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 The research presented here examines the assessment of the reliability of a 

system or product utilizing multiple data sources available throughout the different 

stages of its development.  The assessment of the reliability as it changes throughout 

the development of a system is traditionally referred to as reliability growth, which 

refers to the discovery and mitigation of failure modes within the system, thereby 

improving the underlying reliability.  Traditional models for assessing reliability 

growth work with test data from individual test events to assess the system reliability 

at the current stage of development.  These models track or project the reliability of 

the system as it matures subject to the specific assumptions of the models.   

 The contributions of this research are as follows.  A new Bayesian reliability 

growth assessment technique is introduced for continuous-use systems under general 

corrective action strategies.  The technique differs from those currently in the 

literature due to the allowance for arbitrary times for corrective actions.  It also 

provides a probabilistic treatment of the various parameters within the model, 

accounting for the uncertainty present in the assessment.  The Bayesian reliability 

 



 

growth assessment model is then extended to include results from operational testing.  

The approach considers the posterior distribution from the reliability growth 

assessment of the prior for the operational reliability assessment.  The developmental 

and operational testing environments are not a priori assumed to be equivalent, and 

the change in environments is accounted for in a probabilistic manner within the 

model.  A Bayesian reliability growth planning model is also presented that takes 

advantage of the reduced uncertainty in the combined operational assessment.  The 

approach allows for reductions in the amount of demonstration testing necessary for a 

given level of uncertainty in the assessment, and it can also be used to reduce high 

design goals that often result from traditional operating characteristic curve 

applications.  The final part of this research involves combining various sources of 

reliability information to obtain prior distributions on the system reliability.  The 

approach presents a general framework for utilizing information such as 

component/subsystem testing, historical component reliability data, and physics-

based modeling of specific component failure mechanisms. 

 



 

 
 
 
 

METHODOLOGY FOR ASSESSING RELIABILITY GROWTH USING 
MULTIPLE INFORMATION SOURCES

 
 
 

by 

Martin Wayne 
 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
 Doctor of Philosophy 

2013 
 

 

 

 

 

 

 

Advisory Committee: 

Professor Mohammad Modarres, Chair 
Professor Gregory Baecher 
Dr. Paul Ellner 
Professor Ali Mosleh 
Assistant Professor Monifa Vaughn-Cooke 

 

 



 

 

 

 

 

 

 

 

©Copyright by  

Martin Wayne 

2013 

 

 

 

 

 



 

TABLE OF CONTENTS 

1 INTRODUCTION, RESEARCH OBJECTIVES, AND OVERVIEW OF 
DISSERTATION ........................................................................................................ 1 

1.1 INTRODUCTION .................................................................................................. 1 
1.2 RESEARCH OBJECTIVE ....................................................................................... 7 
1.3 RESEARCH GOALS ............................................................................................. 8 
1.4 RESEARCH CONTRIBUTIONS .............................................................................. 9 
1.5 RESEARCH OVERVIEW ..................................................................................... 11 

1.5.1 Chapter 2 – Literature Review ................................................................. 12 
1.5.2 Chapter 3 – A Bayesian Model for Complex System Reliability Growth 
Under Arbitrary Corrective Actions .................................................................... 12 
1.5.3 Chapter 4 - Assessing Reliability Growth Using Developmental and 
Operational Test Data .......................................................................................... 14 
1.5.4 Chapter 5 – Reliability Growth Planning Using Combined Developmental 
and Operational Test Data for Reliability Demonstration ................................... 15 
1.5.5 Chapter 6 – Development of Prior Information Using Lower-Level Data 
Sources................................................................................................................. 16 
1.5.6 Chapter 7 – Reliability Assessment Throughout Development: A Case 
Study 18 
1.5.7 Chapter 8 – Future Work .......................................................................... 18 
1.5.8 Chapter 9 - Conclusion ............................................................................. 19 

2 LITERATURE REVIEW .................................................................................. 20 
2.1 RELIABILITY GROWTH PLANNING MODELS ..................................................... 20 

2.1.1 Duane Model (1964) ................................................................................ 20 
2.1.2 Selby and Miller’s Reliability Planning Management Model (1970) ...... 21 
2.1.3 Military Handbook 189 Model (1982) ..................................................... 21 
2.1.4 AMSAA Subsystem Planning Model (1992) ........................................... 22 
2.1.5 AMSAA Planning Model Based on Projection Methodology (2006) ..... 23 
2.1.6 Crow Extended Model for Reliability Growth Planning (2010) .............. 24 
2.1.7 Hall Discrete Planning Model Based on Projection Methodology (2011)24 

2.2 RELIABILITY GROWTH PROJECTION MODELS .................................................. 25 
2.2.1 Corcoran, Weingarten, Zehna Model (1964) ........................................... 25 
2.2.2 AMSAA Crow Projection Model (1982) ................................................. 25 
2.2.3 AMSAA Maturity Projection Model (1995) ............................................ 26 
2.2.4 Clark Projection Model (1999) ................................................................ 27 
2.2.5 AMSAA Maturity Projection Model – Stein (2004) ................................ 27 
2.2.6 Crow Extended Model (2004) .................................................................. 28 
2.2.7 Hall Discrete Projection Model (2008) .................................................... 29 
2.2.8 Bayesian Methodology for Discrete Reliability Growth (2009) .............. 30 
2.2.9 Hall, Ellner, Mosleh Discrete Reliability Growth Projection Model (2010)
 30 

2.3 RELIABILITY GROWTH TRACKING ................................................................... 31 

 ii 



 

2.3.1 Weiss’s Reliability Growth Model (1956) ............................................... 31 
2.3.2 Lloyd and Lipow’s Reliability Growth Model (1962) ............................. 31 
2.3.3 Cox and Lewis’s Reliability Growth Model (1966) ................................. 32 
2.3.4 Barlow and Scheuer Reliability Growth During a Development Testing 
Program (1966) .................................................................................................... 32 
2.3.5 Pollock’s Bayesian Reliability Growth Model (1968) ............................. 33 
2.3.6 Littlewood and Verrall Bayesian Reliability Growth Model (1973) ....... 34 
2.3.7 Crow’s Reliability Growth Tracking Model (1974) ................................ 34 
2.3.8 Smith’s Bayesian Note on Reliability Growth during Development 
Testing (1977)...................................................................................................... 35 
2.3.9 Fard and Dietrich’s Bayes Reliability Growth Model for Development 
Testing (1987)...................................................................................................... 36 
2.3.10 Engelhart and Bain’s Prediction Intervals for the Weibull Process (1978)
 36 
2.3.11 Barlow Scheuer Reliability Growth from Bayesian Viewpoint (1978) ... 37 
2.3.12 Langberg and Proschan’s Relability Growth Involving Dependent 
Components (1979) ............................................................................................. 38 
2.3.13 Goel and Okumoto Time Dependent Error-Detection Rate Model for 
Software Reliability and Other Performance Measures (1979) ........................... 38 
2.3.14 Crow’s Discrete Reliability Growth Tracking Model (1983) .................. 39 
2.3.15 Littlewood’s Rationale for a Modified Duane Model (1984) .................. 39 
2.3.16 Robinson and Dietrich’s Nonparametric Bayes Reliability Growth Model 
(1989) 40 
2.3.17 Bayes Inference for Power Law Non-Homogeneous Poisson Process 
(1989) 41 
2.3.18 Singpurwalla and Soyer’s Non-Homogeneous Autoregressive Processes 
for Tracking (Software) Reliability Growth, and Their Bayesian Analysis (1992)
 42 
2.3.19 Mazzuchi and Soyer’s Reliability Assessment and Prediction During 
Product Development (1992) ............................................................................... 42 
2.3.20 Fries Discrete Learning Curve Model (1993) .......................................... 43 
2.3.21 Fakre-Zakeri and Slud’s Mixture Models for Reliability of Software with 
Imperfect Debugging: Identifiability of Parameters (1995) ................................ 43 
2.3.22 AMSAA Subsystem Tracking Model (1996) ........................................... 44 
2.3.23 Erklani, Mazzuchi, and Soyer’s Bayesian Computations for a Class of 
Reliability Growth Models (1998) ...................................................................... 45 
2.3.24 Walls and Quigley’s Building Prior Distributions for Bayesian Reliability 
Growth Modeling (2001) ..................................................................................... 45 
2.3.25 Yu, Tian, and Tang’s Bayesian Predictive Analyses for Nonhomogeneous 
Poisson Processes with Power Law (2007) ......................................................... 46 
2.3.26 Li, Chang, and Chen’s Building Reliability Growth Models Using 
Sequential Experiments (2010) ........................................................................... 47 
2.3.27 Xing, Wu, Jiang, and Liu’s Dynamic Bayesian Evaluation Method for 
System Reliability Growth Based on In-Time Correction (2010) ....................... 47 
2.3.28 Quigley and Walls Reliability Inference Mixing Bayes and Empirical 
Bayes (2011) ........................................................................................................ 48 

 iii 



 

2.3.29 Bichon, McFarland, and Mahadevan’s Surrogate Models for Reliability 
Analysis with Multiple Failure Modes (2011) .................................................... 49 
2.3.30 Strunz and Herrmann’s Planning, Tracking, and Projecting Reliability 
Growth: A Bayesian Approach (2012) ................................................................ 49 
2.3.31 Pievatolo, Ruggeri, and Soyer’s Bayesian Hidden Markov Model for 
Imperfect Debugging (2012) ............................................................................... 50 
2.3.32 H. Okamura, et. al’s Software Reliability Growth Models with Normal 
Failure Time Distributions (2013) ....................................................................... 50 
2.3.33 Wang, et. al.’s Discrete Nonhomogeneous Poisson Process Software 
Reliability Growth Models (2013) ...................................................................... 51 

2.4 RELIABILITY DEMONSTRATION METHODS ...................................................... 52 
2.4.1 Yadav, et. al.’s Reliability Demonstration Test Planning (2006) ............ 52 
2.4.2 Fan and Chang’s Bayesian Zero Failure Reliability Demonstration Test of 
High Quality Electro-explosive Devices (2009) ................................................. 52 
2.4.3 Guo and Liao’s Methods of Reliability Demonstration (2012) ............... 53 
2.4.4 Elsayed’s Overview of Reliability Testing (2012) ................................... 54 
2.4.5 Crow’s Demonstrating Reliability Growth Requirements with Confidence 
(2012) 54 
2.4.6 Cotroneo et. al.’s Combining Operational and Debug Testing for 
Improving Reliability (2013) ............................................................................... 55 
2.4.7 Hill, et. al.’s Acquisition and Testing, DT/OT Testing (2013) ................ 56 

2.5 SYSTEM RELIABILITY ASSESSMENT ................................................................ 57 
2.5.1 Hamada et. al.’s Bayesian Approach for Combining Multilevel Failure 
Information in Fault Trees (2004) ....................................................................... 57 
2.5.2 Reese, Hamada, and Robinson’s Assessing System Reliability by 
Combining Data from Different Test Modalities (2005) ..................................... 58 
2.5.3 Groen and Droguett’s Competing Failure Mode Modeling (2005) ......... 59 
2.5.4 Wilson, Graves, Hamada, and Reese’s Advanced in Data Combination, 
Analysis, and Collection for System Reliability Assessment (2006) .................. 60 
2.5.5 Yadav, Choudhary, and Bilen’s Complex System Reliability Estimation 
Methodology in the Absence of Failure Data (2008) .......................................... 61 
2.5.6 Pan’s Reliability Prediction Using Accelerated Life Data and Field 
Failures (2009) ..................................................................................................... 62 
2.5.7 Wilson, Anderson-Cook, and Huzurbazar’s Case Study for Quantifying 
System Reliability and Uncertainty (2011) ......................................................... 62 

2.6 CONCLUSION ................................................................................................... 63 

3 A BAYESIAN MODEL FOR COMPLEX SYSTEM RELIABILITY 
GROWTH UNDER ARBITRARY CORRECTIVE ACTIONS .......................... 65 

3.1 INTRODUCTION ................................................................................................ 65 
3.1.1 Background .............................................................................................. 65 
3.1.2 Chapter Overview .................................................................................... 66 

3.2 METHODOLOGY ............................................................................................... 67 
3.2.1 Model Assumptions .................................................................................. 67 
3.2.2 Data Requirements ................................................................................... 68 

 iv 



 

3.2.3 Failure Mode Posterior Distribution ........................................................ 69 
3.2.4 Complex System Posterior Distribution ................................................... 71 
3.2.5 Initial Failure Intensity ............................................................................. 75 
3.2.6 Growth Potential Failure Intensity ........................................................... 76 
3.2.7 Failure Modes Observed During Follow-on Testing ............................... 77 

3.3 EMPIRICAL BAYES ESTIMATORS...................................................................... 80 
3.4 MODEL ASSESSMENT AND GOODNESS OF FIT .................................................. 81 

3.4.1 Prior Predicted Cumulative Number of Failure Modes ........................... 82 
3.4.2 Bayesian Chi-Square Test ........................................................................ 83 

3.5 EXTENSIONS TO BASIC MODEL........................................................................ 87 
3.5.1 Multiple Systems Under Test ................................................................... 88 
3.5.2 Uncertain FEF .......................................................................................... 91 

3.6 SIMULATION PERFORMANCE ........................................................................... 94 
3.7 EXAMPLE APPLICATION .................................................................................. 98 
3.8 CONCLUSIONS ............................................................................................... 103 

4 ASSESSING RELIABILITY GROWTH USING DEVELOPMENTAL AND 
OPERATIONAL TEST DATA ............................................................................. 105 

4.1 INTRODUCTION .............................................................................................. 105 
4.1.1 Background ............................................................................................ 105 
4.1.2 Chapter Overview .................................................................................. 105 

4.2 METHODOLOGY ............................................................................................. 106 
4.2.1 Assessing Reliability Growth in DT ...................................................... 106 
4.2.2 Assessing Reliability in OT .................................................................... 110 
4.2.3 Generalization for Multiple Systems under Test .................................... 116 

4.3 DEMONSTRATION TESTING ............................................................................ 118 
4.4 MODEL ASSESSMENT .................................................................................... 122 
4.5 PERFORMANCE COMPARISONS ...................................................................... 124 
4.6 DISCUSSION AND CONCLUSIONS .................................................................... 136 

5 RELIABILITY GROWTH PLANNING USING COMBINED 
DEVELOPMENTAL AND OPERATIONAL TEST DATA FOR 
RELIABILITY DEMONSTRATION ................................................................... 139 

5.1 INTRODUCTION .............................................................................................. 139 
5.1.1 Background ............................................................................................ 139 
5.1.2 Chapter Overview .................................................................................. 139 

5.2 METHODOLOGY ............................................................................................. 140 
5.2.1 Data Requirements ................................................................................. 141 
5.2.2 Modeling Reliability Growth in DT ....................................................... 141 
5.2.3 Overview of Reliability Demonstration Using Combined Developmental 
and Operational Test Data ................................................................................. 146 
5.2.4 Constructing the Reliability Growth Planning Curve ............................ 150 

5.3 MANAGEMENT METRICS ............................................................................... 153 

 v 



 

5.3.1 Number of Modes Surfaced in Testing .................................................. 154 
5.3.2 Failure Intensity for Unobserved Failure Modes ................................... 155 
5.3.3 Fraction of Initial Failure Intensity Attributed to Observed Failure Modes
 156 

5.4 EXAMPLE APPLICATION ................................................................................ 157 
5.5 CONCLUSIONS ............................................................................................... 162 

6 DEVELOPMENT OF PRIOR INFORMATION USING LOWER-LEVEL 
DATA SOURCES ................................................................................................... 164 

6.1 INTRODUCTION .............................................................................................. 164 
6.1.1 Background ............................................................................................ 164 
6.1.2 Chapter Overview .................................................................................. 164 

6.2 SYSTEM LEVEL DECOMPOSITION ................................................................... 165 
6.2.1 System-Level Failure Intensity .............................................................. 167 
6.2.2 Accounting for Failures Due to Integration of Components and 
Subsystems ........................................................................................................ 171 

6.3 FAILURE MODE POSTERIOR DISTRIBUTION ................................................... 173 
6.3.1 Failure Mode from Component Failure.................................................. 173 
6.3.2 Failure Mode from Failure of Redundant Block .................................... 178 
6.3.3 Using Physics-Based Model Results ...................................................... 180 
6.3.4 Scaling to Account Accounting for Additional Failure Mechanisms .... 184 

6.4 CONCLUSION ................................................................................................. 187 

7 CASE STUDY ON RELIABILITY GROWTH ASSESSMENT ................. 189 
7.1 INTRODUCTION .............................................................................................. 189 

7.1.1 Background ............................................................................................ 189 
7.1.2 Chapter Overview .................................................................................. 189 

7.2 RELIABILITY ASSESSMENT PRIOR TO DT ...................................................... 190 
7.2.1 Historical Failure Data ........................................................................... 191 
7.2.2 Driveshaft Posterior from Fatigue Modeling ......................................... 199 
7.2.3 Mission Equipment Posterior ................................................................. 203 
7.2.4 System Level Failure Intensity ............................................................... 204 

7.3 RELIABILITY GROWTH ASSESSMENT DURING DT ......................................... 206 
7.4 OPERATIONAL RELIABILITY ASSESSMENT ..................................................... 208 
7.5 CONCLUSION ................................................................................................. 210 

8 EXTENSIONS AND FUTURE WORK ......................................................... 212 
8.1 INTRODUCTION .............................................................................................. 212 

8.1.1 Background ............................................................................................ 212 
8.1.2 Chapter Overview .................................................................................. 212 

8.2 RELIABILITY GROWTH OF ONE-SHOT DEVICES UNDER ARBITRARY 

CORRECTIVE ACTIONS ........................................................................................... 213 

 vi 



 

8.2.1 Model Assumptions ................................................................................ 213 
8.2.2 Posterior Inference for Single Failure Mode .......................................... 213 
8.2.3 Posterior Inference for Complex System ............................................... 216 
8.2.4 Extension to Include Multiple Systems Under Test ............................... 220 
8.2.5 Empirical Bayes Estimators ................................................................... 221 

8.3 COMBINING DEVELOPMENTAL AND OPERATIONAL TEST DATA FOR DISCRETE 

SYSTEMS ................................................................................................................ 223 
8.4 DEVELOPING PRIOR INFORMATION FROM PHYSICS-BASED MODELING ......... 223 
8.5 GENERAL RELIABILITY ASSESSMENT ............................................................ 224 

9 CONCLUSIONS ............................................................................................... 225 

APPENDIX A: DERIVATIONS ........................................................................... 229 

APPENDIX B: MATHEMATICA CODE FOR RELIABILITY GROWTH 
MODELS OF CHAPTERS 3 & 4.......................................................................... 232 

REFERENCES ........................................................................................................ 241 
 

 vii 



 

ACRONYMS 

AMSAA Army Materiel Systems Analysis Activity 
AMPM AMSAA Maturity Projection Model 
CAP  Corrective Action Period 
DoD  Department of Defense 
DFR  Design-for-Reliability 
DT  Developmental Testing 
FEF  Fix Effectiveness Factor 
HPP  Homogeneous Poisson Process 
MLE  Maximum Likelihood Estimate 
MS  Management Strategy 
MTBF  Mean Time Between Failure 
MTTF  Mean Time to Failure 
NHPP  Non-Homogeneous Poisson Process 
OC  Operating Characteristic 
OT  Operational Testing 
PM2  Planning Model Based on Projection Methodology 
ROCOF Rate of Occurrence of Failures 
SPLAN System Planning Model 
SSPLAN Subsystem Planning Model 
SSTRACK Subsystem Tracking Model 
TAFT  Test-Analyze-Fix-Test  

 

 

 

 

 

 

 viii 



 

NOTATION 
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α  Gamma distribution parameter (pseudo failures) 

 

˜ α   Posterior Gamma distribution parameter from developmental  
  reliability growth testing 
b  Beta distribution parameter 
β  Gamma distribution parameter (pseudo test time) 

 

˜ β   Posterior Gamma distribution parameter from developmental  
  reliability growth testing 
di  assessed FEF for mode i 
ε  Mean value of degradation between developmental and operational 
  testing 
γ   MTBF Degradation between developmental and operational test  
  environments 
K  total number of failure modes assumed in system 
λA  prior mean failure intensity of system for A-modes 
λB  prior mean failure intensity of system 
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1 INTRODUCTION, RESEARCH OBJECTIVES, AND OVERVIEW OF 

DISSERTATION 

1.1 Introduction 

 Reliability growth in complex systems has been widely studied for many 

years, and it continues to be an area of great interest.  A recent Defense Science 

Board Task Force report [1] cited a significant increase in the number of military 

systems that are being rated as not operationally suitable, and the main reason cited in 

the report is poor reliability.  Many systems are simply failing to achieve required 

levels of reliability, and nearly half of U.S. Army systems over a ten-year period 

failed to meet operational reliability requirements.  A major recommendation from 

the task force was to implement a robust reliability growth program, including 

periodic reporting on reliability growth program progress.  This is due in part to the 

lack of reliability growth programs on most developmental systems, but also in part to 

the realization that traditional DFR principles [2],[3] alone are simply not sufficient 

when designing highly complex systems. 

 In response to this recommendation, the U.S. Department of Defense has 

recently implemented guidance to address this problem.  Directive Type 

Memorandum 11-0003 [4] calls for military programs to establish comprehensive 

reliability programs, to include DFR techniques along with a reliability growth 

strategy.  Reliability growth curves are to be documented in the Systems Engineering 

Plan at early milestones, and reliability growth should be tracked against planned 

thresholds.  Additional requirements include reporting on the improvement necessary 
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to achieve the desired reliability requirement during Operational Testing (OT).  The 

U.S. Army has also implemented policy [5] to more specifically address the reliability 

problem, with language speaking to the importance of DFR techniques, an early 

reliability threshold report, and contractual requirements for reliability growth 

planning curves.  These recent advances highlight not only the importance of 

achieving reliability in modern defense systems, but also the inherent connection 

between DFR and traditional system-level reliability growth. 

 Reliability growth is generally divided into the three areas of planning, 

tracking, and projection [6].  Reliability growth tracking and projection models have 

typically been developed to assess the system reliability under specific assumptions 

regarding testing, data collection, and corrective action implementation.  The 

differences between tracking and projection lie in the information that is used to 

develop the model.  Tracking models generally use only failure data collected during 

Developmental Testing (DT) to estimate the reliability improvement during the test, 

whereas projection models use engineering assessments of the effectiveness of 

planned corrective actions to observed failure modes, also known as fix effectiveness 

factors (FEF).  This allows for more flexibility in the projection framework, as the 

models can project the anticipated improvement that will result from corrective 

actions that may not yet be implemented.  The use of FEFs has also been shown to 

provide very reasonable estimates of reliability improvement when they are assigned 

correctly [7].  Reliability growth planning models are then typically transformed 

versions of the assessment models that can be used to plan an appropriate reliability 

growth program before system level reliability are available.  Historically a number 
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of models have been developed for both continuous and discrete complex systems, 

with particular emphasis on reliability growth tracking.  Continuous systems are those 

whose test durations are measured over continuous time periods such as hours or 

miles.  Discrete systems are those whose test durations are measured in discrete 

demands such as trials or shots.  A review of a number of reliability growth models is 

presented in Chapter 2. 

Reliability is defined as the ability of an item to function under given 

conditions for a period of time [8].   Concurrent with the development of the system, 

a number of reliability tests are conducted, with the purpose of discovering and 

mitigating failure modes within the system and thereby improving the underlying 

reliability.  The system design is continually evolving throughout these tests, such 

that combination of the data for overall reliability assessment is generally not 

practical.  The testing environment also tends to be more benign than actual 

operational usage conditions, with resulting reliability estimates that are overly 

optimistic when compared to operational failure rates.  This process is intended to 

mature the reliability of the system to a sufficient level for operational use, which is 

termed the reliability requirement.  Proper specification of the reliability requirement 

is vitally important to the overall reliability program, and factors such as operational 

effectiveness and life-cycle operating costs should be considered in this process.  The 

requirement will be assumed to be appropriate for the purposes of the research 

presented here.  The reliability growth models discussed above are intended to assess 

the reliability as it evolves throughout the DT program.   
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Many systems under development are then subject to a reliability 

demonstration test [6] in which the assessed reliability from the test results is 

compared to the original reliability requirement for the system.  The demonstration 

test can be performed in a number of ways [9], but within the United States 

Department of Defense (DoD) it is generally a full system test with a fixed 

configuration that is meant to mimic the intended operational environment of the 

system to the maximum extent possible.  The fixed configuration testing allows for 

application of the exponential distribution and its associated estimators to assess the 

system reliability.  For planning the appropriate resources and test lengths, an 

Operating Characteristic (OC) curve [6],[10] is typically used to manage the overall 

test approach.  This allows for the consideration of not only statistical confidence, but 

also the power or probability of acceptance of the test. 

 The OC Curve for the demonstration test determines the probability of 

“passing” the demonstration test as a function of the true reliability of the system, 

where passing is defined by observing less than or equal to the maximum number of 

allowable failures.  The maximum number of allowable failures is chosen such that 

the desired lower statistical confidence bound on the reliability estimate is greater 

than or equal to the requirement.  For continuously operating systems this is defined 

to be the largest non-negative integer k such that the inequality in (1) holds. 

 

T
MR

 

 
 

 

 
 

i

exp −
T

MR

 

 
 

 

 
 

i!i =0

k

∑ ≤ α                                         (1) 

For the inequality in (1), T is the total demonstration test length, MR the reliability 

requirement of the system, and α is the significance of the test.  The underlying 
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assumption of the approach is that the system failures occur according to a 

Homogeneous Poisson Process (HPP).  The times between successive failures are 

then exponentially distributed, which is generally justified by the constant 

configuration of the system.  As such, the reliability requirement of the system is 

commonly specified as a “mean time between failure” metric.  The OC curve itself is 

then calculated by  

 

OC(M ) =

T
M

 
 
 

 
 
 

i

exp −
T
M

 
  

 
  

i!i =0

c

∑ ,                                        (2) 

where M is the true but unknown reliability of the system and c is the maximum 

number of allowable failures in the test determined using (1).  An example of the 

curve is shown in Figure 1.1. 

 

 

Fig 1.1 OC Curve Example 
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In order to have a high probability of successfully passing the demonstration test, it is 

necessary to enter the test with a value of M that is above the value of MR. The value 

of M is then treated as the design goal for the system.  A drawback of this approach is 

that the higher design goals resulting from the statistical confidence measures may be 

unrealistic, cost-prohibitive, or technologically unachievable.  The issue is further 

exacerbated when considering an increased emphasis to place new systems into 

operational usage faster while under tighter budget constraints.  As seen in (1), when 

T is not much larger than MR, the number of maximum allowable failures will also be 

small.  This often results in test plans in which no failures or a single failure are 

allowable.  Because of the difficulty of achieving this result, the value of M in (2) 

must then be significantly larger than MR, which again results in the previously 

mentioned problems with high reliability design goals. 

 As seen in (2), the reliability information available from the developmental 

test program and reliability growth models is not utilized in the OC curve 

calculations.  Other sources of information related to the reliability of the system are 

also available throughout its development.  Modeling and simulation in the form of 

Physics-of-Failure analysis is generally conducted on important or high cost 

components, and component or subsystem level testing is also often conducted prior 

to beginning system level testing.  Historical information on the failure rate of certain 

components within the system may also be available.  Use of these data, along with 

the demonstration test results, could serve to lower the reliability design goals and 

result in more efficient and cost effective reliability development programs. 
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 The research proposed here examines the assessment of the reliability of a 

system or product utilizing multiple data sources available throughout the different 

stages of its development.  The various stages of development involve maturation of 

the design through the discovery and mitigation of failure modes that are initially 

present in the system.  The result is a constantly evolving design with concurrently 

evolving reliability.  The assessment of the reliability as it changes throughout the 

development of a system is traditionally referred to as reliability growth, which refers 

to the discovery and mitigation of failure modes within the system, thereby improving 

the underlying reliability.  A number of approaches have historically been developed 

to model the growth in reliability throughout system development, each with their 

own applications, assumptions and limitations. 

 Traditional models for assessing reliability growth, such as those found in 

Chapter 2, work with test data from individual test events to assess the system 

reliability at the current stage of development.  Depending on the specific technique 

and associated assumptions, they track or project the reliability of the system as it 

matures.  Tracking involves the estimation of the reliability of a system during its 

development based on test data alone, similar to standard parametric estimation 

techniques.  Projection provides the expected improvement that will be realized when 

corrective actions for observed failure modes are implemented.  A more in-depth 

review of some selected reliability growth models is provided in Chapter 2 along with 

review of more general system reliability assessment approaches.   

1.2 Research Objective 

 The objective of this research is to develop a model framework for assessing 
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reliability and reliability growth utilizing data from a variety of potential sources.  

The model and methodology utilizes data collected throughout the development of 

the system.  It also addresses any differences that may exist in the test environments 

in which the data are collected, while also providing a probabilistic result that 

indicates the amount of uncertainty in the assessed values.  Additional data sources, 

such as historical information, component level test data, and modeling and 

simulation results will also be leveraged in the methodology.  The general 

performance of the model is compared to current techniques, and the relative merits 

of the approach are discussed. 

1.3 Research Goals 

 There are three main goals of the research presented here.  These goals 

directly address the limitations of the current reliability growth paradigm discussed in 

Section 2.  They are as follows: 

1. Provide a reliability growth assessment methodology that utilizes data from 

throughout the development of the system while rigorously accounting for 

differences in the test environments that may exist. 

2. Provide additional management metrics that will provide additional 

information beyond the assessed reliability to program managers in order to 

better inform decision-making. 

3. Provide a methodology for combining early design activities such as modeling 

and simulation and component/subsystem testing to provide a prior 

distribution on the reliability of a system.  The prior distribution can then be 
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updated when reliability growth testing and reliability demonstration testing 

are completed. 

1.4 Research Contributions 

 The contributions of this research are as follows.  A new Bayesian reliability 

growth assessment technique is introduced for continuous-use systems under general 

corrective action strategies utilizing data from reliability growth testing throughout 

the development and maturation of the system.  These techniques differ from those 

currently in the literature due to their allowance for arbitrary times for corrective 

actions.  They also provide a probabilistic treatment of the various parameters within 

the model, accounting for the uncertainty present in the assessment.  The Bayesian 

formulation also allows for sequential updating as additional phases of developmental 

reliability growth testing are completed.  The capability to combine data across 

multiple test phases is also a significant enhancement to currently available reliability 

growth techniques.  To date, many reliability growth models are limited to utilizing 

data from a single test phase.  An additional feature unique to Bayesian models that 

consider multiple failure modes is the capability to account for the failure rate of 

unobserved failure modes.  The model allows practitioners to model complex systems 

that are comprised of large numbers of failure modes, recognizing that only a 

relatively small number of failure modes can be observed during system testing.   

 The Bayesian reliability growth assessment model is then extended to include 

results from operational testing.  The approach considers the posterior distribution 

from the reliability growth assessment of the prior for the operational reliability 

assessment.  The DT and OT environments are not a priori assumed to be equivalent 
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though.  System reliability generally degrades when transitioning from a 

developmental test environment to an operational test environment, and a degradation 

factor is added to the model to account for this difference.  The degradation factor is 

treated probabilistically within the Bayesian framework, and the resulting marginal 

posterior distribution on the system failure intensity is used to provide an assessment 

of the operational reliability.  The approach reduces the uncertainty in the operational 

reliability assessment when compared to the classical approach using the HPP while 

still accounting for the uncertainty in both the prior failure intensity and the 

degradation between test environments.  New statistical risks for reliability 

demonstration are also developed which serve as alternatives to those traditionally 

available through OC curve analysis. 

 A Bayesian reliability growth planning model is also presented that takes 

advantage of the reduced uncertainty in the operational assessment.  The approach 

allows for reductions in the amount of demonstration testing necessary for a given 

level of “confidence” in the assessment, and it can also be used to reduce high design 

goals that often result from traditional OC curve applications.   

 The final part of this research involves combining various sources of reliability 

information to obtain prior distributions on the system reliability to aid in later 

reliability growth modeling.  The approach presents a general framework for utilizing 

information such as component/subsystem testing, historical component reliability 

data, and physics-based modeling of specific component failure mechanisms. 

 The methods presented here also allow for estimation of various management 

metrics such as initial system failure intensity, projected failure intensity after failure 
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mode mitigation, growth potential failure intensity, and the rate of occurrence of 

unobserved failure modes.  These types of metrics provide reliability program 

managers additional information with which to assess the maturity of the system 

under development.  At the same time they can also aid in quantifying the risk that 

may exist in achieving the reliability goals of the development program.   

 It should also be noted that the techniques proposed here could serve more 

generally to assess the reliability of a system even when reliability growth is not 

being realized through a corrective action process.  The model framework is also 

flexible enough to use as a general data fusion process for assessing the overall 

system reliability even when reliability growth is not present.    

1.5 Research Overview 

The rest of this thesis is organized as follows.  Chapter 2 provides a literature 

review of reliability growth models and system reliability approaches that are 

available in the literature.  Chapter 3 presents a Bayesian reliability growth projection 

model for continuous-type systems that can be applied to multiple systems under test 

with arbitrary corrective action strategies.  Chapter 4 develops a Bayesian method for 

assessing reliability using a combination of developmental reliability growth test data 

and operational reliability demonstration data.  Chapter 5 provides a Bayesian 

approach for reliability growth planning using the modeling concepts developed in 

Chapters 3 and 4.  Chapter 6 presents a Bayesian framework for developing prior 

distributions for system level reliability growth testing using a combination of 

historical data, component/subsystem testing, and physics-based modeling.  Chapter 7 

presents a case study that applies the assessment approaches in Chapters 3, 4 and 6 to 
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a complex system.  Chapter 8 discusses areas for future work involving extensions of 

the research presented here to discrete or one-shot systems.  Chapter 9 provides 

conclusions regarding the research conducted.  A brief overview of each chapter is 

presented below. 

1.5.1 Chapter 2 – Literature Review 

 A number of reliability growth models and reliability assessment techniques 

have been developed and presented in the literature.  Each has been developed for the 

purpose of providing reliability practitioners with the capability to estimate and 

manage an overall reliability program for a specific situation of concern.  This 

research covers not only the development of new reliability growth models, but also 

the more general probabilistic modeling of reliability.  For this reason the literature 

review in Chapter 2 is divided into three major components, the first involving 

reliability growth models, the second discussing reliability demonstration testing, and 

the third involving more general reliability assessment techniques.  The first section 

on reliability growth is further divided into sections on reliability growth planning, 

tracking, and projection.  The second section covers reliability testing, and the third 

section focuses on data combination techniques for reliability assessment.  

1.5.2 Chapter 3 – A Bayesian Model for Complex System Reliability Growth Under 

Arbitrary Corrective Actions 

 Chapter 3 presents a new method for projecting the reliability growth of a 

complex continuously operating system.  The model allows for arbitrary corrective 

action strategies, and it differs from other models of this type by using all available 
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data rather than failure mode first occurrence times only.  It also differs from other 

reliability growth projection models, in that it provides a complete inference 

framework via the posterior distribution on the system failure intensity.  A unique 

feature of this approach relative to other Bayesian techniques is the analytic 

expression for the failure intensity contribution from unobserved failure modes.  

Expressions for the estimating the initial failure intensity, growth potential failure 

intensity, and the cumulative number of failure modes expected in future testing are 

also developed.  Extensions to the basic framework are also developed.  The first 

accounts for multiple systems under test, and the second develops the posterior 

distribution while allowing for uncertainty on the FEF values that are assessed. Two 

separate goodness-of-fit procedures are presented for assessing the appropriateness of 

the underlying model assumptions.   

 The main assumptions of the approach are: 

1. The system is comprised of a large number of failure modes that are serial in 

nature; the occurrence of any failure mode results in failure of the system. 

2. Failure modes generate failures independently of one another. 

3. The failure intensity, or rate of occurrence of failure, for each mode is 

constant both before and after a corrective action is implemented.   

4. The resulting failure intensity after corrective action will be reduced from the 

initial value according to the assigned FEF. 

5. Corrective actions to failure modes do not introduce new failure modes into 

the system. 

