷ ︸
s

+
nk|dSλ
Nk,λ︸ ︷︷ ︸
r

+
(αk + nk|d)Ok,λ

Nk,λ︸ ︷︷ ︸
q

.

where the buckets s, r and q are,

s ≡
∑

k,λ

αkSλ
Nk,λ

r ≡
∑

k,λ

nk|dSλ
Nk,λ

q ≡
∑

k,λ

(αk + nk|d)Ok,λ

Nk,λ

(3.4)

We use the same bucket names without the subscript “LDA” from SparseLDA.

Unlike SparseLDA, each bucket sums over the probability of not only the topics

but also paths. However, the sampling process is much the same as for SparseLDA:

35



(↵k + nk|d)
�0!1 + n0!1|kP

j021,2,3 (�0!j0 + n0!j0|k)

�1!4 + n1!4|kP
j024,5 (�1!j0 + n1!j0|k)

0

1 2

4 5

...

movie

drive ride

drive …ride drive

3

6 7
drive thrust

Consider topic k, 
path 0→1→4 =

K = 3 movie ride rideDoc d

Sample from 3 topics and 2 paths

All topics 
and paths

All topics 
and paths

All topics 
and paths

Total mass = 1
drive

path λ: 0→1→4
path λ: 0→3→6

topic 0 topic 1 topic 2

s r q

Nk,0!1!4

↵k�0!1�1!4

Nk,0!1!4

nk|d�0!1�1!4

Nk,0!1!4

(↵k + nk|d)((�0!1 + n0!1|k)(�1!4 + n1!4|k) � �0!1�1!4)

Nk,0!1!4

X

k,�

↵k

Q
(i!j)2� �i!j

Nk,�

X

k,�

nk|d
Q

(i!j)2� �i!j

Nk,�

X

k,�

(↵k + nk|d)
�Q

(i!j)2�(�i!j + ni!j|k) �
Q

(i!j)2� �i!j

�

Nk,�

Figure 3.2: An example of efficient inference for tree-based topic models: color
denotes different topics; and the shade denotes the paths; like SparseLDA, we
need to compute the three buckets, but instead of just considering all topics, we
need to consider all topics and paths. First select a bucket proportional to the
probability mass, and then sample a topic and a path within the selected bucket.
The normalizer Nkλ changes for each path, as s and r are not shared by multiple
tokens. Because r only includes the terms where nk|d is non-zero, and q only includes
the terms where any of ni→j|k along path λ is non-zero, which implies the part∏

(i→j)∈λ(βi→j + ni→j|k)−
∏

(i→j)∈λ βi→j is non-zero (only the red and blue topics in

this example). Both are sparse in practice, so it reduces computation time.

select which bucket and then select a topic and path combination within the bucket.

The resulting algorithm is Algorithm 1. Figure 3.2 shows a specific example of this

proposed inference. However, the correlations introduced by the tree-based structure

complicate inference.

One of the benefits of SparseLDA was that the smoothing-only bucket s

is shared across tokens in a corpus and thus need not be recomputed. This is no

36



longer possible, as Nk,λ is distinct for each path in tree-based LDA. This negates the

benefit of caching the smoothing-only bucket s, but we recover some of the benefits

by caching and updating the normalizer Nk,λ rather than the bucket s. We split the

normalizer to two parts: the “root” normalizer from the root node (shared by all

paths) and the “downstream” normalizer,

Nk,λ =
∑

j′

(βroot→j′ + nroot→j′|k)

︸ ︷︷ ︸
root normalizer

·
∏

(i→j)∈λ′

∑

j′

(βi→j′ + ni→j′|k)

︸ ︷︷ ︸
downstream normalizer

(3.5)

where λ′ denotes the path excluding the root. The root normalizer only considers

the children of root, and it is shared by all tokens. As a result, we can cache it and

update it in constant time. The downstream normalizer considers the remaining part

of the normalizer, and it is needed only for correlated words (i.e., words that have

been placed in correlations); in many situations it is reasonable to assume that these

are relatively few (compared to the overall size of the vocabulary). This normalizer

splitting saves memory and improves computation efficiency.

A second problem is that the normalizer Nk,λ is coupled; changing transition

count ni→j|k in one path changes the normalizers of all cousin paths (paths that

share at least one node i). Take Figure 2.1 (left middle) as an example: the paths

for “constitution” and “president” are coupled, because they share an edge. When

we change the count for each edge along the path of “constitution”, the count of

the shared edge is changed, so that both downstream normalizers will be changed.

For this problem, we precompute which paths share downstream normalizers; all

37



paths are partitioned into cousin sets, defined as sets for which changing the count

of one member of the set changes the downstream normalizer of other paths in the

set. Thus, when updating the counts for path λ, we only recompute Nk,λ′ for all λ′

in the cousin set.

In addition, SparseLDA’s computation of q, the topic word bucket, benefits

from topics with unobserved (i.e., zero count) words. In our case, any non-zero path—

a path with any non-zero edge—contributes to the probability mass of bucket q

(notice a path might have zero path count but non-zero edges). To quickly determine

whether a path contributes, we introduce an edge-masked count (EMC) for each

path. Higher order bits encode whether edges have been observed and lower order

bits encode the number of times the path has been observed. For example, in Figure

2.1 (left bottom), if we use 8 bits for EMC and observed the path ending in “space”

seven times and “nasa” zero times, the EMC for “space” is 11100111, and the EMC

for “nasa” is 11000000, since the first two edges of the path ending at “nasa” have

been traversed.

3.3 Sorting Paths

Encoding the path using EMC allows us to extend SparseLDA’s sorting

strategy to consider latent variable assignments in decreasing order of probability

mass. Unlike SparseLDA, our latent space is richer; we must sample both a path l

and a topic z. Considering fewer possible assignments can speed sampling at the

cost of the overhead of maintaining sorted data structures.

38



Sorting topic and path prominence for a word (sT) can improve our ability

to sample from q. If we rank the topic and path pairs for a word in the decreasing

order of edge-masked count (EMC), the order serves as a proxy of ranking the topic

and path pairs by their probability mass. That is, when sampling a topic and path

from q, we sample based on the decreasing EMC, which roughly correlates with

path probability. Thus, we will on average choose our sample from the conditional

distribution more quickly.

Recall that SparseLDA packs the topic and count into one integer to sort

more efficiently. We cannot directly extend this because we need to pack topic, path,

and EMC together, and EMC is already a packed integer. Instead, we pack topic and

path into one integer, and sort an integer pair (EMC, topic-path integer) together

according to the value of EMC.

Using Figure 2.1(left bottom) as example, if we use 8 bits for EMC and 8 bits

for packing topic and path, and assume we observe the path of “space” (path index

3) seven times and “nasa” (path index 4) zero times in topic 5, the integer pair

for “space” is (11100111, 01010011) and for “nasa” is (11000000, 01010100). Like

SparseLDA, since we only need to update the count by either increasing one or

decreasing one, we can use bubble sort to maintain sorted order.

Sorting topics’ prominence within a document (sD) can improve sampling from

the document-topic bucket r; when we need to sample within a bucket, we consider

paths in decreasing order of the document-topic count nk|d, so we can identify a topic

and path more quickly if the bucket r is selected.

39



Algorithm 1 Efficient sampling
1: for token w in this document do
2: sample = rand() ∗(s+ r + q)
3: if sample < s then
4: return topic k, path λ sampled from s
5: sample − = s
6: if sample < r then
7: return topic k, path λ sampled from r
8: sample − = r
9: return topic k, path λ sampled from q

Algorithm 2 Efficient CRB sampling
1: for token w in this document do
2: sample = rand() ∗(s′ + r + q)
3: if sample < s′ then
4: compute s
5: sample ∗ = (s+ r + q)/(s′ + r + q)
6: if sample < s then
7: return topic k, path λ sampled from s
8: sample − = s
9: sample − = s′

10: if sample < r then
11: return topic k, path λ sampled from r
12: sample − = r
13: return topic k, path λ sampled from q

3.4 Efficient Sampling with Coarse-to-Refined Buckets

While refactoring and caching the normalizers as described in Section 3.2

improves efficiency, the gains are disappointing. This is because while the smoothing-

only bucket s is small, recomputing it is expensive because it requires us to consider

all topics and paths (Equation 3.4). This is not a problem for SparseLDA because

s is shared across all tokens.

However, when the counts of each edge per topic are all zero, the prior on

bucket s gives an obvious upper bound,

s =
∑

k,λ

αk
∏

(i→j)∈λ βi→j∏
(i→j)∈λ

∑
j′ (βi→j′ + ni→j′|k)

≤
∑

k,λ

αk
∏

(i→j)∈λ βi→j∏
(i→j)∈λ

∑
j′ βi→j′

= s′. (3.6)

A sampling algorithm can take advantage of this upper bound by not explicitly

calculating s, which we call sampling with Coarse-to-Refined Bucket (CRB). Instead,

we use a larger s′ as proxy, and only compute the smaller refined bucket s if and only

if we hit the coarse bucket s′ (Algorithm 2). No accuracy is sacrificed for efficiency

in this algorithm.

40



As shown in Algorithm 2, when we sample a bucket, if it is not the coarse

bucket s′, we sample a topic and a path based on the other two buckets (these are

always explicitly computed, but their sparsity helps); when we choose the coarse

bucket s′, we will explicitly compute the refined bucket s and sample based on the

correct probabilities in the refine bucket s. This approximation does not sacrifice

accuracy, as we always sample from the true distribution if our sample lands in the

approximation gap s′ − s, but we gain efficiency as samples often do not land in the

smoothing-only bucket s or even in its coarse approximation s′. This whole process

is shown in Figure 3.3.

3.5 Measuring Inference Time Efficiency

In this section, we compare the running time1 of our proposed sampling

algorithms Fast and Fast-CRB against the unfactored Gibbs sampler (Näıve)

and in addition examine the effect of sorting.

The first corpus we use is the 20 Newsgroups corpus (20News),2 which contains

18770 documents (originally 18846 documents, short documents are deleted) divided

into 20 constituent newsgroups, 9743 words, and 632032 tokens. In addition, we

use editorials from the New York Times (NYT) from 1987 to 1996, including 13284

documents, 41554 words, and 2714634 tokens.

For both datasets, we rank words by average tf-idf and choose the top V

words as the vocabulary. Tokenization, lemmatization, and stopword removal was

1Mean of five chains on a 6-Core 2.8-GHz CPU, 16GB RAM.
2http://people.csail.mit.edu/jrennie/20Newsgroups/

41

http://people.csail.mit.edu/jrennie/20Newsgroups/


0

1 2

4 5

...

movie

drive ride

drive …ride drive

3

6 7
drive thrust

Consider topic k, 
path 0→1→4

K = 3 movie ride rideDoc d

All topics 
and paths

All topics 
and paths

All topics 
and paths

Total mass = 1

compute

Total mass = 1
drive

drive

renormalize

renormalize renormalize

Sample from 3 topics and 2 paths

path λ: 0→1→4
path λ: 0→3→6

topic 0 topic 1 topic 2

s'
r q

qrs

nk|d�0!1�1!4

Nk,0!1!4

(↵k + nk|d)((�0!1 + n0!1|k)(�1!4 + n1!4|k) � �0!1�1!4)

Nk,0!1!4

X

k,�

↵k

Q
(i!j)2� �i!j

Nk,�

X

k,�

nk|d
Q

(i!j)2� �i!j

Nk,�

X

k,�

(↵k + nk|d)
�Q

(i!j)2�(�i!j + ni!j|k) �
Q

(i!j)2� �i!j

�

Nk,�

(↵k + nk|d)
�0!1 + n0!1|kP

j021,2,3 (�0!j0 + n0!j0|k)

�1!4 + n1!4|kP
j024,5 (�1!j0 + n1!j0|k) =Nk,0!1!4

N
0
k,0!1!4 =

X

j021,2,3

�0!j0
X

j024,5

�2!j0

X

k,�

↵k

Q
(i!j)2� �i!j

N
0
k,�

↵k�0!1�1!4

N
0
k,0!1!4

Figure 3.3: An example of sampling with coarse-to-refined buckets. Computing the
exact smoothing-only s bucket in Figure 3.2 needs to go over all topics and paths,
which is time-consuming. Instead, we use an upper bound of s initially. We call this
the coarse bucket s′; if the current token doesn’t land in this coarse bucket, we can
just sample a topic and a path in the other two buckets as before; only when the
token lands in this coarse bucket do we compute the actual bucket s. We compute
the true normalized distribution then resample a topic and a path.

performed using the Natural Language Toolkit (Loper and Bird, 2002). We use

WordNet 3.0 to generate correlations between words. WordNet organizes words

into sets of synonyms called synsets. For each synset, we generate a subtree with

42



●

●
●

●

●
●

●

●

● ● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

●

●

●

●

●
●

●

●

● ● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

cons topic vocab

5

10

15

0

50

100

150

5

10

15

100 200 300 400 500 100 200 300 400 500 4000 6000 8000
number of correlations                      number of topics                           vocabulary size     

av
er

ag
e 

se
c 

/ i
te

ra
tio

n

model ● ● ● ● ● ●FAST FAST−CRB FAST−CRB−sD FAST−CRB−sDT FAST−CRB−sT NAIVE

Figure 3.4: 20 newsgroups’ average running time per iteration (Sec) over 100 iter-
ations, averaged over 5 seeds. Experiments begin with 50 topics, 100 correlations,
vocab size 5000 and then vary one dimension: number of correlations (left), number
of topics (middle), and vocabulary size (right).

all words in the synset—that are also in our vocabulary—as leaves connected to a

common parent. This subtree’s common parent is then attached to the root node.

The generated correlations include {“drive”, “ride”, “riding”}, {“drive”, “repel”},

etc., which represents different senses of word “drive”.

The hyperparameters for all experiments are α = 0.1, β = 0.01 for uncorrelated

words, β = 100 for the correlated words. However, sampling hyperparameters often

(but not always) undoes the correlations (by making β for correlations comparable

to β for uncorrelated words), so we keep the hyperparameters fixed.

We compared the Fast and Fast-CRB against Näıve (Figure 3.4 and Fig-

ure 3.5) on different numbers of topics, various vocabulary sizes and different numbers

of correlations. For both datasets, Fast is consistently faster than Näıve and Fast-

CRB is consistently faster than Fast. Their benefits are clearer as distributions

become sparse (e.g., the first iteration for Fast is slower than later iterations). Gains

43



●

●
●

●

●
● ●

●

● ● ●

●
● ● ●

●● ● ●
●● ● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

cons topic vocab

4

8

12

16

0

20

40

60

0

10

20

30

40

50

100 200 300 400 500 100 200 300 400 500 10000 20000 30000
number of correlations                      number of topics                           vocabulary size     

av
er

ag
e 

se
c 

/ i
te

ra
tio

n

model ● ● ● ● ● ●FAST FAST−CRB FAST−CRB−sD FAST−CRB−sDT FAST−CRB−sT NAIVE

Figure 3.5: New York Times’ average running time per iteration (Sec) over 100
iterations, averaged over 5 seeds. Experiments begin with 100 topics, 100 correlations,
vocab size 10000 and then vary one dimension: number of correlations (left), number
of topics (middle), and vocabulary size (right).

grow as the topic number increases, but diminish with larger vocabulary size. While

both sorting strategies reduce time, sorting topics and paths for a word (sT) helps

more than sorting topics in a document (sD), and combining the two is (with one

exception) better than either alone.

Although 20News is smaller than NYT, inference on 20News is slower than

on NYT for different number of topics and correlations. It is because NYT has a

lot of words with high tf-idf score but low frequency. When we filter the dataset

using the vocabulary ranked by tf-idf, a lot of high frequency words are filtered out,

resulted in less remaining tokens in NYT than in 20News. Also, 20News has much

more words with multiple paths, and this sometimes prevents the techniques of this

section from speeding inference.

As more correlations are added, Näıve’s time increases while that of Fast-

CRB decreases in NYT dataset (Figure 3.5). This is because the number of non-zero

44



C50 C100 C200 C500

correlated 1.306 1.494 1.904 1.735
uncorrelated 14.419 14.294 13.858 11.516

Table 3.1: The total number of non-zero paths for correlated words averaged over
the number of tokens with correlated words (first row), and the same value for
uncorrelated words (second row), as the number of correlations increases. When the
number of correlations increases, the averaged value for correlated words doesn’t
change much while the averaged value for uncorrelated words decreases. It is because
the number of non-zero paths for uncorrelated words decreases as more correlations
are added to the model.

paths for uncorrelated words decreases as more correlations are added to the model.

Since our techniques save computation for every zero path, the overall computation

decreases as correlations push uncorrelated words to a limited number of topics

(Table 3.1).

3.6 Summary

This chapter presents an efficient inference scheme for tree-based topic models,

which consider the correlations between words efficiently into topic models. Given

such as an efficient backend model, we expose this model to users and propose

interactive topic modeling in Chapter 4, where we will get the feedback from users

and use the feedback as correlations between words to improve the topics according

to users’ needs. We also extend this model and apply them in domain adaptation

for statistical machine translation in Chapter 5.

While this chapter utilizes the sparsity of topic models to improve the efficiency

of Gibbs sampling inference, we also explore another polynomial alternative model—

spectral method for topic models—in Chapter 6, which potentially can also encode

45



word correlations, but is less sensitive to local optima and more efficient.

46



Chapter 4

Interactive Topic Modeling

While efficient tree-based topic models—discussed in Chapter 3, encode the

correlations between words in topic models—the next question is where we can

get these correlations. One option is to use existing knowledge resources such as

WordNet in Chapter 3.5 to generate the correlations, but it is not always what

users want. Because users are the ultimate judge to decide whether a topic is “good”

or “bad”, this chapter describes how to get these correlations from users.

While users do not need to know the details of the backend models, it is

essential that users can see the output topics, give feedback, and continue to update

the topics iteratively. This suggests that topic models should be interactive. In

this chapter, we describe interactive topic modeling (ITM), which combines the

efficient tree-based topic model described in the previous chapter, with machine

learning techniques to incorporate user feedback in an interactive exploration of a

corpus. We validate the framework both with simulated and real users. Moreover, we

conduct a user study using a legislative corpus, and compare how users, armed with

either ITM or vanilla topic models, explore a legislative dataset to answer questions

about political policies. In addition, we also build on heuristics proposed for topic

coherence to suggest correlations automatically.

47



4.1 How Users Can Benefit from Interactive Topic Models

Users of topic models are the ultimate judge of whether a topic is “good” or

“bad”. In this section, we discuss what it means to have effective topic models,

effective topic modeling software, and how these technologies interact with users.

After identifying a set of goals that interactive topic models should fulfill, we present

two real scenarios where interactive topic models can help a user cope with a surfeit

of data.

Are you a good topic or a bad topic? A user might echo one of the many

complaints lodged against topic models: these documents should have similar topics

but do not (Daumé III, 2009); this topic should have syntactic coherence (Gruber

et al, 2007; Boyd-Graber and Blei, 2008); this topic makes no sense at all (Newman

et al, 2010); this topic shouldn’t be associated with this document but is (Ramage

et al, 2009); these words shouldn’t be the in same topic but are (Andrzejewski et al,

2009); or these words should be in the same topic but are not (Andrzejewski et al,

2009).

Many of these complaints can be corrected by encouraging topic models through

correlations (Chapter 2.2). Good topics can be encouraged by having correlations

that link together words the model separated. A bad topic can be discouraged by

correlations that split topic words that should not have been together. This is the

approach of Andrzejewski et al (2009), who used tree-based priors (Boyd-Graber

et al, 2007) to encode expert correlations on topic models. A nice property of these

correlations is that they form “soft” constraints for the model, which means the

48



results will match users’ expectations if and only if the correlations are supported by

the underlying statistical model of the text (For an example of when data override

correlations, see the “Macintosh” vs. “Windows” discussion in Section 4.3.2).

Moreover, Andrzejewski et al (2009)’s assumption of a priori correlations is

inefficient. Users attempting to curate coherent topics need to see where the topic

models go wrong before they can provide useful feedback. This suggests that topic

models should be interactive—users should be able to see the output, give feedback,

and continue refining the output.

Another reason to prefer an interactive process is that users invest effort in

understanding the output of a topic model. They might look at every topic to

determine which topics are good and which are bad. After a user gives feedback, a

model should not throw away the topics the user did not have a problem with. This

saves user cognitive load (Ceaparu et al, 2004), will lead to a faster end-result by not

relearning acceptable topics, and can perhaps improve overall quality by maintaining

topics that are acceptable to users.

Additionally, any model involving interaction with users should be as com-

putationally efficient as possible to minimize users’ waiting time. The efficient

tree-based topic models, discussed in Chapter 3, can serve as an efficient backend

model in this interactive setting. This requirement motivates the work for efficient

tree-based topic models as in Chapter 3.

To summarize, we want a system that can help users who may or may not

have prior knowledge of topic modeling, such as a news reporter or political analyst,

to obtain or update topics easily, and this system should be:

49



• Simple enough to allow novices to encode feedback and update topics

• Fast enough to get the updates quickly

• Flexible enough to update the topics iteratively

• “Smart” enough to keep the “good” topics and improve the “bad” topics

We use efficient tree-based topic models discussed in Chapter 3 to meet the

first two requirements, and combine it with a framework called interactive topic

modeling (ITM) to satisfy the other two requirements.

Before discussing the details of how interactive topic modeling (ITM) works,

we begin with two examples of a system that meets the above requirements. While

we gloss over the details of our interactive topic modeling system for now, these

examples motivate why a user might want an interactive system.

4.1.1 Example A: Joining Two Topics with Similar Content

For the first task, we recall the “Russian” problem that we have discussed in

Section 2.1.3. We ran vanilla LDA for a corpus of New York Times editorials and

obtained 20 topics. However, as shown in Table 4.1 (left) Topic 1 and Topic 20 both

deal with “Russia” (broadly construed). Topic 20 is about the “Soviet Union”, but

Topic 1 focuses on the development of “Russian Federation” after the collapse of the

Soviet Union. This might be acceptable for some users; other users, however, may

view both as part of a single historical narrative.

At this point, two things could happen. If the user was not a machine learning

expert, they would throw up their hands and assume that topic modeling is not an

50



appropriate solution. A machine learning expert would sit down and come up with a

new model that would capture these effects, such as a model where topics evolve

over time (Wang et al, 2008).

However, both of these outcomes are suboptimal for someone trying to under-

stand what’s going on in this corpus right now. Our system for creating interactive

topic models allows a user to create a positive correlation with all of the clearly

“Russian” or “Soviet” words ({“boris”, “communist”, “gorbachev”, “mikhail”, “rus-

sia”, “russian”, “soviet”, “union”, “yeltsin”}, shown in red and blue in Table 4.1).

This yields the topics in Table 4.1 (right).1 The two “Russia” topics were combined

into Topic 20. This combination also pulled in other relevant words that are not

near the top of either topic before: “moscow” and “relations”(green in Topic 20,

right). Topic 20 concerns the entire arc of the transition from the “Soviet Union” to

the “Russian Federation”, and Topic 1 is now more about “democratic movements”

in countries other than Russia. The other 18 topics stay almost the same, allowing

our hypothetical user to continue their research.

4.1.2 Example B: Splitting a Topic with Mixed Content

The National Institutes of Health (NIH), America’s foremost health-research

funding agency, also has challenging information needs. They need to understand

the research that they are funding, and they use topic modeling as one of their

tools (Talley et al, 2011). After running a 700-topic topic model, an informant from

1Technical details for this experiment that will make sense later: this runs inference forward 100
iterations with tree-based topic model (Chapter 2.2 and 3) and doc ablation strategy discussed in
chapter 4.2.

51



Topic Words

1

election, yeltsin, russian, political, party,
democratic, russia, president, democracy,
boris, country, south, years, month, gov-
ernment, vote, since, leader, presidential,
military

2

new, york, city, state, mayor, budget, giu-
liani, council, cuomo, gov, plan, year,
rudolph, dinkins, lead, need, governor,
legislature, pataki, david

3

nuclear, arms, weapon, defense, treaty,
missile, world, unite, yet, soviet, lead, sec-
retary, would, control, korea, intelligence,
test, nation, country, testing

4

president, bush, administration, clinton,
american, force, reagan, war, unite, lead,
economic, iraq, congress, america, iraqi,
policy, aid, international, military, see

...

20

soviet, lead, gorbachev, union, west,
mikhail, reform, change, europe, leaders,
poland, communist, know, old, right, hu-
man, washington, western, bring, party

Topic Words

1

election, democratic, south, country, pres-
ident, party, africa, lead, even, democracy,
leader, presidential, week, politics, minister,
percent, voter, last, month, years

2

new, york, city, state, mayor, budget, coun-
cil, giuliani, gov, cuomo, year, rudolph,
dinkins, legislature, plan, david, governor,
pataki, need, cut

3
nuclear, arms, weapon, treaty, defense, war,
missile, may, come, test, american, world,
would, need, lead, get, join, yet, clinton, na-
tion

4

president, administration, bush, clinton,
war, unite, force, reagan, american, america,
make, nation, military, iraq, iraqi, troops,
international, country, yesterday, plan

...

20

soviet, union, economic, reform, yeltsin, rus-
sian, lead, russia, gorbachev, leaders, west,
president, boris, moscow, europe, poland,
mikhail, communist, power, relations

Table 4.1: Five topics from 20 topics extracted topic model on the editorials from the
New York times before adding a positive correlation (left) and after (right). After
the correlation (words in red and blue on left) was added, which encourage Russian
and Soviet terms to be in the same topic (in red and blue), non-Russian terms gain
increased prominence in Topic 1 (in green), and “Moscow” (which was not part of
the correlation) appeared in Topic 20 (in green).

the NIH reported that Topic 318 conflated two distinct concepts: the “urinary system”

and the “nervous system”, shown on the left of Table 4.2.

This was unsatisfactory to the users, as these are discrete systems and should

not be combined. To address this error, we added a negative correlation between

“bladder” and “spinal cord” and applied our model to update their results. Then,

Topic 318 was changed to a topic about “motor nerves” only (as shown on the right

of Table 4.2): in addition to “bladder”, other words associated with the urinary

system disappeared; the original words related with “spinal cord” all remained in

the same topic; and more related words (in green)—“injured”, “plasticity” and

“locomotor”—appeared in this topic. The updated topic matched with NIH experts’

52



needs.

Topic Words

318

bladder, sci, spinal cord, spinal cord injury,
spinal, urinary, urinary tract, urothe-
lial,injury, motor, recovery, reflex, cervical,
urothelium, functional recovery

Topic Words

318

sci, spinal cord, spinal cord injury, spinal,
injury, recovery, motor, reflex, urothelial,
injured, functional recovery, plasticity, lo-
comotor, cervical, locomotion

Table 4.2: One topic from 700 topics extracted by topic model on the NIH proposals
before (left) adding a negative correlation (between “bladder” and “spinal cord”)
and after (right). After the correlation was added to push urinary system terms
(red) away from the motor nerves terms (blue), most urinary terms went away (red),
and some new terms related with motor nerves appeared (green).

4.1.3 Example C: Joining and Splitting

Researchers at United States Department of Agriculture (USDA) also stuck at

a similar problem as NIH researchers, when they used topic models to explore the

main themes of their grants. After running a topic model with 50 topics, they found

that Topic 25 was a mixture of the “crops” related words (red) and “bees” related

words (blue), as shown on the left of Table 4.3.

