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A high order rotorcraft mathematical model is developed and validated against

the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model

is generic and allows for any rotorcraft configuration, from single main rotor heli-

copters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as

flexible wing and blade states are used in the analysis. The separate modeling of

each rotorcraft component allows for structural flexibility to be included, which is

important when modeling large aircraft where structural modes affect the flight

dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the for-

mulation of the mathematical model are given, including derivations of structural,

aerodynamic, and inertial loads. The linking of the components of the aircraft is

developed using an approach similar to multibody analyses by exploiting a tree

topology, but without equations of constraints. Assessments of the effects of wing

flexibility are given. Flexibility effects are evaluated by looking at the nature of the

couplings between rigid-body modes and wing structural modes and vice versa. The



effects of various different forms of structural feedback on aircraft dynamics are an-

alyzed. A proportional-integral feedback on the structural acceleration is deemed to

be most effective at both improving the damping and reducing the overall excitation

of a structural mode. A model following control architecture is then implemented

on full order flexible LCTR models. For this aircraft, the four lowest frequency

structural modes are below 20 rad/sec, and are thus needed for control law develop-

ment and analysis. The impact of structural feedback on both Attitude-Command,

Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are

investigated. A rigid aircraft model has optimistic performance characteristics, and

a control system designed for a rigid aircraft could potentially destabilize a flexible

one. The various control systems are flown in a fixed-base simulator. Pilot inputs

and aircraft performance are recorded and analyzed.
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Chapter 1: Introduction

This chapter provides motivation for the dissertation and discusses prior work

on tiltrotor flight dynamics modeling and control. Flexible aircraft modeling in

general and tiltrotor simulation tools are also discussed

1.1 Motivation

Tiltrotor configurations have been proposed for both civil and military heavy-

lift vertical take-off and landing (VTOL) missions. An in-depth NASA investigation

examined several types of rotorcraft for large civil transport applications, and con-

cluded that the tiltrotor had the best potential to meet the desired technology

goals [1]. Goals were included for hover and cruise efficiency, empty weight fraction,

and noise. The tiltrotor also presented the lowest developmental risk of the config-

urations analyzed. One of the four highest risk areas identified by the investigation

was the need for broad spectrum active control, including flight control systems,

rotor load limiting, and vibration and noisetiltion [1].

The development of a high-order model is paramount for accurately predicting

a wide range of stability phenomena that tiltrotors are susceptible to, and it is one

of the main subjects of this dissertation. The best known aeromechanic stability
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problem for tiltrotor aircraft is whirl-flutter, which occurs at high advance ratios,

and usually limits forward flight speed. At hover and low speeds, pilot inputs can

excite low frequency wing structural modes for large tiltrotor configurations like the

Large Civil Tiltrotor 2 (LCTR2, herein referred to as LCTR), Fig. 1.1. Lateral

stick inputs, for example, result in antisymmetric wing bending motion. This wing

structural response can cause low stability margins if the dynamics are not accounted

for in flight control design. The structural modes for future large tiltrotors are likely

to be in the range of interest for control system design, around 1/3 to 3 times the

response crossover frequency, generally 1 to 20 rad/sec.

Most rotorcraft also tend to have increased levels of augmentation compared

to fixed-wing aircraft, especially in hover and low speed where precision flying is

necessary. The effect of fuselage feedback on the structural modes is not well under-

stood, and the effects of structural feedback on the overall aircraft motion also need

to be investigated. Structural sensors at the wing root and wing tip provide wing

bending information, and combinations of these sensors may be used to improve

structural damping and reduce overall structural excitation. Clearly, the success of

future aircraft configurations will require an improved fundamental understanding

of the interactions between handling qualities, high-gain flight control systems, and

aircraft structural dynamics.
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Wing modal frequencies do not scale with rotor speed, 

especially for tiltrotors designed to different mission 

requirements. Hingeless proprotors will have different 

per-rev frequencies and mode shapes than the gimbaled 

rotors on current tiltrotors, so coupling between wing and 

rotor modes may differ from past experience. Thus, there 

is no guarantee that current methods of specifying wing 

frequency placement will suffice to ensure aeroelastic 

stability. 

These issues are the motivation for the present research. 

The goal is to develop criteria for inclusion in design 

codes to ensure that conceptual weights and geometries 

are consistent with aeroelastic stability. The immediate 

objective is to characterize the relative sensitivity of 

whirl-mode stability to different design parameters. The 

possible design matrix is extremely large, and this paper 

can only begin to lay out the technical explorations 

needed for complete understanding of the impact of 

aeroelastic stability on very large tiltrotors. Results are 

presented for traditional, basic parameter variations, with 

the intention of eventually incorporating the most 

important trends into a design code.  

LCTR Design Criteria 

The LCTR2 is focused on the short-haul regional 

market (Fig. 1). It is designed to carry 90 passengers at 

300 knots over at least 1000-nm range. It has low disk 

loading and low tip speed of 650 ft/sec in hover and 400 

ft/sec in cruise. A two-speed gearbox is assumed, so that 

the engine operates efficiently in both hover and cruise. 

This is a lower tip-speed ratio than was demonstrated in 

flight by the XV-3, and nearly the same gearbox speed 

ratio (Ref. 6). Aircraft technology projections from the 

LCTR1 have been updated for the LCTR2 based on a 

service entry date of 2018. Table 1 summarizes the 

nominal mission, and Table 2 lists key design values. 

The following paragraphs summarize the design criteria 

for the LCTR2; see Ref. 2 for further details of the design 

process. 

 

 

Fig. 1. The NASA Large Civil Tiltrotor, evolved version (dimensions in feet). 

Figure 1.1: Configuration and dimensions of the NASA Large Civil Tiltrotor
(LCTR) (from Ref. 2).

1.2 Background

In order to evaluate aircraft performance and enable the design of a control

system that gives good handling qualities, accurate, real-time models are needed.

These models can be used for pilot simulations and control system design. Details

on tiltrotor modeling and controls work are presented first. Detail is also given on

various comprehensive models used for rotorcraft and tiltrotor analysis. Because

this dissertation is focused on a flexible aircraft, background information on flexible
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aircraft control is also given.

1.2.1 Flight Dynamics Modeling and Handling Qualities of Tiltrotors

Several aircraft with tilting thrust components were developed in the 1950’s

and 1960’s. With a fixed wing and tilting rotor systems the Bell XV-3 was the

original tiltrotor. Teetering rotors were mounted on long rotating shafts and were

powered by an engine in the fuselage. The Vertol VZ-2 was a tilt-wing aircraft. The

entire wing system including the rotors were vertical in hover and tilted forward

for cruise. The Doak VZ-4 had fixed wings and tilting ducts mounted at the end

of the wings. Finally, the Curtiss-Wright X-100 had small tilting rotors connected

to a small wing. Each of these aircraft were powered by a single engine located

in the fuselage. Handling quality and dynamic characteristics for these aircraft are

summarized in Ref. 3. All of the aircraft exhibited generally poor handling qualities

in hover. The VZ-4 had inadequate roll control due to the use of guide vanes during

hover. The VZ-2 exhibited very low longitudinal damping characteristics, making

hovering very difficult. All of the aircraft had deficient yaw characteristics due to

nearly no damping in the yaw axis. This led to buffeting in yaw, or difficulty in con-

trolling heading. Many of these deficiencies were due to rotor inflow recirculation in

ground effect. Overall, the XV-3 exhibited the fewest problems in terms of stability

and control, as well as handling qualities.

Even though the XV-3 was generally the best behaved, it had several no-

table issues. During low speed flight, weak lateral-directional dynamic stability
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and longitudinal and directional controllability were experienced [4]. These issues

were attributed to rotor wash at low altitudes. During cruise, lateral-directional

(dutch-roll) and longitudinal (short-period) damping was reduced as speed was in-

creased [5]. This was found to be due to large inplane rotor forces created from large

flapping as a result of aircraft angular rates. In spite of these issues, the tiltrotor

configuration proved to be effective and transition between helicopter and airplane

mode was shown to be safe, paving the way for additional research efforts for this

configuration.

1.2.1.1 XV-15

During the 1970’s work began on the XV-15 (Bell Model 301), shown in Fig. 1.2

and described in Ref. 6. The XV-15 is a 13,000 lb tiltrotor. Each rotor has three

12.5 foot radius blades mounted on a gimbaled hub. A large modeling effort was

undertaken to accompany development and flight test of the aircraft. This modeling

effort included development of a real-time flight simulation model for the Bell Model

301 [7]. The simulation model consisted of aerodynamic tuning based on semispan

and 1/5 model scale wind-tunnel data [8, 9]. Model scale data helped determine

rotor loading on the wing and other non-linearities, such as wake impingement on

the horizontal tails in yaw. The model scale data was also used to ensure ade-

quate dutch-roll and short-period damping, and it also ensured that the aircraft

would remain flutter free in its flight envelope. Through this simulation model,

initial handling qualities predictions were made based on specifications found in
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MIL-SPEC-83300 [10]. Level 1 handling qualities were predicted based on longitu-

dinal and lateral/directional mode frequency and damping characteristics [7]. This

simulation model was later transformed to the GTRSIM model [11], described later.

Reference 12 provides comparisons between the models developed for the XV-15

and flight data. Overall, the models show excellent correlation with flight data.

Figure 1.2: XV-15 in hover (NASA file photo)

A comprehensive analytical model of the tiltrotor wing/nacelle/rotor system

model was derived in Ref. 13. This model was used in Ref. 14 to compare the

dynamics of various tiltrotor rotor types. The model lacked rigid-body degrees of

freedom and focused more on aeroelasticity of the wing/nacelle/rotor system. Using

a similar model, stability and trim characteristics of the XV-15 were also investigated

for a variety of nacelle angles [15]. With the nacelles in the cruise configuration,

instability was predicted to occur near 300 knots at sea level. Comparisons of

frequency and damping of flight dynamics modes in cruise and hover for varying

quasi-steady models were also given.
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The simulation model was used extensively in various simulators to help sup-

port handling qualities investigations, flight control design, failure mode reconfigu-

ration, cockpit layout, and various other operational considerations [16]. This model

helped to identify several limitations of the simulators. Pilots encountered vertical

PIOs (pilot induced oscillations) near hover and the cause was identified as being

due to visual system and engine model time-constant problems. Low roll damping

caused the pilots to encounter PIOs in the lateral axis. This was encountered in the

real aircraft, but it was not as prevalent as in the simulator. Simulator limitations

also included a poor field of view so many missions were not able to be evaluated.

Initial flight control development and tuning of the XV-15 is presented in

Ref. 17. The goal was to develop an aircraft with Level 1 handling qualities with

the stability and control augmentation system (SCAS) off and the force feel system

(FFS) on. The FFS aids the pilot in overcoming control system inertia and frictional

forces during hover. It also allows for the tuning of the stick characteristics (natural

frequency and damping) as well as static force characteristics. Reference 17 gives the

improvements in the dutch-roll, short-period, and phugoid modes’ damping due to

the SCAS. Using the aforementioned model in piloted simulations resulted in SCAS

gain changes that improved turn coordination, attitude retention disengagement

alterations, and changes in stick force characteristics. Pilots gave Level 1 handling

qualities ratings (HQR) with the SCAS and FFS active. These ratings did not

change greatly due to a single channel failure in any mode. However, in hover

with the SCAS and FFS off, pilots gave Level 3 HQRs due to the large increase in

workload.
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Flight dynamics models of the XV-15 were also obtained from flight test. Fre-

quency domain identification of the XV-15 was performed in hover and cruise [18,19].

The pilots were instructed to fly frequency sweeps and time history data of the pilot

input and aircraft responses were collected and converted to the frequency domain.

Depending on the frequency range of interest, models obtained from flight test have

the advantage that they can reduce highly-complex non-linear coupled systems into

simple input-output frequency response relationships. Transfer function or linear

models can then be fit to these input-output frequency responses to form a com-

plete model of the aircraft. References 18 and 19 also present time history validation

of identified models. Reference 20 also shows the identification of XV-15 structural

modes using the same techniques.

1.2.1.2 V-22

After the XV-15 program showed excellent potential for the tiltrotor config-

uration, the JVX (V-22) program aimed to deliver tiltrotor technology to military

customers in a production aircraft [21]. The V-22, shown in Fig. 1.3, is currently

being fielded by the US Marines and Air Force. V-22 flight dynamics modeling capa-

bilities descended directly from the XV-15 program as both aircraft were developed

by Bell. Reference 12 showed excellent correlation of a “GTR” model to flight data.

This model was scaled to the V-22 and was used for control law development [22].

An explicit model following type control algorithm was developed for the V-

22 [23]. The control scheme contains a Primary Flight Control System (PFCS) that
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Figure 1.3: V-22 in hover (NASA file photo)

improves basic aircraft stability. An Automatic Flight Control System (AFCS) helps

provide Level 1 handling qualities through the model following architecture. Level

1 handling qualities ratings were obtained for all but one task throughout the test

envelope [23]. The in-ground-effect precision hover task gave Level 2 ratings.

It is noted in Refs. 22 and 24 that certain structural loads exceeded their design

limit during these tasks, and load limiting control laws were developed. In hover and

conversion mode, rotor flapping was limited to prevent the rotor hub from potentially

striking the mast. In cruise, load limiting control laws aimed to reduce the inplane

forcing created by rotor precession during high speed aircraft pitching. The control

laws also aimed to remove the rotor components from the short-period mode by an

eigenstructure assignment method [24]. Control law development for the V-22 was

seen as a compromise between handling qualities, structural, and aeroservoelastic

stability requirements. Specifications mandated a 4g maneuver envelope at 345

knots. The aircraft was also required to hover at 47,500 lb gross weight with Level 1
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handling qualities. The model following control system was found to be well suited

for such a large variety of loading and mission requirements [25].

Structural characteristics for the V-22 fuselage and rotors are given in Ref. 26.

The structural design of the V-22 used lessons learned from the XV-15 program to

improve the structural dynamics of the aircraft. Changes made include increasing

separation of the rotor inplane cyclic frequency from 1/rev, and improving airframe

natural frequency placements. Using analytical tools during the entire design process

as well as extensive validation efforts led to accurate modeling capabilities.

1.2.1.3 LCTR Control in Hover

Tiltrotors offer more control effectors than single main rotor helicopters. Each

rotor can be controlled independently and the nacelles are allowed to move as well.

Lateral control can come from differential collective on the rotors to roll the aircraft,

or symmetric lateral cyclic commands to produce lateral forcing by directly tilting

the rotor thrust vectors. Similarly, longitudinal control can come from moving

the nacelles fore and aft, or symmetric longitudinal cyclic can be used to produce

pitching moments. Given the possibility of having multiple controls in each axis,

studies have been done on tiltrotors to determine the piloted preferred response

types.

Bare-airframe single main rotor helicopters exhibit a rate command (RC) re-

sponse type in which pilot inputs result in angular or vertical rates, depending on the

control input. Control augmentation systems are used to improve handling qualities
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by using an attitude-command attitude-hold (ACAH) system for cyclic commands.

Here a unit cyclic stick deflection corresponds to an angular deflection from trim.

That deflection is held until the pilot moves the cyclic stick to a different value. The

collective stick commands a vertical velocity in the heave axis, and the pedals com-

mand yaw rates. With these response types, the nacelles may be held in a vertical

position. A pure translational rate command (TRC) response type commands no

angular deflection from the trim state. A translational rate can also be achieved by

pitching the rotorcraft, but for tiltrotors it is achieved by tilting the thrust vector.

The attitude of the aircraft can be controlled separately and may or may not be

altered in a TRC control scheme. In the lateral axis, the symmetric lateral cyclic

moves the thrust vector to create lateral motion. In the longitudinal axis, the na-

celles are moved forward and back to create longitudinal motion. The heave and

pedal axes remain unchanged from the ACAH system. Given the possibility of hav-

ing either an ACAH or TRC response type to cyclic inputs, or a combination of the

two, piloted simulations are needed to determine the configuration most preferred

by pilots.

Piloted studies have recently been conducted in NASA’s Vertical Motion Sim-

ulator [27–31]. These studies were designed to test hover and low speed handling

qualities and control system architectures of the LCTR. Although CAMRAD (de-

scribed in Sec. 1.2.2) is not a real-time tool, linear models derived from CAMRAD

were used in many of these studies. The models were based on a combination of

reduced-order stability derivative models and more detailed rigid-body models that

included rotor flapping dynamics but lacked structural flexibility. Despite these limi-

11



tations, the linear rigid-body model was sufficient for determining handling qualities

characteristics of large tiltrotors.

Reference 28 investigated effects of pilot station offset and command model

delay on piloted handling qualities for an ACAH control system. The results show

that a large pilot to CG offset resulted in a tradeoff between undesirable accelera-

tions at the pilot station in the longitudinal and directional axes for quick aircraft

command models and sluggish aircraft performance for slower command models.

New boundaries were suggested for the ADS-33E [32] bandwidth criteria. Many of

the proposed boundaries differ significantly from the classical ones.

Reference 29 investigates varying commanded response types in hover. Com-

parisons are drawn between ACAH and TRC modes with varying TRC inceptor

types and nacelle motion limits. The results showed that there was a preference

of TRC mode over ACAH, primarily so that sight lines to the runway were main-

tained. Pilots also preferred a decoupled TRC system and gave Level 1 handling

qualities when objectionable pitch/heave couplings were removed in the longitudi-

nal axis. Manual control of the nacelle angle was rated poorly due to difficulty in

reconfiguring the aircraft back to a hover state after a maneuver was performed. A

final NASA piloted simulation study [31] focused on TRC mode. The results show

that nacelle bandwidths above 4 rad/sec gave Level 1 handing qualities ratings, and

TRC control sensitivities of 10 ft/sec per inch of control was preferred in both axes.
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1.2.1.4 Other Tiltrotor Handling Qualities Research

There are relatively few handling qualities criteria for tiltrotor aircraft. Based

on LCTR work, new boundaries were established for ADS-33E bandwidth criteria for

large tiltrotors. In hover, tiltrotors are expected to have the same dynamic behavior

as traditional helicopters and follow ADS-33E. In cruise, they are expected to behave

as fixed wing aircraft and follow specifications such as MIL-STD-1797B [33]. The

transition zone between hover and cruise has not been well investigated and only

general guidelines exist, as in MIL-83300 [10].

Initial steps in developing tiltrotor specific requirements are given in Ref. 34.

This reference suggests new mission task elements (MTEs) that evaluate aircraft

performance in mid-speed ranges and are representative of search-and-rescue or

terrain following maneuvers. Also noted is the need for comprehensive simulations

and flight tests for definition of specification boundaries. A new “Roll-Step” mission

task element was flown and evaluated by test pilots on an XV-15 model. The model

was developed using FLIGHTLAB (discussed in a later section). The ADS-33E

bandwidth criteria was also evaluated within the aircraft’s conversion corridor. The

handling quality ratings were generally consistent with the boundaries. Another

study used the same model to evaluate the XV-15 in low speed, transition, and high

speed flight [35]. A model following control system was designed to give an ACAH

response in hover and RCAH response in forward flight. The control system was

evaluated in a motion based simulator and generally gave Level 1 handling qualities.

Load alleviating control laws were developed for a EUROTILT tiltrotor in
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Ref. 36. These control laws aimed to reduce inplane forcing generated by the rotors

due to maneuvering in cruise and to some extent hover. Similar load alleviating

control laws were developed during the V-22 program [22] [24]. Rotor longitudi-

nal cyclic and elevators were used to reduce loads in cruise. It was noted that in

piloted simulations, load amplification was observed in maneuvers not accounted

for during the control design. This highlights the complex nature of control law

design, particularly structural load control design. Generally, there are tradeoffs

in structural control for performance or actuator usage. The simulation used was

FLIGHTLAB model that had rigid-blades and dynamic inflow [36]. Modeling sim-

plifications were needed tin order to run the software in real time. This level of

modeling was adequate to retain key flight dynamics characteristics of the aircraft

for piloted simulations.

The BA-609 represents the first civil tiltrotor, and it is currently undergoing

certification trials. A highly reliable flight control system is key to minimizing pilot

workload and satisfying stringent handling qualities over the large flight envelope.

The flight envelope for this aircraft range from a 35 knot tailwind hover to a 3g

pull-up at Mach 0.55 [37]. The BA-609 lacks lateral cyclic rotor control and uses

differential collective for lateral commands in hover. In cruise, differential collective

to the rotors provides yaw control. Control laws provide rate-command responses

to cyclic inputs. In yaw, a rate-command response and turn-coordination are imple-

mented. There is gain-scheduling based on nacelle angle. The BA-609 has nacelle

angle dependent notch filters on structural modes excited by longitudinal, lateral,

and collective inputs. The aircraft also has a flapping controller in cruise to reduce
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blade loads. In addition, Reference 37 also includes mission tasks flown to evaluate

the aircraft. Even though formal pilot evaluations were not always obtained, pilot

comments were used to update the control laws.

1.2.2 Comprehensive Tiltrotor Modeling Tools

As previously described, the XV-15 was developed in the 1970’s and 1980’s.

To support analysis of flight dynamics, pilot-in-the-loop simulation, and flight con-

trol, the Generic Tilt-Rotor Simulation (GTRSIM) was developed [11]. GTRSIM is

based heavily on wind tunnel data from the XV-15 in the form of look-up tables to

augment the rigid-body dynamics [8] [9]. The detailed look-up tables include effects

of nacelle angle, sideslip, flaperon deflections, Mach number, etc., on aerodynamic

coefficients, and they also contain correction factors to the dynamic response of the

aircraft. While accurate and capable of real-time execution, GTRSIM is highly de-

pendent upon empirical data. The software may suffer problems due to scaling or

for configurations that are slightly different than the XV-15. This software is also

not suitable for rotor dynamics analyses as it retains a momentum theory type rotor

system.

Later, CAMRAD, a comprehensive aeromechanics and dynamics model capa-

ble of multi-rotor and flexible airframe modeling, was developed [38]. CAMRAD

originated in the extensive analytical analysis of tiltrotor dynamics across a very

broad flight envelope [13–15].

CAMRAD was updated to CAMRAD2 [39, 40]. The update offers a larger
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suite of analysis tools, and it has been used extensively for tiltrotor development

and analysis, including the heavy lift helicopters that are of interest herein. Much

of the work looked at high speed whirl-flutter and methods to improve aircraft

performance while maintaing stability [41–43]. Analyses using this tool have also

focused on optimization of the large civil tiltrotor for performance and whirl-flutter

[2]. Performance optimization included rotor sizing and geometry as well as cruise

tip speeds. Whirl-flutter optimization included cruise tip speeds, precone and other

rotor metrics.

MBDyn [44], a multi-body dynamics code developed at Politecnico di Milano

has often been used to model flexible tiltrotors. MBDyn has various elastic blade

and wake models. Much work has been constrained to modeling a single wing-pylon-

rotor system, and in examining ways to stabilize the wing-pylon-rotor system [45].

Generalized predictive control systems have also been created for reduced-order

tiltrotor models where a revolute joint is used to hold the aircraft at the center of

mass and only allow for pitch motion to be studied [46]. Created in a full multi-

body architecture using constraint equations, linearized equations of motion cannot

be extracted directly from this form of model. A linear model can be extracted from

a time history of aircraft motion or by condensing out equations of constraint from

the system.

FLIGHTLAB [47] is widely used in industry for single main rotor helicopter

modeling and simulation as it allows for rapid prototyping of aircraft configura-

tions. It has also been used for tiltrotor modeling [34, 36, 48] . FLIGHTLAB is of

multi-body form and can be executed in real-time. Parallelization enables real-time
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execution of the program even when flexible blades are included [49]. In addition to

flexible blades, vortex wakes can also be modeled.

The University of Maryland has done extensive work on tiltrotor aeroelas-

tic modeling using the code UMARC. The basic tiltrotor model was developed in

Ref. 50. The results show excellent predictions of flutter velocities, trim condi-

tions and rotor loads. The work has generally dealt with aeroelastic stability and

whirl-flutter modeling of various rotor systems [51–53]. Aeroelastic tailoring of rotor

blades to improve flutter boundaries was also performed [54]. A thorough descrip-

tion of UMARC and other comprehensive rotorcraft analyses and their histories can

be found in Ref. [55].

The model used in this work, referred to as HeliUM 2, has been in develop-

ment at the University of Maryland for many years and is a successor to the model

first mentioned in Ref. 56. It originated from the NASA version of GenHel, built

from a mathematical model by Howlett [57], and over time has evolved to include

flexible rotors [58] and free-vortex wake models [59]. More recently, the code has

been augmented to include multi-rotor capabilities. The current research effort has

expanded this to include flexible wings and an overall multi-body-like formulation.

The formulation of the flexibility does not include algebraic constraints and leaves

the equations of motion as ordinary differential equations (ODE), allowing for more

straightforward time integration and linearization. The model is generic and allows

for any rotorcraft configuration, from single main rotor helicopters to coaxial and

tiltrotor aircraft. Fuselage and wing aerodynamics portions of GTRSIM were added

to this model. Therefore, the model was validated against the XV-15 before being
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scaled to the LCTR configuration.

1.2.3 Control and Modeling of Flexible Aircraft

Flexible aircraft models have long been used to model fixed-wing aircraft.

Flexible fuselage modeling of rotary-wing aircraft has been slow to follow, most

likely because fixed-wing aircraft generally have much larger and thinner fuselages

than rotary-wing aircraft, which are generally as compact as possible to reduce rotor

interference effects. Fixed-wing aircraft also tend to be much larger than rotorcraft,

having structural modes which are at low frequencies. Modeling structural modes

becomes important for flutter analysis or for flight dynamics research if the modes

are of low enough frequency.

While a wide range of flexible aircraft models exist, this discussion will be lim-

ited to flexible models created for flight control research. Historically, the flexible

models have been derived from fitting flight data to some assumed structural deflec-

tions taken to be comprised of a few modes. The mode shapes came from ground

shake tests, flight data, or intuition. In rare cases, finite element models were used

to obtain the mode shapes. More recently, analytical models have also been used.

In these models, interaction coefficients of the structural and rigid-body modes are

determined based on lifting-line theory. Full multi-body dynamic type models, such

as the one created for this dissertation, have also begun to gain prominence.

Flexible aircraft control tends to fall into two categories: reduction of struc-

tural loads for improvements in fatigue life, or vibration (acceleration) reduction
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to improve ride quality. For military aircraft, the acceleration at the pilot station

is minimized, while for commercial aircraft acceleration at some location in the

fuselage is minimized (to improve passenger comfort). The overall goal of both cat-

egories is the same; the reduction of structural oscillation. In either case, wing tip

acceleration is generally used as the feedback parameter.

Flexible aircraft models were first used to improve the flutter response of fixed-

wing aircraft. The B-52 CCV (Controls Configured Vehicle) was one of the first

aircraft to demonstrate benefits of active controls [60, 61]. The flutter speed of

this aircraft was increased by 30% by using the outboard aileron and flaperons to

suppress vertical acceleration of the wing. The power spectral density (PSD) of the

vertical acceleration at the structural mode frequencies was significantly reduced.

The model for this aircraft came from fitting aerodynamic model parameters to

flight data and included 30 states, at least seven of which were vibratory modes.

Investigations into a Load Alleviation and Mode Control System (LAMS) were

done on a YF-12 aircraft, the predecessor to the SR-71. Various different actuator

systems were compared in theory to remove motion at the pilot station due to

structural oscillation [62]. The damping of the structural modes and the RMS

acceleration were shown to be much improved with the LAMS system operational.

The elastic model from the aircraft came from a two dimensional finite element

representation and included effects of structural deformation on aerodynamic terms.

Powers [63] developed a flexible model of the SR-71 for use in handling qualities

research. The flexible mode was identified by fitting an elastic beam mode shape to

ground vibration test data. The unknowns in the mode shape were then calibrated
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using flight data. The resulting flexible mode was added to rigid-body dynamics to

form the complete aircraft model.

More recently, NASA has used a modified F-111 to test a Maneuver Loads

Control (MLC) system [64]. This system aimed to minimize root bending moments

during maneuvers by driving the lift vector of the wing inboard, reducing the mo-

ment arm. This was accomplished by using the wing flaps to change the camber

of the wing. Some of the most recent flexible aircraft flight testing occurred during

NASA’s F/A-18 Active Aeroelastic Wing (AAW) program [65]. The control laws

for this aicraft [66] were designed to not exceed certain wing load criteria during

roll maneuvers. The loads model used was derived by fitting structural coefficients

to flight data [67]. A flexible model for this system was created and used in the

NASA Dryden flight simulator by summing rigid-body and structural dynamics at

the outputs [68].

A CH-53K helicopter was modeled with flexibility for stability studies with

a slung load [69]. Here, linear rigid-body dynamics and structural dynamics are

modeled separately. The rigid-body dynamics provide forcing to the structural

modes. This model type was validated against flight data from previous CH-53

configurations.

Structural control has also been implemented on production vehicles, not just

for research purposes. The B-1 has structural control vanes located near the pilot

station. The B-1 was designed to be a low-level penetration bomber, with the

potential of flying through heavy turbulence. Vibration at the pilot station could

cause fatigue, and the control vanes were added early on in the design process to
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reduce structural vibration as much as possible [70, 71]. Use of the control vanes

provided great reduction of the crew sensitivity index, a measure of discomfort

at given frequencies. It is a function of turbulence levels, human perception of

vibration, and acceleration of the aircraft.

Commercial aircraft manufacturers also use structural feedback to improve

passenger ride quality in turbulence. Airbus [72] cites an ability to reduce structural

vibration by a factor of two using advanced control laws. Their flexible models for

control law design come from flight test [73, 74]. Reference 74 shows the PSD of

lateral acceleration is significantly reduced at the structural frequencies when flying

in turbulence. Boeing [75] also derives models from flight data; These models contain

rigid-body modes and 15 structural modes. No coupling is present between the

rigid-body and structural modes to simplify the identification. Large reductions in

accelerations at varying fuselages stations can be obtained. The Boeing 787 contains

both gust load alleviation and maneuver load control laws [76]. In additional to

reduction in acceleration, an additional benefit of these control laws is a reduction

in aircraft structural weight due to decreased loads.

High fidelity modeling tools are required for accurate flexible aircraft model-

ing and simulation. The models presented thus far are generally obtained from or

tuned with flight test data. Modeling requires accurate representations of aircraft

structural parameters. The development of an analytical formulation for the linear

equations of motion for a flexible aircraft are described in Ref. 77. The starting point

is a rigid-body model. Changes in aerodynamics due to flexibility add forcing to

the rigid-body equations. In addition, changes in rigid-body dynamics add forcing
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to the structural beam equations, giving a fully coupled flexible system. A mean

axis assumption is used, where the aircraft motion corresponds not to a physical

quantity in the aircraft, but instead a location where mass moments of inertia re-

main constant. The multi-body formulation used in this dissertation is derived from

Reference 78. The multi-body formulation simplifies the addition of elasticity effects

by augmenting displacement and rotation vectors, along with their time derivatives.

A formulation similar to that of Ref. 77 is used to derive the flexible equa-

tions of motion for a generic transport model (GTM) [79]. Here, a one-dimensional

analytical beam model with coupled bending-torsion dynamics models the aircrafts

flexible wings. The Galerkin method is used to develop the equations of motion

for the orthogonal modes. Fully coupled mass, stiffness, and damping matrices are

created. The longitudinal dynamics and first bending and torsion modes are ana-

lyzed and an adaptive control system is created. In this formulation, the rigid-body

dynamics are augmented with contributions due to flexibility.

References 80, 81, and 82 describe the derivation of flexible aircraft equations

of motion in similar fashions. Lagrange’s Equations are used, where potential and

kinetic energies are obtained for components of the flexible aircraft. In these analy-

ses, the energies include contributions from the fuselage, wings, and empennage as

separate quantities. Orthogonal mode shapes are also assumed to be known a priori

and available during the solution process.
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1.2.4 Comments on Literature

There is a general gap in modeling used for flight controls development versus

that used for rotor dynamics and loads prediction. Flight control designers gen-

erally do not have access to high-order comprehensive analyses, and therefore use

much simpler models. Models such as GTRSIM are based on theory, but are em-

pirically corrected to match flight test data. Using these types of models to predict

new aircraft behavior is problematic. As such, linearized models from comprehen-

sive analyses such as FLIGHTLAB, CAMRAD2, and the model developed here are

beginning to play a large role in control system design.

The fixed-wing community has much more experience in control design for

flexible aircraft. Experiences from these programs provide insight into the starting

point for flexible aircraft control. Accelerations at the wing tips or the nose and tail

provide adequate feedback signals for structural motion. In terms of modeling, a few

low frequency modes are generally adequate for stability and aircraft flutter calcula-

tions. For rotorcraft, where rotor modes are also important, many more modes are

required to model the entire aircraft. Analytical equations become increasingly less

tractable as the number of modes increases. Numerical formulations are required for

rotorcraft which generally contain several rotor modes as well as flexible structural

modes.
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1.3 Contributions of Dissertation

There are many comprehensive code bases that can be used to model flexible

rotorcraft. This dissertation introduces and applies a comprehensive model with

a new structural formulation to study the flight dynamics and control of a large

flexible tiltrotor aircraft. The benefits of this model architecture are in maintaining

the equations of motion in simple ODE (ordinary differential equation) form, which

decreases computational costs and makes real-time implementation possible. In

addition, it is simple to obtain linear models from this system architecture.

A comparison between different flexible linear model architectures is presented.

Linear flexible models can be obtained from a variety of sources and different model

types are compared in an effort to link the models and provide a methodology in

converting from one structure to another.

This dissertation also includes a comprehensive control synthesis for the flex-

ible tiltrotor. In past literature, control synthesis was performed on rigid tiltrotors.

Here, a solution is obtained that ensures that stability, model following, disturbance

rejection, and bandwidth requirements are all fulfilled while minimizing structural

oscillations through active control of structural modes. The contributions are de-

scribed in greater detail below.

• Muti-body like rotorcraft modeling:

Multi-body solvers generally contain numerical kinematics for the motion of

bodies held together by constraint equations. The formulation presented in

this dissertation retains the numerical kinematics but does not include alge-
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braic constraint equations. This formulation leaves the equations of motion

as ODEs. The bodies are assumed to be rigidly connected to each other with

motion between the bodies allowed only through flexibility.

• Comprehensive comparisons between different flexible aircraft mod-

els:

Comparisons are given between different linear model structures. Flexible

models can come from multi-body simulations (like the one developed in

this disseration), rigid-body aircraft models augmented to include structural

flexibility, or flight data. The models are shown to be coupled by the off-

diagonal terms. Conversions are given between the complicated multi-body

model structures to decoupled flexible model structures. A decoupled model is

the simplest model type, where all interaction between the flexible mode and

fuselage dynamics is obtained through an influence coefficient in the output

equation.

• Development of advanced control laws for flexible aircraft:

Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Com-

mand (TRC) control modes are developed for the flexible LCTR aircraft.

Comparisons are given between control systems that only ensure stability at

structural frequencies, passively control structural oscillation through the use

of notch filters, and actively control structural oscillation using structural feed-

back. It is shown that control systems that do not account for structural flexi-

bility have degraded, potentially unstable performance, and structural control
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techniques can be used to give large reductions in structural motion.

1.4 Organization of Dissertation

Chapter 2 presents the theoretical development of the model. Kinematics and

coordinate system transformations are discussed. The finite element beam model

used for the rotor, nacelle, and wing is also presented. The system state vector is

developed in this chapter, including rigid-body, inflow, and flexible beam degrees of

freedom. Governing equations for each degree of freedom are also discussed.

Chapter 3 discuses the development of the aircraft model from its components

described in Chapter 2. The connection of various bodies into a tree structure is

explained. The use of the modal coordinate transformation to reduce the system

degrees of freedom is also discussed. In addition, linearization and time integration

of the aircraft model are also presented.

Chapter 4 presents validation of the model. The initial validation is against

a rigid XV-15. The XV-15 validation data consists of identified models from flight

data, as well as simulation models. The LCTR model is then validated against an-

other comprehensive model. Nacelle dynamics are also validated against the existing

literature.

Chapter 5 examines different flexible linear model architectures. Descriptions

for each model are given with examples from the literature. A flexible LCTR model

is converted to each model structure type.

Chapter 6 builds the control system for the flexible LCTR aircraft and pro-
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vides comparisons between different control strategies. This chapter also looks at

the robustness of the system, costs of structural feedback and sensitivities of the

specifications to changes in structural gains.

Chapter 7 compares the performance of the aircraft with and without struc-

tural feedback in a fixed-base piloted simulation and provides pilot comments.

Chapter 8 provides key conclusions from this dissertation and suggests future

work.

The appendices show the derivation of the kinematic relations, include addi-

tional details regarding flexible model architectures, and detail various structural

feedback concepts.
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Chapter 2: Theoretical Development

A description of the formulation of the equations of motion is given in this

chapter. The model is entirely composed of a coupled set of nonlinear ODEs, and

key coordinate systems used during the analysis are discussed. Rigid-body equations

of motion along with elastic beam equations used to model rotor blade and wing

flexibility are also discussed. A finite-state inflow model is used for each rotor to

retain the system in ODE form. The full system state vector is developed from its

components.

2.1 Coordinate Systems

2.1.1 Inertial Reference Coordinate System

The inertial coordinate system serves as the reference coordinate system for

the development of the equations of motion. The origin of the system is the aircraft’s

center of mass. The z-axis (nI3) of the inertial coordinate system points downwards,

but the direction of the x and y axes are somewhat arbitrary. The x-axis (nI1) could

point north and the y-axis (nI2) could point east if the trajectory of the aircraft was

needed or if the aircraft had to navigate during code execution.
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Figure 2.1: Body and inertial coordinate systems

2.1.2 Body-Fixed Coordinate System

The body coordinate system originates at the aircraft center of mass and points

forward along the x-axis (nB1 ), out the right wing for the y-axis (nB2 ), and downwards

for the z-axis (nB3 ). This coordinate system is used to define the aircraft linear and

angular motion as well as the aircraft mass moments of inertia. The inertial and

body coordinate system are related by the Euler angles, which define the aircraft’s

orientation with respect to the inertial coordinate system. The transformation from

inertial to body coordinate system is shown in Figure 2.1. The aircraft is first ro-

tated around the z-axis to form an intermediate coordinate system. This coordinate

system is then rotated about the y-axis to form a second intermediate coordinate

system. A final rotation of this coordinate system about the x-axis gives the body

axes. The transformation matrix is given by Eqn. (2.1).
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{
nB
}

=
[
SBI

] {
nI
}

(2.1)

The components of
[
SBI

]
are:

SBI =




S11 S12 S13

S21 S22 S23

S31 S32 S33




(2.2)

where

S11 = cos θ cosψ

S12 = cos θ sinψ

S13 = − sin θ

S21 = sinφ sin θ cosψ − cosφ sinψ

S22 = sinφ sin θ sinψ + cosφ cosψ

S23 = sinφ cos θ

S31 = cosφ sin θ cosψ + sinφ sinψ

S32 = cosφ sin θ sinψ − sinφ cosψ

S33 = cosφ cos θ
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2.1.3 Flexible Beam Coordinate Systems

The flexible beam coordinate system is used for flexible rotor blades as well

as wings, moving nacelles, flexible empennages, etc. All transformations needed for

the x-axis to point outwards along the elastic axis have already been performed in

the process of getting to the flexible beam coordinate system. For wings, any wing

sweep or dihedral/anhedral angle is accounted for in the transformation matrix from

the previous body in the multi-body system to the beam.

2.1.3.1 Undeformed Beam Coordinate System

This coordinate system originates at the root of the flexible beam and points

outboard along the elastic axis of the undeformed flexible beam for the x-axis (nb1).

The y-axis (nb2) is in the chordwise direction and points forward towards the direc-

tion of travel. This axis defines the lead/lag direction of motion for rotor blades.

Displacements from the elastic axis to the aerodynamic center or center of mass of

the beam section are given along this direction as well. The z-axis (nb3) follows the

right hand rule and its direction is thus set by the x and y axes. For the standard

counterclockwise rotating rotor systems, the undeformed z-axis points upward and

defines the flapping or beamwise bending degree of freedom (see Fig. 2.2). In the

present work, a wing will be defined as “right” or “left” depending on whether its

elastic axis is to the right or left of the xB−zB body-axis plane. The right wing has

the same undeformed coordinate system as these blades. These coordinate systems

described the standard form of the flexible beam. Displacements due to structural
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flexibility are given in this coordinate system.
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(a) Counterclockwise rotor blade
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(b) “Right” wing

Figure 2.2: Standard undeformed (dashed) and deformed (solid) coordinate systems

The beam coordinate systems can also be oriented in a nonstandard form. Here

the x-axis remains pointing outward, the y-axis remains pointing forward along the

chord, but the z-axis points downward, in the opposite direction as the standard

form. Figure 2.3 shows the coordinate system used for these beams. These coor-

dinate systems are used for clockwise rotating rotor systems as well as the “left”

wings This allows for rotor speed to be treated as a positive constant for both ro-

tors. Changing the direction of the y-axis and having the z-axis point downwards

also allows for the same blade section properties to be used. Since positive displace-
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ments are defined in the lead direction (forward chord bending), the same CG and

aerodynamic center offsets from the elastic axis may be used. This same coordinate

system is also used for the “left” wing.

(a) Clockwise rotor blade

(b) “Left” wing

Figure 2.3: Nonstandard undeformed (dashed) and deformed (solid) coordinate sys-
tems

Wing sweep and dihedral are accounted for in transformations from the pre-

vious body to the beam undeformed coordinate system. In the tiltrotor example,

sweep and dihedral are included in the transformation from the fuselage coordinate

system to the wing undeformed coordinate system. Rotor blade precone is included

as a separate transformation matrix, and is described in Sec. 2.1.4.3.

The nacelles retain a single rigid-body rotation mode. The nacelles contain

a “pinned” boundary condition at the center node and rotate around the y-axis
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(nb2), giving displacements in the z-axis (nb3) only. The x-axis (nb1) points out along

the elastic axis as shown in Fig. 2.4. The deformed y-axis (nf2) remains identical

to the undeformed one. The “left” and “right” nacelle’s coordinate systems are

identical. Since the “left” and “right” wings have different coordinate systems, the

transformation matrices from the wing to the nacelles are different.
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(a) “Right” nacelle coordinate systems
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(b) “Left” nacelle coordinate systems

Figure 2.4: Rotating nacelle undeformed (dashed) and deformed (solid) coordinate
systems
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2.1.3.2 Deformed Beam Coordinate System

Elastic deformations add displacements and rotations to the undeformed co-

ordinate system and are shown alongside the undeformed coordinate systems in

Figs. 2.2-2.4. Once elastic deflections are added, the coordinate system becomes

the beam deformed coordinate system. This coordinate system is dependent on the

displacement along the elastic axis since elastic deformation varies along the elastic

axis of the beam. Since the coordinate system varies along the beam span, its origin

is located at the current spanwise location along the beam.

The transformation matrix
[
Sfb
]

transforms the elastic axis offsets from the de-

formed to the undeformed coordinate system. Its components are given by Eqn. (2.1).

For the elastic beam, the individual rotation angles are given in Ref. 83. They are

given in the beam undeformed coordinate system and are based on elastic dis-

placements including w in the nb3 direction, v in the nb2 direction, and u in the nb1

direction. Elastic rotations about the nb1 axis are labeled as φ. Spanwise derivatives

of the displacement quantities are labeled ()x, and are used to define the rotation

angles:
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φ = φ (2.3)

sin θ = − wx√
1 + 2ux + u2

x + v2
x + w2

x

(2.4)

cos θ = −
√

1 + 2ux + u2
x + v2

x√
1 + 2ux + u2

x + v2
x + w2

x

(2.5)

sinψ = − vx√
1 + 2ux + u2

x + v2
x + w2

x

(2.6)

cosψ = − 1 + ux√
1 + 2ux + u2

x + v2
x + w2

x

(2.7)

Local forcing along the elastic beam is determined in the deformed coordinate

system since forcing takes place along the deformed beam. Bodies are connected to

each other in this coordinate system as well.

During execution, all components of the system can be flexible. If a component

is rigid, the flexible components are set to zero and the deformed coordinate system

is identical to the undeformed one.

