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While use of LEDs in fiber optics and lighting ajgptions is common, their use in

medical diagnostic applications is rare. Since ghecise value of light intensity is

used to interpret patient results, understandifgréamodes is very important. The

contributions of this thesis is that it represahts first measurements of reliability of

AlGalnP LEDs for the medical environment of shotlge bursts and hence the

uncovering of unique failure mechanisms. Througtebsrated life tests (ALT), the

reliability degradation model has been developeati @her LED failure modes have

been compared through a failure modes and effetisatity analysis (FMECA).

Appropriate ALTs and accelerated degradation t€803T) were designed and

carried out for commercially available AlGalnP LEDBhe bias conditions were

current pulse magnitude and duration, current dgasid temperature. The data was

fitted to both an Inverse Power Law model with eatrdensity J as the accelerating



agent and also to an Arrhenius model with T asatteelerating agent. The optical
degradation during ALT/ADT was found to be logamiils with time at each test
temperature. Further, the LED bandgap temporarfiiftss towards the longer
wavelength at high current and high junction terapge. Empirical coefficients for
Varshini’s equation were determined, and are noailavle for future reliability tests

of LEDs for medical applications.

In order to incorporate prior knowledge, the Bagmsanalysis was carried out for
LEDs. This consisted of identifying pertinent priglata and combining the
experimental ALT results into a Weibull probabilitpodel for time to failure

determination. The Weibull based Bayesian likelthdonction was derived. For the
1st Bayesian updating, a uniform distribution fumctwas used as the Prior for
Weibull a-p parameters. Prior published data was used asrmad® get the 1st
posterior jointa-p distribution. For the 2nd Bayesian updating, Alatalwas used as
evidence to obtain the 2nd posterior joip distribution. The predictive posterior

failure distribution was estimated by averagingrdahe range oé- values.

This research provides a unique contribution iniabdity degradation model
development based on physics of failure by modelitge LED output
characterization (logarithmic degradation, TF€1), temperature dependence and a

degree of Relevance parameter ‘R’ in the Bayesiatyais.
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Preface

The topic of Bayesian analysis has been discussédiabated for a few centuries.
Jacob Bernoulli developed the Binomial theorem kadl the rules of permutations
and combinations in the T7century. Reverend Thomas Bayes (after whom the
Bayes’ theorem is named) provided an answer to @&#giits inverse probability
problem in the 18 century. Pierre Simon Laplace also referred tthasNewton of
France’' developed the ‘Bayesian’ interpretation psbbability in the early 19
century. Bruno De Finitti published his two volurfiéheory of Probability’ in the
20" century. This provided a further growth and insérim the topic of Bayesian

approach to statistics.

In the Fall of 2009, when | took a course on Datelsis taught by Dr. Ali Mosleh,

UMD, | became interested in Bayesian analysis.unday to day life, we take every
action based on our previous experiences, biagpeddice. Be it a short-term task
such as driving a car or long-term assignment sisctaising a child. While our brain
performs these tasks by judgment and intuition, @8@n analysis allows us to
mathematically use our past experience to prekdéeptobability of an event. | hereby
caution the reader not to perform Bayesian comjaustwhile driving a car since

these computations take time!

While working at Siemens, | was posed with the pwbof testing the reliability of
LEDs for use in a medical diagnostic applicatiorrodnd the same time, | was

researching a topic for my Ph.D. research. Consigdemy interest in Bayesian



analysis, my advisor Dr. Aristos Christou, UMD reuoended that | use Bayesian
approach for assessing the reliability of the LEDam so grateful to him for that
suggestion since this allowed me to do researclsanething that | thoroughly

enjoyed.

Back in 1986, when | was in th& @rade, a friend of mine had given me a few RED
colored LEDs to use as a light source in an eleatreducational kit. LEDs were not
affordable to school students then. | was very eaped with the LEDs since it did
not drain my ‘expensive’ 1.5V battery compared ke tmini light bulb. | also
remember that | had to be careful with the polasityhe battery to avoid damage to
the LED (from excessive reverse bias). Twenty-&arg later, as | am writing this
dissertation, | cannot help but think that my Phr&earch on Bayesian analysis of

LED reliability was destiny!
Milind Sawant

Newark DE.

September 2012.
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Chapter 1: Introduction

1.1 Background and Motivation

Recently introduced consumer products (LED ligktuiies, LED flash lights etc) and
automotive applications have driven the need fghéi reliability of LEDs as a
selling point against existing lighting technolof1]. In LED applications such as
Fiber Optic Communications and Lighting (see Fifj)1the ability of the optical
receiver or human eye to detect presence or absanbight is important. Slight
intensity variation within limits is tolerated. Medical diagnostic applications (see
Fig 1.2), the light output travels through a leitigif and then passes through an
optical cuvette which contains the human sampleofhl urine etc) mixed with
chemical reagents. The absorbance of light by theette mixture at certain
wavelengths depends on the patient’s disease camdiLight intensity is then
measured by a detector/receiver to interpret patiesults. This makes the LED
failure definition unique. Thus the reliability amgdk analysis done for LEDs in non-

medical applications cannot be directly used cargid hazard to human life.

Most of recent literature on LED reliability focssen white LEDs (lighting) or

colored (blue, green and red) LEDs. In most catbey, were operated using dc bias
[15-17, 19, 21, 22, 26-29, 32-34]. In a few cashs, LEDs were driven in a pulse
mode with different on times and duty cycles [2D, 82, 43, 48]. The target medical
application will require 640 nm AlGalnP LEDs op@&mtat pulse currents (on time of

100us at 0.2% duty cycle) making this analysis itaéNe. See Table 1.1 for a



comparison of Lighting/Fiber optic vs. a Medicahgiostic application for LEDs.
Bayesian modeling can allow us to combine prioorimfation from published data

with medical application related test data to eatarposterior LED failure rates.

Commercially available wavelength-specific high gowLEDs can provide a
significant cost advantage compared to traditiohi@h intensity sources (flash
lamps). Some of the problems anticipated with UseEDs were low efficiency of
output optical power, output power reduction, spchift over operation time, and
catastrophic failure due to thermal effects. Theeaech of this thesis was to
characterize LED performance over time, identifyd acharacterize new failure
mechanisms and finally, generate a model of timéatmre. Successive Bayesian
updating using Medical application related LED lifest data was the key

experimental component of this thesis.

Lighting/Fiber Optics Application | Medical Diagnostics Application.

Light is Detectedfor presence or Light Measuredand biologically correlated

absence for medical interpretation.

Driving: DC or 1-100% duty cycle | Driving: 100us pulse (0.2% duty cycle)

Failure Definition: As defined by Failure Definition: Only 20% decrease in
system performance requirements ild.ED output power allowed. No spectral

3-6 db system power degradation. | shift is allowed.

Failure Mitigation: Part replacement Failure Mitigation: System re-calibration

or optical system redesign. is necessary if failure is not catastrophic. |If

failure is catastrophic, LED replacement i
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necessary.

Table 1.1: Comparison of Lighting/Fiber Optics Medical Diagnostic application
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1.2 Goal, Objectives and Accomplishments of Research

This section summarizes the goals of the thesislam@pproach taken as well as the
summary of the results and the unique contributiois subsequent chapters, the
experimental and modeling approach is describetiail as well as the results of the

research.

The goal of this research was to evaluate thehiétya of 640 nm AlGalnP MQW

LEDs in a medical diagnostic application using Aecated Life testing and Bayesian

modeling. The following questions needed answers:

1. Will the LED intensity remain within acceptable lis?

2. Will the LED wavelength remain stable?

3. Will the Time to Failure of LEDs exceed the Lifetbe Medical Instrument?

4. Will there be a cost benefit of using LEDs vs ttiadhial light sources (flash lamps
etc)?

5. Will there be any critical failure modes for the areal application?



The following section summarizes the specific agelishments in order to meet the

objectives stated above

1.2.1 FMECA for LED in Medical application

Failure Modes and Effects Criticality Analysis (FKIE) widely used for risk
analysis was successfully applied to LED reliapiliand physics of failure
investigation. FMECA was used to understand thtcatity of LED failure modes
when used in a medical diagnostic application.ufaimodes of other components of
the Medical device were not included in this stuflge FMECA was repeated and
refined after conducting accelerated life testind BDs. Degradation of the plastic
encapsulation and the active region were founcetthb critical failure modes. These
failures could cause unscheduled calibration ofdiagnostic instrument and could

cause delay in patient medical test results.

1.2.2 Develop Test Setup

An experimental setup was developed for accelerdifedtesting of LEDs in

environmental chambers. The test is automated bggugest software, data
acquisition/control boards and constant pulse atltED driver boards. The test SW
makes the data acquisition board generate the segepulses, which trigger the
LED driver board. The peak current through the LiEDnaintained constant while it
is on. A separate signal conditioning circuit aleeasures the forward voltage Vf
across the diode, which is fed back to the testt8We written to a database. At
regular intervals, the LEDs were removed from thér@nmental chambers and were

characterized electrically and optically (usingpe&ro-radiometer).



1.2.3 Perform Accelerated Life and Degradation Test

Accelerated Life Testing (ALT) and Accelerated Caation Testing (ADT) of the
LEDs in Pulse mode was conducted at 3 tempera(B8€, 55°C and 75°C) and 2
Peak currents (Batch2: 483mA=418.1Afcand Batch3: 725mA=627.2A/Gn The
optical power decreased with time due to degradadfahe LED chip as well as the
encapsulation. The rate of degradation followed ogatithmic function. 20%
degradation was considered failure for the medipalication. For LEDs that did not
reach this failure threshold in a reasonable timesgend data), the logarithmic
function was used to extrapolate TTF. A log-lineawdel was used for analysis of

degradation data and JMP software was used foattakysis.

1.2.4 Accelerating Agent Modeling

Prior published data and ALT data had to be coedetob medical application
conditions. This required the use of acceleratiggna modeling. Inverse Power Law
(IPL) model with J as the accelerating agent amdAlrhenius model with T as the
accelerating agent were used. Regression analgsisigsed to estimate the parameter
‘n’ of the IPL model and activation energy ‘Ea’ thle Arrhenius model. An iterative
regression analysis approach was used to get lossibte regression fits thereby

accommodating the effects of both current dengitytamperature.

1.2.5 Temperature dependence of Bandgap

Reliability testing of AlGalnP MQW LEDs resulted &nshift of Bandgap towards the
longer wavelength when driven at high current. @btarization of the shift showed

that it was temporary and dependent on the jundeomperature Jt. The data was



further analyzed with respect to Varshini’'s equatiand the empirical coefficients

were determined for the AlGalnP material.

1.2.6 Literature Survey for Bayesian Prior

The Bayesian analysis began by identifying pubtisdata, which can be used as
prior information. From the published data, thedinequired for the optical power
output to degrade by 20% was extracted. Analyspubfished data for different LED
Materials (AlGalnP, GaN, AlGaAs), SemiconductoruStures (DH, MQW) and

driving (DC, Pulsed) was carried out.

1.2.7 Bayesian Likelihood Function

Many of the LED degradation mechanisms occur as#me temperature bias range.
The mechanism with the lowest activation energy ld@ominate. The degradation
mechanism of LEDs, published literature and our Alafa all indicate that Weibull
is the most suitable model for this data analyass,verified through a regression
analysis. This rationale was used to develop tlegbW based Bayesian likelihood
function. For the first Bayesian updating, unifodistribution was used as the Prior

distribution fora-p parameters of the Weibull model.

1.2.8 Bayesian Updating

Starting with uniform prior fon-p values, prior published data was used as Evidence
to get the first posterior joini-f distribution. For the second Bayesian updating, th
posterior from the first Bayesian updating was usedhe prior. ALT data converted
to medical application conditions was used as Ewdeto get the second posterior

joint a-B distribution. This jointa-p distribution gave a series of Weibull time to



failure distributions. The predictive posteriorltme distribution for the LEDs was
estimated by averaging over the rangeoef values. Software was written for

performing various Bayesian computations.

1.2.9 Degree of Relevance in Bayesian modeling

An approach is proposed for using partially relévdata in Bayesian modeling. A
new parameter ‘R’ (degree of relevance) is usethaalify the likelihood function
before using it in Bayesian updating. The ‘R’ valdl be used such that the

influence of evidence is decreased as R approaenes

1.3 Publications of Present Research

The research carried out as part of this thesigltegk in the publication of three

research papers and one poster presentation. &ressted below:

1. International Semiconductor Device Research SynipogISDRS), College Park
MD, Dec 2011 [11].

2. Workshop on Compound Semiconductor Devices andgiated Circuits
(WOCSDICE), Island of Porguerolles, France, May2{112].

3. Reliability of Compound Semiconductors Workshop (&), Boston MA, April
2012 [13]

4. Poster presented at ResearchFest, College Parkividizgh 2012.



1.4 Summary of Contribution

The contributions of this thesis is that it représethe first measurements of
reliability of AlGalnP LEDs for the medical envirorent of short pulse bursts and

hence the uncovering of unique failure mechanisms.

1.4.1 LED bias conditions are different

Published articles tried to characterize LEDs udd@@ bias (for reliability) and in

some instances using pulsed bias (for performanaki@ion rather than reliability).
The target medical application does not requiretinaous optical output but only
when the human test sample is provided (in fractibms). Failure mechanisms in

this research were influenced by peak currenterdtian average currents.

1.4.2 Application of LED is different

In Fiber Optics & Lighting applications, light issed for detection. In Medical
diagnostic applications, the precise value of ligiensity is used to interpret patient
results. This research will allow replacement afiitional light sources (filament or
flash lamps) with LEDs. The lamps degrade and havbe replaced 3-6 months
causing a major inconvenience to the customer valset&Ds will outlast the 7-year

life of the medical diagnostic instrument.

1.4.3 Consequence of LED Failure is different

In Fiber Optics & Lighting applications, failureseausually significant loss of optical
output. Failure usually means inconvenience andrrédncy is a common mitigation.
In medical diagnostic applications, calibration amferencing is used to mitigate

LED failure. However, if a subtle change in optigakensity goes undetected, it could



cause erroneous patient results. This can causmeswus diagnosis, incorrect
treatment and possibly severe health complicatibiisis were to occur, apart from a
possible litigation between patient, hospital amel medical equipment manufacturer,

the FDA will start questioning the entire risk aysa$ done on the medical equipment.

1.4.4 Decreasing failure ratef3 of the Weibull TTF model

It was observed that the shape paramgtrthe Weibull TTF model is less than one
(implying a decreasing failure rate) in prior pshiéd data, ALT and Bayesian model.
During ALT, the rate of optical output degradatiaas logarithmic and this rate
varied significantly between different LEDs. SomeDs cross the 20% degradation
(failure threshold for this application) earliemthothers. For LEDs that do survive
this initial high rate of optical degradation, thebability that it will survive longer

increases. This explains the decreasing failue= rat

1.4.5 Temperature dependence of bandgap characterized

It was found that the bandgap of AlGalnP MQW LEDsfts towards the longer
wavelength when driven at high current. Characion of the shift showed that it
was temporary and dependent on the junction teryerdt. The data was further
analyzed with respect to Varshini’s equation, ahd eémpirical coefficients were
determined for the AlGalnP material. Since the spéperformance is critical for the
medical application, my spectral shift investigatigill provide immense value to the

designer. The junction temperature will need torfaéntained.
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1.5Dissertation Layout

Chapter 1 provides an introduction to this dissema It starts by giving a
background and motivation. It specifically descsibkow a medical diagnostic
application differs from a lighting or fiber optapplication for LEDs. It then states
the goals and objectives of this research. Workaptished including publication of
three research papers and a poster presentatibisied. Finally, it describes the

contribution and why this research was necessary.

Chapter 2 provides a thorough literature reviewtlo® subject. It starts by listing
various research groups who are working on theestitgf LED reliability. It also
lists various journals, which have published imanttarticles on LED reliability.
Thereatfter it describes the work done on AlGaln®&by various research groups.
It briefly describes their work, their approach aheir results. The same is then
described for GaN LEDs. The chapter ends by dasgib couple of articles on

Bayesian analysis.

Chapter 3 covers the theory for LEDs. It descrithesbasic LED operation, the band
structure in semiconductors and the relationshipvéen the band gap energy and the
wavelength of the photon emitted. It describes thdiative and non-radiative
recombination process and its effect on LED relighiTemperature dependence of
the spectrum is briefly described. It then desailbee basic LED degradation

mechanisms and those specifically related to AlIBdlEDs.

11



Chapter 4 describes Accelerated life modeling. rPpgblished data and ALT data
had to be converted to medical application cond#ioThis required the use of
accelerating agent modeling. Inverse Power Law XIPtodel with J as the

accelerating agent and the Arrhenius model withsTtree accelerating agent are
described. Acceleration factors are derived. Par@anta’ for the IPL model and

activation energy ‘Ea’ for the Arrhenius model agstimated using regression
analysis for various combinations of LED materiadl atructure. After converting the

published data to medical application conditiohg subjected to Weibull analysis.

Chapter 5 describes the Accelerated Life TestingT)Aperformed during this
research. It describes the materials and the methedd. ALT was performed at
elevated temperature and current and the LEDs dméven in pulse mode. The test
setup used is also described. This is followed Ogtailed discussion on the results of
ALT. It describes the LED optical power degradatiencapsulation degradation, and
chip vs. lens degradation and spectral performaftee ALT. The results of the ALT

are then summarized.

Chapter 6 describes the thermal shift of the adéiyer band gap. It first describes the
forward bias method used to establish the linektiomship between the forward
voltage Vf of the diode and the junction temperatuk series of experiments are
described which establish the relationship betw#esnd the peak wavelength of the

LED. It then describes the Varshini’'s model andnestes the parameters of this

12



model for the AlGalnP LED material. Findings of yius researchers are described

and they are compared and contrasted with ourtsesul

Chapter 7 describes the Failure Modes, Effects @riticality Analysis (FMECA)

performed during this research. Severity clasdificafor a general and a medical
diagnostic application are described. Various LEAlufe modes are discussed.
FMECA table is constructed and critical failure raedare identified. The table is
reconstructed after ALT and findings are discus§¥dstic encapsulation and active
region degradation were estimated as the critaialre modes. Either of these failure
modes will cause system level effects such as ekeedrift requiring unscheduled

calibration and delayed medical test results.

Chapter 8 describes Bayesian modeling of LED rétigbFirst, the basic Baye’s
theorem is derived. Then the likelihood functiom éo- f parameter based Weibull
model is developed. Equation for the jomnt- B posterior distribution is derived.
Thereafter the results of our Bayesian modelingdsseussed. The first posterior is
generated using published data as evidence andeitend posterior is generated
using the ALT data as evidence. Predictive posteestimates are derived by

averaging over the range @& B values.

Chapter 9 proposes the use of a new parameter ®effeelevance (R) in Bayesian

analysis. Life of LEDs varies significantly depemgliupon the LED material used,

the semiconductor structure used and the mode igfndr Bayesian modeling

13



computes the LED reliability by combining prior pisbhed LED data with the current
test data. It is very difficult to get prior fordhexact same material, structure and
driving. The ‘R’ value was used to modify the Bag@smodel such that the influence
of evidence is decreased as R approaches zero.chaer discusses methods of
obtaining the parameter R and one method of ugingdditional approaches are

discussed in section 11.4 (Future research).

Chapter 10 covers the topic of Bayesian model 8setecand validation. The
subjective nature of the prior distribution mayseidoubts about the accuracy of
Bayesian posterior distributions. Validation apmloaguch as the chi-square statistic
is described. Validation of Bayesian modeling farigus phases is discussed. These
include selection of the distribution for the ungieg failure distribution, suitability
of the prior information and appropriateness ofdmtve posterior distribution

against the test data.

