
ABSTRACT

Title of dissertation: RESOURCE ALLOCATION IN
COMPUTER VISION

Daozheng Chen, Doctor of Philosophy, 2013

Dissertation directed by: Professor David Jacobs
Department of Computer Science

We broadly examine resource allocation in several computer vision problems. We

consider human resource or computational resource constraints. Human resources, such

as human operators monitoring a camera network, provide reliable information, but are

typically limited by the huge amount of data to be processed. Computational resources

refer to the resources used by machines, such as running time, to execute the programs.

It is important to develop algorithms to make effective use of these resources in computer

vision applications.

We approach human resource constraints with a frame retrieval problem in a camera

network. This work addresses the problem of using active inference to direct human

attention in searching a camera network for people that match a query image. We find

that by representing the camera network using a graphical model, we can more accurately

determine which video frames match the query, and improve our ability to direct human

attention. We experiment with different methods to determine from which frames to

sample expert information from humans, and discover that a method that learns to predict

which frame is misclassified gives the best performance.

We approach the problem of allocating computational resource in a video process-

ing task. We consider a video processing application in which we combine the outputs

from two algorithms so that the budget-limited computationally more expensive algorithm

is run in the most useful video frames to maximize processing performance. We model the

video frames as a chain graphical model and extend a dynamic programming algorithm

to determine on which frames to run the more expensive algorithm. We perform experi-

ments on moving object detection and face detection to demonstrate the effectiveness of

our approaches.

Finally, we consider an idea for saving computational resources and maintaining

program performance. We work on a problem of learning model complexity in latent

variable models. Specifically, we learn the latent variable state space complexity in la-

tent support vector machines using group norm regularization. We apply our method

to handwritten digit recognition and object detection with deformable part models. Our

approach reduces latent variable state size and performs faster inference with similar or

better performance.

RESOURCE ALLOCATION IN
COMPUTER VISION

by

Daozheng Chen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor David Jacobs, Chair/Advisor
Professor Dhruv Batra
Professor Hal Daumé III
Professor Larry Davis
Professor Lise Getoor
Professor Min Wu, Dean’s Representative

c⃝ Copyright by
Daozheng Chen

2013

To my parents, Keming Chen and Yun Zhang:

for their care over all these years.

ii

Acknowledgments

I want to thank my advisor, David Jacobs, for providing me an environment that

allowed me to pursue my own research ideas and guided me through all the research ob-

stacles over the years. David is always patient to listen to my half-baked ideas, active

to help me to obtain internships and future career opportunities, and cares about my life

at UMD. I cannot imagine what my graduate study would be without David’s kind sup-

port! I also thank Lise Getoor who is always willing to provide me with research ideas

and warmly encourages me to keep working despite temporary slow research progress. I

appreciate Dhruv Batra who guided my research with many technical details and allowed

me to quickly pick up a large amount of material in continuous optimization. I am also

grateful to Mustafa Bilgic who is always available for discussion and suggested useful

ideas when we worked on the camera network project together. I also would like to thank

William Freeman who kindly provided support and research advice during my stay at

MIT. I also thank Kimo Johnson who suggested many practical skills that allowed me to

work efficiently and also guided me to behave gently. I would like to thank my supervi-

sors, Shaolei Feng and Kevin Zhou, at Siemens Corporate Research, where I gained very

valuable industrial experience under their guidance. I also thank the technical supporting

staff at UMIACS, MIT, TTIC, Siemens, and the CS department at UMD. Without their

professional help to maintain data and machines, I could not imagine how many more

problems I would have had. Lastly, I want to show my appreciation to my Father, Keming

Chen, and my Mother, Yun Zhang, who diligently raised me up and supported my college

education in the United States over the years. Thank you all and thank God!

iii

Table of Contents

List of Figures vii

1 Introduction 1

2 Active Inference for Retrieval in Camera Networks 5
2.1 Introduction . 5
2.2 Prior Work . 6
2.3 Problem Formulation . 8
2.4 Probabilistic Models . 9

2.4.1 Local Models (LM) . 9
2.4.2 Relational Models (RM) . 10

2.4.2.1 Choosing Neighborhoods for Cameras 12
2.5 Active Inference . 12

2.5.1 Adapting RAC for Retrieval in Camera Networks 14
2.5.1.1 Features for MLI . 15
2.5.1.2 Training MLI . 16

2.6 Experimental Evaluation . 16
2.6.1 Dataset . 17
2.6.2 Queries . 17
2.6.3 Similarity Features . 18
2.6.4 Training LM, RM, and MLI . 19
2.6.5 Non-incremental and Incremental Sampling 20
2.6.6 Evaluation Methods . 21
2.6.7 Results and Discussion . 22

2.7 Summary . 23

3 Dynamic Processing Allocation in Video 25
3.1 Introduction . 25
3.2 Prior Work . 28

3.2.1 Background Subtraction . 28
3.2.2 Face Detection . 29
3.2.3 Resource Constraints in Computer Vision 31
3.2.4 Feature and Label Acquisition 32
3.2.5 Optimal Observation Plans . 33

3.3 Efficient Observation Plans . 36
3.3.1 An Example . 40

iv

3.3.2 Proof of Correctness . 43
3.3.3 Complexity Analysis . 48

3.4 Data Fusion for frame sequences . 50
3.4.1 A Graphical Model for Video 50
3.4.2 Applying DPA . 52
3.4.3 Forward-backward Algorithm 53

3.5 Experiments . 55
3.5.1 General Experiment Setup . 56
3.5.2 Motion Detection . 58
3.5.3 Face Detection . 60
3.5.4 Accuracy of Expensive Features 62
3.5.5 Usefulness of Cheap Features and Feature Dependency Modeling 64
3.5.6 Size of Subsections and Running Time 67
3.5.7 Concavity . 68
3.5.8 Discussion . 69

3.6 Summary . 72

4 Learning SVMs with Latent Variables Using Structured Norms 74
4.1 Introduction . 74
4.2 Prior Work . 78
4.3 SVMs with Latent Variables . 80
4.4 Inducing Group Norm for State Learning 83
4.5 Coordinate Descent . 86
4.6 Experiment . 89

4.6.1 Handwritten Digit Recognition 91
4.6.2 Object Detection with Discriminatively Trained Deformable Part

Models . 94
4.7 Summary . 99

5 Conclusions and Future Work 106
5.1 New Reward Functions for Value of Information in Graphical Models . . 107

5.1.1 Problem Formulation . 107
5.1.2 MAP inference in Undirected Graphical Models 110
5.1.3 Subset Selection . 112

5.2 Future Work for Learning SVMs with Latent Variables Using Structured
Norms . 114
5.2.1 Object Detection with Deformable Part Models Using Subcate-

gories . 114

v

5.2.2 Structured State Space . 115
5.2.3 The Dual Form of Learning SVMs with Latent Variables Regu-

larized by Group Norms . 116

Bibliography 122

vi

List of Figures

2.1 Camera layout and sample frames from each of the 7 cameras. The cam-
era ID above each frame is the actual ID used in the UCR Videoweb dataset. 14

2.2 The 12 query images from 4 people. The parts inside the red bounding
boxes are the cropped portions used to compute similarity measure. . . . 18

2.3 An example showing densely sampled points over regions of interest
computed by background subtraction. The right-most figure is the en-
larged view of the left-most region where key points are densely sam-
pled. The detected region is of square shape, because we run morpholog-
ical operations after background subtraction and extract non-overlapping
bounding boxes over connected components. In addition, the reason that
the person with a black coat is only partially sampled is because he has
been present over a long period of time with little motion. 19

2.4 An example of learned topology. Light gold edges with solid lines denote
positive correlation and black edges with dashes denote negative correla-
tion. Temporal edges are not shown because they are fixed. 20

2.5 Left: Average accuracy as budget increases. Right: Average precision as
budget increases. 22

3.1 The example chain graphical model. We assume that X1 and X9 are ob-
served in advance, shown with gray shading. The state of a node can be 1
or 2, and we show the actual state on the top of each node. 40

3.2 (a) shows how DPA with batch budget allocation determines the observa-
tion locations. We use gray to highlight observed nodes. The interval size
is 5, so the initial observation is X5, which is highlighted by a double-
line boundary with a thick inner line. (c) and (d) show the RB curves for
left and right intervals respectively. The observation locations for each
of these two intervals are determined by VoIDP-SCP, and are highlighted
by a single-line thick boundary. (b) shows how VoIDP-SCP determines
observations locations, which are also highlighted by a single-line thick
boundary. It shows how the chain is split into sub-chains by sequential
observations. 41

3.3 Markov models for video sequences. State variables are labeled “X”,
cheap observations are labeled “c”, and expensive observations are la-
beled “e”. They all have numbered subscripts indicating their time steps.
(a) The model we use when expensive features are not available at every
frame; (b) The model we use when all frames have expensive features. . . 51

3.4 Top: examples from video used in the motion detection task. Middle:
output of FD. Bottom: output of IAGMM. 59

3.5 11-point average precision values for the background subtraction task. . . 60
3.6 Top: frames from video used in face detection. Middle: output of IAGMM.