2.1.4 Rotor Coordinate Systems

Several coordinate systems are used for modeling the rotor system.

2.1.4.1 Non-Rotating Shaft Coordinate System

The non-rotating shaft coordinate system is centered at the hub. This coordi-

nate system is oriented so that the positive z-axis (nNR3 ) points downward along the

axis of rotation of the rotor, the x-axis (nNR1 ) points forward and the y-axis points
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starboard. The transformation matrix between the body axes and the non-rotating

shaft axes is a product of all the intermediate coordinate systems in the multi-

body system and are highly dependent on the aircraft configuration (see Fig. 2.5).

These transformations may include wings, nacelles, and any other components. De-

termination of the non-rotating shaft coordinate system is the first step towards

determining blade kinematics.

Figure 2.5: Body and non-rotating shaft coordinate systems

For a rigid aircraft, this transformation matrix is constant. For a flexible

aircraft, the transformation matrix may vary with time.

2.1.4.2 Rotating Shaft Coordinate System

The rotating shaft coordinate system originates at the hub and rotates around

the hub at the main rotor speed. The z-axis (nR3 ) points upward along the axis of

rotation, the opposite of the non-rotating shaft coordinate system. Each blade has

its own hub rotating coordinate system based on its current azimuth angle, ψ. The

x-axis (nR1 ) points outward and is in the same plane as the beam elastic axis (see
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Fig. 2.6). The transformation in matrix between these two coordinate systems is:

nR =
[
SR,NR

]
nNR (2.8)





nR1

nR2

nR3





=




− cosψ sinψ 0

sinψ cosψ 0

0 0 −1








nNR1

nNR2

nNR3





(2.9)
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Figure 2.6: Non-rotating and rotating shaft coordinate systems

2.1.4.3 Preconed Rotating Coordinate System

The preconed coordinate system rotates the blade from the rotating shaft axes

to the undeformed blade axes using the precone angle. The transformation is shown

in Fig. 2.7 and is as follows:

nb =
[
SbR
]
nR (2.10)
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



nb1

nb2

nb3





=




cos βp 0 sin βp

0 1 0

− sin βp 0 cos βp








nR1

nR2

nR3





(2.11)
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Figure 2.7: Conversion from rotating coordinate system to beam coordinate system
through the precone angle

The blade undeformed coordinate system is identical to the one described in

Sec. 2.1.3.1.

2.1.5 Fuselage Wind Coordinate System

The fuselage wind coordinate system is centered at the aircraft center of mass

and is defined with respect to the freestream flow due to aircraft linear velocity.

The wind and body coordinate systems are related by the angle of attack and

sideslip. This coordinate system is used to determine aerodynamic contributions of

the fuselage onto the equations of motion. The transformation from the body to the

wind coordinate system is:

nW =
[
SWB

]
nB (2.12)
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



nW1

nW2

nW3





=




cosαF cos βF − cosαF sin βF − sinαF

sin βF cos βF 0

sinαF cos βF − sinαF sin βF cosαF








nB1

nB2

nB3





(2.13)

This coordinate system is undefined in hover with zero wind speed. Generally,

hover is approximated by adding a small longitudinal trim speed.

2.1.6 Beam Sectional Aerodynamics Coordinate System

In order to determine air loads, the local velocities at the beam (wing, blade,

nacelle, etc.) elastic axis are needed. The elastic axis has beam (flap) and chord (lag)

deflections when compared to the undeformed axes. The local angular deflection

is used to determine the local velocity from the overall freestream velocity. The

following transformation takes beam velocities and converts them to air velocities

at a location on the deflected beam.

VA = UTna1 + UPna2 + URna3 (2.14)

The coordinate transformations is from the undeformed beam coordinate system nb,

(Sec. 2.1.3.1):

na =
[
Sab
]
nb (2.15)
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



na1

na2

na3





=




− sin ζ cos ζ 0

sin β cos ζ sin β sin ζ − cos β

− cos β cos ζ − cos β sin ζ − sin β








nb1

nb2

nb3





(2.16)

The local beam and chord bending slopes are (flap and lag slopes for a blade):

β = wx (2.17)

ζ = vx (2.18)

For beams that rotate clockwise and “left” wings (see Sec. 2.1.3.1), additional ma-

nipulations ensure that the correct aerodynamic forcing is determined when inflow

and freestream airflows are included. The na3 vector is negated so it points upwards,

as it does for the counterclockwise and “right” wings. The positive pitch angle is

also negated, so positive pitch (and elastic torsion) deflections increases the angle

of attack. These transformations are later removed from the aerodynamic forcing

vectors to ensure loads are calculated in the appropriate coordinate systems.

2.1.7 Dynamic Inflow Coordinate System

The dynamic inflow equations are written in the tip path plane coordinate

system. The tip path plane is defined by a rotation from the non-rotating shaft

coordinate system by the first harmonic deflection of the flapped rotor blades. The
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z-axis remains pointing down.

β1c =
2

NB

NB∑

j=1

wtipj

R− e
cosψj (2.19)

β1s =
2

NB

NB∑

j=1

wtipj

R− e
sinψj (2.20)

The transformation to the non-rotating shaft coordinate system is:





nNR1

nNR2

nNR3





=




cos β1c sin β1c sin β1s sin β1c cos β1s

0 cos β1c − sin β1s

− sin β1c cos β1c sin β1s cos β1c cos β1s








nTPP1

nTPP2

nTPP3





(2.21)

2.2 Main Assumptions

1. The rigid-body equations are based on a rigid airframe and do not account for

effects of structural flexibility.

2. Wind velocity is zero.

3. A three state dynamic inflow model is an accurate representation of each

rotors inflow. Influences of the wings and other aircraft features on inflow are

negligible.

4. Fuselage aerodynamic properties can be lumped into lift, drag, and moment

coefficients.
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5. The blade cross section is symmetric with respect to the major principle axis.

6. Blade chord, twist, stiffness, mass properties, and all offsets are given at dis-

crete spanwise locations and vary linearly in between.

7. All elastic beams are composed of an isotropic, linearly elastic material.

8. All blades are identical.

9. Euler-Bernoulli beam theory is used, implying plane cross sections remain

plane and perpendicular to the elastic axis during deformation. Shear is neg-

ligible. This beam theory applies to all blades, wings, and any other flexible

aircraft component.

10. The rotor blades rotate at constant angular velocity.

11. The blade pitch control system and actuators are infinitely stiff and there is

no freeplay in the linkages.

2.3 Kinematics and Coordinate System Transformations

The rotorcraft model consists of multiple flexible bodies arranged in a generic

tree-like topology. For an example tiltrotor aircraft, shown in Fig. 2.8, the tree

starts from the aircraft center of mass and branches out to the wings, nacelles, and

ultimately rotors and blades. Each component within this tree is given its own

coordinate system. The coordinate system serves as the basis for the formulation

of flexibility contributions of that body to the overall system. Coordinate systems

used in the formulation have been described in the Section 2.1.
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Figure 2.8: Generic tilt-rotor multi body formulation

The development of the kinematic relations between a generic set of bodies is

given in Appendix A and covers derivations of the positions, velocities, and accel-

erations of arbitrary points within the flexible tree-like configuration.

2.4 Rigid-Body Equations of Motion

Equations of motion for the fuselage are formulated in the body axes and

assume a rigid aircraft. The force and moment equations are as follows:

X = m (u̇+ qw − rv) +mg sin θ (2.22)

Y = m (v̇ + ru− pw)−mg sinφ cos θ (2.23)

Z = m (ẇ + pv − qu)−mg cosφ cos θ (2.24)

L = Ixxṗ− (Iyy − Izz) qr − Ixz (pq + ṙ) + Ixy (pr − q̇)− Iyz
(
q2 − r2

)
(2.25)

M = Iyyṗ− (Izz − Ixx) pr + Ixz
(
p2 − r2

)
− Ixy (qr + ṗ) + Iyz (pq − ṙ) (2.26)

N = Izz ṙ − (Ixx − Iyy) pq + Ixz (qr − ṗ)− Ixy
(
p2 − q2

)
− Iyz (pr − q̇) (2.27)
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The kinematic equations relating the aircraft roll, pitch, and yaw rates to inertial

rates are:

φ̇ = p+ q tan θ sinφ+ r tan θ cosψ (2.28)

θ̇ = q cosφ− r sinφ (2.29)

ψ̇ = r
cosψ

cos θ
+ q

sinφ

cos θ
(2.30)

The left hand side of the six force and moment equations contain all external forcing

acting on the center of mass. This includes all forcing coming from the rotors, wings,

nacelles, and any other flexible aircraft component. It also includes all aerodynamic

forcing acting on the fuselage. The fuselage is only connected to a subset of bodies

from the multi-body system (i.e. the wings for a tiltrotor). Rotor forcing is passed

through the wings to the fuselage, and so does add directly to the fuselage equations.

Since all external forcing comes integrated in the left hand side, the masses and

inertias on the right hand side of the equations are for the rigid component of the

fuselage only. The applied forces and moments at the center of mass are (only

X-Force shown):

X =

NR∑

k=1

X∗Rk +
Nnac∑

k=1

X∗nack +X∗∗TR +XF +

NW∑

k=1

XWk
(2.31)

()∗ : Forcing passed through wings ()∗∗ : Tail rotor forcing, if present

Here XR are rotor loads from NR rotors, Xnac are loads from Nnac nacelles, XTR

are tail rotor loads, XF are fuselage/empennage loads, and XW are wing loads from
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NW wings

The portions of the aircraft state vector associated with the rigid-body equa-

tions of motion are:

xrb = {u v w p q r φ θ ψ}T (2.32)

2.5 Flexible Beam Equations of Motion

In order to determine spanwise loads for any beam, local positions, velocities,

and accelerations must be known. These vectors will be derived for a rotor blade

and then simplifications will be given for wings, nacelles, etc. Rotor blade vectors

are most complex because they contain effects due to rotor speed, elastic offsets,

and precone angles.. These vectors are based of of those derived in Ref. [58].

2.5.1 Blade Position Vector

The position vector for a point on a blade is:

RP = RCG + RH + RB (2.33)

RCG is the position vector of the center of gravity with respect to a fixed point.

RH is the position vector of the hub from the CG, and RB is the position vector of

a point on a flexible blade with resect to the hub.

Components RCG + RH are determined using multi-body kinematics. These

values are derived in Appendix A in Eqn. (A.14). As written, these vectors in-
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clude flexibility of any component up to the rotor hub. Written in the multi-body

formulation:

RMB = RCG + RH (2.34)

RCG = ζ
{
n0
}

(2.35)

RH =

(
n−1∑

i=1

{
q̄i
}T [

Si0
]

+ {r̄n}T
[
Sn0
]
)
{
n0
}

(2.36)

Where body n represents the hub. The generic displacement from the beam root

for a point on the beam in the undeformed blade coordinate system is:

RB =
[
e cos βp + x0 + Sfb21y0 + Sfb31z0

]
nb1+

[
v + Sfb22y0 + Sfb32z0

]
nb2+ (2.37)

[
w − sin βp + Sfb23y0 + Sfb33z0

]
nb3

v and w are elastic contributions to the displacement of the elastic axis. e is the

offset from the beam connection point to the start of the elastic portion of the beam.

βp is the precone angle.

In order to sum the vector above with the RCG and RH components, it must

be converted to the same coordinate system. The transformation components from

the blade undeformed coordinate system through the preconed, rotating shaft, non-

rotating shaft, and hub coordinate system are given in the previous section. In
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matrix form they are:

{
nb
}

=
[
Sb,R

] [
SR,NR

] [
SNR,n

] [
Sn,0

] {
n0
}

(2.38)

2.5.2 Blade Velocity Vector

The absolute velocity of a point on the blade is:

VP =
dRCG

dt
+
dRH

dt
+
dRB

dt
(2.39)

As with the position vector, the first two components of the velocity vector are

obtained from the multi-body solution, and are given by Eqn. (A.15). This velocity

vector contains both rigid-body aircraft velocities as well as all velocity contributions

due to flexibility from the CG to the hub and is written in the inertial frame.

VMB =VCG + VH (2.40)

VCG =
{
ζ̇
}T {

n0
}

(2.41)

VH =

(
n−1∑

i=1

({
˙̄qi
}T [

Si0
]

+
{
q̄i
}T [

Ṡi0
])

+ (2.42)

{
˙̄rn
}T [

Sn0
]

+ {r̄n}T
[
Ṡn0
]){

n0
}

Where ζ̇ is the aircraft velocity. The velocity of a point on the flexible blade with
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respect to the hub is:

dRB

dt
=
∂RB

∂t
+ ω ×RB (2.43)

where ω is the total angular rate of the hub, given by the components of the skew

symmetric matrix in Eqn. (A.28). This angular rate includes rigid-body rates as

well as all angular rates due to structural flexibility up to the hub, and has been

converted to the blade undeformed coordinate system. The partial derivative in the

equation is the velocity of a point due to blade flexibility and rotor speed:

∂RB

∂t
=

(
∂RB

∂t

)

B

+ Ω×RB (2.44)

Where (. . . )B is the velocity of the point P as seen by an observer rotating with the

blade in the rotating shaft coordinate system and Ω is the main rotor speed.

Ω = Ω nNR3 (2.45)

Since the local velocity of the blade is needed for airloads calculations, all velocities

are brought to the undeformed coordinate system,
{
nb
}

.

VP =

(
VMB

[
S0b
]

+

(
∂RB

∂t

)

B

+ Ω×RB + ω ×RB

] {
nb
}

(2.46)
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2.5.3 Blade Acceleration Vector

The blade acceleration vector is built the same way as the position and velocity

vectors.

aP =
d2RCG

dt2
+
d2RH

dt2
+
d2RB

dt2
(2.47)

(2.48)

The first two components of the acceleration vector are given by the multi-body

solution and give the total acceleration of the hub. These components are given by

Eqn. (A.29).

aMB =aCG + aH (2.49)

aCG =
{
ζ̈
}T {

n0
}

(2.50)

aH =

(
n−1∑

i=1

({
¨̄qi
}T [

Si0
]

+ 2
{

˙̄qi
}T [

Ṡi0
]

+

{
q̄i
}T [

S̈i0
])

+ {¨̄rn}T
[
Sn0
]

+ 2 { ˙̄rn}T
[
Ṡn0
]

+ (2.51)

{r̄n}T
[
S̈n0
]){

n0
}

The acceleration of a point on the flexible blade with respect to the rotating hub is:

d2RB

dt2
=
∂2RB

∂t2
+ ω̇ ×RB + 2ω × ∂RB

∂t
+ ω × (ω ×RB) (2.52)
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where ω and ω̇ are the angular velocity and acceleration vectors of the hub, includ-

ing all rigid-body and flexibility effects. These vectors are converted to the blade

undeformed coordinating system. The second partial derivative is the acceleration

of a point on a flexible blade including rotor rotation contributions.

d2RB

dt2
=

(
∂2RB

∂t2

)

B

+ Ω̇×RB + 2Ω×
(
∂RB

∂t

)

B

+ Ω× (Ω×RB) (2.53)

The full acceleration vector, converted to the beam undeformed coordinate system

is;

ap =

(
aMB

[
S0b
]

+

(
∂2RB

∂t2

)

B

+ Ω̇×RB + 2Ω×
(
∂RB

∂t

)

B

+Ω× (Ω×RB) + ω̇ ×RB + 2ω × ∂RB

∂t
+ ω × (ω ×RB)

){
nb
}

(2.54)

2.5.4 Simplifications for Other Beams

Other aircraft components may be flexible as well. These components are

all connected to their root body, which serves the same purpose as the hub in the

derivations above. From this root body, position, velocity, and acceleration vectors

may be created for any point on the flexible beam and loads may be determined.

For non blade components, the changes are as follows:
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2.5.4.1 Position Vector

The multi-body component of the position vector, RMB, is terminated at the

body just before the flexible body. The flexible components are treated as the rotor

blades were in the derivations above.

The position vector of a point on the blade does not include elastic offset and

blade precone.

e = 0 (2.55)

βP = 0 (2.56)

The transformation matrix
[
Sfb
]

now transforms the current bodies vector from the

deformed to undeformed frames.

2.5.4.2 Velocity Vector

As the the position vector, the multi-body component of the velocity vector,

Eqn. (2.40), is terminated at the body just prior to the flexible body. The rotor

speed in Eqn. (2.44) is set to zero as well.

Ω = 0 (2.57)
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2.5.4.3 Acceleration Vector

The multi-body acceleration components are stopped at the body just prior

to the current one. As in the velocity vector, rotor speed is set to zero. Here rotor

angular acceleration is also set to zero.

Ω = 0 (2.58)

Ω̇ = 0 (2.59)

2.5.5 Beam Element Description

The elastic beam formulation contains coupled torsion and beamwise-chordwise

(flap-lag) bending degrees of freedom, and small elastic deflections. All loads are

formed in the undeformed beam coordinate system. This makes force and moment

contributions to the body downstream of the elastic body easier to calculate.

Inertia and structural couplings are rigorously modeled for any combination of

rotors and wings. The aerodynamic couplings need to be tailored for every specific

configuration.

A thorough discussion of the elastic blade formulation can be found in Ref. 84.

The following discussion summarizes the formulation and highlights the contribu-

tions from tip masses and large external objects, like the nacelle, on the beam equa-

tions. The discussion also highlights how forcing from upstream bodies impacts the

beam equations of the current body in the multi-body system.
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The beam equation of motion for a simplified beam bending example is:

l∫

0

(EI(x)w,xx),xx +m(x)ẅ − p(x, t)dx = 0 (2.60)

The terms on the left hand side represent beam stiffness, mass, and external

forcing. Beam deflection is assumed to be separable in space and time and to be

composed of shape functions dependent on the spatial displacement, and temporal

components which give amplitude variation with time.

w(x, t) = Hw(x)yw(t) (2.61)

(2.62)

The left hand side of the beam equation is generally not equal to zero as

the solution obtained is always an approximate solution, and is equal to a residual

value.

l∫

0

(EI(x)w,xx),xx +m(x)ẅ − p(x, t)dx = resw(x, t) (2.63)

The Galerkin method of weighted residuals is used for approximating the solution

to the beam equation of motion. Using the Galerkin method, a set of trial functions

multiply the residual of the equation of motion. The coefficients for each trial

function are determined so that the residual of the equation of motion is minimized.

The trial functions used over each element are the Hermite interpolation polynomials
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which are orthogonal and limit the displacements within the beam within each

element. Therefore, the solver tries to solve the following equation.

l∫

0

resw(x, t)HT
w(x)dx = 0 (2.64)

Since the residual itself is written out in Eqn. (2.63), the Galerkin method produces

the following solution to the equation of motion:




le∫

0

(EI(x)Hw,xx(x)yw(t)),xx +m(x)Hw(x)ÿ(t)w − p(x, t)dx


HT

w(x) = 0 (2.65)

Once the appropriate integrations by parts are carried out, the solution becomes:

le∫

0

(
EI(x)Hw,xx(x)HT

w,xx(x)
)

︸ ︷︷ ︸
[K]

yw(t)

+
(
m(x)Hw(x)HT

w(x)
)

︸ ︷︷ ︸
[M ]

ÿ(t)w −
(
p(x, t)HT

w(x)
)

︸ ︷︷ ︸
Q(t)

dx = 0 (2.66)

The first terms form the stiffness matrix, the second terms form the mass matrix ,

and the final term consists of the external forcing vector.

2.5.5.1 Finite Element Descritization

Finite elements are used to model the flexible beams. Any number of elements

may be used to model each wing, blade, nacelle, or any other flexible element.

Aerodynamic, structural, and inertial forces and moments are calculated at specified

internal points in each finite element, integrated to form loads at each node of the

finite element. These nodal loads are transformed into modal loads using the modal

coordinate transformation (discussed in later chapter), greatly reducing the total
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number of degrees of freedom.

There are a total of 6NE + 5 nodal degrees of freedom, where NE is the total

number of finite elements used in the formulation. The nodal degrees of freedom

for each finite element are displacement and slope for beamwise/flap (w) and chord-

wise/lag (v) motions at the inboard and outboard end of each element. Torsion (φ)

has degrees of freedom at the inboard and outboard end, as well as at the center of

each element, as shown in Fig. 2.9 for a four element beam model. For the beam

model shown, there are a total of 29 degrees of freedom.

φ2

φ4

φ6

φ8

rigid offset

root

v1

v1,x

w1

w1,x

φ1

v2

v2,x

w2

w2,x

φ3

v3

v3,x

w3

w3,x

φ5

v4

v4,x

w4

w4,x

φ7

v5

v5,x

w5

w5,x

φ9

Figure 2.9: Four element finite element model of a blade with nodal degrees of
freedom

Since forces and moments are integrated quantities, positions, velocities and

accelerations along the entire elastic beam must be know. The mapping of the

displacement between the nodes is accomplished through the use shape functions,

which are Hermite polynomials. The shape functions for beam and chord bending,

which contain both displacement and slope degrees of freedom at each element end
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point given below in Eqn. (2.67). The variable η is a mapping variable within each

element, and has a value of 0 at the inboard end of the element and 1 at the outer

end. The variable x is the spanwise displacement along the beam element and is

also a function of η, and l is the element length.

Hv (x) = Hw (x) =





1− 3η2 + 2η3

η (1− 2η + η2) l

3η2 − 2η2

η (−η + η2) l





T

(2.67)

For torsion, which includes a mid-element torsional displacement:

Hφ (x) =





1− 3η + 2η2

4η − 4η2

−η + 2η2





T

(2.68)

The chord, beam, and torsion displacements within any finite element, and thus

any portion of the beam, can be written as a product of a displacement function

and known displacements at the nodes of the finite element.

v(x, t) = Hv(x)yv(t) (2.69)

w(x, t) = Hw(x)yw(t) (2.70)

φ(x, t) = Hv(x)yφ(t) (2.71)
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where the vector y contains nodal displacements:

yv(t) =





v0

v0x

v1

v1x





yw(t) =





w0

w0x

w1

w1x





yφ(t) =





φ0

φ0.5

φ1





(2.72)

Here, subscript 0 refers to the inboard end of the finite element, and subscript 1

refers to the outboard end. Subscript x refers to the slope (spatial derivative) at

the node. The temporal portion of the displacement vectors (Eqns. (2.69-2.71)) and

their derivatives are contained in the system state vector, and are obtained from the

solution to the beam finite element equations and are available at all times from the

solver. The spatial portion of the displacement vectors are given by Eqns. (2.67-

2.68) and their spatial derivatives. This assumed displacement in space between

beam nodal elements converts the beam equations of motion from PDE into ODE

form. The displacement vector is third order in space for beamwise and chordwise

bending, meaning displacements within finite elements are limited to be at most

cubic in nature. For torsion, the displacement are limited to follow a quadratic

shape. Using equations Eqns. (2.69-2.71) and their appropriate space and time

derivatives provides all the necessary variables to obtain a solution to the beam

equation of motion.

Gaussian quadrature using Legendre Polynomials is performed on eight collo-

cation points within each beam finite element to provide maximum integral accuracy

for elements that have a varying structural, aerodynamic, or inertial spanwise forc-
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ing. The Legendre polynomial integration points and weights are given in Table 2.1.

The standard interval of integration is changed to be the size of the mapping function

within the finite element and goes from 0 to 1.

Table 2.1: Legendre polynomial quadrature points and weights for interval (−1,+1)

Point Weight

+/− 0.1834 0.3627
+/− 0.5255 0.3137
+/− 0.7967 0.2224
+/− 0.9603 0.1012

The total nodal forcing vector for each finite element can now be expressed as

a sum over the gaussian points within each element. For chord and beam bending:

Fv,w =

l∫

x=0

fv,w(x, t)HT
v,w(x)dx (2.73)

Fv,w =
NG∑

i=1

wifv,w(xi, t)H
T
v,w(xi) (2.74)

The torsion bending moment has a similar formulation:

Mφ =

l∫

x=1

mφ(x, t)HT
φ (x)dx (2.75)

Mφ =
NG∑

i=1

wimφ(xi, t)H
T
φ (xi) (2.76)

Here, wi is the quadrature weight at each gauss point and H(xi) is the value

of the shape function at that point. fv,w are the chord and beam forcing vector

per unit span and are the same quantities shown in Eqn. (2.66). During the code

execution, the components of Eqn. (2.66) are determined individually and summed
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after integration along the element. In the moment equation, mφ is the torsional

moment per unit span. This summation is repeated over all finite elements to

produce the total nodal loading on the elastic beam. The force and moment forcing

equations are obtained for inertial, structural, and aerodynamic loading. If the

system is in equilibrium, these loads will cancel out, otherwise there is a resulting

motion in the flexible beam.

2.5.6 Inertial Loads

Beam inertial loads are due to the local acceleration of a point on the beam

and are obtained using the quadrature outline in the previous section. If the beam

contains a lump mass or other localized masses such as the nacelle, there is no

associated quadrature weight. These masses also do not have any contribution to the

aerodynamic or structural loads. Their contribution is multiplied by the appropriate

shape function value and is added directly to the integral over the beam represented

by the summations in Eqn. (2.74) and Eqn. (2.76). To determine the contribution of

any mass element, be it a lumped mass or distributed mass, the acceleration vector

must be know.

Inertial loads are based on finding the absolute acceleration of a mass. The

full acceleration vector in the undeformed coordinate system is given in Eqn. 2.54

as:

aB = axn
b
1 + ayn

b
2 + azn

b
3 (2.77)
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Once the acceleration of the point is known, the inertial forces follow.

fI = −m aB (2.78)

Displacements in the deformed coordinate system to the center of mass of the beam

or tip element in the chordwise and vertical directions, nf2 and nf3 , respectively, create

moments at the blade section.

mI = −m
[(
y0n

f
2 + z0n

f
3

)
× aB

]
(2.79)

The full moment vector is:

mI = −m
[
M1n

b
1 +M2n

b
2 +M3n

b
3

]
(2.80)

If the beam has a simple lumped mass that is located on the elastic axis, there are

no moments at the cross section. For more complicated masses, such as a nacelle,

moments of inertia are lumped into two radii of gyration, one along y0 and the other

along z0.

Once the inertial forces and moments are known at given spanwise stations,

they are integrated into the nodal forces for the given finite element using Eqn. (2.74)

and Eqn. (2.76). This summation takes care of the second term in the beam equation

of motion given by Eqn. (2.63).

2.5.7 Structural Loads

The structural load equations for the elastic wings do not differ from those of

the elastic blades and are obtained from Ref. 83. These equations are in the “semi-

implicit” form, where an ordering scheme has been used to simplify the equations
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into a set of algebraic equations that are integrated by parts. The total moments in

the beam bending, chord bending, and torsion directions are:

Mb(v, w, φ) = Mt1 +Mt0 (2.81)

Mc(v, w, φ) = Mc2 +Mc1 (2.82)

Mt(v, w, φ) = Mb2 +Mb1 (2.83)

with:

Mt1 =GJ (φ,x + v,xxwx) (2.84)

Mt0 =
1

2
(EI2 − EI3) sin 2θG

(
v2
,xx − w2

,xx

)
− (EI2 − EI3) cos 2θGv,xxw,xx (2.85)

Mc2 =−
[(
EI2 cos2 θG + EI3 sin2 θG

)
v,xx

+
1

2
(EI2 − EI3) sin 2θG (w,xx − 2φv,xx) + (EI2 − EI3) cos 2θGφw,xx] (2.86)

Mc1 =−GJφ,xw,xx (2.87)

Mb2 =− [
1

2
(EI2 − EI3) sin 2θG (v,xx + 2φw,xx) + (EI2 − EI3) cos 2θGφv,xx

+
(
EI2 sin2 θG + EI3 cos2 θG

)
w,xx

]
(2.88)

Mb1 =GJφ,xv,xx (2.89)

(2.90)

In the equations above, θG represents the angle of the blades with respect to

the undeformed coordinate system. The beam, chord and torsion stiffnesses are

EI3, EI2, and GJ , respectively. It should be noted that if only the beam degree

of freedom is used, the equations above simplify to the beam equation as written

in Eqn. (2.66). These equations still must be integrated by parts as many times
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as the subscript on the left hand side indicates. The evaluation of the boundary

conditions in these integrations gives no additional contribution to the equations as

written above. The structural components of the quadrature given in Eqns. (2.74)

and (2.76) is:

Fv =
NG∑

i=1

wi
(
Mc2(xi, t)H

T
v,xx(xi) +Mc1(xi, t)H

T
v,x(xi)

)
(2.91)

Fw =
NG∑

i=1

wi
(
Mb2(xi, t)H

T
v,xx(xi) +Mb1(xi, t)H

T
v,x(xi)

)
(2.92)

Mφ =
NG∑

i=1

wi
(
Mt0(xi, t)H

T
φ (xi) +Mt1(xi, t)H

T
φ,x(xi)

)
(2.93)

2.5.8 Aerodynamic Loads

The aerodynamic forcing is formulated in essentially the same manner as the

inertial forcing for the elastic blade, except instead of accelerations, local velocities

are needed. Section velocities and angles of attack are developed as in Ref. 57.

Aerodynamics act as an external non-conservative force into the equations of motion,

and go into the final term in the Galerkin beam equation of equilibrium, Eqn (2.63).

The blade velocities were obtained in Sec. 2.5.2. The total velocity is obtained

by adding the local inflow velocity VI . Since the dynamic inflow model is used, VI

only contains the vertical component of velocity:

VT = VP

{
nb
}
− VI

{
nb
}

(2.94)

VI = λnb3 (2.95)

VT contains the total velocity of the blade as it moves through the air. To obtain

velocities of the airmass, VA, as needed at the deformed blade, the transformation
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from Sec. 2.1.6 is used.

VA =
√

(U2
T + U2

P + U2
R) (2.96)

α = tan−1

[
(UT tan θG + UP ) |cos γ|
(UT − UP tan θG cos2 γ)

]
(2.97)

Here UP , UT , and UR are the perpendicular, tangential, and radial components of

local blade velocities including all flexibility and freestream contributions. θG is

the geometric blade pitch at the current azimuth location and includes twist, blade

control pitch, and flexibility effects. cos γ is the yaw angle of flow and is defined as

follows:

cos γ =
|UT |√
U2
T + U2

R

(2.98)

Generally, airfoil tables are functions of mach number and angle of attack.

CL = CL(α,M) (2.99)

CD = CD(α,M) (2.100)

CM = CM(α,M) (2.101)

2.5.8.1 Quasisteady Aerodynamics

Quasi-steady aerodynamics helps account for shed wake effects as non-circulatory

effects in the creation of lift [85] [86]. Within these equations, the acceleration terms

for a plunging, ḧ, and pitching, α̈, airfoils are neglected. Heave velocity, ḣ terms are

included in the look up table determination of CL given above.

The total lift at at a blade section, including quasi-steady effects may be
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written as:

LQ =
1

2
ρV 2

Ac

[
CL +

aα̇

VA

( c
2
− xA

)]
(2.102)

L = LQ +
1

2
ρV 2

Ac

[
acα̇

4VA

]
(2.103)

The total drag is:

D =
1

2
ρV 2

AcCD (2.104)

The forcing in the local coordinate system is

FP =
1

VA

[
L
UT

cos γ
+DUP

]
(2.105)

FT =
1

VA
[DUT − LUP cos γ] (2.106)

FR =
1

VA

[
DUR − L

UP cos γUR
UT

]
(2.107)

pa = [FR FT FP ] {na} (2.108)

The total moment in the local coordinate system is:

M = MS +MQ +Mα̇ (2.109)

MS =
1

2
ρV 2

Ac
2CM (2.110)

MQ = FP xA cos θG + FR
LQ
L
xA sin θG (2.111)

Mα̇ = −1

8
ρaVAc

2α̇
( c

2
− xA

)
(2.112)

qa = M na1 (2.113)
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In the moment equations MS is the steady state pitch moment, MQ is the

quasi-steady moment due to the offset of the aerodynamic center from the elastic

axis, and Mα̇ represents non-circulatory contributions.

Other components in the equations above are ρ, air density; c, blade chord;

a, local blade lift curve slope; and xA, the offset of the aerodynamic center from

the elastic axis. Local blade aerodynamic forces are integrated in the same manner

as structural and inertial loads using Gaussian quadrature. Aerodynamics are not

included in beam mode determination.

Once the loads are obtained above, they are transformed back to the unde-

formed blade coordinate system using the inverse of the matrix given in Sec. 2.1.6.

The aerodynamic loads may now be added to the beam equation of motion (Eqn. (2.63)

through the quadratures given in Eqn. (2.74) and (2.76).

fa =
[
Sab
]−1

pa (2.114)

ma =
[
Sab
]−1

qa (2.115)

2.5.9 External Loads

External loads are loads that are passed onto the current body from bodies

upstream. The wing has loads passed it it from the nacelle, and the rotors impart

loads onto the nacelle. These loads are also treated as external non-conservative

point forces in much the same manner as aerodynamics. External vertical and lateral

forces go into the beam and chord residual equation, and external axial torques go
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into the moment equation.

In the Gaussian quadratures shown by Eqns. (2.74) and (2.76), there is no

quadrature weight associated with point forces and moment and the value of the

shape functions, HT (xi, j) depends on the placement of the connection point of the

upstream body within the current element.

Within the finite element that the external force is located, the external force

adds the following contribution to the quadrature given in Eqn. (2.74):

Fv,w = F ext
v,w(xi)H

T
v,w(xi) (2.116)

The external moment is added as follows:

Fv,w = M ext
v,w(xi)H

T
v,w,x(xi) (2.117)

For the torsion degree of freedom, the external moment contributions is:

Mφ = M ext
φ (xi)H

T
φ (xi) (2.118)

2.5.10 Tension Induced Loads

The loading vectors described so far can be integrated in any order. For

example, aerodynamic loads at the root are independent of the loading at the wing

tip. Tensile loads at the inboard end of a rotating beam, however, are dependent

on the forcing at the outer portions of the beam. These loads generate bending

moments along the beam span and must be calculated from the outermost portion

of the beam inwards.

The tensile load at any point along the beam comes from the summation of
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axial forcing from that point outwards. The axial degree of freedom is not included in

this analysis, but axial loads are transmitted to other bodies and cause a restorative

flap moment for helicopter rotors. Within this formulation developed, beams may

be connected to other bodies at any nodal location. Therefore, axial forcing may

need to be integrated from both ends of the beam inboard to the connection point

to the previous body in the multi-body system. For example, a tiltrotor’s nacelle

is connected at its center point to the wing. Therefore, tensile loads are calculated

from both ends to this connection point.

2.5.11 Component Specific Treatment

2.5.11.1 Wings

The wing loading retains much of the same formulation of the rotor blades,

including the quasi-steady components. For wings, rotor speed and blade precone,

βP is set to zero. As mentioned previously, aerodynamics for each component of the

system is determined based on knowledge of the aerodynamic environment of the

component.

In cruise, ailerons are used for roll control. Effects of flap deflections on lift

and moment coefficients are given in Ref. 87. The same concepts are used here for

aileron effects on lift and pitch coefficients.

CLa = CL + ∆CLaδa (2.119)

CMa = CM + ∆CMaδa (2.120)
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where:

∆CLa = aτη (2.121)

τ = 1− θa − sin θa
π

(2.122)

θa = cos− 1 (2ca/c− 1) (2.123)

η = 0.85− 0.15

20
δa (2.124)

∆CMa = −∆CLa
2 sin θa − sin 2θa

8 (π − θa + sin θa)
(2.125)

Where cf/c is the aileron chord ratio to the airfoil section chord; δa is aileron de-

flection; a is the lift curve slope of the airfoil; and η is a linear approximation of the

flap effectiveness factor for a slotted flap from 0− 20 deg. of deflection.

2.5.11.2 Nacelles

Nacelle aerodynamics are excluded in the calculations by setting all aerody-

namic coefficients to zero and setting the aerodynamic center on the elastic axis.

The nacelles are pinned at the connection to the wing, and thus contain a rigid-

body rotational mode. This rotational mode produces displacements and slopes

along the elastic axis from the undeformed nacelle coordinate system. These rigid

displacements are used in the equations above to determine loading.

2.5.12 First-Order Form

The equations of motion for the beam require nodal displacement, velocity, and

acceleration information, and so are second order in nature. The solution process

requires first order equations, so a re-structuring of the nodal states is required. The
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replacement of the second order states with two sets of first order states accomplishes

the task.

x1 = ẏ (2.126)

x2 = y (2.127)

and

ẋ1 = ÿ (2.128)

ẋ2 = x1 (2.129)

For a homogenous second order system the conversion is as follows:

ÿ + 2ζωẏ + ω2y = 0 (2.130)




ẋ1

ẋ2





+




2ζω ω2

1 0








x1

x2





=





0

0





(2.131)

2.6 Inflow Equations of Motion

A three state Pitt-Peters type dynamic inflow model provides local velocities

for air load determination [88]. The inflow at any point of the rotor can be written

as:

λ (r, ψ) = λ0 + λcr cosψ + λsr sinψ (2.132)
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Where λ0, λs, and λc are the unknowns in the inflow equations, given in the tip-path

plane:

1

Ω
M





λ̇0

λ̇s

λ̇c





+ L−1
nl





λ0

λs

λc





=





CT

−CL

−CM





(2.133)

The matrices M and Lnl contain the apparent mass terms and the non-linear inflow

gains and are given in Ref. 89. The right hand side of the equations give the rotor

thrust and pitching and rolling moments from the integration of blade aerodynamic

loads. For multi-rotor configurations, each rotor has its own independent set of

dynamic inflow equations.

As with the rigid-body and beam equations, all forcing is brought to the same

side, and a residual value of the inflow equation is passed to the solver.

2.7 Root Force and Moment Summation

The forcing as described so far goes into the flexible beam equations of motion.

The total forcing, including all degrees of freedom, must also get transmitted through

the beam to the hub and the aircraft itself to drive the motion of the aircraft through

the rigid-body equations of motion (Eqns.(2.22)-(2.27)).

A force summation method is used at the blade root to determine loads caused

be inertial and aerodynamic loads. The loads at the blade root are:

FR =

∫ 1

e

(fA + fI) dx0 (2.134)

MR =

∫ 1

e

RC × (fA + fI) + (mA + mI) dx0 (2.135)
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Only aerodynamic and inertial pitching moments are transferred in the second term

in the moment equation. RC is the position vector of the deformed blade with

respect to the hub.

RC = x0n
b
1 + unf1 + vnf2 + wnf3 (2.136)

For an articulated helicopter, flap and lag moments are not transferred to the hinge.

The moments undergo further manipulation if there is a elastic offset. The total

moments at the hub are:

MH = MR + Re × FR (2.137)

Where Re is the elastic offset

Re = enb1 (2.138)

The forces and moments are then converted to the coordinate system of the down-

stream body, and act as external forcing on that body. For the blades, this includes

inverse transformations from the preconed coordinate system to the rotating shaft

system and finally to the non-rotating (hub) shaft system.

FH =
[
SNR,R

]−1 [
SR,b

]−1
FR (2.139)

MH =
[
SNR,R

]−1 [
SR,b

]−1
MR (2.140)

As well as acting as external forcing vectors on beam equations of motion, these

forces and moments are also passed down to the root of the downstream body as

additional forces and moments in the overall force and moment summation. At the

72



root they are summed with the inertial and aerodynamic forcing from that beam

(Eqns. (2.134) and (2.135)). MR has another component, the cross product of the

displacement RC to the external applied force.

Force and moment transfer in the multi-body system is independent of beam

flexibility. Rigid portions of the multi-body model must also pass forcing to whatever

body they are connected to, terminating at the CG.

2.8 Assembly of System Degrees of Freedom

The system equations of motion are written in first order ODE form. The

equations are set up so that all forcing is brought to one side, for example, the

X-Force equation is:

m (u̇+ qw − rv) +mg sin θ −X = 0 (2.141)

or generally:

f(ẋ,x,u; t) = 0 (2.142)

This formulation and solution of this form of equations is described in Ref. [90].

Note that this relation is not generally true unless exact solution to the system of

equations has been found. This relation is usually equal to a residual value that is

minimized.

The full state vector is created from the components described above. Begin-

ning with the rigid-body states:

xrb = {u v w p q r φ θ ψ}T (2.143)
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These states have their associate differential equations, given by Eqns. (2.22)-(2.30).

The next set of states represent inflow dynamics. One set of three inflow states

and equations (Eqn. (2.133)) is present for each rotor.

xλ = {λ0 λs λc}T (2.144)

The full state including the rigid-body states and states for inflows of rotors 1. . .NR

is:

x =





xrb

xλ1

...

xλNR





(2.145)

Next come the flexible beam states. The flexible beam’s degrees of freedom are

dependent on the number of finite elements used. For the four element finite-element

model, they are shown in Fig. 2.9. Each four element beam has the following degrees

of freedom:

xstr = {v1 v1x w1 w1x φ1 φ2 v2 v2x w2 w2x φ3 φ4 v3 v3x

w3 w3x φ5 φ6 v4 v4x w4 w4x φ7 φ8 v5 v5x w5 w5x φ9}T

(2.146)

The differential equations associated with these degrees of freedom are the differen-

tial nodal loading equations given in Eqns. (2.74) and (2.76). The nodal states are

converted to first order form, giving a state vector that has both the displacement

and velocity of the nodes as states. The full state vector including flexible bodies 1
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. . .NB is:

x =





xrb

xλ1

...

xλNR

xstr1

...

xstrNB

ẋstr1

...

ẋstrNB





(2.147)

Each state in the vector above has an associated equation. These equations have

been described within this chapter. They are ordered in the same manner as the

states are.

2.9 Chapter Summary

This chapter reviews the theoretical development of the math model. Multi-

body kinematics are retained to formulate position, velocity, and acceleration vectors

of different parts of the multi-body system. Structural, inertial and aerodynamic

forcing of the wing, blade, and other flexible components are discussed. Detailed

expressions for the development of the system math model are given. For the multi-

body system, bodies downstream of the current body add external forces and mo-
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ments. These forces and moments are integrated to provide the forcing function for

the beam equations of motion as well as the overall aircraft dynamics.
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Chapter 3: Model Development and Solution

This chapter discusses in more depth the creation of the aircraft multi-body

model from its components and various other capabilities of the software including

trim and linearization. A formulation similar to a full multi-body analysis is used to

connect the bodies and create the coupled equations of motion. Structural flexibility

effects the kinematics of all bodies upstream of the current one. Modal coordinate

transformations are used to reduce the system degrees of freedom and help retain

only key modes in the analysis.

3.1 Tree Structure Management

At each time step, the only information each individual body has is that of

the connection to the bodies just upstream of itself. This information contains the

displacement vector q to the connection point of that next body, and the set of

rotations needed to get to the coordinate system of the next body. This allows for

components of the system to be easily swapped out with other components with

minimal changes to the inputs. Information regarding each body is stored individ-

ually with that body in derived types, allowing for large systems to be constructed

with minimal creation of vectors that must be passed through each subroutine. A

tree array is formed to join the system of individual bodies into the full multi-body
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Figure 3.1: Generic set of interconnected bodies

Table 3.1: Tree array connecting the components of Fig. 3.1

k 1 2 3 4 5 6 7 8

Γ1 0 1 2 3 4 4 2 7
Γ2 0 1 2 3 3 1 2
Γ3 0 1 2 2 0 1
Γ4 0 1 1 0
Γ5 0 0

system of the aircraft and contains pointers to each of the derived types. A tree

array for a generic set of interconnected bodies, shown in Fig. 3.1, is given in Ta-

ble 3.1. The top line of the table contains a numerical assignment for each body

in the system. The columns of the table indicate the path from that body to the

reference frame. For the tilt rotor example, the fuselage, wings, and nacelles each

have their own derived type. A tree array is formed and assigns body numbers to

each component of the aircraft. Since some components are used twice, some body

numbers are composed of the same derived type. As the kinematics of the system

are created, the appropriate body is extracted from the set of all available bodies

using the tree array.
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The formulation of all components of the tree structure, including the coor-

dinate system transformation matrices, kinematic relations, and kinematic vector

transformations are done in unison in loops based on the length of each branch of

the tree. All loops begin at the reference frame and branch out depending on the

number of connections each individual body has. To obtain the kinematics of the

final body in the tree system, the kinematic relations of all other bodies downstream

of that one must be created first. This formulation reduces the number of matrix

multiplications needed to model the entire system.