The final chapter 11 concludes this research. Ivieves the objectives,

accomplishments and future areas of research.
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Chapter 2: Literature Review

2.1Introduction

Various research groups are working on LED religb#énd related topics:

» Osram, HP, Philips R&D groups: High brightness AlGaLEDs [15-24]

» University of Padova, Italy: Reliability & Life tésg of GaN LEDs [32-41]
* LRC, Rensselaer Polytechnic Institute, Troy, NYILEife Testing, [49-50]
» Sandia National Laboratories, NM: AlGaN/InGaN/Galfeltesting [42-44]
» Nakamura, Yanagisawa, other Japanese groups: GaN [F 46-48]

* NIST: Calibration / LED measurement Standards,§3p-

» Miscellaneous / Bayesian [5, 25-27, 58-63]

Articles related to LED reliability have been pwhled in various journals such as
IEEE, SPIE, Microelectronic Reliability, Applied @gs, Electronics Letters,
Electronic Materials & Packaging etc. Ott [14] hasitten a review article on
capabilities and reliability of LEDs as a part oNASA report, which summarizes
some of the degradation modes. Vanderwater, Kisal.dtl5] have written a nice
review article on high brightness AlGalnP LEDs wdas Meneghini et al. [32] have
reviewed reliability of GaN LEDs. Work by NakamJ® and Fukuda [2] served as
good references for this dissertation. Researdhissdissertation relied heavily on
work by Mosleh [8] for concepts on Bayesian reliapi(explained in chapter 8). A
few examples of use of Bayesian analysis in rdligbapplications are discussed at

the end of this literature review.
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LEDs used in this research used AlGalnP material @#re Multi Quantum Well
(MQW) semiconductor structure. AlGalnP is a mattgehnology developed in the
early-mid-nineties compared to GaN, which is solving. It was interesting to
observe that a lot of published AlGalnP relatedckas focused on performance
improvement [15-23, 25-27, 30] compared to artidasAlGalnP Reliability & Life
testing [15-17, 21, 22, 24, 26-30]. On the othardhave found many recent articles
on GaN LEDs which specifically focus on Reliabilapd Life testing [32-43, 47-51].
A possible explanation for this could be that sitast 5 years, LEDs are being
considered as serious competitors to compact teredamps (CFL) which will soon
replace incandescent lamps. LED based ‘bulbs’, WwHit in regular electrical
fixtures, have started appearing in retail stoieses2011. LED based break lights
and indicator lights are available in recent autbiteomodels. Many of the flashlights
sold in retail stores since 2009 use LEDs. Sucbraative applications and consumer
products [16, 21, 32] may have driven the neediginer reliability as a selling point

against existing lighting technology.
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2.2 AlGalnP LEDs

Per Vanderwater, Kish et al. [15, 17], attainmehhigh efficiency performance in
AlGalnP LEDs is a result of the development of auhel Metal Organic Chemical
Vapor Deposition (MOCVD) crystal growth techniquésl Ga; x)o.sinosP Double-
Heterostructure (DH) active layers are grown latticatched on GaAs substrates by
MOCVD. To improve current spreading and light-egtian, a p-type GaP window is
grown by Vapor Phase Epitaxy (VPE) on the devicgens. Subsequently, the
absorbing GaAs substrate is selectively removed anulansparent n-type GaP
substrate is substituted in its place by semicotduwafer bonding at elevated
temperature and under applied uni-axial pressureingportant step is matching of
the crystallographic orientations of the bonded emafto facilitate low-resistance
(low-voltage, high efficiency) operation. After veaf bonding, patterned alloyed
ohmic contact metallization is applied to both ghand n sides of the wafer, and the

devices are diced and packaged into standard LEpda

A recent review article by Streubel et al [22] mentfurther advancements in the
AlGalnP LED technology such as texturing the swefaé the chips to improve
extraction efficiency. They provide a schematicwdra of the layer structure of a
typical high brightness LED. The outer layers argeds to optimize carrier
confinement and decrease leakage. The Setbaclslayeused to control doping and
diffusion of dopants Mg, Zn and Te. Window layenrs top are used to improve
current spreading where as an optional DBR layeséd to recover the light emitted

in the direction of the substrate.

17



Grillot et al [16] used both fixed and variable mmt density stress conditions to
study light output degradation of AlGalnP LEDs asdtions of LED stress current
and LED stress time. For stress times long enouaghcarrent densities high enough
to saturate any short-term effects, quantificatdrthe resulting data indicated that
the LED degradation is a linear function of currdansity and a logarithmic function
of stress time for as long as 60 000 hours. Thewsthat LED degradation can be
caused by changes in Extraction efficiency({; Defect concentration ) and
Leakage current density(f). They argue that monotonic increase or decreasED
light output is likely due to corresponding increas decrease in{{t) whereas short
term degradation is due to changes ifftNas well as changes in_(f) that saturate

for sufficiently long stress time or high curremngdity.

Lacey et al [28] studied the reliability of AlGalrfPH LEDs operating typically at
600 nm. To investigate degradation, accelerateagaai ambient temperatures of 50,
75 and 125 C was carried out for over 5000 hrs. &h@vation energy of
homogeneous degradation was determined to be Oahd\an extrapolated half-life
in excess of 1.0E6 hrs was estimated at an amt@ergerature of 20 C. Nogueira et
al [30] performed accelerated life testing on AIGRAILEDs at high temperatures
(120C to 140C). Open circuit catastrophic failunese observed and the root cause
was due Anode corrosion caused by moisture peimgjrte package. The data was
analyzed using Inverse Power Law model for cureamd Arrhenius reaction rate

model for temperature. The data was also fitted/édbull distribution.
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Hofler et al [18] concluded that for AlGalnP LEDsc¢reasing the junction area (from
210 x 21@m? to 500 x 50Qim?) without changing the aspect ratio results in ~25%
decrease in extraction efficiency. They also saymicant color shifts and decrease
in luminous efficiency as junction temperature ixreased. Liang et al [25]
specifically compared temperature performance f@aN and AlGalnP LEDs. In
case of GaN MQW LEDs, the Electro-Luminescence (Bigin peak increased
monotonically with temperature from 10 to 200 K ahidhtly decreased with further
temperature increase in the 200 K range. This isantrast with the monotonic
decrease of EL with increasing temperature for eatienal AlGalnP QW red LEDs.
The anomalous temperature dependence of the InGaNIGEDs was attributed to

the barrier caused by Quantum Dot (QD) like strrectu

Kish et al [20] studied high luminous flux AlGalidP large area emitters with
currents as high as 7A. Although heating is sigaift in these devices, their
performance was primarily limited by light extramti Under pulsed operation (i,

0.1 % duty cycle), a conventional TS AlGalnP LEDnfa (213 x 218m? chip)
exhibited an external efficiency of ~9.1% (415 Afymompared to ~3.1% for the
large-area LED (375 x 45@@n* chip) where both chips were fabricated from the
same wafer. Under DC operation, the external efficy of the large-area LED

further decreases to ~1.9%.
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Chang et al [19] reviewed the luminescence progertif various AlGalnP LEDs
using Double Heterostructure (DH), Distributed Bydgeflector (DBR) and various
Multi Quantum Well (MQW) structures. They found thdQW LEDs are brighter
than DH and DBR LEDs, particularly under low cutrémection. For the MQW
LEDs, their Electro-Luminescence (EL) increasesh&snumber of wells increase.
They found that MQW LEDs are more reliable than &idl DBR LEDs. Under pulse
operation, they found that, as the number of weltseases, the amount of decay

becomes smaller.

Altieri et al [23] studied internal quantum effioey of high brightness AlGalnP
LEDs. One approach to improve the LED efficiencyoismprove the light extraction
efficiency by means of new device concepts compgiswafer bonding, chip
geometry or surface texturing. However, with desieg emission wavelength, a
strongly temperature dependent loss of LED Exte@antum Efficiency (EQE) is
observed. This short wavelength behavior indicitesexistence of loss mechanisms
originating from the active layer itself. E.g. Nadrative recombination and carrier
leakage into the confining layers reduce the irgkequantum efficiency (IQE). From
a more detailed analysis of the wavelength deperelenf the non-radiative
recombination, they assign the loss to the elednamsfer from the quantum wéit
band to the confinement layer X-bardd-X transfer), dominating over other defect

related mechanisms.
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Krames et al [21] review the status of LEDs fori®&skate lighting applications. The
AlGalnP (red to yellow) and InGaN-GaN (blue to greenaterial systems dominate
the field. Sophisticated device structures basedhese material systems result in
light extraction efficiencies of 60% and 80%, folGalnP and InGaN-GaN,
respectively. At the time of their writing, commigdty available high-power white
LEDs based on phosphor down-conversion providednouos efficacies of 70 Im/W.
Recent improvements in LED luminance place therghiter than halogen filaments,
making LEDs attractive for use in automotive heagla for the first time. The
challenge for solid-state lighting now is cleanyinternal quantum efficiency, which
for the InGaN-GaN and AlGalnP (at operating tempees) is far below what has
been achieved in other IlI-V systems such as (Af§&aBreakthroughs in internal
guantum efficiency would result in high-power phiospwhite LEDs with
efficiencies reaching 160 Im/W or more, a perforoeevel surpassing anything

known to date for a practical white light source.

2.3GaN LEDs

Meneghini et al [32] review the degradation meck@ns that limit the reliability of
GaN-based light-emitting diodes (LEDs). They prapasset of specific experiments
for separately analyzing the degradation of thévadayer, ohmic contacts and the
package/phosphor system. They show that Low-cudensity stress can determine
the degradation of the active layer of the deviéeglying modifications of the
charge/deep level distribution with subsequent ease of the nonradiative
recombination components. High-temperature storeaye significantly affect the

properties of the ohmic contacts and semiconduat@r at the p-side of the devices,
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thus determining emission crowding and subsequpfitad power decrease. High-
temperature stress can significantly limit the cgitproperties of the package of high-

power LEDs for lighting applications.

Levada et al. [34] carried out accelerated lifetstesn plastic transparent
encapsulation and pure metallic package GaN LEDsrarReters chosen as
representative of the observed failure modes wetec& power (OP) measured at 20
mA, Reverse current (Irev) measured at -5 V anieSeesistance Rs (differential at
40mA & 10mA). The failure criteria were 20% decreda OP, Irev increase by
factor of 2.5 and 7% increase in Rs. A consistertbiMl based statistical model was

found for MTTF and the accelerating factors of hoginrent stresses were estimated.

Buso et al. [35] experimentally investigated therfgenance of commercially

available high brightness GaN LEDs under DC andgullbias. Electrical, Thermal
resistance and Optical characterization was donse® the effects of stress. The
authors conclude that square-wave driving can fieiezit only for high duty cycles.

For low duty cycles, worse performance was detected to the saturation of
efficiency at high peak current levels. Three fasilof devices submitted to dc and
pulsed stresses showed different behaviors, indgahat stress kinetics strongly

depends on the LED structure and package therrsajrde

Osinski et al [42] focused on the performance ahewrcial AlGaN/InGaN/GaN

blue LEDs under high current pulse conditions. Tésults of deep level transient
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spectroscopy (DLTS), thermally stimulated capaciéaand admittance spectroscopy
measurements performed on stressed devices, shuweddence of any deep-level
defects that may have developed as a result of ¢ugtent pulses. Physical analysis
of stressed LEDs indicated a strong connection é&twthe high intrinsic defect

density in these devices and the resulting moakegfadation.

Following the initial studies of rapid LED failurekie to metal migration under high
current pulses, Barton et al. [43] placed a numbielNichia NLPB-500 LEDs

(InGaN/AlGaN) on a series of life tests. The lissts did not produce significant
degradation at currents less than 60 mA indicaimgmarkable longevity in spite of
their high density of defects. One of the oldertedogy, double heterostructure
Nichia LEDs showed a greater than 50% light ougtegradation after 1200 hours.
Failure analysis revealed that a crack had isolgtetl of the junction and was the
cause of the degradation. Two of the newer gemerdtEDs showed a greater than
40% loss in output intensity after 3600 and 4400reoThe LEDs did not exhibit any
significant change in its 1-V characteristics iratiag that the failure mechanism may

be related to the plastic encapsulation material.

Yanagisawa [48] performed long-term acceleratedatigion tests on GaAlAs red
LEDs under continuous and low-speed pulse operatimhstudied the differences in
the degradation and lifetime. The major factor cayshe degradation was decrease
in the radiative recombination probability due tefett generation. In an earlier

paper, Yanagisawa [47] investigated the long-teotekerated degradation of GaN
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blue LEDs under current stress. From the degraugtadtern of optical output over
time, the dependence on current stress was stadi@@dn equation for estimation of

the half-life of the diode was obtained.

Getty et al [56] demonstrated a method for the rd@tetion of internal quantum
efficiency (IQE) in IlI-nitride-based light-emittghdiodes. LED devices surrounded
with an optically absorbing material were fabrichte limit collected light to photons
emitted directly from the quantum wells across avkm fraction of the recombination
area. The emission pattern for this device confiian was modeled to estimate the
extraction efficiency. IQE was then be calculateahf the measured input current
and output power. This method was applied to ceplamkGal-xN-based LEDs
emitting at 445 nm. Initial measurements estimatedQE of 43% + 1% at a current

density of 7.9 Alcm2.

Chen et al. [31] evaluated the thermal resistanderaliability of high power Chip on
Plate (COP) LEDs. The techniques used were TheRwesistance Circuit (TRC)
method, Finite Element Method (2D Ansys) and Expental using Wet High
Temperature Operation life (WHTOL) conditions (8888&%RH, 350mA) for 1008
hrs. Results from 2D Ansys were closer to expertalatata than TRC since real heat
flow paths are difficult to be completely evaluatsdTRC. During WHTOL, all COP
packages with phosphorus in the silicone encapstdded after 309 hrs. The failure
sites were located at aluminum wire bonding to ¢h@ and copper pad of the

substrate. For the passing packages (without ploogg)y junction to air thermal
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resistances increased with time by up to 12 °C/Vé¢ tlu decrease in thermal

conductivity of die attach (from moisture absorpjio

Narendran et al. [49] conducted two experimentsthim first experiment, several
white LEDs (same make/model) were subjected to tifgts at different ambient
temperatures (35, 45, 50, 55, & 80). A temperature sensor was placed on the
cathode lead (T-point). The environment chambes® @cted as light integrator
boxes. The drive current was 350mA and the light weeasured by a photodiode.
The exponential decay of light output over time wasd to estimate life. The life
also decreased exponentially with increasing teaipe. In a second experiment,
several high-power white LEDs from different maratfaers were life-tested under
similar conditions (35°C, 350mA). Results showed that different produciseh

significantly different life values.

In an earlier paper [50], Narendran et al. measlighd output degradation and color
shift over time for commercially available highlWEDs. From one manufacturer
(single die per package), red, green, blue andewltiiDs were used. From a second
manufacturer (multiple dies per package), a difietegh flux white LED was used.
The LED arrays were tested under three sets ofitonst Normal current (350 mA)
/ normal temperature (3%), 350 mA / 5°C and 450 mA / 35C. The LEDs were
characterized optically by NIST accredited 2 météegration spheres. Overall, the
single die green and white LED arrays showed vigtig light loss after 2000 hours

even though the current and temperature were isedealhe red LED seemed to
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have a high degradation rate. The white LEDs hay@ificant color variation (total

12 step MacAdam ellipse, 2 step during initial 20@Qirs).

Tsai et al. [51] aged samples from different maoufieers at 65, 85, and 9GS under a
constant driving current of 350 mA. The resultsvebo that the optical power of the
LED modules at the two view angles of + {435°) decreased more than the other
view angles as the aging time increased. This wastd the reduction of radiation
pattern from the corner effect of lens shape, teduh lower output power. Results
also showed that the center wavelength of the Lpgztsum shift 5 nm after thermal

aging 600 hours at 96 because of degradation in the lens material.

Wang et al [45] developed a comprehensive opticalehfor dual wavelength LEDs
using optical ray tracing programs. Optical dismpersof GaN, InGaN, and AlGaN
was also included in this numerical model. Per #l¢hors, the light extraction
efficiency of LEDs can be calculated based on LEDcsure and material properties.

The LED device structure can be optimized to imprthe light extraction efficiency.

2.4LED measurements

Yoshi Ohno [52] reviewed photometric, radiometdod colorimetric quantities used
for LEDs and discussed CIE standardization effoAslarge variation in LED

measurements is reported (40-50 % due to spegiasib characteristics) compared
with traditional lamps (within a few %). The AvestjLED Intensity is defined by
CIE127 publication and involves measuring the istignby a circular photometer

head (100 sq.mm) at a distance of 316 mm (condAio®001 steridians) or 100 mm
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(condition B, 0.01 steridians). This is recommend@dindividual LEDs having a
lens optic (such as a 5 mm epoxy type) since tleepat behave as a point source.
CIE127 also revised total luminous flux measuremamd spectral measurements to
include backward and sideways emissions of LEDsbynting it in the center of the
integrating sphere. For applications where backvzardideways emissions are not

useful, a new quantity ‘Partial LED Flux’ is progas

Miller et al. [53] cover the capabilities and sers provided by NIST for calibration
of LEDs. Services include official color calibrati® radiometric calibration and total
spectral radiant flux standards. In two earliergrad54, 55], the authors discuss the
uncertainty in LED measurement. For Average LEensity (photometric bench /
alignment procedures), uncertainty range was 018 % %. For total luminous flux
measurement (mounting geometry, backward emissnegrating sphere designs,
including baffles and auxiliary LEDs) the expandettertainty range was 0.6 % to
2.3 %. Park et al. [57] also evaluated the unastan measurement of Average LED
Intensity by using a spectral Irridiance standanthp as a calibration source for the
spectro-radiometer and 12 uncertainty component$h worrelation taken into
account. The relative uncertainties for the testgas were determined to be in a

range from 4.1% to 5.5%.

2.5Bayesian analysis

Brian Hall [58] published his Ph.D. dissertatiotietl ‘Methodology for evaluating
reliability growth programs of discrete systemgieTpurpose of this area of research

is to quantify the reliability that could be acheelif failure modes observed during
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testing are corrected via a specified level ofdifectiveness. New reliability growth
management metrics are prescribed for one-shogregstinder two corrective action
strategies. The first is when corrective actioressdglayed until the end of the current
test phase. The second is when they are appliptbtotypes after associated failure
modes are first discovered. Statistical procedyres, classical and Bayesian) for
point-estimation, confidence interval constructiand model goodness-of-fit testing
are also developed. In particular, a new likelihwattion and maximum likelihood

procedure is derived to estimate model parameters.

Hurtado-Cahuao [60] published his Ph.D. dissentetitied ‘Airframe Integrity Based
on Bayesian Approach'. A probabilistic based methasl been proposed to manage
fatigue cracks in the fastener holes. As the Bayeanalysis requires information of
a prior initial crack size pdf, such a pdf is assdnand verified to be lognormally
distributed. The prior distribution of crack size eacks grow is modeled through a
combined Inverse Power Law (IPL) model and logndmektionships. The first set
of inspections is used as the evidence for upddhegcrack size distribution at the
various stages of aircraft life. After the updating is possible to estimate the
probability of structural failure as a functionftight hours for a given aircraft in the
future. The results show very accurate and useflles related to the reliability and

integrity of airframes in aging aircrafts.

Wang et al. [61] propose a Lognormal distributiomdal to relate crack-length

distribution to fatigue damage accumulated in agiinfyjames. The fatigue damage is
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expressed as fatigue life expended (FLE) and isutsked using the strain-life
method and Miner’s rule. A 2-stage Bayesian updgpirocedure is used to determine
the unknown parameters in the proposed semi-erapiriodel of crack length versus
FLE. At the first stage, the crack closure modalged to simulate the crack growth.
The results are then used as data to update thfarmative prior distributions of
the unknown parameters of the proposed semi-emapimodel. At the second stage,
the crack-length data collected from field inspmasi are used as evidence to further
update the posteriors. Two approaches are proptseduild the crack-length
distribution for the fleet based on individual postr crack distribution of each
aircraft. These can be used to analyze the rdlyabi aging airframes by predicting,
the probability that a crack will reach an unacabf# length after additional flight

hours.

R. Bris et al [62] demonstrates the use of Bayespproach to estimate the
acceleration factor in the Arrhenius reliability d& based on long-term data given
by a manufacturer of electronic components (EC)Jng§yshe Bayes approach they
consider failure rate and acceleration factor iy vandomly according to some prior
distributions. Bayes approach enables for a giyge tof technology, the optimal
choice of test plan for RDT under accelerated doms when exacting reliability

requirements must be met.

Anduin E. Touw [63] use Bayesian estimation proceddor mixed Weibull

distributions. Estimation of mixed Weibull distritbon by MLE and other methods is
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frequently difficult due to unstable estimates iagsfrom limited data. Bayesian
technigues can stabilize these estimates throwghrtors, but there is no closed-form
conjugate family for the Weibull distribution. Thigaper reduces the number of
numeric integrations required for using Bayesiatinegion on mixed Weibull

situations from five to two, thus making it a mdeasible approach to the typical
user. It also examines the robustness of the Bayesstimates under a variety of

different prior distributions.
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Chapter 3: Theory of Light Emitting Diodes

3.1Basic LED Operation

A light Emitting Diode (LED) is a semiconductor d, which emits light when

current passes through it in the forward directiee Fig 3.1 [5] and Fig 3.2 [5].

When the diode is forward biased [9], electronsadnie to recombine with holes and
energy is released in the form of light. This efffisccalled electro-luminescence and
the color of the light is determined by the eneggy of the semiconductor. Like a
normal diode, the LED consists of a chip of a semdtictor material impregnated, or
doped, with impurities to create a p-n junction ethtonducts when forward biased

(P-type Anode is +ve with respect to N-type cathode

Epoxy lens/case

\Wire bond

Reflectiv\cavity

~] Flat spot
i

Y7

] —

Anode [ f] Cathode

Fig. 3.1 Construction of Common LED [5] vs. LED dsa this research
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Fig. 3.2 LED Operation [5]

3.2Band Structure in Semiconductors

The electrons of a single isolated atom occupy etambitals, which form a discrete
set of energy levels [9]. If several atoms are phiuogether into a molecule, their
atomic orbitals split, as in a coupled oscillatidhis produces a number of molecular
orbitals proportional to the number of atoms. Whelarge number of atoms (>3p
are brought together to form a solid, the numbeprbitals becomes exceedingly
large. The difference in energy between them besoreey small, so the levels may
be considered to form continuous bands of enertherahan the discrete energy
levels of the atoms in isolation. However, someerveils of energy contain no

orbitals, no matter how many atoms are aggregéteajng band gaps.