They want to separate the two concepts while keeping each concept’s related

words together. At this point, we added one positive correlation among the “crops”

words, one positive correlation among the “bees” words, and one negative correlation

between “wheat” (one “crops” word) and “bee” (one “bees” word).

Table 4.3 shows the updated results with applying the three correlations while

keeping the “bees” words in Topic 25.2 With the correlations, the “crops” words

now appear in Topic 47, while “bees” words are still in Topic 25. The related words

(green) with each topic respectively also show up. The remaining 48 topics do not

2To do this, we remember the topic assignments of the blue words if it is Topic 25, while unassign
the topic assignments at other cases. More details about unassign is discussed in Section 4.2.

53



change much.

In addition, we also tried to apply the three correlations while keeping the

“crops” words in Topic 25, as shown in Table 4.4. Again, topic models successfully

updated the topics as the correlations: the “crops” words remain in Topic 25, with

related words (green) showing up; and the “bees” words now in Topic 46. All the

other topics remain the same.

Topic Words

25
wheat grain barley sorghum quality bee
bees winter honey rust resistance cereal
oat spring grains lines flour head hard

47

plant plants species hawaii seed seeds
native tropical collection sep resources
accessions collections culture growth
seedlings tissue invasive propagation

Topic Words

25
quality resistance bee bees rust honey winter
lines dakota pollination spring fhb head hard
colonies breeding varieties soft cultivars

47
wheat plant grain plants sorghum barley
hawaii species seed grains cereal accessions
tropical seeds oat flour collection crops re-
sources

Table 4.3: Two topics from 50 topics extracted by topic models on the USDA proposals
before (left) adding multiple correlations and after (right). The correlations include:
one positive correlation between red words, one positive correlation between blue
words, and one negative correlation between “wheat” and “bee”. In addition, users
want the blue words to stay in Topic 25, and move the red words to a different topic
(not specified). The correlations push the red words to Topic 47, and the blue words
remained in Topic 25. Some related words also appeared (green). All the other
topics remain the same.

Topic Words

25
wheat grain barley sorghum quality bee
bees winter honey rust resistance cereal
oat spring grains lines flour head hard

46

strains fungal fungi plant bacterial
pathogens pathogen host isolates pcr bac-
teria strain aflatoxin dna disease molecu-
lar microbial species fungus

Topic Words

25
wheat grain sorghum barley quality grains
resistance winter rust cereal lines oat flour
spring varieties kansas fhb head breeding

46

strains fungi fungal plant pathogens bacte-
rial pathogen host isolates pcr aflatoxin bac-
teria bee disease strain bees dna microbial
species honey

Table 4.4: Two topics from 50 topics extracted by topic models on the USDA proposals
before (left) adding multiple correlations and after (right). The correlations include:
one positive correlation between red words, one positive correlation between blue
words, and one negative correlation between “wheat” and “bee”. In addition, users
want the red words to stay in Topic 25, and move the blue words to a different topic
(not specified). The correlations push the blue words to Topic 46, and the red words
remained in Topic 25. Some related words also appeared (green). All the other
topics remain the same.

These three real-world examples show what is possible with ITM. More specifi-

54



cally, they show that topic models do not always satisfy users’ needs; effective topic

modeling requires us to provide frameworks to allow users to improve the outputs of

topic models.

4.1.4 Improvement or Impatience?

The skeptical reader might wonder if the issues presented above are problems

that are being solved by interactive topic modeling. It could be merely that users

are impatient and are looking at topic models before they are fully converged. If

this is the case, then interactive topic modeling is only a placebo that makes users

feel better about their model. The result is that they run inference longer, and end

up at the same model. In fact, interactive topic models can do more.

From users’ perspective, topic models are often used before the models converge:

not only because users despise waiting for the results of inference, but also because

normal users, non-machine learning experts, lack the intuition and tools to determine

whether a model has converged (Evans, 2013). Thus interactive topic modeling might

encourage them to more effectively “buy in” to the resulting analysis, as users have

more patience when they are actively involved in the process (Bendapudi and Leone,

2003; Norman, 1993). As machine learning algorithms enter mainstream use, it is

important not to overlook the human factors that connect to usage and adoption.

From models’ perspective, interactive topic modeling allows models to con-

verge faster than they would otherwise. As we show in Section 4.5.2, interactivity

can improve ill-formed topics faster than through additional rounds of inference

55



alone.

In addition, interactive topic models can also allow users to escape from local

minima. For example, the example from Section 4.1.2 was obtained from an

inference run after tens of thousands of iterations that, by all traditional measures

of convergence, was the best answer that could be hoped for. By adding correlations,

however, we discover topics that are more coherent and escape from local minima

(Section 4.1.2).

4.2 Making Topic Models Interactive

As we argued in Section 4.1, there is a need for interactive topic models.

Traditional topic models do not offer a way for non-experts to tweak the models,

and those that do are “one off” interactions that preclude fine-grained adjustments

and tweaks that solve users’ problems but leave the rest of the model unmolested.

This section proposes a framework for interactive topic refinement, interactive topic

modeling (ITM).

Figure 4.1 shows the process at a high level: start with vanilla LDA (without

any correlations), show users topics, solicit feedback from users, encode the feedback

as correlations between words, and then do topic modeling with the corresponding

tree-based prior. Each cycle is Figure 4.1 is called one round. Users can do as many

rounds as they want until they are satisfied.

Since it takes some effort for users to understand the topics and figure out the

“good” topics and “bad” topics, to save users’ effort and time, ITM should be smart

56



Topic Models with 
a prior structure

Topic 1

Start with
symmetric prior

Build tree 
prior structure

Incremental
topic learning

Get feedback from users

Figure 4.1: Interactive topic modeling: start with a vanilla LDA with symmetric
prior, get the initial topics. Then repeat the following process till users are satisfied:
show users topics, get feedback from users, encode the feedback into a tree prior,
update topics with tree-based LDA.

enough to remember the “good” topics while improving the “bad” topics. In this

section, we detail how interactively changing correlations can be accommodated in

ITM.

A central tool that we will use is the strategic unassignment of states, which

we call ablation (distinct from feature ablation in supervised learning). The state

of a Markov Chain in MCMC inference stores the topic assignment of each token. In

the implementation of a Gibbs sampler, unassignment is done by setting a token’s

topic assignment to an invalid topic (e.g., -1, as we use here) and decrementing any

counts associated with that token.

The correlations created by users implicitly signal that the model put certain

words in the wrong place. In other models, this input is sometimes used to “fix”,

i.e., deterministically hold constant topic assignments (Ramage et al, 2009). Instead,

57



we change the underlying model, using the current topic assignments as a starting

position for a new Markov chain with some states strategically unassigned. How

much of the existing topic assignments we use leads to four different options, which

are illustrated in Figure 4.2.

An equivalent (and equally important) way to think about how ablation works

is as technique to handle the inertia of inference. Inference schemes for topic models

can become caught in local optima 3 (Section 4.1.4); because of the way topic models

are used, users can often diagnose these local optima. Ablation allows the errors that

trap inference in local optima to be forgotten, while retaining the unobjectionable

parts of the model. Without ablation, inertia would keep inference trapped in a local

optimum.

All We could revoke all state assignments, essentially starting the sampler from

scratch. This does not allow interactive refinement, as there is nothing to enforce

that the new topics will be in any way consistent with the existing topics. Once

the topic assignments of all states are revoked, all counts will be zero, retaining no

information about the state the user observed.

Doc Because topic models treat the document context as exchangeable, a document

is a natural context for partial state ablation. Thus if a user adds a set of words S

to correlations, then we have reason to suspect that all documents containing any

one of S may have incorrect topic assignments. This is reflected in the state of the

sampler by performing the Unassign (Algorithm 3) operation for each token in any

3We discuss algorithms less sensitive to local optima in Chapter 6.

58



Previous New

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:-1, dog:-1, leash:-1 dog:-1]
[bark:-1, bark:-1, plant:-1, tree:-1]

[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:3]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:-1, dog:-1, leash:3 dog:-1]
[bark:-1, bark:-1, plant:2, tree:3]

[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:-1, dog:-1, leash:-1 dog:-1]
[bark:-1, bark:-1, plant:-1, tree:-1]
[tree:-1,play:-1,forest:-1,leash:-1]

None

Term

Doc

All

Figure 4.2: Four different strategies for state ablation after the words “dog” and
“bark” are added to the correlation {“leash”, “puppy”} to make the correlation
{“dog”, “bark”, “leash”, “puppy”}. The state is represented by showing the current
topic assignment after each word (e.g. “leash” in the first document has topic 3,
while “forest” in the third document has topic 1). On the left are the assignments
before words were added to correlations, and on the right are the ablated assignments.
Unassigned tokens are given the new topic assignment -1 and are highlighted in red.

document containing a word added to a correlation. This is equivalent to the Gibbs2

sampler of Yao et al (2009) for incorporating new documents in a streaming context.

Viewed in this light, a user is using words to select documents that should be treated

as “new” for this refined model.

Term Another option is to perform ablation only on the topic assignments of

tokens which have been added to a correlation. This applies the unassignment

operation (Algorithm 3) only to tokens whose corresponding word appears in added

correlations (i.e. a subset of the Doc strategy). This makes it less likely that other

tokens in similar contexts will follow the words explicitly included in the correlations

to new topic assignments.

59



Algorithm 3 Unassign(doc d, token w)

1: Get the topic of token w: k
2: Decrement topic count: nk|d −−
3: for path λ of w in previous prior tree do
4: for edge e of path λ do
5: Decrement edge count: ne|k −−
6: Forget the topic of token w

Algorithm 4 Move(doc d, token w)

1: Get the topic of token w: k
2: for path λ′ of w in previous prior tree do
3: for edge e′ of path λ′ do
4: Decrement edge count: ne′|k −−
5: for path λ of w in current prior tree do
6: for edge e of path λ do
7: Increment edge count: ne|k + +

None The final option is to move words into correlations but keep the topic

assignments fixed, as described in Algorithm 4. This is arguably the simplest

option, and in principle is sufficient, as the Markov chain should find a stationary

distribution regardless of the starting position. However, when we “move” a token’s

count (Algorithm 4) for word that changes from uncorrelated to correlated, it is

possible that there is a new ambiguity in the latent state: we might not know the

path. We could either merge the correlations to avoid this problem (as discussed in

Section 2.2.1), restricting each token to a unique path, or sample a new path. These

issues make this ablation scheme undesirable.

The Doc and Term ablation schemes can both be viewed as online infer-

ence (Yao et al, 2009; Hoffman et al, 2010). Both of them view the correlated words

or some documents as unseen documents and then use the previously seen documents

(corresponding to the part of the model a user was satisfied with) in conjunction

with the modified model to infer the latent space on the “new” data. Regardless of

what ablation scheme is used, after the state of the Markov chain is altered, the next

step is to actually run inference forward, sampling assignments for the unassigned

tokens for the “first” time and changing the topic assignment of previously assigned

tokens. How many additional iterations are required after adding correlations is a

60



delicate tradeoff between interactivity and effectiveness, which we investigate further

in Section 4.3.

The interactive topic modeling framework described here fulfills the require-

ments laid out in Section 4.1: it is simple enough that untrained users can provide

feedback and update topics; it is flexible enough to incorporate that feedback into

the resulting models; and it is “smart” enough—through ablation—to retain the

good topics while correcting the errors identified by users. Interactive topic modeling

could serve the goals of our hypothetical political scientist to explore corpora to

identify trends and topics of interest.

4.3 Users in the Loop

In this section, we describe evaluations of our ITM system. First, we describe

fully automated experiments to help select how to build a system that can learn and

adapt from users’ input but also is responsive enough to be usable. This requires

selecting ablation strategies and determining how long to run inference after ablation

(Section 4.3.1).

Next, we perform an open-ended evaluation to explore what untrained users

do when presented with an ITM system. We expose our system to users on a crowd-

sourcing platform and explore users’ interactions, and investigate what correlations

users created and how these correlations were realized on a social media corpus

(Section 4.3.2).

61



4.3.1 Simulated Users

In this section, we use the 20 Newsgroup corpus (20News) introduced in

Section 3.5. We use the default split for training and test set, and the vocabulary

contains the most frequent 5000 words.

Refining the topics with ITM is a process where users try to map their mental

topics with the topics from topic models. Category information is one possible

way that users form topics in their mind. For the 20News corpus, users might

have some category information in mind, such as, “politics”, “economies”, “energy”,

“technologies”, “entertainments”, “sports”, “arts”, etc. They might have some words

associated with each category. For example, the words “government”, “president”

for “politics”, and “gas”, “oil” for “energy”. Probably at the beginning the word list

associated with each category is not complete, that is, they have limited number of

words in mind, but they might come up with more words for each category later.

This whole process can be simulated by ranking words in each category by their

information gain (IG).4 Sorting words by IG discovers words that should be correlated

with a classification label. If we believe that vanilla LDA lacks these correlations

(because of a deficiency of the model), topics that have these correlations should

better represent the collection (as measured by classification accuracy). Intuitively,

these words represent a user thinking of a concept they believe is in the collection

(e.g., “Christianity”) and then attempting to think of words they believe should be

connected to that concept.

To simulate this process, we start with the words with high IG for each category,

4Computed by Rainbow toolbox, http://www.cs.umass.edu/∼mccallum/bow/rainbow/

62

http://www.cs.umass.edu/~mccallum/bow/rainbow/


and gradually consider more words according to the ranking to simulate the whole

process. We treat the words in each category as a positive correlation and add one

more word each round to refine the topics.

More concretely, for the 20News dataset, we rank the top 200 words for

each class by IG, and delete words associated with multiple labels to prevent

correlations for different labels from merging. The smallest class had 21 words

remaining after removing duplicates (due to high overlaps of 125 overlapping words

between “talk.religion.misc” and “soc.religion.christian”, and 110 overlapping words

between “talk.religion.misc” and “alt.atheism”), so the top 21 words for each class

were the ingredients for our simulated correlations. For example, for the class

“soc.religion.christian,” the 21 correlated words include “catholic, scripture, resur-

rection, pope, sabbath, spiritual, pray, divine, doctrine, orthodox.” We simulate a

user’s ITM session by adding a word to each of the 20 positive correlations until

each of the correlations has 21 words.

We evaluate the quality of the topic models through an extrinsic classification

task. We represent a document’s features as the topic vector (the multinomial

distribution θ in Chapter 2.2) and learn a mapping to one of the twenty newsgroups

using a supervised classifier (Hall et al, 2009). As the topics form a better lower-

dimensional representation of the corpus, the classification accuracy improves.

Our goal is to understand the phenomenon of ITM, not classification, so the

classification results are well below state of the art. However, adding interactively

selected topics to state of the art features (tf-idf unigrams) gives a relative error

reduction of 5.1%, while adding topics from vanilla LDA gives a relative error

63



reduction of 1.1%. Both measurements were obtained without tuning or weighting

features, so presumably better results are possible.

We set the number of topics to be the same as the number of categories and

hope the topics can capture the categories as well as additional related information.

While this is not a classification task, and it is not directly comparable with state of

the art classifiers like SVM, it performs better than the Null baseline (running with

comparable iterations without any correlations) in Figure 4.3 and Figure 4.4.

This experiment is structured as a series of rounds. Each round adds an

additional correlation for each newsgroup (thus 20 per round). After a correlation is

added to the model, we ablate topic assignments according to one of the strategies

described in Section 4.2, run inference for some number of iterations, extract the new

estimate of the per-document topic distribution, learn a classifier on the training

data, and apply that classifier to the test data. We do 21 rounds in total, and the

following sections investigate the choice of number of iterations and ablation strategy.

The number of LDA topics is set to 20 to match the number of newsgroups. The

hyperparameters for all experiments are α = 0.1, β = 0.01 for uncorrelated words,

β = 100 for positive correlations and β = 10−6 for negative correlations.

We start the process after only 100 iterations of inference using a vanilla

LDA model. At 100 iterations, the chain has not converged, but such small num-

bers of iterations is a common practice for impatient users initially investigating a

dataset (Evans, 2013; Carbone, 2012).5 After observing initial topics, the user then

5A machine learning purist would argue that such usage is incorrect, as you only want samples
from a converged Markov chain. Without commenting on this debate, this experiment reflects the
reality of how topic models are used for analyzing text.

64



gradually updates the topics, allowing inference to continue.

Moreover, while the patterns shown in Figure 4.4 were broadly consistent with

larger numbers of iterations, such configurations sometimes had too much inertia

to escape from local extrema. More iterations make it harder for the correlations

to influence the topic assignment, another reason to start with smaller numbers of

initial iterations.

Investigating Ablation Strategies

First, we investigate which ablation strategy best incorporates correlations.

Figure 4.3 shows the classification accuracy of six different ablation strategies for each

of 21 rounds. Each result is averaged over five different chains using 10 additional

iterations of Gibbs sampling per round (other numbers of iterations are discussed

in Section 4.3.1). As the number of words per correlation increases, the accuracy

increases as models gain more information about the classes.

To evaluate whether our model works better, we first compare our model

against a baseline without any correlations. This is to test whether the correlations

help or not. This baseline is called Null, and it runs inference for a comparable

number of iterations for fair comparison. While Null sees no correlations, it serves

as a lower baseline for the accuracy but shows the effect of additional inference.

Figure 4.3 shows that the Null strategy has a lower accuracy than interactive

versions, especially with more correlations.

We also compare our model with non-interactive baselines, which are All Initial

and All Full with all correlations known a priori. All Initial runs the model for

65



0.500

0.525

0.550

0.575

0.600

0 5 10 15 20
Rounds

A
cc

ur
ac

y

Strategy

All Full

All Initial

Doc

None

Null

Term

Figure 4.3: Accuracy (y-axis) using different ablation strategies as additional correla-
tions are added (x-axis). We start with 100 iterations, then for each round, add one
more word for each of the 20 positive correlations, and run 10 additional iterations.
Null represents standard LDA, as the lower baseline. All Initial and All Full are
non-interactive baselines, and All Full is the upper baseline. The results of None,
Term, Doc are more stable (as denoted by the bars), and the accuracy is increased
gradually as more correlated words are added.

the only the initial number of iterations (100 iterations in this experiment), while

All Full runs the model for the total number of iterations added for the interactive

version. (That is, if there were 21 rounds and each round of interactive modeling

added 10 iterations, All Full would have 210 iterations more than All Initial).

All Full is an upper baseline for the accuracy since it both sees the correlations

at the beginning and also runs for the maximum number of total iterations. All

Initial sees the correlations before the other ablation techniques but it has fewer

total iterations.

In Figure 4.3, both All Initial and All Full show a larger variance (as denoted

by bands around the average trends) than the interactive schemes. This can be

viewed as akin to simulated annealing, as the interactive settings have more freedom

66



to explore in early rounds. For topic models with Doc or Term ablation, this

freedom is limited to only correlated words or words related with correlated words.

Since the model is less free to explore the entire space, these ablation strategies

result in much lower variance.

All Full has the highest accuracy; this is equivalent to where users know

all correlations a priori. This strategy corresponds to an omniscient and infinitely

patient user. Neither of these properties are realistic. First, it is hard for users to

identify and fix all problems at once. Often smaller problems are not visible until

larger problems have been corrected. This requires multiple iterations of inspection

and correction. Second, this process requires a much longer waiting time, as all

inference must be rerun from scratch after every iteration.

The accuracy of each interactive ablation strategy is (as expected) between

the lower and upper baselines. Generally, the correlations will influence not only the

topics of the correlated words, but also the topics of the correlated words’ context

in the same document. Doc ablation gives more freedom for the correlations to

overcome the inertia of the old topic distribution and move towards a new one

influenced by the correlations.

How Many Iterations do Users Have to Wait?

For a fixed corpus and computational environment, the number of iterations

is the primary factor that determines how long a user has to wait. While more

iterations can get closer to convergence, it also implies longer waiting time. So we

need to balance convergence and waiting time.

67



 10  20  30  50 100

0.525

0.550

0.575

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Rounds

A
cc

ur
ac

y

Strategy

Doc

None

Null

Term

Figure 4.4: Classification accuracy by strategy and number of iterations between
rounds. We start with 100 iterations, then for each round, add one more word for
each of the 20 positive correlations, and run additional 10 iterations. The Doc
ablation strategy performs best, suggesting that the document context is important
for ablation correlations. While more iterations are better, there is a tradeoff with
interactivity.

Figure 4.4 shows the effect of using different numbers of Gibbs sampling

iterations between rounds. For each of the ablation strategies, we run 10, 20, 30, 50,

100 additional Gibbs sampling iterations for each round. As expected, more iterations

increase accuracy, although improvements diminish beyond 100 iterations. With

more correlations, additional iterations help less, as the model has more a priori

knowledge to draw upon.

For all numbers of additional iterations, while the Null serves as the lower

baseline for accuracy in all cases, the Doc ablation clearly outperforms the other

ablation schemes, consistently yielding a higher accuracy. Thus, there is a benefit

when the model has a chance to relearn the document context when correlations are

added, and Doc provides the flexibility for topic models to overcome the inertia of

the old topic distribution but does not throw away the old distribution entirely. The

difference is greater with more iterations, suggesting Doc needs more iterations to

“recover” from unassignment.

68



The number of additional iterations per round is directly related to users’

waiting time. According to Figure 4.4, more iterations for each round achieves higher

accuracy, while increasing wait time. This is a tradeoff between latency and model

quality, and may vary based on users, applications, and data size.

However, the luxury of having hundreds or thousands of additional iterations for

each correlation would be impractical. For even moderately sized datasets, even one

iteration per second can tax the patience of individuals who want to use the system

interactively. Studies have shown that a long waiting time may affect cognitive load,

making it harder for a user to recall what they were doing or the context of the

initial task (Ceaparu et al, 2004). Based on these results and an ad hoc qualitative

examination of the resulting topics, we found that 30 additional iterations of inference

was acceptable; this is used in later experiments, though this number can vary in

different settings.

4.3.2 Real Users from Mechanical Turk

To move beyond using simulated users adding the same words regardless of

what topics were discovered by the model, we needed to expose the model to human

users. We solicited approximately 200 judgments from Mechanical Turk, a popular

crowd-sourcing platform that has been used to gather linguistic annotations (Snow

et al, 2008), measure topic quality (Chang et al, 2009; Stevens et al, 2012), and

supplement traditional inference techniques for topic models (Chang, 2010). After

presenting our interface for collecting judgments, we examine the results from these

69



Figure 4.5: Interface for Mechanical Turk experiments. Users see the topics discovered
by the model and select words (by clicking on them) to build correlations to be
added to the model.

ITM sessions both quantitatively and qualitatively.

Figure 4.5 shows the interface used in the Mechanical Turk tests. The left side

of the screen shows the current topics in a scrollable list, with the top 30 words

displayed for each topic.

Users create correlations by clicking on words from the topic word lists. The

word lists use a color-coding scheme to help the users keep track of which words

they are already in correlations. The right side of the screen displays the existing

correlations. Users can click on icons to edit or delete each one. The correlation

being built is also shown in its own panel. Clicking on a word will remove that word

70



●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
● ● ●

●

●

●
●

●

●

●
●

● ●

●

● ●

●

●

0.427

0.571

0.662

0.682

1.00

1.02

1.04

0 1 2 3 4
Round

R
el

at
iv

e 
A

cc
ur

ac
y Topics

●●a

●●a

●●a

●●a

 10 Topics 

 20 Topics 

 50 Topics 

 75 Topics 

Figure 4.6: The relative accuracy improvement (using round 0 as a baseline) of
the best Mechanical Turk user session for each of the four numbers of topics, with
the actual accuracy marked for the last round. While the 10-topic model does not
provide enough flexibility to create good correlations, the best users could clearly
improve classification with more topics.

from the current correlation.

Users were not given a specific goal; instead, they were instructed to add

correlations between words so that the topics (we called them “word groups” in the

instructions) made more sense. This was intentionally underspecified, as we wanted

to see what would happen when ITM was placed in the hands of untrained users.

As in Section 4.3.1, we can compute the classification accuracy for users as

they add words to correlations. The best users, who seemed to understand the task

well, were able to increase the classification accuracy (Figure 4.6). The median user,

however, had an accuracy improvement indistinguishable from zero. Despite this,

we can examine the users’ behavior to better understand their goals and how they

interact with the system.

The correlation sizes ranged from one word to over forty. The more words

in the correlation, the more likely it was to noticeably affect the topic distribution.

71



This observation makes sense given our updating method. A correlation with more

words will probably cause the topic assignments to be reset for more documents.

Most of the large correlations (more than ten words) corresponded to the

themes of the individual newsgroups. Some common themes for large correlations

were:

• Themes that matched a single newsgroup: religion, space exploration, health,

foreign countries, cars, motorcycles, graphics, encryption

• Themes that spanned multiple related newsgroups: sports, government, com-

puters, cars/motorcycles

• Themes that probably matched a sub-topic of a single newsgroup: homosexu-

ality, Israel, computer programming

Some users created correlations with both “baseball” and “hockey” words,

while others separated them. (“baseball” and “hockey” are in separate newsgroups.)

The separate correlations often contained overlapping words. Even so, the choice of

combined vs. separate correlations almost always determined whether baseball and

hockey would be in the same topic in the model. A similar situation occurred with

“cars” and “motorcycles”, which are also discussed in separate newsgroups.

Some users created inscrutable correlations, like {“better”, “people”, “right”,

“take”, “things”} and {“fbi”, “let”, “says”}. They may have just clicked random words

to finish the task quickly. While subsequent users could delete poor correlations,

most chose not to. Because we wanted to understand broader behavior we made no

effort to squelch such responses.

72



The two-word correlations illustrate an interesting contrast. Some pairs are

linked together in the corpus, like {“jesus”, “christ”, “solar”, “sun”}. With others,

like {“even”, “number”} and {“book”, “list”}, the users seem to be encouraging

collocations to be in the same topic. However, the collocations may not be present

in any document in this corpus.

Not all sensible correlations led to successful topic changes. Many users grouped

“mac” and “windows” together, but they were almost never placed in the same topic.

The corpus includes separate newsgroups for Macintosh and Windows hardware, and

divergent contexts of “mac” and “windows” overpowered the prior distribution.

Other correlations led to topic changes that were not necessarily meaningful.

For example, one user created a correlation consisting of male first names. A topic

did emerge with these words, but the rest of the words in that topic seemed random.

This suggests that the set of male first names aren’t associated with each other in the

corpus. Preliminary experiments on newspaper articles had similar correlations that

created a more meaningful topic associated with obituaries and social announcements.

Finally, many correlations depend on a user’s background and perspective,

showing the flexibility of this approach. Some users grouped “israeli”, “jewish”,

“arab”, and “muslim” with international politics words, and others with religion

words. On the other hand, “christian” was always grouped with religion words. The

word “msg” appears to have two different interpretations. Some users grouped it

with computer words (reading it as a message), while others grouped it with health

words (reading it as a food additive).

As mentioned in Section 2.2, topic models with a tree-based prior can represent

73



situations where words have multiple meanings. In previous work, the paths in the

tree—provided by WordNet—correspond to the distinct meanings of a word (Boyd-

Graber et al, 2007). Users found the formalism intuitive enough to build their own

small WordNets to distinguish the different meanings of “msg”.