3.2 Modal Coordinate Transformation

One of the key features of the analysis is the modal coordinate transformation.

The degrees of freedom for the model as described so far include all nodes for each

flexible object, as shown in Figure 2.9. The modal coordinate transformation allows

for the reduction of the beam degrees of freedom to a few key modes.

3.2.1 Mode Shapes

Full mass and stiffness matrices for each beam are only formulated once at the

beginning of execution. For a tiltrotor example, this includes rotor blades, wings,

and the dynamic nacelle. The mass matrix is obtained from a central difference

approximation to perturbations of the second time derivative of the nodal degrees

of freedom. The stiffness matrix comes from a central difference approximation to

perturbations in displacement of the nodal degrees of freedom. The blade modes

are obtained in a vacuum, i.e. aerodynamic loads are not included. The matrices
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are approximations because the beam equations are generally nonlinear. The linear

matrices can be written as:

[M] n̈ + [K] n = 0 (3.1)

Where n are the nodal degrees of freedom.

Eigen analysis produces a matrix of mode shapes, [V], which consists of

columns of eigenvectors, along with a vector of the square of the corresponding

modal frequencies, {ω2}, such that:

−ω2
i [M] {vi}+ [K] {vi} = 0 (3.2)

Here, vi is the eigenvector associated with mode i and wi is its frequency. Each

column in the matrix of mode shapes gives the nodal displacements for the mode

associated with that column. Four finite elements are used for the formulation of

each blade, wing, and nacelle. The maximum number of modes retained is therefore

29 per beam.

Modal reduction greatly reduces the overall degrees of freedom of the system.

The total nodal displacement can be written as the product of the columns of the

[V] matrix associated with retained modal displacements q:

n = [V] q (3.3)

Throughout the remainder of execution, any beam motion is limited to summed

contributions from the retained modes. Only the lowest frequency modes are re-

tained since the dominant response of the system comes from the low frequency
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modes. Generally, two modes are retained for the blades, a flap mode and a lag

mode. Three modes are retained for the wings so that there is a dominant mode

in all three bending axes. Only the first rigid-body rotation mode is retained for

the nacelles. This mode is obtained by constraining the displacement of the center

node to be zero. This allows the nacelle to rotate about its connection to the wing.

This summed contribution from the retained modes also goes into determining the

displacements and angles that flexibility add to the kinematics of the multi-body

system, given in Eqn. (A.10).

Beam mode shapes can also be read as inputs from files. Higher fidelity models

can be used to obtain the mode shapes for each beam. These models could be higher

fidelity beam models, or even 2 or 3-D mesh models. Mode shapes from these models

would need to give displacements and rotations at the nodes of the beam used in the

current analysis. Once the mode shapes are read into the matrix [V], they would be

used throughout execution to constrain the beam deformation as described above.

3.2.2 Modal Forcing

The distributed forces along the wing, blade, or nacelle, are integrated across

each finite element to produce nodal loads. The nodal loads are reduced to modal

loads using the modal transformation matrix. For example,

FI =

NE∑

k=1

[Vk]
T pIk (3.4)
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In this example, FI are the modal inertial loads and pI are nodal loads, the com-

ponents of which show up in the Galerkin beam finite element equilibrium equation,

Eqn. (2.63).

The sum of the modal inertial, aerodynamic, structural, and external loads

produce the equilibrium equation for that mode. This equilibrium equation drives

the motion of the beam modes, which are comprised of the nodal degrees of freedom.

Artificial modal damping was added to the wing equations to produce stable modes

with ∼6% damping ratios. The majority of the flexible bodies in the system are

connected to other bodies which also produce forces and moments at the connection

point to the current body. These external forces and moments are also reduced to

modal forcing. In equilibrium, the blade modal equations can be written as:

FI + FA + FS + FD + FE = 0 (3.5)

or, for each mode:

f (ẋ,x, δ, t) = 0 (3.6)

3.2.3 Transformed State Vector

Once each beam has been passed through the coordinate transformation, the

state vector (Eqn. (2.147)) can be reconstructed with the new modal degrees of
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freedom as opposed to the nodal degrees of freedom. The state vector looks identical:

x =





xrb

xλ1

...

xλNR

xstr1

...

xstrNB

ẋstr1

...

ẋstrNB





(3.7)

But now, the structural states have the following form instead of the form of

Eqn. (2.146):

xstr = {x1...xNM )T (3.8)

Where NM is the number of retained modes for the current beam.

3.3 Structural Measurements

Available structural measurements include accelerations at any point in the

aircraft, or strain measurements at the root of flexible bodies. Accelerations at the

wing tip are used in the feedback of the linear model and root strain measurements

83



are used to measure structural motion.

Wing acceleration is available immediately from the kinematic relation equa-

tions, Eqn. (2.77). The offsets from the elastic axis now represent the sensor location

as opposed to the location of the next body in the chain.

Strain measurements require additional work. In the “semi-implicit” form of

the structural formulation, the strains are not directly solved for. To obtain the

strains, a “fully-implicit” structural formulation is included, in which one of the

first steps is the determination of strains from displacements. The derivation for the

strains comes from Ref. 83 and is given more directly in Ref. 91. The strain vector

has the form:

ε = ε1 + ε2y0 + ε3z0 + ε4y
2
0 + ε5y0z0 + ε6z

2
0 (3.9)

The values for y0 and z0 are offsets of the strain gauges from the elastic axis. The

strain-displacement relation is:

εxx =
1

2
(Gx ·Gx − 1) (3.10)

Gx comes directly from the elastic displacement of the beam.

Gx = (1 + ux)ex + vxey + wxez + y0(−κye′x + τe′z) + z0(−κze′x − τe′y) (3.11)

The curvatures, κy, κz, and τ are obtained from components of the transformation

matrix from the blade undeformed to blade deformed coordinate system, along with
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it’s spatial derivative [83]:

κy = − (S11S21,x + S12S22,x + S13S23,x) (3.12)

κz = − (S11S31,x + S12S32,x + S13S33,x) (3.13)

τ = − (S21S31,x + S22S32,x + S23S33,x) (3.14)

3.4 Trim

The trim formulation defines an equilibrium point for the aircraft for a given

steady flight condition, and consists of the solution of a set of algebraic equations.

The trim problem is formulated for a steady, coordinated, helical turn. For a given

aircraft weight and altitude, the flight condition is defined be a speed, V0, turn rate

ψ̇0, and flight path angle γ0. Straight and level flight is a special case of a climbing

turn with ψ̇0 = γ0 = 0. Hover is a special case of straight and level flight with

V0 = 0. The trim algorithm follows the formulation given in Ref. 92, and additional

details are given in Ref. 93. The algorithm is summarized here and additional details

are given here for flexible wing and nacelle trim.

The trim unknowns can be partitioned into rigid-body, inflow, beam, and
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nacelle segments.

y =





yrb

yλ

ystr

ynac





(3.15)

Each component will be described below

3.4.1 Aircraft Trim

Aircraft trim is defined by setting all aircraft accelerations to zeros, leading to

constant (time invariant) values for the rigid-body states in the force and moment

equations.

X0 = m (q0w0 − r0v0) +mg sin θ0 (3.16)

Y0 = m (r0u0 − p0w0)−mg sinφ0 cos θ0 (3.17)

Z0 = m (p0v0 − q0u0)−mg cosφ0 cos θ0 (3.18)

L0 = − (Iyy − Izz) q0r0 − Ixz (p0q0) (3.19)

M0 = − (Izz − Ixx) p0r0 − Ixz
(
p2

0 − r2
0

)
(3.20)

N0 = − (Ixx − Iyy) p0q0 − Ixzq0r0 (3.21)
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The Euler relations in trim are:

p0 = φ̇0 − ψ̇0 sin θ0 (3.22)

q0 = θ̇0 cosφ0 + ψ̇0 cos θ0 sinφ0 (3.23)

r0 = ψ̇0 cos θ0 cosφ0 − θ̇0 sinφ0 (3.24)

Note that in the rigid-body force equations, if φ0 and θ0 are not constants, the

forcing due to gravity changes and the force equilibrium equations are no longer

time invariant. Therefore, trim is also defined by zero aircraft roll and pitch Euler

rates (φ̇0 = θ̇0 = 0), which lead to constant Euler angles. The only remaining

unknown from the equations above is ψ̇0, the turn rate as defined by the trim

condition. The yaw angle, ψ, can be reconstructed if its initial value ψ0 is known

from ψ(t) = ψ̇t + ψ0, where t is the elapsed time since the beginning of the turn.

Therefore, the yaw angle state may be removed from the trim vector. The Euler

equations reduce to:

p0 = −ψ̇0 sin θ0 (3.25)

q0 = ψ̇0 sinφ0 cos θ0 (3.26)

r0 = ψ̇0 cosφ0 cos θ0 (3.27)

and a steady-state solution can now be found. Substituting the kinematic trim

relations into the 6 rigid-body equations leaves the following unknowns (stick inputs

87



are also unknowns as they appear in the forcing terms in the rigid-body equations).

yrb = {δlat δlon δcol δped u0 v0 w0 φ0 θ0}T (3.28)

The linear velocity components of the trim vector can be rewritten using the trim

aircraft velocity.

u0 = V0 cosα0 cos β0 (3.29)

v0 = V0 sin β0 (3.30)

w0 = V0 sinα0 cos β0 (3.31)

The final unknowns are:

yrb = {δlat δlon δcol δped α0 β0 φ0 θ0}T (3.32)

The first four unknowns are the pilot stick inputs. α and β are angles of attack and

sideslip of the fuselage, respectively. These angles help define the trim velocities. φ0

and θ0 are roll and pitch Euler angles. The aircraft can have these attitudes while

maintaining a trim condition. There are total of 8 unknowns in the trip problem,

requiring 8 equations.

The first six equations consist of the the rigid-body equations, rewritten using

Eqns. (3.25)-(3.27) and Eqns. (3.29)-(3.31). The two additional equations are the

turn coordination and flight path equations. Turn coordination ensures that lateral
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acceleration of the CG is zero. This is different from the Y-Force equation, which

only ensures the left and right hand sides of the Y-Force equation are equal. The

flight path equation states that the aircraft’s vertical velocity in the z inertial axis

equal to a constant value, V0 sin γ0. Along with V0 and ψ̇0 given above, γ0 is the final

trim condition that is set before execution. Converting body velocities to inertial

velocities, and only retaining the z component gives the relation.

V0 sin γ0 = [u0 v0 w0]




() () − sin θ0

() () sinφ0 cos θ0

() () cosφ0 cos θ0








nI1

nI2

nI3





(3.33)

= [−u0 sin θ0 + v0 sinφ0 cos θ0 + w0 cosφ0 cos θ0] nI3 (3.34)

= V0 [− cosα0 cos β0 sin θ0 + sin β0 sinφ0 cos θ0 + sinα0 cos β0 cosφ0 cos θ0] nI3

(3.35)

V0 can be removed from both sides of the above equation giving the final flight path

angle trim equation. Components in the transformation matrix that are () are not

necessary for the solution so are left out.

All forcing is brought to the same side of the algebraic trim equations, so they

may be written as:

0 = frb (y, t) (3.36)

These trim equations uphold trim at any point in time. Since rotorcraft have

periodic forcing, the trim equations are integrated around the azimuth to ensure a
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trim state for a full rotor revolution. The left hand side of Eqn. (3.36) is generally

not equal to zero unless the algebraic solver has found the exact trim solution. The

residual value is integrated around the azimuth.

frb (y;ψ) = resrb (y;ψ) (3.37)

∫ 2π

0

resrb (y;ψ) dψ = 0 (3.38)

The trim equations using the residuals for the three force and moment equations

are:

∫ 2π

0

resX dψ = 0 (3.39)

∫ 2π

0

resY dψ = 0 (3.40)

∫ 2π

0

resZ dψ = 0 (3.41)

∫ 2π

0

resL dψ = 0 (3.42)

∫ 2π

0

resM dψ = 0 (3.43)

∫ 2π

0

resN dψ = 0 (3.44)

The final two equations are the turn coordination and flight path equations. These

are integrated around the azimuth as well. The turn coordination sets Eqn. 3.17

equal to zero.

∫ 2π

0

ψ̇0V0

g
(cosφ0 cosα0 + tan θ0 sinα0) cos β0 − sinφ0 dψ = 0 (3.45)
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For straight flight with ψ̇0 = 0, this equation reduces to:

∫ 2π

0

sinφ0 dψ = 0 (3.46)

The turn coordination equation integrated around the azimuth is:

∫ 2π

0

sin γ0 + [cosα cos β sin θ0 − cos θ0 (sin β0 sinφ0 + sinα0 cos β0 cosφ0)] dψ = 0

(3.47)

These eight aircraft trim equations are grouped into a vector containing all trim

equations:

Y = {Yrb}T (3.48)

3.4.2 Flexible Beam Trim

The beam equations of motion are second order in time. To convert the differ-

ential beam equations into algebraic equations, periodicity is assumed around the

azimuth. The assumption of periodicity gives produces approximate beam displace-

ments since actual beam motion may include higher harmonics. The trimmed modal

displacements have the following form:

x ≈ xapp = y0 +

Nh∑

k=1

(ykc cos kψ + yks sin kψ) (3.49)
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The above equation can be easily differentiated twice to produce the needed modal

velocities and accelerations (it is assumed rotor speed is constant in trim, Ω):

ẋ ≈ ẋapp = Ω

Nh∑

k=1

k (−ykc sin kψ + yksk cos kψ) (3.50)

ẍ ≈ ẍapp = Ω2

Nh∑

k=1

k2 (−ykc cos kψ − yks sin kψ) (3.51)

The trim unknowns in the trim algebraic solution are the steady state and harmonic

coefficients. Any number of harmonics of motion are retainable. The equations

above give the harmonic coefficients for a single mode. If multiple beam modes are

retained, each mode’s motion will be reduced to harmonic motion.

The total vector of structural unknowns for NB flexible beams (rotor blades

or wings), each with Nh harmonics:

ybeam = {y0 y1c y1s . . . yNhc yNhs}
T (3.52)

ystr =





ybeam1

...

ybeamNB





(3.53)

As with the rigid-body equations, the equilibrium equations for each beam

mode are also integrated around the azimuth. They are based on a harmonic balance

of residuals as described in Section 3.4.1. Generally, the modal equilibrium equation,

Eqn. (3.6) is not equal to 0, but rather a residual that is dependent on the current

trim guess and azimuth position, resstr (y;ψ). From Eqn. (3.59), there are 2Nh + 1
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unknowns for each mode of each beam, so 2Nh + 1 trim equations are needed. The

trim equations for the beam modal unknowns aim to minimize this residual and its

harmonics as follow.

∫ 2π

0

resbeam (y;ψ) dψ = 0

∫ 2π

0

resbeam (y;ψ) cos iψ dψ = 0 i = 1, . . . , Nh (3.54)

∫ 2π

0

resbeam (y;ψ) sin iψ dψ = 0 i = 1, . . . , Nh

The equations above represent the beam trim equations for a single mode of a single

beam. Adding additional modes makes the trim equation vector:

Ybeam = {Y0 Y1c Y1s . . . YNhc YNhs}
T (3.55)

(3.56)

Where Y0 represents the first the trim equation and YNhc and YNhs represent the Nh

harmonc cosine and sine equations. The beams are all grouped together to give the

full vector of beam trim equations.

Ystr =





Ybeam1

...

YbeamNB





(3.57)
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3.4.2.1 Nacelle Trim

The trim solution for the nacelle is treated differently. Here, the nacelle angle

(i.e modal deflection xnac) is a trim condition, much like aircraft velocity, flight path,

or turn rate. The trim unknown is the torque required to keep the nacelle at that

trim condition. δnac represent input torques at the nacelle connection to the wing

and are the unknowns for the nacelle trim equations.

ynac = {δnac1 δnac2}T (3.58)

The nacelle trim equation is similar to the residuals for other elastic beams. Only a

constant deflection is allowed for each nacelle:

x ≈ xapp = y0 (3.59)

ẋ ≈ ẋapp = 0 (3.60)

ẍ ≈ ẍapp = 0 (3.61)

The deflection goes into the nacelles modal equation, Eqn. (3.6), and the nacelle

torque required to maintain trim equilibrium is determined. Since only a single

unknown exists per nacelle, the nacelle trim equation is:

∫ 2π

0

resnac (y;ψ) dψ = 0 (3.62)
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Since tiltrotors have two nacelles, each with its own trim equation, the full nacelle

trim equation vector is:

Ynac =

{
Ynac1 Ynac2

}T
(3.63)

3.4.3 Inflow Trim

Dynamic inflow trim equations and unknowns are included in the trim proce-

dure. Each rotor has a constant coefficient and first harmonic sine and cosine inflow

distribution. The dynamic inflow equations for each rotor are given in Eqn. (2.133),

and are converted to algebraic equations as follows. In trim the time derivative

of the inflow equations must be zero when integrated around the azimuth, which

implies that only the steady-state component of inflow is present. The inflow trim

equations are therefore:

L−1
nl





λ0

λs

λc





=





CT

−CL

−CM





(3.64)

As with aircraft and beam equations, all forcing is brought to the left hand side.

The unknowns for each rotor are the inflow coefficients. There are as many sets of

these unknowns as there are rotors.

yλ = {λ10 λ1s λ1c . . . λNR0 λNRs λNRc}
T (3.65)
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The harmonic balance approach assures equilibrium over a rotor revolution:

∫ 2π

0

resλ0 (y;ψ) dψ = 0

∫ 2π

0

resλs (y;ψ) dψ = 0 (3.66)

∫ 2π

0

resλc (y;ψ) dψ = 0

These equations are collected for all rotors:

Yλ =





Yλ10

Yλ1s

Yλ1c

...

YλNR0

YλNRs

YλNRc





(3.67)
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3.4.4 Summary

The full trim unknown vector is then comprised of the each components un-

knowns as discussed above.

y =





yrb

yλ

ystr

ynac





(3.68)

The full trim equation vector is:

Y =





Yrb

Yλ

Ystr

Ynac





(3.69)

To find the trim solution, a nonlinear equation solver is used. This solver uses

a modification of the Powell hybrid method to obtain a solution, where a Jacobian

matrix is calculated using a forward-difference approximation [94].

3.5 Coordinate Transformations

It often serves to transform beam motion to different coordinates to allow for

better comparisons to other analyses. These transformations include the wing mode
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transformation, which converts individual wing motion to symmetric and antisym-

metric motion, and the multi-blade coordinate transformation, which transforms

individual blade motion into sine and cosine harmonic motion around the azimuth.

These transformations are generally implemented on the linearized system (discussed

later), but can easily transform the state vector of the non-linear model as well.

The mode shapes of the elastic beams generally contain coupled beamwise,

chordwise, and torsion bending. The mode is named after the dominant response.

Therefore, a beamwise mode will contain mostly beamwise bending but could also

contain chordwise and torsion bending.

3.5.1 Wing Mode Transformation

Figure 3.2 shows the beam modes and nomenclature used in this analysis. The

motion of the left and right wing are independent in the formulation and therefore

symmetric and asymmetric modes are not explicitly formed. The following coor-

dinate transformation is used to transform from the independent wing degrees of

freedom to symmetric and asymmetric degrees of freedom.





x1l

x1r





=




1 1

1 −1








x1s

x1a





(3.70)

x1l and x1r are the modal deflections of the left and right wing for the first mode and

x1a and x1s are the same deflections given in terms of antisymmetric and symmetric

modes. Since this conversion matrix contains only constants, there are no additional

components for transformations of time derivatives of states. Both the rate and
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acceleration states are also converted using Eqn. (3.70).

Symmetric
beam mode

Symmetric
chord mode

Symmetrlc
torslon mode

Antisymmetric
beam mode

Antlsymmetric

Figure 3. XV-15 aeroelastic wing modes, detail.

Antlsymmetrlc
torsion mode

contrast, figure 5 shows the most recent CAMRAD
predictions for the XV-15 configuration actually flown in
the flight tests reported here: 1.5°-precone steel hubs,
structural damping I based on full-scale wind-tunnel tests
(ref. 14), rotor speed restricted to 86% of nominal speed,
and maximum Cp/G r = 0.046 at 10,000 ft (the transmis-
sion torque limit at the nominal flight condition).

Maximum true airspeed at 10,000 ft is 260 knots, thus
even the worst predicted stability margin (over
100 KTAS) is adequate, and the revised predictions show
no instability at all. However, the large differences
between figures 4 and 5 show that the stability margin can
be sensitive to seemingly small changes in the model or
flight conditions. It is not merely the airspeed for which
instability is predicted that matters; for flight test, the rate
at which instability is approached is also important. In the
early predictions (fig. 4), the symmetric chord and anti-
symmetric beam modes show damping decreasing rapidly
with increasing airspeed above 300 KTAS; hence rela-
tively small errors in the analytical model could translate
into large errors in the actual airspeed margins.

Except for the symmetric beam mode, the frequencies
of all modes lie within about 2 Hz of each other; two fre-
quencies---_ose of the antisymmetric chord and anti-

l see the Flight Test Results section for a table and
discussion of structural damping assumptions.

symmetric torsion modes--are within 0.1 Hz of each
other at low airspeeds. Also, the frequency of the
symmetric torsion mode lies within the design rotor-speed
range. The possibility of a rapid decrease in stability with
increasing airspeed makes precise identification of
individual modes necessary, and the modes' close
placement in frequency makes such identification
difficult. Moreover, the exponential-decay method used in
early XV-15 flight tests to estimate damping produced
results that in some cases had scatter that was a large
fraction of the predicted damping, as will be shown later
in this report.

Accordingly, the development of an improved
in-flight method of determining aeroelastic stability had
high priority. The frequency-domain method showed the
greatest promise of improved accuracy. Compared to the
exponential-decay method, it also promised to reduce the
flight-test time required for mode identification.

Previous Investigations

In previous flight tests (refs. 11 and 12), frequency
and damping were measured using primarily the
exponential-decay technique. The right-hand flaperon
(fig. 2) was oscillated at a fixed frequency to drive a
selected structural mode at resonance and was then

Figure 3.2: Tilt-rotor beam mode shapes [20]

3.5.2 Multi-Blade Coordinate Transformation

The multi-blade coordinate transformation (MCT) converts individual rotor

blade motion in the rotating frame to sine and cosine harmonics around the rotor

azimuth in the non-rotating frame. Each rotor has its own transformation. It is

assumed that blade motion has already been reduced using the modal coordinate

transformation to dominant modes. Each mode is independently transformed using

the multi-blade coordinate transformation. This transformation allows for analysis

using lateral, longitudinal, and collective flapping as opposed to individual blade

motion. Let
[
TRF

]
be the matrix transformation that converts the state vector
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from the fixed frame to the rotating frame.

xR =
[
TRF

]
xF (3.71)

The state vectors time derivative:

ẋR =
[
ṪRF

]
xF +

[
TRF

]
ẋF (3.72)

Beam equations in first order form contain the displacement and rate state in the

state vector, so the transformations above are composed of sets of transformations.

For a single rotor, with four blades, the displacement, rate, and acceleration com-

ponents of the transformation matrices are:

[
TD
]

=




1 cosψ sinψ −1

1 − sinψ cosψ 1

1 − cosψ − sinψ −1

1 sinψ − cosψ 1




(3.73)

[
TR
]

=




0 −Ω sinψ Ω cosψ 0

0 −Ω cosψ −Ω sinψ 0

0 Ω sinψ −Ω cosψ 0

0 Ω cosψ Ω sinψ 0




(3.74)
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[
TA
]

=




0 −Ω2 cosψ − Ω̇ cosψ −Ω2 sinψ + Ω̇ cosψ 0

0 Ω2 sinψ − Ω̇ cosψ −Ω2 cosψ − Ω̇ sinψ 0

0 Ω2 cosψ + Ω̇ sinψ Ω2 sinψ − Ω̇ cosψ 0

0 −Ω2 sinψ + Ω̇ cosψ Ω2 cosψ + Ω̇ sinψ 0




(3.75)

With the components known, the full transformation matrices may be created

[
TRF

]
=



TD TR

0 TD


 (3.76)

[
ṪRF

]
=



TR TA

0 TR


 (3.77)

The linear systems (described in later section) will also require
[
TRF

]−1
, so this

matrix will be created here for consistency. This matrix consists of the components

[
TDI

]
and

[
TRI

]
.

[
TDI

]
=

1

4




1 1 1 1

2 cosψ −2 sinψ −2 cosψ 2 sinψ

2 sinψ 2 cosψ −2 sinψ −2 cosψ

1 1 1 1




(3.78)
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[
TRI

]
=

Ω

4




0 0 0 0

−2 sinψ −2 cosψ 2 sinψ 2 cosψ

2 cosψ −2 sinψ −2 cosψ 2 sinψ

0 0 0 0




(3.79)

and finally:

[
TRF

]−1
=



TDI TRI

0 TDI


 (3.80)

Blade flap and lag modes are generally retained. The formulation given above

is only for a single mode, so transformation matrices will need to be stacked and

grouped properly for multiple modes to be transformed.

3.6 Linearization

The full aircraft equations of motion are written as a system of nonlinear ODEs

in first order form. The coefficients generally have periodic coefficients. Lineariza-

tion is obtained numerically by expanding the equations of motion in a first order

Taylor series approximation. The resulting system of linearized ODEs describes

the aircraft small perturbation motion about the trim condition. Although linear

models are rigorously valid only for small perturbations, linear models are used to

routinely develop aircraft flight control systems and generally represent aircraft be-

havior well even for moderate to large perturbations from the trim condition. A
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discussion of linearization of output equations is also included.

3.6.1 Linearization of Equations of Motion

Linearization is based on a Taylor series expansion of the nonlinear equations

of motion about the trim condition, denoted by ()0. The equations are written as:

0 = f (ẋ,x,u, t) (3.81)

and in trim:

0 = f (ẋ0,x0,u0, t) (3.82)

f (ẋ,x,u, t) =f (ẋ0,x0,u0, t) +
∂f (ẋ0,x0,u0, t)

∂ẋ
∆ẋ +

∂f (ẋ0,x0,u0, t)

∂x
∆x+

∂f (ẋ0,x0,u0, t)

∂u
∆u +O

(
||∆ẋ||2, ||∆x||2, ||∆u||2

)
︸ ︷︷ ︸

O(ε2)

(3.83)

where:

∆ẋ ≡ ẋ− ẋ0 (3.84)

∆x ≡ x− x0 (3.85)

∆u ≡ u− u0 (3.86)
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The linear model results in the creation of three matrices. The state vector and

its time derivative perturbation matrices are n × n, and the control perturbation

matrix is n×m, where n is the number of states and m is the number of controls.

Perturbations of the time derivative of the state vector produce a mass matrix

which is dependent on the current azimuth, E (ψ). Perturbations to the state vector

produce a matrix of stability derivatives, F (ψ). Perturbations to the control vector

produce control derivatives, G (ψ), such that:

[Eij (ψ)] =
∂fi (ẋ0,x0,u0)

∂ẋj
(3.87)

[Fij (ψ)] =
∂fi (ẋ0,x0,u0)

∂xj
(3.88)

[Gij (ψ)] =
∂fi (ẋ0,x0,u0)

∂uj
(3.89)

A central difference scheme is used for the derivative approximations. These matrices

are then converted to standard linear form.

[E (ψ)] ẋ (ψ) = [F (ψ)] x (ψ) + [G (ψ)] u (ψ) (3.90)

or

ẋ (ψ) = [E (ψ)]−1 [F (ψ)]︸ ︷︷ ︸
[A(ψ)]

x (ψ) + [E (ψ)]−1 [G (ψ)]︸ ︷︷ ︸
[B(ψ)]

u (ψ) (3.91)
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The A (ψ) and B (ψ) matrices are functions of azimuth, are may expanded into a

Fourier series containing n harmonics.

[A(ψ)] = [A0] +
n∑

k=1

([Akc] cos kψ + [Aks] sin kψ) (3.92)

[B(ψ)] = [B0] +
n∑

k=1

([Bkc] cos kψ + [Bks] sin kψ) (3.93)

The multi-blade coordinate transformation is applied at this point and the constant

terms of the Fourier series above will provide a linear time-invariant representation

of aircraft motion. The transformation is as follows using equations developed in

Section 3.5.2. Here, [AR] is the constant component from Eqn. (3.92), and [BR] is

the constant component from Eqn. (3.93), where ()R signifies rotating frame.

ẋR = [AR] xR + [BR] u (3.94)

[
ṪRF

]
xF +

[
TRF

]
ẋF = [AR]

[
TRF

]
xF + [BR] u (3.95)

ẋF =
[
TRF

]−1
(

[AR]
[
TRF

]
−
[
ṪRF

])

︸ ︷︷ ︸
[AF ]

xF +
[
TRF

]−1
[BR]︸ ︷︷ ︸

[BF ]

u

(3.96)

3.6.2 Linearization of Outputs

Much like the creation of the state matrices, a central difference scheme is

used to linearize the structural measurements. This produces matrices due to per-

turbations in the time derivative of the state vector (
[
Ċ(ψ)

]
), the state vector itself
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([C(ψ)]), and the control vector ([D(ψ)]).

The output matrices may also be expanded in Fourier series, as the state

matrices were in Eqns. (3.92) and (3.93). The constant component is retained for a

LTI system and a multi-blade coordinate transformation is applied to these constant

matrices.

The standard state space output form is:

y = [C] x + [D] u (3.97)

The matrices must be converted to the fixed frame and this standard form using

the MCT. As in the state matrix calculations,
[
ĊR

]
[CR], and [DR] represents the

constant component of the Fourier transform of the output matrices.

y =
[
ĊR

]
ẋR + [CR] xR + [DR] u (3.98)

y =
[
ĊR

] [
ṪRF

]
xF +

[
ĊR

] [
TRF

]
ẋF + [CR]

[
TRF

]
xF + [DR] u (3.99)

y =
[
ĊR

] [
ṪRF

]
xF +

[
ĊR

] [
TRF

]
([AF ] xF + [BF ] u) + [CR]

[
TRF

]
xF + [DR] u

(3.100)

y =
([
ĊR

] [
ṪRF

]
+
[
ĊR

] [
TRF

]
[AF ] + [CR]

[
TRF

])

︸ ︷︷ ︸
[CF ]

xF+ (3.101)

(
[DR] +

[
ĊR

] [
TRF

]
[BF ]

)

︸ ︷︷ ︸
[DF ]

u

3.7 Comparisons with Multi-Body Solutions

A full multi-body formulation is generally characterized by:
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1. Numerical kinematics — Position vectors, velocities, and accelerations are

all built numerically with no algebraic manipulations, ordering schemes, or

limitations on magnitude of displacements and rotations. Furthermore, the

kinematic formulation can be extended in an automated way to any number

of bodies in a chain.

2. Enforcement of connectivity through explicit equations of constraint — The

equations are generally algebraic, resulting in an overall model that is formu-

lated as a system of Differential Algebraic Equations (DAEs) rather than a

system of Ordinary Differential Equations (ODEs).

The present model implements numerical kinematics, but does not include explicit

equations of constraint. The bodies are rigidly constrained together, and motion

only enters the system through structural motion (flexible or rigid-body), which is

governed by differential equations, preserving the ODE structure.

The lack of explicit constraint equations makes the model less flexible than full

multi-body formulations. The topology is limited to tree-like arrangements with-

out loops. Since motion is modeled through structural flexibility, mode shapes are

required and can be determined within the software, or read in as inputs. In deter-

mining mode shapes, certain nodes are constrained. The location of the constrained

node along the beam element must also function as a connection point between

bodies. Connectivity that cannot be described by adding or removing nodal degrees

of freedom requires changes to the software implementation. Moreover, the formu-

lation is less suitable for software interfaces in which users assemble the model from
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point-and-click selections of element libraries.

On the other hand, the model naturally results in a system of ODEs, modal

coordinate transformations are easily implemented, and there is no need to solve

DAE systems (typically of index 3 or higher) or use techniques to condense out

algebraic equations of constraints or convert them to ODEs. If necessary, equa-

tions of constraints could simply be added to the present formulation through the

use of Lagrange multipliers and suitable DAE solvers. All structural and inertial

couplings are rigorously modeled. The aerodynamic couplings need to be analyzed

on a configuration-by-configuration basis, and may require additional configuration-

specific modeling, but this is also true for full multi-body formulations. For exam-

ple, rotor to wing interference effects are added with knowledge of the wing location

with respect to the rotor. Because the present formulation allows for an arbitrary

number of rotors of arbitrary position and orientation, and any number of flexible

aerodynamic surfaces located anywhere on the aircraft, it is still sufficiently gen-

eral to formulate flight dynamic models for all configurations envisioned for future

rotorcraft with little or no recoding.

The model is formulated as a series of nested loops (from outermost to inner-

most: over rotors, blades or wings, finite elements, and Gauss points within ele-

ments), uses modal coordinate transformations, and contains no coupled algebraic

equations. With the exception of the blade inertia load calculations (because of the

centrifugal force), all loops can be traversed in any order, and can be easily paral-

lelized. As a result, real-time execution is achievable on off-the-shelf workstations

with no approximations for models of realistic complexity. Software granularity is
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also sufficient for CUDA/GPU-based real time implementations.

Details of the baseline blade equations of motion can be found in Ref. 84, and

serve as a starting point for the discussion regarding the wing equations. The equa-

tions of motion can be broken down into three key components; inertial, structural,

and aerodynamic loads.

3.8 Free Flight Response

Starting from a set of consistent initial conditions (i.e. Eqn. (2.142) is met),

the non-linear equations of motion can be integrated in time to form a free flight

response of the aircraft. A trimmed solution is used as the set of initial conditions

and pilot inputs are used as inputs to the system.

3.8.1 Initial Conditions

The trim solution must be converted to the system states as given in Eqn. (3.7)

along with the state time derivatives. The rigid-body components of the trimmed

initial condition are given in Section 3.4.1. The conversion to flexible beam states

from trim states is given in Section 3.4.2. Finally, inflow states are obtained from

trim states as described in Section 3.4.3.

3.8.2 Integration

Once the initial condition is set, the equations can be integrated. Since the

trim condition provides a feasible solution to the equations of motion, the trim
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starting point should be valid for the ODEs as well, and the convergence criteria

should be met at the initial time point. The solver uses backwards differentiation

formulas of variable orders to solve the equations of motion for a given time span [95].

The solver can be variable or fixed-step in time, though the variable step solution is

solved faster. The states and their time derivatives are provided at each time step

as outputs.

Pilot controls do not appear in Eqn. (2.142), but they are still present and

variable at each time step. Controls alter blade pitch or other aerodynamic surfaces

on the aircraft, and a new equilibrium point must be determined if they are changed.

For example, blade pitch changes will alter the aerodynamic loads over rotor blades.

The corresponding beam equation of motion will obtain a new equilibrium point

where these loads are countered by the other forcing loads for the beam. These

change will also propagate to the forcing at the CG which will change the dynamic

response at the CG.

3.9 Chapter Summary

The linking of the various components of an aircraft model using a tree array

has been shown. Modal analysis significantly reduces the system degrees of freedom

and provides a representation for modal deflections of the entire aircraft structure.

Finally, trim and linearization of the aircraft model was discussed.
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Chapter 4: Validation

An important first step was to validate the model against flight data for a

known configuration to test its fidelity. The model was validated against the XV-15

before being applied to the LCTR.

4.1 Validation with XV-15

The XV-15 was chosen because simulation input data, such as aerodynamic

tables, and flight responses that can be used for validation were readily available

in the public domain. XV-15 input data were obtained from the GTRSIM manual

and sample code inputs. Blade structural data was not a part of the GTRSIM

simulations and was derived from a UH-60 blade input block.

4.1.1 Model Description

The model includes rigid wings and nacelles. Only the first structural mode

was retained for the blade, which was a rigid body flapping mode. Since the first

blade mode contained only rigid deflections, blade structure contributions due to

flexibility do not affect the model. The first order model contains 27 states. There

are 9 rigid body aircraft states, and 3 inflow states per rotor. Since the XV-15
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has three blades, flapping is reduced to coning and first harmonic sine and cosine

components, giving 6 states per rotor. Formulation of the aircraft state vector is

described in Sec. 2.8.

To trim the aircraft, there are a total of 28 unknows. There are 8 aircraft

rigid-body trim unknowns. Each rotor has 3 inflow trim unknowns. Rotor blade

flapping is allowed a constant component and three harmonics of sine and cosine

flapping, giving 7 unknowns per rotor. Trim unknowns and equations are described

in Sec. 3.4.

Airframe aerodynamics, including impingement of the downwash on the wing

surfaces, and inflow effects on the elevator and rudders, are modeled using the flight

test-derived data tables in Ref. 11.

4.1.2 Hover

Figure 4.1 shows a frequency response comparison of the XV-15 roll rate to lat-

eral stick inputs in hover. The curve labeled “HeliUM” represents the model devel-

oped in the present study. The curve marked “ID Model” comes from a state space

model derived from flight test data using system identification. The “GTRSIM”

model represents a state space model derived from the GTRSIM software. Stability

and control derivatives for both comparison curves can be found in Ref. 96. “Flight

Data” curves are derived from frequency sweeps performed during test flights. The

roll response is measured in rad/sec, while the input is degrees of aileron deflection.

Control surface deflections are downstream of the stability and control augmenta-
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Figure 4.1: XV-15 hover roll rate response to lateral stick inputs.

tion systems and are geared with swashplate inputs. They are used to measure

the input for the bare airframe responses. The roll response curve is dominated by

the low frequency lateral phugoid mode. Overall, there is good agreement between

the HeliUM curve and the GTRSIM and ID models. While the unstable phugoid

frequency agrees well with flight test data, there is a 5 dB over prediction of the

roll response by the models as compared to flight data. This could be attributed to

poor coherence at the phugoid frequency for the flight data.

The hover yaw rate response is shown in Fig. 4.2. Here, the units are rad/sec

of yaw rate for degrees of rudder deflection input. Rudder inputs are is geared with

antisymmetric longitudinal swashplate inputs. The yaw response is essentially a first
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Figure 4.2: XV-15 hover yaw rate response to pedal inputs.

order system that has a pole at low frequency, giving a constant -20 db/dec slope at

the frequencies shown in the figure. The offset in the HeliUM magnitude response

above 0.6 rad/sec can be attributed to the modeling of the hub. The XV-15 has

a gimbaled hub, while the present model has an articulated hub, with the gimbal

behavior approximated through flapping springs. Yaw behavior is dependent on

longitudinal flapping, so small discrepancies in modeling could have larger impacts

on the dynamic response of the aircraft.

Figure 4.3 shows the pitch rate response to longitudinal inputs. Here the curve

marked “TF Model” comes from low order transfer functions found in Ref. 18. Flight

data were not available for the pitch or heave responses, but the transfer function
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Figure 4.3: XV-15 hover pitch rate response to longitudinal stick inputs.

models were fit to flight data. The pitch response is measured in rad/sec and the

input is degrees of elevator deflection, which are geared with symmetric longitudinal

cyclic swashplate commands. Much like the roll response, this curve is dominated

by the low frequency phugoid pole. There is a difference in the low frequency slope

of the curves; the TF Model predicts a 20 dB/dec slope, while the HeliUM model

predicts a 40 dB/dec slope. This difference is again attributed to the modeling of

the hub. The pitch response of the rotorcraft is a product of longitudinal flapping

of each rotor and variations in hub type should produce different results. This is

not seen in the roll response, Fig. 4.1 or heave repsonse, Fig. 4.4, because these

responses come from collective and rotor coning.
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Figure 4.4 shows the heave response to collective stick inputs. The HeliUM

curves match well with the low order transfer function model. The slight difference in

magnitude plots represents an error of less than 5%. The portions of the magnitude

and phase curves between 1 and 10 rad/sec show a consistent heave response to

commanded inputs at these frequencies. The transfer function model has a flat

magnitude response because the effects of dynamic inflow are not included, although

they are present in the HeliUM model.

10 1 100 101
44

43

42

41

40

39

38

M
ag

ni
tu

de
 (d

B)

 

 

HeliUM
TF Model

10 1 100 101
10

0

10

20

30

40

50

60

Ph
as

e 
(d

eg
)

Frequency (rad/sec)

XV-15 Hover Model Comparisons (az/δcol)"

Figure 4.4: XV-15 hover heave response to collective stick inputs.
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4.1.3 Cruise

In cruise mode, the XV-15 behaves much like a fixed wing aircraft. Through

transition to cruise, rotor symmetric and antisymmetric lateral cyclic controls are

reduced based on nacelle angle. At the cruise nacelle angle, the pilot lacks lateral

cyclic control, and controls the roll of the aircraft through the ailerons. The cruise

speed for validation is 180 knots.
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Figure 4.5: XV-15 cruise roll rate response to lateral stick inputs.

Figure 4.5 shows the roll rate response to lateral stick commands. The units

are the same as the hover configuration. The roll response is dominated by the Dutch

roll mode at around 1.5 rad/sec, with a corresponding magnitude drop and phase
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decrease. The HeliUM model shows a slightly more damped Dutch roll oscillation,

but the overall response matches well.

The yaw response, Fig. 4.6, shows the yaw rate response in rad/sec to measured

rudder inputs in degrees. The lightly damped zero at 0.45 rad/sec is followed by

the Dutch roll peak, again at around 1.5 rad/sec. The damping of the zero for the

HeliUM model is predicted slightly unstable while the other models predict a stable

zero. Overall the curve fits well with the other models and flight data.
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Figure 4.6: XV-15 cruise yaw rate response to pedal inputs.

The pitch response in Fig. 4.7 shows the pitch response in rad/sec to measured

elevator inputs in degrees. The transfer function model is a low order fit of the

physical response and only includes the lightly damped short period mode near 2
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rad/sec. The short period mode occurs at a slightly lower frequency in the transfer

function model than it does in the HeliUM case. The gain and phase offset at low

frequency can be attributed to phugoid dynamics which are not included in the low

order transfer function model.
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Figure 4.7: XV-15 cruise pitch rate response to longitudinal stick inputs.

Overall, there is good agreement between the XV-15 HeliUM model, prior

models, and flight data, validating the modeling approach taken. The hover valida-

tion affirms that rotor dynamics have the appropriate effect on the system response,

while the cruise validation affirms correct airframe aerodynamics.
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4.2 LCTR Dynamics

The LCTR dynamics are next validated against CAMRAD. These models are

then reduced to include only lateral/directional and wing bending states.

4.2.1 Model Description

The models contained rotor, inflow, and rigid body states for a total of 59

states. As with the XV-15 there are 9 rigid-body aircraft states, and 3 inflow states

per rotor. In the LCTR analysis, blades are allowed flap and lag displacements.

The LCTR also has 4 blades, meaning a multi-blade coordinate transformation

results in a constant, sine and cosine first harmonic, and differential flap and lag

displacements, giving 16 states per rotor. The HeliUM models also contain wing

bending states. Each retains three modes, giving 6 flexibility states per wing.

In trim there are a total of 48 unknowns. The first set of unknowns are 8 rigid-

body unknowns. Each rotor inflow has 3 unknowns, for a total of 6 inflow unknowns.

Each rotor has 7 unknowns per retained blade mode, including a constant deflection

(coning, or constant lag angle) plus three harmonics of sine and cosine, giving a

total of 28 rotor unknowns. The wings are allowed a constant deflection for each

mode, giving 3 unknowns per wing and 6 unknowns total.

Downwash impingement on the wing is modeled. The wing is approximately

1/3 R below the main rotor and is assumed to be immersed in the wake of the

rotor. The components of the inflow velocity are obtained from the dynamic inflow

coefficients of the rotor at the 270 deg azimuth position, approximately the azimuth
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position of blade passage over the wing. These inflow velocities are then augmented

by the nacelle angle to find the local velocity at the wing section.

The same wing airfoil data is used for the LCTR as was available for the XV-

15. This airfoil data includes aerodynamic coefficients for very large angles of attack

as are needed by a wing experiencing downwash in hover. The XV-15 aerodynamic

coefficient look up tables are functions of angle of attack, mach number, nacelle

angle, and flap setting. For the LCTR hover case, the portions of the look up tables

with the nacelle in the vertical position and flaps retracted were used. The total

download as a fraction of gross weight in hover was similar to that of the XV-15 in

hover. Aerodynamic contributions from the empennage are neglected in hover.

