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Large last-level cache (L3C) is efficient for bridging the performance and power

gap between processor and memory. Several memory technologies, including SRAM,

STT-RAM (MRAM), and embedded DRAM (eDRAM), have been used or consid-

ered as the technology to implement L3Cs. However, each of them has inherent

weaknesses: SRAM is relatively low density and dissipates high leakage; STT-RAM

has long write latency and requires high write energy; eDRAM requires refresh. As

future processors are expected to have larger last-level caches, the objective of this

dissertation is to study the tradeoffs associated with using each of these technologies

to implement L3Cs.

In order to make useful comparisons between L3Cs built with SRAM, STT-

RAM, and eDRAM, we consider and implement several levels of details. First, to

obtain unbiased cache performance and power properties (i.e., read/write access

latency, read/write access energy, leakage power, refresh power, area), we prototype



caches based on realistic memory and device models. Second, we present simplistic

analytical models that enable us to quickly examine different memory technologies

under various scenarios. Third, we review power-optimization techniques for each

of the technologies, and propose using a low-cost dead-line prediction scheme for

eDRAM-based L3Cs to eliminate unnecessary refreshes. Finally, the highlight of

this dissertation is the comparison and analysis of low-leakage SRAM, low write-

energy STT-RAM, and refresh-optimized eDRAM. We report system performance,

last-level cache energy breakdown, and memory hierarchy energy breakdown, using

an augmented full-system simulator with the execution of a range of workloads

and input sets. From the insights gained through simulation results, STT-RAM

has the highest potential to save energy in future L3C designs. For contemporary

processors, SRAM-based L3C results in the fastest system performance, whereas

eDRAM consumes the lowest energy.
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Chapter 1

Introduction

1.1 Motivation

Last-level cache (LLC) is a determining factor of both system performance and

energy consumption in multi-core processors. While future processors are expected

to have more cores [1,2], emerging workloads are also shown to be memory intensive

and have large working set sizes [3]. As a result, the demand for large last-level

caches (L3Cs) has increased in order to improve the system performance and energy.

Examples of processors using L3Cs include the Intel Xeon E7 (Figure 1.1(a)) [4] and

the IBM Power7 (Figure 1.1(b)) [5].

30MB

L3

(a) Intel Xeon E7

32MB L3

(b) IBM Power7

Figure 1.1: Die photos. (a) Intel Xeon E7 [4]. (b) IBM Power7 [5].
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To illustrate the benefit of utilizing an L3C, we vary the LLC capacity and

use the canneal and bt benchmarks as case studies. Figure 1.2 shows the system

performance with respect to different LLC sizes. Because better on-chip cache hit

ratio reduces the number of long accesses to the off-chip main memory, a larger LLC

improves system performance. Likewise, higher on-chip cache hit ratio potentially

results in shorter system execution time and fewer main memory activities. There-

fore, as shown in Figure 1.3, even though a larger LLC dissipates higher power, it

substantially lowers the total energy consumption of the memory hierarchy.
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Figure 1.2: Improvement in system performance when applying a larger LLC.
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Figure 1.3: Reduciton in memory hierarchy energy when applying a larger LLC.
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Though we anticipate future processors to have more cores and larger caches

implemented in smaller technologies, without modifying design principles, we will

soon hit the Power Wall [6], which will limit processors from scaling further. On the

large scale such as supercomputers or data centers, high power usage introduces very

high electrical cost; and for mobile applications, high energy consumption shortens

battery lifetime. Power also produces heat, which degrades electrical and mechanical

reliability. In fact, power/energy has already been the main design consideration

for the past decade [7].

Traditional processors implement caches using SRAMs (static random access

memories). However, SRAM-based LLC dissipates high leakage, making it a major

contributor to the processor power consumption, especially when idle. For instance,

at 32nm, LLC contributes around 16% of the processor peak power and 30% of the

standby power (this estimation is based on simulations using McPAT [8]). Addi-

tionally, although the SRAM area scaling follows the down-scaling trend (around

0.5X reduction per generation), the SRAM voltage (VDD) scaling is slower than

that of logic gates [9]. This is because an SRAM cell requires a minimum VDD for

it to reliably store data. Consequently, at 8nm, the power contribution of LLC will

increase to 24% when the processor is operating at peak power, and 34% when the

processor is idle.

To reduce the high SRAM-based LLC power consumption, one solution is to

implement LLCs with alternative memory technologies. Technology choices include

eDRAM (embedded dynamic random access memory), and emerging prototypical

non-volatile memories such as STT-RAM (spin-transfer torque magnetic random

3



access memory). However, each of these technologies has dissimilar performance

and power properties. Because of that, caches based on different technologies require

distinctive device/circuit/architecture optimizations. This dissertation is dedicated

to the technology comparison for L3Cs, a design space that has gained increasing

attention.

1.2 Problem Description

L3Cs are often optimized for high density and low power. SRAMs have been

the mainstream memory technology for high performance processors due to their

standard logic compatibility and fast access time. However, relative to alternatives,

SRAM is a low-density technology that dissipates high leakage power. STT-RAMs

and eDRAMs are potential replacements for SRAMs in the context of L3C due to

their high density and low leakage features. More specifically, STT-RAM is non-

volatile, dense, with read access time comparable to SRAM, and the potential to

scale below 32nm [10]; eDRAM is dense and low leakage compared to SRAM, with

access time and energy close to SRAM.

Though they provide many benefits, both STT-RAM and eDRAM have weak-

nesses. For instance, STT-RAM is less reliable and requires both a long write time

and a high write current to program [11]; eDRAM requires refresh operations to pre-

serve its data integrity. In particular, as cache size increases, each refresh operation

requires more energy and more lines need to be refreshed in a given time. Moreover,

as process technology scales down, increasing leakage and smaller storage capaci-

tance result in shorter retention time, which in turn exacerbates the refresh power
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problem. Process and temperature variations also negatively affect the eDRAM

data-retention time. An eDRAM cache thereby requires a higher refresh rate and

refresh power to accommodate the worst case retention time.

In order to make useful comparisons between SRAM, STT-RAM, and eDRAM

L3Cs, several levels of details need to be considered. First, a consistent and accurate

cache model is essential to obtain unbiased cache performance and power proper-

ties (i.e., read/write access latency, read/write access energy, leakage power, refresh

power, area). Second, a representative theoretical model is useful to provide a first-

order guideline, which can also be further utilized to justify the results of complex

microarchitecture models. Third, applying power-optimization techniques is indis-

pensable when energy-efficiency is the primary L3C design consideration. Finally,

augmenting a cycle-accurate full-system simulator with the capability to reflect the

memory technology properties, and with the low power implementations, enables

LLC designers make practical evaluations and comparisons.

The work in this dissertation addresses the above-mentioned considerations,

reports performance and energy results, and provides readers a better understanding

of design choices and tradeoffs.

1.3 Contribution and Significance

The main contributions of this dissertation are as follows:

1. We provide a tutorial on memory technologies for on-die caches. These tech-

nologies include SRAM, STT-RAM, and eDRAM. We also highlight the strengths
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and weaknesses of each of the technologies.

2. We modify a widely-used cache modeling tool, CACTI [12], to gain realistic

and unbiased SRAM, STT-RAM, eDRAM cache models. The modifications

and enhancements include: (i) Conducting HSPICE circuit simulations with

the use of PTM CMOS models [13] to collect accurate device and circuit char-

acteristics that are required by the tool. (ii) Taking the effect of temperature

into account, such that not only leakage is temperature dependent, but also

performance and dynamic power. (iii) Using NVSim [14] to obtain STT-RAM

array characteristics and integrating them into CACTI. (iv) Implementing a

gain cell eDRAM model, in which the model is based on HSPICE simula-

tions that includes the effects of PVT variations. Additionally, we utilize the

cache models to conduct a comprehensive design space exploration: we evalu-

ate read/write access latency, read/write access energy, leakage power, refresh

power, and area, when the cache is implemented in each of the technologies

considered. We also study the impact of cache size, technology scaling, and

temperature.

3. We present analytical models for fast evaluations on the average LLC access

latency and LLC energy consumption. The models allow cache designers to

examine different memory technologies under various scenarios. Based on the

models, we carry out sensitivity analysis and show that LLC read-write ratio,

miss ratio, and access intensity are all important factors that determine a

memory technology’s usefulness.
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4. We review power-optimization techniques for SRAM, STT-RAM, eDRAM

caches. In particular, we classify eDRAM refresh-reduction schemes into two

categories and propose a low-cost dead-line prediction scheme to eliminate un-

necessary refreshes to eDRAM LLCs. Full-system simulation results indicate

that on average the proposed technique reduces the refresh energy by 42% and

reduces the LLC energy by 18%, with 1.1% longer execution time compared

to the conventional refresh scheme.

5. We compare and analyze energy-efficient L3Cs built with different technolo-

gies: low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized

eDRAM. In order to conduct representative experiments, we augment a cycle-

accurate full-system simulator that is capable of reflecting the properties of

each memory technology, and includes the integration of low power techniques.

With the simulation environment, we evaluate the system performance, LLC

energy breakdown, memory hierarchy energy breakdown, and cost. We also

explore the impact of LLC size, technology scaling, processor frequency, and

temperature. Full-system simulations show that the choice of memory tech-

nology is workload dependent: STT-RAM is the best candidate if the program

introduces few write-backs from the upper-level caches and few insertions from

the main memory, whereas on average, eDRAM consumes the least energy if

refresh is effectively controlled. Simulation results also suggest that STT-

RAM has the best potential to save power in future LLC designs; but with

contemporary cache implementations and technology developments, SRAM
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and eDRAM provide better system performance and/or energy-efficiency.

6. We characterize a range of workloads and input sets. The detailed workload

characteristics serve as an aid for logical analysis, such as reasoning why a

memory technology dominated the others for a particular workload and input.

1.4 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 provides an overview of

memory technologies for on-die caches. In particular, we summarize the strengths

and weaknesses of SRAM, STT-RAM, and eDRAM. Chapter 3 presents our SRAM,

STT-RAM, and eDRAM cache modeling framework. We then use the framework

to conduct a cache design space exploration. Chapter 4 describes analytical models

that allow us to quickly compare caches with different performance and power prop-

erties. Using the analytical models, we carry out sensitivity studies and underline

factors that determine the choice of technology. Chapter 5 reviews low power tech-

niques for SRAM, STT-RAM, and eDRAM caches. This chapter also demonstrates

our proposed refresh reduction technique for eDRAM L3Cs. Chapter 6 evaluates

L3Cs built with SRAM, STT-RAM, and eDRAM. We first describe our experimental

methodology, which is based on a full-system simulator, MARSS [15], running a real

operating system (i.e., Linux) and benchmarks (i.e., PARSEC [16] and NPB [17]).

We then provide a comprehensive comparison and analysis. Chapter 7 summarizes

this dissertation with concluding remarks. Finally, in Appendix A, we characterize

the workloads we have considered in this work.
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Chapter 2

Memory Technologies for On-Die Caches

There are several memory technologies that have been used or have been con-

sidered for implementing LLCs. These include mature technologies that are used

in commercial processors, such as SRAM (static random access memory), eDRAM

(embedded dynamic random access memory), and technologies in development, such

as STT-RAM (spin-transfer torque magnetic random access memory), PCM (phase

change memory), FeRAM (ferroelectric random access memory), and ReRAM (re-

sistive random access memory).

In the remainder of this chapter, we will describe SRAM, eDRAM, and STT-

RAM in detail. These technologies are fast and have write endurance. The other

technologies, PCM, FeRAM, and ReRAM, have inherent weaknesses (e.g., slow ac-

cess, limited endurance, etc.), that make them far less suitable for implementing

on-die caches.

2.1 SRAM

A typical 6T SRAM cell is shown in Figure 2.1. When performing a read

operation, the access transistors (AL and AR) are turned on, and, depending on
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the stored data, one of the pull-down transistors (DL or DR) creates a current path

from one of the bit-lines (BL or BLB) to ground, enabling fast differential sensing

operation. When performing a write operation, the cell content is written based on

the bit-lines’ differential voltage signal applied by the write driver.

WL WL

BL BLB

AL AR

DL DR

Figure 2.1: 6T SRAM cell schematic.

00

0 1

1 1

Subthreshold leakage

Gate tunneling leakage

Figure 2.2: SRAM leakage paths.

SRAMs can be built using standard CMOS process. They also provide fast

memory accesses, making them the most widely used embedded memory technol-

ogy. For instance, Intel, AMD, and Sun processors use SRAM as the technology to

implement the entire cache hierarchy [18–20]. However, due to their six-transistor

implementation, SRAM cells are large in size. Subthreshold and gate leakage paths

(Figure 2.2) introduced by the cell structure also result in high standby power. The
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low-density and high leakage characteristics make SRAM less practical for imple-

menting high-capacity caches.

2.2 STT-RAM

STT-RAM is a type of magnetic RAM. An STT-RAM cell consists of a mag-

netic tunneling junction (MTJ) connected in series with an NMOS access transistor.

A schematic of an STT-RAM cell is shown in Figure 2.3, where the MTJ is denoted

by the variable resistor. There are two ferromagnetic layers in the MTJ that deter-

mine the device resistance: the free layer and the fixed (reference) layer, as illus-

trated in Figure 2.4. Depending on the relative magnetization directions of these

two layers, the MTJ is either low-resistive (parallel) or high-resistive (anti-parallel).

It is thereby used as a non-volatile storage element.

BL

SL

WL

MTJ

Figure 2.3: 1T1R STT-RAM cell schematic.

When performing a read operation, the access transistor is turned on, and a

small voltage difference (or a small current) is applied between the bit-line (BL)

and the source-line (SL) to sense the MTJ resistance. When performing a write

operation, a high voltage difference is applied between BL and SL. The polarity of

the BL-SL cross voltage is determined by the desired data to be written. Long write
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Read 
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current
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current
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(anti-parallel)

Insulator

Figure 2.4: MTJ structure.

pulse duration and high write current amplitude are required to reverse and retain

the direction of the free layer.

Though we usually refer STT-RAM as a non-volatile technology, it is also

possible to trade its non-volatility (i.e., its retention time) for better write perfor-

mance [21]. The retention time can be modeled as

t = t0 × e∆ (2.1)

where t is the retention time, t0 is the thermal attempt frequency, and ∆ is the

thermal barrier that represents the thermal stability [22]. ∆ can be characterized

using

∆ ∝ MsHkV

kBT
(2.2)

where Ms is the saturation magnetization, Hk is the anisotropy field, V is the

volume, kB is the Boltzmann constant, and T is the absolute temperature.

A smaller ∆ (shorter retention time) allows a shorter write pulse width or
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a lower write current. In the example given by Jog et al. [23], to gain a 10-year

retention period, 114uA write current is required, but only 73uA is necessary to

gain an 1-second retention (in this example, both cases require a 10ns write pulse

width). However, a smaller ∆ also increases the probability of random STT-RAM

bit-flip, and therefore requires a faster scrubbing rate or a stronger ECC (error-

correcting code). For instance, Naeimi et al. [24] showed that to achieve similar

robustness for 64MB caches using the same scrubbing rates, SECDED (single error

correction and double error detection) is required when ∆ is 47.3, whereas a stronger

ECC-type, 5EC6ED, is required when ∆ is 32.

