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The flow-capturing location-allocation problem (FCLAP) consists of locating

facilities in order to maximize the number of flow-based customers that encounter

at least one of these facilities along their predetermined travel paths. In FCLAP, it

is assumed that if a facility is located along (or “close enough” to) a predetermined

path of a flow, the flow of customers is considered captured. However, existing

models for FCLAP do not consider the likelihood that targeted users may exhibit

non-cooperative behavior by changing their travel paths to avoid fixed facilities.

Examples of facilities that targeted subjects may have an incentive to avoid include

weigh-in-motion stations used to detect and fine overweight trucks, tollbooths, and

security and safety checkpoints. The location of these facilities cannot be adequately

determined with the existing flow-capturing models.

This dissertation contributes to the literature on facility location by introduc-

ing a new type of flow capturing framework, called the “Evasive Flow Capturing

Problem” (EFCP), in which targeted flows exhibit non-cooperative behavior by try-

ing to avoid the facilities. The EFCP proposed herein generalizes the FCLAP and



has relevant applications in transportation, revenue management, and security and

safety management. This work formulates several variants of EFCP. In particu-

lar, three optimization models, deterministic, two-stage stochastic, and multi-stage

stochastic, are developed to allocate facilities given different availability of informa-

tion and planning policies. Several properties are proved and exploited to make the

models computationally tractable. These results are crucial for solving optimally

the instances of EFCP that include real-world road networks, which is demonstrated

on case studies of Nevada and Vermont.
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Chapter 1: Introduction

1.1 Motivation and Contributions

Facility location is a fundamental problem in operations research, due to its

importance in strategic planning and efficient resource allocation. Traditional net-

work facility location models assume that customers are concentrated at nodes of a

transportation network and travel to nearby facilities to obtain services. One such

model is the maximal covering location problem, which locates a given number of

facilities in order to maximize total node-based demand within a specified radius

from at least one facility [2].

An important generalization of the maximal covering location problem is the

flow-capturing location-allocation problem (FCLAP), in which demand is defined in

terms of flows of customers traveling between their origin and destination nodes [3].

The objective of the FCLAP is to locate a given number of facilities in order to

maximize the number of flow-based customers who encounter at least one facility

on their preplanned travel paths. FCLAP was independently introduced in [4] and

[5], and has been extensively studied within operations research, various areas of

engineering, economics, and geography. Some of the applications of the original

FCLAP and its variants included the optimal location of bank ATMs [5], vehicle
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inspection stations [6, 7], traffic counting points [8], rail park-and-ride facilities [9],

and alternative-fuel stations [10, 11].

A common theme for FCLAP is the assumption that, if a facility is located

along (or “close enough” to) a predetermined path of a flow of customers, then that

flow is considered captured. The literature on flow capturing does acknowledge that

implementation of certain fixed facilities could encourage the targeted users to avoid

them by changing their travel paths. For example, Mirchandani et al. [12] argue

that truckers transporting hazardous materials may find out or guess the locations

of inspection stations and try to avoid them by changing their routes. However,

existing models for FCLAP do not consider the possibility that targeted users would

exhibit such non-cooperative behavior. As a result, the existing models for FCLAP

cannot find adequate locations of flow-capturing facilities, which the targeted flows

may wish to avoid.

This work addresses the problem of locating facilities that targeted flows may

have an incentive to evade by changing their travel paths. Examples of such facilities

include the weigh-in-motion stations that are used to detect and fine overweight

trucks, tollbooths, and security and safety checkpoints. This dissertation introduces

a new type of flow-capturing problem, called the “Evasive Flow Capturing Problem”

(EFCP), which generalizes FCLAP by assuming that a flow can travel along multiple

paths as long as the detour is not too large, and that a targeted flow chooses to

travel along the shortest path not covered by a facility. The dissertation presents

three models and a realistic case study, whose main findings and contributions are

summarized below.
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Chapter 2 documents work on the deterministic EFCP [13], which makes the

following contributions:

1. It introduces and mathematically formulates the EFCP, which has broad ap-

plications in transportation, revenue management, security and safety man-

agement. It shows that the EFCP generalizes the FCLAP, and it establishes

relations between the two problems and their optimal solutions. One conse-

quence of non-cooperative behavior is that any solution always incurs higher

(or equal) costs under the EFCP objective than the FCLAP objective.

2. It studies the mathematical properties of the EFCP (e.g. submodularity and

computational complexity) and concludes that this problem is structurally

different from FCLAP. Specifically, existing performance guarantees on the

performance of a greedy heuristic for FCLAP do not hold for EFCP. In fact,

the greedy approximation for EFCP can perform arbitrarily poorly. However,

a partial linear relaxation will always yield an optimal solution at a reduced

computational cost.

3. It presents numerical examples including real-world transportation networks.

These case studies are used to show the applicability of the proposed flow-

capturing framework to realistic problem instances. In addition, the real-

world road networks are used to numerically contrast EFCP and FCLAP.

This comparison demonstrates that solutions optimal for FCLAP do poorly

when targeted subjects try to avoid the facilities, thus showing that EFCP

adds considerable value.
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Chapter 3 presents work on the two-stage stochastic EFCP [13], which makes

the following contributions:

1. It introduces a stochastic extension of EFCP that accounts for flows whose

intensities and willingness to avoid facilities are not known with certainty. This

extension adds considerably to the applicability of the EFCP methodology

since, in the real-world applications, intensities of flows and their willingness

to avoid facilities could be estimated through data collection or expert opinion.

Both approaches yield scenarios which could be used as inputs for the two-

stage stochastic program proposed herein.

2. The structural properties of the stochastic EFCP are studied and exploited in

order to make the problem computationally tractable. First, it is shown that,

under certain independence assumptions, random intensities of flows can be

replaced with their expected values without affecting the solution. Then, the

second-stage is reformulated recursively. These two results significantly re-

duce the number of variables and constraints, making the two-stage stochastic

EFCP only slightly more difficult to solve in the extensive form than the deter-

ministic EFCP. In addition, it is argued that many scenario-dependent binary

variables can be linearly relaxed, which further reduces the solution times.

3. It presents numerical experiments on actual transportation networks of two

US states. Numerical tests show that exploiting the specific structure of the

problem is crucial for efficiently solving the real-world-size stochastic EFCP. To

emphasize this point, it is shown that a standard solution approach, the integer
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L-shaped method, fails to find the optimal solution in a reasonable amount of

time. In addition, we numerically compute the value of the stochastic solution,

i.e. the benefit from solving the stochastic EFCP over solving deterministic

EFCP in which all random parameters are replaced with their expected values.

Numerical tests show significant value of the stochastic solution, which implies

the relevance of the proposed stochastic EFCP.

Chapter 4 presents the work on the multi-stage stochastic EFCP, which makes

the following contributions:

1. It introduces a multi-stage extension of the stochastic EFCP in which deci-

sions about the implementation of facilities are made at different time points

(e.g. annually or every few years) given probabilistic information about the

flows and their willingness to avoid facilities. This resembles a realistic long-

term investment planning problem and is particularly suitable for the case

when intensities of the flows change over time (e.g. the expected number of

heavy trucks increases by 2% annually). Thus, it considerably adds to the

applicability of the EFCP methodology.

2. It further exploits the structural properties of the two-stage stochastic model

to make the multi-stage stochastic EFCP tractable. It proposes an exact

mathematical programming formulation which can be solved optimally even

for real-world transportation networks. In addition, it develops a dynamic pro-

gramming formulation of the problem and proposes an approximate dynamic

programming approach which statistically estimates the downstream values of

5



the objective function.

3. It presents numerical examples including the real-world road networks and

solves them optimally. The considered case studies assume a 30-year planning

horizon during which the decisions about the implementation of facilities are

made every 2 or 3 years. These case studies indicate that the proposed multi-

stage stochastic EFCP is applicable in designing realistic long-term investment

plans.

Chapter 5 applies the proposed EFCP methodology to a real-world case study

and makes the following contributions:

1. It presents a case study including the allocation of weigh-in-motion sttions in

the road network of Nevada. The case study includes the actual road network

designated for large commercial vehicles, truck flows simulated based on data

available in the literature, and realistically estimated damage produced by

overweight trucks. This analysis demonstrates applicability of the proposed

models and solution techniques to a real-world problem.

2. It contrasts the proposed EFCP with the existing FCLAP in order to estimate

the value that the EFCP framework adds in allocating facilities which targeted

truck flows wish to avoid. The numerical comparison indicates that results

optimal for FCLAP perform poorly in the setting where targeted flows try

to evade the facilities. Moreover, the FCLAP-based allocations often incur

greater damage than no weigh-in-motion implementation. The reason for this

is the so called weigh-in-motion paradox which is discussed in greater detail.
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3. It considers the real-world implementation of static weigh scales in Nevada and

explores whether the current allocation could be improved through application

of the EFCP. The conducted analysis implies that the current allocation can

be significantly improved given the available information about the flows in

Nevada. This comparison suggests that the proposed EFCP can serve as a

useful decision support tool with the potential to improve solutions based on

human judgment and intuition.

1.2 Background on Flow Capture

Many flow-capturing problems were proposed since FCLAP was first intro-

duced. The characteristics of various flow-capturing problems found in the literature

are summarized below. Different aspects of these problems include:

1. Deviations from preplanned trips where a flow is considered captured not only

if a facility is located along the predetermined path of a flow, but also in

its relative proximity [14, 15]. This extension was considered in the context

of locating gas stations and restaurants and it was approached by preparing

inputs for FCLAP differently (i.e. by enlarging the set of potential facility

locations from which a flow could be intercepted).

2. Limited capacity of the facilities [16,17], as well as decisions about the size of

facilities [18].

3. Temporal aspects such as time spent in a facility [16], determining service

7



start times [3], and multi-period planning where decisions about the facility

locations are made over several years [19].

4. Multiple counting of consumers in which the level of consumption depends on

the number of facilities (e.g. billboards) that customers encounter [20], and

consumers’ preference for obtaining a service at the beginning, middle, or end

of their trips [21].

5. Probabilistic information about the travel origins, turning movements to visit

facilities, and customer arrival and service rates [16,22–24].

6. Competition between the facilities that may be within the same or different

chain [25,26].

7. Synthesis with demand coverage, where flow capture (e.g. intercepting cus-

tomers along their trips) is addressed jointly with covering fixed customers

residing at nodes. [27,28].

The introduction of FCLAP and its variants also initiated work seeking more

efficient problem formulations [15, 29, 30], as well as developing exact and approxi-

mate solution techniques [7,31,32] for efficiently solving realistic problem instances.

Probably the main reason for such fruitful research on FCLAPs is the applicability

of this class of facility location problems to various areas of human endeavor. More

information about such applications can be found in [33] and a review of over 30

different FCLAPs is provided in [29].

8



All the previous studies found about flow-capturing problems assume that if

a facility is located along (or “close enough” to) a predetermined path of a flow,

the flow of customers is considered captured. This assumption raises a serious

issue in applications where targeted flows have an incentive to avoid the facilities.

For example, consider the placement of weigh-in-motion systems, tollbooths, or

security and safety checkpoints. The EFCP model, introduced in this dissertation,

generalizes FCLAP by assuming that a flow can travel along multiple paths and that

a targeted flow chooses to travel along the shortest path not covered by a facility, as

long as the detour is not too large. Optimal solutions of this problem behave very

differently from those of FCLAP.

Like previously described FCLAPs, EFCPs encompass many variants that

may include different objectives (e.g. cost minimization in WIM allocation, profit

maximization in tollbooth allocation, or risk minimization in locating safety and

security checkpoints), constraints (depending on the application), temporal aspects

(single-stage vs. multi-stage location of facilities), and treatment of information

(deterministic vs. probabilistic inputs). Thus, different variants of EFCP require

different modeling features and solution techniques due to potentially different struc-

tural properties of the problem. This dissertation proposes three distinct variants

of EFCP: deterministic, two-stage stochastic, and multi-stage stochastic. The three

models can be used in different applications, whose relevance is explained in the

following sections.
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1.3 Weigh-in-Motion Allocation

Truckers have an incentive to overload their vehicles because it increases their

productivity and thus their profits. However, these “extra profits” for the truckers

come at the expense of severe pavement and environmental damages, whose costs

are passed to the taxpayers. In particular, the taxpayers have to pay hundreds

of millions of dollars annually for the damages that are due to overweight trucks.

For example, only the pavement damage attributed to these trucks in California

was roughly estimated at $23 to $35 million per year (adjusted for inflation from

[34]). When extrapolated to the entire US, this damage exceeds $200 millions/year.

However, the total damage is much higher because it also includes external costs

associated with the extra loads, such as emissions, noise, and accidents [35].

An efficient way of reducing this damage is to implement weigh-in-motion

(WIM) systems that are designed to detect overweight trucks (Figure 1.1). As a

truck drives over a WIM scale, the category of truck, axle weights, velocity, and

other data are recorded and stored by the WIM system. The information gathered

by a WIM system can be associated with the truck license plate and registration

number through the use of high speed cameras. These data can then be transmitted

to the weight-enforcing authorities and trucks violating weight restrictions can be

cited [34]. Note that the WIM stations are uncapacitated and collect data at all

time, which makes them much more efficient than static weigh stations that may

have limited hours of operations and where considerable queuing delays may occur.

WIM technology is expensive and hence it cannot be implemented on every

10



(a) Concept of WIM [36] (b) WIM Implementation [37]

Figure 1.1: WIM systems: Real-time image data are monitored on a computer in a

fixed facility or a vehicle. When a suspect truck is identified, an enforcement unit

can intercept and weigh the truck to confirm the violation.

road link. Recent implementations of WIM checkpoints reveal that their location in

a road network is determined by prioritizing the most damaged road links. Such an

approach was used in Montana, where officials reported an estimated reduction

of annual pavement damage by $700,000 [38]. This intuitive approach towards

allocating WIM systems can be improved by developing operations research models

that optimize the number and location of WIM checkpoints. Several such models are

found in the literature [39,40], but they are built on the assumption that trucks travel

along the shortest paths from their origins to their destinations and that locating

WIM checkpoints along the trucks’ shortest paths suffices to enforce weight control.

However, this simplifying assumption misrepresents the real world, where truck

drivers quickly learn the location of checkpoints, communicate with other truckers,

and start avoiding the checkpoints by taking detours (see [41] for a discussion of the

empirical evidence). If this fact is ignored in allocating WIM checkpoints, then the
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(a) Before WIM (b) WIM Implementation (c) After WIM

Figure 1.2: WIM Paradox: If there is a reasonably short detour, trucks traveling

from A to B will bypass the WIM checkpoint and produce greater damage due to

the longer distance traveled.

implementation of WIM technology can potentially result in greater damage due to

additional vehicle-miles traveled. This phenomenon is called WIM paradox [42] and

an example is shown in Figure 1.2.

In allocating WIM checkpoints there is a tradeoff between investing in WIM

technology and the excessive damage that overweight trucks produce (e.g. damage

associated with loads that exceed legal limits). Therefore, among the important

inputs in optimizing the allocation of WIM systems are the estimated origins, desti-

nations, and intensities of truck flows. As in most FCLAPs, it is assumed that this

information about the flows is known (e.g. can be reliably estimated). In addition,

six assumptions are outlined below in order to clarify relations incorporated in the

mathematical formulations, which are presented the following chapters.

1. An agency allocating WIM checkpoints wishes to minimize total cost that

includes investment in WIM systems and excessive damage due to overweight

12



trucks.

2. WIM checkpoints are located on road links. The cost of implementing check-

points depends on the number of lanes.

3. The damage produced by a truck flow (i.e. a group of trucks with the same

origin and destination) increases linearly with the distance traveled. This is

clearly the case for pavement and environmental damage. (This should not be

confused with the nonlinear relation between the weight of a vehicle and the

per mile damage it produces.)

4. A truck flow can travel along kf shortest paths from its origin to destination.

The number kf can be determined so that the (kf + 1)-th shortest path would

represent an excessive detour for truckers (i.e. that the cost of taking such a

long detour would exceed the benefit from overloading the truck). For example,

kf can be determined so that the (kf + 1)-th shortest path is 30% longer than

the shortest path. (Figure 1.3 provides an example of an excessive detour.)