Since, the LCTR model involves flexible wings, modeling in the multi-body

formulation becomes important. Figure 4.8 shows the multi-body LCTR setup,

including coordinate systems and displacement vectors between bodies from the CG

to the one rotor hub. A similar set of transformations and vectors exists for the

other rotor. Figure 4.9 shows the effects of wing flexibility to the displacements and

coordinate systems.
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Figure 4.8: LCTR multi-body setup
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Figure 4.9: Flexed LCTR multi-body formulation

The nacelles are added onto the deformed wing coordinate system, and the

rotor system is added to the deformed (rotated) nacelles.

4.2.2 Full Order Validation

Full order LCTR models derived from HeliUM are compared to full order rigid-

body CAMRAD models. The majority of the inputs for HeliUM come directly from

the CAMRAD model. The HeliUM model contains two rotor modes; flap and lag.

Wing flexibility was also included in the validation (Figs. 4.12-4.15) as a sep-

arate curve since the CAMRAD linear model did not include wing flexibility. The

wing structural frequencies were derived to match those of Ref. 2, and structural

damping was set to 6 %. Wing beamwise bending stiffness was modified until the

antisymmetric beamwise bending mode occurred at approximately 16.5 rad/sec.

Likewise, chordwise stiffness was modified until a frequency of 14.5 rad/sec was

reached for the antisymmetric chordwise bending mode. Finally, torsion stiffness
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was also changed so that torsion modes matched with the nacelles held fixed. The

pylon is centered vertically along the elastic axis so the chordwise and torsion modes

are fairly decoupled. Mode shapes for the LCTR are shown in Figs. 4.10 and 4.11.

Torsion modes are not shown, but couple pitch motion to wing torsion motion.

Each mode has a symmetric and antisymmetric component.The wing modes show

up as second order poles and are accompanied by decreases in phase. The validation

results look at both the longitudinal as well as lateral/direction axes.

Figure 4.10: LCTR symmetric and antisymmetric beamwise bending mode shapes

The LCTR modal frequencies could also be estimated if the XV-15 structural

modes are known. Froude scaling suggests that the structural frequencies of the

aircraft will reduce with the square root of the vehicle size ratio [97]. The LCTR

has a rotor radius of 32.5 feet, and the XV-15 rotor had a 12.5 foot radius, giving a

ratio of 0.38. The first symmetric structural mode, derived from XV-15 flight test
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Figure 4.11: LCTR symmetric and antisymmetric chordwise bending mode shapes
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results, occurs at 20.7 rad/sec, giving an estimate of 12.8 rad/sec for the LCTR.

The first symmetric coupled rigid-body/wing mode from the model occurs at 9.9

rad/sec. Using Froude scaling alone would suggest that including the structural

frequencies of the LCTR would be important for flight controls applications. The

scaling isn’t exact, but provides a good rule of thumb estimation for mode scaling.

Figures 4.12 through 4.15 compare the CAMRAD and HeliUM models. Overall

there is good agreement in all axes for the rigid wing HeliUM and the CAMRAD

models up to about 30 rad/sec. The rigid wing plots (HeliUM Rigid Wing) don’t

include any structural flexibility, while the flex wing plots (HeliUM Flex Wing)have

a rigid fuselage with flexible wings. The output magnitudes are expressed in deg/sec

or ft/sec. Inputs are inches of stick deflection. Rotor modes also match well. The

first flap mode from HeliUM is at 1.44/rev and for CAMRAD is at 1.43/rev. The

models all match well at low frequency and diverge at the frequency of the wing

mode, as expected, because flexible wing modes are highly coupled to fuselage states.

The roll response, Fig. 4.12, is dominated by the lateral phugoid at low fre-

quency. When comparing the CAMRAD and rigid wing HeliUM curves, there are

offsets only at the higher frequencies corresponding to rotor dynamics. The large

peak in the magnitude in the flexible wing response around 16 rad/sec is the wing

antisymmetric beam mode. It will be shown that this mode corresponds to the

anti-symmetric beamwise bending mode mentioned earlier. At frequencies above

the wing mode, the flexible wing HeliUM curve has characteristics similar to the

other curves.

The yaw response, Fig. 4.13, is similar to that of the XV-15, Fig. 4.2, and
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Figure 4.12: LCTR hover roll rate response to lateral stick inputs.

shows a fairly constant -20 dB/dec slope in the magnitude plot. The low frequency

first order yaw mode causes the slope change in the magnitude plot and associated

90 deg phase decrease. As with the roll case, and with the rest of the plots, rotor

dynamics start to have a dominant effect at around 30 rad/sec. The wing structural

peak, at around 14 rad/sec, is associated with the antisymmetric chordwise wing

bending mode as indicated earlier.

The HeliUM model was not able to capture the low frequency XV-15 pitch

response well (Fig. 4.3), and this was attributed to the rotor hub modeling. The

LCTR has a hingeless rotor system which forces the blades to behave as cantilevered

beams. HeliUM models this type of blade boundary condition and the response
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Figure 4.13: LCTR hover yaw rate response to pedal inputs.

now matches well with CAMRAD results (Fig. 4.14). The low frequency phugoid

mode frequency and damping is matched almost exactly between the models. The

HeliUM rigid wing model matches the CAMRAD model almost exactly over the

entire frequency range shown. The wing flexibility contribution here comes from

coupled symmetric chordwise beam bending and torsional displacements. This mode

is the symmetric counterpart to the wing mode in the yaw response.

The vertical velocity response of the rigid body HeliUM case matches well

with the CAMRAD plot, and is shown in Fig. 4.15. The wing bending mode excited

here is a symmetric beamwise bending mode, the counterpart to the antisymmetric

mode in the roll response. The rigid wing HeliUM model matches CAMRAD almost
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Figure 4.14: LCTR hover pitch rate response to longitudinal stick inputs.

exactly up to 100 rad/sec.
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Figure 4.15: LCTR hover vertical velocity to collective inputs
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4.2.3 Reduced Order Models

Reduced order models offer the ability to evaluate the overall aircraft response

in terms of conventional stability and control derivatives. In the reduced order

models shown, only lateral/directional rigid body states are retained along with

the relevant wing structural modes if wing flexibility is included. All the models

used come from HeliUM. Table 4.1 summarizes the states kept and the nomen-

clature used for the reduced models. Longitudinal rigid body, rotor, inflow, and

non-relevant wing states are reduced out using a quasi-static reduction. The Rigid

Wing model contains 47 states, while the Lat/Dir Rigid Wing model contains only

5 total states (including yaw angle, ψ) . The Flex Wing model contains 55 states,

all the states of the Rigid Wing model and an additional 8 wing structural states.

The Lat/Dir Flex Wing model contains 9 states, including 5 rigid body states and

4 states associated with two antisymmetric wing bending modes. The lateral axis

excites, almost exclusively, the antisymmetric beamwise bending mode, while the

directional axis excites the antisymmetric chordwise/torsion mode. Figures 4.16 and

4.17 show reduced order models. The full order curves are retained for comparison.

Table 4.1: Reduced order model nomenclature

Longitudinal Lateral/Directional Inflow Rotor Symmetric Antisymmetric
Rigid Body Rigid Body Structural Structural

Rigid Wing
√ √ √ √

Flex Wing
√ √ √ √ √ √

Lat/Dir Rigid Wing
√

Lat/Dir Flex Wing
√ √
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The Lat/Dir Rigid Wing roll response matches well with the full order Rigid

Wing model, which also includes rotor dynamics, at low frequency, meaning the

system is well decoupled from longitudinal dynamics, as expected for a tiltrotor

in hover. Divergence occurs in the magnitude plot around 8 rad/sec, well within

the frequency range of interest for control systems design. Rotor modes are im-

portant even at this low frequency and using a reduced order model might lead to

an inaccurate stability and handling qualities analysis. The Lat/Dir Rigid Wing

phase response diverges from the full order response at higher frequency than the

magnitude plot. The wing mode excited in the Lat/Dir Flex Wing case is the anti-

symmetric beamwise bending mode. The other wing modes have a negligible impact

on the roll response. The included wing bending mode captures well the dynamics

around the frequency of the wing mode. There are only slight gain and phase differ-

ences around the frequency range of the mode. These differences could be attributed

to effects from the other flexible wing modes, but clearly, the dominant response is

captured.

The Lat/Dir Rigid wing yaw response matches well at low frequency in the

magnitude plot. Pedal inputs produce differential longitudinal cyclic commands to

the rotor. The tip path plane must realign in order to produce differential longitu-

dinal forces and thus yaw moments. This realignment produces a time delay, and

thus the phase diverges at lower frequencies than the roll response since the rotor re-

sponds to lateral stick commands through collective inputs which achieve a response

from the system much faster than cyclic inputs. The phase difference in the rigid

wing reduced model could be accounted for with a time delay. The time delay is
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Figure 4.16: LCTR reduced order hover roll response comparisons with full order
models

approximately 0.04 seconds. For the LCTR rotor with a flap frequency of 1.44/rev,

a 1/rev input leads to a delay of approximately 0.04 seconds before realignment of

the tip path plane, which matches the time delay estimate from the phase offset.

Rotor dynamics therefore play a large role in the yaw response. Time delays could

be used to improve the phase difference if low order models are needed. Magnitude

plots, however, are not affected by time delays, so large variations between the re-

duced order and full order magnitude plots would still produce significant error in

flight control applications. The Lat/Dir Flex Wing case contains the antisymmetric

chordwise/torsion bending mode. This is the only mode significantly excited by this
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response.
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Figure 4.17: LCTR reduced order hover yaw response comparisons with full order
models

4.3 LCTR Nacelle Validation

4.3.1 Model Setup

The LCTR model with a dynamic nacelle is set up in the same manner as the

model described in Sec. 4.2.1 with the addition of nacelle dynamics. The nacelles

add four additional states to the state vector. In trim, there are two additional

unknowns, the nacelle input torques.
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4.3.2 Validation

Nacelle dynamics for the HeliUM model of the LCTR are next validated

against a CAMRAD model with a dynamic nacelle. The implementation of nacelle

motion is implemented differently in HeliUM than in CAMRAD. The CAMRAD

model offers direct control of the nacelle angle, while in HeliUM nacelle control comes

through a torque motor at the wing connection and the nacelle angle comes of the

solution to the second order differential equation. A proportional-integral-derivative

(PID) control system is included for the nacelle so that the pilot commands a na-

celle angle, much like the CAMRAD case. The validation below includes this control

system in the HeliUM model. Figure 4.18 shows the longitudinal velocity response

of the aircraft to nacelle angle commands. This HeliUM nacelle control system’s

gains were changed until the nacelle mode at 60 rad/sec matched the CAMRAD

model. The dynamics match well for a broad frequency range. The steady state

velocity to nacelle commands is essentially zero. There is an aircraft dynamic mode

around 0.6 rad/sec which matches the phugoid frequency for this aircraft. The near

zero steady state velocity value can be explained by Fig. 4.19, the aircraft pitch

response to nacelle inputs. This figure shows that at steady state, the aircraft pitch

response is equal in magnitude to the commanded nacelle angle, but opposite in

phase. Positive nacelle displacement is define aft. If the nacelle is rotated aft, the

nose will pitch down to realign the nacelle vertically in the inertial frame. The re-

sult is an aircraft that has changed pitch attitude, but remains in hover since the

rotors remain vertical in the inertial frame. The figures show slight disagreement
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Figure 4.18: Longitudinal velocity changes to nacelle angle commands

at mid-frequencies, but overall have the same dynamics. There is a second order

pole-zero combination around 1 rad/sec, with the pole being the unstable phugoid.

There is also a nacelle mode at higher frequency. The final bare-airframe validation

response is shown in Fig. 4.20. This figure shows the aircraft velocity response to

longitudinal inputs. The unstable phugoid dynamics are again visible, as is the high

frequency nacelle mode.

Along with the bare-airframe validation shown so far, coupling numerators

were used to constrain the pitch attitude with longitudinal stick inputs [98]. The

nacelle could now be tilted to move the aircraft fore or aft without the aircraft

pitching, as if it were on a rail. The state-space coupling numerator approach,

described in Ref. 99 was used to constrain pitching motion. With pitch removed
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Figure 4.19: Pitch angle changes to nacelle angle commands

from the equation, the longitudinal velocity transfer function is first order.

ẋ = Xuu− gθnac (4.1)

u

θnac
=
−g

s−Xu

(4.2)

This gives a first order response with a break at Xu and a −g/s response at

high frequency. Xu is change in x-force for perturbations in velocity, and for fixed

wing aircraft is associated with fuselage drag. For rotorcraft, most of this stability

derivative comes from the rotor response to perturbations as fuselage drag is small in

hover. The full order (∼60 states) constrained responses, along with their simplified

counterparts (2 state) given by Eqn. (4.2) are shown in Fig. 4.21

The HeliUM simple transfer function model and full-order models match very
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Figure 4.20: Longitudinal velocity changes to longitudinal stick commands

well at mid and low frequencies meaning the simple first order transfer function is

an accurate simplification of the equations of motion. There are slight differences in

the low frequency pole location, but overall the CAMRAD and HeliUM responses

match very well.

4.4 Validation of Four Element FEM Beam

Four finite elements are used to model the wings, blades, and nacelles. Addi-

tional and fewer elements were used to ensure the validity of using four elements.

Figure 4.22 clearly shows that four finite elements produce accurate results over the

full frequency range. Using two finite elements gives nearly identical results to four

and eight. As described previously, beam and chord bending shape functions allow

137



50

0

50

M
ag

ni
tu

de
 [d

B]

Constrained Coupling Numerator Comparisons of Nacelle Response

 

 

10 3 10 2 10 1 100 101 102360

270

180

90

Ph
as

e 
[d

eg
]

Frequency [rad/sec]

HeliUM Simple
HeliUM Full Order
CAMRAD Simple
CAMRAD Full Order

Figure 4.21: Longitudinal velocity response to nacelle inputs with pitch attitude
constrained

for a cubic beam displacement over each finite element. Given the similarity of the

roll response using any amount of finite elements shows that the wing and blade

displacements are low order and easily approximated with few finite elements. This

could be inferred from the model setup. The majority of wing forcing comes from

the nacelle, a point force on the tip of the wing. This gives simple beam deflections.

If the nacelle were located inboard of the wing tip, the wing bending could be more

complex. Adding additional finite elements would only slow the solution process

without improving model accuracy.
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Figure 4.22: Comparisons of roll response using different numbers of finite elements
for the wings and rotor blades.

4.5 Number of Wing Modes Retained

The number of wing modes retained for each wing was also varied to determine

the minimum number needed to accurately model aircraft dynamics up to about 20

rad/sec. Figures 4.23-4.26 show the on-axis responses obtained retaining two to

five wing modes. When two wing modes are retained for each wing, a total of four

structural modes are obtained for the aircraft. Checking system eigenvalues shows

that after two wing modes, all natural frequencies are above 60 rad/sec. The figures

also show that the system responds essentially identically after the first two modes

for each wing are included.
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Figure 4.23: Comparisons of roll response with different amounts of wing modes
retained

4.6 Chapter Summary

The model has been validated with the XV-15 and LCTR. Differences in XV-

15 dynamics when compared to other models and flight data are attributed to rotor

hub modeling. The validation with a LCTR model shows almost identical dynamics

in the bare airframe. The validation also showed that four low frequency structural

modes occur below 20 rad/sec, and thus need to be included for control law develop-

ment and analysis. The nacelle dynamics have also been validated. Slight differences

in the response with the dynamic nacelle are attributed to potential differences in

the model input parameters.
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Figure 4.24: Comparisons of pitch response with different amounts of wing modes
retained
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Figure 4.25: Comparisons of heave response with different amounts of wing modes
retained
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Figure 4.26: Comparisons of yaw response with different amounts of wing modes
retained
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Chapter 5: Structural Coupling Analysis

This chapter serves to draw comparisons between the HeliUM linear model

and other elastic models commonly used. The model structures will be presented

and compared with each other. Two example cases, hover and cruise, using the

LCTR model will be given. The model includes two structural modes and no nacelle

dynamics.

5.1 Introduction

The HeliUM model fully couples the rigid-body and elastic states, giving a

multi-body appearance to the equations of motion. The model does not need to

come from an actual multi-body construction. As long as the model is formed by

connecting bodies that have individual inertial, structural, and aerodynamic prop-

erties, it is referred to herein as multi-body. Specific comparisons are giving to the

formulation given by Schmidt (Ref. 77), herein called the mean-axis formulation.

The mean-axis model assumes there are no inertial changes within a flexible struc-

ture and adds only aerodynamic effects due to elasticity to the rigid body equations.

The rigid-body portion remains the same with or without the inclusion of structural

flexibility. When developing linear models directly from rigid-body models, the
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equations of motion generally undertake this form. Next, a model given by Tischler

(Ref. 97), particularly useful for system identification, is discussed. This hybrid-

flexible model couples the rigid body response with the elastic states in the output

equations, reducing the problem size for system identification significantly. Finally,

comparisons are given to a model in which the rigid-body and structural states are

fully decoupled, with the structural response again modifying the output only.

As well as the elastic models introduced above, there are models which only

contain rigid-body states. A rigid-body model is obtained from an aircraft that

does not exhibit any structural motion whatsoever. This aircraft is not allowed to

deform in any manner from its original configuration. This type of model is non-

physical, but is generally obtained from modeling software, or rigid wind tunnel

models. A static-elastic model also contains only rigid-body states, but with the

effects of structural flexibility absorbed into the stability and control derivatives.

Such a model is obtained from system identification of flight data since aircraft

are flexible in nature and undergo structural oscillations with perturbations and

are also deflected in their trim configuration. This model is also obtained from

a quasi-static reduction of a model that contains elastic states. A comparison of

the static-elastic model to the rigid-body model would produce flex factors, or the

changes in the vehicles rigid-body dynamics due to flexibility. If the flex factors

are unity, elastic motion does not alter the aerodynamics of the vehicle, and the

rigid-body and static-elastic models are the same.

The elastic model types are now described in order of descending complexity,

starting from the multi-body model and finishing with the decoupled model.
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5.2 Multi-Body Flexible Formulation: Current Development

The multi-body like linear model most rigorously captures couplings between

different aircraft components. A model with a sensor at the center of mass has the

following structure:





ẋR

ẋE





=



AR ARE

AER AE








xR

xE





+



BR

BE



{
u

}
(5.1)

y =xR

In this formulation, the rigid-body states (xR) represent the motion of a point “o”

within the fuselage, while the structural states (xE) give each modes deflection with

respect to the fuselage. This point serves as the origin for the building up of the

multi-body aircraft components and is chosen to represent the center of mass of the

undeformed aircraft. The model is built up one component at a time, meaning each

individual component (i.e. fuselage, wing, etc.) has its own mass and aerodynamic

properties. Since total aircraft mass is an integrated quantity, the center of mass

and mass moments of inertia of the aircraft change after deformation, but the origin,

“o”, remains the same as it is a physical location within the aircraft fuselage. There

is no ”mean-axis assumption” in this model. The mean-axis assumption states that

the rigid-body components of the state-vector follow the overall, or ”mean” aircraft

motion and neglect inertial couplings [81]. Within the multi-body model, the rigid-

body components of the state vector measure the states of the origin point within
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the fuselage. The output of the system is simply a fuselage state as defined by the

origin point “o”. This output contains any structural bending contributions local

to the origin point. For a large tiltrotor in hover, the wings in trim deflect upward

18 inches resulting in a center of mass shift of ∼4.5 inches. This shift is relatively

small compared to the scale of the aircraft (rotor radius of 32.5 feet).

In the multi-body model there is no overall rigid-body frame that elastic de-

flections are added onto, instead the fuselage is part of the flexible system and can

deflect within an elastic mode; see Fig. 5.1 for a tilt-rotor asymmetric mode and

Fig. 5.2 for an initial condition response showing fuselage roll rate and wing tip rate

for the same asymmetric bending mode. The final curve in the plot (p/(dη/dt))

shows the ratio of roll rate to wing tip rate remains constant throughout the time

history, as expected. This figure shows the ratio of the roll rate state to the modal

displacement rate state of the eigenvector associated with the antisymmetric beam

mode. The fuselage itself is rigid, and its involvement in a mode can be thought

of as a rigid rotation of the fuselage when accounting for a coupled wing-fuselage

system. The structural contributions to the motion of the aircraft are coupled into

a set of eigenmodes, of which only a small set are retained, up to the maximum

frequency range of interest.
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Figure 5.1: LCTR elastic mode shape
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Figure 5.2: LCTR elastic mode shape time history

Since the first set of states (xR) in Eqn. (5.1) represent the fuselage and its

motion, the stability and control derivatives are much different than the standard

rigid-body derivatives. For example, there is no control input that directly and in-

stantaneously acts on the fuselage. This gives control derivatives that are essentially

zero in the BR portion of the control derivative matrix. The pilot inputs to the rotor

must propagate down the flexible wing, and then they impact the fuselage through
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wing bending. The rotor forcing is dominant in the structural portion of the control

vector. The same can be said for the AR portion of the stability derivative matrix.

Again, the first set of states represent the fuselage and its motion, and these deriva-

tives have different meaning than the standard rigid-body stability derivatives. For

example, roll moments are transferred through wing bending, therefore, the predom-

inant stability derivative in the roll equation is that of the structural displacement

state in the ARE portion of the state matrix. There must be structural bending of

the wing to create forces and moments at the wing root, the connection point to

the fuselage. Without structural bending, there is no transfer of forces or moments

to the root. For example, the moment at the wing root can be derived from either

a force summation or modal method, and must give the same result both ways. In

the force summation method, all external forces and moments are summed to give

the total forcing on the body downstream (i.e. fuselage). In the modal method,

wing bending at the fuselage connection can be used to give the full forcing on the

downstream body. Wing deflection is assumed to be a linear combination of a set

of eigenmodes, so using the modal method where the curvature is a summation over

all the modes gives the following moment:

M = EI
d2w

dx2
(5.2)

Clearly, bending must occur in order for a moment to be transferred. Since the

wing has mass, it cannot bend instantaneously, giving a near zero rigid-body control

derivative. If there were control surfaces directly on the fuselage, their effects would

pass through to these control derivatives. Any model which follows this type of
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formulation is referred to as a multi-body model.

If the structural states were reduced out of the multi-body model, the result

would be the static-elastic model.

Comprehensive flight mechanics models generally take on a multi-body for-

mulation. Examples include tilt-rotor models developed using software tools such

as MBDyn (Refs. 45, 46), CAMRAD (Ref. 2), and HeliUM (Ref. 100). Another

multi-body model commonly used is FLIGHTLAB (Ref. 47).

5.3 Mean-Axis Flexible Formulation

A commonly used approach to derive the equations of motion for a flexible

aircraft is to build flexibility effects onto the rigid-body dynamics [101] [77] [102].

The equations of motion are built upon the mean-axis assumption, that is, structural

deflections are assumed small enough that the mass distribution with respect to the

center of mass of the aircraft is considered constant. This gives mass moments and

products of inertia which are constant. It is also assumed that structural deflections

can be lumped into sets of eigenmodes, of which only a finite amount are retained.

Elastic modes are coupled with rigid-body motion solely due to aerodynamic

changes. The airframe is allowed to bend due to an elastic mode, and the resulting

changes in aerodynamic forcing on the wing (lift, drag, etc.), are added to the rigid-

body forcing equations. Changes in rigid-body states also add to the forcing of the

elastic degrees of freedom, creating a fully coupled system. For example, aircraft

roll motion creates airflow over the wing which adds forcing onto the elastic degrees

149



of freedom.

The aircraft motion at the sensor location is gained in the output matrix by

summing the rigid-body motion with the elastic motion at the sensor location. The

rigid-body states for this aircraft do not have a physical realization for the elastic air-

craft, but are rather a reference frame that follows the equivalent rigid-body motion

of the aircraft. The elastic motion refers to elastic vibrations around the rigid-body

vehicle reference axes and elastic contributions to the output is multiplied by an

influence coefficient, Φma, which determines the motion of the sensor not caused by

aerodynamics (e.g. caused my inertial coupling). The influence coefficient treats the

elastic vibration as a sensor displacement from the reference axes. All aerodynamic

influences are retained in ARE in this model type. If the structural mode contains

angular displacements, this influence coefficient will capture the relative rotation of

the center of mass relative to the reference vehicle axes. The mode shape is assumed

to be know before hand. The formulation used is similar to Eqn. (5.1), with the

addition of the influence coefficient term in the output.


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

ẋR
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=
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
AR ARE

AER AE








xR

xE





+



BR

BE



{
u

}
(5.3)

y =xR + ΦmaxE

The state vector has two components, xR and xE, corresponding to the rigid-

body and elastic states, respectively. The elastic states in the example give the

modal angular displacement and rates at the nose of the fuselage where a sensor is
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located. Even if the sensor was at the center of mass, there would be a structural

contribution added to it if the center of mass was involved in the modal response.

This is in contrast to the multi-body formulation already described. AR and BR

are the standard rigid-body stability and control derivatives and remain unchanged

from a purely rigid-body formulation. This means that the aeroelastic coupling,

ARE, component above is solely due to changes in the vehicle aerodynamics due

to structural deformations. The AER, or rigid-body coupling, portion comes from

changes in aerodynamic forcing on the elastic degrees of freedom due to changes in

the rigid body states. Finally AE is the structural mode. The elastic portion of the

control matrix contains forcing on the elastic states due to pilot inputs, or changes

in control effectiveness due to structural bending. This would capture, for example,

aileron control reversal if the aircraft’s wings were highly flexible. The measured

output of the aircraft is simply the sum of the rigid body output as well as the local

output at the sensor, which contains contributions from elasticity. The vehicle is

essentially a rigid-body modified to include elastic aerodynamic effects.

This building up of the aircraft states is one method often employed to obtain

linear models including elastic states, especially when a rigid-body linear model is

used as the starting point. References 103 and 104 provide an excellent example

in the development of this type of model and associated comparisons with flight

data in the time domain for a flexible glider. Reference 103 also gives comparison

between the gliders rigid-body and elastic aerodynamic parameters. A flexible B-1

model is developed using this architecture in Ref. 101. Reference 79 develops flexible

equations of motion for a generic transport using this formulation.
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5.4 Hybrid-Flexible Model

The hybrid-flexible model structure, proposed by Tischler in Ref. 97, is a

derivative of the coupled models described so far and is well suited for system iden-

tification from flight data with a limited number of structural sensors. It will be

shown later that the ARE portion of the stability derivative matrix, as well as the

influence coefficient, Φ, are fully correlated and cannot be separated from a system

identification point of view if the shape of the structural modes is not known or if

multiple sensors are not present to accurately identify the mode shape of the struc-

tural mode. In other words, the motion of the aircraft at a sensor location can come

from either the involvement of the sensor location in a structural mode or effective

rigid-body dynamics of the aircraft. If multiple sensors are located along the wings

and fuselage, the structural mode can be identified, and the equations of motion

would take on the form of Eqn. (5.3).

Provided there is adequate frequency separation between the structural and

rigid-body modes, the structural mode’s effect on rigid body dynamics can be as-

sumed to be quasi-static. The aero-elastic coupling terms are dropped and their

influence is absorbed into the stability derivatives, giving static-elastic stability and

control derivatives. Reference 97 gives the following guideline:

ωstr

ωrb

≥ 5 (5.4)

The hybrid-flexible model structure contains the static-elastic stability and control

derivatives in the AR and BR portion of the state-space model, and no aero-elastic
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coupling, or ARE. The AER portion is still retained to provide coupling of the

rigid-body states back into the structural states. The damping of the eigenvalue

pair associated with the structural modes is set to match the full-order multi-body

model since the overall dynamics must remain the same. Since the aeroelastic terms

are dropped, any structural influence on the rigid-body modes is included in the

influence coefficient.

Theodore et al. (Ref. 105) and Tischler (Ref. 97) present the identification

of a large flexible transport aircraft using the hybrid-flexible model. Sahasrabudhe

(Ref. 69) generates a model of a large helicopter where the measured response is

a sum of rigid-body dynamics and structural dynamics. The structural response

includes forcing from the rigid-body motion of the aircraft, giving a hybrid-flexible

architecture.

5.5 Decoupled Model

The final elastic model is a one where the structural and rigid-body states are

decoupled from one another, meaning the off diagonal components (ARE and AER) of

the stability derivative matrix are set to 0. This model type is a further simplification

of the coupled models and also relies on the output equations to add influence of the

structural modes to motion of the aircraft. As with the hybrid-flexible, this model

also uses the static-elastic rigid-body stability and control derivatives.

This model structure is demonstrated by Najmabadi et al (Ref. 75) for a

identification of a large transport aircraft. This model structure is used to integrate
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elastic effects into a rigid-body simulator of an F/A-18 (Ref. 68). Powers (Ref. 63)

also used a decoupled model to incorporate a first structural bending mode into an

SR-71 identification problem.

5.6 Model Comparisons

There are two key differences between the multi-body and mean-axis models.

1. The transfer of forcing from the wing to the fuselage in the multi-body model

is not instantaneous and occurs through wing bending. For example, forc-

ing from the control derivative matrix in the mean-axis model can occur in

the rigid-body components of the state vector; it does not in the multi-body

case. Elastic motion is coupled to the fuselage motion inertially and aero-

dynamically, while in the mean-axis formulation they are coupled solely due

to aerodynamics. In the multi-body model, aerodynamic and inertial forcing

on the flexible body are treated identically in the creation of the equations

of motion. They have an identical influence in the linear model and are thus

fully correlated.

2. The reference axis for the mean-axis model is the equivalent rigid-body axes

anchored at the nominal CG for trimmed flight, onto which elastic motion is

added. The reference axes for the multi-body model are fuselage axes which

describe the motion and location of the fuselage only.

The multi-body model can be converted to the mean-axis model if a rigid-body

model is available, either from simulation, wind-tunnel testing, or system identifi-
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cation with multiple structural sensors. To convert the multi-body model to the

mean-axis model, the rigid-body stability and control derivatives are taken from

the rigid-body model, and the coupling terms can be identified to create the same

static-elastic model as is created by a direct reduction of the elastic states from the

flexible HeliUM model. The only assumption in doing so is that the changes in the

inertial properties of the aircraft while it flexes are small enough to be negligible.

This conversion is performed herein to highlight the equality between the two mod-

els even if the individual stability and control derivatives are much different. Steps

given to convert the mean-axis model to the hybrid-flexible are also given. Finally,

steps in converting from the hybrid-flexible to the decoupled model are given. Start-

ing from the multi-body model, the conversions are as follows:

Note: For a given stability or control derivative, say Lp, the nomenclature

used in the discussion given in Table 5.1. The derivative name remains italicized,

but the abbreviation for the model type is not.
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Table 5.1: Control and stability derivative nomenclature for Lp

Models without flexibility

Derivative Name Model Name

Lprb Rigid-body model

Lpse Static-elastic model

Models with flexibility

Derivative Name Model Name

Lpmb Multi-body model

Lpma Mean-axis model

Lphf Hybrid-flexible model

Lpd Decoupled model

As has been mentioned, the upper left quadrant of the stability derivative

matrix, AR, and the upper section of the control derivative matrix, BR, are repeated

in some of the models and are defined to come from models that do not include

structural flexibility. The off-diagonal portion and the output portion of the models

is where differences occur. Table 5.2 shows these equalities.

Table 5.2: AR and BR definitions for different models

Stability Derivative Matrix Control Derivative Matrix Model

ARma ≡ ARrb BRma ≡ BRrb Mean-axis model

ARhf ≡ ARse BRhf ≡ BRse Hybrid-flexible model

ARd ≡ ARse BRd ≡ BRse Decoupled model

Multi-body to mean-axis conversion:

1. Replace the AR and BR portion of the multi-body model with the rigid-body

(not static-elastic) model of the same aircraft.

2. A quasi-steady reduction of the mean-axis model must produce the same
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static-elastic model as a quasi-steady reduction of the flexible multi-body

model. For a roll response, the key coupling term in the ARE portion of

the state matrix is Lη. The following equations, based on derivations shown

in Ref. 97, give the relationship between the rigid-body and static-elastic Lp

stability derivative and the Lδ control derivative for a simple three degree

of freedom model. The degrees of freedom are roll rate and two degrees of

freedom associated with the structural mode.

Lpse = Lprb +
Lη
ω2
ηp (5.5)

Lδse = Lδrb +
Lη
ω2
ηδ (5.6)

The unknowns in the equations above are the coupling terms, Lη and ηp, as

well as the structural control derivative, ηδ. The system has more unknowns

than equations, so it cannot be solve uniquely. The rigid-body coupling term,

ηp, or structural control derivative, ηδ can be retained from the flexible model,

reducing the degrees of freedom and providing a solution. The frequency of

the structural mode, ω, is retained from the multi-body model. If the flexible

and rigid multi-body models are set up appropriately, the equations should

produce the same coupling term. For larger systems, or with systems with

sensor outputs, the coupling terms and structural control derivative may be

identified using system identification software.

3. Once an aerodynamic Lη is identified for the mean-axis model (Lηma) from

the previous step, it is placed back into ARE to form the complete mean-axis
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model. This Lηma comes purely from changes in aerodynamic forcing due to

changes in structural flexibility. The identified ηp and ηδ are also placed back

into the state matrix.

4. The remainder of the aircraft measured response comes from forcing other

than aerodynamics and is lumped into an influence coefficient, Φpma. This

coefficient is an equivalent displacement of the sensor from a structural node

(see Eqn. (5.3)). It has the form:

Φpma =
− (Lηmb − Lηma)

ω2
(5.7)

Here, Lηmb comes from the multi-body model and Lpma is the identified value

from the mean-axis solution.

5. The influence coefficient multiplies the structural rate term in the output ma-

trix. For example:

pma = p+ Φpmaη̇str (5.8)

Here p is the rigid-body roll response and Φpmaη̇str is the response due to the

structural mode deflection. The full response, pma, accounts for the offset of

the sensor from the structural node. This response should match the mult-

body response exactly.

Hybrid-Flexible Model

1. Starting with either the multi-body or mean-axis model, replace the AR and

BR portion of the model with the static-elastic model of the same aircraft.
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2. Drop the aeroelastic coupling terms ARE.

3. Determine the effective influence coefficient, Φ, of the response on the rigid-

body stability derivatives. The influence coefficient can be thought of as an

equivalent sensor displacement which picks up all local modal bending effects.

Determination of the influence coefficient is described in subsequent sections,

but is of the form shown here (see also Ref. 97). If starting from the mean-axis

model:

Φphf =
−Lηma

ω2
+ Φpma (5.9)

If starting from the multi-body model:

Φphf =
−Lηmb

ω2
(5.10)

If starting from the mean-axis model, −Lηma

ω2 is the equivalent displacement,

with the aeroelastic coupling term, Lηma, coming from ARE and ω being the

structural mode frequency. Φpma (see Eqn. (5.7)) is a physical displacement

of a sensor from a structural mode node. If the multi-body model is served as

the starting point, there is no physical sensor displacement and the influence

coefficient comes from the equivalent displacement. The effective influence

coefficient Φphf , beginning with either method, will be the same value.

4. The frequency and damping of the eigenvalue related to the structural mode

must be preserved throughout the model reduction. Therefore, the AE com-

ponents are modified to produce the same eigenvalues as the fully coupled
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system.

5. The influence coefficient again multiplies the structural rate term in the output

matrix.

phf = p′ + Φphf η̇str (5.11)

Here p′ is the static-elastic roll response and Φphf η̇str is the influence coefficient

from Eqn. (5.9) or (5.10).

Decoupled Model:

1. Retain the static-elastic AR and BR portion of the flexible model.

2. Drop the off-diagonal components of the stability derivative matrix (ARE and

AER).

3. Ensure that the frequency and damping of the structural mode eigenvalue

matches that of the original model

4. The same output equation, Eqn. (5.11), as the hybrid-flexible model is used.

The main difference between the mean-axis model and the hybrid-flexible and

decoupled models presented here is the use of the rigid-body vs. the static-elastic

stability derivatives. The reduction of the structural modes from the mean-axis

model would produce the static-elastic rigid-body stability derivatives of the hybrid-

flexible and decoupled models.
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5.7 Implications for Model Identification from Flight Data

The model type identified from flight data is determined by the parameters

left free in the identification. The mean-axis form of the flexible model relies on

the influence coefficient to couple the sensor response to the rigid-body response.

It has been shown, Eqn. (5.9), that Φpma and the aeroelastic coupling term, Lηma,

are fully correlated, meaning this model type would not be identified well if only a

single sensor is used. Reference 97 provides an example for a Harrier VSRA aircraft

in which the two components of Φphf (Eqn. (5.9)) were not individually identifiable

because only a single sensor was used. Multiple sensors were present in the glider

example of Refs. 103 and 104, meaning the influence coefficient, Φma, and the

aeroelastic coupling terms in ARE were able to be identified separately. Φma could

also be determined from ground shake tests or flexible model analysis leaving only

Lηma as an unknown.

For a multi-body type model, there is no influence coefficient to identify, and

all aeroelastic coupling and sensor information is contained in the coupling terms.

However the aeroelastic coupling and rigid-body coupling terms are also correlated.

Multiple sensor information could also be used to resolve these correlation issue.

In contrast to the multi-body model, a hybrid-flexible model fully relies on a

lumped influence coefficient in the output and has no aeroelastic coupling terms to

identify. This model type is the simplest to identify while retaining the majority

of the key dynamics. An important assumption in this model type however is that

there is adequate separation between the structural and rigid body modes.
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Possibly the simplest model to identify, the decoupled model, assumes no

coupling terms and accounts for all flexibility effects in the influence coefficients of

the output equation. The influence coefficient accounts for all aerodynamic and

inertial coupling as well as any influence from sensor displacements. This identified

model would have the static-elastic rigid-body states in the AR position and zeros

on the off-diagonal terms.

5.8 Influence Coefficients

Φp can be determined using a partial fraction expansion of a fully coupled

model (as the multi-body or static-elastic model) into a decoupled one, where the

decoupled model contains a summed rigid-body and elastic response. If compared

to a summation of a purely rigid-body response and an isolated structural mode,

the difference between the two models results in the influence coefficient.

The influence coefficient can also be determined by analyzing the eigenvector

corresponding to the structural mode. Continuing with the example above for a

roll rate response , Φp would be the component of the structural mode eigenvector

corresponding to a roll displacement or rate, divided by the component correspond-

ing to the structural deflection or rate. This gives the mode shape slope for a given

response. The same could be said in structural dynamics, where the eigenvector of a

mode represents the nodal displacements, or a mode shape, and ratios of the nodal

displacements can be used to determine relative displacements of nodes to each

other. Here, the mode shape contains fuselage and wing bending displacements and
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rates.

The full aircraft output, as expressed by any of the models presented, repre-

sents the sum of rigid-body rate plus the contributions of the components of the

structural mode. The partial fraction method as well as eigenvector method are

now analyzed for a simplified 3-DOF roll response, following Ref. 97. The states are

roll rate, p, as well as structural states associated with the first structural mode,

η̇ and η. Assuming there is no sensor offset, meaning the sensor is on a node of

a mode (Φma = 0), the linear model initially has the following form Note: There

is no implication on the form of the model, it can be an mean-axis type model or

multi-body type model.

A =




Lp Lη̇ Lη

ηp −2ζω −ω2

0 1 0




B =




Lδ

ηδ

0




with x =





p

η̇

η





(5.12)

The model above is simplified to ease creating an analytical solution by assuming

an undamped oscillatory structural mode (ζ = 0). Damping adds additional terms

to the eigenvectors obscuring the dominant terms that are derived below. Also, the

rigid-body coupling term, ηp, and aeroelastic coupling term, Lη̇, term are neglected.

Rigid-body coupling can be ignored if there is negligible effect of rigid-body motion

on the structural mode. Lη̇ also has a negligible impact on the dynamics when
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compared to Lη

A =




Lp 0 Lη

0 0 −ω2

0 1 0




B =




Lδ

ηδ

0




(5.13)

The eigenvalues and eigenvectors associated with the structural mode are: λstr =

±iω, with:

vstr+ =





Lη

iω (iω + Lp)

− (iω + Lp)





and vstr− =





Lη

−iω (−iω + Lp)

− (−iω + Lp)





(5.14)

Assuming a large frequency separation between the structural mode and the rigid-

body mode, Lp can be assumed to have minimal influence, giving the following

eigenvectors.

vstr+ =





Lη

−ω2

−iω





and vstr− =





Lη

−ω2

iω





(5.15)

The influence coefficient of the structural mode to the rigid body motion of the

aircraft has been stated to be the mode shape slope, here it is the ratio of the

rigid-body rate component of the to the structural rate component. Using either

eigenvector in the above equation, this gives:

Φp =
∂p

∂η
= −Ln

ω2
(5.16)

In determining Φp from a partial fraction expansion, the p/δ transfer function is
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expanded [97]:

p

δ
=
Lδ (s2 + ω2) + Lηηδ
(s− Lp) (s2 + ω2)

=
A

s− Lp
+
B1s+B0

s2 + ω2
(5.17)

Solving for A, B0, and B1 yields:

A = Lδ +
Lnηδ

ω2 + L2
p

(5.18)

B1 = − Lnηδ
ω2 + L2

p

(5.19)

B0 = − LpLnηδ
ω2 + L2

p

(5.20)

Again, with the large frequency separation, L2
p can safely be ignored in the denom-

inator. Furthermore, B0 term is small and adds a negligible quantity to the steady

state response. Removing these terms gives a total response of:

p

δ
∼=
Lδ + Lη

ω2 ηδ

s− Lp︸ ︷︷ ︸
p′

+
−Lη
ω2︸︷︷︸
Φp

ηδs

s2 + ω2︸ ︷︷ ︸
η̇str

(5.21)

∼= p′ + Φpη̇str (5.22)

The static-elastic rigid body response summed with isolated structural rate response

(η̇str). Note that Φp is the same (−Lη/ω2) using both the partial fraction expansion

method as well as the eigenvector method. If a more coupled model is used than

that presented, the influence coefficient would not have such a simple analytical

solution. It would still, however, have the same form; most easily identifiable from

an eigenvector analysis.
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5.9 Static-Elastic Model

The static-elastic model is obtained by performing a quasi-steady reduction of

the structural states into the rigid-body states by setting the rate and acceleration

terms of the structure mode to zero (i.e. they are static), and solving for the

remaining states. The static-elastic model, when compared to the purely rigid-body

model, differs when the flex factors are not unity. Starting from the simplified linear

model, a quasi-steady reduction is performed. There is no sensor displacement, so

Φ = 0. There is no implication on the model form and the reduction is valid starting

from a multi-body like or mean-axis like model. Note: Starting from the hybrid-

flexible model the following reduction would not change the rigid-body states since

the aeroelastic coupling terms are zero. Therefore, the hybrid-flexible model uses

static-elastic rigid-body stability derivatives.

Ase = AR − AREA−1
E AER (5.23)

Bse = BR − AREA−1
E BE (5.24)

AR is the quadrant of retained states. ARE and AER represent the off-diagonal

components to be eliminated and AE is the quadrant composed of states to be

eliminated.




ṗ

0

0





=




Lp Lη̇ Lη

ηp 0 −ω2

0 1 0








p

η̇

η





+




Lδ

ηδ

0




{
δ

}
(5.25)
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and:

ṗ′ = Lpsep
′ + Lδseδ (5.26)

where:

Lpse = Lp︸︷︷︸
AR

−
[
Lη̇ Lη

]

︸ ︷︷ ︸
ARE




0 −ω2

1 0




−1

︸ ︷︷ ︸
A−1
E



ηp

0




︸ ︷︷ ︸
AER

(5.27)

Lpse = Lp +
Lη
ω2
ηp = Lp − Φpηp (5.28)

and similarly:

Lδse = Lδ +
Lη
ω2
ηδ = Lδ − Φpηδ (5.29)

The same influence coefficient and thus control derivative is seen in the quasi-steady

reduction as in converting the system to output form (Eqn. (5.21)). It should be

mentioned again that the rigid-body, or fuselage, control derivatives are generally

near zero in the multi-body flexible model since the aircraft forcing comes at the

end of the flexible wings. Since forcing comes through structural bending, the aeroe-

lastic coupling term Lη is large, whereas it is smaller for the mean-axis case where

only aerodynamic forcing is transferred with wing bending. Once the quasi-steady

reduction is performed, the control derivatives take their more familiar form, where

a control perturbation elicits an instantaneous roll response of the aircraft through

Lδ. In other words, a reduction of the multi-body model will create large influence

coefficients, while the reduction of the mean-axis model will generally have smaller
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influence coefficients.