4.4 User Study

New systems for information access are typically investigated through task-

based user studies to determine whether the new approach allows users to complete

specific tasks as well as with current systems. Wacholder and Liu (2008), for

example, compared traditional paper-based book indices with full-text search for

answering questions in large text collections. Following their lead, we compare the

information-seeking effectiveness using both interactive and non-interactive topic

modeling.

We asked users to fill the role of the running example a political scientist

attempting to find legislation relevant to “immigration and refugee issues” (among

other topics). Using full-text search aided by either vanilla topic models or interactive

topic models (ITM), users were asked to answer questions based content in a collection

of legislative debates.

We found that users were able to answer the questions equally well in both

group with ITM (experimental group) and group without ITM (control group).

However, users in the group using ITM had radically different strategies for how

they found information in the corpus. Rather than relying on full-text search, users

74



used topic models to find relevant information.

4.4.1 Legislative Corpus

In the process of becoming a law, potential US legislation is sponsored by a

congressperson and introduced for debate by a committee in either the US House of

Representatives (lower chamber) or the US Senate (upper chamber). Once introduced,

the bill is debated within the chamber where it was introduced. Our corpus contains

transcripts of these debates for the 109th congress, which served during the 2005 and

2006 calendar years.

The corpus is available online from GovTrack.6 Each page is associated with a

bill and a vote. Uninteresting procedural bills, with less than 20% “Yea” votes or

less than 20% “Nay” votes, are removed. We selected a subset of this congressional

debate dataset that includes ten bills and their associated debates. Each debate

has multiple turns (a single uninterrupted speech by a unique congressperson), and

we use each turn as a document for topic modeling. This yields 2,550 documents

in total; we ignore all temporal, speaker-related, or legislative organization. While

this is somewhat unrealistic for a real-world study of legislative information, we will

use some of this discarded information to aid evaluation. The subset includes bills

on immigration, the estate (death) tax, stem cell research, and others. Detailed

information can be found in Appendix A.

6http://www.govtrack.us/data/us/109/

75

http://www.govtrack.us/data/us/109/


4.4.2 Introduction of ITM Interface

The ITM interface is a web-based application.7 It provides a workflow for users

to select model parameters (corpus and number of topics), create an initial topic

model, name the topics, and refine the topics using ITM. The interface also provides

multiple ways for a user to explore the corpus: a full-text search over all documents,

a full-text search within a single topic, a listing of documents associated with each

topic, and links to access specific documents. We walk through this workflow in

detail below.

From the initial screen (Figure 4.7), users specify the session information, such

as user name, corpus, number of topics, etc. Once users click “start”, the interface

loads the initial set of topics, including the top topic words and related documents,

as shown in Figure 4.8. The top topic words are displayed such that the size of a

word is proportional to the probability of this word appearing in the topic.

After clicking on the topic, users can view additional information and, most

importantly, edit the topic (editing is disabled for the control group). After clicking

on a topic, four “bins” are visible: “all”, “ignore”, “important” and “trash”. Initially,

all of the topic words are in the “all” bin. As shown in Figure 4.9, users can drag

words to different bins based on their importance to the topic: words that are

important to the topic to the“important” bin, words that should be ignored in this

topic to the “ignored” bin, and words that should be stopwords in the whole corpus

to “trash”. Users can also add new words to this topic by typing the word and

7This ITM interface is implemented with a HTML and jQuery (http://jquery.com/) front end,
connected via Ajax and JSON.

76

http://jquery.com/


Figure 4.7: The start page of the ITM interface: users specify the user name, session
name, corpus, number of topics, and experimental group (Group A: control group
(LDA only); Group B: experimental group (ITM). )

Figure 4.8: Two topics displayed in the ITM interface. The most probable words
in each topic are displayed with the size proportional to the probability of a word
appearing in this topic. The documents most associated with each topic are shown
in each topic’s panel. The user can view all documents by selecting “view all
documents”.

77



Rename your topic here

Type new words here

Limited by vocabulary

Display document 
(drag up and down to the context)

Figure 4.9: ITM interface for refining a topic. Users can put words into different
“bins”, name topics, and add new words to the topic.

clicking “add”.8

Once the user has finished editing a topic, changes are committed by pressing

the “Save” button. The backend then receives the users’ feedback. The model adds a

positive correlation between all words in the “important” bin, a negative correlation

between words in the “ignored” bin and words in the “important” bin, and removes

words in the “trash” from the model. With these changes to the model, the ITM

relearns the topics and updates the topics. While in principle users may update

the topics as many times as they wish, our study limited a user’s exploration and

modification of topics to fifteen minutes. Then, the users entered the next phase of

the study, answering questions about the corpus.

In the question answering phase (Figure 4.10), users have three options to

explore the data to answer the questions: by reading through related documents asso-

ciated with a topic, searching through all of the documents through full-text search,

8Only words present in the model’s vocabulary can be added; this constraint is enforced via an
autocomplete function.

78



Global text query

Check related documents
Text query within a topic

(by clicking a topic)

Figure 4.10: Test page of the ITM interface. Users will see one question each time,
and they can answer the question by, searching keywords globally, checking the
related topics or topic documents, or narrowing query results down by topics, that
is, after a global query, click a topic, and the query results will be filtered by the
relevance to this topic, displayed below the topic you clicked. Click “Next question”
to proceed, and users are not allowed to go back to previous questions.

or via a text search restricted to a single topic. The full-text search is important be-

cause it is a commonly used means of finding data within large corpora (Shneiderman

et al, 1997) and because it has been used in previous previous information-seeking

studies (Wacholder and Liu, 2008).9 Initial studies, where access to the data was

restricted to only topic model information, were too difficult. We expect users to use

topics when they are useful and use full-text search when topics are less useful in

answering a question. After each question, users click “Next question” to proceed;

users cannot return to previous questions.

9Some examples where the websites for accessing the legislative data have full-text search:
http://thomas.loc.gov/home/LegislativeData.php?n=BillText; http://www.senate.gov/ pagelay-
out/legislative/g three sections with teasers/legislative home.htm.

79



4.4.3 User Population

To evaluate the effectiveness of ITM for information-seeking tasks, we compare

the performance of users in two groups: the experimental group (ITM) and a control

group (vanilla LDA).

For the experimental group, users start with an initial set of topics and can

refine the topics using ITM for up to fifteen minutes. They then start the test phase

for thirty minutes. They are provided with the refined topics for use during the test.

The control group also has access to the initial topics, but they cannot refine the

topics. They are given up to fifteen minutes to check the topics, rename the topics,

and review documents associated with the topics. This is to avoid experimental

differences caused by the experimental group benefiting from exploring the corpus

rather than from interactive topic modeling. After spending up to fifteen minutes

exploring the corpus, the control group also has thirty minutes to answer the test

questions.

The study participants are randomly assigned to a group. Each participant

views a video explaining how to use the interface and do the test. During the study,

the system logs the related information of each user. After the study, participants

complete a survey on their educational/technical background and familiarity with

legislation or topic models.

The study had twenty participants (ten for each group). All of the users are

fluent in English. Participants are either students pursuing a degree in Computer

Science, Information Science, Linguistics, or working in a related field. A post-test

80



user survey revealed that most users have little or no knowledge about congressional

debates and that users have varied experience with topic models.

We designed ten free response questions by exploring this legislation corpus,

including questions regarding legislation which deals with taxes, the US-Mexico

border, and other issues. The full text of the questions appears in Appendix B.

4.4.4 User Study Analysis

We examined two aspects of the experiment: how well the experimental group’s

final topics replicated ground-truth annotations (below, we refer to this metric as

refine) and how well both the groups answered the questions (test).

Our experiment views the corpus as an unstructured text collection (a typical

use case of topic models); however, each turn in the dataset is associated with a

single bill. We can view this association as the true clustering of the dataset. We

compare this clustering against the clustering produced by assigning each document

to a cluster corresponding to its highest-probability topic.

We compare these reference clusters to the clusters produced by ITM using

variation of information (Meilă, 2007). This score has a range from zero to infinity

and represents the information-theoretic “distance” between two partitions (lower

is better). Using this information, we compute the variation of information (Meilă,

2007) between the true labels (the 10 underlying bills) and the topic modeling clusters.

While we have a good initial set of topics (the initial variation of information score

is low), users in the experimental group—who reported little knowledge about the

81



●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●● ●● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

● ●

●5.4

5.6

5.8

6.0

0 2 4 6 8
number of rounds

va
ria

tio
n 

of
 in

fo
rm

at
io

n

new_id ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●x0 x1 x11 x14 x15 x16 x19 x2 x6 x7

Figure 4.11: Distance to true labels (measured by Variation of information) changes
as different users in experimental group refine topics. Users are labeled from x0 to
x19. Ten of them are randomly assigned to experimental group. All ten users start
with the same initial topics and are able to refine the topics for the extent of the
refinement phase. Most users in the experimental group successfully reduced the
variation of information (where lower is better).

legislative process—still can reduce this score by refining the topics. To avoid bias

from users, users do not know that their topics will be evaluated by variation of

information.

As shown in Figure 4.11, ten users in the experimental group started with the

same initial topics and refined the topics for multiple rounds. In the given fifteen

minutes, some users played with ITM for up to eight rounds while one user only tried

two rounds. Although users occasionally increased the variation of information, by

the end of the refinement phase a majority of users successfully reduced the variation

of information of the topics.

User “x2” provides an example of a successful ITM round. This user saw a

topic mixing “energy”-related words with other words. To make a coherent topic

82



about “energy”, they put “oil”, “natural gas”, “gas”, “production” and “resources”

in the important bin, and put “patriot act”, “federal government”, “tax cuts”,

“stem cell” into the ignored bin. After updating, this topic became a coherent topic

about “energy”. After refining topics for eight rounds, they successfully made other

topics more coherent; he named these topics “homeland security”, “immigration”,

“abortion”, “energy”, “flag burning”, etc., which match well with the corpus’s true

clusters. Thus this user successfully reduced the variation of information as shown

in Figure 4.11.

In addition to evaluating the variation of information for the experimental

group, we also evaluated the users’ answers to content-specific questions. While the

difference between the groups’ performance was not statistically significant, ITM

changed the usage pattern to favor topic models over full text search.

To evaluate the test, we graded the answers and compared the scores of users

in two groups. Of the 20 participants, two didn’t use their session name correctly,

meaning the interface didn’t store their answers properly, and one user encountered

an issue and wasn’t able to finish the questions. Thus we have complete answers for

17 participants. Each question was graded by two graders with Scott’s π agreement

0.839 (Artstein and Poesio, 2005). While there is no significant difference between

the two groups’ test scores, the scores for experimental group had a much smaller

variance compared to the control group.

To better understand how users answer the questions, the ITM system logs

the number of full-text searches that include words from any of the topics (queried-

topic-words) and the number of times that users used topics to filter query results

83



0

10

20

30

40

queried−topic−words query−in−topic
statistics type

nu
m

be
r 

of
 ti

m
es

group control experimental

Figure 4.12: Statistics show that users’ search strategies during the user study used
topics more than the control group.

(query-in-topic).

The process of modifying topics inspired users in the experimental group to use

queries that included words from the topics (Figure 4.12); this may be because users

learned more key terms while exploring and refining the topics. These topic words

are helpful to answer questions: users in experimental group queried topic words

an average of 27.8 times, while the control group queried topic words 18.2 times

on average. Users in the experimental group also used “query-in-topic” (restricting

a full text search within a topic) more than the users in control group. This is

probably because those users work with refined topics that are better aligned with

the underlying bills (several questions were about specific bills).

We also found that users in both groups click topics much more when the

question is about the general understanding of the data set, for example, “Name 5

of the debated legislation in this data set.”. For more detailed questions like “The

Gulf of Energy Security act will provide revenue streams for which fund?”, users in

both groups prefer to query text directly.

84



However, Figure 4.12 shows a large variance, so we should not overstate these

results. In the conclusion, we discuss additional studies that can untangle the

usefulness of topic models for evaluating information-seeking from other effects such

as how familiar users are to topic models, whether they understand the task clearly,

and whether they are effective consumers of information.

Some users in the control group also performed very well. For example,

user “x5” in the control group obtained a high score. During the initial fifteen

minute exploration phase, this user clicked on topics to review documents 71 times,

substantially more than any user in either the control group or the experimental

group. Users such as “x5”, who are topic model-savvy have better intuitions about

how topic models work and how they can be used to help explore a corpus. In

the post-session survey, the user reported that the interface, designed to facilitate

ITM (but with interactive inference disabled for the control group) helped them

understand the corpus and answer the questions.

Not all users in the experimental group performed well on the task. One user

only refined two topics, and some users failed to improve the topics (failed to reduce

the variation of information). Some users complained that they weren’t given enough

time to update the topics.

In general, most reported liking the interface. Users from both the experimental

group and the control group commented that the topics helped them answer some

of the questions. Some users also commented that some of the questions were too

detailed, suggesting that perhaps additional methods to search the corpus may be

helpful.

85



This study provides evidence that the ITM interface assists users in exploring

a large corpus and that topic modeling is helpful for users attempting to understand

legislative documents. Users used ITM to improve the initial clusters; this is especially

promising, as these users had little background knowledge of congressional debates

and few had familiarity with topic models.

4.5 Automatically Suggesting Correlations

While we have demonstrated that ITM can encode correlations into topic

models interactively, our pilot with users showed that it is often difficult, particularly

for untrained users, to decide how to guide interactive topic models. This is because

there are many possible choices: if the vocabulary size is V , there are about V 2

possible pair correlations (let alone higher order correlations). To save users’ effort,

we can either build the tree hierarchy of correlations automatically by hierarchical

clustering techniques (as discussed in Chapter 7), or build on heuristics proposed for

topic coherence to suggest correlations automatically as discussed in this section.

4.5.1 Generating New Correlations

Newman et al (2010) argues that topics whose words often appear close together

in a reference corpus make more sense to users. They measure this through pointwise

mutual information (PMI) averaged over all word pairs present in the top words of a

topic (sorted in order of decreasing probability, as is usually done to show topics to

86



a user). Thus, for a topic’s top words T ,

PMIC(T ) ≡
∑

(wi,wj):wi 6=wj PMIC(wi, wj)

|T |(|T | − 1)
, (4.1)

where C is the corpus to compute PMI, and PMI is computed within a small local

window. Topics that have a high score tend to be judged as “making sense” to users,

and those that have lower scores tend to be judged as not making sense to users.

Based on this strategy, ITM could seek to improve this score by suggesting

positive correlations for pairs with high PMI score and negative correlations for pairs

with low PMI score. To ensure that we only suggest meaningful correlations, we

weight suggestions by the tf-idf (Salton, 1968) for each word (by taking the max over

all documents). This focuses correlations toward pairs that are highly relevant to at

least some subset of the documents (this prevents correlations capturing syntactic or

other dependencies). Combining the PMI and tf-idf score, we rank word pairs by

PC(X, Y ) = max
d

(tf-idf(X, d)) ·max
d

(tf-idf(Y, d)) · PMIC(X, Y ) (4.2)

for positive correlations (PC) and by

NC(X, Y ) =
maxd(tf-idf(X, d)) ·maxd(tf-idf(Y, d))

PMIC(X, Y )
(4.3)

for negative correlations (NC). The pairs with the highest scores for these metrics

become the suggestions. Since the number of word pairs is very large, we only

consider the word pairs from different topics for PC and the word pairs from the

87



same topic for NC.

Although we have an automatic technique for selecting correlations, this does

not replace a fully interactive system. This is because PMI cannot distinguish

different meanings of the same word. For example, “msg” in Section 4.3.2 has two

meanings “message” or “a food additive”, which belong to different topics. However,

PMI treats “msg” as having a single meaning. In addition, while Newman et al

(2010) argues that PMI matches well with users’ expectation, it may diverge in some

cases, and automatic techniques cannot handle user-specific information needs (e.g.,

the examples in Section 4.1).

4.5.2 Human Evaluation over Automatically Generated Correlations

We use the 20 Newsgroups corpus (20News, described in Section 3.5) in this

experiment. The topic number is set to be 20, and 100 iterations produce initial

topics. Four rounds of interaction are performed with 50 iterations each round.

In this experiment, we have two different topic models: one uses automatically

generated correlations based on PMI20news (five positive and five negative correlations

each round) and the other group runs for same number of iterations without any

correlations. We name the two models as correlation group (ITM) and non-correlation

group (LDA), respectively.

For evaluation, we showed the resulting topics to users on Mechanical Turk

and asked whether they preferred the correlated topics (ITM), the control topics

(LDA), or they looked equally coherent (Equal). Four users compared each pair. The

88



0

5

10

15

7 9 14 17 12 4 18 8 1 5 16 13 6 2 0 11 3 10 19 15
Topics

N
um

be
r 

of
 v

ot
es

Equal ITM LDA

Figure 4.13: The total number of votes across rounds for each topic by users on
Mechanical Turk (16 votes for each topic). x-axis is in a decreasing order of the
number of votes for ITM. The red colored topics are significantly different from a
uniform vote distribution, while the others are not (tested by χ2-test). In general,
there is no clear preference from users between models with correlations (ITM) and
models without (LDA), which is the result in imbalanced attention being focused on
some topics more than others.

positioning (i.e., left vs. right) and order of words within a topic were shuffled to

avoid bias.

We first compare the votes for each group in each topic, as shown in Figure 4.13,

in decreasing order of the number of votes for the correlated group (ITM). Users show

significant preference in five of the total 20 topics (colored in red, by χ2-test). Users

did not have a clear preference overall; this was counter-intuitive, as the correlations

were changing the topics dramatically. There were three reasons that the correlations

did not always favor the ITM group:

• first, topics that are most confusing (as measured by Equation 4.2 and 4.3) get

the correlations to improve coherence; thus the correlations affect some topics

more than others

• second, because some topics have more correlations, other topics have fewer

89



correlations; thus those topics are similar to the uncorrelated case

• finally, some topics are ignored by correlations and have side-effects of correla-

tions in the other topics; these are not always good for the coherence of the

ignored topics

We describe each of these scenarios with examples, below.

Confusing Topics Get Correlations Some topics did show substantial improve-

ment, however. For example, Figure 4.14 shows how Topic 7 changes as correlations

are added (we only show the correlations related with Topic 7). Initially, the topic

mixes “transportation” and “health”, in the first round, a negative correlation be-

tween “car” and “cancer” pushed “car” away. Though “cars” remains, additional

relevant terms—“medicine”, “pain”, “aids” and “effects” appear. In the second

round, when a negative correlation between “cancer” and “msg” is added, “cars”

disappears and words in correlated group (ITM) are mostly related with “health”.

The non-correlated group (LDA) also stabilizes but much more slowly than the

correlated group (ITM); after the fourth round, however, users do not have a clear

preference.

Ignored Topics Stay the Same While Topic 7 was improved, Topic 5, initially

including words “software, data, set, graphics, code, used, sun, user, following, text”

etc., stayed the same to users by the end of four rounds, as shown in Table 4.5. In

the second round of Topic 5, one positive correlation {“window”, “widget”} was

added in ITM, but LDA already had these two correlated words in its topic, so

90



car article cars insurance engine may water oil msg miles food 
medical disease doctor cancer health medicine body cause

medical cancer may disease drug water food
health treatment msg article cause cars doctor 

engine anyone 
oil car ford used

medicine pain dog  
people aids effects

LDA
SPLIT 

{car, cancer}ITM

medicine doctor medical people disease drug food 
health treatment cause article msg water may 

used cancer car
ford long much

body pain dog aids
research study

medicine medical cancer doctor food pain people disease drug 
water health may treatment aids msg article cause study  

used 
could

research
blood

MERGE
{cancer, aids}
{medical, cancer}
{cancer, medicine}

body cancer doctor food medicine medical disease drug health 
water may vitamin treatment aids msg article cause study  

pain
people

used
research

Round 1

LDA SPLIT 
{cancer, msg}ITM

Round 2

LDA ITM

Round 3

Round 4

LDA ITM

Figure 4.14: Comparison of the “evolution” of Topic 7 between LDA and ITM for
four rounds. Correlations related with this topic is shown and we compared the
topic words between LDA (left) and ITM (right). At the beginning, Topic 7 is a
mixed topic between “transportation” (blue) and “health” (red). While adding more
correlations and running for additional iterations, this topic becomes a pure “health”
topic. While after four rounds, LDA and ITM get similar result, ITM successfully
converges to a good coherent topic much faster.

the correlation had little effect on the topic. In next round, two related negative

correlations {“max”, “font”} and {“max”, “window”} were added to ITM, which

improved the topic, so users prefer the ITM. In first and last round, users have no

preference between the two groups.

Ignored Topics Suffer Side-effects Another case is that users sometimes deci-

sively prefer the non-correlated group (LDA). For example, Topic 19, starts with

words “system, good, power, much, research, first, large, data, systems, work” etc.,

only had one relevant correlation, a negative correlation {“max”, “model”} added in

91



the final round. However, the result of correlations in previous rounds negatively

impacted Topic 19, which had words “stolen” from it by other topics. This shows

that improving some topics (e.g., Topic 7) sometimes comes at the expense of others;

Table 4.5 shows that users preferred the version of the topic left untouched by

correlations.

Round
Topic 5 Topic 19

ITM Equal LDA ITM Equal LDA

R1 2 1 1 0 2 2

R2 0 0 4 0 0 4

R3 3 0 1 1 0 3

R4 0 4 0 1 0 3

Table 4.5: The round votes for Topic 5 and Topic 19. For Topic 5, while users
have no preference in R1 and R4, they prefer LDA in R2: one correlation “MERGE
{window, widget}” was added in ITM, but LDA also had the two correlated words in
its topic, so there was no clear improvement; in R3, two related correlations (“SPLIT
{max, font}” and “SPLIT {max, window}”) were added to ITM, and users prefer the
improved topic in ITM. For Topic 19, no related correlations were added to ITM in
the first three rounds; there was one unimportant correlation “SPLIT {max, model}”
added in R4, which resulted in no clear improvement. So users clearly prefer LDA
for Topic 19.

Figure 4.14 shows that for LDA and ITM, Topic 7 converged to the same

“health” topic, but ITM helped it converge the faster. We discuss the distinction

between improvements and impatience in Section 4.1.4, which also gives an example

of a topic that remains problematic even in a fully converged topic model.

4.6 Summary

This chapter proposes to obtain prior knowledge from users and presents

interactive topic modeling, which updates topics iteratively based on users’ feedback.

While we have developed two types of interface and evaluated this framework with

92



real users, better visualization can further aid users and save users’ time, for example,

instead of displaying each topic as a bag of words, the collocation of words in a

document can also be displayed for each topic (Smith et al, 2014), which hopefully

can help users to provide feedback.

While better visualization can assist users, whether the whole interactive

framework are helpful for users to understand the corpus must be evaluated with

real users. While this chapter has already done user study in an information seeking

task, our user population is too diverse and small. Broadening the number of users

would allow us to draw stronger conclusions.

This chapter focuses on extracting flat topics from an interactive setting,

which can be further extended to modeling hierarchical topics (Blei et al, 2003a) and

dynamic topics (Blei and Lafferty, 2006) interactively and iteratively. This framework

is also flexible enough to be applied in multilingual topic models, which is used in

domain adaptation for statistical machine translation in the next chapter (Chapter 5).

Interactive topic modeling in general is a new framework for using and un-

derstanding statistical models that empowers users of topic models to evaluate and

refine topics based on their unique expertise and perspective. These models offer

new opportunities for wider and richer use of topic models, suggest new probabilistic

models and methods for machine learning, and can serve as an exemplar for allowing

users to improve statistical models.

93



Chapter 5

Polylingual Tree-based Topic Models for smt Domain Adaptation

While we have introduced the tree-based topic models in Chapter 3 and applied

this model in an interactive framework in Chapter 4, this chapter extends the tree-

based topic models to polylingual tree-based topic models and uses them to aid

statistical machine translation (Koehn, 2009, smt). This chapter directly uses the

existing knowledge resources such as dictionaries or WordNet to improve smt, but

it can also be further extended to an interactive setting and obtain prior knowledge

from users as in Chapter 4.

In this chapter, we review existing topic models for discovering topics in

multilingual datasets and discuss how they can improve smt (Section 5.1); we create

a model—polylingual tree-based topic models (ptlda)—that use information from

both external dictionaries and document alignments simultaneously (Section 5.2), and

derive both mcmc and variational inference for this new topic model (Section 5.3);

we further evaluate our model on the task of smt using aligned datasets, show

that ptlda offers better domain adaptation than other topic models for machine

translation (Section 5.4), and discuss how these topic models improve smt with

detailed examples (Section 5.5).

94



5.1 Topic Models for Machine Translation

Modern machine translation systems use millions of examples of translations to

learn translation rules in local (phrase) context, while ignoring the global (document)

context. These systems work best when the training corpus has consistent global

context, including genre, register, and topic. Systems that are robust to systematic

variation in the training set are said to exhibit domain adaptation.

Topic models are a promising solution for automatically discovering the global

context—for example, domain knowledge—in machine translation corpora. However,

past work either relies solely on monolingual source-side models (Eidelman et al,

2012; Hasler et al, 2012; Su et al, 2012), or limited modeling of the target side (Xiao

et al, 2012). In contrast, machine translation uses inherently multilingual data: an

smt system must translate a phrase or sentence from a source language to a different

target language, so existing applications of topic models (Eidelman et al, 2012) are

ignoring available information on the target side that could aid domain discovery.

This is not for a lack of multilingual topic models. Topic models bridge

the chasm between languages using document connections (Mimno et al, 2009),

dictionaries (Boyd-Graber and Resnik, 2010), and word alignments (Zhao and Xing,

2006). However, no models combine multiple bridges between languages. Before

introducing a new topic model that connects different languages using multiple

bridges, we briefly review lexical weighting and domain adaptation for smt.

95



5.1.1 Statistical Machine Translation

Statistical machine translation casts machine translation as a probabilistic

process (Koehn, 2009). For a parallel corpus of aligned source and target sentences

(F , E), a phrase f̄ ∈ F is translated to a phrase ē ∈ E according to a distribution

pw(ē|f̄). One popular method to estimate the probability pw(ē|f̄) is using lexical

weighting features.

Lexical Weighting In phrase-based smt, lexical weighting features estimate the

phrase pair quality by combining lexical translation probabilities of words in a

phrase (Koehn et al, 2003). Lexical conditional probabilities pw(e|f) are maximum

likelihood estimates from relative lexical frequencies c(f, e)/
∑

e c(f, e) , where c(f, e)

is the count of observing lexical pair (f, e) in the training dataset. Given a word

alignment a, the lexical weight for this phrase pair pw(ē|f̄ ; a) is the normalized product

of lexical probabilities of the aligned word pairs within that phrase pair (Koehn et al,

2003):

pw(ē|f̄ ; a) =
n∏

i=1

1

{|j|(i, j) ∈ a}|
∑

∀(i,j)∈a

pw(ei|fj) (5.1)

where i and j are the word positions in target phrase ē and source phrase f̄ respectively.

In Section 5.1.2, we create topic-specific lexical weighting features.

