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While use of LEDs in fiber optics and lighting applications is common, their use in 

medical diagnostic applications is rare. Since the precise value of light intensity is 

used to interpret patient results, understanding failure modes is very important. The 

contributions of this thesis is that it represents the first measurements of reliability of 

AlGaInP LEDs for the medical environment of short pulse bursts and hence the 

uncovering of unique failure mechanisms. Through accelerated life tests (ALT), the 

reliability degradation model has been developed and other LED failure modes have 

been compared through a failure modes and effects criticality analysis (FMECA).  

 

Appropriate ALTs and accelerated degradation tests (ADT) were designed and 

carried out for commercially available AlGaInP LEDs. The bias conditions were 

current pulse magnitude and duration, current density and temperature.  The data was 

fitted to both an Inverse Power Law model with current density J as the accelerating 



  

agent and also to an Arrhenius model with T as the accelerating agent. The optical 

degradation during ALT/ADT was found to be logarithmic with time at each test 

temperature. Further, the LED bandgap temporarily shifts towards the longer 

wavelength at high current and high junction temperature. Empirical coefficients for 

Varshini’s equation were determined, and are now available for future reliability tests 

of LEDs for medical applications. 

 

In order to incorporate prior knowledge, the Bayesian analysis was carried out for 

LEDs. This consisted of identifying pertinent prior data and combining the 

experimental ALT results into a Weibull probability model for time to failure 

determination. The Weibull based Bayesian likelihood function was derived. For the 

1st Bayesian updating, a uniform distribution function was used as the Prior for 

Weibull α-β parameters. Prior published data was used as evidence to get the 1st 

posterior joint α-β distribution. For the 2nd Bayesian updating, ALT data was used as 

evidence to obtain the 2nd posterior joint α-β distribution. The predictive posterior 

failure distribution was estimated by averaging over the range of α-β values. 

 

This research provides a unique contribution in reliability degradation model 

development based on physics of failure by modeling the LED output 

characterization (logarithmic degradation, TTF β<1), temperature dependence and a 

degree of Relevance parameter ‘R’ in the Bayesian analysis. 
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Preface 

The topic of Bayesian analysis has been discussed and debated for a few centuries. 

Jacob Bernoulli developed the Binomial theorem and laid the rules of permutations 

and combinations in the 17th century. Reverend Thomas Bayes (after whom the 

Bayes’ theorem is named) provided an answer to Bernoulli’s inverse probability 

problem in the 18th century. Pierre Simon Laplace also referred to as the ‘Newton of 

France’ developed the ‘Bayesian’ interpretation of probability in the early 19th 

century. Bruno De Finitti published his two volume ‘Theory of Probability’ in the 

20th century. This provided a further growth and interest in the topic of Bayesian 

approach to statistics. 

 

In the Fall of 2009, when I took a course on Data Analysis taught by Dr. Ali Mosleh, 

UMD, I became interested in Bayesian analysis. In our day to day life, we take every 

action based on our previous experiences, bias and prejudice. Be it a short-term task 

such as driving a car or long-term assignment such as raising a child. While our brain 

performs these tasks by judgment and intuition, Bayesian analysis allows us to 

mathematically use our past experience to predict the probability of an event. I hereby 

caution the reader not to perform Bayesian computations while driving a car since 

these computations take time! 

 

While working at Siemens, I was posed with the problem of testing the reliability of 

LEDs for use in a medical diagnostic application. Around the same time, I was 

researching a topic for my Ph.D. research. Considering my interest in Bayesian 
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analysis, my advisor Dr. Aristos Christou, UMD recommended that I use Bayesian 

approach for assessing the reliability of the LEDs. I am so grateful to him for that 

suggestion since this allowed me to do research on something that I thoroughly 

enjoyed.  

 

Back in 1986, when I was in the 9th grade, a friend of mine had given me a few RED 

colored LEDs to use as a light source in an electronic educational kit. LEDs were not 

affordable to school students then. I was very impressed with the LEDs since it did 

not drain my ‘expensive’ 1.5V battery compared to the mini light bulb. I also 

remember that I had to be careful with the polarity of the battery to avoid damage to 

the LED (from excessive reverse bias). Twenty-six years later, as I am writing this 

dissertation, I cannot help but think that my Ph.D. research on Bayesian analysis of 

LED reliability was destiny!  

 

Milind Sawant 

Newark DE. 

September 2012. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Recently introduced consumer products (LED light fixtures, LED flash lights etc) and 

automotive applications have driven the need for higher reliability of LEDs as a 

selling point against existing lighting technology [21]. In LED applications such as 

Fiber Optic Communications and Lighting (see Fig 1.1), the ability of the optical 

receiver or human eye to detect presence or absence of light is important. Slight 

intensity variation within limits is tolerated. In Medical diagnostic applications (see 

Fig 1.2), the light output travels through a lens/filter and then passes through an 

optical cuvette which contains the human sample (blood, urine etc) mixed with 

chemical reagents. The absorbance of light by the cuvette mixture at certain 

wavelengths depends on the patient’s disease condition. Light intensity is then 

measured by a detector/receiver to interpret patient results. This makes the LED 

failure definition unique. Thus the reliability and risk analysis done for LEDs in non-

medical applications cannot be directly used considering hazard to human life.  

 

Most of recent literature on LED reliability focuses on white LEDs (lighting) or 

colored (blue, green and red) LEDs. In most cases, they were operated using dc bias 

[15-17, 19, 21, 22, 26-29, 32-34]. In a few cases, the LEDs were driven in a pulse 

mode with different on times and duty cycles [20, 35, 42, 43, 48]. The target medical 

application will require 640 nm AlGaInP LEDs operated at pulse currents (on time of 

100us at 0.2% duty cycle) making this analysis inevitable. See Table 1.1 for a 
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comparison of Lighting/Fiber optic vs. a Medical diagnostic application for LEDs. 

Bayesian modeling can allow us to combine prior information from published data 

with medical application related test data to estimate posterior LED failure rates. 

 

Commercially available wavelength-specific high power LEDs can provide a 

significant cost advantage compared to traditional high intensity sources (flash 

lamps). Some of the problems anticipated with use of LEDs were low efficiency of 

output optical power, output power reduction, spectral shift over operation time, and 

catastrophic failure due to thermal effects. The research of this thesis was to 

characterize LED performance over time, identify and characterize new failure 

mechanisms and finally, generate a model of time to failure. Successive Bayesian 

updating using Medical application related LED life test data was the key 

experimental component of this thesis. 

Lighting/Fiber Optics Application Medical Diagnostics Application. 

Light is Detected for presence or 

absence 

Light Measured and biologically correlated 

for medical interpretation. 

Driving:  DC or 1-100% duty cycle Driving:  100us pulse (0.2% duty cycle) 

Failure Definition: As defined by 

system performance requirements i.e. 

3-6 db system power degradation.  

Failure Definition:  Only 20% decrease in 

LED output power allowed.  No spectral 

shift is allowed. 

Failure Mitigation: Part replacement 

or optical system redesign. 

Failure Mitigation: System re-calibration 

is necessary if failure is not catastrophic.  If 

failure is catastrophic, LED replacement is 

necessary. 

 
Table 1.1: Comparison of Lighting/Fiber Optics vs. Medical Diagnostic application 
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Fig. 1.1 LED in Lighting / Fiber Optics Application 

 
 

 
Fig. 1.2 LED in Medical Diagnostic Application 
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1.2 Goal, Objectives and Accomplishments of Research 

This section summarizes the goals of the thesis and the approach taken as well as the 

summary of the results and the unique contributions.  In subsequent chapters, the 

experimental and modeling approach is described in detail as well as the results of the 

research. 

 

The goal of this research was to evaluate the reliability of 640 nm AlGaInP MQW 

LEDs in a medical diagnostic application using Accelerated Life testing and Bayesian 

modeling. The following questions needed answers: 

1. Will the LED intensity remain within acceptable limits? 

2. Will the LED wavelength remain stable? 

3. Will the Time to Failure of LEDs exceed the Life of the Medical Instrument? 

4. Will there be a cost benefit of using LEDs vs traditional light sources (flash lamps 

etc)?  

5. Will there be any critical failure modes for the medical application? 
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The following section summarizes the specific accomplishments in order to meet the 

objectives stated above 

1.2.1 FMECA for LED in Medical application 

Failure Modes and Effects Criticality Analysis (FMECA) widely used for risk 

analysis was successfully applied to LED reliability and physics of failure 

investigation. FMECA was used to understand the criticality of LED failure modes 

when used in a medical diagnostic application. Failure modes of other components of 

the Medical device were not included in this study. The FMECA was repeated and 

refined after conducting accelerated life testing of LEDs. Degradation of the plastic 

encapsulation and the active region were found to be the critical failure modes. These 

failures could cause unscheduled calibration of the diagnostic instrument and could 

cause delay in patient medical test results. 

1.2.2 Develop Test Setup 

An experimental setup was developed for accelerated life testing of LEDs in 

environmental chambers. The test is automated by using test software, data 

acquisition/control boards and constant pulse current LED driver boards. The test SW 

makes the data acquisition board generate the necessary pulses, which trigger the 

LED driver board. The peak current through the LED is maintained constant while it 

is on. A separate signal conditioning circuit also measures the forward voltage Vf 

across the diode, which is fed back to the test SW to be written to a database. At 

regular intervals, the LEDs were removed from the environmental chambers and were 

characterized electrically and optically (using a Spectro-radiometer).  
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1.2.3 Perform Accelerated Life and Degradation Test 

Accelerated Life Testing (ALT) and Accelerated Degradation Testing (ADT) of the 

LEDs in Pulse mode was conducted at 3 temperatures (35°C, 55°C and 75°C) and 2 

Peak currents (Batch2: 483mA=418.1A/cm2 and Batch3: 725mA=627.2A/cm2). The 

optical power decreased with time due to degradation of the LED chip as well as the 

encapsulation. The rate of degradation followed a logarithmic function. 20% 

degradation was considered failure for the medical application. For LEDs that did not 

reach this failure threshold in a reasonable time (suspend data), the logarithmic 

function was used to extrapolate TTF. A log-linear model was used for analysis of 

degradation data and JMP software was used for this analysis. 

1.2.4 Accelerating Agent Modeling 

Prior published data and ALT data had to be converted to medical application 

conditions. This required the use of accelerating agent modeling. Inverse Power Law 

(IPL) model with J as the accelerating agent and the Arrhenius model with T as the 

accelerating agent were used. Regression analysis was used to estimate the parameter 

‘n’ of the IPL model and activation energy ‘Ea’ of the Arrhenius model. An iterative 

regression analysis approach was used to get best possible regression fits thereby 

accommodating the effects of both current density and temperature. 

1.2.5 Temperature dependence of Bandgap 

Reliability testing of AlGaInP MQW LEDs resulted in a shift of Bandgap towards the 

longer wavelength when driven at high current. Characterization of the shift showed 

that it was temporary and dependent on the junction temperature Jt. The data was 
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further analyzed with respect to Varshini’s equation, and the empirical coefficients 

were determined for the AlGaInP material. 

1.2.6 Literature Survey for Bayesian Prior 

The Bayesian analysis began by identifying published data, which can be used as 

prior information. From the published data, the time required for the optical power 

output to degrade by 20% was extracted. Analysis of published data for different LED 

Materials (AlGaInP, GaN, AlGaAs), Semiconductor Structures (DH, MQW) and 

driving (DC, Pulsed) was carried out. 

1.2.7 Bayesian Likelihood Function 

Many of the LED degradation mechanisms occur at the same temperature bias range. 

The mechanism with the lowest activation energy would dominate. The degradation 

mechanism of LEDs, published literature and our ALT data all indicate that Weibull 

is the most suitable model for this data analysis, as verified through a regression 

analysis.  This rationale was used to develop the Weibull based Bayesian likelihood 

function. For the first Bayesian updating, uniform distribution was used as the Prior 

distribution for α-β parameters of the Weibull model. 

1.2.8 Bayesian Updating 

Starting with uniform prior for α-β values, prior published data was used as Evidence 

to get the first posterior joint α-β distribution. For the second Bayesian updating, the 

posterior from the first Bayesian updating was used as the prior. ALT data converted 

to medical application conditions was used as Evidence to get the second posterior 

joint α-β distribution. This joint α-β distribution gave a series of Weibull time to 
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failure distributions. The predictive posterior failure distribution for the LEDs was 

estimated by averaging over the range of α-β values. Software was written for 

performing various Bayesian computations.  

1.2.9 Degree of Relevance in Bayesian modeling 

An approach is proposed for using partially relevant data in Bayesian modeling. A 

new parameter ‘R’ (degree of relevance) is used to modify the likelihood function 

before using it in Bayesian updating. The ‘R’ value will be used such that the 

influence of evidence is decreased as R approaches zero. 

1.3 Publications of Present Research 

The research carried out as part of this thesis resulted in the publication of three 

research papers and one poster presentation. These are listed below: 

1. International Semiconductor Device Research Symposium (ISDRS), College Park 

MD, Dec 2011 [11]. 

2. Workshop on Compound Semiconductor Devices and Integrated Circuits 

(WOCSDICE), Island of Porquerolles, France, May 2012 [12]. 

3. Reliability of Compound Semiconductors Workshop (ROCS), Boston MA, April 

2012 [13] 

4. Poster presented at ResearchFest, College Park, MD, March 2012. 

 

 



 

 9 
 

1.4 Summary of Contribution 

The contributions of this thesis is that it represents the first measurements of 

reliability of AlGaInP LEDs for the medical environment of short pulse bursts and 

hence the uncovering of unique failure mechanisms. 

1.4.1 LED bias conditions are different 

Published articles tried to characterize LEDs using DC bias (for reliability) and in 

some instances using pulsed bias (for performance evaluation rather than reliability). 

The target medical application does not require continuous optical output but only 

when the human test sample is provided (in fraction of ms). Failure mechanisms in 

this research were influenced by peak currents rather than average currents.  

1.4.2 Application of LED is different 

In Fiber Optics & Lighting applications, light is used for detection. In Medical 

diagnostic applications, the precise value of light intensity is used to interpret patient 

results. This research will allow replacement of traditional light sources (filament or 

flash lamps) with LEDs. The lamps degrade and have to be replaced 3-6 months 

causing a major inconvenience to the customer whereas LEDs will outlast the 7-year 

life of the medical diagnostic instrument. 

1.4.3 Consequence of LED Failure is different 

In Fiber Optics & Lighting applications, failures are usually significant loss of optical 

output. Failure usually means inconvenience and redundancy is a common mitigation. 

In medical diagnostic applications, calibration and referencing is used to mitigate 

LED failure. However, if a subtle change in optical intensity goes undetected, it could 
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cause erroneous patient results. This can cause erroneous diagnosis, incorrect 

treatment and possibly severe health complications. If this were to occur, apart from a 

possible litigation between patient, hospital and the medical equipment manufacturer, 

the FDA will start questioning the entire risk analysis done on the medical equipment.   

1.4.4 Decreasing failure rate ββββ of the Weibull TTF model 

It was observed that the shape parameter β of the Weibull TTF model is less than one 

(implying a decreasing failure rate) in prior published data, ALT and Bayesian model. 

During ALT, the rate of optical output degradation was logarithmic and this rate 

varied significantly between different LEDs. Some LEDs cross the 20% degradation 

(failure threshold for this application) earlier than others. For LEDs that do survive 

this initial high rate of optical degradation, the probability that it will survive longer 

increases. This explains the decreasing failure rate.  

1.4.5 Temperature dependence of bandgap characterized 

It was found that the bandgap of AlGaInP MQW LEDs shifts towards the longer 

wavelength when driven at high current. Characterization of the shift showed that it 

was temporary and dependent on the junction temperature Jt. The data was further 

analyzed with respect to Varshini’s equation, and the empirical coefficients were 

determined for the AlGaInP material. Since the spectral performance is critical for the 

medical application, my spectral shift investigation will provide immense value to the 

designer. The junction temperature will need to be maintained. 
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1.5 Dissertation Layout 

Chapter 1 provides an introduction to this dissertation. It starts by giving a 

background and motivation. It specifically describes how a medical diagnostic 

application differs from a lighting or fiber optic application for LEDs. It then states 

the goals and objectives of this research. Work accomplished including publication of 

three research papers and a poster presentation is listed. Finally, it describes the 

contribution and why this research was necessary. 

 

Chapter 2 provides a thorough literature review on the subject. It starts by listing 

various research groups who are working on the subject of LED reliability. It also 

lists various journals, which have published important articles on LED reliability. 

Thereafter it describes the work done on AlGaInP LEDs by various research groups. 

It briefly describes their work, their approach and their results. The same is then 

described for GaN LEDs. The chapter ends by describing a couple of articles on 

Bayesian analysis. 

 

Chapter 3 covers the theory for LEDs. It describes the basic LED operation, the band 

structure in semiconductors and the relationship between the band gap energy and the 

wavelength of the photon emitted. It describes the radiative and non-radiative 

recombination process and its effect on LED reliability. Temperature dependence of 

the spectrum is briefly described. It then describes the basic LED degradation 

mechanisms and those specifically related to AlGaInP LEDs. 
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Chapter 4 describes Accelerated life modeling. Prior published data and ALT data 

had to be converted to medical application conditions. This required the use of 

accelerating agent modeling. Inverse Power Law (IPL) model with J as the 

accelerating agent and the Arrhenius model with T as the accelerating agent are 

described. Acceleration factors are derived. Parameter ‘n’ for the IPL model and 

activation energy ‘Ea’ for the Arrhenius model are estimated using regression 

analysis for various combinations of LED material and structure. After converting the 

published data to medical application conditions, it is subjected to Weibull analysis. 

 

Chapter 5 describes the Accelerated Life Testing (ALT) performed during this 

research. It describes the materials and the methods used. ALT was performed at 

elevated temperature and current and the LEDs were driven in pulse mode. The test 

setup used is also described. This is followed by a detailed discussion on the results of 

ALT. It describes the LED optical power degradation, encapsulation degradation, and 

chip vs. lens degradation and spectral performance after ALT. The results of the ALT 

are then summarized.  

 

Chapter 6 describes the thermal shift of the active layer band gap. It first describes the 

forward bias method used to establish the linear relationship between the forward 

voltage Vf of the diode and the junction temperature. A series of experiments are 

described which establish the relationship between Vf and the peak wavelength of the 

LED. It then describes the Varshini’s model and estimates the parameters of this 
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model for the AlGaInP LED material. Findings of previous researchers are described 

and they are compared and contrasted with our results. 

 

Chapter 7 describes the Failure Modes, Effects and Criticality Analysis (FMECA) 

performed during this research. Severity classification for a general and a medical 

diagnostic application are described. Various LED failure modes are discussed. 