5. A truck flow is considered captured if at least one WIM checkpoint is located

along each of the kf paths. There is no excessive damage associated with

captured flows.

6. An uncaptured flow travels along the shortest of its kf paths that have not

been covered by checkpoints because that minimizes the truckers’ cost (see

Figure 1.3).

13



(a) Excessive Detour (b) Captured Flow (c) Uncaptured Flow

Figure 1.3: Flow from A to B: Example of an excessive detour and WIM allocations

that do (not) capture this flow.

1.4 Allocation of Vehicle Inspection Stations

About 500,000 shipments containing hazardous materials are made in the US

every day [43]. The vast majority of these shipments are moved by trucks, whereas

about 50% of all shipments include corrosive or flammable petroleum products.

Since accidents that occur in transportation of hazardous materials may result in

death, severe injuries, and destruction of environment or property, the transporta-

tion of hazardous materials is heavily regulated. The principal federal law regulating

the transportation of hazardous materials is the Hazardous Materials Transportation

Act (HMTA), which was introduced in 1975 and further enhanced through several

major amendments in the 90s. The regulations include four aspects: 1) Procedures

and Policies, 2) Material Designations and Labeling, 3) Packaging Requirements,

and 4) Operational Rules. Violations of these rules may result in civil or criminal

penalties.
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To enforce the rules defined by HMTA, the regulating agencies need to deter-

mine where to inspect the trucks in the underlying transportation network [12]. The

problem of locating inspections stations for trucks transporting hazardous materials

is studied by Mirchandani et al. [12] who seek to locate these stations in order to

maximize the number of inspected trucks. The authors state that their model is not

applicable when there is game-playing behavior between the truckers and inspectors.

They argue that truckers may know or guess where the inspectors are located and

modify their routes to avoid inspection. Thus, their model is applicable when the

truckers are required to take given routes or when the inspectors are mobile and can

relocate accordingly.

The EFCP framework proposed in this dissertation is applicable to the location

of safety checkpoints and it fills the gap discussed by Mirhcandani et al. [12]. Namely,

the EFCP accounts for the non-cooperative behavior which one would expect from

those truckers who violate regulations for the transportation of hazardous materials.

The EFCP for this particular application is based on the assumptions similar to those

in the allocation of WIMs. The main difference will arise in estimating parameters

and defining the objective which would consist of minimizing risk.

1.5 Allocation of Tollbooths

The toll roads are usually designed with tollbooths located at each entry/exit

point, which prevents drivers from avoiding them. However, tollbooths are expen-

sive (in their delays to users, operating costs and capital costs) and their use is
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thereby restricted to limited-access freeways and main bottlenecks in road networks

(such as major bridges or tunnels). Transportation economists and planners [44]

argue convincingly that most congested road networks, including urban street net-

works, could be operated far more efficiently and beneficially if appropriate con-

gestion prices could be charged without incurring excessive collection costs or user

delays. For many potential applications where road pricing may be desirable, the

density of conventional tollbooths needed to prevent evasion would be quite un-

affordable, i.e. the delays and other costs would greatly exceed the revenues and

other benefits. Instead of conventional tollbooths we envision much cheaper and

less obtrusive tolling systems that detect vehicles, charge appropriate tolls and duly

inform the vehicle operators about those tolls. (Please note that motorists should

know the locations of those tolling locations, both for ethical reasons and because

prices should be known to motorists in order to appropriately influence their travel

decisions.) The proposed EFCP could be used to locate such “virtual tollbooths

to maximize system-wide net benefits while considering user routing behavior and

various benefits and costs, including the costs of the virtual tollbooths.

1.6 Dissertation Outline

Chapter 2 presents the deterministic EFCP which assumes that information

about the flows (i.e. origins/destinations, intensities) and their willingness to avoid

facilities can be estimated with certainty. Chapter 3 extends the deterministic model

into a two-stage stochastic program, which assumes probabilistic information about
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the intensities of flows and their willingness to avoid facilities. Chapter 4 formulates

the multi-stage stochastic EFCP in which decisions about the facility locations are

made over multiple time periods (e.g. years), given the probabilistic information

about the intensities of flows and their willingness to avoid facilities. Chapter 5 ap-

plies the deterministic EFCP to a realistic case study including the optimal location

of WIM systems in Nevada, and contrasts the EFCP-based solution with the actual

implementation of weigh stations. Chapter 6 summarizes contributions, emphasizes

the potential benefits of this work to society, and discusses further extensions.
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Chapter 2: Deterministic EFCP

Deterministic EFCP that assumes perfect information about the origins, des-

tinations, and intensities of flows is introduced herein. This chapter is organized in

six sections. First, a non-linear and a linear formulation of the problem are pro-

vided. Second, the relation between EFCP and FCLAP is established. Third, the

structural properties of EFCP are analyzed and contrasted with those of FCLAP.

Fourth, the exact and approximate solution methods are proposed. Fifth, the de-

terministic EFCP is tested on case studies involving real-world road networks of

Nevada and Vermont. Finally, the conclusions are drawn.

2.1 Problem Formulation

Let G(N,A) be a bidirectional road transportation network, where N is a

set of nodes and A is a set of arcs (i, j). Denote by F a set of flows and define

Pf as a set of paths which contains kf shortest paths of the flow f ∈ F . Let Apf

be the set of arcs along path p ∈ Pf of flow f ∈ F . Additionally, let wij denote

the cost of implementing and maintaining a facility at arc (i, j), and let cpf be the

excessive damage cost (or risk) incurred if flow f ∈ F passes unintercepted along

path p ∈ Pf . Let xij be a binary variable equal to 1 if a facility is located at arc (i, j)
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and 0 otherwise. Moreover, define x = {xij | (i, j) ∈ A} and w = {wij | (i, j) ∈ A}

as vectors of |A| elements.

The deterministic EFCP can now be formulated as minimization problem

P1: min
x∈{0,1}|A|

wTx+Q(x),

where Q(x) is an oracle that, given an allocation of checkpoints x, computes the cost

of excessive damage (or risk) associated with flows. If a flow is captured, then the

corresponding damage is 0. Otherwise, the flow seeks to minimize its travel distance,

and produces the damage by traveling along its shortest unmonitored path. More

formally, if we let P 2
f =

{
p ∈ Pf |

∑
xij∈Apf

xij = 0
}

be the set of paths of flow f ∈ F

not covered by facilities, then Q(x) =
∑

f∈F Qf (x), where

Qf (x) =


min
p∈P 2

f

{
cpf
}
, P 2

f 6= ∅;

0, P 2
f = ∅.

The nonlinear Problem P1 can be linearized by introducing three sets of aux-

iliary binary variables. These variables are used to check whether a flow is captured,

and direct the uncaptured flows along their shortest unmonitored paths.

ypf =


1, if at least one facility is located along path p ∈ Pf of flow f ∈ F

0, otherwise

yf =


1, if at least one facility is located along all paths p ∈ Pf of flow f ∈ F

0, otherwise

zpf =


1, if flow f ∈ F travels unintercepted along path p ∈ Pf

0, otherwise
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The EFCP can now be formulated as a linear binary integer program:

P2 : min
xij ,y

p
f ,yf ,z

p
f∈{0,1}

∑
(i,j)∈A

xijwij +
∑
f∈F

∑
p∈Pf

zpfc
p
f (2.1)

s.t.
∑

(i,j)∈Apf

xij ≥ ypf ∀p ∈ Pf ∀f ∈ F (2.2)

zpf ≤ 1− ypf ∀p ∈ Pf ∀f ∈ F (2.3)∑
(i,j)∈Apf

xij ≤
∣∣Apf ∣∣ · ypf ∀p ∈ Pf ∀f ∈ F (2.4)

yf ≤ ypf ∀p ∈ Pf ∀f ∈ F (2.5)∑
p∈Pf

zpf ≥ 1− yf ∀f ∈ F (2.6)

The objective (2.1) minimizes the investment cost and excessive damage (or

risk) due to flows whose paths are not all covered by at least one checkpoint. Con-

straints (2.2)-(2.4) ensure that if at least one facility is allocated along a path of a

flow (ypf = 1), the flow cannot pass unintercepted along that path (zpf = 0). Con-

straints (2.5) tie the variables guaranteeing that yf can take a value of 1, if all the

corresponding paths are covered by at least one facility. Constraints (2.6) require

the unintercepted flows to count towards the objective function by producing the

excessive damage along the shortest unmonitored path.

The above linearization includes three sets of auxiliary binary variables and

five additional sets of constraints. The following result demonstrates that the two

formulations are indeed equivalent. The full proof is presented below; the technique,

which is based on the separability of the second-stage objective, will also be used in

later proofs.
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Proposition 1. Problems P1 and P2 are equivalent.

Proof. To prove this we need to show that Q(x) = Q̄(x), where

Q̄(x) = min
ypf ,yf ,z

p
f∈{0,1}

∑
f∈F

∑
p∈Pf

zpfc
p
f s.t. constraints (2)-(6)


Note that the above summation is separable in f , whence

Q̄(x) =
∑
f∈F

Q̄f (x)

where

Q̄f (x) = min
ypf ,yf ,z

p
f∈{0,1}

∑
p∈Pf

zpfc
p
f s.t. constraints (2)-(6) for fixed f


Next, partition each set Pf into sets P 1

f such that
∑

(i,j)∈Apf
xij ≥ 1 for p ∈ P 1

f ,

and P 2
f such that

∑
(i,j)∈Apf

xij = 0 for p ∈ P 2
f . It follows that:

1. For p ∈ P 1
f , constraints (2.4) and (2.3) imply ypf = 1 and zpf = 0, respectively;

2. For p ∈ P 2
f , constraints (2.2) and (2.3) imply ypf = 0 and zpf ≤ 1, respectively.

Now, note that constraint (2.5) is defined over p ∈ Pf , and so is the summation

in constraint (2.6). We can determine Q̄f (x) depending on whether set P 2
f is empty:

1. If P 2
f 6= ∅, then constraint (2.5) implies yf = 0 and constraint (2.6) is equiva-

lent to
∑

p∈P 2
f
zpf ≥ 1. In this case, we have

Q̄f (x) = min
zpf∈{0,1}

∑
p∈P 2

f

zpfc
p
f s.t.

∑
p∈P 2

f

zpf ≥ 1

 = min
p∈P 2

f

{
cpf
}
.

2. If P 2
f = ∅, then constraint (2.5) implies yf ≤ 1 and constraint (2.6) is equiv-

alent to
∑

p∈P 1
f
zpf ≥ 1 − yf . Since zpf = 0 for all p ∈ P 1

f , (2.6) implies that

yf ≥ 1. Hence, yf = 1 and Q̄f (x) = 0.
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The two cases can be summarized as

Q̄f (x) =


min
p∈P 2

f

{
cpf
}
, P 2

f 6= ∅;

0, P 2
f = ∅,

which is precisely the definition of Qf (x) given in Problem P1. Thus, we have

Q(x) = Q̄(x), and the result follows.

2.2 Relation to FCLAP

Recall that FCLAP locates facilities in order to maximize the number of flow-

based customers that encounter these facilities along their predetermined travel

paths. Here we consider a case with a variable number of facilities and note

that maximizing a weighted sum of captured flows is equivalent to minimizing the

weighted sum of uncaptured flows. Using our notation, this variant of FCLAP is

formulated as

FCLAP’: min
xij ,y

p
f∈{0,1}

∑
(i,j)∈A

xijwij +
∑
f∈F

(
1− ypf

)
cpf

s.t.
∑

(i,j)∈Apf

xij ≥ ypf ∀f ∈ F

where p denotes the predetermined path of a flow.

The following part provides two propositions that 1) argue that P2 encom-

passes FCLAP’, and 2) establish relations between solutions to EFCP and FCLAP’.

The first result will be further used to analyze the computational complexity of

EFCP. The second result will be later illustrated through numerical examples, which

show that allocations suggested by FCLAP’ do poorly in a setting where flows try

to evade facilities and thus motivate the application of the proposed EFCP.
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Proposition 2. For kf = 1, Problem P2 reduces to FCLAP’.

Proof. For kf = 1, we have |Pf | = 1 and thus:

1. We can omit condition ∀p ∈ Pf from constraints (2.2)-(2.5) and (2.6).

2. Variables yf and ypf are equivalent by construction and thus constraints (2.5)

can be omitted.

3. Constraints (2.6),
∑

p∈Pf z
p
f ≥ 1 − yf , are equivalent to zpf ≥ 1 − yf , which is

same as zpf ≥ 1− ypf .

4. Constraints (2.3) and (2.6), zpf ≤ 1− ypf and zpf ≥ 1− ypf , imply zpf = 1− ypf .

Now we can replace zpf from (2.1) with 1− ypf and omit (2.3) and (2.6). This

reduces (2.1)-(2.6) to the following mathematical program:

min
xij ,y

p
f∈{0,1}

∑
(i,j)∈A

xijwij +
∑
f∈F

(
1− ypf

)
cpf

s.t.
∑

(i,j)∈Apf

xij ≥ ypf ∀f ∈ F

∑
(i,j)∈Apf

xij ≤
∣∣Apf ∣∣ · ypf ∀f ∈ F

Note the following relations defined with the two above inequalities:

1. If
∑

(i,j)∈Apf
xij = 0 then the first inequality implies ypf = 0;

2. If
∑

(i,j)∈Apf
xij ≥ 1 then the second inequality implies ypf = 1.

Considering that the objective function would force ypf to take the value of 1 when-

ever
∑

(i,j)∈Apf
xij 6= 0, the second inequality can be omitted.
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Proposition 3. Let x∗
FCLAP ′ denote the optimal solution for FCLAP’ in which p is

defined as the shortest path of a flow. Similarly, let x∗
EFCP be the optimal solution

for EFCP (Problem P2). If we let FCLAP ′ (x) and EFCP (x) denote values of

the facility allocation x in these two problems, then

1. EFCP (x) ≥ FCLAP (x)

2. EFCP (x∗
EFCP ) ≥ FCLAP (x∗

FCLAP )

3. EFCP (x∗
EFCP ) ≤ EFCP (x∗

FCLAP )

Proof. The third inequality obviously holds because x∗
EFCP is the optimal solution

for EFCP, which is a minimization problem.

To show that the first inequality holds, note that constraints (2.5) hold for all

p ∈ Pf and thus yf ≤ y
p∗(f)
f , where p∗(f) denotes the shortest path of a flow. This

relation and constraint (2.6) imply∑
p∈Pf

zpf ≥ 1− yf

 ∧ (yf ≤ y
p∗(f)
f

)
⇒

∑
p∈Pf

zpf ≥ 1− yp
∗(f)
f

First, we include cpf in the summation on the left hand side and multiply the right

hand side with c
p∗(f)
f . Note that we are allowed to do this because cpf ≥ c

p∗(f)
f for

all p ∈ Pf (based on Assumption 3 as well as the definition of p∗(f) as the shortest

path of a flow). Second, we sum the obtained inequality for all the flows:

∑
p∈Pf

zpfc
p
f ≥

(
1− yp

∗(f)
f

)
c
p∗(f)
f ⇒

∑
f∈F

∑
p∈Pf

zpfc
p
f ≥

∑
f∈F

(
1− yp

∗(f)
f

)
c
p∗(f)
f

Finally, we add the facility cost to both sides of the last inequality and note that

∑
(i,j)∈A

xijwij +
∑
f∈F

∑
p∈Pf

zpfc
p
f ≥

∑
(i,j)∈A

xijwij +
∑
f∈F

(
1− yp

∗(f)
f

)
c
p∗(f)
f
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whence EFCP (x) ≥ FCLAP ′ (x) as required.

The second inequality follows immediately from the first, because x∗
FCLAP ′ is

optimal for FCLAP’ and thus EFCP (x∗
EFCP ) ≥ FCLAP ′

(
x∗
FCLAP ′

)
.