Cross-Domain smt A smt system is usually trained on documents with the same

genre (e.g., sports, business) from a similar style (e.g., newswire, blog-posts). These

are called domains. Translations within one domain are better than translations

96



across domains since they vary dramatically in their word choices and style. A correct

translation in one domain may be inappropriate in another domain. For example,

“潜水” in a newspaper usually means “underwater diving”. On social media, it means

a non-contributing “lurker”.

Domain Adaptation for smt Training a smt system using diverse data requires

domain adaptation. Early efforts focus on building separate models (Foster and Kuhn,

2007) and adding features (Matsoukas et al, 2009) to model domain information.

Chiang et al (2011) combine these approaches by directly optimizing genre and

collection features by computing separate translation tables for each domain.

However, these approaches treat domains as hand-labeled, constant, and known

a priori. This setup is at best expensive and at worst infeasible for large data. Topic

models provide a solution where domains can be automatically induced from raw

data: treat each topic as a domain.1

5.1.2 Inducing Domains with Topic Models

Topic models take the number of topics K and a collection of documents as

input, where each document is a bag of words. They output two distributions: a

distribution over topics for each document d; and a distribution over words for each

topic. If each topic defines a smt domain, the document’s topic distribution is a soft

domain assignment for that document.

Given the soft domain assignments, Eidelman et al (2012) extract lexical

1Henceforth we will use the term “topic” and “domain” interchangeably: “topic” to refer to the
concept in topic models and “domain” to refer to smt corpora.

97



weighting features conditioned on the topics, optimizing feature weights using the

Margin Infused Relaxed Algorithm (Crammer et al, 2006, mira). The topics come

from source documents only and create topic-specific lexical weights from the per-

document topic distribution p(k | d). The lexical probability conditioned on the topic

is expected count ek(e, f) of a word translation pair under topic k,

ĉk(e, f) =
∑

d p(k|d)cd(e, f), (5.2)

where cd(•) is the number of occurrences of the word pair in document d. The lexical

probability conditioned on topic k is the unsmoothed probability estimate of those

expected counts

pw(e|f ; k) = ĉk(e, f)/
∑

e ĉk(e, f), (5.3)

from which we can compute the lexical weight of this phrase pair pw(ē|f̄ ; a, k) given

a word alignment a(Koehn et al, 2003):

pw(ē|f̄ ; a, k) =
n∏

i=1

1

{|j|(i, j) ∈ a}|
∑

∀(i,j)∈a

pw(ei|fj; k) (5.4)

where i and j are the word positions in target phrase ē and source phrase f̄ respec-

tively.

For a test document d, the document topic distribution p(k | d) is inferred based

on the topics learned from training data. The lexical weight feature of a phrase pair

98



(ē, f̄) is,

fk(ē|f̄) = − log
{
pw(ē|f̄ ; k) · p(k|d)

}
, (5.5)

a combination of the topic dependent lexical weight and the topic distribution of the

document, from which we extract the phrase.

Given the topic-adapted features, Eidelman et al (2012) compute the resulting

model score by combining these adapted features in a linear model with other

standard smt features and optimizing the weights:

∑

p

λpfp(ē, f̄)

︸ ︷︷ ︸
standard features

+
∑

k

λkfk(ē|f̄)

︸ ︷︷ ︸
adapted features

(5.6)

These adapted features allow us to bias the translations according to the topics. For

example, if topic k is dominant in a test document, the feature fk(ē|f̄) will be large,

which may bias the decoder to a translation that has small value of the standard

feature fp(ē|f̄). In addition, combining the adapted features with the standard

features makes this model more flexible. For a test document with less clear topics,

the topic distribution will tend toward being fairly uniform. In this case, the topic

features will contribute less to the translation results and the standard features will

dominate the translation results.

Conceptually, this approach is just reweighting examples. The probability of

a topic given a document is never zero. Every translation observed in the training

set will contribute to pk(e|f); many of the expected counts, however, will be less

99



than one. This obviates the explicit smoothing used in other domain adaptation

systems (Chiang et al, 2011).

We adopt this framework in its entirety. Our contribution are topics that

capture multilingual information and thus better capture the domains in the parallel

corpus. To extract better multilingual topics, we use the existing multilingual

knowledge resources such as bilingual dictionaries as the prior knowledge, which can

also be obtained from users in an interactive setting.

5.1.3 Beyond Vanilla Topic Models

Eidelman et al (2012) ignore a wealth of information that could improve topic

models and help machine translation. Namely, they only use monolingual data from

the source language, ignoring all target-language data and available lexical semantic

resources between source and target languages.

Different languages complement each other to reduce ambiguity. For example,

“木马” in a Chinese document can be either “hobbyhorse” in a children’s topic, or

“Trojan virus” in a technology topic. A short Chinese context obscures the true topic.

However, these terms are unambiguous in English, revealing the true topic.

While vanilla topic models (lda) can only be applied to monolingual data,

there are a number of topic models for parallel corpora: Zhao and Xing (2006)

assume aligned word pairs share same topics; Mimno et al (2009) connect different

languages through comparable documents. These models take advantage of word

or document alignment information and infer more robust topics from the aligned

100



dataset.

On the other hand, lexical information can induce topics from multilingual

corpora. For instance, orthographic similarity connects words with the same meaning

in related languages (Boyd-Graber and Blei, 2009), and dictionaries are a more

general source of information on which words share meaning (Boyd-Graber and

Resnik, 2010).

These two approaches are not mutually exclusive, however; they reveal different

connections across languages. In the next section, we combine these two approaches

into a polylingual tree-based topic model.

5.2 Polylingual Tree-based Topic Models

In this section, we bring existing tree-based topic models (Boyd-Graber et al,

2007, tlda) and polylingual topic models (Mimno et al, 2009, plda) together

and create the polylingual tree-based topic model (ptlda) that incorporates both

word-level correlations and document-level alignment information.

Word-level Correlations As introduced in Chapter 2, tree-based topic models

incorporate the positive correlations between words by encouraging words that appear

together in a concept to have similar probabilities given a topic.2 These concepts can

come from WordNet (Boyd-Graber and Resnik, 2010), domain experts (Andrzejewski

et al, 2009), or user constrains (Hu et al, 2013, Chapter 4). When we gather concepts

from bilingual resources, these concepts can connect different languages. For example,

2One positive correlation is built on words in a concept. We use “concept” instead of “positive
correlation” in this chapter.

101



if a bilingual dictionary defines “电脑” as “computer”, we combine these words in a

concept.

These concepts (positive correlations) are organized into a prior tree structure

as in Chapter 2. As Figure 5.1 shows, words in the same concept share a common

parent node, and then that concept becomes one of many children of the root node.

Words that are not in any concept—uncorrelated words—are directly connected

to the root node.

When this tree serves as a prior for topic models, words in the same concept

are positively correlated in topics (Chapter 2). For example, if “电脑” has high

probability in a topic, so will “computer”, since they share the same parent node.

With the tree priors, each topic is no longer a distribution over word types; instead,

it is a distribution over paths, and each path is associated with a word type. The

same word could appear in multiple paths, and each path represents a unique sense

of this word.

Document-level Alignments Lexical resources connect languages and help guide

the topics. However, these resources are sometimes brittle and may not cover the

whole vocabulary. Aligned document pairs provide a more corpus-specific, flexible

association across languages.

Landauer and Littman (1990) connect documents in different languages by

projecting both documents to a shared latent semantic indexing space. Similarly,

polylingual topic models (Mimno et al, 2009) assume that the aligned documents in

different languages share the same topic distribution and each language has a unique

102



topic distribution over its word types. This level of connection between languages

is flexible: instead of requiring the exact matching on words and sentences, only a

coarse document alignment is necessary, as long as the documents discuss the same

topics.

Combine Words and Documents We introduce polylingual tree-based topic

models (ptlda), which connect information across different languages by incorporat-

ing both word correlation (as in tlda) and document alignment information (as in

plda). We initially assume a given tree structure, deferring the tree’s provenance to

the end of this section.

Generative Process As in lda, each word token is associated with a topic.

However, tree-based topic models introduce an additional step of selecting a concept

in a topic responsible for generating each word token. This is represented by a path

yd,n through the topic’s tree.

The probability of a path in a topic depends on the transition probabilities in a

topic. Each concept i in topic k has a distribution over its children nodes is governed

by a Dirichlet prior: πk,i ∼ Dir(βi). Each path ends in a word (i.e., a leaf node) and

the probability of a path is the product of all of the transitions between topics it

traverses. Topics have correlations over words because the Dirichlet parameters can

encode positive or negative correlations (Andrzejewski et al, 2009).

With these correlated in topics in hand, the generation of documents is very

similar to lda. For every document d, we first sample a distribution over topics θd

103



Algorithm 5 Generative Process for ptlda
1: for topic k ∈ 1, · · · ,K do
2: for each internal node ni do
3: draw a distribution πki ∼ Dir(βi)
4: for document set d ∈ 1, · · · , D do
5: draw a distribution θd ∼ Dir(α)
6: for each word in documents d do
7: choose a topic zdn ∼ Mult(θd)
8: sample a path ydn with probability

∏
(i,j)∈ydn πzdn,i,j

9: ydn leads to word wdn in language ldn
10: append token wdn to document dldn

from a Dirichlet prior Dir(α). For every token in the documents, we first sample a

topic zdn from the multinomial distribution θd, and then sample a path ydn along

the tree according to the transition distributions specified by topic zdn. Because

every path ydn leads to a word wdn in language ldn, we append the sampled word wdn

to document dldn . Aligned documents have words in both languages; monolingual

documents only have words in a single language.

The full generative process is shown in Algorithm 5.

If we use a flat symmetric Dirichlet prior instead of the tree prior, we recover

plda; and if all documents are monolingual (i.e., with distinct distributions over

topics θ), we recover tlda. ptlda connects different languages on both the word level

(using the word correlations) and the document level (using the document alignments).

We compare these models’ machine translation performance in Section 5.4.

Build Prior Tree Structures One remaining question is the source of the word-

level connections across languages for the tree prior. We consider two resources

to build trees that correlate words across languages. The first is multilingual

dictionaries (dict), which match words with the same meaning in different languages

104



computer, ��
market, 市�
government, 政府
science, 科学

Dictionary: Vocabulary: English (0), Chinese (1)

computer �� market 市� government 政府 science 科学

天气scientific policy

0    scientific
0    policy
1    ��
1    市�

0    computer  
0    market
0    government
0    science

1    政府
1    科学
1    天气

Prior Tree:  0  1

Figure 5.1: An example of constructing a prior tree from a bilingual dictionary: word
pairs with the same meaning but in different languages are concepts; we create a
common parent node to group words in a concept, and then connect to the root;
uncorrelated words are connected to the root directly. Each topic uses this tree
structure as a prior.

together. These relations between words are used as the concepts (Bhattacharya,

2006) in the prior tree (Figure 5.1).

In addition, we extract the word alignments from aligned sentences in a parallel

corpus. The word pairs define concepts for the prior tree (align). We use both

resources for our models (denoted as ptlda-dict and ptlda-align) in our experiments

(Section 5.4) and show that they yield comparable performance in smt.

5.3 Inference

Inference of probabilistic models discovers the posterior distribution over latent

variables. The first choice is Gibbs sampling (Neal, 1993), which is basically the

same as what we have discussed in Chapter 2 and Chapter 3, thus it is omitted in

this chapter to avoid duplication.

105



A second choice is variational Bayesian inference (Blei et al, 2003b, vb), which

also produces good approximations of the posterior mode (Asuncion et al, 2009) as

Gibbs sampling. In addition, Mimno et al (2012) propose hybrid inference that takes

advantage of parallelizable variational inference for global variables (Wolfe et al,

2008) while enjoying the sparse, efficient updates for local variables (Neal, 1993).

The variational inference and the hybrid inference for polylingual tree-based

topic models are derived and developed in collaboration with Ke Zhai, who also

parallelized variational inference using hadoop MapReduce. The equations for

variational inference are attached in Appendix C. More details can be found in Hu

et al (2014).

5.4 Experiments

We evaluate our new topic model, ptlda, and existing topic models—lda,

plda, and tlda—on their ability to induce domains for machine translation and the

resulting quality of the translations using standard machine translation metrics.

Dataset and smt Pipeline We use the nist mt Chinese-English parallel corpus

(nist), excluding non-un and non-hk Hansards portions as our training dataset. It

contains 1.6M sentence pairs, with 40.4M Chinese tokens and 44.4M English tokens.

We replicate the smt pipeline of Eidelman et al (2012): word segmentation (Tseng

et al, 2005), align (Och and Ney, 2003), and symmetrize (Koehn et al, 2003) the

data. We train a modified Kneser-Ney trigram language model on English (Chen and

Goodman, 1996). We use cdec (Dyer et al, 2010) for decoding, and mira (Crammer

106



et al, 2006) for parameter training. To optimize SMT system, we tune the parameters

on nist mt06, and report results on three test sets: mt02, mt03 and mt05.3

Topic Models Configuration We compare our polylingual tree-based topic

model (ptlda) against tree-based topic models (tlda), polylingual topic mod-

els (plda) and vanilla topic models (lda).4 We also examine different inference

algorithms—Gibbs sampling (gibbs), variational inference (variational) and a hy-

brid approach (variational-hybrid)—on the effects of smt performance. In all

experiments, we set the per-document Dirichlet parameter α = 0.01 and the number

of topics to 10, as used in Eidelman et al (2012).

Resources for Prior Tree To build the tree for tlda and ptlda, we extract the

word correlations from a Chinese-English bilingual dictionary (Denisowski, 1997).5

We filter the dictionary using the nist vocabulary, and keep entries mapping single

Chinese and single English words. The prior tree has about 1000 word pairs (dict).

We also extract the bidirectional word alignments between Chinese and English

using giza++ (Och and Ney, 2003). We then remove the word pairs appearing

more than 50K times or fewer than 500 times and construct a second prior tree with

about 2500 word pairs (align).

We apply both trees to tlda and ptlda, denoted as tlda-dict, tlda-align,

ptlda-dict, and ptlda-align. However, tlda-align and ptlda-align do worse than

3The nist datasets contain 878, 919, 1082 and 1664 sentences for mt02, mt03, mt05 and mt06
respectively.

4For Gibbs sampling, we use implementations available in Hu and Boyd-Graber (2012) for tlda;
and Mallet (McCallum, 2002) for lda and plda.

5This is a two-level tree structure. However, one could build a more sophisticated tree prior
with a hierarchical dictionary such as multilingual WordNet.

107



gibbs variational variational−hybrid

34.8 +0.3 +0.6 +0.4
+1.2

+0.5

35.1 +0.1 +0.3 +0.2
+0.7 +0.4

31.4 +0.4 +0.7 +0.4
+1

+0.4

34.8 +0.4 +0.5 +0.4 +0.8 +0.5

35.1 −0.1 +0.2 −0.1 +0.2 +0.2

31.4 +0.3 +0.5 +0.3
+0.8 +0.4

34.8 +0.2 +0.4 +0.2
+0.7 +0.4

35.1 −0.1 −0.1 −0.1 +0.2 +0.2

31.4 +0.3 +0.3 +0.1 +0.6 +0.3

31
32
33
34
35
36
37

31
32
33
34
35
36
37

31
32
33
34
35
36
37

m
t02

m
t03

m
t05

B
LE

U
 S

co
re

model baseline LDA pLDA ptLDA−align ptLDA−dict tLDA−dict

gibbs variational variational−hybrid

61.9 −0.1
−1 −1.2

−2.5
−1.1

60.1 −0.3 −0.9 −0.8
−1.9

−0.9

63.3
−0.9 −1.3 −1.2

−2.6
−1.1

61.9 −0.4 −1 −0.6
−1.6 −1.3

60.1 −0.2 −0.5 −0.1 −1 −0.7

63.3 −0.5 −1 −0.4
−1.5 −1.2

61.9 −0.3 −0.7 −0.1
−1.6 −0.9

60.1 0 −0.2 +0.2
−1.1 −0.5

63.3 −0.4 −0.7 −0.1
−1.6 −0.8

56
58
60
62
64
66

56
58
60
62
64
66

56
58
60
62
64
66

m
t02

m
t03

m
t05

T
E

R
 S

co
re

model baseline LDA pLDA ptLDA−align ptLDA−dict tLDA−dict

Figure 5.2: Machine translation performance for different models and inference
algorithms against the baseline, on bleu (top, higher the better) and ter (bottom,
lower the better) scores. Our proposed ptlda performs best. Results are averaged
over 5 random runs. For model ptlda-dict with different inference schemes, the
bleu improvement on three test sets is mostly significant with p = 0.01, except the
results on mt03 using variational and variational-hybrid inferences.

tlda-dict and ptlda-dict, so we omit tlda-align in the results.

Domain Adaptation using Topic Models We examine the effectiveness of

using topic models for domain adaptation on standard smt evaluation metrics—

bleu (Papineni et al, 2002) and ter (Snover et al, 2006). We report the results on

three different test sets (Figure 5.2), and all smt results are averaged over five runs.

We refer to the smt model without domain adaptation as baseline.6 lda

marginally improves machine translation (less than half a bleu point). Polylingual

6Our replication of Eidelman et al (2012) yields slightly higher baseline performance, but the
trend is consistent.

108



topic models plda and tree-based topic models tlda-dict are consistently better than

lda, suggesting that incorporating additional bilingual knowledge improves topic

models. These improvements are not redundant: our new ptlda-dict model, which

has aspects of both models yields the best performance among these approaches—up

to a 1.2 bleu point gain (higher is better), and -2.6 ter improvement (lower is

better). The bleu improvement is significant (Koehn, 2004) at p = 0.01,7 except on

mt03 with variational and variational-hybrid inference.

While ptlda-align performs better than baseline smt and lda, it is worse

than ptlda-dict, possibly because of errors in the word alignments, making the tree

priors less effective.

One thing that we didn’t compare directly in Figure 5.2 is to treat the bilingual

dictionary as additional training data or knowledge base, and then train the trans-

lation system. However, knowledge-based machine translation systems (Nirenburg,

1989) do not work as well as statistical machine translation systems. In addition,

the ptlda-align, which doesn’t have extra information other than training data, also

performs better than the current baseline. This shows that topic models do improve

translation results, even without extra dictionary information.

Scalability While gibbs has better translation scores than variational and

variational-hybrid, it is less scalable to larger datasets. With 1.6M nist training

sentences, gibbs takes nearly a week to run 1000 iterations. In contrast, the par-

allelized variational and variational-hybrid approaches, which we implement in

7Because we have multiple runs of each topic model (and thus different translation models), we
select the run closest to the average bleu for the translation significance test.

109



MapReduce (Dean and Ghemawat, 2004; Wolfe et al, 2008; Zhai et al, 2012), take

less than a day to converge.

5.5 Discussion

In this section, we qualitatively analyze the translation results and investigate

how ptlda and its cousins improve smt. We also discuss other approaches to improve

unsupervised domain adaptation for smt.

5.5.1 How do Topic Models Help smt?

We present two examples of how topic models can improve smt. The first

example shows both lda and ptlda improve the baseline. The second example

shows how lda introduce biases that mislead smt and how ptlda’s bilingual

constraints correct these mistakes.

Figure 5.3 shows a sentence about a company introducing new technology

gadgets where both lda and ptlda improve translations. The baseline translates

“套件” to “set” (red), and “相容” to “with” (blue), which do not capture the reference

meaning of a add-on device that works with compatible games. Both lda and ptlda

assign this sentence to a business domain, which makes the translations probabilities

shift toward correct translations: the probability of translating “相容” to “compatible”

and the probability of translating “套件” to “kit” in the business domain are both

significantly larger than without the domain knowledge; and the probabilities of

translating “相容” to “with” and the probability of translating “set” to “套件” in

110



source 新力已在北美地区售出大��
����������� , 每套售价�

reference sony has already sold about 570,000 units of narrowband connection 
kits in north america at the price of about 39 us dollars and some 20 
compatible games .

baseline
LDA
ptLDA

… internet links set ...
… internet links kit … 
… internet links kit …  

… with about 20 of the game .
… , there are about 20 compatible games .
… , there are about 20 compatible games .

source … ������ ... … 相容游���
���

LDA-Topic 0 (business)

ptLDA-Topic 0 (business)
reference … connection kits ... … some 20 compatible games .

�
��	, 相容游���
�� 公司(company), 中国(China), 服�(service), 市�
(market), 技�(technology), 企�(industry), 提供
(provide), ��(develop), 年(year), �
(product), 
上, 合作(coorporate), 中, 管理(manage), 投�
(invest), ��(economy), 国�(international), 系
(system), ��(bank)

公司(company), 服�(service), 市�(market), 技
�(technology), china, 企�(industry), �

(product), market, company, technology, services, 
系(system), year, industry, products, business, �
�(economy), information, 管理(manage), 投�
(invest), percent, 网	(internet), companies, world, 
system, 信息(information), 增�(increase), ��
(device), service, ��(service)

Figure 5.3: Better smt result using topic models for domain adaptation. Top
row: the source sentence and its reference translation. Middle row: the highlighted
translations from different approaches. Bottom row: the change of relevant translation
probabilities after incorporating the domain knowledge from lda and ptlda. Right:
most-probable words of the topic the source sentence is assigned to under lda (top)
and ptlda (bottom). The Chinese translations are in parenthesis.

the business domain decrease.

The second example (Figure 5.4) illustrates how ptlda offers further im-

provements over lda. The source sentence discusses foreign affairs. The base-

line correctly translates the word “影响” to “affect”. However, lda—which only

takes monolingual information from the source language—assigns this sentence to

economic development. This misleads smt to lower the probability for the correct

translation “affect”; it chooses “impact” instead. In contrast, ptlda—which incor-

porates bilingual constraints—successfully labels this sentence as foreign affairs and

produces a softer, more nuanced translation that better matches the reference. The

translation of “承诺” is very similar, except in this case, both the baseline and lda

produce the incorrect translation “the commitment of”. This is possible because the

probabilities of translating “承诺” to “promised to” and translating “promised to”

to “承诺” (the correct translation, in both directions) increase when conditioned on

ptlda’s correct topic but decrease when conditioned on lda’s incorrect topic.

111



source 消息指出, �国使�人�向中方官�表示, �国方面并没有支持朝�人以�种方法前往�国, �国并不希望�类事件再次
�生, 以免�中国和朝�半�双方�的关系�来影响, �国方面并向中国方面承�, 愿意�助中国管理好在京的�国居民

reference sources said rok embassy personnel told chinese officials that rok has not backed any dpr koreans to get to rok in such a manner 
and rok would not like such things happen again to affect relationship between china and the two sides of the korean peninsula . 
rok also promised to assist china in the administration of koreans in beijing .

baseline
LDA
ptLDA

… does not want ...
… does not hope that ... 
… does not hope that ...

source … 不希望 ...

LDA-Topic 5 (economic development) ptLDA-Topic 2 (foreign affairs)

… so as to avoid impact the relations… 
… so as not to affect the relations…  

… so as not to affect the relations… … south korea and the commitment of the chinese side ...
… the rok side , and the commitment of the chinese side ...
… south korea has promised to the chinese side ...

… 以免�...关系�来影响... … �国方面并向中国方面承�…
reference … would not like ... … to affect the relationship … … rok also promised to the chinese side ...

��(develop), 国(country), 两(two), 中国(China), 关系(relation), 
中, 合作(cooperate), �
(economy), 人民(people), 友好(friendly), 
国家(country), 新(new), ��(problem), 上, 加强(emphasize), 重要
(important), 和平(peace), 共同(together), 建�(build), 世界(world)

china, ��(issue), military, united, president, 国家(country), 地区(area), minister, 伊
拉克(Iraq), 和平(peace), nuclear, people, ��(president), peace, security, �	�
(UN), �(military), 以色列(Israel), iraq, foreign, international, 部�(army), beijing, 
world, defense, south, 安 全(security), war, ��(agreement), 会�(conference)

Figure 5.4: Better smt result using ptlda compared to lda and the baseline. Top
row: the source sentence and a reference translation. Second row: the highlighted
translations from different models. Third row: the change of relevant translation
probabilities after incorporating domain knowledge from lda and ptlda. Bottom
row: most-probable words for the topics the source sentence is assigned to under
lda (left) and ptlda (right). The meanings of Chinese words are in parenthesis.

5.5.2 Other Approaches

Other approaches have used topic models for machine translation. Xiao et al

(2012) present a topic similarity model based on lda that produces a feature that

weights grammar rules based on topic compatibility. They also model the source and

target side of rules and compare the target similarity during decoding by projecting

the target distribution into the source space. Hasler et al (2012) use the source-side

topic assignments from hidden topic Markov models (Gruber et al, 2007, htmm)

which model documents as a Markov chain and assign one topic to the whole sentence,

instead of a mixture of topics. Su et al (2012) also apply htmm to monolingual data

and apply the results to machine translation. To our knowledge, however, this is

the first work to use multilingual topic models for domain adaptation in machine

translation.

112



In addition to topic models, Kuhn et al (2010) cluster the phrases in both source

and target languages based on the information in the phrase table, and compute

the phrase probabilities based on the probabilities of phrase clusters and the phrase

probability within that cluster. However, this is still limited to local context. Our

model provides a more flexible to connect source and target languages and capture

global context information.

5.5.3 Improving Language Models

Topic models capture document-level properties of language, but a critical

component of machine translation systems is the language model, which provides

local constraints and preferences. Domain adaptation for language models (Belle-

garda, 2004; Wood and Teh, 2009) is an important avenue for improving machine

translation. Models that simultaneously discover global document themes as well as

local, contextual domain-specific information (Wallach, 2006; Boyd-Graber and Blei,

2008) may offer further improvements.

5.5.4 External Data

The topic models presented here only require weak alignment between doc-

uments at the document level. Extending to larger datasets for learning topics

is straightforward in principle. For example, ptlda could learn domains from a

much larger corpus like Wikipedia and then apply the extracted domains to machine

translation data. However, this presents further challenges, as Wikipedia’s domains

113



are not representative of newswire machine translation datasets; a flexible hierar-

chical topic model (Teh et al, 2006) would better distinguish useful domains from

extraneous ones.

5.6 Summary

Topic models generate great interest, but their use in “real world” applications

still lags; this is particularly true for multilingual topic models. As topic models

become more integrated in commonplace applications, their adoption, understanding,

and robustness will improve.

This chapter contributes to the deeper integration of topic models into critical

applications by presenting a new multilingual topic model, ptlda, comparing it with

other multilingual topic models on a machine translation task, and showing that

these topic models improve machine translation. Further improvement is possible

by incorporating topic models deeper in the decoding process and adding domain

knowledge to the language model (Botha et al, 2012).

In this chapter, ptlda models both source and target data to induce domains

from using existing knowledge resources like bilingual dictionaries or data alignments.

This can be further extended to an interactive setting and obtain there prior knowl-

edge (concepts knowledge) from users as in Chapter 4. These users are not limited

to bilingual speaker only, and the prior knowledge from monolingual users can be

combined with existing knowledge to aid smt.

So far, we assume that we can get the prior knowledge either from users or from

114



existing knowledge resources and then apply the prior knowledge to probabilistic

models. When these prior knowledge sources are not available, we can automatically

learn the prior tree structure by Bayesian hieararchical clustering techniques as

introduced in next Chapter (Chapter 7).