Bottom: output of the face detector. 62

vii

3.7 11-point average precision values for the face detection task. 64
3.8 Mean of average precision as the accuracy of the expensive features de-

creases. 65
3.9 Comparison of using constant synthetic cheap features, and cheap fea-

tures from real data with and without feature dependency modeling, using
a frame rate of 30, 6, 3, 2, and 1 frames per second. As in Fig. 3.5, the x
axis is budget and the y axis is average precision. 66

3.10 11-point average precision values as size of subsections varies in DPA. . . 67
3.11 Left: running time of VoIDP-SCP at a budget of 25% of the sequence

length. Right: running time of DPA at a budget of 25% averaged over
all testing sequences from all videos. We use the multi-dimensional array
to store the memory table in the dynamic programming. This allows the
fastest table lookup speed. These measures are taken using a server with
two 2.66GHz quad-core Xeon processors with 48GB of memory) 69

3.12 Percentage of subsections from all sampled sequences whose noncon-
cavity measure is not greater than a varying threshold. Each sampled
sequence has a length of 2000, producing 100 subsections with a sub-
section size of 20. The threshold values are 0, 0.0001, 0.001, 0.01 and
0.02. The legend indicates probability for each state to stay in its current
value. All other parameters of the model are sparsely sampled to cover
their value ranges. Going from top to down in the legend, the number of
sampled sequences used to generate the curve is 1728, 1750, 1956, and
1960 respectively. 70

4.1 Overview of our approach for the digit recognition (top) and object detec-
tion experiment (bottom). In digit recognition, the latent state space is the
rotation angles. For object detection, the latent state space is the compo-
nent label in the mixture of deformable part models. The model parameter
vector is partitioned into groups corresponding to different states. Param-
eters for non-informative states become zero in the final model under such
regularizers, allowing us to select meaningful states for prediction. 76

4.2 Examples of each digit and their rotations. The original images are in col-
umn corresponding to 0◦(no rotation). All other columns display the im-
ages under different rotating degrees, which are uniformly sampled from
[-60◦, 60◦]. The images are rotated counterclockwise. 92

4.3 ℓ2 norm of the parameter vectors for different angles over the 4 digit pairs. 93
4.4 Comparison of prediction accuracy vs. angle budget (top) and test-time

vs. angle budget (bottom) of our approach and uniform selection. We can
see that our approach outperforms uniform selection and is able to quickly
achieve accuracy comparable to the complete model (using all angles). . . 94

4.5 Example images from each category in PASCAL VOC 2007 dataset. The
red bounding boxes are the annotated ground truth bounding boxes. . . . 100

viii

4.6 Behaviors of the Felzenszwalb et al. detector [31] as a function of the
number of components for each object category on VOC2007 dataset.
The models are trained on the training+validation data and tested in the
test data. Only root+part accuracies are shown (no bounding box predic-
tion or context rescoring is performed). We can see that as the number
of components increases (from 1 to 6), the accuracies on train+val in-
crease consistently for all categories, while those on test tends to saturate
or even decrease for many categories. This suggests overfitting occurs as
the number of components increases. 101

4.7 Mixture of root model before and after the training regularized by group
norm for bus category. Each row shows the information for a component
and its symmetric counterparts are not shown to save space. Starting from
the left, the first column shows a positive example from the cluster which
produces the component. The second column shows the average image
of the cluster. The third column shows the root filter of the component
before the training. The last column shows the root filter after training.
A complete gray image indicates the filter is sparse and will be removed
from training the part filters and displacement parameters. 102

4.8 Mixture of root model before and after the training regularized by group
norm for car category. Each row shows the information for a component
and its symmetric counterparts are not shown to save space. Starting from
the left, the first column shows a positive example from the cluster which
produces the component. The second column shows the average image
of the cluster. The third column shows the root filter of the component
before the training. The last column shows the root filter after training.
A complete gray image indicates the filter is sparse and will be removed
from training the part filters and displacement parameters. 103

4.9 Examples top detections for different object categories using root-plus-
part models based on our approach. Within each image, the red bounding
box is the predicted location of the root filter and the blue bounding boxes
are the predicted locations of the part filters. 105

ix

Chapter 1

Introduction

New technology is giving rise to large stores of digital images and videos. Their

size has increased much faster than the computational resources needed to effectively pro-

cess them. For example, Flickr, an image hosting and video hosting website, reports that

it was hosting more than 6 billion images in August 2011 and this number continues to

grow steadily [68]. At the same time, as we develop increasingly more sophisticated and

accurate vision algorithms, they also demand greater computational resources. Conse-

quently, it is important to develop strategies for applying vision algorithms with greater

efficiency to image and video data.

In this thesis, we broadly examine this resource allocation in several computer vi-

sion problems. Specifically, we consider human resource and computational resource

constraints. Human resources, such as human operators monitoring a camera network,

provide very reliable information. Such resources are typically limited by the huge

amount of data it is necessary to process. For example, in the terrorist attack in London in

2005, British police were required to examine 80,000 CCTV tapes from the city’s camera

network system [60] to discover the image of a bomber after the [80]. It is very useful to

direct human attention to portions of videos, which are most likely to be informative.

We approach this constrained setting with a frame retrieval problem in a camera

network. Given a target image for an object, we want to retrieve all video frames in the

1

camera network, which contain this object. We consider an active inference approach,

in which the model can collect expert information, such as human annotation, over this

camera network at inference time [76]. The goal is to direct the budget limited human

information in such a way so that an objective, such as prediction accuracy, is optimized.

Computational resources refer to the resources used by the machines, such as mem-

ory and running time, to execute programs for the algorithms. Sophisticated vision algo-

rithms can handle many vision tasks with good performance guarantees. However, they

typically require longer running times. It can therefore be impractical to run such algo-

rithms if a large amount of data is given, such as the scenario that occurred during the

London bombings in 2005 [60, 80].

We approach this problem in a video processing applications in which we combine

outputs from two algorithms to analyze videos in which one algorithm is computationally

more expensive and, therefore, can be run only a limited number of times. We approach

this problem by modeling the output from both algorithms with a chain graphical model.

The inference output from this model decides where to run the more resource-consuming

algorithm.

In the above two applications, we impose a budget on the resources we want to

allocate. We also consider another idea for saving computational resources and maintain-

ing program performance without explicitly specifying the budget. Specifically, we show

that by reducing variable state space dimensionality, we can build models that consume

less computational resources during inference with similar prediction performance. We

ground this framework in latent structural support vector machines. We consider learn-

ing the model regularized by group norm so that the dimensionality of the state space of

2

latent variables is reduced and faster inference with similar accuracy is performed. We

apply our approach to handwritten digit recognition and object detection to demonstrate

the effectiveness of our method.

The contribution of this thesis is as follows. Chapter 2 describes the approach using

active inference to direct human attention to perform monitoring tasks over a camera

network. We approach this by first mapping video frames in a camera network onto

a graphical model. This allows us to perform more effective inference than when each

frame is independently analyzed. More importantly, as a human operator examines frames

of the video, her input can improve classification of portions of the video that have not

yet been analyzed. In addition, we can use active inference algorithms to direct attention

towards the most useful portions of the video. Our primary contribution is therefore to

show that by modeling video frames using a graphical model, we can perform collective

classification and active inference to perform more effective video analysis in camera

networks.

Chapter 3 describes the work of combining two algorithms to analyze videos. Our

primary contribution is a new algorithm that determines where in a video to apply the

expensive algorithm. We build on prior work by Krause and Guestrin [48], which shows

that one can use a dynamic programming algorithm to determine the optimal places at

which to make observations in a first-order Markov chain. We modify this algorithm so

that it can be run efficiently over a Markov chain with thousands of nodes. Our final

contribution is to experimentally demonstrate the value of this algorithm in two very

different vision tasks: motion and face detection. We show that our algorithm can be used

to significantly improve performance.

3

Chapter 4 describes work to learn the complexity of a latent variable state space. In

this work, our primary contribution is to propose the use of structured sparsity inducing

norms like ℓ1-ℓ2 to estimate the parameters of a latent-variable model, thereby regulariz-

ing the complexity of the latent space. We apply our approach to latent support vector

machines, for both the binary and structured output case. We perform two sets of exper-

iments: handwritten digit recognition on MNIST and object detection with deformable

part models on the PASCAL VOC 2007 dataset [28]. Our first set of experiments shows

that our approach is indeed able to prune the complexity of latent space, resulting in a

model that allows significantly faster inference at test time without a drop in accuracy

over a complete (non-sparse) model. Our second set of experiments shows that our ap-

proach is able to learn a better model by adapting the complexity of the latent variable

space to the category being trained. Finally, Chapter 5 concludes this thesis and describes

future work.

4

Chapter 2

Active Inference for Retrieval in Camera Networks

The work from this chapter was published in the IEEE Workshop on Person-Oriented

Vision (POV) in January 2011, [17].

2.1 Introduction

In this chapter, we show how we can discover and exploit spatial and temporal

relationships among frames in a camera network, and we study the use of active inference,

which can be used to direct human labeling efforts to portions of videos whose labels will

provide the biggest performance improvements. We consider a frame from a camera

network to be “relevant” if it contains a queried person; the retrieval task is to identify all

of the relevant frames.