2.3 Structural Properties

Since Problem P1 represents minimization of a set function, we would be in-

terested in checking whether this set function is submodular or supermodular. On

the one hand, submodular set functions can be minimized in strongly polynomial

time [45, 46]. On the other hand, a simple greedy heuristic is guaranteed to per-

form well when applied to minimization of supermodular functions. The bound on

this greedy approximation was extensively used in the literature on FCLAP and

is stated below for completeness. Before we proceed, recall that a set function is

nondecreasing, submodular, and supermodular if for all S ⊂ T ⊂ N and k /∈ T the

following holds:

1. nondecreasing: h (S) ≤ h (T )

2. submodular: h (T ∪ {k})− h (T ) ≤ h (S ∪ {k})− h (S)

3. supermodular: h (T ∪ {k})− h (T ) ≥ h (S ∪ {k})− h (S) (i.e. −h is submod-

ular)

Theorem 1 (Nemhauser, Wolsey, and Fisher 1978 [47]). Consider the optimization

problem

Z∗ = max
S⊂N, |S|≤m

h(S).
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Let ZG be a value returned by the greedy heuristic that sequentially selects elements

in N that myopically maximize the objective function. If h(S) is submodular and

nondecreasing, then

ZG

Z∗
≥ 1−

(
1− 1

m

)m
≥ 1− 1

e
≈ 0.63.

Numerous papers on FCLAP show that the problem of locating m facilities to

maximize the weighted sum of captured flows, can be expressed using the framework

of Theorem 1 [7, 14, 20, 23, 25]. This result guarantees that a greedy heuristic will

quickly provide solutions for FCLAP that are within 37% of the optimum. Numerical

comparison with exact solution techniques, e.g. branch and bound, shows that

a greedy algorithm performs exceptionally well yielding optimal or near optimal

solutions [14, Table 2].

However, although EFCP is closely related to FCLAP, it is a substantially

more complex problem. Our next result shows that EFCP is neither submodular

(and thus existing results on polynomial complexity do not apply) nor supermodular

(and thus a greedy heuristic is not guaranteed to perform well). In fact, as we show

later on, a greedy heuristic can perform arbitrarily poorly in EFCP.

Proposition 4. The objective function of Problem P1 is non-submodular, non-

supermodular, and non-monotonic.

Proof. We prove this by contradiction. Let w be a vector of zeros. Consider a case

of a single flow f and its kf shortest paths indexed p = 1, ..., kf . Let S denote

an allocation of facilities such that only the first r shortest paths are covered by

checkpoints and r < kf . Let T denote the allocation of facilities covering the first
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r shortest paths like in S, as well as shortest paths indexed p = r + 2, ..., kf − 1.

Moreover, let h(S) denote the objective function value of P1 given allocation S.

Clearly, we have S ⊂ T ⊂ A and h(S) = h(T ) = cr+1
f because the flow travels along

the shortest unmonitored path, which is path r+ 1 in both cases. Now let k /∈ T be

the location of a checkpoint such that only the (r + 1)-shortest path is intercepted

and observe the following:

h (T ∪ {k})− h (T ) = c
kf
f − c

r+1
f

h (S ∪ {k})− h (S) = cr+2
f − cr+1

f

The above equalities imply h (T ∪ {k})− h (T ) ≥ h (S ∪ {k})− h (S) because c
kf
f ≥

cr+2
f . Thus, submodularity does not hold for all S ⊂ T ⊂ A and k /∈ T .

To show that the function is neither supermodular nor monotonic, let T denote

the allocation of facilities that cover the first r shortest paths like in S, as well as

shortest paths indexed p = r + 2, ..., kf . Then,

h (T ∪ {k})− h (T ) = 0− cr+1
f ≤ 0

h (S ∪ {k})− h (S) = cr+2
f − cr+1

f ≥ 0

The above expressions imply that the objective function of P1 is not monotonic.

Moreover, since this time we have h (T ∪ {k})− h (T ) ≤ h (S ∪ {k})− h (S), super-

modularity does not hold for all S ⊂ T ⊂ A and k /∈ T .

Proposition 4 indicates that standard solution approaches for FCLAP are not

guaranteed to work well in EFCP. We now address the computational complexity

of EFCP.
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Proposition 5. Problem P2 is NP-hard.

Proof. To prove that Problem P2 is NP-hard, we reduce a known NP-hard prob-

lem, namely the problem of “Locating Uncapacitated Inspection Stations” (LUIS),

studied by [12], to an instance of Problem P2. The goal of this problem is to place

the smallest possible number of inspection stations needed to cover all truck flows

(thus ensuring that all trucks are inspected). Using our notation, it can be written

as

LUIS: min
xij∈{0,1}

∑
(i,j)∈A

xij

s.t.
∑

(i,j)∈Apf

xij ≥ 1

where (i, j) are edges in a graph, f denotes a truck flow, Apf is the set of edges

along the single predetermined path of a flow, and A and xij are as defined earlier.

Given an arbitrary instance of LUIS, we construct an instance of P2 whose optimal

solution yields an optimal solution to LUIS.

First, let wij = 1 and let cpf =
∑

(i,j)∈Awij for all f . Then the problem

LUIS’: min
xij ,y

p
f∈{0,1}

∑
(i,j)∈A

xijwij +
∑
f∈F

(1− ypf ) · c
p
f

s.t.
∑

(i,j)∈Apf

xij ≥ ypf

is an instance of FCLAP’. In this formulation, the variable ypf equals 1 if flow f

is captured and 0 otherwise. However, if we do not capture flow f , we incur a

penalty cpf that exceeds the cost of implementing a station on each edge. Therefore,

the optimal solution to LUIS’ never leaves any flows uncaptured, and will remain
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unchanged if we require ypf = 1, in which case LUIS and LUIS’ are identical. Since

FCLAP’ is an instance of P2 with kf = 1, we can conclude that problem P2 is

NP-hard.

Note that Problem P1 minimizes the total investment in facilities and excessive

damage associated with unintercepted flows. While this is a reasonable economic

objective, most work on FCLAP considers a fixed number of facilities, and focuses

on placing them to maximize the number of captured customers (which is equivalent

to minimizing excessive damage associated with uncaptured flows). Thus, we also

consider a variant of P1 whose objective function only includes excessive damage,

not the cost of implementing the facilities. This problem is denoted by

P1’: min
x∈{0,1}|A|,

∑
(i,j)∈A xij≤m

Q(x).

It is straightforward to show that the structural properties of P1 obtained in Propo-

sition 4 also hold for P1’. Additionally, for kf = 1, Problem P1’ transforms into a

classic FCLAP, which is known to be NP-hard [5].

2.4 Solution Techniques

Formulation P2 represents a binary integer program which can be tackled in

any mathematical programming software using branch-and-bound-based algorithms.

This section shows that the binary variables yf and zpf can be linearly relaxed without

altering the optimal solution or the value of the objective function. As it will be

illustrated numerically, this partial linear relaxation typically reduces solution time

for P2 by about 30%. In addition, a tighter formulation of P2 is proposed, which
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enables linear relaxation of all the variables except xij. These results are summarized

in the following two theorems.

Theorem 2. Let EFCP 1
LR denote a partial linear relaxation of EFCP (Problem

P2), such that yf , z
p
f ≥ 0 and xij, y

p
f ∈ {0, 1}. Then, an optimal facility allocation

for EFCP 1
LR is also optimal for EFCP , and the two problems have the same optimal

objective values.

Proof. To prove this, it suffices to show that for any fixed binary x and y = {ypf | p ∈

Pf , f ∈ F} which satisfy (2.2) and (2.4), the two problems have the same optimal

second-stage value. We can show this by noting that for fixed binary x and y which

satisfy (2.2) and (2.4), the objective function of problem EFCP 1
LR corresponds to

∑
(i,j)∈A

xijwij +
∑
f∈F

Bf (y),

where

Bf (y) = min
yf ,z

p
f≥0

∑
p∈Pf

zpfc
p
f

s.t. zpf ≤ 1− ypf ∀p ∈ Pf

yf ≤ ypf ∀p ∈ Pf∑
p∈Pf

zpf ≥ 1− yf

We proceed by partitioning each set Pf into P 1
f and P 2

f , such that ypf = 1

for p ∈ P 1
f and ypf = 0 for p ∈ P 2

f . Now note that Bf (y) can be determined

based on whether set P 2
f is empty. Using arguments similar to those in the proof

of Proposition 1, we conclude that, for fixed x and y, the objective function of
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EFCP 1
LR is given by ∑

(i,j)∈A

xijwij +
∑
f∈F

Bf (y),

where

Bf (y) =


min
p∈P 2

f

{
cpf
}
, P 2

f 6= ∅;

0, P 2
f = ∅.

Finally, we observe that
∑

f∈F Bf (y) corresponds to Q(x) from Problem P1.

This implies that for fixed x and y, problems EFCP 1
LR and EFCP have the same

objective function values. Thus, they also have the same objective function values

for the optimal x and y.

Remark 1. The partial linear relaxation stated in Theorem 2 reduces the number

of binary integer variables from |A|︸︷︷︸
xij

+ |F |︸︷︷︸
yf

+ 2 ·
∑
f∈F

|Pf |︸ ︷︷ ︸
ypf & zpf

to |A|+
∑

f∈F |Pf |.

In Theorem 2, it was shown that yf and zpf can be linearly relaxed without

altering the optimal solution. The following result shows that we can additionally

relax ypf , provided that we tighten formulation P2. In this case, however, the relax-

ation comes at the cost of additional constraints. Whether it will run faster than

EFCP 1
LR is problem-dependent.

Theorem 3. Let EFCP 2
LR denote a partial linear relaxation of EFCP (Problem

P2), such that:

1. Constraints (2.4) are replaced with constraints

xij ≤ ypf ∀(i, j) ∈ Apf ∀p ∈ Pf ∀f ∈ F (2.7)

which tighten the formulation P2;
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2. All auxiliary variables are linearly relaxed ypf , yf , z
p
f ≥ 0, whereas the facility

location variables are kept binary xij ∈ {0, 1}.

Let x∗
EFCP 2

LR
denote its optimal solution with objective EFCP 2

LR(x∗
EFCP 2

LR
). Then,

x∗
EFCP 2

LR
= x∗

EFCP and EFCP 2
LR(x∗

EFCP 2
LR

) = EFCP (x∗
EFCP ).

Proof. We first prove that for any allocation of checkpoints x, two problems have

the same objective functions, EFCP 2
LR(x) = EFCP (x). We can show this by

working through the constraints of EFCP 2
LR similarly to Proposition 1. We begin

by noting that objective is separable in f , whence

EFCP 2
LR(x) = xTw +

∑
f∈F

Q̄f (x)

where Q̄f (x) equals

min
ypf ,yf ,z

p
f≥0

∑
p∈Pf

zpfc
p
f s.t. (2.2)-(2.3), (2.5)-(2.7) for fixed f

 .

We partition each set Pf into sets P 1
f such that

∑
(i,j)∈Apf

xij ≥ 1 for p ∈ P 1
f ,

and P 2
f such that

∑
(i,j)∈Apf

xij = 0 for p ∈ P 2
f , and observe the following:

1. For p ∈ P 1
f , constraints (2.7) and (2.3) imply ypf ≥ 1 and zpf = 0;

2. For p ∈ P 2
f , constraints (2.2) and (2.3) imply ypf = 0 and zpf ≤ 1, respectively.

Now we can compute Q̄f (x) similarly to Proposition 1. Thus, we omit the

corresponding steps and conclude that the objective function of EFCP 2
LR(x) can

be given as

EFCP 2
LR(x) = xTw +

∑
f∈F

Q̄f (x)
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where

Q̄f (x) =


min
p∈P 2

f

{
cpf
}
, P 2

f 6= ∅;

0, P 2
f = ∅.

The above expression for EFCP 2
LR(x) matches the objective function of P1

and is thus equivalent to the objective of P2. Since EFCP 2
LR(x) = EFCP (x) and

two problems have the same feasible regions for x, then x∗
EFCP 2

LR
= x∗

EFCP and

EFCP 2
LR(x∗

EFCP 2
LR

) = EFCP (x∗
EFCP ).

Remark 2. The partial linear relaxation stated in Theorem 3 reduces the num-

ber of binary integer variables from |A| + |F | + 2 ·
∑

f∈F |Pf | to |A|. Moreover,

this partial linear relaxation includes reformulation of constraints (4), which in-

creases the total number of constraints from |F |︸︷︷︸
(2.6)

+ 4 ·
∑
f∈F

|Pf |︸ ︷︷ ︸
(2.2)−(2.5)

to |F |+3·
∑

f∈F |Pf |+

∑
f∈F

∑
p∈Pf

∣∣Apf ∣∣ constraints.

We also consider the performance of a greedy heuristic that introduces check-

points at the best current locations as long as the facility implementation improves

the objective function (Algorithm 1). Recall that such heuristics are often used in

FCLAP, where they can be guaranteed to perform within 37% of optimality. How-

ever, in EFCP, the greedy heuristic cannot be guaranteed to perform within any

fraction of the optimal value. Our numerical experiments include cases where the

heuristic performs very poorly.

Proposition 6. For any 0 < ε < 1, there exists an instance of EFCP (Problem P1)

for which EFCP (x∗
EFCP ) ≤ ε · EFCP (xG), where xG represents the allocation of

checkpoints found by the greedy heuristic.
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Algorithm 1 Greedy heuristic for P1

Initialize R0 ← ∅

For t = 0, ..., |A|

(i, j)∗ = arg min
(i,j)∈A\Rt

h (Rt ∪ (i, j))

if h (Rt ∪ (i, j)∗) ≤ h (Rt) then

Rt+1 ← Rt ∪ (i, j)∗

else

break

end-if

end-for

return RG = Rt, ZG = h (Rt)

Proof. Let 0 < ε < 1, and suppose that there is a single flow f that can travel along

at least two edge-disjoint paths. In this case, the optimal value can be expressed as

EFCP (x∗
EFCP ) = min

(
c1
f ,
∑

(i,j)∈S wij

)
, where S is the least expensive allocation

of facilities that covers all the paths of flow f . Moreover, the greedy heuristic is

initialized with a solution that includes no facility implementation and the corre-

sponding damage c1
f . Since facility implementation only exacerbates the objective

function in the first iteration (i.e. a flow diverts and/or facility cost is incurred), the

greedy heuristic stops after the first pass and returns the solution EFCP (xG) = c1
f .

Recall that c1
f represents the excessive damage produced if flow f travels along

the shortest path and note that c1
f can be arbitrarily high depending on the intensity

of the flow and length of the path. Suppose that c1
f = 2

ε

∑
(i,j)∈S wij and observe the
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following:

EFCP (x∗
EFCP )

EFCP (xG)
=

min
(
c1
f ,
∑

(i,j)∈S wij

)
c1
f

=

∑
(i,j)∈S wij

2
ε

∑
(i,j)∈S wij

=
ε

2

The above equality shows that for any 0 < ε < 1, there exists an instance of

P1 for which EFCP (x∗
EFCP ) ≤ ε · EFCP (xG).

Moreover, we consider Problem P1’ and a greedy heuristic that places a given

number of facilities (e.g. m facilities) in the best current position, as in [14]. We

show that a bound cannot be determined for this greedy algorithm either. Our

numerical experiments also include instances where it performs poorly.

Proposition 7. For any ε > 0, there exists an instance of EFCP (Problem P1’)

for which EFCP (x∗
EFCP ) ≤ ε · EFCP (xG), where xG represents the allocation of

checkpoints found by the greedy heuristic.

Proof. Let ε > 0, and consider a completely connected network with m + 1 nodes.

Suppose that there are m flows with the same origin node O and m distinct desti-

nation nodes. Furthermore, suppose flows can travel from O to their destinations

through all m remaining nodes (i.e. these nodes are not “too far” apart and thus

all possible paths are acceptable). Clearly, the optimal solution consists of locating

m facilities along m links adjacent to node O and thus EFCP (x∗
EFCP ) = 0.

On the other hand, the greedy heuristic is initialized with a solution that

includes no facility implementation and all flows traveling freely from O to their

m destination nodes. In the first step, the greedy heuristic tries implementing a

facility on all the links. However, placing a facility on any of the links adjacent to
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node O yields an increased excessive damage since the corresponding flow diverts.

The greedy heuristic proceeds by implementing all m facilities on links connecting

m destination nodes, without intercepting any flows. Thus, we have EFCP (xG) =

m∑
f=1

c1
f .