2.3 eDRAM

In addition to SRAM, eDRAM has also been utilized in commercial products.

One well known example is the IBM Power7 processor (Figure 1.1(b)) [5], where

eDRAM is used to implement the last-level L3 cache.

There are two common types of eDRAM: the 1T1C eDRAM and the gain

cell eDRAM. Both of them utilize some form of capacitor to store the data. For

instance, a 1T1C cell utilizes a dedicated capacitor to store its data, while a gain

cell relies on the gate capacitance of its storage transistor. The refresh rate of an

eDRAM circuit is determined by its data-retention time, which depends on the rate

of cell leakage and the size of storage capacitance.
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2.3.1 1T1C eDRAM

A 1T1C eDRAM cell consists of an access transistor and a capacitor (C),

as shown in Figure 2.5. 1T1C cells are denser than gain cells, but they require

additional process steps to fabricate the cell capacitor. A cell is read by turning on

the access transistor and transferring electrical charge from the storage capacitor

to the bit-line (BL). Read operation is destructive because the capacitor loses its

charge while it is read. Destructive read requires data write-back to restore the lost

bits. The cell is written by moving charge from BL to C.

Due to junction leakage, gate-induced drain leakage, subthreshold leakage, field

transistor leakage, and capacitor dielectric leakage, a DRAM cell loses charge over

time [25]. Additionally, because eDRAM uses fast access transistors with a higher

leakage current compared to conventional DRAM, the retention time of eDRAM is

much shorter than conventional DRAM. For example, the retention time of an IBM

32nm SOI eDRAM is reported as 40us at 85oC [26], whereas the retention time of

commodity DRAM is 64ms [27].

BL

WL

C

Figure 2.5: 1T1C eDRAM cell schematic.
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2.3.2 Gain Cell eDRAM

Gain cell memories are typically implemented with two or three transistors,

providing low leakage, high density, and fast memory access. Figure 2.6 shows a

typical 2T gain cell and a typical 3T gain cell built with PMOS transistors. We use

the 3T PMOS gain cell as an example to describe the basic operation of gain cell

eDRAMs.

RBL

RWLWBL

WWL

Storage node

PW
PR

(a)

RBL

RWL

WBL

WWL

Storage node

PS

PR

PW

(b)

Figure 2.6: Gain cell eDRAM schematics. (a) 2T PMOS cell. (b) 3T PMOS cell.

A 3T PMOS gain cell is comprised of a write access transistor (PW), a read

access transistor (PR), and a storage transistor (PS). PMOS transistors are utilized

because a PMOS device has less leakage current compared to an NMOS device with

the same size. Less leakage current enables lower standby power and longer retention

time. During hold mode, both the read word-line (RWL) and the write word-line

(WWL) are at VDD such that PR and PW are off, while the read bit-line (RBL) and

the write bit-line (WBL) stay at 0V. In read mode, PR is switched on, and RBL is

pulled up only when the voltage at the storage node is low. The sense amplifier then

determines the cell data based on the RBL’s voltage level. In write mode, similar to
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the 1T1C eDRAM, WWL is negatively over-driven to avoid threshold voltage loss.

Data is then written into the storage node via PW. Table 2.1 summarizes the signal

voltages in each operating mode.

Table 2.1: Signals for each operating mode of the 3T PMOS gain cell [28].

RWL RBL WWL WBL

Hold VDD 0V VDD 0V
Write 0/1 VDD 0V -500mV 0V/VDD
Read 0/1 0V 200mv/0V VDD 0V

Leakage causes the voltage of the storage node to change over time. An ex-

ample is shown in Figure 2.7, where the data retention time is characterized as the

time it takes for data ‘0’ to rise to a specified voltage. In this example, the specified

voltage is 0.65V and the retention time is 100us. A read is likely to be erroneous

if data ‘0’ rises above 0.65V, because distinguishing data ‘0’ from data ‘1’ becomes

difficult. Note that this example is based on the PTM 65nm LP CMOS process [13].

Figure 2.8 shows the leakage paths that are associated with data retention time.
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Figure 2.7: Gain cell retention time characteristics. The 3T PMOS gain cell reten-
tion time is determined by data ‘0’ because the storage node is surrounded by high
voltages. This example is based on PTM 65nm LP CMOS model operating at 1V,
85oC, without considering process variations.

16



Leakage at the storage node

0V

VDD

0V

VDD

Subthreshold leakage

Figure 2.8: 3T PMOS gain cell eDRAM leakage paths.

2.4 Summary

Table 2.2 compares the technology features of SRAM, STT-RAM, and two

types of eDRAM. In summary, SRAM is the fastest technology, but has the largest

area and dissipates high leakage. STT-RAM is non-volatile, and has the potential

to scale. However, it requires long write time and high write energy to program. It

also requires extra process to fabricate, and it is less reliable compared to SRAM

and eDRAM. Finally, eDRAM dissipates low leakage power, but requires refresh

operations to maintain data correctness.
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Table 2.2: Comparison of various memory technologies for on-die caches.

SRAM STT-RAM
eDRAM

1T1C Gain cell

Cell schematic

WL WL

BL BLB

AL AR

DL DR

BL

SL

WL

MTJ

BL

WL

C

RBL

RWL

WBL

WWL

Storage node

PS

PR

PW

Process CMOS CMOS + MTJ CMOS + Cap CMOS

Cell size (F 2) 120 - 200 6 - 50 20 - 50 60 - 100

Data storage Latch Magnetization Capacitor MOS gate

Read time Short Short Short Short

Write time Short Long Short Short

Read energy Low Low Low Low

Write energy Low High Low Low

Leakage High Low Low Low

Endurance 1016 1015 1016 1016

Retention time - - <100us * <100us *

Features

(+) Fast (+) Non-volatile (+) Low leakage (+) Low leakage

(-) Large area
(+) Potential to

scale
(+) Small area

(+) Decoupled
rd/wr

(-) Leakage (-) Extra process (-) Extra process (-) Refresh
(-) Long write time (-) Destructive read

(-) High write
energy

(-) Refresh

(-) Poor stability

* 32nm technology node
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Chapter 3

Cache Modeling

In this chapter, we present our SRAM, STT-RAM, and eDRAM cache mod-

eling framework. The framework builds on top of CACTI [12], an analytical model

that estimates the access time, cycle time, dynamic power, leakage power, and area

of caches. We then present a general design space exploration, and compare large

SRAM, STT-RAM, and eDRAM caches. At the end of this chapter, we review the

research works and tools that are related to cache or memory modeling.

3.1 Cache Modeling Framework

3.1.1 Overview

This section starts with an overview of our cache modeling framework, as

illustrated in Figure 3.1. For the peripheral circuitry, the SRAM array, and the

gain cell eDRAM array, we first conduct circuit (HSPICE) simulations using the

PTM CMOS models [13]. We then extract the circuit characteristics and integrate

them into CACTI. For the STT-RAM cache modeling, we obtain STT-RAM array

characteristics using NVSim [14] and integrate them into CACTI. The STT-RAM

device parameters are projected according to [23,29]. Currently, CACTI only models
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leakage power as being temperature dependent. We extend CACTI to model the

effects of temperature on dynamic power, refresh power, and performance. We

summarize the CACTI modifications we made as follows:

• We conduct HSPICE simulations using PTM CMOS models to obtain realistic

device and circuit behaviors. We consider both high performance (HP) and

low power (LP) CMOS implementations. We also consider various technology

nodes (45nm, 32nm, 22nm).

• We take the effect of temperature into account. We enhance CACTI such that

both performance (read/write access time) and power (dynamic and standby

power) are temperature dependent.

• We use NVSim to obtain STT-RAM array characteristics and integrate them

into CACTI.

• We integrate a gain cell eDRAM model to CACTI. Our model is based on

HSPICE simulations that include the effects of PVT (process, voltage, tem-

perature) variations.

3.1.2 CMOS Technology Modeling

To model various CMOS technologies, such as different technology implemen-

tations (high performance, low power, etc.) and different technology nodes (45nm,

32nm, 22nm, etc.), we use models provided by the Predictive Technology Model

(PTM) website [13]. The models are widely adopted by the circuit research commu-

nity – they are accurate, scalable, and compatible with SPICE. Based on the PTM
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PTM CMOS model HSPICE Peripheral circuit param

SRAM subarray param

eDRAM subarray param

STT-RAM subarray paramSTT-RAM device param NVSim

CACTI

Cache modeling framework

User input

(cache organization, memory technology type, technology node… etc.)

Cache profile

(performance, power, area… etc.)

Figure 3.1: Cache modeling framework.

models, we conduct HSPICE simulations and extract the information required by

CACTI. We then extend the look-up table in CACTI, and insert the extracted device

and circuit characteristics. When executing CACTI, CACTI points to the entries

that contain the user specified parameters.

An important improvement to CACTI is the use of realistic PMOS models.

CACTI models PMOS leakage by assuming a PMOS device has the same leakage as

an NMOS device with the same dimension, where in typical CMOS technologies, a

PMOS device leaks less than an NMOS device [30]. This simplification of treating

the leakage of NMOS and PMOS devices identically is problematic, as it overesti-

mates the total leakage power. Our data indicates that when using realistic PMOS

models, the leakage power of a cache reduces by approximately 20%.

As an example, we show a subset of the look-up table in Table 3.1. This table

compares the HP and LP devices and various technology nodes. Higher driving

current (Ion) produces higher performance, and lower leakage current (Ileak) results
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in lower standby power. Note that Ileak corresponds to the sum of the subthreshold

leakage and the gate leakage.

Table 3.1: CMOS technology comparison.

HP 45nm 32nm 22nm

VDD 1V 0.9V 0.8V

NMOS
Ion (A/um) 1.20E-3 1.20E-3 1.21E-3
Ileak (A/um) 5.77E-8 1.27E-7 2.73E-7

PMOS
Ion (A/um) 7.13E-4 7.13E-4 7.14E-4
Ileak (A/um) 1.57E-8 5.02E-8 2.53E-7

LP 45nm 32nm 22nm

VDD 1.1V 1V 0.95V

NMOS
Ion (A/um) 3.87E-4 3.99E-4 3.65E-4
Ileak (A/um) 2.70E-10 5.54E-10 1.25E-9

PMOS
Ion (A/um) 2.14E-4 2.19E-4 1.89E-4
Ileak (A/um) 1.52E-10 2.89E-10 7.50E-10

Temperature = 75oC

3.1.3 Temperature Modeling

One enhancement to CACTI we made is a comprehensive temperature model.

Both circuit performance and power are temperature dependent: performance de-

grades and leakage power increases with increasing temperature [31]. We show a

few examples of the effect of temperature in Figure 3.2. Note that lower Ion means

slower performance, and higher Ileak means higher leakage power. However, CACTI

only models the dependence of leakage power on temperature. We improve CACTI

by adding an Ion look up table such that the circuit performance and dynamic en-

ergy consumption are also temperature dependent. Figure 3.3 shows the read access

time and energy after accounting the effect of temperature on Ion.
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Figure 3.2: Ion and Ileak vs. temperature. As temperature raises, Ion decreases and
Ileak increases. (a) HP CMOS Ion. (b) HP CMOS Ileak. (c) LP CMOS Ion. (d) LP
CMOS Ileak. The results are based on the 32nm technology node.
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Figure 3.3: The impact of temperature on read access time and energy. We show
that the results before and after considering the effect of temperature can be very
different. When accounting temperature, the cache characteristics become more
realistic. (a) Read access time. (b) Read energy per access. The results are based
on a 32nm 32MB SRAM cache.
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3.1.4 STT-RAM Modeling

The STT-RAM modeling is based on NVSim, a memory modeling tool similar

to CACTI, but which is capable of modeling various non-volatile memories includ-

ing STT-RAM, PCM (phase change memory), ReRAM (resistive RAM), FBDRAM

(floating body dynamic RAM), and NAND flash. For STT-RAM modeling, it re-

quires configurations such as the cell size, SET/RESET pulse width and amplitude,

and the read current.

We project the parameters required by NVSim based on scaling trends shown

in [29] and [23], using the 54nm technology node as the baseline. The projected data

are presented in Table 3.2. Note that we kept the cell feature size and the write

pulse width constant to simplify the projection. Also note that the write pulse width

and amplitude shown correspond to the required write energy that can successfully

write an STT-RAM cell and preserve its state for 10 years. Later in Chapter 5, we

show that a lower write energy is needed if the target data-retention time is shorter.

Table 3.2: STT-RAM parameters.

Technology Feature Write pulse Write Read
Node size (F 2) width (ns) current (uA) current (uA)

54nm 14 10 350 74
45nm 14 10 292 61
32nm 14 10 207 44
22nm 14 10 143 30

3.1.5 Gain Cell eDRAM Modeling

Similar to SRAM, there are many forms of gain cell eDRAM [32–43]. For CPU

cache architectures, both the operating speed and the retention time of a gain cell
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eDRAM circuit are important. We thus chose the boosted 3T gain cell [40] as the

fundamental cell structure due to its capability to operate at high frequency while

preserving a long data-retention time.

Figure 3.4 shows the schematic of the boosted 3T PMOS gain cell eDRAM. It

is comprised of a write access transistor (PW), a read access transistor (PR), and a

storage transistor (PS). PMOS transistors are utilized because a PMOS device has

less leakage current compared to an NMOS device of the same size. Lower leakage

current enables lower standby power and longer retention time.

RBL

RWL

WBL

WWL

Storage node

PW
PS

PR

Figure 3.4: Boosted 3T gain cell schematic.

During write access, the write bit-line (WBL) is driven to the desired voltage

level by the write driver. Additionally, the write word-line (WWL) is driven to a

negative voltage to avoid the threshold voltage drop such that a complete data ‘0’

can be passed through the PMOS write access transistor from WBL to the storage

node.

When performing a read operation, once the read word-line (RWL) is switched

from VDD to 0V, the precharged read bit-line (RBL) is pulled down slightly if a

data ‘0’ is stored in the storage node. If a data ‘1’ is stored in the storage node, RBL
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remains at the precharged voltage level. The gate-to-RWL coupling capacitance of

PS enables preferential boosting: when the storage node voltage is low, PS is in

inversion mode, which results in a larger coupling capacitance. On the other hand,

when the storage node voltage is high, PS is in weak-inversion mode, which results

in a smaller coupling capacitance. Therefore, when RWL switches from VDD to

0V, a low storage node voltage is coupled down more than a high storage node

voltage. The signal difference between data ‘0’ and data ‘1’ during a read operation

is thus amplified through preferential boosting. This allows the storage node voltage

to decay further before a refresh is needed, which effectively translates to a longer

data-retention time and better read performance. Table 3.3 summarizes the signal

voltages for each operating mode.

