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A high order rotorcraft mathematical model is developed and validated against
the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model
is generic and allows for any rotorcraft configuration, from single main rotor heli-
copters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as
flexible wing and blade states are used in the analysis. The separate modeling of
each rotorcraft component allows for structural flexibility to be included, which is
important when modeling large aircraft where structural modes affect the flight
dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the for-
mulation of the mathematical model are given, including derivations of structural,
aerodynamic, and inertial loads. The linking of the components of the aircraft is
developed using an approach similar to multibody analyses by exploiting a tree
topology, but without equations of constraints. Assessments of the effects of wing
flexibility are given. Flexibility effects are evaluated by looking at the nature of the

couplings between rigid-body modes and wing structural modes and vice versa. The



effects of various different forms of structural feedback on aircraft dynamics are an-
alyzed. A proportional-integral feedback on the structural acceleration is deemed to
be most effective at both improving the damping and reducing the overall excitation
of a structural mode. A model following control architecture is then implemented
on full order flexible LCTR models. For this aircraft, the four lowest frequency
structural modes are below 20 rad/sec, and are thus needed for control law develop-
ment and analysis. The impact of structural feedback on both Attitude-Command,
Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are
investigated. A rigid aircraft model has optimistic performance characteristics, and
a control system designed for a rigid aircraft could potentially destabilize a flexible
one. The various control systems are flown in a fixed-base simulator. Pilot inputs

and aircraft performance are recorded and analyzed.
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Chapter 1: Introduction

This chapter provides motivation for the dissertation and discusses prior work
on tiltrotor flight dynamics modeling and control. Flexible aircraft modeling in

general and tiltrotor simulation tools are also discussed

1.1 Motivation

Tiltrotor configurations have been proposed for both civil and military heavy-
lift vertical take-off and landing (VTOL) missions. An in-depth NASA investigation
examined several types of rotorcraft for large civil transport applications, and con-
cluded that the tiltrotor had the best potential to meet the desired technology
goals [1]. Goals were included for hover and cruise efficiency, empty weight fraction,
and noise. The tiltrotor also presented the lowest developmental risk of the config-
urations analyzed. One of the four highest risk areas identified by the investigation
was the need for broad spectrum active control, including flight control systems,
rotor load limiting, and vibration and noisetiltion [1].

The development of a high-order model is paramount for accurately predicting
a wide range of stability phenomena that tiltrotors are susceptible to, and it is one

of the main subjects of this dissertation. The best known aeromechanic stability



problem for tiltrotor aircraft is whirl-flutter, which occurs at high advance ratios,
and usually limits forward flight speed. At hover and low speeds, pilot inputs can
excite low frequency wing structural modes for large tiltrotor configurations like the
Large Civil Tiltrotor 2 (LCTR2, herein referred to as LCTR), Fig. 1.1. Lateral
stick inputs, for example, result in antisymmetric wing bending motion. This wing
structural response can cause low stability margins if the dynamics are not accounted
for in flight control design. The structural modes for future large tiltrotors are likely
to be in the range of interest for control system design, around 1/3 to 3 times the
response crossover frequency, generally 1 to 20 rad/sec.

Most rotorcraft also tend to have increased levels of augmentation compared
to fixed-wing aircraft, especially in hover and low speed where precision flying is
necessary. The effect of fuselage feedback on the structural modes is not well under-
stood, and the effects of structural feedback on the overall aircraft motion also need
to be investigated. Structural sensors at the wing root and wing tip provide wing
bending information, and combinations of these sensors may be used to improve
structural damping and reduce overall structural excitation. Clearly, the success of
future aircraft configurations will require an improved fundamental understanding
of the interactions between handling qualities, high-gain flight control systems, and

aircraft structural dynamics.
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Figure 1.1: Configuration and dimensions of the NASA Large Civil Tiltrotor
(LCTR) (from Ref. 2).

1.2 Background

In order to evaluate aircraft performance and enable the design of a control
system that gives good handling qualities, accurate, real-time models are needed.
These models can be used for pilot simulations and control system design. Details
on tiltrotor modeling and controls work are presented first. Detail is also given on
various comprehensive models used for rotorcraft and tiltrotor analysis. Because

this dissertation is focused on a flexible aircraft, background information on flexible



aircraft control is also given.

1.2.1 Flight Dynamics Modeling and Handling Qualities of Tiltrotors

Several aircraft with tilting thrust components were developed in the 1950’s
and 1960’s. With a fixed wing and tilting rotor systems the Bell XV-3 was the
original tiltrotor. Teetering rotors were mounted on long rotating shafts and were
powered by an engine in the fuselage. The Vertol VZ-2 was a tilt-wing aircraft. The
entire wing system including the rotors were vertical in hover and tilted forward
for cruise. The Doak VZ-4 had fixed wings and tilting ducts mounted at the end
of the wings. Finally, the Curtiss-Wright X-100 had small tilting rotors connected
to a small wing. Each of these aircraft were powered by a single engine located
in the fuselage. Handling quality and dynamic characteristics for these aircraft are
summarized in Ref. 3. All of the aircraft exhibited generally poor handling qualities
in hover. The VZ-4 had inadequate roll control due to the use of guide vanes during
hover. The VZ-2 exhibited very low longitudinal damping characteristics, making
hovering very difficult. All of the aircraft had deficient yaw characteristics due to
nearly no damping in the yaw axis. This led to buffeting in yaw, or difficulty in con-
trolling heading. Many of these deficiencies were due to rotor inflow recirculation in
ground effect. Overall, the XV-3 exhibited the fewest problems in terms of stability
and control, as well as handling qualities.

Even though the XV-3 was generally the best behaved, it had several no-

table issues. During low speed flight, weak lateral-directional dynamic stability



and longitudinal and directional controllability were experienced [4]. These issues
were attributed to rotor wash at low altitudes. During cruise, lateral-directional
(dutch-roll) and longitudinal (short-period) damping was reduced as speed was in-
creased [5]. This was found to be due to large inplane rotor forces created from large
flapping as a result of aircraft angular rates. In spite of these issues, the tiltrotor
configuration proved to be effective and transition between helicopter and airplane
mode was shown to be safe, paving the way for additional research efforts for this

configuration.

1.2.1.1 XV-15

During the 1970’s work began on the XV-15 (Bell Model 301), shown in Fig. 1.2
and described in Ref. 6. The XV-15 is a 13,000 1b tiltrotor. Each rotor has three
12.5 foot radius blades mounted on a gimbaled hub. A large modeling effort was
undertaken to accompany development and flight test of the aircraft. This modeling
effort included development of a real-time flight simulation model for the Bell Model
301 [7]. The simulation model consisted of aerodynamic tuning based on semispan
and 1/5 model scale wind-tunnel data [8,9]. Model scale data helped determine
rotor loading on the wing and other non-linearities, such as wake impingement on
the horizontal tails in yaw. The model scale data was also used to ensure ade-
quate dutch-roll and short-period damping, and it also ensured that the aircraft
would remain flutter free in its flight envelope. Through this simulation model,

initial handling qualities predictions were made based on specifications found in



MIL-SPEC-83300 [10]. Level 1 handling qualities were predicted based on longitu-
dinal and lateral/directional mode frequency and damping characteristics [7]. This
simulation model was later transformed to the GTRSIM model [11], described later.
Reference 12 provides comparisons between the models developed for the XV-15

and flight data. Overall, the models show excellent correlation with flight data.

Figure 1.2: XV-15 in hover (NASA file photo)

A comprehensive analytical model of the tiltrotor wing/nacelle/rotor system
model was derived in Ref. 13. This model was used in Ref. 14 to compare the
dynamics of various tiltrotor rotor types. The model lacked rigid-body degrees of
freedom and focused more on aeroelasticity of the wing/nacelle/rotor system. Using
a similar model, stability and trim characteristics of the XV-15 were also investigated
for a variety of nacelle angles [15]. With the nacelles in the cruise configuration,
instability was predicted to occur near 300 knots at sea level. Comparisons of
frequency and damping of flight dynamics modes in cruise and hover for varying

quasi-steady models were also given.



The simulation model was used extensively in various simulators to help sup-
port handling qualities investigations, flight control design, failure mode reconfigu-
ration, cockpit layout, and various other operational considerations [16]. This model
helped to identify several limitations of the simulators. Pilots encountered vertical
PIOs (pilot induced oscillations) near hover and the cause was identified as being
due to visual system and engine model time-constant problems. Low roll damping
caused the pilots to encounter PIOs in the lateral axis. This was encountered in the
real aircraft, but it was not as prevalent as in the simulator. Simulator limitations
also included a poor field of view so many missions were not able to be evaluated.

Initial flight control development and tuning of the XV-15 is presented in
Ref. 17. The goal was to develop an aircraft with Level 1 handling qualities with
the stability and control augmentation system (SCAS) off and the force feel system
(FFS) on. The FFS aids the pilot in overcoming control system inertia and frictional
forces during hover. It also allows for the tuning of the stick characteristics (natural
frequency and damping) as well as static force characteristics. Reference 17 gives the
improvements in the dutch-roll, short-period, and phugoid modes’ damping due to
the SCAS. Using the aforementioned model in piloted simulations resulted in SCAS
gain changes that improved turn coordination, attitude retention disengagement
alterations, and changes in stick force characteristics. Pilots gave Level 1 handling
qualities ratings (HQR) with the SCAS and FFS active. These ratings did not
change greatly due to a single channel failure in any mode. However, in hover
with the SCAS and FF'S off, pilots gave Level 3 HQRs due to the large increase in

workload.



Flight dynamics models of the XV-15 were also obtained from flight test. Fre-
quency domain identification of the XV-15 was performed in hover and cruise [18,19].
The pilots were instructed to fly frequency sweeps and time history data of the pilot
input and aircraft responses were collected and converted to the frequency domain.
Depending on the frequency range of interest, models obtained from flight test have
the advantage that they can reduce highly-complex non-linear coupled systems into
simple input-output frequency response relationships. Transfer function or linear
models can then be fit to these input-output frequency responses to form a com-
plete model of the aircraft. References 18 and 19 also present time history validation
of identified models. Reference 20 also shows the identification of XV-15 structural

modes using the same techniques.

1.2.1.2 V-22

After the XV-15 program showed excellent potential for the tiltrotor config-
uration, the JVX (V-22) program aimed to deliver tiltrotor technology to military
customers in a production aircraft [21]. The V-22, shown in Fig. 1.3, is currently
being fielded by the US Marines and Air Force. V-22 flight dynamics modeling capa-
bilities descended directly from the XV-15 program as both aircraft were developed
by Bell. Reference 12 showed excellent correlation of a “GTR” model to flight data.
This model was scaled to the V-22 and was used for control law development [22].

An explicit model following type control algorithm was developed for the V-

22 [23]. The control scheme contains a Primary Flight Control System (PFCS) that



Figure 1.3: V-22 in hover (NASA file photo)

improves basic aircraft stability. An Automatic Flight Control System (AFCS) helps
provide Level 1 handling qualities through the model following architecture. Level
1 handling qualities ratings were obtained for all but one task throughout the test
envelope [23]. The in-ground-effect precision hover task gave Level 2 ratings.

It is noted in Refs. 22 and 24 that certain structural loads exceeded their design
limit during these tasks, and load limiting control laws were developed. In hover and
conversion mode, rotor flapping was limited to prevent the rotor hub from potentially
striking the mast. In cruise, load limiting control laws aimed to reduce the inplane
forcing created by rotor precession during high speed aircraft pitching. The control
laws also aimed to remove the rotor components from the short-period mode by an
eigenstructure assignment method [24]. Control law development for the V-22 was
seen as a compromise between handling qualities, structural, and aeroservoelastic
stability requirements. Specifications mandated a 4g maneuver envelope at 345

knots. The aircraft was also required to hover at 47,500 Ib gross weight with Level 1



handling qualities. The model following control system was found to be well suited
for such a large variety of loading and mission requirements [25].

Structural characteristics for the V-22 fuselage and rotors are given in Ref. 26.
The structural design of the V-22 used lessons learned from the XV-15 program to
improve the structural dynamics of the aircraft. Changes made include increasing
separation of the rotor inplane cyclic frequency from 1/rev, and improving airframe
natural frequency placements. Using analytical tools during the entire design process

as well as extensive validation efforts led to accurate modeling capabilities.

1.2.1.3 LCTR Control in Hover

Tiltrotors offer more control effectors than single main rotor helicopters. Each
rotor can be controlled independently and the nacelles are allowed to move as well.
Lateral control can come from differential collective on the rotors to roll the aircraft,
or symmetric lateral cyclic commands to produce lateral forcing by directly tilting
the rotor thrust vectors. Similarly, longitudinal control can come from moving
the nacelles fore and aft, or symmetric longitudinal cyclic can be used to produce
pitching moments. Given the possibility of having multiple controls in each axis,
studies have been done on tiltrotors to determine the piloted preferred response
types.

Bare-airframe single main rotor helicopters exhibit a rate command (RC) re-
sponse type in which pilot inputs result in angular or vertical rates, depending on the

control input. Control augmentation systems are used to improve handling qualities
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by using an attitude-command attitude-hold (ACAH) system for cyclic commands.
Here a unit cyclic stick deflection corresponds to an angular deflection from trim.
That deflection is held until the pilot moves the cyclic stick to a different value. The
collective stick commands a vertical velocity in the heave axis, and the pedals com-
mand yaw rates. With these response types, the nacelles may be held in a vertical
position. A pure translational rate command (TRC) response type commands no
angular deflection from the trim state. A translational rate can also be achieved by
pitching the rotorcraft, but for tiltrotors it is achieved by tilting the thrust vector.
The attitude of the aircraft can be controlled separately and may or may not be
altered in a TRC control scheme. In the lateral axis, the symmetric lateral cyclic
moves the thrust vector to create lateral motion. In the longitudinal axis, the na-
celles are moved forward and back to create longitudinal motion. The heave and
pedal axes remain unchanged from the ACAH system. Given the possibility of hav-
ing either an ACAH or TRC response type to cyclic inputs, or a combination of the
two, piloted simulations are needed to determine the configuration most preferred
by pilots.

Piloted studies have recently been conducted in NASA’s Vertical Motion Sim-
ulator [27-31]. These studies were designed to test hover and low speed handling
qualities and control system architectures of the LCTR. Although CAMRAD (de-
scribed in Sec. 1.2.2) is not a real-time tool, linear models derived from CAMRAD
were used in many of these studies. The models were based on a combination of
reduced-order stability derivative models and more detailed rigid-body models that
included rotor flapping dynamics but lacked structural flexibility. Despite these limi-

11



tations, the linear rigid-body model was sufficient for determining handling qualities
characteristics of large tiltrotors.

Reference 28 investigated effects of pilot station offset and command model
delay on piloted handling qualities for an ACAH control system. The results show
that a large pilot to CG offset resulted in a tradeoff between undesirable accelera-
tions at the pilot station in the longitudinal and directional axes for quick aircraft
command models and sluggish aircraft performance for slower command models.
New boundaries were suggested for the ADS-33E [32] bandwidth criteria. Many of
the proposed boundaries differ significantly from the classical ones.

Reference 29 investigates varying commanded response types in hover. Com-
parisons are drawn between ACAH and TRC modes with varying TRC inceptor
types and nacelle motion limits. The results showed that there was a preference
of TRC mode over ACAH, primarily so that sight lines to the runway were main-
tained. Pilots also preferred a decoupled TRC system and gave Level 1 handling
qualities when objectionable pitch/heave couplings were removed in the longitudi-
nal axis. Manual control of the nacelle angle was rated poorly due to difficulty in
reconfiguring the aircraft back to a hover state after a maneuver was performed. A
final NASA piloted simulation study [31] focused on TRC mode. The results show
that nacelle bandwidths above 4 rad/sec gave Level 1 handing qualities ratings, and

TRC control sensitivities of 10 ft/sec per inch of control was preferred in both axes.
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1.2.1.4 Other Tiltrotor Handling Qualities Research

There are relatively few handling qualities criteria for tiltrotor aircraft. Based
on LCTR work, new boundaries were established for ADS-33E bandwidth criteria for
large tiltrotors. In hover, tiltrotors are expected to have the same dynamic behavior
as traditional helicopters and follow ADS-33E. In cruise, they are expected to behave
as fixed wing aircraft and follow specifications such as MIL-STD-1797B [33]. The
transition zone between hover and cruise has not been well investigated and only
general guidelines exist, as in MIL-83300 [10].

Initial steps in developing tiltrotor specific requirements are given in Ref. 34.
This reference suggests new mission task elements (MTEs) that evaluate aircraft
performance in mid-speed ranges and are representative of search-and-rescue or
terrain following maneuvers. Also noted is the need for comprehensive simulations
and flight tests for definition of specification boundaries. A new “Roll-Step” mission
task element was flown and evaluated by test pilots on an XV-15 model. The model
was developed using FLIGHTLAB (discussed in a later section). The ADS-33E
bandwidth criteria was also evaluated within the aircraft’s conversion corridor. The
handling quality ratings were generally consistent with the boundaries. Another
study used the same model to evaluate the XV-15 in low speed, transition, and high
speed flight [35]. A model following control system was designed to give an ACAH
response in hover and RCAH response in forward flight. The control system was
evaluated in a motion based simulator and generally gave Level 1 handling qualities.