In the described case, we have EFCP (x∗
EFCP )/EFCP (xG) = 0 < ε. Thus,

for any ε > 0, there exists an instance of P1’ for which EFCP (x∗
EFCP ) ≤ ε ·

EFCP (xG).

2.5 Numerical Experiments

A set of simulated problems are solved to obtain insights on 1) the benefits of

the proposed partial linear relaxations, 2) the performance of the greedy heuristics,

and 3) performance of FCLAP-based facility allocations in a setting where flows

evade facilities. The random instances are based on real-world road networks of

Nevada and Vermont. They include 400 and 200 randomly simulated flows, respec-

tively, as well as differently specified:

1. Willingness of flows to avoid facilities (i.e. kf is defined so that the kf + 1

shortest path is 1.1 or 1.2 times longer than the shortest path);

2. Cost of facilities for Problem P1, or number of facilities for Problem P1’.

The mathematical programming formulations were implemented in GAMS

23.5 and solved using GAMS/CPLEX solver for mixed integer programs on a PC

with an AMD Athlon 3300 GHz processor with 4 GB of RAM. Tables 2.1 and 2.2

report computation times for different formulations. The EFCP refers to solving
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Problem (2.1)-(2.6) as a binary integer program, whereas EFCP 1
LR refers to solving

the partial linear relaxation proposed in Theorem 2. The greedy heuristics were

implemented in C++ in a Linux environment. Run times of greedy heuristics where

below one second in almost all instances, so they were omitted from Tables 2.1 and

2.2.
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(a) Road network of Nevada includes 130 links

(b) Road network of Vermont includes 178 links

Figure 2.1: Real-world road networks used in numerical experiments
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The numerical results summarized in Tables 2.1 and 2.2 indicate that the

partial linear relaxation EFCP 1
LR proposed in Theorem 2 on average reduced the

computation time by about 29%. In particular, in 47/64 cases it reduced the com-

putation time by 42% on average, in 4/64 cases it made no difference, whereas

in 13/64 cases it increased the computation time by 11% on average. Tables 2.1

and 2.2 also illustrate the results in Propositions 6 and 7: although the greedy

heuristic often performs well, and typically runs in less than a second, there are

problem instances where it performs extremely poorly. Moreover, the performance

of the greedy heuristic is much worse in Problem P1’. We also omit the running

times of the tighter formulation proposed in Theorem 3, as the increased number of

constraints led to slower computation times for these problem instances.

We also apply FCLAP’ to find x∗
FCLAP ′ and then evaluate these alloca-

tions in a setting where flows try to evade facilities. We compare the obtained

EFCP (x∗
FCLAP ′) with the optimal values EFCP (x∗

EFCP ) and show their ratios

in Tables 2.1 and 2.2. The FCLAP’ produced solutions that were on average only

within 52% of the optimal. This clearly shows the additional value that proposed

EFCP adds in allocating facilities that targeted flows try to avoid.

In the remainder of this section we illustrate some of the optimal allocations

from Tables 2.1 and 2.2, and show how they change when we vary m, wij, or the

threshold for determining kf . These illustrations are provided in Figures 2.2-2.5.
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(a) x∗
FCLAP for m = 2 (b) x∗

EFCP for m = 2 and threshold 1.1

(c) x∗
EFCP for m = 2 and threshold 1.2 (d) x∗

EFCP for m = 2 and threshold 1.3

Figure 2.2: Optimal solutions for Nevada based on differently specified threshold

(i.e. willingness of flows to evade facilities) and m = 2
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(a) x∗
FCLAP (b) x∗

EFCP for threshold 1.1

(c) x∗
EFCP for threshold 1.2 (d) x∗

EFCP for threshold 1.3

Figure 2.3: Optimal solutions for Nevada based on differently specified threshold

(i.e. willingness of flows to evade facilities) and facility cost of $60,000/lane-year
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(a) x∗
EFCP for m = 5 (b) x∗

EFCP for m = 8

(c) x∗
EFCP for m = 11 (d) x∗

EFCP for m = 14

Figure 2.4: Optimal solutions for Vermont based on differently specified m and

threshold 1.2 (i.e. willingness the avoid facilities)
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(a) x∗
EFCP for 5,000/lane-year (b) x∗

EFCP for 7,500/lane-year

(c) x∗
EFCP for 10,000/lane-year (d) x∗

EFCP for 20,000/lane-year

Figure 2.5: Optimal solutions for Vermont based on differently specified cost of

facilities and threshold 1.2 (i.e. willingness the avoid facilities)
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2.6 Conclusions

This chapter introduced a deterministic flow-capturing model in which tar-

geted flows try to evade facilities that are being located. The proposed EFCP

generalizes the previously studied FCLAP, but includes structurally different prop-

erties that, for example, can cause a greedy heuristic to perform arbitrarily poorly.

It was shown that many binary variables can be linearly relaxed without altering the

optimal solution or the value of the objective function. This result proved to be very

useful in solving realistic problem instances involving the road networks of Nevada

and Vermont, as it considerably reduced the computation time needed to find the

optimal solutions. In addition, the numerical comparison of EFCP and FCLAP in-

dicates that solutions optimal to FCLAP do very poorly in a setting where targeted

flows try to evade facilities. These results, as well as wide applicability of EFCP

in transportation, revenue management, and security and safety management, show

the relevance of the proposed type of flow-capturing problem and encourage further

extensions of EFCP, which are addressed in the following chapters of this thesis.
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Chapter 3: Two-Stage Stochastic EFCP

The EFCP proposed in Chapter 2 represents an optimization problem in which

all the parameters are assumed to be known with certainty. For example, the dam-

age that a flow produces (i.e. parameter cpf ) and its willingness to avoid facilities (i.e.

the size of set Pf containing shortest paths) are assumed to be known. However, in

real-world applications, this information could be obtained through expert opinion

or data collection, which result in different estimations or realizations of these pa-

rameters. To address the case when cpf and Pf are not known with certainty, this

chapter proposes a stochastic extension of EFCP and develops theoretical results

that are crucial for solving this problem optimally.

It should be noted that per mile pavement and environmental damages that

a flow produces vary with the number and types of vehicles within a flow, excessive

loads, climate, and weather. On the other hand, the willingness to avoid facilities

may depend on both physiological and economic factors (e.g. price of gasoline,

driver’s hourly pay, trucker’s ability to overload the truck which depends on demand,

the age of the truck, tires, types of loads, and road conditions). In this analyses, it

is assumed that these two parameters are independent.
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3.1 Problem Formulation

Let ξ = {ξf | f ∈ F} be a vector of random variables denoting unit intensities

of flows f ∈ F (i.e. damage or risk produced per unit of distance traveled). Similarly,

let ζ = {ζf | f ∈ F} be a vector of discrete random variables denoting the willingness

of flows to evade facilities. This quantity could be defined as a percentage by which

drivers are willing to increase the distance traveled (e.g. 20% of the shortest path).

A particular realization of these random parameters will be denoted by ω ∈ Ω. As

a result, in the stochastic extension, we will have Pf (ω), ypf (ω), yf (ω), zpf (ω), and

cpf (ω), associated with each realization. Recall that, by Assumption 3 from Section

1.3, we can write

cpf (ω) = lpf (ω)ξf (ω),

where lpf (ω) is the length of path p ∈ Pf (ω). The set Pf (ω) itself is determined by

realization of ζ(ω).

The two-stage stochastic EFCP, with a fixed number of facilities, can now be

formulated as a minimization problem

SP1: min
x∈{0,1}|A|

EξζQ(x, ξ, ζ)

s.t.
∑

(i,j)∈A

xij ≤ m

where Q(x, ξ(ω), ζ(ω)) is an oracle that, given an allocation x of checkpoints, com-

putes the excessive damage (or risk) associated with flows and a particular real-

ization of ξ and ζ. If a flow is captured, then the corresponding damage is 0.

Otherwise, the flow seeks to minimize its travel distance, and produces the dam-
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age by traveling along its shortest unmonitored path. More formally, if we let

P 2
f (ω) =

{
p ∈ Pf (ω) |

∑
xij∈Apf (ω) xij = 0

}
be the set of paths of flow f ∈ F not

covered by facilities, then Q(x, ξ(ω), ζ(ω)) =
∑

f∈F Qf (x, ξ(ω), ζ(ω)), where

Qf (x, ξ(ω), ζ(ω)) =


min

p∈P 2
f (ω)

{
cpf (ω)

}
, P 2

f (ω) 6= ∅;

0, P 2
f (ω) = ∅.

The nonlinear Problem SP1 can be linearized by introducing three sets of

auxiliary binary variables. These variables are used to check whether a flow is

captured, and direct the uncaptured flows along their shortest unmonitored paths.

Moreover, these variables depend on the realization of random intensity of flows and

their willingness to evade facilities.

ypf (ω) =


1, if at least one facility is located along path p ∈ Pf (ω) of flow f ∈ F

0, otherwise

yf (ω) =


1, if at least one facility is located along all p ∈ Pf (ω) of flow f ∈ F

0, otherwise

zpf (ω) =


1, if flow f ∈ F travels unintercepted along path p ∈ Pf (ω)

0, otherwise

The two-stage stochastic EFCP can now be formulated as a linear binary

integer program, which we denote SP2.

First Stage:

min
x∈{0,1}|A|

EξζQ(x, ξ, ζ) (3.1)

s.t.
∑

(i,j)∈A

xij ≤ m (3.2)
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Second Stage:

Q(x, ξ(ω), ζ(ω)) = min
ypf (ω)∈{0,1}
yf (ω)∈{0,1}
zpf (ω)∈{0,1}

∑
f∈F

∑
p∈Pf (ω)

zpf (ω)cpf (ω) (3.3)

s.t.
∑

(i,j)∈Apf (ω)

xij ≥ ypf (ω) ∀p ∈ Pf (ω) ∀f ∈ F (3.4)

zpf (ω) ≤ 1− ypf (ω) ∀p ∈ Pf (ω) ∀f ∈ F (3.5)∑
(i,j)∈Apf (ω)

xij ≤
∣∣Apf (ω)

∣∣ · ypf (ω) ∀p ∈ Pf (ω) ∀f ∈ F (3.6)

yf (ω) ≤ ypf (ω) ∀p ∈ Pf (ω) ∀f ∈ F (3.7)∑
p∈Pf (ω)

zpf (ω) ≥ 1− yf (ω) ∀f ∈ F (3.8)

The first-stage objective (3.1) minimizes the expected excessive damage given

the maximum implementation of m facilities (3.2). Second stage objective function

(3.3) computes the excessive damage associated with unintercepted flows that travel

along the shortest unmonitored paths. Constraints (3.4)-(3.6) ensure that if at least

one facility is allocated along a path of a flow (ypf (ω) = 1), the flow cannot pass

unintercepted along that path (zpf (ω) = 0). Constraints (3.7) tie the variables

guaranteeing that yf (ω) can take a value of 1, if all the corresponding paths are

covered by at least one facility. Constraints (3.8) require the unintercepted flows to

count towards the objective function by producing the excessive damage along the

shortest unmonitored path.

Since SP1 and SP2 are stochastic extensions of P1 and P2 from Chapter 2,

it follows that:
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1. Problems SP1 and SP2 are equivalent;

2. The objective function of Problem SP1 is non-submodular, non-supermodular,

and non-monotonic;

3. Problem SP2 is NP-hard;

4. A bound cannot be established on the greedy approximation of SP1.

3.2 Reducing the Noise

The following theorem argues that some of the randomness inherent to SP1

and SP2 can be reduced without altering the problem. In particular, it shows

that, under independence assumptions, stochastic flow intensities (i.e. per mile

damage or risk) can be replaced with their means while preserving the randomness

associated with the willingness of targeted subjects to evade the facilities. This

result considerably reduces the noise, which enables us to consider fewer scenarios

and thus solve the problem much more efficiently.

Theorem 4. Suppose that ξ and ζ are independent, and let ξ̄ = E(ξ) denote the

expected intensity of flows (i.e. damage or risk per distance traveled). Then the

following holds:

min
x∈{0,1}|A|∑
(i,j)∈A xij≤m

EξζQ(x, ξ, ζ) = min
x∈{0,1}|A|∑
(i,j)∈A xij≤m

EζQ(x, ξ̄, ζ)

Proof. For a fixed feasible allocation of facilities x and realization ω, the damage
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produced by a particular flow f ∈ F , is given by

Qf (x, ξ(ω), ζ(ω)) =


min

p∈P 2
f (ω)

{
cpf (ω)

}
, P 2

f (ω) 6= ∅;

0, P 2
f (ω) = ∅.

where P 2
f (ω) is a set of paths such that

∑
(i,j)∈Apf (ω)

xij = 0 (i.e. a set of paths not

covered by a facility). Furthermore, let sf (ω) = arg min
p∈P 2

f (ω)
{cpf (ω)} be the shortest

unmonitored path of flow f . Let us now define a random variable

df (ω) =


l
sf (ω)

f , P 2
f (ω) 6= ∅;

0, P 2
f (ω) = ∅,

where l
sf (ω)

f is the length of the shortest unmonitored path which depends on allo-

cation x and realization of ζf .

The total damage produced by all the flows can now be computed as

Q(x, ξ(ω), ζ(ω) =
∑
f∈F

df (ω)ξf (ω),

where df is a function of the allocation x as well as random variable ζf . On the

other hand, ξf (ω) represents the intensity of flow f (i.e. per mile damage or risk).

Based on the assumed independence of ξ and ζ, we have

EξζQ(x, ξ, ζ) = Eξζ

[∑
f∈F

dfξf

]

=
∑
f∈F

Eξζ [dfξf ]

=
∑
f∈F

Eζ [df ]Eξ [ξf ]

= Eζ

[∑
f∈F

df ξ̄f

]

and the result follows.
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3.3 Reformulating the Second-Stage

The number of second-stage binary variables and constraints in SP2 can be

further reduced by exploiting the special structure of the problem. Namely, as the

willingness of a flow to evade facilities increases, so does the number of its paths.

However, some of the paths remain the same for different realizations of ζf , so we

can use this to reduce the number of path-based constraints.

Let ζf (ω
r) denote the r-th realization of the random willingness of a flow to

avoid facilities, where r = 1, ..., R. Moreover, assume that realizations are ordered so

that ζf (ω
r) ≥ ζf (ω

r−1), and thus Pf (ω
r−1) ⊆ Pf (ω

r). We can use this to reduce the

size of the sets over which constraints (3.5)-(3.7) are defined, while including only

one additional constraint. We formulate the scenario-based constraints recursively,

while assuming for notational convenience that Pf (ω
0) = ∅ and yf (ω

0) = 1.

First Stage:

min
xij∈{0,1}

Eζ
∑
f∈F

Q̃f (x, ξ̄, ζ) (3.9)

s.t.
∑

(i,j)∈A

xij ≤ m (3.10)

Second Stage:

Q̃f (x, ξ̄f , ζf (ω
r)) = min

ypf (ωr)∈{0,1}
yf (ωr)∈{0,1}
zpf (ωr)∈{0,1}

∑
p∈Pf (ωr)

zpf (ω
r)cpf (ω

r) (3.11)

s.t.
∑

(i,j)∈Apf (ωr)

xij ≥ ypf (ω
r) ∀p ∈ Pf (ωr) \ Pf (ωr−1) (3.12)
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zpf (ω
r) ≤ 1− ypf (ω

r) ∀p ∈ Pf (ωr) \ Pf (ωr−1) (3.13)∑
(i,j)∈Apf (ωr)

xij ≤
∣∣Apf (ωr)∣∣ · ypf (ωr) ∀p ∈ Pf (ωr) \ Pf (ωr−1) (3.14)

yf (ω
r) ≤ ypf (ω

r) ∀p ∈ Pf (ωr) \ Pf (ωr−1) (3.15)

yf (ω
r) ≤ yf (ω

r−1) (3.16)∑
p∈
⋃r
r′=1 Pf (ωr′ )

zpf (ω
r) ≥ 1− yf (ωr) (3.17)

Program (3.9)-(3.17) describes the same relations as (3.1)-(3.8), but includes

recursively defined path-based constraints. In this regard, the newly introduced

constraint (3.16) ensures that each flow f can be captured in the r-th realization

only if it is also captured in realization r − 1, which includes fewer paths.