FMECA table is constructed and critical failure modes are identified. The table is 

reconstructed after ALT and findings are discussed. Plastic encapsulation and active 

region degradation were estimated as the critical failure modes. Either of these failure 

modes will cause system level effects such as excessive drift requiring unscheduled 

calibration and delayed medical test results. 

 

Chapter 8 describes Bayesian modeling of LED reliability. First, the basic Baye’s 

theorem is derived. Then the likelihood function for α - β parameter based Weibull 

model is developed. Equation for the joint α - β posterior distribution is derived. 

Thereafter the results of our Bayesian modeling are discussed. The first posterior is 

generated using published data as evidence and the second posterior is generated 

using the ALT data as evidence. Predictive posterior estimates are derived by 

averaging over the range of α & β values. 

 

Chapter 9 proposes the use of a new parameter Degree of Relevance (R) in Bayesian 

analysis. Life of LEDs varies significantly depending upon the LED material used, 

the semiconductor structure used and the mode of driving. Bayesian modeling 
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computes the LED reliability by combining prior published LED data with the current 

test data. It is very difficult to get prior for the exact same material, structure and 

driving. The ‘R’ value was used to modify the Bayesian model such that the influence 

of evidence is decreased as R approaches zero. This chapter discusses methods of 

obtaining the parameter R and one method of using it. Additional approaches are 

discussed in section 11.4 (Future research). 

 

Chapter 10 covers the topic of Bayesian model selection and validation. The 

subjective nature of the prior distribution may raise doubts about the accuracy of 

Bayesian posterior distributions. Validation approach such as the chi-square statistic 

is described. Validation of Bayesian modeling for various phases is discussed. These 

include selection of the distribution for the underlying failure distribution, suitability 

of the prior information and appropriateness of predictive posterior distribution 

against the test data. 

 

The final chapter 11 concludes this research. It reviews the objectives, 

accomplishments and future areas of research. 
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Chapter 2: Literature Review 

2.1 Introduction 

Various research groups are working on LED reliability and related topics: 

• Osram, HP, Philips R&D groups: High brightness AlGaInP LEDs [15-24] 

• University of Padova, Italy: Reliability & Life testing of GaN LEDs [32-41] 

• LRC, Rensselaer Polytechnic Institute, Troy, NY: LED Life Testing, [49-50] 

• Sandia National Laboratories, NM: AlGaN/InGaN/GaN Life testing [42-44] 

• Nakamura, Yanagisawa, other Japanese groups: GaN LEDs [3, 46-48] 

• NIST: Calibration / LED measurement Standards, [52-57] 

• Miscellaneous / Bayesian [5, 25-27, 58-63] 

 

Articles related to LED reliability have been published in various journals such as 

IEEE, SPIE, Microelectronic Reliability, Applied Optics, Electronics Letters, 

Electronic Materials & Packaging etc. Ott [14] has written a review article on 

capabilities and reliability of LEDs as a part of a NASA report, which summarizes 

some of the degradation modes. Vanderwater, Kish et al. [15] have written a nice 

review article on high brightness AlGaInP LEDs whereas Meneghini et al. [32] have 

reviewed reliability of GaN LEDs. Work by Nakamura [3] and Fukuda [2] served as 

good references for this dissertation. Research is this dissertation relied heavily on 

work by Mosleh [8] for concepts on Bayesian reliability (explained in chapter 8). A 

few examples of use of Bayesian analysis in reliability applications are discussed at 

the end of this literature review. 
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LEDs used in this research used AlGaInP material and the Multi Quantum Well 

(MQW) semiconductor structure. AlGaInP is a mature technology developed in the 

early-mid-nineties compared to GaN, which is still evolving. It was interesting to 

observe that a lot of published AlGaInP related articles focused on performance 

improvement [15-23, 25-27, 30] compared to articles on AlGaInP Reliability & Life 

testing [15-17, 21, 22, 24, 26-30]. On the other hand, we found many recent articles 

on GaN LEDs which specifically focus on Reliability and Life testing [32-43, 47-51]. 

A possible explanation for this could be that since last 5 years, LEDs are being 

considered as serious competitors to compact florescent lamps (CFL) which will soon 

replace incandescent lamps. LED based ‘bulbs’, which fit in regular electrical 

fixtures, have started appearing in retail stores since 2011. LED based break lights 

and indicator lights are available in recent automobile models. Many of the flashlights 

sold in retail stores since 2009 use LEDs. Such automotive applications and consumer 

products [16, 21, 32] may have driven the need for higher reliability as a selling point 

against existing lighting technology. 
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2.2 AlGaInP LEDs 

Per Vanderwater, Kish et al. [15, 17], attainment of high efficiency performance in 

AlGaInP LEDs is a result of the development of advanced Metal Organic Chemical 

Vapor Deposition (MOCVD) crystal growth techniques. (AlxGa1_x)0.5In0.5P Double-

Heterostructure (DH) active layers are grown lattice-matched on GaAs substrates by 

MOCVD. To improve current spreading and light-extraction, a p-type GaP window is 

grown by Vapor Phase Epitaxy (VPE) on the device layers. Subsequently, the 

absorbing GaAs substrate is selectively removed and a transparent n-type GaP 

substrate is substituted in its place by semiconductor wafer bonding at elevated 

temperature and under applied uni-axial pressure. An important step is matching of 

the crystallographic orientations of the bonded wafers to facilitate low-resistance 

(low-voltage, high efficiency) operation. After wafer bonding, patterned alloyed 

ohmic contact metallization is applied to both the p and n sides of the wafer, and the 

devices are diced and packaged into standard LED lamps.  

 

A recent review article by Streubel et al [22] mention further advancements in the 

AlGaInP LED technology such as texturing the surface of the chips to improve 

extraction efficiency. They provide a schematic drawing of the layer structure of a 

typical high brightness LED. The outer layers are used to optimize carrier 

confinement and decrease leakage. The Setback layers are used to control doping and 

diffusion of dopants Mg, Zn and Te. Window layers on top are used to improve 

current spreading where as an optional DBR layer is used to recover the light emitted 

in the direction of the substrate. 
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Grillot et al [16] used both fixed and variable current density stress conditions to 

study light output degradation of AlGaInP LEDs as functions of LED stress current 

and LED stress time. For stress times long enough and current densities high enough 

to saturate any short-term effects, quantification of the resulting data indicated that 

the LED degradation is a linear function of current density and a logarithmic function 

of stress time for as long as 60 000 hours. They show that LED degradation can be 

caused by changes in Extraction efficiency Cex(t), Defect concentration NT(t) and 

Leakage current density JL(t). They argue that monotonic increase or decrease in LED 

light output is likely due to corresponding increase or decrease in NT(t) whereas short 

term degradation is due to changes in NT(t) as well as changes in  JL(t) that saturate 

for sufficiently long stress time or high current density. 

 

Lacey et al [28] studied the reliability of AlGaInP DH LEDs operating typically at 

600 nm. To investigate degradation, accelerated aging at ambient temperatures of 50, 

75 and 125 C was carried out for over 5000 hrs. The activation energy of 

homogeneous degradation was determined to be 0.8 eV and an extrapolated half-life 

in excess of 1.0E6 hrs was estimated at an ambient temperature of 20 C. Nogueira et 

al [30] performed accelerated life testing on AlGaInP LEDs at high temperatures 

(120C to 140C). Open circuit catastrophic failures were observed and the root cause 

was due Anode corrosion caused by moisture penetrating the package. The data was 

analyzed using Inverse Power Law model for current and Arrhenius reaction rate 

model for temperature. The data was also fitted to Weibull distribution. 
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Hofler et al [18] concluded that for AlGaInP LEDs, increasing the junction area (from 

210 x 210µm2 to 500 x 500µm2) without changing the aspect ratio results in ~25% 

decrease in extraction efficiency. They also saw significant color shifts and decrease 

in luminous efficiency as junction temperature is increased. Liang et al [25] 

specifically compared temperature performance for InGaN and AlGaInP LEDs. In 

case of GaN MQW LEDs, the Electro-Luminescence (EL) main peak increased 

monotonically with temperature from 10 to 200 K and slightly decreased with further 

temperature increase in the 200 K range. This is in contrast with the monotonic 

decrease of EL with increasing temperature for conventional AlGaInP QW red LEDs. 

The anomalous temperature dependence of the InGaN/GaN LEDs was attributed to 

the barrier caused by Quantum Dot (QD) like structure.  

 

Kish et al [20] studied high luminous flux AlGaInP/GaP large area emitters with 

currents as high as 7A. Although heating is significant in these devices, their 

performance was primarily limited by light extraction. Under pulsed operation (1 µs, 

0.1 % duty cycle), a conventional TS AlGaInP LED lamp (213 x 213µm2 chip) 

exhibited an external efficiency of ~9.1% (415 A/cm2) compared to ~3.1% for the 

large-area LED (375 x 4500µm2 chip) where both chips were fabricated from the 

same wafer. Under DC operation, the external efficiency of the large-area LED 

further decreases to ~1.9%. 
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Chang et al [19] reviewed the luminescence properties of various AlGaInP LEDs 

using Double Heterostructure (DH), Distributed Bragg Reflector (DBR) and various 

Multi Quantum Well (MQW) structures. They found that MQW LEDs are brighter 

than DH and DBR LEDs, particularly under low current injection. For the MQW 

LEDs, their Electro-Luminescence (EL) increases as the number of wells increase. 

They found that MQW LEDs are more reliable than DH and DBR LEDs. Under pulse 

operation, they found that, as the number of wells increases, the amount of decay 

becomes smaller. 

 

Altieri et al [23] studied internal quantum efficiency of high brightness AlGaInP 

LEDs. One approach to improve the LED efficiency is to improve the light extraction 

efficiency by means of new device concepts comprising wafer bonding, chip 

geometry or surface texturing. However, with decreasing emission wavelength, a 

strongly temperature dependent loss of LED External Quantum Efficiency (EQE) is 

observed. This short wavelength behavior indicates the existence of loss mechanisms 

originating from the active layer itself. E.g. Nonradiative recombination and carrier 

leakage into the confining layers reduce the internal quantum efficiency (IQE). From 

a more detailed analysis of the wavelength dependence of the non-radiative 

recombination, they assign the loss to the electron transfer from the quantum well Γ-

band to the confinement layer X-band (Γ-X transfer), dominating over other defect 

related mechanisms. 
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Krames et al [21] review the status of LEDs for Solid state lighting applications. The 

AlGaInP (red to yellow) and InGaN-GaN (blue to green) material systems dominate 

the field. Sophisticated device structures based on these material systems result in 

light extraction efficiencies of 60% and 80%, for AlGaInP and InGaN-GaN, 

respectively. At the time of their writing, commercially available high-power white 

LEDs based on phosphor down-conversion provided luminous efficacies of 70 lm/W. 

Recent improvements in LED luminance place them brighter than halogen filaments, 

making LEDs attractive for use in automotive headlamps for the first time. The 

challenge for solid-state lighting now is clearly in internal quantum efficiency, which 

for the InGaN-GaN and AlGaInP (at operating temperatures) is far below what has 

been achieved in other III-V systems such as (Al)GaAs. Breakthroughs in internal 

quantum efficiency would result in high-power phosphor-white LEDs with 

efficiencies reaching 160 lm/W or more, a performance level surpassing anything 

known to date for a practical white light source. 

2.3 GaN LEDs 

Meneghini et al [32] review the degradation mechanisms that limit the reliability of 

GaN-based light-emitting diodes (LEDs). They propose a set of specific experiments 

for separately analyzing the degradation of the active layer, ohmic contacts and the 

package/phosphor system. They show that Low-current density stress can determine 

the degradation of the active layer of the devices, implying modifications of the 

charge/deep level distribution with subsequent increase of the nonradiative 

recombination components. High-temperature storage can significantly affect the 

properties of the ohmic contacts and semiconductor layer at the p-side of the devices, 
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thus determining emission crowding and subsequent optical power decrease. High-

temperature stress can significantly limit the optical properties of the package of high-

power LEDs for lighting applications. 

 

Levada et al. [34] carried out accelerated life tests on plastic transparent 

encapsulation and pure metallic package GaN LEDs. Parameters chosen as 

representative of the observed failure modes were Optical power (OP) measured at 20 

mA, Reverse current (Irev) measured at −5 V and Series resistance Rs (differential at 

40mA & 10mA). The failure criteria were 20% decrease in OP, Irev increase by 

factor of 2.5 and 7% increase in Rs. A consistent Weibull based statistical model was 

found for MTTF and the accelerating factors of high current stresses were estimated. 

 

Buso et al. [35] experimentally investigated the performance of commercially 

available high brightness GaN LEDs under DC and pulsed bias. Electrical, Thermal 

resistance and Optical characterization was done to see the effects of stress. The 

authors conclude that square-wave driving can be efficient only for high duty cycles. 

For low duty cycles, worse performance was detected due to the saturation of 

efficiency at high peak current levels. Three families of devices submitted to dc and 

pulsed stresses showed different behaviors, indicating that stress kinetics strongly 

depends on the LED structure and package thermal design.  

 

Osinski et al [42] focused on the performance of commercial AlGaN/InGaN/GaN 

blue LEDs under high current pulse conditions. The results of deep level transient 
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spectroscopy (DLTS), thermally stimulated capacitance, and admittance spectroscopy 

measurements performed on stressed devices, showed no evidence of any deep-level 

defects that may have developed as a result of high current pulses. Physical analysis 

of stressed LEDs indicated a strong connection between the high intrinsic defect 

density in these devices and the resulting mode of degradation.  

 

Following the initial studies of rapid LED failures due to metal migration under high 

current pulses, Barton et al. [43] placed a number of Nichia NLPB-500 LEDs 

(InGaN/AlGaN) on a series of life tests. The life tests did not produce significant 

degradation at currents less than 60 mA indicating a remarkable longevity in spite of 

their high density of defects. One of the older technology, double heterostructure 

Nichia LEDs showed a greater than 50% light output degradation after 1200 hours. 

Failure analysis revealed that a crack had isolated part of the junction and was the 

cause of the degradation. Two of the newer generation LEDs showed a greater than 

40% loss in output intensity after 3600 and 4400 hours. The LEDs did not exhibit any 

significant change in its I-V characteristics indicating that the failure mechanism may 

be related to the plastic encapsulation material. 

 

Yanagisawa [48] performed long-term accelerated degradation tests on GaAlAs red 

LEDs under continuous and low-speed pulse operation and studied the differences in 

the degradation and lifetime. The major factor causing the degradation was decrease 

in the radiative recombination probability due to defect generation. In an earlier 

paper, Yanagisawa [47] investigated the long-term accelerated degradation of GaN 
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blue LEDs under current stress. From the degradation pattern of optical output over 

time, the dependence on current stress was studied and an equation for estimation of 

the half-life of the diode was obtained. 

 

Getty et al [56] demonstrated a method for the determination of internal quantum 

efficiency (IQE) in III-nitride-based light-emitting diodes. LED devices surrounded 

with an optically absorbing material were fabricated to limit collected light to photons 

emitted directly from the quantum wells across a known fraction of the recombination 

area. The emission pattern for this device configuration was modeled to estimate the 

extraction efficiency. IQE was then be calculated from the measured input current 

and output power. This method was applied to c-plane InxGa1−xN-based LEDs 

emitting at 445 nm. Initial measurements estimated an IQE of 43% + 1% at a current 

density of 7.9 A/cm2. 

 

Chen et al. [31] evaluated the thermal resistance and reliability of high power Chip on 

Plate (COP) LEDs. The techniques used were Thermal Resistance Circuit (TRC) 

method, Finite Element Method (2D Ansys) and Experimental using Wet High 

Temperature Operation life (WHTOL) conditions (85°C/85%RH, 350mA) for 1008 

hrs. Results from 2D Ansys were closer to experimental data than TRC since real heat 

flow paths are difficult to be completely evaluated by TRC. During WHTOL, all COP 

packages with phosphorus in the silicone encapsulant failed after 309 hrs. The failure 

sites were located at aluminum wire bonding to the chip and copper pad of the 

substrate. For the passing packages (without phosphorus), junction to air thermal 
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resistances increased with time by up to 12 °C/W due to decrease in thermal 

conductivity of die attach (from moisture absorption). 

 

Narendran et al. [49] conducted two experiments. In the first experiment, several 

white LEDs (same make/model) were subjected to life tests at different ambient 

temperatures (35, 45, 50, 55, & 60 oC). A temperature sensor was placed on the 

cathode lead (T-point). The environment chambers also acted as light integrator 

boxes. The drive current was 350mA and the light was measured by a photodiode. 

The exponential decay of light output over time was used to estimate life. The life 

also decreased exponentially with increasing temperature. In a second experiment, 

several high-power white LEDs from different manufacturers were life-tested under 

similar conditions (35 oC, 350mA). Results showed that different products have 

significantly different life values. 

 

In an earlier paper [50], Narendran et al. measured light output degradation and color 

shift over time for commercially available high flux LEDs. From one manufacturer 

(single die per package), red, green, blue and white LEDs were used. From a second 

manufacturer (multiple dies per package), a different high flux white LED was used. 

The LED arrays were tested under three sets of conditions: Normal current (350 mA) 

/ normal temperature (35 oC), 350 mA / 50 oC and 450 mA / 35 oC. The LEDs were 

characterized optically by NIST accredited 2 meter integration spheres. Overall, the 

single die green and white LED arrays showed very little light loss after 2000 hours 

even though the current and temperature were increased. The red LED seemed to 
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have a high degradation rate. The white LEDs had a significant color variation (total 

12 step MacAdam ellipse, 2 step during initial 2000 hours). 

 

Tsai et al. [51] aged samples from different manufacturers at 65, 85, and 95oC under a 

constant driving current of 350 mA. The results showed that the optical power of the 

LED modules at the two view angles of ± (45o~75o) decreased more than the other 

view angles as the aging time increased. This was due to the reduction of radiation 

pattern from the corner effect of lens shape, resulted in lower output power. Results 

also showed that the center wavelength of the LED spectrum shift 5 nm after thermal 

aging 600 hours at 95oC because of degradation in the lens material. 

 

Wang et al [45] developed a comprehensive optical model for dual wavelength LEDs 

using optical ray tracing programs. Optical dispersion of GaN, InGaN, and AlGaN 

was also included in this numerical model. Per the authors, the light extraction 

efficiency of LEDs can be calculated based on LED structure and material properties. 

The LED device structure can be optimized to improve the light extraction efficiency. 