The band gap of a semiconductor is either diregtdirect. The minimal-energy state

in the conduction band, and the maximal-energyestathe valence band, are each
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characterized by a certain k-vector in the Brilloabne [9]. If the k-vectors are the
same, it is called a "direct gap". If they are @iéint, it is called an "indirect gap". For
an indirect band gap, an electron cannot shift ftbe lowest-energy state in the
conduction band to the highest-energy state invéthence band without a change in

momentum. Hence direct band gap semiconductongraferred for LEDs.

3.3Wavelength of emitted light

When an LED is forward biased, the electrons incthreduction band recombine with
holes in the valence band. In the recombinatiorcgss, energy Eg corresponding to
the band gap is emitted in the form of a photon sehwavelengtiA (in nm) is given
by

A=hc/Eg=1239.8/Eg -(3.1)

where h = Plank’s constant, ¢ = speed of lightdouum and Eg = band gap in eV.

3.4Radiative and Non-radiative recombination in semimmductors

During a radiative recombination [9], an electrarthe conduction band annihilates a
hole in the valence band, releasing the excesgygres a photon. This process is
possible in a direct band gap semiconductor. Irtrast) the energy produced in a
non-radiative recombination does not create photdmg is released by lattice
vibration (phonon) in the semiconductor and finathhanged to heat [2]. This non-
emitted energy enhances the rate of degradatiomptifal devices. Thus the non-
radiated recombination process plays a very imporiae in the device degradation

and hence device reliability.
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3.5Light output vs. Junction temperature

Temperature dependence of semiconductor deviceadesistics is very important
from a reliability standpoint [2]. During operatioheat is generated in the active
layer (also in other parts having ohmic resistanagiich raises the junction
temperature. As the junction temperature incredbesnternal quantum efficiency
decreases due to the reduction of the radiativembmation coefficient and increase
in overflow of injected carrier from the active &y Both of these changes cause the
light output of an LED to decrease rapidly. Moregvthe influence of Auger
recombination becomes large in the high-injectaglore Thus the suppression or
removal of the heat generated in the active redimmg operation is very important
to obtain high radiative efficiency. Thermal stoftactive layer bandgap was studied

in detail during this research and is discussedhapter 6.

3.6Basic LED degradation mechanisms

Various degradation modes of LEDs have been cladsj2] as rapid, gradual and
sudden. Different parts in LEDs prone to degradataye Active region, P-N
Contacts, Indium Tin Oxide layer, Plastic encapsataand Packaging (Bond wires

and internal Heat Sink). These are described iaildatsection 7.2.

3.7Degradation of AlGalnP LEDs

The resistance to degradation of AlGalnP LEDs leenlattributed by Streubel et al
[22] to a decreased sensitivity of the devicesxwlation. This is due to reduced Al
content in the active zone if compared to AlGaAsicks. Also, growth and mobility

of dark line defects is decreased owing to incapon of In in the compound. Per
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Vanderwater et al [15], neither the mismatched @afélow layer nor the presence of
the wafer-bonded GaP substrate adversely affecs réfiability characteristics.
Similarly Grillot et al [16] feel that Auger reconmation does not affect long term
reliability of AlGalnP LEDs. They attribute decreas light output over time to
changes in Extraction efficiency, Leakage curresity out of the active region and

Defect concentration.

Gradual degradation in LEDs causes the light outpulecrease over its lifetime.
Arrhenius reaction rate model has been used toridesthis process. Catastrophic
degradation could be due to an electrical surgendutevice handling, setting and
operating. In those cases, the active layer ang-hgunction corresponding to a part
or the entire light emitting region are catastrgphy destroyed. The dark spots or
dark regions corresponding to the damaged patteptn junction can be observed

by EL topographs.
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Chapter 4: Development of Empirical Modeling for Test

Data Analysis

During review of published literature on LED reliigtly and also during accelerated
life testing, both current and temperature wereuiemeously used as accelerating
variables. In order to estimate LED life under noahi conditions (no life

acceleration), models for current and temperatacelaration were used. A method
was also developed to evaluate the combined effedtoth of these accelerating

variables.

4.1 Current density: Inverse Power Law model

Inverse Power Law (IPL) model with current densltys the accelerating variable
was used in this analysis. Since the prior publisti@éta spans over decades, use of
current density (instead of current) normalizesdfiect of die size increase to a great
extent. The IPL model is given as

TTF=AJ" -(4.1)

Where TTF=Time to failure in hrs, J=LED Current siégy1in Amps/cri, A & n are

+ve constants. Taking Ln on both sides,
Ln(TTF) = LnA-nLnJ -(4.2)
Equation 4.2 gives a straight line relationship mwhen’ is the slope and J is the

accelerating variable. The negative slope imphes &s the current density increases,

the TTF decreases.
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4.2 Temperature: Arrhenius Reaction Rate model

For temperature acceleration, the Arrhenius reactte model was used.

i)

Rate= Be \*T -(4.3)
Where T=Temperature in °K, Ea=Activation energy tok LED degradation,
K=Boltzmann’s constant, B=constant. Taking a remipt of ‘rate’ gives ‘time to

failure’ as given by

&
TTF=Ce™ - (4.4)
Where TTF=Time to failure in hrs, C=1/B is anotlmenstant. Taking Ln on both

sides,

Ea
Ln(TTF) =LnC+ ﬁ - (4.5)

This is a straight line relationship where Ea is stope and 1/KT as the accelerating
variable. The positive slope implies that as terapee increases, 1/KT and TTF

decrease.

4.3 Computation of Acceleration Factors

From equation 4.1, Acceleration Factor for InvePsever Law Model is given by

TTF J Y
AF — Use — Acc )
*TITE (J j (4.6)

Acc Use

From equation 4.4, Acceleration Factor for ArrhenReaction Rate Model is given

by
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TR _ )

Use Tuse Tace

> TTF

Acc
Since multiple data points at different temperatuasmd currents were available,

-(4.7)

regression analysis was performed to accommodage résults of both the

accelerating variables. The overall Accelerationtéiais given by

] n Ea[ 11 J
AF = AF.XAF, :[ﬂ] e Tuse Tace - (4.8)

Use

4.4 Regression Analysis of Prior Published Data

4.4.1 LED classification

Previously published data [10-51] in which LEDs et on long term reliability
tests were identified. See Table 4.1. From thelgap tabular data, the time required
for the optical power output to degrade by 20% wasacted. This is the failure
criterion for the medical diagnostic applicationnalysis of published data for
different LED Materials (AlGalnP, GaN, GaAlAs), tifgemiconductor Structures
(DH, MQW) and the mode of testing (DC, Pulsed) wasied out. The data was
categorized for various combinations such as Al8dlH-DC, AlGalnP-MQW-DC,
GaN-DH-DC, GaN-DH-DC etc. Further, their testing swalone at different
temperature and current. This data was converteapfdication conditions of the
medical environment. This was done by assessin@c¢heleration factors, which in
turn required estimating the ‘n’ parameter of tR& model and the activation energy

‘Ea’ of the Arrhenius model.
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4.4.2 lterative Regression Analysis

Regression analysis on the prior published datadeag as follows. The activation
energy, Ea value provided/estimated from the phbtisdata was used or if not
available a value of 0.43eV was used (based on INDBK-217C for optical
components). The activation energy, Ea was the $améentical LEDs in an article.
Similarly, if any article had data at differentbli{ same temperature), the n value was
estimated. For all other reported data, where Ean avas unavailable, iterative
regression approach was used as follows. Usingtiequé.7 and assumed/estimated
Ea, all TTF data was converted to use Temperatugg Tinear regression for
equation 4.2 was used to estimate n. Using thislmevand equation 4.6, all TTF data
was re-converted to use current densifg¢ Now linear regression for equation 4.5
was used to improve our estimate of Ea. It is dyiekident that normalizing the data
for temperature, affects the regression analysisnfand normalizing the data for
current density, affects the regression analysiSafThus an iterative approach was
used to get best possible regression fits therebgramodating the effects of both

current density and temperature.
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See Fig 4.1 for effect of current density J on Lé&dPegory AlGalnP-DH-DC and Fig

4.2 for effect of temperature on LED category Al@IDH-DC.
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Fig 4.1 Effect of Current density J: AlGalnP-DH-DC
Effect of Temperature Acceleration * LnLifexAF_Current
15 Y= 0.6716x - 15.949 — Linear (Ln
LifexAF_Current)
2
e .
(5]
T 10 >
c * .
o
8 . - s
Q
g 5 - :
LL
- .
c
- .
O T T
25 30 35 40
1/KT

Fig 4.2 Effect of Temperature: AlGalnP-DH-DC
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See Fig 4.3 for effect of current density J on Léddegory AlGalnP-MQW-DC and

Fig 4.4 for effect of temperature on LED categot@GaAInP-MQW-DC.
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Fig 4.3 Effect of Current density J: AlGalInP-MQW-DC
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Fig 4.4 Effect of Temperature: AlGalnP-MQW-DC
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See Fig 4.5 for effect of current density J on Léddegory GaN-DH-DC and Fig 4.6

for effect of temperature on LED category GaN-DH-DC
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Fig 4.5 Effect of Current density J: GaN-DH-DC
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Fig 4.6 Effect of Temperature: GaN-DH-DC
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See Fig 4.7 for effect of current density J on Léddegory GaN-MQW-DC and Fig

4.8 for effect of temperature on LED category GalQ\W-DC.
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Fig 4.7 Effect of Current density J: GaN-MQW-DC
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Fig 4.8 Effect of Temperature: GaN-MQW-DC
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4.4.3 Weibull Analysis of Prior Published data

Equation 4.8, published data and use conditiorieeofnedical device application (i.e.
temperature = 35°C and current density = 21.6Anmd/avere used to obtain the
TTF distributions (given in Table 4.1) for AlGalriPH-DC, AlGalnP-MQW-DC,

GaN-DH-DC, GaN-DH-DC etc. and was previously repdstSawant et al [11]. The
last 6 columns give the parameters for Weibull aodarithmic distribution fit and

the corresponding Mean Time to Failure (MTTF). Aecated Life Test data in pulse
mode (described in chapter 5) is also includedragt S for comparison with Prior

published DC driving data in Sr. # 2.
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LED Source of | IPL | Act. Weibull (Converted to | Lognormal (Conv. to
Material Data E. application conditions) appl. Conditions)
Structure | [Ref.]-Fig n eV a MTTF 1l MTTF
Driving Hrs Hrs
AlGalnP- | [17]-2/4, 1.68 | 0.67| 2.76E4 1.33H B0 941
DH- [19]-9a/9b,
DC [26]-3,

[28]-3a/3b

[29]-5
AlGalnP- | [19]-9a/9b, | 5.08 | 0.82| 7.82ESj 5.17H .25  4.27
MQW- [22]-16,
DC [24]-6/8/10

[27]-2
GaN- [47]1 2.69| 0.50 - - -
DH-
DC
GaN- [24]-7/9/11 | 2.02 | 0.20| 1.61ESH 8.47H .06 6.22
MQW- [33]-5,
DC [34]-2/6
ALT: ALT 448 | 1.15| 1.55E( 7.50H b0 5.23
AlGalnP- | performed
MQW- for this
Pulsed study
(0.2%)

Table 4.1 Regression Analysis of Prior PublishethDa
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Chapter 5: Accelerated Life and Degradation Testing

Present commercial LEDs have reported extrapolst€diFs in the range of 1.0E6
hours [28, 29]. For a medical diagnostic appliaatid0% decrease in light output is
considered to be the failure threshold at the deléwel. However their low duty
cycle will still allow them to operated for longdéime period at derated bias
conditions. In order to determine LED life (MTTRg¢celerated life testing (ALT)
and accelerated degradation testing (ADT) was exhout. Acceleration is achieved
either by increasing the LED current or the tempeea Care should be taken that the
acceleration is not so high that it introduces lateel failure modes. Computation of
acceleration factors (described in chapter 4) altive calculation of LED life in use

conditions.

ALT and ADT was performed on LEDs under various dibans and in different
batches. Some of these results were also publishélade author in Sawant et al [11].
However, Section #, Figure #, Table # and Refererntave been rearranged as

necessary.

5.1 Materials

Commercially procured AlGalnP 640nm MQW LEDs wesedi in this research. The
structure and material combinations of these LE®seltbeen previously reported [15,

19, 21, and 22].
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5.2Methods

AlGalnP LEDs were tested simultaneously in 3 Enuinent Chambers. The LEDs

were tested in batches with 15 LEDs in each bag#e Fig 5.1.

Chamber 1: 35°C
LEDs 1-5 each Batch

Chamber 2: 55°C
LEDs 6-10 eactBatch

Fig 5.1 Environmental Test

Per the need of the medical application in Fig th2, LEDs were driven in burst

mode where each burst consists of 100 pulses. dlespulse corresponds to the time

during which light passes though a single mediesi sample. See Fig 5.2 for details

of the timing diagram.

1 2 3. 10C

Pulse On: 0.1n 1 2 3.10C _ >

Pulse Off: 19.9ms
# of Pulses: 10

Continues 24/7 unt
interrupted for regular

Burst On: 2s Optical Measurements
Burst Off: 3s

Burst Period: 5 - ~ Y - 5

Duty Cycle: Ne( 3sel 2se( 3se(

=100 x 0.1/5000 P Ny S

= 0.2% Burst 1: 5se Burst 2: 5se

Fig 5.2 Pulse/Burst mode timing
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses
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5.3Test Setup

The test is automated by using test software, datpisition/control boards and
constant current LED driver boards. The test SWanake data acquisition board
generate the necessary pulses, which trigger th2 diftver board. The peak current
through the LED is maintained constant while ibis A separate signal conditioning
circuit also measures the forward voltage Vf actbssdiode, which is fed back to the
test SW to be written to a database. At regulagrvatls, the LEDs were removed
from the chambers and were characterized eledtriaatl optically (using a Spectro-

radiometer). See Fig 5.3 for LED ALT/ADT and FidLgin chapter 6) for Electrical

and Optical Characterization of LEDs .

Data LED Driver ;ED
Acquisition Trigger Circuit -
Board Pulses Current ~
Drive Environmental
Chamber
Vv, I
< Signal «— ¢
Conditioning Feedback for IV
Control & Characteristics
Timing
PC
+Test |« —
Software Temperature / R. Humidity

Fig. 5.3 Setup for LED Testing
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5.4 ALT/ADT Results

5.4.1 LED optical power degradation

ALT/ADT of the LEDs in Pulse mode was conducte® aémperatures (35°C, 55°C
and 75°C) and 2 Peak currents (Batch2: 483mA=418riA and Batch3:
725mA=627.2A/crf). The optical power (measured by averaging ovemni@round
peak wavelength) decreased with time due to degosdaf the LED chip as well as
the encapsulation. See Fig 5.4 and Fig 5.5. Theapower degradation followed a
logarithmic function in agreement with Yanagisawalke[47] and Grillot et al [16].
20% degradation was considered failure for the o#dipplication. For LEDs that
did not reach 20% degradation in a reasonable (suspend data), the logarithmic
function was used to extrapolate TTF. Using regoesanalysis of ALT data, the
activation energy ‘Ea’ was found to be 1.15eV amdfor IPL was 4.48. Note that a
few LEDs showed extremely low degradation ratese(do different failure
mechanisms with much higher activation energiesED& not failed during
ALT/ADT were excluded from the analysis since tloeus was FMECA for a

medical application.
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Optical Power Ratio over 10nn

Optical Power Ratio over 10nn

(Current Po / Initial Pi)

(Current Po / Initial Pi)

Spectrometer Characterization 640nm LEDs

40
——LEDO1 = LEDO2 LEDO3 -+« LEDO4
201 -+ LEDO5 -e-LEDO6 —+LEDO7 — LEDO8
LEDO9 —-LEDI10O LED11 —+-LED12
0 LED13 LED14 LED15 LED16
0 100 200 300 400 500 600

Total Time in hrs (On+Off)

Fig. 5.4 ALT/ADT for Batch2, 483mA
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses

Spectrometer Characterization 640nm LEDs

)
80 0&\‘\\\
60 -
40 -
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Fig. 5.5 ALT/ADT for Batch3, 725mA
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses
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5.4.2 Encapsulation degradation

LED Photographs were taken before and after the /ADT using a digital
microscope. See Fig 5.6. The most obvious failureden was found to be
encapsulation (lens) degradation. The lens degoadatfter the ALT/ADT varied
from minor to moderate too severe, which can béated to variations in LED lens
material and manufacturing process. A new and a Ud€eD chip were also
photographed by illuminating the LED at 40 uA dd&ee photos indicate that the

LED chip also degrades during ALT/ADT.

New Chip
(340x340um)
On at 40pA

dégradation 640>-21
640x1-26
On at 40uA

T/I?Terate Lens e
. degradation 640x1-34
degradation 640)-26 g l

Fig 5.6 Photos of Minor, Moderate & Severe Lensrddgtion
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5.4.3 Chip vs. Lens degradation

At regular intervals within the ALT/ADT, optical peer and diode forward voltage
Vf were measured. See Fig 5.7. The Vf (y-axis ght)iand Optical power (y-axis on
left) appear like inverted images of each othere Thip degradation (interpreted
from Vf) dominated the initial period whereas tle@d degradation will occur during

the entire period of the test.

Optical vs Vf performance 640nm LEDs

120 2.85
=
§ 2.8
5 & <
3T - 2.75 i
o c >
5 3 60 2.7 %
= S = S T =
2 % S -% —— Optical Power Ratio °
T c o S
VTN = < -\ - 265 2
g3 |g8 &8 £
=~ ©
g. o0 1 _-S. g - - - Log. (Optical Power Ratio) | 5 g
= m,
O - - - - Log. (Vf)
O T T T T T 2.55
0 50 100 150 200 250

Total Time in hrs (On+Off)

Fig 5.7 Chip (Vf) vs. Lens degradation
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses
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5.4.4 Spectral Performance after ALT/ADT

A slight change in spectral performance after tha Avas detected in some of the

tested LEDs. See Fig 5.8 and Fig 5.9. Where thk weaelength changed by 1-2nm,

changes in the active region were speculated théenajor cause. Where the optical

power drop at 650nm was different than that at &80ohanges in the plastic

encapsulation were suggested. The shift is minar @aceptable for the medical

application. For larger shifts, see Chapter 6. ith 3-8, the peak wavelength of one

LED decreased by 2nm (0.3%). The optical power cabp50nm was higher than

that at 630nm.

Irradiance uwW

Spectrometer Characterization of AlGalnP LED

4
35 L1=623.5nm FWHM=32.3nm  Lpeak=645nm L2=655.8nm
3 L1=625.8nm L2=654.2nm
o5 | 20.6% Drop
at 630nm
2
" 23.7% Brop
L~ Lpeak=643nm at 650nm
15 A A
' / P 0.3% Decrease in b
b 570 < N
/ Peak wavelength
l W (
FWHM=28.4nm '
0.5 L+ LEDO6_Initial '
—e— LEDO6_Final
0 T T T T T T
620 625 630 635 640 645 650 655 660

Wavelength nm

Fig 5.8 Spectral shift to lower wavelength afterTARDT
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In Fig 5.9, the peak wavelength of another LED @ased by 1nm (0.15%). The

optical power drop at 650nm was lower than th&3&nm.

Spectrometer Characterization of AlGalnP LED

4
35 L1=623.8nm FWHM=29nm Lpeak=640nm L2=652.8nm
L1=625.2nm L2=652.1nm
3 25.3% Drop
at 630n
2.5 -

Irradiance uW
N

15

d // \{\
/) 20.0% Drop, |
Y

re 0.15% Increase in at 650nm
L~ >

/./'j:/' Peak wavelength
1 ,

FWHM=26.9nm

—— LEDO8_Initial *<

—»— LEDO8_Final
0 T T T T T T

620 625 630 635 640 645 650 655 660

Wavelength nm

Fig 5.9 Spectral shift to higher wavelength aft&TAADT

54



5.4.5 Summary of Test results

Table 5.1 summarizes the test results for Batctb2 EDs at 483 mA) and Table 5.2
summarizes the test results for Batch 3 (15 LED82&t mA). Various columns are
Sr.# of UUT, Chamber Temperature in deg C, Estohdtime to Failure based on
the equation of logarithmic degradation model, HEagua for the logarithmic

degradation model, Severity of Lens degradationcHange in forward voltage Vf

and the last 3 columns indicate whether the oppo&ler drop is occurring at lower

wavelength or higher.