The following two remarks imply that, after we apply Theorem 4 and refor-

mulate the problem as in (3.1)-(3.8), the two-stage stochastic EFCP becomes only

slightly more difficult than the deterministic EFCP with the largest realizations of

ζf .

Remark 3. Let ζf (ω
R) denote the largest realization of the willingness of a flow

to avoid facilities, and let Mf denote the number of realizations of ζf . Then the

two-stage stochastic EFCP defined with (3.9)-(3.17) includes:

• |A|︸︷︷︸
xij

+
∑
f∈F

Mf︸ ︷︷ ︸
yf (ω)

+ 2 ·
∑
f∈F

∣∣Pf (ωR)
∣∣

︸ ︷︷ ︸
ypf (ω) & zpf (ω)

binary variables;

• 1︸︷︷︸
(3.10)

+ 4 ·
∑
f∈F

∣∣Pf (ωR)
∣∣

︸ ︷︷ ︸
(3.12)−(3.15)

+ 2 ·
∑
f∈F

Mf︸ ︷︷ ︸
(3.16)−(3.17)

constraints.
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Remark 4. Consider (3.9)-(3.17) given a single realization of flow’s willingness to

avoid facilities, ζf (ω
R). This case represents deterministic EFCP. In such setting,

constraint (3.16) becomes redundant, so the deterministic EFCP includes:

• |A|︸︷︷︸
xij

+ |F |︸︷︷︸
yf (ω)

+ 2 ·
∑
f∈F

∣∣Pf (ωR)
∣∣

︸ ︷︷ ︸
ypf (ω) & zpf (ω)

binary variables;

• 1︸︷︷︸
(3.10)

+ 4 ·
∑
f∈F

∣∣Pf (ωR)
∣∣

︸ ︷︷ ︸
(3.12)−(3.15)

+ |F |︸︷︷︸
(3.17)

constraints.

The above remarks imply that two-stage stochastic EFCP includes more flow-

based variables and constraints (i.e. yf (ω) and (3.16)-(3.17)). However, the number

of most numerous path-based variables and constraints is the same in both prob-

lems. This makes the two-stage stochastic EFCP only slightly more difficult than

deterministic problem, provided that Theorem 4 and reformulation (3.9)-(3.17) are

applied.

3.4 The Value of the Stochastic Solution

Let V SS denote the value of the stochastic solution, which represents the

benefit from solving the two-stage stochastic EFCP over solving its deterministic

counterpart in which random parameters are replaced with their expected values

[48]. While recalling formulation SP1 and result from Theorem 4, we can formally

define V SS for the two-stage stochastic EFCP as

V SS = EζQ(x̄, ξ̄, ζ)− EζQ(x∗, ξ̄, ζ),
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where

x∗ = arg min
x∈{0,1}|A|,

∑
(i,j)∈A xij≤m

EζQ(x, ξ̄, ζ)

x̄ = arg min
x∈{0,1}|A|,

∑
(i,j)∈A xij≤m

Q(x, ξ̄, ζ̄).

The following proposition argues that one can design an instance of EFCP

with an arbitrarily large V SS. Then, a sufficient condition for which V SS = 0 is

provided. In Section 3.6, we numerically compute the V SS for case studies involving

two real-world transportation networks and contrast x̄ with x∗.

Proposition 8. For any finite ε > 0, there exists an instance of the two-stage

stochastic EFCP for which V SS > ε.

Proof. Let ε > 0, and assume that m = 1. Now suppose there is a single flow that

can travel along two edge-disjoint paths. Let l denote the length of the shorter,

and γ · l be the length of the longer path (γ > 1). Furthermore, let ζ denote the

maximum distance that a flow is willing to travel to avoid facilities. Assume that ζ

has two possible realizations, P(ζ = γ · l) = δ and P(ζ = l) = 1− δ, where δ < 1.

Since ζ̄ < γ · l, in the deterministic counterpart of EFCP, the flow f can travel

only along the shorter path. Thus, x̄ implies implementation of a facility anywhere

along this path. The corresponding expected cost is computed as EζQ(x̄, ξ̄, ζ) =

(1− δ) · 0 + δ · (γ · l · ξ̄) = δ · γ · l · ξ̄, where ξ̄ is the expected unit damage (i.e. per

mile damage). On the other hand, x∗ implies implementation of the facility along

the shorter path if δ · γ ≤ 1, or along the longer path if δ · γ > 1. Assume that

δ · γ > 1 and note that the expected cost for the corresponding optimal solution is
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EζQ(x∗, ξ̄, ζ) = l · ξ̄.

In the afore-described case, the value of the stochastic solution is given as

V SS = EζQ(x̄, ξ̄, ζ)− EζQ(x∗, ξ̄, ζ)

= l · ξ̄ · (δ · γ − 1).

Finally, note that we can define parameters l, ξ̄, δ and γ (such that δ < 1 and

δ · γ > 1) to make V SS in the above example arbitrarily large. Thus, for any

finite ε > 0, we can design an instance of the two-stage stochastic EFCP such that

V SS > ε.

Remark 5. Given the network topology and willingness of flows to evade facilities,

V SS = 0 if realizations of ζ are such that |Pf (ω)| = 1 for all ω ∈ Ω. This re-

sult follows from the definition of V SS, as well as observation that EζQ(x, ξ̄, ζ) =

Q(x, ξ̄, ζ̄) when |Pf (ω)| = 1 for all ω ∈ Ω.

3.5 Solution Techniques

Formulation (3.9)-(3.17) is only slightly more difficult than the deterministic

EFCP which was efficiently solved with a mathematical programming software for

the real-world transportation networks in Chapter 2. Thus, formulation (3.9)-(3.17)

can also be tackled in the extensive form (i.e. as a binary integer program defined

over all the scenarios) using similar software packages. The following section argues

that many binary variables in (3.9)-(3.17) can be linearly relaxed, which consid-

erably reduces the solution time. These results are based on relaxations proposed
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in Chapter 2 and their proofs are thus omitted for brevity. Section 3.5.2 discusses

application of the integer L-shaped method to Problem SP1.

3.5.1 Partial Linear Relaxations

This section presents two partial linear relaxations that do not alter the opti-

mal solution for SP2 and the corresponding objective function value. The compu-

tational benefits of these partial linear relaxations are explored in Section 3.6.

Remark 6. The partial linear relaxation stated in Theorem 2 is applicable to SP2,

where it reduces the number of binary integer variables from |A| +
∑

f∈F Mf + 2 ·∑
f∈F

∣∣Pf (ωR)
∣∣ to |A|+

∑
f∈F

∣∣Pf (ωR)
∣∣.

Remark 7. The partial linear relaxation stated in Theorem 3 is applicable to SP2,

where it reduces the number of binary integer variables from |A| +
∑

f∈F Mf + 2 ·∑
f∈F

∣∣Pf (ωR)
∣∣ to |A|. However, the total number of constraints is increased from

1 + 4 ·
∑

f∈F

∣∣Pf (ωR)
∣∣ + 2 ·

∑
f∈F Mf to 1 + 3 ·

∑
f∈F

∣∣Pf (ωR)
∣∣ + 2 ·

∑
f∈F Mf +∑

f∈F
∑

p∈Pf (ωR)

∣∣Apf (ωR)
∣∣.

3.5.2 Integer L-shaped Method

The integer L-shaped method [49] is a standard procedure for solving two-stage

stochastic programs with binary first-stage variables. It represents a branch-and-

cut algorithm that can be readily applied to Problem SP1. This solution method

approximates EξζQ(x, ξ, ζ) with the variable θ and a set of cuts. At a given stage

of the method, we consider the so called current problem (CP) which is defined as
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a linear program:

min
0≤xij≤1, θ≥0

θ (3.18)

s.t.
∑

(i,j)∈A

xij ≤ m (3.19)

θ ≥ θk

 ∑
(i,j)∈Sk

xij −
∑

(i,j)/∈Sk

xij − |Sk|+ 1

 , k = 1, ..., t (3.20)

where (3.20) represent optimality cuts that are iteratively added to the current

problem when feasible solutions are found. Set Sk is defined so that for the k-th

feasible solution, xij = 1 for (i, j) ∈ Sk and xij = 0 for (i, j) /∈ Sk. Moreover, θk

represents the expected recourse for the k-th feasible solution. The outline of the

procedure is given as Algorithm 2.

It should be noted that the optimality cut is obtained from [49] for L = 0,

which is a lower bound on EξζQ(x, ξ, ζ), as shown later on in Lemma 2. Addi-

tionally, [49] have shown that their procedure finds an optimal solution in a finite

number of steps. In the following theorem we state this result together with the

necessary conditions.

Theorem 5 (Laporte and Louveaux, 1993). The integer L-shaped method finds an

optimal solution in a finite number of steps if the following conditions are satisfied:

1. For fixed x, EζQ(x, ζ) is computable in a finite number of steps.

2. There exists a finite lower bound L, such that min
x
{EζQ(x, ζ) s.t. Ax =

b, x ∈ X} ≥ L

3. Two-stage stochastic program has complete recourse
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Algorithm 2 Integer L-Shaped Method for SP1

Step 0: Set t = ν = 0, z̄ = +∞, θ = 0. The only pendant node corresponds to the

initial CP.

Step 1: Select the pendant node from the list; if none exists, stop.

Step 2: Set ν = ν + 1; solve the CP. If the CP has no feasible solution, fathom the

current node; go to Step 1. Otherwise, let (xν , θν) be an optimal solution.

Step 3: Check for integrality restrictions in xν . If one is violated, create two new

branches; append the new nodes to the list of pendant nodes; return to Step

1.

Step 4: Compute EζQ(xν , ξ̄, ζ) by running a simple algorithm for ∀ω ∈ Ω and let

zν = EζQ(xν , ξ̄, ζ). If zν < z̄, then update z̄ = zν .

Step 5: If θν ≥ EζQ(xν , ξ̄, ζ), then fathom the current node and return to Step 1.

Otherwise, impose an optimality cut (3.20) where θk = EζQ(xν , ξ̄, ζ), set

t = t+ 1 and return to Step 2.
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Corollary 1. Integer L-shaped method finds an optimal solution for SP1 in a finite

number of steps. This follows from Lemma 1, 2, and 3.

Lemma 1. For fixed x, EζQ(x, ξ̄, ζ) is computable in polynomial time.

Proof. For fixed x, a simple algorithm (which assigns unintercepted flows to their

shortest unmonitored paths) finds Q(x, ξ̄, ζ(ω)) in a number of steps that is bounded

from above by O(|F | · |Pf (ω)| ·
∣∣Apf (ω)

∣∣). Furthermore, EζQ(x, ξ̄, ζ) is computed

by finding Q(x, ξ̄, ζ(ω)) for all ω ∈ Ω and taking the average, which is done in

polynomial time.

Lemma 2. There exists a finite lower bound L, such that

min
x∈{0,1}|A|

{
EζQ(x, ξ̄, ζ)

}
≥ L.

Proof. Recall that Q(x, ξ̄, ζ(ω)) = min{
∑

f∈F
∑

p∈Pf z
p
f (ω)cpf (ω) s.t. (3.4) − (3.8)}

and note that Q(x, ξ̄, ζ(ω)) ≥ 0 for any x because cpf (ω) ≥ 0 and zpf (ω) ∈ {0, 1}.

Taking the expectation we get EζQ(x, ξ̄, ζ) ≥ 0 for any x. Since this inequality holds

for any x, it holds for x that minimizes EζQ(x, ξ̄, ζ), i.e. min
x∈{0,1}|A|

{
EζQ(x, ξ̄, ζ)

}
≥

0. This implies that for L = 0, the previous inequality holds.

Lemma 3. Problem SP2 has complete recourse.

Proof. For any fixed x, a simple algorithm (which assigns unintercepted flows to

their shortest unmonitored paths) findsQ(x, ξ̄, ζ(ω)). This implies thatQ(x, ξ̄, ζ(ω))

is feasible for any x. Moreover, Q(x, ξ̄, ζ) is bounded from above by

max
ω∈Ω

{∑
f∈F

max
p∈Pf (ω)

{
cpf (ω)

}}
< +∞.
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3.6 Numerical Examples

The road networks of Nevada and Vermont are used to explore the performance

of the proposed solution techniques, numerically compute V SS, and contrast x∗

with x̄. The relevant data are extracted from Matlog [50], which contains the Oak

Ridge National Highway Network [51]. Since many of the observed road links are

non-separated, it is assumed that xij = xji as in an undirected graph. Hence, the

observed road networks include 130 edges for Nevada, and 178 edges for Vermont.

Two hundred flows are randomly simulated, all with the same expected inten-

sity of ξ̄f = 200 units/mile. Moreover, ζf is assumed to have three equally likely

realizations, ζf (ω) ∈ {1, 1.1, 1.2}. The first realization, ζf (ω) = 1, corresponds to

the case when the flow is willing to travel only along its shortest path. Second,

ζf (ω) = 1.1, implies that the flow would be willing to travel an additional 10% of its

shortest path to bypass the facilities. Similarly, when ζf (ω) = 1.2, the flow would

travel an extra 20% to bypass the facilities. The k-shortest path algorithm [52] is

used to find the necessary number of paths for each flow.

The following two problem are solved: 1) the deterministic counterpart of the

stochastic EFCP (i.e. ζ̄f = 1.1) and 2) the two-stage stochastic EFCP. Tables 3.1

and 3.2 contrast x̄ with x∗ for the different number of facilities. Moreover, x̄ is

evaluated over the three scenarios, EζQ(x̄, ξ̄, ζ), and the V SS is computed. The

last column of Tables 3.1 and 3.2 indicates that cost reductions achieved by solving

the stochastic EFCP ranges between 0% and 100%, with the average reduction of

15.5%. Moreover, the V SS > 0 in 62% of the considered instances, which certainly
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motivates the application of the two-stage EFCP as opposed to just solving its deter-

ministic counterpart. To show the differences that arise between the two solutions,

we graphically contrast some of the x̄ and x∗ in Figures 3.1-3.4.

Table 3.3 compares the performance of solution techniques. The partial linear

relaxation proposed in Theorem 2 reduced the computation time in 35/37 instances

by a median of 19% (SP vs. SP 1
LR). In Section 3.3 it was argued that the stochas-

tic EFCP is only slightly more difficult than the deterministic EFCP for ζf (ω
R),

provided that Theorem 4 and reformulation (3.9)-(3.17) are applied. Table 3.3 indi-

cates that computation times for the two cases are fairly similar (SP 1
LR vs. EFCP 1

LR

for ζf (ω
R)). In 16 instances the two-stage EFCP took more time, with a median

overhead of 37%. In 13 instances the two-stage EFCP was solved more efficiently,

with a median of 20% less computation time. Finally, in 8 instances the difference

in solution times was within 1 second.