Load alleviating control laws were developed for a EUROTILT tiltrotor in

13



Ref. 36. These control laws aimed to reduce inplane forcing generated by the rotors
due to maneuvering in cruise and to some extent hover. Similar load alleviating
control laws were developed during the V-22 program [22] [24]. Rotor longitudi-
nal cyclic and elevators were used to reduce loads in cruise. It was noted that in
piloted simulations, load amplification was observed in maneuvers not accounted
for during the control design. This highlights the complex nature of control law
design, particularly structural load control design. Generally, there are tradeoffs
in structural control for performance or actuator usage. The simulation used was
FLIGHTLAB model that had rigid-blades and dynamic inflow [36]. Modeling sim-
plifications were needed tin order to run the software in real time. This level of
modeling was adequate to retain key flight dynamics characteristics of the aircraft
for piloted simulations.

The BA-609 represents the first civil tiltrotor, and it is currently undergoing
certification trials. A highly reliable flight control system is key to minimizing pilot
workload and satisfying stringent handling qualities over the large flight envelope.
The flight envelope for this aircraft range from a 35 knot tailwind hover to a 3g
pull-up at Mach 0.55 [37]. The BA-609 lacks lateral cyclic rotor control and uses
differential collective for lateral commands in hover. In cruise, differential collective
to the rotors provides yaw control. Control laws provide rate-command responses
to cyclic inputs. In yaw, a rate-command response and turn-coordination are imple-
mented. There is gain-scheduling based on nacelle angle. The BA-609 has nacelle
angle dependent notch filters on structural modes excited by longitudinal, lateral,
and collective inputs. The aircraft also has a flapping controller in cruise to reduce

14



blade loads. In addition, Reference 37 also includes mission tasks flown to evaluate
the aircraft. Even though formal pilot evaluations were not always obtained, pilot

comments were used to update the control laws.

1.2.2  Comprehensive Tiltrotor Modeling Tools

As previously described, the XV-15 was developed in the 1970’s and 1980’s.
To support analysis of flight dynamics, pilot-in-the-loop simulation, and flight con-
trol, the Generic Tilt-Rotor Simulation (GTRSIM) was developed [11]. GTRSIM is
based heavily on wind tunnel data from the XV-15 in the form of look-up tables to
augment the rigid-body dynamics [8] [9]. The detailed look-up tables include effects
of nacelle angle, sideslip, flaperon deflections, Mach number, etc., on aerodynamic
coefficients, and they also contain correction factors to the dynamic response of the
aircraft. While accurate and capable of real-time execution, GTRSIM is highly de-
pendent upon empirical data. The software may suffer problems due to scaling or
for configurations that are slightly different than the XV-15. This software is also
not suitable for rotor dynamics analyses as it retains a momentum theory type rotor
system.

Later, CAMRAD, a comprehensive aeromechanics and dynamics model capa-
ble of multi-rotor and flexible airframe modeling, was developed [38]. CAMRAD
originated in the extensive analytical analysis of tiltrotor dynamics across a very
broad flight envelope [13-15].

CAMRAD was updated to CAMRAD?2 [39,40]. The update offers a larger
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suite of analysis tools, and it has been used extensively for tiltrotor development
and analysis, including the heavy lift helicopters that are of interest herein. Much
of the work looked at high speed whirl-flutter and methods to improve aircraft
performance while maintaing stability [41-43]. Analyses using this tool have also
focused on optimization of the large civil tiltrotor for performance and whirl-flutter
[2]. Performance optimization included rotor sizing and geometry as well as cruise
tip speeds. Whirl-flutter optimization included cruise tip speeds, precone and other
rotor metrics.

MBDyn [44], a multi-body dynamics code developed at Politecnico di Milano
has often been used to model flexible tiltrotors. MBDyn has various elastic blade
and wake models. Much work has been constrained to modeling a single wing-pylon-
rotor system, and in examining ways to stabilize the wing-pylon-rotor system [45].
Generalized predictive control systems have also been created for reduced-order
tiltrotor models where a revolute joint is used to hold the aircraft at the center of
mass and only allow for pitch motion to be studied [46]. Created in a full multi-
body architecture using constraint equations, linearized equations of motion cannot
be extracted directly from this form of model. A linear model can be extracted from
a time history of aircraft motion or by condensing out equations of constraint from
the system.

FLIGHTLAB [47] is widely used in industry for single main rotor helicopter
modeling and simulation as it allows for rapid prototyping of aircraft configura-
tions. It has also been used for tiltrotor modeling [34,36,48] . FLIGHTLAB is of

multi-body form and can be executed in real-time. Parallelization enables real-time
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execution of the program even when flexible blades are included [49]. In addition to
flexible blades, vortex wakes can also be modeled.

The University of Maryland has done extensive work on tiltrotor aeroelas-
tic modeling using the code UMARC. The basic tiltrotor model was developed in
Ref. 50. The results show excellent predictions of flutter velocities, trim condi-
tions and rotor loads. The work has generally dealt with aeroelastic stability and
whirl-flutter modeling of various rotor systems [51-53]. Aeroelastic tailoring of rotor
blades to improve flutter boundaries was also performed [54]. A thorough descrip-
tion of UMARC and other comprehensive rotorcraft analyses and their histories can
be found in Ref. [55].

The model used in this work, referred to as HeliUM 2, has been in develop-
ment at the University of Maryland for many years and is a successor to the model
first mentioned in Ref. 56. It originated from the NASA version of GenHel, built
from a mathematical model by Howlett [57], and over time has evolved to include
flexible rotors [58] and free-vortex wake models [59]. More recently, the code has
been augmented to include multi-rotor capabilities. The current research effort has
expanded this to include flexible wings and an overall multi-body-like formulation.
The formulation of the flexibility does not include algebraic constraints and leaves
the equations of motion as ordinary differential equations (ODE), allowing for more
straightforward time integration and linearization. The model is generic and allows
for any rotorcraft configuration, from single main rotor helicopters to coaxial and
tiltrotor aircraft. Fuselage and wing aerodynamics portions of GTRSIM were added
to this model. Therefore, the model was validated against the XV-15 before being
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scaled to the LCTR configuration.

1.2.3 Control and Modeling of Flexible Aircraft

Flexible aircraft models have long been used to model fixed-wing aircraft.
Flexible fuselage modeling of rotary-wing aircraft has been slow to follow, most
likely because fixed-wing aircraft generally have much larger and thinner fuselages
than rotary-wing aircraft, which are generally as compact as possible to reduce rotor
interference effects. Fixed-wing aircraft also tend to be much larger than rotorcraft,
having structural modes which are at low frequencies. Modeling structural modes
becomes important for flutter analysis or for flight dynamics research if the modes
are of low enough frequency.

While a wide range of flexible aircraft models exist, this discussion will be lim-
ited to flexible models created for flight control research. Historically, the flexible
models have been derived from fitting flight data to some assumed structural deflec-
tions taken to be comprised of a few modes. The mode shapes came from ground
shake tests, flight data, or intuition. In rare cases, finite element models were used
to obtain the mode shapes. More recently, analytical models have also been used.
In these models, interaction coefficients of the structural and rigid-body modes are
determined based on lifting-line theory. Full multi-body dynamic type models, such
as the one created for this dissertation, have also begun to gain prominence.

Flexible aircraft control tends to fall into two categories: reduction of struc-

tural loads for improvements in fatigue life, or vibration (acceleration) reduction
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to improve ride quality. For military aircraft, the acceleration at the pilot station
is minimized, while for commercial aircraft acceleration at some location in the
fuselage is minimized (to improve passenger comfort). The overall goal of both cat-
egories is the same; the reduction of structural oscillation. In either case, wing tip
acceleration is generally used as the feedback parameter.

Flexible aircraft models were first used to improve the flutter response of fixed-
wing aircraft. The B-52 CCV (Controls Configured Vehicle) was one of the first
aircraft to demonstrate benefits of active controls [60,61]. The flutter speed of
this aircraft was increased by 30% by using the outboard aileron and flaperons to
suppress vertical acceleration of the wing. The power spectral density (PSD) of the
vertical acceleration at the structural mode frequencies was significantly reduced.
The model for this aircraft came from fitting aerodynamic model parameters to
flight data and included 30 states, at least seven of which were vibratory modes.

Investigations into a Load Alleviation and Mode Control System (LAMS) were
done on a YF-12 aircraft, the predecessor to the SR-71. Various different actuator
systems were compared in theory to remove motion at the pilot station due to
structural oscillation [62]. The damping of the structural modes and the RMS
acceleration were shown to be much improved with the LAMS system operational.
The elastic model from the aircraft came from a two dimensional finite element
representation and included effects of structural deformation on aerodynamic terms.
Powers [63] developed a flexible model of the SR-71 for use in handling qualities
research. The flexible mode was identified by fitting an elastic beam mode shape to

ground vibration test data. The unknowns in the mode shape were then calibrated
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using flight data. The resulting flexible mode was added to rigid-body dynamics to
form the complete aircraft model.

More recently, NASA has used a modified F-111 to test a Maneuver Loads
Control (MLC) system [64]. This system aimed to minimize root bending moments
during maneuvers by driving the lift vector of the wing inboard, reducing the mo-
ment arm. This was accomplished by using the wing flaps to change the camber
of the wing. Some of the most recent flexible aircraft flight testing occurred during
NASA’s F/A-18 Active Aeroelastic Wing (AAW) program [65]. The control laws
for this aicraft [66] were designed to not exceed certain wing load criteria during
roll maneuvers. The loads model used was derived by fitting structural coefficients
to flight data [67]. A flexible model for this system was created and used in the
NASA Dryden flight simulator by summing rigid-body and structural dynamics at
the outputs [68].

A CH-53K helicopter was modeled with flexibility for stability studies with
a slung load [69]. Here, linear rigid-body dynamics and structural dynamics are
modeled separately. The rigid-body dynamics provide forcing to the structural
modes. This model type was validated against flight data from previous CH-53
configurations.

Structural control has also been implemented on production vehicles, not just
for research purposes. The B-1 has structural control vanes located near the pilot
station. The B-1 was designed to be a low-level penetration bomber, with the
potential of flying through heavy turbulence. Vibration at the pilot station could
cause fatigue, and the control vanes were added early on in the design process to
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reduce structural vibration as much as possible [70,71]. Use of the control vanes
provided great reduction of the crew sensitivity index, a measure of discomfort
at given frequencies. It is a function of turbulence levels, human perception of
vibration, and acceleration of the aircraft.

Commercial aircraft manufacturers also use structural feedback to improve
passenger ride quality in turbulence. Airbus [72] cites an ability to reduce structural
vibration by a factor of two using advanced control laws. Their flexible models for
control law design come from flight test [73,74]. Reference 74 shows the PSD of
lateral acceleration is significantly reduced at the structural frequencies when flying
in turbulence. Boeing [75] also derives models from flight data; These models contain
rigid-body modes and 15 structural modes. No coupling is present between the
rigid-body and structural modes to simplify the identification. Large reductions in
accelerations at varying fuselages stations can be obtained. The Boeing 787 contains
both gust load alleviation and maneuver load control laws [76]. In additional to
reduction in acceleration, an additional benefit of these control laws is a reduction
in aircraft structural weight due to decreased loads.

High fidelity modeling tools are required for accurate flexible aircraft model-
ing and simulation. The models presented thus far are generally obtained from or
tuned with flight test data. Modeling requires accurate representations of aircraft
structural parameters. The development of an analytical formulation for the linear
equations of motion for a flexible aircraft are described in Ref. 77. The starting point
is a rigid-body model. Changes in aerodynamics due to flexibility add forcing to
the rigid-body equations. In addition, changes in rigid-body dynamics add forcing
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to the structural beam equations, giving a fully coupled flexible system. A mean
axis assumption is used, where the aircraft motion corresponds not to a physical
quantity in the aircraft, but instead a location where mass moments of inertia re-
main constant. The multi-body formulation used in this dissertation is derived from
Reference 78. The multi-body formulation simplifies the addition of elasticity effects
by augmenting displacement and rotation vectors, along with their time derivatives.

A formulation similar to that of Ref. 77 is used to derive the flexible equa-
tions of motion for a generic transport model (GTM) [79]. Here, a one-dimensional
analytical beam model with coupled bending-torsion dynamics models the aircrafts
flexible wings. The Galerkin method is used to develop the equations of motion
for the orthogonal modes. Fully coupled mass, stiffness, and damping matrices are
created. The longitudinal dynamics and first bending and torsion modes are ana-
lyzed and an adaptive control system is created. In this formulation, the rigid-body
dynamics are augmented with contributions due to flexibility.

References 80, 81, and 82 describe the derivation of flexible aircraft equations
of motion in similar fashions. Lagrange’s Equations are used, where potential and
kinetic energies are obtained for components of the flexible aircraft. In these analy-
ses, the energies include contributions from the fuselage, wings, and empennage as
separate quantities. Orthogonal mode shapes are also assumed to be known a priori

and available during the solution process.
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1.2.4 Comments on Literature

There is a general gap in modeling used for flight controls development versus
that used for rotor dynamics and loads prediction. Flight control designers gen-
erally do not have access to high-order comprehensive analyses, and therefore use
much simpler models. Models such as GTRSIM are based on theory, but are em-
pirically corrected to match flight test data. Using these types of models to predict
new aircraft behavior is problematic. As such, linearized models from comprehen-
sive analyses such as FLIGHTLAB, CAMRAD2, and the model developed here are
beginning to play a large role in control system design.

The fixed-wing community has much more experience in control design for
flexible aircraft. Experiences from these programs provide insight into the starting
point for flexible aircraft control. Accelerations at the wing tips or the nose and tail
provide adequate feedback signals for structural motion. In terms of modeling, a few
low frequency modes are generally adequate for stability and aircraft flutter calcula-
tions. For rotorcraft, where rotor modes are also important, many more modes are
required to model the entire aircraft. Analytical equations become increasingly less
tractable as the number of modes increases. Numerical formulations are required for
rotorcraft which generally contain several rotor modes as well as flexible structural

modes.
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1.3 Contributions of Dissertation

There are many comprehensive code bases that can be used to model flexible
rotorcraft. This dissertation introduces and applies a comprehensive model with
a new structural formulation to study the flight dynamics and control of a large
flexible tiltrotor aircraft. The benefits of this model architecture are in maintaining
the equations of motion in simple ODE (ordinary differential equation) form, which
decreases computational costs and makes real-time implementation possible. In
addition, it is simple to obtain linear models from this system architecture.

A comparison between different flexible linear model architectures is presented.
Linear flexible models can be obtained from a variety of sources and different model
types are compared in an effort to link the models and provide a methodology in
converting from one structure to another.

This dissertation also includes a comprehensive control synthesis for the flex-
ible tiltrotor. In past literature, control synthesis was performed on rigid tiltrotors.
Here, a solution is obtained that ensures that stability, model following, disturbance
rejection, and bandwidth requirements are all fulfilled while minimizing structural
oscillations through active control of structural modes. The contributions are de-

scribed in greater detail below.

e Muti-body like rotorcraft modeling:
Multi-body solvers generally contain numerical kinematics for the motion of
bodies held together by constraint equations. The formulation presented in
this dissertation retains the numerical kinematics but does not include alge-
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braic constraint equations. This formulation leaves the equations of motion
as ODEs. The bodies are assumed to be rigidly connected to each other with

motion between the bodies allowed only through flexibility.

Comprehensive comparisons between different flexible aircraft mod-
els:

Comparisons are given between different linear model structures. Flexible
models can come from multi-body simulations (like the one developed in
this disseration), rigid-body aircraft models augmented to include structural
flexibility, or flight data. The models are shown to be coupled by the off-
diagonal terms. Conversions are given between the complicated multi-body
model structures to decoupled flexible model structures. A decoupled model is
the simplest model type, where all interaction between the flexible mode and
fuselage dynamics is obtained through an influence coefficient in the output

equation.

Development of advanced control laws for flexible aircraft:

Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Com-
mand (TRC) control modes are developed for the flexible LCTR aircraft.
Comparisons are given between control systems that only ensure stability at
structural frequencies, passively control structural oscillation through the use
of notch filters, and actively control structural oscillation using structural feed-
back. It is shown that control systems that do not account for structural flexi-

bility have degraded, potentially unstable performance, and structural control
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techniques can be used to give large reductions in structural motion.

1.4 Organization of Dissertation

Chapter 2 presents the theoretical development of the model. Kinematics and
coordinate system transformations are discussed. The finite element beam model
used for the rotor, nacelle, and wing is also presented. The system state vector is
developed in this chapter, including rigid-body, inflow, and flexible beam degrees of
freedom. Governing equations for each degree of freedom are also discussed.

Chapter 3 discuses the development of the aircraft model from its components
described in Chapter 2. The connection of various bodies into a tree structure is
explained. The use of the modal coordinate transformation to reduce the system
degrees of freedom is also discussed. In addition, linearization and time integration
of the aircraft model are also presented.