TTF hrs % Drop @ % Drop @
Temp |Estimated |Equation for Logarithmic LENs Vf Increase | 630nm rel | % drop | 650nm rel
uuT C ]20% degrd |degradation model degradation % to 640nm | 640nm | to 640nm
y =-1.4537Ln(x) +90.86  [Minor
640x1-21 35 1755.6|R2 = 0.8617 Surface 4.0 3.2 12.2 -0.2
y =-2.8548Ln(x) + 96.606 |Minor
640x1-22 35 335.9|R2=0.9119 Few Bubbles 4.6 4.4 12.9 0.4
y =-1.4323Ln(x) + 92.922 |Minor
640x1-23 35 8282.1|R2 = 0.9367 Surface 6.5 4.6 10.4 1.0
y=-1.5697Ln(x) +88.277 |Moderate
640x1-26 55 195.0]R2 = 0.9025 Surface 2.9 5.2 13.2 9.6
y =-4.3842Ln(x) + 73.933 |Moderate
640x1-27 55 0.3]|R2=0.9732 Surface 79->6.4 4.9 45.8 2.1
y=-1.9411Ln(x) +87.094 |Minor
640x1-28 55 38.7|R2 = 0.9864 Few Bubbles 7.5 5.6 21.6 0.8
y =-1.4315Ln(x) +90.179 |Minor
640x1-29 55 1225.0|R* =0.9535 Few Bubbles 2.5 3.8 10.7 125
y =-3.2403Ln(x) +81.238 |Moderate
640x1-31 1.5|R* =0.9684 Surface+Bubles 3.6 6.0 33.3 2.6
y =-2.748Ln(x) + 83.18 Minor
640x1-32 3.2|R*=0.9754 Few Bubbles 11.7->7.0 6.1 28.9 3.2
y =-1.8618Ln(x) +89.002 |Minor Very Few
640x1-33 125.9|R* = 0.9464 Bubbles 8.8 41 18.1 2.3
y =-4.6769Ln(x) + 71.53 Severe
640x1-34 0.2|R? =0.9691 Surface 86->45 4.6 42.0 3.5
y =-1.9047Ln(x) +89.011 [Minor
640x1-35 113.4|R2 =0.9633 Few Bubbles 11.5->7.8 4.2 19.6 4.1

Table 5.1 Summary of ALT/ADT results for Batch 2
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TTF hrs Vi % Drop @ % Drop @
Temp |Estimated |Equation for Logarithmic LENs Increase | 630nm rel | % drop | 650nm rel
uuT C  |20% degrd |degradation model degradation % to 640nm | 640nm | to 640nm
y =-2.339Ln(x) + 93.465 Moderate
640x1-43 35 316.3|R2 = 0.9704 Bubles 8.6 5.0 20.6 -0.8
y =-2.5448Ln(x) + 88.985 [Minor
640x1-44 35 34.1|R2 = 0.8966 Surface 5.6 5.7 31.0 0.0
y =-2.7834Ln(x) + 84.99 Minor
640x1-49 6.0|R2 = 0.9781 Surface 7.5 6.6 25.7 0.0
y =-2.8983Ln(x) + 83.881 [Minor
640x1-51 3.8|R2 = 0.9886 Surface 7.5 6.8 27.3 0.1
y =-5.7886Ln(x) + 68.472 [Minor
640x1-52 0.1|R2 = 0.986 Surface 6.6 6.5 52.7 0.0
y =-2.7536Ln(x) + 85.365 [Minor
640x1-55 7.0|R2 = 0.9692 Surface 10.1 6.2 25.8 0.5

Table 5.2 Summary of ALT/ADT results for Batch 3

5.4.6 Additional ALT/ADT testing

In addition to Batch 2 (483mA, 0.2% duty cycle) aBdtch 3 (725mA, 0.2% duty

cycle), other LED testing included Batch 4 (483n%®% duty cycle) and Batch 5

(26mA, 50% duty cycle). The failure times duringt@&a4 were significantly lower

due to the high current and high duty cycle. Sda€era.3.

Equation for
TTF hrs Act. Logarithmic % Drop @ | % Drop @

Temp |Observed Acc Energy |degradation LENs Vf Increase | 630nm rel [ 650nm rel
UuT C  |20% degrd [MTTF Factor |eV model degradation % to 640nm | to 640nm
640x1-61 85 20.56 15.5 N/A N/A 40.0
640x1-62 85 10.25 N/A N/A 67.0
640x1-63 85 20.79 N/A N/A 38.7
640x1-64 85 5.22 N/A N/A 10.2
640x1-65 85 20.79 N/A N/A 96.8
640x1-66 55 5.58 9.2 1.7 0.23 N/A N/A 33.0
640x1-67 59 12.79 N/A N/A 0.4 ->-35
640x1-68 59 13.87 N/A N/A 1->-28
640x1-69 55 5.61 N/A N/A 2.1
640x1-70 8.03 N/A N/A 134
640x1-71 3.77 4.7 3.3 0.28 N/A N/A 0.7
640x1-72 1.65 N/A N/A 1.5
640x1-73 33.30 N/A N/A 5.6
640x1-74 2.26 N/A N/A -0.6
640x1-75 11.06 N/A N/A -1.7

Table 5.3 Summary of ALT/ADT results for Batch 4
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Batch 5 testing was done to see performance awerlourrent of 26mA. In order to
get failures in a reasonable amount of time, thg ducle was increased to 50%. See
Fig 5.10. A larger number of LEDs were used (185 in blue plots, 10 at 55°C in
green plots, 9 at 75°C in orange plots and 3 RefereLEDs which were not
stressed). However, even after 3000 hours of ggstia failure was observed and the
test had to be suspended. With acceleration fabbor§emperature (14 at 55°C and
144 at 75°C) and Duty cycle (250 at 50% duty cycleg life of the LED for the
medical application exceeds 1.0E8 hrs as prediotedLT (in section 5.4.7) and
ADT (in section 5.4.8). Batch5 testing provides amig/ check for the previous

conclusions that the LEDs will have a very high TTF

Spectrometer Characterization 640nm LEDs Batch5
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Fig. 5.10 ALT/ADT for Batch5, 26mA, 50% duty cycle
Note: 1 hr = 1200pulses/min x 60min = 7.2E4 pulses
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5.4.7 Weibull analysis of ALT data

Pior published data and accelerated life test dat@ subjected to Weibull analysis.
This required the estimation of the parameter rtterinverse Power Law model and
the activation energy for the Arrhenius reactiote nmodel (described in chapter 4).
Next, the overall acceleration factor was calcaagasing equation 4.8). Now the
entire ALT data from both the batches was convertedmedical application
conditions (i.e. temperature = 35°C and currentsitgen= 21.6Amps/crf) by
multiplying the TTF data with the acceleration tast This converted data was
subjected to Weibull analysis to estimate the Weibparametersx and3. This was
shown in Table 4.1 in chapter 4. A portion of Tabl& is repeated as Table 5.4 for
convenience. The activation energy ‘Ea’ and ‘n’'weabduring ALT are comparable
with values for prior published data. However, tinge to failure predicted by ALT is
much higher compared to published data. This istduke extremely low duty cycle
(0.2%) at which the LEDs were driven during ALTsimulate the medical diagnostic

application. The published data is at dc bias tmm$ (100% duty cycle).

LED Source of | IPL | Act. Weibull (Converted to | Lognormal (Conv. to
Material Data E. application conditions) appl. Conditions)
Sr. | Structure | [Ref.]-Fig n eV a B MTTF M o MTTF
# | Driving Hrs Hrs
2 | AlGalnP- | [19]-9a/9b, | 5.08 | 0.82| 7.82E5 0.89 5175 1B 1.25 4.27E5
MQW- [22]-16,
DC [24]-6/8/10
[27]-2
5 | ALT: ALT 448 | 1.15| 1.55E9 050 7.50H8 20,0 250 5.23E8
AlGalnP- | performed
MQW- for this
Pulsed study
(0.2%)

Table 5.4 Regression Analysis of ALT Data
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5.4.8 Analysis of ADT data

In section 5.4.7, ALT data was analyzed which imed Weibull analysis of TTF
data. In this section, the data was analyzed basdle power degradation pattern of
the LEDs. Two common approaches to degradationysisabre the Non-linear
reaction rate model and the Linear (or Log-lineagdel. As mentioned in section
5.4.1, during ALT/ADT, the optical power degradedaalogarithmic function of time
in agreement with Yanagisawa et al [47] and Griéibal [16]. This property was used
to select Log-linear degradation model. The slopthe straight line (with time on
log scale) will depend on the degradation rate wisca function of the LED current
density and temperature. We used the Inverse Paaer model (IPL) and the
Arrhenius reaction rate models to modify the slopguations 4.6 and 4.7 for
acceleration factors (AF) still hold good. Howewitre AF is calculated as a ratio of
reaction rates (accelerated rate to use rate)rrétlae time to failure (at a specific
value of 20% degradation). Consequently, the paemme'n’ and ‘Ea’ for
corresponding IPL and Arrhenius models will havdfedent values than those

calculated for ALT.

The ADT analysis created a degradation equatiagheoform

Y = Po(t)/ Pi(t =0) =AFLLn(t) +C - (5.1)

JX T

Where t = LED test time in hrs, C = y-intercept
Y = Po/Pi = Normalized optical power at time t and

Slope at use conditions = Slope m at accelerataadld / (Ak X AF;)
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The statistical analysis for degradation was d®sirguJMP software created by SAS
Institute Inc. This resulted in Table 5.5 below lwihe first row representing use

conditions of the medical environment and averagees for various parameters.

JMP | JMP Y- | AF_Temp | AF_J % Optical
Temp J Slope | intercept W.r.t. w.r.t o/p at
Condition | °c | Alem? | LnJ m c T=35C |J=4181| eV | n | t=7.5E8
Use 35 21.6 3.07 84.79 1.0 NA 0.39 ] 0.82
Batch2 35 418.1 | 6.04 -0.7 85.5 1.0 NA NA
Batch2 55 418.1 | 6.04 -2.3 3.4 NA 0.53 | NA 80.2
Batch2 75 418.1 | 6.04 -3.0 4.4 NA 0.34 ] NA 84.5
Batch3 35 627.2 | 6.44 -1.1 84.1 1.0 1.6 1.19
Batch3 55 627.2 | 6.44 -2.7 24 1.2 0.38 ] 0.38 78.5
Batch3 75 627.2 | 6.44 -4.4 3.9 1.4 0.31] 091 83.0

Table 5.5 Degradation Analysis using JMP software

The JMP software fitted a straight line for optipalwer degradation with time in log
scale. This was done for Batch2 (J=418.1&)cand Batch3 (J=627.2A/Gnwith
temperatures 35°C, 55 °C and 75 °C for each b#&cbommon y-intercept was
estimated for each batch and its average (84.79)used as ‘C’ in equation 5.1. The
slope was calculated separately for each batchdht ef the three temperatures. The
acceleration factors AF_Temp were calculated forperatures 55 °C and 75 °C by
taking a ratio of slopes with respect to 35 °CsWaas done separately for Batch2 and
Batch3. Using equation 4.7, the corresponding atitm energies Ev were estimated

and the average was found to be 0.39eV. The aatielerfactors AF_J for current
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density were calculated by taking a ratio of slopesveen Batch3 and Batch2. Note
that Batch2 is also at an accelerated conditioh afid AF_J values are only used to
estimate parameter ‘n’ of IPL model using equatdb@. Once ‘n’ and ‘EV’ were
available, AF and AR were calculated and equation 5.1 was developegdoous
conditions. From table 5.4, MTTF of the LEDs (at unditions) estimated from
ALT was 7.5E8 hrs. The last column in Table 5.5egiwptical output at t=7.5E8 hrs
for various conditions. This value was found to dbese to 80% implying a 20%
degradation which was the failure criterion for HleT. Thus, the results from ALT
and ADT agree with each other. Further, equatidh fbr ADT can be used to

calculate LED TTF if the degradation thresholdharmged.
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Chapter 6: Thermal Shift of Active layer Bandgap

Reliability testing of AlGalnP MQW LEDs resulted anshift of Bandgap towards the
longer wavelength when driven at high current argh lduty cycles. The spectral
FWHM also increased. Characterization of the dtitiwed that it was temporary and
dependent on the junction temperature. Some oéthesults were also published by
the author in Sawant et al [12]. However, SectipRkigure #, Table # and References

have been rearranged as necessary.

6.1Background on Spectral Shifts

The band gap of a semiconductor is either direatdirect. For an indirect band gap,
an electron cannot shift from the lowest-energyesia the conduction band to the
highest-energy state in the valence band withochamge in momentum [9]. Hence
direct band gap semiconductors are preferred fddd.BVhen an LED is forward
biased, the electrons in the conduction band reswnbith holes in the valence
band. In the recombination process, energy Eg spording to the band gap is
emitted in the form of a photon whose waveleng{in nm) is given by
A=hc/Eg=1239.8/Eg -(6.1)

where h = Plank’s constant, ¢ = speed of lightadouum and Eg = band gap in eV.

Temperature dependence of semiconductor deviceadesistics is very important

from a reliability standpoint [2]. During operatioheat is generated in the active

layer (also in other parts having ohmic resistanaélich raises the junction
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temperature. This research tried to characterieesthift in the spectrum resulting

from elevated junction temperature.

6.2 Methods

The forward bias method was used to establishittgan relationship between the
forward voltage Vf and the junction temperaturdodta given forward current. See
section 6.3.1 for details on this. The Shockleyddi@quation [10] relates the diode
current | of a p-n junction diode to the diode agk Vf:
| =Is (&"'"Vt_1)

— Is(é(f q/nKT _ 1)

=|Is & a/nKT for &M a/NKT 559 - (6.2)
where Is is the saturation current or scale curoénihe diode (the magnitude of the
current that flows for negative Vf in excess okafVt, typically 10-12 A). The scale
current is proportional to the diode area. Vt is thermal voltage, and n is known as
the diode ideality factor. Thus if | is maintaineginstant, junction temperature Jt can
be directly interpreted in terms of forward voltagé which typically decreases

between 1 and 3mV per 1 deg C rise in temperaBee.details in section 6.3.1.

To measure the spectral response, the LEDs weverdat different currents and
measured the optical output of the LED using a 8pdeadiometer. While

measuring the spectrum, the Vf was also measuegélifs allowing us to estimate Jt
during those conditions. The data was further aemywith respect to Varshini's

equation, and the empirical coefficients were deteed.

63



6.3 Experimental

6.3.1 Forward Bias Method

The LED is connected to a constant current soutgmdd off) and kept in an
environmental chamber set to 25deg C. Once the lohatemperature stabilises, the
current source was turned On for 0.3ms and thageltrop Vf across the diode was
measured. Since the LED is on for a very short tilndoes not significantly heat
itself and junction temperature Jt is same as amhbiemperature T. This was
repeated for ambient temperatures (Jt = T) of 35ardd 55 °C. Temperature Jt (= T)
against Vf was plotted. Now the junction temperatatr any other temperature could
be estimated by measuring the Vf under operatimglitions and intercepting it with

the plot above.

6.3.2 Spectral Measurement

The LEDs were driven in burst mode where each brossists of 90909 pulses at
45KHz and 50% duty cycle. The test was automatedidyg test software, data
acquisition/control boards and constant current L&iver boards. The test SW
makes the data acquisition board generate the smgepulses, which trigger the
LED driver board. The peak current through the LE&s maintained constant while
it was on. A separate signal conditioning circlsbameasured the forward voltage Vf
across the diode. This was fed back to the testt&We written to a database. The
LEDs were characterized optically using a Specudiemeter. See Fig. 6.1 for details

of the LED characterization setup.
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Fig 6.1 Electrical and Optical CharacterizatiolBDs

6.4 Results and Discussion of Spectral Shift

6.4.1 Vf-Jt Linear Relationship

Linear relationship between the forward voltageavitl Junction Temperature Jt was
established for 2 LEDs (640x1-57 and 640x1-58)daiven forward current value.
This was repeated at different currents (26mA, 58488mA and 725mA). See Fig.

6.2 and Fig. 6.3 for details.
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Vfvs Junction Temp C for LED 640x1-57

3.3 * Vi@26mA_640x1-57
Vf=-0.004Jt + 3.089
09 R2 =0.9999 = VI @58mA_640x1-57
ViI@483mA_640x1-57
@ Vf=-0.00383t + 2.8391 @483mA_640x
S,5 R2 = 0.9995
£« VI@725mA_640x1-57
s
Vf=-0.0023Jt + 2.0702
21 R2 =0.979
0\.\,\‘\# = -0 002Jt + 1.9462
1.7 ‘ R'=0.9402
20 30 40 50 60 70
Chamber / Junction Temp deg C
Fig. 6.2 Vf-Jt relationship for LED 640x1-57
Vi-Jt relationship is plotted for 26, 58, 483 arRbimA.
Vf vs Junction Temp C for LED 640x1-58
Vf=-0.004Jt + 3.099 & Vi@26mA_640x1-58
R2 = 0.9999
2.9 ]
= VI@58mA_640x1-58
Vf=-0.0038Jt + 2.8434
9, R2 = 0.9968 Vi@483mA_640x1-58
6 .
>
£ Vi@725mA_640x1-58
s
2.1
Vf =-0.0024Jt + 2.0812
- . R2 =0.9701
Vf=-0.0019Jt + 1.9461
17 R2=0.9149 |
20 30 40 50 60 70

Chamber / Junction Temp deg C

Fig. 6.3 Vf-Jt relationship for LED 640x1-58
Vi-Jt relationship is plotted for 26, 58, 483 arRbmA.
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6.4.2 Spectral shift in Bandgap

There was a prominent shift in the spectral outgfuthe LEDs towards the longer
wavelength at higher current (which caused higbectjon temperatures). The peak
wavelength Apeak returned to normal values when the current desreased
suggesting that this shift was temporary. There m@permanent degradation. See
Fig 6.4 and Fig 6.5 for the spectral performancdBDs 640x1-57 and 640x1-58
respectively. Table 6.1 captures the details ofReak wavelength and the estimated

junction temperature for different values of fordi@urrent If.

Spectrometer Characterization LED 640x1-57 Differeh Currents

— 1. #57-26mA Vf=1.885V
60 Tj=30.6C
Sequence of Measurement: 1, 2, 3, 4, 5, 6 =50.
50 - 2 — 2. #57-58mA-Vf=1.997V
3 Tj=31.8C
= 404 3. #57-483mA Vf=2.510
> Tj=86.6C
(]
2 30 -
S — 4. #57-26mA Vf=1.899V
3 14 Tj=23.6C Repeatl"
=20 A
5 5. #57-725mA V{=2.642
Tj=111.8C
10
— 6. #57-26mA Vf=1.899V
0 ‘ ‘ ‘ Tj=23.6C Repeat2
590 620 650 680 710 740

Wavelength nm

Fig. 6.4 Spectral Shift in Bandgap at higher JLfBD 640x1-57
Note the sequence of measuremeérpsak returned to normal values indicating that
the shift is temporary. There is no permanent diggran.
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Spectrometer Characterization LED 640x1-58 Differeh Currents

— 1. #58-26mA Vi=1.890V

Tj=29.5C

— 2. #58-58mA-Vf=2.002V

N
o

Tj=33.0C

3. #58-483mA Vf=2.495
Tj=91.7C

w
o

Irradiance uW

N
o

— 4. #58-26mA Vi=1.904V
Tj=22.2C Repeatl”

=Y
o

5. #58-725mA Vf=2.627
Tj=118.1C

0

/

— 6. #58-26mA Vi=1.904V
Tj=22.2C Repeat2

590

680
Wavelength nm

710 740

Fig. 6.5 Spectral Shift in Bandgap at higher JiLfBD 640x1-58

Note the sequence of measuremeérpsak returned to normal values indicating that

the shift is temporary. There is no permanent ciggran.

LED If |Equation Vi JtC Peak
mA Volts | Estimated nm

640x1-57 26 | Vf=-0.002Jt + 1.9462 1.885 30.6| 642
640x1-57 58 | Vf=-0.0023Jt + 2.0702 1.997 31.8| 643
640x1-57 | 483| Vf=-0.0038Jt + 2.8391 2.510 86.6| 664
640x1-57 26 | Vf=-0.002Jt + 1.9462 1.899 23.6| 642
640x1-57 | 725| Vf=-0.004Jt + 3.0893 2.642 111.8 667
640x1-57 26 | Vf=-0.002Jt + 1.9462 1.899 23.6| 642
640x1-58 26 | Vf=-0.0019Jt + 1.9461 1.890 29.5| 642
640x1-58 58 | Vf=-0.0024Jt + 2.0812 2.002 33.0| 643
640x1-58 | 483| Vf=-0.0038Jt + 2.8434 2.495 91.7| 665
640x1-58 26 | Vf=-0.0019Jt + 1.9461 1.904 22.2| 642
640x1-58 | 725| Vf=-0.004Jt + 3.0993 2.627 118.1] 667
640x1-58 26 | Vf=-0.0019Jt + 1.9461 1.904 22.2| 642

Table 6.1 Spectral Shift in Bandgap at higher teakupees

68




6.4.3 Varshini’'s empirical model

The relationship between peak wavelength and ctfjuantion temperature has been
published in various articles. Our research findiagree with Kish et al [20] for the
AlGalnP LEDs. They studied high luminous flux AlI@G&/GaP large area emitters
with currents as high as 7A. The peak wavelengifieshfrom 602nm to 614nm
when the current was increased to 7A correspontbng 120°C rise in junction
temperature. Similar results have been observetldkamura et al [3] for InGaN
MQW LEDs. The peak wavelength changed from 409nn258C to 410.5nm at

55°C.