The integer L-shaped method was implemented in C++ and applied to same

problem instances. Since it did not find an optimal solution in the vast majority

of instances within the 4 hour time limit, the integer L-shaped was omitted from

Table 3.3. Moreover, the partial linear relaxation proposed in Theorem 3 includes

an increased number of constraints, which led to longer computation times. Thus,

the corresponding computation times were omitted from Table 3.3.
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(a) x̄ for m = 3 (b) x∗ for m = 3

(c) x̄ for m = 4 (d) x∗ for m = 4

Figure 3.1: Nevada: comparison of stochastic and deterministic solutions for m =

3, 4.
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(a) x̄ for m = 5 (b) x∗ for m = 5

(c) x̄ for m = 6 (d) x∗ for m = 6

Figure 3.2: Nevada: comparison of stochastic and deterministic solutions for m =

5, 6.
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(a) x̄ for m = 1 (b) x∗ for m = 1

(c) x̄ for m = 2 (d) x∗ for m = 2

Figure 3.3: Vermont: comparison of stochastic and deterministic solutions for m =

1, 2
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(a) x̄ for m = 6 (b) x∗ for m = 6

(c) x̄ for m = 8 (d) x∗ for m = 8

Figure 3.4: Vermont: comparison of stochastic and deterministic solutions for m =

6, 8
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Table 3.3: Computation Times: Comparison with the Deterministic EFCP

m Nevada Vermont

SP SP 1
LR EFCP 1

LR for SP SP 1
LR EFCP 1

LR for

(sec) (sec) ζf (ωR) (sec) (sec) (sec) ζf (ωR) (sec)

1 84 59 60 760 231 121

2 74 63 62 4983 13134 3738

3 96 144 92 7073 3949 2643

4 80 61 247 18945 7926 2454

5 74 60 56 835 709 662

6 72 59 54 1125 899 1079

7 65 62 56 1197 827 744

8 114 88 53 1513 940 619

9 63 51 54 3273 1160 915

10 60 50 48 1716 1352 1239

11 90 77 77 981 868 593

12 66 52 86 1551 1038 1306

13 60 49 59 614 564 609

14 59 48 49 628 558 605

15 60 49 49 706 521 651

16 58 48 48 713 615 961

17 58 47 47 799 1206 1226

18 59 48 47 1175 1034 1096

19 605 472 545
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3.7 Conclusions

This chapter presented a stochastic extension of EFCP where intensities of

flows and their willingness to avoid facilities are characterized with random dis-

tributions. The two-stage stochastic EFCP is made computationally tractable by

exploiting the structural properties of the problem. This is achieved by 1) reducing

the noise associated with the intensities of the flows, 2) reformulating the second

stage recursively, and 3) linearly relaxing many scenario-based binary variables. The

proposed approach yields an instance which is only slightly more difficult than the

deterministic EFCP and is thus crucial in efficiently solving the stochastic EFCP.

This point is emphasized through application of the standard solution method, the

integer L-shaped, which is not capable of finding an optimal solutions to real-world

problems in a reasonable amount of time.

The proposed stochastic EFCP is tested on case studies involving real-world

transportation networks, which shows the applicability of the model and solution

methods. Moreover, the stochastic EFCP is contrasted with its deterministic coun-

terpart in which all random parameters are replaced with their expected values. This

comparison showed that solving the stochastic model added considerable value, as it

reduced the cost of the deterministic solution by more than 15% on average. These

results show the relevance of the proposed two-stage stochastic EFCP and motivate

its application.
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Chapter 4: Multi-Stage Stochastic EFCP

Suppose that decisions about the implementation of facilities are made at

different time points (e.g. biannually) given probabilistic information about the flows

which varies over time. This resembles a realistic long-term investment planning

during which intensities of the flows typically increase over time (e.g. the expected

number of heavy trucks increases 2% annually). The resulting model for optimal

decision making is then a multi-stage stochastic optimization model [53]. Let ξt =

{ξtf | f ∈ F} be a vector of random variables denoting intensities of flows f ∈ F

in stage t ∈ T (i.e. damage or risk produced per distance traveled). Similarly, let

ζt = {ζtf | f ∈ F} be a vector of discrete random variables denoting the willingness

of flows to evade facilities in stage t ∈ T .

Random vectors ξt and ζt are assumed to be independent from one another.

Moreover, they are assumed to be independent from ξt−1 and ζt−1. In Chapter 3,

it was shown that random vector ξ denoting intensities of flows can be replaced

with ξ̄ without altering the two-stage stochastic EFCP (Theorem 4). This result

can be extended to the multi-stage setting and vector ξt, given the aforementioned

independence assumption.

The remainder of this section is organized as follows. Section 4.1 presents a
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mathematical programming formulation of the multi-stage stochastic EFCP which

can be solved optimally for the real-world transportation networks using the partial

linear relaxations given in Section 4.1.1. Section 4.2 reformulates the problem as

a dynamic program and proposes an approximate dynamic programming approach

which can be used to tackle the multi-stage EFCP more efficiently, but without

guaranteeing an optimal solution. This approximate solution technique can also be

used for problems that are intractable with mathematical programming techniques.

The proposed solution techniques are tested on the real-world road networks in

Section 4.3. Finally, Section 4.4 draws the conclusions.

4.1 Mathematical Programming

Let G(N,A) be a bidirectional road transportation network, where N is a set

of nodes and A is a set of arcs (i, j). Define P t
f (ω) as a set of paths which contains

ktf (ω) shortest paths of the flow f ∈ F . Let Aptf (ω) be the set of links along path

p ∈ P t
f (ω) of flow f ∈ F . Additionally, let wtij denote the cost of implementing a

facility at arc (i, j) in period t ∈ T and maintaining it during its life duration. Let

cptf (ω) be the excessive damage cost if flow f ∈ F travels freely along path p ∈ P t
f (ω)

in period t ∈ T . Let xtij be a binary variable equal to 1 if a facility is located at arc

(i, j) in period t ∈ T and 0 otherwise. The life expectancy of a facility is L time

periods. Moreover, we define xt = {xtij | (i, j) ∈ A} and wt = {wtij | (i, j) ∈ A} as

vectors of |A| elements. Let bt be the budget allocated for stage t ∈ T , which can

be either spent or carried over to the next stage. Denote by ut the total investment
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budget available at stage t ∈ T .

The multi-stage stochastic EFCP is defined as a minimization problem

MSP1: min
xt∈{0,1}|A|

ut≥0

∑
t∈T

 ∑
(i,j)∈A

wtijx
t
ij + EζtQt

(
xt,xt−1, ...,xt−L+1, ξ̄t, ζt

)

s.t.
∑

(i,j)∈A

wtijx
t
ij ≤ ut ∀t ∈ T

ut = ut−1 −
∑

(i,j)∈A

wt−1
ij xt−1

ij + bt ∀t ∈ T

where Qt
(
xt,xt−1, ...,xt−L+1, ξ̄t, ζt(ω)

)
is an oracle that, given an allocation of

checkpoints in the current as well as previous L − 1 stages, computes the exces-

sive damage (or risk) associated with flows and a particular realization of ξ and

ζ. If a flow is captured, then the corresponding damage is 0. Otherwise, the flow

seeks to minimize its travel distance, and produces the damage by traveling along

its shortest unmonitored path. More formally, if we let

P 2,t
f (ω) =

p ∈ P t
f (ω) |

t∑
t′=t−L+1

∑
(i,j)∈Aptf (ω)

xt
′

ij = 0


be the set of paths of flow f ∈ F not covered by facilities, then

Qt
(
xt,xt−1, ...,xt−L+1, ξ̄t, ζt(ω)

)
=
∑
f∈F

Qt
f

(
xt,xt−1, ...,xt−L+1, ξ̄t, ζt(ω)

)
where

Qt
f

(
xt,xt−1, ...,xt−L+1, ξ̄t, ζt(ω)

)
=


min

p∈P 2
f (ω)

{
cpf (ω)

}
, P 2

f (ω) 6= ∅;

0, P 2
f (ω) = ∅.
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Problem MSP1 can be linearized. First, four sets of auxiliary binary variables

are introduced:

stij =


1 if link (i, j) ∈ A is equipped with facility in time period t ∈ T

0 otherwise

yptf (ω) =


1 if a facility is located along path p ∈ P t

f (ω) of f ∈ F in t ∈ T

0 otherwise

ytf (ω) =


1 if a facility is located along all paths p ∈ P t

f (ω) of f ∈ F in t ∈ T

0 otherwise

zptf (ω) =


1 if flow f ∈ F travels freely along path p ∈ P t

f (ω) in period t ∈ T

0 otherwise

Second, some additional notation is introduced to formulate the path-based

constraints recursively, as in Section 3.3. Let ζtf (ω
rt) denote the r-th realization

of the random willingness of flow f ∈ F to avoid facilities in stage t ∈ T . More-

over, assume that realizations are ordered so that ζtf (ω
rt) ≥ ζtf (ω

r−1,t), and thus

P t
f (ω

r−1,t) ⊆ P t
f (ω

rt). We now formulate Problem MSP2, while assuming that

v0 = 0, P t
f (ω

0,t
f ) = ∅ and yf (ω

0,t
f ) = 1.

min
xtij∈{0,1}
ut≥0

∑
t∈T

∑
(i,j)∈A

xtijw
t
ij +

∑
t∈T

∑
f∈F

Eζt
f
Q̃t
f

(
xt,xt−1, ...,xt−L+1, ξ̄tf , ζ

t
f

)
(4.1)

s.t.
∑

(i,j)∈A

wtijx
t
ij ≤ ut ∀t ∈ T (4.2)

ut = ut−1 −
∑

(i,j)∈A

wt−1
ij xt−1

ij + bt ∀t ∈ T (4.3)
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Q̃t
f (x

t,xt−1, .,xt−L+1,ξ̄tf , ζ
t
f (ω

rt)) = min
stijy

pt
f (ωrt)∈{0,1}

ytf (ωrt),zptf (ωrt)∈{0,1}

∑
p∈P tf (ωrt)

zptf (ωrt)cptf (ωrt) (4.4)

s.t. stij ≤
t∑

t′=t−L+1

xt
′

ij ∀(i, j) ∈ A (4.5)

∑
(i,j)∈Aptf (ωrt)

stij ≥ yptf (ωrt) ∀p ∈ P t
f (ω

rt) \ P t
f (ω

r−1,t) (4.6)

zptf (ωrt) ≤ 1− yptf (ωrt) ∀p ∈ P t
f (ω

rt) \ P t
f (ω

r−1,t) (4.7)∑
(i,j)∈Aptf (ωrt)

stij ≤
∣∣Aptf (ωrt)

∣∣ · yptf (ωrt) ∀p ∈ P t
f (ω

rt) \ P t
f (ω

r−1,t) (4.8)

ytf (ω
rt) ≤ yptf (ωrt) ∀p ∈ P t

f (ω
kt) \ P t

f (ω
r−1,t) (4.9)

ytf (ω
rt) ≤ yf (ω

r−1,t) (4.10)∑
p∈
⋃r
r′=1 P

t
f (ωr′,t)

zptf (ωrt) ≥ 1− ytf (ωrt) (4.11)

The objective (4.1) minimizes the investment cost and the expected excessive

damage subject to budget constraints (4.2)-(4.3). Constraint (4.5) checks whether

the allocation at stage t ∈ T includes a facility implementation. All together, (4.4)-

(4.11), model the same relations as in Section 3.3.

Since MSP1 and MSP2 are extensions of SP1 and SP2 from Chapter 3, it

follows that:

1. Problems MSP1 and MSP2 are equivalent;

2. The objective of Problem MSP1 is non-submodular, non-supermodular, and

non-monotonic;

3. Problem MSP2 is NP-hard;
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4. A bound cannot be established on the greedy approximation of MSP1.

4.1.1 Partial Linear Relaxations

In Chapter 3 it was shown that, after applying Theorem 4 and reformulating

the second stage, the two-stage stochastic EFCP is as difficult as the deterministic

EFCP. Since Problem MSP2 is a multi-stage extension of SP2, the multi-stage

stochastic EFCP is as difficult as a multi-stage deterministic program. Thus, Prob-

lem MSP2 can also be tackled in the extensive form with a mathematical pro-

gramming software using branch-and-bound-based methods. The following section

argues that many binary variables in (4.1)-(4.11) can be linearly relaxed, which con-

siderably reduces the solution time. These results are based on relaxations proposed

in Chapter 2 and their proofs are thus omitted for brevity.

Remark 8. The partial linear relaxation stated in Theorem 2 is applicable to MSP2,

where it reduces the number of binary integer variables from 2 · |A| · |T |︸ ︷︷ ︸
xtij & stij

+
∑
t∈T

∑
f∈F

M t
f︸ ︷︷ ︸

ytf (ω)

+ 2 ·
∑
t∈T

∑
f∈F

∣∣P t
f (ω

Rt)
∣∣

︸ ︷︷ ︸
yptf (ω) & zptf (ω)

to 2 · |A| · |T |+
∑

t∈T
∑

f∈F

∣∣P t
f (ω

Rt)
∣∣.

Remark 9. The partial linear relaxation stated in Theorem 3 is applicable to MSP2,

where it reduces the number of binary integer variables from 2·|A|·|T |+
∑

t∈T
∑

f∈F M
t
f

+2 ·
∑

t∈T
∑

f∈F

∣∣P t
f (ω

Rt)
∣∣ to 2 · |A| · |T |. However, the total number of constraints is

increased from 2·|T |+|T |·|A|+4·
∑

t∈T
∑

f∈F

∣∣P t
f (ω

Rt)
∣∣+2·

∑
t∈T
∑

f∈F M
t
f to 2·|T |+

|T |·|A|+3·
∑

t∈T
∑

f∈F

∣∣P t
f (ω

Rt)
∣∣+2·

∑
t∈T
∑

f∈F M
t
f+
∑

t∈T
∑

f∈F
∑

p∈P tf (ωRt)

∣∣Aptf (ωRt)
∣∣.
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4.2 Approximate Dynamic Programming

To reformulate the multi-stage stochastic EFCP as a dynamic program, some

additional notation is introduced to characterize the state of the system. Note that

a state of the system at time t ∈ T is determined with the current allocation of

facilities, their age, and available budget. Let Stij denote the remaining lifespan of

a facility on link (i, j) ∈ A at the beginning of stage t ∈ T (i.e. the number of

stages until it expires). It is assumed that Stij = 0 implies no facility implemen-

tation. Moreover, let St = {Stij | (i, j) ∈ A}
f
{ut} denote the vector of |A| + 1

elements, which completely defines the state of the system. The system dynamics

(i.e. transition from stage t to t+ 1) can now be given as

St+1
ij =


max

(
Stij − 1, 0

)
, if xtij = 0;

L− 1, if xtij = 1;

(4.12)

ut+1 = ut −
∑

(i,j)∈A

wtijx
t
ij + bt+1, (4.13)

where L is the deterministic life span of a facility. Given St, the set of feasible

decisions at stage t is

X (St) =

xtij s.t.
∑

(i,j)∈A

xtijw
t
ij ≤ ut

 (4.14)

The multi-stage stochastic EFCP is given as

min
xt

E

[∑
t∈T

(
(wt)Txt +Qt(St,xt, ξ̄t, ζt)

)
| S0

]
(4.15)

where Qt is again an oracle that returns the damage associated with the uncaptured

flows. This problem can be reformulated using Bellman’s principle of optimality [54],
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as

V t(St) = min
xt∈X (St)

{
(wt)Txt + EζtQt(St,xt, ξ̄t, ζt) + E

[
V t+1(St+1)

]}
, (4.16)

where the transition from one stage into another (e.g. ageing of checkpoints, budgets

carried over to subsequent years) and action space are defined in (4.12), (4.13), and

(4.14).

An issue that arises in solving Bellman’s equation is the so called curse of di-

mensionality. Actually, in solving (4.16), three curses of dimensionality are typically

encountered: state space, outcome space (expectation is over a vector of random

variables), and action space [55]. Since an approach to efficiently deal with the

outcome space was already proposed (Theorem 4 and reformulating the scenarios

recursively), the approximate dynamic programming (ADP) [56] is used to overcome

the issues of large state and action spaces.

In approximate dynamic programming, we replace the expected value func-

tion E [V t+1(St+1)] with an approximation, denoted V̂ t+1, and solve the following

problem

Ṽ t(St) = min
xt∈X (St)

{
(wt)Txt + EζtQt(St,xt, ξ̄t, ζt) + V̂ t+1(St+1)

}
(4.17)

Problem (4.17) is referred to as the subproblem. Starting with a set of value-function

approximations V̂ t+1 and an initial state vector St, we sequentially solve (4.17) for

each t ∈ T while moving forward in time. The information obtained while solving

(4.17) is used to update and improve the value-function approximation V̂ t. After the

updating procedure, a new set of value-function approximations is obtained. Then,

the subproblems are solved again using the new value-function approximations [57].
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The following section discusses in greater detail the approximation and updating of

the value function.