We achieve this goal by first mapping video frames in a camera network onto a

graphical model. This allows us to perform more effective inference than when each

frame is independently analyzed. More importantly, as a human operator examines video

frames, her input can improve the classification of portions of the videos that have not

yet been analyzed. In addition, we can use active inference algorithms to direct attention

towards the most useful portions of the videos. Our primary contribution is, therefore, to

show that by modeling video frames using a graphical model, we can perform collective

classification and active inference to produce more effective video analysis in camera

5

networks.

Specifically, our contributions are as follows:

• We describe how to model retrieval in a camera network using a graphical model.

• We develop active inference techniques to prioritize frames for human annotation.

• We empirically show that, among the several active inference approaches we con-

sider, the technique that most heavily exploits the network structure gives the best

performance.

This chapter is organized as follows. We discuss related work in Section 2.2. Then,

we formulate the problem in Section 2.3. We describe two probabilistic frameworks for

video analysis in camera networks in Section 2.4. Next, we describe the active inference

techniques in Section 2.5. Section 2.6 discusses the experimental setup and results, and

we conclude in Section 2.7.

2.2 Prior Work

Person reidentification, in which a person seen in one surveillance video is located

in later ones, closely resembles the query problem we address. Wang et al. [102] use shape

and appearance context to model the spatial relationships of object parts to do appearance-

based person reidentification. Gray and Tao [36] design a feature space and use Adaboost

to learn person reidentification classifiers. Lin and Davis [53] reidentify people by a

pairwise comparison-based learning and classification approach. Loy et al. [58] facilitate

human reidentification by using cross canonical correlation analysis to learn the spatial

6

temporal relationship of video frames in a camera network. In contrast, local descriptors

have been widely used in object recognition. In particular, Sivic and Zisserman [86]

consider video retrieval using a bag-of-words model.

Other work has used graphical models to represent camera networks. Loy et al.

[57] performs abnormal event detection by modeling regions from different camera views

using a time delayed probabilistic graphical model. Chen et al. [15] use a conditional

random field (CRF) to model a camera network identify a known set of people.

Tracking over camera networks has also been widely addressed (eg., [29,42,62,87,

91]). Typical problems include inferring the topology of the camera network [29, 62, 91]

and finding correspondences between trajectories from multiple cameras [42, 87].

The key difference between our work and these is the use of collective classifi-

cation and active inference to handle queries to a camera network. In a very different

context, some of these issues have been addressed in interactive segmentation. For ex-

ample, Rother [78] extends the graph-cut method [10] with substantially simplified user

interaction to achieve superior image segmentation quality. Wang et al. [100] interactively

extract foreground objects from a video using user painted strokes. While this work fo-

cuses on minimizing the need for human labeling over still images or a single video, we

focus on active inference methods that can direct human attention over camera networks.

Krause and Guestrin [48] did a theoretical analysis of active inference for graphical

models and they showed that the optimal solution is tractable for Hidden Markov Models,

but it is NPPP-hard for graphical models even with a polytree structure. Rattigan et

al. [76] performed active inference on networks of arbitrary structure by first grouping

the nodes of the network into clusters and then acquiring the labels of the central nodes

7

in the clusters. Finally, the active learning work [84] is very related to active inference,

and it has been applied to visual recognition [96, 97]; however, the biggest difference is

that active learning acquires labels to construct training data to learn a model, whereas

active inference performs label acquisition for an already learned model to guide the

probabilistic inference to achieve better accuracy and precision.

2.3 Problem Formulation

Let C denote a network of cameras and let FC represent the set of frames taken

by camera C ∈ C. Each frame F ∈ FC is represented by a feature vector X⃗F =

⟨X1
F , X

2
F , . . . , X

p
F ⟩ and class label YF pair, F = ⟨X⃗F , YF ⟩. Here, the X⃗F are continu-

ous variables; these variables can depend on the specific query that is being processed,

and indicate the similarity between the query image and a video frame (described further

in Section 2.6.3). Each YF is binary, indicating whether F is relevant or irrelevant to a

query.

Given training data Dtr = {⟨X⃗ tr
F , Y

tr
F ⟩} for F ∈ FC , C ∈ C, a test set Dte =

{⟨X⃗ te
F , Y

te
F ⟩}, and a budget B determining the number of labels a human annotator can

provide, our objective is to determine the best set of labelsA ⊆ Y te to acquire as follows:

argmax
A⊆Yte,|A|≤B

Reward(Ste | X te,Y te,A)

where Y tr and Y te represent the set of labels for the frames from the training and testing

data respectively, Ste = {L1, L2, · · · , LN} is the set of random variables for the label

of each of the N testing instance, and X tr and X te have similar meaning for sets of

features. In practice, this reward function is based on the conditional probabilities of the

8

labels given observed, acquired and inferred information. We use a probabilistic model

to estimate these probabilities. We consider two types of Reward functions in this paper;

the first one is accuracy, measuring the percentage of frames in Y te that are correctly

classified. The second one is average precision, measuring how well the model can rank

the frames in order of relevance.

2.4 Probabilistic Models

We will contrast two probabilistic models for video retrieval in a camera network.

2.4.1 Local Models (LM)

In the simplest case, we assume that, given the parameters of the underlying model,

the labels of all frames in the network are independent of one another, given the features

of the frame. Thus, in this model, we assume that each YF depends only on X⃗F and

nothing else. Because this model uses only the local information about the current frame,

we call it a local model (LM).

For estimating P (YF | X⃗F), any probabilistic classifier that can be trained discrim-

inatively, such as logistic regression, can be used. In our experiments, we use a visual

bag-of-words model [86], which has been shown useful for video image retrieval. The

query image and video frames are represented as vectors of visual word frequencies. We

then compute cosine similarity between these frequency vectors to represent X⃗F , which is

then used as input to the probabilistic classifier. We provide more details in Section 2.6.3.

9

2.4.2 Relational Models (RM)

Because one person is typically present or not present for a duration of time in a

camera, and because cameras have overlapping and non-overlapping fields of view, we

expect the above independence assumption to miss important relationships in the data. So

we also consider a relational model (RM), where the information from neighboring frames

is integrated. Specifically, to predict the label YF , we use the label information from three

types of neighbors, which we define below.

1. Temporal neighbors N Tk

YF
: These are the labels of the frames that appear k time

steps before frame F and k time steps after it in the same camera C.

2. Positively correlated spatial neighbors N P
YF

: These are the labels of the frames

from other cameras at the same time step that tend to have the same label as F .

Such neighbors may correspond to cameras with overlapping fields of view and can

be discovered from the training data.

3. Negatively correlated spatial neighbors NN
YF

: These are the labels of the frames

from other cameras at the same time step that tend to have labels different from YF .

For example, when cameras have non-overlapping fields of view, a person can be

present in at most one camera. Such neighbors can also be discovered automati-

cally.

The set of neighbors of YF is then defined asNYF
= N Tk

YF
∪N P

YF
∪NN

YF
. Relational

models use both X⃗F andNYF
to predict YF . However, because the neighbor labels are also

often unobserved, the labels in the test data need to be inferred collectively. Collective

10

classification is the process of using a relational model to infer the labels in a network

simultaneously, exploiting the relationships between the network entities (see [83] for an

overview). In this paper, we use Iterative Classification Algorithm (ICA). We describe it

below.

ICA uses two models, a local model and relational model, to infer the labels of

related entities iteratively. It learns a local model that uses only X⃗F to bootstrap the

labels, and then applies a relational model that uses both X⃗F and NYF
to propagate the

labels to neighboring frames in the network iteratively. Specifically, the relational model

component of ICA represents each frame F as a vector that is a combination of X⃗F and

features that are constructed using NYF
.

Because frames from different cameras can have varying numbers of neighbors, the

combined feature vector ⟨X⃗F ,NYF
⟩ will be of different length for different frames. To

get a fixed-length vector representation, we use an aggregation function aggr over the

neighbor labels. For example, count aggregation constructs a fixed-size feature vector

by counting the number of neighbors with each label. With this aggregation, we build the

following combined feature vector: X⃗ ′
F = ⟨X⃗F , aggr(N Tk

YF
), aggr(N P

YF
), aggr(NN

YF
)⟩.

Once the features are constructed, then an off-the-shelf probabilistic classifier can be used

to learn P (YF | X⃗ ′
F). Despite its simplicity, ICA has been shown to be quite effective

and efficient [59, 66].

11

2.4.2.1 Choosing Neighborhoods for Cameras

In this paper, we use the explicit time information in each camera to define the

temporal neighborhood. Let F t
Ci

represent the frame from camera Ci at time step t. Then,

N Tk

Y
Ft
Ci

= {YF t−k
Ci

, YF t−k−1
Ci

, . . . , YF t−1
Ci

, YF t+1
Ci

,

YF t+2
Ci

, . . . , YF t+k
Ci

}

We learn the positive-spatial and negative-spatial neighborhoods from the data as follows.