2.4 LED measurements 

Yoshi Ohno [52] reviewed photometric, radiometric, and colorimetric quantities used 

for LEDs and discussed CIE standardization efforts. A large variation in LED 

measurements is reported (40-50 % due to spectral/spatial characteristics) compared 

with traditional lamps (within a few %). The Averaged LED Intensity is defined by 

CIE127 publication and involves measuring the intensity by a circular photometer 

head (100 sq.mm) at a distance of 316 mm (condition A, 0.001 steridians) or 100 mm 
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(condition B, 0.01 steridians). This is recommended for individual LEDs having a 

lens optic (such as a 5 mm epoxy type) since they do not behave as a point source. 

CIE127 also revised total luminous flux measurements and spectral measurements to 

include backward and sideways emissions of LEDs by mounting it in the center of the 

integrating sphere. For applications where backward or sideways emissions are not 

useful, a new quantity ‘Partial LED Flux’ is proposed. 

 

Miller et al. [53] cover the capabilities and services provided by NIST for calibration 

of LEDs. Services include official color calibrations, radiometric calibration and total 

spectral radiant flux standards. In two earlier papers [54, 55], the authors discuss the 

uncertainty in LED measurement. For Average LED Intensity (photometric bench / 

alignment procedures), uncertainty range was 0.8 % to 3 %. For total luminous flux 

measurement (mounting geometry, backward emission, integrating sphere designs, 

including baffles and auxiliary LEDs) the expanded uncertainty range was 0.6 % to 

2.3 %. Park et al. [57] also evaluated the uncertainty in measurement of Average LED 

Intensity by using a spectral Irridiance standard lamp as a calibration source for the 

spectro-radiometer and 12 uncertainty components with correlation taken into 

account. The relative uncertainties for the test samples were determined to be in a 

range from 4.1% to 5.5%. 

2.5 Bayesian analysis 

Brian Hall [58] published his Ph.D. dissertation titled ‘Methodology for evaluating 

reliability growth programs of discrete systems'. The purpose of this area of research 

is to quantify the reliability that could be achieved if failure modes observed during 
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testing are corrected via a specified level of fix effectiveness. New reliability growth 

management metrics are prescribed for one-shot systems under two corrective action 

strategies. The first is when corrective actions are delayed until the end of the current 

test phase. The second is when they are applied to prototypes after associated failure 

modes are first discovered. Statistical procedures (i.e., classical and Bayesian) for 

point-estimation, confidence interval construction, and model goodness-of-fit testing 

are also developed. In particular, a new likelihood function and maximum likelihood 

procedure is derived to estimate model parameters. 

 

Hurtado-Cahuao [60] published his Ph.D. dissertation titled ‘Airframe Integrity Based 

on Bayesian Approach'. A probabilistic based method has been proposed to manage 

fatigue cracks in the fastener holes. As the Bayesian analysis requires information of 

a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally 

distributed. The prior distribution of crack size as cracks grow is modeled through a 

combined Inverse Power Law (IPL) model and lognormal relationships. The first set 

of inspections is used as the evidence for updating the crack size distribution at the 

various stages of aircraft life. After the updating, it is possible to estimate the 

probability of structural failure as a function of flight hours for a given aircraft in the 

future. The results show very accurate and useful values related to the reliability and 

integrity of airframes in aging aircrafts. 

 

Wang et al. [61] propose a Lognormal distribution model to relate crack-length 

distribution to fatigue damage accumulated in aging airframes. The fatigue damage is 
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expressed as fatigue life expended (FLE) and is calculated using the strain-life 

method and Miner’s rule. A 2-stage Bayesian updating procedure is used to determine 

the unknown parameters in the proposed semi-empirical model of crack length versus 

FLE. At the first stage, the crack closure model is used to simulate the crack growth. 

The results are then used as data to update the un-informative prior distributions of 

the unknown parameters of the proposed semi-empirical model. At the second stage, 

the crack-length data collected from field inspections are used as evidence to further 

update the posteriors. Two approaches are proposed to build the crack-length 

distribution for the fleet based on individual posterior crack distribution of each 

aircraft. These can be used to analyze the reliability of aging airframes by predicting, 

the probability that a crack will reach an unacceptable length after additional flight 

hours. 

 

R. Bris et al [62] demonstrates the use of Bayesian approach to estimate the 

acceleration factor in the Arrhenius reliability model based on long-term data given 

by a manufacturer of electronic components (EC). Using the Bayes approach they 

consider failure rate and acceleration factor to vary randomly according to some prior 

distributions. Bayes approach enables for a given type of technology, the optimal 

choice of test plan for RDT under accelerated conditions when exacting reliability 

requirements must be met. 

 

Anduin E. Touw [63] use Bayesian estimation procedure for mixed Weibull 

distributions. Estimation of mixed Weibull distribution by MLE and other methods is 
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frequently difficult due to unstable estimates arising from limited data. Bayesian 

techniques can stabilize these estimates through the priors, but there is no closed-form 

conjugate family for the Weibull distribution. This paper reduces the number of 

numeric integrations required for using Bayesian estimation on mixed Weibull 

situations from five to two, thus making it a more feasible approach to the typical 

user. It also examines the robustness of the Bayesian estimates under a variety of 

different prior distributions. 
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Chapter 3: Theory of Light Emitting Diodes 

3.1 Basic LED Operation 

A light Emitting Diode (LED) is a semiconductor diode, which emits light when 

current passes through it in the forward direction. See Fig 3.1 [5] and Fig 3.2 [5]. 

When the diode is forward biased [9], electrons are able to recombine with holes and 

energy is released in the form of light. This effect is called electro-luminescence and 

the color of the light is determined by the energy gap of the semiconductor. Like a 

normal diode, the LED consists of a chip of a semiconductor material impregnated, or 

doped, with impurities to create a p-n junction which conducts when forward biased 

(P-type Anode is +ve with respect to N-type cathode).  

 
Fig. 3.1 Construction of Common LED [5] vs. LED used in this research 
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Fig. 3.2 LED Operation [5] 

 

3.2 Band Structure in Semiconductors 

The electrons of a single isolated atom occupy atomic orbitals, which form a discrete 

set of energy levels [9]. If several atoms are brought together into a molecule, their 

atomic orbitals split, as in a coupled oscillation. This produces a number of molecular 

orbitals proportional to the number of atoms. When a large number of atoms (>1020) 

are brought together to form a solid, the number of orbitals becomes exceedingly 

large. The difference in energy between them becomes very small, so the levels may 

be considered to form continuous bands of energy rather than the discrete energy 

levels of the atoms in isolation. However, some intervals of energy contain no 

orbitals, no matter how many atoms are aggregated, forming band gaps. 

 

The band gap of a semiconductor is either direct or indirect. The minimal-energy state 

in the conduction band, and the maximal-energy state in the valence band, are each 
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characterized by a certain k-vector in the Brillouin zone [9]. If the k-vectors are the 

same, it is called a "direct gap". If they are different, it is called an "indirect gap". For 

an indirect band gap, an electron cannot shift from the lowest-energy state in the 

conduction band to the highest-energy state in the valence band without a change in 

momentum. Hence direct band gap semiconductors are preferred for LEDs. 

3.3 Wavelength of emitted light 

When an LED is forward biased, the electrons in the conduction band recombine with 

holes in the valence band. In the recombination process, energy Eg corresponding to 

the band gap is emitted in the form of a photon whose wavelength λ (in nm) is given 

by 

λ = h c / Eg = 1239.8 / Eg       - (3.1) 

where h = Plank’s constant, c = speed of light in vacuum and Eg = band gap in eV. 

3.4 Radiative and Non-radiative recombination in semiconductors 

During a radiative recombination [9], an electron in the conduction band annihilates a 

hole in the valence band, releasing the excess energy as a photon. This process is 

possible in a direct band gap semiconductor. In contrast, the energy produced in a 

non-radiative recombination does not create photons, but is released by lattice 

vibration (phonon) in the semiconductor and finally changed to heat [2]. This non-

emitted energy enhances the rate of degradation of optical devices. Thus the non-

radiated recombination process plays a very important role in the device degradation 

and hence device reliability.  
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3.5 Light output vs. Junction temperature 

Temperature dependence of semiconductor device characteristics is very important 

from a reliability standpoint [2].  During operation, heat is generated in the active 

layer (also in other parts having ohmic resistance) which raises the junction 

temperature. As the junction temperature increases, the internal quantum efficiency ηi 

decreases due to the reduction of the radiative recombination coefficient and increase 

in overflow of injected carrier from the active layer. Both of these changes cause the 

light output of an LED to decrease rapidly. Moreover, the influence of Auger 

recombination becomes large in the high-injected region. Thus the suppression or 

removal of the heat generated in the active region during operation is very important 

to obtain high radiative efficiency. Thermal shift of active layer bandgap was studied 

in detail during this research and is discussed in Chapter 6. 

3.6 Basic LED degradation mechanisms 

Various degradation modes of LEDs have been classified [2] as rapid, gradual and 

sudden. Different parts in LEDs prone to degradation are Active region, P-N 

Contacts, Indium Tin Oxide layer, Plastic encapsulation and Packaging (Bond wires 

and internal Heat Sink). These are described in detail in section 7.2. 

3.7 Degradation of AlGaInP LEDs 

The resistance to degradation of AlGaInP LEDs has been attributed by Streubel et al 

[22] to a decreased sensitivity of the devices to oxidation. This is due to reduced Al 

content in the active zone if compared to AlGaAs devices. Also, growth and mobility 

of dark line defects is decreased owing to incorporation of In in the compound. Per 
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Vanderwater et al [15], neither the mismatched GaP window layer nor the presence of 

the wafer-bonded GaP substrate adversely affects the reliability characteristics. 

Similarly Grillot et al [16] feel that Auger recombination does not affect long term 

reliability of AlGaInP LEDs. They attribute decrease in light output over time to 

changes in Extraction efficiency, Leakage current density out of the active region and 

Defect concentration. 

 

Gradual degradation in LEDs causes the light output to decrease over its lifetime. 

Arrhenius reaction rate model has been used to describe this process. Catastrophic 

degradation could be due to an electrical surge during device handling, setting and 

operating. In those cases, the active layer and the p-n junction corresponding to a part 

or the entire light emitting region are catastrophically destroyed. The dark spots or 

dark regions corresponding to the damaged part of the p-n junction can be observed 

by EL topographs. 
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Chapter 4: Development of Empirical Modeling for Test 

Data Analysis 

During review of published literature on LED reliability and also during accelerated 

life testing, both current and temperature were simultaneously used as accelerating 

variables. In order to estimate LED life under nominal conditions (no life 

acceleration), models for current and temperature acceleration were used. A method 

was also developed to evaluate the combined effect of both of these accelerating 

variables. 

4.1 Current density: Inverse Power Law model 

Inverse Power Law (IPL) model with current density J as the accelerating variable 

was used in this analysis. Since the prior published data spans over decades, use of 

current density (instead of current) normalizes the effect of die size increase to a great 

extent. The IPL model is given as 

nJATTF −= .         -(4.1) 

Where TTF=Time to failure in hrs, J=LED Current density in Amps/cm2, A & n are 

+ve constants. Taking Ln on both sides, 

JnLnLnATTFLn .)( −=       -(4.2) 

Equation 4.2 gives a straight line relationship where ‘-n’ is the slope and J is the 

accelerating variable. The negative slope implies that as the current density increases, 

the TTF decreases. 
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4.2 Temperature: Arrhenius Reaction Rate model 

For temperature acceleration, the Arrhenius reaction rate model was used. 








−
= KT

Ea

BeRate         -(4.3) 
 
Where T=Temperature in °K, Ea=Activation energy of the LED degradation, 

K=Boltzmann’s constant, B=constant. Taking a reciprocal of ‘rate’ gives ‘time to 

failure’ as given by  










= KT

Ea

CeTTF         - (4.4) 
 
Where TTF=Time to failure in hrs, C=1/B is another constant. Taking Ln on both 

sides, 

KT

Ea
LnCTTFLn +=)(        - (4.5) 

 
This is a straight line relationship where Ea is the slope and 1/KT as the accelerating 

variable. The positive slope implies that as temperature increases, 1/KT and TTF 

decrease. 

4.3 Computation of Acceleration Factors 

From equation 4.1, Acceleration Factor for Inverse Power Law Model is given by 

n

Use

Acc

Acc

Use

J

J

TTF

TTF
AF 








==1        - (4.6) 

 

From equation 4.4, Acceleration Factor for Arrhenius Reaction Rate Model is given 

by 
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







−

== AccUse TTK

Ea

Acc

Use e
TTF

TTF
AF

11

2       - (4.7) 

Since multiple data points at different temperatures and currents were available, 

regression analysis was performed to accommodate the results of both the 

accelerating variables. The overall Acceleration Factor is given by 









−









== AccUse TTK

Ean

Use

Acc e
J

J
xAFAFAF

11

21     - (4.8)  

 

4.4 Regression Analysis of Prior Published Data 

4.4.1 LED classification 

Previously published data [10-51] in which LEDs were put on long term reliability 

tests were identified. See Table 4.1. From the graphs or tabular data, the time required 

for the optical power output to degrade by 20% was extracted. This is the failure 

criterion for the medical diagnostic application. Analysis of published data for 

different LED Materials (AlGaInP, GaN, GaAlAs), the Semiconductor Structures 

(DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was 

categorized for various combinations such as AlGaInP-DH-DC, AlGaInP-MQW-DC, 

GaN-DH-DC, GaN-DH-DC etc. Further, their testing was done at different 

temperature and current. This data was converted to application conditions of the 

medical environment. This was done by assessing the acceleration factors, which in 

turn required estimating the ‘n’ parameter of the IPL model and the activation energy 

‘Ea’ of the Arrhenius model. 
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4.4.2 Iterative Regression Analysis 

Regression analysis on the prior published data was done as follows. The activation 

energy, Ea value provided/estimated from the published data was used or if not 

available a value of 0.43eV was used (based on MIL-HDBK-217C for optical 

components). The activation energy, Ea was the same for identical LEDs in an article. 

Similarly, if any article had data at different J (but same temperature), the n value was 

estimated. For all other reported data, where Ea or n was unavailable, iterative 

regression approach was used as follows. Using equation 4.7 and assumed/estimated 

Ea, all TTF data was converted to use Temperature TUse. Linear regression for 

equation 4.2 was used to estimate n. Using this n value and equation 4.6, all TTF data 

was re-converted to use current density JUse. Now linear regression for equation 4.5 

was used to improve our estimate of Ea. It is quickly evident that normalizing the data 

for temperature, affects the regression analysis for n and normalizing the data for 

current density, affects the regression analysis of Ea. Thus an iterative approach was 

used to get best possible regression fits thereby accommodating the effects of both 

current density and temperature.  
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See Fig 4.1 for effect of current density J on LED category AlGaInP-DH-DC and Fig  

4.2 for effect of temperature on LED category AlGaInP-DH-DC. 

 
Fig 4.1 Effect of Current density J: AlGaInP-DH-DC 

 

 
Fig 4.2 Effect of Temperature: AlGaInP-DH-DC 
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See Fig 4.3 for effect of current density J on LED category AlGaInP-MQW-DC and 

Fig 4.4 for effect of temperature on LED category AlGaInP-MQW-DC. 

 
Fig 4.3 Effect of Current density J: AlGaInP-MQW-DC 

 
Fig 4.4 Effect of Temperature: AlGaInP-MQW-DC 
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See Fig 4.5 for effect of current density J on LED category GaN-DH-DC and Fig 4.6 

for effect of temperature on LED category GaN-DH-DC. 

 
Fig 4.5 Effect of Current density J: GaN-DH-DC 

 

 
Fig 4.6 Effect of Temperature: GaN-DH-DC 
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See Fig 4.7 for effect of current density J on LED category GaN-MQW-DC and Fig 

4.8 for effect of temperature on LED category GaN-MQW-DC. 

 
Fig 4.7 Effect of Current density J: GaN-MQW-DC 

 

 
Fig 4.8 Effect of Temperature: GaN-MQW-DC 
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4.4.3 Weibull Analysis of Prior Published data 

Equation 4.8, published data and use conditions of the medical device application (i.e. 

temperature = 35°C and current density = 21.6Amps/cm2) were used to obtain the 

TTF distributions (given in Table 4.1) for AlGaInP-DH-DC, AlGaInP-MQW-DC, 

GaN-DH-DC, GaN-DH-DC etc. and was previously reported, Sawant et al [11]. The 

last 6 columns give the parameters for Weibull and Logarithmic distribution fit and 

the corresponding Mean Time to Failure (MTTF). Accelerated Life Test data in pulse 

mode (described in chapter 5) is also included as Sr. # 5 for comparison with Prior 

published DC driving data in Sr. # 2. 
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 LED 
Material  

Source of 
Data 

IPL Act.  
E. 

Weibull (Converted to 
application conditions) 

Lognormal (Conv. to 
appl. Conditions) 

Sr.
# 

Structure 
Driving  

[Ref.]-Fig n eV αααα ββββ MTTF 
Hrs 

µµµµ σσσσ MTTF 
Hrs 

1 AlGaInP-
DH- 
DC 

[17]-2/4,  
[19]-9a/9b, 
[26]-3, 
[28]-3a/3b 
[29]-5 

1.68 0.67 2.76E4 0.50 1.33E4 9.1 2.30 9.41E3 

2 AlGaInP-
MQW- 
DC 

[19]-9a/9b, 
[22]-16, 
[24]-6/8/10 
[27]-2 

5.08 0.82 7.82E5 0.89 5.17E5 13 1.25 4.27E5 

3 GaN- 
DH- 
DC 

[47]-1 2.69 0.50 - - - - - - 

4 GaN- 
MQW- 
DC 

[24]-7/9/11 
[33]-5,  
[34]-2/6 

2.02 0.20 1.61E5 0.57 8.47E4 11.0 2.06 6.22E4 

5 ALT: 
AlGaInP- 
MQW- 
Pulsed 
(0.2%) 

ALT 
performed 
for this 
study 

4.48 1.15 1.55E9 0.50 7.50E8 20.0 2.50 5.23E8 

 
Table 4.1 Regression Analysis of Prior Published Data 
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Chapter 5: Accelerated Life and Degradation Testing 

Present commercial LEDs have reported extrapolated MTTFs in the range of 1.0E6 

hours [28, 29]. For a medical diagnostic application, 20% decrease in light output is 

considered to be the failure threshold at the device level. However their low duty 

cycle will still allow them to operated for longer time period at derated bias 

conditions. In order to determine LED life (MTTF), accelerated life testing (ALT) 

and accelerated degradation testing (ADT) was carried out. Acceleration is achieved 

either by increasing the LED current or the temperature. Care should be taken that the 

acceleration is not so high that it introduces unrelated failure modes. Computation of 

acceleration factors (described in chapter 4) allows the calculation of LED life in use 

conditions. 