115



Chapter 6

Regularized Anchor Methods for Topic Models to Encode Priors

All the topics models that we have discussed so far are formulated as latent

variable models, including the vanilla topic models and tree-based topic models in

Chapter 2, efficient tree-based topic models (Chapter 3), interactive topic model-

ing (Chapter 4), and polylingual tree-based topic models (Chapter 5). Posterior

inference discovers the hidden variables that best explain a dataset. Typical solutions

use mcmc (Griffiths and Steyvers, 2004, Chapter 2, 3) or variational em (Blei et al,

2003b), which can be viewed as local optimization: searching for the latent variables

that maximize the data posterior distributions.

An exciting vein of new research provides provable polynomial-time alternatives.

These approaches provide solutions to hidden Markov models (Anandkumar et al,

2012c), mixture models (Kannan et al, 2005), latent variable grammars (Cohen et al,

2013), and topic models (Arora et al, 2012b; Ding et al, 2013b). The key insight is

not to directly optimize observation likelihood but to instead discover latent variables

that can reconstruct statistics of the assumed generative model. Unlike search-based

methods, which can be caught in local minima, these techniques are often guaranteed

to find global optima.

Despite their advantages, these techniques are not a panacea. They do not

accommodate the rich priors that modelers have come to expect. Priors can improve

116



performance (Wallach et al, 2009), provide domain adaptation (Daumé III, 2007;

Finkel and Manning, 2009), and guide models to reflect users’ needs (Chapter 4).

Another shortcoming is that these models have not been scrutinized using

standard nlp evaluations. Because these approaches emerged from the theory

community, these evaluations, when present, typically use training reconstruction.

In this chapter, we regularize the anchor method (Arora et al, 2012b) to

trade-off the reconstruction fidelity with penalty terms that mimic Gaussian and

Dirichlet priors. We show that our regularized models can generalize to previously

unseen data—as measured by held-out likelihood (Blei et al, 2003b)—and are more

interpretable (Chang et al, 2009; Newman et al, 2010), which is the same as the goal

of adding prior knowledge to topics models. We also show that our extension to

the anchor method enables new applications: for example, using informed priors to

discover concepts of interest.

6.1 Anchor Words: Scalable Topic Models

Arora et al (2012b) propose a new inference scheme for topic models by assuming

that each topic has a unique “anchor” word (thus, we call this approach anchor).

This approach is fast and obtains a global optimum with theoretical guarantees;

because it only uses word co-occurrence information, it can scale to much larger

datasets than mcmc or em alternatives.

In this section, we briefly review the anchor method, which includes selecting

anchor words and recovering topics. Once we have established the anchor objective

117



K number of topics
V vocabulary size
M document frequency: minimum documents an anchor word

candidate must appear in
Q word co-occurrence matrix Qi,j = p(w1 = i, w2 = j)
Q̄ conditional distribution of Q Q̄i,j = p(w1 = j |w2 = i)
Q̄i,· row i of Q̄
A topic matrix, of size V ×K Aj,k = p(w = j | z = k)
C anchor coefficient of size K × V Cj,k = p(z = k |w = j)
S set of anchor word indexes {s1, . . . sK}
λ regularization weight

Table 6.1: Notation used. Matrices are in bold (Q,C), sets are in script S. Note
that we change the topic matrix notation from π to A in this chapter.

function, in the next section we regularize the objective function.

Rethinking Data: Word Co-occurrence Inference in topic models can be

viewed as a black box: given a set of documents, discover the topics that best

explain the data. The difference between anchor and conventional inference is that

while conventional methods take a collection of documents as input, anchor takes

word co-occurrence statistics. Given a vocabulary of size V , we represent this joint

distribution as Qi,j = p(w1 = i, w2 = j), where each cell represents the probability

of words appearing together in a document.

Like other topic modeling algorithms, the output of the anchor method is

the topic word distributions A with size V ∗ K, where K is the total number of

topics desired, a parameter of the algorithm. The kth column of A will be the topic

distribution over all words for topic k, and Aw,k is the probability of observing type

w given topic k.

118



Anchors: Topic Representatives The anchor method (Arora et al, 2012a) is

based on the separability assumption (Donoho and Stodden, 2003), which assumes

that each topic contains at least one namesake “anchor word” that has non-zero

probability only in that topic. Intuitively, this means that each topic has unique,

specific word that, when used, identifies that topic. For example, while “run”, “base”,

“fly”, and “shortstop” are associated with a topic about baseball, only “shortstop” is

unambiguous, so it could serve as this topic’s anchor word.

Thus the first step of the anchor method is to select the anchor words. Given

infinite data, the convex hull of the rows in Q̄ will be a simplex where the vertices

of this simplex correspond to the anchor words (Arora et al, 2012a). Given V

data points in Q̄ which define a simplex, the goal is to find an approximation to

the vertices of this simplex. Arora et al (2012a) propose to iteratively find the

furthest point from the subspace spanned by the anchor words so far to approximate

the anchor words. This algorithm avoids the linear programming altogether and

efficiently finds the approximation of the anchor words. More details can be found

in Arora et al (2012a).

The next step of the anchor method is to recover the topic matrix A given

the anchor words. Let’s assume that we knew what the anchor words were: a set S

that indexes rows in Q. Now consider the conditional distribution of word i, the

probability of the rest of the vocabulary given an observation of word i; we represent

this as Q̄i,·, as we can construct this by normalizing the rows of Q. For an anchor

word sa ∈ S, this will look like a topic; Q̄“shortstop”,· will have high probability for

words associated with baseball.

119



The key insight of the anchor algorithm is that the conditional distribution

of polysemous non-anchor words can be reconstructed as a linear combination

of the conditional distributions of anchor words. For example, Q̄“fly”,· could be

reconstructed by combining the anchor words “insecta”, “boeing”, and “shortshop”.

We represent the coefficients of this reconstruction as a matrix C, where Ci,k =

p(z = k |w = i). Thus, for any word i,

Q̄i,· ≈
∑

sk∈S

Ci,kQ̄sk,·. (6.1)

The coefficient matrix is not the usual output of a topic modeling algorithm (For

example, Algorithm 1 and Algorithm 2 in Chapter 3). The usual output is the

probability of a word given a topic. The coefficient matrix C is the probability of a

topic given a word. We use Bayes rule to recover the topic distribution

p(w = i|z = k) ≡ Ai,k ∝ p(z = k|w = i)p(w = i) = Ci,k
∑

j

Q̄i,j (6.2)

where p(w) is the normalizer of Q to obtain Q̄w,·.

As a result, the problem in second step is changed from recovering topic matrix

A to finding the coefficients C that best reconstruct the data Q̄ (Equation 6.1). Arora

et al (2012a) chose the C that minimizes the kl divergence between Q̄i,· and the

reconstruction based on the anchor word’s conditional word vectors
∑

sk∈S Ci,kQ̄sk,·,

Ci,· = argminCi,·DKL

(
Q̄i,· ||

∑

sk∈S

Ci,kQ̄sk,·

)
. (6.3)

120



Recovering the coefficients C is very efficient, as it only depends on the size of

the vocabulary once the co-occurrence statistics Q are obtained, then we can easily

recover the topic matrix A using Equation 6.2.

Problems While the anchor algorithm is very efficient, it does not support rich

priors for topic models, while mcmc (Griffiths and Steyvers, 2004) and variational

em (Blei et al, 2003b) methods can. This prevents models from using priors to guide

the models to discover particular themes (Zhai et al, 2012), or to encourage sparsity

in the models (Yao et al, 2009).

In the rest of this chapter, we correct this lacuna by adding regularization

to find better coefficient matrix C in the anchor algorithm. This is inspired by

Bayesian priors. We keep the first step—the anchor selection subroutine (Arora et al,

2012a)—unchanged. The difference in our approach is in how we discover the anchor

coefficients C.

Related Work Besides traditional topic models such as Latent Dirichlet Alloca-

tion (Blei et al, 2003b; Griffiths and Steyvers, 2004), different spectral algorithms

for topic models have also been developed recently.

Anandkumar et al (2012a) develop a novel spectral algorithm for topic models

based on moments, and Anandkumar et al (2012b) further improve the algorithm

by doing two singular decompositions based on second and third moments. This

algorithm is expensive to find the higher order of moments and compute singular

decomposition for large matrices. However, the anchor method by Arora et al (2012a)

121



only takes the co-occurrence matrix (second moment) as the input, and avoids

singular decomposition by doing a reconstruction optimization.

Ding et al (2013b) discover topics also based on the separability assumption

as Arora et al (2012a). Instead of taking the co-occurrence matrix (size V × V ) as

inputs, they associate each word with a D-dimensional vector, where D is the number

of documents, and use the matrix X (size V ×D)—made by these D-dimensional

vectors for V words—as inputs. Then they use a clustering algorithm to figure

out K groups of anchor words (named as novel words in Ding et al (2013b)), and

recover the topics by reconstructing word vectors using the vectors of anchor words.

One issue with their algorithm is D can be very large in practice, which may cause

computation problems, thus Ding et al (2014) further scale it up. Another problem

is, like the anchor method, Ding et al (2013b) do not consider priors in optimization,

and Ding et al (2013a) only consider the L∞ regularization to encourage the sparsity.

We discuss different regularization in this chapter for the anchor methods, which can

also be used in Ding et al (2013b).

6.2 Adding Regularization

In this section, we add regularizers to the anchor objective (Equation 6.3).

We briefly review regularizers and then add two regularizers, inspired by Gaussian

(L2, Section 6.2.1) and Dirichlet priors (Beta, Section 6.2.2), to the anchor objective

function (Equation 6.3).

Regularization terms are ubiquitous. They typically appear as an additional

122



term in an optimization problem. Instead of optimizing a function just of the data

x and parameters β, f(x, β), one optimizes an objective function that includes a

regularizer that is only a function of parameters: f(w, β) + r(β). Regularizers are

critical in staid methods like linear regression (Ng, 2004), in workhorse methods such

as maximum entropy modeling (Dud́ık et al, 2004), and also in emerging fields such

as deep learning (Wager et al, 2013).

In addition to being useful, regularization terms are appealing theoretically

because they often correspond to probabilistic interpretations of parameters. For

example, if we are seeking the mle of a probabilistic model parameterized by

β, p(x|β), adding a regularization term r(β) =
∑L

i=1 β
2
i corresponds to adding a

Gaussian prior

f(βi) =
1√

2πσ2
exp

{
− β2

i

2σ2

}
(6.4)

and maximizing log probability of the posterior (ignoring constant terms) (Rennie,

2003).

6.2.1 L2 Regularization

The simplest form of regularization we can add is L2 regularization. This is

similar to assuming that probability of a word given a topic comes from a Gaussian

distribution. While the distribution over topics is typically Dirichlet, Dirichlet distri-

butions have been replaced by logistic normals in topic modeling applications (Blei

and Lafferty, 2005) and for probabilistic grammars of language (Cohen and Smith,

2009).

123



Augmenting the anchor objective with an L2 penalty yields

Ci,· =argminCi,·DKL

(
Q̄i,· ||

∑

sk∈S

Ci,kQ̄sk,·

)
+ λ‖Ci,· − µi,·‖2

2, (6.5)

where regularization weight λ balances the importance of a high-fidelity reconstruction

against the regularization, which encourages the anchor coefficients to be close to

the vector µ. When the mean vector µ is zero, this encourages the topic coefficients

to be zero. In Section 6.3.3, we use a non-zero mean µ to encode an informed prior

to encourage topics to discover specific concepts.

6.2.2 Beta Regularization

The more common prior for topic models is a Dirichlet prior (Minka, 2000).

However, we cannot apply this directly because the optimization is done on a row-

by-row basis of the anchor coefficient matrix C, optimizing C for a fixed word w

for and all topics. If we want to model the probability of a word, it must be the

probability of word w in a topic versus all other words.

Modeling this dichotomy (one versus all others in a topic) is possible. The

constructive definition of the Dirichlet distribution (Sethuraman, 1994) states that

if one has a V -dimensional multinomial θ ∼ Dir(α1 . . . αV ), then the marginal

distribution of θw follows θw ∼ Beta(αw,
∑

i 6=w αi). This is the tool we need to

consider the distribution of a single word’s probability.

This requires including the topic matrix as part of the objective function. The

topic matrix is a linear transformation of the coefficient matrix (Equation 6.2). The

124



objective for beta regularization becomes

Ci,· =argminCi,·DKL

(
Q̄i,· ||

∑

sk∈S

Ci,kQ̄sk,·

)
− λ

∑

sk∈S

log (Beta(Ai,k; a, b)), (6.6)

where λ again balances reconstruction against the regularization. To ensure the

tractability of this algorithm, we enforce a convex regularization function, which

requires that a > 1 and b > 1. If we enforce a uniform prior—EBeta(a,b)
[Ai,k] = 1

V
—

and that the mode of the distribution is also 1
V

,1 this gives us the following parametric

form for a and b:

a =
x

V
+ 1, and b =

(V − 1)x

V
+ 1 (6.7)

for real x greater than zero.

6.2.3 Initialization and Convergence

Equation 6.5 and Equation 6.6 are optimized using l-bfgs gradient optimiza-

tion (Galassi et al, 2003). We initialize C randomly from Dir(α) with α = 60
V

(Wallach et al, 2009). We update C after optimizing all V rows. The newly

updated C replaces the old topic coefficients. We track how much the topic coeffi-

cients C change between two consecutive iterations i and i+ 1 and represent it as

∆C ≡ ‖Ci+1 −Ci‖2. We stop optimization when ∆C ≤ δ. When δ = 0.1, the L2

and unregularized anchor algorithm converges after a single iteration, while beta

regularization typically converges after fewer than ten iterations (Figure 6.4).

1For a, b < 1, the expected value is still the uniform distribution but the mode lies at the bound-
aries of the simplex. This corresponds to a sparse Dirichlet distribution, which our optimization
cannot at present model.

125



●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

−392
−390
−388

−4720
−4710
−4700
−4690
−4680

−890.0
−887.5
−885.0
−882.5

20N
E

W
S

N
IP

S
N

Y
T

100 300 500 700 900
Document Frequency M

H
L 

S
co

re
●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

0.02
0.03
0.04
0.05
0.06
0.07

0.055
0.060
0.065

0.06
0.07
0.08
0.09
0.10

20N
E

W
S

N
IP

S
N

Y
T

100 300 500 700 900
Document Frequency M

T
I−

i S
co

re

Figure 6.1: Grid search for document frequency M for our datasets with 20 topics
(other configurations not shown) on development data. The performance on both
hl and ti score indicate that the unregularized anchor algorithm is very sensitive
to M . The M selected here is applied to subsequent models. For both hl and ti,
higher is better.

Corpus Train Dev Test Vocab
nips 1231 247 262 12182

20news 11243 3760 3726 81604
nyt 9255 2012 1959 34940

Table 6.2: The number of documents in the train, development, and test folds in our
three datasets.

6.3 Regularization Improves Topic Models

In this section, we measure the performance of our proposed regularized anchor

word algorithms. We will refer to specific algorithms in bold. For example, the

original anchor algorithm is anchor. Our L2 regularized variant is anchor-L2, and

our beta regularized variant is anchor-beta. To provide conventional baselines,

we also compare our methods against topic models from variational inference (Blei

et al, 2003b, variational) and mcmc (Griffiths and Steyvers, 2004; McCallum, 2002,

mcmc).

We apply these inference strategies on three diverse corpora: scientific articles

126



from the Neural Information Processing Society (nips),2 Internet newsgroups post-

ings (20news),3 and New York Times editorials (Sandhaus, 2008, nyt). Statistics

for the datasets are summarized in Table 6.2. We split each dataset into a training

fold (70%), development fold (15%), and a test fold (15%): the training data are used

to fit models; the development set are used to select parameters (anchor threshold

M , document prior α, regularization weight λ); and final results are reported on the

test fold.

We use two evaluation measures, held-out likelihood (Blei et al, 2003b, hl)

and topic interpretability (Chang et al, 2009; Newman et al, 2010, ti). Held-out

likelihood measures how well the model can reconstruct held-out documents that the

model has never seen before. This is the typical evaluation for probabilistic models.

Topic interpretability is a more recent metric to capture how useful the topics can

be to human users attempting to make sense of a large datasets.

Held-out likelihood cannot be computed with existing anchor algorithms,

so we use the topic distributions learned from anchor as input to a reference

variational inference implementation (Blei et al, 2003b) to compute hl. This requires

an additional parameter, the Dirichlet prior α for the per-document distribution over

topics. We select α using grid search on the development set.

To compute ti and evaluate topic coherence, we use normalized pairwise

mutual information (npmi) (Lau et al, 2014) over topics’ twenty most probable

words. Topic coherence is computed against the npmi of a reference corpus. For

2http://cs.nyu.edu/~roweis/data.html
3http://qwone.com/~jason/20Newsgroups/

127

http://cs.nyu.edu/~roweis/data.html
http://qwone.com/~jason/20Newsgroups/


coherence evaluations, we use both intrinsic and extrinsic text collections to compute

npmi. Intrinsic coherence (ti-i) is computed on training and development data at

development time and on training and test data at test time. Extrinsic coherence

(ti-e) is computed from English Wikipedia articles, with disjoint halves (1.1 million

pages each) for distinct development and testing ti-e evaluation.

6.3.1 Grid Search for Parameters on Development Set

Anchor Threshold A good anchor word must have a unique, specific context but

also explain other words well. A word that appears only once will have a very specific

cooccurence pattern but will explain other words’ coocurrence poorly because the

observations are so sparse. As discussed in Section 6.1, the anchor method uses

document frequency M as a threshold to only consider words with robust counts.

Because all regularizations benefit equally from higher-quality anchor words, we

use cross-validation to select the document frequency cutoff M using the unregularized

anchor algorithm. Figure 6.1 shows the performance of anchor with different M

on our three datasets with 20 topics for our two measures hl and ti-i.

Regularization Weight Once we select a cutoff M for each combination of

dataset, number of topics K and a evaluation measure, we select a regularization

weight λ on the development set. Figure 6.2 shows that beta regularization frame-

work improves topic interpretability ti-i on all datasets and improved the held-out

likelihood hl on 20news. The L2 regularization also improves held-out likelihood

hl for the 20news corpus (Figure 6.2).

128



Topics ● 20 40 60 80

Beta L2
●

● ● ● ● ●●●●●●
●

● ●
●

●●
●●

●

●
●

●
● ● ●●

●●●●

●
● ● ● ●

●●●●

● ● ● ● ● ●●●●●●

●
●

●
● ●●●●●

●
● ● ● ● ●●●●●● ● ● ● ● ●●●●●

● ● ● ● ● ●●●●●●
●

● ● ● ●●●●●

● ● ● ● ● ●●●●●●
● ● ● ● ●●●●●

−410
−405
−400
−395
−390

−4800
−4750
−4700
−4650

−920
−910
−900
−890
−880

20N
E

W
S

N
IP

S
N

Y
T

00.01 0.1 0.5 1 00.01 0.1 0.5 1
Regularization Weight λ

H
L 

S
co

re

Topics ● 20 40 60 80

Beta L2

●

●
● ●

● ●●●
●●● ●

●
●

●
●

●●
●

●

● ●
● ● ●

●
●●●●● ●

●

●

● ●

●

●●●

●
●

● ● ● ●●●●●● ● ● ●
● ●

●
●●●

● ● ● ●
● ●●●●●●

●
● ●

● ●
●●●●

●
●

● ● ● ●
●

●●●
●

●
●

● ● ●●●●
●

● ●
● ● ● ●●●●

●●
●

●
● ●

●●
●●

●

0.02
0.04
0.06
0.08
0.10

0.02
0.04
0.06
0.08

0.06
0.09
0.12
0.15

20N
E

W
S

N
IP

S
N

Y
T

0 0.01 0.1 0.5 1 0 0.01 0.1 0.5 1
Regularization Weight λ

T
I−

i S
co

re

Figure 6.2: Selection of λ based on hl and ti scores on the development set. For
both hl and ti, higher is better. The value of λ = 0 is equivalent to the original
anchor algorithm; regularized versions find better solutions as the regularization
weight λ becomes non-zero.

In the interests of brevity, we do not show the figures for selecting M and λ

using ti-e, which is similar to ti-i: anchor-beta improves ti-e score on all datasets,

anchor-L2 improves ti-e on 20news and nips with 20 topics and nyt with 40

topics.

6.3.2 Evaluating Regularization

With document frequency M and regularization weight λ selected from the

development set, we compare the performance of those models on the test set. We

also compare with standard implementations of Latent Dirichlet Allocation: Blei’s

ldac (variational) and Mallet (mcmc). We run 100 iterations for ldac and 5000

iterations for Mallet.

Each result is averaged over three random runs and appears in Figure 6.3. The

highly-tuned, widely-used implementations uniformly have better held-out likeli-

hood than anchor-based methods, but the much faster anchor methods are often

129



Algorithm ● anchor anchor−beta anchor−L2 MCMC variational

20NEWS

● ● ● ●

●
● ● ●

●
● ●

●

−410
−405
−400
−395
−390

0.03
0.04
0.05
0.06
0.07

0.06

0.08

0.10

H
L

T
I−

e
T

I−
i

20 40 60 80

topic number

NIPS

●

●
●

●

●
● ●

●

● ●
●

●

−4580
−4560
−4540
−4520
−4500
−4480
−4460

0.08

0.09

0.10

0.11

0.06

0.07

0.08

0.09

H
L

T
I−

e
T

I−
i

20 40 60 80

topic number

NYT

●
● ● ●

●

● ● ●

● ● ●
●

−880

−870

−860

0.07

0.08

0.09

0.08

0.10

0.12

0.14

H
L

T
I−

e
T

I−
i

20 40 60 80

topic number

Figure 6.3: Comparing anchor-beta and anchor-L2 against the original anchor
and the traditional variational and MCMC on hl score and ti score. For both
hl and ti, higher is better. variational and mcmc provide the best held-out
generalization. anchor-beta sometimes gives the best ti score and is consistently
better than anchor. The specialized vocabulary of nips causes high variance for
the extrinsic interpretability evaluation (ti-e).

comparable. Within anchor-based methods, L2-regularization offers comparable

held-out likelihood as unregularized anchor, while anchor-beta often has better

interpretability. Because of the mismatch between the specialized vocabulary of nips

and the general-purpose language of Wikipedia, ti-e has a high variance.

6.3.3 Informed Regularization

A frequent use of priors is to add information to a model. This is not possible

with the existing anchor method. An informed prior for topic models seeds a topic

with words that describe a topic of interest. In a topic model, these seeds will serve

as a “magnet”, attracting similar words to the topic (Zhai et al, 2012).

We can achieve a similar goal with anchor-L2. Instead of encouraging anchor

130



coefficients to be zero in Equation 6.5, we can instead encourage word probabilities

to be close to an arbitrary mean µi,k. This vector can reflect expert knowledge.

One example of a source of expert knowledge is Linguistic Inquiry and Word

Count (Pennebaker and Francis, 1999, liwc), a dictionary of keywords related to

a set of psychological concepts such as positive emotions, negative emotions, and

death. For example, it associates “excessive, estate, money, cheap, expensive, living,

profit, live, rich, income, poor, etc.” for the concept materialism.

We associate each anchor word with its closest liwc category based on the

cooccurrence matrix Q. This is computed by greedily finding the anchor word that

has the highest cooccurrence score for any liwc category: we define the score of a

category to anchor word wsk as
∑

iQsk,i, where i ranges over words in this category;

we compute the scores of all categories to all anchor words; then we find the highest

score and assign the category to that anchor word; we greedily repeat this process

until all anchor words have a category.

Given these associations, we create a goal mean µi,k. If there are Li anchor

words associated with liwc word i, µi,k = 1
Li

if this keyword i is associated with

anchor word wsk and zero otherwise.

We apply anchor-L2 with informed priors on nyt with twenty topics and

compared the topics against the original topics from anchor. Table 6.3 shows that

the topic with anchor word “soviet”, when combined with liwc, draws in the new

words “bush” and “nuclear”; reflecting the threats of force by Bush during the cold

war. For the topic with topic word “arms”, when associated with the liwc category

with the terms “agree” and “agreement”, draws in “clinton”, who represented a

131



Topic Shared Words Original (Top, green) vs. Informed L2 (Bottom, orange)

soviet
american make
president soviet
union war years

gorbachev moscow russian force economic world europe
political communist lead reform germany country
military state service washington bush army unite
chief troops officer nuclear time week

district
assembly board city
county district
member state york

representative manhattan brooklyn queens election bronx
council island local incumbent housing municipal
people party group social republican year make years
friend vote compromise million

peace
american force government israel
peace political president state
unite washington

war military country minister leaders na-
tion world palestinian israeli election
offer justice aid deserve make bush
years fair clinton hand

arms
arms bush congress force iraq make
north nuclear president state
washington weapon

administration treaty missile defense war
military korea reagan
agree agreement american accept unite
share clinton years

trade
administration america american
country economic government
make president state trade unite
washington

world market japan foreign china policy
price political
business economy congress year years
clinton bush buy

Table 6.3: Examples of topic comparison between anchor and informed anchor-L2.
A topic is labeled with the anchor word for that topic. The bold words are the
informed prior from liwc. With an informed prior, relevant words appear in the top
words of a topic; this also draws in other related terms (red).

more conciliatory foreign policy compared to his republican predecessors.

6.4 Discussion

Having shown that regularization can improve the anchor topic modeling

algorithm, in this section we discuss why these regularizations can improve the model

and the implications for practitioners.

Efficiency Efficiency is a function of the number of iterations and the cost of

each iteration. Both anchor and anchor-L2 require a single iteration, although the

132



●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0

10

20

30

40

0 5 10 15 20
Iteration

∆C

Dataset ● 20NEWS NIPS NYT

Figure 6.4: Convergence of anchor coefficient C for anchor-beta. ∆C is the
difference of current C from the C at the previous iteration. C is converged within
ten iterations for all three datasets.

latter’s iteration is slightly more expensive. For beta, as described in Section 6.2.2,

we update anchor coefficients C row by row, and then repeat the process over

several iterations until it converges. However, it often converges within ten iterations

(Figure 6.4) on all three datasets: this requires much fewer iterations than mcmc

or variational inference, and the iterations are less expensive. In addition, since we

optimize each row Ci,· independently, the algorithm can be easily parallelized.

Sensitivity to Document Frequency While the original anchor is sensitive

to the document frequency M (Figure 6.1), adding regularization makes this less

critical. Both anchor-L2 and anchor-beta are less sensitive to M than anchor.

To highlight this, we compare the topics of anchor and anchor-beta when

M = 100. As Table 6.4 shows, the words “article”, “write”, “don” and “doe”

appear in most of anchor’s topics. While anchor-L2 also has some bad topics, it

133



Topic anchor anchor-beta

frequently article write don doe make time peo-
ple good file question

article write don doe make people
time good email file

debate write article people make don doe
god key government time

people make god article write don
doe key point government

wings game team write wings article win
red play hockey year

game team wings win red hockey
play season player fan

stats player team write game article stats
year good play doe

stats player season league baseball
fan team individual playoff nhl

compile program file write email doe win-
dows call problem run don

compile program code file ftp ad-
vance package error windows sun

Table 6.4: Topics from anchor and anchor-beta with M = 100 on 20news with
20 topics. Each topic is identified with its associated anchor word. When M = 100,
the topics of anchor suffer: the four colored words appear in almost every topic.
anchor-beta, in contrast, is less sensitive to suboptimal M .

still can find reasonable topics, demonstrating anchor-beta’s greater robustness to

suboptimal M .