6. Failure mode failure intensities have a common Gamma prior distribution. 
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7. Reliability testing will stress the system in an operationally relevant manner. 

1.5.3 Chapter 4 - Assessing Reliability Growth Using Developmental and 

Operational Test Data 

 Chapter 4 presents a new Bayesian reliability assessment model to mitigate 

the problem of reliability demonstration with fixed configuration testing alone.  The 

approach allows for the combination of developmental reliability growth test data 

with operational reliability test data within a Bayesian probabilistic framework.  The 

reliability data available throughout DT can provide a substantial amount of 

reliability information that can inform the assessment of reliability in OT.  The result 

is less uncertainty in the assessed reliability than would be present with operational 

test data alone.  Previous data combination methods do not explicitly model 

traditional reliability growth, which refers to the discovery and mitigation of failure 

modes within the system.  This process ultimately improves the underlying reliability 

of the system.  These models generally work with test data from individual test events 

to assess the system reliability at the current stage of development.  They do not 

generally consider information that may be available from previous testing, which is 

particularly useful when individual test events are limited in size.  Differences in the 

test environments and stressors must always be considered when combining data 

from different test events, and the model explicitly accounts for the degradation that 

usually exists when moving from developmental to OT.    Interval procedures and 

model assessment techniques are also presented to aid in practical application of the 

proposed method.  Analogous OC curve results are also developed, which can be 
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used to help plan reliability demonstration testing.  The approach developed in this 

chapter is used as the basis for the reliability growth planning model in Chapter 5. 

1.5.4 Chapter 5 – Reliability Growth Planning Using Combined Developmental and 

Operational Test Data for Reliability Demonstration 

  Reliability growth planning is a specific subset of reliability growth modeling 

that is useful for designing reliability test programs.  The models are developed and 

used before actual test data are available, but they are generally based on a 

corresponding assessment technique.  More recent planning models require the user 

to provide certain inputs that are important to the overall reliability growth program.  

These inputs include parameters such as the Management Strategy (MS), FEF, initial 

Mean Time between Failure (MTBF) value, and MTBF requirement. 

 System level reliability growth planning culminates in a reliability 

demonstration test to assess whether or not a new acquisition system has met its 

reliability requirement.  This demonstration is statistical in nature, and therefore 

requires management and understanding of the associated statistical risks of the 

planned test.  Traditional models consider the reliability demonstration event 

separately from the reliability growth, using an OC curve to manage these risks.  This 

often results in reliability design goals that are significantly higher than the reliability 

requirements themselves.  In many practical cases these goals are more than double 

the actual requirements, but they are purely a result of the statistical estimator being 

employed to assess the reliability.   

 This chapter presents a new reliability growth planning model that explicitly 

combines developmental and operational data from different test events for reliability 
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demonstration.  The model is a natural extension to the traditional reliability growth 

planning models that are currently used.  Differences in the test environments and 

stressors must always be considered when combining data from different test events, 

and the model explicitly accounts for the degradation that usually exists when moving 

from developmental to OT.  The proposed approach explicitly models the uncertainty 

in both the system failure intensity and the degradation between test environments 

within a Bayesian framework, allowing for narrower uncertainty intervals and 

reduced reliability goals for statistical demonstration.  The approach directly 

addresses many of the existing issues with the traditional OC curve based reliability 

growth planning.   

1.5.5 Chapter 6 – Development of Prior Information Using Lower-Level Data 

Sources 

 Chapter 6 presents a general methodology for developing prior information on 

the system reliability by combining lower level information that may be available 

before full system-level testing has been conducted.  System level data collected 

under operationally relevant testing is the most desirable information source for 

assessing system reliability, but during early stages of development this type of 

information may be unavailable.  There are often other sources of reliability related 

information that are available in the early stages of development of the system 

though, and in these cases it is possible to utilize these information sources to develop 

an early assessment of the system reliability.  When viewing the process of reliability 

assessment across the various stages of development of the system, assessment in this 
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manner serves as prior information that can be updated with the reliability growth 

models in Chapters 3 and 4 when system-level test data are available.  

 The reliability growth models are developed for complex repairable systems, 

where components and/or subsystems fail and are replaced throughout the life of the 

system.  The process of component failure and replacement is assumed to result from 

renewal processes across multiple potential failure mechanisms, which can then be 

used to develop estimates of component failure intensities via a Homogeneous 

Poisson Process.  A system level representation of the reliability structure, such as a 

reliability block diagram or fault tree, is then used as a means of combining the 

information on the components and subsystems.  The approach reduces the complex 

system structure into an equivalent series representation of failure modes, which 

aligns with the model assumptions in Chapters 3 and 4.  The connection between 

component or redundant block failures and their corresponding failure modes is also 

developed. 

 Uncertainty distributions are developed for each failure mode using data for 

the individual components or those within a redundant block.  Bayesian posterior 

distributions are used when component data are available, and a more general 

uncertainty distribution is developed when only physics-of-failure model results are 

available.   When the component information that is available does not accurately 

represent the reliability of the component within the new system (e.g. benign testing, 

historical data from similar system, etc.), a probabilistic technique is provided to 

account for the degraded reliability and additional uncertainty that is present due to 
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additional failure modes or mechanisms that are not accounted for in the data or 

modeling. 

1.5.6 Chapter 7 – Reliability Assessment Throughout Development: A Case Study  

 Chapter 7 presents a case study that combines the techniques of Chapters 3, 4, 

and 6 for a military system.  The approach in Chapter 6 is first used to develop the 

prior distribution on the system reliability before system-level testing is conducted.  

Historical data on the subsystems and components of the system are used along with 

stress-life modeling of fatigue on the driveshaft within the driveline of the system.   

 The prior distribution is then updated with test results from developmental 

reliability growth testing.  The posterior distribution after DT is developed using the 

model in Chapter 3.  The model in Chapter 4 is then used to update the DT posterior 

distribution with results from a limited operational test.  The case study demonstrates 

the practical use of the reliability assessment technique throughout development that 

is the major intent of this research. 

1.5.7 Chapter 8 – Future Work 

 Chapter 8 presents opportunities for future work in this area.  A discussion of 

the approach as applied to discrete-type (i.e. one shot devices) is presented.  A Beta 

prior distribution is used as the discrete analogue to the Gamma distribution, and a 

potential discrete extension to the reliability growth model in Chapter 3 is provided.  

A brief discussion of the analogous approach for combining developmental and 

operational test data in Chapter 4 is also provided, although analytic results are not 

developed.  The chapter closes by briefly discussing areas for further research 
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involving probabilistic modeling of failure mechanisms using information theory 

concepts. 

1.5.8 Chapter 9 - Conclusion 

 Chapter 9 provides a general discussion and conclusions for the work 

presented throughout the thesis.  The contributions of the research are restated and 

compared to the original objectives.  A summary of each chapter is also provided. 
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2 LITERATURE REVIEW 

 A number of reliability growth models have been developed and presented in 

the past.  Each has been developed for the purpose of providing reliability 

practitioners with the capability to estimate and manage an overall reliability program 

for a specific situation of concern.  This research covers not only the development of 

new reliability growth models, but also the more general probabilistic assessment of 

system reliability.  For this reason the literature review is divided into three main 

sections.  The first reviews various reliability growth models in the literature, the 

second provides an overview of some recent papers on reliability demonstration 

testing, and the third discusses some recent system reliability assessment techniques.  

The first section on reliability growth is also further divided into sections on 

reliability growth planning, tracking, and projection.   

2.1 Reliability Growth planning Models 

2.1.1 Duane Model (1964) 

 The Duane Model [11] was developed based on the observation that changes 

to a system design to improve reliability resulted in a specific functional relationship 

when examining the cumulative failure rate of the system with respect to cumulative 

test time.  This relationship was seen to be linear when examined on a Log-Log scale, 

and is commonly known as the Duane Postulate.  The negative of the slope of the line 

is referred to as the “growth rate”, as it provides an indication of the rate at which the 

system reliability is improving.  The functional form underlying the Duane Model is 

utilized as a fundamental assumption in a number of reliability growth models that 
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are discussed later in this chapter.  The original intent of the model was for reliability 

growth tracking, but it is included under planning due to its importance in the 

development of a number of other reliability growth planning and tracking models.   

2.1.2 Selby and Miller’s Reliability Planning Management Model (1970) 

 Selby and Miller developed the Reliability Planning Management Model [12] 

in 1970.   The model provides an approach for planning and managing reliability 

programs for complex systems, and the basic concept behind the model is that the 

reliability growth of the system follows the Duane Postulate.  The Duane Postulate is 

a common assumption underlying many reliability growth models in the literature, 

but the model is the first known use of the Duane postulate for reliability growth 

planning. 

2.1.3 Military Handbook 189 Model (1982) 

 The reliability growth planning model presented in MIL-HDBK 189 [13] is 

based on the Power Law Non-Homogeneous Poisson Process (NHPP) Model first 

presented by Crow [14] in 1974.  As discussed below in the section on reliability 

growth tracking, the Power Law NHPP was the first stochastic application of the 

Duane Model.  The MIL-HDBK 189 Model is the second reliability growth planning 

model to be based on the Duane Postulate, and its purpose is to provide a plan for 

reliability improvement over a period of multiple phases of DT.  The model is one of 

the earliest to outline an approach for reliability growth management during a system 

reliability growth program, where the achieved reliability growth can be compared to 

the planned values from the model. 
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 The model develops an idealized reliability growth curve for a test-analyze-

fix-test (TAFT) process.  This process depicts the pattern of reliability improvement 

when corrective actions are applied to observed failure modes when the failure modes 

are discovered during the test.  The idealized growth curve is defined by a number of 

parameters that are common in reliability growth planning models.  These include the 

initial Mean Time Between Failures (MTBF), the length of the initial test phase, the 

goal MTBF at the end of the test program, the growth rate, and the total amount of 

testing in the entire reliability growth program.  The model also provides incremental 

reliability steps that depict the planned reliability targets for the various phases of the 

developmental test program.  The steps are taken as the average value of the idealized 

curve over the developmental test phases. 

 The AMSAA System Planning Model (SPLAN) [6] is a later extension of the 

MIL-HDBK 189 Model.  The SPLAN model requires only four of the five input 

parameters mentioned above, solving automatically for the remaining input. 

2.1.4 AMSAA Subsystem Planning Model (1992) 

 The AMSAA Subsystem Planning Model (SSPLAN) [15] developed 

reliability growth planning curves at the system or subsystem level, where the MTBF 

requirement is to be demonstrated with a desired level of statistical confidence.  The 

model determines testing and MTBF requirements for the subsystems of interest in 

order to have the system MTBF meet the desired requirement with confidence.  OC 

curve analysis is also provided [16], where the consumer and producer risks are 

developed in terms of the model parameters. 
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2.1.5 AMSAA Planning Model Based on Projection Methodology (2006) 

 The AMSAA Planning Model Based on Projection Methodology (PM2) [17] 

is the most recent reliability growth planning model to be developed through work at 

AMSAA.  The model was developed with the purpose of providing a reliability 

growth plan to aid in the management of developmental reliability programs for 

complex systems.  The main difference of this model the other planning models 

previously discussed is that it is independent of the NHPP assumption.  The model is 

instead based upon the “doubly-stochastic” process developed in the AMSAA 

Maturity Projection Model (AMPM) [18], and it uses parameters that can be directly 

influenced by reliability program management.  These include parameters such as the 

initial MTBF, MS, goal MTBF, total test time, average FEF, the number and 

placement of Corrective Action Periods (CAPs), and the planned developmental test 

hours. An additional input metric is the average lag-time associated with 

implementing corrective actions for observed failure modes.  PM2 is thought to be the 

first planning model to consider the impact of this lag time, which can significantly 

impact the reliability improvement that is actually realized during system 

development.  

 As with other planning models, PM2 also provides an idealized curve along 

with incremental reliability steps for specific test phases.  An additional difference 

with PM2 is that the incremental steps are developed while applying the corrective 

action lag time, which results in them falling entirely below the idealized reliability 

growth curve.  These steps are based on the realization that a majority of corrective 

actions to failure modes observed during test events are made during CAPs between 
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the test phases.  United States Army Policy [5] has recently specified PM2 as the 

preferred reliability growth planning model for developmental reliability programs 

for complex military systems.   

2.1.6 Crow Extended Model for Reliability Growth Planning (2010) 

 The Crow Extended Planning Model [19] is a modified and improved version 

of the MIL-HDBK 189 model, and is based on the projection model of the same name 

[20].  It utilizes many of the advancements first developed in the PM2 model, and the 

input parameters are mainly the same.  These include parameters such as the initial 

MTBF, MS, goal MTBF, total test time, average FEF, the number and placement of 

CAPs, the planned developmental test hours, and the average lag-time associated with 

implementing corrective actions for observed failure modes.  An additional input 

known as the discovery Beta is also required, which describes the rate at which new 

correctable modes will be discovered during testing.  Because of the inherent 

connection to the NHPP associated with the MIL-HDBK 189 Model, a discovery 

Beta values less than one indicates reliability growth is occurring. 

2.1.7 Hall Discrete Planning Model Based on Projection Methodology (2011) 

 The Planning Model Based on Projection Methodology – Discrete (PM2-

Discrete) [21] was developed as an analogue to the PM2 model developed for 

continuous systems.  The model is based on underlying reliability growth projection 

methodology developed by Hall [22] to address the lack of projection models for 

discrete one-shot type systems.  The model provides a number of uses for reliability 

program managers, such as determining planned reliability achievement for available 
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program resources, serving as a baseline target which realized reliability values can 

be compared against, and quantifying the feasibility of a test program for achieving 

final reliability goals.  The model also provides a series of useful metrics associated 

with the reliability growth of the system. 

2.2 Reliability Growth Projection Models 

2.2.1 Corcoran, Weingarten, Zehna Model (1964) 

 Corcoran, Weingarten and Zehna [23] developed the first model for estimating 

reliability after corrective action. The approach was developed with consideration to 

estimating reliability in the final stage of development of an “expensive item.” The 

reliability projection is suitable in cases where corrective actions are installed at the 

end of a test consisting of N independent trials.  The trial outcomes are assumed to 

follow a multinomial distribution with parameters N (total number of trials), q0 

(unknown success probability), and pi (unknown failure probability for failure mode i 

= 1, ..., k ).  The assumption of a multinomial model implies that at most one failure 

mode can occur per trial.  An exact expression for the system reliability is presented, 

and comparisons of various estimators are provided.  

2.2.2 AMSAA Crow Projection Model (1982) 

 The AMSAA Crow Projection Model [24] uses the NHPP interpretation of the 

Duane Postulate to describe the rate of occurrence of failure modes in the system.  

The intent of the model is to project the growth in reliability that would be seen at the 

beginning of the next phase of testing following implementation of planned corrective 
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actions.  In this regard, the model assumes that all corrective actions are delayed until 

the end of the current test phase.  The model is also one of the first to introduce the 

concept of the reliability growth potential, which is the theoretical upper limit on 

reliability that can be achieved via the test-fix-test reliability growth paradigm.  This 

concept is an important factor that governs reliability growth programs in general, 

and it is commonly considered and monitored for current reliability growth programs 

in the U.S. Department of Defense.  Two separate goodness-of-fit procedures are 

available, a Cramer Von-Mises test and Chi-Squared test, but no interval procedures 

have been published. 

2.2.3 AMSAA Maturity Projection Model (1995) 

 Instead of a direct NHPP assumption, the AMSAA Maturity Projection Model 

(AMPM) [18] uses a “doubly-stochastic” process to describe the underlying behavior 

of the system failure intensity.  The model assumes that the system is comprised of a 

number of failure modes, with the collection of mode failure rates being realizations 

from a common Gamma distribution.  The time between failures for each mode is 

then assumed to be Exponential.  AMPM is the first projection model to allow for 

arbitrary corrective actions, as the corrective actions can occur during the test or be 

delayed until after the test.  Because of this it uses only the first occurrences of each 

failure mode to develop failure intensity estimates.  The AMPM is also the underlying 

methodology on which the PM2 reliability growth planning model [17] is founded. 

 In addition to the system level failure intensity, the model also provides 

estimates for the expected number of observed failure modes in later testing, the rate 

of occurrence of new failure modes, and the percent of the initial failure intensity 
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comprised of the modes that have been surfaced.  Goodness of fit procedures are 

available using the expected number of failure modes, but no confidence intervals 

have been developed to date. 

2.2.4 Clark Projection Model (1999) 

 The projection model proposed by Clark [25] was developed due to the 

recognition that many programs do not achieve significant reliability growth until late 

in the program near production.  The proposed reasoning for this occurrence is the 

lack of focus on reliability early in the development of a new system.  The Clark 

model is an extended version of the AMSAA Crow projection model [24] that has 

two main differences.  The first is that the original model is modified to allow for 

arbitrary corrective actions, and the second is the addition of an inherent failure rate 

term that allows for decisions to be made regarding future reliability investment.  If 

the current reliability is too close to the maximum possible value, it may not be cost 

effective to continue to invest in further reliability improvement through test-fix-test 

processes.  

2.2.5 AMSAA Maturity Projection Model – Stein (2004) 

 The AMSAA Maturity Projection Model – Stein (AMPM-Stein) [26] was 

developed as an extension to AMPM [18].  The extension does limit one of the 

original assumptions of the model, as the corrective actions in this case must be 

delayed until after the test.  The model uses the same underlying theoretical structure 

as the original AMPM, but additional data are used to develop the model estimates.  

All of the data, both first and repeat occurrence times, are used to develop shrinkage 
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estimates, or Stein estimates, [27] to develop the model.  The benefit of the approach 

is that the use of the additional data provides an increase in the accuracy of the 

resulting estimates.  The shrinkage estimation minimizes the mean square error value, 

which provides an immediate connection to Bayesian modeling using squared error 

loss functions.  As with the original AMPM, goodness of fit procedures are available, 

but no confidence interval methods have been reported to date. 

2.2.6 Crow Extended Model (2004) 

 The Crow Extended Model [20] was developed to model arbitrary corrective 

action strategies using the previously existing AMSAA-Crow NHPP modeling 

framework.  The Extended Model is a straightforward combination of the AMSAA 

Tracking Model [28] and the AMSAA Crow Projection Model [24].  Failure Modes 

are classified using the traditional A-mode and B-mode distinction, where A-modes 

are those failure modes that will not be addressed via corrective action.  The B-modes 

are further divided into BC-modes and BD-modes, with BC-modes having corrective 

actions implemented during the test phase and BD-modes having the corrective action 

delayed until after the test is complete.  The model uses all A, BC, and BD-mode 

failures in the AMSAA Tracking Model to get an estimate of the reliability growth 

that occurs during the test.  The BD-mode failure intensity is then estimated using the 

maximum likelihood estimate nBD/T for nBD failures in test time T.  Because the BD-

mode corrective actions are delayed, their growth contribution during the test must be 

subtracted from the Tracking Model estimate and replaced with a more appropriate 

estimator.  The BD-mode failure intensity after corrective action is then estimated 

with the AMSAA Crow Projection Model [24].  The overall result for the Extended 
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Model then subtracts the BD-mode maximum likelihood estimate nBD/T from the 

Tracking Model result and replaces it with the AMSAA Crow Projection Model 

result.   

 The model has been shown through simulation study [7] to provide extremely 

optimistic results when a large proportion of corrective actions are delayed.  There is 

also a logical discrepancy by treating the A and BD-modes together with the BC-

modes with the AMSAA Tracking Model, which assumes that reliability growth is 

occurring because failure modes are being addressed during the test.  The attempt to 

overcome the issue by subtracting out the BD-mode contribution leaves a bias in the 

model that can provide systemically optimistic results. 

2.2.7 Hall Discrete Projection Model (2008)  

 The discrete reliability growth projection model proposed by Hall [29],[30] is 

a discrete counterpart to the AMPM-Stein Model [26].  The model uses Stein-

estimation procedures [27] to develop shrinkage estimates for the failure intensity of 

unobserved failure modes in the system.  All corrective actions are delayed until the 

end of the current test phase, and more than one failure mode can occur on a given 

trial during the test.   

 Analogous to the AMPM Model [18], the discrete method proposed by Hall 

uses a geometric likelihood for the first occurrence trial of an observed failure mode, 

and the mode probabilities of failure are assumed to be a realization from an 

underlying Beta distribution.  Both Method of Moments and Maximum Likelihood 

Estimators are provided, and results are developed for systems with a known number 

of failure modes and those assumed to be complex with a large number of modes.  A 
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number of associated management metrics are also presented, such as the expected 

number of new failure modes to be observed during additional testing, the rate of 

occurrence of new failure modes, and the reliability growth potential of the system.  

Model performance is also studied via Monte Carlo simulation, and results indicate 

that performance is reasonable with small errors in the projection estimates. 

2.2.8 Bayesian Methodology for Discrete Reliability Growth (2009) 

 The discrete reliability growth methodology presented by Hall and Mosleh in 

[31] was developed as an additional estimation procedure to those first presented in 

[22] and [29].  The approach again uses the underlying theoretical assumption of 

mode failure probabilities as realizations from an underlying Beta distribution.  

Additional assumptions include a Binomial distribution for observed failures during 

test, with all corrective actions delayed until the end of the testing.   

 The Bayesian inference in the model is used only to estimate the parameters 

of the underlying Beta distribution.  Squared error loss is used along with a constant 

prior, and numerical methods are used to evaluate the resulting posterior.  Simulation 

methods are also used to generate uncertainty distributions on each of the 

management metrics developed in [29] and [30].   

2.2.9 Hall, Ellner, Mosleh Discrete Reliability Growth Projection Model (2010)  

 The model presented in [22] uses the underlying assumption of mode failure 

probabilities as realizations from a Beta distribution.  The model differs from the 

previously presented discrete models though, as it allows for arbitrary corrective 

actions to occur either during or directly after the test.  Only failure mode first 
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occurrence trials are used, along with the corresponding FEF for each failure mode.  

Because only the first occurrence of each failure mode is used, the Geometric 

distribution is used to model the mode first occurrences.  Goodness-of-fit procedures 

are presented in order to validate the model assumptions.   

 Maximum likelihood estimates are developed for the parameters of the Beta 

distribution, with results given for a finite number of failure modes and a complex 

system consisting of a large number of failure modes.  A number of management 

metrics and model equations are also developed, such as the reliability growth 

potential, the expected number of new failure modes, and the fraction of the initial 

failure probability surfaced during the testing. 

2.3 Reliability Growth Tracking 

2.3.1 Weiss’s Reliability Growth Model (1956) 

 Weiss [32] provided an early method for modeling the reliability growth of 

guided-missile systems.   The approach assumed Poisson failures for the system, with 

the system’s Mean Time to Failure (MTTF) changing over successive tests as failure 

modes were observed and mitigated. The approach is flexible enough to allow for 

both increasing and decreasing reliability as a function of time.  The distribution of 

the time-to-failure estimator is provided to allow for calculations on the uncertainty.   

2.3.2 Lloyd and Lipow’s Reliability Growth Model (1962) 

 Lloyd and Lipow [33] provide a reliability growth model for system containing 

a single failure mode. Discrete test events are used, with corrective actions made to 
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the system after any failures.  The approach allows for corrective actions to be 

successful with a specified probability.  The reliability of the system at the nth trial is 

given as 

 

 

R n( ) =1 − a exp −b n −1( )[ ],     (1) 

where a and b are model parameters that are estimated from the data.  Other 

functional forms of potential reliability growth models are also discussed. 

2.3.3 Cox and Lewis’s Reliability Growth Model (1966) 

 Cox and Lewis [34] proposed an early NHPP model.  The functional form is 

defined by  

 

 

m t( ) = exp at + b[ ],     (2) 

where a and b are estimated from the test data.  Reliability growth occurs when a is 

less then zero.  Goodness-of-fit procedures are also presented for model assessment. 

2.3.4 Barlow and Scheuer Reliability Growth During a Development Testing 

Program (1966) 

 Barlow and Scheuer [35] present a reliability growth model involving K 

stages of DT for a system.  A trinomial approach is used to define success and failure, 

with failure further divided into inherent and assignable cause categories.  Inherent 

failures are defined as “those which reflect the state-of-the-art and whose elimination 

would require an advancement thereof”, and assignable cause failures are defined as 

failures which can be corrected through design or operational corrective actions.  The 

reliability of the system in the ith stage of testing is given by ri = 1 – q0 - qi, where q0 
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is the probability of an inherent failure and qi is the probability of assignable cause 

failure at the ith stage.  Estimates of the failure probabilities and reliability are 

presented using the trinomial framework.  A caution is also provided regarding 

interpretation and use of the resulting estimates.  The authors point out that assignable 

cause failures may "mask" inherent failures and vice versa, and recommend that the 

reliability estimate is the only one that should be “trusted”. 

2.3.5 Pollock’s Bayesian Reliability Growth Model (1968) 

 Pollock’s model for reliability growth [36] provides estimated improvements 

in reliability due to corrective actions that are implemented for the system.  The 

model assumes a decreasing trend in the failure rate for each system, and the 

probability of successful repair is specified in order to quantify the probability of 

transitioning from a failed state to a repaired state.  The projections are developed for 

both continuous and discrete systems with separate prior distributions used for before 

and after corrective actions.  Separate estimation procedures are also given for before 

and after testing and corrective actions have been performed. 

 The model contains concepts that are similar in application and intent to the 

FEF values that are used in more recent reliability growth projection models, 

although they are somewhat more restrictive in the treatment of corrective actions.  

Pollock’s µ is equivalent to the remaining failure rate after a corrective action has 

been applied, which is given by (1-d)λ for FEF d and failure rate λ.  The parameter a 

is the repair probability, or the probability of the failure rate decreasing to µ.  When 

applied together, these terms do allow for the possibility of non-effective corrective 
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actions to be made to the system.  They do model a binary process though, as the 

corrective action is either successful or it is not, and levels of imperfect corrective 

actions cannot be considered.  Current approaches using FEF values now allow for 

varying degrees of corrective action effectiveness represented by the assigned value 

of the FEF for the specified failure mode. 

2.3.6 Littlewood and Verrall Bayesian Reliability Growth Model (1973) 

 The Bayesian reliability growth model proposed by Littlewood and Verrall in 

[37] was originally developed for computer software.  The concepts underlying the 

model are introduced within the software development context, but they are easily 

applicable to a wide variety of situations.  The model assumes a Gamma-Exponential 

process, with Exponential time between failures and failure rates distributed via the 

Gamma distribution.   

 The scale parameter of the Gamma is the focus of the reliability growth in the 

model.  The parameter is allowed to vary with time, which implicitly accounts for the 

effectiveness of corrective actions that are implemented.  Estimation of the Gamma 

scale parameter is also discussed, and numerical procedures are provided along with a 

Kolmogorov-Smirnov goodness of fit approach that eliminates that need for 

numerical integration procedures. 

2.3.7 Crow’s Reliability Growth Tracking Model (1974) 

 Crow’s tracking model [14] is a probabilistic extension of the Duane model 

[11].  The same log-linear relationship of the Duane model is used to describe the 
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underlying functional form of the tracking model.  The probabilistic extension treats 

this relationship as a NHPP.  The mean value function of the NHPP is given as  

 

µ t( ) = λtβ .     (3) 

The assumption of an NHPP for the number of failures allowed for the development 

of statistical estimators and associated goodness-of-fit tests, which gave more 

statistical rigor to the repairable systems reliability growth that was covered by the 

Duane model.  The model is also known as the “Weibull Process” due to the 

mathematical property that the time to first failure in the assumed NHPP is a Weibull 

random variable.  Another common name is the “Power Law Process”, which is a 

direct result of the functional form of the NHPP. 

 This approach to reliability growth tracking became the foundation for a 

number of later models, and the same underlying NHPP form was used for an 

assortment of planning, tracking, and projection models.  Crow continued to expand 

upon the original development, adding confidence bounds on the NHPP parameters 

and associated MTBF, and extensions to include both time-truncated and failure-

truncated testing.  Straightforward extensions were later provided to account for 

multiple identical systems under test. 

2.3.8 Smith’s Bayesian Note on Reliability Growth during Development Testing 

(1977) 

 This short paper [38] provides a Bayesian method for estimating the final 

reliability that is achieved after multiple Binomial tests have been conducted.  

Uniform prior distributions are used on the successive Binomial parameters.  The 
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marginal distribution for the probability of success on the last configuration of the 

system is developed.  The result is a convex combination Beta functions, and a 

numerical example is provided for comparison with other previously developed 

techniques. 

2.3.9 Fard and Dietrich’s Bayes Reliability Growth Model for Development Testing 

(1987) 

 Fard and Dietrich [39] provide a correction to the model proposed by Smith 

[38].  The assumptions surrounding the test program are the same as those originally 

used by Smith: the development consists of a series of binomial tests, the reliability is 

assumed to be non-decreasing, and the prior distributions for each of the successive 

reliabilities are uniform.  An example is provided for comparison, and a simulation 

study is also presented to examine the performance of the corrected estimator.  The 

model is shown to perform as good or better than Read’s Barlow Sheuer model, and 

the mean squared error decreases significantly as the number of test stages is 

increased. 

2.3.10 Engelhart and Bain’s Prediction Intervals for the Weibull Process (1978) 

 Engelhart and Bain [40] provide a short paper on prediction intervals for the 

model form proposed by Crow in [14].  The intent of the paper is to provide statistical 

inference on the kth future observation of the model process, to include point 

estimates and confidence intervals.  Results are derived with the intent of avoiding 

numerical integration.  For values other than k = 1, simplified approximations are 

provided based on available Chi-Squared percentile calculations.  An example 
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application is also provided, with comparisons between the assumed Weibull process 

and an exponential process model. 

2.3.11 Barlow Scheuer Reliability Growth from Bayesian Viewpoint (1978) 

 Weinrich and Gross [41] present the Barlow-Scheuer Reliability Growth 

Model using Bayesian methods for estimation.  As in the Barlow-Scheuer Model 

[36], failures are assigned to two categories: inherent failures and assignable-cause 

failures.  As in the original version of the model, this assignment is similar to current 

reliability growth models that divide failure modes into A and B modes, where A 

modes are those inherent failure modes that will not receive a corrective action and B 

modes are those failure modes for which a corrective action will be implemented 

when observed.  Dirichlet priors are used for the three possible outcomes of 

assignable cause failure, inherent failure, or success. 

 The model assumes that testing occurs in independent stages, but differs from 

the original version in the treatment of assignable cause failures.  When a corrective 

action is implemented for an assignable cause failure, the original Barlow-Sheuer 

model redistributed the failure probability into the success category.  The Bayesian 

version is somewhat more conservative in its approach though, as it allows for the 

assignable cause probability to be redistributed among the other causes of failure 

along with the success.  This treatment still assumes that the corrective action is 

perfect, with the failure probability for the specific failure reduced to zero after the 

corrective action occurs. 
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2.3.12 Langberg and Proschan’s Relability Growth Involving Dependent 

Components (1979) 

 Langberg and Proschan [42] provide a theoretical discussion on modeling 

reliability growth when dependency may exist between components within the 

system.  The approach involves transforming the problem involving dependency into 

an equivalent model with independence.  Consistency between the limiting forms of 

the dependent and independent approaches is demonstrated, but no practical examples 

are provided. 

2.3.13 Goel and Okumoto Time Dependent Error-Detection Rate Model for Software 

Reliability and Other Performance Measures (1979) 

 Goel and Okumoto [43] provide a NHPP model for modeling the occurrence 

of software failures.    The objective of the approach is to provide a parsimonious 

model with parameters that have an underlying physical interpretation while also 

yielding a quantitative assessment of software performance.  The main assumption is 

a standard NHPP, and the mean value function is motivated by assuming 

proportionality to the expected number of unobserved failures in the code.  This 

assumption results in a difference equation that can be easily solved to find the mean 

value function of  

 

µ t( ) = a 1 − e−bt( ).      (4) 

The parameter b is equal to the ratio of detected failures to remaining failures, which 

fits the original intent of the model. 
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 Various performance measures of interest are derived along with MLEs for 

the model parameters.  An example application is provided, and comparisons are 

made between the proposed NHPP and the Jelinski-Moranda model [44].  The results 

show that the NHPP fits the example failure data well, and the performance measures 

are also shown to be more conservative than the Jelinski-Moranda approach. 

2.3.14 Crow’s Discrete Reliability Growth Tracking Model (1983) 

 Crow’s discrete reliability growth tracking model [45] can be considered as 

the discrete analogue of the continuous version [14] first developed in 1974.   The 

model uses the same NHPP assumption for the cumulative number of failures as the 

continuous version.  This allows for development of expressions that describe the 

change in probability of failure from configuration to configuration.   Statistical 

estimators and associated goodness-of-fit metrics are developed for the model.  

Results are also provided for both grouped data (i.e. where each configuration 

involves multiple test trials) and trial-by-trial data. 

2.3.15 Littlewood’s Rationale for a Modified Duane Model (1984) 

 Littlewood [46] provides a discussion of the Duane Model and its associated 

Power Law NHPP.  Two undesirable properties are noted: the first being that the rate-

of-occurrence of failiures (ROCOF) is infinite at time t = 0, and the second being that 

the ROCOF is zero as the time t goes infinity.  A straightforward modification to 

handle the second problem is proposed.   It involves the addition of a constant term to 

represent the rate of occurrence of failures that cannot be removed from the system, 

and no further development is provided.   
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 The paper instead focuses on the first problem of an infinite ROCOF at time 

zero.  The proposed approach is to model the occurrence of independent 

exponentially distributed faults with rates that are realizations of a Gamma 

distribution.  No estimation procedures or associated goodness-of-fit procedures are 

presented.  The resulting NHPP is a modified Power Law with a finite value of the 

ROCOF at time zero.  This approach appears to be similar in concept to Littlewood 

and Verral [37], in that it examines the reliability on a failure or fault mode basis.  

The NHPP is used in this case to describe the behavior between the faults rather than 

the failures themselves.  An additional interesting point in the paper is the further 

discussion involving the use of the NHPP to model the occurrences of failures in a 

reliability growth setting.  It is noted that the process of observing and then correcting 

a failure does not result in independent increments, and therefore the assumption of 

an NHPP for failure occurrences in reliability growth is not appropriate.   

2.3.16 Robinson and Dietrich’s Nonparametric Bayes Reliability Growth Model 

(1989) 

 Robinson and Dietrich [47] present a nonparametric approach to assessing the 

reliability growth of a system using Bayesian methods.  The main model assumptions 

are Exponential times between failure and non-decreasing reliability over successive 

stages of testing.  Each stage of testing is broken into distinct test periods.  General 

expressions for the moments of the resulting posterior distribution on the failure 

intensity are provided, along with an additional recursive estimation formula.  A 

numerical example is provided, and simulation studies are presented to compare the 
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model performance to the Power Law model and a previously developed 

nonparametric technique. 

2.3.17 Bayes Inference for Power Law Non-Homogeneous Poisson Process (1989) 

 Guida, Calabria, and Pulcini provide a Monte Carlo simulation study of the 

power law NHPP using Bayesian procedures [48].  Multiple cases are presented, each 

assuming different non-informative and informative priors for the α and β parameters 

in the NHPP parameterized as  

 

λ t( ) =
β
α

 
 
 

 
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β −1

.      (5) 

The first non-informative case uses a joint Jeffrey’s prior for both of the parameters, 

and a second non-informative case uses a uniform prior for β and a Jeffrey’s prior for 

α.  Informative priors for the NHPP parameters are developed by using a Gamma 

distribution to describe the expected number of failures in the time interval given by  

 

m T( ) =
T
α

 
 
 

 
 
 

β

.     (6) 

  The simulation comparison results indicate that the Bayesian methods provide 

better estimates than the classical maximum likelihood estimators.  A number of 

cases were examined, and the benefits of the Bayesian methods were observed even 

in cases where there was a modest amount of prior information or even weak prior 

information. 
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2.3.18 Singpurwalla and Soyer’s Non-Homogeneous Autoregressive Processes for 

Tracking (Software) Reliability Growth, and Their Bayesian Analysis (1992)  

 Singpurwalla and Soyer [49] present a reliability growth model where the life 

between successive modifications to the system is assumed to be log-normally 

distributed.  The reliability growth or decay is described by a power law non-

homogeneous autoregressive process given as  

 

Xt = Xt −1
θ tε t ,     (7) 

where θt implies growth or decay and εt is log-normally distributed. 