ALT and ADT was performed on LEDs under various conditions and in different 

batches. Some of these results were also published by the author in Sawant et al [11]. 

However, Section #, Figure #, Table # and References have been rearranged as 

necessary. 

5.1 Materials 

Commercially procured AlGaInP 640nm MQW LEDs were used in this research. The 

structure and material combinations of these LEDs have been previously reported [15, 

19, 21, and 22]. 
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5.2 Methods 

AlGaInP LEDs were tested simultaneously in 3 Environment Chambers. The LEDs 

were tested in batches with 15 LEDs in each batch.  See Fig 5.1.  

 
Fig 5.1 Environmental Test 

 
Per the need of the medical application in Fig 1.2, the LEDs were driven in burst 

mode where each burst consists of 100 pulses. A single pulse corresponds to the time 

during which light passes though a single medical test sample. See Fig 5.2 for details 

of the timing diagram.  

 
Fig 5.2 Pulse/Burst mode timing  

Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses 
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5.3 Test Setup 

The test is automated by using test software, data acquisition/control boards and 

constant current LED driver boards. The test SW makes the data acquisition board 

generate the necessary pulses, which trigger the LED driver board. The peak current 

through the LED is maintained constant while it is on. A separate signal conditioning 

circuit also measures the forward voltage Vf across the diode, which is fed back to the 

test SW to be written to a database. At regular intervals, the LEDs were removed 

from the chambers and were characterized electrically and optically (using a Spectro-

radiometer). See Fig 5.3 for LED ALT/ADT and Fig 6.1 (in chapter 6) for Electrical 

and Optical Characterization of LEDs . 

 
Fig. 5.3 Setup for LED Testing 
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5.4 ALT/ADT Results 

5.4.1 LED optical power degradation 

ALT/ADT of the LEDs in Pulse mode was conducted at 3 temperatures (35°C, 55°C 

and 75°C) and 2 Peak currents (Batch2: 483mA=418.1A/cm2 and Batch3: 

725mA=627.2A/cm2). The optical power (measured by averaging over 10nm around 

peak wavelength) decreased with time due to degradation of the LED chip as well as 

the encapsulation. See Fig 5.4 and Fig 5.5. The optical power degradation followed a 

logarithmic function in agreement with Yanagisawa et al [47] and Grillot et al [16]. 

20% degradation was considered failure for the medical application. For LEDs that 

did not reach 20% degradation in a reasonable time (suspend data), the logarithmic 

function was used to extrapolate TTF. Using regression analysis of ALT data, the 

activation energy ‘Ea’ was found to be 1.15eV and ‘n’ for IPL was 4.48. Note that a 

few LEDs showed extremely low degradation rates (due to different failure 

mechanisms with much higher activation energies). LEDs not failed during 

ALT/ADT were excluded from the analysis since the focus was FMECA for a 

medical application.  
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Fig. 5.4 ALT/ADT for Batch2, 483mA 
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses 

 

Fig. 5.5 ALT/ADT for Batch3, 725mA 
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses 
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5.4.2 Encapsulation degradation 

LED Photographs were taken before and after the ALT/ADT using a digital 

microscope. See Fig 5.6. The most obvious failure mode was found to be 

encapsulation (lens) degradation. The lens degradation after the ALT/ADT varied 

from minor to moderate too severe, which can be attributed to variations in LED lens 

material and manufacturing process. A new and a used LED chip were also 

photographed by illuminating the LED at 40 uA dc. These photos indicate that the 

LED chip also degrades during ALT/ADT. 

 
Fig 5.6 Photos of Minor, Moderate & Severe Lens degradation 
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5.4.3 Chip vs. Lens degradation 

At regular intervals within the ALT/ADT, optical power and diode forward voltage 

Vf were measured. See Fig 5.7. The Vf (y-axis on right) and Optical power (y-axis on 

left) appear like inverted images of each other. The chip degradation (interpreted 

from Vf) dominated the initial period whereas the lens degradation will occur during 

the entire period of the test. 

 
Fig 5.7 Chip (Vf) vs. Lens degradation  

Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses  
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5.4.4 Spectral Performance after ALT/ADT 

A slight change in spectral performance after the ALT was detected in some of the 

tested LEDs. See Fig 5.8 and Fig 5.9. Where the peak wavelength changed by 1-2nm, 

changes in the active region were speculated to be the major cause. Where the optical 

power drop at 650nm was different than that at 630nm, changes in the plastic 

encapsulation were suggested. The shift is minor and acceptable for the medical 

application. For larger shifts, see Chapter 6. In Fig 5.8, the peak wavelength of one 

LED decreased by 2nm (0.3%). The optical power drop at 650nm was higher than 

that at 630nm. 

 
Fig 5.8 Spectral shift to lower wavelength after ALT/ADT 
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In Fig 5.9, the peak wavelength of another LED increased by 1nm (0.15%). The 

optical power drop at 650nm was lower than that at 630nm. 

 
Fig 5.9 Spectral shift to higher wavelength after ALT/ADT 
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5.4.5 Summary of Test results 

Table 5.1 summarizes the test results for Batch 2 (15 LEDs at 483 mA) and Table 5.2 

summarizes the test results for Batch 3 (15 LEDs at 725 mA). Various columns are 

Sr.# of UUT, Chamber Temperature  in deg C, Estimated Time to Failure based on 

the equation of logarithmic degradation model, Equation for the logarithmic 

degradation model, Severity of Lens degradation, % change in forward voltage Vf 

and the last 3 columns indicate whether the optical power drop is occurring at lower 

wavelength or higher. 

UUT
Temp 

C

TTF hrs 
Estimated 
20% degrd

Equation for Logarithmic 
degradation model

LENs 
degradation

Vf Increase 
%

% Drop @ 
630nm rel 
to 640nm

% drop 
640nm

% Drop @ 
650nm rel 
to 640nm

640x1-21 35 1755.6
y = -1.4537Ln(x) + 90.86
R2 = 0.8617

Minor
Surface 4.0 3.2 12.2 -0.2

640x1-22 35 335.9
y = -2.8548Ln(x) + 96.606
R2 = 0.9119

Minor
Few Bubbles 4.6 4.4 12.9 0.4

640x1-23 35 8282.1
y = -1.4323Ln(x) + 92.922
R2 = 0.9367

Minor
Surface 6.5 4.6 10.4 1.0

640x1-26 55 195.0
y = -1.5697Ln(x) + 88.277
R2 = 0.9025

Moderate
Surface 2.9 5.2 13.2 9.6

640x1-27 55 0.3
y = -4.3842Ln(x) + 73.933
R2 = 0.9732

Moderate
Surface 7.9 -> 6.4 4.9 45.8 2.1

640x1-28 55 38.7
y = -1.9411Ln(x) + 87.094
R2 = 0.9864

Minor
Few Bubbles 7.5 5.6 21.6 0.8

640x1-29 55 1225.0

y = -1.4315Ln(x) + 90.179

R2 = 0.9535
Minor
Few Bubbles 2.5 3.8 10.7 12.5

640x1-31 75 1.5

y = -3.2403Ln(x) + 81.238

R2 = 0.9684
Moderate
Surface+Bubles 3.6 6.0 33.3 2.6

640x1-32 75 3.2

y = -2.748Ln(x) + 83.18

R2 = 0.9754
Minor
Few Bubbles 11.7 -> 7.0 6.1 28.9 3.2

640x1-33 75 125.9

y = -1.8618Ln(x) + 89.002

R2 = 0.9464
Minor Very Few 
Bubbles 8.8 4.1 18.1 2.3

640x1-34 75 0.2

y = -4.6769Ln(x) + 71.53

R2 = 0.9691
Severe
Surface 8.6 -> 4.5 4.6 42.0 3.5

640x1-35 75 113.4
y = -1.9047Ln(x) + 89.011
R2 = 0.9633

Minor
Few Bubbles 11.5 -> 7.8 4.2 19.6 4.1  

Table 5.1 Summary of ALT/ADT results for Batch 2 
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Table 5.2 Summary of ALT/ADT results for Batch 3 

 
 

5.4.6 Additional ALT/ADT testing 

In addition to Batch 2 (483mA, 0.2% duty cycle) and Batch 3 (725mA, 0.2% duty 

cycle), other LED testing included Batch 4 (483mA, 50% duty cycle) and Batch 5 

(26mA, 50% duty cycle). The failure times during Batch 4 were significantly lower 

due to the high current and high duty cycle. See Table 5.3. 

 
Table 5.3 Summary of ALT/ADT results for Batch 4 

 

UUT
Temp 

C

TTF hrs 
Observed 
20% degrd MTTF

Acc
Factor

Act. 
Energy
eV

Equation for 
Logarithmic 
degradation 
model

LENs 
degradation

Vf Increase 
%

% Drop @ 
630nm rel 
to 640nm

% Drop @ 
650nm rel 
to 640nm

640x1-61 35 20.56 15.5 N/A N/A 40.0
640x1-62 35 10.25 N/A N/A 67.0
640x1-63 35 20.79 N/A N/A 38.7
640x1-64 35 5.22 N/A N/A 10.2
640x1-65 35 20.79 N/A N/A 96.8
640x1-66 55 5.58 9.2 1.7 0.23 N/A N/A 33.0
640x1-67 55 12.79 N/A N/A 0.4 -> -35
640x1-68 55 13.87 N/A N/A 1 -> -28
640x1-69 55 5.61 N/A N/A 2.1
640x1-70 55 8.03 N/A N/A 13.4
640x1-71 75 3.77 4.7 3.3 0.28 N/A N/A 0.7

640x1-72 75 1.65 N/A N/A 1.5
640x1-73 75 33.30 N/A N/A 5.6
640x1-74 75 2.26 N/A N/A -0.6
640x1-75 75 11.06 N/A N/A -1.7

UUT
Temp 

C

TTF hrs 
Estimated 
20% degrd

Equation for Logarithmic 
degradation model

LENs 
degradation

Vf 
Increase 

%

% Drop @ 
630nm rel 
to 640nm

% drop 
640nm

% Drop @ 
650nm rel 
to 640nm

640x1-43 35 316.3
y = -2.339Ln(x) + 93.465
R2 = 0.9704

Moderate
Bubles 8.6 5.0 20.6 -0.8

640x1-44 35 34.1
y = -2.5448Ln(x) + 88.985
R2 = 0.8966

Minor
Surface 5.6 5.7 31.0 0.0

640x1-49 55 6.0
y = -2.7834Ln(x) + 84.99
R2 = 0.9781

Minor
Surface 7.5 6.6 25.7 0.0

640x1-51 75 3.8
y = -2.8983Ln(x) + 83.881
R2 = 0.9886

Minor
Surface 7.5 6.8 27.3 0.1

640x1-52 75 0.1
y = -5.7886Ln(x) + 68.472
R2 = 0.986

Minor
Surface 6.6 6.5 52.7 0.0

640x1-55 75 7.0
y = -2.7536Ln(x) + 85.365
R2 = 0.9692

Minor
Surface 10.1 6.2 25.8 0.5
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Batch 5 testing was done to see performance at a lower current of 26mA. In order to 

get failures in a reasonable amount of time, the duty cycle was increased to 50%. See 

Fig 5.10. A larger number of LEDs were used (10 at 35°C in blue plots, 10 at 55°C in 

green plots, 9 at 75°C in orange plots and 3 Reference LEDs which were not 

stressed). However, even after 3000 hours of testing, no failure was observed and the 

test had to be suspended. With acceleration factors for Temperature (14 at 55°C and 

144 at 75°C) and Duty cycle (250 at 50% duty cycle), the life of the LED for the 

medical application exceeds 1.0E8 hrs as predicted by ALT (in section 5.4.7) and 

ADT (in section 5.4.8). Batch5 testing provides a sanity check for the previous 

conclusions that the LEDs will have a very high TTF.  

 
Fig. 5.10 ALT/ADT for Batch5, 26mA, 50% duty cycle  

Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses 
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5.4.7 Weibull analysis of ALT data 

Pior published data and accelerated life test data were subjected to Weibull analysis. 

This required the estimation of the parameter n for the Inverse Power Law model and 

the activation energy for the Arrhenius reaction rate model (described in chapter 4). 

Next, the overall acceleration factor was calculated (using equation 4.8). Now the 

entire ALT data from both the batches was converted to medical application 

conditions (i.e. temperature = 35°C and current density = 21.6Amps/cm2) by 

multiplying the TTF data with the acceleration factors. This converted data was 

subjected to Weibull analysis to estimate the Weibull parameters α and β. This was 

shown in Table 4.1 in chapter 4. A portion of Table 4.1 is repeated as Table 5.4 for 

convenience. The activation energy ‘Ea’ and ‘n’ value during ALT are comparable 

with values for prior published data. However, the time to failure predicted by ALT is 

much higher compared to published data. This is due to the extremely low duty cycle 

(0.2%) at which the LEDs were driven during ALT to simulate the medical diagnostic 

application. The published data is at dc bias  conditions (100% duty cycle). 

 LED 
Material  

Source of 
Data 

IPL Act.  
E. 

Weibull (Converted to 
application conditions) 

Lognormal (Conv. to 
appl. Conditions) 

Sr.
# 

Structure 
Driving  

[Ref.]-Fig n eV αααα ββββ MTTF 
Hrs 

µµµµ σσσσ MTTF 
Hrs 

2 AlGaInP-
MQW- 
DC 

[19]-9a/9b, 
[22]-16, 
[24]-6/8/10 
[27]-2 

5.08 0.82 7.82E5 0.89 5.17E5 13 1.25 4.27E5 

5 ALT: 
AlGaInP- 
MQW- 
Pulsed 
(0.2%) 

ALT 
performed 
for this 
study 

4.48 1.15 1.55E9 0.50 7.50E8 20.0 2.50 5.23E8 

 
Table 5.4 Regression Analysis of ALT Data 
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5.4.8 Analysis of ADT data 

In section 5.4.7, ALT data was analyzed which involved Weibull analysis of TTF 

data. In this section, the data was analyzed based on the power degradation pattern of 

the LEDs. Two common approaches to degradation analysis are the Non-linear 

reaction rate model and the Linear (or Log-linear) model. As mentioned in section 

5.4.1, during ALT/ADT, the optical power degraded as a logarithmic function of time 

in agreement with Yanagisawa et al [47] and Grillot et al [16]. This property was used 

to select Log-linear degradation model. The slope of the straight line (with time on 

log scale) will depend on the degradation rate which is a function of the LED current 

density and temperature. We used the Inverse Power Law model (IPL) and the 

Arrhenius reaction rate models to modify the slope. Equations 4.6 and 4.7 for 

acceleration factors (AF) still hold good. However, the AF is calculated as a ratio of 

reaction rates (accelerated rate to use rate) rather than time to failure (at a specific 

value of 20% degradation). Consequently, the parameters ‘n’ and ‘Ea’ for 

corresponding IPL and Arrhenius models will have different values than those 

calculated for ALT. 

 

The ADT analysis created a degradation equation of the form 

CtLn
xAFAF

m
tPitPoY

TJ

+=== )()0(/)(     - (5.1) 

 

Where t = LED test time in hrs, C = y-intercept 

Y = Po/Pi = Normalized optical power at time t and 

Slope at use conditions = Slope m at accelerated T and J / (AFT x AFJ) 
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The statistical analysis for degradation was done using JMP software created by SAS 

Institute Inc. This resulted in Table 5.5 below with the first row representing use 

conditions of the medical environment and average values for various parameters.  

 

Condition
Temp

ºC

J
A/cm 2 LnJ

JMP 
Slope

m

JMP Y-
intercept

C

AF_Temp
w.r.t.

T=35C

AF_J
w.r.t

J=418.1 eV n

% Optical 
o/p at 

t=7.5E8

Use 35 21.6 3.07 84.79 1.0 NA 0.39 0.82

Batch2 35 418.1 6.04 -0.7 85.5 1.0 NA NA

Batch2 55 418.1 6.04 -2.3 3.4 NA 0.53 NA 80.2

Batch2 75 418.1 6.04 -3.0 4.4 NA 0.34 NA 84.5

Batch3 35 627.2 6.44 -1.1 84.1 1.0 1.6 1.19

Batch3 55 627.2 6.44 -2.7 2.4 1.2 0.38 0.38 78.5

Batch3 75 627.2 6.44 -4.4 3.9 1.4 0.31 0.91 83.0  

Table 5.5 Degradation Analysis using JMP software 

 

The JMP software fitted a straight line for optical power degradation with time in log 

scale. This was done for Batch2 (J=418.1A/cm2) and Batch3 (J=627.2A/cm2) with 

temperatures 35ºC, 55 ºC and 75 ºC for each batch. A common y-intercept was 

estimated for each batch and its average (84.79) was used as ‘C’ in equation 5.1. The 

slope was calculated separately for each batch at each of the three temperatures. The 

acceleration factors AF_Temp were calculated for temperatures 55 ºC and 75 ºC by 

taking a ratio of slopes with respect to 35 ºC. This was done separately for Batch2 and 

Batch3. Using equation 4.7, the corresponding activation energies Ev were estimated 

and the average was found to be 0.39eV. The acceleration factors AF_J for current 
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density were calculated by taking a ratio of slopes between Batch3 and Batch2. Note 

that Batch2 is also at an accelerated condition of J and AF_J values are only used to 

estimate parameter ‘n’ of IPL model using equation 4.6. Once ‘n’ and ‘Ev’ were 

available, AFJ and AFT were calculated and equation 5.1 was developed for various 

conditions. From table 5.4, MTTF of the LEDs (at use conditions) estimated from 

ALT was 7.5E8 hrs. The last column in Table 5.5 gives optical output at t=7.5E8 hrs 

for various conditions. This value was found to be close to 80% implying a 20% 

degradation which was the failure criterion for the ALT. Thus, the results from ALT 

and ADT agree with each other. Further, equation 5.1 for ADT can be used to 

calculate LED TTF if the degradation threshold is changed. 
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Chapter 6: Thermal Shift of Active layer Bandgap 

Reliability testing of AlGaInP MQW LEDs resulted in a shift of Bandgap towards the 

longer wavelength when driven at high current and high duty cycles. The spectral 

FWHM also increased. Characterization of the shift showed that it was temporary and 

dependent on the junction temperature. Some of these results were also published by 

the author in Sawant et al [12]. However, Section #, Figure #, Table # and References 

have been rearranged as necessary. 

6.1 Background on Spectral Shifts 

The band gap of a semiconductor is either direct or indirect. For an indirect band gap, 

an electron cannot shift from the lowest-energy state in the conduction band to the 

highest-energy state in the valence band without a change in momentum [9]. Hence 

direct band gap semiconductors are preferred for LEDs. When an LED is forward 

biased, the electrons in the conduction band recombine with holes in the valence 

band. In the recombination process, energy Eg corresponding to the band gap is 

emitted in the form of a photon whose wavelength λ (in nm) is given by 

λ = h c / Eg = 1239.8 / Eg       - (6.1) 

where h = Plank’s constant, c = speed of light in vacuum and Eg = band gap in eV. 