L2 (Sometimes) Improves Generalization As Figure 6.2 shows, anchor-L2

sometimes improves held-out development likelihood for the smaller 20news corpus.

However, the λ selected on development data does not always improve test set

performance. In Figure 6.3, anchor-beta closely tracks anchor. Thus, L2 regular-

ization does not hurt generalization while imparting expressiveness and robustness

to parameter settings.

Beta Improves Interpretability Figure 6.3 shows that anchor-beta improves

topic interpretability (ti) compared to unregularized anchor methods. In this section,

we try to understand why.

We first compare the topics from the original anchor against anchor-beta to

analyze the topics qualitatively. Table 6.5 shows that beta regularization promotes

134



Topic Shared Words anchor (Top, green) vs. anchor-beta (Bottom,
orange)

computer
computer means science
screen

system phone university problem doe work win-
dows internet software chip mac set fax technol-
ogy information data
quote mhz pro processor ship remote print de-
vices complex cpu electrical transfer ray engi-
neering serial reduce

power
power play period
supply ground light
battery engine

car good make high problem work back turn
control current small time
circuit oil wire unit water heat hot ranger input
total joe plug

god
god jesus christian bible faith church life
christ belief religion hell word lord truth
love

people make things true doe
sin christianity atheist peace
heaven

game
game team player play win fan hockey
season baseball red wings score division
league goal leaf cup toronto

run good
playoff trade

drive
drive disk hard scsi controller card floppy
ide mac bus speed monitor switch apple
cable internal port meg

problem work
ram pin

Table 6.5: Comparing topics—labeled by their anchor word—from anchor and
anchor-beta. With beta regularization, relevant words are promoted, while more
general words are suppressed, improving topic coherence.

rarer words within a topic and demotes common words. For example, in the

topic about hockey with the anchor word game, “run” and “good”—ambiguous,

polysemous words—in the unregularized topic are replaced by “playoff” and “trade”

in the regularized topic. These words are less ambiguous and more likely to make

sense to a consumer of topic models.

Figure 6.5 shows why this happens. Compared to the unregularized topics

from anchor, the beta regularized topic steals from the rich and creates a more

uniform distribution. Thus, highly frequent words do not as easily climb to the top

of the distribution, and the topics reflect topical, relevant words rather than globally

frequent terms.

135



computer drive game god power

−20
−15
−10

−5
0

−20
−15
−10

−5
0

anchor
anchor−

beta

Rank of word in topic (topic shown by anchor word)

lo
g 

p(
w

or
d 

| t
op

ic
)

Figure 6.5: How beta regularization influences the topic distribution. Each topic
is identified with its associated anchor word. Compared to the unregularized an-
chor method, anchor-beta steals probability mass from the “rich” and prefers a
smoother distribution of probability mass. These words often tend to be unimportant,
polysemous words common across topics.

6.5 Summary

This chapter introduces two different regularizations that offer users more

interpretable models and the ability to inject prior knowledge without sacrificing the

speed and generalizability of the underlying approach. However, one sacrifice that

this approach does make is the beautiful theoretical guarantees of previous work. An

important piece of future work is a theoretical understanding of generalizability in

extensible, regularized models.

Incorporating other regularizations could further improve performance or unlock

new applications. Our regularizations do not explicitly encourage sparsity; applying

other regularizations such as L1 could encourage true sparsity (Tibshirani, 1994).

Another possible direction is to consider word correlations (Chapter 2) as priors

in the regularization of the anchor methods. For example, to encode a positive cor-

relation between word wi and word wj , we can find the optimal Ci,· and Cj,· together

while encouraging Ci,· and Cj,· to be similar to each other; similarly for negative

136



correlation between wi and wj , we can regularize the objective to encourage Ci,· and

Cj,· to be different from each other. This would be an alternative way for replacing

tree-based topic models (Chapter 2), and it will be much faster than sampling-based

inference (Chapter 2), even the efficient factorized inference (Chapter 3). Once it

is done, this new spectral models with considering word correlations can also be

applied to the interactive setting (Chapter 4) or real applications (Chapter 5).

In general, these regularizations could improve spectral algorithm for latent

variables models, improving the performance for other nlp tasks such as latent

variable pcfgs (Cohen et al, 2013) and hmms (Anandkumar et al, 2012c), combining

the flexibility and robustness offered by priors with the speed and accuracy of new,

scalable algorithms.

137



Chapter 7

Automatically Building Hierarchical Prior Trees from Data

In the previous chapters, the prior tree treats words as leaves and posits a

hierarchical structure to represent the relationship between words. As obtaining

this prior knowledge from users is expensive and time-consuming, this necessitates

automatic techniques to extract prior knowledge from corpora.

Hierarchical clustering is one possible way to get this tree structure automat-

ically. It treats observations as leaf nodes, and builds up the hierarchy according

to the similarity of different nodes. Nodes sharing the same parent node are closest

to each other, and the similarity of nodes in the same subtree is reflected in the

hierarchy of this subtree. This hierarchical tree structure matches what we want for

the prior tree, and it is built automatically.

Traditional hierarchical clustering techniques (Duda and Hart, 1973) build up

the hierarchical trees on an agglomerative bottom-up way based on various distance

measures among nodes, for example, the Brown clustering (Brown et al, 1992).

However, there are some limitations for these traditional techniques: it is hard to

figure out the correct number of clusters; it is difficult to choose a distance measure;

and there is no probabilistic model to measure whether the clusters are good not. As

a result, we are more interested in Bayesian hierarchical clustering methods (Heller

and Ghahramani, 2005; Knowles and Ghahramani, 2011), which are can be further

138



integrated into tree-based topic models 2.

In this chapter, we present a Bayesian hierarchical clustering technique with

the Beta coalescent, which provides an alternative way to build the prior tree

automatically. Because it is expensive to build up multi-branch trees automatically,

we develop new sampling schemes using sequential Monte Carlo and Dirichlet process

mixture models, which render the inference practical and efficient.

7.1 Bayesian Clustering Approaches

Recent hierarchical clustering techniques have been incorporated inside statis-

tical models; this requires formulating clustering as a statistical—often Bayesian—

problem. Heller and Ghahramani (2005) build binary trees based on the marginal

likelihoods, extended by Blundell et al (2010) to trees with arbitrary branching

structure. Adams et al (2010) propose a tree-structured stick-breaking process to

generate trees with unbounded width and depth, which supports data observations

at leaves and internal nodes.1 However, these models do not distinguish edge lengths,

an important property in distinguishing how “tight” the clustering is at particular

nodes.

Hierarchical models can be divided into complementary “fragmentation” and

“coagulation” frameworks (Pitman, 1999). Both produce hierarchical partitions of

a dataset. Fragmentation models start with a single partition and divide it into

ever more specific partitions until only singleton partitions remain. Coagulation

1This is appropriate where the entirety of a population is known—both ancestors and descendants.
We focus on the case where only the descendants are known. For a concrete example, see
Section 7.5.2.

139



frameworks repeatedly merge singleton partitions until only one partition remains.

Pitman-Yor diffusion trees (Knowles and Ghahramani, 2011), a generalization of

Dirichlet diffusion trees (Neal, 2003a), are an example of a bushy fragmentation

model, and they model edge lengths and build non-binary trees.

Instead, our focus is on bottom-up coalescent models (Berestycki, 2009), one

of the coagulation models and complementary to diffusion trees, which can also

discover hierarchies and edge lengths. In this model, n nodes are observed (we use

both observed to emphasize that nodes are known and leaves to emphasize topology).

These observed nodes are generated through some unknown tree with latent edges

and unobserved internal nodes. Each node (both observed and latent) has a single

parent. The convention in such models is to assume our observed nodes come at time

t = 0, and at time −∞ all nodes share a common ur-parent through some sequence

of intermediate parents.

Consider a set of n individuals observed at the present (time t = 0). All

individuals start in one of n singleton sets. After time ti, a set of these nodes coalesce

into a new node. Once a set merges, their parent replaces the original nodes. This is

called a coalescent event. This process repeats until there is only one node left,

and a complete tree structure π (Figure 7.1) is obtained.

Different coalescents are defined by different probabilities of merging a set of

nodes. This is called the coalescent rate, defined by a general family of coalescents:

the lambda coalescent (Pitman, 1999; Sagitov, 1999). We represent the rate via the

symbol λkn, the rate at which k out of n nodes merge into a parent node. From a

collection of n nodes, k ≤ n can coalesce at some coalescent event (k can be different

140



for different coalescent events). The rate of a fraction γ of the nodes coalescing is

given by γ−2Λ(dγ), where Λ(dγ) is a finite measure on [0, 1]. So k nodes merge at

rate

λkn =

∫ 1

0

γk−2(1− γ)n−kΛ(dγ) (2 ≤ k ≤ n). (7.1)

Choosing different measures yields different coalescents. A degenerate Dirac delta

measure at 0 results in Kingman’s coalescent (Kingman, 1982), where λkn is 1 when

k = 2 and zero otherwise. Because this gives zero probability to non-binary coalescent

events, this only creates binary trees.

Alternatively, using a beta distribution beta(2−α, α) as the measure Λ yields

the beta coalescent. When α is closer to 1, the tree is bushier; as α approaches

2, it becomes Kingman’s coalescent. If we have ni−1 nodes at time ti−1 in a beta

coalescent, the rate λkini−1
for a children set of ki nodes at time ti and the total rate

λni−1
of any children set merging—summing over all possible mergers—is

λkini−1
=

Γ(ki − α)Γ(ni−1 − ki + α)

Γ(2− α)Γ(α)Γ(ni−1)
and λni−1

=

ni−1∑

ki=2

(ni−1

ki

)
λkini−1

. (7.2)

Each coalescent event also has an edge length—duration—δi. The duration of

an event comes from an exponential distribution, δi ∼ exp(λni−1
), and the parent

node forms at time ti = ti−1 − δi. Shorter durations mean that the children more

closely resemble their parent (the mathematical basis for similarity is specified by a

transition kernel, Section 5.2).

141



(a) Kingman’s coalescent (b) the beta coalescent

Figure 7.1: The beta coalescent can merge four similar nodes at once, while Kingman’s
coalescent only merges two each time.

Analogous to Kingman’s coalescent, the prior probability of a complete tree

π is the product of all of its constituent coalescent events i = 1, . . .m, merging ki

children after duration δi,

p(π) =
m∏

i=1

p(ki|ni−1)︸ ︷︷ ︸
Merge ki nodes

· p(δi|ki, ni−1)︸ ︷︷ ︸
After duration δi

=
m∏

i=1

λkini−1
· exp(−λni−1

δi). (7.3)

7.2 Beta Coalescent Belief Propagation

The beta coalescent prior only depends on the topology of the tree. In real

clustering applications, we also care about a node’s children and features. In this

section, we define the nodes and their features, and then review how we use message

passing to compute the probabilities of trees.

An internal node ρi is defined as the merger of other nodes. The children set

of node ρi, ρ~ci , coalesces into a new node ρi ≡ ∪b∈~ciρb. This encodes the identity of

the nodes that participate in specific coalescent events; Equation 7.3, in contrast,

only considers the number of nodes involved in an event. In addition, each node is

associated with a multidimensional feature vector yi.

142



Two terms specify the relationship between nodes’ features: an initial distri-

bution p0(yi) and a transition kernel κtitb(yi, yb). The initial distribution can be

viewed as a prior or regularizer for feature representations. The transition kernel

encourages a child’s feature yb (at time tb) to resemble feature yi (formed at ti);

shorter durations tb − ti increase the resemblance.

Intuitively, the transition kernel can be thought as a similarity score; the more

similar the features are, the more likely nodes are. For Brownian diffusion (discussed

in Section 7.4.4), the transition kernel follows a Gaussian distribution centered at a

feature. The covariance matrix Σ is decided by the mutation rate µ (Felsenstein, 1973;

Teh et al, 2008), the probability of a mutation in an individual. Different kernels

(e.g., multinomial, tree kernels) can be applied depending on modeling assumptions

of the feature representations.

To compute the probability of the beta coalescent tree π and observed data

x, we generalize the belief propagation framework used by Teh et al (2008) for

Kingman’s coalescent; this is a more scalable alternative to other approaches for

computing the probability of a Beta coalescent tree (Birkner et al, 2011). We define

a subtree structure θi = {θi−1, δi, ρ~ci}, thus the tree θm after the final coalescent

event m is a complete tree π. The message for node ρi marginalizes the features of

the nodes in its children set.2 The total message for a parent node ρi is

Mρi(yi) = Z−1
ρi

(x|θi)
∏

b∈~ci

∫
κtitb(yi, yb)Mρb(yb)dyb. (7.4)

2When ρb is a leaf, the message Mρb(yb) is a delta function centered on the observation.

143



where Zρi(x|θi) is the local normalizer, which can be computed as the combination

of initial distribution and messages from a set of children,

Zρi(x|θi) =

∫
p0(yi)

∏

b∈~ci

(∫
κtitb(yi, yb)Mρb(yb)dyb

)
dyi. (7.5)

Recursively performing this marginalization through message passing provides

the joint probability of a complete tree π and the observations x. At the root,

Z−∞(x|θm) =

∫
p0(y−∞)κ−∞,tm(y−∞, ym)Mρm(ym)dymdy−∞ (7.6)

where p0(y−∞) is the initial feature distribution and m is the number of coalescent

events. This gives the marginal probability of the whole tree,

p(x|π) = Z−∞(x|θm)
m∏

i=1

Zρi(x|θi), (7.7)

The joint probability of a tree π combines the prior (Equation 7.3) and likelihood

(Equation 7.7),

p(x, π) = Z−∞(x|θm)
m∏

i=1

λkini−1
exp(−λni−1

δi) · Zρi(x|θi). (7.8)

7.3 Sequential Monte Carlo Inference

Sequential Monte Carlo (smc)—often called particle filters—estimates a struc-

tured sequence of hidden variables based on observations (Doucet et al, 2001). For

144



coalescent models, this estimates the posterior distribution over tree structures

given observations x. Initially (i = 0) each observation is in a singleton cluster;3 in

subsequent particles (i > 0), points coalesce into more complicated tree structures

θsi , where s is the particle index and we add superscript s to all the related notations

to distinguish between particles. We use sequential importance resampling (Gordon

et al, 1993, sir) to weight each particle s at time ti, denoted as wsi .

The weights from sir approximate the posterior. Computing the weights

requires a conditional distribution of data given a latent state p(x|θsi ), a transition

distribution between latent states p(θsi |θsi−1), and a proposal distribution f(θsi |θsi−1,x).

Together, these distributions define weights

wsi = wsi−1

p(x | θsi )p(θsi | θsi−1)

f(θsi | θsi−1,x)
. (7.9)

Then we can approximate the posterior distribution of the hidden structure using

the normalized weights, which become more accurate with more particles.

To apply sir inference to belief propagation with the beta coalescent prior, we

first define the particle space structure. The sth particle represents a subtree θsi−1

at time tsi−1, and a transition to a new subtree θsi takes a set of nodes ρs~ci from θsi−1,

and merges them at tsi , where tsi = tsi−1 − δsi and θsi = {θsi−1, δ
s
i , ρ

s
~ci
}. Our proposal

distribution must provide the duration δsi and the children set ρs~ci to merge based on

the previous subtree θsi−1.

3The relationship between time and particles is non-intuitive (following Teh et al (2008)). Time
t goes backward with subsequent particles. When we use time-specific adjectives for particles, this
is with respect to inference.

145



We propose the duration δsi from the exponential distribution as in the beta’s

coalescent and propose a children set from the posterior distribution based on the

local normalizers. 4 This is the “priorpost” method in Teh et al (2008).

However, this approach is intractable. Given ni−1 nodes at time ti, we must

consider all possible children sets
(
ni−1

2

)
+
(
ni−1

3

)
+ · · ·+

(ni−1
ni−1

)
. The computational

complexity grows from O(n2
i−1) (Kingman’s coalescent) to O(2ni−1) (beta coalescent).

7.4 Efficiently Finding Children Sets with dpmm

We need a more efficient way to consider possible children sets. Even for

Kingman’s coalescent, which only considers pairs of nodes, Görür et al (2012) do not

exhaustively consider all pairs. Instead, they use data structures from computational

geometry to select the R closest pairs as their restriction set, reducing inference to

O(n log n). While finding closest pairs is a traditional problem in computational

geometry (Shamos and Hoey, 1975), discovering arbitrary-sized sets is less studied.

In this section, we describe how we use a Dirichlet process mixture model (An-

toniak, 1974, dpmm) to discover a restriction set Ω, integrating dpmms into the smc

proposal. We first briefly review what dpmms are, describe why they are attractive,

and then describe how we incorporate dpmms in smc inference.

4This is a special case of Section 7.4.3’s algorithm, where the restriction set Ωi is all possible
subsets.

146



7.4.1 DPMM

The dpmm is defined by a concentration β and a base distribution G0. A

distribution over mixtures is drawn from a Dirichlet process (dp): G ∼ DP(β,G0).

Each observation xi is assigned to a mixture component µi drawn from G. Because

the Dirichlet process is a discrete distribution, observations i and j can have the

same mixture component (µi = µj). When this happens, points are said to be in the

same partition. Posterior inference can discover a distribution over partitions.

Given the Brownian diffusion kernel, a natural choice for the base distribution

of the dp in the dpmm is a Gaussian. We review Gibbs sampling for this model (Neal,

2000), which provides distributions over partitions that become the restriction set.

We initialize partitions randomly and then repeatedly resample which partition

each node is in. This is possible through the exchangeablility of the Dirichlet process.

Let xn be the current node and x−n all other nodes, zn the current node’s

cluster assignment, z−n all other nodes’ cluster assignments, nk is the number of

nodes assigned to cluster k, and N is the total number of observations. As before, β is

the Dirichlet process concentration parameter. We assume that the base distribution

G0 is a Gaussian distribution with mean µ0 and covariance Σ0 and that each cluster

has known covariance Σk, thus the conditional distribution is

p(zn = k|z−n,x, µ, β) =





nkN (xn;µ̂k,Σ̂k)
β+N−1

k is old

βN (xn;µ̂k,Σ̂k)
β+N−1

k is new,

(7.10)

147



where

µ̂k =
µ0Σ−1

0 +
∑

i 6=n I [zi = k]xi · Σ−1
k

Σ−1
0 +

∑
i 6=n I [zi = k] · Σ−1

k

, Σ̂k =
1 + Σ−1

0 Σk +
∑

i 6=n I [zi = k]

Σ−1
0 +

∑
i 6=n I [zi = k] · Σ−1

k

This is also called the infinite Gaussian mixture model (igmm) (Rasmussen, 2000),

which clusters nodes with similar feature values, providing useful candidates for the

coalescent to merge.

7.4.2 Attractive Properties of dpmms

dpmms and Coalescents Berestycki (2009) showed that the distribution over

partitions in a Dirichlet process is equivalent to the distribution over coalescents’

allelic partitions—the set of members that have the same feature representation—

when the mutation rate µ of the associated kernel is half of the Dirichlet concentration

β (Section 5.2). For Brownian diffusion, we can connect dpmm with coalescents by

setting the kernel covariance Σ = µI to Σ = β/2I.

The base distribution G0 is also related with nodes’ feature. The base distribu-

tion G0 of a Dirichlet process generates the probability measure G for each block,

which generates the nodes in a block. As a result, we can select a base distribution

which fits the distribution of the samples in coalescent process. For example, if

we use Gaussian distribution for the transition kernel and prior, a Gaussian is also

appropriate as the dpmm base distribution.

148



Effectiveness as a Proposal The necessary condition for a valid proposal (Cappe

et al, 2007) is that it should have support on a superset of the true posterior. In our

case, the distribution over partitions provided by the dpmm considers all possible

children sets that could be merged in the coalescent. Thus the new proposal with

dpmm satisfies this requirement, and it is a valid proposal.

In addition, Chen (2003) gives a set of desirable criteria for a good proposal

distribution: accounts for outliers, considers the likelihood, and lies close to the true

posterior. The dpmm fulfills these criteria. First, the dpmm provides a distribution

over all partitions. Varying the concentration parameter β can control the length of

the tail of the distribution over partitions. Second, choosing the base distribution

of the dpmm appropriately models the feature likelihood; i.e., ensuring the dpmm

places similar nodes together in a partition with high probability. Third, the dpmm

qualitatively provides reasonable children sets when compared with exhaustively

considering all children sets (Figure 7.3).

7.4.3 Incorporating dpmm in smc Proposals

To address the inference intractability in Section 5.3, we use the dpmm to obtain

a distribution over partitions of nodes. Each partition contains clusters of nodes,

and we take a union over all partitions to create a restriction set Ωi = {ωi1, ωi2, · · · },

where each ωij is a subset of the ni−1 nodes. A standard Gibbs sampler provides

these partitions (see supplemental).

With this restriction set Ωi, we propose the duration time δsi from the expo-

149



nential distribution and propose a children set ρs~ci based on the local normalizers

fi(δ
s
i ) = λsni−1

exp(−λsni−1
δsi ) (7.11)

fi(ρ
s
~ci
|δsi , θsi−1) =

Zρi(x|θsi−1, δ
s
i , ρ

s
~ci

)

Z0

· I
[
ρs~ci ∈ Ωs

i

]
, (7.12)

where Ωs
i restricts the candidate children sets, I is the indicator, and we replace

Zρi(x|θsi ) with Zρi(x|θsi−1, δ
s
i , ρ

s
~ci

) since they are equivalent here. The normalizer is

Z0 =
∑

ρ′
~c

Zρi(x|θsi−1, δ
s
i , ρ
′
~c) · I [ρ′~c ∈ Ωs

i ] =
∑

ρ′
~c
∈Ωsi

Zρi(x|θsi−1, δ
s
i , ρ
′
~c). (7.13)

Applying the true distribution (the ith multiplicand from Equation 7.8) and the

proposal distribution (Equation 7.11 and Equation 7.12) to the sir weight update

(Equation 7.9),

wsi = wsi−1

λ
|ρs~ci |
ni−1 ·

∑
ρ′
~c
∈Ωsi

Zρi(x|θsi−1, δ
s
i , ρ
′
~c)

λsni−1

, (7.14)

where |ρs~ci | is the size of children set ρs~ci; parameter λ
|ρs~ci |
ni−1 is the rate of the children

set ρs~ci (Equation 7.2); and λsni−1
is the rate of all possible sets given a total number

of nodes ni−1 (Equation 7.2).

We can view this new proposal as a coarse-to-fine process: dpmm proposes

candidate children sets; smc selects a children set from dpmm to coalesce. Since the

coarse step is faster and filters “bad” children sets, the slower finer step considers

fewer children sets, saving computation time (Algorithm 6). If Ωi has all children sets,

150



Algorithm 6 mcmc inference for generating a tree
1: for Particle s = 1, 2, · · · , S do
2: Initialize ns = n, i = 0, ts0 = 0, ws0 = 1.
3: Initialize the node set V s = {ρ0, ρ1, · · · , ρn}.
4: while ∃s ∈ {1 · · ·S} where ns > 1 do
5: Update i = i+ 1.
6: for Particle s = 1, 2, · · · , S do
7: if ns == 1 then
8: Continue.
9: Propose a duration δsi by Equation 7.11.

10: Set coalescent time tsi = tsi−1 − δsi .
11: Sample partitions psi from dpmm.
12: Propose a set ρs~ci according to Equation 7.12.
13: Update weight wsi by Equation 7.14.
14: Update ns = ns − |ρs~ci |+ 1.
15: Remove ρs~ci from V s, add ρsi to V s.
16: Compute effective sample size ESS (Neal, 1998).
17: if ESS < S/2 then
18: Resample particles (Fearhhead, 1998).

it recovers exhaustive smc. We estimate the effective sample size (Neal, 1998) and

resample (Fearhhead, 1998) when needed. For smaller sets, the dpmm is sometimes

impractical (and only provides singleton clusters). In such cases it is simpler to

enumerate all children sets.

7.4.4 Example Transition Kernel: Brownian Diffusion

This section uses Brownian diffusion as an example for message passing frame-

work. The initial distribution p0(y) of each node is N (0,∞); the transition kernel

κtitb(y, ·) is a Gaussian centered at y with variance (ti− tb)Σ, where b is a child node

index (b ∈ ~ci), Σ = µI, µ = β/2 and β is the concentration parameter of dpmm.

Then the local normalizer Zρi(x|θi) is

Zρi(x|θi) =

∫
N (yi; 0,∞)

∏
b∈~ci
N (yi; ŷb,Σ(vρb + tb − ti))dyi, (7.15)

151



and the node message Mρi(yi) is normally distributed Mρi(yi) ∼ N (yi; ŷρi ,Σvρi),

where

vρi =
(∑

b∈~ci
(vρb + tb − ti)−1

)−1

, ŷρi =

(∑
b∈~ci

ŷρb
vρb + tb − ti

)
vρi .

7.5 Experiments: Finding Bushy Trees

In this section, we compare trees built by the beta coalescent (beta) against

those built by Kingman’s coalescent (kingman) and hierarchical agglomerative

clustering (Eads, 2007, hac) on both synthetic and real data. We show beta

performs best and can capture data in interpretable, bushier trees.

Setup The parameter α for the beta coalescent is between 1 and 2. The closer α

is to 1, bushier the tree is, and we set α = 1.2.5 We set the mutation rate as 1, thus

the DPMM parameter is initialized as β = 2, and updated using slice sampling (Neal,

2003b). All experiments use 100 initial iterations of DPMM inference with 30 more

iterations after each coalescent event (forming a new particle).

Metrics We use three metrics to evaluate the quality of the trees discovered by our

algorithm: purity, subtree and path length. The dendrogram purity score (Powers,

1997; Heller and Ghahramani, 2005) measures how well the leaves in a subtree belong

to the same class. For any two leaf nodes, we find the least common subsumer node

s and—for the subtree rooted at s—measure the fraction of leaves with same class

5With dpmm proposals, while the Beta coalescent prior is very important, α has a negligible
effect, so we elide further analysis for different α values.

152



labels. The subtree score (Teh et al, 2008) is the ratio between the number of

internal nodes with all children in the same class and the total number of internal

nodes. The path length score is the average difference—over all pairs—of the lowest

common subsumer distance between the true tree and the generated tree, where the

lowest common subsumer distance is the distance between the root and the lowest

common subsumer of two nodes. For purity and subtree, higher is better, while

for length, lower is better. Scores are in expectation over particles and averaged

across chains.

7.5.1 Synthetic Hierarchies

To test how well the different methods capture hierarchical data, we generate

synthetic hierarchical data with a known structure and test whether our model can

recover the hierarchy; we also assume each child of the root has a unique label and

the descendants also have the same label as their parent node (except the root node).

According to Berestycki (2009), given ni−1 nodes at time ti−1 and ti = ti−1− δi,

the expected number of nodes that merge at time ti is

1 + δi

(
ni−1∑

ki=2

(ki − 1)
(ni−1

ki

)
λkini−1

)
. (7.16)

Therefore we start with n0 nodes, sample a duration time δi, and compute the

expected number of nodes to be merged at time ti; we then merge that number of

nodes and repeat until there is only one node.