Table 3.3: Signals for each operating mode of the boosted 3T gain cell [28].

RWL RBL WWL WBL

Hold VDD VDD VDD 0V
Write 0/1 VDD VDD -500mV 0V/VDD
Read 0/1 ∼0V ∼VDD VDD 0V

3.1.5.1 Validation

The gain cell eDRAM model is validated against [28] with respect to latency,

retention time, and refresh power. Our model is based on CACTI utilizing the PTM

65nm LP CMOS technology, while the test chip presented in [28] is fabricated in a

65nm LP CMOS process. Setting the same memory array size, operating voltage

and temperature, our model shows 11% increase in latency and 20% decrease in

retention time. In addition, with the same refresh rate, our model shows 13% more
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refresh power. These differences are possibly due to implementation differences

between the processes and array organizations. We thus consider our model to be

reasonable.

3.1.5.2 The Impact of PVT Variations

We quantify the correlations between the retention time of gain cell eDRAMs

and PVT variations. We utilize HSPICE and its Monte-Carlo simulation utility

to analyze the retention time variation of a bit cell, where each simulation point

consists of 5,000 samples. To model the process variations, we consider both the

VTH (threshold voltage) variation and the TOX (oxide thickness) variation, as

suggested in [44]. We further model the distribution of a cache line based on the

retention time distribution of a bit cell. Table 3.4 shows the retention times of 45nm,

32nm, and 22nm gain cells we have modeled.

Table 3.4: Gain cell retention time.
45nm 32nm 22nm

Retention time 40us 20us 10us

• Process variations. Figure 3.5 shows the gain cell eDRAM retention time

distribution with respect to a range of process variations. We assume both

VTH and TOX follow the Gaussian distribution. The ranges of variances of

VTH and TOX are based on process variations of 32nm CMOS technologies

presented in [45]. From Figure 3.5(a), the retention time distribution of a bit

cell appears as a Gaussian distribution but with the lower tail longer than the

upper tail, meaning only a few samples are in the worst case retention time
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level. Moreover, the retention time distribution is very sensitive to the process

variations – the larger the variation, the more spread out the distribution.

The retention time distribution of a 64B cache line is reflected by the bit cell

retention time distribution. As a result, when the process variations increase,

the line retention time distribution curve shifts left to a shorter retention

time region with the spread remaining approximately the same, as shown in

Figure 3.5(b).
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Figure 3.5: Retention time distribution vs. process variations. (a) Bit cell. (b) 64B
cache line. Supply voltage = 1 V; temperature = 75◦C. The percentage numbers in
parentheses represent (σV TH/µV TH , σTOX/µTOX)

• Voltage variation. Figure 3.6 shows that the supply voltage variation has

negligible impact on the retention time. For a given gain cell design and supply

voltage, one can exchange faster access time with longer retention time, i.e., a

cell with faster access time has shorter retention time and vice versa. However,

under a higher voltage, although the access time becomes shorter, leakage also

increases. Higher leakage shortens the data-retention time. Faster access time

and higher leakage thus balance each other out, producing near-zero net effect
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on the cell retention time.
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Figure 3.6: Retention time distribution vs. voltage variation. (a) Bit cell. (b) 64B
cache line. σV TH/µV TH = 14%, σTOX/µTOX = 7%; temperature = 75◦C.

• Temperature variation. Leakage current is a function of temperature –

leakage increases with increasing temperature. Consequently, the retention

time shortens as the temperature increases, as demonstrated in Figure 3.7.

Since temperature is power dependent, the processor thermal behavior is dif-

ferent for different workloads or execution phases [46]. On-die temperature

sensors are thus required for tuning the refresh rate at run-time.

3.2 Design Space Exploration

Using our cache modeling framework, we compare large SRAM, STT-RAM,

and gain cell eDRAM caches. The design space considered in this section includes

cache size, technology scaling, and temperature. We use the following cache charac-

teristics as the key comparison metrics: read latency (ns), write latency (ns), read

energy (nJ/access), write energy (nJ/access), leakage power (mW), refresh power
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Figure 3.7: Retention time distribution vs. temperature. (a) Bit cell. (b) 64B cache
line. σV TH/µV TH = 14%, σTOX/µTOX = 7%; supply voltage = 1 V.

(mW), and area (mm2)

3.2.1 Memory Technology Comparison

Table 3.5 compares 32nm 32MB caches built with SRAM, STT-RAM, and

eDRAM. We summarize the results as follows:

• Read latency and read energy. Our experiments show that the inter-

connections play a dominant role in access time and access energy for high

capacity caches. As a result, although accessing an SRAM cell requires the

least time (reading an SRAM cell requires less than 1ns; reading an STT-RAM

or an eDRAM cell requires around 2ns [47, 48]), due to the smaller cell sizes

and shorter wires, the STT-RAM and the eDRAM caches have shorter read

latencies and lower read energies compared to the SRAM cache. In particular,

the STT-RAM cache has the smallest cell size and correspondingly best read

performance. In summary, the read latency of the SRAM cache is 1.45X and

1.04X longer than the STT-RAM and eDRAM caches, and its read energy is
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2.22X and 1.21X higher.

• Write latency and write energy. Due to the long write time and the

high write current requirements for programming an STT-RAM cell, the STT-

RAM cache has much longer write latency and much higher write energy. Our

results show that the STT-RAM cache has around 7X longer write latency

when compared to the SRAM and the eDRAM caches, while requiring more

than 20X energy per write access.

• Standby power. Our results show that the SRAM cache consumes 2.94X and

1.46X more standby power (leakage and refresh together) than the STT-RAM

and the eDRAM caches.

When comparing leakage power, STT-RAM cells and eDRAM cells dissipate

zero/low leakage, therefore the leakage of the STT-RAM and the eDRAM

caches are mainly caused by the peripheral circuitry. On the other hand, in

addition to the peripheral circuitry, SRAM cells also dissipate high leakage.

As a result, the SRAM cache consumes the highest leakage power among the

three memory designs.

In addition to leakage power, eDRAM also consumes refresh power. Note that

although refresh is not required for SRAM and STT-RAM (and hence zero

refresh power), it is advised to scrub STT-RAM periodically to ensure data

correctness. Most research papers ignore the STT-RAM scrubbing overhead.

We also do not consider scrubbing in this work.
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• Area. Memory cell size is a major factor that determines the area of a cache.

We show that the SRAM cache is around 5X and 2X larger than the STT-RAM

and the eDRAM caches, respectively.

Table 3.5: Detailed characteristics of 32nm 32MB cache designs built with various
memory technologies.

SRAM STT-RAM Gain cell eDRAM

Read latency 4.45 ns 3.06 ns 4.29 ns
Write latency 4.45 ns 31.77 ns 4.29 ns
Retention time - 10 years 20 us
Read energy 2.10 nJ/access 0.94 nJ/access 1.74 nJ/access
Write energy 2.21 nJ/access 47.43 nJ/access 1.79 nJ/access
Leakage power 2105.28 mW 715.38 mW 784.10 mW
Refresh power 0 mW 0 mW 600.41 mW
Area 80.41 mm2 16.39 mm2 37.38 mm2

Temperature = 75oC

3.2.2 Cache Size

Figure 3.8 and Figure 3.9 compare SRAM, STT-RAM, and eDRAM with

respect to different cache sizes. We also present the detailed numbers in Table 3.6.

As the cache size increases, all the presented metrics also increase. In partic-

ular, since the side effect of adding more SRAM cells is higher leakage, the SRAM

leakage power increases almost proportionally to the growth of capacity. Similarly,

because having more eDRAMs means more refresh operations are required in a given

time, the eDRAM refresh power also increases in proportion with cache size. Lastly,

cache area is proportional to capacity.

Increasing cache size also increases read/write latency and read/write energy.

The added latency and access energy are mainly due to longer access paths, such as

deeper decoders and longer wires.
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Figure 3.8: Cache characteristics with respect to different memory technologies and
different cache sizes. (a) Read latency. (b) Write latency. (c) Read energy. (d)
Write energy. (e) Leakage power. (f) Refresh power.
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Table 3.6: Detailed characteristics of 32nm cache designs with respect to different
memory technologies and different cache sizes.

Cache size SRAM STT-RAM eDRAM

Read latency (ns)
16MB 3.82 2.64 3.22
32MB 4.45 3.06 4.29
64MB 5.75 3.69 5.40

Write latency (ns)
16MB 3.82 31.49 3.23
32MB 4.45 31.77 4.29
64MB 5.75 32.22 5.40

Read energy (nJ/access)
16MB 1.74 0.78 1.03
32MB 2.10 0.95 1.74
64MB 2.88 1.22 2.38

Write energy (nJ/access)
16MB 1.85 47.26 1.09
32MB 2.21 47.43 1.79
64MB 3.06 47.70 2.50

Leakage power (mW)
16MB 1269.92 536.4 499.17
32MB 2105.28 715.38 784.104
64MB 3602.26 1228.32 1259.89

Refresh power (mW)
16MB 0 0 133.78
32MB 0 0 600.41
64MB 0 0 1200.82

Area (mm2)
16MB 51.42 8.75 18.83
32MB 80.41 16.39 37.38
64MB 156.90 31.28 105.78

Temperature = 75oC
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3.2.3 Technology Scaling

Figure 3.10 and Figure 3.11 compare various memory technologies with respect

to different technology nodes (see Table 3.7 for the detailed numbers). As technol-

ogy scales down, smaller device and wire capacitance (i.e., smaller loading) make

transistors easier to drive the next stage. As a result, when using a smaller tech-

nology, both read and write latencies become shorter. Additionally, it is projected

that STT-RAM requires smaller write energy (a function of write time and write

current) at smaller technology nodes; therefore we see a more dramatic decrease in

its write latency and write energy.

Leakage increases as technology scales down. Note that this observation is

based on the assumption that all nodes use the same device technology. For instance,

our 45nm, 32nm, and 22nm are all based on high-k/metal gate CMOS devices. We

expect to see higher performance and lower power at the 22nm node when using a

multi-gate model.

The refresh power trend is less intuitive. Refresh power is mainly determined

by two factors: the retention time and the energy to operate each refresh operation.

As technology scales down, increasing leakage and smaller storage capacitance result

in shorter retention time (Table 3.4), but the energy for each refresh operation also

decreases (Table 3.8), compensating the shortened retention time. We therefore see

a slow increase in refresh power.
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Figure 3.10: Cache characteristics with respect to different memory technologies and
different technology nodes. (a) Read latency. (b) Write latency. (c) Read energy.
(d) Write energy. (e) Leakage power. (f) Refresh power.
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Table 3.7: Detailed characteristics of 32nm cache designs with respect to different
memory technologies and different technology nodes.

Technology node SRAM STT-RAM eDRAM

Read latency (ns)
45nm 4.86 3.36 4.76
32nm 4.45 3.06 4.29
22nm 4.12 2.85 4.00

Write latency (ns)
45nm 4.86 35.24 4.76
32nm 4.45 31.77 4.29
22nm 5.75 24.59 4.00

Read energy (nJ/access)
45nm 3.67 1.66 3.04
32nm 2.10 0.95 1.74
22nm 1.14 0.52 0.94

Write energy (nJ/access)
45nm 3.88 67.52 3.14
32nm 2.21 47.43 1.79
22nm 1.21 32.78 0.97

Leakage power (mW)
45nm 1504.83 492.32 545.28
32nm 2105.28 715.38 784.104
22nm 3305.42 1161.76 1119.22

Refresh power (mW)
45nm 0 0 568.55
32nm 0 0 600.41
22nm 0 0 609.38

Area (mm2)
45nm 160.24 32.43 73.94
32nm 80.41 16.39 37.38
22nm 38.02 7.77 17.67

Temperature = 75oC
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Table 3.8: Energy per refresh operation for 32MB eDRAM cache designs.

45nm 32nm 22nm

Energy (nJ/refresh) 0.043 0.023 0.012

Temperature = 75oC

3.2.4 Temperature

The increase in temperature negatively impacts performance and power, shown

in Table 3.9. In particular, as we have illustrated earlier in Figure 3.2, leakage is

highly affected by the temperature. As a result, when the temperature rises from

75oC to 95oC, we observe substantial increase in both the leakage and the refresh

power.

Table 3.9: Detailed characteristics of 32nm 32MB cache designs with respect to
different memory technologies and different temperatures.

Temperature SRAM STT-RAM eDRAM

Read latency (ns)
75oC 4.45 3.06 4.29
95oC 4.74 3.29 4.58

Write latency (ns)
75oC 4.45 31.77 4.29
95oC 4.74 32.32 4.58

Read energy (nJ/access)
75oC 2.10 0.95 1.74
95oC 2.11 0.96 1.75

Write energy (nJ/access)
75oC 2.21 47.43 1.79
95oC 2.23 47.44 1.80

Leakage power (mW)
75oC 2105.28 715.38 784.104
95oC 2990.99 991.72 1064.99

Refresh power (mW)
75oC 0 0 600.41
95oC 0 0 683.94
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3.3 Related Work

CACTI is an analytical model that estimates the access time, cycle time, dy-

namic power, leakage power, and area of caches. Originally based on the access time

model presented by Wada et al. [49] and the chip area model presented by Mulder

et al. [50], CACTI 1.0 [51] includes an additional array organizational parameter,

improved peripheral circuit models, a tag array model, and cycle time expressions to

the cache model. In CACTI 2.0 [52], modeling of fully-associative and multiported

caches are supported. Additionally, it is capable of estimating power consumption.

It is also able to capture the effect of technology scaling. CACTI 3.0 [53] further

improves the area and power model. It also supports fully-independent banking of

caches. In eCACTI [54], leakage power is taken into account, which enables more

accurate power estimation. Modeling of leakage power is also included in CACTI

4.0 [55]. Moreover, this version updates the basic circuit structures and device pa-

rameters to reflect advanced technologies. Rodriguez et al. [56] improved CACTI

such that pipelined caches are accurately modeled. As process technologies enter

the deep-submicron era, traditional linear scaling of devices is no longer applicable.

CACTI 5.1 [57] resolves this limitation by adopting the ITRS projected device pa-

rameters at several technology nodes (90nm, 65nm, 45nm, 32nm). Furthermore, it

provides high performance, low standby power, low operating power CMOS mod-

els, embedded DRAM models, and commodity DRAM models. The latest version,

CACTI 6.5 [12], includes advanced interconnection and wire models such that it is

capable of exploring NUCA (non-uniform cache access) and interconnect designs of
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large caches.

In addition to or based on CACTI, several memory modeling tools were de-

veloped. In particular, Tsai et al. [58] proposed 3DCacti to explore cache design

for 3D architectures. Mohen et al. [59] proposed a power model for NAND flash.

Smullen et al. [21] and Xu et al. [60] explores STT-RAM based cache by imple-

menting STT-RAM models to CACTI. Dong et al. [14] presents NVSim, a tool to

model non-volatile memories. Volelsang et al. [61] proposed a flexible DRAM power

model to analyze a wider range of DRAM architectures. Lee et al. [62] models Fin-

FET and extends CACTI to evaluate FinFET-based caches. Li et al. [63] proposed

CACTI-P, an SRAM cache model that considers advanced leakage reduction tech-

niques. Jouppi et al. [64] proposed CACTI-IO, an extension to CACTI that includes

models for the IO and PHY of the off-chip memory interface.