Flex factors have been defined (Ref. 97) to give the changes in rigid-body

dynamics due to structural flexibility. For example, using Eqns. (5.28) and (5.29):

ffLδ =
Lδse
Lδrb

=
Lδ − Φpηδ

Lδrb
(5.30)

ffLp =
Lpse
Lprb

=
Lp − Φpηp

Lprb
(5.31)

5.10 Tilt-Rotor Example: Hover

The multi-body model is now taken from its standard form and converted to

mean-axis form, hybrid-flexible form, as well as decoupled form. We start with the

lateral/directional multi-body model which includes the anti-symmetric beamwise

wing bending mode. Lateral stick inputs excite the wing anti-symmetric beam mode

through differential collective of the rotors. Pedal inputs are also retained to keep

a full lateral/directional model. Pedal inputs do not excite this structural mode

significantly.

Note: The subscripts detailing which model the control and stability deriva-

tives come from are omitted where the model structure is presented for clarity. They

are re-introduced when the derivatives are given numerical values.
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5.10.1 Multi-Body Model





v̇

ṗ

ṙ

φ̇

η̈

η̇





=




Yv Yp Yr g Yη̇ Yη

Lv Lp Lr 0 Lη̇ Lη

Nv Np Nr 0 Nη̇ Nη

0 1 sin θ0 0 0 0

ηv ηp ηr 0 −2ζω −ω2

0 0 0 0 1 0








v

p

r

φ

η̇

η





+




Yδlat Yδped

Lδlat Lδped

Nδlat Nδped

0 0

ηδlat ηδped

0 0




{
δ

}

(5.32)

pmeasured =

[
0 1 0 0 0 0

]





v

p

r

φ

η̇

η





+

[
0

]{
δ

}
(5.33)

with θ0 = −0.039 rad.

169



For the hovering tilt-rotor example, the stability and control derivatives are :

Yvmb = −0.0778 Ypmb = −4.75 Yrmb = 0.853 Yη̇mb = 2.04 Yηmb = 102

Lvmb = 0.0170 Lpmb = 0.785 Lrmb = −0.061 Lη̇mb = −1.73 Lηmb = −163

Nvmb = 0.00013 Npmb = 0.0254 Nrmb = −0.179 Nη̇mb = 0.0385 Nηmb = 3.93

ηvmb = 0.0434 ηpmb = 3.02 ηrmb = −0.541 ζmb = 0.112 ω = 16.6

(5.34)

Yδlatmb = −0.375 Yδpedmb = −0.528

Lδlatmb = 0.0175 Lδpedmb = 0.120

Nδlatmb = 0.0205 Nδpedmb = 0.030

ηδlatmb = 0.414 ηδpedmb = 0.286

5.10.2 Rigid-Body Models

A purely rigid-body model of the same aircraft (without any elastic motion)

has the following form:





v̇

ṗ

ṙ

φ̇





=




Yv Yp Yr g

Lv Lp Lr 0

Nv Np Nr 0

0 1 sin θ0 0








v

p

r

φ





+




Yδlat Yδped

Lδlat Lδped

Nδlat Nδped

0 0




{
δ

}
(5.35)
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pmeasured =

[
0 1 0 0

]





v

p

r

φ





+

[
0

]{
δ

}
(5.36)

Yvrb = −0.0799 Yprb = −3.21 Yrrb = −1.28

Lvrb = −0.00824 Lprb = −1.02 Lrrb = 0.255

Nvrb = 0.0010 Nprb = 0.0628 Nrrb = −0.194

(5.37)

Yδlatrb = 0.045 Yδpedrb = −0.382

Lδlatrb = −0.229 Lδpedrb = −0.0504

Nδlatrb = 0.0281 Nδpedrb = 0.0357

There are large changes in rigid-body portion of the stability derivatives between

the rigid-body and multi-body models, with some derivatives even changing sign.

The rigid-body portion of the multi-body model place the fuselage, so these stability

and control derivatives lack meaning in the classical linear model sense. Note espe-

cially the large aeroelastic coupling term, Lη as well as small rigid body roll control

derivative, Lδlat , when comparing the multi-body model to the rigid-body model.

The lateral control derivative is small because this input excites wing bending, so

the control comes from the structural control derivative. Wing bending does not im-

part yaw moments, so the multi-body and rigid-body yaw control derivatives, Nδped ,

are nearly identical. If a anti-symmetric chordwise bending mode was included, the
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yaw control would come through that mode’s bending and the rigid-body control

derivative in the multi-body model would be small. Performing a quasi-steady re-

duction of the flexible model gives the following static-elastic stability and control

derivatives.

Yvse = −0.0617 Ypse = −3.63 Yrse = 0.653

Lvse = −0.00869 Lpse = −1.003 Lrse = 0.259

Nvse = 0.00075 Npse = 0.0685 Nrse = −0.186

(5.38)

Yδlatse = −0.222 Yδpedse = −0.422

Lδlatse = −0.228 Lδpedse = −0.0495

Nδlatse = 0.0264 Nδpedse = 0.0341

The static-elastic model is similar to the rigid-body model, meaning there are only

slight alterations the the rigid-body dynamics caused by structural flexibility. The

flex factors for key stability and control derivatives are:

ffLp = 0.98

ffLv = 1.055

ffYv = 0.773

ffNr = 0.96

ffNv = 0.736

ffLδlat = 0.995

ffNδped = 0.954

(5.39)
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These flex factors further illustrate the similarity between the two models. The large

flex factors for Yv and Nv are caused by the rotor being pointed slightly inboard

due to structural bending. When the system is perturbed in the lateral direction,

the large changes in these two stability derivatives come from the changes in rotor

forcing.

5.10.3 Mean-Axis Model

Converting the multi-body model to mean-axis form, the rigid-body stability

derivatives are placed in the upper-left quadrant. The rigid-body coupling terms in

the lower-left quadrant and the aeroelastic coupling terms in the upper-right quad-

rant are identified so that the static-elastic model is obtained upon reduction of

structural modes. The structural control derivative is also left in the identification.

Expanding upon the simple example shown in Eqn. (5.27), the aeroelastic coupling

stability derivatives important in the static-elastic reduction are those which multi-

ply the structural displacement degree of freedom.
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Ase =




Yv Yp Yr g

Lv Lp Lr 0

Nv Np Nr 0

0 1 sin(θ) 0




−




Yη̇ Yη

Lη̇ Lη

Nη̇ Nη

0 0







0 1

− 1
ω2 −2ζ

ω






ηv ηp ηr 0

0 0 0 0




=




Yv Yp Yr g

Lv Lp Lr 0

Nv Np Nr 0

0 1 sin(θ) 0




+
1

ω2




Yηηv Yηηp Yηηr 0

Lηηv Lηηp Lηηr 0

Nηηv Nηηp Nηηr 0

0 0 0 0




(5.40)

similarly:

Bse =




Yδlat Yδped

Lδlat Lδped

Nδlat Nδped

0 0




+
1

ω2




Yηηδlat Yηηδped

Lηηδlat Lηηδped

Nηηδlat Nηηδped

0 0




(5.41)

The aeroelastic coupling terms which multiply the structural rate term (i.e.

Lη̇) do not appear in the final expression and can be dropped and left out of the iden-

tification. The aeroelastic coupling and rigid-body coupling terms are correlated, so

there is no simple expression to identify individual derivatives as in the derivations

presented before when roll was the only rigid-body degree of freedom. Since these

values are correlated, multiple responses should be used in the process to identify

these values. If sensor measurements exist, they can help identify structural modes
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: wing tip accelerations to lateral stick inputs

and structural influences on rigid-body motion. Wing-tip and mid-span accelerom-

eters are used here as well as wing root strain. Since wing acceleration is a function

of time-derivatives of states, the output matrices are unknown functions of the state

and control matrices. It is desirable to make a simplified expression for wing tip

acceleration based on linear combinations of states and their time derivatives. The

wing tip acceleration is simplified to be a sum of the roll acceleration multiplied by

the distance to the sensor (xsens) and the acceleration caused by structural bending

of the wing.

az = ṗxsens + Φηη̈ (5.42)

The influence coefficient on the structural acceleration term simply adds units to

the non-dimensional acceleration. In the multi-body tiltrotor example, this value is

32.5. The mean-axis influence coefficient is left in the identification since the mode
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in this model has different meaning than in the multi-body model. The response

comparisons of the full acceleration and the simplified expression, shown in Fig. 5.3,

show the simplified model is essentially identical to the full response and thus ad-

equate for system identification. The primary focus of the identification is on the

roll response to lateral stick inputs. Lateral velocity and yaw responses as well as

responses to pedal inputs were also used. This array of responses helps ensure that

the non-dominant terms in roll are still well identified and gives better Cramer-Rao

bounds and reduces parameter insensitivity. More information on system identifica-

tion can be found in Ref. 97. The identification results are presented in Appendix

B.

The identified Lη = −0.668 is much smaller than its original value of Lη =

−163 (Eqn. (5.34)) from the multi-body model. The aeroelastic coupling terms in

the multi-body model transmit not only forcing and moments from wing aerody-

namic changes as in the mean-axis model, but all forcing transmitted to the fuselage.

In this model, no forcing is being transmitted to the fuselage without wing bending.

In the mean-axis model, rigid-body forcing is already being transmitted through,

only changes based on aerodynamics are not. The near zero identified Lη means

that in hover, wing bending produces insignificant aerodynamic changes on the air-

craft. This is a fairly intuitive response as the wings in hover do not produce lift, so

changing the wings angle of attack through wing bending is meaningless. The wings

are only affected by the rotor downwash. The rotor also does not produce large

changes in lift due to changes in wing bending. The identified mean-axis model has
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the form:

Yvma = −0.0798 Ypma = −3.21 Yrma = −1.28 Yη̇ma = 0.0 Yηma = 25.5

Lvma = −0.00824 Lpma = −1.02 Lrma = 0.255 Lη̇ma = 0.0 Lηma = −0.668

Nvma = 0.0010 Npma = 0.0628 Nrma = −0.194 Nη̇ma = 0.0 Nηma = −0.237

ηvma = 0.268 ηpma = 0.00 ηrma = 0.00 ζma = 0.0647 ω = 16.7

(5.43)

Yδlatma = −0.228 Yδpedma = −0.382

Lδlatma = −0.229 Lδpedma = −0.0504

Nδlatma = 0.0281 Nδpedma = 0.0357

ηδlatma = 0.414 ηδpedma = 0.286

The output equation now contains the sensor’s response to local bending due to

the structural mode:

pmeasured =

[
0 1 0 0 Φpma 0

]





v

p

r

φ

η̇

η





+

[
0

]{
δ

}
(5.44)

The full Φ is first determined by the eigenvector (Eqn. (5.16)) or time history

plot showing the motion of the fuselage and wing tip. The full Φ (Eqn. 5.9)

from the eigenvector (Φ = 0.5918) matches closely to the Lηmb/ω
2 approximation
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(Φ = 0.5915), and shows that even for a larger degree of freedom system, the sim-

plifications used to derivation of the influence coefficient were valid. The influence

coefficient as determined in Eqn. (5.7) becomes:

Φpma = 0.5891 (5.45)

The identified value of this influence coefficient is Φpma = 0.5947. This Φpma

contains all elastic bending contributions except those due to aerodynamics. The

relative similarity of this value to the full value of Φ and the near zero value of the

identified Lηma shows that in hover, wing bending produces negligible effects on the

rigid-body roll response of the aircraft. Therefore, the roll sensor, located at the CG

in this case, picks up elastic bending effects through the influence coefficient. The

influence coefficients not changing means that the measured response is not affected

by wing bending due to aerodynamics and forcing on the structural mode comes

from elsewhere. The aerodynamic effects of wing bending have thus been effectively

isolated from the model.

The static-elastic model has been defined as a model with rigid-body degrees of

freedom that retains static-elastic effects of aerodynamic changes due to structural

bending on rigid-body motion. It is obtained from a quasi-static reduction of the

structural modes. The reduction of the structural modes from the mean-axis model

should produce the same static-elastic model as the reduction of the structural modes

from the multi-body model, Eqn (5.46). The reduction of the structural modes from
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Eqn. (5.43) produces the following stability and control derivatives:

Yvse = −0.0554 Ypse = −3.21 Yrse = 1.279

Lvse = −0.00888 Lpse = −1.024 Lrse = 0.255

Nvse = 0.00079 Npse = 0.0628 Nrse = −0.194

(5.46)

Yδlatse = −0.190 Yδpedse = −0.355

Lδlatse = −0.230 Lδpedse = −0.0511

Nδlatse = 0.0278 Nδpedse = 0.0355

This gives the following flex factors:

ffLp = 1.00

ffLv = 1.078

ffYv = 0.694

ffNr = 1.00

ffNv = 0.777

ffLδlat = 1.004

ffNδped = 0.993

(5.47)

Comparing these flex factors with those of the multi-body reduction (Eqn.(5.39))

shows very similar trends. Almost all flex factors are near one, except ffYv and

ffNv , which are in the range of 0.7 to 0.8. The mean-axis identification produced

ηp = 0 and ηr = 0. These terms appear in the static-elastic reduction of the columns

associated with p and r states (see Eqn. (5.40)). Since they are zero, the second

and third columns of the static-elastic model above (from mean-axis reduction) will
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Figure 5.4: p
δlat

: multi-body and mean-axis static-elastic model comparisons for
hovering LCTR

be unchanged from the rigid-body model and will have a flex factor of one, hence

ffLp = 1 and ffNr = 1. The static-elastic response for the multi-body and mean-

axis models are compared with the rigid response and are shown in Fig. 5.4. These

static-elastic models match well, meaning the coupling terms are well identified and

recreate the key control and stability derivatives during reduction.

5.10.4 Hybrid-Flexible and Decoupled Models

The hybrid-flexible model contains the static-elastic stability derivatives in the

upper-left quadrant and has no aeroelastic coupling in the upper-right quadrant.

Since this model has no aeroelastic coupling, the static-elastic reduction of this

model does not alter any of the control or stability derivatives. The rigid-body

response is decoupled from the elastic states and the elastic mode sensed comes
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purely from the output equation. The rigid-body coupling terms from the mean-

axis identification are retained. If no mean-axis model exists, these terms could be

identified. The stability and control derivatives are as follows:

Yvhf = −0.0617 Yphf = −3.63 Yrhf = 0.653 Yη̇hf = 0.0 Yηhf = 0.0

Lvhf = −0.00869 Lphf = −1.003 Lrhf = 0.259 Lη̇hf = 0.0 Lηhf = 0.0

Nvhf = 0.00075 Nphf = 0.0685 Nrhf = −0.186 Nη̇hf = 0.0 Nηhf = 0.0

ηvhf = 0.268 ηphf = 0.00 ηrhf = 0.00 ζhf = 0.0647 ω = 16.7

(5.48)

Yδlathf = −0.222 Yδpedhf = −0.422

Lδlathf = −0.228 Lδpedhf = −0.0495

Nδlathf = 0.0264 Nδpedhf = 0.0341

ηδlat = 0.414 ηδped = 0.286

The output equation is modified to include the full influence of the modal bending

on the equivalent rigid body response as well:

pmeasured =

[
0 1 0 0 Φphf 0

]





v

p

r

φ

η̇

η





+

[
0

]{
δ

}
(5.49)
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where:

Φphf =
−Lηma

ω2
+ Φpma =

0.668

16.72
+ 0.5891 = 0.5915 (5.50)

or directly from the eigenvector of the system:

Φp =
∂p

∂η̇
= 0.5918 (5.51)

The decoupled model is the same as the hybrid-flexible model with the rigid-body

coupling terms, AER dropped as well.

The roll rate frequency response to lateral stick inputs, the primary response

of interest of the systems described above, is given in Fig. 5.5. Off-axis and pedal

responses are also shown in Figures 5.6 - 5.10. For the roll response, all four models

match extremely well over a broad frequency range. The large separation of the

structural mode from the rigid body modes (ωmin flex/ωmax rb > 10) is well within

the guideline set by Eqn. (5.4). If the modes were closer together, the responses

might differ more in the frequency range of interest. The slight differences at high-

frequency in the phase plot for the decoupled model suggest that the rigid-body

coupling terms are important for accurate identification of the dynamics around

the structural mode. The hybrid-flexible and mean-axis models fully capture the

dynamics of the multi-body model. The hybrid-flexible model, however, contains

fewer stability derivatives and would be easier to identify from flight data. It is

also a simpler model to recreate using the steps above. The added complexity of

identifying the mean-axis model is not justified if the frequency separation in the
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modes is adequate as in the given example. This model form may be necessary if

the frequency separation is smaller than that given in the inequality in Eqn. (5.4).

In analyzing the off-axis and pedal responses, similar trends to the roll response

are seen. Generally, the reduced complexity of the hybrid-flexible and decoupled

models are sufficient for obtaining linear models accurate up to, and even above,

the structural modes for the LCTR configuration in hover.
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Figure 5.5: p
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Figure 5.6: r
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hover
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Figure 5.8: p
δped

: roll rate response comparisons of LCTR to pedal inputs in hover
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Figure 5.9: r
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in hover
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5.11 Tilt-Rotor Example: Cruise

The same steps above are recreated for the tilt-rotor in a 160 knot cruise

condition.

5.11.1 Multi-Body Model

Starting again from the multi-body form of Eqn. (5.32):

Yvmb = −0.272 Ypmb = 36.86 Yrmb = −264.7 Yη̇mb = 2.00 Yηmb = 86.37

Lvmb = −0.0173 Lpmb = 0.095 Lrmb = 0.360 Lη̇mb = −1.107 Lηmb = −161.5

Nvmb = 0.0032 Npmb = 0.191 Nrmb = −0.280 Nη̇mb = −0.096 Nηmb = 4.57

ηvmb = −0.0278 ηpmb = 1.890 ηrmb = −0.384 ζmb = 0.0895 ω = 16.5

(5.52)

Yδlatmb = −0.144 Yδpedmb = −1.355

Lδlatmb = −0.044 Lδpedmb = −0.258

Nδlatmb = −0.019 Nδpedmb = 0.140

ηδlatmb = 0.110 ηδpedmb = −0.334

with θ0 = 0.151 rad.

The aero-elastic coupling term Lηmb = −161.5 has a similar value to the hover case

(Lηmb = −163). This is expected because wing bending imparts moments at the

wing root. If the wing bends the same amount, the moment at the root should be

equal, regardless if the wing is in cruise or hover. This value can also be obtained
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from a simple derivation. For the hover case, roll moments come from rotor forcing

and impact the wing at the tip. In cruise, roll moments come from the ailerons,

which span the outer portion of the wing. The following derivation assumes all

forcing to be at the wing tip. Taking the static wing deflection, w, given a wing tip

forcing “P” and solving for the wing deflection given a moment:

w =
PL3

3EI
=
ML2

3EI
(5.53)

M =
3EIw

L2
(5.54)

This moment provides a roll acceleration to the fuselage.

M = ṗIxx (5.55)

Equating the two moment equations and solving for ṗ gives the roll acceleration

caused by a quasi-static deflection of one of the wings.

ṗ = −3EIw

IxxL2
(5.56)

Values for the LCTR can be substituted into the equation above. Since Lηmb

is for a wing antisymmetric mode, the total moment created by wing bending is

multiplied by two, one for each wing. The moment is also negated since positive

antisymmetric bending (right wing up), creates a negative roll moment. The value

of Ixx is for the fuselage only, as wing bending only impacts moments transferred to

the fuselage. Also, wing modal bending, η, is non-dimensional so the displacement
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must be dimensionalized (multiplied by rotor radius, 32.5’).

ṗ = −2

(
3× (5.073× 108)

(4.16× 105)× 38.712

)
32.5η (5.57)

ṗ = −158.7η (5.58)

This value closely matches the values for the LCTR in hover and cruise, further

verifying the model.

5.11.2 Rigid-Body Models

The purely rigid-body model of the same aircraft (without any elastic motion)

has the following form:

Yvrb = −0.2887 Yprb = 39.29 Yrrb = −264.5

Lvrb = 0.0005 Lprb = −1.136 Lrrb = 0.567

Nvrb = 0.0034 Nprb = −0.073 Nrrb = −0.280

(5.59)

Yδlatrb = 0.006 Yδpedrb = −1.508

Lδlatrb = −0.110 Lδpedrb = −0.061

Nδlatrb = −0.018 Nδpedrb = 0.135

The static-elastic stability and control derivatives.

Yvse = −0.281 Ypse = 37.46 Yrse = −264.8

Lvse = −0.0007 Lpse = −1.03 Lrse = 0.589

Nvse = 0.0027 Npse = 0.223 Nrse = −0.286

(5.60)
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Yδlatse = −0.109 Yδpedse = −1.461

Lδlatse = −0.110 Lδpedse = −0.059

Nδlatse = −0.017 Nδpedse = 0.135

The rigid-body and static-elastic models above give the following flex factors.

ffYv = 0.973

ffLp = 0.907

ffYp = 0.953

ffNr = 1.022

ffNv = 0.787

ffLδlat = 0.994

ffNδped = 1.00

(5.61)

The flex factors for cruise also show the influence of structural bending on the

rigid-body stability derivatives. These values are generally of the same magnitude

in cruise as they are for hover, meaning the frequency responses are not anticipated

to alter too much between the flexible and rigid cases at low frequencies.

5.11.3 Mean-Axis Model

The identification of the cruise model proved to be more challenging than the

hover model and is described in Appendix B in Section B.2. The final identified

model becomes:
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Yvma = −0.2887 Ypma = 39.29 Yrma = −264.5 Yη̇ma = 0.0 Yηma = 0.0

Lvma = 0.00054 Lpma = −1.136 Lrma = 0.5671 Lη̇ma = 0.0 Lηma = −41.32

Nvma = 0.0034 Npma = −0.073 Nrma = −0.28 Nη̇ma = 0.0 Nηma = −49.29

ηvma = 0.0062 ηpma = −1.250 ηrma = −0.204 ζma = 0.0603 ω = 16.65

(5.62)

Yδlatma = −0.278 Yδpedma = −3.007

Lδlatma = −0.096 Lδpedma = −0.097

Nδlatma = 0.0 Nδpedma = 0.064

ηδlatma = 0.113 ηδpedma = −0.334

The identified aeroelastic coupling Lη stability derivative is much larger here

than in hover. This means bending of the antisymmetric wing bending mode pro-

duces significant aerodynamic rolling moment, whereas it was seen to be negligible

in hover. This large value of Lη also means the influence coefficient Φpa will not be

the same as the full Φ as was the case for hover.

Φpa = Φ +
Lη
ω2

= 0.5932 +
41.32

16.652
= 0.4442 (5.63)

The identified value of Φpa (Table B.5, parameter Phip) is 0.4439, a very good

match with the derived value. The influence coefficient changing means that the

bending within this mode is caused by aerodynamics.
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The difference in influence coefficient from the hover case to the cruise case is

now discussed. The antisymmetric mode is essentially identical in hover or cruise,

and looks like the mode in Figure 5.1 in either case. The different mean-axis influence

coefficient means that the equivalent rigid-body motion of the aircraft is different.

The influence coefficient is then added to the equivalent rigid-body motion to obtain

the actual motion at the sensor location. The multi-body case can be thought of

one where the influence coefficient is zero. The sensor dynamics are picked up in

the fuselage states fully as the fuselage participates in the mode. For the mean-axis

model in hover, the influence coefficient was essentially Lη/ω
2 and the identified

mean-axis Lη was zero. This means the equivalent rigid-body is not active in the

mode, and the influence of the mode must be fully regained using the influence

coefficient. In the cruise case, the equivalent rigid-body still participates in the

mode as it is excited by wing bending. The influence coefficient is only partly

responsible for regaining the response at the sensor location. This also means that

the static-elastic response in cruise will be different than the rigid-body response.

In hover, they were nearly identical.

The static-elastic reduction of the mean-axis model gives:

Yv = −0.289 Yp = 39.29 Yr = −264.5

Lv = −0.0004 Lp = −0.950 Lr = 0.598

Nv = 0.0023 Np = 0.149 Nr = −0.244

(5.64)
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Yδlat = −0.278 Yδped = −3.007

Lδlat = −0.113 Lδped = −0.048

Nδlat = −0.02 Nδped = 0.123

The flex factors are as follows:

ffYv = 1.00

ffLp = 0.836

ffYp = 1.00

ffNr = 0.871

ffNv = 0.678

ffLδlat = 1.021

ffNδped = 0.913

(5.65)

As for the hover case, these flex factors compare well with the static-elastic reduction

of the multi-body model. The only flex factor that shows a significant differences

is ffNr . In the identification, the parameter Yη was set to zero, meaning the first

row of the static-elastic reduction of the mean-axis form remains unchanged from

the rigid-body values as per Eqn. (5.40).

In this cruise model, there are large flex factors for key stability derivatives of

the roll response. Specifically, Lp changes between the rigid and flexible models and

is the cause of the low frequency magnitude difference between the two models and

the break in the response (around 1 rad/sec) occurring at slightly lower frequency in

the cruise model. Static-elastic comparisons of the mean-axis and multi-body models

are show in Fig. 5.11. As with the hover response, the static-elastic responses match
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well together. The off-diagonal terms are well identified so that a reduction of the

structural terms produces similar quasi-static dynamics (i.e. static bending produces

the same result for both models). There are larger differences when compared to

the rigid model in cruise than there were in hover. These differences were predicted

by the large aeroelastic coupling terms in the cruise mean-axis model.
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5.11.4 Hybrid-Flexible and Decoupled Models

The hybrid-flexible model is of the form:

Yv = −0.281 Yp = 37.46 Yr = −264.8 Yη̇ = 0.0 Yη = 0.0

Lv = −0.0007 Lp = −1.03 Lr = 0.589 Lη̇ = 0.0 Lη = 0.0

Nv = 0.0027 Np = 0.223 Nr = −0.286 Nη̇ = 0.0 Nη = 0.0

ηv = 0.0062 ηp = −1.250 ηr = −0.204 ζ = 0.0603 ω = 16.65

(5.66)

Yδlat = −0.278 Yδped = −3.007

Lδlat = −0.096 Lδped = −0.097

Nδlat = 0.0 Nδped = 0.064

ηδlat = 0.113 ηδped = −0.334

The decoupled model is the same as the hybrid-flexible model with the rigid-body

coupling terms set to zero.

The final models are compared in Figures 5.12 - 5.17. The models are plotted

for a large frequency range (ω = 0.01 − 100 rad/sec) to capture the rigid-body

and structural dynamics, even though the identification for many of these models

occurred over a much smaller range. For the roll response to lateral stick inputs, the

primary model of concern, there are slight differences between the models around the

structural mode. Generally, the models match well at low frequency, but diverge

around the structural mode. Aerodynamics has a much larger impact on cruise

dynamics and the identified mean-axis model is not able to capture the dynamics
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both in the rigid-body range as well as the structural range. The pedal responses for

the hybrid-flexible and decoupled models are significantly different than the other

responses, showing that aeroelastic coupling has a large impact on these responses.

A new model was not identified for the hybrid-flexible model, it is a derivative of the

mean-axis model. If a new model was identified to create new rigid-body coupling

terms, the responses might match better. The hybrid-flexible and decoupled models

are essentially identical for many of the responses, meaning rigid-body coupling

does not have a large affect on the responses. These plots further validate the fact

that the cruise model is significantly altered by aerodynamic changes due to wing

bending, whereas the hover response is not.
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from ω = 0.01− 22.0 rad/sec)
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: yaw rate response of LCTR to lateral stick inputs in cruise (ID

from ω = 0.01− 4.0 rad/sec)

100

50

0

50

M
ag

ni
tu

de
 [d

B]

LCTR Cruise Flexible Model Comparisons (v/ lat)

 

 

10 2 10 1 100 101 102
990

810

630

450

270

Ph
as

e 
[d

eg
]

Frequency [rad/sec]

Rigid
Multi Body
Mean Axis
Hybrid Flexible
Decoupled

Figure 5.14: v
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(ID from ω = 0.01− 4.0 rad/sec)
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: roll rate response of LCTR to lateral stick inputs in cruise (ID

from ω = 0.3− 100.0 rad/sec)
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: yaw rate response of LCTR to lateral stick inputs in cruise (ID

from ω = 0.01− 4.0 rad/sec)
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(ID from ω = 0.01− 4.0 rad/sec)
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5.12 High Frequency Asymptotes

The high frequency roll acceleration response has an asymptote of Lδ. As

previously mentioned, Lδ is near zero in the multi-body case as rotor forcing must

first pass through the wing structure. However, the mean-axis, hybrid-flexible, and

output models have the rigid-body or static-elastic Lδ, which is several orders of

magnitude larger than the flexible case. It will be shown that the influence coefficient

in the output of the flexible response serves to reduce the high frequency value of

the rigid-body response back to the original flexible Lδ.

Starting from the multi-body model, the static-elastic model is obtained using

Eqns. (5.5) and (5.6). Here Lδ and Lp without subscripts represent the original

multi-body or mean-axis values. Once converted from multi-body form the response

contains the structural mode multiplied by the influence coefficient. The decoupled

model takes the following form:

ṗ

δ
=
sp

δ
=

sLδse
s− Lpse

+ Φ
η̇δs

2

s2 + ω2
=

s
(
Lδ + Ln

ω2 η̇δ
)

s−
(
Lp + Ln

ω2 η̇p
) +
−Lη
ω2

η̇δs
2

s2 + ω2
(5.67)

At high frequency (s large), the transfer function approaches:

ṗ

δ
=

(
Lδ +

Ln
ω2
η̇δ

)
− Lηη̇δ

ω2
= Lδ (5.68)

Where Lδ is the original flexible model control derivative. See Fig. 5.18

for a comparison of the hovering LCTR, where a multi-body model response gave

Lδ = 0.0175, and the decoupled model gave Lδ = −0.228. The high frequency
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Figure 5.18: ṗ
δ
: roll acceleration response of LCTR to lateral stick inputs

approaches -34 dB, the value of the multi-body Lδ, as expected.

5.13 Chapter Summary

Different flexible model architectures have been analyzed. These include the

multi-body model, which is formed by summing the effects of aircraft component

independently; the mean-axis model, which assumes a rigid aircraft whose dynamics

are altered by changes in aerodynamic forcing due to structural bending; the hybrid-

flexible model, a simplification of the multi-body and mean-axis models which only

includes coupling effects from rigid-body motion onto the structural modes; and the

decoupled model, which assumes no coupling between the rigid-body and structural

dynamics.
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Multi-body models capture both inertial and aerodynamic changes to the air-

craft as it flexes. Mean-axis models only capture the aerodynamic changes and

assume the inertial properties of the aircraft don’t change as it flexes. The iner-

tial changes are generally quite small and can be ignored, providing a pathway to

convert the multi-body model to the mean-axis model. The multi-body model can

be converted to the mean-axis model through identification of off diagonal coupling

terms. These terms are highly correlated and system identification software must

be used to ensure a valid response.

The states of the mean-axis, hybrid-flexible and decoupled models, when com-

pared to the multi-body model, take on different meanings. In the multi-body

model, the rigid-body states place the fuselage. In the other models, they place

the equivalent rigid-body of the aircraft. The response at the fuselage in the mean-

axis, hybrid-flexible and decoupled models is then regained through an influence

coefficient, based on the local structural bending at the sensor location.

The influence coefficients for each output are factors of the modal displacement

at the sensor location. Influence coefficients can be determined by evaluating the

eigenvectors for modes present in a response and are functions of modal natural

frequency and components from the aero-elastic coupling matrix.

Hybrid-flexible and decoupled models are reductions of the multi-body and

mean-axis models. They preserve the dynamics of the original responses well, but

may diverge if coupling terms are important in the response or if there is a significant

difference between the static-elastic and rigid-body response.

The hover analysis shows that there is not a large effect of elastic motion on
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the response of the aircraft. The flex-factors for this case are generally near one, and

aeroelastic and rigid-body coupling terms are small as well. The cruise, flex-factors

became larger and aeroelastic coupling terms become significant to the response. If

a static wing deflection is given to the simulation models, the change in aerodynamic

roll moment in the cruise configuration is significantly larger than in hover. This

further validates that in hover elastic effects do not alter aerodynamics significantly,

whereas in cruise they do.

The static-elastic reduction of the mean-axis model shows similar trends to

the original static-elastic reduction of the multi-body model. The flex-factors that

remained unaffected in multi-body reduction remained so in the mean-axis reduc-

tion, and the ones that changed in the multi-body reduction did so as well in the

mean-axis reduction.
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Chapter 6: Flexible LCTR Control Design

This chapter develops a control system for the flexible LCTR. The control

system aims to reduce the structural oscillations to improve both fatigue life of

aircraft components and the passenger ride quality. Wing tip acceleration is fed back

and structural motion, as measured using wing root strain gauges, is minimized.

6.1 Model Description

The same control architecture is used as described in Refs. [27–29] and is shown

in Fig. 6.1 with the addition of a structural feedback path. The structural feedback

portion of this block diagram is developed within this dissertation.
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Figure 6.1: Model following control system architecture
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6.1.1 Model Overview

This control system architecture is referred to as a model following control

system, in that the desired closed loop performance of the system is set by the

command model. The command model gives either an attitude command attitude

hold (ACAH) or translational rate command (TRC) response type in the lateral and

longitudinal axes and rate command in the yaw and vertical axes.

The inverse plant contains first order fits of the short-term aircraft on-axis

response between 1 and 10 rad/sec. The inverse and the vehicle model cancel for

low frequency inputs, and the resulting aircraft motion follows the command model.

Notch filters are used to remove structural excitation from the commanded response

and the feedback. Notch filters in the command path prevent the pilot from exciting

the structural modes and in the feedback path they prevent the control system

from exciting the modes. The mixer block aims to remove off-axis responses. For

example, roll and yaw may be coupled, and the mixer would add pedal inputs to

piloted lateral stick pilot inputs so that the aircraft response is decoupled. Actuator

dynamics limit the allow actuator motion using actuator displacement and rate

saturation. The primary actuators are modeled as second order systems with an

8 Hz natural frequency and a damping ratio of 0.7. Having actuator limits also

allows for evaluation of PIO tendencies. Turbulence is input into the system at the

actuator level using the CETI model [106]. This form of turbulence input results in

realistic aircraft motion.

The bare-airframe vehicle model used includes three wing degrees of freedom
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as well as nacelle motion and contains a total of 63 states. Disturbances are added

to the system outputs and represent measurement errors. Disturbances input to the

system at the outputs also allow for disturbance rejection criteria to be evaluated.

The equivalent time delay block is introduced to avoid overdriving actuators and

other higher order dynamics that are not modeled by the first order inverse block.

The time delays are equal to the system response delays to command inputs. The

feedback block converts the error signals into actuator motion.

Additional details are now given for the components of the control system.

6.1.2 Nacelle Controller

The bare-airframe dynamics include active nacelles. Each nacelle has an as-

sociated control which generates torques at the nacelle’s connection point to the

wing to rotate it. Without these control inputs, the nacelles’ rotation about the

wing would simply be the solution to the nacelle differential equation. The nacelle

control acts as an additional non-conservative force in these equations of motion.

A nacelle control system, shown in Fig. 6.2 was developed so the nacelle re-

sponse matched that found most desirable by pilots [31], namely an 8 rad/sec natural

frequency and a high damping ratio. Nacelle angle and rate are fed back to the na-

celle torque motor to create the control system. In the figure, the the gain blocks

represent proportional gains, integral gain ratio (ratio of integral to proportional

gain), and derivative gains. The nacelles are also rate limited to 7.5 rad/sec and

have 9 degree displacement limits from the 86 degree trim position. This allowed
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the nacelles to rotate aft of vertical for longitudinal control.
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Figure 6.2: Nacelle angle control system

6.1.3 Command Model

6.1.3.1 ACAH Command Model

Different command models were developed for ACAH and TRC modes. In

ACAH mode, pilot stick position commands aircraft attitudes. Lateral stick motion

causes antisymmetric collective changes in the rotors and longitudinal commands

cause symmetric longitudinal cyclic inputs to the rotors. The command model

responses for ACAH mode are second order for the lateral/longitudinal axes, and

first order for the pedal and heave axes. Command model time constants, natural

frequencies, damping ratios and control sensitivities are based on findings from the

NASA simulation studies [28, 29, 31]. Attitude commands in both axes are second

order and command 0.2 radians of attitude/inch of stick deflection and have natural

frequencies of 1 rad/sec. The damping for the lateral axis is 1.0 and longitudinal
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axis is 1.45. The generic form for the ACAH system is:

φ

δlat
,
θ

δlon
=

Kω2

s2 + 2ζωs+ ω2
(6.1)

Collective stick commands vertical velocity through symmetric collective changes

and pedal inputs command yaw rates through antisymmetric longitudinal cyclic

changes. Both the vertical and directional axes commands are first order. The

vertical axis commands 10 feet per second/inch of collective stick deflection, with a

time constant of 0.76 seconds. The directional axis commands 0.15 rad/second of

yaw rate per inch of pedal deflection with a time constant of 0.7 seconds. The first

order heave and yaw responses may be written as:

w

δcol
,
r

δped
=

K

Ts+ 1
(6.2)

The nacelles are commanded to remain vertical in this mode and symmetric lateral

cyclic inputs are not used. Time delays are added to the command model signals

that are sent to the feedback to avoid overdriving actuators.

6.1.3.2 TRC Command Model

The translational rate command (TRC) system is a control system designed

with the faster ACAH system active. All commanded responses are first order

and stick position commands either lateral or longitudinal velocity with attitudes

commanded to remain zero. The ACAH control loop remains closed in order to
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drive the attitudes to zero. Different inceptors are used for TRC commands versus

ACAH commands. Lateral translational rate is obtained using symmetric lateral

cyclic, whereas antisymmetric collective is used for roll attitude commands. In

the longitudinal axis, symmetric longitudinal cyclic is used for attitude commands,

and nacelle angle is used for TRC commands. Both axes command 10 feet/second

velocities per inch of stick deflection and have 5 second time constants.

u

δlon
,
v

δlat
=

10

5s+ 1
(6.3)

The vertical and directional axes remain unchanged from ACAH mode. The

low-order inverse of the TRC system assumes that the ACAH loop is closed and

tightly constrained since the ACAH loop is faster than the TRC loop (natural fre-

quency of 1 rad/sec for ACAH versus a time constant of 5 seconds for TRC).

6.1.4 Inverse Plant

The inverses block contains only on-axis inverses. Each inverse is first order

and captures the short term aircraft response. Integral gains are used in the feedback

system to remove steady state errors. The inverse of the TRC system assumes that

the ACAH loop is closed and tightly constrained since the ACAH loop is faster than

the TRC loop (natural frequency of 1 rad/sec for ACAH versus a time constant of

5 seconds for TRC).
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6.1.5 Notch Filters

As mentioned, notch filters are used in the feedforward and rigid-body feedback

paths as shown in Fig. 6.1. The notch filters used are shown in Fig. 6.3, and have

the following form:

N(s) =
s2 + 2ζnumωs+ ω2

s2 + 2ζdenωs+ ω2
(6.4)

The damping of the numerator and denominator of each filter are hand tuned so that

the frequency matched that of the structural mode. As can be seen in this figure,

notch filters remove magnitude content at their respective frequency. The penalty

is a reduction of phase at lower frequencies. This phase reduction can directly lead

to lower stability margins. Notch filters are used often by fixed-wing aircraft control

system designers to account for structural modes [107,108].

The notch filters in the feedback path serve to remove structural oscillation

from the rigid-body feedback signals. They are only placed on the roll rate, yaw

rate, and vertical velocity signals as measured at the CG. With structural feedback

active, these filtered signals are added to wing acceleration signals to create the

total feedback signal. This allows for the wing tip acceleration signals to be used for

structural control, and rigid-body feedback signals to be used for lower frequency

airframe dynamics. Without structural feedback, the notch filters serve simply to

avoid excitation of the modes by the control system.
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Figure 6.3: Notch filters for the lateral, directional, and heave axes

6.1.6 Mixer

Crossfeeds within the mixer are used in the feedforward path to remove un-

wanted off-axis response without using feedback. Generally, the crossfeed signals are

simple gains. Crossfeeds are determined using coupling numerators as in Ref. [109].

The gain value is determined by looking at the off-axis response to bare-airframe

stick inputs and dividing it by the on axis response. For example, the lateral stick

to pedal crossfeed (to remove yaw coupling to lateral stick inputs) has the following

form.

Gped
lat =

r

δlat

∣∣∣∣w→δcol
θ→δlon

r

δped

∣∣∣∣w→δcol
θ→δlon

(6.5)
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These transfer functions are generally flat for low to mid frequencies, giving the

gain of the crossfeed. The sign of the crossfeed is determined by the phase curve

of the signal. The only crossfeed that is not a pure gain is the nacelle motion to

longitudinal stick. This crossfeed is a ratio of second order transfer functions and

is also passed through a low pass filter. This crossfeed was identified to be critical

in removing uncommanded pitch motion as a result of longitudinal inputs in TRC

mode [30].

6.1.7 Feedback

Using rigid-body as well as structural feedback allows the optimization to focus

independently on both low frequency rigid-body dynamics through the rigid-body

feedbacks as well as structural motion through the gains on the isolated structural

responses. The complete feedback pathway for the lateral axis is shown in Fig. 6.4.

Proportional-integral-derivative (PID) feedback on the rigid-body signals is passed

through the notch filter, then summed with the structural feedback.

6.1.7.1 Rigid-body

Standard rigid-body feedback signals exist, including aircraft attitudes and

linear and angular rates. All rigid-body integral ratio gains are constrained to be

1/5th of the expected crossover frequency for that axis. This minimizes phase loss

in the broken loop response while still giving good steady-state tracking.
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Figure 6.4: Lateral axis rigid-body and structural feedback

6.1.7.2 Structural

Historically [64,66,71,72,74,75], accelerometer measurements are available for

either structural feedback or load monitoring.

As described previously, modal acceleration is fed back for structural mode

control. Wing tip accelerometer signals are combined to isolate certain structural

modes; for example, symmetric versus antisymmetric beamwise bending can be

obtained by either summing or subtracting wing tip vertical acceleration signals.

The CG response is then scaled by the wing length and subtracted from these

signals to isolate structural motion (see Fig. 6.5).

η̈

δlat
= ṗCGl −

(az left wing tip − az right wing tip)

2
(6.6)

The structural feedback signals are included for the lateral, direction and ver-

tical axes.
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Figure 6.5: Modal acceleration isolation from accelerometer signals

Figure C.24 provides a good initial guess for the PI ratio used in the control

law optimization process. The final structural PI ratios are between 3 and 15:

KIstr

KPstr

≈ 3− 15 (6.7)

To reduce the number of parameters in the design optimization, the integral

gains can be held fixed within this range. Refer to Appendix C for further details

on structural gain selection.

Within the TRC mode, a PI control system is implemented on the lateral and

longitudinal rigid-body velocity errors. As with the ACAH system, the integral ratio

gain on the rigid-body feedback is hardwired to be 1/5th of crossover frequency in

both TRC axes. Based on Ref. [110], the crossover in the TRC loops is about 1/5th

the crossover of the faster ACAH loops. There is no structural feedback specific

to TRC mode. Nacelle dynamics are too slow to be useful in structural control.

All structural control is therefore implemented within the ACAH control system.

Since the ACAH feedback loop remains active in TRC mode, structural control is
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retained.

6.2 Gain Optimization

The gains are optimized using the CONDUIT R© software tool [111]. CONDUIT R©

uses the feedback gains as variables in the optimization and strives to meet design

specifications while ensuring stability and minimum actuator usage. The specifi-

cations are given numerical values and gradients for the optimization. A minimax

optimization approach is used so that in a subsequent iteration no specification value

will be degraded beyond the current worst value.