Let YCi
represent the temporally ordered set of all frames from camera Ci in the testing

data. Then,

N P
Y
Ft
Ci

= {YF t
Cj
| corr(YCi

,YCj
) > σp}

and

NN
Y
Ft
Ci

= {YF t
Cj
| corr(YCi

,YCj
) < σn}

where corr(., .) measures the correlation between two ordered sets, and σp and σn are

threshold parameters that define whether a camera should be included as a neighbor.

2.5 Active Inference

We allow the underlying retrieval algorithm to request the correct labels for some

frames at inference time. This setup is called “active inference” meaning that the un-

derlying model can actively collect more information at inference time [76]. The goal is

to make the most of available human resources. We would like to determine for which

frames the probabilistic model should request labels so it can label the remaining frames

12

as well as possible. In this section, we describe a general framework for active inference

and several possible algorithms for video analysis.

We considered the following active inference techniques:

1. Random sampling (RND): Sample frames randomly across different cameras and

time steps.

2. Uniform sampling (UNI): Sample frames uniformly over time, for each camera.

3. Most relevant (MR): Sample frames whose probability of being relevant is the high-

est, where the probability is based on the output of the probabilistic model.

4. Uncertainty sampling (UNC): Sample the frames whose entropy value is the high-

est, where the entropy is defined using the probability estimates of the probabilistic

model.

5. Most likely incorrect (MLI): Sample the frames that are most likely to be incor-

rectly predicted. For this, we adapt the reflect-and-correct algorithm (RAC) [9],

which uses a separately trained classifier to predict which instances in a general

network classification problem are likely to be misclassified. Below we describe

how we adapt RAC for the purposes of retrieval in a camera network.

The first four methods can be applied to both LM and RM, and our experiments demonstrate

that RM with relational information outperforms LM significantly. Because MLI is based

on RAC, which specifically targets collective classification, it can be applied with only

RM.

13

Figure 2.1: Camera layout and sample frames from each of the 7 cameras. The camera ID above

each frame is the actual ID used in the UCR Videoweb dataset.

2.5.1 Adapting RAC for Retrieval in Camera Networks

RAC is an active inference technique that works as follows. At training time, a sep-

arate classifier is trained to predict whether or not an instance is misclassified. Then, at

inference time, RAC uses this classifier to predict at what instances RM is likely to make

a mistake, and suggests acquiring the label of a central instance in a region where most

of the instances are predicted to be misclassified [9]. To learn and predict whether an in-

stance is misclassified, RAC utilizes a few features that are indicative of misclassification.

At a higher level, these features are based on the RM prediction, LM prediction, and some

global statistics about the data. RAC learns the classification function using the trainind

data used for training RM.

14

In this paper, we introduce two important modifications of the original RAC frame-

work. These address i) what features to use for RAC in camera networks and ii) how to

train RAC. To distinguish this adapted version from the original, we refer to our version

as Most Likely Incorrect (MLI).

2.5.1.1 Features for MLI

We used the following 10 features as possible indicators of misclassification:

1. Four features based on the probability estimates of RM. We use the entropy of the

probability estimate for the single label YF and average entropy values over N Tk

YF
,

N P
YF

, and NN
YF

. These features capture the uncertainty of the frame and uncertainty

of its neighborhood.

2. Four features based on the probability estimates of RM and LM. We use the KL diver-

gence between the RM probability and LM probability for label YF , and the average

of this value for N Tk

YF
, N P

YF
, and NN

YF
. These features provide a way to measure

the likelihood a frame and its neighborhood are misclassified, since disagreement

between RM and LM is a sign of misclassification.

3. Whether YF is predicted to be relevant by RM. This feature captures whether there

is any bias of the model toward one class. This feature is expected to be especially

useful for domains where there is a class skew in the data.

4. Percentage of N P
YF

and N Tk

YF
that agree with the label YF . N P

YF
and N Tk

YF
both have

positive correlation with YF . A lower percentage value indicates higher likelihood

15

of misclassification.

2.5.1.2 Training MLI

Because MLI predicts whether a frame is misclassified, it cannot use the labels in

the training data directly. Rather, it needs to be trained on data that specifies the features

described above for each frame and whether the frame is misclassified. To construct this

training data, we split the original training data into k folds. We train RM and LM on k− 1

folds and test them on the kth fold. For each training frame F for MLI, we construct the

features described above using these RM and LM. The label of F for MLI is misclassified

if RM (trained on the k− 1 folds) predicts YF incorrectly and not-misclassified otherwise.

We repeat this process for each fold.

2.6 Experimental Evaluation

We performed video retrieval on the Videoweb dataset from UC Riverside [22],

where various people are recorded for short periods of time, called the scenes. Our video

retrieval task is: given training data for a number of people in a number of scenes, retrieve

the frames for a new query person (whose image is given) in a new scene. We train our

probabilistic models, LM and RM, on the training data, and perform active inference on the

test data, where a human annotator can provide the labels of a small number of frames, and

the probabilistic models are expected to utilize the annotated frames to perform better on

the remaining frames. We next describe the dataset, constructing the local features from

the query image and video frames, our evaluation strategy, and experimental results in

16

detail.

2.6.1 Dataset

The dataset contains a number of scenes recorded over four days. Each scene is

recorded by a camera network and the videos from different cameras in the network are

approximately synchronized and contain several types of activities over a number of peo-

ple.

We arbitrarily choose scenes 20 to 25 for our experiments. In these scenes, seven

cameras overlook the playground. Scene 21 does not include data from one of the seven

cameras, so we use it to generate queries. All other scenes are used for retrieval. The

time period for scene 24 is approximately twice as long as those of other scenes. We split

it into two parts with equal time periods, and refer to them as scene 24.1 and 24.2. This

gives us six scenes of approximately equal length. Each camera has about half an hour of

video over all scenes, and we use a frame rate of one frame per second. Figure 2.1 shows

the camera layout and example frames from these seven cameras.

2.6.2 Queries

We use a set of query images from four persons. These images are from scene 21,

which is not included in the scenes used for retrieval. We consider three query images for

each person from the front, back, and side view. Since people in the dataset can easily be

occluded and are mainly characterized by the patterns of their clothes, we manually crop

each query image to highlight their distinctive clothing regions. These cropped images

17

Figure 2.2: The 12 query images from 4 people. The parts inside the red bounding boxes are the

cropped portions used to compute similarity measure.

are used as queries. Figure 2.2 shows the query images and their cropped results.

2.6.3 Similarity Features

Both LM and RM need the local feature vector X⃗F for each frame, query and scene.

We adopt a commonly used, bag-of-words [86] approach to derive a feature that mea-

sures the similarity between the query and regions of interest in each frame. This involves

computing image descriptors at keypoints in a region of interest. These descriptors are

quantized into codewords, which are created by applying k-means clustering to training

examples. Then histograms of the codewords in two regions of interest are compared

using cosine similarity. In our implementation, the entire query is one region of interest,

while we use the background subtraction algorithm of Zivkovic [113], which is based on

a standard method using Gaussian mixture model [88], to determine regions of interest in

the video. We densely sample keypoints in the region of interest, and build descriptors

using a color histogram over RGB space. For each video frame, descriptors from all de-

tected regions of interest are considered as a whole to represent the frame. In preliminary

experiments, the color histogram is more effective than some other descriptors, such as

18

Figure 2.3: An example showing densely sampled points over regions of interest computed by

background subtraction. The right-most figure is the enlarged view of the left-most region where

key points are densely sampled. The detected region is of square shape, because we run morpho-

logical operations after background subtraction and extract non-overlapping bounding boxes over

connected components. In addition, the reason that the person with a black coat is only partially

sampled is because he has been present over a long period of time with little motion.

SIFT [56] and OpponentSIFT [94]. Figure 2.3 shows an example of densely sampled key

points from video frames. Using k-means clustering on a random subset of descriptors,

we form 500 visual words. By comparing histograms, we obtain features that encode the

similarity between a query and video frames.

2.6.4 Training LM, RM, and MLI

When testing for a particular query in a given scene, the neighborhood structure

of the camera network, the probabilistic models LM and RM, and the active inference

technique MLI are learned on data from other persons and other scenes. For computing

the temporal neighborhood,N Tk

YF
, we set k = 1 for RM, and k = 4 for MLI. We have three

queries for each person, and they all share the same structure, probabilistic models, and

19

Figure 2.4: An example of learned topology. Light gold edges with solid lines denote positive

correlation and black edges with dashes denote negative correlation. Temporal edges are not

shown because they are fixed.

MLI. The threshold σp for learning positive-spatial neighbors is 0.6 and σn for negative-

spatial neighbors is −0.15. We use logistic regression in WEKA with default parameters

[37] to learn LM, RM, and MLI. We generated the ground truth for each person by manually

labeling the frames. Figure 2.4 shows an example of the learned network structure.