In this work, we obtain gain cell eDRAM circuit characteristics via HSPICE

simulation using PTM CMOS models. We then integrate gain cell eDRAM to

CACTI. In order to make fair comparisons, we modify CACTI such that the periph-

eral circuitry and SRAM cells also use the same PTM CMOS models. Furthermore,

we use NVSim to obtain the characteristics of STT-RAM subarrays, and integrate

them into CACTI. Finally, we improve the tool such that the effect of temperature

variation is accurately captured.

3.4 Summary

This chapter presents an SRAM, STT-RAM, and eDRAM cache modeling

framework based on CACTI. We describe the framework and the modifications to
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CACTI in Section 3.1. Specifically, we use HSPICE and PTM CMOS models to

obtain realistic circuit and device characteristics. We also consider the impact of

temperature. Moreover, we integrate a gain cell eDRAM model into the framework.

In Section 3.2, we use the framework to demonstrate a general design space explo-

ration. In particular, we compare large caches built with SRAM, STT-RAM, or

eDRAM, and discuss the impact of cache size, technology scaling, and temperature.

Finally, we review related works in Section 3.3.
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Chapter 4

Technology Comparison Based on Analytical Models

In the computer architecture field, architecture simulation has been the main-

stream methodology to evaluate architecture and technology tradeoffs. Some archi-

tecture simulators (e.g., full-system simulators) closely reflect real world computer

systems, but they are usually slow and exhibit non-determinism [65]. On the other

hand, although analytical models neglect many implementation details, they are

efficient and in many instances provide reasonable design guidelines. In particu-

lar, when exploring a large design space, analytical models become useful to filter

out less-optimal designs. In this chapter, we present analytical models to compare

caches built with different memory technologies and highlight the key factors that

determine the usefulness of each technology.

4.1 Pipelined Caches

Pipelining is an effective way to improve the data throughput of caches. In this

work, we present a pipeline model for sequentially accessed LLCs. A sequentially

accessed cache saves dynamic power because the data array is accessed only when

a tag is matched. Note that the model can be easily modified for parallel accessed
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caches. We also assume the cache uses the write allocate policy.

We consider a four-stage pipelined cache:

1. Tag decode, access, and comparison (tag stage): Since accessing the tag array

is usually fast, we assume decoding the tag address, reading the cells, and

comparing the tag are all contained in one stage. In some implementations,

the tag itself is also pipelined.

2. Data decode (dec stage): On a tag match (i.e., a cache hit), the data array will

be accessed by first decoding the address to select the desired cache line. The

depth of the decoder depends on the array size. For a large array partitioned

into multiple banks, the decoder consists of the pre-decoder, the bank decoder,

and the wordline (WL) decoder. If the cache access is a write, we assume data

input and de-multiplexing also happen in the decode stage.

3. Data array access (rd/wr stage): When a WL is enabled, the precharge circuit

is turned off. A differential signal is then generated on a bitline (BL) pair

based on either the cell’s content or the write driver, depending on whether

it is a read operation or a write operation. For a read operation, the sense

amplifiers (SAs) convert the differential signals to digital forms and send them

to the SA latches. After the cells are read or written, the BLs are precharged

and equalized.

4. Multiplexing and data output (out stage): If the cache access is a read, the

SA latched data is further sent to the cache output port via multiplexers.
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Figure 4.1 shows simplistic representations of four cache access scenarios: read

hit, write hit, read miss, and write miss. Note that when writing to a cache, the

data output stage is skipped. Also note that on a read miss, after fetching data

from the main memory, the fetched data is sent to the CPU/L1/L2 in parallel with

an LLC update. Finally, because we consider a write allocate LLC, on a write miss

the line is first allocated by the main memory, then occurs the write hit action.

tag dec rd out

tag

mem

tag dec wr

tag

mem

tag

Send data to CPU/L1/L2

Send data to CPU/L1/L2

(Update LLC in the background)

Read hit

Also operates data-in and de-multiplexing

(out stage skipped)

Write hit

Write miss

Read miss

wrdec

tag dec wr

Figure 4.1: Simplistic LLC access sequences.

4.2 Model Description

4.2.1 Average Memory Access Latency

We extend the classical average memory access latency (AMAL) equation pre-

sented in Hennessy and Patterson [66] to compute AMAL. It can be approximated

as

AMAL =
TMAL

#accesses
(4.1)
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where TMAL represents the total memory access latency, approximated as

TMAL = Tcache + Tmemory (4.2)

and

#accesses = #rdhit + #wrhit + #rdmiss + #wrmiss (4.3)

Tcache and Tmemory are approximated as

Tcache = {#rdhit · (Ttag + Tdec + Trd + Tout)

+ #wrhit · (Ttag + Tdec + Twr)

+ #rdmiss · Ttag

+ #wrmiss · (Ttag + Ttag + Tdec + Twr)} ·
1

1−%refresh
(4.4)

Tmemory = (#rdmiss + #wrmiss) · Tmem (4.5)

Here rdhit, rdmiss, wrhit, and wrmiss refer to read hit, read miss, write hit, and write

miss; whereas Ttag, Tdec, Trd, Twr, Tout, and Tmem refer to the time each stage (i.e.,

tag, dec, rd, wr, out, and mem stage) requires. Additionally, in Equation 4.4, we

assume normal accesses will be blocked when the cache is under refresh. This only

applies when the cache requires refresh operations, e.g., an eDRAM-based cache.

The model more or less represents the worst case because there is no notion

of parallelism in the model. For instance, if we consider out-of-order accesses or

the effect of using write buffers, AMAL is likely to become shorter. However, the
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purpose of this model is to serve as a first-order approximation such that designers

can make quick comparisons.

4.2.2 LLC Energy Consumption

We use energy per instruction (EPI ) as the metric to compare LLC energy

consumption. As opposed to the energy required to execute a single instruction, our

definition of EPI is the average amount of energy expended per instruction. This

definition is similar to the EPI representation described in Shao and Brooks [67].

EPI can be expressed as

EPI =
Etotal

#instructions
(4.6)

where the total energy (Etotal) can be broken down into the active portion

(Eactive) and the standby portion (Estandby), i.e.,

Etotal = Eactive + Estandby (4.7)

Since we are considering a sequentially accessed LLC, Eactive is approximated

as

Eactive = #rdhit · Erd + (#wrhit + #rdmiss + #wrmiss) · Ewr (4.8)

where Erd and Ewr represent the energy consumption of read and write oper-

ations. Note that when a read/write misses, the LLC would request an update from

the main memory. Consequently the main memory would insert a new line to the
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LLC, resulting in an LLC write.

The standby energy is given by

Estandby = Tsystem · (Pleak + Prefresh) (4.9)

where Tsystem stands for the system execution time, and Pleak, Prefresh stand

for leakage and refresh power, respectively.

In order to express EPI in terms of CPI (cycles per instruction) and API

(LLC accesses per instruction), we further derive Equation 4.6 as follows:

EPI =
Eactive

#instructions
+

Estandby

#instructions
(4.10)

=
API

#accesses
· Eactive + CPI · Tcycle · (Pleak + Prefresh) (4.11)

where Tcycle is the time period per clock cycle. Because CPI and API are

direct indicators of how intensive an LLC is accessed when executing a workload,

expressing EPI in terms of CPI and API allows us to relate energy usage to workload

behaviors more easily.

4.3 Sensitivity Analysis

In this section, we perform sensitivity studies that compare caches built with

SRAM, STT-RAM, and eDRAM. Specifically, we are interested in the AMAL and

EPI of different technologies, under various LLC read-write ratios, miss ratios, CPIs,

and APIs. We assume both the read miss ratio and the write miss ratio are the same
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as the total miss ratio. Table 4.1 shows the memory timing and energy properties

used in the experiments.

Table 4.1: Memory properties used in the sensitivity studies.

SRAM STT-RAM eDRAM

Ttag (cycle) 3 3 3
Tdec (cycle) 3 1 2
Trd (cycle) 1 3 2
Twr (cycle) 1 12 2
Tout (cycle) 2 1 2
Tmem (cycle) 100 100 100
%Ref 0% 0% 10%

Erd (nJ) 2 1 2
Ewr (nJ) 2 45 2
Pleak (mW) 2080 720 800
Pref (mW) 0 0 600

4.3.1 Average Memory Access Latency

Figure 4.2 compares the AMAL when using various memory technologies, un-

der different read-write ratios and miss ratios. We summarize the results as follows:

• STT-RAM has shorter read latency but longer write latency, compared to

SRAM and eDRAM. Therefore, when most of the accesses are reads and when

the miss ratio is low, STT-RAM exhibits shorter AMAL. On the other hand,

STT-RAM shows longer AMAL when there are more writes from the CPU

side or more updates from the main memory.

• The AMALs of SRAM and eDRAM decrease with increasing write ratio. This

is because the write latency is shorter than the read latency (i.e., the output

stage is skipped for writes). On the contrary, STT-RAM’s write latency is

longer than its read latency due to its high Twr. Thus, if the miss ratio is
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low, AMAL increases with increasing write ratio. If the miss ratio is high,

STT-RAM’s shorter read latency produces little benefit because a read miss

requires a write operation (an insertion) from the main memory.

• When the miss ratio increases, Tmem becomes the dominating factor.
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Figure 4.2: AMAL with respect to (i) various memory technologies; (ii) various
read-write ratios; (iii) various miss ratios. Note that the latency range (Y-axis) in
each of the figures is different.

4.3.2 Energy per Instruction

In addition to read-write ratio and miss ratio, CPI and API are two key

factors that affect the EPI of an LLC. We compare EPI with respect to different

memory technologies, read-write ratios, miss ratios, APIs, and CPIs, as illustrated

in Figure 4.3, 4.4, 4.5, 4.6, and 4.7. The results are summarized as follows:

• Though eDRAM consumes refresh power, due to its lower leakage compared

to SRAM, the EPI of the eDRAM LLC is consistently lower than that of the

SRAM LLC.

• A high write ratio often results in higher STT-RAM EPI when compared to

the EPIs of SRAM and eDRAM. For instance, when the CPI is 1 (Figure 4.5),

49



API is 0.05, and the miss ratio is 0%, STT-RAM has 58% lower EPI than

SRAM if the write ratio is 0 (i.e., all reads), but consumes 109% more EPI

if the write ratio is 1 (i.e., all writes). The write ratio crossing point in this

example is 0.37.

• A high miss ratio is also likely to result in higher STT-RAM EPI. Also con-

sidering the case where CPI is 1, API is 0.05, if all the requests are reads,

STT-RAM has smaller EPI compared to SRAM if the miss ratio is 25% or

lower. However, if the miss ratio is 50% or higher, STT-RAM consumes more

EPI.

• When the LLC accesses per cycle is low, STT-RAM in general dissipates the

lowest power. Note that the LLC accesses per cycle can be expressed in terms

of API
CPI

. Using an extreme example, when CPI is 10 and API is 0.01, STT-RAM

is at all times more energy-efficient than SRAM and eDRAM.

4.4 Summary

This chapter presents simplistic analytical models for comparing the AMAL

and the EPI of LLCs built with different memory technologies. The models provide

a first-order design guideline, which enable cache designers to quickly evaluate dif-

ferent technologies. Moreover, based on the models, we conduct sensitivity analysis

and show that read-write ratio, miss ratio, API, and CPI are all important factors

that determine the usefulness of each memory technology.
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Figure 4.3: EPI (CPI = 0.1) with respect to (i) various memory technologies; (ii)
various read-write ratios; (iii) various miss ratios; (iv) various API. Note that the
latency range (Y-axis) in each of the figures is different.
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Figure 4.4: EPI (CPI = 0.5) with respect to (i) various memory technologies; (ii)
various read-write ratios; (iii) various miss ratios; (iv) various API. Note that the
latency range (Y-axis) in each of the figures is different.
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Figure 4.5: EPI (CPI = 1) with respect to (i) various memory technologies; (ii)
various read-write ratios; (iii) various miss ratios; (iv) various API. Note that the
latency range (Y-axis) in each of the figures is different.
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Figure 4.6: EPI (CPI = 2) with respect to (i) various memory technologies; (ii)
various read-write ratios; (iii) various miss ratios; (iv) various API. Note that the
latency range (Y-axis) in each of the figures is different.
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Figure 4.7: EPI (CPI = 10) with respect to (i) various memory technologies; (ii)
various read-write ratios; (iii) various miss ratios; (iv) various API. Note that the
latency range (Y-axis) in each of the figures is different.
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Chapter 5

Low Power Techniques for Caches

In order to make useful comparisons between energy-efficient L3Cs built with

different technologies, we propose to integrate low power techniques either at the

device, circuit level, or at the architecture level. This chapter presents the following:

• We review and summarize low power techniques for SRAM caches.

• We review summarize optimization techniques for improving STT-RAM energy-

efficiency.

• We discuss the impact of refresh on eDRAM LLC power consumption, with

respect to cache size, technology node, process variations, and temperature.

• We classify eDRAM refresh-reduction schemes into two categories and show

that the use of dead-line prediction effectively eliminates unnecessary refreshes.

5.1 Low Power Techniques for SRAM Caches

As CMOS technology scales down to the sub-micron/nanometer region, leak-

age becomes the dominant component of power dissipation. Many low power tech-

niques have been proposed to reduce the leakage power of SRAM caches. We review
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the commonly known methods as follows:

5.1.1 Device and Circuit Techniques

Leakage reduction circuit techniques either attempt to decrease the supply

voltage (VDD) or to increase the threshold voltage (VTH). For instance, one of the

most widely used low power method is to equip SRAMs with sleep mode capability

by applying power gating [68]. Power gating not only decreases the cross voltage

of SRAM cells, but also increases the VTH of the pull-down/pull-up transistors.

Another popular method is assigning different VTH to each transistor. For instance,

Amelifard et al. [69] applied different VTH and TOX (oxide thickness) for each

SRAM cell to reduce leakage without degrading the performance. Dynamic VTH

control via body biasing also reduces leakage effectively. For instance, Kim et al. [70]

presented a low leakage SRAM cache using forward body biasing.

The most effective power reduction technique is voltage scaling. Applying a

lower supply voltage reduces both the active power and the standby power. For

instance, dynamic voltage scaling reduces leakage power with minimal performance

overhead. Another example is near-threshold computing, which refers to operating

the circuits at ultra-low voltage (VDD close to VTH). Near-threshold computing

reduces energy on the order of 10X but introduces degraded performance and in-

creased functional failure [71]. For example, Pawloski et al. [72] and Fick et al. [73]

demonstrate near-threshold processors that have extremely low energy consumption.
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5.1.2 Architecture Techniques

Architecture techniques for leakage power reduction attempt to identify the

unused parts of the cache and turn off these parts or put them in low power mode.