Table 6.1 presents the specifications used in the optimization. The specifica-

tions include various broken loop specifications from MIL-F-9490E [113], closed loop

specifications from ADS-33E [32], among others. Specifications are broken up into

different categories.

The optimization begins with Hard specifications. These ensure overall design

stability and robustness and include stability margin, Nichols margin, and eigenvalue

specifications from MIL-F-9490E. There are tighter stability margin requirements

for frequencies near the structural modes, specifically, an increase to 8 dB of gain

margin and 60 degrees of phase margin. These tighter requirements ensure stability

if the structural modes are not well identified or they vary depending on loading, fuel

quantity, etc. For the ACAH systems, any design with structural feedback also has

specifications to ensure stability is retained if the structural feedback signals are lost.

The structural feedback signals are cut out of the response and stability margins are

reanalyzed. The hard specifications comprise the first portion of the optimization.
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Table 6.1: Control system optimization specifications

Spec Type Spec Name Description Axis

Hard

EigLcG1 Eignevalues in L.H.P -
StbMgG1 Gain/Phase Margin (6 dB, 45 deg) All
StbMgG2 Structural Gain/Phase Margin (8 dB, 60 deg) All
NicMgG1 Nichols Margin (6 dB, 45 deg) All
NicMgSt Structural Nichols Margin (8 dB, 60 deg) All

Soft

ModFoG2 Model Following 1 All
DstBwG1 Disturbance Rejection Bandwidth2 All
DstPkG1 Disturbance Rejection Peak All
CrsMnG2 Minimum Crossover Frequency3 All
OlpOpG1 Open Loop Onset Point (Cat II PIO) [112] All
RmsAcG1 Structural RMS to CETI Disturbance All
FreHeH1 Heave Response (using 1st order LOES fit) Heave
EigDpG1 Eigenvalue Damping (up to 5 rad/sec) -
EigDpG1 Eigenvalue Damping (5-10 rad/sec) -

Summed Obj.
CrsLnG1 Crossover Frequency All
RmsAcG1 Actuator RMS All

Check Only

BnwAtH1 Bandwidth (Other MTEs, UVE > 1) Lat
BnwYaH2 Bandwidth (Other MTEs) Dir
RisLoG1 Rise Time (using 1st order LOES fit) Lon/Lat TRC
EigDpG1 Eigenvalue Damping (10-18 rad/sec) -

1 Model following max frequency was reduced from 10 rad/sec to 4 rad/sec for both Flex
Wing cases.
2 Outer loop TRC DRB set using specifications from Ref. [110]
3 Minimum crossover for outer loop set using specifications from Ref. [110]

The solver ignores all the other specifications until all the hard specifications are

level 1. Once all hard specifications are level 1, the second stage of optimization

begins.

The second stage consists of Soft constraints, which ensure good design perfor-

mance. These specifications generally include model following, disturbance rejection

bandwidth (DRB), disturbance rejection peak response (DRP), and eigendamping

specifications. PIO tendencies are also evaluated in this category using the OLOP
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specification [112]. The structural specifications (described in next section) were

grouped into this category as well. Optimization to these specifications is per-

formed after all hard constraints are in the level 1 region. Hard specifications must

remain in the level 1 region throughout this portion, and the rest of the optimization

process.

The final stage of optimization minimizes Summed Objective specification. Ac-

tuator RMS and crossover frequency are minimized as much as possible while en-

suring that the soft and hard constraints remain in the level 1 region. This phase

of optimization ensures minimal actuator and control system activity.

Check Only specifications are not involved in the optimization, but are eval-

uated by the solver as a check. Bandwidth and rise-time specifications fall within

this category. The aircraft bandwidths and rise times are set by the command

model to meet Level 1 requirements, so optimization to these values is not required.

Additional details on the phases of the optimization can be found in Ref. 111.

6.2.1 TRC Gain Determination

The innermost loop in the control system stabilizes and controls the nacelles.

Once the nacelle gains are determined, they remain fixed for the entire design pro-

cess. The ACAH loop is built onto the nacelle loop. The TRC loop assumes the

ACAH system is also active. The design criteria for the TRC loop comes from

Ref. [110]. The crossover frequency requirement for velocity response is 1/5th of

the faster ACAH response. The DRB is also set to 1/5th of the ACAH DRBs. The

disturbance rejection peak response requirements are left unchanged.
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Within the TRC mode, a PI control system is implemented on the lateral and

longitudinal rigid-body velocity errors. As with the ACAH system, the integral ratio

gain on the rigid-body feedback is hardwired to be 1/5th of crossover frequency in

both TRC axes. There is no structural feedback specific to TRC mode. Nacelle

dynamics are too slow to be useful in structural control. All structural control is

therefore implemented within the ACAH control system. Since the ACAH feedback

loop remains active in TRC mode, structural control is retained.

To determine the gains for the TRC mode, the ACAH gains are frozen, greatly

reducing the optimization problem size. The results of this methodology were com-

pared to freeing all the gains and re-optimizing [110]. Both methods produced

similar results and freezing the inner loop gains led to a much quicker optimization

solution.

6.2.2 Structural Specifications

Most specifications used during the optimization are requirements from ac-

cepted sources such as ADS-33E and MIL-9490E. Given that structural requirements

do not exist in terms of allowed closed loop motion, a new specification, shown in

Fig. 6.6, was developed to constrain structural motion.

The root mean square (RMS) value of beam strain in the beamwise and chord-

wise directions serve as the metric to be minimized. The RMS is obtained in the

frequency domain by integrating the strain metric from 1 to 100 rad/sec:

RMS =

√
1

π

∫ 100

1

|F (ω)|2dω (6.8)
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Figure 6.6: CONDUIT R© structural specification

Lower frequency motion is attributed to the rigid-body dynamics and is ignored.

The strain includes deflections of both the symmetric and antisymmetric bending

modes. The specification is evaluated for CETI turbulence inputs [106] in order

to ensure accurate excitation levels for each axis. The CETI turbulence model

provides an accurate representation of atmospheric turbulence and captures the air-

craft response to turbulence. For each design, the optimizer was allowed to minimize

this specification to provide a best case solution for that design. The final level 1/2

boundary represents the minimum attainable strain with structural feedback turned

on. The final level 2/3 boundary represents the lowest structural strain RMS with-

out structural feedback.
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6.2.3 Structural Control Tradeoffs

A tradeoff study was performed on the structural RMS specifications to de-

termine the minimum structural RMS value attainable for the given control system

design. The structural specification was used in the beam and chord axes, meaning

total beamwise and chordwise motion were minimized. For this optimization, the

structural specification boundaries are incrementally tightened (allowing less struc-

tural oscillation to turbulence) until the optimization routine is no longer able to

find a feasible solution that simultaneously meets the tightened structural require-

ments and all other design criteria. This case on the boundary between the feasible

and infeasible solution represents the Pareto optimal case. The full set of specifica-

tions for the ACAH control system from Table 6.1 are used to ensure the structural

motion reduction still produces a stable control system with good handling qualities.

CONDUIT R© specifications are divided into three levels as shown in Figure 6.6.

Generally the boundaries between the levels represent the boundary of handling

qualities. For example, the level 1/2 boundaries for bandwidth come from ADS-33E

guidelines. Similarly low frequency stability margin specification level 1/2 bound-

aries are set to 45o for phase and 6 dB for gain as set by MIL-F-9490D. Level 2/3

boundaries similarly represent the shift from level 2 to level 3 handling qualities.

For the structural specification, the level 1/2 boundaries represent the struc-

tural RMS values obtained with the structural gains turned off. This boundary is

independently determined for both the beam and chord axes. These values represent

the “best” that the control system can do without structural feedback. The trade-
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off study begins by moving the level 1/2 boundary further into the level 2 region,

thereby loosening the requirements on structural RMS. This is done to investigate

the effects of allowing the structural gains to be active across the full design space.

The level 1/2 boundary is then set tightened incrementally into the level 1 region

for all axes simultaneously. Once the boundary in one axis is no longer able to

be reduced, the boundary value is fixed at this optimal value and the optimization

continues on the other structural specifications to find optimal values for all axes.

This type of tradeoff study is called a design margin optimization (DMO). An-

other example of a DMO, used to increase the disturbance rejection bandwidth and

crossover frequency of a UH-60 Blackhawk can be found in Ref. [110]. This reference

also presents additional guidelines of performing a design margin optimization.

The structural strain RMS values obtained from this study are shown in Fig-

ure 6.7. The step between designs is based on a percentage of the size of the level 2

region and is labeled as a DMO step. The RMS values are normalized based on the

the nominal case which is the best case structural performance without structural

feedback, labeled DMO step 0. For each DMO design shown, a full optimization is

completed. All hard and soft constraints must meet level 1 values while summed

objective specifications minimize actuator usage and crossover frequency.

By design, the best case without structural feedback was set as the Level 1

(DMO=0) boundary, as shown in Fig. 6.7. Based on the chord axis, Fig. 6.7b, just

turning on structural feedback shows an immediate improvement in RMS value as

compared to the nominal design. The structural RMS is reduced to 84% of the

nominal value. Structural gains are beneficial in minimizing actuator usage (final
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step in optimization) in this axis, the byproduct of which is also a reduction in

structural RMS. The final DMO design, with a design margin of 80%, represents

the lowest structural RMS attainable with structural feedback, while meeting all

stability and handling quality requirements. This design will be compared to other

designs in a later section.
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Figure 6.7: Strain RMS requirements and optimized values for each DMO step
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Figure 6.8 shows the structural gains for the design margin optimization shown

in Fig. 6.7. The gains that act on the beam axis are the summed and differential wing

tip vertical acceleration (az) gains, as shown by the dashed and dotted lines. The

summed wing tip vertical acceleration gain shows an increase with nearly each DMO

step. The increase in this gain is responsible for the reduction in structural RMS

shown in Figure 6.7a. After the initial improvement in chordwise strain obtained

by simply allowing the optimization engine to use the structural gains, the chord

structural RMS values remain generally flat until approximately design margin 50%,

when the RMS values approach the boundary again and begin to decrease. This

decrease is accompanied by a rise in the gain in this axis at the same design margin.
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Figure 6.8: Proportional structural gain values for each DMO step

The gain on differential wing tip vertical acceleration remains fairly inactive

during the optimization. As previously mentioned, the CETI turbulence model

is an accurate representation of aircraft dynamics due to atmospheric turbulence,
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which has large low frequency content. The antisymmetric beam mode occurs at 17

rad/sec and the symmetric beam mode occurs at 9 rad/sec. The symmetric mode

is excited more in turbulence since it is at lower frequency, so this mode drives the

specification for the beam axis more than the antisymmetric beam mode.

Figure 6.9 compares the strain RMS to the actuator RMS. The actuator RMS

is a measure of swashplate actuator usage in each axis. Figure 6.9a shows that for

the beam axis, which is excited by both lateral and heave inputs, much improvement

in strain RMS is achievable with negligible changes in actuator usage.

At a design margin of 60%, the lateral actuator, which reflects antisymmetric

collective on the rotors, begins to increase. The structural gain for the differential

vertical acceleration remains flat in Fig. 6.8. More actuator usage is needed to

continue reducing structural excitation above the 60% design margin since the gain

does not change.

Figure 6.9a also contains the heave actuator RMS, a measure of rotor sym-

metric collective pitch changes. The actuator RMS for this axis remains fairly flat.

Since the heave actuator RMS remains flat but the design margin requires reduced

structural motion, the damping on the symmetric beamwise mode must improve. If

the gain improves damping, the wing motion is reduced without increasing actuator

motion.

In the chordwise direction, the gains increase for design margins of 50% or

higher, but the actuator RMS (Fig. 6.9b) remains relatively flat.

Figure 6.10 shows the damping values of the three low frequency structural

modes impacted by structural feedback. Increases in structural gain values tend to
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Figure 6.9: Strain RMS compared to actuator RMS for each DMO step

accompany improvements in damping. The largest improvement in damping is for

the symmetric beam mode, as expected since the summed vertical wing acceleration

gain begins to increase for small design margins. The Antisymmetric beam mode

shows slight decrease in damping for increases in design margin and the gain on this
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mode did not change during the design margin optimization. Finally, the damping

of the antisymmetric chord mode remains fairly flat. The structural gain for this

axis was also relatively flat.
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Figure 6.10: Structural mode damping ratios for each design margin

The key trade-offs determined by this design margin optimization include:

• Structural RMS improvements can be achieved with little additional actuator

activity, except for the lowest strain RMS requirements, which come at the

cost of additional actuator activity.

• Damping of the lowest frequency structural modes were improved, but the

damping of the higher frequency antisymmetric beam mode was reduced.

6.2.4 Notch Filter and Static-Elastic Optimization

Additional designs were optimized to provide comparison points to the designs

discussed in the design margin optimization, which provided optimal designs with
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structural feedback. A static-elastic (see Chapter 5 for further details) design was

optimized to show the effects of designing a control system for a rigid aircraft and

implementing it onto a flexible one. The static-elastic bare-airframe model is ob-

tained by a quasi-static reduction of the structural modes from the flexible model.

Since this model is rigid, structural specifications were not used. A design with

notch filters in the feedforward path was also optimized with and without struc-

tural feedback. The notch filters serve to reduce piloted excitation of the structural

modes without structural feedback. The design with the notch filters and structural

feedback also came from a design margin optimization as was described earlier for

the case with only structural feedback.

6.3 ACAH Design Comparisons

The comparisons will focus on several designs, most of which have already

been described and which are summarized in Table 6.2. The StrFB design comes

from the design margin optimization and represents the design with maximum struc-

tural feedback that has the least structural excitation to turbulence. noStrFB is

the design without any structural feedback. This design still includes the strain

RMS specification, so it represents a “best case” scenario when not using structural

feedback. The SE design is the static-elastic design. This is the design that would

be obtained if the control system designer did not account for structural motion

during the design of the control laws. All the designs described contain notch filters

in the feedback path of the rigid-body response. They serve to isolate the structural

motion to the structural feedbacks. The NotchStrFB design has notch filters in the
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Table 6.2: Design summary

feedforward feedback structural designed with flexible designed with static-
notch filters notch filters feedback bare-airframe elastic bare-airframe

noStrFB - X - X -
SE - X - - X
StrFB - X X X -
NotchStr X X X X -
NotchNoStr X X - X -

feedforward path as well. These notch filters removed pilot excitation of the struc-

tural modes. This design also contains structural feedback. Finally, NotchNoStrFB

contains notch filters in the feedforward path, but does not have structural feedback.

This methodology is often employed by control designers, to simply notch out the

structural modes.

Table 6.3 summarizes the lateral/directional ACAH system performance and

handling qualities for the described designs. Broken loop stability margins and

closed loop components of these tables will be analyzed below. Table 6.4 presents

the same information for the longitudinal and heave axes. The various control

systems will now be compared in terms of their broken loop, disturbance rejection,

and closed loop responses.

6.3.1 ACAH Broken Loop

Figures 6.11, 6.13,6.15, and 6.17 show the broken loop responses of the con-

troller. The loops were broken at the actuators. The broken loop responses are used

to calculate the stability margins and crossover frequencies, given in Tables 6.3 and

6.4. The control systems are designed to have a broken loop crossover frequency

of ωc = 2.0 rad/sec in the lateral, directional, and longitudinal axes and ωc = 1.5
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Table 6.3: Lateral/Directional ACAH design comparison

noStrFB StrFB SE NotchStrFB NotchNoStrFB

Lat ωc [rad/sec] 2.56 2.69 2.23 2.57 2.66
Dir ωc [rad/sec] 2.00 2.11 2.02 2.12 2.00
Lat PMrb [rad/sec] 1 59.7 52.8 71.22 58.5 50.6
Lat GMrb [dB] 1 8.07 8.79 6.88 9.02 9.64
Dir PMrb [rad/sec] 2 69.2 72.8 59.6 72.8 71.0
Dir GMrb [dB] 2 - 9.81 10.5 9.79 -
Lat PMstr [rad/sec] - 71.6 - 78.1 -
Lat GMstr [dB] 36.6 11.2 34.5 11.4 37.9
Dir PMstr [rad/sec] - - - - -
Dir GMstr [dB] 9.22 8.00 43.4 8.00 9.03
Lat ωBW [rad/sec] 1.87 1.84 1.99 1.84 1.85
Lat τPD [sec] 0.21 0.10 0.21 0.12 0.11
Dir ωBW [rad/sec] 1.10 1.10 1.11 1.10 1.10
Dir τPD [sec] 0.086 0.099 0.085 0.099 0.087
φ-DRB [rad/sec] 1.13 1.27 0.90 1.15 1.27
φ-DRP [dB] 3.33 4.37 2.33 3.79 4.30
ψ-DRB [rad/sec] 0.726 0.700 0.854 0.701 0.700
ψ-DRP [dB] 2.30 2.15 3.00 2.14 2.19

1 Rigid-body frequency gain and phase margins (requirement 6dB/45 deg.).
2 Gain and phase margins at structural frequencies (requirement 8dB/60 deg.).

rad/sec in heave.

The low frequency response of the lateral broken loop plots looks nearly iden-

tical for all designs. The dynamics in this frequency range are set by general aircraft

requirements such as model following, crossover, and disturbance rejection, and do

not change between the designs presented, which differ in their structural feedback

characteristics. Above 10 rad/sec, the plots diverge into two groups of lines. The

StrFB and NotchStrFB plots have higher magnitudes above 10 rad/sec, a direct

result of the structural feedback. The peak near 17 rad/sec is the antisymmetric

beamwise mode (see Fig. 4.10 for mode shape). With structural feedback engaged,
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Table 6.4: Longitudinal/Heave ACAH design comparison

noStrFB StrFB SE NotchStrFB NotchNoStrFB

Lon ωc [rad/sec] 3.24 2.00 2.00 2.00 3.27
Heave ωc [rad/sec] 1.50 2.03 1.54 1.99 1.50
Lon PMrb [rad/sec]1 58.9 54.2 58.0 53.4 59.8
Lon GMrb [dB]1 14.5 11.8 11.4 11.9 14.2
Heave PMrb [rad/sec]1 68.8 63.1 68.5 63.5 68.8
Heave GMrb [dB]1 11.7 8.34 11.4 8.27 11.65
Lon PMstr [rad/sec] - - - - -
Lon GMstr [dB] 8.06 13.8 12.1 13.8 8.00
Heave PMstr [rad/sec] - 85.7 - 89.9 -
Heave GMstr [dB] 50.3 8.18 50.0 8.15 50.3
Lon ωBW [rad/sec] 2.44 2.69 2.56 2.69 2.44
Lon τPD [sec] 0.059 0.072 0.065 0.072 0.059
Heave 1/Tḣ [rad/sec] 1.18 1.04 1.17 1.05 1.18
Heave τḣ [sec] 0.00 0.03 0.00 0.026 0.00
θ-DRB [rad/sec] 0.634 0.738 0.696 0.745 0.613
θ-DRP [dB] 3.26 4.91 4.85 4.97 3.34
w-DRB [rad/sec] 1.09 1.00 1.12 1.00 1.09
w-DRP [dB] 2.97 4.11 3.01 4.14 2.98

1 Rigid-body frequency phase and gain margins (requirement 6dB/45 deg.).
2 Phase and gain margins at structural frequencies (requirement 8dB/60 deg.).

the control system is more active at the structural frequencies in an effort to reduce

structural oscillation. This increase in magnitude is problematic from a stability

margin standpoint as there are additional 0 dB crossings and the magnitude curve

stays close to the 0 dB line for a larger frequency range. However, the increased

requirements for stability margins in the structural frequency range serve to ensure

system stability, even if there is uncertainty in the structural modes.

The increase in stability margins is also retained in the Nichols requirements,

shown in Figure 6.12, through an increase in size of the exclusion zone for the struc-

tural frequency range (Fig. 6.12b). Nichols plots contain an exclusion zone centered

230



100

50

0

50

M
ag

ni
tu

de
 [d

B]

Lateral Broken Loop Response

 

 

10 1 100 101 102

630

450

270

90

90

270

Ph
as

e 
[d

eg
]

Frequency [rad/sec]

noStrFB
StrFB
SE
NotchStr
NotchNoStr

Figure 6.11: Lateral broken loop response
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(a) Lateral axis Nichols plot for low frequency
dynamics
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(b) Lateral axis Nichols plot for dynamics in
the structural frequency range

Figure 6.12: Lateral axis Nichols plots

around to 0 dB, -180 deg instability point. This exclusion zone prevents combi-

nations of gain and phase margins from broken loop response from approaching

instability and serves to add robustness to the system. The Nichols plot in the

structural frequency range, Fig 6.12b, shows that the two designs with structural
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feedback are on the boundary of the exclusion zone at -135 deg of phase. This

boundary prevents the structural gains from increasing further and limits the ef-

fectiveness of the structural feedback. Without structural feedback, the noStrFB,

SE, and NotchNoStr plots drop in magnitude above 10 rad/sec and there are no

additional concerns about stability. All the designs developed had the same stabil-

ity requirements. The noStr and SE designs were required to adhere to increased

stability margins at the structural frequencies, even though they lacked structural

feedback.

The directional broken loop response is plotted in Figure 6.13 and the Nichols

margin plots are show in Figure 6.14. This plot has very similar characteristics to

the lateral broken loop response, and here the structural mode is the antisymmetric

chordwise mode at 14 rad/sec (see Fig. 4.11 for mode shape). Above the structural

frequency, there are large gains in the designs with structural feedback, and the

other designs drop off in magnitude. There is a broad frequency range where the

response is near the 0 dB line, causing potential problems with stability margins.

The Nichols plots show, however, that the exclusion zone is again not penetrated in

any of the designs.

Figures 6.15 and 6.16 show the broken loop responses in the longitudinal axis.

There is no structural feedback that enters the longitudinal control signal, so the

responses all look similar, except for a gain offset. The two designs that have

increased magnitude are the NotchNoStrFB and NoStrFB designs, and the increase

is caused by a larger gains on the pitch rate error feedback. This increase in gain

occurs even though during the final stage of optimization, the crossover frequency

232



80

60

40

20

0

20

40

M
ag

ni
tu

de
 [d

B]

Directional Lateral Broken Loop Response

 

 

10 1 100 101 102

1530

1170

810

450

90

Ph
as

e 
[d

eg
]

Frequency [rad/sec]

noStrFB
StrFB
SE
NotchStr
NotchNoStr

Figure 6.13: Directional broken loop response
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(a) Directional axis Nichols plot for low fre-
quency dynamics
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(b) Directional axis Nichols plot for dynam-
ics in the structural frequency range

Figure 6.14: Directional axis Nichols plots

is minimized, with 2 rad/sec being the allowed minimum.

The final set of broken loop figures are in heave, and are shown in Figures 6.17

and 6.18. There is significant structural feedback in this axis as shown by the large

magnitude increase at the structural frequency. The Nichols plot for the structural
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Figure 6.15: Longitudinal broken loop response
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(a) Longitudinal axis Nichols plot for low fre-
quency dynamics
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(b) Longitudinal axis Nichols plot for dy-
namics in the structural frequency range

Figure 6.16: Longitudinal axis Nichols plots

response, Fig 6.18b shows that the structural feedback designs are right on the exclu-

sion zone. The structural gains are therefore limited by the stability requirements.

The increase in the broken loop magnitude response coincides with the drop in the

phase curve to 0 deg (-360 in the figure). The magnitude curve drops when the
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phase reaches -180 deg points (-540 in the figure).
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Figure 6.17: Heave broken loop response
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(a) Heave Nichols plot for low frequency dy-
namics
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(b) Heave Nichols plot for dynamics in the
structural frequency range

Figure 6.18: Heave Nichols plots
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6.3.2 ACAH Closed Loop

The closed loop roll responses are compared next. Magnitudes are expressed

in degrees for roll and pitch attitude commands and deg/sec for yaw rate commands.

Vertical velocity is expressed in feet per second. Inputs are inches of stick deflection

for all axes.

The closed loop ACAH roll response to piloted inputs is shown in Figure 6.19.

The responses are compared to commanded responses coming out of the command

model. The Command Model line also includes the equivalent time-delay also shown

in Fig. 6.1. The lateral axis has excellent model following up to 4 rad/sec. Above

this frequency the phase curves depart slightly from the command model, but still

track very well. Near the structural frequency, associated with the antisymmetric

beamwise bending mode, the differences in the designs becomes apparent. Where

for the broken loop response the designs could have been lumped into one of two

curves, here they nearly all quite different. The NotchNoStr design follows the

Command Model response the closest up to above 15 rad/sec. The NotchStr design,

including both notch filters and structural feedback, actually suppresses the response

at the structural mode when compared to the Command Model. There are slight

oscillations in the phase curve, but for this design it does not completely diverge

from the Command Model until above 20 rad/sec. The StrFB design attempts

to suppress the structural feedback but is unable to bring the magnitude curve

down to the Command Model as well as the notch filter designs. This design has

the departure in the phase curve above 4 rad/sec. The final two curves, noStrFB
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and SE, sit nearly on top of each other and have the worst overall performance

when compared to the Command Model. There is no attempt to reduce structural

oscillation in the design, and structural dynamics begin to have effect at around 4

rad/sec, well within the piloted frequency range of interest.
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Figure 6.19: Closed loop roll response to lateral stick inputs

The closed loop step responses are shown next in Figures 6.20. The attitude

response shows the systems performance to commanded inputs over a duration of 10

seconds. All designs match well with each other and there is hardly any structural

oscillation noticeable. None of the designs reach the steady state step commanded

value, but all result in nearly identical attitude.

Figure 6.20b shows the roll rate response, which is faster than the attitude

response and is useful for comparing the structural responses of the gain sets. The

noStrFB design has the largest amount of oscillation. The SE design has nearly an
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(a) Closed loop roll attitude response to lat-
eral stick inputs
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(b) Closed loop roll rate response to lateral
stick inputs

Figure 6.20: Lateral axis closed loop step responses

identical response to the noStrFB design and sits on top of it for the first second in

the figure. The StrFB curve also shows some excitation, but it is quickly damped

with almost all structural oscillation being removed after 1.5 seconds. The Notch-

Str and NotchNoStr designs have the best performance and follow the Command

Model the best. The notch filter in the feedforward path removes piloted input at

the structural frequency, greatly reducing structural excitation and giving the best

performance. It should be noted again that all the designs contain notch filters on

the rigid-body feedback signals. These notch filters serve to isolate the feedback at

the structural frequencies to the structural feedback gains. Reference [100] shows

closed loop response without notch filters in the feedback or feedforward path in roll

and yaw.

The directional closed loop response is shown in Figure 6.21. As with the

lateral response, there is good low frequency tracking of the command model, and

the responses diverge at the structural mode. The SE and noStrFB designs have
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nearly identical responses and have the largest magnitude increase at the structural

mode, the antisymmetric chordwise mode. The other designs do not excite the

structural mode in this axis.
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Figure 6.21: Closed loop yaw rate response to pedal inputs

The similarity of the designs is well represented in the step response shown in

Figure 6.22. All the designs track the commanded response very well. The structural

oscillation is slight and is barely noticeable even in the designs without structural

feedback. The same trend for all plots in the lateral axis is noticeable. For pilot

inputs, notch filters do an excellent job of reducing structural oscillation.

The closed loop pitch frequency response is shown in Figure 6.23. This re-

sponse shows little structural oscillation excitation in any of the designs, and all the

designs have nearly identical performance. The slight structural excitation near 10

rad/sec comes from the symmetric beamwise bending mode which shows up predom-
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Figure 6.22: Directional axis closed loop step responses

inantly in the heave response. The heave axis structural gains remove the oscillation

in this axis as well, as noted by the StrFB curve. There was no structural feedback

present for this axis since longitudinal inputs do not directly excite any structural

modes in ACAH mode.

The closed loop step response is shown next in Figures 6.24. This response,

similar to the lateral response, shows a moderate steady state error after ten seconds

for all the designs. The error could be do to the flap back of the rotor due to

forward airspeed, resulting in lower steady-state velocities. As predicted by the

frequency response, all the designs have nearly identical performance. In the pitch

rate, Figure 6.24b, the noStrFB shows slight more oscillation than the other designs.

The NotchNoStrFB curve is nearly identical to the noStrFB curve.

The final closed loop comparison is for the heave response to collective inputs,
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Figure 6.23: Closed loop pitch response to longitudinal stick inputs
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(a) Closed loop pitch attitude response to
longitudinal stick inputs
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(b) Closed loop pitch rate response to longi-
tudinal stick inputs

Figure 6.24: Longitudinal axis closed loop step responses

shown in Figure 6.25. It is obvious from this frequency response that the noStrFB

and SE responses will show large oscillation at the structural frequency, around 10

rad/sec. The StrFB response shows large improvements in damping at the structural

frequency, as does the NotchNoStr design. The NotchStr design acts to inhibit

241



motion at the structural frequency and has a large reduction in magnitude at that

frequency.
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Figure 6.25: Closed loop pitch response to collective stick inputs

The step response is shown in Figure 6.26. The noStrFB and SE designs

show large oscillation and have nearly identical responses. Their steady state value

asymptotes to 10 feet/sec, as set by the Command Model. The NotchNoStr shows

almost no oscillation and also asymptotes to the same rate as the Command Model.

This response shows the closest alignment with the Command Model in this axis.

The two designs with structural feedback exhibit nearly no oscillation, but the steady

state response is greater than the Command Model.
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Figure 6.26: Closed loop heave response to a collective step input

6.3.3 Bandwidth

Even though the closed loop bandwidth may be tuned by the command model,

it is useful to evaluate the closed loop performance by using the ADS-33E band-

width criteria since it also incorporates system time delay. A NASA piloted simu-

lation (Ref. 28) determined that the ADS-33E bandwidth specification boundaries

were inaccurate for such a large aircraft. New boundaries were determined in this

study, which are also presented here for comparison. The primary reason for the

new boundaries is the large pilot station offset from the center of gravity. Higher

bandwidth control systems produced large, objectionable accelerations at the pilot

station and were thus poorly rated. For pitch and roll, the Level 1 boundary for the

LCTR2 was roughly centered around a 1 rad/sec command model (same natural
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frequency as used here).

The roll bandwidth plot is shown in Fig. 6.27. Since model following perfor-

mance is good below 4 rad/sec, nearly all the designs have the same bandwidth. The

difference in the designs comes from the phase delay. The designs with structural

feedback, which effectively reduces structural phase lag, have smaller delays than

the designs without. The designs without the feedback, however, lie in, or nearly in,

the level 1 region of the proposed LCTR2 boundaries and are in the level 2 region

of the ADS-33E boundaries. With structural feedback, the designs are in the level

2 region for both set of boundaries. The command model can be easily adjusted to

meet the proposed LCTR boundaries given in Ref. 28.
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Figure 6.27: ADS-33 Roll Bandwidth specification for Hover, all other MTEs

The yaw bandwidth is shown next in Fig. 6.28. Here the proposed LCTR

boundaries are drastically different than the classic ADS-33E boundaries. Lateral
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pilot station acceleration is sensitive to yaw commands, so very low bandwidth

cases performed the best in the piloted sims. All five of the designs have nearly

the identical bandwidth and phase delay and are all in the level 1 region for the

proposed boundaries and the level 2 region for the ADS-33E boundaries.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Yaw Atttitude Bandwidth
All other MTEs

Bandwidth (rad/sec)

Ph
as

e 
D

el
ay

 (s
ec

)

Level 3

Level 2
Level 1

Proposed LCTR
Level 1

Proposed LCTR
Level 2

Proposed LCTR
Level 3

 

 
noStrFB
StrFB
SE
NotchStr
NotchNoStr
ADS 33E Boundaries
Proposed LCTR Boundaries

Figure 6.28: ADS-33 Yaw Bandwidth specification for Hover, all other MTEs

Figure 6.29 shows the pitch bandwidth specification. The proposed LCTR

boundary in this axis looks similar to roll axis boundary, even though the pilot

station offset suggests there should be large sensitivity to pitch inputs because of

resulting heave accelerations. As with yaw, nearly all the designs produce the same

bandwidth and time delay and lie nearly on top of each other in the specification.

The designs lie on the level 1/2 border of the proposed boundaries and are well

within level 1 for the classic ADS-33E boundaries.

Filters are generally associated with increased time delay. The bandwidth
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Figure 6.29: ADS-33 Pitch Bandwidth specification for Hover, all other MTEs

comparisons show that increases in time delay due to notch filters are generally

minor. The trend is true for all the bandwidth plots shown.

6.3.4 ACAH Disturbance Rejection

Disturbance rejection properties for the ACAH system are obtained from in-

jecting disturbances at the sensor level, so aircraft motion is not altered directly

(as with turbulence using the CETI model), but is altered by the control system

response to the disturbances. These types of disturbances occur when there are

erroneous sensor measurements. The disturbance rejection bandwidth (DRB) gives

the frequency up to which the control system can reject disturbances well, and is

taken at the -3 dB crossing of the magnitude plot. The disturbance rejection peak

(DRP) is taken from the maximum magnitude the aircraft obtains from a given
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disturbance. Generally, systems with worse DRB (lower frequency crossing of -3 dB

line) will have an improved DRP. This is true because the sensitivity plot, used to

obtain DRB and DRP, must obey Bode’s integral theorem for a SISO system. The

integral of the sensitivity magnitude plot is conserved with different feedback gains.

Even for this more highly coupled MIMO system, the trend is still present. So,

if DRB is improved and pushed higher and higher, the drawback is that the peak

response is also increased (see Fig. 6.30). Both specifications are included to ensure

that the peak does not get too large for improved bandwidths and vice-versa. The

DRB varies for each axis and is described below, but the maximum allowed DRP is

5 dB for any response.

once, and only in an optional reading of an unassigned chap-
ter in one of the classical textbooks. This integral surfaced for
me for the second time in the mid 1970s, referenced in a paper
by Isaac Horowitz titled “On the Superiority of Transfer Func-
tions over State-Variable Methods. . . .” It appeared as a per-
spectives paper in IEEE Transactions on Automatic Control
amid a certain amount of controversy [2].

The second integral did not surface for me until 1983, in a
talk by Jim Freudenberg at an IEEE Conference on Decision
and Control in San Antonio [3]. If memory serves, someone
pointed out at the time that this result was “just a version of
Jensen’s theorem,” well known in mathematics for a long
time. Perhaps this historical reference reduced the value of
the result in the minds of some listeners, but it should not
have, because the integral explains so much about the diffi-
culties of controlling unstable systems.

A Bode Integral Interpretation
I like to think of Bode’s integrals as conservation laws. They
state precisely that a certain quantity—the integrated value
of the log of the magnitude of the sensitivity function—is
conserved under the action of feedback. The total amount
of this quantity is always the same. It is equal to zero for sta-
ble plant/compensator pairs, and it is equal to some fixed
positive amount for unstable ones.

Since we are talking about the log of sensitivity magnitude,
it follows that negative values are good (i.e., sensitivities less
than unity, better than open loop) and positive values are bad
(i.e., sensitivities greater than unity, worse than open loop).
So for open-loop stable systems, the average sensitivity im-
provement a feedback loop achieves over frequency is ex-
actly offset by its average sensitivity deterioration. For
open-loop unstable systems, things are worse because the
average deterioration is always larger than the
improvement. This applies to every controller,
no matter how it was designed. Sensitivity im-
provements in one frequency range must be paid
for with sensitivity deteriorations in another fre-
quency range, and the price is higher if the plant
is open-loop unstable.

It is curious, somehow, that our field has not
adopted a name for this quantity being con-
served (i.e., the integrated log of sensitivity
magnitude), to put it on a par with some of the
great quantities of physics such as mass, mo-
mentum, or energy. But since it has not, we are
free to choose a name right now. Let me propose
that we simply call it dirt. It is stuff we would
rather not have around; the less we have, the
better. I want to choose this name because it
lets me liken the job of a serious control de-
signer to that of a ditch digger, as illustrated in
Figure 3. He moves dirt from one place to an-
other, using appropriate tools, but he never gets
rid of any of it. For every ditch dug somewhere,

a mound is deposited somewhere else. This fact is most evi-
dent to the ditch digger, because he is right there to see it
happen.

In the same spirit, I can also illustrate the job of a more ac-
ademic control designer with more abstract tools such as
linear quadratic Gaussian (LQG), H∞ , convex optimization,
and the like, at his disposal. This designer guides a powerful
ditch-digging machine by remote control from the safety of
his workstation (Figure 4). He sets parameters (weights) at
his station to adjust the contours of the machine’s digging
blades to get just the right shape for the sensitivity function.
He then lets the machine dig down as far as it can, and he
saves the resulting compensator. Next, he fires up his auto-
matic code generator to write the implementation code for
the compensator, ready to run on his target microprocessor.
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Figure 6.30: Sensitivity tradeoffs between DRB and DRP (from Ref. [114]).

The lateral disturbance rejection response is shown in Fig. 6.31. This response

shows that the SE design has the lowest bandwidth, but also the lowest peak re-

sponse. The ADS-33E requirement for bandwidth for φ disturbances is 0.9 rad/sec,

and the SE design falls directly on this boundary. The noStrFB and NotchStr de-

247



40

30

20

10

0

10

M
ag

ni
tu

de
 [d

B]

Lateral Disturbance Response, / dist

 

 

3 dB

10 1 100 101 102
810

630

450

270

Ph
as

e 
[d

eg
]

Frequency [rad/sec]

noStrFB
StrFB
SE
NotchStr
NotchNoStr

Figure 6.31: Lateral disturbance rejection response

signs have the next highest bandwidth and NotchNoStr and StrFB designs have the

highest bandwidth.

The next figure, Fig 6.32 shows the disturbance response for disturbances in-

jected into the ψ channel. The ADS-33E requirement is 0.7 rad/sec for these distur-

bances. This figure has the opposite trend when compared to lateral disturbances.

The SE design has the highest bandwidth as well as the highest peak disturbance

response, while the other designs all line up together and have a lower bandwidth,

but a lower peak response.

The longitudinal response, shown in Fig. 6.33, shows that the noStrFB and

NotchNoStr designs have nearly identical responses and have the worst DRB per-

formance and the lowest DRP. The StrFB, SE, and NotchStr designs are all aligned

and have better DRB. The ADS-33E requirement requires a minimum of 0.5 rad/sec
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Figure 6.32: Directional disturbance rejection response

of DRB, which is met for all the designs.
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Figure 6.33: Longitudinal disturbance rejection response
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The final disturbance rejection plot is in heave, where vertical velocity distur-

bances are injected into the measurements. Here, 1 rad/sec is the minimum required

bandwidth. The two curves with structural feedback align with each other to have

higher magnitude for low frequency disturbances and also have a higher peak re-

sponse. The curves without structural feedback perform better at low frequency

and also have lower peak responses.
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Figure 6.34: Vertical disturbance rejection response

6.4 TRC Design Comparisons

The translational rate command (TRC) system is designed with the ACAH

system active. Only the longitudinal and lateral axes are altered and provide velocity

responses to stick commands. The directional and heave axes remain unaltered from

the ACAH design and will thus not be shown in this section. Stability margin and
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disturbance rejection characteristics of the various control systems are shown in

Table 6.5. Note that the disturbance rejection bandwidth is worse for this outer

loop system than the faster ACAH inner loop. Since the crossover frequency for

the TRC system is much lower than ACAH, the broken loop response tends to have

much lower magnitude at the structural frequencies, giving good stability margins.

Table 6.5: Lateral/Longitudinal TRC design comparison

noStrFB StrFB SE NotchStrFB NotchNoStrFB

Lat ωc [rad/sec] 0.4 0.4 0.4 0.4 0.4
Lon ωc [rad/sec] 0.4 0.4 0.4 0.4 0.4
Lat PMrb [rad/sec] 1 78.1 76.7 80.5 77.4 78.2
Lat GMrb [dB] 1 - - - - -
Lon PMrb [rad/sec] 2 57.8 57.8 57.9 57.8 57.8
Lon GMrb [dB] 2 20.2 23.0 21.7 23.0 20.2
Lat PMstr [rad/sec] - - - - -
Lat GMstr [dB] 33.3 34.6 33.7 34.7 33.3
Lon PMstr [rad/sec] - - - - -
Lon GMstr [dB] - 44.6 - 44.3 -
u-DRB [rad/sec] 0.239 0.240 0.240 0.240 0.239
u-DRP [dB] 1.08 1.08 1.08 1.08 1.09
v-DRB [rad/sec] 0.311 0.307 0.321 0.308 0.311
v-DRP [dB] 1.06 0.96 1.33 1.03 0.97

1 Low frequency gain and phase margins (requirement 6dB/45 deg.).
2 Gain and phase margins at structural frequencies (requirement 8dB/60 deg.).

As with the ACAH system, the comparisons between the designs will consist of

broken loop frequency responses, closed loop step input time histories and frequency

responses, and disturbance rejection responses.
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6.4.1 TRC Broken Loop

Figure 6.35 show the lateral broken loop responses of the TRC system. Since

the there is minimal magnitude content at the structural frequencies, it is not ex-

pected that the control system will excite the structural modes. In fact, the struc-

tural modes do not even appear in the broken loop plot, meaning they are not

present in the aircraft response with the ACAH loops closed. All of the designs in

the lateral TRC responses display the desirable -20 dB/dec slope which gives good

low frequency model following of pilot inputs as well as high frequency disturbance

attenuation. The Nichols plots (Fig. 6.36) confirm the benign characteristics in this

axis. The magnitude response at the structural frequency is low enough to not even

appear on the high frequency Nichols plot, Fig. 6.36b.
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Figure 6.35: Lateral broken loop TRC response
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(a) Lateral axis Nichols plot for low frequency
dynamics
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(b) Lateral axis Nichols plot for dynamics in
the structural frequency range

Figure 6.36: Lateral axis TRC Nichols plots
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Figure 6.37: Longitudinal broken loop TRC response

The longitudinal axis is shown next in Fig. 6.37. There is a large peak near

12 rad/sec for all the designs. This peak comes from excitation of the symmetric

chordwise bending mode (see Fig. 4.11). There is no structural feedback for this

mode as is it not excited in any of the ACAH responses. All the designs have
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identical performance and a -20 dB/dec slope giving good model following in the

piloted frequency range. Above the nacelle peak, there is slight elevation in the

magnitude peaks for the designs with structural feedback. Due to the low crossover

frequency, it is not expected that the control system will excite any structural modes.

The Nichols plots (Fig. 6.38) show that the stability margins are adequate at all

frequency ranges. The structural peak shows up in the high frequency Nichols plot,

but stays well clear of the exclusion zone.
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(a) Directional axis Nichols plot for low fre-
quency dynamics
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(b) Directional axis Nichols plot for dynam-
ics in the structural frequency range

Figure 6.38: Longitudinal axis TRC Nichols plots

6.4.2 TRC Closed Loop

The closed loop TRC performance is best analyzed by both comparing the

velocity response as well as the attitude response. The designed TRC system com-

mands zero attitudes, requiring the aircraft to stay level for all inputs. The closed

loop lateral frequency response is shown in Fig. 6.39 and the step input time history

is shown in Fig. 6.40. Figure 6.41 shows the associate roll rate response to lateral

stick inputs.
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Figure 6.39: Closed loop lateral velocity TRC response to lateral stick inputs

The frequency response shows that the designs have nearly identical perfor-

mance. There is slight degradation in the responses between 2 and 10 rad/sec, but

overall the designs all follow the command response quite well. The model following

specification for TRC focused on frequencies below 1 rad/sec, where TRC inputs are

most common. There was also only a single rate gain for each TRC axis, with the

integral gain being a fixed ratio of this gain. A derivative gain would have improved

the model following at mid frequencies but was deemed unnecessary. The step re-

sponse confirms the excellent model following, with almost no structural oscillation

noticeable in any of the designs.

Since the closed loop ACAH roll response had excellent model following at

low frequency (Fig. 6.19), the designs all do a good job of not exciting roll rates, as

shown in Fig. 6.41. A maximum displacement of less than 1 deg is obtained, and
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Figure 6.40: Closed loop lateral velocity TRC response to lateral stick step input

within 6 seconds the responses all have angular displacements of approximately 0.3

deg or less. The SE design has the worst performance, while the responses of the

rest of the designs are very similar. To further reduce the roll displacement, the

crossfeed between symmetric lateral cyclic inputs to antisymmetric collective inputs

(roll) could have been improved to be more than a simple gain.