2.6.5 Non-incremental and Incremental Sampling

The sampling locations for RND and UNI do not depend on the output of any

probabilistic models. Thus, for them sampling is carried out independently, in a non-

incremental fashion, and the locations sampled for a smaller budget are not a subset of

those sampled for a larger budget. On the other hand, sampling for MR, UNC, and MLI

is dependent on the output of probabilistic models. Because RM inference is based on

the acquired labels, the labels acquired at lower budget levels can change the predictions

20

of RM. Thus, for these active inference techniques we perform incremental sampling, first

acquiring the labels of a small subset of k frames, then incorporating these acquired labels

into the prediction, and running the acquisition algorithm again to sample the next set of

k frames. We do this until the budget is used up. In our experiments we used k = 10.

2.6.6 Evaluation Methods

We perform active inference for both LM and RM with a budget (the number of

frames for which the human annotator provides the labels during inference) varying from

0% to 50% of all frames. For UNC-RM, MLI, and MR-RM we repeatedly perform in-

ference to update the predictions whenever ten new labels have been acquired. In these

methods, the use of inference can allow the results of partial labeling to guide the system

in determining locations for additional labeling.

Given that we have six scenes, four people, and three queries per person, we train

on five scenes with nine queries, and test on a scene for three queries, and we repeat this

process for each scene and each person, giving us 72 different test cases. We trim the

scenes so that each one is 270 seconds (4.5 minutes).

For each active inference technique, we plot two performance measures on the Y

axis as a function of the budget on the X axis. The first performance measure is accuracy,

measuring the percentage of frames predicted correctly. The second measure is the 11-

point average precision [63] of the precision-recall (PR) curves over all frames. For those

frames whose labels are acquired, we set their probabilities to either 0 or 1 based on their

actual labels. However, in three out of 72 cases, the queries are completely absent from

21

Figure 2.5: Left: Average accuracy as budget increases. Right: Average precision as budget

increases.

the scene and the PR curve is undefined for these three cases. We ignore these three

scenes for calculating the 11-pt precision measure. Significance claims are based on a

paired t-test at the 0.05 level.

2.6.7 Results and Discussion

We compare the performance of four active inference methods described in Sec-

tion 2.5 using LM and RM, while considering MLI only with RM. For MLI, we use temporal

neighbors within four time steps for constructing the features that are based on temporal

neighbors. The left side of Figure 2.5 shows performance using average accuracy, while

the right side shows 11-pt average precision. For LM, UNC has the best performance when

compared with RND, UNI, and MR. Therefore, we show results for only UNC for LM in

order to increase readability in the graphs. For RM, however, we show the results for all

active inference techniques, as they are better than UNC using LM.

Based on a statistical analysis of the results, we draw the following conclusions.

22

First, whenever we apply the same algorithm using LM and RM, RM performs significantly

better. Comparing UNC-LM and UNC-RM in Figure 2.5 provides a typical example of the

large magnitude of this difference. Second, we find that UNC-RM and MLI always per-

form significantly better than all other methods. Third, MLI has a statistically significant

advantage over UNC-RM in terms of accuracy up to 32% budget (600 labels), and the two

methods are comparable afterwards. When we measure 11-pt average precision, MLI is

significantly better than UNC-RM in a few spots, and never significantly worse. Based

on this result, we conclude that the use of graphical models and collective classification

provides large improvements in performance for active inference. In addition, MLI, our

adaptation of RAC, provides the best performance, especially at low budget levels, which

are more likely to be used in practice.

2.7 Summary

Our work addresses the problem of using active inference to direct human attention

in searching a camera network for people that match a query image. We first use local

information to measure the similarity between the query and each frame. We find that

by representing the camera network using a graphical model, we can more accurately

determine whether video frames match the query, and improve our ability to direct hu-

man attention. We experiment with five methods of determining which frames should

be labeled. We find that the value of the graphical model is very strong, regardless of

which algorithm is used to select frames for human labeling. In comparing these active

inference methods, we find that there is an advantage in labeling those frames that are

23

most likely to contain errors. This can be captured by a simple method that measures the

entropy of the probability distribution that indicates our uncertainty about the labels of

each frame. However, we find that we do somewhat better by adapting an approach that

uses a classifier to predict which frames are in error. Overall, we demonstrate that we can

adapt tools developed for active inference in graphical models to improve the capacity of

humans to effectively search or annotate video from camera networks.

24

Chapter 3

Dynamic Processing Allocation in Video

The work from this chapter was published in the IEEE Transactions on Pattern

Analysis and Machine Intelligence in November 2011, [16].

3.1 Introduction

In this chapter, we explore methods to direct computational resources to analyze

videos. Instead of analyzing multiple videos from a camera network, we consider video

from a single camera. We develop a new method for controlling processing, so that avail-

able resources are directed to the most relevant portions of the video. In our proposed ap-

proach, we initially perform some inexpensive processing of a video by applying a cheap

but less accurate algorithm combined with a sparse application of a more expensive and

accurate algorithm. We then use an inference algorithm to determine which frames we

should apply further expensive processing.

Our work makes two critical assumptions. First, that expensive algorithms exist that

can perform a task quite accurately (e.g., >90% accuracy). While many real-world vision

tasks are still too challenging for this, recent growth in the number of vision companies

and applications illustrate that high accuracy is often achievable in simpler tasks (eg., face

detection in cameras [45]) or in controlled environments (eg., detection and tracking in

stores [72]). Moreover, in vision systems with a human in the loop, a human analyst may

25

be regarded as a very accurate and very expensive algorithm. Second, we assume that a

much cheaper, but less accurate algorithm is available, and that it is desirable to use the

output of this algorithm to direct the attention of the expensive algorithm most profitably.

We want to stress that our work does not aim to solve vision problems that are beyond

the reach of existing algorithms, but rather to speed up the solution to problems that are

currently solvable, albeit only at considerable cost.

To combine information from features produced by cheap and expensive algo-

rithms, we present a graphical model for video analysis. We use a second-order Markov

model with a node for each frame, and a state variable that indicates whether this frame is

relevant to a query. For example, the state might indicate whether the frame contains a vis-

ible face. Each state has two potential observations. The first observation is always given;

it is obtained by running a cheap algorithm on all frames. For example, cheap background

subtraction might provide a clue as to whether people are currently visible. The second

observations is only obtained if a more expensive and accurate algorithm is applied to that

frame (in this example, a face detector). As in a Hidden Markov Model (HMM), each ob-

servation directly depends on the current state. In addition, in our model each observation

directly depends on the previous observation. This captures the phenomenon that errors

made by an algorithm are often correlated from one state to the next. This model allows

us to effectively combine information from cheap and expensive algorithms to improve

performance.

Our primary contribution is a new algorithm that uses this model to determine where

in a video to apply the expensive algorithm. We build on prior work by Krause and

Guestrin [48] that shows that one can use a dynamic programming algorithm to determine

26

the optimal places at which to make observations in a first-order Markov chain. While

this work is readily extended to our graphical model, it requires Θ(B2n3) computation

time, where n is the number of nodes in the Markov chain, and B is the number of places

at which we will apply the expensive algorithm. In our setting n is the number of frames

in the video and B is also O
(
n
)
, so this algorithm is not practical for video analysis.

We solve this problem with a new algorithm that produces an approximately optimal

answer efficiently. More precisely, we make an additional assumption about the concavity

of the reward from observations as the budget increases, a law of diminishing returns that

we show is generally valid in our setting. Then, we show that by applying part of the

total budget to make observations at a uniform step size, we can find an allocation of

the remaining observations that will be at least as good as the optimal batch allocation,

and that requires a modest amount of computation. This allocation makes use of rewards

computed by Krause and Guestrin’s algorithm, applied to small sections of the video.

Our approach is quite general, and can be applied to a wide range of scenarios in

which multiple algorithms are combined into a single system. Our final contribution is

to experimentally demonstrate the value of this algorithm in two very different vision

tasks: motion and face detection. To detect motion efficiently we combine a very cheap

and a more expensive background subtraction algorithm. For the second task, we use

background subtraction to trigger face detection. We show that our algorithm can be used

to significantly improve performance.

The chapter is organized as follows. In Section 3.2 we discuss related work. In

particular, we describe a dynamic programming algorithm [48] that determines the opti-

mal place to make observations. We then describe our new algorithm in the context of

27

Markov Chains in Section 3.3. Then, we introduce our graphical model for video analysis

and describe how to apply the new algorithm to this model in Section 3.4. In Section 3.5,

we show experiments.

3.2 Prior Work

We first review background subtraction and face detection algorithms. Next, we

describe work on visual computing that deals with issues of resource constraint. We

then discuss work on feature and label acquisition. Finally, we describe the algorithm by

Krause and Guestrin [48] in detail.

3.2.1 Background Subtraction

Background subtraction detects moving objects in video, usually taken by static

cameras. This typically involves building a background model. Wren et al. [104] use

a Gaussian estimate of the background distribution of each pixel. Lo and Velastin [55]

use the median of the previous n frames as the background model. Elgammal et al. [27]

propose a non-parametric model based on kernel density estimation to approximate the

pdf of each pixel. In Kim et al. [46], background values are quantized into codebooks

to handle periodic motion. Rittscher et al. [77] represent the background using a hidden

Markov model, which can discriminate between foreground, background, and shadow.

Cheung et al. [19], Piccardi [71], and Yilmaz [109] give a general review of this problem.

We describe in more detail two methods we use in our experiments.