 Two Bayesian formulations are considered, which relax constraints on the 

existence of least-squares estimators for higher order processes (i.e. greater than one).  

The first approach assumes exchangeability of coefficients in the prior distribution, 

while the second imposes an autoregressive relationship between the successive 

values of θt. The two approaches are compared using software reliability data, and 

likelihood ratio results show that the exchangeable prior approach is preferred over 

the autoregressive approach.  

2.3.19 Mazzuchi and Soyer’s Reliability Assessment and Prediction During Product 

Development (1992) 

 Mazzuchi and Soyer [50] present a Bayesian assessment approach for discrete 

type systems.  The underlying motivation for the approach is a test-fix-test approach 

involving multiple identical trials until a failure is observed.  Upon observation the 
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failure is addressed through a modification to the system that results in increased 

reliability.   

 The trials can therefore be modeled with a geometric likelihood, with the 

additional assumption that the sequence of reliability values resulting from successive 

modifications is non-decreasing.  An ordered Dirichlet distribution is used for the 

prior over the sequence of reliability values, resulting in Beta marginal distributions.  

Posterior results are developed along with prior predictive analysis.  Prior formulation 

through expert elicitation and feedback is also discussed in the context of the ordered 

Dirichlet approach.   

2.3.20 Fries Discrete Learning Curve Model (1993) 

 Fries [51] presents a discrete reliability growth tracking model that utilizes a 

learning curve approach to model the improvement in reliability over time.  

Derivations and comparisons of the approach are made, along with those of the model 

proposed by Crow in [45].  Approximate MLE procedures are presented, along with 

extensions that separate failures into two categories: those for which the root-cause is 

understood, and those for which the underlying cause remains unknown.  Examples 

are used to demonstrate the application of the approach. 

2.3.21 Fakre-Zakeri and Slud’s Mixture Models for Reliability of Software with 

Imperfect Debugging: Identifiability of Parameters (1995) 

 Fakre-Zakeri and Slud [52] present a mixture model approach for modeling 

the reliability of software when bugs are instantaneously detected and removed from 

the system.  The model is developed in a general manner, treating bug failure rates as 
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realizations from a common mixing distribution.  Many of the models in literature are 

shown to be examples of this structure that vary in the details of the mixture model or 

assumptions surrounding the correction of the bugs.  The number of bugs is assumed 

to fixed and unknown, but the only observable data during test is the overall result 

from a superposition of independent counting processes for each of the bugs.  

Debugging, or corrective actions for each observed bug, is assumed to remove bugs 

imperfectly or even introduce new bugs into the system with a certain probability p. 

 The paper discusses results from a probabilistic viewpoint, paying particular 

attention to the identifiability of the parameters of the potential probabilistic models.  

It is shown that the mixture model assumption allows for identifiable parameters, 

including the probability of introducing a new bug, when the mixture model is the 

widely used Gamma-Exponential type.  No statistical estimators or goodness-of-fit 

approaches are given, but references to many of the commonly used specific mixture 

model forms are given. 

2.3.22 AMSAA Subsystem Tracking Model (1996) 

 The AMSAA Subsystem Tracking Model (SSTRACK) [6] is a generalization 

of Crow’s reliability growth tracking model [14] that explicitly handles data from 

multiple subsystems.  The same underlying Power Law NHPP assumption is used for 

each of the subsystems.  The subsystems are assumed to be serial in structure, and the 

results are combined using the Lindstrom-Madden method [33] for combining data.  

Confidence intervals and goodness-of-fit procedures are provided along with 

statistical estimates of the model parameters.  
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2.3.23 Erklani, Mazzuchi, and Soyer’s Bayesian Computations for a Class of 

Reliability Growth Models (1998) 

 Erklani, Mazzuchi, and Soyer [53] present a Bayesian approach for a broad 

class of reliability growth models, including both continuous and discrete approaches.  

The model first proposed by Mazzuchi and Soyer [50] is presented, along with an 

extension of this approach to exponential and Weibull data.  The reliability changes 

are assumed to non-decreasing for the discrete version of the model, and the 

continuous data case is shown to be a special case of this assumption by 

reparameterizing the likelihood.  This allows for the use of the same ordered Dirichlet 

prior distribution for each case. 

 Development of the priors through expert elicitation is discussed, and 

difficulties in the various posterior calculations are also noted.  These difficulties 

provide motivation for the use of Markov Chain Monte Carlo methods for posterior 

analysis, and Gibbs sampling is demonstrated for each of the proposed approaches.  

Numerical examples are given along with comparisons between each of the potential 

model approaches. 

2.3.24 Walls and Quigley’s Building Prior Distributions for Bayesian Reliability 

Growth Modeling (2001) 

 Walls and Quigley [54] discuss an approach for eliciting expert opinion to 

develop appropriate prior distributions to support reliability growth modeling.  

Suggestions are given for eliminating possible bias in the elicitation, along with 

practical guidance for using the approach within a reliability growth program.  The 
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elicitation process consists of a five-stage approach.  The stages span the entirety of 

the process from development of data collection methods to mathematical 

aggregation of the results in the reliability growth analysis within a feedback loop.  

Specific guidance is also provided for three different roles within the process:  the 

assessor who collects and analyzes the reliability growth data, the management expert 

who will make decisions involving the reliability program, and the technical expert 

who can provide judgment on the various aspects of the system. 

2.3.25 Yu, Tian, and Tang’s Bayesian Predictive Analyses for Nonhomogeneous 

Poisson Processes with Power Law (2007) 

 Yu, Tian, and Tang [55] present a Bayesian approach to modeling reliability 

growth using the Power Law NHPP.  Their work focuses on the predictive capability 

of the model, rather than the statistical inference itself.  The motivation cited is the 

increasing demand for expensive and highly reliable systems in the commercial and 

military industries.  This paper is in many ways a Bayesian analogue to the work first 

completed by Engelhart and Bain [40]. 

 Results are developed for both a single system under test and two systems 

under test.  Posterior and predictive distributions are also developed for two cases, 

with focus on the probability of observing a future number of failures during a test 

period.  The first assumes the shape parameter of the Power Law NHPP is known, 

and the second assumes both parameters are unknown.  Examples are given in order 

to compare the performance of the model assumptions.  The probability of observing 

at most k failures is shown to converge for relatively small values of k for each 

assumed treatment of the shape parameter. 
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2.3.26 Li, Chang, and Chen’s Building Reliability Growth Models Using Sequential 

Experiments (2010) 

 Li, Chang, and Chen [56] present a sequential Bayesian approach to model the 

reliability improvement of a system over a series of reliability growth tests.  Failure 

times are treated as Weibull random variables, with the shape parameter 0 < β < 1to 

match the Weibull Process NHPP under reliability growth conditions.  A reduced bias 

adjustment procedure is used to sequentially develop empirical Bayes estimates of the 

parameters of the Weibull likelihood for the first test phase, and the posterior results 

are used for the prior distribution in successive phases of testing.  Comparisons are 

made with Crow’s reliability growth tracking model [14], and the proposed approach 

is shown to provide results that are as good as Crow’s model while using much 

smaller datasets. 

2.3.27 Xing, Wu, Jiang, and Liu’s Dynamic Bayesian Evaluation Method for System 

Reliability Growth Based on In-Time Correction (2010) 

 Xing, Wu, Jiang, and Liu [57] present a discrete reliability growth approach 

that allows for important information from the development process to be 

incorporated into the model.  As in other papers, the motivation for the model is the 

development of highly reliable systems under difficult fiscal and time constraints.  

The Power Law process for discrete reliability growth developed by Crow in [45] is 

used again here to describe the growth process, and results are derived for both trial-

by-trial and configuration-by-configuration development. 
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 A Bayesian updating process is developed, using maximum entropy to 

develop the prior distribution on the system reliability by assuming that the first two 

moments are known.  A Beta distribution is then used to approximate the prior and 

allow for simple conjugate updating through the underlying Beta-Binomial process.   

2.3.28 Quigley and Walls Reliability Inference Mixing Bayes and Empirical Bayes 

(2011)  

 Quigley and Walls [58] present an approach to assessing reliability by 

combining Bayes and empirical Bayes methods.  The system is assumed to be 

undergoing design changes due to identified failure modes and possible new 

innovation.  Relevant operational data is assumed to exist as well, such as in 

organizations that develop families of similar products.  The method assumes that the 

system is sufficiently complex, in that it contains a large number of potential 

engineering concerns, or failure modes.  The system can also be divided into mutually 

exclusive and conditionally independent concerns.  System failure occurs when the 

first concern is realized during test, indicating a serial relationship between the 

modes.   

 Subjective Bayes techniques are used to construct prior distributions for the 

number of concerns in the system, and empirical Bayes is used to develop the 

distribution for the time to occurrence of a specific concern.  The empirical Bayes 

approach pools the failure data across multiple classes of concerns to assess the 

covariance structure between the classes of concerns.  A unique distribution for each 

class is then provided to use in the system reliability calculation.  An aerospace 

design example is provided to illustrate the approach. 
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2.3.29 Bichon, McFarland, and Mahadevan’s Surrogate Models for Reliability 

Analysis with Multiple Failure Modes (2011) 

 Bichon, McFarland, and Mahadevan [59] present a method for computing the 

reliability of a system with multiple failure modes through a surrogate model. The 

approach considers the overall reliability of a system with multiple failure modes in 

either a series or parallel configuration.  A response function is also assumed for each 

failure mode, where the mode is considered to have occurred when the response value 

surpasses a predefined threshold.  A Gaussian process regression model is then used 

as a surrogate in a global reliability analysis approach that considers the overall 

behavior of the various response functions for the failure modes.   

2.3.30 Strunz and Herrmann’s Planning, Tracking, and Projecting Reliability 

Growth: A Bayesian Approach (2012) 

 Strunz and Herrmann [60] present a unique Bayesian approach to reliability 

growth tracking using lower level data aggregation for liquid rocket engines.  A Beta 

prior distribution is used for each of the functional nodes in the functional block 

diagram that describes the system behavior.  The number of equivalent trials and 

failures are developed through consideration of two main failure mechanisms and the 

relationship between the testing profiles and mission profiles.  Acceleration factors 

are also employed to increase the accuracy of the prior distribution. 

 Markov Chain Monte Carlo techniques are used to develop the posteriors for 

each node, subsystem, and system defined in the block diagram.  The technique is 
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demonstrated on a liquid rocket reliability test program that includes a contractual 

reliability requirement. 

2.3.31 Pievatolo, Ruggeri, and Soyer’s Bayesian Hidden Markov Model for 

Imperfect Debugging (2012) 

 Pievatolo, Ruggeri, and Soyer [61] consider software failures within an 

imperfect debugging process.  The introduction of bugs into the software is 

considered to be a latent or unobservable process, which allows for the use of latent 

variables within a hidden Markov model.  The states within the model are the bug 

rates of occurrence at specified times in the testing.   

 A Bayesian approach is used, where each row of the state transition matrix 

follows a Dirichlet distribution and the bug rates of occurrence follow Gamma prior 

distributions.  The initial states are also assumed to follow a uniform prior 

distribution, meaning that each is equally likely a priori.  The joint posterior of the 

states, bug occurrence rates, and transition probabilities is calculated through Gibbs 

sampling.  An approach for estimating the unknown number of states is also provided 

utilizing the marginal likelihood is also presented. 

2.3.32 H. Okamura, et. al’s Software Reliability Growth Models with Normal Failure 

Time Distributions (2013) 

 Okamura, Dohi, and Osaki [62] present a model for software reliability 

growth that models failure times using the Normal distribution.  The authors discuss 

the problem of modeling software reliability growth with the large number of models 

that are available in the literature.  The model selection process is reduced to one of 
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choosing the appropriate failure time distribution from a number of well known 

statistical candidates, of which the Normal distribution has not been previously 

considered.  The truncated Normal and the LogNormal are both developed for 

software failure times within the reliability growth model, and the Expectation 

maximization algorithm is demonstrated for estimating the parameters for each case.  

Both individual failure data and grouped data are presented, and a numerical example 

is provided to demonstrate the approach. 

2.3.33 Wang, et. al.’s Discrete Nonhomogeneous Poisson Process Software 

Reliability Growth Models (2013) 

 Wang, Wu, Lu, and Li [63] present an approach to modeling software 

reliability growth by considering test coverage along with the failures that occur in 

the process.  The testing is considered as a set of discrete test cases, and the coverage 

assumes that test units are independent with execution probability p for a single test 

unit.  The Beta distribution is used to consider the variability on p, and maximum 

likelihood methods are presented to estimate the parameters of the distribution.   

 The reliability growth model is then developed by assuming that the number 

of faults detected is proportional to the test coverage obtained for each test case.  A 

more restrictive assumption in the initial model is that the debugging process for a 

fault is perfect.  This assumption is relaxed in an extended version of the model that is 

also developed, and maximum likelihood estimates are developed for both 

approaches.  Numerical examples demonstrating the capability of the approach are 

also presented. 
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2.4 Reliability Demonstration Methods  

2.4.1 Yadav, et. al.’s Reliability Demonstration Test Planning (2006) 

 Yadav, Singh, and Goel [64] present an approach to demonstrating the 

reliability of a new system.  The approach is a systematic method for identifying the 

reliability critical elements within the system, and then deciding the appropriate 

reliability demonstration methods to be used for each element.  The system is broken 

into 3 dimensions: physical, functional, and time.  The system level reliability is then 

allocated into each of the critical elements in the system.  The items are ranked via 

the criticality from the FMEA or previously available warranty or field data.  A 6-step 

approach is then identified that takes the developer through the process of 

decomposition, allocation, prior information collection, testing, and assessment.  The 

approach considers the last stages as iterative, and they are to be repeated along with 

any necessary design modifications until the reliability has been sufficiently 

demonstrated.  The assessment itself is Bayesian, and the Gamma distribution is used 

as the prior for the rate parameter of the Weibull.  Continuous updating of the 

assessed reliability is discussed, and the approach advocates the use of all prior 

information, including previous test data and other qualitative information. 

2.4.2 Fan and Chang’s Bayesian Zero Failure Reliability Demonstration Test of 

High Quality Electro-explosive Devices (2009) 

  Fan and Chang [65] present a Bayesian reliability demonstration test for 

electro-explosive devices.  The devices are assumed to be highly reliable, meaning 

that reliability demonstration using standard test methods may not be feasible.  The 
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lifetime of the product is assumed to follow the Exponential distribution, and the 

failure rate is related to temperature through an acceleration factor given by 

 

λw = α 0e
α1w,     (8) 

where w is the temperature and the α values are unknown parameters. 

 The statistical risks for the test are also presented to provide the ability to plan 

for a test that is likely to be passed for a specified temperature.  A simulation study is 

also presented to examine the posterior assurance associated with the approach.  The 

sensitivity of the method with respect to the choice of the prior distribution is also 

discussed, and the statistical risks are shown to be insensitive to the choice of the 

prior. 

2.4.3 Guo and Liao’s Methods of Reliability Demonstration (2012) 

 Guo and Liao [66] present a discussion of reliability demonstration testing 

procedures.  They compare the binomial test based on the number of failures 

observed during the demonstration test with the failure time approach using the 

distribution of the time to failure of the product under test.  The binomial test is 

assumed to be for one-shot devices, or for those systems whose mission length is 

equal to the length of the demonstration test.  A method for conversion of the 

requirement to an equivalent one for a different test length is also provided.   

 The failure time test approach is presented, with the Weibull distribution used 

to model the time to failure.  A comparison of the two test approaches is made, and 

the equivalence between the two methods is presented.  The failure time approach 

assumes that the β parameter is given prior to the test.  The results from each method 
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are shown for different test conditions, with the demonstrated reliability and 

corresponding median rate provided. 

2.4.4 Elsayed’s Overview of Reliability Testing (2012)   

 Elsayed [67] provides a general overview of a number reliability tests.  Eight 

different types of reliability testing are discussed, along with reliability estimation and 

prediction methods.  The tests presented are: highly accelerated life testing, reliability 

growth testing, highly accelerated stress screening, reliability demonstration testing, 

reliability acceptance testing, burn-in testing, built-in-self testing, and accelerated life 

testing.  An overview of various estimation techniques is also provided, each of 

which could applied within the context of multiple reliability tests. 

 The paper concludes by discussing the design of accelerated life test plans.  

Mechanical, electrical, and environmental stresses are considered, and the application 

of the stressors within the test is also discussed.  The remaining consideration 

involves the proportion of units that are to be subjected to the chosen stress levels.  

The design of the test plan is presented in the context of an optimization problem 

involving minimization of the variance associated with the problem. 

2.4.5 Crow’s Demonstrating Reliability Growth Requirements with Confidence 

(2012)  

 Crow [68] presents a method for combining developmental and operational 

test data in the context of demonstrating a reliability growth requirement.  The 

approach follows that of Miller [69], which is based on the MIL-HDBK 189 model 

[14] originally developed by Crow.  The technique assumes a reliability growth 
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program is followed by a fixed configuration reliability demonstration test.   The 

existence of the growth program is used to increase the probability of successfully 

demonstrating the reliability requirement.  The problems that exist with 

demonstrating a requirement with a lower confidence bound in a fixed configuration 

test are discussed, and the high design goals that result from this approach are cited as 

problematic for developers.  

 The approach provides a means for combining developmental reliability 

growth data with data from the demonstration test.  Lower confidence bounds are 

provided along with operations characteristic curve results for the combined 

estimator.  The results are also shown to reduce program risk and cost, and a 

numerical example is provided. 

2.4.6 Cotroneo et. al.’s Combining Operational and Debug Testing for Improving 

Reliability (2013)   

 Cotroneo, Pietrantuono, and Russo [70] present an approach for combining 

debug testing with OT for software systems.  The method is presented as a means of 

overcoming the limitations associated with OT of highly reliable systems.  Various 

problems with OT are discussed, including lack of knowledge of the true operational 

profile of the system and the effectiveness of the operational test in understanding 

reliability.   

 Debug testing is assumed to stress the system under exceptional and 

unexpected inputs, providing a contrast to OT that stresses the system with 

representative operational profiles.  The failure region domain is defined, and 

probabilities of observing a failure region within the operational profile are also 
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specified.  The overall probability of system failure in OT is then defined using a 

Bernoulli distribution for each execution of operational test inputs.  The combination 

of the two test methods is used to increase the likelihood of observing and correcting 

high and low occurrence failures in the system.  An expression for the probability that 

the combined test strategy is better than OT alone is derived, along with associated 

confidence bounds on the probability.  The approach is examined through simulated 

test cases, each of which focused on the operational profile, the number of test cases, 

and the relative amount of debug versus operational test cases.  The paper concludes 

with a case study demonstrating the increased performance of the combined method 

on a space system. 

2.4.7 Hill, et. al.’s Acquisition and Testing, DT/OT Testing (2013) 

 Hill, Gutman, Chambal, and Kitchen [71] discuss developmental and OT 

within the acquisition process in the U.S. Department of Defense.  Different 

approaches for assessing test results via statistical estimators are discussed, along 

with the underlying assumptions associated with each.  The assumption of a “good” 

or “bad” system is presented, along with reasons and relevant scenarios for each 

approach. 

 The paper presents an approach that uses both of the assumptions 

simultaneously by allowing for two separate requirements.  Objective and Threshold 

parameters are defined, where the system is to be designed to the objective in DT and 

tested to the threshold in OT.  The system is assumed to be good during verification 

of design to the objective in DT.  During OT the system assumed to be bad, and the 

minimal acceptable performance of threshold is then verified with high confidence.  

 56 



- CHAPTER 2 - 

The approach is very similar to current reliability growth approaches within the 

Defense Department, where the system reliability is assessed with 2-sided confidence 

intervals in DT and assessed with a lower confidence bound during OT. 

 

2.5  System Reliability Assessment 

2.5.1 Hamada et. al.’s Bayesian Approach for Combining Multilevel Failure 

Information in Fault Trees (2004) 

 Hamada, et. al. [72] provide a method for combining corresponding to 

different levels within a fault tree for a system.  The data are assumed to be discrete, 

and the use of the combined data provides an increase in accuracy and precision of 

the reliability estimates, thus reducing the aggregation error that can exist for such a 

problem.   

 Basic, top, and intermediate events in the fault tree are considered.  Prior 

information about the basic events in the fault tree is described by a Beta distribution, 

and the data for such events are assumed to follow a Binomial likelihood.  Equivalent 

trials and failures are calculated for the prior information on intermediate and top-

level events, and the resulting posteriors can be seen to provide information on the 

basic events through the fault tree structure.  The relative strength or weakness of the 

data for each event is also considered through the coefficient of variation assigned to 

each.   Weak data have a fairly large coefficient of variation, while strong data have a 

relatively small value.  The approach also discusses data collection within the context 

of reducing the variation in the posterior distribution.  The method is developed as a 

means of defining optimal testing and data collection for the system. 
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2.5.2 Reese, Hamada, and Robinson’s Assessing System Reliability by Combining 

Data from Different Test Modalities (2005) 

 Reese, Hamada, and Robinson [73] present an approach to combining discrete 

data from different test modalities to assess the overall reliability of a two component 

parallel system.  The approach considers the combination of four types of data: test 

data from specially produced samples, nondestructive testing, laboratory testing, and 

flight testing.  The nondestructive tests are performed at the component level, while 

the remaining tests are performed at the system level.  The fidelity of the data sources 

is also considered, where fidelity is defined as the amount of agreement with field 

usage conditions. 

 A logistic regression approach is used to relate the different test modalities, 

where the desired component probability of failure, p, from flight testing is defined 

by  

 

log
p

1 −p

 

 
 

 

 
 = µ .        (9) 

The probability of failure values, pi, from the additional test modalities are then 

related to the desired value via the regression model 

 

log
pi

1 − pi

 

 
 

 

 
 = µ + λi  , i  =  1, 2, 3.           (10) 

The li values act as explanatory variables in the regression model, and they are related 

through the assumption that they follow a common Gamma distribution.  A 

hierarchical model is then developed where the m parameter is assigned a Normal 
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prior distribution and the parameters of the Gamma have additional hierarchical 

Gamma priors.  Markov Chain Monte Carlo procedures are then used to solve for the 

desired posterior distribution of the system failure probability. 

2.5.3 Groen and Droguett’s Competing Failure Mode Modeling (2005) 

 Groen and Droguett [74] provide a method that considers multiple failure 

modes within a system.  The approach is a Bayesian framework for assessing time to 

failure distributions for products.  Each product is defined as a combination of 

operating environment and system design or configuration, and the probabilistic 

nature of the Bayesian framework allows for combination of data across products.  

The combination methods use adjustment factors to account for differences in the 

operating environment or changes to the design.  The factors can be treated as 

deterministic quantities, or uncertainty distributions can be used to characterize the 

variability associated with each factor.  The use of factors allows for data from 

similar products to be used in the reliability assessment, and while not explicitly 

stated, it could also allow for reliability growth to be considered. 

 A major assumption of the approach is that the product is comprised of 

different failure modes, and the analysis can be performed using data at the failure 

mode level or product level.  There is no assumed inherent connection between the 

failure modes other than the link that is provided by the system/product level 

reliability.  Weibull likelihoods are used to characterize the time to failure for specific 

failure modes, and the aging behavior of the mode is assumed to be constant between 

products with the same mode.  The failure rates for each of the modes are then 

connected serially within the system, allowing for a straightforward summation to 
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obtain the system level assessment.  Markov Chain Monte Carlo methods are used to 

obtain the posterior distribution of the failure rate for the system.  A numerical 

example considering 2 failure modes is provided.  An earlier version of a similar 

approach is also presented by Groen, et. al. in [75]. 

2.5.4 Wilson, Graves, Hamada, and Reese’s Advanced in Data Combination, 

Analysis, and Collection for System Reliability Assessment (2006) 

 Wilson, et. al. [76] provides an overview of various data combination methods 

for both component and system reliability assessment that exist in the literature.  Two 

examples of component reliability assessment are given.  The first involves 

degradation and failure time data, and the second uses pass-fail Bernoulli and quality 

data to estimate the reliability of a component.   

 System reliability is assessed through a combination of life data and 

degradation data for components within the system.  A logistic regression approach 

similar to that in [73] is used to transform binary test data for a component into the 

continuous domain, which then allows for a combined reliability function that 

includes additional Weibull lifetimes and degradation data from a Lognormal process.  

A Nonhomogeneous Poisson Process model for clustered supercomputer failures is 

also developed, along with an approach to combining component life data within a 

fault tree structure. 

 The review discusses the fully Bayesian implementation of each example, 

with complex hierarchical models developed and solved through Markov Chain 

Monte Carlo methods.  The paper ends by discussing the various methods for 
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representing the system, to include Bayesian networks and flowgraph models.  

Optimal resource allocation in the spirit of [72] is also discussed.   

2.5.5 Yadav, Choudhary, and Bilen’s Complex System Reliability Estimation 

Methodology in the Absence of Failure Data (2008) 

 Yadav, Choudary, and Bilen [77] present a methodology for estimating 

system reliability in cases where failure data are initially unavailable.  The approach 

is comprehensive in nature, including physics-based fundamentals to establish the 

mathematical model of the system.  Uncertainty is applied at all levels of the system.  

The approach involves establishing a transfer function to describe the acceptable 

performance of the system, and the overall system reliability is calculated by 

computing the ratio of the number of trials that fall within the acceptable range to the 

total number of trials. 

 Environmental factors are considered within the model through the reliability 

estimate adjustor factor, which considers the difference between the initial failure rate 

and the true failure when the environment is considered.  The uncertainty on the 

variables within the model is accounted for through the use of fuzzy logic, and the 

initial reliability estimate is then updated through standard Bayesian model updating.  

A case demonstrating the approach for a hazardous gas detection system is also 

presented. 
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2.5.6 Pan’s Reliability Prediction Using Accelerated Life Data and Field Failures 

(2009) 

 Pan [78] presents a Bayesian approach to system reliability assessment that 

integrates field failure data and accelerated life test data.  The accelerated life test 

results are assumed to not adequately represent the field failure of the system because 

of variation in the field usage that exists.  A conjugate prior framework is utilized to 

simplify the process, and a calibration factor is used to account for the differences in 

the accelerated test and the field conditions.  Uncertainty on both the failure rate and 

the calibration factor is considered, and the posterior is updated using the accelerated 

life test results via Markov Chain Monte Carlo methods.  The calibration factor is not 

treated as a nuisance parameter, and the joint posterior for both model parameters is 

developed.  An example application involving temperature accelerated testing of an 

electronic device is presented. 

2.5.7 Wilson, Anderson-Cook, and Huzurbazar’s Case Study for Quantifying 

System Reliability and Uncertainty (2011)  

 Wilson, Anderson-Cook, and Huzurbazar [79] present a case study for system 

reliability assessment that quantifies the uncertainty present in the estimate.  The 

approach is motivated by the limitations in obtaining full system level test results due 

to cost, practicality, or technical permissibility.  Subsystem and component data are 

used to develop the system level reliability estimate, and the uncertainty from each of 

the data sources is aggregated to provide uncertainty at the system level.  A reliability 

block diagram is used to define the system reliability structure. 
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 Discrete test data, continuous test data, and multi-level data are all 

demonstrated within the proposed framework.  Components with no available test 

data are used in the approach.   Markov Chain Monte Carlo methods are used to 

evaluate the system level posterior distribution, where the system reliability is 

obtained through the structure defined by the reliability block diagram.  The approach 

provides a proof-of-concept that can be adapted to other more complex systems while 

still accounting for the appropriate uncertainty that exists in the assessment. 

2.6 Conclusion 

 This chapter reviewed a number of reliability growth models and reliability 

assessment techniques that are found in the literature.  Various models for reliability 

growth planning, tracking, and projection have been presented in order to define the 

current state-of-the-art in reliability growth.  Many modeling approaches are available 

for both continuous and discrete systems, with a number of classical and Bayesian 

approaches available.  A number of more general methods for system reliability 

assessment were also reviewed. 

 From reviewing the literature, there is a general lack of reliability growth 

approaches that consider data from throughout the developmental program of the 

system.  This is particularly true for reliability growth projection models, which are 

the current preference in the U.S. Department of Defense.  The models apply to single 

test phases only, with no way of updating results from test phase to test phase.  The 

models involving arbitrary corrective action strategies can also be improved, as the 

current state-of-art involves using only the first observed time or trial of occurrence 

for a given failure mode.   
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 There are also limited approaches for combining data from different types of 

testing within a reliability growth program.  Current approaches for data combination 

from different test modalities involve various types of testing in combination with 

reliability demonstration or OT, but there are limited options that consider reliability 

growth testing combined with operational reliability demonstration testing.  The 

failure mode based options currently available in the literature also consider only 

finite numbers of known failure modes in the system, with no allowance or 

accounting for unobserved failure modes.  These approaches are also developed 

specifically for time-to-failure distributions, with no extensions to consider reliability 

for complex repairable systems. 

 Finally, there is a decided disconnect between the current reliability growth 

approaches in the literature and the reliability assessment methods involving 

reliability engineering efforts.  The use of component and subsystem data for system 

reliability assessment occurs in various papers, but none of these discuss an approach 

that connects the results to reliability growth modeling approaches.  The use of 

physics-based results within these approaches is also limited. 
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3 A BAYESIAN MODEL FOR COMPLEX SYSTEM RELIABILITY 

GROWTH UNDER ARBITRARY CORRECTIVE ACTIONS1 

3.1 Introduction 

3.1.1 Background 

 The work presented in this chapter differs from the reliability growth 

projection models reviewed in Chapter 2, as it is a Bayesian reliability growth 

projection model that explicitly applies FEFs.  The model assumes the same 

piecewise-Exponential probabilistic process modeled by Ellner and Wald’s AMSAA 

[18] while also providing a complete inference framework via the posterior 

distribution on the system failure intensity.  A Bayesian posterior distribution is first 

developed for each failure mode in the system, allowing for the application of FEFs 

as appropriate.  The likelihood is also generalized to allow for arbitrary corrective 

actions to occur at any point both during and after the test period.  An additional 

extension that is unique amongst the class of Bayesian reliability growth models is 

the ability to estimate the posterior distribution of the failure intensity due to failure 

modes that have not yet been observed, including the important metric of growth 

potential failure intensity.  The model provides an analytic expression that is a useful 

metric for reliability program managers, as it indicates the relative contribution of any 

remaining failure modes in the system along with the theoretical lower bound on the 

failure intensity that can be achieved via the test-fix-test reliability growth paradigm.  

Goodness-of-fit procedures to assess model appropriateness are a vital part of any 

1 Material from Chapter 3 has been submitted for publication to IEEE Transactions on Reliability.   
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reliability growth model, and two methods are presented here.  The first is a visual 

method involving the number of observed failure modes, and the second is a more 

formal test for goodness of fit.  An additional feature unique to the proposed model is 

the ease with which extensions can be made.  Extensions of the basic framework are 

presented to allow for both multiple systems under test and uncertainty on the 

assessed FEF values.   

 Use of a model such as that proposed here can be extremely informative to 

reliability program managers and engineers.  This is particularly true for programs 

that are early in the development process, as the results from early reliability growth 

testing can be used to shape future resource investment for the program.  They can 

also provide an indication when further reliability growth testing may provide 

diminishing returns, thus leading to a more efficient developmental reliability 

program. 

3.1.2 Chapter Overview 

 This chapter is organized as follows. Section 3.2 develops the model 

framework, including model assumptions, data requirements, and a useful 

management metric.  Section 3.3 discusses prior development while presenting 

empirical Bayes estimators, and Section 3.4 provides two procedures for assessing the 

goodness of fit of the model.  Section 3.5 develops extensions to the basic model to 

handle multiple systems under test and uncertainty associated with the assessed FEF 

values.  Simulation performance comparisons of the basic model are presented in 

Section 3.6, and an example application is presented in Section 3.7.  Conclusions are 

provided in Section 3.8. 
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3.2 Methodology 

3.2.1 Model Assumptions 

 When projecting the reliability growth of a complex system, it is common to 

treat the system failure intensity as a sum of failure intensities (or failure 

probabilities) from independent failure modes.  Modeling the system as a 

combination of failure modes enables the use of FEF values, which mathematically 

quantify the fractional reduction in the failure intensity for a given failure mode after 

a corrective action has been implemented.  The assumptions for the model are as 

follows: 

1. The system is comprised of a large number of failure modes that are serial 

in nature; the occurrence of any failure mode results in failure of the 

system. 

2. Failure modes generate failures independently of one another. 

3. The failure intensity, or rate of occurrence of failure, for each mode is 

constant both before and after a corrective action is implemented.   

4. The resulting failure intensity after corrective action will be reduced from 

the initial value according to the assigned FEF. 

5. Corrective actions to failure modes do not introduce new failure modes 

into the system. 

6. Reliability testing will stress the system in an operationally relevant 

manner. 
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3.2.2 Data Requirements 

 Reliability growth projection models fall into one of two categories.  The first 

treats all corrective actions as delayed, while the second allows for corrective actions 

to be either delayed or occur during the test itself.  As stated previously, the model 

developed here falls into the latter category by allowing for arbitrary corrective 

actions.  It differs from previous models in this category [18],[20], as it uses the 

cumulative times of failure for each failure mode, along with the time of any 

associated corrective actions and their assessed FEFs to estimate the failure intensity 

of the system.  We stress the importance of assigning realistic FEF values for failure 

mode corrective actions.  The projected improvement in reliability will be erroneous 

if the assigned FEF values are unrealistic.  Proper consideration of the root cause of 

the failure mode and the type of corrective action is essential to assignment of a 

realistic FEF value.  An additional utility of reliability growth projection models of 

this type involves sensitivity analysis on the FEF values.  If known reliability targets 

are desired after corrective actions have been implemented, sensitivity analysis on the 

FEF values can determine the levels that are necessary to achieve the desired targets.  

Application of the model in this manner can then help to drive resource expenditure 

during the corrective action process. 

 Beyond the FEF values, the approach proposed here only requires information 

that is commonly collected during reliability growth testing.  Proper configuration 

management is vitally important to ensure that reliability estimates are representative 

of the actual system as the design progresses and matures, and the data requirements 

for the model fall within a well executed configuration management process.  
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Assumption 6 is also vitally important, as any estimates of reliability under non-

operational conditions should be treated with extreme caution if they are to be used in 

any programmatic resourcing decisions.  

3.2.3 Failure Mode Posterior Distribution 

For the ith failure mode in the system, assume that ni failures are observed in 

test length T with times 

 

ti,1,ti, 2 ,...,ti, ni( ).  Further assume that the failures are divided 

such that ni,1 occur before a corrective action is implemented, and ni - ni,1 failures 

occur after the corrective action.  For a corrective action that occurs at time vi, let di 

represent the FEF resulting from the corrective action.  From assumptions 2-4 the 

likelihood can then be expressed as    

 

l ti,1,ti, 2 ,...,ti, ni
,ni ,n i, 1 | λi( )= 1 − di( )ni −ni, 1λi

ni exp −λi vi + 1 − di( ) T − vi( )[ ]( ). (1) 

Note that the form of the likelihood in (1) does not contain the actual failure times.  

They are part of a telescoping sum, and are replaced by the counts of failures before 

and after the corrective action.   

 For the prior on the individual mode failure intensity, we use the Gamma[α,β] 

distribution parameterized as  

 

p λi( ) =
λi

α −1

Γ α( )β α exp −
1
β

λi

 

 
 

 

 
 .    (2) 

The choice of a Gamma prior distribution is not only mathematically convenient; it 

has also been used commonly in past work to model mode-to-mode variation that 
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may be present in the system.  The failure intensities for the collection of failure 

modes found in a complex system are shown to be adequately modeled as a random 

realization from a Gamma distribution in both [18] and [26].  Using a Gamma 

distribution in this way also recognizes what may be referred to as the “vital few, 

trivial many” property among mode failure intensities.  This property acknowledges 

that each failure mode provides a different contribution to the overall system failure 

intensity, with a relatively few number of failure modes being significant enough to 

be observed in test.   