4.2.1 Approximating the Value Function

Linear regression is a very efficient way to approximate the downstream values

of the objective function. In this approach, the objective function approximation is

given as

V̂ t+1(St+1) =
K∑
k=1

θt+1
k φk(S

t+1), (4.18)

where φ denotes features of state St+1 and θt+1 are regression parameters. Every

time the subproblem

Ṽ t(St) = min
xt∈X (St)

{
(wt)Txt + EζtQt(St,xt, ξ̄t, ζt) +

K∑
k=1

θt+1
k φk(S

t+1)

}
(4.19)

is solved, an observation v̂t is obtained and used together with φ(St) to recursively

update the estimate of θt. This procedure is repeated iteratively, while adding more

observations which improve the estimate of θt. In updating θt, more weight is put

on recent observations. This dynamics is determined with the step size αn. The

outline of the procedure is given in Algorithm 3. It should be noted that Step 1.2

in Algorithm 3 applies the recursive least squares to update parameter θt. This

procedure is described in [56].

The feature function φ(St+1) in specified in three different ways. Let Dt+1,a
ij

be a “dummy” variable which equals 1 if St+1
ij = a (i.e. the facility on link (i, j) is

of age a in stage t+ 1), and 0 otherwise. The following specifications of φ(St+1) are

considered:
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1. Let φ(St+1) = {1} ‖
{
Stij
}

(i,j)∈A ‖ {u
t+1} be the vector of 2 + |A| elements;

2. Let φ(St+1) = {1} ‖
{
Dt+1,a
ij

}
a=0,...,L−1; (i,j)∈A ‖ {u

t+1} be the vector of 2+L·|A|

elements;

3. Let φ(St+1) = {1} ‖
{
Dt+1,a
ij ·Dt+1,a′

(ij)′

}
a=0,...,L−1; (i,j)∈A;
a′=0,...,L−1; (i,j)′∈A

‖ {ut+1} be the vector

of 2 + (L · |A|)2 elements.

It should be noted that the last option for defining φ(St+1) would be reasonable (i.e.

computationally tractable) only for small transportation networks.

4.3 Numerical Examples

The proposed solution techniques are applied to real-world road networks of

Nevada and Vermont. The relevant data are extracted from Matlog [50], which

contains the Oak Ridge National Highway Network [51]. Since many of the observed

road links are non-separated, it is assumed that xij = xji as in an undirected graph.

Hence, the observed road networks of Nevada and Vermont include 130 and 178

edges, respectively.

Case studies with 10 stages

The first set of numerical examples assumes that |T | = 10 stages, while the

lifespan of a facility is L = 3 stages. In the context of WIM technology whose

average lifespan is 8-12 years, the designed case studies would correspond to a 30-

year planning horizon where the investments in WIM systems can be made every 3

years.
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Algorithm 3 Approximate Dynamic Programming for the Multi-Stage Stochastic

EFCP: Approximating the Value Function with Linear Regression

Step 0: Initialization: start with some initial parameters θ̄t,0 and Bt,0 for all t ∈ T . Let n = 1 and choose an initial

state S0,1 (no facility implementation) and step size αn.

Step 1: For t ∈ T do the following:

• Step 1.1: Solve the problem:

v̂t,n = min
x∈X (St,n)

{
(ct)T x+ EζtQt(St,n,x, ξ̄t, ζt) +

K∑
k=1

θ̄t+1,n−1
k φk(St+1,n)

}
,

where

X (St,n) =

xij s.t.
∑

(i,j)∈A
xijc

t
ij ≤ ut,n


St+1,n
ij =


max

(
St,nij − 1, 0

)
, if xij = 0;

L− 1, if xij = 1;

ut+1,n = ut,n −
∑

(i,j)∈A
ctijxij + bt+1

Let xt,n be the x that minimizes above expression.

• Step 1.2: Update θ̄t,n−1 and Bt,n−1 with observation v̂t,n and vector of features φ(St,n) by setting

λn = αn−1(
1− αn

αn
)

θ̄t,n = θ̄t,n−1 +
v̂t,n − (φ(St,n))T θ̄t,n−1

λn + (φ(St,n))TBt,n−1φ(St,n)
Bt,n−1φ(St,n)

Bt,n =
1

λn

(
Bt,n−1 −

Bt,n−1φ(St,n)(φ(St,n))TBt,n−1

λn + (φ(St,n))TBt,n−1φ(St,n)

)

• Step 1.3: Apply the system dynamics by setting

St+1,n
ij =


max

(
St,nij − 1, 0

)
, if xt,nij = 0;

L− 1, if xt,nij = 1;

ut+1,n = bt+1 + ut,n −
∑

(i,j)∈A
ctijx

t,n
ij

Step 2: Set n = n + 1. Go to step 1.
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The flows are generated randomly, 100 flows for Nevada and 50 flows for Ver-

mont, all with the same expected intensity of ξ̄1
f = 200 units/mile. The expected

increase of their intensities is set to be 10% per stage. Moreover, it is assumed that

ζ1
f has three equally probably realizations, ζ1

f (ω) ∈ {1, 1.1, 1.2}. The first realiza-

tion, ζ1
f (ω) = 1, corresponds to the case when the flow is willing to travel only along

its shortest path. Second, ζ1
f (ω) = 1.1, implies that the flow would be willing to

travel an additional 10% of its shortest path to bypass the facilities. Similarly, when

ζ1
f (ω) = 1.2, the flow would travel an extra 20% distance to bypass the facilities.

We assume ζtf is the same for all t ∈ T , and use the k-shortest path algorithm [52]

to find the necessary number of paths for each flow.

The objective is to minimize the excessive damage associated with uncaptured

flows over the 10 stages. At each stage, we are given a budget that suffices for

implementing m facilities. The budget can be either spent or carried on to the next

stage. Table 4.1 provides optimal 10-stage investment plans for different values of

m, as well as the corresponding excessive damages and solution times. Some of the

investment plans are illustrated in Figures 4.1-4.4.

The optimal results reveal some interesting patterns. First, some facilities are

renewed after the end of their 3-stage lifespan. This appears to be the case with

those facilities that are located at “good strategic” locations. Second, the budget is

often saved and accumulated for future stages. This happens for two reasons:

1. Due to evasive nature of flows, it is often better to implement several facilities

at the same time, because sequential implementation could allow the flows
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to bypass the facilities and produce greater damage until all the facilities are

implemented. This is most notable in cases when m = 1 or m = 2.

2. Due to increasing intensities of flows, it is better to save facilities for later

stages which include flows that produce greater damage. As a result, a larger

number of facilities is typically implemented in stage 8, in order to cover flows

during the last three stages of the planning horizon. Again, this is particularly

notable in cases when m = 1 or m = 2.

Case studies with 15 stages

The second set of numerical examples assumes that |T | = 15, while the lifespan

of a facility is L = 5 stages. In the context of WIM technology, these case studies

correspond to a 30-year planning horizon where the investments in WIM systems

are made every 2 years. We use flows from the experiments including 10 stages, this

time with the expected increase of 6% per stage. The optimal results for different

budget availability are given in Table 4.2.

The optimal results follow similar patterns as in the case with 10 stages. Re-

newal of the facilities again takes place at several important links. In addition, the

accumulation of budget is observed. This time, we observe that more facilities are

implemented in stage 11, in order to cover the flows during the last 5 stages of the

planning horizon.
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(a) Allocation for t = 2, 3, 4. (b) Allocation for t = 5.

(c) Allocation for t = 6. (d) Allocation for t = 7, 8, 9, 10.

Figure 4.1: Nevada: optimal implementation of facilities over the course of 10 stages

with budget allowing one facility per stage
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(a) Allocation for t = 3. (b) Allocation for t = 4.

(c) Allocation for t = 5, 6, 7. (d) Allocation for t = 8, 9, 10.

Figure 4.3: Vermont: optimal implementation of facilities over the course of 10

stages with budget allowing one facility per stage
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Table 4.2: Optimal 15-Stage Investment Plans for Nevada and Different Budgets

1 facility/stage 2 facilities/stage 3 facilities/stage 4 facilities/stage 5 facilities/stage

t=1 79 69, 79 69, 77, 79 33, 66, 67, 79 21, 33, 69, 84, 88

t=2 69 33, 77 21, 33, 88 16, 60, 88, 103 30, 52, 63, 77, 93

t=3 77 21, 88 16, 60, 103 38, 73, 85, 101 5, 43, 73, 101, 127

t=4 33 52, 63 30, 85, 101 19, 92, 98, 99 1, 15, 20, 26, 41

t=5 No implement. No implement. 38, 73, 114 21, 33 94, 98

t=6 21, 79 69, 84 69, 77, 79 52, 58, 69, 71, 77, 100 36, 44, 49, 58, 69,

80, 90, 128

t=7 69 33, 77 33, 63, 88 56, 74, 103, 115 31, 51, 77, 99, 101

t=8 88 21, 88 16, 103 25, 30, 50, 73, 5, 20, 41, 73, 94

t=9 33 16, 31, 63 30, 85, 101, 112 41, 92, 98, 99 15, 30, 74, 100, 115

t=10 No implement. 85, 38, 73 15, 21, 36, 49 98

t=11 21, 79 67, 79, 101, 103 66, 67, 79, 81 58, 69, 77, 100 36, 44, 49, 58, 69,

77, 80, 82, 90

t=12 69 33, 66 33, 60, 88 30, 74, 103, 115 26, 41, 51, 99, 103

t=13 88 38, 88 19, 52, 103 15, 25, 50, 73 19, 21, 50, 73, 92

t=14 33 52, 60 85, 101, 114 41, 92, 98, 99 15, 94, 114, 117, 124

t=15 77 73, 85 38, 41, 73 21, 36, 49, 109 20, 30, 93, 110, 121

Damage 20,817,490 6,135,153 2,357,105 1,120,433 675,057

CPU 9,380 sec 15,983 sec 57,663 sec 9,652 sec 1,236 sec
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The proposed ADP algorithm was implemented in Matlab with feature func-

tions specified in three different ways, as described in Section 4.2.1. Moreover, three

different step sizes were considered: harmonic, polynomial, and McClain’s [56]. The

parameters of the linear regression diverged even for the small problem instances

including as little as 12 links. This issue is often encountered and discussed in the

literature on ADP [56]. In future work, this issue may be overcome through the

use of artificial neural networks which could also capture the nonlinear relation-

ship between the states of the system and the downstream values of the objective

function.

4.4 Conclusions

An extension of the stochastic EFCP is proposed in which the decisions about

the implementation of facilities are made over multiple stages. The structural prop-

erties of the problem are exploited to make instances involving real-world trans-

portation networks tractable with the exact solution technique. This is achieved

by 1) reducing the noise associated with the intensities of the flows, 2) formulating

the scenario-dependent constraints recursively in each stage, and 3) linearly relaxing

many scenario-dependent binary variables in each stage. The proposed methodology

is tested on the road networks of Nevada and Vermont, which shows the applicability

of the proposed model and solution technique.

In addition to the exact solution approach, we study approximate solution

techniques. The problem is formulated as a dynamic program and an approximate
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dynamic programming algorithm is proposed, in which the objective function is

estimated through the use of linear regression. This approach turns out to be un-

successful even for small problem instances. Future work may include application of

neuro-dynamic programming which could account for the nonlinear relation between

the states of the system and the downstream values of the objective function.
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Chapter 5: Optimal Location of WIM in Nevada

An application of the deterministic EFCP is shown in a realistic case study

including the allocation of WIM in the road network of Nevada. This case study

considers the road network designated for large commercial vehicles, truck flows sim-

ulated based on data available in the literature, and realistically estimated damage

produced by overweight trucks. It also contrasts EFCP with FCLAP in order to es-

timate the value that proposed EFCP framework adds in allocating facilities which

targeted flows wish to avoid. In addition, it contrasts EFCP with the real-world

implementation of static weigh scales in Nevada in order to explore whether current

allocations could be improved through application of the EFCP. This comparison is

conducted given the limited available information about the truck flows in Nevada.

In sum, this chapter:

1. Demonstrates applicability of the proposed work to a realistic case study and

discusses input preparation;

2. Numerically estimates the benefits of applying EFCP and thereby explores the

concrete contributions of this dissertation.

The remainder of this chapter is organized in seven sections. Sections 5.1 and

5.2 estimate the inputs and explain the design of the case study. Section 5.3 provides
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Figure 5.1: Federal Highway Classification of Vehicles [1]

optimal allocations of WIM stations given different costs per lane of WIM technol-

ogy. Section 5.4 contrasts EFCP with FCLAP, whereas 5.5 explores the application

of approximate solution techniques. Section 5.6 explores whether the current allo-

cation of facilities can be improved. Finally, Sections 5.7 draws conclusions.

5.1 Excessive Damage Estimation

This section discusses estimation of parameter cpf which denotes the excessive

damage cost if flow f ∈ F passes unintercepted along path p ∈ Pf . It has been

argued earlier that overweight trucks damage the pavement and environment. Thus,

94



cpf is estimated by roughly computing the aforementioned damage costs associated

with loads that exceed legal limits.

Pavement damage depends on many factors including axle weights, axle

configuration, pavement structure, and climate. Since detailed information about

the pavement structure and climate may not be available for the entire transporta-

tion network, the pavement damage can be estimated based on the equivalent single

axle load (ESAL). This method allows different axle types (single, tandem, and

tridem) to be summed together and is widely used in pavement design since it pro-

vides a reasonably accurate indicator of the pavement damage [34]. ESALs may be

estimated with the formula

ESAL = α

[
(W/α)

80

]4.2

(5.1)

where α is the number of individual axles in an axle group (for steering and single

α = 1; for tandem α = 2; for tridem α = 3) and W is weight of an axle [kN]. In

computing the excessive pavement damage, the following axle loads [34] are used as

legal limits for each axle group shown:

1. Steering: 55 kN, which corresponds to 0.21 ESALs;

2. Single: 88 kN, which corresponds to 1.49 ESALs;

3. Tandem: 151 kN, which corresponds to 1.57 ESALs;

4. Tridem: 233 kN, which corresponds to 2.65 ESALs.

Table 5.1 provides an example of how the excessive pavement damage is com-

puted for a 17 ton truck that has front steering and a single rear axle. The assumed
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Table 5.1: Computing Excessive Pavement Damage: An Example

Weight [kN] ESALs ESAL Limits Excess ESALs
Total Excess

ESALs

Steering 64.12 0.39 0.21 0.18
0.18+1.35=1.53

Single 102.59 2.84 1.49 1.35

gross truck weight distribution is 38:62 between the front steering and single rear

axle, the same as the maximum axle load ratio in kN (e.g. 55:88). In particular,

Table 5.1 provides the axle weights in kN and corresponding ESALs computed with

equation (5.1). The obtained ESALs are compared with the limits to obtain a total

of 1.53 excessive ESALs. Finally, assuming the fee of 4 cents per ESAL-mile (ad-

justed for inflation from [58]), the excessive pavement damage of 6.12 cents per mile

for this particular truck is computed.

Environmental damage includes accidents (fatalities, injuries, and property

damage), emissions (air pollution and greenhouse gases), noise, and unrecovered

costs associated with the provision, operation, and maintenance of public facilities

[35]. The average environmental damage cost is assumed to be 1.53 cents per ton-

mile (adjusted for inflation from [35]). Thus, assuming that the truck from Table

5.1 is overloaded by 2.7 tons, the corresponding excessive environmental damage is

4.13 cents per mile.
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(a) Road Network (b) Truck flows

Figure 5.2: Nevada’s Road Network and Major Truck Flows

5.2 Road Network, Flows, and Other Inputs

The proposed model is tested on the road network of Nevada, considering

only road links that are state designated for Surface Transportation Assistance Act

(STAA) vehicles. Most of the observed road links have either 2 or 4 lanes. Since

many of these road links are non-separated, it is assumed that xij = xji like in

undirected graphs. The relevant data are extracted from Matlog [50], which contains

the Oak Ridge National Highway Network [51] with approximately 500,000 miles

of roadway in the US, Canada, and Mexico, including all rural arterials and urban

principal arterials in the US.

The truck flows along three major transit routes are specified based on data

from [59] and [60]. They include 5,000 trucks/day on I-15 (southwest of Reno -

Salt Lake City) and I-80 (passing by Las Vegas), as well as 2,000 trucks/day along
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the route stretching from northwest of Reno to south of Las Vegas (Figure 5.2b).