 

Temperature dependence of semiconductor device characteristics is very important 

from a reliability standpoint [2].  During operation, heat is generated in the active 

layer (also in other parts having ohmic resistance) which raises the junction 
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temperature. This research tried to characterize the shift in the spectrum resulting 

from elevated junction temperature.  

6.2 Methods  

The forward bias method was used to establish the linear relationship between the 

forward voltage Vf and the junction temperature Jt for a given forward current. See 

section 6.3.1 for details on this. The Shockley diode equation [10] relates the diode 

current I of a p-n junction diode to the diode voltage Vf: 

I  = Is ( eVf / n Vt – 1) 

 = Is ( eVf  q / n K T – 1)  

 = Is eVf  q / n K T    for eVf  q / n K T  >> 1            - (6.2) 

where Is is the saturation current or scale current of the diode (the magnitude of the 

current that flows for negative Vf in excess of a few Vt, typically 10-12 A). The scale 

current is proportional to the diode area. Vt is the thermal voltage, and n is known as 

the diode ideality factor. Thus if I is maintained constant, junction temperature Jt can 

be directly interpreted in terms of forward voltage Vf which typically decreases 

between 1 and 3mV per 1 deg C rise in temperature. See details in section 6.3.1. 

 

To measure the spectral response, the LEDs were driven at different currents and 

measured the optical output of the LED using a Spectro-Radiometer. While 

measuring the spectrum, the Vf was also measured thereby allowing us to estimate Jt 

during those conditions. The data was further analyzed with respect to Varshini’s 

equation, and the empirical coefficients were determined. 
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6.3 Experimental  

6.3.1 Forward Bias Method 

The LED is connected to a constant current source (turned off) and kept in an 

environmental chamber set to 25deg C. Once the chamber temperature stabilises, the 

current source was turned On for 0.3ms and the voltage drop Vf across the diode was 

measured. Since the LED is on for a very short time, it does not significantly heat 

itself and junction temperature Jt is same as ambient temperature T. This was 

repeated for ambient temperatures (Jt = T) of 35, 45 and 55 °C. Temperature Jt (= T) 

against Vf was plotted. Now the junction temperature at any other temperature could 

be estimated by measuring the Vf under operating conditions and intercepting it with 

the plot above. 

6.3.2 Spectral Measurement 

The LEDs were driven in burst mode where each burst consists of 90909 pulses at 

45KHz and 50% duty cycle. The test was automated by using test software, data 

acquisition/control boards and constant current LED driver boards. The test SW 

makes the data acquisition board generate the necessary pulses, which trigger the 

LED driver board. The peak current through the LED was maintained constant while 

it was on. A separate signal conditioning circuit also measured the forward voltage Vf 

across the diode. This was fed back to the test SW to be written to a database. The 

LEDs were characterized optically using a Spectro-radiometer. See Fig. 6.1 for details 

of the LED characterization setup.  
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Fig 6.1 Electrical and Optical Characterization of LEDs 

 

6.4 Results and Discussion of Spectral Shift 

6.4.1 Vf-Jt Linear Relationship 

Linear relationship between the forward voltage Vf and Junction Temperature Jt was 

established for 2 LEDs (640x1-57 and 640x1-58) for a given forward current value. 

This was repeated at different currents (26mA, 58mA, 483mA and 725mA). See Fig. 

6.2 and Fig. 6.3 for details. 
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Fig. 6.2 Vf-Jt relationship for LED 640x1-57 
Vf-Jt relationship is plotted for 26, 58, 483 and 725mA. 

 

Fig. 6.3 Vf-Jt relationship for LED 640x1-58 
Vf-Jt relationship is plotted for 26, 58, 483 and 725mA. 
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6.4.2 Spectral shift in Bandgap 

There was a prominent shift in the spectral output of the LEDs towards the longer 

wavelength at higher current (which caused higher junction temperatures). The peak 

wavelength λpeak returned to normal values when the current was decreased 

suggesting that this shift was temporary. There was no permanent degradation. See 

Fig 6.4 and Fig 6.5 for the spectral performance of LEDs 640x1-57 and 640x1-58 

respectively. Table 6.1 captures the details of the Peak wavelength and the estimated 

junction temperature for different values of forward current If. 

Fig. 6.4 Spectral Shift in Bandgap at higher Jt for LED 640x1-57 
Note the sequence of measurements. λpeak returned to normal values indicating that 

the shift is temporary. There is no permanent degradation. 
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Fig. 6.5 Spectral Shift in Bandgap at higher Jt for LED 640x1-58 
Note the sequence of measurements. λpeak returned to normal values indicating that 

the shift is temporary. There is no permanent degradation. 
 

LED If 
mA 

Equation Vf 
Volts 

Jt C 
Estimated 

Peak 
nm 

640x1-57 26 Vf = -0.002Jt + 1.9462 1.885 30.6 642 
640x1-57 58 Vf = -0.0023Jt + 2.0702 1.997 31.8 643 
640x1-57 483 Vf = -0.0038Jt + 2.8391 2.510 86.6 664 
640x1-57 26 Vf = -0.002Jt + 1.9462 1.899 23.6 642 
640x1-57 725 Vf = -0.004Jt + 3.0893 2.642 111.8 667 
640x1-57 26 Vf = -0.002Jt + 1.9462 1.899 23.6 642 
640x1-58 26 Vf = -0.0019Jt + 1.9461 1.890 29.5 642 
640x1-58 58 Vf = -0.0024Jt + 2.0812 2.002 33.0 643 
640x1-58 483 Vf = -0.0038Jt + 2.8434 2.495 91.7 665 
640x1-58 26 Vf = -0.0019Jt + 1.9461 1.904 22.2 642 
640x1-58 725 Vf = -0.004Jt + 3.0993 2.627 118.1 667 
640x1-58 26 Vf = -0.0019Jt + 1.9461 1.904 22.2 642 

 
Table 6.1 Spectral Shift in Bandgap at higher temperatures 
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6.4.3  Varshini’s empirical model 

The relationship between peak wavelength and current/junction temperature has been 

published in various articles. Our research findings agree with Kish et al [20] for the 

AlGaInP LEDs. They studied high luminous flux AlGaInP/GaP large area emitters 

with currents as high as 7A. The peak wavelength shifted from 602nm to 614nm 

when the current was increased to 7A corresponding to a 120°C rise in junction 

temperature. Similar results have been observed by Nakamura et al [3] for InGaN 

MQW LEDs. The peak wavelength changed from 409nm at 25°C to 410.5nm at 

55°C.  

 

Nakamura et al [46] also found an anomaly while testing InGaN DH LEDs. The peak 

wavelength shifted to the shorter-wavelength region with increasing forward current. 

The peak wavelengths were 458 nm at 0.1 mA, 449 nm at 1 mA and 447 nm at 

20mA. They suggested that this anomaly was due to donor-acceptor (DA) pair 

recombination in the InGaN active layer co-doped with both Si and Zn. At 20 mA, a 

narrower, higher-energy peak emerged around 385 nm. This peak was due to band-to-

band recombination in the InGaN active layer. This peak became resolved at injection 

levels where the impurity related recombination was saturated. H. Morkoc [6] shows 

current and temperature dependence of Spectra for Green Nichia GaN LEDs. A clear 

shift to higher energies was observed (532nm at 0.1mA to 519nm at 10mA). For 

pulsed current, EL changed from 534nm at 0.1mA to 492nm at 2000mA. For the 

same LEDs, the peak decreases from 541nm at 50°K (-223°C) to 534nm at 300°K 

(27°C) whereas the band edge increases from 535nm to 544nm. 
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Dependence of the bandgap on the temperature has been determined for various 

materials. The relationship can be described by Varshini’s empirical equation given 

below. 

β
α

+
−=

T

T
EgTEg

2

)0()(        -(6.3) 

where Eg(0), α and β are the fitting parameters, T is temperature in °K and Eg(T) is 

the bandgap in eV. These fitting parameters are listed in Zeghbroeck et al [7], which 

we have reproduced in Table 6.2 for Ge, Si and GaAs. Based on our test results, we 

have included estimated values for AlGaInP in this table. 

 Ge Si GaAs AlGaInP 
Eg(0) [eV] 0.7437 1.166 1.519 2.11 
αααα[eV/K] 4.77 x104 4.73 x104 5.41 x104 1.02 x103 

ββββ [K] 235 636 204 199 
 

Table. 6.2 Varshini’s coefficients: Ge, Si, GaAs & AlGaInP 
 

6.4.4 Effect on LED life testing 

We see in section 6.4.2 that the shift in the peak wavelength at high junction 

temperature is temporary. There is no permanent degradation. Published literature [2, 

27] on LED life testing reveals that there may be an increase in junction temperature 

during LED life testing. The heat may either be due to increase in ohmic resistance of 

the contacts or it may be due to defect generation leading to an increase in non-

radiative recombinations. The published research establishes that the light output will 

eventually decrease during life testing [16, 17, 26, 27]. Our research proposes that 

there might also be a shift in the peak wavelength as a secondary effect. To assess 

such shifts, the forward bias method should be employed to characterize the Vf-Jt 
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relationship before the start of Accelerated Life testing (ALT) and Accelerated 

Degradation Test (ADT). Varshini’s model may also be used to establish the Jt-λpeak 

relationship. During the ALT/ADT, the Vf measured will allow us to estimate the 

actual Jt and its contribution towards λpeak. 

6.5 Effect of Spectral Shift on Medical application 

Wavelength shifts are more critical for Medical applications compared to Lighting 

applications of LEDs. In principle, the shift will have 2 consequences. 

6.5.1 Decrease in net optical output 

As described in Fig 1.2 in Chapter 1, the light from the LED passes through a sharp 

optical filter, which has a bandwidth of only few nano-meters. If the peak wavelength 

of the LED shifts, a part of the spectrum will shift outside the bandwidth of the 

optical filter causing a decrease in the net optical power as shown in Fig 6.6. This 

decrease will depend on the shape of the LED spectrum, the filter bandwidth and the 

actual shift of the LED spectrum, which will depend on junction temperature. 

 
Fig. 6.6 Effect of Spectral Shift on useful optical power 
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6.5.2 Change in the Absorbance Chemistry 

As described in section 1.1 in Chapter 1, the absorbance of light by the cuvette 

mixture at certain wavelengths depends on patient’s disease condition. Beer’s law [1] 

gives a relationship between the transmission T of light through a substance and the 

product of the absorption coefficient of the substance, α, and the distance the light 

travels through the material (i.e. the path length), ℓ. For a given medical instrument, 

the path length is constant and the absorption of light can be calculated from the 

incident and transmitted light. Further, the same medical diagnostic instrument 

performs various tests (called assays) such as Clinical Chemistry, Drugs of abuse, 

therapeutic drug monitoring (TDM) and specific proteins etc. Depending upon the 

actual diagnostic test to be performed, the human sample is mixed with proprietary 

chemical reagents. The relationship between the light absorbed and the disease 

condition is pre-determined by Chemists for all the diagnostic tests that the medical 

instrument supports. Some of these tests are very sensitive to the peak wavelength 

whereas others are less sensitive. A shift in peak wavelength of the LED light source 

will have different consequences depending upon the specific diagnostic test being 

conducted, its sensitivity to wavelength and the actual spectral shift. Much of this 

information is proprietary and beyond the scope of this research. 
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6.6 Conclusions of Spectral Shift 

Reliability testing of AlGaInP MQW LEDs resulted in a shift of Bandgap towards the 

longer wavelength when driven at high current. Characterization of the shift showed 

that it was temporary and dependent on the junction temperature Jt. The data was 

further analyzed with respect to Varshini’s equation, and the empirical coefficients 

were determined. Published research establishes that the light output will eventually 

decrease during life testing. This research proposes that there might also be a shift in 

the peak wavelength as a secondary effect if the LED operates at a high junction 

temperature Jt. This research will also help in evaluating LED performance during 

ALT/ADT and while choosing LEDs for applications (such as medical diagnostics) 

where λpeak needs to be stable. The junction temperature Jt will need to be 

maintained within limits to achieve spectral stability. 
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Chapter 7: Failure Modes and Effects Criticality Analysis 
(FMECA) 

7.1 Introduction  

Failure Modes Effects and Criticality Analysis (FMECA) was used as a risk analysis 

tool for use of LEDs in a medical diagnostic application. Probabilistic Risk 

Assessment (PRA) with Event Sequence Diagrams (ESD) is also used for performing 

risk analysis. While the focus of this chapter is FMECA, PRA/ESD is discussed 

briefly in section 7.5. FMECA is a bottom up approach used to separate critical 

failure modes from the rest. The segregation is done based on the approximate 

probabilities of the failure modes and the severity of the outcomes. It identifies failure 

modes at a component level (LED in this context), and analyzes the system level 

effects (failure or partial failure of the medical diagnostic instrument in this case). 

Some of these results were also published by the author in Sawant et al [11]. 

However, Section #, Figure #, Table # and References have been rearranged as 

necessary. 

 

A FMECA table was constructed for various LED failure modes (described in section 

7.2) and the criticality is calculated for different severity levels as  

Cm = βαλt         - (7.1) 

where  

1. Failure effect probability (β) is the conditional probability that the failure effect 

will result in the identified severity classification, given that the failure mode occurs. 

It represents the analyst's best judgment as to the likelihood that the loss will occur. 
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2. Failure mode ratio (α) is the ratio of the probability of the current failure mode to 

the failure probability due to all the failure modes,  

3. Failure rate (λ) is the ratio the total failures observed during a test to the total time 

of all the devices under test and  

4. Operating time (t) is the time during which the test is performed. 

 

Table 7.1 below describes the severity classification for a general application and a 

medical diagnostic application. 

Level Rating Severity description for 
General application 

Severity for Medical Diagnostic 
application 

Catastrophic 1 A failure mode that may 
cause death, complete system 
or mission loss 

Inaccurate medical test result, 
May lead to death of patient or 
user or  
Serious deterioration in their state 
of health 

Critical 2 A failure mode that may 
cause severe injury, major 
system degradation, damage 
or reduction in mission 
performance 

Incorrect diagnosis,  
Inappropriate treatment 

Marginal 3 A failure mode that may 
cause minor injury or 
degradation in system or 
mission performance 

Inaccurate Medical test result,  
But test is used in conjunction 
with other diagnostic information. 

Minor 4 A failure mode that does not 
cause injury or system 
degradation, but may cause a 
minor inconvenience such as 
unscheduled maintenance or 
repair 

Delayed or no medical test result,  
Incorrect result. But no difference 
in diagnosis or treatment,  
Incorrect result requiring 
confirmatory testing. 

None 5 --- --- 
 

Table 7.1 Failure Severity classification for general and medical diagnostic 
application 

 



 

 76 
 

7.2 LED Failure Modes 

The first step in FMECA was identification of various LED failure modes. Fig 7.1 

shows various failure modes that were identified for this analysis. 

 
Fig 7.1 LED Failure modes 

7.2.1 Active Region failure 

Active layer is the region where electrons and holes recombine to emit photons. The 

degradation is mainly related to the property of semiconductor crystals [2]. 

Dislocation growth, in-diffusion and precipitation of a host atom are typical modes in 

such degradation. Enhancement factors include injected current (electron and hole), 

Joule heating by injected current, ambient temperature and emitted light. 
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7.2.2 P-N Contacts failure 

Degraded contacts [2] generally correspond to p-side electrodes because ordinary 

devices are composed of n-type substrates and the p-side electrodes exist near the 

active region of the devices. For devices with a p-type substrate, the degradation is in 

n-type electrode. The main mechanism is caused by metal diffusion in to the inner 

region (outer diffusion of semiconductor material) and is enhanced by injected 

current, joule heating and ambient temperature. 

7.2.3 Indium Tin-Oxide failure 

Indium Tin-Oxide layer is used for current spreading and improvement of light 

extraction [26]. Failure modes are related to loss of oxygen from the ITO layer and 

de-adhesion.  

7.2.4 Plastic encapsulation failure 

Plastic encapsulation (lens) is usually a polymer used to protect the LED chip from 

external atmosphere and to direct the extracted light. Typical failure modes are 

discoloration, carbonization and polymer degradation [33].  

7.2.5 Packaging failures 

Packaging failure is either related to Bond Wires or the Heat Sinks [2]. The bonding 

part corresponds to the interface between an LED chip – heat sink and between heat 

sink – package stem [2]. Usually some type of solder is used at the interface as a 

bonding metal. The degradation is mainly caused by Electro-migration (transport of 

metal atoms under high current stress) and is related to the properties of the solder 

metal. The main mode is void formation through the migration of the solder metal 
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stem or reaction of solder metal with electrodes / the plated metal on the heat sink / 

the stem. The migrated solder often shows a whisker growth. The factors that enhance 

this type of degradation are current flow and ambient temperature. Heat sink 

degradation is not degradation of the heat sink itself, but the separation of the metal 

used for metallization of the heat sink. The generation of this degradation depends on 

the heat sink material, the metal used for metallization and the metallization process. 

The enhancement factor is not clear but ambient temperature and current flow are 

estimated to be factors. 