Nakamura et al [46] also found an anomaly whiléingsinGaN DH LEDs. The peak
wavelength shifted to the shorter-wavelength reguith increasing forward current.
The peak wavelengths were 458 nm at 0.1 mA, 44%ahrh mA and 447 nm at
20mA. They suggested that this anomaly was dueotwordacceptor (DA) pair
recombination in the InGaN active layer co-dopethvaioth Si and Zn. At 20 mA, a
narrower, higher-energy peak emerged around 385 him.peak was due to band-to-
band recombination in the InGaN active layer. Tieak became resolved at injection
levels where the impurity related recombination wasirated. H. Morkoc [6] shows
current and temperature dependence of Spectrarb@n@ichia GaN LEDs. A clear
shift to higher energies was observed (532nm anB.10 519nm at 10mA). For
pulsed current, EL changed from 534nm at 0.1mA 9@ndn at 2000mA. For the
same LEDs, the peak decreases from 541nm at 5@239€) to 534nm at 300°K

(27°C) whereas the band edge increases from 53&5ddnm.
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Dependence of the bandgap on the temperature has determined for various
materials. The relationship can be described bysMars empirical equation given

below.

at?

T+ B -(6.3)

Eg(T) = Eg(0) -

where Eg(0)o andp are the fitting parameters, T is temperature inafid Eg(T) is
the bandgap in eV. These fitting parameters atedign Zeghbroeck et al [7], which
we have reproduced in Table 6.2 for Ge, Si and G&ased on our test results, we

have included estimated values for AlGalnP in taide.

Ge Si GaAs AlGalnP
E40) [eV] |0.7437 1.166 1.519 2.11
aleV/K] 477x10 |[4.73x10 |5.41x10 |1.02x10
B [K] 235 636 204 199

Table. 6.2 Varshini’s coefficients: Ge, Si, GaAA&GalnP

6.4.4 Effect on LED life testing

We see in section 6.4.2 that the shift in the pealvelength at high junction
temperature is temporary. There is no permaneriadagon. Published literature [2,
27] on LED life testing reveals that there may barerease in junction temperature
during LED life testing. The heat may either be tluecrease in ohmic resistance of
the contacts or it may be due to defect generdgading to an increase in non-
radiative recombinations. The published researtdbéshes that the light output will
eventually decrease during life testing [16, 17, 2B]. Our research proposes that
there might also be a shift in the peak waveleragtta secondary effect. To assess

such shifts, the forward bias method should be eymal to characterize the Vf-Jt
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relationship before the start of Accelerated Liésting (ALT) and Accelerated
Degradation Test (ADT). Varshini’'s model may alsoused to establish theAjieak
relationship. During the ALT/ADT, the Vf measuredllvallow us to estimate the

actual Jt and its contribution towardseak.

6.5 Effect of Spectral Shift on Medical application

Wavelength shifts are more critical for Medical bggtions compared to Lighting

applications of LEDs. In principle, the shift wilave 2 consequences.

6.5.1 Decrease in net optical output

As described in Fig 1.2 in Chapter 1, the lightrirthe LED passes through a sharp
optical filter, which has a bandwidth of only fewno-meters. If the peak wavelength
of the LED shifts, a part of the spectrum will shautside the bandwidth of the
optical filter causing a decrease in the net opfimaver as shown in Fig 6.6. This
decrease will depend on the shape of the LED gpectihe filter bandwidth and the

actual shift of the LED spectrum, which will depesrd junction temperature.

Filter

Bandwidth Decrease in LEE Stpeictrum
Useful Useful power shi SI 0 cip]ger
power waveleng

LED
Spectrum

>

Spectral shift
at higher Jt

Fig. 6.6 Effect of Spectral Shift on useful optipalwer
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6.5.2 Change in the Absorbance Chemistry

As described in section 1.1 in Chapter 1, the dasare of light by the cuvette
mixture at certain wavelengths depends on patieidsase condition. Beer’s law [1]
gives a relationship between the transmission Tight through a substance and the
product of the absorption coefficient of the substaa, and the distance the light
travels through the material (i.e. the path length}or a given medical instrument,
the path length is constant and the absorptioright lcan be calculated from the
incident and transmitted light. Further, the samedical diagnostic instrument
performs various tests (called assays) such asc@li€hemistry, Drugs of abuse,
therapeutic drug monitoring (TDM) and specific gios etc. Depending upon the
actual diagnostic test to be performed, the hunzempte is mixed with proprietary
chemical reagents. The relationship between thiet lapsorbed and the disease
condition is pre-determined by Chemists for all thagnostic tests that the medical
instrument supports. Some of these tests are \@ryits/e to the peak wavelength
whereas others are less sensitive. A shift in peakelength of the LED light source
will have different consequences depending uponsgieeific diagnostic test being
conducted, its sensitivity to wavelength and theuacspectral shift. Much of this

information is proprietary and beyond the scopth research.
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6.6 Conclusions of Spectral Shift

Reliability testing of AlGalInP MQW LEDs resulted &nshift of Bandgap towards the
longer wavelength when driven at high current. @btarization of the shift showed
that it was temporary and dependent on the jundiomperature Jt. The data was
further analyzed with respect to Varshini’'s equatiand the empirical coefficients
were determined. Published research establishéshthdight output will eventually

decrease during life testing. This research proptsat there might also be a shift in
the peak wavelength as a secondary effect if thB bfgerates at a high junction
temperature Jt. This research will also help inlwatang LED performance during

ALT/ADT and while choosing LEDs for applicationsu¢h as medical diagnostics)
where Apeak needs to be stable. The junction temperatureill need to be

maintained within limits to achieve spectral stil
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Chapter 7: Failure Modes and Effects Criticality Analysis
(FMECA)

7.1 Introduction

Failure Modes Effects and Criticality Analysis (FKIE) was used as a risk analysis
tool for use of LEDs in a medical diagnostic apgiicn. Probabilistic Risk
Assessment (PRA) with Event Sequence Diagrams (ES&130 used for performing
risk analysis. While the focus of this chapter MBCA, PRA/ESD is discussed
briefly in section 7.5. FMECA is a bottom up approaused to separate critical
failure modes from the rest. The segregation isedbased on the approximate
probabilities of the failure modes and the sevesftthe outcomes. It identifies failure
modes at a component level (LED in this contextd analyzes the system level
effects (failure or partial failure of the mediadiagnostic instrument in this case).
Some of these results were also published by tliboaun Sawant et al [11].
However, Section #, Figure #, Table # and Refererntave been rearranged as

necessary.

A FMECA table was constructed for various LED faélunodes (described in section
7.2) and the criticality is calculated for diffeteseverity levels as

Cm= PoAt -(7.1)
where

1. Failure effect probability) is the conditional probability that the failurest

will result in the identified severity classificati, given that the failure mode occurs.

It represents the analyst's best judgment as thkigldhood that the loss will occur.

74



2. Failure mode ratiax is the ratio of the probability of the curreniidiée mode to

the failure probability due to all the failure made

3. Failure rateX) is the ratio the total failures observed durirtgst to the total time

of all the devices under test and

4. Operating time (t) is the time during which thst is performed.

Table 7.1 below describes the severity classificator a general application and a

medical diagnostic application.

te

Level Rating | Severity description for Severity for Medical Diagnostic
General application application

Catastrophic 1 | Afailure mode that may |Inaccurate medical test result,
cause death, complete systévtay lead to death of patient or
or mission loss user or

Serious deterioration in their stg
of health

Critical 2 | Afailure mode that may (Incorrect diagnosis,
cause severe injury, major (Inappropriate treatment
system degradation, damage
or reduction in mission
performance

Marginal 3 | Afailure mode that may (Inaccurate Medical test result,
cause minor injury or But test is used in conjunction
degradation in system or  |with other diagnostic informatiof
mission performance

Minor 4 | A failure mode that does ngDelayed or no medical test resu
cause injury or system Incorrect result. But no differend
degradation, but may causelia diagnosis or treatment,
minor inconvenience such gicorrect result requiring
unscheduled maintenance gconfirmatory testing.
repair

None 5 |-

Table 7.1 Failure Severity classification for gett@nd medical diagnostic

application
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7.2LED Failure Modes

The first step in FMECA was identification of vau® LED failure modes. Fig 7.1

shows various failure modes that were identifiattiitcs analysis.

Packaging failure: Bond Wires [2]
- Electro-migration of bond wires P - N Metal contacts [2]:
- Burnout due to excessive current - Interdiffusion

- Void formation at the solder metal stem
- Reaction of solder metal with package electrodes

~—)
Active Region [15,16,22]:

- Dislocation growth

- Metal diffusion in
AlGalnP

- Heating effects of
AlGalnP active region
resulting in enhanced
current injectiot

ITO layer [26] for
current spreading

& light extraction:

- Loss of Oxygen from
ITO

- De-adhesio

Plastic Encapsulation [33]
L~Discoloration

- Carbonization

- Polymer degradation

Packaging [2] failure:
Heat sink
- Heat sink de-
laminatior

Diaaran NOt 10 scal

Fig 7.1 LED Failure modes

7.2.1 Active Region failure

Active layer is the region where electrons and fioeecombine to emit photons. The
degradation is mainly related to the property omisenductor crystals [2].
Dislocation growth, in-diffusion and precipitatiof a host atom are typical modes in
such degradation. Enhancement factors includetagecurrent (electron and hole),

Joule heating by injected current, ambient tempeeadnd emitted light.
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7.2.2 P-N Contacts failure

Degraded contacts [2] generally correspond to p-sitctrodes because ordinary
devices are composed of n-type substrates and-Higepelectrodes exist near the
active region of the devices. For devices withtgge substrate, the degradation is in
n-type electrode. The main mechanism is caused dtalndiffusion in to the inner

region (outer diffusion of semiconductor materiald is enhanced by injected

current, joule heating and ambient temperature.

7.2.3 Indium Tin-Oxide failure

Indium Tin-Oxide layer is used for current spregdiand improvement of light
extraction [26]. Failure modes are related to lokssxygen from the ITO layer and

de-adhesion.

7.2.4 Plastic encapsulation failure

Plastic encapsulation (lens) is usually a polymexduto protect the LED chip from
external atmosphere and to direct the extractelk. liypical failure modes are

discoloration, carbonization and polymer degraaafg3].

7.2.5 Packaging failures

Packaging failure is either related to Bond Wireshe Heat Sinks [2]. The bonding
part corresponds to the interface between an LEP €theat sink and between heat
sink — package stem [2]. Usually some type of goldeused at the interface as a
bonding metal. The degradation is mainly causedtllegtro-migration (transport of

metal atoms under high current stress) and iseeltd the properties of the solder

metal. The main mode is void formation through thigration of the solder metal
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stem or reaction of solder metal with electrodése/ plated metal on the heat sink /
the stem. The migrated solder often shows a whigi@wrth. The factors that enhance
this type of degradation are current flow and ambieemperature. Heat sink
degradation is not degradation of the heat sirfjtbut the separation of the metal
used for metallization of the heat sink. The get@neof this degradation depends on
the heat sink material, the metal used for metdlin and the metallization process.
The enhancement factor is not clear but ambienpéeature and current flow are

estimated to be factors.
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7.3EMECA before ALT/ADT

During initial FMECA (done before Accelerated Liigradation Test based on

literature review and knowledge of the medical d@gjic instrument), packaging

(heat sink de-lamination) and degradation of thev@aegion were estimated as the

critical failure modes. See Table 7.2 for details

Sr.# |Failure Causes Local Effects |System Effects in Seve | Failure Effect |Failure Mode | Failure | Operating [ Criticality
Modes/Mech at LED level |Medical rity | Probability (13) Ratio (a) Rate Time (T) #
anisms equipment in hrs

1 |Packaging Heat sink de-lamination - Decrease of - Unscheduled module 3 0.4 0.3 1.8E-11 31500 6.7E-08
failure (Heat optical output replacement
Sink) - Local heating |- Delayed medical test
effects results
2 |Degradation |- Discoloration - Gradual - Excessive drift 3 0.4 0.2 1.8E-11| 31500 |4.5E-08
of plastic - Carbonization decrease of requires unscheduled
. " . optical output calibration
encapsulation|- Polymer degradation at high - Delayedimedical test
temperature s
3 |Degradation |- Loss of Oxygen from ITO |- Decrease of |- Unscheduled module | 4 0.3 0.1 1.8E-11 | 31500 |1.7E-08
of ITO layer |- De-adhesion optical output  |replacement
- Non-uniform - Delayed medical test
|light emission _|results
4 |Packaging - Electro-migration of bond - Abrupt LED - Unscheduled module 4 0.9 0.1 1.8E-11 31500 5.0E-08
failure (Bond |wires failure replacement
Wires) - Burnout due to excessive jiocayedipedicaliesy
current results
- Void formation at the solder
metal stem
- Reaction of solder metal with
package electrodes
5 |Degradation |- Dislocation growth - Gradual - Excessive drift 4 0.4 0.4 1.8E-11 31500 9.0E-08
of active layer |- Metal diffusion in AlGainp  |decrease of requires unscheduled
- Heating effects of AlGalnP optical output calibration
active region resul?ir?g iq ;;ifgeu medical test
enhanced current injection
6 |Degradation |- Interdiffusion - Changein IV |- Design will 5 0.4 0.2 1.8E-11 | 31500 |4.5E-08
of P-N metal characteristics ~ [accommodate minor
contacts changes in IV

characteristics

Table 7.2 FMECA table before ALT/ADT
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7.4EMECA after ALT/ADT

After Accelerated Life Test was performed, plagticapsulation and active region

degradation are estimated as the critical failucgl@s. Either of these failure modes

will cause system level effects such as excessintt ckequiring unscheduled

calibration and delayed medical test results. Sd#el7.3 for details.

Sr.# [Failure Causes Local Effects |System Effects in Seve | Failure Effect |Failure Mode | Failure | Operating | Criticality
Modes/Mech at LED level |Medical rity Probability Ratio Rate Time #
anisms equipment (R) (a) ?) (T)in hrs

1 |Packaging Heat sink de-lamination - Decrease of - Unscheduled module 3 0.4 0.3 1.8E-11 31500 6.7E-08
failure (Heat optical output replacement
Sink) - Local heating |- Delayed medical test
effects results
2 [Degradation |- Discoloration - Gradual - Excessive drift 3 0.6 0.7 1.8E-11 | 31500 |2.3E-07
of plastic - Carbonization decrease of requires unscheduled
o I N . optical output calibration
encapsulation|- Polymer degradation at high  Delayed medical test
temperature e
3 [Degradation |- Loss of Oxygen from ITO |- Decrease of |- Unscheduled module | 4 0.3 0.1 1.8E-11| 31500 | 1.7E-08
of ITO layer |- De-adhesion optical output  |replacement
- Non-uniform - Delayed medical test
light emission results
4 |Packaging |- Electro-migration of bond |- Abrupt LED |- Unscheduled module [ 4 0.9 0.1 1.8E-11 | 31500 |5.0E-08
failure (Bond |wires failure replacement »
Wires) - Burnout due to excessive s avedlmedicalitest
results
current
- Void formation at the solder
metal stem
- Reaction of solder metal with
package electrodes
5 |Degradation |- Dislocation growth - Gradual - Excessive drift 4 0.6 0.6 1.8E-11 | 31500 | 2.0E-07
of active layer |- Metal diffusion in AlGalnp ~ |decrease of requires unscheduled
- Heating effects of AlGalnp |°Ptical outputcalibration
5 . L - Delayed medical test
active region resulyrfg in s
enhanced current injection
6 |Degradation |- Interdiffusion - Changein IV |- Design wil 5 0.4 0.2 1.8E-11 | 31500 |4.5E-08
of P-N metal characteristics ~ |accommodate minor
changes in IV
CEEES characteristics

Table 7.3 FMECA table after ALT/ADT
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7.5Probabilistic Risk Assessment and Event Seqguencagbams

Probabilistic Risk Assessment (PRA) starts withtical end states (ES). For the
medical diagnostic application, critical end states

1. Correct Medical Test Results,

2. Correct but Delayed Medical Test Results,

3. Incorrect Medical Test Results but Detected beReporting and

4. Erroneous but Believable Medical Test Results

Once the ES are defined, all possible Initiatingiids (IE) are identified which could
create such ES. The propagation of an IE in to 8ni€called a scenario. The
scenario is shown graphically in the form of an lv8equence Diagram (ESD) in

Fig 7.2 below [4].

PIVOTAL EVENTS
; -"'llll/ B

O Pivotal Pivotal

= = . 5 M -

= = — Event1 Event n End State

.A-‘f';/?f'_,-‘.._]\fﬁ iy

The perturbation O Mitigative Quaniity of interest to

O Aggravating Decision maker

Fig 7.2 Scenario / Event Sequence Diagram [4]

A scenario contains an IE and one or more pivotahts leading to an end state. As
modeled in most PRAs, an IE is a perturbation (sashLED degradation) that
requires some kind of response from the Medicdtunsent (such as detection of the

LED degradation and correction using calibratioft)e Pivotal Events (PE) include
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successes or failures of these responses. Simp&apevents may be expressed as a

block with numerical probability for occurrence efhch response. Complicated

pivotal events may be expressed as a Fault Trepf(fTalculation of probabilities

of the responses. Once the probabilities of allititeating Events and Pivotal Events

are known (or estimated), the probability of ak thnd States can be calculated. Fig

7.3 gives an example of an ESD for the medicalmbatic application. Many such

ESDs need to be created before the probabilitiesribical End States can be

calculated.

Correct
Test
Resul

LED Detect Correction /
Degradation degradation?[—>| Calibration?
Y
N N

A 4

Maintenance

request

Fig 7.3 ESD for LED degradation in Medical applioat

82



7.6 Conclusions

FMECA approach, widely used for risk analysis, hagen successfully applied to
LED reliability and physics of failure investigatioln this study, we used FMECA to
understand the criticality of LED failure modes whased in a medical diagnostic
application. Failure modes of other components hef Medical device were not
included in this study. The FMECA was repeated asfihed after conducting
accelerated life testing of LEDs. Degradation c# fhlastic encapsulation and the
active region were found to be the critical failumedes. These failures could cause
unscheduled calibration of the diagnostic instrunaam would cause delay in patient
medical test results. Probabilistic Risk Assessrasiritg Event Sequence Diagrams is
also briefly discussed. An example ESD describiEfpldegradation as an initiating

event and its progression towards critical enceste provided.
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Chapter 8: Bayesian Modeling of LED Reliability

Bayesian Analysis allowed us to combine prior mh#d data with Accelerated Life
Test (ALT) performed to verify the Medical diagnostapplication. Bayesian
Analysis involves compiling ‘Prior’ information, gerating the ‘Likelihood’ function
(probability of seeing the Evidence in terms oft @gta given a specific underlying
failure distribution) and then estimating the ‘Rwir’ distribution. Some of these
results were also published by the author in Sawaiad [13]. However, Section #,
Figure #, Table # and References have been readaag necessary. The general

scheme of Bayesian modeling of LED reliability ssslhown in Fig 8.1

Evidence: Transformed Evidence: ALT
published Life test data + AF Cédculatior

Generate samples
& Averaging

LED Failure A
Mechanisr Weibull

D =) L(Ella,ﬂ)é’ Likelihood > |_(E2| 0',,3) tmin  tmas

Functior

a
Uniform 1°Bayesian 1% Pred. 2" Bayesian 2" Predictive
Prior @.8)  Updating ¢,8) Post.(t  Updating ¢.p) Posterior (t)

Fig 8.1 Bayesian modeling of LED Reliability
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8.1Baye’s theorem

For two events X and E, the probability of X AND d€curring simultaneously
(represented by 9E) is the product of probability of X given E hascarred and
probability of E

Pr(XE) = Pr(X|E)Pr(E) - (8.1)
Pr(E X) = Pr(E[X)Pr(X) - (8.2)
Since Pr(%E) = Pr(E X), we have

Pr(X|E)Pr(E) = Pr(E|X)Pr(X) - (8.3)

Rearranging the terms gives the Baye’s Theorem

PdX|E)=PdEL§L§dx) - (8.4)
Now Pr(E) =X Pr(E|X)Pr(X) for all possible values of X, this/gs
pr(x | E) = EX)PAX) - (8.5)

> PE|X)Pr(X)

In Reliability applications, events X and E are resented by distributions.
Summation is used for discrete distributions artdgration is used for continuous
distributions as shown below.

L(EIX) % (X)
[LETX) 7, (x)dX

(X |E)= - (8.6)

where L(E/X) is the likelihood of seeing the eviderkE given that X is the random

variable of interest,

Mo(X) is the prior distribution of the random varialdf interest and
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M1(X/E) is the posterior distribution of the randorariable of interest given that

evidence E was observed.