Next we generate the features for nodes from a Gaussian kernel. We start with

153



purity

0.4

0.6

0.8

1.0

20 40 60 80 100
Number of Observations

S
co

re
s

beta hac kingman

purity

0.4

0.6

0.8

1.0

2 4 6 8 10
Dimension

S
co

re
s

beta hac kingman

length

0.0

0.2

0.4

0.6

20 40 60 80 100
Number of Observations

S
co

re
s

beta kingman

(a) Increasing observations

length

0.0

0.2

0.4

0.6

2 4 6 8 10
Dimension

S
co

re
s

beta kingman

(b) Increasing dimension

Figure 7.2: Comparing beta against kingman and hac on different dimensions:
Figure 7.2(a) shows the effect of changing the underlying data size; Figure 7.2(b)
shows the effect of increasing number of dimension. The results of the three models
are comparable, which shows that introducing dpmm to the proposal does not hurt
the inference accuracy.

the root node as a multivariate Gaussian distribution N (µ0,Σ0), where the mean

µ0 = (0, · · · , 0) and Σ0 = ρ0I (I is the identity matrix). For each child, we sample

the feature vector yc from the parent Gaussian N (yp,Σp), and set Σc = 1
n
ρpI. In

this experiment, we generate the data with parameter ρ0 = 10. Labels are assigned

based on the root’s children; each subtree rooted at a child of the root receives the

same label. This class label is used to calculate the metrics defined above.

Given the generated synthetic data, we compare beta against kingman and

hac by varying the number of observations (Figure 7.2(a)) and feature dimensions

(Figure 7.2(b)). In both cases, beta is comparable to kingman and hac (no

edge length). While increasing the feature dimension improves both scores, more

observations do not: for synthetic data, a small number of observations suffice to

154



purity

0.4

0.6

0.8

1.0

2 4 6 8 10
Dimension

S
co

re
s

beta enum

length

0.0

0.2

0.4

0.6

2 4 6 8 10
Dimension

S
co

re
s

beta enum

Figure 7.3: Comparing the inference schemes using dpmm proposal for children sets
against an exhaustive enumeration of all possible children sets (enum). The results
show that dpmm does not sacrifice any accuracy, and is comparable with enum.

construct a good tree.

To evaluate the effectiveness of using our dpmm as a proposal distribution,

we compare exhaustively enumerating all children set candidates (enum) while

keeping the smc otherwise unchanged; this experiment uses ten data points (enum

is completely intractable on larger data). Beta uses the dpmm and achieved similar

accuracy (Figure 7.3) while greatly improving efficiency. More qualitative comparison

of constructed tree structures between Kingman’s coalescent and the beta coalescent

can be found in Appendix D.

7.5.2 Human Tissue Development

Our first real dataset is based on the developmental biology of human tissues.

As a human develops, tissues specialize, starting from three embryonic germ layers:

the endoderm, ectoderm, and mesoderm. These eventually form all human tissues.

For example, one developmental pathway is ectoderm → neural crest → cranial

neural crest → optic vesicle → cornea. Because each germ layer specializes into many

different types of cells at specific times, it is inappropriate to model this development

155



Biological Data 20-newsgroups Data
hac kingman beta hac kingman beta

purity ↑ 0.453 0.474± 0.029 0.492± 0.028 0.465 0.510± 0.047 0.565± 0.081
subtree ↑ 0.240 0.302± 0.033 0.331± 0.050 0.571 0.651± 0.013 0.720± 0.013
length ↓ − 0.654± 0.041 0.586± 0.051 − 0.477± 0.027 0.333± 0.047

Table 7.1: Comparing the three models: beta performs best on all three scores.

as a binary tree, or with clustering models lacking path lengths.

Historically, uncovering these specialization pathways is a painstaking process,

requiring inspection of embryos at many stages of development; however, massively

parallel sequencing data make it possible to efficiently form developmental hypotheses

based on similar patterns of gene expression. To investigate this question we use the

transcriptome of 27 tissues with known, unambiguous, time-specific lineages (Jonge-

neel et al, 2005). We reduce the original 182727 dimensions via principle component

analysis (Shlens, 2005, PCA). We use five chains with five particles per chain.

Using reference developmental trees, beta performs better on all three scores

(Table 7.1) because beta builds up a bushy hierarchy more similar to the true tree.

The tree recovered by beta (Figure 7.4) reflects human development. The first major

differentiation is the division of embryonic cells into three layers of tissue: endoderm,

mesoderm, and ectoderm. These go on to form almost all adult organs and cells.

The placenta (magenta), however, forms from a fourth cell type, the trophoblast;

this is placed in its own cluster at the root of the tree. It also successfully captures

ectodermal tissue lineage. However, mesodermic and endodermic tissues, which are

highly diverse, do not cluster as well. Tissues known to secrete endocrine hormones

(dashed borders) cluster together.

156



Placenta Stomach Pancreas Trachea

Thyroid
Bone
Marrow

Colon

Heart
Kidney

PeripheralBlood
Lymphocytes

BrainCorpus
Callosum

Spinal
Cord

Lung

Prostate

Spleen

UterusBrain
Hypothalamus

BrainCaudate
Nucleus

Brain
Thalamus Retina

Thymus

Monocytes BladderMammary
Gland

Small
Intestine

Brain
Amygdala

Brain
Cerebellum

ectoderm

endoderm

mesoderm

placenta

Figure 7.4: One sample hierarchy of human tissue from beta. Color indicates germ
layer origin of tissue. Dashed border indicates secretory function. While neural
tissues from the ectoderm were clustered correctly, some mesoderm and endoderm
tissues were commingled. The cluster also preferred placing secretory tissues together
and higher in the tree.

7.5.3 Clustering 20-newsgroups Data

Following Heller and Ghahramani (2005), we also compare the three models on

20-newsgroups,6 a multilevel hierarchy first dividing into general areas (rec, space,

and religion) before specializing into areas such as baseball or hockey.7 This true

hierarchy is inset in the bottom right of Figure 7.5, and we assume each edge has the

same length. We apply latent Dirichlet allocation (Blei et al, 2003b) with 50 topics

to this corpus, and use the topic distribution for each document as the document

feature. We use five chains with eighty particles per chain.

As with the biological data, beta performs best on all scores for 20-newsgroups.

Figure 7.5 shows a bushy tree built by beta, which mostly recovered the true

6http://qwone.com/~jason/20Newsgroups/
7We use “rec.autos”, “rec.sport.baseball”, “rec.sport.hockey”, “sci.space” newsgroups but also—

in contrast to Heller and Ghahramani (2005)—added “soc.religion.christian”.

157

http://qwone.com/~jason/20Newsgroups/


rec.sport.hocky
rec.sport.baseball rec.autos

sci.space
soc.religion.christian

... ... ... ... ...

True Tree

Doc Label

Figure 7.5: One sample hierarchy of the 20newsgroups from beta. Each small square
is a document colored by its class label. Large rectangles represent a subtree with all
the enclosed documents as leaf nodes. Most of the documents from the same group
are clustered together; the three “rec” groups are merged together first, and then
merged with the religion and space groups.

hierarchy. Documents within a newsgroup merge first, then the three “rec” groups,

followed by “space” and “religion” groups. We only use topic distribution as features,

so better results could be possible with more comprehensive features.

7.6 Summary

This chapter generalizes Bayesian hierarchical clustering, moving from King-

man’s coalescent to the beta coalescent. Our novel inference scheme based on smc

and dpmm make this generalization practical and efficient. This new model provides

a bushier tree, often a more realistic view of data.

While we only consider real-valued vectors, which we model through the

ubiquitous Gaussian, other likelihoods might be better suited to other applications.

For example, for discrete data such as in natural language processing, a multinomial

158



likelihood may be more appropriate. This is a straightforward extension of our model

via other transition kernels and dpmm base distributions.

Recent work uses the coalescent as a means of producing a clustering in tandem

with a downstream task such as classification (Rai and Daumé III, 2008) or tree-based

topic models (Chapter 2). For example, these automatically learned hierarchies can

be used as prior trees for tree-based topic models (Chapter 2), which is less expensive

than interacting with users (Chapter 4).

In addition, a fully statistical model like the beta coalescent that jointly learns

the hierarchy and a downstream task could improve performance in dependency

parsing (Koo et al, 2008) (clustering parts of speech) or multilingual sentiment (Boyd-

Graber and Resnik, 2010) (finding sentiment-correlated words across languages).

Particularly, this joint learning framework can also be used in topic modeling to

learn topics and hierarchies jointly and automatically, which may further improve

the topic coherence.

159



Chapter 8

Conclusion and Future Work

Adding expressive prior knowledge to topic models allows users to obtain

better topics. It can be treated as semi-supervising topic models or adding a “soft”

constraint to topic models. While tree-based topic models meet these requirements,

it is important to consider possible sources of these prior knowledge.

In this dissertation, we discuss three important sources: getting the prior

knowledge from users in an interactive setting (Chapter 4), using existing knowledge

resources (Chapter 5), and extracting the prior knowledge automatically by Bayesian

hierarchical clustering techniques (Chapter 7).

Given the prior knowledge, we review and propose various models to incor-

porate the prior knowledge: we review vanilla topic models and tree-based topic

models (Chapter 2), and present three different new models, including interactive

topic modeling (Chapter 4), polylingual tree-based topic models (Chapter 5) and

Beta coalescent models (Chapter 7).

We also discuss different inference algorithms for these models: efficient Gibbs

sampling (Chapter 3), variational inference (briefly, Chapter 5), spectral methods

with regularization (Chapter 6), and particle filters (Chapter 7).

In addition, we use various ways to evaluate these models and inference algo-

rithms: automatic measures (Chapter 3, 4, 6, 7), user study (Chapter 4), and a real

160



application in statistical machine translation (Chapter 5).

In this chapter, we discuss directions for future extensions:

Better evaluation with users. The question of whether topic models assist

users in information seeking requires more experimentation. While we showed that

ITM encouraged users to use topics to help them find information, our population

was too diverse and too small to be able to demonstrate that these techniques helped

them to better or more quickly access the information. Broadening the number of

users for the user study would allow us to draw stronger conclusions about how

interactive topic modeling changes or helps the way users seek out information

from large corpora. In addition, with larger populations, a mixed-effects model

could potentially untangle the effects of how familiar that users are to topic models,

whether they understand the task clearly, their background knowledge of the subject,

and whether they understand how to use the interface. Explicitly modeling and

measuring these effects would effectively reduce the variance and help explain the

interaction between these nuanced facets of user behavior.

New Probabilistic Models and Inference Techniques. In our attempt

to minimize the inference latency, we developed new techniques for probabilistic

inference that take advantage of sparsity in probabilistic models. While our approach

was more complicated than first method designed specifically for latent Dirichlet

allocation (Yao et al, 2009), it still offered substantial computational speedup. This

suggests that taking advantage of sparsity could also be used in other probabilistic

models such as context-free grammars (Johnson et al, 2007; Johnson, 2010) and

feature-based models (Monroe et al, 2008; Wu et al, 2010).

161



In addition to improving traditional inference, finding alternative solutions

such as spectral methods (Anandkumar et al, 2012b; Arora et al, 2012a) is another

possible way to improve inference. Encoding prior knowledge by regularize these

models can further improve the performance. This dissertation encodes Gaussian

prior, Dirichlet prior and informed priors to anchor methods for topic models and

obtain more coherent topics. It can be further extended to encode L1 regularization

to encourage true sparsity (Tibshirani, 1994), or consider more specific priors into

the regulizer, for example, word correlations as in Chapter 2.

Domain Adaptation for Downstream Tasks Topic models provide a nat-

ural way for inducing domains, since each topic can be treated as a domain. In

this dissertation, we have applied topic models for domain adaptation in translation

models in statistical machine translation; in addition, topic models can also be

used in domain adaptation for language models (Bellegarda, 2004; Wood and Teh,

2009), another important avenue for improving machine translation. These domain

knowledge from topic models can also improve content understanding, and can

be potentially helpful in a lot of other downstream tasks such as domain-specific

clustering or classification.

Joint Learning Structures and Downstream Tasks Instead of using

traditional hierarchical agglomerative clustering techniques such as the Brown clus-

tering (Brown et al, 1992), this dissertation presents a Bayesian hierarchical clustering

technique based on the beta coalescent to automatically learn the prior tree struc-

tures. This fully statistical model can be encoded into downstream Bayesian tasks

and jointly learn the hierarchy and a downstream task to improve performance in

162



dependency parsing (Koo et al, 2008) (clustering parts of speech) or multilingual

sentiment (Boyd-Graber and Resnik, 2010) (finding sentiment-correlated words across

languages). In particular, this joint learning framework can also be used in topic

modeling to learn topics and hierarchies jointly and automatically, which may further

improve the topic coherence.

Toward More Interactive Statistical Models While interactive topic mod-

eling can obviate or replace some of the newer topic models, some models seem apt for

interactive topic modeling. For example, combining interactivity with dynamic topic

modeling (Blei and Lafferty, 2006; Wang et al, 2008) could help to improve historians

or social scientists working with datasets over long time periods; supervised topic

models could help researchers understand how documents interact with external

socioeconomic indicators such as the sentiment (Pang and Lee, 2008; Sayeed et al,

2012), consumer price index (Shoemaker, 2011), stock price (Kogan et al, 2009),

or geography (Eisenstein et al, 2010); and topic models that go beyond the bag of

words (Wallach, 2006; Boyd-Graber and Blei, 2008) could help understand syntactic

patterns and linguistic structure. Learning from users is not just a benefit, but it

is an essential goal for machine learning algorithms to be accepted by researchers

who are not computer scientists and eventually the broader public. Interactive topic

models are an example of tools that can learn from and help users interact with

large datasets, an essential tool for modern text-based research.

163



Appendix A

Titles of the ten bills used in the user study (Chapter 4.4)

• H.R. 6061: Secure Fence Act of 2006

• H.R. 8: Death Tax Repeal Permanency Act of 2005

• S. 2271: USA PATRIOT Act Additional Reauthorizing Amendments Act

of 2006

• S. 3711: Gulf of Mexico Energy Security Act of 2006

• S. 2611: Comprehensive Immigration Reform Act of 2006

• S. 403: Child Custody Protection Act

• H.R. 4297: Tax Increase Prevention and Reconciliation Act of 2005

• S.J.Res. 12: Flag Desecration resolution

• H.R. 810: Stem Cell Research Enhancement Act of 2005

• S.Con.Res. 83: Budget resolution FY2007

164



Appendix B

Questions list in the user study (Chapter 4.4)

• The flag desecration act gives power to what body to prohibit physical dese-

cration of the flag of the United States?

• The child custody protection act makes it what type of crime to take minors

across state lines to circumvent laws requiring involvement of parents in abortion

decisions?

• According to the debate for the secure fence act, what is the length (in miles)

of the border that the U.S. shares with Mexico?

• The Gulf of Energy Security act will provide revenue streams for which fund?

• A senator compares the immigration debate to the release of what film?

• Name 5 of the debated legislation in this data set. Give either the full name or

the number assigned to the debate.

• Name 2 of the debated legislation in this data set deals with taxes or the

budget?

• What is the name of the debated legislation which proposes an amendment to

the constitution?

• Name the 2 debated legislation in this data set that discusses illegal immigrants?

165



Appendix C

Variational Inference for Tree-based Topic Models

The variational inference for tree-based topic models is derived and developed

by collaborating with Ke Zhai, who also parallelized variational inference using

hadoop MapReduce. The equations for variational inference are attached here for

dissertation completeness. More details can be found in (Hu et al, 2014).

For a collection of D documents, each of which contains Nd number of words,

the latent variables of ptlda are: transition distributions πki for every topic k and

internal node i in the prior tree structure; multinomial distributions over topics θd

for every document d; topic assignments zdn and path ydn for the nth word wdn in

document d. The joint distribution of polylingual tree-based topic models is

p(w, z,y,θ,π;α, β) =
∏

k

∏

i

p(πki|βi) ·
∏

d

p(θd|α) ·
∏

d

∏

n

p(zdn|θd) (C.1)

·∏d

∏
n

(
p(ydn|zdn,π)p(wdn|ydn)

)
.

Exact inference is intractable, so we turn to approximate posterior inference

to discover the latent variables that best explain our data. Two widely used ap-

proximation approaches are Markov chain Monte Carlo (Neal, 2000, mcmc) and

variational Bayesian inference (Blei et al, 2003b, vb). Both frameworks produce

good approximations of the posterior mode (Asuncion et al, 2009).

166



mcmc (Gibbs Sampling) has been discussed in Chapter 2 and Chapter 3, so

we derive the variational Bayesian inference here. In addition, Mimno et al (2012)

propose hybrid inference that takes advantage of parallelizable variational inference

for global variables (Wolfe et al, 2008) while enjoying the sparse, efficient updates

for local variables (Neal, 1993).

C.1 Variational Bayesian Inference

Variational Bayesian inference approximates the posterior distribution with a

simplified variational distribution q over latent variables: document topic proportions

θ, transition probabilities π, topic assignments z, and path assignments y.

Variational distributions typically assume a mean-field distribution over these

latent variables, removing all dependencies between the latent variables. We follow

this assumption for the transition probabilities q(π |λ) and the document topic

proportions q(θ |γ); both are variational Dirichlet distributions. However, due to

the tight coupling between the path and topic variables, we must model this joint

distribution as one multinomial, q(z,y |φ). If word token wdn has K topics and

S paths, it has a K ∗ S length variational multinomial φdnks, which represents

the probability that the word takes path s in topic k. The complete variational

distribution is

q(θ,π, z,y|γ,λ,φ) =
∏

d

q(θd|γd) ·
∏

k

∏

i

q(πki|λki) ·
∏

d

∏

n

q(zdn, ydn|φdn). (C.2)

Our goal is to find the variational distribution q that is closest to the true

167



posterior, as measured by the Kullback-Leibler (KL) divergence between the true

posterior p and variational distribution q. This induces an “evidence lower bound”

(elbo, L) as a function of a variational distribution q:

L =Eq[log p(w, z,y,θ,π)]− Eq[log q(θ,π, z,y)] (C.3)

=
∑

k

∑

i

Eq[log p(πki|βi)] +
∑

d

Eq[log p(θd|α)]

+
∑

d

∑

n

Eq[log p(zdn, ydn|θd,π)p(wdn|ydn)] + H[q(θ)] + H[q(π)] + H[q(z,y)],

where H[•] represents the entropy of a distribution. Optimizing L using coordinate

descent provides the following updates:

φdnkt ∝ exp{Ψ(γdk)−Ψ(
∑

k γdk) +
∑

i→j∈s
(
Ψ(λk,i→j)−Ψ(

∑
j′ λk,i→j′)

)
}; (C.4)

γdk = αk +
∑

n

∑
s∈Ω−1(wdn) φdnkt; (C.5)

λk,i→j = βi→j +
∑

d

∑
n

∑
s∈Ω′(wdn) φdnktI [i→ j ∈ s] ; (C.6)

where Ω′(wdn) is the set of all paths that lead to word wdn in the tree, and t

represents one particular path in this set. I [i→ j ∈ s] is the indicator of whether

path s contains an edge from node i to j.

C.2 Hybrid Stochastic Inference

Given the complementary strengths of mcmc and vb, and following hybrid

inference proposed by Mimno et al (2012), we also derive hybrid inference for ptlda.

168



The transition distributions π are treated identically as in variational inference.

We posit a variational Dirichlet distribution λ and choose the one that minimizes

the KL divergence between the true posterior and the variational distribution.

For topic z and path y, instead of variational updates, we use a Gibbs sampler

within a document. We sample zdn and ydn conditioned on the topic and path

assignments of all other document tokens, based on the variational expectation of π,

q(zdn = k, ydn = s|¬zdn,¬ydn;w) ∝ (C.7)

(α +
∑

m6=n I [zdm = k]) · exp{Eq[log p(ydn|zdn,π)p(wdn|ydn)]}.

This equation embodies how this is a hybrid algorithm: the first term resembles

the Gibbs sampling term encoding how much a document prefers a topic, while the

second term encodes the expectation under the variational distribution of how much

a path is preferred by this topic,

Eq[log p(ydn|zdn,π)p(wdn|ydn)] = I[Ω(ydn)=wdn] ·
∑

i→j∈ydn

Eq[log λzdn,i→j]. (C.8)

For every document, we sweep over all its tokens and resample their topic

zdn and path ydn conditioned on all the other tokens’ topic and path assignments

¬zdn and ¬ydn. To avoid bias, we discard the first B burn-in sweeps and take the

following M samples. We then use the empirical average of these samples update

the global variational parameter q(π|λ) based on how many times we sampled these

169



paths

λk,i→j = 1
M

∑
d

∑
n

∑
s∈Ω−1(wdn)

(
I [i→ j ∈ s] · I [zdn = k, ydn = s]

)
+ βi→j. (C.9)

For our experiments, we use the recommended settings B = 5 and M = 5 from Mimno

et al (2012).

170



Appendix D

Comparing Coalescent Models on Synthetic Data

This appendix compares the constructed synthetic trees of Beta coalescent

and Kingman’s coalescent with the true synthetic trees. For all the following trees,

the square nodes are the observed leaf nodes, and the circle nodes are the detected

hidden internal nodes.

D.1 Tree1: n = 20

• True synthetic tree

n29

n27 n28

n23 n24 n25 n26

n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n22

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

171



• Constructed tree from Beta coalescent

n29

n20 n28

n17 n18 n19 n26 n27

n24 n25 n10 n11 n12 n13 n14 n23

n21 n22 n0 n1 n2 n3 n4 n5 n15 n16

n8 n9 n6 n7

• Constructed tree from Kingman’s coalescent

n38

n29 n37

n17 n21 n34 n36

n18 n19 n33 n30 n35 n28

n27 n23 n8 n9 n32 n31 n16 n15

n1 n25 n6 n7 n26 n11 n10 n13

n0 n24 n12 n14

n3 n22

n2 n20

n4 n5

172



D.2 Tree2: n = 20

• True synthetic tree

n29

n27 n28

n19 n20 n21 n22 n23 n24 n25 n26

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18

• Constructed tree from Beta coalescent

n33

n31 n32

n20 n30 n25 n27

n6 n7 n26 n29 n4 n21 n0 n1 n2 n19

n10 n11 n12 n13 n22 n28 n3 n5

n8 n9 n23 n24

n14 n15 n16 n17 n18

173



• Constructed tree from Kingman’s coalescent

n38

n36 n37

n35 n23 n32 n31

n34 n29 n6 n7 n0 n30 n24 n4

n33 n26 n25 n11 n2 n28 n3 n5

n27 n21 n8 n9 n10 n22 n1 n19

n17 n18 n20 n14 n12 n13

n16 n15

D.3 Tree3: n = 20

• True synthetic tree

n28

n25 n26 n27

n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

174



• Constructed tree from Beta coalescent

n31

n28 n30

n20 n26 n25 n29

n4 n5 n0 n1 n2 n3 n19 n22 n24 n21 n27

n16 n17 n18 n23 n12 n13 n6 n7 n8 n9 n10 n11

n14 n15

• Constructed tree from Kingman’s coalescent

n38

n35 n37

n33 n20 n34 n36

n19 n28 n4 n5 n30 n31 n32 n27

n21 n23 n16 n17 n18 n26 n25 n29 n12 n13

n0 n3 n1 n2 n14 n15 n8 n24 n10 n11

n22 n7

n9 n6

175



D.4 Tree4: n = 40

• True synthetic tree

n50

n46
n47

n48

n49

n32

n33 n34 n35

n36 n37 n38 n39

n40
n41 n42

n43

n44

n45

n0 n1 n2 n3 n4 n5 n6 n7

n8 n9

n10 n11 n12 n13

n14

n15 n16 n17 n18 n19 n20 n21 n22 n23

n24 n25 n26 n27

n28 n29 n30 n31

• Constructed tree from Beta coalescent

n52

n48
n51

n8 n9 n10

n11 n12 n13

n14
n42

n44

n47 n50

n0

n1 n2 n3 n4 n5

n6 n7

n15 n16

n17 n18 n19 n20 n21

n22 n23

n40

n46

n45
n49n24

n25

n26 n27

n28 n29 n43

n32

n33 n34 n35 n38 n41

n30 n31

n36 n37 n39

176



• Constructed tree from Kingman’s coalescent

n78

n74 n77

n65 n70 n73 n76

n24 n57 n28 n63 n69 n71 n72 n75

n25 n53 n29 n47 n61 n62 n40 n59 n32 n68 n67 n38

n26 n27 n30 n31 n51 n60 n18 n58 n8 n9 n49 n10 n64 n34 n66 n39

n43 n5 n56 n6 n45 n55 n42 n46 n33 n35 n36 n37

n0 n2 n52 n4 n16 n15 n20 n54 n12 n14 n11 n13

n48 n3 n50 n21

n1 n7 n17 n44

n41 n22

n19 n23

D.5 Tree5: n = 40

• True synthetic tree

n53

n51
n52

n40

n41

n42 n43 n44

n45

n46 n47

n48

n49

n50n0

n1 n2 n3 n4 n5

n6

n7

n8 n9 n10

n11

n12 n13 n14 n15 n16 n17 n18 n19 n20

n21 n22 n23 n24

n25 n26 n27 n28 n29 n30

n31 n32

n33 n34 n35 n36

n37 n38 n39

177



• Constructed tree from Beta coalescent

n57

n54 n56

n49 n50 n52
n55

n37 n45 n35 n48 n42

n46

n51

n53

n38 n39 n36 n44 n17 n18 n19 n20

n11 n12 n13

n0

n1

n2

n3 n4 n5 n6 n14 n15

n16

n31 n32
n40 n43

n41 n47

n33 n34

n25 n26 n27 n7 n8 n9 n10

n28

n29 n30

n21 n22

n23

n24

• Constructed tree from Kingman’s coalescent

n78

n76 n77

n70 n71 n73 n75

n65 n37 n66 n35 n60 n54 n72 n74

n38 n39 n64 n36 n28 n53 n50 n52 n56 n68 n69 n63

n33 n34 n29 n30 n21 n22 n24 n23 n8 n44 n67 n43 n49 n59 n58 n12

n40 n10 n57 n62 n32 n31 n48 n19 n27 n46 n11 n13

n9 n7 n3 n55 n61 n15 n42 n20 n25 n26

n51 n47 n16 n14 n17 n18

n1 n4 n5 n45

n41 n2

n0 n6

178



Bibliography

Abney S, Light M (1999) Hiding a semantic hierarchy in a Markov model. In:
Proceedings of the Workshop on Unsupervised Learning in Natural Language
Processing, pp 1–8

Adams R, Ghahramani Z, Jordan M (2010) Tree-structured stick breaking for
hierarchical data. In: Proceedings of Advances in Neural Information Processing
Systems

Anandkumar A, Foster DP, Hsu D, Kakade S, Liu YK (2012a) A spectral algorithm
for latent dirichlet allocation. In: NIPS, pp 926–934

Anandkumar A, Foster DP, Hsu D, Kakade SM, Liu YK (2012b) Two svds suf-
fice: Spectral decompositions for probabilistic topic modeling and latent dirichlet
allocation. CoRR abs/1204.6703

Anandkumar A, Hsu D, Kakade SM (2012c) A method of moments for mixture
models and hidden markov models. In: Proceedings of Conference on Learning
Theory