The closed loop longitudinal responses are compared in Fig. 6.42. As with the

lateral axis, there is excellent low frequency model following. There is a large peak

at 12 rad/sec associated with the symmetric chordwise bending structural mode.

The TRC mode is very low bandwidth, so it is not anticipated that this mode will

cause undesirable oscillations as pilots will not operate in TRC at 12 rad/sec. This

mode also has a max peak that is 20 dB lower than the steady state response, so

large oscillations should not result, even if the mode is excited.
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Figure 6.41: Closed loop roll rate TRC response to lateral stick step input
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Figure 6.42: Closed loop longitudinal velocity TRC response to longitudinal stick
inputs
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The closed loop step response is shown in Fig. 6.43. The response shown

excellent model following for all the designs over the entire simulation range. The

pitch attitude response, shown in Fig. 6.44, shows near zero pitch excitation for

longitudinal TRC commands. The nacelle to symmetric longitudinal cyclic crossfeed

does an excellent job at eliminating the response with the maximum deviation being

only ∼0.15 deg.
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Figure 6.43: Closed loop longitudinal velocity TRC response to longitudinal stick
step input

The final comparison shows the nacelle displacement for longitudinal TRC

commands. The nacelle motion is driven by the velocity error and is rate and

position limited. The rate and position limits come from the preferred values from

the NASA piloted simulations (Ref. [31]). The nacelle quickly rotates forward to

initiate a forward acceleration. The commanded acceleration is largest when the step
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Figure 6.44: Closed loop pitch rate TRC response to longitudinal stick step input

input takes place and quickly reduces in magnitude. As the required acceleration

decreases, the nacelles displacement is reduced until it reaches its trim value to

maintain a steady velocity.

6.4.3 TRC Disturbance Rejection

TRC disturbance rejection requirements are reduced when compared to the

ACAH requirements, and again adhere to the requirements set forth in Ref. [110].

The lateral TRC DRB responses are nearly identical. The SE design has the highest

peak response, but the bandwidth is nearly identical for all the response. Note the

low bandwidths as compared to the lateral ACAH DRB plot in Fig. 6.31. The

aircraft cannot reject high frequency disturbances well using the TRC system.

A similar trend is shown for the longitudinal axis, but here all the plots are
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Figure 6.45: Closed loop nacelle displacement response to longitudinal stick step
input
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Figure 6.46: Lateral TRC disturbance rejection response
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identical. Again, the bandwidth is much lower than for the longitudinal ACAH

response.
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Figure 6.47: Longitudinal TRC disturbance rejection response

6.5 Structural Response

The final set of design comparisons are for the structural responses. Structural

damping is compared, as are structural responses to the CETI turbulence model and

pilot inputs. The turbulence model shows the effectiveness of the control system

at removing realistic disturbances and thus improving ride quality. Reductions

in structural motion to both turbulence and piloted inputs are also important for

reducing fatigue on aircraft components. RMS values for strain are obtained from

integrating the frequency response curve of the appropriate strain to turbulence

inputs from 1-100 rad/sec. Turbulence inputs excite all the axes simultaneously.
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Table 6.6: Comparisons of structural damping

noStrFB StrFB SE

Antisymmetric beam damping, [ζ] 0.085 0.126 0.084
Symmetric beam damping, [ζ] 0.119 0.392 0.114
Antisymmetric chord damping, [ζ] 0.109 0.105 0.108
Symmetric chord damping, [ζ] 0.076 0.062 0.072

6.5.1 Structural Damping

The damping of the structural modes for each design are taken from the lin-

earized closed loop response and are given in Table 6.6. Since only structural feed-

back changes damping, designs using the notch filters in the feedforward path are

not shown. Putting the bare-airframe (which has distinct structural modes) into a

control system with feedbacks and crossfeeds greatly couples the structural modes

and rigid-body responses. The damping ratios given are for system modes which

have the predominant structural response for the named mode. There are large

damping changes for the symmetric beam mode, directly resulting in an improved

structural response. Damping was also improved for the antisymmetric mode. There

was no improvement in the damping for either chordwise mode. No gain was present

to improve the symmetric chord mode, but gains were present for the antisymmet-

ric chord mode. Antisymmetric chordwise acceleration was fed back to the pedals

(antisymmetric longitudinal cyclic). Even though damping was not improved, the

overall excitation of the mode is lower due to increase actuator usage in this axis.
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Table 6.7: Comparisons of structural RMS to turbulence

noStrFB StrFB SE

RMS strain beam1 0 -14.4 0.9
RMS strain chord1 0 -28.5 2.1

1 Percent change in strain RMS from the
noStrFB case (nominal)

6.5.2 Structural Response to Turbulence

The comparisons to turbulence are based on the wing root strains in the beam

bending and chord bending directions and are shown in Table 6.7. The baseline

RMS values are for the noStrFB case and strains are given as percentage reductions

in strain from this case. Notch filter cases were not included in comparisons for

excitation due to turbulence since the notch filter designs filter piloted input, which

is not present in these cases.

Table 6.7 shows large improvements to the response to turbulence for the de-

sign with structural feedback. There is a nearly 30% reduction in chordwise motion

and a nearly 15% reduction in beamwise motion for the design with structural feed-

back as compared to the noStrFB design. The SE design performs the worst, and

has slightly elevated structural motion than the noStrFB design.

Time history responses are shown in Fig. 6.48 for strain responses to turbulence

inputs. Beam strain is shown in Fig. 6.48a. The large improvements obtained in

the StrFB case is noticeable for many of the response peaks. The improvement to

the wing root strain is even more apparent in the chordwise direction, as shown in
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Table 6.8: Comparisons of structural RMS to piloted inputs

noStrFB StrFB SE NotchStr NotchNoStr

RMS strain beam/δlat [%]1 0 -39.4 0.7 -67.0 -60.8
RMS strain beam/δcol [%]1 0 -51.0 4.4 -67.7 -60.0
RMS strain chord/δped [%]1 0 -22.4 3.2 -35.5 -31.1

1 Percent change in strain RMS from the noStrFB case (nominal)

Fig. 6.48b. Here, the StrFB design has significantly lower strain values across the

entire time history.

To improve modal damping and reduce structural excitation in turbulence,

active structural feedback is needed in the control system.

6.5.3 Structural Response to Piloted Inputs

Table 6.8 compares changes in structural motion to pilot inputs by comparing

RMS values from the closed loop response. As with the previous table, the noStrFB

case serves as the baseline.

It is apparent that notch filters in the feedforward path add large reductions in

the excitation of the structural modes. The StrFB design also shows large improve-

ments, but the notch filters provide the majority of improvement. Total reductions

of nearly 70% are attainable in the lateral and heave axes and reductions of 35%

are attainable in the pedal axis. The SE design again has the worst performance.

Reduction due to longitudinal inputs are not included since there was no struc-

tural gain for this axis. The notch filters in themselves (NotchNoStr design) are so

effective because they passively remove frequency content near the structural fre-
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(a) Beam strain response to turbulence

0 1 2 3 4 5 6 7 8 9 10
3

2

1

0

1

2

3

4
x 10 4

Time [sec]

C
ho

rd
 s

tra
in

Structural response to turbulence

 

 
noStrFB
StrFB
SE

(b) Chord strain response to turbulence

Figure 6.48: Strain responses to turbulence
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quencies and the pilot is not allowed to excite these modes. Without the notch filters

(StrFB) the control system must actively measure and remove structural motion.

Combining both approaches for the NotchStrFB design gives the best results, adding

an additional 5-7% reduction over the NotchNoStr design. Figure 6.49 shows the

strain time histories for a step input. These time histories validate the RMS data

and show the effectiveness of the notch filters over structural feedback for reduction

of structural motion to pilot inputs. Piloted time histories from simulation will be

compared in Chapter 7.

Based on the analyses in this section, structural feedback improves the struc-

tural response in turbulence, and feed forward notch filters are most effective at

reducing structural motion to pilot inputs.

6.6 Robustness Analysis

A robustness analysis is performed by perturbing components of the linear

models associated with the structural modes and re-evaluating the specifications.

Structural modes will never be known with certainty and will vary with loading and

fuel use throughout the flight. Therefore, it is important that the controls systems

stability and performance remains robust when there is uncertainty in the struc-

tural mode components. Stability margins are compared through Nichols plots to

determine robustness. Stability is the most important metric of an aircraft control

system. Deviations in closed loop bandwidth, model following, or disturbance re-

jection characteristics might lead to less than desirable handling qualities, but are

not potentially catastrophic.
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(a) Beam strain to step lateral stick input
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(b) Chord strain to step pedal input

Figure 6.49: Strain responses to piloted step inputs
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Table 6.9: Bare airframe derivatives used in robustness analysis

Structural Modal Rigid-Body Aeroelastic Control
Mode Parameters Coupling Coupling Derivative

Symmetric Beam Bending ζ ω ηw ηq Zη ηδcol
Antisymmetric Beam Bending ζ ω ηv ηp ηr Yη Lη ηδlat
Antisymmetric Chord Bending ζ ω ηv ηp ηr Yη Lη Nη ηδped

Table 6.9 shows which components of the bare airframe model were perturbed.

Derivatives include the structural mode frequency, damping, and control derivative.

The couplings between the rigid-body states and structural states were also per-

turbed. Each derivative was individually perturbed positively and negatively, then

all the chosen derivatives were perturbed both positively and negatively. A pertur-

bation of 15% was used. Smaller perturbations did not result in large instabilities

in any of the designs. The analysis was done in ACAH mode, as this mode is the

limiting factor for aircraft stability.

The robustness results are only shown for the limiting designs, noStrFB and

NotchStr, representing the worst and best configurations designed. The rigid-body

margins are not largely affected by changes in structural parameters as seen in

Figs. 6.50a and 6.51a for the lateral axis. The benefit of structural feedback with

notch filters comes out in the high frequency comparisons in Figs. 6.50b and 6.51b.

Several designs in the noStrFB high frequency figure pass through the exclusion

zone, causing potential instability. However, the NotchStr design remains stable for

the same 15% change to the chosen parameters.

The other axis of interest is the directional axis. Figure 6.52 shows the high
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(a) Lateral axis NotchStr rigid-body frequency Nichols plot
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(b) Lateral axis NotchStr structural frequency Nichols plot

Figure 6.50: Lateral axis NotchStr design robustness analysis with 15% perturbation
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(a) Latearl axis noStrFB rigid-body frequency Nichols plot
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(b) Lateral axis noStrFB structural frequency Nichols plot

Figure 6.51: Lateral axis noStrFB design robustness analysis with 15% perturbation
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frequency responses for the noStrFB and NotchStr designs. It is immediately appar-

ent that the noStrFB design (Fig. 6.52a) has more crossings of the exclusion zone,

with one perturbation set being nearly unstable. The NotchStr design performs

much better with only minor crossings for the structural frequency range. Struc-

tural feedback with notch filters provides significant improvement over the noStrFB

design in terms of robustness.

6.7 Chapter Summary

The inclusion of structural feedback in the control system for large flexible air-

craft produces large improvements in the structural response of the aircraft. Notch

filters are commonly used as the single means to remove structural oscillation from

the control system. Notch filters provide an excellent passive method to reduce

structural oscillation to piloted inputs and to ensure the control system does not

excite structural modes. Active feedback provides better performance, especially in

turbulence. Structural comparisons were based on the wing root strain measure-

ments for both chordwise and beamwise beam bending.
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(a) Directional noStrFB structural frequency Nichols plot
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Figure 6.52: Structural frequency directional robustness analysis with 15% pertur-
bation

272



Chapter 7: Fixed-Base Simulation

The final chapter of this dissertation looks at the results of a piloted simulation

comparing the LCTR control laws with and without structural feedback included.

The aim is to provide realistic piloted inputs into the control system and compare

and contrast the behavior of the two control systems.

7.1 Simulator Description

Piloted simulations were performed in a fixed based simulator located at

AFDD, Moffett Field, to test the designs’ performance using actual pilot inputs.

The simulator consists of three large flat screen televisions mounted in front of the

pilot, see Fig. 7.1. The screens were rotated horizontal and the field of view on each

screen was modified to provide the pilot more than a 180 deg. total field of view.

The inceptors consist of a standard collective, sidestick controllers, and rudder ped-

als. The pilot has the ability, through toggles to engage/disengage turbulence and

switch between ACAH and TRC mode. The transition between ACAH and TRC is

accomplished through a 3 second blending of the two modes, where the TRC gains

are turned on and the commanded responses is transitioned from one mode to the

other.
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Figure 7.1: Fixed-base simulation facility

7.2 Task Description

Three pilots flew the simulator, two were Army test pilots, and one an oper-

ational HH-60 pilot. The pilots were asked to fly representative ADS-33E mission

task elements (MTEs) that would highlight the control systems ability, or inabil-

ity, to reduce structural oscillation. The hover, lateral reposition, and depart/abort

tasks were chosen. The pilots flew two control gain sets, noStrFB and NotchStrFB,

representing the worst and best structural performance. All the tasks were flown

with the turbulence turned on, and pilots were not told which gain set they were

currently operating.

The pilots were allowed adequate time to get acquainted with the LCTR2

model in the simulator to practice the tasks, fly with and without turbulence, and
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switch between the two operating modes. The pilots were not asked to give handling

quality ratings for each gain set, but rather to give comments comparing the two gain

sets flown. Data collected included stick traces, ACAH/TRC mode switch position,

inertial positions, as well as all state and structural information. For timing, the

pilot called out the beginning and end of each maneuver and the data presented

represents only data taken during each maneuver.

The data for the simulations was analyzed in the frequency domain. Input

and output autospectra to time histories were identified using CIFER R© [97]. The

simulation was performed to determine if different piloting strategies were used,

and to verify that the structural response was in fact improved under real piloted

conditions. The comparisons between the noStrFB and NotchStr designs include

comparing input and output autospectra, identifying the pilot cut-off frequency, and

structural RMS calculations. For simplicity, the data presented in the autospectrum

figures is for a single pilot, but all pilots had similar trends.

7.3 ACAH

Comparisons are first performed with the aircraft in ACAH mode.

7.3.1 Hover - ACAH

Comparisons between the input and output autospectra are shown in Fig. 7.2.

The top two figures show the autospectra of the stick inputs while the bottom figures

show the beam and chord strain responses. Each hover task lasted over a minute,

and each task was performed three or four times, providing rich frequency content for
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the identification. The lateral and longitudinal stick autospectra are nearly identical

when comparing the noStrFB and NotchStr cases. The small difference around

1.2 rad/sec can be attributed to slight variations in flying the aircraft, potentially

because the pilot became more familiar with the task. These plots make it apparent

that the pilots flew both gain sets in the hover task nearly identically. The output

autospectra look nearly identical at low frequency, but at the structural modes the

NotchStr case has reduced magnitude content. It is apparent that the NotchStr

design is able to reduce the structural motion at these frequencies.

To ensure the increase in magnitude around the structural frequencies was

not caused by differences in piloting strategy, however small, the noStrFB pilot

stick trace was used to run a time simulation with the NotchStr gain set. This

creates identical input autospectra for both the noStrFB and NotchStr gain sets,

matching the noStrFB lines in the first two plots in Fig. 7.2. During the replay,

identical CETI inputs are also used. The output beam and chord strain responses

for these ”replayed” noStrFB inputs are shown in Fig. 7.3. The frequency content

at the structural frequency of the replayed inputs matches that of the NotchStr

case. Since within this replay, the exact same pilot and turbulence are used, any

deviations in the Replay line from the noStrFB line is a result of different closed

loop responses at those frequencies.

The same noStrFB input was also replayed in the other designs developed.

These comparisons are shown in Fig. 7.4. The additional RB FB only design was

also used and serves as a baseline with no structural compensation. Here all notch

filters in the block diagram were removed and the noStrFB gain set was used. This
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Figure 7.2: Hover input and output autospectra
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Figure 7.3: Hover replayed strain comparison to simulation data

design has the worst performance at the structural frequencies as shown by the

large magnitude content in both the beamwise and chordwise directions. The other

replayed designs fall into two categories. The designs without structural feedback

(noStrFB and NotchNoStr) have improved performance at the structural modes

over the RB FB only design, but are worse than the designs with structural feed-

back (StrFB and NotchStr). It has been shown that the designs with notch filters

in the feedforward path perform better than the other designs to pilot inputs, re-

gardless of structural feedback. It has also been shown that structural feedback is

key to improving performance in turbulence. With this in mind, it is clear that the

dominant excitation of the structural modes during the sim came from turbulence,

making a strong case for using structural feedback in the flight control system.

Next, time histories are compared in Fig 7.5. Again, in order to have mean-
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Figure 7.4: Hover replayed design comparisons

ingful comparisons the replayed designs are shown. The same conclusion can be

drawn as from the frequency response. The StrFB and NotchStr designs have the

least oscillation.

7.3.2 Lateral Reposition - ACAH

The lateral reposition task gave similar results to the hover task. Since this

task is much shorter, 20 seconds vs 60 seconds, there is not much low frequency

data to identify. However, by comparing the Lateral reposition input and output

autospectrum (Fig. 7.6), we can conclude that the behavior of the noStrFB and

NotchStr designs is very similar to the hover results. Even though the NotchStr had

a slightly higher input power spectral density, the strain output remained lower at

those frequencies. The lateral reposition task was the first to be flown, so changes in
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Figure 7.5: Time history of replayed designs in hover

the input autospectrum are associated pilot familiarization of the task and aircraft.

7.3.3 Depart/Abort - ACAH

The depart/abort autospectra are shown in Fig. 7.7. As with the lateral

reposition, this task is much short and does not contain much low frequency data.

This task confirms again the nearly identical pilot strategy and the increase in strain

content at the structural frequencies for the noStrFB design.

7.4 TRC

The TRC performance will be compared only for the hover task, as the results

are nearly identical for the other tasks flown. The TRC mode is much slower than

the ACAH mode, so pilots must back out of the loop and not be as aggressive.

This is seen as a shift in the peak of the lateral stick autospectrum (Fig. 7.8) to
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Figure 7.6: Lateral reposition input lateral stick and beam strain autospectra
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Figure 7.7: Depart/Abort input lateral stick and beam strain autospectra
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Figure 7.8: TRC Hover input lateral stick and beam strain autospectra

lower frequencies when compared to the ACAH case (Fig. 7.2). Even in TRC mode,

the same trends between the noStrFB and NotchStr designs are evident. The pilot

input autospectrum is very similar between the two cases, while the beam strain has

a prominent increase at the structural frequency for the design without structural

feedback.

7.5 Structural RMS

The total structural RMS reductions between the noStrFB and NotchStr de-

sign are given in Table 7.1. The frequency response is integrated from 4 rad/sec to

20 rad/sec to remove any effects (even if minimal) of piloting strategies. Overall, for

the level of turbulence included, the pilots that flew each case, and the frequency

range used in the integration, there was an average reduction in strain of 36% for the
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Table 7.1: Strain reductions using the NotchStr design over the noStrFB design

Axis Task Pilot 1 Pilot 2 Pilot 3 Task Average Axis Average

Beam

Lateral Reposition (ACAH) -38 % -33% -27% -33%

-36%

Lateral Reposition (TRC) -25 % - - -25%
Hover (ACAH) -31% -47% -49% -42%
Hover (TRC) -33% - - -33%
Depart/Abort (ACAH) -42% -42% -19% -34%
Depart/Abort (TRC) -46% - - -46%

Chord

Lateral Reposition (ACAH) -33% -36% -35% -35%

-34%

Lateral Reposition (TRC) -31% - - -31%
Hover (ACAH) -33% -43% -34 % -37%
Hover (TRC) -31% - - -31%
Depart/Abort (ACAH) -39% -46% -23% -36%
Depart/Abort (TRC) -22% - - -22%

beam axis and 34% in chord. The actual reductions are also given for each pilot and

each task flown. These numbers match to roughly +/- 10% of the overall average,

meaning the improvement is constant over different piloting strategies and tasks.

Figure 7.9 shows the reduction in beam and chord strain RMS for different

designs using the replayed inputs. This figure shows that for realistic pilot inputs,

the feedback notch filter and structural feedback produce the largest reductions in

structural RMS. Both of these compensation strategies are important for optimal

structural control. These figures also show that the feed forward notch filter has

minimal impact on overall excitation for a piloted simulation.

7.6 Pilot Cut-Off

Pilot cut-off is defined as the frequency which captures 50% of the area under

the stick frequency response and is considered to be a good measure of pilot crossover

frequency [97]. Figure 7.10 compares the pilot cut-off frequencies for lateral and
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Figure 7.9: Reductions in strain for different control strategies

284



longitudinal stick inputs for all cases flown during the sim. Since the ACAH designs

were flow by all three pilots, they contain three data points, whereas only one pilot

flew the TRC designs. There is considerable scatter in the data, possible from

slightly different piloting strategies, but all cut off frequencies lie below 2 radians

per second for ACAH mode and area near 1 rad/sec for TRC mode. This data is

consistent with those of the NASA LCTR2 studies which were performed in the

VMS. These studies show that for TRC mode, cut-off frequencies were generally

less than 1 rad/sec [31]. The closed loop ACAH bandwidths lie just below 2 rad/sec

for roll and around 2.5 rad/sec in pitch. Since the pilot is operating below the

bandwidth, he is not required to add any additional lead in order to fly the aircraft

[115]. If the pilot cut-off was higher than the bandwidth, the pilot would be required

to add the lead necessary to bring the phase curve back to -135 deg to ensure that

the pilot-aircraft broken loop system response had adequate phase margin. The

bandwidth of the TRC mode is set by the TRC command model, and is also near

2 rad/sec. The pilot operated near 1 rad/sec, leaving adequate margins.

7.7 Pilot Comments

Pilots were asked to provide feedback comparing the two designs. Since this

was not a handling qualities simulation, task related comments were not given. The

pilots noted that the turbulence levels were quite high and potentially masked any

ability to detect structural modes. They mentioned that overall, it was hard to

find differences between the performance of the control systems. A pilot mentioned

that the NotchStr gain set in lateral reposition ”seemed less susceptible to turbu-

285



No Str FB Str FB and Notch
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cu
t

O
ff 

Fr
eq

ue
nc

y 
[ra

d/
se

c]

Lateral Stick Cut Off Frequency Comparisons

 

 

ACAH Hover
ACAH Lat Repo
 ACAH Deb/Ab
TRC Hover
TRC Lat Repo
 TRC Deb/Ab

(a) Lateral stick piloted cut-off frequency]

No Str FB Str FB and Notch
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cu
t

O
ff 

Fr
eq

ue
nc

y 
[ra

d/
se

c]

Longitudinal Stick Cut Off Frequency Comparisons

 

 

ACAH Hover
ACAH Lat Repo
 ACAH Deb/Ab
TRC Hover
TRC Lat Repo
 TRC Deb/Ab

(b) Longitudinal stick piloted cut-off frequency
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lence”, but ”overall similar performance for tasks” was achieved even thought there

was ”maybe slightly reduced workload for for the [NotchStr] gain set.” For the de-

part/abort task, this pilot mentioned that both gain sets felt ”comfortable” and it

was ”hard to tell any real difference in workload or anything.”

7.8 Chapter Summary

A model following control system was developed for the flexible LCTR aircraft.

Comparisons were given based on different structural control strategies. Notch filters

as well as structural feedback were shown to be important for various different

excitation methods. Test pilots flew two designs in a fixed base simulator. Similar

piloting strategies showed that the pilot did not feel the effects of structural control,

but the loads at the wing root were reduced.
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Chapter 8: Conclusions and Future Work

The modeling and control of a large flexible tiltrotor were discussed within this

dissertation. The aircraft is modeled using flexible beams for the wings, nacelle, and

rotor blades. The aircraft has several structural modes near the piloted frequencies.

The interaction between these modes and the rigid-body response of the aircraft

was investigated. A control system was developed to reduce structural excitation so

that ride quality and fatigue life of aircraft components were improved. The effect

of the structural modes on aircraft closed loop and broken loop performance was

evaluated.

8.1 Conclusions

Chapters 2-4 of this dissertation focused developing and validating a high-

order math model of the LCTR. The following conclusions are obtained from these

chapters:

1. The multi-body like formulation presented correctly predicts flexible aircraft

behavior while retaining the equations of motion in simple ODE form.

2. The model correctly predicts flight dynamics behavior when compared to XV-

15 flight data in hover and cruise. Differences in the hover responses are

attributed to hub modeling. The XV-15 had a gimbaled hub, where the current
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model has an articulated rotor with hub springs.

3. The LCTR hover configuration shows qualitatively similar dynamics to that

of the XV-15. The LCTR HeliUM rigid wing model matches very well the

available CAMRAD validation model, which had a rigid fuselage and wings.

4. For large aircraft, such as the LCTR, structural and rotor dynamics have large

effects in the frequency ranges used for flight control designs.

Chapter 5 looked at the couplings in the linear models between the structural

and rigid-body control and stability derivatives. Different models were developed

which included various combinations of rigid-body to structural mode coupling.

These models were evaluated in terms of their fidelity and applicability to different

model development methods. The following conclusions can be made from this

chapter:

1. Multi-body, mean-axis, hybrid-flexible and decoupled linear models all repre-

sent valid modeling methodologies which differ drastically in their complexity.

Multi-body linear models are the most complex and are obtained from com-

prehensive codes, but decoupled models can still produce valid results and can

be obtained much more simply.

2. It is possible to convert between the model types with the inclusion of influence

coefficients. These coefficients are used in the output equations to introduce

structural effects in the output equation directly.
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Chapters 6 and 7 focused on the design and optimization of a control system

for the LCTR2. The performance of different structural control strategies were

evaluated based on a variety of closed loop and broken loop metrics. The best

and worst performing control strategies were flown in a fixed base simulator and

the results were used for further comparisons. Based on the results presented, the

following conclusions can be made.

1. Including structural flexibility in the design process is key to correctly pre-

dicting closed-loop aircraft behavior. The LCTR has four structural modes

well within the piloted frequency range that need to be accounted for during

control system design.

2. A model following control system was well suited for control law development.

The closed-loop aircraft performance gave Level 1 handling qualities.

3. Notch filters and proportional-integral structural feedback are both needed for

optimal reduction of structural motion. Structural feedback quantities were

summed and differential wing tip accelerations. Notch filters on the feedfor-

ward and feedback paths prevent the pilot and control system, respectively,

from inducing structural oscillations. Structural feedback is needed to remove

oscillation to turbulence. A reduction in structural motion is accompanied by

a reduction in fatigue as well as an improvement in ride quality.

4. A piloted simulation showed that feedback notch filters and active structural

control provided the largest reductions to structural RMS. There were small
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improvements using the feed forward notch filter, but the pilots operating

frequency was too low for these filters to provide large benefits.

5. There was no change in pilot strategy between the worst and best gain sets

flow in the simulator. Pilots mentioned that both the noStrFB and NotchStr

designs behaved similarly and had trouble distinguishing between the two.

Pilot cut-off frequencies were also similar for the best and worst gain sets,

another indication of the similarity between the two. This indicates that the

improvements in structural vibration can be achieved without affecting the

pilot’s ability to control the aircraft.

6. Structural feedback and notch filters also add robustness to the control sys-

tem. Robustness was analyzed by perturbing components of the bare-airframe

model and evaluating the effects on the broken loop design using the Nichols

plot. The design with structural feedback avoided the ”exclusion zone” of the

Nichols plot, while the same perturbations to the design without structural

feedback caused several designs to penetrate this area.

8.2 Future Work

The comprehensive multi-body like analysis has broad range of applicability,

only a small part of which has been investigated here. This dissertation focused

on hover; transition and forward flight were not analyzed. Little is known about

tiltrotor dynamics in the conversion corridor with the nacelles between the hover and

cruise condition. More modeling work is needed here to identify any key problems
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such poor flying qualities, instabilities, or actuator rate/position limiting.

The code developed is generic in nature and not limited to the tiltrotor con-

figuration. Future military rotorcraft may include compound aircraft, tiltrotors, or

other configurations. Tiltrotors have been investigated in the past, but there is

currently very little insight in the behavior of other advanced configurations. One

such configuration is the rigid-coaxial pusher type aircraft. It would be very useful

to develop a flight dynamics model of this configuration for preliminary handling

qualities testing and to determine the requirements of the control system for this

type of aircraft.

Tiltrotor and other compound and advanced rotorcraft configurations benefit

from having redundant controls throughout much of their flight envelope. For ex-

ample, in mid and high-speed flight, titlrotors can use rotor controls in conjunction

with control surfaces located on the wings and empennage. Control allocation ex-

periments need to be performed to determine the optimal mixing of these controls

for improvements in both the piloted response and ride-quality.

Finally, the structural model of the aircraft could be improved to achieve a

higher fidelity structural response. Currently, flexible wings are modeled as Bernoulli

beams. Actual aircraft wings are not Bernoulli beams, but more complicated struc-

tures with several connection points to the fuselage. For example, shell type wing

might give higher fidelity results. Fuselage flexibility could also be included. In the

work presented, the fuselage is considered rigid, with flexibility coming from only

the wings. A flexible fuselage would help capture low frequency fuselage modes more

accurately.
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Appendix A: Kinematics of a Multi-Body System

This appendix shows the derivation of the position, velocity, and acceleration

vectors of any point in a flexible multi-body system.

A.1 Positions

The position vector of a point on a body with respect to a reference point can

be written as a linear combination of orthogonal unit vectors.

x nj1 + y nj2 + z nj3 = [x y z]





nj1

nj2

nj3





=
{
qj
}T {

nj
}

(A.1)

nj1,2,3 are the unit vectors in reference frame j. The formulation allows for arbitrary

directions of the unit vectors, but generally they are chosen to be meaningful for a

given body. The fuselage unit vectors are those of the standard body axis system,

with n1 pointing forwards, n2 pointing to starboard, and n3 pointing down. The

starting point for the formulation is an inertial reference frame. This reference frame

maintains its orientation in space and so is unaffected by aircraft angular motion.

The reference frame always has the z-axis pointing down, with the positive direction

of the x and y axes remaining unspecified (but could be prescribed, for example, to

point North and East, respectively, if necessary, with no consequences on the results
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of the present study).

The transformations between reference frames are carried out on the unit

vectors using the standard aerospace rotation sequence, i.e., a rotation about the n3

axis by angle ψ, followed by a rotation by angle θ about the nψ2 axis resulting from

the ψ rotation, and by a rotation by angle φ about the nθ1 axis resulting from the θ

rotation. The transformation matrices between two reference frames j and k are as

follows:

[ψ] =
[
S1j
]

=




cosψ sinψ 0

− sinψ cosψ 0

0 0 1




[θ] =
[
S21
]

=




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




[φ] =
[
Sk2
]

=




1 0 0

0 cosφ sinφ

0 − sinφ cosφ




The intermediate coordinate systems are labeled {n1} and {n2}.

{
n1
}

=
[
S1j
] {

nj
}

and

{
n2
}

=
[
S21
] {

n1
}
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The complete transformation from body j to k is:





nk1

nk2

nk3





= [φ] [θ] [ψ]





nj1

nj2

nj3





(A.2)

=
[
Sk2
] [
S21
] [
S1j
]





nj1

nj2

nj3





(A.3)

or more compactly written as:

{
nk
}

=
[
Skj
] {

nj
}

(A.4)

The components of
[
Skj
]

are:

Skj =




S11 S12 S13

S21 S22 S23

S31 S32 S33




(A.5)
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where

S11 = cos θ cosψ

S12 = cos θ sinψ

S13 = − sin θ

S21 = sinφ sin θ cosψ − cosφ sinψ

S22 = sinφ sin θ sinψ + cosφ cosψ

S23 = sinφ cos θ

S31 = cosφ sin θ cosψ + sinφ sinψ

S32 = cosφ sin θ sinψ − sinφ cosψ

S33 = cosφ cos θ

For a wing, the unit vectors n1,n2, and n3 point, respectively, outwards along

the undeformed elastic axis of the wing, forwards towards the leading edge, and

upwards. The transformation from the fuselage coordinate system to that of the

wing contains wing dihedral and sweep.

Once the transformation matrices from one coordinate system set to another

are known, the product of the matrices allows for the formulation of a position vector

in any coordinate system. The summing of the displacements in each coordinate

system gives the expression for any point in the system. The reference frame is

denoted with superscript (. . .)0, and is generally the inertial frame. The superscript

increases with each connection. An example for a generic set of connected bodies
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is given in Fig. A.1. Here, the reference frame is the inertial frame. The segment ζ

is an offset from a reference point to the first body and is written in terms of the

reference frame. It is set to zero for the present study, but if the bodies are free to

move with respect to the reference frame, it could be used to position the bodies

with respect to an arbitrary point in the reference frame: for example a location

on the ground if the bodies form an aircraft. The position vectors q locate the

connection of the next body in the current body’s coordinate system. The vectors

r locate a point within each body that is not the connection point, a center of mass

for example. Thus, the position vector P, of a point placed by vector r3 in the third

body relative to a point in the reference frame is found in Eqn. (A.6). This position

vector, and the kinematics of the bodies presented, follows the formulation found in

Ref. 78. For the tiltrotor of the present study, the bodies are arranged as follows:

Body 1 is the aircraft fuselage, Body 2 is the undeformed right wing, and Body 3 is

the nacelle. The hub of the opposite rotor is described by a symmetric set of bodies.

P = {ζ}T
{
n0
}

+
{
q1
}T {

n1
}

+
{
q2
}T {

n2
}

+ (A.6)

{
r3
}T {

n3
}

We can write a set of unit vectors in the reference frame for the tilt rotor as follows:

{
n3
}

=
[
S32
] [
S21
] [
S10
] {

n0
}

=
[
S30
] {

n0
}

(A.7)
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Figure A.1: Bodies connected together in a multiple body configuration

and thus:

P =
(
{ζ}T +

{
q1
}T [

S10
]

+
{
q2
}T [

S20
]

+ (A.8)

{
r3
}T [

S30
]) {

n0
}

or more generally as:

P =

(
{ζ}T +

n−1∑

i=1

{
qi
}T [

Si0
]

+ {rn}T
[
Sn0
]
)
{
n0
}

(A.9)

Flexibility effects show up by modifying the transformation matrices
[
Skj
]

to

include the rotations due to structural flexibility, as well as adding displacements. A

constant wing deflection will alter the connection point of the nacelle since the wing

coordinate system is in the undeformed frame. The deflection will also introduce

additional rotations in the transformation from the wing undeformed coordinate

298



system to the nacelle coordinate system. Displacements and rotations at the con-

nection are functions of the modal temporal coordinates, ρ(t) and the beam modes

from the finite element beam solution, [V(x)]. Since the beam finite element model

has position and slopes at each node, flexible displacements and rotations can be

written as:




qf

αf





= [V(x)] ρ(t) (A.10)

Here, qf is the connection point’s displacement due to flexibility, and αf is the ro-

tation at that point. The displacement for the connection point, including flexibility

contributions for the next body is then:

q̄j = qj + qjf (A.11)

The beam element formulation assumes rotations in the same order as the co-

ordinate system transformations. Therefore, the transformation to the coordinate

system of body upstream of the flexible body, when written in the same form as

Eqn. (A.4), contains an additional set of rotations due to flexibility:

{
nk
}

=
[
Skf
] [
Sfj
]

︸ ︷︷ ︸
[Skj]

{
nj
}

(A.12)

where,

[
Sfj
]

= [φf ] [θf ] [ψf ] (A.13)

and φf ,θf , and ψf are components of αf , from Eqn. (A.10). The matrix
[
Skf
]

now

has the same form as Eqn. (A.2), and is the transformation from the connection point
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coordinate system, which is now the deformed coordinate system, to the coordinate

system of the next body. In the equation above, and following the example of the

flexible wing, superscript j denotes the wing undeformed coordinate system, while

superscript k denotes the nacelle coordinate system. This matrix takes into account

the static wing deformation.

The full position vector of any point on the aircraft, including flexibility con-

tributions is now:

P =

(
{ζ}T +

n−1∑

i=1

{
q̄i
}T [

Si0
]

+ {r̄n}T
[
Sn0
]
)
{
n0
}

(A.14)

A.2 Velocities

Once the position vector of the point is known, the velocity and acceleration

vectors follow. The velocity vector is simply the time derivative of the position

vector.

v =
dP

dt
=

({
ζ̇
}T

+
n−1∑

i=1

({
˙̄qi
}T [

Si0
]

+
{
q̄i
}T [

Ṡi0
])

+ (A.15)

{
˙̄rn
}T [

Sn0
]

+ {r̄n}T
[
Ṡn0
]){

n0
}

Here, ζ̇ is the velocity of the aircraft CG in the inertial reference frame. The time

derivatives of the transformation matrices,
[
Ṡi0
]
, as well as ˙̄qi and ˙̄rn take into

account motion due to flexibility. The position and angular time derivatives again
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come from the beam finite element:




q̇f

ωf





= [V(x)] ρ̇(t) (A.16)

Since the bodies are not allowed to translate with respect to each other, the velocity

contribution, ˙̄q only has terms associated with flexibility. In keeping the notation

from Eqn. (A.11):

˙̄qj = 0 + q̇jf = q̇jf (A.17)

The time derivatives of the transformation matrices require more development. The

flexible contributions to angular rates, ωf have the form:

ωf =ψ̇nj3 + θ̇n1
2 + φ̇n2

1 (A.18)

=
(
φ̇ cos θ cosψ − θ̇ sinψ

)
nj1+

(
φ̇ cos θ sinψ + θ̇ cosψ

)
nj2 +

(
ψ̇ − φ̇ sin θ

)
nj3 (A.19)

Notice the unit vectors in the final equation above are in the “downstream” coor-

dinate system, i.e., the coordinate of system of the next body proceeding from the

end of the tree toward the beginning. For the wing, or any flexible body, this is

the coordinate system before elastic deformation. These angular rates act on the

upstream body to the flexible body, for the tilt-rotor example, the nacelle. In gen-

eral, the formulation presented assigns rotation rates in the coordinate system of

the rotating body, as opposed to the upstream body. Before they are converted to

the nacelle coordinate system, they must be converted through the wing deformed

coordinate system as in Eq. (A.12). This allows for easier manipulation of the
[
Ṡ
]
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matrices later on.

{
ωjf
}T {n}j =

{
ωjf
}T [

Sjk
]

︸ ︷︷ ︸
ωkf

{n}k (A.20)

Note the superscript order of matrix
[
Sjk
]
. For a rigid aircraft, Eq. (A.18) gives

the Euler rates at the CG in the coordinate systems local to each Euler rate. For ex-

ample, θ̇ is the Euler rate after a transformation by ψ has occured. Equation (A.19)

gives the Euler rates in the inertial coordinate system, and Eq. (A.20) transforms the

Euler rates into the body axis. The Euler rates in the body axis give the standard

flight dynamics formulation of roll, pitch, and yaw rates.

Since the transformation matrices are pure rotations, their inverse is equal to

their transpose:

[
Skj
]

=
[
Sjk
]T

=
[
Sjk
]−1

(A.21)

Taking the time derivative of Eqn. A.4 directly, we obtain:

[
Ṡkj
]

=
[
Ωkj
] [
Skj
]

(A.22)

where [Ω] is a skew symmetric matrix. using ωkf from Eqn. (A.20):

[
Ωkj
]

=




0 ωk3f −ωk2f

−ωk3f 0 ωk1f

ωk2f −ωk1f 0




(A.23)

The formulation for
[
Ṡ
]

thus far only accounts for a single coordinate transforma-

tion, so for two tangent bodies. For groups of transformations, as is the case with
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almost any multi-body configuration, the treatment of
[
Ṡ
]

has additional compo-

nents.

[
Sn0
]

=
[
Sn,n−1

] [
Sn−1,n−2

]
. . .
[
S21
] [
S10
]

(A.24)

taking the time derivative:

d

dt

[
Sn0
]

=
d

dt

([
Sn,n−1

] [
Sn−1,n−2

]
. . .
[
S21
] [
S10
])

(A.25)

[
Ṡn0
]

=
([
Ṡn,n−1

] [
Sn−1,n−2

]
. . .
[
S21
] [
S10
])

+

([
Sn,n−1

] [
Ṡn−1,n−2

]
. . .
[
S21
] [
S10
])

+ . . .

([
Ṡn,n−1

] [
Sn−1,n−2

]
. . .
[
Ṡ21
] [
S10
])

+

([
Ṡn,n−1

] [
Sn−1,n−2

]
. . .
[
S21
] [
Ṡ10
])

(A.26)

Each individual
[
Ṡk,k−1

]
is formulated in the same fashion as Eqn. (A.22). The

trigonometry of Eqn. (A.26) does not need to be carried out each time. Note the

following treatment of
[
Ṡn0
]
.

[
Ṡ10
]

=
[
Ω10
] [
S10
]

[
Ṡ20
]

=
[
Ṡ21
] [
S10
]

+
[
S21
] [
Ṡ10
]

=
[
Ω21
] [
S20
]

+
[
S21
] [

Ω10
] [
S10
]

=
[
Ω21
] [
S20
]

+
[
S21
] [
Ṡ10
]

. . .

[
Ṡn0
]

=
[
Ωn,n−1

] [
Sn0
]

+
[
Sn,n−1

] [
Ṡn−1,0

]

[
Ṡn0
]

=
[
Ωn0
] [
Sn0
]

(A.27)
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In general,
[
Ṡn0
]

is built from outwards starting from the reference frame as each

body’s angular velocity has contributions from all time derivatives between bodies

0 and n, and is in the reference coordinate system. The velocity of a component

of the multi-body system can now be expressed using Eqn. (A.15). Often times

the angular velocities of a body in the local coordinate system need to be used.

This is easily done using Eqn. (A.27). Using the formulation of Eqn. (A.22), and

Eqn. (A.23):

[
Ωkj
]

=
[
Ṡkj
] [
Skj
]−1

=
[
Ṡkj
] [
Skj
]T

(A.28)

The skew-symmetric matrix gives the angular velocities of body k in the coordinate

system of body k so individual angular rates can readily be extracted from its

components. If the rates are desired in a different coordinate system they can be

transformed using Eqn. (A.20).

A.3 Accelerations

The linear and angular acceleration vectors are derived in much the same way

as the velocity vectors. Taking an additional time derivative of Eqn. (A.15):

a =
dv

dt
=

({
ζ̈
}T

+
n−1∑

i=1

({
¨̄qi
}T [

Si0
]

+ 2
{

˙̄qi
}T [

Ṡi0
]

+

{
q̄i
}T [

S̈i0
])

+ {¨̄rn}T
[
Sn0
]

+ 2 { ˙̄rn}T
[
Ṡn0
]

+ (A.29)

{r̄n}T
[
S̈n0
]){

n0
}
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The first term in the derivative is the linear acceleration of the aircraft in the inertial

reference frame. ¨̄qT terms are linear accelerations of the bodies with respect to one

another. The tilt-rotor model does allow for linear motion of aircraft components

next to each other. Much like the velocity component in Eqn. (A.17), this terms

only contains accelerations due to flexibility. The second time derivative of the

transformation matrix
[
S̈i0
]

is the remaining component that has not been derived

yet. To determine
[
S̈i0
]
, one could take time derivatives of the transformation

matrices one by one, as in Eqn. (A.26). Since [Ωi0], is readily available, as in

Eqn. (A.27), the following treatment is much abbreviated.

d

dt

[
˙Si0
]

=
d

dt

([
Ωn0
] [
Sn0
])

(A.30)

=
[
Ω̇n0
] [
Sn0
]

+
[
Ωn0
] [
Ṡn0
]

[
S̈n0
]

=
[
Ω̇n0
] [
Sn0
]

+
[
Ωn0
] [

Ωn0
] [
Sn0
]

(A.31)

Here
[
Ω̇n0
]

is a skew symmetric matrix containing the summed angular accelerations

of bodies 0 to n in the final body’s coordinate system. It is derived in the same

fashion as the skew symmetric matrix of angular velocities, Eqn. (A.23), which

comes from the sequence of rotations given by Eqn. (A.18).
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Appendix B: Mean-Axis Flexible Model Identification

This appendix gives details on the identification of the mean-axis flexible model

structure in both hover and cruise.