8.2Bayesian Modeling of LED data

Many of the LED degradation mechanisms occur samglbusly. The weakest link
causes the actual failure. This leads us to belteae Weibull distribution (with
parameterst & B) is the most suitable distribution for time toléae of the LEDs.
Levada et al. [34] carried out accelerated lifetstesn plastic transparent
encapsulation and pure metallic package GaN LED<oAsistent Weibull based
statistical model was found for MTTF. When the dftan ALT performed in this
research was analyzed, it revealed that Weibuwlsightly better fit compared to the
Lognormal fit. Thus the degradation mechanism, ighkd literature and our ALT
data all point to Weibull as a most suitable mddelthis data analysis. See section

10.3.1 for a detailed discussion on the subject.

For the first posterior, using Uniform Prior distution foro & B is a good choice.
Since only MTTF values were available, min-max ealdora & p were estimated
using engineering judgment. Test data was usediderite and a joint- posterior
distribution was calculated using Bayesian updafirgs jointa-f distribution gave a
series of Weibull time to failure distributions. &hpredictive posterior failure
distribution for the LEDs was estimated by averggaver the range ai-p values.

Numerical techniques were used for various compmutsit
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8.2.1 Likelihood function for LED reliability

Consider a life test in which LEDs are put on test amdout ofn fail at failure times
t1, t2,...,tr The test is terminated at timeat which poinin-r LEDs did not fail. The
only thing we know about these ‘survived’ LEDs st their failure time is greater
thantc. The failure timegl, t2,...,trand the suspend tinte is the Evidence for the

Bayesian Analysis.

The likelihood of r LEDs failing at ti (i = 1 to @nd n-r LEDs surviving time tc is

given in (8.7) and (8.8) below

L(E|a,,8)=|j ft, Ia,ﬁ)ij R(t. |a,f) -(8.7)
L(Ela.B)=p"a™ (ﬁtvi)ﬁ’lexp(-a'ﬁT) - (8.8)

where T = Zr:tiﬁ + nz_r:tf = Zr:tiﬂ +(n- r)tcﬂ
= = =

8.2.2 Uniform Prior distribution for o & p
The Uniform Prior distribution fos & B is given by equation below

1 a min £ g < g max,

T, (a’ ,5) _ (a max— a min)(S max— £ min) ’ A min < < S max _69)

0, otherwise
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8.2.3 Posterior distribution for a &

The posterior distribution for andp can be estimated by using the Baye’s theorem
given is equation

L(E|a,B)n,(a.B)
Ela',B)m,(a',B)da'ds - (8.10)

n(a,ﬂ|E)=”L(

Ba

8.2.4 Predictive Posterior distribution for LED life
Our final goal is to estimate the Weibull distriedttime to failure. The joint posterior

distribution of o and B then allows the posterior predictive distributibtem be

calculated as given by PDF equation (8.11) and EfFation (8.12)

ft)=[[f(t1a".B)m(a. B1E)da'dp - (8.11)
Ba

F(t)= Flt|a'p)z(a' B E)da'dB - (8.12)
La

8.3Results of Bayesian modeling

8.3.1 Compiling the Prior Data

Results of prior published data and ALT as repome8awant et al [11] will be used

in the Bayesian modeling. Table 4.1 was modifiedy¢év Table 8.1 where Sr.# 1-4

represents prior data (normalized to current degrsitl temperature values) under dc
driving conditions. Sr.#5 represents ALT data (nalized to current density and

temperature values) under pulse (0.2% duty cycigjnd) conditions. Since LED life

under dc conditions was much shorter compared teepoonditions, we had to
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transform Sr#.1-4 data in to Sr.#:1A-4A to allowngsin our Bayesian model. This
also seems reasonable from the fact that duringepdiiving, the LED gets time to
cool off. This increases the time to failure of ttEeDs during pulse driving compared
to DC driving. The exact method of transformatioitl e covered in chapter 9. For
now, a simple multiplier of 500 is assumed (1 hi@D% duty cycle is equivalent to

500hrs at 0.2% duty cycle).
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LED Source of | IPL | Act. Weibull (Converted to | Lognormal (Conv. to
Material Data E. application conditions) appl. Conditions)
Sr. | Structure | [Ref.]-Fig n eV a B MTTF 1l o MTTF
# | Driving Hrs Hrs
1 | AlGalnP- | [17]-2/4, 1.68| 0.67| 2.76e4 0.50 13384 940 2.30 9.41E3
DH- [19]-9a/9b,
DC [26]-3,
[28]-3a/3b
[29]-5
2 | AlGalnP- | [19]-9a/9b, | 5.08 | 0.82| 7.82E5 0.89 5175 1B 1.25 4.27E5
MQW- [22]-16,
DC [24]-6/8/10
[27]-2
3 | GaN- [47]1 2.69| 0.50 - - - - - -
DH-
DC
4 | GaN- [24]-7/9/11 | 2.02 | 0.20| 1.61E5 0.57 8.47B4 110 2.06 6.22E4
MQW- [33]-5,
DC [34]-2/6
5 | ALT: ALT 448 | 1.15| 1.55E9 050 7.508 20,0 250 5.23E8
AlGalnP- | performed
MQW- for this
Pulsed study
(0.2%)
1A | AlGalnP- | Sr. #1 1.68| 0.67 1.38Ef 0.5 6.65E6
DH-
Pulse-
Transfor
med
2A | AlGalnP- | Sr. #2 5.08/ 0.82 3.91EB 0.89 2.59E8
MQW-
Pulse-
Transfor
med
3A | GaN-DH- | Sr. #3 2.69| 0.50 - - -
Pulse-
Transfor
med
4A | GaN- Sr.#4 2.02| 0.20 8.07Ef 0.57 4.24E7
MQW-
Pulse-
Transfor
med

Table 8.1 Prior Published Data Transformed for Baye Analysis
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Bayesian updating involves computation of postefjmint o-f distribution by
combining the prior joini-B distribution with new Evidence/Likelihood function
Bayesian analysis started with a Uniform prior jairB distribution witha taking
values between 5E7 to 9E9 arfdtaking values between 0.1 to 2. Uniform
distribution implies that the probabilities are stant for the entire range. Further,
since the Bayesian updating was done using a S\Waommowritten for this research

(to implement equation 8.10), the B values had to discretized.

8.3.2 Computation of 1% Posterior Distribution

The data represented by Sr.# 2A in Table 8.1 wed as evidence to compute thé 1

posterior jointo-B distribution as shown in Fig 8.2.

Joint Alpha Beta Posterior Distribution

Fig 8.2 £' Posterior Joint-B distribution for AlIGalnP-MQW-Pulse-Transformed
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The T posterior jointa-p distribution was used to compute the Average Rtioei
distribution of the LED time to failure (TTF) usiregiuations 8.11 and 8.12. See Fig

8.3 for the CDF of LED TTF.

1 1 1 1
1] 2.5E+9 L5E+9 7.5E+9 1E+1
LED Time to Faiure (hrs)
Weibul CDF | Awg. Prior CDF

Classical Evidence CDF I_
Avg Bayesian Post. CDF [/,

Fig 8.3 £' Average Predictive Posterior of LED TTF.
“Amplitude” refers to the magnitude of the cumwatdistribution function
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8.3.3 Computation of 2" Posterior Distribution

For the 2% Bayesian updating, thé'osterior jointo-p distribution was used as the
prior distribution and the data representing Sri# able 8.1 was used as evidence.
Fig 8.4 shows the"2 Posterior Joint-B distribution for AIGalnP-MQW-Pulse-ALT.
Comparing Fig.8.2 and Fig.8.4, quickly reveals tthat uncertainty in the Joint

distribution has decreased aft&f Bayesian updating.

Joint Alpha Beta Posterior Distribution

Fig 8.4 29 Posterior Joint-B distribution for AlGalnP-MQW-Pulse-ALT
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The 2nd Average Predictive posterior distributidrtiee LED time to failure (TTF)
was computed using equations 8.11 and 8.12. Se8.%ifpr the CDF of LED TTF.
Again, comparing Fig 8.3 and Fig.8.5 reveals th@th5percentile of LED TTF

changed from 2.75E8 to 6.00E8 hrs between 1st addayesian updating.

1 1 1 1
0 2.5E+9 LSE+9 J.5S5E+9 1E+104
LED Time to Failure (hrs)
Weibul CDF = Awg. Prior CDF

Classical Evidence CDF ™,
Avg Bayesian Post. CDF |/

Fig 8.5. pa Average Predictive Posterior of LED TTF
“Amplitude” refers to the magnitude of the cumuwatdistribution function.

8.3.4 Conclusion from Prior data, ALT and Bayesian analyss

Prior published LED data is given in Table 8.1 #S2A), ALT results in Table 8.1
(Sr.# 5) and Bayesian updating results are destigdescribed in section 8.3.3. All
sources indicate that the MTTF of AlGalnP-MQW LEWken used in this specific
medical application (pulse mode 0.2% duty cyclepgerature = 35°C and current
density = 21.6Amps/chis in excess of 1E8 hrs. This exceeds the lifthefmedical
diagnostic instrument by orders of magnitude andsash is suitable for the
application. It is also interesting to observe that shape parametgrof the Weibull

model is less than 1 in all cases implying a desngafailure rate. This is not by
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coincidence. In section 5.4.1, we had observedndufiLT that the rate of optical
output degradation is logarithmic and that thiseraaries significantly between
different LEDs (even if taken from same manufactgibatch). Some LEDs cross the
20% degradation (failure threshold for this applw®) earlier than others. For LEDs
that do survive this initial high rate of opticatgtadation, the probability that it will

survive longer increases. This explains the decrgdailure rate.
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Chapter 9: Degree of Relevance in Bayesian modeling

Chapter 8 treats Bayesian modeling of LEDs for @ioa diagnostic application. It
allowed us to combine prior available data withedexated life test data to predict the
reliability (time to failure) of the AlGalnP LEDS hat is the main approach adopted
in this dissertation and has been published in Saetal [13]. In this chapter, an
alternate method for performing Bayesian modelihd.[6D reliability is proposed.
This is additional work that has not been publishgdhe author yet. This approach

may also be used in other applications of Bayesratysis.

9.1 The Problem: Partially relevant prior data

LED families are made from different material syssesuch as AlGalnP, GaN, GaAs
etc. Further, LEDs are manufactured using diffessmhiconductor structures such as
Double Heterostructure (DH) and Multi Quantum W&IQW). Depending upon the
application, LEDs may be driven in a DC mode (tgflic lighting or indicator
applications), Pulse mode with high duty cycle @Filmptic applications) or Pulse
mode with very low duty cycle (our current medicdhgnostic application). From
Table 8.1, it is obvious that the time to failuretioe LED is significantly different

based on the material, structure and the drivirajesy.

Bayesian modeling computes the LED reliability lmynbining prior published LED
data with the current test data (such as life testimic the current application).
While ample prior published LED data is availalies very difficult to get prior data

for the exact same material system, structure athd strategy. Limited prior data
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forces us to take two approaches. Either assuméhidgrior data is non-informative
(such as using a uniform probability distributiamétion) or use prior data from a
different LED material family, structure or drivirgjrategy. Using non-informative
prior distribution pretty much defeats the purpageBayesian modeling unless
additional and successive Bayesian updating is.udsithg prior data, which is not
directly relevant to the medical application, wilhuse over estimation or under
estimation of the LED reliability. This is a praml problem that applies to any

application of Bayesian modeling.

9.2The Solution: A Three Step Process

One approach to solving the above problem is usmy data for LEDs, which are

similar but not identical to LEDs in the currenpéipation. It will be a 3-step process.

9.2.1 Step-1: Transform DC data to Pulse data by Multiplcation

In Chapter 8, we transformed the prior data avildbr AlIGalnP-MQW-DC in to
AlGalnP-MQW-Pulse by multiplying it by a factor 6D0. The rationale used was 1
hr at 100% duty cycle (i.e. DC) is equivalent t®bfs at 0.2% duty cycle (medical
application). While this is a good number to staith, an alternate approach to
calculate the multiplier is to take a ratio of MTOF Pulse testing to DC testing.
Ratio of Weibull mean of AlIGalnP-MQW-Pulse (fromrnmlized ALT) to AlGalnP-
MQW-DC (prior published) was used in this researcfhis computation
(7.50E8/5.17E5) yields a multiplier of 1451. Bofhtlmese multipliers (500 and 1451)
will be used in subsequent analysis in the follayisections. Analysis of prior

published data for LED life gave us a set of datascsting of time to failure
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Set1={AlGalnP-DH-DC, AlGalnP-MQW-DC, GaN-MQW-DC} (9.3)

GaN-DH-DC was ignored since limited data was abétla

By using the two multipliers (500 and 1451), wetgo additional data sets

Set2={AlGalnP-DH-DCx500, AlGalInP-MQW-DCx500, GaN-M@®DCx500}
-(9.9)

Set3={AlGalnP-DH-DCx1451, AlGalnP-MQW-DCx1451, GaWQW-DCx1451}
- (9.5)

See Appendix 7 for Setl, Set2 and Set3 data.

9.2.2 Step-2: Use a Degree of Relevance Parameter R

A new parameter called degree of relevance ‘R'ntsoduced which takes values
between zero and one. The ‘R’ value will be usethtalify the Bayesian model such
that the influence of evidence is decreased aspgroaphes zero. The parameter ‘R’
can be estimated by engineering judgment and phydgicemiconductor structures.
Hypothetical values of ‘R’ based on LED materiatiastructure will be used in this
research to perform the analysis. Methods of esimgaR’ such as use of utility

functions are left for future research and areflyrdiscussed in section 11.4.2.

9.2.3 Step-3: Changing the Likelihood function using R

In Bayesian modeling, the Likelihood function isngeated from Evidence. One
approach to using R in Bayesian modeling is changie likelihood function as a

function of R and then performing the Bayesian tipdeas shown below.
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If R is 1, it becomes a standard Bayesian updamqgtion. As R approaches 0, the
influence of likelihood function decreases. If R (s the posterior distribution

becomes identical to prior distribution.

9.3 Results and Discussion

As described in section 8.2, Bayesian analysidestaxith a Uniform prior jointi-3
distribution witha taking values between 5E7 to 9E9 @ndking values between 0.1
to 2. The DC data transformed to Pulse in Set2 @0k and Set3 (DCx1451) was
used as Evidence for thé' Bayesian updating shown in Fig 8.1. THé Bayesian
updating is done using ALT data as evidence. Ptigdidosterior distributions for

LED TTF were computed using the SW developed (desdrin Appendix 6).

The results are described in Table 9.1 below. $a. #@hd 1b used AlGalnP-MQW-
DCx500 data as 1st Evidence. The only differenckbisised an R-value of 0.75. Sr.
#2 used AlGalnP-MQW-DCx1451 data as 1st Evidence.this case, R-value
assessed is already equal to 1. Hence there waseed to perform a separate
analysis. Sr.#3a and 3b used GaN-MQW-DCx500 datasa€vidence. The only
difference is 3b used an R-value of 0.50. Sr. #ith4b used GaN-MQW-DCx1451
data as 1st Evidence. The only difference is 4bl aseR-value of 0.75. Sr.#5a and 5b

used AlGalnP-DH-DCx500 data as 1st Evidence. THg difference is 5b used an
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R-value of 0.50. Sr.#6a and 6b used AlGalnP-DH-DA541data as 1st Evidence.

The only difference is 6b used an R-value of 0.75.

Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood R Rel. | ence 2| Posterior TTF Statistic
R o B hrs <4.6
la| Unifo | AlGaInP-MQW- 81 1.00 | ALTY | 1.17E9| 0.547 | 6.00E8| 0.392
rm* | DCx500 with LI} c )
1b | Unifo | AlGalnP-MQW- % 0.75 | ALTY | 1.30E9| 0.538 | 6.58E8| 0.244
rm* | DCx500 with LR
2 | Unifo | AlGalnP-MQW- | 1.00 | ALT" | 1.57E9| 0.601 | 8.76E8 0.741
rm* | DCx1451 with I?
3a| Unifo GaN-MQW- 1.00 | ALTY | 6.70E8| 0.415 | 2.63E8| 1.598
rm* | DCx500 with L}
3b | Unifo GaN-MQW- 0.50 | ALTY | 1.06E9| 0.437 | 4.60E8| 0.272
rm* | DCx500 with LI}
4a | Unifo GaN-MQW- 1.00 | ALTY | 9.05E8| 0.474 | 4.00E8 0.673
rm* | DCx1451 with ®
4b | Unifo GaN-MQW- 0.75 | ALTY | 1.05E9| 0.477 | 4.87E8 0.314
rm* | DCx1451 with I}
5a| Unifo | AlGalnP-DH- 1.00 | ALTY | 4.85E8| 0.358 | 1.74E8| 2.889
rm* | DCx500 with L? g ?
5b | Unifo | AlGalnP-DH- 0.50 | ALTY | 8.90E8| 0.387 | 3.46E8| 0.725
rm* | DCx500 with L?
6a| Unifo | AlGalnP-DH- 1.00 | ALTY | 5.88E8| 0.388 | 2.29E8 2.084
rm* | DCx1451 with Bg ?
6b | Unifo | AlGalnP-DH- 0.75 | ALTY | 7.43E8| 0.395 | 2.94E8 1.886
rm* | DCx1451 with I}

Table 9.1 Summary of Bayesian Analysis using plartialevant data

* Uniform prior joint a-f distribution witha taking values between 5E7 to 9E9 @#nd
taking values between 0.1 to 2.

¥ Accelerated Life Test (ALT) data given in Sr. #5Table 8.1 used as evidence 2.
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9.4 Conclusions

LED families are made from different material sysse(AlGalnP, GaN, GaAs etc.)
and are manufactured using different semicondustanctures such as Double
Heterostructure (DH) and Multi Quantum Well (MQVW¥urther, they may be driven
in pulse mode or DC mode. The time to failure @& tHED is significantly different
based on the material, structure and the drivirggesyy. While ample prior published
LED data is available, it is very difficult to gptior data for the exact same material
system, structure and driving duty cycle. Usingopriata, which is not directly
relevant to the application, will cause over estioraor under estimation of the LED
reliability. A 3-step solution is proposed whiclcimdes using a multiplier to convert
from DC to pulse data, estimating the degree @viasice parameter R (engineering
judgment and physics of semiconductor structuresyl ahen modifying the
Likelihood function in the Bayesian model with Rhélresults are presented in Table

9.1.

All the posterior predictive results in section $8ss the Chi-square statistic test
(described in detail in chapter 10). This test waed to determine how closely the
ALT data represents the predictive Posterior PDEED TTF. It was interesting to
observe that the Chi-square value was lower intla#l 5 cases when R was
appropriately chosen (compared to R=1). Since &toxglue implies a better fit, the

least we can say is that use of R produced betsaitts in this application.
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Chapter 10: Bayesian Parameter Selection and Model

Validation

10.1 Bayesian Subjectivity

While the Baye’s theorem itself has a sound stesisbackground, assumptions made
in the prior knowledge and in the underlying disiition bring in subjectivity in
Bayesian modeling. The subjective nature of therpdistribution (which could be
based on relatively sparse expert opinion) mayerdisubts about the accuracy of
Bayesian posterior distributions. In the currergeggch, Uniform prior distribution
was used fon andp of the Weibull model. However, the limits farandp in the
uniform distribution had to be assumed. Furtheigrpgpublished data transformed to
application conditions was used as Evidence inlthBayesian updating. Errors in
assumptions made at the start of Bayesian anabgis result in the posterior
distribution being a poor representation of theadakccordingly, the posterior

predictive distribution needs to be subject to seom of validation [8].

10.2 Validation approach

Work by Mosleh et al [8] has been relied upon fornfulating the validation
approach in this dissertation. In statistical asiglya model is often used to represent
data. Since the entire population data is rarelgilable, the model is generally
developed based on a small sample data (extraatetbmly out of the population).
Deviations between actual data and a model thatitbes the data well are subject to

the Chi-Square distribution. This is based on tb&umption that any deviations in
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observed data from the expected value predictethéyunderlying distribution are

normally distributed. This assumption is generaflgund, as many errors in
observation are resultant from the summation of ynather random variables, and
hence are subject to the central limit theorem.iBgrence, if these variations are
described by the Chi-Square distribution, thenntfoglel being tested is most likely a
good one. The Bayesian Chi-Square statistic isglesimeasure that quantifies how

well the posterior predictive distribution agreawthe data [8].

To calculate the Chi-Square statistic, ¥he axis (for the random variable) is divided
into K distinct intervals that contain at least 5 datan{soeach from the sample. The
number of data points in each interfa written ady; j =1, 2, ... K). The intervals
do not need to be of equal width. Then, with thedetdistribution being tested, the
number of expected data occurrences in each intisrealculated:

g=np - (10.1)
whereg is the expected number of occurrences of datatervall;, n is the sample

size andp, = [ f,(x| 6)dx
g

The Bayesian Chi-Square statistic is then defireed a

k

b —e f
Xo = Zu ~ Xea - (10.2)
=8

This value summarizes the magnitude of naturalatians between observed data
and the model being tested. Note that the expeetie@ is used in the denominator in
place of the variance in the definition of the Gguare random variable. This is

because we do not know the variance of the data friodel expected values. To
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accommodate this lack of knowledge, we reduce thmber of degrees of freedom
by 1, so the Chi-Square statistic above should éscrtbed by the Chi-Square

distribution withk — 1 degrees of freedom.