 Standard posterior distribution calculations result in the posterior distribution 

for the failure mode failure intensity given by  

 

p λi | ti,1,ti, 2 ,...,ti, ni
,ni( )=

λi
α+ ni −1

Γ α + ni( ) 1
β

+ vi + 1 − di( ) T − vi( )
 

  
 

  
− α+ ni( ) exp −λi

1
β

+ vi + 1 − di( ) T − vi( )
 

 
 

 

 
 

 

 
 

 

 
 

   (3) 

Note that the ni,1 term in (1) only applies to the constant term (1−di) and is therefore 

canceled from the posterior distribution.   From (3) the distribution of the failure 

mode failure intensity is then 

 

λi ~ Gamma α + ni ,
1
β

+ vi + 1 − di( ) T − vi( )
 

 
 

 

 
 

−1 

 
 
 

 

 
 
 
 .  (4) 

Note that if no corrective action is attempted, di is zero and (4) then reduces to the 

traditional Gamma posterior commonly found in many references that discuss 

Bayesian statistics.  See for example Section 7.4 in [81].  From (4) we can also 

leverage properties of the Gamma distribution to develop the posterior for the reduced 

failure intensity after a corrective action has been implemented.   

 70 



- CHAPTER 3 - 

 

1 −di( )λi ~ Gamma α + ni , 1 − di( ) 1
β

+ vi + 1 −di( ) T −vi( )
 

 
 

 

 
 

−1 

 
 
 

 

 
 
 
 (5) 

3.2.4 Complex System Posterior Distribution 

 We develop the posterior for a complex system by first assuming a finite 

number of modes, K, and then examining the results as K becomes large.  From 

assumption 1 the failure intensity after corrective actions for the entire system can be 

found by summing the individual mode failure intensities.  If we denote the number 

of observed modes as m and let n = (n1,n2,…,nm) be the vector of observed failures 

for each of the observed failure modes, we can represent the mean of the system 

posterior after corrective actions as  

 

E λs | n[ ] = E λi
i =1

K

∑ | n
 

  
 
  = E λi | n[ ]

i =1

K

∑ =
1 − di( ) α + ni( )

1
β
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m
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 

 

 
 
  

 

 

 
 
     (6) 

It is useful to reparameterize the expression in (6) to aid in computing the limiting 

form for complex systems.   Note that the prior mean for system failure intensity can 

be expressed as  

 

λB = Kαβ .     (7) 
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Reparameterizing the prior Gamma distribution in terms of the prior system mean and 

the β parameter then allows the result in (6) to be expressed as  

 

 

E λs | n[ ] =
1 − di( ) λB

βK
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.       (8) 

The result for a complex system consisting of a large number of failure modes can be 

examined by taking the limit of (8) as K becomes large while holding the prior mean 

in (7) and the β parameter constant.  This yields the expression shown in (9).  

 

E λs | n[ ] =
1 − di( )ni

1
β

+ vi + 1 − di( ) T − vi( )
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 
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1 + βT
   (9) 

 The variance of the system posterior after corrective actions is similarly found to be  

 

Var λs | n[ ] =
1 − di( )2 ni

1
β

+ vi + 1 − di( ) T − vi( )
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 
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β
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 
 

 

 
 

2 .     (10) 

The results in (9) and (10) can also be used to calculate the incremental reduction in 

the system failure intensity.  The individual FEF for a specific observed failure mode 

should not be included in the posterior estimate until the corrective action for that 
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mode has been implemented.  This is analogous to using the posterior result in (4) 

before the corrective action and the result in (5) after the corrective action.  

Examination of (9) and (10) shows that this is accomplished by setting the di in the 

numerator to 0 before the corrective action has been implemented.  We also point out 

that when no corrective actions are applied during the test, the result in (9) is a 

Bayesian alternative to the traditional failure intensity point estimate for a HPP. 

 When all corrective actions occur at the same time with the same level of fix 

effectiveness, the posterior distribution for the system with a finite number of failure 

modes will be exactly Gamma.  This is not usually the case during reliability growth 

testing, as most failure modes will have different underlying root causes and different 

levels of fix effectiveness.  For this reason it is necessary to examine the posterior 

distribution through simulation to understand if the Gamma will be a reasonable 

approximation under arbitrary corrective action strategies.  Because the individual 

failure mode posteriors are Gamma from (4) and (5), it is straightforward to simulate 

failure intensities from the individual mode posteriors.  A histogram of the posterior 

results under an arbitrary corrective action strategy is shown in Figure 3.1.  The 

simulated system was comprised of 50 failure modes and tested for 2000 hours.  The 

corrective action strategy allowed for 5% of the observed failure modes to be 

corrected during the test, while the remaining 95% were corrected when the test was 

completed.  The average FEF value for the corrective actions was 0.7.  The dashed 

line represents a Gamma distribution fit to the data using a standard method-of-

moments based approach with parameters given by (11) and (12).  The parameters are 
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developed from the mean and variance in (9) and (10), and the form of the Gamma 

distribution follows (2). 

 

˜ α =
E λs | n[ ]2

Var λs | n[ ]
    (11) 

 

˜ β =
Var λs | n[ ]

E λs | n[ ]     (12) 

 

Fig 3.1. System Level Posterior Distribution with Approximate Gamma Distribution Overlaid 

The results shown in Figure 3.1 indicate that the Gamma distribution defined by (11) 

and (12) is indeed a reasonable approximation.  The approximate conjugate 

relationship that is found through (11) and (12) is also beneficial for updating the 

system level results with data from additional test events.  This allows for reliability 

assessment throughout the system’s development to use all of the previously available 

data, rather than being strictly based on the most current test event.  The updating 
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process acts to decrease the uncertainty associated with the posterior distribution 

while also accounting for reduced failure intensity resulting from the reliability 

growth process.  Note that configuration changes beyond those involving corrective 

actions to observed failure modes may cause the conjugate combination to be 

unrealistic, and any differences in the test events such as test article configuration and 

environment should always be considered before this technique is practically 

employed.  

3.2.5 Initial Failure Intensity 

 The initial system failure intensity at the start of the test can be estimated 

easily using results from the previous section.  Using the individual failure mode 

posterior in (4) instead of (5) provides failure intensity estimates prior to any 

corrective actions being implemented.  This amounts to estimating the initial step in a 

piecewise Exponential process.  Applying (4) in the same manner as previously 

developed yields the system level posterior mean and variance of the initial failure 

intensity shown in (13) and (14).  Note that the failure intensity for any step in the 

piecewise Exponential process can be estimated in a similar manner by simply 

applying the FEF for the failure mode that has been corrected.  This is equivalent to 

using the mode posterior in (5) in place of (4) for the failure mode associated with the 

corrective action.   

 

E λs, initial | n[ ]=
ni

1
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+ vi + 1 − di( ) T − vi( )
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  (13) 
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2 .             (14) 

Posterior interval estimates for the initial failure intensity can be found using the 

same techniques developed in Section 3.2.4. 

3.2.6 Growth Potential Failure Intensity 

 Crow introduced the concept of reliability growth potential after development 

of the AMSAA Crow Projection Model [82].  The growth potential represents the 

theoretical upper bound on reliability, and hence lower bound on failure intensity, that 

can be achieved within the test-fix-test reliability growth paradigm.  This theoretical 

bound can be found by applying the average FEF to the remaining failure intensity 

due to the unobserved failure modes.  It can be estimated using the posterior 

distribution for the failure intensity in (9) and (10). 

 The posterior mean growth potential is given by 

 

E λs, GP | n[ ]=
1 − di( )ni

1
β

+ vi + 1 − di( ) T − vi( )
 

 
 
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 
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 
 
 

 

 

 
 
 
 

i =1

m

∑ + 1 − µd( ) λB

1 + βT
,   (15) 

where µd is the average FEF that should be expected for the remaining failure modes 

in the system.  The value of µd can be estimated by computing the arithmetic average 

of FEF values for the observed failure modes.  The variance is then similarly given by  
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Var λs, GP | n[ ]=
1 − di( )2 ni
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2
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2 . (16) 

Posterior interval estimates for the growth potential failure intensity can be found 

using the same techniques developed in Section 3.2.4. 

 The growth potential failure intensity can indicate whether additional test-fix-

test reliability should be pursued for the program in question.  If the resulting growth 

potential failure intensity estimates are higher than the desired objective, resources 

should be expended for reliability improvement initiatives outside of the traditional 

test-fix-test approach. 

3.2.7 Failure Modes Observed During Follow-on Testing 

 A particularly useful management metric can also be developed from the 

posterior distribution for the system: the distribution of the number of failure modes 

observed in a future time interval.  These metrics are helpful for reliability program 

managers who must make decisions regarding future resource allocation for the 

program, particularly when planning to observe and mitigate new failure modes in 

future testing.  These metrics can also be used to visually examine the validity of the 

underlying model assumptions for both the prior and posterior distributions, and this 

is discussed in more detail in Section 3.4.  The posterior expected number of failure 

modes is found by first defining the indicator function for the ith unobserved failure 

mode as  
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I i t( ) =
1, mode occurs by time t

0, otherwise
 
 
 

.   (17) 

The posterior predicted mean of Ii(t) is found by examining the posterior probability 

that the unobserved failure mode is observed by some time t > T.  The likelihood of 

observing a failure mode by time t > T is given from Assumption 3 in Section 3.2.1 

as 

 

p Ii t( ) =1 | λi ,ni ,t > T( ) =1 − e−λi t −T( )             (18) 

Using the posterior distribution on the mode failure intensity in (4) with the ni, vi, and 

di set to 0 for an unobserved failure mode, the unconditional marginal distribution for 

Ii(t) can be found by calculating the joint distribution of (4) and (18) and then 

marginalizing with respect to λi.  The unconditional expected value is given by 

 

E Ii t( ) | t > T[ ] = p Ii t( ) =1 | t > T( ) =1 −
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 
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  

α .  (19) 

Summing over all K - m unobserved modes in the system yields 
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     (20) 
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and taking the limit as K becomes large results in  

 

lim
K →∞

E Ii t( )
i =m+1

K

∑ | t > T
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 
  =

λB

β
log 1 +

t −T
1
β

+ T
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 
 
  

 

 

 
 
  
.      (21) 

Because Ii(t) is a Bernoulli random variable, summing over the unobserved modes 

yields a Binomial random variable.  Taking the limit as K becomes large then results 

in a Poisson random variable with the mean shown in (21).   Figure 3.2 shows a plot 

of the posterior distribution for the number of modes for 500 hours beyond test time T 

= 500 for a sample data set.  The solid line indicates the posterior mean, while the 

dashed lines indicate 0.05 and 0.95 percentiles respectively (90% probability 

interval).  

 

Fig 3.2.  Posterior Number of Failure Modes in Follow On Testing 
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3.3 Empirical Bayes Estimators 

 We first point out that it is entirely possible to parameterize the Gamma prior 

through other means such as historical data or elicitation of experts.  A five-stage 

approach for developing priors using expert elicitation is outlined in [80].  Although 

not fully Bayesian in their application, empirical Bayes estimates are presented here 

for completeness.  These methods present a useful alternative for situations when 

relevant prior information is not available and excessive subjectivity is undesirable.  

The posterior probability intervals that result from using this approach will not 

represent the full uncertainty in the estimation, and this should be considered when 

making decisions with the model results in this context.   

 Empirical Bayes estimates are developed in [81] and extended in [26], but the 

previous results are limited to those cases where there are no corrective actions 

occurring.  The results contained in Section 7.7 in [81] can be generalized to handle 

arbitrary corrective actions though, noting that the use of the Poisson likelihood will 

provide the same results as those for the Exponential likelihood.  Finite results are 

developed and then extended to handle the limiting case for complex systems.  From 

the distribution in (4), the resulting maximum likelihood equations for estimating the 

Gamma parameters are given as  

 

ˆ λ B =

ni

1
ˆ β 

+ vi + 1 − di( ) T − vi( )i =1

m

∑

1 −
1
ˆ β K

1
1
ˆ β 

+ vi + 1 − di( ) T − vi( )i =1

K

∑
  and   (22) 
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ni

1
ˆ β 

+ vi + 1 − di( ) T − vi( )i =1

m

∑

j =1

ni −1

∑
i ∈ obs
∑ =

ni

1
ˆ β 

+ vi + 1 − di( ) T − vi( )i =1

m

∑

 

 

 
 
  

 

 

 
 
  

log 1 + ˆ β vi + 1 − di( ) T − vi( )( )[ ]
i =1

K

∑
 

 
 

 

 
 

K ˆ β − c

(23)

 

where c is defined as  

 

c =
1

1
ˆ β 

+ vi + 1 − di( ) T − vi( )i =1

K

∑ .   (24) 

Results analogous to those in (22) and (23) can be found by taking the limit with 

respect to K. 

 

ˆ λ B =
1 + ˆ β T

ˆ β T
ni

1
ˆ β 

+ vi + 1 − di( ) T − vi( )i =1

m

∑          (25) 

 

m  =
1 + ˆ β T

ˆ β 2T
log 1 + ˆ β T[ ]  ni

1
ˆ β 
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m

∑
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 
  
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 
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 
  
        (26) 

Setting the vi equal to T in (25) and (26) will provide results equivalent to those in 

[26].  The equation in (26) will also have a unique solution iff 

 

ni
i =1

m

∑ > m . 

3.4 Model Assessment and Goodness of Fit 

 For assessing the utility of the model and appropriateness of the underlying 

assumptions, we present two approaches.  The first uses the distribution for the 

observed number of failure modes to provide a visual indication of the validity of the 
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model assumptions.  The second is a more formal Bayesian Chi-Squared Test for 

goodness of fit. 

3.4.1 Prior Predicted Cumulative Number of Failure Modes  

 The distribution for the prior number of failure modes that should be observed 

by some time t can be found similarly to the posterior results shown in Section 3.2.6.  

By considering the prior distribution in place of the posterior, the expected value for a 

single failure mode in (19) is modified slightly to be  

 

E Ii t( )[ ] = p Ii t( ) =1 | t ≤ T( ) =1 −
1

1 + βt( )α .         (27) 

Note that in this context t is any time in the interval (0,T).  Summing over all failure 

modes and taking the limit as K becomes large yields 

 

lim
K →∞

E Ii t( )
i =1

K

∑
 

  
 

  =
λB

β
log 1 + βt( ).        (28) 

The distributional results from Section 3.2.7 will also apply in this case, and the 

distribution on the prior number of failure modes will be Poisson with the mean given 

by (28).  An example plot showing the cumulative observed number of failure modes 

and the prior predicted distribution as a function of time t is shown in Figure 3.3.   

The solid line represents the mean cumulative number of failure modes, and the 

dashed lines represent the 5th and 95th percentiles of the prior predicted distribution at 

time t respectively.  The points are the cumulative number of observed failure modes 

by time t. 
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Fig 3.3.  Comparison Plot of Observed Failure Modes and Prior Predicted Cumulative Number of 
Failure Modes Distribution vs Test Time t 

 

Although it is not a formal goodness of fit test, using a plot like Figure 3.3 can be 

useful for indicating any differences between the observed data and the model 

assumptions.  The results in (27) and (28) use both the prior and the likelihood, so 

reasonable agreement between the distribution and the observed data should indicate 

that the model assumptions are reasonable. 

3.4.2 Bayesian Chi-Square Test 

 The Bayesian Chi-Square test developed by Johnson in [83] can be used for 

additional assessment of the model assumptions.  The Chi-Square test statistic 

requires the data to be conditionally independent observations from a probability 

density function.  Assumption 3 in Section 3.2.1 states that the time between 

successive failures will be piecewise-Exponentially distributed with a rate that 

depends on the application of specific corrective actions.  This allows us to treat the 
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inter-arrival times between the failures as an observed sequence of Exponential 

random variables, where the rate parameter of the distribution will be reduced by the 

appropriate FEF after each successive corrective action.  The failure free periods prior 

to corrective actions, and at the ends of time truncated tests, can be handled using the 

appropriate Exponential distribution and randomization procedures as defined in [84].  

The addition of the failure free periods result in a sample size of n, where n is one 

plus the sum of the number of failures and the number of corrective actions that occur 

during the test. 

 Following the method outlined in [83], define θ~  as a sampled value from the 

posterior distribution, which is the Gamma distribution developed in Section 3.2.  As 

described in Section 3.2, the mean and variance defined in (9) and (10) will need to 

be modified accordingly to account for the timing of any corrective actions that occur 

during the test phase.  The required distributions can be found using the same 

approach discussed in Section 3.2 for estimating each step of the piecewise 

Exponential process.  This is again accomplished by setting the FEF in the numerator 

to zero until after the corrective action has been implemented.   

 The unit interval is then divided into q sub-intervals such that 

 

0 ≡ a0 < a1 < ... < aq−1 < aq ≡1.  Next let yi be the times between successive failures 

and Fj be the corresponding Exponential distributions with the appropriate failure rate 

parameters.  Define 

 

zj
˜ θ ( ) to be a vector of length q whose 𝑞𝑡ℎ jth element is zero 

unless  

 

Fj yj | ˜ θ ( )∈ aq−1,aq( ).      (29) 
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When the condition in (29) holds, the qth element of zj is set to one.  When applying 

the randomization procedures defined in [84] to the failure free intervals, a random 

number is drawn from the interval 

 

1 −Fj T −yj | ˜ θ ( ), 1[ ] in place of the Fj in (29).  Note 

that the time prior to corrective actions is handled in the same manner, with T 

replaced by the corrective action time v.  Next define  

 

m ˜ θ ( ) = zj
˜ θ ( )

j =1

n

∑     (30) 

as a vector of length q, where each element of the vector represents the total number 

of points in the corresponding subinterval of the unit interval.  The Chi-Square 

statistic from [83] is defined as 

 

RB ˜ θ ( ) =
mk

˜ θ ( )− npk

npk

 

 
 
 

 

 
 
 k =1

q

∑
2

,            (31) 

where the pk are defined as the differences between the aq values that divide the unit 

interval.  The statistic in (31) is asymptotically Chi-Squared with q-1 degrees of 

freedom under repeated sampling of both the data and the posterior parameter of 

interest.  The data cannot be repeatedly sampled in practice, but the utility of the 

statistic is that poorly specified models will not follow the proper Chi-Squared 

Distribution and will likely have a higher number of samples in the tail of the 

distribution.  Figure 3.4 shows an example of this concept for the Piecewise-

Exponential model developed above.  Figure 3.4(a) contains 2000 samples of failure 

data using the mean of the prior distribution as the true value of the failure intensity, 

while Figure 3.4(b) samples the same failure data with a prior mean that is a factor of 
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ten less than the true failure intensity.  The data in both cases were simulated using a 

single corrective action that occurred midway through the test.  The solid line shows 

the reference Chi-Squared Distribution, which has six degrees of freedom for this 

example.  The differences can be seen immediately, and the poorly specified (prior) 

model shows an extremely poor fit to the reference distribution.   

 

 

(a)       (b) 

Fig 3.4.  Chi-Squared Distribution Example for (a) Properly specified prior distribution, (b) 
Misspecified prior distribution 

 

 To assess the appropriateness of the model in practical cases, repeated 

sampling of the data is generally not practical.  Random samples can instead be 

drawn from the posterior distribution while applying the appropriate FEF values for 

any corrective actions that have occurred during the test.  The statistic in (31) can be 

calculated for each of these samples, and the proportion that exceeds a specified 

critical value from the Chi-Squared Distribution can be reported and compared to the 

desired size of the test.  While not a formal test, large proportions exceeding the 

desired critical value indicate problems with the model fit.  For the example in Figure 
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3.4, the proportion of samples greater than the 0.8 percentile are 0.19 and 0.61 for 

cases (a) and (b) respectively, which again demonstrates the lack of fit for the second 

example.  A number of additional examples applying the test statistic in (31) are 

presented in [84].  

 It is worth noting that the Gamma distribution has reasonable flexibility for 

modeling different behaviors in the data.  Use of the empirical Bayes procedures 

outlined in Section 3.3 should also help to mitigate any problems with the parameters 

of the prior.  Lack of fit in these cases is likely due to problems with the likelihood, 

with system specific factors causing the rate of occurrence of failures to be non-

constant between successive corrective actions.  This may occur in situations where 

system usage involves cycling between severe and benign environmental usage 

conditions. 

3.5 Extensions to Basic Model 

 A particular benefit of the Bayesian framework established Section 3.2.4. is 

the ease with which various extensions to the basic model can be made.  A number of 

possible extensions exist, but two very useful cases are presented here.  The first 

involves an extension to allow for data collected from multiple test articles, which is 

often common in developmental reliability growth testing.  The second includes 

uncertainty on the FEF.  The FEF values are generally assessed based on engineering 

judgment and it is therefore desirable to allow for some uncertainty regarding their 

values.  Though not presented here, it is also possible to develop marginal posterior 

distributions for the FEF values themselves if desired. 
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3.5.1 Multiple Systems Under Test 

 For situations when there are multiple identical systems undergoing the same 

DT, it is desirable to combine the failure data that are observed in order to more 

accurately assess the overall reliability of the system.  This situation can present 

practical implementation problems for models that use failure mode first occurrence 

times such as [18].  It can be difficult to account for all testing that is accrued across 

the systems without artificially scaling the occurrence times of the failure modes, but 

the current model framework can easily handle this situation through a 

straightforward extension of the likelihood shown in (1).  For a single failure mode, 

the extended version of the likelihood for multiple systems under test is given by  

 

l t1, i,1, t1, i, 2 ,..., t1, i, ni, 1
, t2, i,1,..., tp, i, np

| λi( )= 1 − di( ) ni, j −ni, j, 1
j=1

p

∑
 

 
  

 

 
  λi

ni, j
j=1

p

∑  *

                                                                      exp −λi vi, j
j =1

p
∑ + 1 − di( ) Tj

j =1

p
∑ − vi, j

j =1

p
∑

 
 
 

 
 
 

 
  

 
  

 

 
 

 

 
 
   (32) 

The previous notation is extended in (32) as follows:   

1. There are p systems under test for test time Tj. 

2. ti,j,l is the lth observed time of failure for ith failure mode on the jth system. 

3. There are ni,j occurrences of the ith failure mode on the jth system. 

4. The vi,j are the corrective action times for the ith failure mode on the jth system.  

 

The likelihood in (32) can also handle a number of common situations that occur in 

DT, such as dependencies due to preemptive corrective actions on certain systems 

due to failure modes being observed on previously tested systems.  We point out that 
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setting the vi,j to zero easily handles this situation, which is again difficult for many 

traditional reliability growth projection models to handle appropriately. 

 The resulting system level posterior mean and variance can then be found 

similarly to the basic model in Section 3.2.  The posterior mean and variance, 

respectively, are found to be 

 

 

E λs | n[ ] =
1 − di( ) ni, j

j =1

p

∑
1
β

+ vi, j
j =1

p

∑ + 1 − di( ) Tj
j =1

p

∑ − vi, j
j =1

p

∑
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 
 
  

 

 

 
 
 
  

i =1

m

∑ +
λB

1 + β Tj
j =1

p

∑
          (33) 

 

Var λs | n[ ] =
1 − di( )2 ni, j

j =1

p

∑
1
β

+ vi, j
j =1

p

∑ + 1 − di( ) Tj
j =1

p

∑ − vi, j
j =1

p

∑
 

 
 
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 
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 
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 

 
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 

 
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 
 
 
 
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 
 
 
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β
1
β

+ Tj
j =1

p

∑
 

 
 
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2 .     (34) 

Note that the expressions in (33) and (34) are simple extensions to those in (9) and 

(10), with 

 

vi = vi, j
j =1

p

∑ , 

 

ni = ni, j
j =1

p

∑ , and 

 

T = Tj
j =1

p

∑ .  The same substitutions apply when 

calculating additional quantities of interest such as the growth potential failure 

intensity and the empirical Bayes estimators in Section 3.3.   

 For the posterior distribution on the number of failure modes observed in 

follow on testing the likelihood of observing a failure mode on at least one of the p 

systems by time t is updated as 

 

p I t( ) =1 | λ ,n,t > T( ) =1 − e−pλ t −T( ).           (35) 

The unconditional expected value in (19) is then modified to be  
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E I t( ) | t > T[ ] = p I t( ) =1 | n( ) =1 −
1

1 +
p t −Tmax( )
1
β

+ Tj
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

α ,  (36) 

where Tmax is defined as the largest of the T values.  The result in (20) is then updated 

as  

 

lim
K →∞

E Ii t( )
i =m+1

K

∑ | t > T
 
  

 
  =

λB

β
log 1 +

p t −Tmax( )
1
β
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 

 

 
 
 
 

 

 

 
 
 
 
.       (37) 

 For the prior number of failure modes used in the visual goodness of fit in 

Section 3.4, the likelihood of observing a failure mode on at least one of the p 

systems by time t is updated as  

 

p I t( ) =1 | λ ,n,t > T( ) =1 − e−pλt .                   (38) 

The expression in (28) is then modified to be  

 

lim
K →∞

E Ii t( )
i =1

K

∑
 
  

 
  =

λB

β
log 1 + βpt( ).      (39) 

When comparing the observed failure modes to the prior prediction, note that the time 

of first occurrence for a failure mode should be the minimum of the occurrence times 

observed over all of the systems under test.  Modifications to the Chi-Square test in 

Section 3.4.2 are not necessary for multiple systems, as (33) and (34) can be used 

directly in place of (9) and (10).  The procedure deals with time between failures, so 
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the data from each system under test can be used within the existing framework.  

Note that because each system may have unique corrective action implementation 

during the test, additional random samples may be necessary to cover the additional 

systems.  Caution should also be exercised to ensure that the appropriate distribution 

function corresponding to the corrective action interval is used. 

3.5.2 Uncertain FEF 

 The model extension for including uncertainty on the FEF involves the 

addition of a prior distribution on the FEF parameter d in (1).  The posterior 

distribution is then given by 

 

p λ | n( ) =
p d( )p λ( )l n | λ( )

p d( )p λ( )l n | λ( )∂d∂λ
0

1

∫
0

∞

∫0

1

∫ ∂d .        (40) 

The likelihood and prior distributions from Section 3.2 are used for the failure 

intensity.  The Beta distribution given in (41) is used for the prior distribution on the 

FEF. 

 

p d( ) =
Γ a + b( )
Γ a( )Γ b( )

d a−1( ) 1 − d( ) b−1( )                (41) 

A useful method for describing the Beta prior can be found by specifying the mean 

and variance for the FEF and then developing the corresponding Method-of-Moments 

estimators.   

 The posterior for the FEF could also be found in a similar manner to that in 

(40).  The outermost integration with respect to d could instead be calculated with 
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respect to λ, which would result in the desired marginal posterior on the FEF.  The 

technique should be used cautiously though, particularly in cases where little 

information is available after the corrective action has been completed.  The approach 

could be useful in managing the reliability growth program, as it would provide an 

indication of the overall effectiveness of the corrective action process. 

 The resulting system level posterior mean and variance can then be found 

similarly to the basic model in Section 3.2.  For m observed modes with m’ corrected, 

the posterior mean and variance are found to be 
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2    (43) 

 2F1(a,b,c,z) is the integral form of the hypergeometric function given by  

 

2 F1 a ,b,c,z( ) =
Γ c( )

Γ b( )Γ c − b( )
tb−1 1 − t( )c −b−1 1 − tz( )−a dt

0

1

∫ .           (44) 

Additional parameters of interest such as the growth potential failure intensity and the 

number of modes observed in follow-on testing are developed similarly by 

substituting the posterior parameters in (42) and (43) for the original values in (9) and 

(10). 
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3.6 Simulation Performance 

 A simulation was developed to examine the performance of the basic model 

under varying conditions.  Each replication of the simulation consists of the following 

steps: 

1. Set input variables: prior parameters, test length, number of failure 

modes, mean and coefficient of variation of FEFs, and corrective 

action strategy. 

2. Simulate mode failure intensities from prior Gamma distribution. 

3. Simulate random FEF values for each failure mode from a Beta 

distribution. 

4. For each failure mode, simulate random failures with the appropriate 

failure intensity according to the corrective action strategy. 

 

The corrective action strategy in the simulation randomly determines when a 

corrective action is made for each observed failure mode.  The corrective action 

decision is made by first choosing the probability that a corrective action will occur 

during the test.  A uniform random number is then drawn for comparison to the 

probability for each observed failure mode.  Model estimates were developed 

assuming that the exact FEF values were known.  The “true” results from the 

simulation were then compared to the model estimates to gauge the robustness of the 

technique while also indicating the relative error that should be expected when 

applying this type of model.  The coverage properties of the posterior probability 

intervals are also examined within the context of the simulation.  Comparisons are 
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made between the proposed approach and two of the more popular reliability growth 

projection models: the AMPM [18] and the Crow-Extended Model [20].  The 

comparisons are made only for the point estimate (posterior mean) due to the fact that 

interval results are not yet published for the AMPM. 

 A number of different cases were examined using the simulation, with five 

presented here.  Table 3.1 contains the input values for each case.  The probability of 

corrective action is the probability that an observed failure mode is addressed during 

the test.  K is the number of modes in the system, λB and β are the parameters of the 

Gamma distribution, α is found from equation (7), T is the length of the test, µd and 

cv are the mean and coefficient of variation, respectively, of the FEF distribution.  

Heuristic examination of the simulation convergence shows that 1000 replications 

were sufficient for each case.  Table 3.2 shows the average result for each case, 

including the posterior mean and 80% lower probability bound, mean relative error, 

and coverage properties of the probability interval.  Empirical distributions of the 

relative error for each case are provided in Figure 3.5. 

TABLE 3.1 

SIMULATION INPUTS 

Case 
Prob. of 

Corrective 
Action 

K β λB α T µd cv 

1 0.2 5000 0.001 0.002 0.0004 5000 0.7 0.1 
2 0.1 2000 0.0001 0.02 0.1 5000 0.7 0.1 
3 0.2 1000 0.001 0.02 0.02 2500 0.7 0.1 
4 0.1 500 0.0001 0.002 0.04 5000 0.7 0.1 
5 0.2 250 0.001 0.02 0.08 2500 0.7 0.1 
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TABLE 3.2 

SIMULATION RESULTS 

Case Number 
Failures 

True 
MTBF 

Posterior 
Mean 

Posterior 
0.80 

Lower 
Probability 

Bound 

Abs 
Rel 

Error 
Coverage AMPM 

Abs 
Relative 

Error 

Crow 
Extended 

Abs 
Rel 

Error 

1 12 1498.3 1311.0 1008.3 0.38 0.82 1576.4 0.42 2216.0 1.13 

2 99 67.0 67.9 64.4 0.10 0.65 64.2 0.11 66.2 0.18 

3 48 105.4 105.4 94.1 0.15 0.75 106.3 0.16 106.0 0.34 

4 11 676.5 695.2 589.3 0.29 0.70 660.7 0.31 878.6 0.68 

5 48 107.8 107.6 95.8 0.16 0.75 109.8 0.17 118.3 0.34 

 

 

The results in Table 3.2 indicate that the model performs well on average.  To aid in 

examining the model performance beyond just the average comparison, Figure 3.5 

shows the empirical distribution of the relative error for each of the test cases.  Higher 

slopes in the plots mean that larger proportions of samples fall closer to the true 

simulation value, which indicate more accuracy in the model result.  The results in 

Figure 3.5 show that the proposed model outperforms both the AMPM and Crow 

Extended for accuracy.  Additional simulation comparisons over a broader set of test 

cases are presented in [7], and the results indicate that AMPM outperforms the Crow 

Extended Model with respect to accuracy and relative error distributions.  By 
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extension, the proposed approach should therefore perform well over a broad range of 

cases. 

 The classical coverage of the probability bounds are shown to be slightly non-

conservative in most cases, but this is an unfortunate consequence of simulating with 

finite values of K.  We can see this by examining the coverage under non-informative 

prior conditions such as those of a Jeffrey’s prior.  These cases should generally 

behave close to the desired classical properties, but explicit use of the Jeffrey’s prior 

is not possible due to difficulties in convergence of the limit for complex systems.  

The posterior result will converge to a Jeffrey’s based posterior as α becomes small 

and β becomes large though, which can be seen in Case 1 where K is large.  Choosing 

K large enough will also act to drive α toward zero and cause behavior more in line 

with a non-informative prior.  Because K can be considered arbitrarily large for a 

complex system, the resulting coverage properties for a complex system should match 

those of classical methods.  

 

(a)            (b) 
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   (c)              (d) 

 

(e) 

Fig 3.5.  Empirical Distribution of Relative Error Comparisons for Cases 1-5 (a-e):  Proposed Model 
(solid), AMPM (thick dashed), Crow-Extended (dotted) 

 

3.7 Example Application 

 This section presents an example application of the model using data from a 

developmental test.  Twenty-five systems were each tested for 175 hours, and 13 

failure modes were observed across all of the systems.  Across all systems, 43 total 

failures were observed.  The occurrence times for each mode are shown by system in 

Table 3.3, along with the associated times of corrective action and FEFs.  All 
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corrective actions were implemented after the test, with the exception of mode 8, 

which was implemented for all systems at 100 hours. 

 

TABLE 3.3 

SAMPLE FAILURE MODE DATA 

Mode FEF System Number Occurrence Time Corrective action 
time 

1 0.5 19 106.3 175 

2 0 
7 107.3 

NA 15 100.5 
25 10.6 

3 0 

3 79.4 

NA 

6 67.3 
6 67.1 
6 70.8 
6 162.3 
14 102.7 
17 100.8 
17 126.3 
22 13.9 
22 64.1 
22 84.4 
23 39.2 
23 48.5 
23 45.6 
23 53.3 
23 68.7 

4 0 20 97.0 NA 25 36.4 
5 0.8 21 70.8 175 

6 0 

3 148.1 

NA 7 70.6 
8 118.1 
22 18.0 

7 0.7 15 37.8 175 

8 0.8 
6 74.3 

100 7 65.7 
7 93.1 

9 0.5 13 90.8 175 
10 0.5 13 99.2 175 
11 0.5 17 130.8 175 
12 0 5 169.1 NA 
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15 114.7 
16 6.6 
17 154.8 
17 5.7 
17 21.4 
23 125.4 
23 140.1 

13 0 7 102.7 NA 
 

 The empirical Bayes estimates in (23) and (24) are found to be 

 

ˆ λ B = 0.0101             (40) 

 

ˆ β = 0.0016            (41) 

Applying these estimates within the basic model in (9) and (10) yields the posterior 

mean and eighty percent upper probability bounds in (42) and (43) respectively. 

 

λs = 0.0087              (42) 

 

λUB = 0.0098               (43) 

The resulting posterior approximation is plotted in Figure 3.6.  Note that of the 7 

failure modes that were addressed with corrective actions, the average FEF value was 

0.61.  This would indicate that the improvement in reliability from the corrective 

actions will not be significant.  The point estimate of the failure intensity for a 

standard HPP is just 4375/43 = 0.0098, which is only slightly higher than the 

projected failure intensity after corrective actions in (42).  This comparison not only 

provides a “consistency check” of the proposed model, but it also indicates the results 

that can be expected when the FEF values are somewhat moderate. 
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Fig 3.6.  Approximate Posterior Distribution for Sample Problem 

 Goodness of fit can be checked using the visual and Chi-Squared tests 

developed in Section 3.4, with the appropriate modifications to handle multiple 

systems as discussed in Section 3.5.1.  Figure 3.7 shows the failure mode first 

occurrence times overlaid on the distribution of the prior cumulative number of 

modes.  The prior mean is the solid line, and the dashed lines represent a 90% 

probability interval.  The visual results indicate that the data agree well with the 

model assumptions.  Ten thousand samples of the Chi-Squared test statistic in (29) 

showed one sample greater than the critical value for a Chi-Squared variable with 6 

degrees of freedom.  The six degrees of freedom result from the n = 43+25+2 = 70 

data points while using n0.4 groups for the calculation.  This small proportion provides 

additional evidence of agreement with the model assumptions. 
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Fig 3.7. Comparison of Observed Failure Modes and Prior Predicted Distribution for Cumulative 
Number of Failure Modes for Sample Problem 

 

Figure 3.8 also shows the distribution for the cumulative number of modes observed 

in follow-on testing of 250 hours.  The mean is again the solid line, and the dashed 

lines represent a 90% probability interval. 
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Fig 3.8. Distribution for Cumulative Number of Failure Modes in Additional Testing for Sample 
Problem 

 

3.8 Conclusions 

 This chapter has presented a new method for projecting the reliability growth 

of a complex continuously operating system.  The model allows for arbitrary 

corrective action strategies, and it differs from other models of this type by using all 

available data.  It also differs from other reliability growth projection models in that it 

offers a complete inference framework via the posterior distribution on the system 

failure intensity.  A unique feature of this approach with respect to other Bayesian 

techniques is the analytic expression for the failure intensity contribution from 

unobserved failure modes.  Expressions for estimating the initial failure intensity, 

growth potential failure intensity, and the cumulative number of failure modes 

expected in future testing are also developed.  Two separate goodness-of-fit 

procedures are presented for assessing the appropriateness of the underlying model 

assumptions.  Extensions to the basic framework are also developed.  The first 

accounts for multiple systems under test, and the second develops the posterior 

distribution while allowing for uncertainty on the FEF values that are assessed. 