In frame differencing (FD), the background model of the frame at time t, ft, is

28

the frame in the previous time step, ft−1 (Jain and Nagel [41]). Given a threshold, Th,

|ft − ft−1| > Th gives the foreground region of ft.

Stauffer and Grimson [88] use a mixture of Gaussians (MoG) for the background

model. With the assumption that a more compact distribution with a higher mode is more

likely to be the background, MoG selects background components whose ratio between its

peak value and standard deviation is greater than a certain threshold. Finally, it uses recent

pixel values to update the model parameters. This method is much more sophisticated

than the FD method, and requires significantly more computational resources. Zivkovic

[113] improves this work by using recursive equations that can also simultaneously select

the appropriate number of components in the mixture model. We call this method the

improved adaptive Gaussian mixture model (IAGMM), and we use it in our experiments.

3.2.2 Face Detection

Yang et al. [107] provide a comprehensive survey of face detection methods and

organize them into four major categories. First, top-down knowledge based methods

represent a face using human knowledge, which usually captures relationships between

facial features such as eyes, nose, and mouth. Yang and Huang [106], for example, use

a hierarchical knowledge-based method to detect faces. Second, bottom-up feature based

methods seek invariant features, such as eyebrows, hair texture, and skin color, for de-

tection. Hsu et al. [39] propose a skin-tone color model which they use to generate face

candidates for verification by facial features (see also Jones and Rehg [44]). The third

category is template based methods, in which correlation between an input image and the

29

template is used to detect faces. Sinha [85], for example, builds a face template by cap-

turing the invariance between the relative brightness of facial regions. The last category

includes appearance based methods, which in general use statistical analysis and machine

learning techniques. Various methods, such as support vector machines [69] and neural

networks [79], and naive Bayesian classifiers [82] have been proposed.

Viola and Jones [99] achieve a breakthrough in performance that has been widely

adopted. With integral images for fast computation, their scheme uses a set of features

that are similar to Haar wavelets. They then construct classifiers by selecting a small

number of important features using Adaboost. Finally, the scheme detects faces inside

an image region by applying classifiers in a cascade. At each level of the cascade, one

uses a classifier with a very low false negative rate, although the false positive rate might

be high. Subsequent classifiers are run only when previous classifiers indicate a positive

result. Lienhart and Maydt [52] extend this work by adding an efficient set of 45◦ rotated

features to the original feature set and by using a new post-optimization procedure for a

given boosted classifier. Their work shows significantly lower false alarm rates, and we

use this method to detect faces in our experiment.

There have been many other extensions to the Viola-Jones method. For example,

Huang et al. [40] extend the cascade of classifiers structure to a Width-First-Search (WFS)

tree structure. Mita et al. [64] introduce a new feature, called the joint Haar-like feature,

for detection. Xiao et al. [105] use a boosting chain to integrate historical knowledge of

successive learning of strong classifiers.

30

3.2.3 Resource Constraints in Computer Vision

Many methods have been developed to handle resource constraints in computer vi-

sion. Weiss and Taskar [103] generalize the approach of Viola and Jones and apply it

to a range of applications, including handwriting recognition. Felzenszwalb et al. [30]

develop cascades for object detection using deformable models such as pictorial struc-

tures. Vijayanarasimhan [98] recently introduce a novel framework for object detection

and classification in still images under resource constraints. They design a grid based

model that is used to determine the best image regions to look at and the best features

to be extracted. This process is guided by the principle of value-of-information (VOI) to

find the most evidence at the least cost.

In video processing, performance is often an issue, as many effective algorithms

are too slow to run in real-time, and even fast algorithms may require enormous amounts

of time when used to perform retrospective analysis of large quantities of video. One

common strategy is to run cheap, lower level algorithms such as motion detectors to

determine when something interesting might be happening. When these detect motion,

higher level algorithms are then deployed. While this approach is used heuristically, but

very effectively in a wide range of applications, we will mention two representative works

that formalizes this. First, Krishna et al. [49] propose an algorithm switching approach to

handle background subtraction. The system starts by processing each frame with a uni-

modal model. When the system shows poor segmentation quality, it switches to use the

MoG model. Second, Barotti et al. [4] use algorithm switching to handle lighting changes

and solve bootstrapping problems in motion detection. When the system detects sudden

31

global illumination variation, the motion detection switches from background subtraction

using a single Gaussian to FD.

3.2.4 Feature and Label Acquisition

The machine learning community has looked at the problem of determining which

features to acquire in order to correctly classify instances. In this setup, instances are

described by a set of features each of which has an associated acquisition cost, and a total

budget limits feature acquisition. Some example strategies are [5,93]. The biggest differ-

ence between this line of work and ours is that the feature-value acquisition community

treats each instance as independent. However, in our case, the information we want to

extract in nearby frames of video is highly correlated, and we should be able to do better

if we take these correlations into account.

Another related area of work is label acquisition: instead of obtaining features,

we can query an oracle to determine an instance’s label directly. Given a network of

instances, such as a sequence of frames, a network of friends, etc, acquiring the label for

an instance helps in correctly classifying the rest of the network. The question is then

which instances should be queried in order to get the best performance on the remaining

ones. Rattigan et al. [76] queries the instances that are structurally important, e.g. highly

connected instances, central instances, etc. Bilgic and Getoor [8] build a classifier that

can predict which instances might be misclassified and query a central instance only if it

is predicted as misclassified. Active learning work [84] is very related to this problem,

and it has been applied to visual recognition [96, 97]. However, active learning acquires

32

labels to construct training data to learn a model, whereas label acquisition described here

is applied to an already learned model to guide probabilistic inference.

These methods have been quite successful in practice, but they are heuristic ap-

proaches and have no theoretical guarantees (partly because they are applicable to general

networks). However, for the class of chain graphical models such as HMMs, Krause and

Guestrin [48] show how to solve the label acquisition problem optimally. We describe

their work next.

3.2.5 Optimal Observation Plans

Krause and Guestrin [48] present VoIDP, an Dynamic Programming to optimize

Value of Information, for selecting observations for the class of chain graphical models.

Since we build on this method, we now describe it in some detail, although we consider a

special case of their work that is suitable to our problem.

They optimize an objective function based on a class of reward functions,R, that are

defined using the probability distribution of a set of random variables S = {X1, · · · , Xn}.

This set of variables forms a chain graphical model, that is, i < j < k, implies that Xi is

conditionally independent of Xk given Xj . For example, consider a HMM unrolled for n

time slices. Then the n hidden state variables form a chain graphical model. Suppose that

for each of these variables, it is possible to observe its hidden state at a fixed cost. This

corresponds, in our problem, to the supposition that an expensive algorithm is extremely

accurate, and reveals the hidden state. Let O be the set of observed variables and o

be the values of these variables. O = o is used to denote each variable in O takes its

33

corresponding value in o.

The reward function R is built upon a local reward Rj , which is a functional on the

probability distribution P (Xj|O = o). While this reward could be quite general, in this

chapter we consider only Xj that are binary variables, and use

Rj(P (Xj|O = o)) =

max(P (Xj = 1|O = o), P (Xj = 0|O = o))−

min(P (Xj = 1|O = o), P (Xj = 0|O = o)) (3.1)

That is, given a set of observations, we receive a greater reward as we become more

certain of the value of each state. This reward is equivalent to considering the expected

number of correct classifications. We will also use the notation:

Rj(Xj|O) ≜
∑
o

P (O = o)Rj(P (Xj|O = o)), (3.2)

That is, given the choice of a set of variables, O, to observe, Rj(Xj|O) denotes the ex-

pected reward we will receive from these observations.

Assume that there is a fixed budget B for selecting observations, we then must

select observations O to

maximize J(O) = R(O) =
∑
j

Rj(Xj|O),

subject to ∥O∥ = b ≤ B, (3.3)

where j is the index over the state variables S, b is the number of observed state variables

O, and B is the total budget for the whole chain. Observations can include variables at

any time step in the chain since we consider processing a video after it is recorded. This

corresponds to the ”smoothing” version of the problem [48].

34

The conditional independence property in the chain graphical model simplifies the

local reward. With this property, the local reward R(Xj|O) = 1 in the case that Xj ∈ O.

In the case that Xj /∈ O, we have R(Xj|O) = R(Xj|Oj), where Oj is a subset of O

containing two observations. These are the last observation preceding Xj and the first

observation in O that follows Xj .

Furthermore, Krause and Guestrin [48] consider both a conditional planning set-

ting of this problem, in which the best observation is made and then the optimal next

observation is computed, and this is repeated k times, and a subset selection setting of the

problem, in which one decides on the locations of the best observations with a total cost

of k first, and then makes these observations. Our algorithm uses the conditional planning

variant since it in general produces the best performance.

They solve this problem by noting that once an observation is made, it splits the

problem of determining future observations into conditionally independent components

before and after the observations. This allows for a dynamic programming solution. They

define a value, Ja:b(xa, xb; k), which denotes the reward produced by the optimal plan

with a budget of k over the interval from variables Xa to Xb, given that these variables

have been observed to have states xa and xb. Then they note that Ja:b(xa, xb; k) can be

recursively computed given the value of Jc:d(xc, xd; l) for all a ≤ c ≤ d ≤ b and l < k.