Chapter 4 presents validation of the model. The initial validation is against
a rigid XV-15. The XV-15 validation data consists of identified models from flight
data, as well as simulation models. The LCTR model is then validated against an-
other comprehensive model. Nacelle dynamics are also validated against the existing
literature.

Chapter 5 examines different flexible linear model architectures. Descriptions
for each model are given with examples from the literature. A flexible LCTR model
is converted to each model structure type.

Chapter 6 builds the control system for the flexible LCTR aircraft and pro-

26



vides comparisons between different control strategies. This chapter also looks at
the robustness of the system, costs of structural feedback and sensitivities of the
specifications to changes in structural gains.

Chapter 7 compares the performance of the aircraft with and without struc-
tural feedback in a fixed-base piloted simulation and provides pilot comments.

Chapter 8 provides key conclusions from this dissertation and suggests future
work.

The appendices show the derivation of the kinematic relations, include addi-
tional details regarding flexible model architectures, and detail various structural

feedback concepts.
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Chapter 2: Theoretical Development

A description of the formulation of the equations of motion is given in this
chapter. The model is entirely composed of a coupled set of nonlinear ODEs, and
key coordinate systems used during the analysis are discussed. Rigid-body equations
of motion along with elastic beam equations used to model rotor blade and wing
flexibility are also discussed. A finite-state inflow model is used for each rotor to
retain the system in ODE form. The full system state vector is developed from its

components.

2.1 Coordinate Systems

2.1.1 Inertial Reference Coordinate System

The inertial coordinate system serves as the reference coordinate system for
the development of the equations of motion. The origin of the system is the aircraft’s
center of mass. The z-axis (nl) of the inertial coordinate system points downwards,
but the direction of the r and y axes are somewhat arbitrary. The x-axis (n!) could
point north and the y-axis (n) could point east if the trajectory of the aircraft was

needed or if the aircraft had to navigate during code execution.
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Figure 2.1: Body and inertial coordinate systems

2.1.2 Body-Fixed Coordinate System

The body coordinate system originates at the aircraft center of mass and points
forward along the z-axis (n?), out the right wing for the y-axis (n¥), and downwards
for the z-axis (nf). This coordinate system is used to define the aircraft linear and
angular motion as well as the aircraft mass moments of inertia. The inertial and
body coordinate system are related by the Euler angles, which define the aircraft’s
orientation with respect to the inertial coordinate system. The transformation from
inertial to body coordinate system is shown in Figure 2.1. The aircraft is first ro-
tated around the z-axis to form an intermediate coordinate system. This coordinate
system is then rotated about the y-axis to form a second intermediate coordinate

system. A final rotation of this coordinate system about the x-axis gives the body

axes. The transformation matrix is given by Eqn. (2.1).
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Si3 = —sinf

So1 = sin ¢ sin # cos 1) — cos ¢ sin
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Sz = sin ¢ cos
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S39 = cos ¢sinfsin ) — sin ¢ cos ¥
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2.1.3 Flexible Beam Coordinate Systems

The flexible beam coordinate system is used for flexible rotor blades as well
as wings, moving nacelles, flexible empennages, etc. All transformations needed for
the x-axis to point outwards along the elastic axis have already been performed in
the process of getting to the flexible beam coordinate system. For wings, any wing
sweep or dihedral/anhedral angle is accounted for in the transformation matrix from

the previous body in the multi-body system to the beam.

2.1.3.1 Undeformed Beam Coordinate System

This coordinate system originates at the root of the flexible beam and points
outboard along the elastic axis of the undeformed flexible beam for the z-axis (n}).
The y-axis (nf) is in the chordwise direction and points forward towards the direc-
tion of travel. This axis defines the lead/lag direction of motion for rotor blades.
Displacements from the elastic axis to the aerodynamic center or center of mass of
the beam section are given along this direction as well. The z-axis (n3) follows the
right hand rule and its direction is thus set by the x and y axes. For the standard
counterclockwise rotating rotor systems, the undeformed z-axis points upward and
defines the flapping or beamwise bending degree of freedom (see Fig. 2.2). In the
present work, a wing will be defined as “right” or “left” depending on whether its
elastic axis is to the right or left of the 2” — 2z body-axis plane. The right wing has

the same undeformed coordinate system as these blades. These coordinate systems

described the standard form of the flexible beam. Displacements due to structural
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flexibility are given in this coordinate system.

(b) “Right” wing

Figure 2.2: Standard undeformed (dashed) and deformed (solid) coordinate systems

The beam coordinate systems can also be oriented in a nonstandard form. Here
the x-axis remains pointing outward, the y-axis remains pointing forward along the
chord, but the z-axis points downward, in the opposite direction as the standard
form. Figure 2.3 shows the coordinate system used for these beams. These coor-
dinate systems are used for clockwise rotating rotor systems as well as the “left”
wings This allows for rotor speed to be treated as a positive constant for both ro-
tors. Changing the direction of the y-axis and having the z-axis point downwards

also allows for the same blade section properties to be used. Since positive displace-
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ments are defined in the lead direction (forward chord bending), the same CG and
aerodynamic center offsets from the elastic axis may be used. This same coordinate

system is also used for the “left” wing.

f
n;

b oy
n; < 7

5

nj

(b) “Left” wing

Figure 2.3: Nonstandard undeformed (dashed) and deformed (solid) coordinate sys-
tems

Wing sweep and dihedral are accounted for in transformations from the pre-
vious body to the beam undeformed coordinate system. In the tiltrotor example,
sweep and dihedral are included in the transformation from the fuselage coordinate
system to the wing undeformed coordinate system. Rotor blade precone is included
as a separate transformation matrix, and is described in Sec. 2.1.4.3.

The nacelles retain a single rigid-body rotation mode. The nacelles contain

a “pinned” boundary condition at the center node and rotate around the y-axis
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(n}), giving displacements in the z-axis (n4) only. The r-axis (n%) points out along
the elastic axis as shown in Fig. 2.4. The deformed y-axis (ng ) remains identical
to the undeformed one. The “left” and “right” nacelle’s coordinate systems are

identical. Since the “left” and “right” wings have different coordinate systems, the

transformation matrices from the wing to the nacelles are different.

(b) “Left” nacelle coordinate systems

Figure 2.4: Rotating nacelle undeformed (dashed) and deformed (solid) coordinate
systems
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2.1.3.2 Deformed Beam Coordinate System

Elastic deformations add displacements and rotations to the undeformed co-
ordinate system and are shown alongside the undeformed coordinate systems in
Figs. 2.2-2.4. Once elastic deflections are added, the coordinate system becomes
the beam deformed coordinate system. This coordinate system is dependent on the
displacement along the elastic axis since elastic deformation varies along the elastic
axis of the beam. Since the coordinate system varies along the beam span, its origin
is located at the current spanwise location along the beam.

The transformation matrix [S/*] transforms the elastic axis offsets from the de-
formed to the undeformed coordinate system. Its components are given by Eqn. (2.1).
For the elastic beam, the individual rotation angles are given in Ref. 83. They are
given in the beam undeformed coordinate system and are based on elastic dis-
placements including w in the n} direction, v in the nf direction, and u in the n}
direction. Elastic rotations about the n} axis are labeled as ¢. Spanwise derivatives
of the displacement quantities are labeled (),, and are used to define the rotation

angles:
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Local forcing along the elastic beam is determined in the deformed coordinate
system since forcing takes place along the deformed beam. Bodies are connected to
each other in this coordinate system as well.

During execution, all components of the system can be flexible. If a component
is rigid, the flexible components are set to zero and the deformed coordinate system

is identical to the undeformed one.

2.1.4 Rotor Coordinate Systems

Several coordinate systems are used for modeling the rotor system.

2.1.4.1 Non-Rotating Shaft Coordinate System

The non-rotating shaft coordinate system is centered at the hub. This coordi-
nate system is oriented so that the positive z-axis (n}'®) points downward along the

axis of rotation of the rotor, the x-axis (n?'f) points forward and the y-axis points
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starboard. The transformation matrix between the body axes and the non-rotating
shaft axes is a product of all the intermediate coordinate systems in the multi-
body system and are highly dependent on the aircraft configuration (see Fig. 2.5).
These transformations may include wings, nacelles, and any other components. De-
termination of the non-rotating shaft coordinate system is the first step towards

determining blade kinematics.

Figure 2.5: Body and non-rotating shaft coordinate systems

For a rigid aircraft, this transformation matrix is constant. For a flexible

aircraft, the transformation matrix may vary with time.

2.1.4.2 Rotating Shaft Coordinate System

The rotating shaft coordinate system originates at the hub and rotates around
the hub at the main rotor speed. The z-axis (nf!) points upward along the axis of
rotation, the opposite of the non-rotating shaft coordinate system. Each blade has
its own hub rotating coordinate system based on its current azimuth angle, 1). The

r-axis (nf?) points outward and is in the same plane as the beam elastic axis (see
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Fig. 2.6). The transformation in matrix between these two coordinate systems is:

n” = [S*VF] nyR (2.8)
( 3\ B T ( 3
nft —cost sing 0 nVE
nf ¢ = siny cosyp 0 n)'? (2.9)
nf 0 0 —1| |ndf
\ / L . \ Vs
R
n
NR 3
N2 ) A nf
n
NR 4
n; < Q\;y
v
NR
n3

Figure 2.6: Non-rotating and rotating shaft coordinate systems

2.1.4.3 Preconed Rotating Coordinate System

The preconed coordinate system rotates the blade from the rotating shaft axes
to the undeformed blade axes using the precone angle. The transformation is shown

in Fig. 2.7 and is as follows:

n’ =[S ng (2.10)
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Figure 2.7: Conversion from rotating coordinate system to beam coordinate system
through the precone angle

The blade undeformed coordinate system is identical to the one described in

Sec. 2.1.3.1.

2.1.5 Fuselage Wind Coordinate System

The fuselage wind coordinate system is centered at the aircraft center of mass
and is defined with respect to the freestream flow due to aircraft linear velocity.
The wind and body coordinate systems are related by the angle of attack and
sideslip. This coordinate system is used to determine aerodynamic contributions of
the fuselage onto the equations of motion. The transformation from the body to the

wind coordinate system is:

n'" = [S"7] n” (2.12)
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This coordinate system is undefined in hover with zero wind speed. Generally,

hover is approximated by adding a small longitudinal trim speed.

2.1.6  Beam Sectional Aerodynamics Coordinate System

In order to determine air loads, the local velocities at the beam (wing, blade,
nacelle, etc.) elastic axis are needed. The elastic axis has beam (flap) and chord (lag)
deflections when compared to the undeformed axes. The local angular deflection
is used to determine the local velocity from the overall freestream velocity. The
following transformation takes beam velocities and converts them to air velocities

at a location on the deflected beam.

VA = UTI’lcll + Upng + URng (214)

b

Y

The coordinate transformations is from the undeformed beam coordinate system n

(Sec. 2.1.3.1):

n’ =[S n’ (2.15)
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The local beam and chord bending slopes are (flap and lag slopes for a blade):

B = w, (2.17)

C="1, (2.18)

For beams that rotate clockwise and “left” wings (see Sec. 2.1.3.1), additional ma-
nipulations ensure that the correct aerodynamic forcing is determined when inflow
and freestream airflows are included. The n§ vector is negated so it points upwards,
as it does for the counterclockwise and “right” wings. The positive pitch angle is
also negated, so positive pitch (and elastic torsion) deflections increases the angle
of attack. These transformations are later removed from the aerodynamic forcing

vectors to ensure loads are calculated in the appropriate coordinate systems.

2.1.7 Dynamic Inflow Coordinate System

The dynamic inflow equations are written in the tip path plane coordinate
system. The tip path plane is defined by a rotation from the non-rotating shaft

coordinate system by the first harmonic deflection of the flapped rotor blades. The
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z-axis remains pointing down.

9 Uz
Wripj
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]:

The transformation to the non-rotating shaft coordinate system is:

2.2  Main Assumptions

( \ B
n{VR COs ﬁlc sin 610 sin Bls sin 610 COoSs ﬁls
néVR = 0 COS Blc —sin Bls

NR . .
n; —sin fi. oS Pi.sin B, €os P cos P
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(2.19)

(2.20)

(2.21)

1. The rigid-body equations are based on a rigid airframe and do not account for

effects of structural flexibility.

2. Wind velocity is zero.

3. A three state dynamic inflow model is an accurate representation of each

rotors inflow. Influences of the wings and other aircraft features on inflow are

negligible.

4. Fuselage aerodynamic properties can be lumped into lift, drag, and moment

coeflicients.
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5. The blade cross section is symmetric with respect to the major principle axis.

6. Blade chord, twist, stiffness, mass properties, and all offsets are given at dis-

crete spanwise locations and vary linearly in between.
7. All elastic beams are composed of an isotropic, linearly elastic material.
8. All blades are identical.

9. Euler-Bernoulli beam theory is used, implying plane cross sections remain
plane and perpendicular to the elastic axis during deformation. Shear is neg-
ligible. This beam theory applies to all blades, wings, and any other flexible

aircraft component.
10. The rotor blades rotate at constant angular velocity.

11. The blade pitch control system and actuators are infinitely stiff and there is

no freeplay in the linkages.

2.3 Kinematics and Coordinate System Transformations

The rotorcraft model consists of multiple flexible bodies arranged in a generic
tree-like topology. For an example tiltrotor aircraft, shown in Fig. 2.8, the tree
starts from the aircraft center of mass and branches out to the wings, nacelles, and
ultimately rotors and blades. Each component within this tree is given its own
coordinate system. The coordinate system serves as the basis for the formulation
of flexibility contributions of that body to the overall system. Coordinate systems
used in the formulation have been described in the Section 2.1.
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Right Nacelle

Center of

Left Wing

Fuselage

Right Wing
Inertial Frame

Left Nacelle

Figure 2.8: Generic tilt-rotor multi body formulation

The development of the kinematic relations between a generic set of bodies is
given in Appendix A and covers derivations of the positions, velocities, and accel-

erations of arbitrary points within the flexible tree-like configuration.

2.4 Rigid-Body Equations of Motion

Equations of motion for the fuselage are formulated in the body axes and

assume a rigid aircraft. The force and moment equations are as follows:

X =m i+ quw —rv) +mgsiné (2.22)
Y =m (0 + ru — pw) — mgsin ¢ cos 0 (2.23)
Z =m (w+ pv — qu) — mg cos ¢ cos (2.24)

L=1.p— Iy, —L.)qr — L. (pg +7) + Ly (pr — ¢) — 1. (q2 — 7"2) (2.25)
M = 1Iyp— (L. — L) pr + L. (p° —17) — Ly (qr + p) + 1. (pg —7)  (2.26)

N = zz/'; - (Ixm - [yy> rq + ICL“Z (QT - p) - [zy (pZ - q2) - [yz (pr - q) (227)
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The kinematic equations relating the aircraft roll, pitch, and yaw rates to inertial

rates are:

gﬁzp—i—qtan@sinqﬁ—i—rtan@costb (2.28)
0 =qcos¢—rsing (2.29)
: cos 1 sin ¢

= 2.
v TCOSQ +qcos€ (2.30)

The left hand side of the six force and moment equations contain all external forcing
acting on the center of mass. This includes all forcing coming from the rotors, wings,
nacelles, and any other flexible aircraft component. It also includes all aecrodynamic
forcing acting on the fuselage. The fuselage is only connected to a subset of bodies
from the multi-body system (i.e. the wings for a tiltrotor). Rotor forcing is passed
through the wings to the fuselage, and so does add directly to the fuselage equations.
Since all external forcing comes integrated in the left hand side, the masses and
inertias on the right hand side of the equations are for the rigid component of the
fuselage only. The applied forces and moments at the center of mass are (only

X-Force shown):

NR Nnac NW
X=Y X5+ X + X+ Xp+ Y X, (2.31)
k=1 k=1 k=1

()* : Forcing passed through wings ()™ : Tail rotor forcing, if present

Here Xp are rotor loads from Ny rotors, X,.. are loads from N,,. nacelles, Xrr

are tail rotor loads, X are fuselage/empennage loads, and Xy are wing loads from
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Ny wings
The portions of the aircraft state vector associated with the rigid-body equa-

tions of motion are:

Xp={u v w p q r ¢ 0 w}T (2.32)

2.5 Flexible Beam Equations of Motion

In order to determine spanwise loads for any beam, local positions, velocities,
and accelerations must be known. These vectors will be derived for a rotor blade
and then simplifications will be given for wings, nacelles, etc. Rotor blade vectors
are most complex because they contain effects due to rotor speed, elastic offsets,

and precone angles.. These vectors are based of of those derived in Ref. [58].

2.5.1 Blade Position Vector

The position vector for a point on a blade is:

Rp=Rcg+ Ry +Rp (2.33)

R is the position vector of the center of gravity with respect to a fixed point.
R is the position vector of the hub from the CG, and Rp is the position vector of
a point on a flexible blade with resect to the hub.