 Taken as a whole, the results are useful for reliability program managers 

making decisions regarding the investment of resources to improve reliability.  The 

model can be used to estimate the resulting reliability after corrective actions are 

applied, and the associated metrics can help to aid in future decisions.  Resource 

planning can be made based on the posterior distribution for the number of failure 

modes that will be seen in future testing.  The use of the growth potential failure 
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intensity can also indicate whether additional test-fix-test reliability should be 

pursued for the program.  If the resulting growth potential failure intensity estimates 

are higher than the desired objective, resources should be expended for reliability 

improvement initiatives outside of the traditional test-fix-test reliability growth 

approach.  
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4 ASSESSING RELIABILITY GROWTH USING DEVELOPMENTAL 

AND OPERATIONAL TEST DATA2 

4.1 Introduction 

4.1.1 Background 

 The approach presented here is conceptually the same as those in [68]-[70] 

and [85].  The major difference being that the Bayesian formulation easily allows for 

uncertainty to be included throughout the problem, to include the degradation scale 

factor between developmental growth and operational demonstration testing.  This 

provides an additional uncertainty in the results that will more closely match the 

practical situation, in which limited information on the actual degradation may be 

available.  The model also provides a complete inference framework via the posterior 

distribution, which includes both developmental and operational reliability 

information.  These types of results are particularly useful in planning reliability 

growth programs, where different test events, both growth and constant configuration, 

may be used throughout.  The results can also be extended to develop a Bayesian 

reliability growth planning model, which is the subject of Chapter 5. 

4.1.2 Chapter Overview 

 The methodology of the approach is presented in Section 4.2.  It includes 

model assumptions, data requirements, and the development of the initial framework 

for combining data from two different tests.  The presentation of the methodology is 

2 A condensed version of the material in Chapter 4 was accepted for publication in 2014 RAMS 
Proceedings.  A full detailed version will be submitted for journal publication when Chapter 3 is 
accepted for publication. 
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broken into two separate sections: developmental reliability growth assessment, and 

operational reliability assessment using the developmental reliability growth 

assessment posterior results as prior information.  Straightforward generalizations of 

the initial framework that are appropriate for multiple systems under test are also 

presented.  Analogous OC curve results for the proposed model are developed in 

Section 4.3.  A Bayesian goodness of fit of test to assess the appropriateness of the 

overall model assumptions is presented in Section 4.4.  Section 4.5 discusses the 

performance of the proposed model, and conclusions are presented in Section 4.6. 

4.2 Methodology 

 The development of the methodology considers the combination of 

developmental and operational test data for a single system while accounting for 

differences in the underlying failure intensity that may exist between the two test 

events.  The method allows for reliability growth through the developmental test, 

where one or more failure modes may be mitigated through the implementation of a 

corrective action.  The operational test is assumed to be a constant configuration test, 

and the difference in the two test environments is modeled explicitly.  More 

specifically, a decrease in reliability (or increase in failure intensity) between the test 

phases is considered probabilistically.  The methodology is then extended to include 

multiple test phases and multiple systems under test. 

4.2.1 Assessing Reliability Growth in DT  

This section presents a method for modeling the reliability growth of a system 

during a developmental test phase.  The results from this procedure are then used as 
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prior information when assessing the reliability from the operational test in Section 

4.2.2.  The approach is the same as that developed in Chapter 3, but an outline of the 

method is presented here for completeness.  The assumptions for the reliability 

growth test data are as follows: 

 

1. The system is sufficiently complex; i.e. a large number of failure modes exist 

in the system. 

2. Failure modes generate system failures independently. 

3. Each occurrence of a failure mode results in a system failure. 

4. The failure intensity for a given failure mode is constant both before and after 

a corrective is implemented. 

5. No new failure modes are induced by corrective actions. 

 

Using the same notation as in Chapter 3, we assume for failure mode i that ni 

failures are observed in test length T with times 

 

ti,1,ti, 2 ,...,ti, ni( ).  Further assume that 

the failures are divided such that ni,1 occur before a corrective action is implemented 

and ni - ni,1 failures occur after the corrective action.  For a corrective action that 

occurs at time vi, let di represent the FEF resulting from the corrective action.  From 

assumptions 2. and 4. the likelihood can then be expressed as   

 

l ti,1,ti, 2 ,...,ti, ni
,ni ,n i, 1 | λi( )= 1 − di( )ni −ni, 1λi

ni exp −λi vi + 1 − di( ) TDT − vi( )[ ]( ).    (1) 

We note that the likelihood involves a telescoping sum of the individual failure times, 

and the simplified form in (1) reduces to a function of the number of failures.  The 

individual failure times are therefore suppressed in future notation. 
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 For the prior distribution on the failure intensity, it is useful to consider a 

distribution that will adequately reflect the failure intensity for a given failure mode.  

The failure intensities for the collection of failure modes found in a complex system 

are shown to be adequately modeled as a random realization from a Gamma 

distribution [18], [26].  This form of the prior probability distribution recognizes what 

is commonly referred to as the “vital few, trivial many” property among failure mode 

failure intensities.  This property acknowledges that each failure mode provides a 

different contribution to the overall system failure intensity, with a relatively few 

number of failure modes being significant enough to be observed in test.  We assume 

the prior distribution to be a Gamma(α,β) parameterized as  

 

p λi( ) =
λi

α −1

Γ α( )β α exp −
1
β

λi

 

 
 

 

 
 ,    (2) 

where α > 0 and β > 0.  Because of the conjugate nature of (2), standard techniques 

yield the posterior distribution for a single failure mode to be the Gamma distribution 

parameterized in (3). 

 

p λi | ni( ) =
λi

α+ ni −1

Γ α + ni( ) 1
β

+ vi + 1 − di( ) TDT − vi( )
 

  
 

  
− α+ ni( )  *

                                                      exp −λi
1
β

+ vi + 1 − di( ) TDT − vi( )
 

 
 

 

 
 

 

 
 

 

 
 

         (3) 

Note also that if no corrective action is attempted, the di are equal to zero, and (3) 

reduces to the Gamma posterior that is commonly found through conjugate Gamma-

Exponential methods. 

 The posterior estimate for the system level failure intensity can be found by 

summing the individual mode posterior estimates and taking the limit as the number 
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of modes becomes large.  The result was shown in Chapter 3 to be well approximated 

by a Gamma distribution with mean and variance given in (4) and (5).  We use the 

notation λDT to denote the system level failure intensity from DT and distinguish 

between later assessments of the desired operational failure intensity.  The variable n 

refers to the vector containing the number of failures for each of the m observed 

failure modes.  In taking the limit with respect to the number of modes, the mean and 

variance in (4) and (5) are expressed in terms of the prior system level mean λB and 

the original β parameter from the prior Gamma distribution. 

 

E λDT | n[ ] =
1 − di( )ni

1
β

+ vi + 1 − di( ) TDT − vi( )
 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

i =1

m

∑ +
λB

1 + βTDT

  (4) 

 

Var λDT | n[ ] =
1 − di( )2 ni

1
β

+ vi + 1 − di( ) TDT − vi( )
 

 
 

 

 
 

2

 

 

 
 
 
 

 

 

 
 
 
 

i =1

m

∑ +
λB

β
1
β

+ TDT

 

 
 

 

 
 

2 .            (5) 

This results in  

 

λDT ~ Gamma ˜ α , ˜ β [ ],     (6) 

where the approximate Gamma can be easily determined using the mean and variance 

to yield the parameters in (7) and (8). 

 

˜ α =
E λDT | n[ ]2

Var λDT | n[ ]
           (7) 

 

˜ β =
Var λDT | n[ ]

E λDT | n[ ]            (8) 
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 Note that both the prior and posterior distributions on the system level failure 

intensity in DT are Gamma, which is a conjugate relationship.  This allows for ease in 

modeling multiple developmental test phases within the framework already 

established.  The posterior distribution results in (7) and (8) can be used as prior 

parameters for a follow-on phase of DT, and this updating process can be continued 

with each additional phase of DT.  Updating in this manner assumes consistency 

between successive test phases, and the posterior defined by (7) and (8) may not be an 

appropriate prior if this assumption is significantly violated.  In these cases it is 

important to consider the model goodness of fit procedures described in Chapter 3 to 

ensure that the results are reasonable.  Equations for empirical Bayes estimation of 

the unknown prior λB and β parameters in (4) and (5) are also provided in Chapter 3. 

4.2.2 Assessing Reliability in OT  

 For assessing the reliability from an operational test, the Gamma posterior 

distribution from Section 4.2.1 can be used to develop the prior distribution.  The 

conjugate relationship of the Gamma-Exponential can easily be leveraged in this 

context, but the degradation in the system reliability must also be considered.  This 

degradation is traditionally considered in terms of a decrease in the system Mean 

Time Between Failure (MTBF).  Assuming a 

 

100γ % degradation in the MTBF (or a 

corresponding increase in system failure intensity) leads to the relationship between 

the developmental and operational failure intensities shown in (9)-(11), where the DT 

and OT subscripts denote the corresponding MTBF and failure intensity values. 
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MTBFOT = 1 −γ( )MTBFDT       (9) 

 

1
λOT

= 1 − γ( ) 1
λDT

        (10) 

 

λDT = 1 − γ( )λOT         (11) 

Utilizing the form of the distribution in (6) and properties of the Gamma distribution 

[86] leads to  

 

λOT =
λDT

1 − γ( )
~ Gamma ˜ α ,

˜ β 
1 − γ( )

 

 
 

 

 
 .          (12) 

The prior distribution in (12) is conditioned on the γ parameter, so we can also 

express (12) as 

 

λOT | γ ~ Gamma ˜ α ,
˜ β 

1 −γ( )
 

 
 

 

 
 .    (13) 

The expression in (13) is now a reasonable prior distribution for use with the test data 

from the operational test phase.  For nOT failures in test time TOT at times 

 

tOT,1,tOT,2,...,tOT,nOT( ) the likelihood is a simplified version of (1) shown in (14). 

 

l  tOT,1,  tOT,2,  ...  , tOT,nOT
, nOT | λOT( )=λOT

nOT exp −λOTTOT( )   (14) 

A simple conjugate relationship would yield a posterior distribution that is 

conditional on γ.  The true value of γ is unknown though, so the desired unconditional 

posterior is given by  

 

p λOT | nOT( ) =
p γ( )p λOT | γ( )l tOT,1,tOT,2,?,tOT,nOT

,nOT | λOT( )
p γ( )p λOT | γ( )l tOT,1,tOT,2,?,tOT,nOT

,nOT | λOT( )∂λOT∂γ
Λ, Γ
∫∫Γ

∫ ∂γ ,    (15) 
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where the Λ and Γ in (15) denote the support of the prior distributions on λ and γ, and 

the degradation is assumed to be independent of the failure intensity.  Note that the 

expression in (15) treats the degradation factor as a nuisance parameter by finding the 

joint posterior distribution and then calculating the resulting marginal distribution of 

interest.  We again suppress the individual failure times in notation for the posterior 

distribution.     

 When developing the prior distribution on the degradation between test 

phases, detailed information is generally not available.  For this reason we 

demonstrate the use of the Maximum Entropy principle [87],[88] to provide a 

repeatable approach that allows for consistency in application.  We further assume 

that only average MTBF degradation values are available.  The average values can be 

determined through examination of historical performance on similar systems, or 

through comparison of the potential failure modes that exist in the system with the 

developmental test environment.  Maximizing the entropy subject to the assumed 

mean value of the MTBF degradation γ and a range of (0,1) results in the prior 

distribution for γ being a truncated Exponential distribution given by  

 

p γ( ) =
µexp −µγ( )
1 − exp −µ( )

,    (16) 

where µ is the solution to 

 

1
µ

− 
exp − µ( )

1 −exp − µ( )
= ε     (17) 

for mean degradation value ε.   Examining equation (17) reveals that µ will be zero 

when the mean degradation is equal to 0.5.  This presents no real problem in practice 

though, as the mean value of the degradation is not likely to be known with high 
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precision.  Perturbing the mean slightly to 0.49 will allow for a positive solution, and 

the end result can be shown to be insensitive to this level of difference.  To aid in 

analytic calculations of (15), the truncated Exponential distribution in (16) is 

approximated with a Beta distribution.  The parameters of the Beta distribution can be 

found by equating the mean and second moment about the origin of the two 

distributions, which results in the system of equations given by (18) and (19). 

 

a
a + b

=
1
µ

−
exp −µ( )

1 − exp −µ( )
    (18) 

 

a
a + b

 
 
 

 
 
 

a +1
a + b +1

 
 
 

 
 
 =

exp −µ( ) + 2 −
1
µ

exp −µ( ) −
1

µ 2 exp −µ( ) +
1
µ 2

 

  
 

  

1 − exp −µ( )
          (19) 

A comparison plot of the two prior distributions is shown in Figure 4.1.  The mean in 

the example is set at ε = 0.20, and the priors are seen to match very closely on the 

(0,1) interval.   

 

 

Fig. 4.1:  Comparison of Truncated Exponential and Beta Prior Distributions 
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We point out that the model is developed using only the Beta approximation as the 

prior distribution.  While the maximum entropy approach in (16)-(19) provides a 

repeatable framework that will be consistent between different users with the same 

mean degradation, other relevant information should also be used whenever possible 

to develop the Beta prior. 

 For the system failure intensity under squared error loss, the Bayes estimate of 

the failure intensity is just the mean of the posterior distribution in (15).  Utilizing the 

Beta prior on the degradation, the mean is found to be 

 

E λOT | nOT[ ] =
˜ α + nOT

1
˜ β 

+ TOT

 

 

 
 
  

 

 

 
 
  

2 F1 ˜ α + nOT +1,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT ,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

 (20) 

where 2F1(a,b,c,z) is the integral form of the hypergeometric function given by  

 

2 F1 a ,b,c,z( ) =
Γ c( )

Γ b( )Γ c − b( )
tb−1 1 − t( )c −b−1 1 − tz( )−a dt

0

1

∫ .  (21) 

The function given in (21) can be evaluated by most standard mathematical software, 

and numerous numerical procedures in many programming languages are also 

available.  Note that the mean of the posterior Gamma distribution with no 

degradation is given by 

 

E λOT[ ] =
˜ α + nOT
1
˜ β 

+ TOT

.        (22) 
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The degradation between the two test environments results in the additional factor 

containing the Hypergeometric functions.  The ratio acts as a scale parameter for the 

usual posterior mean to account for the differences in the two test environments.  The 

posterior variance can be developed similarly as  

 

Var λOT | nOT[ ] =
˜ α + nOT( ) ˜ α + nOT +1( )

1
˜ β 

+ TOT

 

 
 

 

 
 

2

 

 

 
 
 
  

 

 

 
 
 
  

2 F1 ˜ α + nOT + 2,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT ,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

 − 

 

˜ α + nOT( )
1
˜ β 

+ TOT

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT +1,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT ,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

2

 (23) 

 

The mean of the posterior distribution in (22) is a scaled Gamma mean.  This 

provides evidence that the overall posterior may be well approximated by a Gamma 

distribution with parameters given by (7) and (8), substituting the mean and variance 

from (20) and (23).  To confirm this notion,
 
Figure 4.2 shows a histogram developed 

using a simple Metropolis Random Walk to generate samples from the posterior in 

(15).  The dashed line is the approximate Gamma developed using (20) and (23), 

which confirms that the Gamma provides a reasonable description of the posterior 

distribution. 
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Fig. 4.2:  Approximate Gamma Overlaid on True Posterior Distribution 

 

4.2.3 Generalization for Multiple Systems under Test  

 The results in Sections 4.2.1 and 4.2.2 pertain to a single system under test. A 

particularly useful property of the Bayesian framework is the ease of extension that is 

possible.  This section presents one such extension to address the common situation 

involving multiple identical systems under test.   

 The extension of the reliability growth model in Section 4.2.1 was presented 

in Chapter 3.  The posterior distribution can again be modeled sufficiently with a 

Gamma distribution, where the parameters are developed using the appropriate 

posterior mean and variance along with the techniques described in Section 4.2.1.  

This allows us to utilize the same approach as in Section 4.2.2 for developing the 

prior distribution on λ.  For the extension of the likelihood in (14), assume there are p 
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systems under test.  Next assume that for a given system j, nOT,j failures are observed 

in test length Tj with times 

 

tOT,j,1,..., tOT,j, nOT, j( ).  The likelihood is then given as  

 

l tOT,1,1,...,tOT,p, nOT, p
,nOT,1,...,nOT, p | TOT,1,...,TOT, p ,λOT( )= λOT

nOT, j exp −λOTTOT, j( )
j =1

p

∏

                                                                            =λOT
nOT, j

j=1

p

∑ exp −λOT TOT, j
j =1

p

∑
 

 
 

 

 
 

  (24) 

The likelihood again involves a telescoping sum of the individual failure times, and 

the simplified form reduces to a function of the total number of failures across each of 

the systems.  Substituting (24) into the posterior defined in (15) results in the updated 

mean and variance shown in (25) and (26), which are easily found by substituting 

 

nOT, j
j =1

p

∑  for nOT  and 

 

TOT, j
j =1

p

∑  for TOT. 

 

E λOT | nOT[ ] =
˜ α + nOT, j

j =1

p

∑
1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT, j
j =1

p

∑ +1,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT, j
j =1

p

∑ ,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

  (25) 

 

 

Var λOT | nOT[ ] =
˜ α + nOT, j

j =1

p

∑
 

 
 

 

 
 ˜ α + nOT, j

j =1

p

∑ +1
 

 
 

 

 
 

1
˜ β 

+ TOT, j
j =1

p

∑
 

 
 

 

 
 

2

 

 

 
 
 
  

 

 

 
 
 
  

2 F1 ˜ α + nOT, j
j =1

p

∑ + 2,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT, j
j =1

p

∑ ,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

 −
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˜ α + nOT, j
j =1

p

∑
 

 
 

 

 
 

1
˜ β 

+ TOT, j
j =1

p

∑
 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT, j
j =1

p

∑ +1,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT, j
j =1

p

∑ ,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT, j
j =1

p

∑

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

2

 (26) 

The likelihood in (24) can also be considered as a single system with test time equal 

to the total test time across all of the systems.  Using this representation, the system 

level posterior distribution is again sufficiently represented by a Gamma distribution 

with the parameters defined in (7) and (8). 

4.3 Demonstration Testing 

 As mentioned previously, demonstration test planning with classical OC-

curve analysis presents a number of issues for practical application.  The method 

involves calculating the consumer and producer risks associated with the planned 

demonstration test, where demonstration is considered to be successful if the 

appropriate lower confidence bound on the MTBF is greater than or equal to the 

required MTBF [6].  The consumer risk, denoted by α, is the risk of accepting that the 

MTBF of the system meets its requirement when it truly does not.  It is determined by 

the desired statistical confidence level, resulting in a maximum number of failures 

that can be observed during a successful test.  Producer risk is the probability of not 

accepting that the MTBF of the system meets its requirement when it truly does.  It 

can be found by considering the power or probability of a successful demonstration 

the test, where a successful test is defined as observing less than or equal to the 
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allowable number of failures during the demonstration test.  The producer risk can 

then be recognized as the complement of the probability of a successful test.  The 

approach is conditional on the value of the system failure intensity entering the test, 

which is not known in practice.  This is due to two sources of uncertainty: the first is 

that involving the system failure intensity at the end of the developmental test 

program, and the second is the amount of degradation that will occur when 

transitioning from a developmental test environment to an operational test 

environment.   

 The model framework outlined in Section 4.2.2 explicitly addresses the 

uncertainty present prior to entering the test by considering uncertainty on both the 

system failure intensity and the associated degradation factor between the prior DT 

and the operational demonstration test.  Figure 4.3 shows an example of the Gamma 

posterior distribution of the failure intensity relative to the requirement for a 

consumer risk of 0.20.  As shown in the figure, consumer risk of 0.20 corresponds to 

0.20 posterior probability of the failure intensity being greater than the requirement.  

When considering the consumer risk in this setting, the appropriate upper probability 

bound from the Gamma posterior distribution defined by (20) and (23) can be used to 

determine the maximum number of allowable failures for the desired level of 

consumer risk.   
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Fig 4.3: Graphical Representation of Consumer Risk (α = 0.20) 

 

When the maximum number of failures allowed for a successful demonstration test, 

nmax, has been determined, the full unconditional probability of a successful test can 

also be calculated.  The Gamma prior defined in (13) and the Beta prior defined by 

(18) and (19) account for the uncertainty in the failure intensity and degradation 

respectively.  The resulting probability is given by 

 

p =
TOT

i

i!

 

 
 

 

 
 

Γ a + b( )Γ ˜ α + i( )Γ b + ˜ α ( )

Γ b( )Γ ˜ α ( )Γ a + b + ˜ α ( ) ˜ β ˜ α 1
˜ β 

+ TOT

 

 
 

 

 
 

˜ α + i
i =0

nmax

∑  *

                                                        2F1 ˜ α + i,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

  (29) 

The expression in (29) can be developed as a straightforward extension of the 

classical probability of acceptance defined in [6] as 
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p =
λOTTOT( )i exp −λOTTOT( )

i!i =0

nOT

∑ .   (30) 

Equation (29) can be developed from (30) by substituting the DT-OT relationship 

from (11) and (12) for the operational failure intensity in (30) and then marginalizing 

with respect to the distributions in (13), (18), and (19).  This result represents a more 

complete description of the probability of a successful test and the corresponding 

producer risk that exists.   

 When the reliability demonstration event is used to develop reliability design 

goals, use of the posterior distribution in (20) and (23) along with (29) will result in 

lower goals for the same consumer and producer risks when compared to the classical 

OC curve based results.  These design goals can be thought of as reliability 

“demonstration margins”, which serve as overall programmatic risk indicators for 

planned development and testing programs.  The proposed assessment approach using 

combined developmental and operational test data can therefore be seen to directly 

reduce the programmatic risks that may exist due to reliability demonstration with 

operational test data alone.  Note that the reduced goals are a direct result of the 

additional information provided by the development reliability growth test data.  The 

reliability growth model in Section 4.2.1 and Chapter 3 provides a substantial amount 

of information on the failure intensity of the system during DT.  This information is 

useful even when a conservative approach is used to assign the prior on the 

degradation factor, such as with the maximum entropy approach in Section 4.2.2. 
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4.4 Model Assessment 

The validity of the assumptions and relative “goodness” of the model are 

important considerations when utilizing any model for inference.  A chi-squared 

goodness of fit test [83],[84] can be used to provide an indication of the 

appropriateness of the chosen model.  The Bayesian chi-squared test statistic 

developed in [83] utilizes the properties of the cumulative distribution function 

corresponding to the likelihood function used in the development of the posterior 

distribution along with samples from the posterior distribution.  Application of this 

test to developmental reliability growth test data was presented in Chapter 3 and will 

not be presented in this chapter.  For assessing the combined developmental and 

operational test model, the method is as follows. 

 Following the method outlined in [84], the posterior distribution is the Gamma 

distribution developed in Section 4.2.2 with mean and variance in (20) and (23).  The 

unit interval is then divided into q sub-intervals such that 

 

0 ≡ a0 < a1 < ... < aq−1 < aq ≡1.  For failure times (tOT,1,tOT,2,…,tOT,nOT), let yj be the 

times between successive operational test failures for j = 1,…,nOT.  Also let Fj be the 

corresponding cumulative Exponential distribution with the failure rate parameter 

 

˜ λ  

sampled from the Gamma posterior.  Next define 

 

zj
˜ λ ( ) to be a vector of length q 

whose jth𝑞𝑡ℎ element is zero unless  

 

F yj | ˜ λ ( )∈ aq−1,aq( ),      (31) 
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in which case the 𝑞𝑡ℎ element of zj is set to one.  For the failure free interval at the 

end of the operational test, a random number is drawn from the interval 

 

1 −F TOT −tOT, nOT
| ˜ λ ( ), 1[ ] in place of the Fj in (31) [84].  Next define  

 

m ˜ θ ( ) = zj
˜ θ ( )

j =1

nOT +1

∑ .    (32) 

The expression in (32) is a vector of length q, where each element of the vector 

represents the total number of points in the qth subinterval of the unit interval.  The 

summation in (32) also involves nOT + 1 terms because of the failure free interval at 

the end of the test.  The chi-square statistic from [83] is defined as 

 

RB ˜ θ ( ) =
mk

˜ θ ( )− nOT +1( )pk

nOT +1( )pk

 

 

 
 

 

 

 
 k =1

q

∑
2

,       (33) 

where the pk are defined as the differences between the aq values that divide the unit 

interval.  The statistic in (33) is asymptotically chi-squared with q -1 degrees of 

freedom under repeated sampling of both the data and the posterior parameter of 

interest.  As described in Chapter 3 and [83], the utility of the statistic is that poorly 

specified models will not follow the proper chi-squared distribution and will likely 

have a higher number of samples in the tail of the distribution.  The proportion of 

samples of (33) that fall beyond the desired critical value of the chi-squared 

distribution can be used to assess model fit.  For example, 50% of the sampled values 

of RB falling above the 0.95 quantile of the chi-squared distribution would indicate a 

problem with model fit [84]. 
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4.5 Performance Comparisons 

 Performance of the proposed method is examined using two separate 

approaches.  The first involves comparing the relative error distributions for the 

proposed method and the classical estimate from multiple replications of simulated 

tests.  The second compares the Bayes posterior risk of each method to examine the 

sensitivity of the prior distribution on the DT-OT degradation factor.   

 For the relative error comparisons, a simulation was developed to examine the 

behavior of the proposed model.  The simulation uses an input parameterization for 

the Gamma distribution and then generates random failure intensities for the specified 

number of failure modes.  For each realized value of the failure mode developmental 

failure intensity, random failures are then generated for a developmental test phase of 

a desired length.  Corrective actions are applied according to an arbitrary corrective 

action strategy, with random FEF values for each mode drawn from a Beta 

distribution.  The failure intensities are then scaled through the application of a 

degradation factor that is randomly sampled from an additional Beta distribution.  

This determines the true operational failure intensity, from which random failures are 

then generated for a second operational test of desired length.   The true underlying 

system level failure intensity (and corresponding MTBF) is then known from the sum 

of the realized values in the simulation, and there are realized failures from one or 

more of the test phases that can be used in the model framework to estimate the 

system level failure intensity.  One thousand replications were determined to be 

sufficient based on sufficient convergence of the mean result as a function of the 

number of replications. 
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 Table 4.1 contains ten cases that were examined for comparison purposes.  

The cases were chosen to cover the possible scenarios with different amounts of 

testing and reliability.  Table 4.2 contains the average results over the one thousand 

replications for each case.  MTBF values are reported in the table instead of the 

failure intensities to provide a more intuitive understanding of the inputs for each 

case.  The average relative error values for both the Bayesian technique proposed here 

and the classical estimate using only the data from the operational test event are also 

included.  The average absolute relative error is a useful measure of performance for 

models of this type, and it provides an indication on the general ability of the model 

to provide a reasonable estimate of the desired system failure intensity.  The absolute 

relative error for a single case is defined as  

 

Rel error =
ˆ λ −λ

λ
,        (34) 

where λ is the true operational system failure intensity from the simulation, and λ̂  is 

the model estimate resulting from the simulated data.  Note that the use of the 

absolute relative error may provide a conservative indication of the performance of 

the estimators.  The failure intensities are generally small values, so seemingly minor 

differences may actually be large percentage values and result in high relative error 

values.   
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TABLE 4.1 

  COMPARISON CASES FOR PROPOSED MODEL 

Case 

Number 
of 

Failure 
Modes 

(K) 

β 
Initial 

DT  
MTBF 

DT 
Length 

OT 
Length 

Mean 
Degradation 

1 500 0.0001 100 1000 2000 0.2 
2 500 0.0001 400 1000 2000 0.2 

3 500 0.0001 100 2000 2000 0.2 
4 500 0.0001 400 2000 2000 0.2 
5 500 0.0001 100 2000 500 0.2 
6 500 0.0001 400 2000 500 0.2 
7 500 0.0001 100 5000 500 0.2 
8 500 0.0001 400 5000 500 0.2 
9 500 0.0001 100 10000 500 0.2 

10 500 0.0001 400 10000 500 0.2 
 

 

TABLE 4.2 

  COMPARISON RESULTS FOR SIMULATION CASES 

Case True 
MTBF 

Bayes 
MTBF  
(Post 

Mean) 

0.80 
Lower 

Probability 
Bound 

Rel 
Error 

(Bayes) 

Classical 
Pt Est 

0.80  
Lower 

Confidence 
Bound 

Rel Error 
(Classical) 

DT 
failures 

OT 
failures 

1 71.4 72.4 65.5 0.16 74.7 61.9 0.15 11.6 46.1 
2 292.8 299.6 239.6 0.27 384.5 231.5 0.32 4.3 7.1 

3 77.8 81 74.4 0.15 82.2 67.5 0.15 20.6 29.1 
4 313.4 318.3 263.2 0.29 389.4 236.2 0.31 6.9 6.8 
5 77.5 84.7 76.6 0.19 92 57.4 0.31 20.5 7.3 
6 313.9 319 253.7 0.35 238.4 159.4 0.6 6.8 1.9 
7 89.9 97.1 88.8 0.15 110.8 65 0.33 49.3 7 
8 372.4 393.2 333.7 0.27 235.6 179.1 0.7 13.4 1.6 
9 110.3 116.6 107.6 0.13 137.8 79.8 0.37 99.1 5.5 

10 445.2 465 402.7 0.22 250.2 190.2 0.72 25.1 1.3 
   

 The results averaged over 1000 replications in Table 4.2 are informative of the 

general performance of the two models on the average, but the distribution of the 
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relative error is also of interest.  Examining the empirical distribution of the relative 

error will provide additional information regarding the performance and utility of the 

model.  Figures 4.4 - 4.7 show the empirical distribution of the relative error for the 

four of the test cases listed in Table 4.1.  The dashed and solid lines represent the 

relative error distributions for the Classical and proposed Bayesian method, 

respectively. 

 

 

 

Fig. 4.4: Case 1 Empirical Distribution of Relative Error 

 

 

  

 Bayes 
 
 Classical 
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Fig. 4.5: Case 4 Empirical Distribution of Relative Error 

 

 

 

 

Fig. 4.6: Case 8 Empirical Distribution of Relative Error 

 

 

 Bayes 
 
 Classical 

 Bayes 
 
 Classical 
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Fig. 4.7: Case 9 Empirical Distribution of Relative Error 

 

The distributions for the relative error in Figures 4.4 and 4.5 demonstrate that the 

proposed Bayesian model and the classical estimate provide similar results for those 

cases where there is a relatively large amount of OT.   Figures 4.6 – 4.7 show that the 

Bayesian model using the combined data from both tests provides more accurate 

estimates of the total system failure intensity than the classical estimate in cases 

where the amount of OT is limited.  For example in Figure 4.6 for Case 8, the 

Bayesian model provides an estimate that is within 30% of the true value 

approximately 80% of the time, while the corresponding classical estimate is within 

30% roughly 50% of the time.  Expanding the relative error to 40% shows nearly 

95% of the Bayesian estimates to be within this threshold, while only 65% of the 

classical estimates fall within this range.  This behavior is to be expected though, as 

more information is being used in developing the combined Bayesian estimate.   

 Further simulation runs were also made in order to understand the sensitivity 

and performance of the proposed model with respect to the mean values of the 

 Bayes 
 
 Classical 
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degradation parameter that are used.  Table 4.3 shows the average results over 1000 

replications when the chosen mean degradation is optimistic (true mean = 0.2, model 

input = 0.1), and Table 4.4 shows the average results over 1000 replications when the 

chosen mean is conservative (true mean = 0.2, model input = 0.3).  As the results in 

tables show, the proposed Bayesian method still performs well and provides lower 

mean absolute relative error values in many cases even when the mean of the 

degradation is misspecified.  This is particularly true when the amount of OT is lower 

than the amount of DT, further highlighting the utility of the proposed method.   

 

 

   

TABLE 4.3 
  COMPARISON RESULTS FOR OPTIMISTIC MEAN DEGRADATION (TRUE 

MEAN = 0.2, MODEL INPUT = 0.1) 
 

Case True 
MTBF 

Bayes 
MTBF  
(Post 

Mean) 

0.80 
Lower 

Probability 
Bound 

Rel 
Error 

(Bayes) 

Classical 
Pt Est 

0.80  
Lower 

Confidence 
Bound 

Rel Error 
(Classical) 

DT 
failures 

OT 
failures 

1 71.2 83.5 75.8 0.19 73.5 61 0.15 11.5 33.4 
2 296.8 294.2 238.9 0.32 370.8 222.1 0.26 4.8 7.2 

3 77.4 94.5 87.5 0.19 80.1 65.9 0.15 20.9 47.1 
4 332.2 373.6 311.6 0.27 436.6 252.8 0.3 6.6 6.6 
5 77.2 103.1 94.2 0.25 93.6 58 0.31 20.7 7.2 
6 310.4 380.8 309.1 0.32 234.5 160.9 0.64 6.8 2 
7 91.8 119.7 110.9 0.23 108.1 64.9 0.32 50 6.1 
8 373.1 481 414.4 0.28 250.7 176.7 0.66 13.4 1.4 
9 110.4 143.7 133.9 0.23 139.1 78.7 0.38 99.4 5.2 

10 438.1 576 505.9 0.26 234.3 190.9 0.75 24.9 1.4 
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TABLE 4.4 
  COMPARISON RESULTS FOR CONSERVATIVE MEAN DEGRADATION 

(TRUE MEAN = 0.2, MODEL INPUT = 0.3) 
 

Case True 
MTBF 

Bayes 
MTBF  
(Post 

Mean) 

0.80 
Lower 

Probability 
Bound 

Rel 
Error 

(Bayes) 

Classical 
Pt Est 

0.80  
Lower 

Confidence 
Bound 

Rel Error 
(Classical) 

DT 
failures 

OT 
failures 

1 72 63.4 57.1 0.26 75.7 62.6 0.16 11.6 32.2 
2 293.2 249.4 200.4 0.41 384.4 224.8 0.32 4.8 8.2 
3 76.8 64.8 59.2 0.26 80.3 66 0.15 20.7 38.4 
4 307.7 267.6 219.7 0.41 397.7 235.3 0.32 6.6 8.6 
5 76.6 61.8 55 0.34 95.7 57.9 0.33 20.5 7.5 
6 317 252.8 195 0.59 252.5 167.5 0.63 6.9 1.6 
7 92 71.7 64.3 0.33 114.1 67 0.34 49.8 6.1 
8 366.9 288 234.1 0.47 247.3 170.9 0.67 13.2 1.8 
9 110 83.7 75.2 0.34 144.6 78 0.37 100.1 5.2 

10 441.6 336 277.3 0.44 248.3 185.6 0.73 25.1 1.4 
 

 The Bayesian posterior risk provides an additional method for examining the 

performance of the proposed method.  The use of the posterior risk places the 

problem of reliability assessment within a decision theoretic framework, and it 

naturally aligns with the decision of whether a system’s reliability is sufficient or not.  

In this context we continue to use the squared error loss function [89].  Also, in order 

to rectify potential issues resulting from comparing Bayesian and classical methods 

within this framework, we note that the classical point estimate and confidence 

bounds for the exponential distribution can be derived equivalently from the Bayesian 

posterior distribution resulting from the use of the Jeffrey’s prior distribution [90].  