The recursive formula is

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0), max
a<j<b

{∑
xj

P (Xj = xj|Xa = xa, Xb = xb){Rj(Xj|Xj = xj) +

max
0≤l≤k−1

[Ja:j(xa, xj; l) + Jj:b(xj, xb; k − l − 1)]}}}, (3.4)

35

where the base case is

Ja:b(xa, xb; 0) =
b−1∑

j=a+1

Rj(Xj|Xa = xa, Xb = xb). (3.5)

The recursive formula basically iterates over each split point j between a and b to find

one that returns the highest reward (or performs no further observations if they do not

increase the reward). For each split point, the reward is the expectation taken over all

possible assignments of value to the split point. All possible budget allocations between

the two split subsequences are considered when the value of split point is fixed.

To initialize, the algorithm adds two independent dummy variables, X0 and Xn+1,

which have no reward and observation cost but have default states, to the head and tail

positions of the chain. Thus the optimal reward for a chain of n variables with a budget

of B is computed as J0:n+1(x0, xn+1;B).

This algorithm corresponds to the smoothing version of VoIDP in a conditional plan

setting, and we refer it as VoIDP-SCP in this chapter. According to Theorem 2 in [48],

the complexity of this algorithm in terms of number of evaluations of local rewards for

our binary state variables is

Θ(B2n3). (3.6)

3.3 Efficient Observation Plans

We now present a novel algorithm, Dynamic Progamming Allocation (DPA), that

is efficient enough to apply to problems with very large values of n. DPA approximates

the optimal algorithm and is much faster. In the next sections, we will show how this al-

gorithm can be applied to video processing. DPA first uses B′ observations from the total

36

budget, B, to make uniform observations. This splits the Markov chain into M = B′ + 1

consecutive intervals where the first and last variables of each interval are observed. This

breaks our problem up into a series of smaller problems of the same size. These problems

are not independent, however, since the remaining B′′ = B−B′ budget must be parceled

out between all these intervals. We show that, with an additional, reasonable assumption,

this can be done optimally. Once the budget is allocated to intervals, observations can be

allocated within intervals using VoIDP-SCP.

DPA maximizes the sum of rewards over all intervals to allocate budget between

them. That is, let ki be the budget allocated to interval i. Let Ji(ki) be the reward of

VoIDP-SCP for interval i with a budget of ki. We want to find k1, k2, · · · , kM such that

they

maximize
M∑
i=1

Ji(ki), subject to
M∑
i=1

ki = B′′. (3.7)

To perform this optimization efficiently, we rely on the empirical observation that for each

interval, the optimal reward typically forms a concave curve as the budget increases. That

is, the plot of Ji(ki) against ki as ki increases is concave in general. This is a kind of

law of diminishing returns property. We denote these kinds of curves as Reward-Budget

(RB) curves, and the assumption that these curves are concave will allow us to optimally

allocate our budget. We will experimentally verify that this assumption is reasonable.

Given this assumption we can compute the ki with our proposed algorithm, Dynamic

Progamming Allocation (DPA).

It remains to describe how we perform the second step of this algorithm. Let Ni

be the maximum possible budget for interval i, typically the number of unobserved state

37

Algorithm 1 Dynamic Processing Allocation (DPA)

1: Use B′ observations to make uniform observations to break the chain model into

consecutive disjoint intervals separated by the observed variables;

2: Allocate the remaining budget B′′ to these intervals. No observation is taken in this

step;

3: Use VoIDP-SCP to determine the observation locations within each interval; obser-

vations are taken in a conditional mode.

variables in the interval. We first compute the reward curve for each subsection up to its

maximum budget. That is, we compute Ji(k), for 1 ≤ k ≤ Ni, using VoIDP-SCP. Next,

we define the reward increment as

∆Ji(k) ≡ Ji(k)− Ji(k − 1), (3.8)

where k = 1, · · · , Ni. Assuming concavity, we have

∆Ji(k) ≤ ∆Ji(k − 1) (3.9)

for all ks. Next, we sort all the reward increments in descending order. Finally, the budget

for each interval is set to the number of increments it has in the top B′′ positions of the

sorted list. We call this allocation method batch budget allocation. Intuitively, we can

see that this always assigns observations to the sequences where they will create the most

incremental benefit. We prove this in Section 3.3.2 and discuss the complexity of the

algorithm in Section 3.3.3.

We expect this algorithm to do much better than an optimal batch algorithm, since

the B′ observations we use to break the problem into intervals also provide very useful

information, and because we can use an optimal conditional plan within each interval,

38

Algorithm 2 Incremental Budget Allocation - Step 2 of Algorithm 1
1: Initialize the budget of each interval to be zero;

2: Compute the reward increment ∆Ji(1) for i = 1, 2, · · · ,M ;

3: Select the highest increment, and add one to the budget of the corresponding interval

I;

4: If the total budget, B′′, has been used, terminate and use the current budget allocation

for each interval as the final budget allocation;

5: If not, compute the next reward increment for interval I, and use it to replace the

current reward increment for this interval. Go back to step 4.

which can be much better than the optimal batch plan.

However, we note that it is possible to improve the running time of budget allocation

at the cost of some additional memory. This is because DPA requires us to compute Ji(k)

for all k, while in practice, most intervals are allocated small budgets, and we only need

to compute the RB curve up to this budget. This leads to the algorithm incremental

budget allocation, which performs step 2 of DPA a bit differently. This method returns

the same output as the batch allocation method. In Section 3.3.3, we show that it is

asymptotically faster, especially when we have a small budget. In addition, when the

subsection size is large, we can avoid computing the RB curve up to its maximum budget

for each subsection, this will save a significant amount of processing time. We use DPA

with incremental budget allocation in our experiments.

39

Figure 3.1: The example chain graphical model. We assume that X1 and X9 are observed in

advance, shown with gray shading. The state of a node can be 1 or 2, and we show the actual state

on the top of each node.

3.3.1 An Example

We use an example to illustrate how DPA works and how VoIDP-SCP is different.

Consider a chain graphical model with nine state variables whose value can be either 1

or 2. The prior probability of being in each state is 0.5. The transition probability of

switching from one state to the other is 0.2. Figure 3.1 shows this model and displays

one set of states generated by it on the top of each variable. For simplicity, we assume

the first and last states are known in advance. Fig. 3.2 shows how DPA and VoIDP-SCP

determine the observation locations with a budget of 4.

First, we note that for this example, it is most likely that the initial states have a

value of 1, and that at some point in the chain there is a single transition from 1 to 2. To

correctly determine the state values, the main goal is to find the location of this transition.

It is also possible that there are really three transitions, and a secondary goal will be

to check on that. Next, we note that VoIDP-SCP is able to perform a binary search to

find such transitions. It turns out that the optimal strategy for this situation involves first

determining the value of X3. If this state is 1, then the remaining budget is sufficient to

allow a binary search to be performed on states X4-X8, to find the transition from 1 to

40

(a) DPA-batch (b) VoIDP-SCP

(c) RB curve - interval 1 (left) (d) RB curve - interval 2 (right)

Figure 3.2: (a) shows how DPA with batch budget allocation determines the observation locations.

We use gray to highlight observed nodes. The interval size is 5, so the initial observation is X5,

which is highlighted by a double-line boundary with a thick inner line. (c) and (d) show the RB

curves for left and right intervals respectively. The observation locations for each of these two

intervals are determined by VoIDP-SCP, and are highlighted by a single-line thick boundary. (b)

shows how VoIDP-SCP determines observations locations, which are also highlighted by a single-

line thick boundary. It shows how the chain is split into sub-chains by sequential observations.

41

2. This strategy therefore guarantees that the transition from 1 to 2 will be found, and

maximizes the chances that any additional transitions will be found.

Suppose instead we run DPA, with a budget of 4, andB′ = 1. The algorithm begins

by determining the state of X5, to break the problem into two equal parts. When this state

is found to be 1, the algorithm then allocates its budget between these two subsequences.

To allocate the remaining budget to each interval, it computes the RB curves up to its

maximum budget for both intervals, as shown in Fig. 3.2(c) and 3.2(d). Notice that both

curves satisfy the concavity property. In addition, the reward increment under a small

budget for the right interval is higher than those for the left interval. This is because the

state of the first and last nodes for the right interval indicate a state transition. As a result,

the right interval obtains a higher budget. In fact, DPA allocates two observations to the

right side of the chain, which is enough to perform a binary search for the state transition,

and one observation to the left side. This final observation on the left side is more likely

to find something interesting than if allocated to the right side, once the binary search has

occurred.

We now consider how incremental budget allocation works in this example. After

the observation of X5, the chain is split into two intervals as shown in Fig. 3.2(a) and

the remaining budget becomes 3. The incremental algorithm then initializes the budget

for both intervals to be 0 and computes J1(0), J1(1), J2(0), and J2(1) for ∆J1(1) and

∆J2(1). Since ∆J1(1) = 0.3626 < ∆J2(1) = 1.0000, it increases the budget for the

right interval by 1. The remaining budget becomes 2 and it computes J2(2) for ∆J2(2).