 

 79 
 

7.3 FMECA before ALT/ADT 

During initial FMECA (done before Accelerated Life/Degradation Test based on 

literature review and knowledge of the medical diagnostic instrument), packaging 

(heat sink de-lamination) and degradation of the active region were estimated as the 

critical failure modes. See Table 7.2 for details  

 
Table 7.2 FMECA table before ALT/ADT 

 

 

Sr.# Failure 
Modes/Mech
anisms

Causes Local Effects 
at LED level

System Effects in 
Medical 
equipment

Seve
rity

Failure Effect 
Probability (ß)

Failure Mode 
Ratio (a)

Failure 
Rate

Operating 
Time (T)

in hrs

Criticality 
#

1 Packaging 
failure (Heat 
Sink)

Heat sink de-lamination - Decrease of 
optical output
- Local heating 
effects

- Unscheduled module 
replacement
- Delayed medical test 
results

3 0.4 0.3 1.8E-11 31500 6.7E-08

2 Degradation 
of plastic 
encapsulation

- Discoloration
- Carbonization
- Polymer degradation at high 
temperature

- Gradual 
decrease of 
optical output

- Excessive drift 
requires unscheduled 
calibration
- Delayed medical test 
results

3 0.4 0.2 1.8E-11 31500 4.5E-08

3 Degradation 
of ITO layer

- Loss of Oxygen from ITO
- De-adhesion

- Decrease of 
optical output
- Non-uniform 
light emission

- Unscheduled module 
replacement
- Delayed medical test 
results

4 0.3 0.1 1.8E-11 31500 1.7E-08

4 Packaging 
failure (Bond 
Wires)

- Electro-migration of bond 
wires
- Burnout due to excessive 
current
- Void formation at the solder 
metal stem
- Reaction of solder metal with 
package electrodes

- Abrupt LED 
failure

- Unscheduled module 
replacement
- Delayed medical test 
results

4 0.9 0.1 1.8E-11 31500 5.0E-08

5 Degradation 
of active layer 

- Dislocation growth
- Metal diffusion in AlGaInP
- Heating effects of AlGaInP 
active region resulting in 
enhanced current injection

- Gradual 
decrease of 
optical output

- Excessive drift 
requires unscheduled 
calibration
- Delayed medical test 
results

4 0.4 0.4 1.8E-11 31500 9.0E-08

6 Degradation 
of P-N metal 
contacts

- Interdiffusion - Change in IV 
characteristics

- Design will 
accommodate minor 
changes in IV 
characteristics

5 0.4 0.2 1.8E-11 31500 4.5E-08
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7.4 FMECA after ALT/ADT 

After Accelerated Life Test was performed, plastic encapsulation and active region 

degradation are estimated as the critical failure modes. Either of these failure modes 

will cause system level effects such as excessive drift requiring unscheduled 

calibration and delayed medical test results. See Table 7.3 for details. 

 
Table 7.3 FMECA table after ALT/ADT 

 

Sr.# Failure 
Modes/Mech
anisms

Causes Local Effects 
at LED level

System Effects in 
Medical 
equipment

Seve
rity

Failure Effect 
Probability 

(ß)

Failure Mode 
Ratio 

(a)

Failure 
Rate
(?)

Operating 
Time 

(T) in hrs

Criticality 
#

1 Packaging 
failure (Heat 
Sink)

Heat sink de-lamination - Decrease of 
optical output
- Local heating 
effects

- Unscheduled module 
replacement
- Delayed medical test 
results

3 0.4 0.3 1.8E-11 31500 6.7E-08

2 Degradation 
of plastic 
encapsulation

- Discoloration
- Carbonization
- Polymer degradation at high 
temperature

- Gradual 
decrease of 
optical output

- Excessive drift 
requires unscheduled 
calibration
- Delayed medical test 
results

3 0.6 0.7 1.8E-11 31500 2.3E-07

3 Degradation 
of ITO layer

- Loss of Oxygen from ITO
- De-adhesion

- Decrease of 
optical output
- Non-uniform 
light emission

- Unscheduled module 
replacement
- Delayed medical test 
results

4 0.3 0.1 1.8E-11 31500 1.7E-08

4 Packaging 
failure (Bond 
Wires)

- Electro-migration of bond 
wires
- Burnout due to excessive 
current
- Void formation at the solder 
metal stem
- Reaction of solder metal with 
package electrodes

- Abrupt LED 
failure

- Unscheduled module 
replacement
- Delayed medical test 
results

4 0.9 0.1 1.8E-11 31500 5.0E-08

5 Degradation 
of active layer 

- Dislocation growth
- Metal diffusion in AlGaInP
- Heating effects of AlGaInP 
active region resulting in 
enhanced current injection

- Gradual 
decrease of 
optical output

- Excessive drift 
requires unscheduled 
calibration
- Delayed medical test 
results

4 0.6 0.6 1.8E-11 31500 2.0E-07

6 Degradation 
of P-N metal 
contacts

- Interdiffusion - Change in IV 
characteristics

- Design will 
accommodate minor 
changes in IV 
characteristics

5 0.4 0.2 1.8E-11 31500 4.5E-08
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7.5 Probabilistic Risk Assessment and Event Sequence Diagrams 

Probabilistic Risk Assessment (PRA) starts with critical end states (ES). For the 

medical diagnostic application, critical end states are  

1. Correct Medical Test Results,  

2. Correct but Delayed Medical Test Results,  

3. Incorrect Medical Test Results but Detected before Reporting and   

4. Erroneous but Believable Medical Test Results 

 

Once the ES are defined, all possible Initiating Events (IE) are identified which could 

create such ES. The propagation of an IE in to an ES is called a scenario. The 

scenario is shown graphically in the form of an Event Sequence Diagram (ESD) in 

Fig 7.2 below [4].  

Fig 7.2 Scenario / Event Sequence Diagram [4] 

 

A scenario contains an IE and one or more pivotal events leading to an end state. As 

modeled in most PRAs, an IE is a perturbation (such as LED degradation) that 

requires some kind of response from the Medical instrument (such as detection of the 

LED degradation and correction using calibration). The Pivotal Events (PE) include 
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successes or failures of these responses. Simple pivotal events may be expressed as a 

block with numerical probability for occurrence of each response. Complicated 

pivotal events may be expressed as a Fault Tree (FT) for calculation of probabilities 

of the responses. Once the probabilities of all the Initiating Events and Pivotal Events 

are known (or estimated), the probability of all the End States can be calculated. Fig 

7.3 gives an example of an ESD for the medical diagnostic application. Many such 

ESDs need to be created before the probabilities of critical End States can be 

calculated. 

Fig 7.3 ESD for LED degradation in Medical application 
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7.6 Conclusions 

FMECA approach, widely used for risk analysis, has been successfully applied to 

LED reliability and physics of failure investigation. In this study, we used FMECA to 

understand the criticality of LED failure modes when used in a medical diagnostic 

application. Failure modes of other components of the Medical device were not 

included in this study. The FMECA was repeated and refined after conducting 

accelerated life testing of LEDs. Degradation of the plastic encapsulation and the 

active region were found to be the critical failure modes. These failures could cause 

unscheduled calibration of the diagnostic instrument and would cause delay in patient 

medical test results. Probabilistic Risk Assessment using Event Sequence Diagrams is 

also briefly discussed. An example ESD describing LED degradation as an initiating 

event and its progression towards critical end states is provided. 
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Chapter 8: Bayesian Modeling of LED Reliability 

Bayesian Analysis allowed us to combine prior published data with Accelerated Life 

Test (ALT) performed to verify the Medical diagnostic application. Bayesian 

Analysis involves compiling ‘Prior’ information, generating the ‘Likelihood’ function 

(probability of seeing the Evidence in terms of test data given a specific underlying 

failure distribution) and then estimating the ‘Posterior’ distribution. Some of these 

results were also published by the author in Sawant et al [13]. However, Section #, 

Figure #, Table # and References have been rearranged as necessary. The general 

scheme of Bayesian modeling of LED reliability is as shown in Fig 8.1 

 
Fig 8.1 Bayesian modeling of LED Reliability 
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8.1 Baye’s theorem 

For two events X and E, the probability of X AND E occurring simultaneously 

(represented by X•E) is the product of probability of X given E has occurred and 

probability of E 

Pr(X•E) = Pr(X|E)Pr(E)        - (8.1)  

Pr(E•X) = Pr(E|X)Pr(X)       - (8.2) 

Since Pr(X•E) = Pr(E•X), we have  

Pr(X|E)Pr(E) = Pr(E|X)Pr(X)        - (8.3) 

Rearranging the terms gives the Baye’s Theorem 

( ) ( ) ( )
( )E

XXE
EX

Pr

Pr|Pr
|Pr =        - (8.4) 

Now Pr(E) = Σ Pr(E|X)Pr(X) for all possible values of X, this gives 

( ) ( ) ( )
( ) ( )∑

=
XXE

XXE
EX

Pr|Pr

Pr|Pr
|Pr       - (8.5) 

In Reliability applications, events X and E are represented by distributions. 

Summation is used for discrete distributions and integration is used for continuous 

distributions as shown below. 

  ( ) ( ) ( )
( ) ( )∫

=
dXXXEL

XXEL
EX

0

0
1

|

|
|

π
ππ      - (8.6)  

where L(E/X) is the likelihood of seeing the evidence E given that X is the random 

variable of interest, 

Π0(X) is the prior distribution of the random variable of interest and  
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Π1(X/E) is the posterior distribution of the random variable of interest given that 

evidence E was observed. 

8.2 Bayesian Modeling of LED data 

Many of the LED degradation mechanisms occur simultaneously. The weakest link 

causes the actual failure. This leads us to believe that Weibull distribution (with 

parameters α & β) is the most suitable distribution for time to failure of the LEDs. 

Levada et al. [34] carried out accelerated life tests on plastic transparent 

encapsulation and pure metallic package GaN LEDs. A consistent Weibull based 

statistical model was found for MTTF. When the data from ALT performed in this 

research was analyzed, it revealed that Weibull is a slightly better fit compared to the 

Lognormal fit. Thus the degradation mechanism, published literature and our ALT 

data all point to Weibull as a most suitable model for this data analysis. See section 

10.3.1 for a detailed discussion on the subject. 

 

For the first posterior, using Uniform Prior distribution for α & β is a good choice. 

Since only MTTF values were available, min-max values for α & β were estimated 

using engineering judgment. Test data was used as Evidence and a joint α-β posterior 

distribution was calculated using Bayesian updating. This joint α-β distribution gave a 

series of Weibull time to failure distributions. The predictive posterior failure 

distribution for the LEDs was estimated by averaging over the range of α-β values. 

Numerical techniques were used for various computations. 
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8.2.1 Likelihood function for LED reliability 

Consider a life test in which n LEDs are put on test and r out of n fail at failure times 

t1, t2,…,tr. The test is terminated at time tc at which point n-r LEDs did not fail. The 

only thing we know about these ‘survived’ LEDs is that their failure time is greater 

than tc. The failure times t1, t2,…,tr and the suspend time tc is the Evidence for the 

Bayesian Analysis. 

 

The likelihood of r LEDs failing at ti (i = 1 to r) and n-r LEDs surviving time tc is 

given in (8.7) and (8.8) below 
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8.2.2 Uniform Prior distribution for α & β 

The Uniform Prior distribution for α & β is given by equation below   

( )









≤≤

≤≤

−−=

otherwise,0

maxmin

max,min
,

min)maxmin)(max(

1

,0
βββ

ααα

ββααβαπ  - (8.9) 
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8.2.3 Posterior distribution for α & β 

The posterior distribution for α and β can be estimated by using the Baye’s theorem 

given is equation  

( ) ( ) ( )
( ) ( )∫ ∫

=

β α

βαβαπβα
βαπβαβαπ

''','','|

,,|
|,

0

0

ddEL

EL
E

  - (8.10) 

8.2.4 Predictive Posterior distribution for LED life 

Our final goal is to estimate the Weibull distributed time to failure. The joint posterior 

distribution of α and β then allows the posterior predictive distribution to be 

calculated as given by PDF equation (8.11) and CDF equation (8.12) 

( ) ( ) ( )∫ ∫=
β α

βαβαπβα ''|','','| 1 ddEtftf    - (8.11) 

( ) ( ) ( )∫ ∫=
β α

βαβαπβα ''|','','| 1 ddEtFtF    - (8.12) 

8.3 Results of Bayesian modeling 

8.3.1 Compiling the Prior Data 

Results of prior published data and ALT as reported in Sawant et al [11] will be used 

in the Bayesian modeling. Table 4.1 was modified to get Table 8.1 where Sr.# 1-4 

represents prior data (normalized to current density and temperature values) under dc 

driving conditions. Sr.#5 represents ALT data (normalized to current density and 

temperature values) under pulse (0.2% duty cycle) driving conditions. Since LED life 

under dc conditions was much shorter compared to pulse conditions, we had to 
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transform Sr#.1-4 data in to Sr.#:1A-4A to allow using in our Bayesian model. This 

also seems reasonable from the fact that during pulse driving, the LED gets time to 

cool off. This increases the time to failure of the LEDs during pulse driving compared 

to DC driving. The exact method of transformation will be covered in chapter 9. For 

now, a simple multiplier of 500 is assumed (1 hr at 100% duty cycle is equivalent to 

500hrs at 0.2% duty cycle). 
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 LED 
Material  

Source of 
Data 

IPL Act.  
E. 

Weibull (Converted to 
application conditions) 

Lognormal (Conv. to 
appl. Conditions) 

Sr.
# 

Structure 
Driving  

[Ref.]-Fig n eV αααα ββββ MTTF 
Hrs 

µµµµ σσσσ MTTF 
Hrs 

1 AlGaInP-
DH- 
DC 

[17]-2/4,  
[19]-9a/9b, 
[26]-3, 
[28]-3a/3b 
[29]-5 

1.68 0.67 2.76E4 0.50 1.33E4 9.1 2.30 9.41E3 

2 AlGaInP-
MQW- 
DC 

[19]-9a/9b, 
[22]-16, 
[24]-6/8/10 
[27]-2 

5.08 0.82 7.82E5 0.89 5.17E5 13 1.25 4.27E5 

3 GaN- 
DH- 
DC 

[47]-1 2.69 0.50 - - - - - - 

4 GaN- 
MQW- 
DC 

[24]-7/9/11 
[33]-5,  
[34]-2/6 

2.02 0.20 1.61E5 0.57 8.47E4 11.0 2.06 6.22E4 

5 ALT: 
AlGaInP- 
MQW- 
Pulsed 
(0.2%) 

ALT 
performed 
for this 
study 

4.48 1.15 1.55E9 0.50 7.50E8 20.0 2.50 5.23E8 

1A AlGaInP-
DH-
Pulse-
Transfor
med 

Sr. # 1 1.68 0.67 1.38E7 0.5 6.65E6    

2A AlGaInP-
MQW-
Pulse-
Transfor
med 

Sr. # 2 5.08 0.82 3.91E8 0.89 2.59E8    

3A GaN-DH- 
Pulse-
Transfor
med 

Sr. # 3 2.69 0.50 - - -    

4A GaN-
MQW- 
Pulse-
Transfor
med 

Sr. # 4 2.02 0.20 8.07E7 0.57 4.24E7    

 
Table 8.1 Prior Published Data Transformed for Bayesian Analysis 
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Bayesian updating involves computation of posterior joint α-β distribution by 

combining the prior joint α-β distribution with new Evidence/Likelihood function. 

Bayesian analysis started with a Uniform prior joint α-β distribution with α taking 

values between 5E7 to 9E9 and β taking values between 0.1 to 2. Uniform 

distribution implies that the probabilities are constant for the entire range. Further, 

since the Bayesian updating was done using a SW program written for this research 

(to implement equation 8.10), the α & β values had to discretized.  

8.3.2 Computation of 1st Posterior Distribution 

The data represented by Sr.# 2A in Table 8.1 was used as evidence to compute the 1st 

posterior joint α-β distribution as shown in Fig 8.2. 

 
Fig 8.2 1st Posterior Joint α-β distribution for AlGaInP-MQW-Pulse-Transformed 
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The 1st posterior joint α-β distribution was used to compute the Average Predictive 

distribution of the LED time to failure (TTF) using equations 8.11 and 8.12. See Fig 

8.3 for the CDF of LED TTF. 

 

 
Fig 8.3 1st Average Predictive Posterior of LED TTF.  

“Amplitude” refers to the magnitude of the cumulative distribution function 
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8.3.3 Computation of 2nd Posterior Distribution 

For the 2nd Bayesian updating, the 1st posterior joint α-β distribution was used as the 

prior distribution and the data representing Sr.# 5 in Table 8.1 was used as evidence. 

Fig 8.4 shows the 2nd Posterior Joint α-β distribution for AlGaInP-MQW-Pulse-ALT. 

Comparing Fig.8.2 and Fig.8.4, quickly reveals that the uncertainty in the Joint α-β 

distribution has decreased after 2nd Bayesian updating. 

 
Fig 8.4 2nd Posterior Joint α-β distribution for AlGaInP-MQW-Pulse-ALT 
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The 2nd Average Predictive posterior distribution of the LED time to failure (TTF) 

was computed using equations 8.11 and 8.12. See Fig 8.5 for the CDF of LED TTF. 

Again, comparing Fig 8.3 and Fig.8.5 reveals that 50th percentile of LED TTF 

changed from 2.75E8 to 6.00E8 hrs between 1st and 2nd Bayesian updating. 

 

 
Fig 8.5. 2nd Average Predictive Posterior of LED TTF 

“Amplitude” refers to the magnitude of the cumulative distribution function. 
 

8.3.4 Conclusion from Prior data, ALT and Bayesian analysis 

Prior published LED data is given in Table 8.1 (Sr.# 2A), ALT results in Table 8.1 

(Sr.# 5) and Bayesian updating results are described is described in section 8.3.3. All 

sources indicate that the MTTF of AlGaInP-MQW LEDs when used in this specific 

medical application (pulse mode 0.2% duty cycle, temperature = 35°C and current 

density = 21.6Amps/cm2) is in excess of 1E8 hrs. This exceeds the life of the medical 

diagnostic instrument by orders of magnitude and as such is suitable for the 

application. It is also interesting to observe that the shape parameter β of the Weibull 

model is less than 1 in all cases implying a decreasing failure rate. This is not by 
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coincidence. In section 5.4.1, we had observed during ALT that the rate of optical 

output degradation is logarithmic and that this rate varies significantly between 

different LEDs (even if taken from same manufacturing batch). Some LEDs cross the 

20% degradation (failure threshold for this application) earlier than others. For LEDs 

that do survive this initial high rate of optical degradation, the probability that it will 

survive longer increases. This explains the decreasing failure rate. 
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Chapter 9: Degree of Relevance in Bayesian modeling 

Chapter 8 treats Bayesian modeling of LEDs for a medical diagnostic application. It 

allowed us to combine prior available data with accelerated life test data to predict the 

reliability (time to failure) of the AlGaInP LEDs. That is the main approach adopted 

in this dissertation and has been published in Sawant et al [13]. In this chapter, an 

alternate method for performing Bayesian modeling of LED reliability is proposed. 

This is additional work that has not been published by the author yet. This approach 

may also be used in other applications of Bayesian analysis.  

9.1 The Problem: Partially relevant prior data 

LED families are made from different material systems such as AlGaInP, GaN, GaAs 

etc. Further, LEDs are manufactured using different semiconductor structures such as 

Double Heterostructure (DH) and Multi Quantum Well (MQW). Depending upon the 

application, LEDs may be driven in a DC mode (typically lighting or indicator 

applications), Pulse mode with high duty cycle (Fiber optic applications) or Pulse 

mode with very low duty cycle (our current medical diagnostic application). From 

Table 8.1, it is obvious that the time to failure of the LED is significantly different 

based on the material, structure and the driving strategy. 

 

Bayesian modeling computes the LED reliability by combining prior published LED 

data with the current test data (such as life test to mimic the current application). 