We also point out that this prior need not be improper.  Finite bounds can be used for 

the support of the prior, and the posterior can be examined with respect to the limits 

of the chosen bounds.  The development of this result is as follows. 
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 For the Jeffrey’s prior development, the distribution will be proportional to the 

inverse of the failure intensity [89] such that  

 

p λOT( ) ∝
1

λOT

.     (35) 

This yields the prior distribution given by (36). 

 

p λOT( ) =
1

λOT log
l2

l1

 

 
 

 

 
 

, l1 <λOT < l2   (36) 

The posterior distribution that results from using (36) as a prior along with the 

likelihood in (14) is given by 

 

p λOT | TOT( ) =

1

λOT log
l2

l1

 

 
 

 

 
 

λOT
nOT exp −λOTTOT( )

1

λOT log
l2

l1

 

 
 

 

 
 

λOT
nOT exp −λOTTOT( )∂λOT

l1

l2

∫
.         (37) 

Because the desired range for the failure intensity is the positive real line, taking the 

appropriate limits in the denominator of (37) then yields 

 

p λOT | TOT( ) =
λOT

nOT −1 exp −λOTTOT( )
Γ nOT( ) 1

TOT
nOT

.         (38) 

The posterior distribution in (38) is a Gamma(α,β) distribution of the same form as in 

(2), which can then be used to develop the desired classical results.   

 The Bayesian posterior risk under quadratic loss for a given prior distribution 

is just the variance of the posterior distribution that results [89].  The posterior risk for 

the classical estimator is then just the variance of the Gamma distribution in (38), 

which is given by  
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Var λOT | TOT( ) =
nOT

TOT
2 .           (39) 

For the proposed Bayes method, the variance of the posterior was defined in (23). 

Examining (23) and (39), we can compare the posterior risks by varying the number 

of observed failures nOT for fixed test length TOT along with the prior information 

regarding the failure intensity and DT-OT degradation.  The prior Gamma parameters 

in (23) can be developed by specifying a prior mean and variance on the failure 

intensity, or equivalently a prior mean and beta parameter.  The prior Beta parameters 

can be developed by specifying the mean DT-OT degradation and using the 

maximum entropy methods described in Section 4.2.2.  Examining the posterior risk 

under these conditions allows for straightforward comparison of the two methods, and 

it also allows for ease in further examining the sensitivity of the proposed Bayesian 

model to the mean of the DT-OT degradation.   

 Table 4.5 contains four cases for comparison.  The prior Gamma parameters 

for the failure intensity, prior Beta parameters for the DT-OT degradation, and test 

length are fixed for each case.  The cases correspond to a prior MTBF value of 250 

hours, and the Beta prior parameters in cases 1 and 3 correspond to a mean 

degradation of 0.05.  The Beta parameters in Cases 2 and 4 correspond to a Uniform 

distribution, which assumes no known prior information about the degradation.  Note 

also that the test length is chosen to represent two separate cases: the first being 

where many multiples of the MTBF are available for testing, and the second being 

testing for only twice the value of the MTBF.  Larger numbers of failures would be 

expected in Cases 1 and 2, and relatively few failures would be expected in Cases 3 
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and 4. The plots in Figures 4.8 – 4.11 show the resulting posterior risk comparisons 

plotted as a function of the number of failures observed during the operational test.    

 

 

TABLE 4.5 

POSTERIOR RISK COMPARISON CASES 

Case α β a b Test 
Length 

1 40 0.0001 0.9 17.1 5000 
2 40 0.0001 1 1 5000 

3 40 0.0001 0.9 17.1 500 

4 40 0.0001 1 1 500 
 

 

 

Fig. 4.8: Posterior Risk Comparison Case 1 

 

 Bayes 
 
 Classical 
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Fig. 4.9: Posterior Risk Comparison Case 2 

 

 

 

 

Fig. 4.10: Posterior Risk Comparison Case 3 

 

 

 Bayes 
 
 Classical 

 Bayes 
 
 Classical 
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Fig. 4.11: Posterior Risk Comparison Case 4 

 

The results in Figures 4.8 - 4.11 indicate that the proposed Bayesian method provides 

a generally lower variance, and therefore lower posterior risk, than the classical 

approach.  This is especially true when examining the plots for reasonable numbers of 

failures that would be expected during the test lengths for each of the cases.  For 

Cases 1 and 2 in Figures 4.8 and 4.9 respectively, the classical risk is below the 

proposed Bayesian model when there are approximately 6 or less failures.  It is likely 

that more than 6 failures will be observed in a 5000 hour test when the system MTBF 

is 250 hours, so the proposed will be lower risk in most practical applications.  The 

proposed Bayesian approach also provides lower risk in those cases when the mean 

DT-OT degradation is treated as unknown and a uniform distribution is used for the 

uncertainty.  These results are a further indication of the utility of the proposed model 

for reliability assessment. 

4.6 Discussion and Conclusions 

 This chapter presents a new reliability assessment model that allows for the 

combination of developmental and operational data from different test events for 

 Bayes 
 
 Classical 
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continuously operating systems.  The model offers an alternative to the traditional 

reliability assessment that is based on a single test event using only the data collected 

from the test phase in question.  Differences in the test environments and stressors 

must always be considered when combining data from different test events, and the 

model explicitly accounts for the degradation that exists when moving from 

developmental to OT.   

 Note that the posterior distribution after OT does not explicitly use the amount 

of DT.  It only assumes that the uncertainty on the system failure intensity prior to OT 

can be represented by a Gamma distribution.  This increases the flexibility of the 

approach by allowing for the use of additional relevant reliability information.  Data 

from lower level testing or analysis may potentially be used along with or in place of 

developmental reliability growth testing to develop the prior Gamma.  If lower level 

data is used to develop the prior without system level data, it is important that a 

rigorous examination of the potential failure modes be completed in order to 

determine a reasonable value for the mean degradation between developmental and 

OT.  For the degradation distribution itself, the use of the Maximum Entropy 

approach provides a repeatable framework to allow for consistency.  The assessment 

model is developed using only the Beta approximation for prior distribution on the 

degradation though, and other relevant information should also be used whenever 

possible to develop the Beta prior on the degradation value.  

 Also note that the degradation in reliability between the developmental and 

operational tests is applied through a scaling of the system level failure intensity.  

While the assumption is a basic approach, it provides the necessary flexibility for the 
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degradation to occur in many possible ways.  For instance, the DT may not have the 

opportunity to fully exercise certain components of the system, leading to an increase 

in the failure intensity for a subset of the failure modes during OT.  It is also possible 

that the DT may fully exercise all aspects of the system, but in a more benign manner 

than the operational environment.  The same degradation may then be realized 

through a smaller individual increase across a larger number of failure modes.     

 The approach serves as a natural extension of the current approach to 

reliability demonstration used in the Defense industry while explicitly modeling the 

additional uncertainty that exists in the problem.  Use of the posterior distribution in 

(20) and (23) along with the probability of a successful test defined by (29) will 

generally lead to tighter uncertainty intervals and result in lower reliability design 

goals.  This approach can help to directly reduce the programmatic risks that may 

exist due to reliability demonstration in a constrained environment with operational 

test data alone. 
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5 RELIABILITY GROWTH PLANNING USING COMBINED 

DEVELOPMENTAL AND OPERATIONAL TEST DATA FOR 

RELIABILITY DEMONSTRATION 

5.1 Introduction 

5.1.1 Background  

 This chapter presents an approach to reliability growth planning that serves to 

mitigate the problems associated with the high reliability goals resulting from 

traditional reliability demonstration.  The proposed method uses a combination of 

developmental reliability growth test data and operational reliability test data for 

reliability demonstration within a Bayesian probabilistic framework.   Demonstration 

in this manner was developed in [6].  Degradation between the developmental and 

operational test phases is accounted for through the probabilistic application of a scale 

factor.  The Bayesian formulation that is used easily allows for uncertainty to be 

included on the scale factor.  This provides an approach that will more closely match 

the practical situation, in which limited information on the actual degradation may be 

available.  The reliability growth portion of the method is based on the projection 

model developed in Chapter 3, which is an extension of the models found in [18] and 

[26]. 

5.1.2 Chapter Overview 

 The methodology of the approach is presented in Section 5.2.  It includes 

model assumptions, data requirements, and the development of the initial framework 
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for combining data from two different tests.  The presentation of the methodology is 

broken into two separate sections: developmental reliability growth assessment, and 

operational reliability assessment using prior reliability growth assessment results.  

Section 5.3 presents three associated management metrics that can be helpful in 

managing a reliability growth program.  An example application of the model is 

presented in Section 5.4, and conclusions are found in Section 5.5.   

5.2  Methodology 

 The methodology is presented in three parts.  The first considers the 

construction of a reliability growth planning curve for the developmental test 

program.  The reliability growth program assumes that the reliability of the system 

will be increasing due to the discovery and subsequent correction of failure modes 

inherent in the initial configuration of the system.  The second considers reliability 

demonstration using a combination of developmental and operational test data for a 

single system while accounting for differences in the underlying failure intensity that 

may exist between the two test events.  The operational test is assumed to be a 

constant configuration test with a more realistic test environment that causes a 

difference in the underlying system reliability.  Results from the reliability growth 

portion are used to explicitly model the uncertainty present in the failure intensity, 

and the difference in the two test environments is modeled explicitly with a 

probabilistic decrease in reliability (or increase in failure intensity) between the test 

phases.  The third part develops the actual planning curve by combining the results 

from the first two parts. 
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5.2.1 Data Requirements 

 The reliability growth planning model presented here utilizes the same inputs 

as current models that are found in [13].  The data requirements are: 

 

1. Initial MTBF, MI 

2. MTBF Requirement, MR 

3. Average FEF, µd 

4. MS 

5. Average reliability degradation between developmental and operational test 

environments, ε 

6. Test lengths for planned developmental and OT 

 

The initial MTBF is the mean of the prior distribution in this approach.  While it is 

commonly specified in currently used models, its use in a Bayesian setting may prove 

to be too informative for some applications.  In these cases it is recommended that 

any initial reliability growth planning curve be updated and reinitialized after the first 

phase of DT.  Empirical Bayes estimates from Chapter 3 can be applied to the data 

from the test and then utilized in the planning curve construction presented in this 

chapter. 

5.2.2 Modeling Reliability Growth in DT 

 The assumptions for the reliability growth testing mimic those in Chapters 3 

and 4 and are as follows: 
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1. A large number of failure modes (K) exist in the system. 

2. Failure modes generate failures independently of one another. 

3. Each occurrence of a failure mode results in a system failure. 

4. The failure intensity for a given failure mode is constant both before and after 

a corrective action is implemented. 

5. No new failure modes are induced by corrective actions. 

6. The resulting failure intensity after corrective action will be reduced from the 

initial value according to the assigned FEF.  

7. Failure mode failure intensities have a common prior Gamma distribution. 

 

For the failure intensity of each failure mode, we use a Gamma(α,β) parameterized as  

 

p λi( ) =
λi

α −1

Γ α( )β α exp −
1
β

λi

 

 
 

 

 
  , α > 0, β > 0         (1) 

The system level failure intensity can then be approximated by a Gamma distribution 

with mean and variance given in (2) and (3).  We use the notation λDT to denote the 

system level failure intensity from DT and distinguish between later assessments of 

the desired operational failure intensity.  Because the results in Chapters 3 and 4 

make no distinction between A-modes and B-modes, we also substitute λI in place of 

λB to facilitate later classification of different types of failure modes.  The variable n 

refers to the vector containing the number of failures for each of the m observed 

failure modes. 
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E λDT | n[ ] =
1 − di( )ni

1
β

+ vi + 1 − di( ) TDT − vi( )
 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

i =1

m

∑ +
λI

1 + βTDT

      (2) 

 

Var λDT | n[ ] =
1 − di( )2 ni

1
β

+ vi + 1 − di( ) TDT − vi( )
 

 
 

 

 
 

2

 

 

 
 
 
 

 

 

 
 
 
 

i =1

m

∑ +
λI

β
1
β

+ TDT

 

 
 

 

 
 

2 .   (3) 

In this chapter we extend these results for reliability growth planning by making three 

additional assumptions that are common in reliability growth planning.  First, we 

assume that a portion of the observed failure modes will be considered as A-modes, 

which are defined as failure modes that will not receive corrective actions when 

observed during testing.  The failure intensity due to A-modes is defined from the 

inputs as 

 

 

λA = (1 − MS)λI       (4) 

B-modes are those failure modes that will be corrected when observed during the 

reliability growth process. λB is defined from the inputs as 

 

λB = MSλI                     (5) 

Note that 

 

λA +λB =λI .  We next assume that all failure modes will be corrected with 

an average level of fix effectiveness, denoted as µd.  All corrective actions are also 

assumed to be delayed until the end of the test length TDT.  

 To develop the planning model, we use assumption 4 and marginalize with 

respect to the observed number of failures during testing of length TDT.  This is 

equivalent to substituting the expected number of failures for the observed number of 
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failures in (2) and (3).  These modifications result in the updated expressions for the 

mean and variance given in (6) and (7). 

 

E λDT[ ] =
λATDT

1
β

+ TDT

 

 
 

 

 
 

+
1 − µd( )λBTDT

1
β

+ TDT

 

 
 

 

 
 

+
λI

1 + βTDT

              =  
λATDT

1
β

+ TDT

 

 
 

 

 
 

+ 1 − µd( ) λB −
λB

1 + βTDT

 

 
 

 

 
 +

λI

1 + βTDT

    (6) 

 

 

Var λDT[ ] =
λATDT

1
β

+ TDT

 

 
 

 

 
 

2 +
1 − µd( )2

λBTDT

1
β

+ TDT

 

 
 

 

 
 

2 +
λI

β
1
β

+ TDT

 

 
 

 

 
 

2 .     (7) 

The expression in (6) is composed of three main parts.  The first is the failure 

intensity due to observed failure modes that will not be corrected.  The second is the 

remaining failure intensity for failure modes that have been observed during the test 

and corrected with the average level of fix effectiveness.  The third is the remaining 

failure intensity due to failure modes that have not yet been observed during the test.  

When no A-modes are considered, this expression is also identical to the idealized 

reliability growth planning curve for B-modes presented in [17].  When both A-

modes and B-modes are considered, the difference between the results here and in 

[17] is due to the treatment of the A-modes.  The approach presented here assumes all 

failure modes have the same common prior Gamma distribution, whereas the 

approach in [17] assumes a common Gamma for the B-modes and treats the A-modes 

separately.  Although the approach in [17] is not explicitly Bayesian, the use of a 

Gamma distribution to model variability in the failure intensity from mode to mode 
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aligns closely with the use of a Gamma prior distribution in Chapter 3.  The 

methodology underlying [17] also uses shrinkage estimation based on mean-squared-

error, which provides an additional connection to Bayesian results assuming squared 

error loss.  We also note that the equations represent planned reliability growth when 

no data are yet available.  As such the mean and variance are no longer conditioned 

on the observed failures, n.  

 The idealized reliability growth planning curve can also be viewed as a 

function of the DT test time TDT, allowing for (6) and (7) to be written with arbitrary 

time t as  

 

E λDT | t[ ] =  
λAt

1
β

+ t
 

 
 

 

 
 

+ 1 − µd( ) λB −
λB

1 + βt
 

 
 

 

 
 +

λI

1 + βt
            (8) 

 

Var λDT | t[ ] =
λAt

1
β

+ t
 

 
 

 

 
 

2 +
1 − µd( )2

λBt
1
β

+ t
 

 
 

 

 
 

2 +
λI

β
1
β

+ t
 

 
 

 

 
 

2 .           (9) 

For the distribution of λDT, results in Chapter 3 show that the system level failure 

intensity is well approximated by a Gamma distribution when the corrective actions 

are applied in an arbitrary fashion throughout or after the test.  The approximation is 

not necessary for planning though.  When all corrective actions are delayed until the 

end of the test with the same average level of fix effectiveness, the system level 

failure intensity will be exactly Gamma distributed.  We then have  

 

λDT ~ Gamma ˜ α , ˜ β [ ],         (10) 

where the Gamma parameters can be defined using the mean and variance as in (11) 

and (12). 
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˜ α =
E λDT | t[ ]2

Var λDT | t[ ]
            (11) 

 

˜ β =
Var λDT | t[ ]

E λDT | t[ ]             (12)  

5.2.3 Overview of Reliability Demonstration Using Combined Developmental and 

Operational Test Data 

 The reliability demonstration approach presented here is the same as that 

developed in Chapter 4, but small modifications specific to reliability growth 

planning are necessary.  When combining data from DT and OT, degradation in 

reliability is generally assumed between the two test events [13].  This degradation is 

traditionally considered in terms of a decrease in the system MTBF.  Assuming 

 

100γ % degradation in the MTBF (or a corresponding increase in system failure 

intensity) leads to the relationship between the developmental and operational failure 

intensities shown in (13) and (14).  The DT and OT subscripts denote the 

corresponding MTBF and failure intensity values. 

 

MTBFOT = 1 −γ( )MTBFDT     (13) 

 

λDT = 1 − γ( )λOT          (14) 

Traditional techniques for reliability growth planning [13] treat the failure intensity 

from DT as a deterministic value, while also assuming a deterministic value for the γ 

parameter in (14).  The approach presented here and in Chapter 4 extends these 

concepts by considering the uncertainty that is present for both of these parameters.  

The uncertainty can then be modeled explicitly when calculating the statistical risks 
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of the demonstration test.  From the Gamma distribution defined by (11) and (12) in 

Section 5.2.2, we have  

 

λDT = 1 − γ( )λOT ~ Gamma ˜ α , ˜ β [ ].          (15) 

Because the failure intensity, λOT, is the true parameter of interest, we condition on γ 

and utilize properties of the Gamma distribution [86] to obtain the required 

distribution.  

 

λOT | γ ~ Gamma ˜ α ,
˜ β 

1 − γ( )
 

 
 

 

 
 .            (16) 

From Chapter 4 the uncertainty on the degradation parameter γ can also be modeled 

using maximum Entropy principles [87],[88] to arrive at an approximate Beta(a,b) 

distribution.  We assume an average degradation value for planning purposes, which 

can be determined by examining historical performance on similar systems or 

examining the potential failure modes that exist in the system in developmental and 

operational test environments.  Maximizing the entropy subject to the assumed mean 

value of the MTBF degradation γ and a range of (0,1) results in the prior distribution 

for γ being a truncated Exponential distribution given by  

 

p γ( ) =
µexp −µγ( )
1 − exp −µ( )

,    (17) 

where µ is the solution to 

 

1
µ

−
exp −µ( )

1 − exp −µ( )
= ε     (18) 
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for mean degradation value ε.  The Beta parameters can then be found by equating the 

means and second moments of the two distributions, which results in the system of 

equations given by (19) and (20). 

 

a
a + b

=
1
µ

−
exp −µ( )

1 − exp −µ( )
          (19) 

 

a
a + b

 
 
 

 
 
 

a +1
a + b +1

 
 
 

 
 
 =

exp −µ( ) + 2 −
1
µ

exp −µ( ) −
1

µ 2 exp −µ( ) +
1
µ 2

 

  
 

  

1 − exp −µ( )
         (20) 

Equation (18) will result in µ = 0 when the mean degradation is set to 0.5.  For 

planning purposes the mean degradation is not generally known with high precision, 

and this difficulty is easily overcome by slightly perturbing the mean degradation to 

obtain a non-zero solution.  The posterior mean failure intensity from Chapter 4 is  

 

E λOT | nOT[ ] =
˜ α + nOT

1
˜ β 

+ TOT

 

 

 
 
  

 

 

 
 
  

2 F1 ˜ α + nOT +1,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT ,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

       (21) 

where 2F1(a,b,c,z) is the integral form of the hypergeometric function given by  

 

2 F1 a ,b,c,z( ) =
Γ c( )

Γ b( )Γ c − b( )
tb−1 1 − t( )c −b−1 1 − tz( )−a dt

0

1

∫ .         (22) 

The function given in (22) can be evaluated using standard numerical procedures.  

The posterior variance can be developed similarly as  
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Var λOT | nOT[ ] =
˜ α + nOT( ) ˜ α + nOT +1( )

1
˜ β 

+ TOT

 

 
 

 

 
 

2

 

 

 
 
 
  

 

 

 
 
 
  

2 F1 ˜ α + nOT + 2,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT ,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

 − 

 

˜ α + nOT( )
1
˜ β 

+ TOT

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT +1,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

2 F1 ˜ α + nOT ,a,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

2

 (23) 

The posterior distribution is again well approximated by a Gamma distribution.  The 

distribution described by (21) and (23) can then be used to construct the reliability 

growth planning curve, which is presented in Section 5.2.4. 

 The posterior distribution after OT only assumes that the prior distribution on 

the system failure intensity can be represented by a Gamma distribution.  This 

increases the flexibility of the approach by allowing for the use of additional relevant 

reliability information for assessment, and it also provides necessary flexibility for 

reliability growth planning.  A number of reliability improvement activities are likely 

to occur concurrently with system level testing, the combination of which will help to 

mature the system to its end reliability target.  The planning curve is merely a 

roadmap though, and in practice growth will not usually follow the curve exactly 

throughout the entire developmental program.  This does not negatively impact 

planning models in general, as it is important only that the system achieves the 
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targeted posterior distribution represented by the end of planning curve.  As 

mentioned in Chapter 4, the proposed approach only requires that the system ends its 

developmental growth program with sufficiently mature reliability and a failure 

intensity that can be represented by the appropriate Gamma distribution.         

5.2.4 Constructing the Reliability Growth Planning Curve 

 Construction of the reliability growth planning curve begins by considering 

the statistical risks associated with the reliability demonstration.  The consumer risk, 

or probability of a system with insufficient reliability succeeding in the demonstration 

test, can be mitigated by considering the Gamma distribution defined by (21) and 

(23).  The distribution describes the uncertainty that is present in the operational 

assessment of the failure intensity and corresponding MTBF, and it is desirable to 

have a small probability that the MTBF of the system is below that of the MTBF 

requirement.  For desired consumer risk α, define 

 

ˆ λ 1−α as the (1-α)th percentile of the 

Gamma distribution in (21) and (23).  This leads to the desired inequality given by 

 

ˆ λ 1−α ≤
1

MR

.     (24) 

The left side of the inequality in (24) is just a percentile of the Gamma distribution 

from (21) and (23), and closer observation reveals this term to be a function of two 

unknown parameters: the number of failures observed in the operational test, nOT, and 

the underlying β parameter.  The inequality in (24) is equivalent to requiring that the 

(1-α)th percentile of the MTBF is greater than or equal to the system’s MTBF 

requirement.  Figure 5.1 shows an example of the relationship for a consumer risk of 

0.20. 
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Fig. 5.1: Graphical Representation of Consumer Risk (α = 0.20) 

 

 The producer risk is defined as the probability of a system with sufficient 

reliability not succeeding in the demonstration test.  The probability of a successful 

test and the associated producer risk defined in Chapter 4 also address the uncertainty 

associated with operational assessment of the failure intensity and corresponding 

MTBF.  The uncertainties that are present for the system failure intensity and the 

associated degradation factor between the DT and the demonstration test are both 

considered explicitly.  It is also desirable to mitigate the producer risk in the 

reliability growth planning curve development.  For desired producer risk 1-p this 

yields the inequality in (25). 

 

p ≤
TOT

i

i!

 

 
 

 

 
 

Γ a + b( )Γ ˜ α + i( )Γ b + ˜ α ( )

Γ b( )Γ ˜ α ( )Γ a + b + ˜ α ( ) ˜ β ˜ α 1
˜ β 

+ TOT

 

 
 

 

 
 

˜ α + i
i =0

nOT

∑ 2 F1 ˜ α + i,a ,a + b + ˜ α ,

1
˜ β 

1
˜ β 

+ TOT

 

 

 
 
 
 

 

 

 
 
 
 

. (25) 
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The right side of the inequality in (25) is the probability of a successful test, and the 

left side is the probability of a successful test resulting from the desired producer risk.  

The inequality therefore forces the reliability growth plan to have a probability of a 

successful demonstration test at least as high as the desired value, resulting in a 

producer risk that is at most the desired value.  Closer examination of (25) also 

reveals it to be a function of two unknown parameters: the number of failures 

observed in the operational test, nOT, and the underlying β parameter.  Simultaneously 

solving the inequalities in (24) and (25) will yield the two unknown parameters.  

There are a number of possible solutions that can be found, but the pair with the 

smallest value of β and/or largest nOT can be shown to provide the lowest risk.  This 

is because the β value is indicative of the steepness of the resulting reliability growth 

planning curve, and smaller values will indicate less aggressive reliability growth. 

 The solutions from (24) and (25) may appear at first to be a dramatic change 

from the current approach with classical OC curves [13].  The models currently used 

for reliability growth planning also appear on the surface to use only operational test 

data in the operational reliability assessment and corresponding statistical risk 

calculations.  But the use of the degradation factor approach in (13) and (14) is 

merely an implicit approach for using the developmental test results directly in the 

risk calculations.  The deterministic treatment of both the failure intensity and the 

degradation in these calculations would also appear to be undesirable.  Considering 

the uncertainty that is actually present leads directly to the inequalities in (24) and 

(25), with the additional benefit of lower reliability design goals.  The approach not 

only treats the problem within a more complete analytic framework, but it also helps 
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to directly reduce the programmatic risks that may exist due to statistical 

demonstration in a constrained environment.   

 When the (β, nOT) values are found from the inequalities, the idealized 

reliability growth planning curve can be constructed using the mean in (6).  The 

idealized curve represents the growth in reliability that would occur if corrective were 

implemented for failure modes immediately after they were observed and prior to 

further testing.  In practice repairs are made to the system and testing is continued, 

with corrective actions implemented after the test itself in time periods referred to as 

CAPs.  This allows for more efficient testing while also providing the time for root-

cause-analysis that is necessary for robust corrective actions.  With this in mind, the 

reliability targets for each successive phase of DT can then be constructed using the 

idealized curve.  The steps for each of the test phases are taken as the value of the 

idealized curve at the start of each test.  Note that this also allows for lag times for 

corrective actions to be employed as in [17].  Not all failure modes may be corrected 

prior to the start of the next test phase, so the appropriate point on the idealized 

growth curve can be chosen to represent any desired lag times. 

5.3 Management Metrics 

 A number of useful reliability growth planning metrics can also be developed 

within the proposed model.  They include the number of B-modes surfaced in testing, 

the failure intensity for B-modes not yet observed during testing, and the fraction of 

the initial failure intensity attributed to B-modes already observed in testing.  The 

metrics are comparable to those found in [17], and they also include the uncertainty 

distribution that results from the Bayesian approach.  They are specific to B-modes 
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because the B-modes are the failure modes that will require root cause analysis and 

corrective action development.  These activities will require additional resources in 

the form of manpower and time, and the metrics are therefore useful to managers 

looking to properly resource their reliability growth programs.  These results can be 

easily extended for only A-modes or all failure modes by substituting λA or λI 

respectively, in place of the λB. 

5.3.1 Number of Modes Surfaced in Testing 

 The number of B-modes surfaced in testing can be developed using the same 

approach as the prior predicted cumulative number of failure modes presented in 

Chapter 3.  First define the indicator function  

 

I i t( ) =
1, mode i occurs by time t

0, otherwise
 
 
 

.          (26) 

The mean of Ii(t) is found by examining the probability that an unobserved failure 

mode is observed by some time t.  The likelihood of observing a B-failure mode by 

time t is given from Assumption 4 in Section 5.2.2 as 

 

p Ii t( ) =1 | λB( ) =1 − e−λB t         (27) 

Using the prior Gamma distribution on the mode failure intensity, the unconditional 

marginal distribution for Ii(t) can be found through standard techniques.  The 

unconditional expected value is given by 

 

E Ii t( )[ ] = p Ii t( ) =1( ) =1 −
1

1 + βt( )α .   (28) 
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Summing over all K modes in the system yields 

 

E Ii t( )
i =1

K

∑
 

  
 

  = K 1 −
1

1 + βt( )α

 

 
 
 

 

 
 
 
,           (29) 

and taking the limit as K becomes large results in  

 

lim
K →∞

E Ii t( )
i =1

K

∑
 

  
 

  =
λB

β
log 1 + βt[ ],   (30) 

where λB is defined by (5).  Because Ii(t) is a Bernoulli random variable, summing 

over all failure modes yields a Binomial random variable, and taking the limit as K 

becomes large yields a Poisson random variable with the mean shown in (30).  

Therefore if we denote m as the number of B-modes observed by time t, m will be 

Poisson distributed with mean  

 

E m[ ] =
λB

β
log 1 + βt( ).        (31) 

5.3.2 Failure Intensity for Unobserved Failure Modes 

 From the results in Section 5.2.2 the failure intensity for unobserved failure 

modes at test time t, λB,unobserved, is just the third part of the expressions developed in 

(6) and (7).  This yields the mean and variance in (32) and (33), with λB again defined 

by (5). 

 

E λB,Unobserved | t[ ]=
λB

1 + βt
          (32) 

 

Var λB,Unobserved | t[ ]=
λB

β
1
β

+ t
 

 
 

 

 
 

2 .               (33) 
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5.3.3 Fraction of Initial Failure Intensity Attributed to Observed Failure Modes 

 The formula for the fraction of the initial B-mode failure intensity attributed to 

observed failure modes at test time t, θ(t), is discussed in [17] and can be represented 

as 

 

θ t( ) =
λi

i =1

m

∑
λB

,        (34) 

where λB is defined by (5).  The mean of (34) can be expressed as  

 

E θ t( )[ ] = E
λi

i =1

m

∑
λB

 

 

 
 
 
 

 

 

 
 
 
 

=

α + ni

1
β

+ ti =1

m

∑

λB

.         (35) 

Results in Chapter 3 show that as 

 

K → ∞, 

 

α → 0 and using similar methods as in 

Section 5.2.2 yields 

 

lim
K →∞

E θ t( )[ ] =

ni

1
β

+ ti =1

m

∑

λB

=
βt

1 + βt
   (36) 

The variance follows similarly, and is found to be  

 

Var θ t( )[ ] =
β 2t

1 + βt( )2 .        (37) 

Because the failure modes are assumed to be independent by Assumption 2 in Section 

5.2.2, the distribution will be asymptotically Normal via the Central Limit Theorem. 
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5.4 Example Application 

 This section provides an example application of the proposed planning model, 

along with a comparison with the standard reliability growth planning model [17] 

using the same inputs.  The main difference between the two models is the 

demonstration test assessment and the associated statistical risks that result.  The 

model proposed here explicitly considers the uncertainty that is present, while the 

traditional approach using PM2 relies on the classical OC curve analysis and treats 

both the failure intensity and the DT-OT degradation parameter as known values.  As 

described in Section 5.2.4, all corrective actions are assumed to occur in CAPs 

between the developmental test phases.  In order to simplify the example, no 

corrective action lag times are assumed, although they can easily be included in both 

the proposed model and PM2.  The inputs for the example follow those in Section 

5.2.1 and are as follows: 

 

1. MI = 180 hours 

2. MR = 220 hours 

3. µd = 0.7 

4. MS = 0.95 

5. ε = 0.2 (mean DT-OT degradation) 

6. TDT,1 = 1000 hours, TDT,2 = 1500 hours, TDT,3 = 1000 hours, TDT,4 = 1500 

hours, TDT,5  = 1000 hours, TDT,6  = 1500 hours 

7. 

 

TDT = TDT, i
i =1

6

∑  = 7500 hours 
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8. TOT = 2000 hours 

9. Consumer risk = 0.2 

10.  Producer risk = 0.3 

 

 Numerical methods can be used to determine the (β, nOT) pair that satisfies the 

desired producer and consumer risk values.  Multiple solutions to the inequalities in 

(24) and (25) are possible, but a contour plot can be used to direct the numerical 

method that is used to gain the solution.  Figure 5.2 shows a contour plot for strict 

equality in (24) and (25).   

 

Fig. 5.2:  Contour Plot for Solutions to (24) and (25) 

The value of nOT must be an integer, and the contour plot indicates that the desired 

solution lies somewhere near nOT = 9 and β = 0.0004.  More precise numerical 

examination of the inequalities results in β = 0.00046 and nOT = 9 as the solution for 

the example.   

0.0002 0.0004 0.0006 0.0008 0.0010

6

8

10

12

14



n O
T

                  Producer Risk Solution using (25) 
                  Consumer Risk Solution using (24) 

 158 



- CHAPTER 5 - 

 The idealized planning curve that results from using these values is shown in 

Figure 5.2.  Note that the plot in Figure 5.3 only depicts the idealized curve and the 

associated reliability steps for each planned test phase.  It is also possible to plot 

upper and lower probability bounds for both the idealized curve and the steps by 

using the Gamma distribution defined in (10)-(12).  The probability bounds are left 

off of the example in Figure 5.3 in order to simplify comparisons between the two 

approaches.   

 

 

Fig. 5.3:  Proposed Bayesian Planning Curve for Example Case 

 

 The corresponding curve for the PM2 model is shown in Figure 5.4.  The right 

side of each curve provides an immediate comparison between the traditional OC 

curve approach and the combined DT-OT demonstration in the Bayesian model.  For 

the MTBF requirement of 220 hours, the idealized planning curve at the end of the 
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DT period is approximately 372 hours in the Bayesian model.  The corresponding 

point in PM2 is 462 hours.  The estimated value for the demonstration test, or initial 

operational test (IOT), is 267 hours in the Bayesian model and 370 hours in PM2.  

These values are used to set reliability design targets in the development of new 

systems, and the differences indicate a significant reduction in the margin that is 

needed in order to demonstrate the MTBF requirement.    

 Further comparison reveals that the initial MTBF in the Bayesian model is 

180 hours versus 220 hours in PM2.  These values are model inputs, but they both 

correspond to a goal MTBF to growth potential MTBF ratio of approximately 0.70.  

The growth potential MTBF, MGP, is a function of Mi, MS, and µd and is defined as  

    

 

MGP =
Mi

1 − MS * µd

       (38) 

This ratio provides an indication of risk associated with the overall reliability growth 

goal.  Attempts to grow too near the reliability growth potential often involve 

significant risk.  This is due to diminishing returns in the test-fix-test reliability 

growth process, making growth more difficult once the initial dominant failure modes 

are observed and mitigated.  The initial MTBF value is also important, as it can be 

used to drive DFR activities that are to be completed before full system-level testing 

begins.  These activities should be conducted in order to improve the reliability prior 

to system-level testing, helping the program to achieve the initial targets on the 

reliability growth planning curve.  Achieving the first step is vitally important, as low 

initial MTBF values will in turn lower the growth potential MTBF in (38) and 

introduce significant risk to the overall reliability program.  The Bayesian model 

allows for the initial MTBF to be 40 hours lower than in PM2 while maintaining the 
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same ratio between the goal MTBF and growth potential MTBF.  This result helps to 

directly reduce the risk associated with achieving the initial target on the planning 

curve.  While both models are inherently using the same prior information through 

the specification of the initial MTBF and the solution for the β parameter, the relative 

strength of the prior assumptions may be cause for concern in practice.  In these cases 

it is recommended that the planning curve be redeveloped after the first phase of 

testing is completed.  The empirical Bayes procedures developed in Chapter 3 can be 

used to estimate the λB and β parameters directly from the failure data collected 

during the test.  These estimates can then be used directly to reinitialize the original 

curve based on actual system performance.  This will provide a more realistic 

indication of the expected future reliability performance during the DT program.  