Components Rog + Ry are determined using multi-body kinematics. These
values are derived in Appendix A in Eqn. (A.14). As written, these vectors in-
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clude flexibility of any component up to the rotor hub. Written in the multi-body

formulation:

Rus = Reo + Ry (2.34)

RCG = C {IIO} (235)

1
—i\T 7 =n nl
Ry — <Z{q} [5°] + {£"}7 [S 0}) [n) (2.36)
i=1
Where body n represents the hub. The generic displacement from the beam root
for a point on the beam in the undeformed blade coordinate system is:

Ry = |ecos B, + o + S5y + Sﬁzo} n+

v+ S{zbyo + S;{szg} ng+ (2.37)

w —sin B, + S§yo + Sggzo} n}

v and w are elastic contributions to the displacement of the elastic axis. e is the
offset from the beam connection point to the start of the elastic portion of the beam.
By is the precone angle.

In order to sum the vector above with the Rog and Ry components, it must
be converted to the same coordinate system. The transformation components from
the blade undeformed coordinate system through the preconed, rotating shaft, non-

rotating shaft, and hub coordinate system are given in the previous section. In
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matrix form they are:

{n) = 5] [57%) 5] [57°] {n’) (235)

2.5.2 Blade Velocity Vector

The absolute velocity of a point on the blade is:

dRee  dRy  dRy
_ .
Ve=—""4 " T @ (2.39)

As with the position vector, the first two components of the velocity vector are
obtained from the multi-body solution, and are given by Eqn. (A.15). This velocity
vector contains both rigid-body aircraft velocities as well as all velocity contributions

due to flexibility from the CG to the hub and is written in the inertial frame.

Vs =Vee+ Vi (2.40)
Ve = {C}T {n°} (2.41)
Vi (S (@) 71+ a0 [57) ¢ 2.

) [ + ) [3]) {n}

Where ¢ is the aircraft velocity. The velocity of a point on the flexible blade with
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respect to the hub is:

dRp  ORp
7 = 82& 4+ w X RB (2.43)

where w is the total angular rate of the hub, given by the components of the skew
symmetric matrix in Eqn. (A.28). This angular rate includes rigid-body rates as
well as all angular rates due to structural flexibility up to the hub, and has been
converted to the blade undeformed coordinate system. The partial derivative in the

equation is the velocity of a point due to blade flexibility and rotor speed:

ot

ORp  [0ORy
ot

) +QxRp (2.44)
B

Where (... )y is the velocity of the point P as seen by an observer rotating with the

blade in the rotating shaft coordinate system and €2 is the main rotor speed.
Q=0Qn)" (2.45)

Since the local velocity of the blade is needed for airloads calculations, all velocities

are brought to the undeformed coordinate system, {nb}.

ORp

Vp = <VMB [SOb} + (W) + Q x RB +w X RB {nb} (246)
B
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2.5.3 Blade Acceleration Vector

The blade acceleration vector is built the same way as the position and velocity

vectors.

d*Req  d*Ry n d’Rp

2.47
dt? dt? dt? (247)

ap —

(2.48)

The first two components of the acceleration vector are given by the multi-body
solution and give the total acceleration of the hub. These components are given by

Eqn. (A.29).

ayp =acg T ap (2.49)
acg = {(}T {n°} (2.50)
. (n 1 <{q} S’O +2{ } [Szo} n

(@} [5°]) + 5" [s7] + 24" 7] + (2.51)
)" [5]) {n}

The acceleration of a point on the flexible blade with respect to the rotating hub is:

’R ’R R
B:a B+w><RB—|—2w><a B

72 BYe 5 +w X (wx Rp) (2.52)
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where w and w are the angular velocity and acceleration vectors of the hub, includ-
ing all rigid-body and flexibility effects. These vectors are converted to the blade
undeformed coordinating system. The second partial derivative is the acceleration

of a point on a flexible blade including rotor rotation contributions.

PRy <82RB

o BT ) +Q x Rp +2Q x (%> +Qx(QxRp) (2.53)
B B

ot

The full acceleration vector, converted to the beam undeformed coordinate system

is;

’R : OR
a, = (aMB [SOZ’] + ( OtQB)B + Q x Rp + 2Q x (8—153)3

R
+Q><(Q><RB)+w><RB+2w><aat

+w X (wx Rp) ) {n}  (2.54)

2.5.4 Simplifications for Other Beams

Other aircraft components may be flexible as well. These components are
all connected to their root body, which serves the same purpose as the hub in the
derivations above. From this root body, position, velocity, and acceleration vectors
may be created for any point on the flexible beam and loads may be determined.

For non blade components, the changes are as follows:
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2.5.4.1 Position Vector

The multi-body component of the position vector, Ry, is terminated at the
body just before the flexible body. The flexible components are treated as the rotor
blades were in the derivations above.

The position vector of a point on the blade does not include elastic offset and

blade precone.

e=0 (2.55)

Bp =0 (2.56)

The transformation matrix [S f b] now transforms the current bodies vector from the

deformed to undeformed frames.

2.5.4.2 Velocity Vector

As the the position vector, the multi-body component of the velocity vector,
Eqn. (2.40), is terminated at the body just prior to the flexible body. The rotor

speed in Eqn. (2.44) is set to zero as well.

Q=0 (2.57)
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2.5.4.3 Acceleration Vector

The multi-body acceleration components are stopped at the body just prior
to the current one. As in the velocity vector, rotor speed is set to zero. Here rotor

angular acceleration is also set to zero.

Q=0 (2.58)

Q=0 (2.59)

2.5.5 Beam Element Description

The elastic beam formulation contains coupled torsion and beamwise-chordwise
(flap-lag) bending degrees of freedom, and small elastic deflections. All loads are
formed in the undeformed beam coordinate system. This makes force and moment
contributions to the body downstream of the elastic body easier to calculate.

Inertia and structural couplings are rigorously modeled for any combination of
rotors and wings. The aerodynamic couplings need to be tailored for every specific
configuration.

A thorough discussion of the elastic blade formulation can be found in Ref. 84.
The following discussion summarizes the formulation and highlights the contribu-
tions from tip masses and large external objects, like the nacelle, on the beam equa-
tions. The discussion also highlights how forcing from upstream bodies impacts the

beam equations of the current body in the multi-body system.
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The beam equation of motion for a simplified beam bending example is:

/ (EI@)wa0) aw + m(a)is — p(a, £)da = 0 (2.60)

The terms on the left hand side represent beam stiffness, mass, and external
forcing. Beam deflection is assumed to be separable in space and time and to be
composed of shape functions dependent on the spatial displacement, and temporal

components which give amplitude variation with time.

w(z,t) = Hy(2)yw(t) (2.61)

(2.62)

The left hand side of the beam equation is generally not equal to zero as
the solution obtained is always an approximate solution, and is equal to a residual

value.
/(Ef(x)wm)m + m(x)w — p(x,t)dr = res,(z, t) (2.63)

The Galerkin method of weighted residuals is used for approximating the solution
to the beam equation of motion. Using the Galerkin method, a set of trial functions
multiply the residual of the equation of motion. The coefficients for each trial
function are determined so that the residual of the equation of motion is minimized.

The trial functions used over each element are the Hermite interpolation polynomials
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which are orthogonal and limit the displacements within the beam within each

element. Therefore, the solver tries to solve the following equation.

l
/resw(x,t)Hg(x)dx =0 (2.64)

0

Since the residual itself is written out in Eqn. (2.63), the Galerkin method produces

the following solution to the equation of motion:

le

/ (BI@) e (2)yu (1)) ., + m(@)Hu (@) (1) — plr, Odz| HL(2) =0 (2.65)

Once the appropriate integrations by parts are carried out, the solution becomes:

e

l
\(EH:E)Hw,m <x>Hg,zx(x)) Yul(t)

J/

0 IK]
+\(m(m)Hw(x)H5(x))1y(t)w — \(p(x,t)Hﬁ(x)))da: =0 (2.66)
[(M] Q(t)

The first terms form the stiffness matrix, the second terms form the mass matrix ,

and the final term consists of the external forcing vector.

2.5.5.1 Finite Element Descritization

Finite elements are used to model the flexible beams. Any number of elements
may be used to model each wing, blade, nacelle, or any other flexible element.
Aerodynamic, structural, and inertial forces and moments are calculated at specified
internal points in each finite element, integrated to form loads at each node of the
finite element. These nodal loads are transformed into modal loads using the modal

coordinate transformation (discussed in later chapter), greatly reducing the total
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number of degrees of freedom.

There are a total of 6 Ng + 5 nodal degrees of freedom, where Ng is the total
number of finite elements used in the formulation. The nodal degrees of freedom
for each finite element are displacement and slope for beamwise/flap (w) and chord-
wise/lag (v) motions at the inboard and outboard end of each element. Torsion (¢)
has degrees of freedom at the inboard and outboard end, as well as at the center of
each element, as shown in Fig. 2.9 for a four element beam model. For the beam

model shown, there are a total of 29 degrees of freedom.

(%
U5,z

V4
Ws

V4,2

W5, x

i

root
rigid offset

Figure 2.9: Four element finite element model of a blade with nodal degrees of
freedom

Since forces and moments are integrated quantities, positions, velocities and
accelerations along the entire elastic beam must be know. The mapping of the
displacement between the nodes is accomplished through the use shape functions,
which are Hermite polynomials. The shape functions for beam and chord bending,

which contain both displacement and slope degrees of freedom at each element end
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point given below in Eqn. (2.67). The variable 7 is a mapping variable within each
element, and has a value of 0 at the inboard end of the element and 1 at the outer
end. The variable x is the spanwise displacement along the beam element and is

also a function of 7, and [ is the element length.

( \ T
1—3n%+2n°

n(1—2n+n%)1
H, (z) =H, (z) = (2.67)

3n* — 2n°

n(=n+n?)1

For torsion, which includes a mid-element torsional displacement:

r \ T
1—3n+2n°

Hy (z) = 4n — 4n? (2.68)

—1 + 21°
The chord, beam, and torsion displacements within any finite element, and thus
any portion of the beam, can be written as a product of a displacement function

and known displacements at the nodes of the finite element.

U(ZE, t) = Hv(x)}’v(t) (269)
w(z,t) = Hy(2)yw(t) (2.70)
¢(z,t) = Hy(2)yy(t) (2.71)
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where the vector y contains nodal displacements:

( ) ( )
'UO wo ( )
bo
Vozx Woz
Yo(t) = S Yu(t) = Yo(t) = 1 do5 (2.72)
(%1 w1y
b1
\ y,
Vig Wiy
\ J \ J

Here, subscript 0 refers to the inboard end of the finite element, and subscript 1
refers to the outboard end. Subscript x refers to the slope (spatial derivative) at
the node. The temporal portion of the displacement vectors (Eqns. (2.69-2.71)) and
their derivatives are contained in the system state vector, and are obtained from the
solution to the beam finite element equations and are available at all times from the
solver. The spatial portion of the displacement vectors are given by Eqns. (2.67-
2.68) and their spatial derivatives. This assumed displacement in space between
beam nodal elements converts the beam equations of motion from PDE into ODE
form. The displacement vector is third order in space for beamwise and chordwise
bending, meaning displacements within finite elements are limited to be at most
cubic in nature. For torsion, the displacement are limited to follow a quadratic
shape. Using equations Eqns. (2.69-2.71) and their appropriate space and time
derivatives provides all the necessary variables to obtain a solution to the beam
equation of motion.

Gaussian quadrature using Legendre Polynomials is performed on eight collo-
cation points within each beam finite element to provide maximum integral accuracy

for elements that have a varying structural, aerodynamic, or inertial spanwise forc-
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ing. The Legendre polynomial integration points and weights are given in Table 2.1.
The standard interval of integration is changed to be the size of the mapping function

within the finite element and goes from 0 to 1.

Table 2.1: Legendre polynomial quadrature points and weights for interval (—1,41)

Point Weight

+/—0.1834 0.3627
+/—0.5255 0.3137
+/—0.7967 0.2224
+/—0.9603 0.1012

The total nodal forcing vector for each finite element can now be expressed as

a sum over the gaussian points within each element. For chord and beam bending:

l

Fv,w - / fv,w(xa t)Haw(l')dl' (273)
=0
NG
FU,’LU = Z wifv,w(xiv t)Haw (‘T’L) (274)
=1

The torsion bending moment has a similar formulation:

M, = /m¢(a:,t)H£(x)dm (2.75)
.
M = > wmg(a;, ) H (1;) (2.76)

i=1

Here, w; is the quadrature weight at each gauss point and H(z;) is the value
of the shape function at that point. f,, are the chord and beam forcing vector
per unit span and are the same quantities shown in Eqn. (2.66). During the code

execution, the components of Eqn. (2.66) are determined individually and summed

29



after integration along the element. In the moment equation, my is the torsional
moment per unit span. This summation is repeated over all finite elements to
produce the total nodal loading on the elastic beam. The force and moment forcing
equations are obtained for inertial, structural, and aerodynamic loading. If the
system is in equilibrium, these loads will cancel out, otherwise there is a resulting

motion in the flexible beam.

2.5.6 Inertial Loads

Beam inertial loads are due to the local acceleration of a point on the beam
and are obtained using the quadrature outline in the previous section. If the beam
contains a lump mass or other localized masses such as the nacelle, there is no
associated quadrature weight. These masses also do not have any contribution to the
aerodynamic or structural loads. Their contribution is multiplied by the appropriate
shape function value and is added directly to the integral over the beam represented
by the summations in Eqn. (2.74) and Eqn. (2.76). To determine the contribution of
any mass element, be it a lumped mass or distributed mass, the acceleration vector
must be know.

Inertial loads are based on finding the absolute acceleration of a mass. The
full acceleration vector in the undeformed coordinate system is given in Eqn. 2.54

as:

ap = a,n} + a,n} + a.n} (2.77)
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Once the acceleration of the point is known, the inertial forces follow.
f[ = —m ap (278)

Displacements in the deformed coordinate system to the center of mass of the beam
or tip element in the chordwise and vertical directions, ng and ng , respectively, create

moments at the blade section.

m; = —m [(yong + zong,:) X aB} (2.79)
The full moment vector is:

m; = —m [Mlnli + Mgl’lg + Mgng] (2.80)

If the beam has a simple lumped mass that is located on the elastic axis, there are
no moments at the cross section. For more complicated masses, such as a nacelle,
moments of inertia are lumped into two radii of gyration, one along 3, and the other
along 2.

Once the inertial forces and moments are known at given spanwise stations,
they are integrated into the nodal forces for the given finite element using Eqn. (2.74)
and Eqn. (2.76). This summation takes care of the second term in the beam equation

of motion given by Eqn. (2.63).
2.5.7 Structural Loads

The structural load equations for the elastic wings do not differ from those of
the elastic blades and are obtained from Ref. 83. These equations are in the “semi-

implicit” form, where an ordering scheme has been used to simplify the equations
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into a set of algebraic equations that are integrated by parts. The total moments in

the beam bending, chord bending, and torsion directions are:

Mb(va w, ¢) = Mtl + MtO (281)
M (v,w,¢) = Me + My (2.82)
Mt(v7 w, ¢) - Mb2 + Mbl (283)
with:
My =GJ (¢4 + U prwy) (2.84)

1
My =3 (Ely — El3)sin 20 (vgm — wQM) — (Ely — El3) cos 2060 4 W 40 (2.85)

My = — [(El cos® 0 + El3sin® 0g) v,

- % (Ely — El3)sin 206 (W 20 — 200,42) + (Ely — El3) cos 2060w 4] (2.86)

Mo == GJ¢ w40 (2.87)
My = —| % (Ely — El3)sin 20 (0 40 + 20w 40) + (Ely — El3) oS 20600 44

+ (E[2 sin? 0 + EI; cos? HG) wym] (2.88)

My =GJ ¢ 40 40 (2.89)

(2.90)

In the equations above, 64 represents the angle of the blades with respect to
the undeformed coordinate system. The beam, chord and torsion stiffnesses are
El;, El,, and GJ, respectively. It should be noted that if only the beam degree
of freedom is used, the equations above simplify to the beam equation as written

in Eqn. (2.66). These equations still must be integrated by parts as many times
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as the subscript on the left hand side indicates. The evaluation of the boundary
conditions in these integrations gives no additional contribution to the equations as
written above. The structural components of the quadrature given in Eqns. (2.74)

and (2.76) is:

NG
=1
NG
1=1
NG

=1

2.5.8 Aerodynamic Loads

The aerodynamic forcing is formulated in essentially the same manner as the
inertial forcing for the elastic blade, except instead of accelerations, local velocities
are needed. Section velocities and angles of attack are developed as in Ref. 57.
Aerodynamics act as an external non-conservative force into the equations of motion,
and go into the final term in the Galerkin beam equation of equilibrium, Eqn (2.63).

The blade velocities were obtained in Sec. 2.5.2. The total velocity is obtained
by adding the local inflow velocity V;. Since the dynamic inflow model is used, V;

only contains the vertical component of velocity:

Vi =Vp{n’} -V {n"} (2.94)

V; = An} (2.95)

V1 contains the total velocity of the blade as it moves through the air. To obtain

velocities of the airmass, V 4, as needed at the deformed blade, the transformation
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from Sec. 2.1.6 is used.