While ample prior published LED data is available, it is very difficult to get prior data 

for the exact same material system, structure and driving strategy. Limited prior data 
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forces us to take two approaches. Either assume that the prior data is non-informative 

(such as using a uniform probability distribution function) or use prior data from a 

different LED material family, structure or driving strategy. Using non-informative 

prior distribution pretty much defeats the purpose of Bayesian modeling unless 

additional and successive Bayesian updating is used. Using prior data, which is not 

directly relevant to the medical application, will cause over estimation or under 

estimation of the LED reliability. This is a practical problem that applies to any 

application of Bayesian modeling. 

9.2 The Solution: A Three Step Process 

One approach to solving the above problem is using prior data for LEDs, which are 

similar but not identical to LEDs in the current application. It will be a 3-step process.  

9.2.1 Step-1: Transform DC data to Pulse data by Multiplication 

In Chapter 8, we transformed the prior data available for AlGaInP-MQW-DC in to 

AlGaInP-MQW-Pulse by multiplying it by a factor of 500. The rationale used was 1 

hr at 100% duty cycle (i.e. DC) is equivalent to 500hrs at 0.2% duty cycle (medical 

application). While this is a good number to start with, an alternate approach to 

calculate the multiplier is to take a ratio of MTTF of Pulse testing to DC testing. 

Ratio of Weibull mean of AlGaInP-MQW-Pulse (from normalized ALT) to AlGaInP-

MQW-DC (prior published) was used in this research. This computation 

(7.50E8/5.17E5) yields a multiplier of 1451. Both of these multipliers (500 and 1451) 

will be used in subsequent analysis in the following sections. Analysis of prior 

published data for LED life gave us a set of data consisting of time to failure  
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Set1={AlGaInP-DH-DC, AlGaInP-MQW-DC, GaN-MQW-DC}  - (9.3)  

GaN-DH-DC was ignored since limited data was available.  

By using the two multipliers (500 and 1451), we go two additional data sets  

Set2={AlGaInP-DH-DCx500, AlGaInP-MQW-DCx500, GaN-MQW-DCx500}  

         - (9.4) 

Set3={AlGaInP-DH-DCx1451, AlGaInP-MQW-DCx1451, GaN-MQW-DCx1451} 

         - (9.5) 

See Appendix 7 for Set1, Set2 and Set3 data. 

  

9.2.2 Step-2: Use a Degree of Relevance Parameter R 

A new parameter called degree of relevance ‘R’ is introduced which takes values 

between zero and one. The ‘R’ value will be used to modify the Bayesian model such 

that the influence of evidence is decreased as R approaches zero. The parameter ‘R’ 

can be estimated by engineering judgment and physics of semiconductor structures. 

Hypothetical values of ‘R’ based on LED material and structure will be used in this 

research to perform the analysis. Methods of estimating ‘R’ such as use of utility 

functions are left for future research and are briefly discussed in section 11.4.2.  

 
 

9.2.3 Step-3: Changing the Likelihood function using R 

In Bayesian modeling, the Likelihood function is generated from Evidence. One 

approach to using R in Bayesian modeling is changing the likelihood function as a 

function of R and then performing the Bayesian updating as shown below. 
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R

  - (9.6) 

If R is 1, it becomes a standard Bayesian updating equation. As R approaches 0, the 

influence of likelihood function decreases. If R is 0, the posterior distribution 

becomes identical to prior distribution. 

 

9.3 Results and Discussion 

As described in section 8.2, Bayesian analysis started with a Uniform prior joint α-β 

distribution with α taking values between 5E7 to 9E9 and β taking values between 0.1 

to 2. The DC data transformed to Pulse in Set2 (DCx500) and Set3 (DCx1451) was 

used as Evidence for the 1st Bayesian updating shown in Fig 8.1. The 2nd Bayesian 

updating is done using ALT data as evidence. Predictive Posterior distributions for 

LED TTF were computed using the SW developed (described in Appendix 6).  

 

The results are described in Table 9.1 below. Sr. #1a and 1b used AlGaInP-MQW-

DCx500 data as 1st Evidence. The only difference is 1b used an R-value of 0.75. Sr. 

#2 used AlGaInP-MQW-DCx1451 data as 1st Evidence. In this case, R-value 

assessed is already equal to 1. Hence there was no need to perform a separate 

analysis. Sr.#3a and 3b used GaN-MQW-DCx500 data as 1st Evidence. The only 

difference is 3b used an R-value of 0.50. Sr. #4a and 4b used GaN-MQW-DCx1451 

data as 1st Evidence. The only difference is 4b used an R-value of 0.75. Sr.#5a and 5b 

used AlGaInP-DH-DCx500 data as 1st Evidence. The only difference is 5b used an 
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R-value of 0.50. Sr.#6a and 6b used AlGaInP-DH-DCx1451 data as 1st Evidence. 

The only difference is 6b used an R-value of 0.75.  

 

Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
1a Unifo

rm* 
AlGaInP-MQW-
DCx500 with LR 

1.00 ALTΨ 1.17E9 0.547 6.00E8 0.392 

1b Unifo
rm* 

AlGaInP-MQW-
DCx500 with LR 

0.75 ALTΨ 1.30E9 0.538 6.58E8 0.244 

2 Unifo
rm* 

AlGaInP-MQW-
DCx1451 with LR 

1.00 ALTΨ 1.57E9 0.601 8.76E8 0.741 

3a Unifo
rm* 

GaN-MQW-
DCx500 with LR 

1.00 ALTΨ 6.70E8 0.415 2.63E8 1.598 

3b Unifo
rm* 

GaN-MQW-
DCx500 with LR 

0.50 ALTΨ 1.06E9 0.437 4.60E8 0.272 

4a Unifo
rm* 

GaN-MQW-
DCx1451 with LR 

1.00 ALTΨ 9.05E8 0.474 4.00E8 0.673 

4b Unifo
rm* 

GaN-MQW-
DCx1451 with LR 

0.75 ALTΨ 1.05E9 0.477 4.87E8 0.314 

5a Unifo
rm* 

AlGaInP-DH-
DCx500 with LR 

1.00 ALTΨ 4.85E8 0.358 1.74E8 2.889 

5b Unifo
rm* 

AlGaInP-DH-
DCx500 with LR 

0.50 ALTΨ 8.90E8 0.387 3.46E8 0.725 

6a Unifo
rm* 

AlGaInP-DH-
DCx1451 with LR 

1.00 ALTΨ 5.88E8 0.388 2.29E8 2.084 

6b Unifo
rm* 

AlGaInP-DH-
DCx1451 with LR 

0.75 ALTΨ 7.43E8 0.395 2.94E8 1.886 

 
Table 9.1 Summary of Bayesian Analysis using partially relevant data 

 
* Uniform prior joint α-β distribution with α taking values between 5E7 to 9E9 and β 
taking values between 0.1 to 2. 
 
Ψ Accelerated Life Test (ALT) data given in Sr. #5 of Table 8.1 used as evidence 2.  
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9.4 Conclusions 

LED families are made from different material systems (AlGaInP, GaN, GaAs etc.) 

and are manufactured using different semiconductor structures such as Double 

Heterostructure (DH) and Multi Quantum Well (MQW). Further, they may be driven 

in pulse mode or DC mode. The time to failure of the LED is significantly different 

based on the material, structure and the driving strategy. While ample prior published 

LED data is available, it is very difficult to get prior data for the exact same material 

system, structure and driving duty cycle. Using prior data, which is not directly 

relevant to the application, will cause over estimation or under estimation of the LED 

reliability. A 3-step solution is proposed which includes using a multiplier to convert 

from DC to pulse data, estimating the degree of relevance parameter R (engineering 

judgment and physics of semiconductor structures) and then modifying the 

Likelihood function in the Bayesian model with R. The results are presented in Table 

9.1. 

 

All the posterior predictive results in section 9.3 pass the Chi-square statistic test 

(described in detail in chapter 10). This test was used to determine how closely the 

ALT data represents the predictive Posterior PDF of LED TTF. It was interesting to 

observe that the Chi-square value was lower in all the 5 cases when R was 

appropriately chosen (compared to R=1). Since a lower value implies a better fit, the 

least we can say is that use of R produced better results in this application. 
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Chapter 10: Bayesian Parameter Selection and Model 

Validation 

10.1 Bayesian Subjectivity 

While the Baye’s theorem itself has a sound statistical background, assumptions made 

in the prior knowledge and in the underlying distribution bring in subjectivity in 

Bayesian modeling. The subjective nature of the prior distribution (which could be 

based on relatively sparse expert opinion) may raise doubts about the accuracy of 

Bayesian posterior distributions. In the current research, Uniform prior distribution 

was used for α and β of the Weibull model. However, the limits for α and β in the 

uniform distribution had to be assumed. Further, prior published data transformed to 

application conditions was used as Evidence in the 1st Bayesian updating. Errors in 

assumptions made at the start of Bayesian analysis can result in the posterior 

distribution being a poor representation of the data. Accordingly, the posterior 

predictive distribution needs to be subject to some sort of validation [8].  

10.2 Validation approach 

Work by Mosleh et al [8] has been relied upon for formulating the validation 

approach in this dissertation. In statistical analysis, a model is often used to represent 

data. Since the entire population data is rarely available, the model is generally 

developed based on a small sample data (extracted randomly out of the population). 

Deviations between actual data and a model that describes the data well are subject to 

the Chi-Square distribution. This is based on the assumption that any deviations in 
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observed data from the expected value predicted by the underlying distribution are 

normally distributed. This assumption is generally sound, as many errors in 

observation are resultant from the summation of many other random variables, and 

hence are subject to the central limit theorem. By inference, if these variations are 

described by the Chi-Square distribution, then the model being tested is most likely a 

good one. The Bayesian Chi-Square statistic is a single measure that quantifies how 

well the posterior predictive distribution agrees with the data [8].  

 

To calculate the Chi-Square statistic, the x – axis (for the random variable) is divided 

into K distinct intervals that contain at least 5 data points each from the sample. The 

number of data points in each interval I j is written as bj (j = 1 , 2, … , k). The intervals 

do not need to be of equal width. Then, with the model distribution being tested, the 

number of expected data occurrences in each interval is calculated: 

ej = n pj          - (10.1) 

where ej is the expected number of occurrences of data in interval I j, n is the sample 

size and ( )∫=
jI

j dxxfp θ|1  

The Bayesian Chi-Square statistic is then defined as 

  
( ) 2
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1
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2
0 ~ −

=
∑
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= k

k

j j

jj

e

eb
χχ      - (10.2) 

This value summarizes the magnitude of natural variations between observed data 

and the model being tested. Note that the expected value is used in the denominator in 

place of the variance in the definition of the Chi-Square random variable. This is 

because we do not know the variance of the data from model expected values. To 
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accommodate this lack of knowledge, we reduce the number of degrees of freedom 

by 1, so the Chi-Square statistic above should be described by the Chi-Square 

distribution with k – 1 degrees of freedom. 

 

For  model validation, a ‘significance level’ is introduced. The significance level, α 

(unrelated to the scale parameter of the Weibull distribution which uses the same 

symbol), is defined as the probability of data analysis returning a result at most as 

extreme as the calculated value for which the decision maker is willing to accept the 

null hypothesis. Generally, α is in the range of 1 – 10 %. One way of hypothesis 

testing is to calculate the upper limit ‘c’ of the Chi-Square statistic based on the 

significance level. 

i.e. ( ) αχ −=≤− 1Pr 2
1 cK        - (10.3) 

This means that if the Chi-Square statistic exceeds c, then the null hypothesis is 

rejected. 

10.3 Validation phases in Bayesian modeling 

Validation of Bayesian modeling occurs in various phases. These are  

1. Selection of the distribution for the underlying failure distribution,  

2. Suitability of the prior information and  

3. Appropriateness of predictive posterior distribution against the test data. 

10.3.1 Selection of underlying failure distribution 

Many of the LED degradation mechanisms occur the same test parameter range. The 

dominant failure mechanism leads to failure. This leads us to believe that Weibull 
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distribution (with parameters α & β) is the most suitable distribution for time to 

failure of the LEDs. Levada et al. [34] carried out accelerated life tests on plastic 

transparent encapsulation and pure metallic package GaN LEDs. A consistent 

Weibull based statistical model was found for MTTF thereby giving credibility to our 

approach. 

 
Fig 10.1 Lognormal vs. Weibull fit of ALT data 

 

When the data from ALT performed in this research was analyzed, it revealed that 

Weibull is a slightly better fit compared to the Lognormal fit. See Fig 10.1. Thus the 

degradation mechanism of LEDs, published data and our ALT data all point to 

Weibull as the most suitable model for this data analysis. 

Lornormal vs Weibull Fit for ALT

y = 0.3992x - 8.014

R2 = 0.946

y = 0.5036x - 10.658

R2 = 0.9798
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Logormal Fit

Weibull Fit

Linear (Logormal Fit)
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10.3.2 Selection and verification of prior distribution 

 Uniform distribution was used as prior knowledge of parameters α and β of the 

Weibull model. The limits for α and β in the uniform distribution were selected such 

that they encompass the prior published data and the normalized life test data. In 

order to verify that the limits were selected correctly, an additional calculation was 

performed with the upper limits of α and β widened. See Table 10.1 and Fig 10.2. 

There was no difference in the predictive posterior CDF for LED time to failure. α 

stayed the same at 1.35E9. β changed slightly from  0.809 to 0.808. This proves that 

the limits on α and β in the uniform distribution were correctly chosen. 

Property Used limits for prior of α and β Wider limits for prior of α and β 
Samples 1 to 1E10, Total 800 1 to 1E10, Total 800 
   
Prior Uniform Uniform 
Alpha 5E7 to 9E9, Incr 5E6 5E6 to 9E10, Incr 5E6 
Beta 0.1 to 2, Incr 0.1 0.1 to 4, Incr 0.1 
   
Evidence 
Source 

AlGaInP-MQW-DCx1451 AlGaInP-MQW-DCx1451 

Evidence 
data 

n=11, r=11, tc=4.829E+9 n=11, r=11, tc=4.829E+9 

Alpha 1.13E+9 1.13E+9 
Beta 0.89 0.89 
   
Predictive 
Posterior 

  

Alpha 1.35E+09 1.35E+09 
Beta 0.809 0.808 
 

Table 10.1 Used vs. wider limits on prior of α and β 
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Fig 10.2 LED TTF with used vs. wider prior limits on α and β.   

“Amplitude” refers to the magnitude of the cumulative distribution function. 
 

10.3.3 Appropriateness of Predictive posterior distribution to test data 

Validation approach using the Chi-square statistic as described in section 10.2 was 

used in order to check the appropriateness of predictive posterior distribution to the 

test data. Uniform distribution was used as the Prior for α and β as described in 

section 10.3.2. Prior published data for various LED materials, structure and driving 

(dc transformed in to pulse) was used as evidence for the 1st Bayesian updating. The 

2nd Bayesian updating is done using ALT as evidence. See sections 8.3.2, 8.3.3, 9.2 

and 9.3 for details. As described in section 9.3 and Appendix 8, Predictive Posterior 

distributions for LED TTF were computed by Evidence 1 taken from: 

Set2: AlGaInP-MQW-DCx500 
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Set3: AlGaInP-MQW-DCx1451 

Set2: GaN-MQW-DCx500 

Set3: GaN-MQW-DCx1451 

Set2: AlGaInP-DH-DCx500 

Set3: AlGaInP-DH-DCx1451 

  

The result of predictive posterior distribution for LED TTF is hypothesized as the 

population TTF. Using ALT as Test data (n=18, k=3), Chi-square statistic was 

computed as shown in Table 10.2.  

 
Table 10.2 Computation of Chi-square statistic 

 

Using the significance level of 10% and degrees of freedom as 2 (k-1), the c value is 

computed as 4.6. Since the chi-square statistic (0.392) is less than the ‘c’ value (4.6), 

the predictive posterior distribution (using Evidence 1 AlGaInP-MQW-DCx500) is an 

acceptable distribution to represent ALT data. 

 

Taking a similar approach for the other data sets for Evidence1, Table 9.1 (included 

in chapter 9 and repeated in Appendix 8) was constructed. It can be seen that all of 

the data sets used for Evidence1 give an acceptable predictive posterior distribution. 

This means that the ALT data can be assumed as coming from a population 

Prior: 
Uniform

Evid1: AlGaInP-
MQW-DCx500 Evid2: ALT Posterior-> Alpha Beta n

 1.17E+09 0.547 18
Interval j Lower Limit Xl Upper Limit Xu pj ej = npj bj (bj-ej)**2/ej

1 0 2.00E+08 0.3165 5.70 6 0.016
2 2.00E+08 1.80E+09 0.4015 7.23 6 0.208
3 1.80E+09 8 0.2820 5.08 6 0.168

1.0000 Chi-Statistic 0.392
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represented by the predictive posterior distributions predicted by various sources for 

Evidence 1. 
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Chapter 11: Conclusion 

11.1 Summary 

In a medical diagnostic application, the precise value of light intensity is used to 

interpret patient results for medical diagnostics. Hence understanding LED failure 

modes is very important. Failure Modes and Effects Criticality Analysis (FMECA) 

tool was used to identify critical LED failure modes. The next steps were Accelerated 

Life Testing (ALT), Accelerated Degradation Testing (ADT) and Bayesian analysis. 

ALT/ADT was performed on the LEDs by driving them in pulse mode at higher 

current density J and elevated temperature T. Inverse Power Law model with J as the 

accelerating agent and the Arrhenius model with T as the accelerating agent were 

used. The optical degradation during ALT was found to be logarithmic and this 

property was used for the degradation analysis using a log-linear degradation model. 

Further, the LED bandgap temporarily shifts towards the longer wavelength at high 

current. This shift was dependent on junction temperature. Empirical coefficients for 

Varshini’s equation were determined. 

 

The Bayesian analysis starting point was to identify pertinent published data which 

may be used for developing the prior information. From the published data, the time 

required for the optical power output to degrade by 20 percent was extracted LEDS 

with different active layers (AlGaInP, GaN, AlGaAs), different LED structures (DH, 

MQW) and bias conditions (DC, Pulsed). The degradation mechanism of LEDs, 

published literature and our ALT data all indicate that Weibull is the most suitable 
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model for this data analysis. This rationale was used to develop the Weibull based 

Bayesian likelihood function. For the first Bayesian updating, Uniform distribution 

was used as the Prior for α-β parameters of the Weibull model. Prior published data 

was used as Evidence to get the first posterior joint α-β distribution. For the second 

Bayesian updating, ALT data was used as Evidence to get the second posterior joint 

α-β distribution. This joint α-β distribution gave a series of Weibull time to failure 

distributions. The predictive posterior failure distribution for the LEDs was estimated 

by averaging over the range of α-β values. Lastly, a new parameter ‘R’ (degree of 

relevance) is used to transform partially relevant prior published data for use in 

Bayesian modeling. 