Andrzejewski D, Zhu X, Craven M (2009) Incorporating domain knowledge into
topic modeling via Dirichlet forest priors. In: Proceedings of the International
Conference of Machine Learning

Antoniak CE (1974) Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. The Annals of Statistics 2(6):1152–1174

Arora S, Ge R, Halpern Y, Mimno DM, Moitra A, Sontag D, Wu Y, Zhu M
(2012a) A practical algorithm for topic modeling with provable guarantees. CoRR
abs/1212.4777

Arora S, Ge R, Moitra A (2012b) Learning topic models — going beyond svd. CoRR
abs/1204.1956

Artstein R, Poesio M (2005) Kappa3 = alpha (or beta). Technical report, University
of Essex Department of Computer Science

Astrachan O (2003) Bubble sort: an archaeological algorithmic analysis. In: Pro-
ceedings of the 34th SIGCSE technical symposium on computer science education

Asuncion A, Welling M, Smyth P, Teh YW (2009) On smoothing and inference for
topic models. In: Proceedings of Uncertainty in Artificial Intelligence

Bellegarda JR (2004) Statistical language model adaptation: review and perspectives.
vol 42, pp 93–108

Bendapudi N, Leone RP (2003) Psychological implications of customer participation
in co-production. Journal of Marketing 67(1):14–28

179



Berestycki N (2009) Recent progress in coalescent theory. In: Ensaios Matematicos,
vol 16

Bergen J, Anandan P, Hanna K, Hingorani R (1992) Hierarchical model-based motion
estimation

Bhattacharya I (2006) Collective entity resolution in relational data. PhD Dissertation,
University of Maryland, College Park

Birkner M, Blath J, Steinrucken M (2011) Importance sampling for lambda-
coalescents in the infinitely many sites model. Theoretical population biology
79(4):155–73

Blei DM, Lafferty JD (2005) Correlated topic models. In: Proceedings of Advances
in Neural Information Processing Systems

Blei DM, Lafferty JD (2006) Dynamic topic models. In: Proceedings of the Interna-
tional Conference of Machine Learning

Blei DM, Griffiths TL, Jordan MI, Tenenbaum JB (2003a) Hierarchical topic models
and the nested chinese restaurant process. In: Proceedings of Advances in Neural
Information Processing Systems

Blei DM, Ng A, Jordan M (2003b) Latent Dirichlet allocation. Journal of Machine
Learning Research 3

Blei DM, Griffiths TL, Jordan MI (2010) The nested Chinese restaurant process
and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM
57(2):7:1–7:30

Blundell C, Teh YW, Heller KA (2010) Bayesian rose trees. In: Proceedings of
Uncertainty in Artificial Intelligence

Botha JA, Dyer C, Blunsom P (2012) Bayesian language modelling of German com-
pounds. In: Proceedings of the 24th International Conference on Computational
Linguistics (COLING)

Boyd-Graber J, Blei DM (2008) Syntactic topic models. In: Proceedings of Advances
in Neural Information Processing Systems

Boyd-Graber J, Blei DM (2009) Multilingual topic models for unaligned text. In:
Proceedings of Uncertainty in Artificial Intelligence

Boyd-Graber J, Resnik P (2010) Holistic sentiment analysis across languages: Mul-
tilingual supervised latent Dirichlet allocation. In: Proceedings of Emperical
Methods in Natural Language Processing

Boyd-Graber J, Blei DM, Zhu X (2007) A topic model for word sense disambiguation.
In: Proceedings of Emperical Methods in Natural Language Processing

180



Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16(9):575–577

Brown P, Pietra VJD, deSouza PV, Lai JC, L MR (1992) Class-based n-gram models
of natural language. Computational Linguistics 18(4):4467–479

Brown PF, Pietra VJD, deSouza PV, Lai JC, Mercer RL (1990) Class-based n-gram
models of natural language. Computational Linguistics 18:18–4

Cappe O, Godsill S, Moulines E (2007) An overview of existing methods and recent
advances in sequential Monte Carlo. PROCEEDINGS-IEEE 95(5):899

Carbone K (2012) Topic modeling: Confusion and excitement.
Http://dh201.humanities.ucla.edu/?p=502

Ceaparu I, Lazar J, Bessiere K, Robinson J, Shneiderman B (2004) Determining causes
and severity of end-user frustration. International journal of human-computer
interaction 17(3):333–356

Chang J (2010) Not-so-latent Dirichlet allocation: Collapsed Gibbs sampling using
human judgments. In: NAACL Workshop: Creating Speech and Language Data
With Amazon’ss Mechanical Turk

Chang J, Boyd-Graber J, Wang C, Gerrish S, Blei DM (2009) Reading tea leaves: How
humans interpret topic models. In: Proceedings of Advances in Neural Information
Processing Systems

Chen SF, Goodman J (1996) An empirical study of smoothing techniques for language
modeling. In: Proceedings of the Association for Computational Linguistics

Chen Z (2003) Bayesian filtering: From kalman filters to particle filters, and beyond.
McMaster [Online]

Chiang D, DeNeefe S, Pust M (2011) Two easy improvements to lexical weighting.
In: Proceedings of the Human Language Technology Conference

Cohen S, Stratos K, Collins M, Foster DP, Ungar L (2013) Experiments with spectral
learning of latent-variable PCFGs. In: Conference of the North American Chapter
of the Association for Computational Linguistics

Cohen SB, Smith NA (2009) Shared logistic normal distributions for soft parameter
tying in unsupervised grammar induction. In: Conference of the North American
Chapter of the Association for Computational Linguistics

Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-
aggressive algorithms. Journal of Machine Learning Research 7:551–585

Daumé III H (2007) Frustratingly easy domain adaptation. In: Proceedings of the
Association for Computational Linguistics

181



Daumé III H (2009) Markov random topic fields. In: Proceedings of Artificial
Intelligence and Statistics

Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on large clusters.
In: Symposium on Operating System Design and Implementation

Denisowski P (1997) CEDICT. Http://www.mdbg.net/chindict/

Dietz L, Bickel S, Scheffer T (2007) Unsupervised prediction of citation influences.
In: Proceedings of the International Conference of Machine Learning

Ding W, Rohban MH, Ishwar P, Saligrama V (2013a) A new ceometric approach
to latent topic modeling and discovery. In: IEEE International Conference on
Acoustics, Speech, and Signal Processing

Ding W, Rohban MH, Ishwar P, Saligrama V (2013b) Topic discovery through
data dependent and random projections. In: Proceedings of the International
Conference of Machine Learning

Ding W, Rohban MH, Ishwar P, Saligrama V (2014) Efficient distributed topic
modeling with provable guarantees. In: Proceedings of Artificial Intelligence and
Statistics

Donoho D, Stodden V (2003) When does non-negative matrix factorization give
correct decomposition into parts? MIT Press, p 2004

Doucet A, De Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in
practice

Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis. Wiley

Dud́ık M, Phillips SJ, Schapire RE (2004) Performance guarantees for regularized
maximum entropy density estimation. In: Proceedings of Conference on Learning
Theory

Dyer C, Lopez A, Ganitkevitch J, Weese J, Ture F, Blunsom P, Setiawan H, Eidelman
V, Resnik P (2010) cdec: A decoder, alignment, and learning framework for
finite-state and context-free translation models. In: Proceedings of ACL System
Demonstrations

Eads D (2007) Hierarchical clustering (scipy.cluster.hierarchy). SciPy

Eidelman V, Boyd-Graber J, Resnik P (2012) Topic models for dynamic translation
model adaptation. In: Proceedings of the Association for Computational Linguistics

Eisenstein J, O’Connor B, Smith NA, Xing EP (2010) A latent variable model for
geographic lexical variation. In: Proceedings of Emperical Methods in Natural
Language Processing, pp 1277–1287

182



Evans P (2013) More fun with topic modeling.
Http://mith.umd.edu/engl668k/?p=1595

Fearhhead P (1998) Sequential Monte Carlo method in filter theory. PhD Dissertation,
University of Oxford

Felsenstein J (1973) Maximum-likelihood estimation of evolutionary trees from
continuous characters. Am J Hum Genet 25(5):471–492

Finkel JR, Manning CD (2009) Hierarchical bayesian domain adaptation. In: Con-
ference of the North American Chapter of the Association for Computational
Linguistics, Morristown, NJ, USA

Foster G, Kuhn R (2007) Mixture-model adaptation for smt. In: Proceedings of the
Second Workshop on Statistical Machine Translation

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2003) Gnu
Scientific Library: Reference Manual. Network Theory Ltd.

Girvan M, Newman MEJ (2002) Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99:7821–7826

Gordon N, Salmond D, Smith A (1993) Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEEE Proceedings F, Radar and Signal Processing
140(2):107–113

Görür D, Teh YW (2009) An efficient sequential Monte Carlo algorithm for coalescent
clustering. In: Proceedings of Advances in Neural Information Processing Systems

Görür D, Boyles L, Welling M (2012) Scalable inference on Kingman’s coalescent
using pair similarity. Journal of Machine Learning Research 22:440–448

Griffiths TL, Steyvers M (2004) Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Suppl 1):5228–5235

Griffiths TL, Canini KR, Sanborn AN, Navarro DJ (2007) Unifying rational models
of categorization via the hierarchical Dirichlet process. In: Proceedings of the 29th
Annual Conference of the Cognitive Science Society

Gruber A, Rosen-Zvi M, Weiss Y (2007) Hidden topic Markov models. In: Artificial
Intelligence and Statistics

Hall D, Jurafsky D, Manning CD (2008) Studying the history of ideas using topic
models. In: Proceedings of Emperical Methods in Natural Language Processing

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The
WEKA data mining software: An update. SIGKDD Explorations 11

Harary F (1969) Graph Theory. Addison-Wesley

183



Hasler E, Haddow B, Koehn P (2012) Sparse lexicalised features and topic adaptation
for SMT. In: Proceedings of IWSLT

Heinrich G (2004) Parameter estimation for text analysis. Tech. rep.,
http://www.arbylon.net/publications/text-est.pdf

Heller KA, Ghahramani Z (2005) Bayesian hierarchical clustering. In: Proceedings
of the International Conference of Machine Learning

Hoffman M, Blei DM, Bach F (2010) Online learning for latent Dirichlet allocation.
In: NIPS

Hopcroft H, Tarjan R (1973) Algorithm 447: efficient algorithms for graph manipu-
lation. Communications of the ACM 16(6):372–378

Hu Y, Boyd-Graber J (2012) Efficient tree-based topic modeling. In: Proceedings of
the Association for Computational Linguistics

Hu Y, Boyd-Graber J, Satinoff B, Smith A (2013) Interactive topic modeling. Machine
Learning Journal

Hu Y, Zhai K, Edelman V, Boyd-Graber J (2014) Polylingual tree-based topic
models for translation domain adaptation. In: Proceedings of the Association for
Computational Linguistics

Johnson M (2010) PCFGs, topic models, adaptor grammars and learning topical
collocations and the structure of proper names. In: Proceedings of the Association
for Computational Linguistics

Johnson M, Griffiths TL, Goldwater S (2007) Bayesian inference for PCFGs via
Markov chain Monte Carlo. In: Conference of the North American Chapter of the
Association for Computational Linguistics

Jongeneel C, Delorenzi M, Iseli C, Zhou D, Haudenschild C, Khrebtukova I, Kuznetsov
D, Stevenson B, Strausberg R, Simpson A, Vasicek T (2005) An atlas of human
gene expression from massively parallel signature sequencing (mpss). Genome Res
15:1007–1014

Kannan R, Salmasian H, Vempala S (2005) The spectral method for general mixture
models. In: Proceedings of Conference on Learning Theory

Kingman JFC (1982) On the genealogy of large populations. Journal of Applied
Probability 19:27–43

Knowles D, Ghahramani Z (2011) Pitman-Yor diffusion trees. In: Proceedings of
Uncertainty in Artificial Intelligence

Koehn P (2004) Statistical significance tests for machine translation evaluation. In:
Proceedings of Emperical Methods in Natural Language Processing

184



Koehn P (2009) Statistical Machine Translation. Cambridge University Press, URL
http://books.google.com/books?id=D21UAAAACAAJ

Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Conference
of the North American Chapter of the Association for Computational Linguistics

Kogan S, Levin D, Routledge BR, Sagi JS, Smith NA (2009) Predicting risk from
financial reports with regression. In: Conference of the North American Chapter
of the Association for Computational Linguistics

Koo T, Carreras X, Collins M (2008) Simple semi-supervised dependency parsing.
In: Proceedings of the Association for Computational Linguistics

Kuhn R, Chen B, Foster GF, Stratford E (2010) Phrase clustering for smoothing tm
probabilities - or, how to extract paraphrases from phrase tables. In: COLING

Landauer TK, Littman ML (1990) Fully automatic cross-language document retrieval
using latent semantic indexing. In: Proceedings of the 6 th Annual Conference of
the UW Centre for the New Oxford English Dictionary

Landauer TK, McNamara DS, Marynick DS, Kintsch W (eds) (2006) Probabilistic
Topic Models. Laurence Erlbaum

Lau JH, Grieser K, Newman D, Baldwin T (2011) Automatic labelling of topic
models. In: Proceedings of the Association for Computational Linguistics, pp
1536–1545

Lau JH, Newman D, Baldwin T (2014) Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality. In: Proceedings of the European
Chapter of the Association for Computational Linguistics

Lavine M (1992) Some aspects of Polya tree distributions for statistical modeling.
The Annals of Statistics 20(3):1222–1235

Li W, Mccallum A (2006) Pachinko allocation: Dag-structured mixture models of
topic correlations. In: International Conference on Machine Learning, pp 577–584

Li Fei-Fei, Perona P (2005) A Bayesian hierarchical model for learning natural scene
categories. In: Computer Vision and Pattern Recognition

Lin WH, Wilson T, Wiebe J, Hauptmann A (2006) Which side are you on? identifying
perspectives at the document and sentence levels. In: Proceedings of the Conference
on Natural Language Learning (CoNLL)

Loper E, Bird S (2002) NLTK: the natural language toolkit. In: Tools and method-
ologies for teaching

Matsoukas S, Rosti AVI, Zhang B (2009) Discriminative corpus weight estimation for
machine translation. In: Proceedings of Emperical Methods in Natural Language
Processing

185

http://books.google.com/books?id=D21UAAAACAAJ


McCallum AK (2002) Mallet: A machine learning for language toolkit,
http://www.cs.umass.edu/ mccallum/mallet

Meilă M (2007) Comparing clusterings—an information based distance. Journal of
Multivariate Analysis 98(5):873–895

Miller GA (1990) Nouns in WordNet: A lexical inheritance system. International
Journal of Lexicography 3(4):245–264

Mimno D, Wallach H, McCallum A (2008) Gibbs sampling for logistic normal topic
models with graph-based priors. In: NIPS 2008 Workshop on Analyzing Graphs:
Theory and Applications

Mimno D, Wallach H, Naradowsky J, Smith D, McCallum A (2009) Polylingual topic
models. In: Proceedings of Emperical Methods in Natural Language Processing

Mimno D, Wallach H, Talley E, Leenders M, McCallum A (2011) Optimizing
semantic coherence in topic models. In: Proceedings of Emperical Methods in
Natural Language Processing

Mimno D, Hoffman M, Blei D (2012) Sparse stochastic inference for latent Dirichlet
allocation. In: Proceedings of the International Conference of Machine Learning

Minka TP (2000) Estimating a dirichlet distribution. Tech. rep., Microsoft,
http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/

Monroe BL, Colaresi MP, Quinn KM (2008) Fightin’ Words: Lexical Feature Selection
and Evaluation for Identifying the Content of Political Conflict. Political Analysis,
Vol 16, Issue 4, pp 372-403, 2008

Neal RM (1993) Probabilistic inference using Markov chain Monte Carlo methods.
Tech. Rep. CRG-TR-93-1, University of Toronto

Neal RM (1998) Annealed importance sampling. Technical report 9805, University
of Toronto

Neal RM (2000) Markov chain sampling methods for Dirichlet process mixture
models. Journal of Computational and Graphical Statistics 9(2):249–265

Neal RM (2003a) Density modeling and clustering using Dirichlet diffusion trees.
Bayesian Statistics 7:619–629

Neal RM (2003b) Slice sampling. Annals of Statistics 31:705–767

Newman D, Karimi S, Cavedon L (2009) External evaluation of topic models. In:
Proceedings of the Aurstralasian Document Computing Symposium

Newman D, Lau JH, Grieser K, Baldwin T (2010) Automatic evaluation of topic
coherence. In: Conference of the North American Chapter of the Association for
Computational Linguistics

186



Ng AY (2004) Feature selection, l1 vs. l2 regularization, and rotational invariance.
In: Proceedings of the International Conference of Machine Learning

Nirenburg S (1989) Knowledge-based machine translation. Machine Translation
4:5–24

Norman DA (ed) (1993) Things That Make Us Smart: Defending Human Attributes
In The Age Of The Machine. Addison-Wesley, Reading MA

Och F, Ney H (2003) A systematic comparison of various statistical alignment models.
In: Computational Linguistics, vol 29(21), pp 19–51

Pang B, Lee L (2008) Opinion Mining and Sentiment Analysis. Now Publishers Inc

Papineni K, Roukos S, Ward T, Zhu WJ (2002) bleu: a method for automatic evalu-
ation of machine translation. In: Proceedings of the Association for Computational
Linguistics, pp 311–318

Paul M, Girju R (2010) A two-dimensional topic-aspect model for discovering multi-
faceted topics. In: Association for the Advancement of Artificial Intelligence

Pennebaker JW, Francis ME (1999) Linguistic Inquiry and Word Count, 1st edn.
Lawrence Erlbaum

Petterson J, Alex S, Caetano T, Buntine W, Shravan N (2010) Word features for
latent Dirichlet allocation. In: Neural Information Processing Systems

Pitman J (1999) Coalescents with multiple collisions. The Annals of Probability
27:1870–1902

Powers DMW (1997) Unsupervised learning of linguistic structure an empirical
evaluation. International Journal of Corpus Linguistics 2:91–131

Rai P, Daumé III H (2008) The infinite hierarchical factor regression model. In:
Proceedings of Advances in Neural Information Processing Systems

Ramage D, Hall D, Nallapati R, Manning C (2009) Labeled LDA: A supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of
Emperical Methods in Natural Language Processing

Rasmussen CE (2000) The infinite Gaussian mixture model. In: Proceedings of
Advances in Neural Information Processing Systems

Rennie J (2003) On l2-norm regularization and the Gaussian prior

Resnik P, Hardisty E (2010) Gibbs sampling for the uninitiated. Tech. Rep. UMIACS-
TR-2010-04, University of Maryland

Rosen-Zvi M, Griffiths TL, Steyvers M, Smyth P (2004) The author-topic model for
authors and documents. In: Proceedings of Uncertainty in Artificial Intelligence

187



Sagitov S (1999) The general coalescent with asynchronous mergers of ancestral lines.
Journal of Applied Probability 36:1116–1125

Salton G (1968) Automatic Information Organization and Retrieval. McGraw Hill
Text

Sandhaus E (2008) The New York Times annotated corpus.
Http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp? catalogId=LDC2008T19

Sayeed AB, Boyd-Graber J, Rusk B, Weinberg A (2012) Grammatical structures for
word-level sentiment detection. In: North American Association of Computational
Linguistics

Sethuraman J (1994) A constructive definition of Dirichlet priors. Statistica Sinica
4:639–650

Shamos M, Hoey D (1975) Closest-point problems. In: IEEE Symposium on Foun-
dations of Computer Science

Shlens J (2005) A tutorial on principal component analysis. In: Systems Neurobiology
Laboratory, Salk Institute for Biological Studies

Shneiderman B, Byrd D, Croft WB (1997) Clarifying search: A user-interface
framework for text searches. D-Lib Magazine 3(1)

Shoemaker OJ (2011) Variance estimates for price changes in the consumer price
index. Bureau of Labor Statistics Report

Shringarpure S, Xing EP (2008) mStruct: a new admixture model for inference of
population structure in light of both genetic admixing and allele mutations. In:
Proceedings of the International Conference of Machine Learning

Smith A, Chuang J, Hu Y, Boyd-Graber J, Findlater L (2014) Quantifying the
role of discourse topicality in speakers’ choices of referring expressions. In: ACL
Workshop on Workshop on Interactive Language Learning, Visualization, and
Interfaces

Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation
edit rate with targeted human annotation. In: In Proceedings of Association for
Machine Translation in the Americas

Snow R, O’Connor B, Jurafsky D, Ng A (2008) Cheap and fast—but is it good?
Evaluating non-expert annotations for natural language tasks. In: Proceedings of
Emperical Methods in Natural Language Processing

Stevens K, Kegelmeyer P, Andrzejewski D, Buttler D (2012) Exploring topic coherence
over many models and many topics. In: Empirical Methods in Natural Language
Processing, vol 20

188



Su J, Wu H, Wang H, Chen Y, Shi X, Dong H, Liu Q (2012) Translation model
adaptation for statistical machine translation with monolingual topic information.
In: Proceedings of the Association for Computational Linguistics

Talley EM, Newman D, Mimno D, Herr BW, Wallach HM, Burns GAPC, Leen-
ders AGM, McCallum A (2011) Database of NIH grants using machine-learned
categories and graphical clustering. Nature Methods 8(6):443–444

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes.
Journal of the American Statistical Association 101(476):1566–1581

Teh YW, Daumé III H, Roy DM (2008) Bayesian agglomerative clustering with
coalescents. In: Proceedings of Advances in Neural Information Processing Systems

Thomas JJ, Cook KA (2005) Illuminating the path: The research and development
agenda for visual analytics. IEEE Computer Society Press

Tibshirani R (1994) Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58:267–288

Tseng H, Chang P, Andrew G, Jurafsky D, Manning C (2005) A conditional random
field word segmenter. In: SIGHAN Workshop on Chinese Language Processing

Wacholder N, Liu L (2008) Assessing term effectiveness in the interactive information
access process. Information Processing and Management 44(3):1022–1031

Wager S, Wang S, Liang P (2013) Dropout training as adaptive regularization. In:
Proceedings of Advances in Neural Information Processing Systems, pp 351–359

Wallach H, Mimno D, McCallum A (2009) Rethinking LDA: Why priors matter. In:
Proceedings of Advances in Neural Information Processing Systems

Wallach HM (2006) Topic modeling: Beyond bag-of-words. In: Proceedings of the
International Conference of Machine Learning

Wang C, Blei DM, Heckerman D (2008) Continuous time dynamic topic models. In:
Proceedings of Uncertainty in Artificial Intelligence

Wei X, Croft B (2006) LDA-based document models for ad-hoc retrieval. In: Proceed-
ings of the ACM SIGIR Conference on Research and Development in Information
Retrieval

Wolfe J, Haghighi A, Klein D (2008) Fully distributed EM for very large datasets. In:
Proceedings of the International Conference of Machine Learning, pp 1184–1191,
DOI http://doi.acm.org/10.1145/1390156.1390305

Wood F, Teh YW (2009) A hierarchical nonparametric Bayesian approach to sta-
tistical language model domain adaptation. In: Proceedings of the International
Conference on Artificial Intelligence and Statistics, vol 12

189



Wu X, Yu K, Wang H, Ding W (2010) Online streaming feature selection. In:
International Conference on Machine Learning, pp 1159–1166

Xiao X, Xiong D, Zhang M, Liu Q, Lin S (2012) A topic similarity model for
hierarchical phrase-based translation. In: Proceedings of the Association for
Computational Linguistics

Yao L, Mimno D, McCallum A (2009) Efficient methods for topic model inference
on streaming document collections. In: Knowledge Discovery and Data Mining

Yvart A, Hahmann S, Bonneau GP (2005) Hierarchical triangular splines. ACM
Trans Graph 24(4):1374–1391

Zhai K, Boyd-Graber J, Asadi N, Alkhouja M (2012) Mr. LDA: A flexible large scale
topic modeling package using variational inference in mapreduce. In: Proceedings
of World Wide Web Conference

Zhao B, Xing EP (2006) BiTAM: Bilingual topic admixture models for word alignment.
In: Proceedings of the Association for Computational Linguistics

190


	List of Tables
	List of Figures
	The Need for Prior Knowledge in Probabilistic Models
	Encoding Correlations into a Tree Prior for Topic Models
	Obtaining Prior Knowledge from Users to Improve Topics
	Using Existing Prior Knowledge to Assist Machine Translation
	Alternative Spectral Methods to Encode Prior Knowledge
	Learning Prior Knowledge Automatically using Beta Coalescent
	Structure

	Existing Probabilistic Models for Encoding Prior Knowledge
	Vanilla LDA
	Generative Process
	Inference
	Example

	Tree-based Topic Models
	Encoding Correlations in a Tree
	Generative Process
	Relationship to Other Topic Models
	Inference
	Problems


	Efficient Inference for Tree-based Topic Models
	Sparse LDA
	Efficient Sampling for Tree-based Topic Models
	Sorting Paths
	Efficient Sampling with Coarse-to-Refined Buckets
	Measuring Inference Time Efficiency
	Summary

	Interactive Topic Modeling
	How Users Can Benefit from Interactive Topic Models
	Example A: Joining Two Topics with Similar Content
	Example B: Splitting a Topic with Mixed Content
	Example C: Joining and Splitting
	Improvement or Impatience?

	Making Topic Models Interactive
	Users in the Loop
	Simulated Users
	Real Users from Mechanical Turk

	User Study
	Legislative Corpus
	Introduction of ITM Interface
	User Population
	User Study Analysis

	Automatically Suggesting Correlations
	Generating New Correlations
	Human Evaluation over Automatically Generated Correlations

	Summary

	Polylingual Tree-based Topic Models for smt Domain Adaptation
	Topic Models for Machine Translation
	Statistical Machine Translation
	Inducing Domains with Topic Models
	Beyond Vanilla Topic Models

	Polylingual Tree-based Topic Models
	Inference
	Experiments
	Discussion
	How do Topic Models Help smt?
	Other Approaches
	Improving Language Models
	External Data

	Summary

	Regularized Anchor Methods for Topic Models to Encode Priors
	Anchor Words: Scalable Topic Models
	Adding Regularization
	L2 Regularization
	Beta Regularization
	Initialization and Convergence

	Regularization Improves Topic Models
	Grid Search for Parameters on Development Set
	Evaluating Regularization
	Informed Regularization

	Discussion
	Summary

	Automatically Building Hierarchical Prior Trees from Data
	Bayesian Clustering Approaches
	Beta Coalescent Belief Propagation
	Sequential Monte Carlo Inference
	Efficiently Finding Children Sets with dpmm
	DPMM
	Attractive Properties of dpmms
	Incorporating dpmm in smc Proposals
	Example Transition Kernel: Brownian Diffusion

	Experiments: Finding Bushy Trees
	Synthetic Hierarchies
	Human Tissue Development
	Clustering 20-newsgroups Data

	Summary

	Conclusion and Future Work
	Titles of the ten bills used in the user study (Chapter 4.4)
	Questions list in the user study (Chapter 4.4)
	Variational Inference for Tree-based Topic Models
	Variational Bayesian Inference
	Hybrid Stochastic Inference
	Comparing Coalescent Models on Synthetic Data
	Tree1: n = 20
	Tree2: n = 20
	Tree3: n = 20
	Tree4: n = 40
	Tree5: n = 40