V= /(U3 + U3+ U}) (2.96)
_ [(Urtanfg + Up) |cos 7|
= tan™ 2.
) o [(UT — Up tan fg cos? ) (2.97)

Here Up, Ur, and Ug are the perpendicular, tangential, and radial components of
local blade velocities including all flexibility and freestream contributions. 60g is
the geometric blade pitch at the current azimuth location and includes twist, blade
control pitch, and flexibility effects. cos~ is the yaw angle of flow and is defined as

follows:

|Ur|

Generally, airfoil tables are functions of mach number and angle of attack.

cosy = (2.98)

OL = OL(CY, M) (299)
CD = CD(Oé, M) (2100)

2.5.8.1 Quasisteady Aerodynamics

Quasi-steady aerodynamics helps account for shed wake effects as non-circulatory
effects in the creation of lift [85] [86]. Within these equations, the acceleration terms
for a plunging, h, and pitching, ¢, airfoils are neglected. Heave velocity, A terms are
included in the look up table determination of C}, given above.

The total lift at at a blade section, including quasi-steady effects may be
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written as:

1 ac [c
Lg = iijc {C’L + v (— — xA)}

aco'z]

1
L=Lo+ =pVic|—
Qt pAC[4VA

2
The total drag is:

1
D = §ijcCD

The forcing in the local coordinate system is

1 U
Fp=— [L a +DUP]
Va | cosvy

1
Fr = — [DUr — LUp cos 7|
Va

1
FR:?{DUR—L

Up costR]
A

Ur

p. = [Fr Fr Fp]{n’}
The total moment in the local coordinate system is:

M = M5+MQ —|—Md
1
MSZEijCQCM
Lo .
MQ = FPIACOSHG—FFRTJ]ASIDQG

1
Md = —ngLVAC2O.é <§ - $A>

d, = M nf
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In the moment equations Mg is the steady state pitch moment, Mg is the
quasi-steady moment due to the offset of the aerodynamic center from the elastic
axis, and M, represents non-circulatory contributions.

Other components in the equations above are p, air density; ¢, blade chord;
a, local blade lift curve slope; and x4, the offset of the aerodynamic center from
the elastic axis. Local blade aerodynamic forces are integrated in the same manner
as structural and inertial loads using Gaussian quadrature. Aerodynamics are not
included in beam mode determination.

Once the loads are obtained above, they are transformed back to the unde-
formed blade coordinate system using the inverse of the matrix given in Sec. 2.1.6.
The aerodynamic loads may now be added to the beam equation of motion (Eqn. (2.63)

through the quadratures given in Eqn. (2.74) and (2.76).

£, =[5 pa (2.114)

m, = [S”] " q, (2.115)
2.5.9 External Loads

External loads are loads that are passed onto the current body from bodies
upstream. The wing has loads passed it it from the nacelle, and the rotors impart
loads onto the nacelle. These loads are also treated as external non-conservative
point forces in much the same manner as aerodynamics. External vertical and lateral

forces go into the beam and chord residual equation, and external axial torques go
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into the moment equation.

In the Gaussian quadratures shown by Eqns. (2.74) and (2.76), there is no
quadrature weight associated with point forces and moment and the value of the
shape functions, H (z;, j) depends on the placement of the connection point of the
upstream body within the current element.

Within the finite element that the external force is located, the external force

adds the following contribution to the quadrature given in Eqn. (2.74):
F,u=Fyu(x)H] (2:) (2.116)
The external moment is added as follows:

Fow= M5 (z)H, , () (2.117)

For the torsion degree of freedom, the external moment contributions is:
My = M (z;)H (x;) (2.118)
2.5.10 Tension Induced Loads

The loading vectors described so far can be integrated in any order. For
example, aerodynamic loads at the root are independent of the loading at the wing
tip. Tensile loads at the inboard end of a rotating beam, however, are dependent
on the forcing at the outer portions of the beam. These loads generate bending
moments along the beam span and must be calculated from the outermost portion
of the beam inwards.

The tensile load at any point along the beam comes from the summation of
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axial forcing from that point outwards. The axial degree of freedom is not included in
this analysis, but axial loads are transmitted to other bodies and cause a restorative
flap moment for helicopter rotors. Within this formulation developed, beams may
be connected to other bodies at any nodal location. Therefore, axial forcing may
need to be integrated from both ends of the beam inboard to the connection point
to the previous body in the multi-body system. For example, a tiltrotor’s nacelle
is connected at its center point to the wing. Therefore, tensile loads are calculated

from both ends to this connection point.

2.5.11 Component Specific Treatment
2.5.11.1 Wings

The wing loading retains much of the same formulation of the rotor blades,
including the quasi-steady components. For wings, rotor speed and blade precone,
Bp is set to zero. As mentioned previously, aerodynamics for each component of the
system is determined based on knowledge of the aerodynamic environment of the
component.

In cruise, ailerons are used for roll control. Effects of flap deflections on lift
and moment coefficients are given in Ref. 87. The same concepts are used here for

aileron effects on lift and pitch coefficients.

Cp, = Cp + ACL,3, (2.119)

CMa =Cy+ AOMQ(Sa (2120)
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where:

ACL, =atn (2.121)
r—1- fa—sinb (2.122)
m
0, = cos™ 1(2¢,/c—1) (2.123)
0.15
=0.85 — — 2.124
7= 0.85— 56, (2.124)

2sin#, — sin 20,
“8(m— 0, +sinb,)

ACy, = —AC], (2.125)

Where ¢s/c is the aileron chord ratio to the airfoil section chord; d, is aileron de-
flection; a is the lift curve slope of the airfoil; and 7 is a linear approximation of the

flap effectiveness factor for a slotted flap from 0 — 20 deg. of deflection.

2.5.11.2 Nacelles

Nacelle aerodynamics are excluded in the calculations by setting all aerody-
namic coefficients to zero and setting the aerodynamic center on the elastic axis.
The nacelles are pinned at the connection to the wing, and thus contain a rigid-
body rotational mode. This rotational mode produces displacements and slopes
along the elastic axis from the undeformed nacelle coordinate system. These rigid

displacements are used in the equations above to determine loading.

2.5.12 First-Order Form

The equations of motion for the beam require nodal displacement, velocity, and
acceleration information, and so are second order in nature. The solution process

requires first order equations, so a re-structuring of the nodal states is required. The
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replacement of the second order states with two sets of first order states accomplishes

the task.
I = y
T2 =Y
and
i =j
To = T

For a homogenous second order system the conversion is as follows:

ij—l—2§wy’+w2y:0

) 2w W?| | 0
_|_ g

Ty 1 0 T 0

2.6 Inflow Equations of Motion

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

A three state Pitt-Peters type dynamic inflow model provides local velocities

for air load determination [88]. The inflow at any point of the rotor can be written

as:

A(ry ) = Xo + Aercos ) + Agrsin g
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Where Ay, Ag, and A, are the unknowns in the inflow equations, given in the tip-path

plane:
( 3 ( ) 4 )
)\0 /\() C(T
1 .
gM X+ LS ¢ =4 —-C, (2.133)
)\C )\c _CM
\ J \ / \ /

The matrices M and L,; contain the apparent mass terms and the non-linear inflow
gains and are given in Ref. 89. The right hand side of the equations give the rotor
thrust and pitching and rolling moments from the integration of blade aerodynamic
loads. For multi-rotor configurations, each rotor has its own independent set of
dynamic inflow equations.

As with the rigid-body and beam equations, all forcing is brought to the same

side, and a residual value of the inflow equation is passed to the solver.
2.7 Root Force and Moment Summation

The forcing as described so far goes into the flexible beam equations of motion.
The total forcing, including all degrees of freedom, must also get transmitted through
the beam to the hub and the aircraft itself to drive the motion of the aircraft through
the rigid-body equations of motion (Eqns.(2.22)-(2.27)).

A force summation method is used at the blade root to determine loads caused

be inertial and aerodynamic loads. The loads at the blade root are:

1

1
MR = / RC X (fA + f]) + (mA + m]) d(L’Q (2135)
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Only aerodynamic and inertial pitching moments are transferred in the second term
in the moment equation. R is the position vector of the deformed blade with

respect to the hub.
_ b f f f
R¢ = zon] + un; + vny + wny (2.136)

For an articulated helicopter, flap and lag moments are not transferred to the hinge.
The moments undergo further manipulation if there is a elastic offset. The total

moments at the hub are:
My =Mg+ R x Fp (2.137)
Where R, is the elastic offset
R, = en} (2.138)

The forces and moments are then converted to the coordinate system of the down-
stream body, and act as external forcing on that body. For the blades, this includes
inverse transformations from the preconed coordinate system to the rotating shaft

system and finally to the non-rotating (hub) shaft system.

Fy = [SVER] T [57Y) TR, (2.139)

My = [SVER] TN [SRY T My, (2.140)

As well as acting as external forcing vectors on beam equations of motion, these
forces and moments are also passed down to the root of the downstream body as

additional forces and moments in the overall force and moment summation. At the
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root they are summed with the inertial and aerodynamic forcing from that beam
(Eqgns. (2.134) and (2.135)). Mpg has another component, the cross product of the
displacement R¢ to the external applied force.

Force and moment transfer in the multi-body system is independent of beam
flexibility. Rigid portions of the multi-body model must also pass forcing to whatever

body they are connected to, terminating at the CG.

2.8 Assembly of System Degrees of Freedom

The system equations of motion are written in first order ODE form. The
equations are set up so that all forcing is brought to one side, for example, the

X-Force equation is:
m (4 + qw — rv) + mgsinf — X =0 (2.141)
or generally:
f(x,x,u;t) =0 (2.142)

This formulation and solution of this form of equations is described in Ref. [90].
Note that this relation is not generally true unless exact solution to the system of
equations has been found. This relation is usually equal to a residual value that is
minimized.

The full state vector is created from the components described above. Begin-

ning with the rigid-body states:

xp={u v w p qgr ¢ 0 Y (2.143)
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These states have their associate differential equations, given by Eqns. (2.22)-(2.30).
The next set of states represent inflow dynamics. One set of three inflow states

and equations (Eqn. (2.133)) is present for each rotor.
xx=1{h A ) (2.144)

The full state including the rigid-body states and states for inflows of rotors 1... Ny
is:
Ty

Tx1
X = (2.145)

TANg
\ Vs
Next come the flexible beam states. The flexible beam’s degrees of freedom are
dependent on the number of finite elements used. For the four element finite-element

model, they are shown in Fig. 2.9. Each four element beam has the following degrees

of freedom:

Xgr ={V1 Vg W1 Wiz $1 Q2 V2 UV W2 Wy P3 Ps V3 Vs,
ws Wy @5 P Vi Ve Wi Wi $7 P8 Vs Usp W5 Wi o}
(2.146)
The differential equations associated with these degrees of freedom are the differen-
tial nodal loading equations given in Eqns. (2.74) and (2.76). The nodal states are
converted to first order form, giving a state vector that has both the displacement

and velocity of the nodes as states. The full state vector including flexible bodies 1
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NB is:

Xrb

X1

X\Ng
Xstrl
X = (2.147)
XstrNg

Xstrl

kxstrNB J
Each state in the vector above has an associated equation. These equations have
been described within this chapter. They are ordered in the same manner as the

states are.

2.9 Chapter Summary

This chapter reviews the theoretical development of the math model. Multi-
body kinematics are retained to formulate position, velocity, and acceleration vectors
of different parts of the multi-body system. Structural, inertial and aerodynamic
forcing of the wing, blade, and other flexible components are discussed. Detailed
expressions for the development of the system math model are given. For the multi-

body system, bodies downstream of the current body add external forces and mo-

5



ments. These forces and moments are integrated to provide the forcing function for

the beam equations of motion as well as the overall aircraft dynamics.
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Chapter 3: Model Development and Solution

This chapter discusses in more depth the creation of the aircraft multi-body
model from its components and various other capabilities of the software including
trim and linearization. A formulation similar to a full multi-body analysis is used to
connect the bodies and create the coupled equations of motion. Structural flexibility
effects the kinematics of all bodies upstream of the current one. Modal coordinate
transformations are used to reduce the system degrees of freedom and help retain

only key modes in the analysis.

3.1 Tree Structure Management

At each time step, the only information each individual body has is that of
the connection to the bodies just upstream of itself. This information contains the
displacement vector q to the connection point of that next body, and the set of
rotations needed to get to the coordinate system of the next body. This allows for
components of the system to be easily swapped out with other components with
minimal changes to the inputs. Information regarding each body is stored individ-
ually with that body in derived types, allowing for large systems to be constructed
with minimal creation of vectors that must be passed through each subroutine. A

tree array is formed to join the system of individual bodies into the full multi-body
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Figure 3.1: Generic set of interconnected bodies

Table 3.1: Tree array connecting the components of Fig. 3.1

k |1 2
ry o 1
Iy 0
I
Iy
s

O~ N W
S = DN W
O = N W k| Ot
O = N Wk O
O~ N
O = NN 3| 0o

system of the aircraft and contains pointers to each of the derived types. A tree
array for a generic set of interconnected bodies, shown in Fig. 3.1, is given in Ta-
ble 3.1. The top line of the table contains a numerical assignment for each body
in the system. The columns of the table indicate the path from that body to the
reference frame. For the tilt rotor example, the fuselage, wings, and nacelles each
have their own derived type. A tree array is formed and assigns body numbers to
each component of the aircraft. Since some components are used twice, some body
numbers are composed of the same derived type. As the kinematics of the system
are created, the appropriate body is extracted from the set of all available bodies

using the tree array.
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The formulation of all components of the tree structure, including the coor-
dinate system transformation matrices, kinematic relations, and kinematic vector
transformations are done in unison in loops based on the length of each branch of
the tree. All loops begin at the reference frame and branch out depending on the
number of connections each individual body has. To obtain the kinematics of the
final body in the tree system, the kinematic relations of all other bodies downstream
of that one must be created first. This formulation reduces the number of matrix

multiplications needed to model the entire system.

3.2 Modal Coordinate Transformation

One of the key features of the analysis is the modal coordinate transformation.
The degrees of freedom for the model as described so far include all nodes for each
flexible object, as shown in Figure 2.9. The modal coordinate transformation allows

for the reduction of the beam degrees of freedom to a few key modes.

3.2.1 Mode Shapes

Full mass and stiffness matrices for each beam are only formulated once at the
beginning of execution. For a tiltrotor example, this includes rotor blades, wings,
and the dynamic nacelle. The mass matrix is obtained from a central difference
approximation to perturbations of the second time derivative of the nodal degrees
of freedom. The stiffness matrix comes from a central difference approximation to
perturbations in displacement of the nodal degrees of freedom. The blade modes

are obtained in a vacuum, i.e. aerodynamic loads are not included. The matrices
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are approximations because the beam equations are generally nonlinear. The linear

matrices can be written as:

M) + [K]n =0 (3.1)

Where n are the nodal degrees of freedom.
Eigen analysis produces a matrix of mode shapes, [V], which consists of
columns of eigenvectors, along with a vector of the square of the corresponding

modal frequencies, {w?}, such that:

—w? M]{v;} + [K]{vi} =0 (3.2)

Here, v; is the eigenvector associated with mode ¢ and wj; is its frequency. Each
column in the matrix of mode shapes gives the nodal displacements for the mode
associated with that column. Four finite elements are used for the formulation of
each blade, wing, and nacelle. The maximum number of modes retained is therefore
29 per beam.

Modal reduction greatly reduces the overall degrees of freedom of the system.
The total nodal displacement can be written as the product of the columns of the

[V] matrix associated with retained modal displacements q:

n=[V]q (3.3)

Throughout the remainder of execution, any beam motion is limited to summed
contributions from the retained modes. Only the lowest frequency modes are re-

tained since the dominant response of the system comes from the low frequency
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modes. Generally, two modes are retained for the blades, a flap mode and a lag
mode. Three modes are retained for the wings so that there is a dominant mode
in all three bending axes. Only the first rigid-body rotation mode is retained for
the nacelles. This mode is obtained by constraining the displacement of the center
node to be zero. This allows the nacelle to rotate about its connection to the wing.
This summed contribution from the retained modes also goes into determining the
displacements and angles that flexibility add to the kinematics of the multi-body
system, given in Eqn. (A.10).

Beam mode shapes can also be read as inputs from files. Higher fidelity models
can be used to obtain the mode shapes for each beam. These models could be higher
fidelity beam models, or even 2 or 3-D mesh models. Mode shapes from these models
would need to give displacements and rotations at the nodes of the beam used in the
current analysis. Once the mode shapes are read into the matrix [V], they would be

used throughout execution to constrain the beam deformation as described above.

3.2.2 Modal Forcing

The distributed forces along the wing, blade, or nacelle, are integrated across
each finite element to produce nodal loads. The nodal loads are reduced to modal

loads using the modal transformation matrix. For example,
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In this example, F; are the modal inertial loads and p; are nodal loads, the com-
ponents of which show up in the Galerkin beam finite element equilibrium equation,
Eqn. (2.63).