Albonesi [74] proposed selective cache ways, which disables a subset of the ways in a

set associative cache when less cache capacity is needed. Kaxiras et al. [75] proposed

cache decay, which uses a time-based dead-line prediction mechanism to turn off

cache lines that hold data not likely to be reused. Flautner et al. [76] proposed

drowsy cache, which periodically put cache lines into a low power yet state-preserving

mode. They show significant leakage power reduction with negligible performance

loss.

5.2 Low Power Techniques for STT-RAM Caches

Due to the scalability of STT-RAM, it is possible to implement LLCs with

higher density, although unlike SRAM or eDRAM, STT-RAM is still under devel-

opment. Since the STT-RAM write operation requires high energy, most low power

techniques for STT-RAM caches focus on write energy reduction. We review several

methods as follows:

5.2.1 Device and Circuit Techniques

Many studies focused on optimizing the STT-RAM cell to minimize the write

latency and the write energy. For instance, Xu et al. [60] showed that one can

sacrifice read latency for better write latency by tuning the access transistor. They
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further proposed the dual-write speed method that reduces STT-RAM cache energy

consumption. Smullen et al. [21] proposed device optimization methods to relax the

MTJ non-volatility for shorter write time and lower write current. In other words,

they proposed a STT-RAM cache that requires low write energy but needs to be

refreshed (scrubbed) periodically. Nigam et al. [77] proposed using low saturation

magnetization ferromagnetic material to reduce the write energy. Additionally, Zhou

et al. [78] proposed a circuit technique, the early write termination scheme, that

reduces the number of write operations.

5.2.2 Architecture Techniques

Since SRAM has low write power while STT-RAM has negligible leakage, re-

searchers have suggested building hybrid caches that have the SRAM low write

power and the STT-RAM low leakage properties. Specifically, Wu et al. [79] pro-

posed hybrid 2D and 3D cache implementations based on SRAM, eDRAM, STT-

RAM and PCM. Jadidi et al. [80] proposed a hybrid SRAM, STT-RAM cache

with write intensive block detection that remaps cache lines to optimize power con-

sumption. Chen et al. [81] proposed a hybrid cache with low power modes that is

dynamically reconfigured to enable better power efficiency.

Based on relaxed non-volatility STT-RAMs, Sun et al. [82] proposed building

STT-RAM caches that have multiple retention level. They also proposed a refresh

scheme and a data migration scheme that optimize the power and performance of

the entire CPU cache hierarchy. Jog et al. [23] proposed cache revive, which uses

a simple yet efficient refresh scheme for volatile STT-RAM-based caches. It should

59



be noted that the retention failure in STT-RAM is a stochastic process [24]. This

means unlike DRAM, where its capacitor gradually loses electrical charge, an STT-

RAM bit-flip happens instantaneously. Consequently, using DRAM-style refresh

will not provide any reliability for STT-RAM, as it will only read and write back

erroneous value.

5.3 Low Power Techniques for eDRAM Caches

We start this section by highlighting the impact of refresh on eDRAM L3C

energy consumption. We then review refresh management techniques. Finally, we

present a refresh reduction technique based on a practical, low-cost dynamic dead-

line prediction scheme. We use MARSS [15], and workloads from PARSEC [16] and

NPB [17] to conduct the experiments (see Chapter 6 for detail). The eDRAM power

and performance parameters are based on the gain cell eDRAM CACTI results

presented in Chapter 3.

5.3.1 The Impact of Refresh

• Cache size. The dynamic energy, leakage power, and the refresh power of

an LLC increase with increasing cache size. In particular, since the retention

time is independent of the cache organization, more refresh operations are

required for a higher capacity cache within the same refresh period. As a result,

as the number of cache lines increases, refresh power becomes the primary

source of LLC power dissipation. Our results indicate that on average, refresh

contributes to 31% of the power dissipation for a 16MB LLC, whereas for a
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64MB LLC, the percentage refresh power increases to 52%.

• Technology scaling. As technology scales down, caches become smaller,

faster, and consume less active energy. For instance, a 32nm cache is around

50% smaller than a 45nm cache, while a 22nm cache is also around 50% smaller

than a 32nm cache. However, both subthreshold and gate leakages increase

significantly with decreasing feature size. The increasing leakage coupled with

smaller cell storage capacitance results in shorter retention time. Correspond-

ingly, the LLC leakage and refresh power become worse in smaller technolo-

gies. Based on our simulation results, as the technology node decreases from

45nm to 22nm, the percentage refresh power relative to the total LLC power

increases from 33% to 48%.

• Process variations. Process variation (PV) affects the retention time of

a DRAM cell, whereas the refresh rate is determined by the weakest cells

(i.e., cells that have the shortest data-retention time). For instance, when

PV is small (σV TH/µV TH = 10%, σTOX/µTOX = 5%), the retention time is

around 40us; when PV is medium (σV TH/µV TH = 14%, σTOX/µTOX = 7%),

the retention time decreases to 20us; finally, when PV is large (σV TH/µV TH

= 10%, σTOX/µTOX = 9%), the retention time becomes 10us. Therefore, as

PV becomes more severe, a faster refresh rate is required, resulting in higher

refresh power. For example, an eDRAM cache under medium PV and large

PV dissipates 2X and 4X higher refresh power, respectively, when compared

to an eDRAM under small PV.
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• Temperature. High temperature results in higher leakage, and therefore

shorter eDRAM data-retention time. For instance, at 75oC, the retention time

of our eDRAM model is 20us, whereas at 95oC, the retention time decreases to

18us. Subsequently, at 95oC the eDRAM cache requires 11.5% faster refresh

rate, which also results in 11.5% higher refresh power.

5.3.2 Refresh Management

Refresh is required for eDRAM-based caches. Unfortunately, this creates neg-

ative impacts on both performance and power. For instance, the cache bandwidth

is degraded by refresh activity because normal cache accesses are stalled while the

cache is being refreshed. This problem can be alleviated by organizing a cache into

multiple sub-banks, allowing refresh operations and normal cache accesses to happen

concurrently [83].

There are several methods to mitigate refresh penalties. They can be classified

into two categories:

1. Reducing the refresh rate by exploiting process and temperature

variations. Process and temperature variations affect the retention time of

a DRAM cell. Traditionally, the refresh rate is determined by the weakest

DRAM cells, i.e., those cells that have the shortest data-retention time. How-

ever, conservatively performing refresh operations based on the shortest re-

tention time introduces significant refresh overhead. One promising approach

for reducing refresh is to utilize retention-time variation and to decrease the

refresh rates for blocks or rows that exhibit longer retention time [84–87]. This
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approach requires an initial time period to characterize the retention time of

each individual memory block and store the retention time information in a

table.

Another promising approach is to utilize error-correcting codes (ECC) to dy-

namically detect and correct bits that fail [88–90]. This approach reduces the

refresh rate by disassociating failure rate from single effects of the weakest

cells.

2. Reducing the number of refresh operations by exploiting memory-

access behaviors. Reohr [91] presents several approaches for refreshing

eDRAM-based caches, including periodic refresh, line-level refresh based on

time stamps, and no-refresh. For instance, Liang et al. [92] showed that by

adopting the line-level refresh or the no-refresh approaches with intelligent

cache-replacement policies, 3T1D (three transistors one diode) eDRAM be-

comes a potential substitute for SRAM in the context of L1 data caches.

The periodic refresh policy does a sweep of the cache such that all cache lines

are refreshed periodically, similar to the refresh mechanism used in regular

DRAM main memories. It introduces the least logic and storage overhead but

provides no opportunity to reduce the number of refresh operations.

The line-level refresh policy utilizes line-level counters to track the refresh

status of each cache line. This policy is analogous to Smart Refresh [93], a

refresh-management framework for DRAM main memories. When a line is

refreshed, its counter resets to zero. There are two types of refreshes: the
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implicit refresh and the explicit refresh. An implicit refresh happens when

the line is read, written, or loaded; an explicit refresh happens when the line-

level counter signals a refresh to the data array. Therefore, if two accesses to

the same cache line occur within a refresh period, the cache line is implicitly

refreshed and no explicit refresh is needed.

The no-refresh policy never refreshes the cache lines. Similar to the line-level

refresh implementation, each cache line has a counter that tracks the time

after an implicit refresh. When the counter reaches the retention time, the

line is marked as invalid. As a result, the no-refresh policy removes refresh

power completely but potentially introduces more cache misses.

Our refresh reduction method falls into the second category: we attempt

to identify dead lines using a low-cost dynamic dead-line prediction scheme and,

thereby, to eliminate refreshes to these lines. To our knowledge, this is the first

work that uses dead-line prediction to reduce the refresh power of eDRAM-based

caches. Our design can also be applied on top of variable retention time architectures

or error-correcting systems.

5.3.3 Dead-Line Prediction vs. Refresh

Refresh is the main source of eDRAM-based L3C power dissipation [89]. Pre-

vious studies have shown the effectiveness of using dead-line prediction to reduce

the leakage power of SRAM-based L1 or L2 caches. However, to the best of our

knowledge, no previous study has demonstrated dead-line prediction in the context

64



of eDRAM caches. This work proposes a refresh-reduction method for eDRAM L3Cs

using a low-cost dynamic dead-line prediction scheme. If a cache line is predicted

dead, refresh to the line is skipped, thereby minimizing refresh energy. Additionally,

using dead-line prediction to reduce standby power is a more natural fit for eDRAM

than SRAM. For instance, unlike SRAM-based cache lines, re-enabling eDRAM-

based lines does not require wake-up time. Moreover, since hardware such as a

ring oscillator and refresh pulse generator are already part of the eDRAM refresh

controller, we can reuse them to support time-based dead-line predictors.

To demonstrate the potential refresh power savings that one can achieve by

eliminating refreshes to dead lines, we characterize the average dead time of a cache

line in a 32MB LLC. Based on the workloads considered, on average a cache line is

dead 59% of the time, indicating that significant refresh power can be saved without

degrading performance.

5.3.3.1 Cache Time Durations

Dead-line prediction can be used to improve cache hit rate [94] or to reduce

cache standby power [75]. It uses the concept of cache-time durations, which are

best expressed using the generational behavior of cache lines. Each generation be-

gins with a data insertion and ends with data eviction. A cache-line generation is

partitioned into two parts. The first part, live time, is the time where the line is

actively accessed. The second part, dead time, is the time where the line is await-

ing eviction. Additionally, the access interval is the time between two successful

line references, while the reload interval is the time between two generations of the
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same line. An example of the generational behavior of a cache line is depicted in

Figure 5.1.

A

Load A

A A A

Access interval

B

Evict A

Load B

B A

Evict B

Reload A

Live time Dead time

Reload interval

Time

Figure 5.1: Generational behavior of a cache line. The generation of A© begins when
it is loaded and ends when it is evicted.

5.3.3.2 Dead Time Characterization

In this section, we characterize the average dead time ratio of each workload

using MARSS [15], a cycle-accurate full-system simulator (see Chapter 6 for more

detail). The results are shown in Figure 5.2 and Figure 5.3. Dead time ratio is

defined as the ratio of the average dead time to the system execution time, i.e.,

Dead time ratio =
Average dead time

System execution time
(5.1)

It is mainly affected by two factors:

• Memory footprint. If the memory footprint is smaller than the LLC size,

a portion of the LLC lines is unused, which means that these unused lines

are always dead. The memory footprint of each workload and input set is

presented in Appendix A.
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• LLC miss ratio or MPKI. If the LLC frequently misses, cache lines are

often awaiting for eviction, which means that they have long dead times. The

LLC miss ratio and MPKI (misses per kilo instruction) of each workload and

input set is presented in Appendix A.

5.3.3.3 Dead-Line Prediction

There are several state-of-the-art approaches that use dead-line prediction to

save the leakage power of L1 or L2 SRAM caches. For instance, Kaxiras et al. [75]

proposed two methods to implement time-based leakage control (Cache Decay). The

first method uses a fixed decay interval, which only requires two extra bits for each

cache line to track the decay interval. The decay interval is the elapsed time in which

a cache line has not been accessed. However, since different applications may have

different decay intervals, this method does not always result in optimal standby

power reduction. The second method improves upon the first one by adaptively

finding the optimal decay interval for each of the cache lines. It requires six extra

bits for each line: two bits used as a per-line counter to identify the best decay

interval, and four bits to represent the length of the interval.

One downside is that using counters to forecast decay intervals potentially

results in more false predictions [95]. For example, if the period between two con-

secutive hits is longer than the counters threshold, dead-line prediction is falsely

considered successful. Consequently, instead of prolonging the decay interval to cor-

rect the false prediction, the interval is decreased, making the next prediction also

possibly incorrect.
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Figure 5.2: Average dead time ratio vs. LLC size. (a) PARSEC simsmall. (b)
PARSEC simmedium. (c) PARSEC simlarge.
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Figure 5.3: Average dead time ratio vs. LLC size. (a) NPB class A. (b) NPB class
B. (c) NPB class C.
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Zhou et al. [96] proposed Adaptive Mode Control, in which a global register

indicates the optimal decay interval for the entire cache. It introduces only a small

storage and power overhead, but it also results in non-optimal cache performance

and power because not every cache line has the same decay interval.

Abella et al. [95] proposed IATAC, a smart predictor to turn off L2 cache

lines, which uses global predictors in addition to local predictors to improve the

prediction accuracy. However, this scheme requires non-negligible overhead, making

it less practical for large caches. For example, a 32MB cache requires on the order

of 10% storage overhead.

In addition to time-based dead-line predictors, Lai et al. [97] proposed a trace-

based dead-line predictor for L1 data caches, Khan et al. [98] proposed sampling

dead-line prediction for LLCs. They demonstrate that by using dead-line prediction,

prefetching can be performed more effectively, hence improving cache hit ratio.

Though a number of dead-line predictors are applicable to eDRAM L3C refresh

reduction, our design inherits the concept from time-based dead-line predictors. It is

easy to implement and introduces insignificant logic and storage overhead. We show

that the proposed implementation effectively reduces eDRAM L3C refresh power.

5.3.3.4 Proposed Implementation

Figure 5.4 shows the proposed eDRAM cache architecture with dynamic dead-

line prediction. It consists of the eDRAM refresh manager, the dynamic dead-line

prediction utility, the SRAM tag array, the eDRAM data array, and other logic and

storage necessary for caches. The temperature sensor determines the frequency of
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the ring oscillator: higher temperature normally results in higher frequency. This

frequency then determines the rate of the refresh pulse. Additionally, each line has

its time-based dead-line predictor and disable bit. The disable bit is an indicator

of whether the eDRAM line holds valid data or stale data. For instance, if a line is

marked as dead, its content becomes stale after a retention time period has elapsed

because no refreshes were applied. Each set also has a prediction indicator, which

dynamically controls the dead-line predictors based on the history of prediction.
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Figure 5.4: Proposed eDRAM cache architecture with dynamic dead-line prediction.