While not presented in this example, reduced test lengths are also a potential benefit 

of the methodology developed here.  For a fixed developmental reliability target, the 

amount of testing necessary to demonstrate a reliability requirement at a given 

consumer risk value would be reduced when compared the traditional OC curve 

application. 
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Fig. 5.4:  Planning Curve for Example Case Using PM2 Model 

5.5  Conclusions 

 This chapter has presented a new reliability growth planning model that 

allows for the combination of developmental and operational data from different test 

events for reliability demonstration.  The approach serves as a natural extension of 

current reliability growth planning models used in the Defense industry while 

explicitly modeling the additional uncertainty that exists in the problem.  The 

uncertainty that is present in the failure intensity at the end of DT is modeled along 

with the planned degradation that occurs between the developmental and operational 

test environments.  Considering the additional information along with its uncertainty 

allows for tighter uncertainty intervals and lower reliability design goals, which are a 

significant benefit of the proposed approach.  The approach considers reliability 

growth planning within a more complete analytic framework while also helping to 
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directly reduce the programmatic risks that may exist due to statistical demonstration 

in a constrained environment.   
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6 DEVELOPMENT OF PRIOR INFORMATION USING LOWER-LEVEL 

DATA SOURCES 

6.1 Introduction 

6.1.1 Background  

 The reliability growth models in Chapters 3-5 describe the reliability of the 

system using data collected through complete system-level testing.  These data are 

perhaps the most desirable for assessing system reliability, but during early stages of 

development this type of information may be unavailable.  In early stages of 

development of the system, there are often other sources of reliability related 

information that are available, and in these cases it is possible to utilize these 

information sources to develop an early assessment of the system reliability.  When 

viewing the process of reliability assessment across the various stages of development 

of the system, assessment in this manner serves as prior information that can be 

updated with the reliability growth models in Chapters 3 and 4 when system-level test 

data become available.  The approach also serves as a means of connecting early 

engineering activities involving component modeling and characterization with the 

full system-level testing and reliability growth modeling that occurs later in the 

system’s life cycle.  

6.1.2 Chapter Overview 

 Section 6.2 of this chapter discusses the decomposition of the system into 

subsystems, components, and redundant blocks.  It also draws connections between 
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failures in the system and the failure modes that are used in the models in Chapters 3 

and 4.  Section 6.3 develops the posterior distributions for individual failure modes.  

The use of component/subsystem data and physics-based model results is discussed, 

along with probabilistic scaling to account for additional failure mechanisms that may 

be present in the operational environment.  Conclusions are presented in Section 6.4. 

6.2 System Level decomposition 

 The assumptions for the reliability growth models in Chapters 3 and 4 are as 

follows: 

1. The system is comprised of a large number of failure modes that are 

serial in nature; the occurrence of any failure mode results in failure of 

the system. 

2. Failure modes generate failures independently of one another. 

3. The failure intensity, or rate of occurrence of failure, for each mode is 

constant both before and after a corrective action is implemented.   

4. The resulting failure intensity after corrective action will be reduced 

from the initial value according to the assigned FEF. 

5. Corrective actions to failure modes do not introduce new failure modes 

into the system. 

As shown in Chapter 3, these assumptions along with a common prior Gamma 

distribution for all of the failure modes in the system lead to a posterior distribution 

on the projected system failure intensity.  The mean and variance of the posterior are 

given by 
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Examination of the expressions in (1) and (2) shows them to be a function of the prior 

parameters λB and β.  The parameters describe the prior distribution of the failure 

intensity of the complex system.  Empirical Bayes procedures were developed in 

Chapter 3 to provide estimates of the parameters using the system level test data, but 

alternate estimates derived from lower level data are also possible.   

 The lower level reliability information must be combined to obtain a posterior 

distribution on the system level failure intensity, which then serves as the prior for the 

system-level reliability growth assessment.  A key consideration in the use of the 

lower-level reliability information is the representation of the system reliability 

structure.  As described in [72] and [73], a reliability block diagram or fault tree is 

typically used to describe the underlying structure of the system reliability as defined 

by the various components and subsystems within the system.  For the technique 

proposed here, a reliability block diagram will be used without loss of generality.  

The concepts could be easily extended to other system reliability models such as fault 

trees or event trees.   
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6.2.1 System-Level Failure Intensity  

 To connect the reliability growth assumptions to the system reliability model 

using a block diagram or fault tree, it is helpful to first consider a representation of 

the system as defined in Assumptions 1 and 2.  The reliability block diagram of this 

structure is shown in Figure 6.1.  The overall system is just a serial connection of the 

failure modes that exist in the system, where the occurrence of any failure mode 

causes failure of the system. 

 

 

Fig 6.1. Complex System Structure as Series of K Failure Modes 

 

 By recognizing that that each failure mode can occur in one of two ways, the 

failure mode structure in Figure 6.1 can be mapped to the structure of subsystems and 

components within the system.  A failure mode can occur as a result of a component 

failure that causes failure of the system, or a failure mode can occur due to failure of 

two or more components within a redundant block in the system structure.  This 

allows for the block diagram in Figure 6.1 to be equivalently represented by that 

shown in Figure 6.2, where component or redundant block failures each lead to 

specific failure modes within the system.  The first two modes in the example are 

caused by specific component failures, while the third mode is caused by failure of 

any pairing of components 3, 4, and 5.  It is important in developing this 
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representation that the structure be reduced to its simplest form.  For example, if a 

component can contribute to two failure modes involving redundancy, the structure of 

the system should be modified such that the two failure modes are combined into a 

single mode.  The redundancy can then be appropriately modeled as described in 

Section 6.3.2. 

 

Fig 6.2. Serial Failure Modes Represented as Component or Subsystem Failures 

 

 The system level structure in Figure 6.2 can also be represented using 

subsystems, where one or more components or redundant blocks comprise an 

individual subsystem.  This extends the flexibility of the system-level description 

when estimating the posterior distribution, as data for individual subsystems can be 

used in place of estimating the posteriors for each individual mode failure intensity 

within the subsystem.  The system level failure intensity can be represented as  

 

λs = λi
i =1

p

∑ = λi, j
j =1

Fmi

∑
i =1

p

∑ ,          (3) 

where p subsystems are present in the system and each subsystem contains Fmi 

failure modes.  This decomposition allows for the failure modes from a complete 

subsystem to be modeled equivalently as a single failure mode, as the subsystem 
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failure intensity is just the sum of the contributions from each of the modes within the 

subsystem.  The posterior distribution for each of the failure modes linked to 

components, redundant blocks, or subsystems can then be developed using any 

relevant reliability data that are available.  A discussion of the use of component life 

data, historical data, and physics-based modeling is presented in Section 6.3. 

 When the posterior distributions of the failure intensities for the necessary 

failure modes are defined, the system reliability structure can be used to develop the 

posterior distribution for the system level failure intensity.  Monte Carlo methods can 

be used to generate samples from the posterior distributions for each of the mode 

failure intensities.  The resulting samples from each of the failure modes can then be 

summed across the system due to the serial representation of the system reliability 

structure.  The computational complexity involved is relatively small.  As 

demonstrated in Section 6.3, the posterior distributions for the mode failure intensities 

will consist mainly of Gamma distributions.  For distributions that are more complex, 

such as those that involve physics-based models, the required samples from the 

distribution on the failure intensity are already available via the original distribution 

development, so there is no additional computational burden.  The reduction of the 

system structure to a serial representation may seem overly simplistic, but this 

approach is very relevant for complex systems.  The serial structure results in a 

constant failure intensity for the system, which is also supported in asymptotic theory 

for complex repairable systems and superimposed renewal processes such as 

Drenick’s Theorem [91].      
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 As discussed in Chapter 3, sums of Gamma distributed random variables will 

again be approximately Gamma distributed.  This will generally be the case with the 

approach discussed here, as many of the mode posterior distributions that result will 

be well approximated by the Gamma.  It is worth examining the potential impact of 

the approximate Gamma distributions on the distribution of the system-level failure 

intensity.  The worst possible scenario would involve a system composed of 2 

subsystems, with data available only at the subsystem level.  A large difference in the 

β parameters for the Gamma posteriors for each subsystem may negatively impact the 

resulting system level posterior.  The availability of more data on components and 

other failure modes should serve to minimize the impact from modeling at the 

subsystem level, so this scenario should suffice.  The resulting posterior distribution 

for the system is shown in Figure 6.3.  The first subsystem used a Gamma(1, 50-1) 

posterior for the mode failure intensity, and the second used a Gamma(5, 250-1). 

 

 

Fig 6.3. System Failure Intensity for 2 Subsystems with Overlaid Gamma Approximation  
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The results indicate that the system level distribution is still reasonably approximated 

by a Gamma distribution.  The parameters of the system-level distribution can be 

found through standard method-of-moments based approaches, and the resulting λB 

and β parameters can then be used for the prior parameters in the reliability growth 

projection model in Chapter 3.  This allows for direct connection of lower-level 

reliability data and information to be used in connection with the system-level 

reliability growth models. 

6.2.2 Accounting for Failures Due to Integration of Components and Subsystems 

 A potential drawback of the reliability block diagram or fault tree approach 

for modeling the system reliability is the assumption of independence between the 

various components and subsystems.  For many complex systems, a large number of 

failures are possible due to interactions between the subsystems, and the methods for 

assessing system reliability in Section 6.2.1 may not adequately address this issue.  

The simplest potential solution to the problem is to use engineering knowledge about 

the potential failure modes in the system and associate any potential integration 

problems with a specific subsystem or component.  There will likely be little to no 

data available to characterize the integration failure intensity, but the scaling approach 

in Section 6.3.3 can be used to account for the differences between the estimated or 

modeled failure intensity and the true operational failure intensity.  Historical data 

from similar systems can also serve as a valuable source of information to help with 

the application of the scale factor. 

 171 



- CHAPTER 6 - 

 A second method for handling the integration failures is to add an integration 

block directly to the reliability block diagram or system reliability model.  This 

approach can be used to explicitly capture the integration related failure modes that 

may exist throughout the system in a single block in the model.  Historical 

information from similar can again serve as a valuable source for understanding the 

potential failure intensity of the integration block, and Maximum Entropy methods 

can be used to develop the specific distribution given the available information.   

 Note that in cases where there is little knowledge of the potential integration 

failure modes, the resulting Maximum Entropy distribution will be uniform.  If the 

integration block is a significant contribution to the overall failure intensity, for 

example when two major subsystems are combined together, the uniform distribution 

for the integration failures may influence the posterior on the system-level failure 

intensity.  The system-level result may be look more like a uniform, meaning that it 

cannot easily be approximated with a Gamma distribution.  This is an indication of 

immaturity with respect to the system-level reliability.  More engineering effort 

should be made to characterize the potential integration failure modes within the 

system prior to full system-level reliability growth testing.  When the reliability 

becomes more mature, the integration block can be better characterized.  The 

resulting system-level posterior distribution will then be more easily characterized 

with a Gamma distribution, which then serves as the appropriate prior information for 

the reliability growth process.  
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6.3 Failure Mode Posterior Distribution 

6.3.1 Failure Mode from Component Failure 

 When a failure mode is caused by failure of a single component, the mode is 

caused by the occurrence of one or more failure mechanisms [92].  The failure and 

subsequent replacement for an individual failure mechanism considers the component 

as a consumable item that is replaced with a new version upon failure.  When 

modeling the process of failure and replacement in this manner, the failure 

mechanism can be assumed to induce a renewal process for the component and its 

associated failure mode [93].  The existence of multiple potential failure mechanisms 

for the component and associated mode causes a superposition of renewal processes 

for the failure mode.  Theoretical results can be applied to develop a reasonable 

model of this process.  When examining renewal processes, the Elementary Renewal 

Theorem [93] can be used to describe the behavior of the process over time.  

Applying the Elementary Renewal Theorem to the failure and replacement process 

for the failure mechanism states that for a failure process with mean time between 

successive failures µ and expected number of failures up to time t denoted by m(t),  

 

lim
t →∞

m t( )
t

=
1
µ

.            (4) 

The limit in (4) states that the rate of occurrence of failures for the failure mechanism 

being considered converges to 1/µ as t becomes large.  The theorem can also be used 

to state that  

 

m t( ) ≈
t
µ

 when t is large,         (5) 
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which says that for large t, the expected number of failures from the specific 

mechanism by time t is the standard rate of occurrence multiplied by the length of 

time t.  An extension of this result is known as Blackwell’s Theorem [93].  

Blackwell’s Theorem generalizes (5) and shows the expected number of failures in a 

general time interval of length u converges to u/µ as t becomes large.    

 These results indicate that when the process of failure and subsequent 

replacement of a component and failure mode is considered over a large enough time 

period, the only requirement for modeling the process is the mean time between 

successive failures for the mechanism.  This result is true for general renewal 

distributions even when the life distribution for the mechanism in question is subject 

to significant wear out or aging over time.  The major benefit of this concept is that 

when multiple failure mechanisms contribute to the occurrence of a failure mode, the 

failure mode occurs via a superposition of renewal processes.  Drenick’s Theorem 

states that a Homogeneous Poisson Process (HPP) with rate 1/µ can then be used to 

approximate the failure process for the mode over a sufficiently large time period 

[91].  The use of the limit reduces a potentially complex estimation problem to a 

straightforward calculation that can be accomplished through the HPP.  It is useful to 

understand the performance of the HPP approximation, as the result assumes a 

number of failure mechanisms are present for the failure mode.  Examining the 

superposition of renewal processes for 2 failure mechanisms can provide an 

understanding of how useful the HPP may be in practice.  A Weibull(α,β) distribution 

with density function in (6) can be used to model a failure mechanism with an 

increasing hazard rate such as one resulting from again or wear-out. Other 
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distributions with increasing hazard rates could also be used without loss of 

generality. 

 

p t( ) =
β
α

t
α

 
 
 

 
 
 

β −1

exp
t

α
 
 
 

 
 
 

β

,  t > 0,  α > 0,  β > 0           (6) 

An example of this concept is shown in Figure 6.4.  Weibull(1.5, 2) and Weibull(5, 

3.2) distributions were used to represent failure mechanisms with increasing hazard 

rates, and 50 failures were simulated from the corresponding distribution in (6).  The 

plotted results were truncated to represent the time period where the two processes 

overlapped, resulting in 64 total failures for the superimposed process.  The expected 

number of failures was estimated using the MLE for a HPP [94], and it is shown as 

the solid line in the plot.   

 

Fig 6.4. Cumulative Number of Failures vs. Time for 2 Superimposed Renewal Processes with 
Corresponding HPP Expected Number of Failures Overlaid ( 

 
The results in Figure 6.4 indicate that the 2 superimposed renewal processes can be 

well approximated with a HPP.  It is also useful to understand the approximation 
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when the time interval is relatively short, as the theorem from Drenick [91] is 

asymptotic with respect to complexity and time.  Figure 6.5 contains the results for 

the first 10 samples using the same renewal distributions as in Figure 6.4. 

 

 

Fig 6.5. Cumulative Number of Failures vs. Time for 2 Superimposed Renewal Processes with 
Corresponding HPP Expected Number of Failures Overlaid 

  

The results indicate that the HPP approximation is still reasonable even when time 

and complexity are not large.  Caution should nevertheless be used in these cases, as 

the variation in the process may provide results that are inaccurate.  If the failure 

modes in the system have very little data or are low complexity with respect to the 

number of contributing failure mechanisms, the HPP should be carefully examined 

before use. 

 Component failure data may be directly available from component life testing 

or from historical failure data collected from field usage.  If such data are available 
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for a component, the results in Sections 6.2 and 6.3 can be used to develop a posterior 

distribution on the component failure intensity that describes the component renewal 

process.  Assume the n samples of the component life have been collected with 

failures occurring at times (t1,t2,…,tn).  Section 6.3 indicates that failures of the 

component can be adequately modeled using the HPP, which implies that the 

Exponential likelihood can be used for the data.  The likelihood is given as  

 

l t1,...tn | λ( ) = λ exp −λti( )
i =1

n

∏         (7) 

To be conservative, a non-informative prior distribution can be used for the 

component failure intensity λ, which is given by the same Jeffrey’s prior that was 

presented in Chapter 4 as  

 

p λ( ) =
1

λ log
l2

l1
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The resulting posterior is defined as  
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Because the desired range for the failure intensity is the positive real line, taking the 

appropriate limits in the denominator of (9) then yields 
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The posterior distribution in (10) is a Gamma distribution of the same form as used in 

the reliability growth models in Chapters 3 and 4.  Note that if other relevant prior 

information is available, a Gamma prior distribution can easily be substituted in place 

of the Jeffrey’s prior in (7).  As demonstrated in Chapter 3, the posterior will again be 

a Gamma in this case, which can be used in the same manner when constructing the 

system level posterior distribution. 

 When historical reliability information is available for the component, it can 

be used in a similar manner as the component life test data.  If the historical 

information is for identical components that are used in a different system or 

operating environment, the data may not provide a completely accurate representation 

of the failure intensity of the component.  The method presented in Section 6.3.4 

should be considered in this case, as it provides a probabilistic approach for 

accounting for the potential differences in the estimated mode failure intensity and the 

true mode failure intensity. 

6.3.2 Failure Mode from Failure of Redundant Block 

 When a failure mode is the result of failure in two or more components within 

a redundant block in the system reliability structure, the approach from Section 6.3.1 

can be applied for each of the components within the block.  A redundant block is 

considered as a K-of-N structure without loss of generality, as standard parallel 
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redundancy is a special case of this structure.  Each component failure is also 

assumed to occur from multiple contributing failure modes, allowing for the HPP 

representation for component failure.   

 To develop the corresponding failure intensity for the failure mode caused by 

the K-of-N failure, the mission time Tm can be used to calculate the individual 

reliability for each component.  The reliability for a component in an HPP is given by 

 

Rc Tm( ) = exp −λcTm( ),           (11) 

and the corresponding reliability of the K-of-N block, RB(Tm), can be found using 

standard techniques for system reliability analysis in references such as [93] and [94].  

The failure intensity for the failure mode, and hence K-of-N block, can then be found 

by inverting the reliability expression in (11).  This yields a failure intensity value of  

 

λi = −
log RB Tm( )( )

Tm

,        (12) 

where λ i is the desired mode failure intensity.  The approach in (12) is an 

approximation that provides consistency with the assumptions of the reliability 

growth models, but it should be noted that the failure modes from redundant blocks in 

the system should not provide a large contribution to the overall system failure 

intensity.  In practice the approximation should not influence the overall system level 

failure intensity, but caution should be used if redundant blocks within the system are 

thought to provide a significant contribution to the overall system reliability or failure 

intensity.  Sensitivity analysis should be performed in these situations, as the models 

contained in this work may not be appropriate.   
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 The corresponding posterior distribution for the failure intensity in (12) can be 

found through Monte Carlo methods.  The Gamma posterior described in Section 

6.3.1 can be used to generate samples for the component failure intensity, and the 

resulting distribution for the component reliability in (11) can be found by 

transforming each of the posterior samples.  The transformed samples of the 

component reliability can then be used to calculate the reliability of the K-of-N block, 

and the block reliability can be transformed further using (12) to get the mode failure 

intensity.   

6.3.3 Using Physics-Based Model Results 

 There are a number of examples in the literature involving fusion of different 

information sources to estimate system reliability; see for example [72] - [76].  None 

of these approaches consider the use of physics-based modeling of failure 

mechanisms in the estimation.  This information is frequently available early in the 

design process before much testing has been completed though, and for this reason it 

is desirable to utilize it to characterize the failure intensity within the renewal process 

for the specific component in question.   

 The approach presented here recognizes that physics-of-failure models 

generally contain material constants that are available in handbooks or other 

references [92].  Define the physical function for the life of a component as 

 

f N , a( ), 

where N is the life and a is a constant parameter related to the underlying physical 

failure mechanism being considered.  These constants are typically estimated from 

empirical testing under controlled conditions, which imparts some amount of 
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uncertainty as to their actual value.  Because of the uncertainties in the empirical 

constants, the function f is generally regarded as the mean or median value of the 

predicted life.  Additional uncertainty results directly from variation in the 

manufacturing process that is used to produce the materials.  Even if the original test 

results were available to develop the uncertainty distributions for the material 

constants, the uncertainty due to manufacturing and production variation would still 

not be quantified.  The principle of Maximum Entropy [87],[88] can therefore be used 

to develop probability distributions on each of the material constants.  This approach 

is general enough to capture the overarching empirical uncertainty along with the 

material variation associated with the parameters.  A probability distribution on the 

component life N can be found by using the Maximum Entropy derived probability 

distribution for the constant a.  Let 

 

p a( ) denote the probability distribution for a.  

Because 

 

f N , a( ) will likely be a complex function, an analytical form for the 

distribution of N will generally not be feasible.  Monte Carlo simulation can be used 

instead to develop the necessary distribution.  The use of simulation will be even 

more necessary when considering that most physics-based life calculations involve 

more than one parameter.  The Maximum Entropy probability distribution will 

generally take a form that allows for straightforward random number generation, and 

n values can be sampled from

 

p a( ).  The realized values can then be used to calculate 

n realizations of the life N, which provides the desired distribution on the component 

life.  Because the original function f provides the mean or median life, it is reasonable 

to use this result to estimate the approximate failure intensity for the component 

renewal process as described in Section 6.2.1.   

 181 



- CHAPTER 6 - 

 To transform the distribution on the cycles to failure Nf into a distribution on 

the failure intensity for the component renewal process, the operational usage of the 

component must be understood.  In particular, the number of cycles of the applied 

stress per operating hour or mile must be reasonably known.  The distribution on the 

failure intensity for the renewal process is then defined through the transform 

 

λ =
c

Nf

,     (13) 

where λ is the failure intensity and c is the number of cycles per time or mileage 

increment.   

 To demonstrate the concept of the approach, consider the stress-life model 

given by  

 

S = ANf
b ,     (14) 

where S is the applied stress, Nf is the cycles to failure for the component, and A and 

b are constants specific to the material being considered.  As discussed in previous 

chapters, Maximum Entropy maximizes the uncertainty associated with the problem, 

subject to any constraints associated with the information available in the analysis.  

The constraints that are applied in the derivation of the Maximum Entropy 

distribution take the form of moments for the distribution, and the support of the 

distribution must also be specified.  For the values A and b, we assume only that the 

support of each variable is known.  That is, A will fall in the range (A1, A2) and b will 

fall in the range (b1, b2).  Applying these basic constraints in the Maximum Entropy 

approach yields a uniform distribution [87] for each parameter as shown in (15) and 

(16). 
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p A( ) =
1

A2 − A1

, A1 < A < A2       (15) 

 

p b( ) =
1

b2 − b1

, b1 < b < b2                    (16) 

Random realizations can be easily drawn from the distributions in (15) and (16).  

Rewriting the life model in (14) in terms of the component life Nf yields 

 

Nf =
S
A

 
 
 

 
 
 

1
b
.     (17) 

10,000 realizations of each parameter were sampled using (A1, A2) = (1800, 2200) 

and    (b1, b2) = (-0.12, -0.08).  The resulting values were inserted into (17) with 

applied stress S = 1000.  A histogram of the resulting distribution is shown in Figure 

6.6.   

 

 

Fig 6.6. Distribution on Component Life  

 Assuming c = 100 cycles per hour and using the transform defined in (13) 

yields the distribution on the failure intensity of the renewal process shown in Figure 
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6.7.  This distribution can be used to develop the distribution on the mode failure 

intensity that is subsequently used to develop the system level failure intensity.   

 

Fig 6.7. Distribution on Failure Intensity for Component Renewal Process  

 

Note that as with other types of component information, the failure mechanism being 

modeled may not provide a completely accurate representation of the failure intensity 

of the component.  The approach in Section 6.3.4 should be considered in this case, as 

it provides a probabilistic method for accounting for the potential differences in the 

estimated failure intensity and the true operational failure intensity. 

6.3.4 Scaling to Account Accounting for Additional Failure Mechanisms 

 This section presents a method for scaling estimates of the failure intensity for 

those cases where the available data or modeling may not completely represent the 

known failure mechanisms that contribute to the occurrence of the failure mode.  This 

situation can occur commonly when using historical data from like or identical 
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components that were used in different operational environments.  It can also occur 

when using the physics-of-failure approaches described in Section 6.3.3, as other 

failure mechanisms beyond that being modeled may be present.  In these cases 

potentially large contributors to the failure intensity will not be considered, and the 

result will be an underestimate of the true value. 

 To account for this issue, we examine the true failure intensity for a failure 

mode, denoted as λi,true. The mode failure intensity can be decomposed into 

contributions from the n individual failure mechanisms as a sum given by  

 

λi, true = λi, j
j =1

n

∑              (18) 

When only a subset of the potential failure modes or mechanisms is addressed in the 

information used to develop the estimate, a scale factor fm can be used to represent 

the relationship between the estimated failure intensity, 

 

ˆ λ i , and the true failure 

intensity.  This is represented as 

 

fmλi, true = ˆ λ i  , fm ∈ 0, 1( )           (19) 

If the number of contributing failure mechanisms is large and only 1 or 2 are 

considered in the data or modeling, the value of the scale factor fm will be small.  If 

the information used in the estimate considers most or all of the dominant failure 

mechanisms, then the value of fm will be large.  Because fm is unknown in practice, it 

is desirable to account for the uncertainty associated with its value.  This can be 

accomplished by using Maximum Entropy to assign a probability distribution to the 

value of fm.  The relationship in (19) leads to the conditional distribution for λ true 

given by  
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p λi, true | fm( )= p
ˆ λ i
fm

 

 
 

 

 
                       (20)  

The unconditional distribution of λ i,true is then found by marginalizing with respect to 

the distribution of fm as in (21). 

 

p λi, true( )= p fm( )p ˆ λ i | fm( )
0

1

∫ dfm    (21)  

Conservative treatment of the scale factor assumes no information is available other 

than the support of fm, which results in a uniform distribution over the specified range 

[87].  In practical applications, the contribution of the failure mechanism(s) to the 

overall mode/component failure rate should be examined to determine the range of 

the scale factor.  A FMECA could used to help with this determination, and historical 

data could also be used when available.  Note that an additional assumption of a mean 

or variance value beyond the range of the factor would change the probability 

distribution associated with fm. A detailed discussion of the distributions resulting 

from different assumptions can be found in [88].  Figure 6.8 depicts an example 

application of the scale factor assuming a Uniform(0.5,1) distribution for the physics-

model example in Figure 6.9 in Section 6.3.3.  The application of the scale factor can 

be seen to shift the distribution to the right, while also increasing the overall variance 

of the failure intensity.  Note that the hyperbolic shape of the distribution also lends 

itself to being approximated by a Gamma distribution.  Though not necessary for the 

calculations, this point is useful when examining the behavior of the system-level 

failure intensity.   
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Fig 6.8. Scaled Distribution on Failure Intensity for Component Renewal Process  

 

6.4  Conclusion 

 This chapter presents a general approach for combing to lower-level sources 

of reliability data and information to develop a prior distribution on the system-level 

failure intensity.  The reliability growth models in Chapters 3-5 consider the failure 

intensity of complex repairable systems over time.  Each component or redundant 

block is mapped to the corresponding failure mode that results when a failure occurs.  

The individual modes are also assumed to occur via multiple potential failure 

mechanisms, where each failure mechanism induces a renewal process for the 

component involved.  The superposition of the renewal processes from the 

mechanisms allows for the use of an HPP to approximate the failure process for the 

failure mode.  The HPP provides a simplified approach that easily allows for the use 

of component or subsystem data when developing the posterior disrtribution for the 
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mode failure intensity.  The result is also extended to blocks of parallel or K-of-N 

redundancy, where each component follows the HPP and posterior distribution on the 

failure intensity is found by assuming a constant failure intensity at the redundant 

block level.   

 Physics-based modeling results are also used to develop a failure mode 

posterior distribution.  A method is also developed for accounting for additional 

failure mechanisms that may not be accounted for in the mode posterior.  This 

probabilistic scaling is particularly important when using physics-based results or 

other component data that may have been collected in specific environment that does 

not include all potential stressors of the component.  The individual failure mode 

posterior distributions can then be combined using Monte Carlo methods, and the 

posterior is reasonably represented by a Gamma distribution.   

 The results of this approach can be utilized when system-level failure data are 

limited or not yet available.  When viewing the process of reliability assessment 

across the various stages of development of the system, assessment in this manner 

serves as prior information that can be updated with the reliability growth models in 

earlier chapters.  The approach also serves as a method of connecting early 

engineering activities that involve component modeling and characterization to the 

full system-level testing that occurs later in the system’s life cycle.  
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7 CASE STUDY ON RELIABILITY GROWTH ASSESSMENT 

7.1 Introduction 

7.1.1 Background  

 This chapter presents a case study depicting the application of the 

methodology presented throughout this thesis.  The approach is demonstrated on a 

complex military system that is modified through the addition of specific mission 

equipment.  The methodology in Chapter 6 is utilized to develop a prior distribution 

on the system-level failure intensity.  Historical field failure data are used to 

characterize the components and subsystems that remain unchanged in the 

modification, and a physics-of-failure model is used to estimate the failure intensity 

of a specific component due to fatigue.  The failure intensity for the mission specific 

equipment is considered through Maximum Entropy methods.  The posterior 

distribution is then used along with the reliability growth projection model in Chapter 

3 to update the posterior distribution after a developmental test event.  The results are 

then subsequently updated after an operational test is conducted using the approach in 

Chapter 4. 

7.1.2   Chapter Overview  

 This chapter is organized as follows.  Section 7.2 presents the development of 

the prior distribution on the system-level failure intensity.  Section 7.3 then presents 

the updated posterior after DT.  Section 7.4 further updates the posterior after OT.  

Conclusions are presented in Section 7.5. 
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7.2  Reliability Assessment Prior to DT 

 A combination of information is available for developing the distribution on 

the system-level failure intensity prior to DT.  Historical failure data is available for 

the components and subsystems that are common to both the existing system and the 

modified version.  A stress life model was also developed to model fatigue for the 

driveshaft of the vehicle, as this was an area of concern identified in the existing 

system.  There are nine existing major subsystems within the vehicle, and a tenth 

subsystem is comprised of the additional mission equipment.  The system-level 

reliability block diagram is represented by each of the subsystems connected in a 

series.  The basic reliability block diagram is shown in Figure 7.1. 

 

 

Fig. 7.1. Simplified Reliability Block Diagram of System 

 

Additional detail is also added to consider the contribution of wheel/tire failures 

within the suspension subsystem and driveshaft failures within the driveline 

subsystem.  The failure definition for this example is any loss of an essential function.  

The system is an 8-wheeled vehicle designed to carry troops, with one driveshaft per 

wheel.  This creates redundancy within the driveline and suspension subsystems, 
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where failure is defined by the loss of 5 or more wheels or driveshafts.   The 

reliability block diagram in Figure 7.1 can then be modified to account for the 5-of-8 

failure definition within the driveline and suspension subsystems.  The updated 

detailed representation of the two subsystems is shown in Figure 7.2. 

 

 

Fig. 7.2. Detailed Reliability Block Diagram of System 

 

The methods in Chapter 6 can then be applied to each of the subsystems and blocks 

containing redundancy within the system.   

7.2.1 Historical Failure Data 

 A large amount of reliability data is available on the nine subsystems that are 

common to both versions of the system.  The historical reliability data is in the form 

of operational field failures collected for 3 vehicles over a two-year period.  The 

mileage accrued for each of the vehicles during the two-year period is also collected, 

and this allows for straightforward application of the methods in Chapter 6.  The 

mileage for each vehicle is shown in Table 7.1.  Table 7.2 contains the number of 

failures for each of the subsystems.  Due to the redundancy of the wheels and 

driveshafts, these failures were separated from the data in Table 7.2.  The wheel 
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failures are shown on a separate line to allow for the failure intensity of the 4-of-8 

block to be estimated from the component failures, and the suspension failures do not 

include the driveshaft. 

 The estimator described in Section 6.2.1 can be applied at the subsystem level 

for the data in Table 7.2.  The posterior distribution will be a Gamma(ni,1/T) for ni 

subsystem failures during T accumulated miles. 

 

TABLE 7.1 

VEHICLE MILEAGE 

Vehicle Mileage 
1 5325 
2 6532 

3 4510 

Total 16367 
 

 

TABLE 7.2 

SUBSYSTEM FAILURES 

Subsystem Number 
Failures 

Driveline 6 
Wheels 36 
C4ISR 15 

Hull 54 

Powerpack 8 

Electrical 16 

HVAC 11 

Steering 5 

Suspension 2 

Weapon 11 
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5000 samples were generated from the Gamma posterior for each of the nine 

subsystems in Table 7.2.  The histograms of the samples are shown in Figures 7.3 - 

7.11. 

 

 

Fig 7.3.  Posterior Distribution on Driveline Failure Intensity 
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Fig 7.4.  Posterior Distribution on C4ISR Failure Intensity 

 

Fig 7.5.  Posterior Distribution on Hull Failure Intensity 

 

 

 

Fig 7.6.  Posterior Distribution on PowerPack Failure Intensity 
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Fig 7.7.  Posterior Distribution on Electrical Failure Intensity 

 

 

 

Fig 7.8.  Posterior Distribution on HVAC Failure Intensity 
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Fig 7.9.  Posterior Distribution on Steering Failure Intensity 

 

 

Fig 7.10.  Posterior Distribution on Suspension Failure Intensity 
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Fig 7.11.  Posterior Distribution on Weapon Failure Intensity 

 

 As stated in Chapter 6, the Gamma posterior for the wheel failures was used 

to calculate the reliability for the 4-of-8 redundant block.  The block reliability was 

then used to develop the corresponding failure intensity for the redundant block.  The 

histogram for the wheel component failure intensity is shown in Figure 7.12, and the 

resulting redundant block failure intensity is shown in Figure 7.13. 
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Fig 7.12.  Posterior Distribution on Wheel Component Failure Intensity  

 

 

Fig 7.13.  Posterior Distribution on Wheel Redundant Block Failure Intensity   

 

 

 198 



- CHAPTER 7 - 

7.2.2 Driveshaft Posterior from Fatigue Modeling 

 The driveshaft of the vehicle was previously identified as a candidate for 

fatigue modeling, as the vehicle contains 8 wheels and therefore contains 8 

driveshafts.  The driveshaft is also subject to varying amounts of stress induced 

through torgue applied when the driver accelerates the vehicle.  This presents a 

potential reliability concern for the vehicle, as the repeated stress could cause failure 

of the shaft if the design is not robust to the fatigue created by the stressor. 

 The simple stress-life model in Chapter 6 was used again for the driveshaft.  

The relationship between the stress and cycles to failure is given as  

 

Nf =
S
A

 
 
 

 
 
 

1
b
.     (1) 

where S is the applied stress, Nf is the cycles-to-failure for the component, and A and 

b are constants specific to the material being considered.  As discussed in Chapter 6, 

Maximum Entropy can be used to develop prior distributions for the material 

constants in the model.  Assuming only the support for each distribution yields a 

uniform distribution over the defined range of the support [87].  The distributions for 

the parameters are shown in (2) and (3). 

  

 

p A( ) =
1

A2 − A1

, A1 < A < A2      (2) 

 

p b( ) =
1

b2 − b1

, b1 < b < b2                             (3) 

For the steel material of the driveshaft the range of A was chosen as (A1, A2) = (1800, 

2200), and the range for b was chosen as (b1, b2) = (-0.12, -0.08).  To account for the 

variable loading of the stress, the Normal distribution method used by Steinberg [95] 
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can be used for variable applied stress on the driveshaft.  The shaft was instrumented 

during limited testing over representative terrain to understand the stress applied to 

the driveshaft during operation.  This approach assumes that the testing is a sufficient 

representation of the operational usage of the system, and that the stressors measured 

from the test are reasonably represented by a Normal distribution.  The 1-σ, 2-σ, and 

3-σ values from the testing were given as 271 MPa, 392 MPa, and 514 MPa.  These 

values were used as the applied stress in (1), and 5000 samples were drawn from the 

distributions in (2) and (3).  For each of the 5000 samples, the resulting cycles-to-

failure Nf,i was calculated for the ith stress value.  The cycles-to-failure for the 

driveshaft was then found by probabilistically combining the results based on the 

underlying Normal distribution.  The 1-σ, 2-σ, and 3-σ values correspond to 0.683, 

0.271, and 0.043 percentages of the total loading, which results in the total cycles to 

failure for the driveshaft of  

 

Nf = 0.683* Nf ,1 + 0.271* Nf , 2 + 0.043* Nf , 3     (4) 

To translate the number of cycles-to-failure into the failure intensity for the 

driveshaft, the result in (4) must be divided by the number of cycles per mile.  This 

value was measured from the test data as 28,660 cycles per mile. 