The sum of the modal inertial, aerodynamic, structural, and external loads
produce the equilibrium equation for that mode. This equilibrium equation drives
the motion of the beam modes, which are comprised of the nodal degrees of freedom.
Artificial modal damping was added to the wing equations to produce stable modes
with ~6% damping ratios. The majority of the flexible bodies in the system are
connected to other bodies which also produce forces and moments at the connection
point to the current body. These external forces and moments are also reduced to

modal forcing. In equilibrium, the blade modal equations can be written as:

F+F,+Fs+Fp+Fp=0 (3.5)

or, for each mode:

f(%,%x,0,t) =0 (3.6)

3.2.3 Transformed State Vector

Once each beam has been passed through the coordinate transformation, the

state vector (Eqn. (2.147)) can be reconstructed with the new modal degrees of
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freedom as opposed to the nodal degrees of freedom. The state vector looks identical:

X1

X\Ng

Xstrl

XstrNg

Xstrl

kxstrNB)
But now, the structural states have the following form instead of the form of
Eqn. (2.146):
T
Xstr = {Z1..-TN,,) (3.8)

Where N, is the number of retained modes for the current beam.

3.3 Structural Measurements

Available structural measurements include accelerations at any point in the
aircraft, or strain measurements at the root of flexible bodies. Accelerations at the
wing tip are used in the feedback of the linear model and root strain measurements
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are used to measure structural motion.

Wing acceleration is available immediately from the kinematic relation equa-
tions, Eqn. (2.77). The offsets from the elastic axis now represent the sensor location
as opposed to the location of the next body in the chain.

Strain measurements require additional work. In the “semi-implicit” form of
the structural formulation, the strains are not directly solved for. To obtain the
strains, a “fully-implicit” structural formulation is included, in which one of the
first steps is the determination of strains from displacements. The derivation for the
strains comes from Ref. 83 and is given more directly in Ref. 91. The strain vector

has the form:
€ = €1 + €ayo + €320 + €4Yp + €sYo20 + €624 (3.9)

The values for yg and zy are offsets of the strain gauges from the elastic axis. The

strain-displacement relation is:
1
€ox = E(Gm -Gy —1) (3.10)
G, comes directly from the elastic displacement of the beam.
Go = (14 ug)e, +vpey + wee, + yo(—rye, + 7€) + 20(—k.€, — Tey) (3.11)

The curvatures, k,, ., and 7 are obtained from components of the transformation

matrix from the blade undeformed to blade deformed coordinate system, along with
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it’s spatial derivative [83]:

Ky = — (5115215 + 512522, + S13523 1) (3.12)
Ky = — (5115312 + S12552.2 + S13533.2) (3.13)
T = — (5215312 + 5225522 + 523533.2) (3.14)

3.4 Trim

The trim formulation defines an equilibrium point for the aircraft for a given
steady flight condition, and consists of the solution of a set of algebraic equations.
The trim problem is formulated for a steady, coordinated, helical turn. For a given
aircraft weight and altitude, the flight condition is defined be a speed, V}, turn rate
o, and flight path angle . Straight and level flight is a special case of a climbing
turn with @bo = v = 0. Hover is a special case of straight and level flight with
Vo = 0. The trim algorithm follows the formulation given in Ref. 92, and additional
details are given in Ref. 93. The algorithm is summarized here and additional details
are given here for flexible wing and nacelle trim.

The trim unknowns can be partitioned into rigid-body, inflow, beam, and
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nacelle segments.

Yro

Y
y = (3.15)

Ysir

Ynac
\ 7/

Each component will be described below

3.4.1 Aircraft Trim

Aircraft trim is defined by setting all aircraft accelerations to zeros, leading to
constant (time invariant) values for the rigid-body states in the force and moment

equations.

Xo = m (qowo — Tovg) + mgsin b (3.16)
Yo = m (roug — powo) — mgsin ¢ cos b (3.17)
Zy = m (povy — qollg) — Mg cos ¢g cos by (3.18)
Ly=— (]yy - Izz) qoro — Loz (pOQO) (3-19)
My = —(I.. — Iz) poro — Lo (pg - 7"(2)) (3.20)
No=— (Im - [yy)pOQO — L2qoTo (321)
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The Euler relations in trim are:

Po = do — Yo sin by (3.22)
o = B cos o + 1y cos By sin ¢y (3.23)
7o = g cos B cos ¢ — b sin ¢y (3.24)

Note that in the rigid-body force equations, if ¢y and 6y are not constants, the
forcing due to gravity changes and the force equilibrium equations are no longer
time invariant. Therefore, trim is also defined by zero aircraft roll and pitch Euler
rates (¢g = 6y = 0), which lead to constant Euler angles. The only remaining
unknown from the equations above is 1&0, the turn rate as defined by the trim
condition. The yaw angle, 1, can be reconstructed if its initial value 1 is known
from ¢ (t) = 1/)15 + 1o, where t is the elapsed time since the beginning of the turn.
Therefore, the yaw angle state may be removed from the trim vector. The Euler

equations reduce to:

po = —tby sin by (3.25)
Go = 1o sin ¢y cos Oy (3.26)
To = 1 COS g cos By (3.27)

and a steady-state solution can now be found. Substituting the kinematic trim

relations into the 6 rigid-body equations leaves the following unknowns (stick inputs
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are also unknowns as they appear in the forcing terms in the rigid-body equations).

yrb:{51at Oion  Ocol 5ped Uy Vo Wy Po 90}T (328)

The linear velocity components of the trim vector can be rewritten using the trim

aircraft velocity.

ug = Vp cos oy cos By (3.29)
Vg = % sin 50 (330)
wo = Vj sin o cos [y (3.31)
The final unknowns are:
Y = {(5lat 5l(m 500[ 5ped %) ﬁO (b(] QO}T (332>

The first four unknowns are the pilot stick inputs. a and g are angles of attack and
sideslip of the fuselage, respectively. These angles help define the trim velocities. ¢q
and 6 are roll and pitch Euler angles. The aircraft can have these attitudes while
maintaining a trim condition. There are total of 8 unknowns in the trip problem,
requiring 8 equations.

The first six equations consist of the the rigid-body equations, rewritten using
Eqns. (3.25)-(3.27) and Eqns. (3.29)-(3.31). The two additional equations are the

turn coordination and flight path equations. Turn coordination ensures that lateral
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acceleration of the CG is zero. This is different from the Y-Force equation, which
only ensures the left and right hand sides of the Y-Force equation are equal. The
flight path equation states that the aircraft’s vertical velocity in the z inertial axis
equal to a constant value, Vj sinvo. Along with Vj and v given above, v is the final
trim condition that is set before execution. Converting body velocities to inertial

velocities, and only retaining the z component gives the relation.

O 0 —sin 6, n!

Vosinyg =[ug vo wo] [() () singgcosby| | ni (3.33)

() () cosgqcosby nl

= [—ug sin 6y + vg sin @ cos By + wp cos ¢ cos B ni (3.34)
=V} [~ cos ag cos By sin fy + sin By sin ¢y cos Oy + sin ag cos By cos @ cos O] i

(3.35)

Vo can be removed from both sides of the above equation giving the final flight path
angle trim equation. Components in the transformation matrix that are () are not
necessary for the solution so are left out.

All forcing is brought to the same side of the algebraic trim equations, so they

may be written as:

0="fwp (y7 t) (336)

These trim equations uphold trim at any point in time. Since rotorcraft have

periodic forcing, the trim equations are integrated around the azimuth to ensure a
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trim state for a full rotor revolution. The left hand side of Eqn. (3.36) is generally
not equal to zero unless the algebraic solver has found the exact trim solution. The

residual value is integrated around the azimuth.

fob (3 1) = resw, (y; 1) (3.37)

2
/ resy (y;¢) dip =0 (3.38)
0

The trim equations using the residuals for the three force and moment equations

are:

resy di) =0 (3.39)
resy dip =0 (3.40)
resz dip =0 (3.41)

resy, dip =0 (3.42)

O\m
3

resy dip =0 (3.43)

2m
/ resy di =0 (3.44)
0

The final two equations are the turn coordination and flight path equations. These
are integrated around the azimuth as well. The turn coordination sets Eqn. 3.17
equal to zero.

2 4oV
0 g

(cos ¢y cos g + tan by sin ayg) cos Fy — sin ¢ dip = 0 (3.45)
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For straight flight with 1/}0 = 0, this equation reduces to:

2
/ sin ¢ dip = 0 (3.46)
0
The turn coordination equation integrated around the azimuth is:

2
/ sin g + [cos a cos B sin Oy — cos Oy (sin [y sin pg + sin ag cos By cos ¢g)] dip = 0
0

(3.47)

These eight aircraft trim equations are grouped into a vector containing all trim

equations:

Y ={Y,}' (3.48)

3.4.2 Flexible Beam Trim

The beam equations of motion are second order in time. To convert the differ-
ential beam equations into algebraic equations, periodicity is assumed around the
azimuth. The assumption of periodicity gives produces approximate beam displace-
ments since actual beam motion may include higher harmonics. The trimmed modal

displacements have the following form:

Np,

X R Xapp = Y0 + Z (Ve cos k) + ypssin ki) (3.49)
k=1
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The above equation can be easily differentiated twice to produce the needed modal

velocities and accelerations (it is assumed rotor speed is constant in trim, Q):

Np

X R Xapp = €2 Z k (—Yge sin k) + yrsk cos ki) (3.50)
k=1
Np,

X & Kopp = 2 Z E? (—Yie cOS k) — Yy sin k) (3.51)
k=1

The trim unknowns in the trim algebraic solution are the steady state and harmonic
coefficients. Any number of harmonics of motion are retainable. The equations
above give the harmonic coefficients for a single mode. If multiple beam modes are
retained, each mode’s motion will be reduced to harmonic motion.

The total vector of structural unknowns for Np flexible beams (rotor blades

or wings), each with N}, harmonics:

Yveam = {yO Y1ie Yis---YNye yNhs}T (352>
( \
Yveam1
Yor =% (3.53)
YbveamnNg
\ Y,

As with the rigid-body equations, the equilibrium equations for each beam
mode are also integrated around the azimuth. They are based on a harmonic balance
of residuals as described in Section 3.4.1. Generally, the modal equilibrium equation,
Eqn. (3.6) is not equal to 0, but rather a residual that is dependent on the current

trim guess and azimuth position, resg, (y; ). From Eqn. (3.59), there are 2Nj, 4 1
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unknowns for each mode of each beam, so 2N, + 1 trim equations are needed. The
trim equations for the beam modal unknowns aim to minimize this residual and its

harmonics as follow.

27
/ IéSpeam <y7 w) dw =0
0
27
/ réSpeam (Y; ) cositp dip =0 1=1,..., N, (3.54)
0
27
/ réSpeam (V;¥)sinip dp =0 1=1,... N,
0

The equations above represent the beam trim equations for a single mode of a single

beam. Adding additional modes makes the trim equation vector:

Ybeam - {}/0 }/lc }/ls cee Yth YNhs}T (355)

(3.56)

Where Y| represents the first the trim equation and Yy, . and Yy, ; represent the N},
harmonc cosine and sine equations. The beams are all grouped together to give the

full vector of beam trim equations.

Ybeaml

Y = : > (3.57)

YbeamNB
\ )
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3.4.2.1 Nacelle Trim

The trim solution for the nacelle is treated differently. Here, the nacelle angle
(i.e modal deflection X,,.) is a trim condition, much like aircraft velocity, flight path,
or turn rate. The trim unknown is the torque required to keep the nacelle at that
trim condition. J,,. represent input torques at the nacelle connection to the wing

and are the unknowns for the nacelle trim equations.

Ynac = {5nacl 5nac2}T (358)

The nacelle trim equation is similar to the residuals for other elastic beams. Only a

constant deflection is allowed for each nacelle:

X R Xapp = Y0 (3.59)
X A Kpp = 0 (3.60)
%~ Sy = 0 (3.61)

The deflection goes into the nacelles modal equation, Eqn. (3.6), and the nacelle
torque required to maintain trim equilibrium is determined. Since only a single

unknown exists per nacelle, the nacelle trim equation is:

2
/ résnac (y;¢) dip =0 (3.62)
0
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Since tiltrotors have two nacelles, each with its own trim equation, the full nacelle

trim equation vector is:

T
Ynac = {Ynacl Ynac2} (363)

3.4.3 Inflow Trim

Dynamic inflow trim equations and unknowns are included in the trim proce-
dure. Each rotor has a constant coefficient and first harmonic sine and cosine inflow
distribution. The dynamic inflow equations for each rotor are given in Eqn. (2.133),
and are converted to algebraic equations as follows. In trim the time derivative
of the inflow equations must be zero when integrated around the azimuth, which
implies that only the steady-state component of inflow is present. The inflow trim

equations are therefore:

( ) ( )
Ao Cr
L'Sx ¢ =19 -C (3.64)
Ae —Cuy
\ ) \ V,

As with aircraft and beam equations, all forcing is brought to the left hand side.
The unknowns for each rotor are the inflow coefficients. There are as many sets of

these unknowns as there are rotors.

Ya=1{M0 Ms MeoANgo ANps ANpel (3.65)
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The harmonic balance approach assures equilibrium over a rotor revolution:

21
| ressy (i) v o0
0
21
/ resy, (v;¢) d =0 (3.66)
0

27
/ resy, (v;4) dv =0
0

These equations are collected for all rotors:

Y,={ (3.67)
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3.4.4 Summary

The full trim unknown vector is then comprised of the each components un-

knowns as discussed above.

Yro

ya
y = (3.68)

Ysir

Ynac
\ 7/

The full trim equation vector is:

Yrb

Y
Y =< (3.69)
Ystr

YTL(LC )

\

To find the trim solution, a nonlinear equation solver is used. This solver uses
a modification of the Powell hybrid method to obtain a solution, where a Jacobian

matrix is calculated using a forward-difference approximation [94].

3.5 Coordinate Transformations

It often serves to transform beam motion to different coordinates to allow for

better comparisons to other analyses. These transformations include the wing mode
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transformation, which converts individual wing motion to symmetric and antisym-
metric motion, and the multi-blade coordinate transformation, which transforms
individual blade motion into sine and cosine harmonic motion around the azimuth.
These transformations are generally implemented on the linearized system (discussed
later), but can easily transform the state vector of the non-linear model as well.
The mode shapes of the elastic beams generally contain coupled beamwise,
chordwise, and torsion bending. The mode is named after the dominant response.
Therefore, a beamwise mode will contain mostly beamwise bending but could also

contain chordwise and torsion bending.

3.5.1 Wing Mode Transformation

Figure 3.2 shows the beam modes and nomenclature used in this analysis. The
motion of the left and right wing are independent in the formulation and therefore
symmetric and asymmetric modes are not explicitly formed. The following coor-
dinate transformation is used to transform from the independent wing degrees of

freedom to symmetric and asymmetric degrees of freedom.

Ty 1 1 Tis
= (3.70)

Tir I -1 T1a
x1; and xy, are the modal deflections of the left and right wing for the first mode and
T1, and 1, are the same deflections given in terms of antisymmetric and symmetric

modes. Since this conversion matrix contains only constants, there are no additional

components for transformations of time derivatives of states. Both the rate and
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acceleration states are also converted using Eqn. (3.70).

Symmetric Symmetric Symmetric
beam mode chord mode torsion mode

Antisymmetric Antisymmetric Antisymmetric
chord mode torsion mode

Figure 3.2: Tilt-rotor beam mode shapes [20]

3.5.2 Multi-Blade Coordinate Transformation

The multi-blade coordinate transformation (MCT) converts individual rotor
blade motion in the rotating frame to sine and cosine harmonics around the rotor
azimuth in the non-rotating frame. Each rotor has its own transformation. It is
assumed that blade motion has already been reduced using the modal coordinate
transformation to dominant modes. Each mode is independently transformed using
the multi-blade coordinate transformation. This transformation allows for analysis
using lateral, longitudinal, and collective flapping as opposed to individual blade

motion. Let [TRF ] be the matrix transformation that converts the state vector
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from the fixed frame to the rotating frame.

xp = [T™] xp (3.71)

The state vectors time derivative:

fp = |1 | xp 4 [T 5 (3.72)

Beam equations in first order form contain the displacement and rate state in the
state vector, so the transformations above are composed of sets of transformations.
For a single rotor, with four blades, the displacement, rate, and acceleration com-

ponents of the transformation matrices are:

1 cos®y siny -1
1 —siny cosy 1
[T7] = (3.73)
1 —cosy —siny -1
1 siny —cosy 1
0 —Qsiny  Qcosyy 0
0 —Qcosy —Qsiny 0
[T7] = (3.74)
0 Qsiny —Qcosyy 0
0 Qcosy  Qsiny 0
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0

0

0 —02costh — Qcostp

O2sin1p — Q cos

Q2 cos 1) 4 Qsin v

0 —02siney + Qcosy

—0%siny) + Qcosyy 0
—D2costp — Qsinyy 0
O%siny — Qcosyp 0

Q% cos) 4+ Qsingy 0

(3.75)

With the components known, the full transformation matrices may be created

ey = |
] 0
TR

FRF| _

-,

TR

TD

TA

TR

(3.76)

(3.77)

The linear systems (described in later section) will also require [TRF ]_1, so this

matrix will be created here for consistency. This matrix consists of the components

[TD I } and [TRI } .