 

Prior published data, the present ALT data, ADT analysis and Bayesian analysis 

indicate that the MTTF of AlGaInP-MQW LEDs when used in this specific medical 

application (pulse mode, on time 100us with 0.2% duty cycle, temperature = 35°C 

and current density = 21.6Amps/cm2) is in excess of 1E8 hrs. This exceeds the 

warranty life of the medical diagnostic instrument by orders of magnitude and as such 

the LED is suitable for this application. The shape parameter β of the Weibull model 

is less than 1 in all cases indicating a decreasing failure rate. This may be explained 

by the observed logarithmic optical degradation of the present work. The initial high 

failure rate may be due to manufacturing defects, which were not properly screened, 

and hence the surviving population would be able to achieve a long life, since 

probability of surviving increases after the initial degradation. 
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11.2 Objectives and Accomplishments 

The goal of this research was to deepen our understanding of AlGaInP LED 

performance over time for impulse currents (medical application), uncover unique 

failure mechanisms and generate a model of time to failure. Work carried out during 

this study resulted in the publication of three research papers and one poster 

presentation. The following are the answers to the questions we started with: 

1. Will the LED intensity remain within acceptable limits? Yes it does. 

2. Will the LED wavelength remain stable? Yes, if the junction temperature is 

maintained. Spectral shift investigation was performed during this research. 

3. Will the Time to Failure of LEDs exceed the Life of the Medical Instrument? Yes, 

the LEDs will outlast the 7-year life of the medical instrument by orders of 

magnitude. 

4. Will there be a cost benefit of using LEDs vs traditional light sources (flash lamps 

etc)? Traditional lamps have to be replaced every 3-6 months causing a major 

inconvenience to the customer. Use of LEDs will eliminate this replacement 

saving time and money needed for maintenance. 

5. Will there be any critical failure modes for the medical application? A Failure 

Modes Effects and Criticality was performed for identifying critical failure modes 

which were found to be encapsulation degradation and active layer degradation. 

Even a worst case situation would only cause an unscheduled calibration of the 

medical instrument, which would delay medical test results. 
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In addition to meeting the stated objectives, extra work was carried out for using 

partially relevant prior data. A new parameter ‘R’ (degree of relevance) is used to 

control the influence of evidence (by adjusting the Likelihood function) in Bayesian 

modeling. 

11.3 Research contribution and Significance 

This Thesis represents the first measurements of AlGaInP LED reliability for the 

medical diagnostic application. This research will allow replacement of traditional 

light sources (filament or flash lamps) with LEDs. The lamps degrade and have to be 

replaced 3-6 months causing a major inconvenience to the customer whereas LEDs 

will outlast the 7-year life of the medical diagnostic instrument. 

 

This research has produced significant contributions in the failure physics and 

analysis of LEDs for medical applications. We were able to combine the traditional 

ALT/ADT approach with FMECA and Bayesian analysis and hence have shown that 

this methodology is valid for such complex situations. 

 

The research represents a new contribution to LED reliability for significantly 

different bias conditions. Our research used pulse driving with a very low duty cycle, 

and the failures were induced by the magnitude of the peak current. We have reported 

a decreasing failure rate β from the Weibull TTF model, through a unique 

combination of prior published data, ALT and Bayesian analysis. The cause was 

attributed to the observed optical degradation, which followed a logarithmic function 

with high degradation in the initial period. 
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We have reported that bandgap shift due to thermal effects can degrade the power 

output which may give an erroneous indication of “failure”.  Upon returning to 

nominal junction temperature most of the wavelength shift is recoverable. The 

bandgap shifts toward longer wavelengths, but additional work must be carried out in 

order to understand this specific mechanism as well as the initial logarithmic 

degradation. Since the spectral performance is critical for the medical application, my 

spectral shift investigation will provide immense value to the designer. The junction 

temperature will need to be maintained. 

11.4 Future Research 

11.4.1 ALT at different duty cycles 

LED life testing in prior published articles is done under DC conditions. Very few 

articles are available for pulse testing. Per the need of the medical application, ALT 

performed in this research was performed at very low duty cycles (0.2%). Performing 

ALT is difficult and time consuming. Since each experiment takes as high as 6 

months, we could only perform ALT at the required low duty cycle conditions. It 

would be helpful to perform ALT at various duty cycles and estimate LED lifetime as 

a function of duty cycle. This would allow a designer to choose the correct duty cycle 

to maximize the reliability while meeting the LED application requirements. 

11.4.2 Use of a Utility Function while estimating R 

Insufficient data is a very common problem in Reliability studies. The conditions of 

prior published data rarely match application conditions. In Chapter 9, the concept of 

degree of relevance of prior published data was discussed. A 3-step approach is 
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proposed which includes using a multiplier to convert from DC to pulse data, 

estimating the degree of relevance parameter R and then modifying the Likelihood 

function in the Bayesian model with R. The three steps should be subjected to further 

scrutiny. Refinements may need to be carried out for use in applications other than 

LED reliability. One possible refinement is use of a Utility function while estimating 

R. This would allow a parametric relationship between individual relevance 

parameters for material (Rm), Structure (Rs) and Driving conditions (Rd) and the 

estimated R. 

11.4.3 Other methods of using degree of Relevance ‘R’ 

In addition to modifying the likelihood function by R, other methods of using ‘R’ 

should be studied. A common method is a Weighted posterior approach, which 

however was not considered during this research. An approach that we did consider 

(but which needs further development) is transforming the uncertain evidence itself 

based on the value of R. The purpose of transformation is to move the evidence data 

towards a Uniform distribution as R approaches 0. The transformed data when used 

as Evidence during Bayesian updating will make the computations much easier. 

Boundary conditions for the data transformation are as follows:  

If R=0. Transform the data in to ‘Uniform distribution’ 

If R=1, Transformed data is identical to the original data 

For 0 < R < 1, move the PDF of the partially relevant data towards a Uniform 

distribution as R approaches 0. 

During the Transformation of data, it is necessary to make 

Mean of transformed data = M = Mean of ALT/Application data 
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If ti (t1, t2,…,tn) is a set of n partially relevant time to failure of LEDs, the 

transformed data set ti’ is given by 

ti’ = [(2i-1)M/n]1-R ti
R        - (11.1) 

Again, the boundary conditions are 

If R=0, ti’ = [(2i-1)M/n]  with Average = M     

If R=1, ti’ = ti  

11.4.4 Failure Analysis 

Additional failure analysis including microscopy is necessary in order to understand 

the role of dislocations and other defects in causing the initial decrease in power 

output.  The diode surface can be analyzed through atomic force microscopy in order 

to understand the role of surface roughness in decreasing light output.  The analysis 

should be designed so that one may differentiate between latent defects and 

manufactured in defects.  Additional research should be carried out which goes 

beyond the surface of the die and into the interior of the die in order to totally 

characterize the physics of failure. 
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Appendix-1: Laboratory for LED Reliability Testing 
 
Photos of laboratory test setup developed for LED reliability testing 

 

 

Fig A1.1 Laboratory photos of LED ALT setup 
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Appendix-2: Circuit Schematics for LED ALT 
 
Wiring diagrams for LED ALT were used to connect the National Instruments Data 

acquisition board (PCI6025E) to the LED driver circuit, Signal conditioning circuit 

and the International Light Spectro-Radiometer (RPS900-R). 

Fig A2.1 Circuit diagram for LED ALT setup 
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Appendix-3: Circuit diagram for Vf Signal conditioning 
 
The following circuit was designed for this research. It measures the LED forward 

voltage while being driven in pulse mode. In the LED driver circuit, the cathode of 

the LED is pulled low to turn it on. For Vf measurement, this is fed to the op-amp 

(high input impedance) which controls the current through the current source at the 

output. This current source develops a voltage across the output resistor in proportion 

to the Vf swing. This Vf is measured by the data acquisition card. NI-PCI6025E. 

 
Fig A3.1 Circuit diagram for Vf Signal conditioning 
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Appendix-4: Photos of LED during ALT 
 
The following LED photos were taken during the ALT. 

 

Fig A4.1 AlGaInP MQW SMD LED used in this research 
 

 
640x1-24-Lens 

 
640x1-25-Lens 640x1-26-Lens 

640x1-27-Lens 640x1-31-Lens 640x1-34-Lens 

 
Fig A4.2 LED Photos from ALT Batch 2 
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640x1-41-Lens 640x1-43-Lens 640x1-45-Lens 

640x1-46-Lens 640x1-48-Lens 

 

 
Fig A4.3 LED Photos from ALT Batch 3 

 



 

 122 
 

Appendix-5: Labview program for ALT 
 
The following Labview program has been written exclusively for performing the 

Accelerated Life Test during this research. The labview programming language has 

been developed by National Instruments. Refer to http://www.ni.com/labview for 

details. 

 

Fig A5.1 Front Panel of labview program for ALT 
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Fig A5.2 Block diagram of main labview program for ALT 
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Fig A5.3 Block diagram of low level labview program for ALT 
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Appendix-6: Labview Program for Bayesian Modeling 
 
The following Labview program has been written by us exclusively for the Bayesian 

modeling performed during this study. The labview programming language has been 

developed by National Instruments. Refer to http://www.ni.com/labview for details 

 
Fig A6.1 Front Panel Page 1 of labview program for Weibull Bayesian Analysis 

 

 
Fig A6.2 Front Panel Page 2 of labview program for Weibull Bayesian Analysis 
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Fig A6.3 Front Panel Page 3 of labview program for Weibull Bayesian Analysis 
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Fig A6.4 Front Panel Page 4 of labview program for Weibull Bayesian Analysis 

 

  

Fig A6.5 Front Panel Page 5 of labview program for Weibull Bayesian Analysis 
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Fig A6.6 Front Panel Page 6 of labview program for Weibull Bayesian Analysis 
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Fig A6.7 Block diagram Page 1 of labview program for Weibull Bayesian Analysis 
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Fig A6.8 Block diagram Page 2 of labview program for Weibull Bayesian Analysis 
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Fig A6.9 Block diagram Page 3 of labview program for Weibull Bayesian Analysis 
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Fig A6.10 Block diagram Page 4 of labview program for Weibull Bayesian Analysis 
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Fig A6.11 Block diagram Page 5 of labview program for Weibull Bayesian Analysis 
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Fig A6.12 Block diagram Page 6 of labview program for Weibull Bayesian Analysis 
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Appendix-7: Transformation of Partially Relevant Data 
 
The following data sets were generated for incorporating partially relevant data in 

Bayesian modeling. 

Set1={AlGaInP-DH-DC, AlGaInP-MQW-DC, GaN-MQW-DC} 

Also included in the table below is AlGaInP-MQW-Pulse-ALT data  (normalized). 

 
Table A7.1 Set 1 and ALT data 

 

Weibull-
Alpha 2.76E+04 7.82E+05 8.96E+03 1.61E+05 1.55E+09
Weibull-
Beta 0.5 0.89 0.051 0.57 0.5
Weibull-
MTTF 1.33E+04 5.17E+05 - 8.47E+04 7.50E+08
Degree of 
Relevance 
R - - - - 1
Multiplier-
Transform
ation 1 1 1 1 1

Sr.#

AlGaInP-
DH-DC-
Prior

AlGaInP-
MQW-DC-
Prior

GaN-DH-
DC-Prior

GaN-MQW-
DC-Prior

AlGaInP-
MQW-Pulse-
ALT

1 517 200847 8914 8109 2028219
2 1546 200847 8936 8959 13657673
3 1785 204375 8950 9278 70127380
4 1890 236850 8957 10244 121596002
5 4348 236850 8958 13378 122412140
6 4364 273345 8966 15280 194486142
7 4527 304137 24998 265744520
8 5814 342795 132711 298940988
9 7095 807254 140061 312817482

10 16017 2446245 152794 1016462110
11 24825 3328400 189476 1126317125
12 33646 715395 1578094167
13 577168 966689 1960342868
14 577611 987052 3605343586
15 4795072177
16 9473549316
17 9914108215
18 10513715986
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Set2={AlGaInP-DH-DCx500, AlGaInP-MQW-DCx500, GaN-MQW-DCx500} 

Set3={AlGaInP-DH-DCx1451, AlGaInP-MQW-DCx1451, GaN-MQW-DCx1451} 

 
Table A7.2 Set 2 and Set3 data 

 

 

 
 

Weibull-
Alpha 1.38E+07 3.91E+08 8.05E+07 4.00E+07 1.13E+09 2.34E+08
Weibull-
Beta 0.5 0.89 0.57 0.500 0.890 0.570
Weibull-
MTTF 6.65E+06 2.59E+08 4.24E+07 1.93E+07 7.50E+08 1.23E+08
Degree of 
Relevance 
R 0.45 0.74 0.49 0.71 1.00 0.75
Multiplier-
Transform
ation 500 500 500 1451 1451 1451

Sr.#
AlGaInP-DH-
DCx500

AlGaInP-
MQW-
DCx500

GaN-MQW-
DCx500

AlGaInP-DH-
DCx1451

AlGaInP-
MQW-
DCx1451

GaN-MQW-
DCx1451

1 258500 100423500 4054500 750167 291428997 11766159
2 773000 100423500 4479500 2243246 291428997 12999509
3 892500 102187500 4639000 2590035 296548125 13462378
4 945000 118425000 5122000 2742390 343669350 14864044
5 2174000 118425000 6689000 6308948 343669350 19411478
6 2182000 136672500 7640000 6332164 396623595 22171280
7 2263500 152068500 12499000 6568677 441302787 36272098
8 2907000 171397500 66355500 8436114 497395545 192563661
9 3547500 403627000 70030500 10294845 1171325554 203228511

10 8008500 1223122500 76397000 23240667 3549501495 221704094
11 12412500 1664200000 94738000 36021075 4829508400 274929676
12 16823000 357697500 48820346 1038038145
13 288584000 483344500 837470768 1402665739
14 288805500 493526000 838113561 1432212452
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Appendix-8: Bayesian updating using partially relevant data 
 
Table 9.1 Summary of Bayesian Analysis using partially relevant data is reproduced 
here for convenience. The next few pages provide details for each analysis: 
 
Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
1a Unifo

rm* 
AlGaInP-MQW-
DCx500 with LR 

1.00 ALTΨ 1.17E9 0.547 6.00E8 0.392 

1b Unifo
rm* 

AlGaInP-MQW-
DCx500 with LR 

0.75 ALTΨ 1.30E9 0.538 6.58E8 0.244 

2 Unifo
rm* 

AlGaInP-MQW-
DCx1451 with LR 

1.00 ALTΨ 1.57E9 0.601 8.76E8 0.741 

3a Unifo
rm* 

GaN-MQW-
DCx500 with LR 

1.00 ALTΨ 6.70E8 0.415 2.63E8 1.598 

3b Unifo
rm* 

GaN-MQW-
DCx500 with LR 

0.50 ALTΨ 1.06E9 0.437 4.60E8 0.272 

4a Unifo
rm* 

GaN-MQW-
DCx1451 with LR 

1.00 ALTΨ 9.05E8 0.474 4.00E8 0.673 

4b Unifo
rm* 

GaN-MQW-
DCx1451 with LR 

0.75 ALTΨ 1.05E9 0.477 4.87E8 0.314 

5a Unifo
rm* 

AlGaInP-DH-
DCx500 with LR 

1.00 ALTΨ 4.85E8 0.358 1.74E8 2.889 

5b Unifo
rm* 

AlGaInP-DH-
DCx500 with LR 

0.50 ALTΨ 8.90E8 0.387 3.46E8 0.725 

6a Unifo
rm* 

AlGaInP-DH-
DCx1451 with LR 

1.00 ALTΨ 5.88E8 0.388 2.29E8 2.084 

6b Unifo
rm* 

AlGaInP-DH-
DCx1451 with LR 

0.75 ALTΨ 7.43E8 0.395 2.94E8 1.886 

 
Table 9.1 Summary of Bayesian Analysis using partially relevant data (Reproduced 

for convenience) 
 
* Uniform prior joint α-β distribution with α taking values between 5E7 to 9E9 and β 
taking values between 0.1 to 2. 
 
Ψ Accelerated Life Test (ALT) data given in Sr.# 5 of Table 8.1 used as evidence 2.  
 
Details are provided in charts in the following pages 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
1a Unifo

rm* 
AlGaInP-MQW-
DCx500 with LR 

1.00 ALTΨ 1.17E9 0.547 6.00E8 0.392 

 
 
1st Bayesian Updating 

 
 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
1b Unifo

rm* 
AlGaInP-MQW-
DCx500 with LR 

0.75 ALTΨ 1.30E9 0.538 6.58E8 0.244 

 
 
1st Bayesian Updating 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
2 Unifo

rm* 
AlGaInP-MQW-
DCx1451 with LR 

1.00 ALTΨ 1.57E9 0.601 8.76E8 0.741 

 
 
1st Bayesian Updating 

 
 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
3a Unifo

rm* 
GaN-MQW-

DCx500 with LR 
1.00 ALTΨ 6.70E8 0.415 2.63E8 1.598 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
3b Unifo

rm* 
GaN-MQW-

DCx500 with LR 
0.50 ALTΨ 1.06E9 0.437 4.60E8 0.272 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
4a Unifo

rm* 
GaN-MQW-

DCx1451 with LR 
1.00 ALTΨ 9.05E8 0.474 4.00E8 0.673 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
4b Unifo

rm* 
GaN-MQW-

DCx1451 with LR 
0.75 ALTΨ 1.05E9 0.477 4.87E8 0.314 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
5a Unifo

rm* 
AlGaInP-DH-

DCx500 with LR 
1.00 ALTΨ 4.85E8 0.358 1.74E8 2.889 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
5b Unifo

rm* 
AlGaInP-DH-

DCx500 with LR 
0.50 ALTΨ 8.90E8 0.387 3.46E8 0.725 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
6a Unifo

rm* 
AlGaInP-DH-

DCx1451 with LR 
1.00 ALTΨ 5.88E8 0.388 2.29E8 2.084 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
 

 
 



 

 148 
 

 
Sr
.#. 

Prior  Evidence 1 
with Likelihood R 

Deg of 
Rel. 

Evid-
ence 2 

Predictive 
Posterior 

Mean 
TTF 

Ch-Sq 
Statistic 

   R  α β hrs < 4.6 
6b Unifo

rm* 
AlGaInP-DH-

DCx1451 with LR 
0.75 ALTΨ 7.43E8 0.395 2.94E8 1.886 

 
 
1st Bayesian Updating 
 

 
 
2nd Bayesian Updating 
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