For model validation, a ‘significance level’ istimduced. The significance level,
(unrelated to the scale parameter of the Weibudtribution which uses the same
symbol), is defined as the probability of data gsial returning a result at most as
extreme as the calculated value for which the dmtisiaker is willing to accept the
null hypothesis. Generally is in the range of 1 — 10 %. One way of hypothesis
testing is to calculate the upper limit ‘c’ of tl@&hi-Square statistic based on the
significance level.

ie. Plx2,<c)=1-a - (10.3)

This means that if the Chi-Square statistic excegdfien the null hypothesis is

rejected.

10.3 \Validation phases in Bayesian modeling

Validation of Bayesian modeling occurs in variobages. These are
1. Selection of the distribution for the underlyingjdge distribution,
2. Suitability of the prior information and

3. Appropriateness of predictive posterior distribotagainst the test data.

10.3.1 Selection of underlying failure distribution

Many of the LED degradation mechanisms occur timeesiest parameter range. The

dominant failure mechanism leads to failure. Tleads us to believe that Weibull
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distribution (with parametera & B) is the most suitable distribution for time to
failure of the LEDs. Levada et al. [34] carried @dcelerated life tests on plastic
transparent encapsulation and pure metallic packaghl LEDs. A consistent

Weibull based statistical model was found for MTtREreby giving credibility to our

approach.
Lornormal vs Weibull Fit for ALT
1.5E+00 |
y = 0.3992x - 8.014
R? = 0.946
5.0E-01 -
-5.0E-01 |
y = 0.5036x - 10.658
R? = 0.9798
-1.5E+00
Logormal Fit
-2.5E+00 - Weibull Fit
—— Linear (Logormal Fit)
3.5E400 | | —— Linear QNelbuII Fit)
14.0 16.0 18.0 20.0 22.0 24.0
Ln(t)

Fig 10.1 Lognormal vs. Weibull fit of ALT data

When the data from ALT performed in this researcswanalyzed, it revealed that
Weibull is a slightly better fit compared to thedmmrmal fit. See Fig 10.1. Thus the
degradation mechanism of LEDs, published data amdAdLT data all point to

Weibull as the most suitable model for this datalysis.
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10.3.2 Selection and verification of prior distribution

Uniform distribution was used as prior knowleddgeparametersu and  of the
Weibull model. The limits for. andp in the uniform distribution were selected such
that they encompass the prior published data aedhtmmalized life test data. In
order to verify that the limits were selected cotiye an additional calculation was
performed with the upper limits of andp widened. See Table 10.1 and Fig 10.2.
There was no difference in the predictive poste@@F for LED time to failureo

stayed the same at 1.35B9changed slightly from 0.809 to 0.808. This protest

the limits ona andp in the uniform distribution were correctly chosen.

Property Used limits for prior of a and g | Wider limits for prior of a and
Samples 1 to 1E10, Total 800 1to 1E10, Total 800
Prior Uniform Uniform

Alpha SE7 to 9E9, Incr 5E6 5E6 to 9E10, Incr 5E6
Beta 0.1to 2, Incr 0.1 0.1to 4, Incr0.1
Evidence AlGalnP-MQW-DCx1451 AlGalnP-MQW-DCx1451
Source

Evidence n=11, r=11, tc=4.829E+9 n=11, r=11, tc=4.829E+9
data

Alpha 1.13E+9 1.13E+9

Beta 0.89 0.89

Predictive

Posterior

Alpha 1.35E+09 1.35E+09

Beta 0.809 0.808

Table 10.1 Used vs. wider limits on priorcoéndp
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= B g-5% i =B q-5% i
Avg Bayesian Post. 3.75469E+7 0.0533] Awg Bayesian Post. 3.75469E+7 0.0533¢
&) [9-50% =/l a-50%
Avg Bayesian Post, 8, 51064E+8 0.5000( Awg Bayesian Post, 8.510564E+8 0.4995¢
= 95 - BRI
Awvg Bayesian Post.| 4.86859E+9 0.9418!ﬂ Awg Bayesian Post. 4.8811E+9 [1.9418'.l|
1-T 1 aEeme 1- PPPFTIIID *
0.8- 0.8- o
a 2K
3 06" g-50% 306" q-50%
5 0.4~ 5 0.4-
0.2} 02/ |
Q- 1 1 I I 0- I I 1 1 1
] 25E+9 5E+9 75E+9 1E+10 1] 25E+9 5E+9 7Y.5E+9 1E+10|
LED Time to Failure (hrs) LED Time to Faiure (hrs)
Weibul CDF | Awvg. Prior CDF Weibul CDF
| Classical Evidence CDF | -
ég Avg Bayesian Post. CDF |/,

Fig 10.2 LED TTF with used vs. wider prior limite a andp.
“Amplitude” refers to the magnitude of the cumuwatdistribution function.

10.3.3 Appropriateness of Predictive posterior distribution to test data

Validation approach using the Chi-square statiaicdescribed in section 10.2 was
used in order to check the appropriateness of girediposterior distribution to the
test data. Uniform distribution was used as therPior o and  as described in
section 10.3.2. Prior published data for variouPLliBaterials, structure and driving
(dc transformed in to pulse) was used as evidemcthé F' Bayesian updating. The
2" Bayesian updating is done using ALT as evidenee. &ctions 8.3.2, 8.3.3, 9.2
and 9.3 for details. As described in section 9.8 Appendix 8, Predictive Posterior
distributions for LED TTF were computed by Eviderdctaken from:

Set2: AlIGalnP-MQW-DCx500
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Set3: AlGalnP-MQW-DCx1451
Set2: GaN-MQW-DCx500
Set3: GaN-MQW-DCx1451
Set2: AlGalnP-DH-DCx500

Set3: AlGalnP-DH-DCx1451

The result of predictive posterior distribution foED TTF is hypothesized as the
population TTF. Using ALT as Test data (n=18, k=Bhi-square statistic was

computed as shown in Table 10.2.

Prior: Evidl: AIGalnP-
Uniform |MQW-DCx500 Evid2: ALT Posterior-> Alpha Beta n
1.17E+09 0.547 18

Interval j [ Lower Limit XI | Upper Limit Xu pj ej = npj bj (bj-ej)**2/ej
1 0 2.00E+08 0.3165 5.70 6 0.016
2 2.00E+08 1.80E+09 0.4015 7.23 6 0.208
3 1.80E+09 8 0.2820 5.08 6 0.168

1.0000 Chi-Statistic 0.392

Table 10.2 Computation of Chi-square statistic

Using the significance level of 10% and degreesed#dom as 2 (k-1), the c value is
computed as 4.6. Since the chi-square statistB99).is less than the ‘c’ value (4.6),
the predictive posterior distribution (using Eviderl AlGalnP-MQW-DCx500) is an

acceptable distribution to represent ALT data.

Taking a similar approach for the other data setElidencel, Table 9.1 (included
in chapter 9 and repeated in Appendix 8) was coatdd. It can be seen that all of
the data sets used for Evidencel give an acceppabdictive posterior distribution.

This means that the ALT data can be assumed asngofnom a population

108



represented by the predictive posterior distrimgipredicted by various sources for

Evidence 1.
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Chapter 11: Conclusion

11.1 Summary

In a medical diagnostic application, the precistueeof light intensity is used to
interpret patient results for medical diagnostidence understanding LED failure
modes is very important. Failure Modes and Effétiicality Analysis (FMECA)
tool was used to identify critical LED failure madélhe next steps were Accelerated
Life Testing (ALT), Accelerated Degradation TestiffDT) and Bayesian analysis.
ALT/ADT was performed on the LEDs by driving them pulse mode at higher
current density J and elevated temperature T. s&vBower Law model with J as the
accelerating agent and the Arrhenius model withsTthee accelerating agent were
used. The optical degradation during ALT was fouadbe logarithmic and this
property was used for the degradation analysisgusitog-linear degradation model.
Further, the LED bandgap temporarily shifts towatttss longer wavelength at high
current. This shift was dependent on junction terajpee. Empirical coefficients for

Varshini’'s equation were determined.

The Bayesian analysis starting point was to idgmértinent published data which
may be used for developing the prior informatioror the published data, the time
required for the optical power output to degrade2Bypercent was extracted LEDS
with different active layers (AlGalnP, GaN, AlGaAslifferent LED structures (DH,
MQW) and bias conditions (DC, Pulsed). The degiadamechanism of LEDs,

published literature and our ALT data all indic#tat Weibull is the most suitable
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model for this data analysis. This rationale wasdut® develop the Weibull based
Bayesian likelihood function. For the first Bayesiapdating, Uniform distribution
was used as the Prior farp parameters of the Weibull model. Prior publishathd
was used as Evidence to get the first posteriot @i distribution. For the second
Bayesian updating, ALT data was used as Evidenggettdhe second posterior joint
a-p distribution. This jointo-f distribution gave a series of Weibull time to dad
distributions. The predictive posterior failuretdisution for the LEDs was estimated
by averaging over the range @ values. Lastly, a new parameter ‘R’ (degree of
relevance) is used to transform partially relevarior published data for use in

Bayesian modeling.

Prior published data, the present ALT data, ADTIysia and Bayesian analysis
indicate that the MTTF of AlGalnP-MQW LEDs when dse this specific medical
application (pulse mode, on time 100us with 0.2%y diycle, temperature = 35°C
and current density = 21.6Amps/@nis in excess of 1E8 hrs. This exceeds the
warranty life of the medical diagnostic instrumbmgtorders of magnitude and as such
the LED is suitable for this application. The shapeametep of the Weibull model

is less than 1 in all cases indicating a decreafsiihgre rate. This may be explained
by the observed logarithmic optical degradationhef present work. The initial high
failure rate may be due to manufacturing defectaclvwere not properly screened,
and hence the surviving population would be ableatbieve a long life, since

probability of surviving increases after the inlitiegradation.
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11.2 Obijectives and Accomplishments

The goal of this research was to deepen our uradelsty of AlGalnP LED

performance over time for impulse currents (medagaplication), uncover unique

failure mechanisms and generate a model of tinfailkare. Work carried out during
this study resulted in the publication of threeesesh papers and one poster
presentation. The following are the answers taiestions we started with:

1. Will the LED intensity remain within acceptable lis? Yes it does.

2. Will the LED wavelength remain stable? Yes, if tjumction temperature is
maintained. Spectral shift investigation was pemied during this research.

3. Will the Time to Failure of LEDs exceed the Lifetbe Medical Instrument? Yes,
the LEDs will outlast the 7-year life of the medigastrument by orders of
magnitude.

4. Will there be a cost benefit of using LEDs vs ttidhial light sources (flash lamps
etc)? Traditional lamps have to be replaced eveByBonths causing a major
inconvenience to the customer. Use of LEDs willnghiate this replacement
saving time and money needed for maintenance.

5. Will there be any critical failure modes for the diwal application? A Failure
Modes Effects and Criticality was performed fornt#ying critical failure modes
which were found to be encapsulation degradatiah antive layer degradation.
Even a worst case situation would only cause achatkiled calibration of the

medical instrument, which would delay medical tesults.
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In addition to meeting the stated objectives, exttak was carried out for using
partially relevant prior data. A new parameter {degree of relevance) is used to
control the influence of evidence (by adjusting thielihood function) in Bayesian

modeling.

11.3 Research contribution and Significance

This Thesis represents the first measurements GlallP LED reliability for the
medical diagnostic application. This research wailbw replacement of traditional
light sources (filament or flash lamps) with LEO%ie lamps degrade and have to be
replaced 3-6 months causing a major inconveniemdbd customer whereas LEDs

will outlast the 7-year life of the medical diagtiosnstrument.

This research has produced significant contribgtiom the failure physics and
analysis of LEDs for medical applications. We walde to combine the traditional
ALT/ADT approach with FMECA and Bayesian analysmil &aience have shown that

this methodology is valid for such complex situato

The research represents a new contribution to LEmahility for significantly
different bias conditions. Our research used pdiseng with a very low duty cycle,
and the failures were induced by the magnitudéefieak current. We have reported
a decreasing failure rat@ from the Weibull TTF model, through a unique
combination of prior published data, ALT and Bagesianalysis. The cause was
attributed to the observed optical degradationciviiollowed a logarithmic function

with high degradation in the initial period.

113



We have reported that bandgap shift due to thegfiatts can degrade the power
output which may give an erroneous indication ddiltfre”. Upon returning to
nominal junction temperature most of the wavelenghtfift is recoverable. The
bandgap shifts toward longer wavelengths, but addit work must be carried out in
order to understand this specific mechanism as wasllthe initial logarithmic
degradation. Since the spectral performance iga&ritor the medical application, my
spectral shift investigation will provide immensalue to the designer. The junction

temperature will need to be maintained.

11.4 Future Research

11.4.1 ALT at different duty cycles

LED life testing in prior published articles is domnder DC conditions. Very few
articles are available for pulse testing. Per teednof the medical application, ALT
performed in this research was performed at vemydaty cycles (0.2%). Performing
ALT is difficult and time consuming. Since each exment takes as high as 6
months, we could only perform ALT at the requireaviduty cycle conditions. It

would be helpful to perform ALT at various duty t&8& and estimate LED lifetime as
a function of duty cycle. This would allow a destgrno choose the correct duty cycle

to maximize the reliability while meeting the LEPmication requirements.

11.4.2 Use of a Utility Function while estimating R

Insufficient data is a very common problem in Rality studies. The conditions of
prior published data rarely match application ctods. In Chapter 9, the concept of

degree of relevance of prior published data wasudised. A 3-step approach is
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proposed which includes using a multiplier to cahviekom DC to pulse data,
estimating the degree of relevance parameter Rtteemd modifying the Likelihood
function in the Bayesian model with R. The threspstshould be subjected to further
scrutiny. Refinements may need to be carried ouu$e in applications other than
LED reliability. One possible refinement is useaoftility function while estimating
R. This would allow a parametric relationship begweindividual relevance
parameters for material (Rm), Structure (Rs) antviby conditions (Rd) and the

estimated R.

11.4.3 Other methods of using degree of Relevance ‘R’

In addition to modifying the likelihood function by, other methods of using ‘R’
should be studied. A common method is a Weightestgoor approach, which
however was not considered during this researchapproach that we did consider
(but which needs further development) is transfagrihe uncertain evidence itself
based on the value of R. The purpose of transfoomag to move the evidence data
towards a Uniform distribution as R approaches e fransformed data when used
as Evidence during Bayesian updating will makecthmaputations much easier.
Boundary conditions for the data transformationaséollows:

If R=0. Transform the data in to ‘Uniform distrilbon’

If R=1, Transformed data is identical to the oraidata

For 0 < R < 1, move the PDF of the partially relgvdata towards a Uniform
distribution as R approaches 0.

During the Transformation of data, it is necessamnake

Mean of transformed data = M = Mean of ALT/Applicat data
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If ti (t1, t2,...,tn) is a set of n partially relevatime to failure of LEDs, the
transformed data set ti’ is given by

t = [(2i-1)M/n] R R - (11.1)
Again, the boundary conditions are

If R=0, § = [(2i-1)M/n] with Average = M

IfR=1,% =t

11.4.4 Failure Analysis

Additional failure analysis including microscopyngcessary in order to understand
the role of dislocations and other defects in cagighe initial decrease in power
output. The diode surface can be analyzed thratgmic force microscopy in order
to understand the role of surface roughness inedsarg light output. The analysis
should be designed so that one may differentiatevdmn latent defects and
manufactured in defects. Additional research shdug carried out which goes
beyond the surface of the die and into the inteabithe die in order to totally

characterize the physics of failure.
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Appendix-1: Laboratory for LED Reliability Testing

Photos of laboratory test setup developed for LElRbility testing

LED
Driver
Lab G
iBook Circuits
: Data ; 1
- Research
\ Acqwsﬁmn Radiometer Test
# . Software |

Light box for
Avg LED

Chamber 1 Intensity
Chamber 2 Measurement

Chamber (Optical senso
inside box)

\ LED Driver bgg

Signal Condltlonm e E—

Fig Al.1 Laboratory photos of LED ALT setup
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Appendix-2: Circuit Schematics for LED ALT

Wiring diagrams for LED ALT were used to connecgt fdational Instruments Data

acquisition board (PCI6025E) to the LED driver uitc Signal conditioning circuit

and the International Light Spectro-Radiometer (RRER).

NI-PCI6025E

SCE-68 Terminal Bloc

CTR1-Gate-41
CTRC-02

CTR1-40

AIGnd- 67
Dig.Gnc-36

AlO-68

)

24V DC Power Supply

Gnc — &+

L

LED Driver circuit

Integrating
Spher:

LED

~
0

{

Trigger
> _|_|‘|
\AYAYA (_l
= R5*
*R5 used to set LED current
Signal conditioning circuit
Vil NN
L
PC
with
Special Labview
DAQ SW USB
Cabhle Cable
NI-PCI6025E

Fiber
Optic
Cable

RPS900-R

Fig A2.1 Circuit diagram for LED ALT setup
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Appendix-3: Circuit diagram for Vf Signal conditimg

The following circuit was designed for this reséartt measures the LED forward
voltage while being driven in pulse mode. In theDLHriver circuit, the cathode of
the LED is pulled low to turn it on. For Vf measoment, this is fed to the op-amp
(high input impedance) which controls the currdmbtigh the current source at the
output. This current source develops a voltagesactioe output resistor in proportion

to the Vf swing. This Vf is measured by the datquasition card. NI-PCI6025E.

—— g e e e e S R e R M R R e R R e e e e e e

! l

' 1

' 1
1 | 1
| | 1K |
" LED1 LED2 |J 1uF 4|15V 1K |
1 > > lZZeov |
I 7] I - 1
1 | 1
| |
| 1 Vil :
1 I 1
1 | 1
| _I: | "
I I 1K
1 | 1
1 | 1
! : ! o1
QRS RT1 AIGnd!
1 Gnc : |

. 1
19— 1 ' i I
1 =
I I :
1 | 1
! ! Vi2 |
1 I 1
1 | 1
1 | 1
1 | 1
| | 1K

1

1 | 1
I : — I
e e _ L e e e e — e ________—____1 !

Fig A3.1 Circuit diagram for Vf Signal conditioning
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Appendix-4: Photos of LED during ALT

The following LED photos were taken during the ALT.

F3

640x1-31-Lens

640x1-34-Lens

640x--Lens

Fig A4.2 LED Photos from ALT Batch 2
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640x1-41-Lens 640x1-43-Lens 640x1-45

Le

ns

640x1-46-Lens - | 640x1-48-Lens

Fig A4.3 LED Photos from ALT Batch 3
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Appendix-5: Labview program for ALT

The following Labview program has been written esctely for performing the
Accelerated Life Test during this research. Theviely programming language has

been developed by National Instruments. Refer tp:/hirww.ni.com/labviewfor

details.

ON / OFF
Ver13« &
= Start date
Enable  mtome 107 vai 3 s |
Test: =

Cydle special SpiCyiMult
Time{s)] Cyde? s

(om @ CCOE (T

hamber Ty f spiCyiRepeat
1.
™ e
£

TempHumidity_Array Manual_TempHumidity ? =

N T ——
' mier  VEY

N

Giiss |

640x1-65

640x1-66
6403167
540x1-68 |

6403160 |

540x1-70 |

1 'J
10
7 'J
4 rJ

-
; KJ
15
10
) | ®)
) (8]
L 'J
@)
1
15
. ‘J
e

Fig A5.1 Front Panel of labview program for ALT
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["LED Cycle”

StatusMotes [[Cog_selection]] iJ;ﬂ..u_LED
LT Array |

#561] |

trigger and dock
"Pulsed S‘cres_\I [y

= VT Array

| LED_Cluster "I |
I_ H
| IF Arra |I_ st b DlBL]|

Burst_Period (s)
¥132] ||UUT Counter

3T |Waveform
| connection reference |—
P

[+Tc/DutyCydejvolt =

Y 7

Post-Delay : 5

J

=E———
Etd‘nSlze_a‘-\rray I

Force a Burstfoyde time

| Chamber Type |_u

||_1.-:-g_Data |= Log_Data |

Trends

| Lot5 Thermal Brd ?