- 1 1

2cosy) —2siny

2siny  2cosvy
1 1
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—2cosy  2siny
—2siny —2cosy

1 1

(3.78)



O | —2siny —2cosvy 2sinty  2cosy
(7] -7 (3.79)

2cost —2siny —2cosyp 2siny

0 0 0 0

and finally:

TDI TRI
[T7F] ™ = (3.80)
0 TDI
Blade flap and lag modes are generally retained. The formulation given above

is only for a single mode, so transformation matrices will need to be stacked and

grouped properly for multiple modes to be transformed.

3.6 Linearization

The full aircraft equations of motion are written as a system of nonlinear ODEs
in first order form. The coefficients generally have periodic coefficients. Lineariza-
tion is obtained numerically by expanding the equations of motion in a first order
Taylor series approximation. The resulting system of linearized ODEs describes
the aircraft small perturbation motion about the trim condition. Although linear
models are rigorously valid only for small perturbations, linear models are used to
routinely develop aircraft flight control systems and generally represent aircraft be-

havior well even for moderate to large perturbations from the trim condition. A
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discussion of linearization of output equations is also included.

3.6.1 Linearization of Equations of Motion

Linearization is based on a Taylor series expansion of the nonlinear equations

of motion about the trim condition, denoted by (),. The equations are written as:

0="f(xx,u,t) (3.81)

and in trim:

0= f(XO,Xo,uO,t) (382)

af (X07X07u07t) af (XOJX(]?ant)

f (X> X, u, t) =f (5(0, Xp, Up, t) —+ 9% Ax + ™ AX—l—
of (x , X0, U, ’t ]
( u u + 0 (||Ax]?, [|Ax|]*, || Aulf?) (3.83)
()
where:

AX =X =X (3.84)

AX =X =X (3.85)

Au=u—u (3.86)
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The linear model results in the creation of three matrices. The state vector and
its time derivative perturbation matrices are n X n, and the control perturbation
matrix is n X m, where n is the number of states and m is the number of controls.
Perturbations of the time derivative of the state vector produce a mass matrix
which is dependent on the current azimuth, EF (). Perturbations to the state vector
produce a matrix of stability derivatives, F' (¢). Perturbations to the control vector

produce control derivatives, G (1), such that:

_ 0fi (%0,%0,u0)

B ()] - 2L582 (357
) = Bz (3.89
R (3.8

A central difference scheme is used for the derivative approximations. These matrices

are then converted to standard linear form.

[E ()% (¢) = [F ()] x () + [G ()] u (¥) (3.90)
X () = [E @) [F @) x () + [E @) [G ()] u(y) (3.91)
A)] B()
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The A (1) and B (¢)) matrices are functions of azimuth, are may expanded into a

Fourier series containing n harmonics.

n

[AW)] = [Ao] + Y ([Are] cos ki + [Aps] sin ko) (3.92)
[B()] = [Bo] + > _ ([Bre] cos ki + [By] sin k) (3.93)

The multi-blade coordinate transformation is applied at this point and the constant
terms of the Fourier series above will provide a linear time-invariant representation
of aircraft motion. The transformation is as follows using equations developed in
Section 3.5.2. Here, [Ag] is the constant component from Eqn. (3.92), and [Bg] is

the constant component from Eqn. (3.93), where () signifies rotating frame.

% = [Ap] xn + [Br] u (3.94)
[Wﬂm+@ﬂ@=MﬂﬂﬂmH%m (3.95)
WZFW1WMFW—ﬁMDM+WﬂW%W
[Ar) [Br]
(3.96)

3.6.2 Linearization of Outputs

Much like the creation of the state matrices, a central difference scheme is
used to linearize the structural measurements. This produces matrices due to per-

turbations in the time derivative of the state vector ( [C’ (w)} ), the state vector itself
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([C(¢¥)]), and the control vector ([D(¢)]).

The output matrices may also be expanded in Fourier series, as the state
matrices were in Eqns. (3.92) and (3.93). The constant component is retained for a
LTI system and a multi-blade coordinate transformation is applied to these constant
matrices.

The standard state space output form is:
y = [C]x+ [D]u (3.97)

The matrices must be converted to the fixed frame and this standard form using
the MCT. As in the state matrix calculations, [C‘R] [CR], and [Dg| represents the

constant component of the Fourier transform of the output matrices.

y = |Cr kr+ [Crl xp + [Dr]u (3.98)

y = [ [T xp + [C) [T77] s+ [Col [TF] - + (D] (3.99)

y = CR [T'RF] Xp + [CR] [TRF] ([AF) xp + [Br] ) + [Cr] [T"F] xp + D] u

(3.100)

y = ([Cr] |77 + [Cx] [T [AF] + [Cr] [TF]) %+ (3.101)

3.7 Comparisons with Multi-Body Solutions

A full multi-body formulation is generally characterized by:

106



1. Numerical kinematics — Position vectors, velocities, and accelerations are
all built numerically with no algebraic manipulations, ordering schemes, or
limitations on magnitude of displacements and rotations. Furthermore, the
kinematic formulation can be extended in an automated way to any number

of bodies in a chain.

2. Enforcement of connectivity through explicit equations of constraint — The
equations are generally algebraic, resulting in an overall model that is formu-
lated as a system of Differential Algebraic Equations (DAEs) rather than a

system of Ordinary Differential Equations (ODEs).

The present model implements numerical kinematics, but does not include explicit
equations of constraint. The bodies are rigidly constrained together, and motion
only enters the system through structural motion (flexible or rigid-body), which is
governed by differential equations, preserving the ODE structure.

The lack of explicit constraint equations makes the model less flexible than full
multi-body formulations. The topology is limited to tree-like arrangements with-
out loops. Since motion is modeled through structural flexibility, mode shapes are
required and can be determined within the software, or read in as inputs. In deter-
mining mode shapes, certain nodes are constrained. The location of the constrained
node along the beam element must also function as a connection point between
bodies. Connectivity that cannot be described by adding or removing nodal degrees
of freedom requires changes to the software implementation. Moreover, the formu-

lation is less suitable for software interfaces in which users assemble the model from
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point-and-click selections of element libraries.

On the other hand, the model naturally results in a system of ODEs, modal
coordinate transformations are easily implemented, and there is no need to solve
DAE systems (typically of index 3 or higher) or use techniques to condense out
algebraic equations of constraints or convert them to ODEs. If necessary, equa-
tions of constraints could simply be added to the present formulation through the
use of Lagrange multipliers and suitable DAE solvers. All structural and inertial
couplings are rigorously modeled. The aerodynamic couplings need to be analyzed
on a configuration-by-configuration basis, and may require additional configuration-
specific modeling, but this is also true for full multi-body formulations. For exam-
ple, rotor to wing interference effects are added with knowledge of the wing location
with respect to the rotor. Because the present formulation allows for an arbitrary
number of rotors of arbitrary position and orientation, and any number of flexible
aerodynamic surfaces located anywhere on the aircraft, it is still sufficiently gen-
eral to formulate flight dynamic models for all configurations envisioned for future
rotorcraft with little or no recoding.

The model is formulated as a series of nested loops (from outermost to inner-
most: over rotors, blades or wings, finite elements, and Gauss points within ele-
ments), uses modal coordinate transformations, and contains no coupled algebraic
equations. With the exception of the blade inertia load calculations (because of the
centrifugal force), all loops can be traversed in any order, and can be easily paral-
lelized. As a result, real-time execution is achievable on off-the-shelf workstations

with no approximations for models of realistic complexity. Software granularity is
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also sufficient for CUDA /GPU-based real time implementations.

Details of the baseline blade equations of motion can be found in Ref. 84, and
serve as a starting point for the discussion regarding the wing equations. The equa-
tions of motion can be broken down into three key components; inertial, structural,

and aerodynamic loads.

3.8 Free Flight Response

Starting from a set of consistent initial conditions (i.e. Eqn. (2.142) is met),
the non-linear equations of motion can be integrated in time to form a free flight
response of the aircraft. A trimmed solution is used as the set of initial conditions

and pilot inputs are used as inputs to the system.

3.8.1 Initial Conditions

The trim solution must be converted to the system states as given in Eqn. (3.7)
along with the state time derivatives. The rigid-body components of the trimmed
initial condition are given in Section 3.4.1. The conversion to flexible beam states
from trim states is given in Section 3.4.2. Finally, inflow states are obtained from

trim states as described in Section 3.4.3.

3.8.2 Integration

Once the initial condition is set, the equations can be integrated. Since the

trim condition provides a feasible solution to the equations of motion, the trim
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starting point should be valid for the ODEs as well, and the convergence criteria
should be met at the initial time point. The solver uses backwards differentiation
formulas of variable orders to solve the equations of motion for a given time span [95].
The solver can be variable or fixed-step in time, though the variable step solution is
solved faster. The states and their time derivatives are provided at each time step
as outputs.

Pilot controls do not appear in Eqn. (2.142), but they are still present and
variable at each time step. Controls alter blade pitch or other aerodynamic surfaces
on the aircraft, and a new equilibrium point must be determined if they are changed.
For example, blade pitch changes will alter the aerodynamic loads over rotor blades.
The corresponding beam equation of motion will obtain a new equilibrium point
where these loads are countered by the other forcing loads for the beam. These
change will also propagate to the forcing at the CG which will change the dynamic

response at the CG.

3.9 Chapter Summary

The linking of the various components of an aircraft model using a tree array
has been shown. Modal analysis significantly reduces the system degrees of freedom
and provides a representation for modal deflections of the entire aircraft structure.

Finally, trim and linearization of the aircraft model was discussed.
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Chapter 4: Validation

An important first step was to validate the model against flight data for a
known configuration to test its fidelity. The model was validated against the XV-15

before being applied to the LCTR.

4.1 Validation with XV-15

The XV-15 was chosen because simulation input data, such as aerodynamic
tables, and flight responses that can be used for validation were readily available
in the public domain. XV-15 input data were obtained from the GTRSIM manual
and sample code inputs. Blade structural data was not a part of the GTRSIM

simulations and was derived from a UH-60 blade input block.

4.1.1 Model Description

The model includes rigid wings and nacelles. Only the first structural mode
was retained for the blade, which was a rigid body flapping mode. Since the first
blade mode contained only rigid deflections, blade structure contributions due to
flexibility do not affect the model. The first order model contains 27 states. There

are 9 rigid body aircraft states, and 3 inflow states per rotor. Since the XV-15
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has three blades, flapping is reduced to coning and first harmonic sine and cosine
components, giving 6 states per rotor. Formulation of the aircraft state vector is
described in Sec. 2.8.

To trim the aircraft, there are a total of 28 unknows. There are 8 aircraft
rigid-body trim unknowns. Each rotor has 3 inflow trim unknowns. Rotor blade
flapping is allowed a constant component and three harmonics of sine and cosine
flapping, giving 7 unknowns per rotor. Trim unknowns and equations are described
in Sec. 3.4.

Airframe aerodynamics, including impingement of the downwash on the wing
surfaces, and inflow effects on the elevator and rudders, are modeled using the flight

test-derived data tables in Ref. 11.

4.1.2 Hover

Figure 4.1 shows a frequency response comparison of the XV-15 roll rate to lat-
eral stick inputs in hover. The curve labeled “HeliUM” represents the model devel-
oped in the present study. The curve marked “ID Model” comes from a state space
model derived from flight test data using system identification. The “GTRSIM”
model represents a state space model derived from the GTRSIM software. Stability
and control derivatives for both comparison curves can be found in Ref. 96. “Flight
Data” curves are derived from frequency sweeps performed during test flights. The
roll response is measured in rad/sec, while the input is degrees of aileron deflection.

Control surface deflections are downstream of the stability and control augmenta-
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Figure 4.1: XV-15 hover roll rate response to lateral stick inputs.

tion systems and are geared with swashplate inputs. They are used to measure
the input for the bare airframe responses. The roll response curve is dominated by
the low frequency lateral phugoid mode. Overall, there is good agreement between
the HeliUM curve and the GTRSIM and ID models. While the unstable phugoid
frequency agrees well with flight test data, there is a 5 dB over prediction of the
roll response by the models as compared to flight data. This could be attributed to
poor coherence at the phugoid frequency for the flight data.

The hover yaw rate response is shown in Fig. 4.2. Here, the units are rad/sec
of yaw rate for degrees of rudder deflection input. Rudder inputs are is geared with

antisymmetric longitudinal swashplate inputs. The yaw response is essentially a first
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Figure 4.2: XV-15 hover yaw rate response to pedal inputs.

order system that has a pole at low frequency, giving a constant -20 db/dec slope at
the frequencies shown in the figure. The offset in the HeliUM magnitude response
above 0.6 rad/sec can be attributed to the modeling of the hub. The XV-15 has
a gimbaled hub, while the present model has an articulated hub, with the gimbal
behavior approximated through flapping springs. Yaw behavior is dependent on
longitudinal flapping, so small discrepancies in modeling could have larger impacts
on the dynamic response of the aircraft.

Figure 4.3 shows the pitch rate response to longitudinal inputs. Here the curve
marked “TF Model” comes from low order transfer functions found in Ref. 18. Flight

data were not available for the pitch or heave responses, but the transfer function
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Figure 4.3: XV-15 hover pitch rate response to longitudinal stick inputs.

models were fit to flight data. The pitch response is measured in rad/sec and the
input is degrees of elevator deflection, which are geared with symmetric longitudinal
cyclic swashplate commands. Much like the roll response, this curve is dominated
by the low frequency phugoid pole. There is a difference in the low frequency slope
of the curves; the TF Model predicts a 20 dB/dec slope, while the HeliUM model
predicts a 40 dB/dec slope. This difference is again attributed to the modeling of
the hub. The pitch response of the rotorcraft is a product of longitudinal flapping
of each rotor and variations in hub type should produce different results. This is
not seen in the roll response, Fig. 4.1 or heave repsonse, Fig. 4.4, because these

responses come from collective and rotor coning.
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Figure 4.4 shows the heave response to collective stick inputs. The HeliUM
curves match well with the low order transfer function model. The slight difference in
magnitude plots represents an error of less than 5%. The portions of the magnitude
and phase curves between 1 and 10 rad/sec show a consistent heave response to
commanded inputs at these frequencies. The transfer function model has a flat
magnitude response because the effects of dynamic inflow are not included, although
they are present in the HeliUM model.
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Figure 4.4: XV-15 hover heave response to collective stick inputs.
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4.1.3 Cruise

In cruise mode, the XV-15 behaves much like a fixed wing aircraft. Through
transition to cruise, rotor symmetric and antisymmetric lateral cyclic controls are
reduced based on nacelle angle. At the cruise nacelle angle, the pilot lacks lateral
cyclic control, and controls the roll of the aircraft through the ailerons. The cruise

speed for validation is 180 knots.

XV-15 Cruise Model Comparisons (p/d,,)
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Figure 4.5: XV-15 cruise roll rate response to lateral stick inputs.

Figure 4.5 shows the roll rate response to lateral stick commands. The units
are the same as the hover configuration. The roll response is dominated by the Dutch

roll mode at around 1.5 rad/sec, with a corresponding magnitude drop and phase
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decrease. The HeliUM model shows a slightly more damped Dutch roll oscillation,
but the overall response matches well.

The yaw response, Fig. 4.6, shows the yaw rate response in rad/sec to measured
rudder inputs in degrees. The lightly damped zero at 0.45 rad/sec is followed by
the Dutch roll peak, again at around 1.5 rad/sec. The damping of the zero for the
HeliUM model is predicted slightly unstable while the other models predict a stable

zero. Overall the curve fits well with the other models and flight data.
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Figure 4.6: XV-15 cruise yaw rate response to pedal inputs.

The pitch response in Fig. 4.7 shows the pitch response in rad/sec to measured
elevator inputs in degrees. The transfer function model is a low order fit of the

physical response and only includes the lightly damped short period mode near 2
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rad/sec. The short period mode occurs at a slightly lower frequency in the transfer
function model than it does in the HeliUM case. The gain and phase offset at low
frequency can be attributed to phugoid dynamics which are not included in the low

order transfer function model.
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Figure 4.7: XV-15 cruise pitch rate response to longitudinal stick inputs.

Overall, there is good agreement between the XV-15 HeliUM model, prior
models, and flight data, validating the modeling approach taken. The hover valida-
tion affirms that rotor dynamics have the appropriate effect on the system response,

while the cruise validation affirms correct airframe aerodynamics.
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4.2 LCTR Dynamics

The LCTR dynamics are next validated against CAMRAD. These models are

then reduced to include only lateral/directional and wing bending states.

4.2.1 Model Description

The models contained rotor, inflow, and rigid body states for a total of 59
states. As with the XV-15 there are 9 rigid-body aircraft states, and 3 inflow states
per rotor. In the LCTR analysis, blades are allowed flap and lag displacements.
The LCTR also has 4 blades, meaning a multi-blade coordinate transformation
results in a constant, sine and cosine first harmonic, and differential flap and lag
displacements, giving 16 states per rotor. The HeliUM models also contain wing
bending states. Each retains three modes, giving 6 flexibility states per wing.