 The last consideration in developing the driveshaft failure intensity is the 

relative contribution of fatigue to the overall failure of the driveshaft.  Examining data 

on similar systems shows that fatigue accounts for 10-25% of the failure rate on the 

driveshaft.  This information can be used within the scaling approach discussed in 

Chapter 6.  The resulting failure intensity of the driveshaft is found through the 

expression 
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p λi, true( )= p fm( )p ˆ λ i | fm( )
0.1

0.25

∫ dfm
,
   (5)  

where 

 

ˆ λ i  is the estimated failure intensity after transforming the cycles-to-failure in 

(4).  The resulting histogram for the driveshaft failure intensity is shown in Figure 

7.14. 

 

 

Fig 7.14.  Posterior Distribution on Driveshaft Component Failure Intensity   

 

 To account for the 4-of-8 redundancy of the driveshaft, the approach used for 

the wheels can be applied again to the driveshaft.  The reliability for the 4-of-8 block 

was calculated for each of the 5000 samples, and the resulting failure intensity for the 

block was calculated from the block reliability values.  The histogram of the 

redundant block is shown in Figure 7.15.   
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Fig 7.15.  Posterior Distribution on Driveshaft Redundant Block Failure Intensity   

 

 The use of the stress-life approach is somewhat basic, and more detailed 

analysis is possible using Finite-Element Methods in combination with more detailed 

strain-life models.  The stress-life approach is more than adequate in this context 

though.  The 4-of-8 redundancy for the component within the larger subsystem and 

system reduces the relative contribution of the driveshaft to a second order effect, so 

more detailed modeling is not necessary.  If the driveshaft was a larger relative 

contribution to the overall system level failure intensity, more detailed modeling may 

be appropriate.  The complexity of more detailed models should always be considered 

though, as additional parameters within the model will increase the uncertainty in the 

predicted life and resulting failure intensity. 
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7.2.3 Mission Equipment Posterior 

 The failure intensity for the additional mission equipment on the modified 

system cannot be developed from historical data.  Conservative estimates can be 

made by examining similar equipment on existing systems and applying Maximum 

Entropy to develop the failure intensity distribution.  The mean failure intensity for 

the mission equipment is assumed to 0.01 with a support of (0, 0.03).  Maximum 

Entropy methods will yield a truncated Exponential distribution similar to the 

developed in Chapter 4.  The resulting probability density function is given by  

 

p λ( ) =
θe−θλ

1 − e−0.3*θ , 0 <λ < 0.3.        (6) 

The θ parameter is determined from the constraint on the mean, which results in the 

equation shown in (7).    

 

0.1 =
1
θ

−
0.3

e0.3*θ −1
.                (7) 

Generating 5000 samples from the distribution in (6) yields the histogram shown in 

Figure 7.16.  The distribution on the mission equipment failure intensity is 

conservative when compared to the other subsystems in the system.  The uncertainty 

is also fairly high, which is desirable.  The performance of the additional mission 

equipment may be different than the other similar types of equipment when it is fully 

integrated into the new system.   
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Fig 7.16.  Posterior Distribution on Mission Equipment Failure Intensity   

7.2.4 System Level Failure Intensity 

 To develop the posterior distribution on the system level failure intensity, the 

reliability block diagram in Figure 7.2 can be used.  The structure defined by Figure 

7.2 allows for summation of the failure intensity posteriors developed in Section 7.2.1 

and 7.2.2.  Summing the 5000 samples from each of the posteriors for the subsystems 

and redundant blocks yields the posterior distribution on the system level failure 

intensity shown in Figure 7.17. 
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Fig 7.17.  Posterior Distribution on System Failure Intensity 

 

Method-of-Moments estimators were used to develop the approximate Gamma 

distribution represented by the dashed line.  The resulting λB and β estimates are 

shown in (6) and (7). 

 

ˆ λ B = 0.01904                      (6) 

 

ˆ β = 0.00442                    (7) 

These values can be used in place of the empirical Bayes estimators within the 

reliability growth model of Chapter 3.  The β value is somewhat large relative to the 

empirical Bayes estimates that generally result from the reliability growth model in 

Chapter 3.  This is a desirable result, as the β value directly impacts the variance of 

the Gamma and hence the uncertainty surrounding the knowledge of the system 

failure intensity.  Larger values indicate higher uncertainty in the system level failure 

intensity, and given that the estimate may not properly account all potential 

integration failure modes, the conservatism is warranted. 
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7.3 Reliability Growth Assessment During DT 

 Developmental reliability growth testing of the vehicle was conducted to 

identify any unknown failure modes that may have been introduced into the system 

through the upgraded design.  Testing was conducted using 2 vehicles with a fixed 

configuration.  The intent of the testing was to make any necessary corrective actions 

at the completion of the test event to improve the system reliability prior to additional 

testing.  Any potential reliability incidents during the testing were recorded and later 

adjudicated prior to assessing the reliability results from the test.  The test identified 

130 failures comprising 31 failure modes.   Cumulative mileage for each vehicle is 

shown in Table 7.3.  The number of occurrences for each failure mode and the 

assigned FEF is shown in Table 7.4.  Due to resource constraints, only the three most 

prevalent failure modes (14, 15, and 17) were corrected prior to the next phase of 

testing. 

 

TABLE 7.3 

VEHICLE MILEAGE 

Vehicle Mileage 
1 4198 
2 4275 

Total 8473 
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TABLE 7.4 

FAILURE MODE DATA 

Mode Number of Occurrences FEF System 1 System 2 
1 2 1 0 
2 1 0 0 
3 3 1 0 
4 5 3 0 
5 1 1 0 
6 1 1 0 
7 5 1 0 
8 1 0 0 
9 1 0 0 
10 1 0 0 
11 2 1 0 
12 2 0 0 
13 1 1 0 
14 11 1 0.7 
15 11 1 0.7 
16 3 2 0 
17 21 8 0.7 
18 2 0 0 
19 1 0 0 
20 3 4 0 
21 3 4 0 
22 4 1 0 
23 0 1 0 
24 0 2 0 
25 0 2 0 
26 0 4 0 
27 0 1 0 
28 0 1 0 
29 0 1 0 
30 0 1 0 
31 0 1 0 

 

 The data were used in the reliability growth projection from Chapter 3.  The 

estimates developed in Section 7.2 were used for the prior parameters.  The posterior 

distribution for the projected MTBF of the system is shown in Figure 7.18.  The mean 
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of the MTBF posterior is found to be 88.8 hrs.  The updated posterior distribution on 

the failure intensity is a Gamma with parameters 

 

˜ α  = 109.044 and 

 

˜ β  = 0.000102.  

These parameters can then be used to update the assessment when OT is completed 

for the system.  The Chi-Squared goodness of fit test from Chapter 3 was also 

applied, and the proportion of statistics greater than the critical value was 

approximately 0.  This indicates that the model provides a reasonable description of 

the failure intensity of the system. 

 

 

Fig 7.18.  Posterior Distribution on System MTBF 

 

7.4 Operational Reliability Assessment 

 OT was conducted in order to demonstrate the level of reliability for the 

upgraded version of the system.  The test was a fixed configuration test involving a 

single vehicle with military operators utilizing the system within the context of the 
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intended operational mission of the vehicle.  Incidents were recorded and later 

adjudicated as to the severity of the incident.  Failure is once again defined as loss of 

an essential function in the system.  The results identified 3 failures with 224 miles.  

Because the reliability growth testing from Section 7.3 was conducted in a rigorous 

environment with a large number of miles accumulated, the reliability degradation 

between the reliability growth test and the operational test was determined to be 

small.  The mean degradation for the uncertainty distribution was therefore chosen to 

be 0.1.   

 Using the posterior Gamma parameters from the reliability growth model 

along with operational test results and the assigned degradation yields the updated 

system level posterior distribution on the MTBF shown in Figure 7.19.   

 

 

Fig 7.19.  Posterior Distribution on System MTBF after OT 
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The mean MTBF is 79.8 hrs, and the 0.80 probability interval is found to be (66 hrs, 

99.5 hrs).  For comparison purposes, using just the operational test results alone 

yields the standard point estimate and 80% confidence interval of 74.7 hrs and (33.5 

hrs, 128.4 hrs) respectively.  The combined Bayesian method reduces the uncertainty 

associated with the estimate considerably.  To demonstrate additional utility of the 

method, the estimate resulting from using a non-informative prior distribution on the 

reliability degradation yields a mean MTBF of 59.5 hrs with a corresponding 80% 

probability interval of (41.3 hrs, 97.9 hrs).  Even when the DT-OT degradation is 

treated as an unknown value, the resulting interval estimate still has less uncertainty 

than the operational assessment alone. 

7.5 Conclusion 

 This chapter has presented a case study depicting the application of the 

methodology presented throughout this thesis.  The approach was demonstrated on a 

complex military system that was modified through the addition of specific mission 

equipment on an existing vehicle.  Historical failure data for nine major subsystems 

was used along with a physics-based fatigue model.  Redundancy was considered for 

two components within the system, and the methodology in Chapter 6 was applied to 

develop a posterior distribution on the system-level failure intensity.   

 The posterior distribution from the lower level data was then updated with test 

data from a system level reliability growth test.  The reliability growth projection 

model in Chapter 3 was used to update the posterior distribution, considering the 

impact of corrective actions for 3 of the failure modes that were observed during the 

test.  The results were then subsequently updated after an operational test by applying 
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the model developed in Chapter 4.  The resulting posterior distribution on the failure 

intensity was shown to have a much lower uncertainty when compared to the 

traditional reliability assessment using the operational test data alone.  The 

uncertainty was still lower even when a non-informative prior distribution was used 

for the DT-OT degradation.  The case study demonstrates how the methodology in 

this thesis can be applied throughout the development of a complex system.
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8 EXTENSIONS AND FUTURE WORK 

8.1 Introduction 

8.1.1 Background 

 This chapter contains a discussion of future work that can extend the research 

presented in this thesis.  The development of analogous methodology for discrete 

one-shot type systems is an obvious area where additional work is possible.  An 

outline of a potential discrete version of the reliability growth projection model in 

Chapter 3 is presented here.  A brief discussion of the extension of the approach in 

Chapter 4 to discrete systems is also given.  The last extension discussed involves the 

use of physics-based modeling within the framework for developing estimates of the 

system-level failure intensity. 

8.1.2 Chapter Overview 

 This chapter is organized as follows. Section 8.2 presents a potential 

framework for discrete reliability growth under arbitrary corrective actions, including 

model assumptions and data requirements.  Initial analytic results are presented along 

with empirical Bayes estimates.  Section 8.3 discusses the potential extension of the 

approach to include operational test data, which is a discrete analogue of Chapter 4.  

Section 8.4 contains a brief discussion on additional work in the probabilistic 

modeling of failure mechanisms.  Section 8.5 discusses the potential extension of 

general reliability assessment via failure mode modeling.   
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8.2 Reliability Growth of One-Shot Devices under Arbitrary Corrective Actions 

8.2.1 Model Assumptions 

 The approach outlined here follows that of [21] and [22], which treats the 

system reliability as a product of reliabilities from independent failure modes.  

Modeling the system as a combination of failure modes in this manner enables the use 

of FEF values, which mathematically quantify the reduction in the mode failure 

probability for a given failure mode after a corrective action has been implemented.  

As with the model in Chapter 3, the approach allows for arbitrary corrective actions 

to be made during the test period.  The assumptions are as follows: 

1. The system is comprised of a large number of failure modes that are serial in 

nature; the occurrence of any failure mode results in failure of the system. 

2. Failure modes generate failures independently of one another. 

3. The failure probability for each mode is constant both before and after a 

corrective action is implemented. 

4. Corrective actions to failure modes do not introduce new failure modes into 

the system. 

5. Testing is conducted under operationally relevant conditions and stressors. 

8.2.2 Posterior Inference for Single Failure Mode 

 To develop the model for the system reliability, start by examining the 

posterior distribution for a single failure mode.  For a given test event of T trials with 

arbitrary corrective actions, assume for the ith failure mode there are ni failures on 

trials t = (ti,1, …, ti,ni) with corrective action on trial vi and FEF di. Further assume 
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that there are ni,1 failures prior to the corrective action.  Denoting the failure mode 

probability of failure as pi, assumptions 2 and 3 result in the likelihood for a failure 

mode given by  

 

l  t | pi ,vi ,di ,T( ) ∝ pi
ni, 1 1 − pi( )vi −ni, 1 1 − pi( ) 1−di( ) T −vi − ni −ni, 1( )[ ]1 − 1 − pi( )1−di[ ]ni −ni, 1

    (1) 

Note that the use of the FEF in (1) is slightly different than that used in previous 

discrete reliability growth projection models such as [21] and [22].  The FEF has been 

previously applied by directly scaling the probability of failure for a failure mode.  

The approach used here yields a failure mode reliability after corrective action of  

 

Ri, new = Ri
1−di( ),    (2) 

which provides more consistency between continuous and discrete reliability growth 

projection models.  The continuous models assume a constant failure rate for each 

failure mode, meaning that the reliability can also be expressed using an Exponential 

distribution.  A log-transform will result in the traditional failure rate remaining after 

corrective action.  Log-transforming the Exponential representation of (2) results in  

 

λi, new = 1 − di( )λi ,    (3) 

which fits the usual definition for FEF in the continuous reliability growth projection 

models. 

 For the prior distribution on the mode failure probability pi we assume a Beta 

distribution of the form 

 

p pi( ) =
Γ a + b( )
Γ a( )Γ b( )

pi
a−1 1 − pi( )b−1

.   (4) 

The posterior distribution for the mode probability of failure is then given by 
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p pi | t( ) =
p pi( )l t | pi ,vi ,di ,T( )

p pi( )l t | pi ,vi ,di ,T( )
0

1

∫ dpi

.        (5) 

To solve for the posterior, substitute ni,2 = ni - ni,1 and use a Binomial expansion such 

that 

 

1 − 1 −pi( )1−di[ ] ni, 2

 =
ni, 2

j
 

 
 

 

 
 −1( )j 1 −pi( ) 1−di( )j

j =0

ni, 2

∑ .  (6) 

This yields a failure mode posterior distribution of  

 

p pi | t( ) =

ni, 2

j
 

 
 

 

 
 −1( )j pi

a+ ni, 1 −1 1 − pi( )b+ vi −ni, 1+ 1−di( ) T −vi −ni, 2+ j( )−1

j =0

ni, 2

∑
ni, 2

j
 

 
 

 

 
 −1( )j Γ a + ni,1[ ]Γ b + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ a + b + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
. 

 (7) 

If all corrective actions are delayed until the end of the test, ni,2 = 0, vi = T, and the 

posterior in (7) will simplify to that of standard Beta-Bernoulli conjugate 

relationships.  Also if the failure mode is unobserved during testing, the posterior in 

(7) reduces to  

 

p pi | t( ) =
pi

a−1 1 − pi( )b+ T −1

Γ a[ ]Γ b + T[ ]
Γ a + b + T[ ]

=
Γ a + b + T[ ]
Γ a[ ]Γ b + T[ ]

pi
a−1 1 − pi( )b+ T −1

.  (8) 

We are interested in the posterior reliability for the failure mode, so using (7) we can 

develop the posterior mean reliability as 

( )
( ) ( )( )[ ]

( )( )[ ]
( ) ( )( )[ ]

( )( )[ ]∑

∑

=

=

+−−−+++Γ
+−−−+−+Γ

−








++−−−+++Γ
++−−−+−+Γ

−








=−
2,

2,

0 2,

2,1,2,

0 2,

2,1,2,

1
1

1

11
11

1
|1

i

i

n

j iiii

iiiiiji

n

j iiii

iiiiiji

i

jnvTdvba
jnvTdnvb

j
n

jnvTdvba
jnvTdnvb

j
n

tpE . (9) 
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For the mean posterior failure mode reliability after corrective action, we similarly 

have  

 

E   1 − pi( ) 1 − di( ) | t[ ]=

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi −ni,1 + 1 −di( ) T −vi −ni, 2 + j +1( )[ ]

Γ a + b + vi + 1 −di( ) T −vi −ni, 2 + j +1( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi −ni,1 + 1 −di( ) T −vi −ni, 2 + j( )[ ]

Γ a + b + vi + 1 −di( ) T −vi −ni, 2 + j( )[ ]j =0

ni, 2

∑
.  

(10) 

The result in (10) will then be used to construct the posterior mean for the complex 

system.  To support later calculations involving the posterior variance, we also 

calculate the corresponding second moment for the mean in (10).  The second 

moment follows similarly as  

 

E 1 −pi( ) 1−di( ){ }
 2

| t
 

 
 

 

 
 =

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi −ni,1 + 1 −di( ) T −vi −ni, 2 + j + 2( )[ ]

Γ a + b + vi + 1 −di( ) T −vi −ni, 2 + j + 2( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi −ni,1 + 1 −di( ) T −vi −ni, 2 + j( )[ ]

Γ a + b + vi + 1 −di( ) T −vi −ni, 2 + j( )[ ]j =0

ni, 2

∑
.  (11) 

8.2.3 Posterior Inference for Complex System 

 For a complex system consisting of a large number of failure modes, the 

previous results for a single failure mode can be used to develop analogous results for 

the entire system.  From assumption 1 in Section 8.2.1, we have  
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E R | t[ ] = E 1 − pi( ) 1−di( )

i =1

K

∏ | t
 
  

 
  =

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]

Γ a + b + vi + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ a + b + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
i =1

m

∏  *
  

mK

Tba
a −







++
−1   (12) 

where K is the total number of failure modes in the system and m is the number of 

failure modes observed during the test.  The expression in (12) can be seen as the 

product of failure mode reliabilities for the entire system, with the left hand term 

representing the observed failure modes and the right hand term representing the 

unobserved failure modes.  Equation (10) is used for the observed modes, and the 

mean of the posterior in (8) is used for the unobserved modes.  The expression in (12) 

assumes that the number of failure modes in the system is known, which is not 

usually practical for complex systems.  For this reason we examine the limit of (12) 

as K becomes large in order to develop an estimate that does not rely on knowing the 

number of failure modes in the system.   

 Prior to taking the limit, reparameterize (12) using the prior mean reliability 

for the system and an additional parameter for the Beta distribution.  First let  

 

˜ n = a + b ,    (13) 

and then let the prior mean reliability for the system be denoted as  

 

RI = 1 −
a

a + bi =1

K

∏ .          (14) 

The a parameter can be expressed using (13) and (14) as 

 

a = ˜ n 1 − RI
1/ K( ),         (15) 
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which can be seen to go to zero as K becomes large.  Reparameterizing (12) in this 

manner yields 

 

E R | t[ ] = E 1 − pi( ) 1−di( )

i =1

K

∏ | t
 
  

 
  =

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n − a + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n − a + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
i =1

m

∏  *  

mK

Tn
a −







+
− ~1 .             (16) 

Taking the limit of (16) with respect to K requires calculation of the limit of the term 

that represents the unobserved failure modes, which is given by 

 

 

1 −
a

˜ n + T
 
  

 
  

K −m

.      (17) 

Substituting the expression for a in (15) into (17) yields  

 

 

lim
K →∞

1 −
a

˜ n + T
 
  

 
  

K −m

= exp
˜ n 

˜ n + T
log RI

 
 
 

 
 
 = RI

˜ n 
˜ n + T .     (18) 

The limiting form for the mean reliability of the complex system is then 

 

 

lim
K →∞

E R | t[ ] = lim
K →∞

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n − a + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n − a + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
i =1

m

∏ 1 −
a

˜ n + T
 
  

 
  

K −m      

 

 

=

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j +1( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
i =1

m

∏ RI

˜ n 
˜ n + T

 .   (19) 

 The second moment of the posterior can be developed through techniques 

similar to those for the posterior mean.   Again distinguishing between observed and 

unobserved failure modes, the second moment for the system is  
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E R2 | t[ ] =

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j + 2( )[ ]

Γ a + b + vi + 1 − di( ) T − vi − ni, 2 + j + 2( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ b + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ a + b + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
i =1

m

∏
b + T +1( ) b + T( )

a + b + T +1( ) a + b + T( )
 

 
 

 

 
 

K −m .  (20) 

Using the same reparameterization in (13)-(15) allows the contribution from 

unobserved failure modes to be expressed as  

 

 

b + T +1( ) b + T( )
a + b + T +1( ) a + b + T( )

 

 
 

 

 
 

K −m

= 1 −
a

˜ n + T +1
 
 
 

 
 
 1 −

a
˜ n + T

 
 
 

 
 
 

 

 
 

 

 
 

K −m

. (21) 

Taking the limit with respect to K yields 

 

 

lim
K →∞

1 −
a

˜ n + T +1
 
 
 

 
 
 1 −

a
˜ n + T

 
 
 

 
 
 

 

 
 

 

 
 

K −m

= RI

˜ n 
˜ n + T+1

+
˜ n 

˜ n + T .     (22) 

Using (22) and taking the limit of (20) yields 

 

lim
K →∞

E R2 | t[ ] =

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j + 2( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j + 2( )[ ]j =0

ni, 2

∑

ni, 2

j
 

 
 

 

 
 −1( )j Γ ˜ n + vi − ni,1 + 1 − di( ) T − vi − ni, 2 + j( )[ ]

Γ ˜ n + vi + 1 − di( ) T − vi − ni, 2 + j( )[ ]j =0

ni, 2

∑
i =1

m

∏ RI

˜ n 
˜ n + T+1

+
˜ n 

˜ n + T

. (23) 

Denoting the second moment in (23) as m2 and the mean in (19) as m, the posterior 

variance for the complex system reliability is then 

 

 

Var R | t[ ] = σ 2 = µ2 −µ 2 .    (24) 

The product of individual Beta random variables does not follow an exact Beta 

distribution, but a Beta distribution can likely be used as a suitable approximation of 

the posterior for the system reliability.  A standard method-of-moments approach can 

be used to determine the parameters of the approximate distribution, which involves 

simultaneously solving the equations in (25) and (26) for the new Beta parameters a1 

and b1. 
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µ =
a1

a1 + b1
.       (25) 

 

 

σ 2 =
a1b1

a1 + b1( )2
a1 + b1 +1( )

.      (26) 

The approximation can be checked by simulating failure modes and corrective actions 

in a complex system. The Beta approximation should be sufficient, but simulation 

should also be used to examine the performance of the approximation under arbitrary 

corrective action strategies. 

8.2.4 Extension to Include Multiple Systems Under Test 

 The results in Section 8.2.3 were developed for a single system being tested.  

It is often the case that more than one system is tested concurrently during a 

reliability growth program though, and this section provides straightforward 

extensions of the results in Section 8.2.3 for multiple systems under test. 

 For q systems under test, assume each system has likelihood as defined in (1).  

Assuming independence between the systems, the total likelihood for the ith failure 

mode is given by 

 

l t | pi ,vi ,di ,T( ) ∝ pi
ni, 1, j

j=1

q

∑ 1 − pi( ) vi, j −ni, 1, j
j=1

q

∑ 1 − pi( ) 1−di( ) Tj −vi, j − ni, j −ni, 1, j( )
j=1

q

∑
 

 
 
 

 

 
 
 1 − 1 − pi( )1−di[ ] ni, j −ni, 1, j

j=1

q

∑

,
 

(27) 

where the subscript j denotes data for the specific system under test.  Examining (27) 

reveals that the likelihood for multiple systems can be found by summing the data 

across the individual systems and substituting the terms into (1).  This indicates that 
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the results in Section 8.2.3 can be extended through the same substitution and require 

no additional model development. 

8.2.5 Empirical Bayes Estimators 

 As with the continuous model in Chapter 3, it is entirely possible to 

parameterize the Beta prior through other means such as historical data or elicitation 

of experts.  While not fully Bayesian in their application, empirical Bayes estimates 

can be developed for the discrete systems approach.    

 First note that the mean in (19) and the variance in (24) are now expressed in 

terms of the prior system-level mean 

 

RI  and the 

 

˜ n  parameter.  The empirical Bayes 

estimators for these parameters can be developed by examining the likelihood in (1) 

and the resulting marginal likelihood when all failure modes in the system are 

considered.  The marginal likelihood for a single failure mode is just the denominator 

of the posterior distribution in (5) given by  

 

p ni( ) =
Γ a + b[ ]
Γ a[ ]Γ b[ ]

ni, 2

j
 

 
 

 

 
 −1( )j Γ a + ni,1[ ]Γ b + vi − ni,1 +τi, j[ ]

Γ a + b + vi +τi, j[ ]j =0

ni, 2

∑ ,  (28) 

where 

 

τi, j = 1 −di( ) T −vi −ni, 2 + j( ) and ni represents the total number of observed 

failures for the ith failure mode as in Section 8.2.3.  From (28) the total likelihood 

over K modes in the system is given by  

 

L n( ) =
Γ a + b[ ]
Γ a[ ]Γ b[ ]

ni, 2

j
 

 
 

 

 
 −1( )j Γ a + ni,1[ ] Γ b + vi − ni,1 +τi, j[ ]

Γ a + b + vi +τi, j[ ]j =0

ni, 2

∑
i =1

K

∏ ,  (29) 

and the corresponding log-likelihood is given by  
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

 

l n( ) = log L n( ) = log Γ a + b[ ] − log Γ a[ ] − log Γ b[ ]{
i =1

K

∑

                                           + log
ni, 2

j
 

 
 

 

 
 −1( )j Γ a + ni,1[ ] Γ b + vi − ni,1 +τi, j[ ]

Γ a + b + vi +τi, j[ ]j =0

ni, 2

∑
 

 
 
 

 

 
 
 

 
 
 

  

  

(30) 

Again assuming that m failure modes are observed during the test, (30) can be 

represented as  



 

l n( ) = log
K
m

 

 
 

 

 
 

Γ a + b[ ]
Γ a[ ]Γ b[ ]

ni, 2

j
 

 
 

 

 
 −1( )j Γ a + ni,1[ ] Γ b + vi − ni,1 +τi, j[ ]

Γ a + b + vi +τi, j[ ]j =0

ni, 2

∑
i =1

m

∏
 

 
 
 

 

 
 
 

                                      + K − m( ) log
Γ a + b[ ]Γ b + T[ ]
Γ a + b + T[ ]Γ b[ ]

 

 
 

 

 
 

.   (31) 

The expression in (31) is a sum of log-likelihood terms for the m observed failure 

modes and the K-m unobserved failure modes.  Also note the addition of the constant  









m
K      (32) 

to account for the possible ways of observing m failure modes from the total 

population of K modes.  Reparameterizing (31) in terms of the prior system-level 

mean 

 

RI  and the 

 

˜ n  parameter then yields 

 



 

l n( ) = log
K
m

 

 
 

 

 
 

Γ ˜ n [ ]  Γ ˜ n 1 − RI

1
K

 
 
 

 
 
 + ni,1

 
  

 
  

Γ ˜ n 1 − RI

1
K

 
 
 

 
 
 

 
  

 
  Γ ˜ n RI

1
K

 
  

 
  

ni, 2

j
 

 
 

 

 
 −1( )j

Γ ˜ n RI

1
K + vi − ni,1 +τi, j

 
  

 
  

Γ ˜ n + vi +τi, j[ ]j =0

ni, 2

∑
i =1

m

∏

 

 

 
 
  

 

 

 
 
  

                                      + K − m( ) log
Γ ˜ n [ ]  Γ ˜ n RI

1
K + T

 
  

 
  

Γ ˜ n + T[ ]Γ ˜ n RI

1
K

 
  

 
  

 

 

 
 
 

 

 

 
 
 

.    (33) 

Taking the limit of (33) as K becomes large results in  
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 + log RI
˜ n ψ ˜ n + T( ) −ψ ˜ n ( )[ ]  (34) 

Taking the derivative with respect to the RI and 

 

˜ n  will result in the equations for the 

empirical Bayes estimates.         

8.3 Combining Developmental and Operational Test Data for Discrete Systems 

 For combining developmental and operational test data results for one-shot 

systems, an approach analogous to that of Chapter 4 can be utilized.  A degradation 

factor, γ,  can be employed in the same manner as the FEF value in Section 8.2.  The 

relationship between the DT reliability and the OT reliability can be represented as  

 

RDT = ROT
1−γ      (35) 

This would allow the marginal distribution for the operational reliability to be 

developed in manner analogous to that in Chapter 4.  Note the Markov Chain Monte 

Carlo methods may need to be employed to develop the marginal posterior, as the 

resulting distribution may not be analytically tractable.  

8.4 Developing Prior Information from Physics-based Modeling 

 The results presented in Chapters 6 and 7 for developing posterior 

distributions for mode failure rates are an additional area where much further work is 

possible.  In particular, the Steinberg damage accumulation approach could be further 

explored for situations where the loading does not adhere to the assumption of 

Normality.  Expansion in the area to allow for non-Normal distributions or other 
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means of damage accumulation from complex loading environments would help to 

provide more reasonable life estimates, thereby improving the accuracy of the failure 

mode posterior and the overall system level posterior.  

8.5 General Reliability Assessment 

  The methodology presented throughout this thesis decomposes the reliability 

of a complex system into the various failure modes that exist within the system.  The 

failure intensity of the various failure modes is also assumed to be constant, which is 

justified when a sufficient number of failure mechanisms give rise to the specific 

failure mode.  But the constant failure intensity may not be reasonable when a single 

mechanism causes a failure mode, or in cases when the failure mode results from 

redundancy between components.  Additional work could prove useful in these areas. 

 In particular the use of alternative likelihoods, such as the Weibull distribution 

given in (6) in Chapter 6, could prove useful for modeling these types of failure 

modes.  A common prior distribution could potentially be used to allow for a 

connection between the modes such as the Gamma distribution utilized in this thesis.  

The approach may provide a more general reliability assessment framework that 

allows for different likelihoods while still providing an analytic result with significant 

practical utility.   
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9 CONCLUSIONS 

 The methodology presented in this thesis provides a model framework for 

assessing reliability and reliability growth utilizing data from a variety of potential 

sources throughout the development of the system.  The approach addresses the 

differences that may exist in the test environments in which the data are collected, 

while also providing a probabilistic result that indicates the amount of uncertainty in 

the assessed values.  Additional data sources, such as historical information, 

component level test data, and modeling and simulation results are also leveraged to 

provide prior assessments of the system reliability.  The approach provides a flexible 

Bayesian framework that can easily be extended to allow for other information 

sources where appropriate.  The only requirement for inclusion is a suitable 

characterization of the posterior distribution on the failure intensity for the failure 

mode profile underlying the system.  The three main goals of the research were as 

follows: 

1. Provide a reliability growth assessment methodology that utilizes data from 

throughout the development of the system while rigorously accounting for 

differences in the test environments that may exist. 

2. Provide additional management metrics that will provide additional 

information beyond the assessed reliability to program managers in order to 

better inform decision-making. 

3. Provide a methodology for combining early design activities such as modeling 

and simulation and component/subsystem testing to provide a prior 

distribution on the reliability of a system.  The prior distribution can then be 
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updated when reliability growth testing and reliability demonstration testing 

are completed. 

 The research presented in Chapters 3-6 specifically addresses the goals that 

were identified above.   Chapter 2 presented a literature review on reliability growth 

and assessment techniques that established the current state-of-the-art in reliability 

growth models.  Chapter 3 presented a new method for projecting the reliability 

growth of a complex continuously operating system.  The model allows for arbitrary 

corrective action strategies, while using all available data rather than failure mode 

first occurrence times only.  A complete inference framework was also provided via 

the posterior distribution on the system failure intensity.  A unique feature of this 

approach relative to other Bayesian techniques is the analytic expression for the 

failure intensity contribution from unobserved failure modes.  Expressions for the 

estimating the initial failure intensity, growth potential failure intensity, and the 

cumulative number of failure modes expected in future testing are also developed.  

These important metrics provide additional useful reliability information to program 

managers, which can in turn make better informed decisions regarding resource 

management and future reliability initiatives. 

 Chapter 4 presented a new Bayesian reliability assessment model to mitigate 

the problem of reliability demonstration with fixed configuration testing alone.  The 

approach combined the developmental reliability growth approach in Chapter 3 with 

operational reliability test data within a Bayesian probabilistic framework.  The 

resulting model reduces the uncertainty in the assessed reliability below that 

associated with reliability assessment using operational test data alone.  Differences 
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in the test environments and stressors are explicitly considered when combining the 

data from different test events.  The approach developed in Chapter 4 is also used as 

the basis for the reliability growth planning model in Chapter 5. 

 Chapter 6 presents a general methodology for combining lower level 

information that may be available before full system-level testing has been conducted.  

System-level data collected under operationally relevant testing is the most desirable 

information source for assessing system reliability, but during early stages of 

development this type of information may be unavailable.  There are often other 

sources of reliability related information that are available in the early stages of 

development of the system though, and in these cases it is possible to utilize these 

information sources to develop an early assessment of the system reliability.  When 

viewing the process of reliability assessment across the various stages of development 

of the system, assessment in this manner serves as prior information that can be 

updated with the reliability growth models in Chapters 3 and 4 when system-level test 

data are available.  

 Uncertainty distributions are developed for each failure mode using data for 

the individual components or those within a redundant block.  Bayesian posterior 

distributions are used when component data are available, and a more general 

uncertainty distribution is developed when only physics-of-failure model results are 

available.   When the component information that is available does not accurately 

represent the reliability of the component within the new system (e.g. benign testing, 

historical data from similar system, etc.), a probabilistic technique is provided to 

account for the degraded reliability and additional uncertainty that is present due to 

 227 



- CHAPTER 9 - 

additional failure modes or mechanisms that are not accounted for in the data or 

modeling.  

 Chapter 7 provides a case study demonstrating the application of the 

overarching model framework to a complex military system.  Historical data is used 

to develop posterior distributions for the major subsystems within the system.  The 

data are also used to develop a posterior distribution on the failure intensity for the 4-

of-8 configuration for the wheels of the vehicle.  Physics-based fatigue modeling is 

used to develop a posterior distribution on the driveshaft of the vehicle, and the 

results are combined to form an overall posterior on the system level failure intensity.   

 The resulting posterior is then used to form the prior distribution for the 

reliability growth model in Chapter 3, and the system reliability is assessed after 

corrective action of 3 failure modes observed during reliability growth testing.  The 

resulting posterior distribution after reliability growth testing is then updated after OT 

by applying a degradation factor between the two test events. 
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APPENDIX A: DERIVATIONS 

 This section contains derivations of the limiting results for the posterior 

variance and the expected number of failure modes observed in follow on testing 

from Chapter 3. 

Posterior Variance: 

 From Section 3.2 we write the system level posterior variance as the sum of 

the variances for the individual failure mode failure intensities.     
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Reparameterizing allows us to express the variance as  
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Taking the limit of (2) as K becomes large while holding the prior mean and the 

β parameter constant yields the expression shown in (10) in Chapter 3.  

Expected Number of Failure Modes Observed in Follow-On Testing: 

Reparameterizing (20) in Chapter 3 results in 
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The second term multiplying the m in (3) will go to zero as K becomes large.  For the 

limit of the first term multiplying K we can rewrite it as  
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The denominator of the exponent in (4) will go to zero as K becomes large.  The limit 

of the numerator is by definition just 
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which yields the desired result in Chapter 3. 
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APPENDIX B: MATHEMATICA CODE FOR RELIABILITY GROWTH 

MODELS OF CHAPTERS 3 & 4 

 The results in Chapters 3 and 4 utilize a Mathematica simulation to generate 

test data for comparing the proposed approach with those currently in the literature.  

The simulation begins by simulating mode failure rates from a Gamma distribution.  

Each failure rate is then used to simulate failures within the desired length of testing.  

Corrective actions are applied with the test according to a probabilistic strategy that 

allows for certain modes to be corrected immediately, while others have corrective 

actions delayed until the end of the test.  The individual mode failure rates were 

reduced by the corresponding FEF when the corrective action occurs in the 

simulation.  The resulting failures and associated FEF values are then used within the 

reliability growth model.  The model results can then be compared to the true values 

that were used to generate the random failures.   

 The failure rates remaining after the reliability growth test were then scaled 

according to the amount of reliability degradation that was assumed for the 

simulation.  The scaled mode failure rates were then used to generate failures for the 

operational test in the same manner as for the reliability growth test.  No corrective 

actions were employed during the OT though, as the model approach assumes a 

constant configuration.  The resulting OT failures were then used within the model 

approach in Chapter 4, and the results can again be compared to the true values 

underlying the simulated failure times.  The simulation code is as follows, with 

comment descriptions presented in-line within the code to explain the various 

calculations that are performed. 
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