{[Manual_TempHumidity 2|

SplCylRepeat

[l

Fig A5.2 Block diagram of main labview program facT

123




T[False ~]
|Get Database
properties BatchSize_Array
LEDDEREL L32HY omphumidity_rmay
[abcl
LED Cluster
[==d Log Data|[S-ok
[Manual_TempHumidity ?
; TF
|, [[Burst Puises

# of VI Scans

»

Burst_Period ()

oooo (O O Ol O O O O O OO O] { i, 3]~ OO O 0 O O 0 O O O O O O 0 O
B8 i
o
Vf_Array_Out|
ction
Lo [[False ~}]
o i
TE
[Sub-VI ?
O
StatusNotes
b
LED Data
OO0000 00 0000000000000 00000000000000000000000000000000

Fig A5.3 Block diagram of low level labview progrdor ALT
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Appendix-6: Labview Program for Bayesian Modeling

The following Labview program has been written Isyaxclusively for the Bayesian
modeling performed during this study. The labviewgramming language has been

developed by National Instruments. Refer to hitgyutlv.ni.com/labviewfor details

Basic Prior | Evidence | Likelihood Function | Posterior | Predictive Posterior | Misc | Old Data

Bayesian Analysis of LED Reliability Ver 6.8

Alpha_Max Beta_Max String Data? DEVE|OPEd by-
- " '
é 6 Milind M. Sawant

Alpha_Min Beta_Min

-] fm

Alpha_Incr Beta_Incr

= fm

Alpha_~Array Beta_Array

(o (= o

Note: All Text in are required fields before starting a run.

Fig A6.1 Front Panel Page 1 of labview program\itaibull Bayesian Analysis

Basic | Prior Evidence | Likelihood Function Posterior | Predictive Posterior | Misc | Old Data

Prior Distr.

{ DT

Prior String

3.163296E-17 3.215619E-17 3.260865E-17 | A
3.300277E-17 3.334818E-17 3.365247E-17
3.392167E-17 3.416069E-17 3.437357E-17
3.450302E-17 3.473364E-17 3.488597E-17
3.502253E-17 3.514531E-17 3.525550E-17
3.535446E-17 3.544332E-17 3.552303E-17
3.559447E-17 3.560838E-17 3.571543E-17 %

Fig A6.2 Front Panel Page 2 of labview program\Vigibull Bayesian Analysis
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| Evidence Li d Function |

2025219 Alpha E

13657673 ; HRFa : g
70127580 - (== (oom
121596002 :

122412140

n g
el 1596E 48 e e _1.0513?E+1Cl
203940083
312817482
1016462110
1126317125
1578094167
1960342866
3605343585
4795072177
9473540316
9914108215
10513715985

Fig A6.3 Front Panel Page 3 of labview program\Vigibull Bayesian Analysis
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| Basic | Prior | Evidence | Likelihood Function  Posterior | Predictive Posterior old Data

Likelihood_Loop

Likelihood Function

PEE e[. 1.34633 | 1.47534
Alphaem 7.23431E19.45715¢

'

Likelihood String

5.977587E-1346.282331E-
184 6.562045E-184
6.819887E-184 7.058466E-
184 7.279901E-134
7.486213E-134 7.678785E-

T
3. 54M07E+18
L
3.81148E-195

Fig A6.4 Front Panel Page 4 of labview program\Vi@ibull Bayesian Analysis

m Likelihood Function | Posterior  predictive Posterior 0ld Data

Taint Alnha Beo
Posterior Distribution Joint Alpha Bet;

Beta EEI 1.3126E-18 | |1.37952E-13
Alpha em 5.99559E-15 |7, 72606E-15

Post. String
1.312605E-18 1.379523E-18
1.440945E-18 1.497563E-18
1.549952E-18 1.598590E-18
1.643381E-18 1.6860168E-18
1.725747E-18 1.762875E-18
Post_Alpha_Max
1.43E+9

Post_Beta_Max

Denominator

2.67803E-175

Fig A6.5 Front Panel Page 5 of labview programitaibull Bayesian Analysis
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Function |

start {Weibuil}

€ romm e
Pred

ictive Posterior Misc | Old Data

=B a-5% e
Avg Bayesian Post.| 1,25156E+7 0.0695
- S
Avg Bayesian Post, 5.88235E+5 0.4046.
= B 9-95%

Avg Bayesian Post,| 9.09887E+9 0. BSSSTL_]

SE+9
LED Tiime to Failure (hrs)

I
1E+10

Awvqg Prior PDF 2

Awvqg Prior PDF
JF051ES
1,149132F-5
7.959917E-10

£ ca7inde.in Y
Avg Prior CDF 2

eﬁlw

Evidence PDF 2

¢ =y

Evidence PDF Avg Pos

Evidence CDF 2

Evidence Avag Post (

Avg Post PDF 2

¢ =y

t PDF

1 1 I 1
2.5E+9 SE+9 7.5E+9 1E+10
_ LED Time to Failure (hrs)

Lt Array

6o o

L Array 2

1,000000E+0
1.251565E+7
2,503125E+7

3 FLALOIC LT

ocate
ercentile?

T

Awvg Post CDF 2

9“@ 9ﬁl—ei

Alpha Pred_Post
Z01E+9

a_Pred_Post

CDF

Fig A6.6 Front Panel Page 6 of labview program\Vigibull Bayesian Analysis
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Initialize variables

LED failures Plastic Bluz 100maA, Levada et.al., 8/10, tc=218
5

LED failures Plastic Blue 50ma, Levada et.al., 8/10, tc=1529
3

LED failures Plastic Blue 20ma, Levada et.al., 710, tc=3135
»

Example from Mosleh et.al. Book, 10/10
3

LED failures Metal Blue 50ma, Levada et.al., 15/16, tc=2000
»

LED failures Metal Blue 100mA, Levada et.al., 14/16, tc=500
3

Tab Control

1000000000000 0000000000070 D[U 5]vt|DDDDDDDDDDDDDDDDDDDDDDDDF‘

String Data?

Reading from String data

™ True 't

Prior
for alpha, beta

alpha, beta

Prior String
@ eta_Incr
Ipha_Incr
0 0 |
g Posterior
‘ for alpha, beta
Uniform Prior
for alpha, beta
Beta_Arra
Alpha_Arra

100000000000 000000000000000000000000000000000000000000000L°C

Fig A6.7 Block diagram Page 1 of labview program\i¢eibull Bayesian Analysis
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1000000000000 0000000000070 1[U 5]vt|DDDDDDDDDDDDDDDDDDDDDDDDF‘

g1 is _ r nr
f(r|a:ﬁ]=i—ﬂ€{aJ L(E|a'ﬁ}_l;[f(f,|a-ﬁ)1;[R(Ic|cx.ﬁ)

T

S LEl@p) A ([t e (-’ T)

R(1) =1-F(t)= e{“
where | T = irf + irf = irf +n-nt’
i=1 i=1 i=1

R_Degree_of Relevance

LED Time to Failure Data
[DELE

Prior
for alpha, beta

inti;
L=1;
T=(n+)*{tc**Beta);

for (i=0; i<r;i++)

f

alpha, beta

(
T=T+ ti[]**Beta,
L=L* ti[]**(Beta-1)

Ed I= |0 [
a

o3

o

[=o

m

[

eta_Incr
Ipha_Incr
Alpha_Max |[DELk—| g Postemr
Alpha_Min |[DBL K= 18 __=: ’
Alpha_Incr [[DEL K Uiniform Priar
£ E} 1 for alpha, beta
Beta_Max [0 r (25 A
in [[DEL ¥
Beta_Min : — ht- tikelihood_toop
Beta_Ingr |[[DEL K-+ i
W
Beta_Arra
Alpha_Arra

100000000000 000000000000000000000000000000000000000000000L°C

Fig A6.8 Block diagram Page 2 of labview program\i¢eibull Bayesian Analysis
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1000000000000 000000000000 2[0..5 vt|DE|E|DDDDDDDDDDDDDDDDDDDDDF‘
Estimation of Posterior Distribution

L(E|a, f)ry(. p)
(L&l @ p)roler, pHiw dp

S

7 (e, Bl E)=

Prior Distribution
Prior Distr.
[s[ Uniform™

Joint Alpha Beta Prior Distribution

3D Surface. vi

L(E|a,p)

B L(E| o, B), (@ B)

Post. String

ﬂ'c(a:ﬁ}

7 (@.B|E) |

I:> Posterion|Distribution  Likelihood Functioh
i .

MNumeric Integration. vi
g B0 Surface.vi

i ¥
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]
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—
|5impson's Rule "l |Double "" »
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o
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Fig A6.9 Block diagram Page 3 of labview program\i¢eibull Bayesian Analysis
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1000000000000 0000000000070 3[0 5]vt|DDDDDDDDDDDDDDDDDDDDDDDDF‘

[Posterior Predictive Distribution]

a2 A FO= 112 e 1 v

F(0)= [[F( ', B)m e B EMa'dp:
Sax

Evidence POF 2

I DEL]
Weibull PDF

FDF=Beta*(t**({Beta-1))*exp(-(t/alpha) **Ceta)/Alpha **Beta;
COF =1-exp(-{t/Alpha) **Beta);

Prior
for alpha, beta

alpha, beta

end (Weibul
[DBLY

o] [E[@ =
EE
Sg
g
]
o
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[
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Ipha_Incr
FDEBL]
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Fig A6.10 Block diagram Page 4 of labview program\Weibull Bayesian Analysis
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1000000000000 0000000000070 4[0 5]vt|DDDDDDDDDDDDDDDDDDDDDDDDF‘

4

[Calculation of Alpha and Beta from Predictive Posterior Distribution ]

I float L1, L2, L3, Lt21, Lt32, Lt31, B1, B2, B3, B,

LnAl, LnAZ, LnA3, Al, A2, A3, A;
L1=In(1/{1Ft1);
L2=In(1j{1Ft2);
L3=In{1/{1Ft3));
Lt21=In{t2/t1);
Lt32=In{t3/t2);
Lt31=In{t3/t1);
Bil=In{L2/L 1)Lt21;
B2=In{L3/L2)Lt32;
B3=ln{L3L O Lt3L;
B=(B1+B2+4B3)/3;
LnAl=In{t1)dn(L 1)/8;
LnAZ2=In{t2)4n(L2)/8;
LnA3=In{t3)4n(L3)/B;
Al=exp(lLnal);
AZ2=exp(LnAZ);
A3=exp(LnA3);
A=[A1+AZ+A3)(3;

Locate
Percentile?

Beta_Pred_Post
G

Alpha_Pred_Post
5

100000000000 000000000000000000000000000000000000000000000L°C

Prior
for alpha, beta

alpha, beta

eta_Incr
Ipha_Incr

o] [E[@ =
EE
Sg
g
]
o
m
[

Uniform Prior
for alpha, beta

(2]
m

=

ta_Arra
pha_Arra

Fig A6.11 Block diagram Page 5 of labview program\Weibull Bayesian Analysis
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Writing data to string type to allow copying in Excel
and creating images to allow copying in Word

E+ Fikc]

T | Evidence POF
E’ Fibe]

L] Avg Post PDF

i S

t_Array 2

i

Image Data He

Likelihood Function 2

Ea ] AvaPrior POF Joint Alpha Beta Prior Distribution
o [T — 1]
E* El Get Image
) {Image Depth Joint Alpha Beta Prior Dist.
| \Jmms | Ava Prier COF v BG Color

Joint Alpha Beta Posterior Distribution
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et Image
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E* = Image Dat for alpha, beta
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m
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=

100000000000 000000000000000000000000000000000000000000000L°C

Fig A6.12 Block diagram Page 6 of labview program\Weibull Bayesian Analysis
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Appendix-7: Transformation of Partially Relevantt®a

The following data sets were generated for incapog partially relevant data in
Bayesian modeling.
Set1={AlGalnP-DH-DC, AlGalnP-MQW-DC, GaN-MQW-DC}

Also included in the table below is AlIGalInP-MQW-BedALT data (normalized).

Weibull-

Alpha 2.76E+04| 7.82E+05| 8.96E+03| 1.61E+05 1.55E+09

Weibull-

Beta 0.5 0.89 0.051 0.57 0.5

Weibull-

MTTF 1.33E+04| 5.17E+05 - 8.47E+04 7.50E+08

Degree of

Relevance

R - - - - 1

Multiplier-

Transform

ation 1 1 1 1 1

AlGalnP- |AlGalnP- AlGalnP-
DH-DC- |MQW-DC- [GaN-DH- [GaN-MQW-|MQW-Pulse-

Sr.# Prior Prior DC-Prior |DC-Prior ALT
1 517 200847 8914 8109 2028219
2 1546 200847 8936 8959 13657673
3 1785 204375 8950 9278 70127380
4 1890 236850 8957 10244 121596002
5 4348 236850 8958 13378| 122412140
6 4364 273345 8966 15280| 194486142
7 4527 304137 24998| 265744520
8 5814 342795 132711 298940988
9 7095 807254 140061 312817482
10 16017| 2446245 152794| 1016462110
11 24825| 3328400 189476| 1126317125
12 33646 715395| 1578094167
13] 577168 966689| 1960342868
14] 577611 987052| 3605343586
15 4795072177
16 9473549316
17 9914108215
18 10513715986

Table A7.1 Set 1 and ALT data
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Set2={AlGalnP-DH-DCx500, AlGalnP-MQW-DCx500, GaN-M@®DCx500}

Set3={AlGalnP-DH-DCx1451, AlGainP-MQW-DCx1451, GaWQW-DCx1451}

Weibull-

Alpha 1.38E+07 3.91E+08 8.05E+07 4.00E+07 1.13E+09 2.34E+08

Weibull-

Beta 0.5 0.89 0.57 0.500 0.890 0.570

Weibull-

MTTF 6.65E+06 2.59E+08 4.24E+07 1.93E+07 7.50E+08 1.23E+08

Degree of

Relevance

R 0.45 0.74 0.49 0.71 1.00 0.75

Multiplier-

Transform

ation 500 500 500 1451 1451 1451

AlGalnP- AlGalnP-
AlGalnP-DH- |MQW- GaN-MQW- |AlGalnP-DH- [MQW:- GaN-MQW-

Sr.# DCx500 DCx500 DCx500 DCx1451 DCx1451 DCx1451
1 258500 100423500 4054500 750167 291428997 11766159
2 773000 100423500 4479500 2243246| 291428997 12999509
3 892500 102187500 4639000 2590035 296548125 13462378
4 945000 118425000 5122000 2742390 343669350 14864044
5 2174000 118425000 6689000 6308948| 343669350 19411478
6 2182000 136672500 7640000 6332164| 396623595 22171280
7 2263500 152068500 12499000 6568677 441302787 36272098
8 2907000 171397500 66355500 8436114| 497395545| 192563661
9 3547500 403627000 70030500 10294845| 1171325554| 203228511
10 8008500| 1223122500 76397000 23240667 3549501495| 221704094
11 12412500 1664200000 94738000 36021075 4829508400| 274929676
12 16823000 357697500 48820346 1038038145
13| 288584000 483344500] 837470768 1402665739
14| 288805500 493526000] 838113561 1432212452

Table A7.2 Set 2 and Set3 data
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Appendix-8: Bayesian updating using partially reletvdata

Table 9.1 Summary of Bayesian Analysis using plartralevant data is reproduced
here for convenience. The next few pages provid&lddor each analysis:

Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood R Rel. | ence 2| Posterior TTF Statistic
R o B hrs <4.6
la| Unifo | AlGalnP-MQW- g8 1.00 | ALTY | 1.17E9| 0.547 | 6.00E8| 0.392
rm* | DCx500 with L} G )
1b | Unifo | AlGalnP-MQW- % 0.75 | ALTY | 1.30E9| 0.538 | 6.58E8| 0.244
rm* | DCx500 with L}
2 | Unifo | AlGaInP-MQW- | 1.00 | ALTY | 1.57E9| 0.601 | 8.76E§ 0.741
rm* | DCx1451 with I}
3a| Unifo GaN-MQW- 1.00 | ALTY | 6.70E8| 0.415 | 2.63E8| 1.598
rm* | DCx500 with L}
3b | Unifo GaN-MQW- 0.50 | ALTY | 1.06E9| 0.437 | 4.60E8| 0.272
rm* | DCx500 with L}
4a | Unifo GaN-MQW- 1.00 | ALTY | 9.05E8| 0.474 | 4.00E§ 0.673
rm* | DCx1451 with I?
4b | Unifo GaN-MQW- 0.75 | ALTY | 1.05E9| 0.477 | 4.87E§ 0.314
rm* | DCx1451 with I?
5a| Unifo | AlGalnP-DH- 1.00 | ALTY | 4.85E8| 0.358 | 1.74E8| 2.889
rm* | DCx500 with I¥ [(| ‘
5b | Unifo | AlGalnP-DH- 0.50 | ALTY | 8.90E8| 0.387 | 3.46E8| 0.725
rm* | DCx500 with L}
6a| Unifo | AlGalnP-DH- 1.00 | ALTY | 5.88E8| 0.388 | 2.29E8 2.084
rm* | DCx1451 with LRG )
6b | Unifo | AlGalnP-DH- 0.75 | ALTY | 7.43E8| 0.395 | 2.94E4 1.886
rm* | DCx1451 with I}

Table 9.1 Summary of Bayesian Analysis using plrtialevant data (Reproduced

for convenience)

* Uniform prior joint a-f distribution witha taking values between 5E7 to 9E9 @#nd
taking values between 0.1 to 2.

¥ Accelerated Life Test (ALT) data given in Sr.#f5able 8.1 used as evidence 2.

Details are provided in charts in the following pag
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic

R o B hrs <4.6

la| Unifo | AlGalnP-MQW- | 1.00 | ALTY | 1.17E9| 0.547 | 6.00E8| 0.392
rm* | DCx500 with [}

1% Bayesian Updating

Avg Bayesian Post., 1.25156E+7| 0.0520.
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic

R o B hrs <4.6

1b | Unifo | AlGaInP-MQW- | 0.75 | ALTY | 1.30E9| 0.538 | 6.58E8| 0.244
rm* | DCx500 with [}

1% Bayesian Updating

BB as5% "
Avg Bayesian Post., 1 1.6858]
= B 0-50%
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic

R o B hrs <4.6

2 | Unifo | AlGalnP-MQW- | 1.00 | ALTY | 1.57E9| 0.601 | 8.76E8 0.741
rm* | DCx1451 with I}

1% Bayesian Updating

= &
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic

R o B hrs <4.6

3a | Unifo GaN-MQW- 1.00 | ALTY | 6.70E8| 0.415 | 2.63E8| 1.598
rm* | DCx500 with [}

1% Bayesian Updating
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic

R o B hrs <4.6

3b | Unifo GaN-MQW- 050 | ALTY | 1.06E9| 0.437 | 4.60E8| 0.272
rm* | DCx500 with [}

1% Bayesian Updating
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood R Rel. | ence 2| Posterior TTF Statistic
R o B hrs <4.6
4a | Unifo GaN-MQW- 1.00 | ALT" | 9.05E8| 0.474 | 4.00E8 0.673
rm* | DCx1451 with I

1% Bayesian Updating

Joint Alpha Beta Prior Distribution

Joint Alpha Beta Posterior Distribution
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic

R o B hrs <4.6

4b | Unifo GaN-MQW- 0.75 | ALTY | 1.05E9| 0.477 | 4.87E8 0.314
rm* | DCx1451 with I}

1% Bayesian Updating
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic
R o B hrs <4.6
5a| Unifo AlGalnP-DH- 1.00 | ALT" | 4.85E8| 0.358 | 1.74E8| 2.889
rm* | DCx500 with F

1% Bayesian Updating

Joint Alpha Beta Prior Distribution

Joint Alpha Beta Posterior Distribution
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Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic
R o B hrs <4.6
5b | Unifo AlGalnP-DH- 0.50 | ALTY | 8.90E8| 0.387 | 3.46E8| 0.725
rm* | DCx500 with F

1% Bayesian Updating
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Sr | Prior | Evidence 1

Deg of

#. with Likelihood R Rel.

Evid-
ence 2

Predictive
Posterior

Mean | Ch-Sq
TTF Statistic

o p

hrs <46
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rm* | DCx1451 with I}
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1% Bayesian Updating

Joint Alpha Beta Prior Distribution

Joint Alpha Beta Posterior Distribution

147

= B 0-5%

Avg B

= B a-50%

Avg B
559

g-95%
Avg B

&
ayesian Post, 1 0.0007:
ayesian Post, 5.00626E+7| 0.5236¢

ayesian Post, 1.41427E+49 UB%GEL‘

1

E04-

0.2+
0

Weibull CDF

k2

r
0.8-f;

:F]

S 0.6-

=

l 1 1 1 1
o 2.5E+9 5E+9 7.5E+9 1E+10
LED Time to Failure (hrs)

Avg. Prior CDF
Classical Evidence CDF |~
Avg Bayesian Post. CDF |/~

= B 095%

£
Avg Bayesian Post. 1 0.0004¢
' {a-50%
Avg Bayesian Post., 2.37797E+8| 0.5074¢

Awg Bayesian Post. 9.8373E+9 D‘Q%Q'ﬂ

i i i i i
1] 2.5E+9 5E+9 7.5E+9 1E+10
LED Time to Faiure (hrs)

wWeibul CDF | Awg. Prior CDF

Clssical Evidence CDF |-~
® I Avg Bayesian Post. CDF |/




Sr | Prior | Evidence 1 Deg of | Evid- | Predictive Mean | Ch-Sq
H. with Likelihood ® Rel. | ence 2| Posterior TTF Statistic
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