Under normal conditions, an eDRAM cache line is periodically refreshed. How-

ever, if the associated dead-line predictor turns off the line, any refresh signal to the

line is bypassed, disabling refresh. Figure 5.5(a) illustrates the state machine of the

dynamic prediction indicator. A false prediction (F) indicates that the previous des-

ignated decay interval was too short, and a longer interval should be utilized instead
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to avoid unwanted cache misses. On the other hand, a true prediction (T) indicates

that a reasonable decay interval has been reached. Finally, if many false predictions

are detected, the prediction indicator switches off the dead-line predictors to prevent

more undesired cache misses.

I0 I1 I2 I3 I4 I5 I6

reset

F

T

F

T

F

T

F

T

F

T

F

T

(a)

S0 S7 S6 S5 S4 S3
TIME TIME TIME TIME

S1 S2

access

access

access

access

access

access

TIME

retention_time
I0 && TIME

I5 && TIME

I4 && TIME

I3 && TIME

I2 && TIME

I1 && TIME
S0: LIVE

S1: DEAD

S2: DISABLE

S3~S7: INTERMEDIATE

(Depend on the indicator 

states I1~I5)

(b)

Figure 5.5: Proposed dynamic dead-line prediction implementation. It is comprised
of the dynamic prediction indicator and the dead-line predictor. The dynamic pre-
diction indicator determines the decay interval of the dead-line predictor. (a) State
machine of the dynamic prediction indicator. When the indicator enters state I6,
the associated dead-line predictors are turned off to prevent more undesired cache
misses. (b) State machine of the dead-line predictor. In our implementation, TIME
= 512 * retention time.

Figure 5.5(b) shows the state machine of the dead-line predictor. Anytime a

line hit or a line insertion happens, the cache line returns to the S0 state, indicating

that the line is alive. When a predetermined time period (TIME) has elapsed,
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the line transitions to one of the S1, S3 ∼ S7 states, depending on the dynamic

prediction indicator. For example, if the dynamic prediction indicator is in the

I1 state, then the dead-line predictor will transition from S0 to S3 after TIME

has elapsed. After another TIME duration, the dead-line predictor will enter S1,

meaning that the line is predicted as dead. In other words, the line is predicted as

dead if it has not been accessed for two TIME durations. Additionally, since no

refresh is applied to a dead line, the eDRAM cache line loses its content when its

retention time expires. In this scenario, the line is written back to the main memory

if it is dirty. The state of the dead-line predictor also transitions from S1 to S2.

S2 represents a disabled line, meaning that any access to the line results in a cache

miss.

The proposed dynamic dead-line prediction scheme requires four additional

bits per cache line (one disable bit, three predictor bits), and three additional indi-

cator bits per cache set. For a 32MB, 16-way cache that uses 64-byte blocks, the

area overhead of the logic and storage is less than 5%, and the power overhead is

less than 2%. We consider these overheads to be reasonable tradeoffs.

5.3.3.5 Refresh Algorithm Evaluation

We compare the system execution time and eDRAM LLC energy breakdown

when using various refresh algorithms, including periodic refresh, line-level refresh

(Smart Refresh), no-refresh, and the proposed refresh mechanism based on dead-

line prediction. The results are presented in Figure 5.7, 5.8, 5.9, and 5.10. We

summarize the results as follows:
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• In contrast to utilizing line-level refresh for L1 caches or Smart Refresh for

commodity DRAM main memories, applying line-level refresh to LLCs results

in slightly higher energy usage compared to the baseline periodic refresh. This

is because line-level refresh only improves refresh under the condition that

the retention time of each line is much longer than the line access interval.

However, the retention time is oftentimes shorter than the line access interval,

making the line-level refresh policy unlikely to reduce the number of refresh

operations. Line-level refresh also shortens the refresh period to accommodate

the worst-case scenario in which all lines in a subarray reach the refresh thresh-

old simultaneously. As a result, since the LLC is not as intensively accessed

as the L1 caches, and the data-retention time of eDRAMs is much shorter

than the retention time of commodity DRAMs, line-level refresh introduces

no benefit to LLC refresh reduction.

• Similar to line-level refresh, no-refresh has little opportunity to take advantage

of implicit refresh. Consequently, most cache lines become invalid before they

are re-referenced. Therefore, although no-refresh results in the least LLC

energy consumption, it degrades the system performance significantly (19%

on average). It also results in more system energy consumption due to longer

execution time and higher main memory activity for servicing the additional

cache misses.

• Our proposed refresh scheme reduces refresh power significantly for most of the

workloads considered. On average, the proposed scheme reduces the refresh
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energy by 42% and reduces the LLC energy by 18%, with 1.1% longer execution

time compared to periodic refresh. Figure 5.6 summarizes the average system

performance and LLC energy of each refresh algorithm.
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Figure 5.6: Pareto frontier analysis of different refresh algorithms.

5.4 Summary

This chapter summarizes low power techniques for SRAM, STT-RAM and

eDRAM caches. In particular, we illustrate the significance of refresh on eDRAM

L3C energy consumption, and categorize eDRAM refresh-reduction schemes. At

the end of this chapter, we demonstrate a refresh reduction technique based on

a practical low-cost dynamic dead-line prediction scheme. The refresh reduction

technique is compared against prior arts, and is shown to reduce eDRAM LLC

refresh energy by 42% with minimal performance and area overhead.
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Figure 5.7: Performance evaluation for different refresh algorithms. (a) PARSEC
simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge. The proposed refresh
algorithm introduces negligible performance overhead.
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Figure 5.8: Performance evaluation for different refresh algorithms. (a) NPB class
A. (b) NPB class B. (c) NPB class C.
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Figure 5.9: Energy evaluation for different refresh algorithms. (a) PARSEC sims-
mall. (b) PARSEC simmedium. (c) PARSEC simlarge. The proposed refresh algo-
rithm effectively reduces the refresh energy and the LLC energy.
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Figure 5.10: Energy evaluation for different refresh algorithms. (a) NPB class A.
(b) NPB class B. (c) NPB class C.
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Chapter 6

Technology Comparison for Large Last-Level Caches Based

on Full-System Simulation

In this chapter, we evaluate L3Cs built with SRAM, STT-RAM, and eDRAM.

The evaluation includes the study of system performance, LLC energy breakdown

(where the length of execution time plays a role), memory hierarchy energy break-

down, and die cost. We also explore the impact of LLC size, technology scaling,

processor frequency, and temperature.

6.1 Methodology

6.1.1 Low Power L3C Implementations

Before comparing the three technologies, we optimize each for improved energy

consumption. The low power techniques that we utilize are described as follows.

6.1.1.1 SRAM L3C

The low power SRAM L3C is optimized for leakage power at various levels. At

the device level, we use a low-leakage CMOS process to implement the SRAM cells.

At the circuit level, we apply power gating at the line granularity. Finally, we use

80



the proposed dynamic dead-line prediction at the architecture level: a cache line is

put into sleep mode (low power mode) via power gating if it is predicted dead. Note

that it is also possible to reduce leakage by either reducing VDD or increasing VTH.

However, reducing VDD usually results in higher failure rate [99], and based on our

circuit simulations, increasing VTH has very little effect on low-leakage transistors.

The tradeoffs associated with applying the low leakage techniques are as fol-

lows: (i) using low-leakage CMOS degrades SRAM access performance; and (ii) a

wake-up period is required when switching a cache line from sleep mode back to

normal mode. To sum up, the low power SRAM implementation reduces leakage

power, but introduces performance overhead.

6.1.1.2 STT-RAM L3C

The low power STT-RAM L3C is optimized for write energy using the STT-

RAM device optimization methodology presented in [21]. As described in Chapter 5,

we can reduce the write energy by sacrificing the STT-RAM’s data-retention time.

Based on the average live time of a cache line in a 32MB LLC, we set the STT-

RAM retention time to 1 second and further reduce the write energy according to

this target retention time [23]. We did not consider STT-RAM L3Cs that further

reduces retention time to obtain even lower write energy consumption, because these

STT-RAMs require additional buffers [23] and scrubbing mechanisms to retain cache

reliability. In short, the low power STT-RAM implementation reduces write time

and write energy, but also decreases reliability.
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6.1.1.3 eDRAM L3C

The low power eDRAM L3C is optimized for refresh power using our proposed

refresh reduction method: if a cache line is predicted dead, its refresh signals are

skipped to save refresh power, as described in Chapter 5. In sum, the low power

eDRAM implementation reduces refresh power, but potentially degrades system

performance.

6.1.2 Baseline Configuration

Our study uses MARSS [15], a full-system simulator of multi-core x86 CPUs.

MARSS is based on QEMU [100], a dynamic binary-translation system for emulating

processor architectures, and PTLsim [101], a cycle-accurate x86 microarchitecture

simulator. QEMU also emulates IO devices and chipsets, allowing it to boot unmodi-

fied operating systems (e.g., Linux). When simulating a program, MARSS switches

from emulation mode to detailed simulation mode once the region of interest is

reached.

We integrate a refresh controller into MARSS and augment the cache models

with the necessary counters and statistical utilities to support the low power tech-

niques described in Chapter 5. In addition to the parameterized cache access time,

we expand MARSS with parameterized cache cycle time and refresh period. We

also modify MARSS to support asymmetric cache read, write, and tag latencies.

This property is required to evaluate STT-RAM caches accurately. A summary of

the simulation infrastructure can be found in Stevens et al. [102].

82



The baseline configuration is an 8-core, out-of-order system that operates at

2GHz, with L1 and L2 private caches using the MESI coherence protocol, and a

32MB shared last-level L3 cache. The L1 caches are implemented using multi-port

(2-read/2-write) high performance SRAMs, while the L2 caches are built with single-

port high performance SRAMs. A pseudo-LRU replacement policy [103] is used for

the caches. Note that cache prefetching is not enabled in the simulator. Also note

that the queue that contains pending requests for the L3 cache has 128 entries. A

new request will only be taken if there is an empty entry in the queue; the L3 cache

will respond to the requests as soon as possible.

Additionally, DRAMSim2 [104], a cycle-accurate DRAM simulator, is utilized

for the main memory model, integrated with MARSS. The 8GB main memory is

configured as 1 channel, 4 ranks per channel, and 8 banks per rank, using Micron’s

DDR3 2Gb device parameters. Table 6.1 summarizes our system configuration.

Table 6.1: Baseline system configuration.

Processor 8-core, 2 GHz, out-of-order, 4-wide issue width

L1I (private) 32 KB, 8-way set associative, 64 B line size, 1 bank, MESI cache
L1D (private) 32 KB, 8-way set associative, 64 B line size, 1 bank, MESI cache
L2 (private) 256 KB, 8-way set associative, 64 B line size, 1 bank, MESI cache
L3 (shared) 32 MB, 16-way set associative, 64 B line size, 16 banks, write-back cache
Main memory 8 GB, 1 channel, 4 ranks/channel, 8 banks/rank

The power and performance parameters for the caches are extracted from our

enhanced CACTI model (Chapter 3). We also use HSPICE simulation based on the

PTM CMOS models to calculate the power of the additional storage and logic. As

a case study, we evaluate a high-capacity gain cell eDRAM LLC against SRAM and

STT-RAM equivalents (see Table 6.2). The high-capacity cache is a 32nm, 32MB,
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16-way cache that is partitioned into 16 banks and uses 64-byte blocks. Additionally,

the cache tag and data are sequentially accessed (i.e., data array access is skipped

on a tag mismatch). By skipping the data array access on a tag mismatch, a

sequentially accessed cache saves dynamic power. The cache is also pipelined such

that it exhibits a reasonable cycle time.

Also in the context of the LLC, for the peripheral and global circuitry, high

performance CMOS transistors are utilized. Low leakage SRAM cells are used for the

data array of the SRAM LLC and the tag arrays of the SRAM, STT-RAM, eDRAM

LLCs. Unlike storage-class STT-RAM implementations that have retention times

more than 10 years, the STT-RAM device presented in Table 6.2 has only 1 second

retention time, which requires lower write current.

Table 6.2: Performance parameters of low power 32nm 32MB LLCs built with
various memory technologies.

SRAM STT-RAM Gain cell eDRAM

Read latency 4.45 ns 3.06 ns 4.29 ns
Write latency 4.45 ns 25.45 ns 4.29 ns
Retention time - 1 s 20 us
Read energy 2.10 nJ/access 0.94 nJ/access 1.74 nJ/access
Write energy 2.21 nJ/access 20.25 nJ/access 1.79 nJ/access
Leakage power 131.58 mW/bank 45.28 mW/bank 49.01 mW/bank
Refresh power 0 mW 0 mW 600.41 mW
Area 80.41 mm2 16.39 mm2 37.38 mm2

Temperature = 75oC

6.1.3 Workloads

We use multi-threaded benchmarks from the PARSEC 2.1 benchmark suite

[16] and the NAS parallel benchmark suite (NPB 3.3.1) [17] to evaluate the sys-

tem. The multi-threaded workloads are configured as single-process, eight-thread
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workloads. We use the input sets simsmall, simmedium, simlarge for the PARSEC

benchmarks, and class A, class B, class C for the NPB benchmarks. A summary

of the workload characteristics are presented in Table 6.3 and Table 6.4 (see Ap-

pendix A for more detail). The workload characteristics are useful for analyzing and

understanding the simulation results. Note that we omit the other workloads in the

benchmark suits (there are in total 13 benchmarks in PARSEC, and 11 benchmarks

in NPB), because either they do not execute on the simulator, or the simulation

results exhibit large variations. The characterizations are conducted base on the

default baseline configuration. All workloads run on top of Ubuntu 9.04 (Linux

2.6.31), executing 2.4 billion instructions in detailed simulation mode, starting at

the region of interest.

6.2 Results and Analysis

6.2.1 Low Power Implementation

6.2.1.1 System Performance

Figure 6.2 and Figure 6.3 show the normalized system execution time with

respect to LLCs based on SRAM, STT-RAM, and eDRAM. For each memory tech-

nology, we include the results before power-optimization and the results after ap-

plying low power techniques. For instance, ‘regular’ SRAM uses high performance

transistors to implement the entire cache with no power gating; ‘regular’ STT-RAM

uses storage-class STT-RAM technology, which has long retention time but requires

high write energy; and ‘regular’ eDRAM uses the conventional periodic refresh pol-
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Table 6.3: Workload characteristics.
MPKI: misses per kilo instructions.
APKC: average LLC accesses per kilo cycles.