In trim there are a total of 48 unknowns. The first set of unknowns are 8 rigid-
body unknowns. Each rotor inflow has 3 unknowns, for a total of 6 inflow unknowns.
Each rotor has 7 unknowns per retained blade mode, including a constant deflection
(coning, or constant lag angle) plus three harmonics of sine and cosine, giving a
total of 28 rotor unknowns. The wings are allowed a constant deflection for each
mode, giving 3 unknowns per wing and 6 unknowns total.

Downwash impingement on the wing is modeled. The wing is approximately
1/3 R below the main rotor and is assumed to be immersed in the wake of the
rotor. The components of the inflow velocity are obtained from the dynamic inflow

coefficients of the rotor at the 270 deg azimuth position, approximately the azimuth
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position of blade passage over the wing. These inflow velocities are then augmented
by the nacelle angle to find the local velocity at the wing section.

The same wing airfoil data is used for the LCTR as was available for the XV-
15. This airfoil data includes aerodynamic coefficients for very large angles of attack
as are needed by a wing experiencing downwash in hover. The XV-15 aerodynamic
coefficient look up tables are functions of angle of attack, mach number, nacelle
angle, and flap setting. For the LCTR hover case, the portions of the look up tables
with the nacelle in the vertical position and flaps retracted were used. The total
download as a fraction of gross weight in hover was similar to that of the XV-15 in
hover. Aerodynamic contributions from the empennage are neglected in hover.

Since, the LCTR model involves flexible wings, modeling in the multi-body
formulation becomes important. Figure 4.8 shows the multi-body LCTR setup,
including coordinate systems and displacement vectors between bodies from the CG
to the one rotor hub. A similar set of transformations and vectors exists for the
other rotor. Figure 4.9 shows the effects of wing flexibility to the displacements and

coordinate systems.
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Figure 4.8: LCTR multi-body setup
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Figure 4.9: Flexed LCTR multi-body formulation

The nacelles are added onto the deformed wing coordinate system, and the

rotor system is added to the deformed (rotated) nacelles.

4.2.2  Full Order Validation

Full order LCTR models derived from HeliUM are compared to full order rigid-
body CAMRAD models. The majority of the inputs for HeliUM come directly from
the CAMRAD model. The HeliUM model contains two rotor modes; flap and lag.

Wing flexibility was also included in the validation (Figs. 4.12-4.15) as a sep-
arate curve since the CAMRAD linear model did not include wing flexibility. The
wing structural frequencies were derived to match those of Ref. 2, and structural
damping was set to 6 %. Wing beamwise bending stiffness was modified until the
antisymmetric beamwise bending mode occurred at approximately 16.5 rad/sec.
Likewise, chordwise stiffness was modified until a frequency of 14.5 rad/sec was

reached for the antisymmetric chordwise bending mode. Finally, torsion stiffness
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was also changed so that torsion modes matched with the nacelles held fixed. The
pylon is centered vertically along the elastic axis so the chordwise and torsion modes
are fairly decoupled. Mode shapes for the LCTR are shown in Figs. 4.10 and 4.11.
Torsion modes are not shown, but couple pitch motion to wing torsion motion.
Each mode has a symmetric and antisymmetric component.The wing modes show
up as second order poles and are accompanied by decreases in phase. The validation

results look at both the longitudinal as well as lateral/direction axes.

Figure 4.10: LCTR symmetric and antisymmetric beamwise bending mode shapes

The LCTR modal frequencies could also be estimated if the XV-15 structural
modes are known. Froude scaling suggests that the structural frequencies of the
aircraft will reduce with the square root of the vehicle size ratio [97]. The LCTR
has a rotor radius of 32.5 feet, and the XV-15 rotor had a 12.5 foot radius, giving a

ratio of 0.38. The first symmetric structural mode, derived from XV-15 flight test
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Figure 4.11: LCTR symmetric and antisymmetric chordwise bending mode shapes
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results, occurs at 20.7 rad/sec, giving an estimate of 12.8 rad/sec for the LCTR.
The first symmetric coupled rigid-body/wing mode from the model occurs at 9.9
rad/sec. Using Froude scaling alone would suggest that including the structural
frequencies of the LCTR would be important for flight controls applications. The
scaling isn’t exact, but provides a good rule of thumb estimation for mode scaling.

Figures 4.12 through 4.15 compare the CAMRAD and HeliUM models. Overall
there is good agreement in all axes for the rigid wing HeliUM and the CAMRAD
models up to about 30 rad/sec. The rigid wing plots (HeliUM Rigid Wing) don’t
include any structural flexibility, while the flex wing plots (HeliUM Flex Wing)have
a rigid fuselage with flexible wings. The output magnitudes are expressed in deg/sec
or ft/sec. Inputs are inches of stick deflection. Rotor modes also match well. The
first flap mode from HeliUM is at 1.44/rev and for CAMRAD is at 1.43/rev. The
models all match well at low frequency and diverge at the frequency of the wing
mode, as expected, because flexible wing modes are highly coupled to fuselage states.

The roll response, Fig. 4.12, is dominated by the lateral phugoid at low fre-
quency. When comparing the CAMRAD and rigid wing HeliUM curves, there are
offsets only at the higher frequencies corresponding to rotor dynamics. The large
peak in the magnitude in the flexible wing response around 16 rad/sec is the wing
antisymmetric beam mode. It will be shown that this mode corresponds to the
anti-symmetric beamwise bending mode mentioned earlier. At frequencies above
the wing mode, the flexible wing HeliUM curve has characteristics similar to the
other curves.

The yaw response, Fig. 4.13, is similar to that of the XV-15, Fig. 4.2, and

125



LCTR Model Comparisons (p/d,)

40 e ‘ —

n
o

Magnitude (dB)
o

_o0}f =mme- HeliUM Rigid Wing
=— = HeliUM Flex Wing
—— CAMRAD

200 ———— ————

100 -

-100{- %

Phase (deg)
/

-200
\
-300 \

~400|- : » - \ ﬂ\,/ \

. "
APEAEE

-500 :

Frequency (rad/sec)

10°

Figure 4.12: LCTR hover roll rate response to lateral stick inputs.

shows a fairly constant -20 dB/dec slope in the magnitude plot. The low frequency
first order yaw mode causes the slope change in the magnitude plot and associated
90 deg phase decrease. As with the roll case, and with the rest of the plots, rotor
dynamics start to have a dominant effect at around 30 rad/sec. The wing structural

peak, at around 14 rad/sec, is associated with the antisymmetric chordwise wing

bending mode as indicated earlier.

The HeliUM model was not able to capture the low frequency XV-15 pitch
response well (Fig. 4.3), and this was attributed to the rotor hub modeling. The
LCTR has a hingeless rotor system which forces the blades to behave as cantilevered

beams. HeliUM models this type of blade boundary condition and the response
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Figure 4.13: LCTR hover yaw rate response to pedal inputs.

now matches well with CAMRAD results (Fig. 4.14). The low frequency phugoid
mode frequency and damping is matched almost exactly between the models. The
HeliUM rigid wing model matches the CAMRAD model almost exactly over the
entire frequency range shown. The wing flexibility contribution here comes from
coupled symmetric chordwise beam bending and torsional displacements. This mode
is the symmetric counterpart to the wing mode in the yaw response.

The vertical velocity response of the rigid body HeliUM case matches well
with the CAMRAD plot, and is shown in Fig. 4.15. The wing bending mode excited
here is a symmetric beamwise bending mode, the counterpart to the antisymmetric

mode in the roll response. The rigid wing HeliUM model matches CAMRAD almost
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Figure 4.14: LCTR hover pitch rate response to longitudinal stick inputs.

exactly up to 100 rad/sec.
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4.2.3 Reduced Order Models

Reduced order models offer the ability to evaluate the overall aircraft response
in terms of conventional stability and control derivatives. In the reduced order
models shown, only lateral/directional rigid body states are retained along with
the relevant wing structural modes if wing flexibility is included. All the models
used come from HeliUM. Table 4.1 summarizes the states kept and the nomen-
clature used for the reduced models. Longitudinal rigid body, rotor, inflow, and
non-relevant wing states are reduced out using a quasi-static reduction. The Rigid
Wing model contains 47 states, while the Lat/Dir Rigid Wing model contains only
5 total states (including yaw angle, ¥) . The Flex Wing model contains 55 states,
all the states of the Rigid Wing model and an additional 8 wing structural states.
The Lat/Dir Flex Wing model contains 9 states, including 5 rigid body states and
4 states associated with two antisymmetric wing bending modes. The lateral axis
excites, almost exclusively, the antisymmetric beamwise bending mode, while the
directional axis excites the antisymmetric chordwise/torsion mode. Figures 4.16 and

4.17 show reduced order models. The full order curves are retained for comparison.

Table 4.1: Reduced order model nomenclature

Longitudinal Lateral/Directional Inflow Rotor Symmetric Antisymmetric

Rigid Body Rigid Body Structural Structural
Rigid Wing V vV vV vV
Flex Wing v v v v v v
Lat/Dir Rigid Wing vV
Lat/Dir Flex Wing vV Vv
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The Lat/Dir Rigid Wing roll response matches well with the full order Rigid
Wing model, which also includes rotor dynamics, at low frequency, meaning the
system is well decoupled from longitudinal dynamics, as expected for a tiltrotor
in hover. Divergence occurs in the magnitude plot around 8 rad/sec, well within
the frequency range of interest for control systems design. Rotor modes are im-
portant even at this low frequency and using a reduced order model might lead to
an inaccurate stability and handling qualities analysis. The Lat/Dir Rigid Wing
phase response diverges from the full order response at higher frequency than the
magnitude plot. The wing mode excited in the Lat/Dir Flex Wing case is the anti-
symmetric beamwise bending mode. The other wing modes have a negligible impact
on the roll response. The included wing bending mode captures well the dynamics
around the frequency of the wing mode. There are only slight gain and phase differ-
ences around the frequency range of the mode. These differences could be attributed
to effects from the other flexible wing modes, but clearly, the dominant response is
captured.

The Lat/Dir Rigid wing yaw response matches well at low frequency in the
magnitude plot. Pedal inputs produce differential longitudinal cyclic commands to
the rotor. The tip path plane must realign in order to produce differential longitu-
dinal forces and thus yaw moments. This realignment produces a time delay, and
thus the phase diverges at lower frequencies than the roll response since the rotor re-
sponds to lateral stick commands through collective inputs which achieve a response
from the system much faster than cyclic inputs. The phase difference in the rigid
wing reduced model could be accounted for with a time delay. The time delay is
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Figure 4.16: LCTR reduced order hover roll response comparisons with full order
models

approximately 0.04 seconds. For the LCTR rotor with a flap frequency of 1.44/rev,
a 1/rev input leads to a delay of approximately 0.04 seconds before realignment of
the tip path plane, which matches the time delay estimate from the phase offset.
Rotor dynamics therefore play a large role in the yaw response. Time delays could
be used to improve the phase difference if low order models are needed. Magnitude
plots, however, are not affected by time delays, so large variations between the re-
duced order and full order magnitude plots would still produce significant error in
flight control applications. The Lat/Dir Flex Wing case contains the antisymmetric

chordwise/torsion bending mode. This is the only mode significantly excited by this
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response.

LCTR Reduced Order Model Comparisons (r/5,,4)
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Figure 4.17: LCTR reduced order hover yaw response comparisons with full order

models

4.3 LCTR Nacelle Validation

4.3.1 Model Setup

The LCTR model with a dynamic nacelle is set up in the same manner as the
model described in Sec. 4.2.1 with the addition of nacelle dynamics. The nacelles
add four additional states to the state vector. In trim, there are two additional

unknowns, the nacelle input torques.

10

Frequency (rad/sec)
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4.3.2 Validation

Nacelle dynamics for the HeliUM model of the LCTR are next validated
against a CAMRAD model with a dynamic nacelle. The implementation of nacelle
motion is implemented differently in HeliUM than in CAMRAD. The CAMRAD
model offers direct control of the nacelle angle, while in HeliUM nacelle control comes
through a torque motor at the wing connection and the nacelle angle comes of the
solution to the second order differential equation. A proportional-integral-derivative
(PID) control system is included for the nacelle so that the pilot commands a na-
celle angle, much like the CAMRAD case. The validation below includes this control
system in the HeliUM model. Figure 4.18 shows the longitudinal velocity response
of the aircraft to nacelle angle commands. This HeliUM nacelle control system’s
gains were changed until the nacelle mode at 60 rad/sec matched the CAMRAD
model. The dynamics match well for a broad frequency range. The steady state
velocity to nacelle commands is essentially zero. There is an aircraft dynamic mode
around 0.6 rad/sec which matches the phugoid frequency for this aircraft. The near
zero steady state velocity value can be explained by Fig. 4.19, the aircraft pitch
response to nacelle inputs. This figure shows that at steady state, the aircraft pitch
response is equal in magnitude to the commanded nacelle angle, but opposite in
phase. Positive nacelle displacement is define aft. If the nacelle is rotated aft, the
nose will pitch down to realign the nacelle vertically in the inertial frame. The re-
sult is an aircraft that has changed pitch attitude, but remains in hover since the

rotors remain vertical in the inertial frame. The figures show slight disagreement
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Figure 4.18: Longitudinal velocity changes to nacelle angle commands

at mid-frequencies, but overall have the same dynamics. There is a second order
pole-zero combination around 1 rad/sec, with the pole being the unstable phugoid.
There is also a nacelle mode at higher frequency. The final bare-airframe validation
response is shown in Fig. 4.20. This figure shows the aircraft velocity response to
longitudinal inputs. The unstable phugoid dynamics are again visible, as is the high
frequency nacelle mode.

Along with the bare-airframe validation shown so far, coupling numerators
were used to constrain the pitch attitude with longitudinal stick inputs [98]. The
nacelle could now be tilted to move the aircraft fore or aft without the aircraft
pitching, as if it were on a rail. The state-space coupling numerator approach,

described in Ref. 99 was used to constrain pitching motion. With pitch removed
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Figure 4.19: Pitch angle changes to nacelle angle commands

from the equation, the longitudinal velocity transfer function is first order.

= Xyu — g0pae (4.1)
u -9

= 4.2

enac S — Xu ( )

This gives a first order response with a break at X, and a —g/s response at
high frequency. X, is change in x-force for perturbations in velocity, and for fixed
wing aircraft is associated with fuselage drag. For rotorcraft, most of this stability
derivative comes from the rotor response to perturbations as fuselage drag is small in
hover. The full order (~60 states) constrained responses, along with their simplified
counterparts (2 state) given by Eqn. (4.2) are shown in Fig. 4.21

The HeliUM simple transfer function model and full-order models match very
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well at mid and low frequencies meaning the simple first order transfer function is
an accurate simplification of the equations of motion. There are slight differences in
the low frequency pole location, but overall the CAMRAD and HeliUM responses

match very well.
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4.4 Validation of Four Element FEM Beam

Four finite elements are used to model the wings, blades, and nacelles. Addi-
tional and fewer elements were used to ensure the validity of using four elements.
Figure 4.22 clearly shows that four finite elements produce accurate results over the
full frequency range. Using two finite elements gives nearly identical results to four

and eight. As described previously, beam and chord bending shape functions allow
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Constrained Coupling Numerator Comparisons of Nacelle Response
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Figure 4.21: Longitudinal velocity response to nacelle inputs with pitch attitude
constrained

for a cubic beam displacement over each finite element. Given the similarity of the
roll response using any amount of finite elements shows that the wing and blade
displacements are low order and easily approximated with few finite elements. This
could be inferred from the model setup. The majority of wing forcing comes from
the nacelle, a point force on the tip of the wing. This gives simple beam deflections.
If the nacelle were located inboard of the wing tip, the wing bending could be more
complex. Adding additional finite elements would only slow the solution process

without improving model accuracy.
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LCTR Responses with Different Number of Finite Elements
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Figure 4.22: Comparisons of roll response using different numbers of finite elements
for the wings and rotor blades.

4.5 Number of Wing Modes Retained

The number of wing modes retained for each wing was also varied to determine
the minimum number needed to accurately model aircraft dynamics up to about 20
rad/sec. Figures 4.23-4.26 show the on-axis responses obtained retaining two to
five wing modes. When two wing modes are retained for each wing, a total of four
structural modes are obtained for the aircraft. Checking system eigenvalues shows
that after two wing modes, all natural frequencies are above 60 rad/sec. The figures
also show that the system responds essentially identically after the first two modes

for each wing are included.
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Figure 4.23: Comparisons of roll response with different amounts of wing modes
retained

4.6 Chapter Summary

The model has been validated with the XV-15 and LCTR. Differences in XV-
15 dynamics when compared to other models and flight data are attributed to rotor
hub modeling. The validation with a LCTR model shows almost identical dynamics
in the bare airframe. The validation also showed that four low frequency structural
modes occur below 20 rad/sec, and thus need to be included for control law develop-
ment and analysis. The nacelle dynamics have also been validated. Slight differences
in the respons