In addition, 59 local truck flows are randomly generated with their origins and

destinations at least 50 miles apart. Moreover, the number of trucks within the flow

is assumed to be Poisson distributed with a mean 50 trucks/day. Ten different types

of trucks with different numbers and combinations of axles are considered. Table 5.2

provides truck weights, weight limits, and the assumed percentages within the total

flow for each truck type. Since truck weights are typically bimodally distributed [38]

due to imbalanced flows, the trucks are simulated so that 60% are traveling with

heavy loads and 40% are traveling with light loads (e.g. empty or nearly empty

trucks returning to their origins). Discrete distributions of load weights in tons are

provided in Table 5.2. The expected number of overweight trucks generated based

on the assumed inputs from Table 5.2 is 4.5% of the total number of trucks. It

should be noted that this percentage is within the range reported in the literature,

such as 2.6% for California [34] and 8.8% for Montana [38].

Yen’s k-shortest path algorithm [52] is used to find kf shortest loopless paths,

such that the (kf +1)-th shortest path is at least 20% longer than the shortest path.

Thus, kf varies considerably with flows. For example, kf = 5 for transit flow passing

by Las Vegas, whereas kf = 910 for flow traversing Nevada east-west. It should be

noted that the 59 local truck flows are randomly generated so that their origins and

destinations are at least 50 miles apart and that the maximum number of paths that

must be considered is 30 (e.g. the kf = 30 shortest path is more than 20% longer

than the shortest path).

A single set of flows, trucks, and truck loads is generated using Monte Carlo
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Table 5.2: Simulating Truck Flows

Type Number Empty Truck Loads Weight Percent in

of Axles Weight (ton) Light (ton) Heavy (ton) Limit (ton) Total Flow

S 2 6 B(3, 0.45) B(15, 0.40) 14.3 9

S 3 8 B(4, 0.50) B(22, 0.45) 20.6 17

T 3 10 B(5, 0.45) B(25, 0.40) 23.1 3

T 4 13 B(6, 0.45) B(31, 0.40) 29.4 4

T 5 15 B(7, 0.45) B(39, 0.40) 35.7 46

T 6 16 B(9, 0.50) B(50, 0.45) 43.9 3

T 5 15 B(8, 0.50) B(46, 0.45) 40.7 7

MT 6 18 B(9, 0.50) B(53, 0.45) 47.0 3

MT 8 21 B(12, 0.50) B(68, 0.45) 59.0 4

MT 7 20 B(11, 0.50) B(59, 0.45) 52.7 4

S - single unit truck, T/MT - single/multi trailer truck, B(n,k) - Binomial distribution
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simulation. The corresponding excessive damage cpf is computed for all the flows

and their paths, as described in Section 5.1. Finally, WIM cost includes the cost

of hardware and software, implementation, maintenance, re-calibration, office and

personnel. Available references indicate that total cost can vary considerably de-

pending on the technology (e.g. sensors, cameras) and location (e.g. state within

the same country). Numerical results are provided for WIM cost ranging between

$10 thousand and $360 thousand per lane per year. For this analysis, $60 thousand

per lane-year is the most realistic cost, since the cost of only WIM inroad equip-

ment ranges between $7 thousand and $12 thousand per lane-year depending on the

technology (adjusted for inflation from [61]).

5.3 Optimal Results for EFCP

The binary program (2.1)-(2.6) is implemented in GAMS 23.5 and solved using

GAMS/CPLEX solver for mixed integer programs on a PC with an AMD Athlon

3300 GHz processor with 4 GB of RAM. The optimal results for different WIM costs

are provided in Table 5.3 and the corresponding allocations of checkpoints are shown

in Figure 5.3. To simplify the comparison, the links in Table 5.3 and throughout

this section are denoted with tags (e.g. 1-221 for 221 road links), rather than with

their origin and destination nodes. Finally, it should be noted that all the results

are obtained within 3 to 4 seconds of computation time.
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(a) x∗
EFCP for $10,000/lane-year (b) x∗

EFCP for $60,000/lane-year

(c) x∗
EFCP for $110,000/lane-year (d) x∗

EFCP for $160,000/lane-year

Figure 5.3: Optimal Allocations of WIM Checkpoints for Different Costs of the

WIM Technology
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Table 5.3: Optimal Results for Different WIM Costs

WIM Costs x∗
EFCP WIM Systems Excessive Damage Total Cost

($/lane-year) (links covered) ($/year) ($/year) ($/year)

10,000 30, 32, 93, 130, 216 140,000 26,947 166,947

60,000 32, 62, 93, 130 720,000 56,370 776,370

110,000 32, 93, 130 880,000 403,640 1,283,640

160,000 105, 164 960,000 681,633 1,641,633

210,000 105, 164 1,260,000 681,633 1,941,633

260,000 105, 164 1,560,000 681,633 2,241,633

310,000 105 620,000 1,723,607 2,343,607

360,000 no WIMs 0 2,349,907 2,349,907

5.4 Numerical Comparison of EFCP and FCLAP

Now let us observe what would happen if the FCLAP was applied to deter-

mine the optimal allocation of WIM checkpoints. Recall from Proposition 2 that

EFCP reduces to FCLAP when kf = 1. First, the EFCP for kf = 1 is applied to

find the optimal WIM allocation x∗
FCLAP and the corresponding objective function

FCLAP (x∗
FCLAP ). Second, this solution is evaluated for the EFCP where kf is

determined so that the (kf + 1)-th shortest path is at least 20% longer than the

shortest path. This value is denoted by EFCP (x∗
FCLAP ) and contrasted with the

optimal solution EFCP (x∗
EFCP ).

The last column in Table 5.4 indicates that the solution obtained from FCLAP

performs poorly in the setting where trucks try to avoid WIM systems by taking
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reasonably long detours. The graphical comparison and dispersion of the uncaptured

flows for the two solutions is provided in Figures 5.4 and 5.5. This comparison

indicates that truck flows simply bypass the facilities allocated with FCLAP. For

example, Figures 5.5a and 5.5c show that the flow traversing Nevada east-west

bypasses the implemented facility at a small increase in travel distance. A similar

situation occurs in Figure 5.4c, but at a higher increase in driving distance that also

includes greater excessive damage associated with the same transit flow.

Table 5.4 also clearly illustrates the WIM paradox, in which inefficient use of

WIM technology actually causes excessive damage (and total system cost) to in-

crease. In particular, the allocation x∗
FCLAP based on the FCLAP incurs a cost of

approximately $2.9-3.9M/year for the WIM technology cost of $110-360k/lane-year.

On the other hand, Table 5.3 indicates a total cost of roughly $2.4M/year when no

WIM technology is implemented. Hence, the FCLAP allocation is counterproduc-

tive, and actually incurs greater total cost than a solution that includes no WIMs

at all. This clearly demonstrates the potential pitfalls of using FCLAP in settings

where users behave non-cooperatively.

5.5 Heuristic Results for EFCP

This section discusses performance of the greedy heuristic implemented in

Matlab, as well as a binary genetic algorithm available in Matlab 2013a. Table

5.5 indicates good performance of the greedy heuristic, which took few seconds of

computation time. In this particular instance, the greedy heuristic performs within
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(a) x∗
FCLAP for $10,000/lane-year (b) x∗

EFCP for $10,000/lane-year

(c) x∗
FCLAP for $60,000/lane-year (d) x∗

EFCP for $60,000/lane-year

Figure 5.4: Comparison of FCLAP and EFCP for WIM Cost of $10,000 and $60,000

per lane-year
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(a) x∗
FCLAP for $110,000/lane-year (b) x∗

EFCP for $110,000/lane-year

(c) x∗
FCLAP for $160,000/lane-year (d) x∗

EFCP for $160,000/lane-year

Figure 5.5: Comparison of FCLAP and EFCP for WIM Cost of $110,000 and

$160,000 per lane-year
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Table 5.4: Comparison of EFCP and FCLAP for Different WIM Costs

WIM Costs x∗
FCLAP FCLAP (x∗

FCLAP ) EFCP (x∗
FCLAP )

EFCP (x∗EFCP )
EFCP (x∗FCLAP )

($/lane-year) (links covered) ($/year) ($/year)

10,000 30, 37, 62, 130, 138 152,791 667,245 0.250

60,000 62, 107, 130 699,362 1,911,587 0.406

110,000 62, 154 1,102,999 2,874,007 0.447

160,000 154 1,367,532 3,094,203 0.530

210,000 154 1,567,532 3,294,203 0.589

260,000 154 1,767,532 3,494,203 0.641

310,000 154 1,967,532 3,694,203 0.634

360,000 154 2,167,532 3,894,203 0.603

20% of optimality; recall, however, that a bound on its worst-case performance

cannot be established by Proposition 6. As one would expect, the genetic algorithm

outperforms the greedy heuristic at the cost of a considerably increased computation

time. The initial population of 500 individuals is generated randomly, after which

the first 221 individuals are assigned a WIM checkpoint at 221 possible locations.

The algorithm is run 5 times through 2000 generations and the best solutions are

presented in Table 5.5. All the reported solutions are within 2.5% of the optimum

and the average computation time is about 2.5 hours.
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Table 5.5: Performance of Greedy Heuristic and Genetic Algorithm for EFCP

WIM cost xgreedy

EFCP (x∗EFCP )
EFCP (xgreedy)

xgenetic

EFCP (x∗EFCP )
EFCP (xgenetic)

($/lane-year) (links covered) (links covered)

10,000 30, 32, 62, 105, 130, 164 0.801 37, 46, 62, 93, 130 0.975

60,000 62, 105, 164 0.857 37, 38, 66, 130 1

110,000 105, 164 0.957 42, 93, 130 0.979

160,000 105, 164 1 107, 170 1

210,000 105, 164 1 107, 164 1

260,000 105, 164 1 107, 170 1

310,000 105 1 107 1

360,000 no WIMs 1 no WIMs 1

5.6 Comparison of EFCP to the Real-World Solution

The real-world implementation of static weigh systems in Nevada is contrasted

with the solution suggested by the EFCP for WIM allocation. Several grounds for

caution should be noted in interpreting this comparison. First, locations of static

weigh scales are more restricted than those of WIMs because static scales require

considerable land for their ramps and truck queues. Thus, the authorities may have

considered only a subset of the links considered in the model (e.g. only links that

are further away from towns). The reasons for this could be the land ownership

and price, or space availability. Second, the model focuses on road links that are

either state designated for STAA vehicles or federally designated for large commer-

cial vehicles. On the other hand, in allocating static scales the authorities may
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have considered additional roads (i.e. not only roads designated for STAA or large

commercial vehicles) as potential bypasses. Third, the assumed intensities of truck

flows are based on recent references, but the flows may have been different when

the static weigh stations were originally implemented. Furthermore, our experiment

includes some randomly simulated local truck flows.

Since Nevada currently has three static stations [62], Problem P1’ for m = 3 is

applied to minimize the excessive damage. The real-world implementation and opti-

mal solution for EFCP are given in Figure 5.6 together with graphical representation

of the uncaptured flows and the corresponding excessive damage. The main differ-

ence between the two solutions arises in (not) capturing the transit flow between

northwest of Reno and south of Las Vegas (note that the two checkpoints in Figure

5.6b are grouped together to capture this flow). Thus, under the assumptions of the

model, the optimal solution for EFCP outperforms the real-world implementation

by about $670,000/year. While the exact dollar amount reflects the assumptions

made in our experiments, it suggests that there is significant economic potential in

modeling evasive transportation flows.

The real-world solution suggests that practitioners, unlike the FCLAPs, have

considered that overloaded trucks would try to evade the checkpoints, as they have

placed them at locations that cannot be avoided at a small increase in driving dis-

tance. These locations include links close to border crossings and other areas where

road network is not well connected. As it happens, however, the optimal allocation

for three stations is somewhat counter-intuitive, as it is better to implement 2 of

3 checkpoints very close together, instead of spreading them out across the net-
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(a) Real-world locations and the corre-

sponding damage $925,640/year

(b) x∗
EFCP for and m = 3 and the cor-

responding damage $248,941/year

Figure 5.6: Comparison of real-world locations of weigh stations with those sug-

gested by EFCP

work. This case suggests that EFCP can be a useful decision support tool with the

potential to improve solutions based on human judgment and intuition.

5.7 Conclusions

This chapter provides a case study where deterministic EFCP is applied to

optimally allocate WIM systems in Nevada. The EFCP and FCLAP are also con-

trasted in this realistic case study and the numerical comparison indicates that

results optimal for FCLAP perform poorly in the setting where targeted flows try

to avoid the facilities. Moreover, the EFCP-based facility locations are contrasted

the actual implementation of static weigh scales in Nevada. This comparison showed
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that current allocation of static weigh scales could be considerably improved through

application of EFCP. These results show the relevance of the proposed EFCP and

indicate that it adds a considerable value in the allocation of facilities which targeted

flows have an incentive to avoid.
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Chapter 6: Conclusions

This dissertation contributes to the literature on facility location by intro-

ducing a new type of flow-capturing framework in which targeted flows exhibit

non-cooperative behavior by changing their routes in order to avoid the facilities.

This work develops three models to allocate facilities given different availability of

information and planning policies. Several case studies including real-world trans-

portation networks are conducted to demonstrate applicability and efficiency of the

proposed models and solution techniques. The EFCP solutions are also compared

with those suggested by the FCLAP. This comparison demonstrates that solutions

optimal for FCLAP do poorly when targeted subjects try to avoid the facilities,

showing that proposed EFCP adds considerable value.

The EFCP-based allocation is also contrasted with the actual implementa-

tion of weigh stations in Nevada, given the available information about the truck

flows. This comparison shows that EFCP-based allocation significantly outperforms

the actual implementation, which indicates that application of EFCP could yield

great economic benefits. These results, as well as wide applicability of EFCP in

transportation, revenue management, and security and safety management, show

the relevance of the proposed type of flow-capturing problem and encourage further
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research on EFCP.

6.1 Benefits to Society

The EFCP has many important applications pertaining to preservation of

transportation infrastructure and environment (weigh-in-motion systems), safety

(inspection stations for transportation of hazardous material) and profit maximiza-

tion (tollbooths). Thus, the line of research proposed in this dissertation could:

1. Improve the current practice of transportation agencies in locating WIM sys-

tems that consists of simply prioritizing the most damaged road links. The

proposed EFCP for WIM allocation could both speed up the decision making

process of highway agencies and provide more cost effective solutions that 1)

reduce government expenditures for road maintenance and 2) decrease envi-

ronmental damage due to overweight commercial vehicles.

2. Improve toll collection for transportation agencies through optimal allocation

of tollbooths. The EFCP for WIM allocation can be readily applied to allo-

cation of tollbooths in a road transportation network. This application would

only require different estimation of the parameter cpf , which would represent

the lost revenue and road deterioration associated with those flows that bypass

the tollbooths.

3. Improve safety management through optimal allocation of security checkpoints

(e.g. inspection stations for vehicles transporting hazardous material). The
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EFCP for WIM allocation can be directly applied in allocating fixed security

and safety checkpoints to manage risk. This application may include allocation

of a fixed number of facilities (i.e. problem P1’) in order to minimize the risk

associated with unintercepted flows. In such a setting, cpf would represent an

estimated risk.

6.2 Extensions

One limitation of the proposed EFCP framework is that kf can be determined

so that the (kf + 1)-th shortest path would represent an excessive detour. This

approach is appropriate for highway road networks, as it was shown in case studies

involving real-world networks of Nevada and Vermont. It would be more difficult to

apply this approach to well-connected road networks (e.g. urban areas like Manhat-

tan) due to a very large number of possible paths. For these cases, an alternative

cut-based formulation could circumvent the issue of the large number of path-based

variables that would currently arise in instances involving well-connected networks.

Another way to cope with the well-connected networks would be to apply the net-

work aggregation techniques to reduce the size of the network and hence the number

of shortest paths to be considered within the EFCP.

The proposed EFCP framework assumes that flows seek to minimize their

travel distance by choosing to travel along their shortest unmonitored paths. Thus,

the three formulations introduced herein are flow-separable. A possible extension

would be to assume that flows seek to minimize their travel times. This exten-
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sion would include equilibrium constraints, which would imply different structural

properties of such an evasive flow-capturing framework.
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