Benchmark suite Benchmark Input LLC footprint (MB) miss ratio MPKI APKC

PARSEC

bodytrack
simsmall 6.14 10.64% 0.124 8.159
simmedium 9.33 9.33% 0.064 6.970
simlarge 3.18 2.64% 0.022 8.538

canneal
simsmall 26.32 7.48% 1.612 76.412
simmedium 53.05 10.34% 2.395 118.510
simlarge 102.75 23.79% 5.944 123.353

facesim
simsmall 144.15 65.14% 1.339 43.771
simmedium 144.81 64.96% 1.345 44.036
simlarge 266.03 79.61% 2.461 61.436

freqmine
simsmall 38.89 17.11% 0.280 3.142
simmedium 74.44 44.91% 0.833 3.855
simlarge 69.99 78.25% 0.480 1.083

NPB

bt
class A 43.54 21.52% 0.942 57.269
class B 173.02 60.65% 5.173 101.792
class C 686.94 75.53% 12.397 141.618

cg
class A 21.98 0.66% 0.150 141.314
class B 160.52 23.20% 19.744 175.489
class C 420.64 18.92% 20.165 169.799

ft
class A 324.11 29.56% 3.897 159.469
class B 1287.27 50.72% 10.287 154.561
class C 5072.41 99.74% 34.667 147.307

is
class A 66.39 82.56% 7.893 108.203
class B 264.76 92.54% 8.674 106.742
class C 863.62 91.66% 8.337 106.770
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Table 6.4: LLC access types breakdown.
Read: read request sent from L2.
Write: write request sent from L2 (asking L3 for a block allocation).
Update: write-back from L2 (updating L3).
Insert: insertion from the main memory.
Write-back: write-back from L3 to the main memory.

Benchmark suite Benchmark Input %read %write %update %insert %write-back

PARSEC

bodytrack
simsmall 52.47% 17.32% 22.89% 7.31% 0.00%
simmedium 48.46% 18.47% 26.74% 6.33% 0.00%
simlarge 73.08% 7.78% 17.05% 2.10% 0.00%

canneal
simsmall 67.05% 0.18% 27.72% 5.03% 0.01%
simmedium 66.13% 0.10% 26.24% 6.45% 1.09%
simlarge 58.95% 0.07% 22.22% 12.67% 6.08%

facesim
simsmall 8.61% 25.61% 27.80% 22.27% 15.72%
simmedium 8.80% 25.53% 27.72% 22.27% 15.69%
simlarge 11.56% 21.42% 24.07% 25.57% 17.38%

freqmine
simsmall 41.53% 21.97% 25.03% 10.81% 0.67%
simmedium 25.80% 20.39% 23.51% 20.65% 9.66%
simlarge 22.08% 17.09% 22.98% 30.56% 7.30%

NPB

bt
class A 57.36% 4.47% 20.08% 13.31% 4.78%
class B 41.64% 4.41% 15.45% 27.94% 10.57%
class C 34.58% 6.02% 16.79% 30.74% 11.86%

cg
class A 96.89% 0.46% 2.01% 0.65% 0.00%
class B 80.78% 0.09% 0.29% 18.63% 0.22%
class C 83.76% 0.07% 0.22% 15.81% 0.15%

ft
class A 22.33% 23.16% 30.19% 13.29% 11.03%
class B 20.33% 18.15% 26.92% 19.14% 15.45%
class C 17.41% 11.95% 22.66% 26.76% 21.22%

is
class A 30.61% 11.48% 13.46% 34.69% 9.76%
class B 30.15% 10.93% 11.82% 37.95% 9.15%
class C 28.04% 12.28% 12.70% 36.84% 10.14%
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icy. On the other hand, low power SRAM, STT-RAM, and eDRAM LLCs represent

the designs described in Chapter 5. The results are summarized as follows:

• Regular SRAM has the best system performance on average. However, since

the low power implementation also use high performance transistors for the

peripheral circuitry, it is only slightly slower than regular implementation.

• Low power STT-RAM performs the best for read intensive workloads (e.g., cg

class A) because it has the shortest read latency and shorter write latency com-

pared to its regular (unoptimized) counterpart. However, although low power

STT-RAM has better write performance than regular STT-RAM, its write

latency is still significantly longer than that of SRAM and eDRAM. Based

on the workloads considered, on average regular STT-RAM and low power

STT-RAM result in 8.9% and 4.3% longer system execution time compared

to SRAM.

6.2.1.2 LLC Energy Breakdown

Figure 6.4 and Figure 6.5 illustrate the normalized energy breakdown of LLCs

based on various memory implementations. We show the following:

• Low power LLC implementations consume much less energy compared to reg-

ular implementations. For instance, low power SRAM consumes 80% less

energy than regular SRAM, and low power STT-RAM uses 45% less energy

than regular STT-RAM. As a result, we show that ignoring implementation

details potentially leads to wrong conclusions.
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• Low power STT-RAM consumes the least energy for benchmarks that have

few LLC writes (e.g., bodytrack, freqmine). However, if there are many write-

backs from the L2 caches, or many write operations due to main memory

fetches, STT-RAM uses the most energy. For instance, when executing the

ft benchmark, L2 frequently performs write-back, and the main memory also

frequently inserts cache lines into the L3 cache (see Appendix A for detailed

workload characteristics). Consequently, the low power STT-RAM-based LLC

uses more energy than the low power SRAM and eDRAM LLCs.

• For write intensive workloads, eDRAM results in the most energy-efficient

LLC implementation. For workloads with low write intensity (e.g., bodytrack,

freqmine), the energy consumption of eDRAM approaches that of STT-RAM

when refresh reduction method is used. We show that low power eDRAM

reduces the LLC energy by 36% compared to low power SRAM, and reduces

the LLC energy by 28% compared to low power STT-RAM.

6.2.1.3 Pareto Frontier Analysis

We summarize Section 6.2.1 with a Pareto plot, shown in Figure 6.1. The

Pareto frontier illustrates that low power eDRAM achieves the lowest LLC energy

consumption, while the regular SRAM LLC results in the shortest execution time.
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Figure 6.1: Pareto frontier analysis of different LLC implementations.
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Figure 6.2: Normalized system execution time with respect to various memory tech-
nologies. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
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Figure 6.3: Normalized system execution time with respect to various memory tech-
nologies. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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(c)

Figure 6.4: Normalized LLC energy breakdown with respect to various memory tech-
nologies. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
Note that SRAM and STT-RAM dissipate zero refresh power.
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Figure 6.5: Normalized LLC energy breakdown with respect to various memory
technologies. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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6.2.2 LLC Size

6.2.2.1 System Performance

Figure 6.7 and Figure 6.8 show the impact on system performance when vary-

ing the LLC size. A larger cache potentially improves hit ratio, and better LLC

hit ratio reduces the number of long accesses to the off-chip memory. Therefore, al-

though a larger cache has longer cache access latency, oftentimes it improves overall

system performance.

6.2.2.2 LLC Energy Breakdown

Figure 6.9 and Figure 6.10 illustrate the normalized LLC energy breakdown

with respect to different LLC sizes. Key observations:

• Both dynamic and standby power increase with the size of the LLC. However,

as discussed in Chapter 3, standby power (leakage and refresh) increases in

proportional with capacity, whereas dynamic power grows in a much slower

rate. Consequently, STT-RAM becomes relatively more energy-efficient with

increasing LLC size. For instance, when comparing STT-RAM against SRAM,

our results show that on average a 16MB STT-RAM uses 32% more energy

than a 16MB SRAM, but for 64MB LLCs, STT-RAM consumes 23% less

energy.

• Increasing the LLC size potentially results in lower cache miss ratio and thus

shorter system execution time and fewer fetches from the main memory. There
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are cases where a larger STT-RAM LLC consumes less energy than a smaller

one. For example, since a 16MB LLC is not large enough to hold the working

set of the cg benchmark with input size class A, the LLC is frequently updated

by the main memory. Therefore, if the 16MB LLC is built with STT-RAM

where write energy is high, the dynamic energy becomes significant due to the

large number of cache insertions. This is another reason why for 16MB LLCs,

STT-RAM consumes more energy than SRAM, but not the case for 32MB

and 64MB LLCs.

• When compared against SRAM and STT-RAM, for 16MB LLCs, eDRAM

consumes 44% and 59% less energy; for 32MB LLCs, eDRAM consumes 36%

and 28% less energy; and for 64MB LLCs, eDRAM uses 27% and 4% less

energy. This trend shows that the eDRAM refresh problem has become more

severe as cache size increases. The refresh reduction method thus requires

more optimizations to make eDRAM low power when applied to very large

LLCs.

6.2.2.3 Memory Hierarchy Energy Breakdown

As shown in Figure 6.11 and Figure 6.12, a large LLC also benefits the energy

consumption of the memory hierarchy, and likely the entire system. As mentioned

earlier, a larger LLC has the potential to bring higher hit ratio. With higher LLC

hit ratio, the followings are likely to happen: (i) shorter system execution time; (ii)

fewer off-chip main memory activities. Shorter system execution time means that

96



from the energy point of view, less standby energy is being consumed; fewer main

memory activities means that the main memory uses less dynamic power, and can

also stay in low power mode for a longer period of time. Subsequently, although

a larger LLC dissipates higher dynamic and leakage power, it significantly reduces

the energy consumption of the main memory and the total memory subsystem.

6.2.2.4 Pareto Frontier Analysis

Figure 6.6 shows Pareto frontier analysis of different LLC sizes using various

memory technologies. We can see that the 64MB SRAM LLC results in the best

system performance. Furthermore, when investigating system execution time versus

LLC energy, the 16MB eDRAM and the 16MB SRAM LLC both lie on the Pareto

frontier. In particular, the 16MB eDRAM LLC consumes the least energy. However,

when exploring system execution time versus the memory hierarchy energy, all the

16MB choices are sub-optimal, and the 32MB eDRAM LLC becomes the best choice

for low energy.
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Figure 6.6: Pareto frontier analysis of different LLC sizes. (a) System execution time
vs. LLC energy consumption. (b) System execution time vs. memory hierarchy
energy consumption.
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(c)

Figure 6.7: Normalized system execution time with respect to different LLC sizes.
(a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
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Figure 6.8: Normalized system execution time with respect to different LLC sizes.
(a) NPB class A. (b) NPB class B. (c) NPB class C.
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Figure 6.9: Normalized LLC energy breakdown with respect to different LLC sizes.
(a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
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Figure 6.10: Normalized LLC energy breakdown with respect to different LLC sizes.
(a) NPB class A. (b) NPB class B. (c) NPB class C.
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(c)

Figure 6.11: Normalized memory hierarchy energy breakdown with respect to dif-
ferent LLC sizes. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC
simlarge.
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Figure 6.12: Normalized memory hierarchy energy breakdown with respect to dif-
ferent LLC sizes. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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6.2.3 Iso-Area Comparison

In addition to comparing different L3Cs that have the same capacity, we make

iso-area comparison (i.e., holding the L3 cache area constant). According to our

cache model, under the same area, the capacity of an SRAM cache is around 1
2

of

the capacity of an eDRAM cache, and 1
4

of the capacity of an STT-RAM cache. We

show iso-area comparison in Figure 6.13. The results presented here are averages

across all workloads and inputs.
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Figure 6.13: Iso-area comparison. (a) Normalized system execution time. (b) Nor-
malized memory hierarchy energy consumption.
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6.2.4 Technology Scaling

6.2.4.1 System Performance

As shown in Figure 6.15 and Figure 6.16, because we set the processor fre-

quency to 2GHz (not high frequency), in general the LLC latency improvement

resulted from a smaller technology node is not translated into better system perfor-

mance. For eDRAM-based LLC however, system performance degrades slightly as

technology scales down. This is due to eDRAM’s shortened retention time, which

negatively affects performance.

6.2.4.2 LLC Energy Breakdown

Figure 6.17 and Figure 6.18 illustrate the normalized LLC energy breakdown

with respect to various technology nodes. The results are summarized as follows:

• As technology scales down, caches consume less active energy, but the leakage

and refresh power both increase significantly. The relative dominance of ac-

tive and standby (leakage, refresh) power is an important indicator of which

memory technology is a better candidate. For instance, in the 45nm tech-

nology node, STT-RAM uses 24% and 50% more energy compared to SRAM

and eDRAM, respectively. However, in the 22nm technology node, STT-RAM

consumes 11% more energy than eDRAM, and consume 37% less energy than

SRAM.

• It is worth noting that, though STT-RAM is projected to perform better
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in the 22nm technology node, its thermal stability (reliability) also degrades

significantly [105]. Researchers continue to improve the data retention and

write current scaling for STT-RAM to extend its scalability [106,107].

6.2.4.3 Pareto Frontier Analysis

Similar to the previous sections, we provide a Pareto plot (Figure 6.14) to

summarize the results presented in Section 6.2.4 – the 22mm SRAM LLC provides

the best system performance, while the 45nm eDRAM LLC consumes the lowest

energy.
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Figure 6.14: Pareto frontier analysis of various technology nodes.
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(c)

Figure 6.15: Normalized system execution time with respect to various technology
nodes. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
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(c)

Figure 6.16: Normalized system execution time with respect to various technology
nodes. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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(c)

Figure 6.17: Normalized LLC energy breakdown with respect to various technology
nodes. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
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Figure 6.18: Normalized LLC energy breakdown with respect to various technology
nodes. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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6.2.5 Processor Frequency

We also study the impact of processor frequency. Since a high-frequency pro-

cessor typically completes jobs faster than a low-frequency processor, the energy

usage due to standby power is lower for the high-frequency processor. Therefore,

SRAM and eDRAM appear to be more energy-efficient when running at high speed.

For instance, at a 2GHz clock frequency, eDRAM uses 28% less energy than STT-

RAM, whereas at a 4GHz clock frequency, the percentage of energy reduction in-

creases to 37%. The system performance and LLC energy breakdown results are

shown in Figure 6.20, 6.21, 6.22, and 6.23. A summary of the results is illustrated

in Figure 6.19.
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Figure 6.19: Pareto frontier analysis of different processor frequencies.
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Figure 6.20: Normalized system execution time with respect to various processor
frequencies. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC sim-
large.
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Figure 6.21: Normalized system execution time with respect to various processor
frequencies. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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(c)

Figure 6.22: Normalized LLC energy breakdown with respect to various proces-
sor frequencies. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC
simlarge.
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Figure 6.23: Normalized LLC energy breakdown with respect to various processor
frequencies. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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6.2.6 Temperature

Figure 6.24 and Figure 6.25 show the impact of temperature on LLC energy

consumption. We summarize our observations as follows:

• Although high temperature negatively affects the dynamic, leakage, and re-

fresh power, we show that standby power is more sensitive to temperature

variation than dynamic power. As a result, at 95oC, the energy gap between

eDRAM and STT-RAM becomes smaller.

• However, the thermal stability, and thus retention time, of STT-RAM also

becomes worse when temperature increases. For instance, when increasing

the temperature from 75oC to 95oC, the average STT-RAM retention time

decreases from 1 second to 0.33 second. Therefore, at high temperature,

STT-RAM either requires higher write energy to prolong its retention time

or requires scrubbing mechanisms to detect and correct failed bits regularly.