B.1 Identification of Hover Mean-Axis Model

The responses used in the identification are shown in Table B.1. CIFER R© was

used as the system identification tool and is described in detail in Ref. 97. In this

software, the state-space structure was pre-determined and many of the variables in

the linear matrices were kept as constants (e.g. AR, and BR). The off-diagonal terms

were left free in the identification. The free parameters are optimized to minimize the

average coherence weighted cost function, (Jave), of the responses. Once a minimum

cost function is attained, parameters with high insensitivities are removed and set to

zero. A parameter with high insensitivity does not have an impact on the responses

used and therefore should be removed. A new model is then re-optimized. Since

the previous model did not depend on the removed parameters, the average cost

should not increase greatly. This is repeated until the cost increases more than one

or two points. Next, parameters with high Cramer-Rao (CR) bounds are removed.

Cramer-Rao bounds are a measure of correlation between parameters. If parameters
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have high Cramer-Rao bounds, their influence can be picked up by other parameters

are thus not important to the final solution. These parameters are frozen at their

values one at a time until the cost function begins to increase again. Once this

process is finished, the final model is obtained. Reference 116 provides examples of

identification of three rotorcraft of varying size.

Table B.1: LCTR hover mean-axis model identification responses

Output Input Response Name ωmin ωmax Coherence Comment

p Lat Stick p/lat 0.01 100 1.0 -
r Lat Stick r/lat 0.01 100 1.0 -
v Lat Stick v/lat 0.01 100 1.0 -
ε Lat Stick dstr/lat 10 30 1.0 Wing root strain

aztip Lat Stick az/lat 0.01 100 1.0 Recreated wing tip acceleration

azmid Lat Stick azm/lat 0.01 100 1.0 Recreated wing mid-point acceleration
p Lat Stick ps2/lat 0.01 0.75 1.0 Low frequency rigid-body mode
p Lat Stick ps3/lat 10 30 1.0 High frequency flexible mode
p Pedal p/rud 0.01 100 1.0 -
r Pedal r/rud 0.01 100 1.0 -
v Pedal v/rud 0.01 100 1.0 -

The values left free in the identification are shown in Table B.2. Fictitious

states are created which serve to recreate outputs with identifiable parameters,

hence the M and F matrices contain many parameters which correspond to out-

puts. Parameters ST, and eps represent sin(θ0) and the constant to convert wing

deformation to strain. Parameters tzo and om2 are the identified structural mode

parameters −2ζω and −ω2. These were left in the identification because these values

would not be known when performing a system identification from flight data. The

identification software easily identified these values correctly. The wing accelerom-

eter coefficients were also left free in the identification. The parameters azp and

azp2 multiply the roll acceleration and should be the distance of the accelerometer

307



from the cg. The exact values for these parameters are -38.7 and -19.5; both are

well identified. Parameters azn and azn2 multiply the structural acceleration term

and give the modal displacement at the sensor displacement. The mid-wing sensor

(characterized by azp2 and azn2) is near a modal displacement node, and gives a

small modal coefficient (azn2 = -1.4). The wing-tip sensor is far from a mode and

is influenced by wing bending. The identified modal coefficient for this sensor, azn,

has a different value than the multi-body coefficient. In the multi-body formulation,

this value was defined with respect to the fuselage, but for the mean-axis model, it

is defined with respect to the equivalent rigid-body motion. The control derivative

Yδlat (labeled Ylat) was allowed to be free in the identification because its rigid-body

value was much different than the flexible value and the coupling terms were not

effective enough at re-creating it. Influence coefficients (Phi ) as well as terms to

reproduce the wing accelerations and strains were left free and compared to de-

rived values. The rigid-body coupling terms are denoted as Ev, Ep and Er (ηv, ηp,

and ηr). Rigid-body coupling terms Ep and Er had large insensitivities and were

thus removed from the identification. The remaining rigid-body coupling terms and

aeroelastic coupling terms have large Cramer-Rao bounds because they remain cor-

related, even with the additional accelerometer and strain responses. If any of these

terms are taken out of the identification, the overall cost (Table B.3), which shows

an excellent identification result, increases.
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Table B.2: LCTR hover identification parameter, Cramer-Rao, and Insensitivity
values

Param. Value CR (%) Insens. (%)

M-matrix
azp -38.7 3.879 1.83
azn 9.981 11.07 5.389
azp2 -19.66 3.582 1.745

azn2 -1.4b − −
F-matrix

Yv -0.07988a − −
Yp -3.206a − −
Yr -1.279a − −
G 32.17a − −
Yn 25.48 24.37 5.951
Lv -0.008238a − −
Lp -1.024a − −
Lr 0.2546a − −
Ln -0.6678 40.83 7.361
Nv 0.00102a − −
Np 0.06284a − −
Nr -0.1941a − −
Nn -0.2369 34.61 2.336
ST -0.03956a − −
Ev 0.2676 31.3 1.707

Ep 0b − −
Er 0b − −
tzo -2.158 5.864 2.771
om2 -278.5 0.7568 0.3528

p 0b − −
Phip 0.5947 1.2 0.5905

r 0b − −
Phir -0.01624 9.737 4.765

v 0b − −
Phiv -0.3703 11.13 4.206
eps 0.07236 3.785 1.823

G-matrix
Ylat -0.2282 6.194 2.336
Yped -0.3815a − −
Llat -0.2288a − −
Lped -0.05041a − −
Nlat 0.02814a − −
Nped 0.03574a − −
Elat 0.4141a − −
Eped 0.2864a − −

Time delay

a Fixed parameter
b Eliminated parameter
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H

Table B.3: LCTR hover identification results

Response Cost

p/lat 7.875
r/lat 8.293
v/lat 9.573
dstr/lat 5.972
az/lat 6.292
azm/lat 2.388
ps2/lat 4.07
ps3/lat 11.58
p/ped 6.837
r/ped 1.615
v/ped 44.54

Jave 9.913

Figures B.1 - B.9 show the responses used in the identification. Along with

the multi-body and identified mean-axis model, the rigid-body and static-elastic

models are shown. The low frequency differences between the rigid-body model and

the other models are due to the static-elastic effects of structural bending and come

from the coupling terms.
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: Models used in identification of the mean-axis model structure
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: Models used in identification of the mean-axis model structure
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: Wing root strain response used in identification of the mean-axis
model structure
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: Wing-tip accelerometer response used in identification of the
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: Models used in identification of the mean-axis model structure
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: Models used in identification of the mean-axis model structure
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B.2 Identification of Cruise Mean-Axis Model

In the cruise condition, some responses were truncated above 4 rad/sec be-

cause the identification software was not able to identify the coupling terms that

would match both the rigid-body and structural dynamics. For these responses

(predominantly off-axis responses), low frequency matching was thought to be more

important. The dominant response, p/δlat, was identified to a frequency just above

the structural mode. The strain response was removed from this identification. The

wing accelerometer responses were retained. A lightly damped low frequency zero in

the p/δped response was not identified as the phase plot could have a 360◦ shift if the

damping of the zero was found to be the opposite sign. This would greatly increase

the cost for that response and would have a negative influence on the identification.

Since the structural responses were not included in the other responses (yaw and

lateral velocity), these influence coefficients were set to be zero in the identification.

The responses used are shown in Table B.4.

For this model, nearly the entire control matrix was left free in the identi-

fication. The responses with the rigid-body control derivatives were not accurate

enough, and the cost function was not able to be reduced to desirable values with-

out doing so. There are significant changes in the response of the aircraft to control

inputs with the wings flexed, and the coupling terms are not able to recreate those.

There are a maximum of six coupling terms and two control derivatives that could

be identified. These coupling terms and control derivatives affect a total of nine

stability derivatives and six control derivatives, giving a over constrained problem
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where there are more equations than unknowns. If the eight total unknowns are not

able to reproduce the correct control and stability derivatives, additional unknowns

are created by freeing the control inputs to facilitate obtaining an accurate solution.

Table B.4: LCTR cruise mean-axis model identification responses

Output Input Response Name ωmin ωmax Coherance Comment

p Lat Stick p/lat 0.01 22 1.0 -
r Lat Stick r/lat 0.01 4 1.0 -
v Lat Stick v/lat 0.01 4 1.0 -

aztip Lat Stick az/lat 0.01 100 1.0 Recreated wing tip acceleration

azmid Lat Stick azm/lat 0.01 100 1.0 Recreated wing mid-point acceleration
p Lat Stick ps2/lat 0.01 0.75 1.0 Low frequency rigid-body mode
p Lat Stick ps3/lat 10 22 1.0 High frequency flexible mode
p Pedal p/rud 0.3 100 1.0 -
r Pedal r/rud 0.01 4 1.0 -
v Pedal v/rud 0.01 4 1.0 -

The final model parameter values, along with the Cramer-Rao and insensitivity

values are given in Table B.5. The cost functions for the identified models are given

in Table B.6.
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Table B.5: LCTR cruise identification parameter, Cramer-Rao, and Insensitivity
values

Param. Value CR (%) Insens. (%)

M-matrix
azp -37.16 4.29 1.842
azn 15.54 12.02 4.705
azp2 -19.43 4.259 1.823

azn2 0b − −
F-matrix

Yv -0.2887a − −
Yp 39.29a − −
Yr -264.5a − −
G 32.17a − −
Yn 0b − −
Lv 0.0005355a − −
Lp -1.136a − −
Lr 0.5671a − −
Ln -41.32 10.2 0.7328
Nv 0.003426a − −
Np -0.07298a − −
Nr -0.2797a − −
Nn -49.29 7.437 0.6843
ST 0.1551a − −
Ev 0.006217 8.386 1.079
Ep -1.249 11.57 1.751
Er -0.2038 41.43 12.53
tzo -2.009 7.559 3.426
oms -277.5 0.9698 0.3033

p 0b − −
Phip 0.4439 5.414 1.507

r 0b − −
Phir 0b − −
v 0b − −
Phiv 0b − −

G-matrix
Ylat -0.2782 33 14.42
Yped -3.007 27.65 12.33
Llat -0.09573 3.488 0.8968
Lped -0.0974 6.518 0.7

Nlat 0b − −
Nped 0.06407 10.29 2.093
Elat 0.1126 6.049 0.996
Eped -0.3342a − −

Time delay

a Fixed parameter
b Eliminated parameter
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Table B.6: LCTR cruise identification results

Response Cost

p/lat 10.1
r/lat 9.671
v/lat 22.04
az/lat 4.855
azm/lat 22.01
ps2/lat 4.386
ps3/lat 35.18
p/ped 21.06
r/ped 12.38
v/ped 8.935

Jave 15.06

Figures B.10 - B.15 show the models used in the identification. The rigid-body

response is also shown to highlight the differences between the flexible and rigid-

body models in cruise. These differences are much larger than the same models

in hover, shown in Figures B.1 - B.9, even though the flex-factors were of similar

magnitude between hover and cruise.

The identified mean-axis value of Lη is much greater in cruise, it is worth eval-

uating the effects of wing bending directly from the simulation model. The hover

mean-axis Lη was near zero, meaning wing bending should not produce large addi-

tional roll moments in hover. Taking both the hover and cruise simulations in trim

and perturbing the wings asymmetrically gives the following ratio of aerodynamic

moments:

∆Lcruise

∆Lhover

≈ 5 (B.1)

The ratios of Lη is much greater than this value since the hover Lη = −0.668 and for
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cruise it is Lη = −41.3. The hover Lη had a large Cramer-Rao value, meaning it is

correlated with other parameters and its final value from the identification may not

be exact. The hover Lη is fixed at -8 to follow the roll moment ratios in Eqn. (B.1),

and a new model is identified. The cost of this hover model increases from Jave = 9.9

to Jave = 16.9, meaning it is less accurate than the original but still a valid solution.

Even though the same ratio does not hold for Lη as did for the total ∆L, the same

trend is apparent. The cruise Lη is significantly larger in cruise than in hover and

wing bending produces significant aerodynamic roll moments in cruise and does not

so in hover.
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Appendix C: Structural Feedback Concepts

C.1 Introduction

This chapter describes basic structural feedback concepts. Various types of

structural feedback will be compared based on their ability to dampen a struc-

tural mode or alter the frequency of the mode. The aim is to remove structural

oscillations in an effort to improve ride quality and decrease fatigue of aircraft com-

ponents. The symmetric beamwise wing bending mode and feedback effects on this

mode on the vertical response of the aircraft are analyzed. This mode couples with

the vertical displacement of the fuselage. Available structural sensor measurements

include wing root bending strain and wing tip accelerometers. The off-axis responses

are constrained using coupling numerators [98]. Constrained coupling numerators

assume large feedback gains for each axis, effectively decoupling each axis. A con-

strained coupling numerator state-space approach developed by Ivler [99], is used

to isolate the vertical axis and the symmetric bending mode from the rest of the

system. The constrained model (with infinite gains) is not necessarily physically re-

alizable, but helps to isolate the feedback effects to the dominant on-axis modes of

the aircraft while ignoring potentially complicating off-axis effects. A well designed

control system serves to decouple the aircraft responses and would look similar to
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the constrained coupling numerator result.

Structural modes are generally lightly damped, with in vacuo damping being

around 6%:

ζstr ≈ 0.06 (C.1)

The small structural damping places the structural modes close to the Imaginary

Axis. With only CG vertical velocity feedback to collective, this mode becomes

unstable for small feedback gains, as shown in Figure C.1. The structural mode is

located at 9 rad/sec. Positive feedback is used because vertical velocity in the body

axis is measured as positive down. Positive velocity perturbations should result in

positive collective increases, stabilizing the aircraft in heave. The low frequency rigid

body pole around 0.1 rad/sec represents the location of the low frequency break in

the response and corresponds to the effective Zw. As gain is increased, this pole

moves further negative, increasing the break frequency of the mode. CG feedback

alone will not suffice to improve both the aircraft handling qualities and structural

oscillation.

C.2 Structural Feedback

Structural feedback includes both cg and wing tip feedback. Since the aircraft

structural dynamics are coupled into the response at the CG, the CG responses can

also be used to control structural modes.
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Figure C.1: Root locus plot for positive vertical CG velocity feedback to collective
stick

C.2.1 Acceleration Feedback

The first set of feedback comparisons focus on acceleration feedback.

C.2.1.1 CG Acceleration Feedback

Figure C.2 shows the root locus response for feeding back CG vertical ac-

celeration to collective. Both negative and positive feedback are shown. Negative

feedback, as shown in Figure C.2a, destabilizes the structural modes and stabilizes

the low frequency aircraft dynamic mode. The structural mode reduces in frequency

and damping and the loci join on the real axis, creating a divergent, first order struc-

tural response. Positive feedback, shown in Figure C.2b, destabilizes the structural
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Figure C.2: Root Loci for vertical CG acceleration feedback to collective

mode. The mode increases in frequency and crosses the imaginary axis around 15

rad/sec. The low frequency aircraft dynamic modes near the origin are slightly

destabilized for positive feedback. These low frequency unstable modes are not

present in the velocity feedback on Figure C.1. Structural damping is not improved

with either feedback.

The closed loop bode plot, Figure C.3a, shows the vertical velocity response

as measured at the CG. Feedback gains were chosen for positive and negative feed-

back that kept the system stable, but still altered the dynamics. With negative

feedback, the structural mode frequency decreases as expected, but the magnitude

at low frequency is higher than the other cases. The low frequency pole becomes

more negative (occurs at a larger frequency) with negative feedback and becomes

more positive (approaches 0 rad/sec) with positive feedback. The low frequency

asymptote is identical. The heave response constrained to a single axis with a single

structural mode gives three total states. Rotor states and other structural states

can be reduced out of the system and the dynamics will be almost identical to that
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of Figure C.3a without the high frequency rotor modes.



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ẇ
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Zδ
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0
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
δcol (C.2)

Comparing the wing tip vertical acceleration response, Figure C.3b, the mag-

nitude of the negative feedback peak at the structural frequency is lower than the

other cases. The wing tip will have smaller acceleration at the structural mode,

even though the damping with negative feedback is roughly unchanged.

The bare-airframe system in multi-body form has the following control and stability
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Figure C.3: Bode plots comparing response without feedback and with the CG
vertical acceleration feedback loops closed

derivatives.

Zw = −0.023 Zη̇ = −6.5 Zη = −701

ηw = 0.023 ζ = 0.08 ω = 9.73

(C.3)
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Zδ = 0.27

ηδ = 0.45

The negative feedback case gives the following control and stability derivatives.

Zw = −0.022 Zη̇ = −6.4 Zη = −686

ηw = 0.023 ζ = 0.08 ω = 8.34

(C.4)

Zδ = 0.26

ηδ = 0.44

And for positive feedback:

Zw = −0.023 Zη̇ = −6.7 Zη = −720

ηw = 0.022 ζ = 0.08 ω = 11.3

(C.5)

Zδ = 0.28

ηδ = 0.47

The only significant difference between the cases with feedback and the bare-

airframe is the structural frequency, which went from 9.73 rad/sec without feedback

to 8.34 rad/sec with the negative feedback and 11.3 rad/sec with positive feedback.

A static-elastic reduction of the structural modes gives a simple one DOF
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system with a pole at Zwse and control derivative Zδse .

Zwse = Zw +
Zη
ω2
ηw (C.6)

Zδse = Zδ +
Zη
ω2
ηδ (C.7)

For the bare-airframe system this reduction gives Zwse = −0.19 and a control

derivative of Zδse = −3.09. A static-elastic reduction of the structural modes gives

a Zwse = −0.252 and Zδse = −4.1 for negative feedback and Zwse = −0.145 and

Zδse = −2.4 for positive feedback. Since Zη, ηw, and ηδ are nearly identical in the

bare-airframe and feedback cases, the change in Zwse and Zδse comes almost purely

from the change in the structural frequency of the mode. The reduction in struc-

tural mode frequency serves to increase the break frequency and control derivative

of the aircraft dynamic response.

The wing tip vertical acceleration response is reduced in Figure C.3b because

of changes in the output matrices due to feedback. A basic feedback system is shown

in Figure C.4.

K

Σ
+ 

－ 
r

δ
y

ẋ = Ax + Bδ

y = Cx + Dδ

Figure C.4: Output feedback block diagram
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The closed loop response has the form

ẋ = AFBx+BFBr (C.8)

y = CFBx+DFBr

where

AFB = A−BK (I +DK)−1C (C.9)

BFB = B −BK (I +DK)−1D (C.10)

CFB = (I +DK)−1C (C.11)

DFB = (I +DK)−1D (C.12)

The alteration of the C and D matrices due to feedback causes a reduction in

the output derivative associated with the wing mode. The bare-airframe system

without feedback has the following components in the C and D matrices for wing

tip acceleration output.

azwing tip
=

[
−0.75 45 2366

]





w

η̇

η





+ [−14.4]

{
δ

}
(C.13)

With negative feedback, the output has the following form:

azwing tip
=

[
−0.78 37 1575

]





w

η̇

η





+ [−14.1]

{
δ

}
(C.14)
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And with positive feedback, the output has the following form:

azwing tip
=

[
−0.72 54 3407

]





w

η̇

η





+ [−14.8]

{
δ

}
(C.15)

The only major difference between the sensor measurements is the component

which multiplies η. Negative structural feedback serves to reduce the effect of the

structural displacement state in the measured output. Positive feedback increases

this value, increasing the response in Figure C.3b.

Time histories of the CG velocity and wing tip acceleration are shown in

Figure C.5 and further highlight the effects mentioned above. An increase in low

frequency content in the negative feedback CG response leads to a faster response

in the time history, as shown in Figure C.5a. A decrease in the peak magnitude of

the wing tip response with positive feedback leads to smaller peak deflections of the

wing in the time history, Figure C.5b.

C.2.1.2 Wing Tip Acceleration Feedback

Figure C.6 shows the root locus response for feeding back wing tip vertical ac-

celeration to collective. Both negative and positive feedback are shown. For negative

feedback, shown in Figure C.6a, the unstable zeros at 4 rad/sec serve to attract, and

eventually destabilize, a low frequency aircraft dynamic pole and a rotor flapping

pole. The structural mode increases in frequency and is destabilized. For positive
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Figure C.5: Collective step input response without feedback and with the CG
vertical acceleration feedback loops closed
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Figure C.6: Root Loci for wing tip vertical acceleration feedback to collective

feedback, shown in Figure C.6b, the structural mode is reduced in frequency and

damping. The loci are attracted to the zeros at 4 rad/sec. The low frequency air-

craft dynamic mode moves towards the right half plane for positive feedback. A low

frequency pole is stabilized by negative feedback, but a pole at the origin is drawn

into the right half plane, destabilizing the system.

It is interesting to note that the effect on the structural mode of CG and wing
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accelerometer feedback have opposite effects. The negative feedback of wing tip

acceleration, shown in Figure C.6a, has similar effects to the structural mode as

positive feedback of CG acceleration, shown in Figure C.2b. Negative feedback of

CG acceleration has a similar effect to the positive feedback of wing tip acceleration.

However, positive and negative feedbacks have the same effect on the low frequency

aircraft dynamics modes in both acceleration feedbacks. This is clarified by the

Bode diagram in Figure C.7. At low frequency, the phasing of the CG and wing

tip accelerometer responses is identical. Feeding back low frequency content to

collective stick will have similar results. The unstable zero at 4 rad/sec in the

wing tip response drops the phase curve 180 degrees from the CG response. This

offset continues to the structural modes, meaning that feeding back accelerometer

information will have opposite effects.

A comparison of Bode response plots between bare-airframe, positive, and

negative feedback is shown in Figure C.8. The low frequency response is nearly

identical in both plots for all the cases shown. This is in contrast to the CG accel-

eration feedback case, (Figure C.3) where the low frequency response was altered.

Feeding back wing tip acceleration seems only alter the frequency of the structural

mode based on the response at the CG, Figure C.8a. However, the peak structural

response as shown by the wing tip vertical acceleration in Figure C.8b is able to

be reduced for the positive feedback case, which corresponds to a reduction in the

structural mode frequency. An increase in structural mode frequency with negative

feedback is accompanied by an increase in the peak structural response.
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Figure C.8: Bode plots comparing response without feedback and with the CG
vertical acceleration feedback loops closed

The stability and control derivatives for negative feedback are (bare-airframe
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derivatives are given in Eqn. (C.3)):

Zw = −0.017 Zη̇ = −6.9 Zη = −720

ηw = 0.033 ζ = 0.097 ω = 11.26

(C.16)

Zδ = 0.39

ηδ = 0.65

And for positive feedback:

Zw = −0.026 Zη̇ = −6.35 Zη = −691

ηw = 0.017 ζ = 0.07 ω = 8.82

(C.17)

Zδ = 0.21

ηδ = 0.35

These derivatives show large changes in structural frequency, rigid-body coupling

(ηw), and Zw. Both control derivatives are also considerably different. The aeroelas-

tic coupling term, Zη, remains relatively unchanged. Taking the quasi-static reduc-

tion of the structural modes as in Eqn (C.6) gives Zwse = −0.20 and Zδse = −3.31

for negative feedback and Zwse = −0.18 and Zδse = −2.91 for positive feedback.

These values are very similar to the bare-airframe values of Zwse and Zδse given

above. This similarity indicates that as ω is changed by structural feedback, ηw and

ηδ are also altered by the same amount. Feeding back wing tip acceleration alters

the rigid-body coupling and structural control derivative, leaving the low frequency
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aircraft dynamic response intact. With negative feedback, the wing tip acceleration

output has the following form:

azwing tip
=

[
−1.08 63.8 3396

]





w

η̇

η





+ [−20.7]

{
δ

}
(C.18)

And with positive feedback, the output has the following form:

azwing tip
=

[
−0.88 34.5 1836

]





w

η̇

η





+ [−11.2]

{
δ

}
(C.19)

The structural displacement component and control component in the output have

smaller values with positive feedback than the bare-airframe and negative feedback

cases. This reduction of the structural mode with positive feedback is also seen in

the time histories shown in Figure C.9. The wing tip acceleration is much reduced

with positive feedback, but the overall aircraft response remains unchanged.
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(b) Wing tip vertical acceleration response

Figure C.9: Collective step input response without feedback and with the wing tip
vertical acceleration feedback loop closed
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C.2.1.3 Differential Acceleration Feedback

In an effort to focus on structural feedback alone, the wing tip acceleration

may be subtracted from the CG acceleration. The resulting response (Figure C.10)

has a much smaller magnitude at low frequency, and a large peak at the structural

mode. Low frequency differences in vertical acceleration between the CG and wing

tip accelerometer cause the magnitude of the response to rise below 0.1 rad/sec.

The responses match, and thus cancel, well between 0.2 and 2 rad/sec.
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Figure C.10: Bode plot showing the differential vertical acceleration (azCG
−azwing tip

)
response to collective inputs

The corresponding root locus plots for feeding back the differential vertical

acceleration are shown in Figure C.11.

The root loci for differential acceleration feedback look much like the CG ver-
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(b) Positive feedback

Figure C.11: Root Loci for differential vertical acceleration ( azCG
− azwing tip

) feed-
back to collective

tical acceleration responses. A negative feedback serves to lower the frequency of

the mode and destabilize it. Positive feedback tends to increase the frequency of the

wing mode and destabilize it. Structural damping remains unchanged or worsens

with any form of acceleration feedback. The closed loop responses and linear model

structure look nearly identical to the wing tip acceleration feedback cases.

C.2.2 Velocity Feedback

Velocity feedback at the CG and wing tips are compared next.

C.2.2.1 CG Velocity Feedback

Integrating acceleration would provide structural velocity information and a

means to alter damping. The acceleration of a second order system is tied to its

mass properties, and thus natural frequency. It is therefore not surprising that
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acceleration feedback mostly affects structural frequencies, as has been shown in

the previous figures. Velocity is tied directly to damping. Integrating the CG

acceleration would result in the heave velocity, the feedback of which is shown in

Figure C.1. This feedback type must be preserved in order to stabilize the low

frequency aircraft dynamics. For completeness, positive and negative feedback will

be shown here to determine the effects of these feedbacks on closed loop dynamics

and the linear model structure. Figure C.12 shows velocity feedback mostly altering

the damping of structural modes. It can also either stabilize or destabilize the low

frequency flight dynamics modes.
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(b) Positive feedback

Figure C.12: Root Loci for CG velocity feedback to collective

The closed loop responses shown in Figure C.13 show the CG feedback effects

not only structural damping, but also the response at low frequencies. Positive

feedback drops the CG response magnitude significantly (Figure C.13a). For the

gains chosen, negative feedback slightly destabilizes the low frequency flight dynam-

ics mode, as is seen by the low frequency phase difference in the CG response. As

expected, this feedback type does not alter the frequency of the structural mode.
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(b) Wing tip vertical acceleration response

Figure C.13: Bode plots with comparing response without feedback and with the
CG vertical velocity feedback loops closed

The closed loop model has the following control and stability derivatives. For

negative feedback:

Zw = −0.050 Zη̇ = −6.54 Zη = −701

ηw = −0.024 ζ = 0.081 ω = 9.73

(C.20)

Zδ = 0.27

ηδ = 0.45

And for positive feedback:

Zw = 0.077 Zη̇ = −6.54 Zη = −701

ηw = 0.19 ζ = 0.081 ω = 9.73

(C.21)

Zδ = 0.27

ηδ = 0.45
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The only differences in the A and B matrices for the system with feedback are in

the first column of A. The change in structural damping comes from the rigid-body

coupling term, ηw. Zw and ηw even change signs based on the feedback. A quasi

static reduction gives the Zwse = 0.126 for negative feedback and Zwse = −1.33 for

positive feedback. The quasi-static control derivative does not change since Zη and

ω remain the same. The time histories of CG velocity and wing tip acceleration are

shown in Figure C.14. The positive feedback CG (Figure C.14a) response slowly

diverges due to the positive low frequency pole. Large changes in wing tip damping

are obvious in the wing tip acceleration response, Figure C.14b, but the initial peak

structural response is not altered significantly.
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(b) Wing tip vertical acceleration response

Figure C.14: Collective step input response without feedback and with the CG
vertical velocity feedback loop closed

C.2.2.2 Wing Tip Velocity Feedback

Wing tip integral acceleration (velocity) feedback root loci are shown in Fig-

ure C.15.
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(b) Positive feedback

Figure C.15: Root Loci for wing tip velocity feedback to collective

The negative feedback root locus plot, Figure C.15a shows the structural mode

destabilizing quickly. The low frequency aircraft dynamic poles are also destabilized.

The positive feedback case shows improvements in damping of the structural mode

for moderate gains. The structural mode is attracted to the zero at 4 rad/sec,

and will destabilize for large enough gains for either feedback case. Low frequency

aircraft dynamics are further stabilized by this feedback type.

Gains are chosen to alter the dynamics for both positive and negative feedback.

For positive feedback, a gain is chosen to maximize the structural mode damping.

The closed loop frequency responses are plotted in Figure C.16. Feeding back pos-

itive wing tip velocity significantly improves the damping of the structural mode.

Positive feedback also reduces the wing tip acceleration response (Figure C.16b)

over low and mid frequency ranges. Negative feedback is destabilizing to both the

structural mode and low frequency dynamics.

The velocity feedback adds another state to the dynamics. In order to com-

pare the linear model structure, system identification was performed to remove the
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(b) Wing tip vertical acceleration response

Figure C.16: Bode plots comparing response without feedback and with the CG
vertical velocity feedback loops closed

additional state. The costs for fitting positive and negative feedback cases to the

CG velocity and wing tip acceleration responses was very low (Jave < 5), meaning

a highly accurate models were obtained.

For negative feedback:

Zw = 0.133 Zη̇ = −6.54 Zη = −708

ηw = 0.023 ζ = 0.078 ω = 9.73

(C.22)

Zδ = 0.27

ηδ = 0.45

And for positive feedback:

Zw = −1.68 Zη̇ = −6.54 Zη = −628

ηw = 0.023 ζ = 0.381 ω = 9.73

(C.23)
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Zδ = 0.26

ηδ = 0.54

This structural feedback effects stability derivatives Zw, Zn and structural damping,

and the control derivative ηδ. Time histories are shown in FIgure C.17. These figures

verify that negative feedback is destabilizing for both the low frequency mode and

the structural mode. Positive feedback reduces the steady state response magnitude

and improves damping significantly.
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(b) Wing tip vertical acceleration response

Figure C.17: Collective step input response without feedback and with the integral
wing tip vertical acceleration feedback loop closed

C.2.2.3 Differential Velocity Feedback

The final velocity feedback curve, shown in Figure C.18, looks at differential

velocity feedback, subtracting the wing tip vertical velocity from the CG velocity.

The negative feedback (Figure C.18a) case shows large improvements to wing

structural damping, with the structural modes even becoming first order for high

enough gains. There are small changes to the low frequency dynamics and for
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(b) Positive feedback

Figure C.18: Root Loci for differential vertical velocity ( wCG −wwing tip ) feedback
to collective

large gains low frequency modes are brought into the right half plane. For positive

feedback, Figure C.18b, the structural mode is again quickly destabilized. As before,

different sets of gains are used to highlight the differences between the positive and

negative feedback systems and the bare-airfame. The closed loop responses are

shown in Figure C.19. Based on these figures, the negative feedback of differential

acceleration does an excellent job of adding damping to the structural mode without

affecting low frequency dynamics. The positive feedback, as expected based on the

root locus plot, is destabilizing to the structural mode.

The linear model again had to be identified to convert it to a 3 state form.

The identification costs were less than one (Jave < 1) for both feedback cases. For

negative feedback:

Zw = −0.023 Zη̇ = −6.54 Zη = −701

ηw = 0.023 ζ = 0.362 ω = 9.73

(C.24)
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(b) Wing tip vertical acceleration response

Figure C.19: Bode plots comparing response without feedback and with the CG
vertical velocity feedback loops closed

Zδ = 0.27

ηδ = 0.45

And for positive feedback:

Zw = −0.023 Zη̇ = −6.54 Zη = −701

ηw = 0.023 ζ = 0.035 ω = 9.73

(C.25)

Zδ = 0.27

ηδ = 0.45

Integral differential acceleration does an excellent job of directly impacting the

damping of the structural mode. No other control or stability derivatives are altered.

The time responses, which confirm that the aircraft dynamics remain intact while

the structural mode damping is altered, are shown in Figure C.20.
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(b) Wing tip vertical acceleration response

Figure C.20: Collective step input response without feedback and with the integral
differential acceleration feedback loop closed

C.2.3 Position Feedback

The final feedback type that may be used is wing deflection. Wing root strain

measurements correlate directly to wing tip deflection and their feedback is shown

in Figure C.21.
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(a) Negative feedback
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(b) Positive feedback

Figure C.21: Root Loci for wing root strain feedback to collective

The strain feedback root loci are similar in nature to the acceleration feedbacks.

The structural poles increase or decrease in frequency and become unstable for either

348



feedback. Since strain is a measure of displacement, strain feedback is equivalent to

altering the stiffness of a second order system. Similarly to acceleration, this alters

the natural frequency, but not the damping, of the system. Close loop responses are

shown in Figure C.22.
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Figure C.22: Bode plots comparing response without feedback and with the wing
root strain feedback loops closed

Zw = −0.023 Zη̇ = −6.54 Zη = −723

ηw = 0.023 ζ = 0.0685 ω = 11.47

(C.26)

Zδ = 0.27

ηδ = 0.45
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And for positive feedback:

Zw = −0.023 Zη̇ = −6.54 Zη = −678

ηw = 0.023 ζ = 0.104 ω = 7.56

(C.27)

Zδ = 0.27

ηδ = 0.45

Both Zη and ω change altering the low frequency pole location. Time histories are

shown in Figures C.23. The time histories confirm that this feedback has the same

effect as the acceleration feedback.
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Figure C.23: Collective step input response without feedback and with the wing
root strain feedback loop closed

C.3 Proportional-Integral Feedback

It has been shown the the preferred feedback for structural control is differen-

tial velocity feedback, to improve damping, and differential acceleration feedback,
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to reduced the peak structural response. This leads to a proportional-integral (PI

type) feedback system:

K =

(
P +

I

s

)
(C.28)

=
P
(
s+ I

P

)

s
(C.29)

The differential feedback also serves to isolate the structural dynamics from the low

frequency dynamics. An isolated structural mode has the follow dynamics:

η̈

δ
=

ηδs
2

s2 + 2ζωs+ ω2
(C.30)

Closing the loop around this system, the broken loop response is (broken at the

actuator):

δin
δout

= P
ηδs
(
s+ I

P

)

s2 + 2ζωs+ ω2
(C.31)

The broken loop response removes a s from the numerator and adds a zero instead.

The location of this zero is the gain ratio. It is best to place this gain ratio above

the structural frequency so that the broken loop response does not excited high

frequency dynamics too much and is mostly constrained to the structural mode.

The closed loop response, to a system of the form of Figure C.4, is:

η̈

δ
=

ηδs
2

s2 +

(
2ζω + Pηδ + I

P

1 + Pηδ

)

︸ ︷︷ ︸
2ζclωcl

s+
ω2

1 + Pηδ︸ ︷︷ ︸
w2
cl

(C.32)
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The feedback is shown to modify the closed loop structural damping and frequency,

ζcl and ωcl.

ωcl =
ω√

1 + Pηδ
(C.33)

ζcl =
ζ√

1 + Pηδ
+

Pηδ + I
P

2ω
√

1 + Pηδ
(C.34)

The value of I
P

is the ratio of integral to structural feedback and can be determined a

priori. It has already been stated that the ratio should be larger than the structural

frequency in order to obtain a good broken loop response. Figure C.24 shows an

example set of ratios, ranging from pure integral feedback to pure proportional

feedback. Based on this figure, a PI ratio between 10 and 40 give good damping

while still reducing structural frequency and minimizing peak response for the mode

presented, which occurs around 9 rad/sec. This leaves only the proportional gain

to be chosen for the feedback loop, simplifying the design process.

C.4 Notch Filters

Notch filters are commonly used to remove frequency content at a structural

mode to prevent the control system from destabilizing the mode. Notch filters are

second order, with the damping of the zero placed near that of the structural mode.

N(s) =
s2 + 2ζnumωs+ ω2

s2 + 2ζdenωs+ ω2
(C.35)

This notch zero then attracts the pole, increasing stability margins. The notch

pole is well damped. A notch filter may be placed on the velocity feedback, shown

352



20 15 10 5 0 5
5

0

5

10

15

20

 

 

Increasing Gain

Root Locus

Real Axis

Im
ag

in
ar

y 
Ax

is

Integral
Ratio: 40
Ratio: 20
Ratio: 10
Ratio: 5
Ratio: 1
Proportional

Figure C.24: Root locus plot showing a variety of proportional to integral gain
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in Figure C.1. The notch will improve stability margins, allowing for larger rigid-

body feedback gains before instability occurs. Figure C.25 shows the same velocity

feedback to collective with the notch filter included.

The gain needed to destabilize the structural mode using notch filters is 2.23.

Without notch filters (Figure C.1), the gain to destabilize the structural mode is

0.41. Using notch filters greatly increases the gain margin, thus increasing the range

of feedbacks allowed to stabilize and control flight dynamics of the aircraft. The total

increase in gain margin is:

GM = 20 log10

(
2.23

0.41

)
= 14.7 dB (C.36)
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Figure C.25: Root locus plot of CG velocity feedback to collective with a notch filter
placed at the structural mode frequency

This same information could be obtained from the bode plots shown in Fig-

ure C.26. These bode plots show the responses of the feedback system to collective

inputs with and without notch filters. In this example response, the gain margin at

the structural mode has been increased by ∼15 dB through the use of notch filters.

Notch filters do not fix all problems associated with control of flexible aircraft,

they simply remove the structural mode from the feedback and do not allow the

control system to destabilize it. The mode still exists in the physical aircraft. The

pilot and external disturbances can still excite it. Active control of the structural

modes is necessary to control the structural modes themselves.
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Figure C.26: Bode plot comparisons of vertical velocity feedback response with and
without notch filters

C.5 Flexible Aircraft Control

The control of flexible aircraft can be divided into control of low frequency

aircraft dynamic modes (such as phugoid, short period, dutch roll, etc.), and control

of aircraft structural modes. It is best to divide the control so that gains can be tuned

independently to meet both aircraft dynamic and structural specifications. For

example, the low frequency aircraft dynamic response must meet bandwidth, model

following, and disturbance rejection specifications. Structural modes specifications

can include requirements on damping, structural RMS position, or strain. There

are also tighter stability margin requirements in the frequency range of structural

modes. It would be difficult to achieve optimal performance using only one set of
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feedback gains for both groups of responses.

When multiple loops are being closed, the higher frequency loops are closed

first. Structural feedback is used to dampen the structural mode and decreases its

overall impact on the frequency response. Even though the feedback of accelera-

tion and root strain does not increase damping, these feedbacks might be useful to

decrease the peak structural response. Once the structural mode dynamics have

been improved, low frequency aircraft dynamics can be augmented. Control of low

frequency aircraft dynamic modes is accomplished through feedback using sensors

placed at the CG. In the heave case, vertical velocity, w, is typically fed back to

collective. This feedback will destabilize the structural mode, much as in Figure C.1,

but with the increased damping given by the structural feedback, there will be larger

margins at the structural mode.

As an example, PI feedback on differential acceleration will be used to im-

prove the damping of the structural mode by 50%. A high enough gain on the low

frequency vertical velocity feedback must be used so that the broken loop crossover

frequency will be around 1 rad/sec. This will help ensure adequate piloted han-

dling qualities. The block diagram of the preceding control system is shown in

Figure C.27. In this block diagram, PStr is the proportional structural feedback,

and RStr is the desired structural feedback ratio, which has been chosen to be 40 for

heave axis. PRB is the low frequency, or rigid-body proportional feedback. RRB is

the ratio of low frequency integral gain over proportional gain. This ratio is gener-

ally chosen to be 1/5 of the broken loop crossover frequency. The gain, K sets the

desired vertical velocity per unit stick displacement. The entire structure contains
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only two free variables, the proportional gains on the structural feedback and the

rigid-body feedback.

Σ
+ 

－ 

δ ẋ = Ax + Bδ

y = Cx + Dδ ∆az

wΣ
+ 

PRB

�
s + RRB

s

�

PStr

�
s + RStr

s

�

K
Notch
Filter

Figure C.27: Block diagram showing sequential loop closure of structural mode
followed by low frequency dynamics mode

Various different compensation strategies will now be considered. The most

basic case considers only low frequency rigid-body feedback and does not include

notch filters of the structural feedback loop, this is referred to as RB Compensated.

The next case, Str. Compensated, closes the loop around the structural modes as

well. The Notch Filters system does not include structural feedback, but places

notch filters at the structural mode. The notch zero is placed on the structural pole

and the pole of the notch is well damped. The final design, Notch and Str. uses

both notch filters and structural feedback. The notch zero in this system is placed

on the pole with the structural loop closed. The pole is again chosen to be well

damped. This feedback architecture combines benefits from both the notch filter

and structural feedback cases. The cases are summarized in Table C.1.

The broken loop responses are shown in Figure C.28. For the structural feed-

back case, there is large frequency content at the structural mode giving several 0

dB crossings of the magnitude plot. This is due to the large compensation neces-

sary to remove the structural response from the system. The first crossings are at
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Table C.1: Design summary

rigid-body structural notch
feedback feedback filters

RB Compensated X - -
Str Compensated X X -
Notch Filters X - X
Notch and Str X X X

1 rad/sec, as set by the design requirements. The notch filter completely removes

frequency content at the structural frequency at the cost of reducing phase at lower

frequencies. The notch filters are added in the feedforward path. Here, the notch

filters prevent the control system or pilot from exciting the structural modes. There

is loss of phase at low frequencies due to the notch filter, so if there are tight phase

margins, a smaller notch filter will need to be used. The Rigid-Body (RB) compen-

sation comes from disregarding structural modes. The system is nearly unstable at

the structural frequency.

The closed loop responses are shown in Figure C.29. A steady state gain of

10 feet/second per unit stick sets the low frequency asymptote of the compensated

responses. There is good tracking up to 1 rad/sec. The RB compensation has the

largest structural response. The structural and notch filters both remove the large

structural peak. The notch filter almost completely removes the structural pole,

while a slight oscillation remains in the structural compensation case.

The time history shown in FIgure C.30 shows that all the compensation strate-

gies obtain 10 feet per second climb rates for a unit stick input. The RB feedback

case excites the structural mode, which is very lightly damped. The notch filters do

an excellent job at suppressing the structural mode due to pilot inputs. The struc-
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Figure C.28: Comparison of broken loop responses
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Figure C.29: Heave closed loop response comparing structural compensation
schemes
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tural compensation cases damp out the structural motion after a few oscillations.
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Figure C.30: Heave closed loop step response comparing structural compensation
schemes

Finally, Figure C.31 shows disturbance rejection characteristics to disturbances

coming at the actuators. The notch filters act on the compensator to remove all

frequency content at the structural mode. Therefore, if disturbances come in at the

structural frequency, they are not compensated for. The structural compensation

is able to remove disturbances at the structural frequency. Figure C.32 shows the

step disturbance response. The notch filter case retains some structural oscillation,

while both systems with structural feedback remove the oscillation.
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Figure C.31: Heave response to disturbance inputs comparing structural compen-
sation schemes

C.6 Summary

Varying feedbacks were analyzed to determine their effect on structural and low

frequency response. Differential responses were deemed the best to isolate feedback

control to the structural mode. Velocity feedback effects structural damping, while

acceleration or strain responses alter the structural frequency.

Various feedback systems were compared to establish needs for structural com-

pensation and notch filters. Notch filters were excellent at suppressing the closed

loop structural response due to pilot inputs and removing the structural compo-

nent in the broken loop response. However, notch filters reduce phase margins and

cannot control the structural mode in disturbances. Structural feedback can damp
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Figure C.32: Heave step response to disturbance inputs comparing structural com-
pensation schemes

the structural mode in the closed loop system and also provides better disturbance

rejection characteristics when compared to the notch filter. Structural feedback

comes at a cost of increase frequency content in the broken loop response. Com-

bined notch filters and structural feedback give the best closed loop and disturbance

rejection characteristics. This system retains the benefits of both notch filters and

structural feedback. The costs of improved performance are present in the broken

loop response in terms of reduced phase margins, as with the notch filter case, and

increased frequency content at the structural mode, as with the structural feedback

case.
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