• With our default system configuration, system performances under 75oC and

95oC are very similar. Although increasing the temperature from 75oC to

95oC degrades cache performance (i.e., longer latency and shorter retention

time), the slightly degraded cache performance has little impact on the overall

performance.
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Figure 6.24: Normalized LLC energy breakdown with respect to different tempera-
tures. (a) PARSEC simsmall. (b) PARSEC simmedium. (c) PARSEC simlarge.
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Figure 6.25: Normalized LLC energy breakdown with respect to different tempera-
tures. (a) NPB class A. (b) NPB class B. (c) NPB class C.
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6.2.7 Die Cost

We estimate the die cost using

die cost =
wafer cost

wafer area
die area

× yield
(6.1)

where wafer area
die area

represents the number of dies per wafer, yield refers to the per-

centage of good dies on a wafer. We project the die area (die area) based on the

chip layout of Power7. We also assume STT-RAM introduces 5% more wafer cost

due to additional fabrication processes. Figure 6.26 compares the die cost of an

8-core processor using either SRAM, STT-RAM, or eDRAM as its 32MB last-level

L3 cache.
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Figure 6.26: Estimated die cost normalized to an 8-core processor using SRAM LLC
with 100% yield.

6.3 Summary

This chapter presents a comprehensive design space exploration, comparing

L3Cs built with SRAM, STT-RAM, and eDRAM. In addition to evaluating dif-

121



ferent memory technologies, we compare various cache implementations (regular

vs. low power), LLC sizes (16MB, 32MB, 64MB), technology nodes (45nm, 32nm,

22nm), processor frequencies (2GHz, 3.33GHz, 4GHz), and temperatures (75oC and

95oC). Full-system simulation results indicate that the choice of memory technology

is workload dependent, i.e., STT-RAM is the best candidate if the program intro-

duces few write-backs from the upper-level caches and few LLC insertions from the

main memory, whereas on average, eDRAM consumes the least energy if refresh is

effectively controlled. Our results also suggest that STT-RAM has the most poten-

tial for energy saving in future LLC designs, but with current cache implementations

and process technologies, SRAM and eDRAM provide better system performance

and/or energy-efficiency.

122



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Emerging applications (e.g., Big Data) have resulted in the increasing demand

for more efficient microprocessors. To gain higher computing throughput, the trend

for processor design is to integrate more cores on a single die, while allocating a

larger LLC to bridge the gap between processor and memory.

In addition to performance, power has become another primary concern. High

power dissipation not only limits performance improvement, but also degrades reli-

ability and introduces high electrical cost. The general LLC design direction is thus

to improve energy-efficiency without sacrificing system performance.

With these considerations in mind, this dissertation studies the performance

and energy impact when applying different memory technologies and low power

methods to L3Cs. Specifically, we compare L3Cs based on low-leakage SRAM, low

write-energy STT-RAM, and refresh-optimized eDRAM. Based on our cache model-

ing framework and an augmented full-system simulation environment, we show the

following:
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• SRAM is on average the fastest technology choice. This is because unlike

STT-RAM, it does not have the high write latency penalty, and unlike the

refresh-optimized eDRAM, the low-leakage SRAM LLC does not sacrifice hit

ratio for low power. For benchmarks with many read requests, if the LLC miss

ratio is low, STT-RAM performs the best. On the contrary, if there are many

writes to the LLC, STT-RAM performs the worst. Finally, eDRAM performs

worse than SRAM (and worse than STT-RAM in some cases) because the

refresh-reduction technique introduces unnecessary LLC misses.

• Low power LLC implementations consume significantly less energy compared

to regular (unoptimized) counterparts.

• STT-RAM consumes the least energy if the workload introduces few write-

backs from the upper-level caches and few insertions from the main memory,

whereas eDRAM is the most energy-efficient choice on average.

• STT-RAM shows more advantage with increasing LLC size. It also becomes

more attractive as technology scales down. These trends show that STT-

RAM is likely to be considered more in future processors. For contemporary

processors, using SRAM or eDRAM provides more benefit.

• High temperature negatively affects cache performance, dynamic power, leak-

age, refresh power, and reliability. In particular, the retention time (also an

indicator of failure rate) of STT-RAM is highly dependent on temperature,

which has become one of the most important design consideration for STT-
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RAM.

7.2 Summary of Contributions

We summarize the contributions of this dissertation as follows:

• This work presents an overview of various memory technologies, including

SRAM, STT-RAM, and eDRAM.

• To obtain realistic and unbiased SRAM, STT-RAM, and eDRAM cache mod-

els, this work enhances CACTI with the following: (i) utilizing PTM CMOS

models and conducting HSPICE circuit simulations to acquire device and

circuit behaviors; (ii) making performance and dynamic power temperature-

dependent; (iii) using NVSim to get STT-RAM characteristics; (iv) implement

a PVT-variation dependent gain cell eDRAM cache model.

• With the enhanced cache modeling framework, this work explores various

cache properties with respect to memory technology, cache size, technology

scaling, and temperature.

• In order to quickly evaluate LLC performance and energy consumption when

using different technologies under different scenarios, this work presents ana-

lytical models that serve as a first-order design guideline.

• This work reviews power-optimization methods for SRAM, STT-RAM, and

eDRAM LLCs.
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• A low-cost refresh-reduction technique based on dynamic dead-line predic-

tion is proposed for saving eDRAM-based LLC’s energy consumption. It is

compared against prior arts and is demonstrated to reduce LLC energy sub-

stantially with very small performance and hardware overhead.

• Additionally, to provide representative and useful evaluations, we augment a

full-system simulator with the capability to simulate different memory prop-

erties and various power-optimization schemes.

• The bulk of this dissertation shows the technology implications for L3Cs. We

compare system performance, LLC energy breakdown, memory hierarchy en-

ergy breakdown, and cost with respect to different memory technologies, LLC

sizes, technology nodes, processor frequencies, and temperatures. Finally, we

provide insights and draw conclusions based on simulation results and work-

load characteristics. A condensed version of this work has been published in

Chang et al. [108].

7.3 Future Work

The scope of this dissertation can be further extended with the following pos-

sible areas:

• Multi-gate cache modeling. A multi-gate device refers to a MOSFET

that has more than one gate. For instance, FinFETs [109] and tri-gate tran-

sistors [110] are both variants of multi-gate devices. As opposed to planar

transistors, a multi-gate transistor has several gates surrounding the channel,
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thereby suppressing the leakage current. Multiple gates also enhance the driv-

ing current. In other words, multi-gate transistors have faster performance

and lower power consumption. Moreover, multi-gate devices occupy less area.

They also have better scalability.

Recently, PTM has included a set of multi-gate transistor models to the library.

These models include 20nm, 16nm, 14nm, 10nm, 7nm high performance and

low power multi-gate transistors. They are based on BSIM-CMG, a compact

model for the class of common multi-gate FETs developed by the BSIM group

at UC Berkeley [111]. As a possible area for future work, we propose to

integrate these models into CACTI and study L3Cs based on advanced multi-

gate transistors.

• Standby power optimization. Even though today’s processors are designed

for different domains, such as embedded systems, personal computers, servers,

it is difficult to optimize the LLC size for every application. An unoptimized

LLC size means that the LLC is either underutilized (i.e., the LLC capacity

is larger than the application’s required size), or overutilized (i.e., the LLC

capacity does not bring performance benefit compared to a smaller LLC). In

both cases, a portion of the LLC is wasted, dissipating unnecessary standby

power, especially for SRAM and eDRAM LLCs.

One solution to this problem is Cache Resizing [112]. In the context of cache

resizing, dead-line prediction (see Chapter 5) is one method to identify unused

cache lines. Despite the fact that our proposed low-cost, dynamic dead-line
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prediction scheme effectively reduces refresh power, based on the limit case

study, there are still opportunities for further enhancements.

• STT-RAM design tradeoffs. STT-RAM is a relatively new memory tech-

nology and there are many design tradeoffs yet to be explored. For instance,

Naeimi et al. [24] discussed the tradeoff between STT-RAM thermal stability

and ECC strength. Note that thermal stability is a key factor that determines

the retention time and reliability of STT-RAM. One possible extension of

this study is to balance write time/energy, retention time (failure rate), ECC

strength, frequency of scrubbing, such that the overall energy consumption is

optimized.

At the conclusion of this dissertation, we hope this work will help cache de-

signers better understand energy-efficient L3Cs based on different technologies and

optimizations. We also hope this dissertation will serve as a useful background for

future LLC research and design.
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Appendix A

Workload Characteristics

In Appendix A, we first provide brief descriptions of the workloads we have

considered in this dissertation, as summarized in Table A.1 [16] [17]. We then

characterize each workload and present several behaviors, including LLC footprint,

miss ratio, and misses per kilo-instructions (MPKI). Additionally, we show the LLC

access type mixes of each workload. The access types include read, write, update, in-

sert, and write-back. Read, write, and update are signals sent from the CPU/L1/L2,

while insert and write-back are related to the communication between the LLC (L3)

and the external main memory.

Read refers to a read request sent from L2, which is the result of an L2 read

miss. Write refers to a write request sent from L2, which is the result of an L2 write

miss. Since we consider write-allocate caches, a write request that is sent to L3 tries

to bring an L3 cache line to L2, if there is a match. In other words, a write request

does not attempt to write the L3, but reads from it instead. Update indicates a

cache write-back from L2 to L3. We use an inclusive cache hierarchy, therefore an

update always results in an L3 write operation. Furthermore, if the L3 misses, the

main memory will insert the L3 with the desired cache line. If a dirty L3 cache line
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is evicted, it is written back (write-back) to the main memory.

Table A.2 and Table A.3 summarize the workload characteristics (they present

the same data as Table 6.3 and Table 6.4). We also characterize the LLC access

pattern of each workload, plotting the LLC access intensity against time. The

LLC access patterns are shown in Figure A.1, A.2, A.3, A.4, A.5, A.6, A.7, and

A.8. Each epoch corresponds to 1,000,000 CPU cycles, and each cycle is 0.5ns.

Note that we simulate 2.4 billion instructions for each workload, starting from the

region of interest; therefore the characterizations presented do not represent the

entire program. All characterization is conducted using three levels of caches with

a shared 32MB last-level L3 (see Chapter 6 for detailed system organization.).
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Table A.1: Workload descriptions.

Benchmark
suite

Benchmark Application Description

PARSEC

bodytrack
Computer
vision

Tracks a human body with multiple cameras
via an image sequence.

canneal Engineering
Optimizes routing costs of a chip design
using cache-aware annealing.

facesim Animation
Computes an animation of the modeled face
by simulating the underlying physics.

freqmine Data mining
Employs an array-based version of the
Frequent Pattern-growth method for
Frequent Itemset Mining.

NPB

bt
High
performance
computing

Uses an algorithm involving Block
Tridiagonal to solve a synthetic system of
nonlinear partial differential equations.

cg
High
performance
computing

Uses the Conjugate Gradient method as a
subroutine to estimate the smallest
eigenvalue of a large sparse symmetric
positive-definite matrix.

ft
High
performance
computing

Uses the fast Fourier Transform to solve a
three-dimensional partial differential
equation.

is
High
performance
computing

Uses the bucket sort to conduct Interger Sort.
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Table A.2: Workload characteristics.
Benchmark suite Benchmark Input LLC footprint (MB) miss ratio MPKI APKC

PARSEC

bodytrack
simsmall 6.14 10.64% 0.124 8.159
simmedium 9.33 9.33% 0.064 6.970
simlarge 3.18 2.64% 0.022 8.538

canneal
simsmall 26.32 7.48% 1.612 76.412
simmedium 53.05 10.34% 2.395 118.510
simlarge 102.75 23.79% 5.944 123.353

facesim
simsmall 144.15 65.14% 1.339 43.771
simmedium 144.81 64.96% 1.345 44.036
simlarge 266.03 79.61% 2.461 61.436

freqmine
simsmall 38.89 17.11% 0.280 3.142
simmedium 74.44 44.91% 0.833 3.855
simlarge 69.99 78.25% 0.480 1.083

NPB

bt
class A 43.54 21.52% 0.942 57.269
class B 173.02 60.65% 5.173 101.792
class C 686.94 75.53% 12.397 141.618

cg
class A 21.98 0.66% 0.150 141.314
class B 160.52 23.20% 19.744 175.489
class C 420.64 18.92% 20.165 169.799

ft
class A 324.11 29.56% 3.897 159.469
class B 1287.27 50.72% 10.287 154.561
class C 5072.41 99.74% 34.667 147.307

is
class A 66.39 82.56% 7.893 108.203
class B 264.76 92.54% 8.674 106.742
class C 863.62 91.66% 8.337 106.770
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Table A.3: (Continued) Workload characteristics.

Benchmark suite Benchmark Input %read %write %update %insert %write-back

PARSEC

bodytrack
simsmall 52.47% 17.32% 22.89% 7.31% 0.00%
simmedium 48.46% 18.47% 26.74% 6.33% 0.00%
simlarge 73.08% 7.78% 17.05% 2.10% 0.00%

canneal
simsmall 67.05% 0.18% 27.72% 5.03% 0.01%
simmedium 66.13% 0.10% 26.24% 6.45% 1.09%
simlarge 58.95% 0.07% 22.22% 12.67% 6.08%

facesim
simsmall 8.61% 25.61% 27.80% 22.27% 15.72%
simmedium 8.80% 25.53% 27.72% 22.27% 15.69%
simlarge 11.56% 21.42% 24.07% 25.57% 17.38%

freqmine
simsmall 41.53% 21.97% 25.03% 10.81% 0.67%
simmedium 25.80% 20.39% 23.51% 20.65% 9.66%
simlarge 22.08% 17.09% 22.98% 30.56% 7.30%

NPB

bt
class A 57.36% 4.47% 20.08% 13.31% 4.78%
class B 41.64% 4.41% 15.45% 27.94% 10.57%
class C 34.58% 6.02% 16.79% 30.74% 11.86%

cg
class A 96.89% 0.46% 2.01% 0.65% 0.00%
class B 80.78% 0.09% 0.29% 18.63% 0.22%
class C 83.76% 0.07% 0.22% 15.81% 0.15%

ft
class A 22.33% 23.16% 30.19% 13.29% 11.03%
class B 20.33% 18.15% 26.92% 19.14% 15.45%
class C 17.41% 11.95% 22.66% 26.76% 21.22%

is
class A 30.61% 11.48% 13.46% 34.69% 9.76%
class B 30.15% 10.93% 11.82% 37.95% 9.15%
class C 28.04% 12.28% 12.70% 36.84% 10.14%
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Figure A.1: LLC access pattern (bodytrack). (a) Simsmall. (b) Simmedium. (c)
Simlarge.
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Figure A.2: LLC access pattern (canneal). (a) Simsmall. (b) Simmedium. (c)
Simlarge.
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Figure A.3: LLC access pattern (facesim). (a) Simsmall. (b) Simmedium. (c)
Simlarge.
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Figure A.4: LLC access pattern (freqmine). (a) Simsmall. (b) Simmedium. (c)
Simlarge.
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Figure A.5: LLC access pattern (bt). (a) Class A. (b) Class B. (c) Class C.
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Figure A.6: LLC access pattern (cg). (a) Class A. (b) Class B. (c) Class C.
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Figure A.7: LLC access pattern (ft). (a) Class A. (b) Class B. (c) Class C.
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Figure A.8: LLC access pattern (is). (a) Class A. (b) Class B. (c) Class C.
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