It again increases the budget for the right interval by 1 because ∆J1(1) < ∆J2(2) =

1.0000. The remaining budget becomes 1 and it computes J2(3) for ∆J2(3). After this,

42

because ∆J1(1) > ∆J2(3) = 0.1176, it increases the budget for the left interval by 1.

All the budget has been allocated, and the algorithm terminates with a budget of 1 for

the left interval and 2 for the right interval. Notice that compared with batch allocation,

incremental allocation does not compute J1(2) and J1(3).

DPA is not optimal in two ways. First, an optimal set of observations may not in-

clude X5. Second, allocating one observation to the left subsequence and two to the right

subsequence may not be optimal; future observations could determine that a different al-

location would be better. On the other hand, in VoIDP-SCP shown in Fig. 3.2(b), the

initial observation X3 is determined after computation and comparison of the expected

reward of observing X1, · · · , X9 with all possible budget distributions. This is a consid-

erable amount of computation. In DPA, this interval is split into two shorter intervals, and

reward can be more cheaply computed for each subchain separately.

3.3.2 Proof of Correctness

We now provide a proof that the batch budget allocation and incremental budget

allocation is correct based on the problem formulation in (3.7).

We use the following new notations, definitions, and facts. With a budget of B,

we let k̂B1 , k̂
B
2 , · · · , k̂BM be an optimal budget allocation, where M indicates the number

of subsequences among which we must divide the budget. Let k̄B1 , k̄
B
2 , · · · , k̄BM be the

budget allocation by the algorithm. Since the algorithm picks only the top B reward

increments from Z to distribute budget, it is clear that
∑M

i=1 k̄
B
i = B. The following

theorem proves the correctness of the allocation algorithm by showing that summation

43

of reward from each subsection under the batch budget budget allocation is equal to that

under the optimal budget allocation.

Theorem 1.
M∑
i=1

Ji(k̄
B
i) =

M∑
i=1

Ji(k̂
B
i). (3.10)

To prove Theorem 1, we introduce Lemma 1 and Lemma 2. Lemma 1 shows that

the sum of all reward increments for each subsection using batch budget allocation is

equal to the sum of the top B reward increments in Z. Lemma 2 proves the the sum of all

reward increments for each subsection under the optimal allocation cannot be greater than

that under batch allocation. Finally, we prove Theorem 1 by adding the reward increment

to the reward with zero budget for each subsection to establish the equality.

Denote the sorted list of rewards gained by an additional observation as Z and the

sum of the top B reward increments in Z as ∆L. In addition, we define ∆Ji(0) ≡

0 to handle the case that some interval has a budget of 0. Then we define ∆ĴB
i ≡∑k̂Bi

j=0∆Ji(j), which means ∆ĴB
i is the sum of all reward increments for interval i with a

budget of k̂Bi . Similarly, we define ∆J̄B
i ≡

∑k̄Bi
j=0∆Ji(j).

Lemma 1.
M∑
i=1

∆J̄B
i = ∆L. (3.11)

Proof. For an interval i, by the procedure of the algorithm, there must be k̄Bi reward

increments from interval i in ∆L. Let the sum of these increments be ∆Li. In case

that no such increment exists, we let ∆Li ≡ 0. Suppose ∆J̄B
i ̸= ∆Li. By concavity,

we know that ∆Li must include some reward increment ∆Ji(x) such that x > k̄Bi and

∆Ji(x) < ∆Ji(k̄
B
i) ≤ ∆Ji(k̄

B
i − 1) ≤ · · · ≤ ∆Ji(1). Thus, there must be at least

44

k̄Bi + 1 reward increments in the top B positions from interval i. But this conflicts with

the fact that the top B positions only contain k̄Bi such increments. Thus, it can only be

that ∆J̄B
i = ∆Li. Finally, because

∑M
i=1 k̄

B
i = B, we have

∑M
i=1 ∆Li = ∆L. Therefore,∑M

i=1∆J̄
B
i =

∑M
i=1∆Li = ∆L.

Lemma 2.
M∑
i=1

∆J̄B
i ≥

M∑
i=1

∆ĴB
i . (3.12)

Proof. Any reward increment not in the top B positions of Z must be less than or equal

to any reward increment in the top B positions because Z is sorted. So by Lemma 1,∑M
i=1∆J̄

B
i = ∆L must be greater than or equal to the sum of any B reward increments

from Z. Because
∑M

i=1 k̂
B
i = B and Z contains all reward increments from all intervals,

we know that
∑M

i=1∆Ĵ
B
i is also the sum of B reward increments from Z. Therefore,∑M

i=1∆J̄
B
i ≥

∑M
i=1∆Ĵ

B
i .

By the definition of ∆Ji(k), we know that Ji(k) = ∆Ji(k) + Ji(k − 1). Using

induction, it is trivial to show that Ji(k) =
∑k

j=1∆Ji(j) + Ji(0). Because we define

∆Ji(0) ≡ 0, then

Ji(k) =
k∑

j=0

∆Ji(j) + Ji(0). (3.13)

With this formula, we can finally prove Theorem 1.

Proof. By equation (3.13), we have

M∑
i=1

Ji(k̄
B
i) =

M∑
i=1

[

k̄Bi∑
j=0

∆Ji(j) + Ji(0)]

=
M∑
i=1

[∆J̄B
i + Ji(0)] =

M∑
i=1

∆J̄B
i +

M∑
i=1

Ji(0). (3.14)

45

Similarly,
M∑
i=1

Ji(k̂
B
i) =

M∑
i=1

∆ĴB
i +

M∑
i=1

Ji(0). (3.15)

Then by lemma 2, it follows that
∑M

i=1 Ji(k̄
B
i) ≥

∑M
i=1 Ji(k̂

B
i). Finally, because the

budget allocation, k̂B1 , k̂
B
2 , · · · , k̂BM , is optimal, we have

∑M
i=1 Ji(k̄

B
i) =

∑M
i=1 Ji(k̂

B
i).

Now we show the correctness of Incremental Budget Allocation. Our main insight

is that the sum of reward increments selected by algorithm 2 is equal to ∆L, the sum of

the top B reward increments in list Z in algorithm 1. We will use the following similar

notations, definitions, and facts. Let k̃B1 , k̃
B
2 , · · · , k̃BM be the budget allocation by algo-

rithm 2, and we define ∆J̃B
i ≡

∑k̃Bi
j=0 ∆Ji(j). In addition, according the procedure of the

algorithm, it is clear that step 4 is the place the select reward increments. Let the sum

of all selected reward increments be ∆R. Furthermore, the algorithm selects k̃Bi reward

increments from interval i and B increments in total. Thus,
∑M

i=1 k̃
B
i = B. To prove the

correctness of algorithm 2, we only need to show that
∑M

i=1 Ji(k̃
B
i) =

∑M
i=1 Ji(k̂

B
i). We

now use Lemma 3, Lemma 4, and Theorem 2 to prove this.

Lemma 3.
M∑
i=1

∆J̃B
i = ∆R. (3.16)

Proof. Let ∆Ri be the sum of all selected reward increments from interval i by the al-

gorithm. We now show that ∆Ri = J̃B
i . Suppose ∆Ri ̸= J̃B

i . Then by the concav-

ity property, ∆Ri must include some reward increment ∆Ji(x) such that x > k̃Bi and

∆Ji(x) < ∆Ji(k̃
B
i). However, because the algorithm always selects the highest incre-

ment and compute the next increment for the corresponding interval before the total bud-

46

get is used up, it must also select all reward increments ∆Ji(y) with budget y ≤ x from

interval i. And there are at least k̃Bi +1 of them. However, this conflicts with the fact that

it only selects k̃Bi reward increments. Therefore, the assumption is false, and ∆Ri = J̃B
i .

Finally, because ∆R =
∑M

i=1∆Ri, we have ∆R =
∑M

i=1∆Ri =
∑M

i=1 J̃
B
i .

Lemma 4.
M∑
i=1

∆J̃B
i ≥

M∑
i=1

∆ĴB
i . (3.17)

Proof. We first show that ∆R = ∆L. From the proof of Lemma 2, we know that ∆L

must be greater than or equal to the sum of any B reward increments from list Z. Since

Z contains all possible reward increments from all intervals, we have it also contains all

selected rewards increments in algorithm 2. Because ∆R includes B reward increments,

it follows that ∆R ≤ ∆L.

Suppose ∆R < ∆L. Because ∆L is the sum of the top B reward increments

in Z. It follows that ∆R must include an increment ∆Ji(x) from interval i such that

it is outside the top B positions. In addition, there must be another reward increment

∆Ji′(x
′) within the top B positions from interval i′ such that ∆R does not include it and

∆Ji′(x
′) > ∆Ji(x).

Consider the moment that algorithm 2 selects ∆Ji(x). It must be greater than or

equal to the reward increment ∆Ji′(y′) from interval i′ at that time. We know that the

algorithm does not compute ∆Ji′(y′) unless it has selected all possible reward increments

with budget less than y′ from interval i′. Because the algorithm does not select ∆Ji′(x′),

we have x′ ≥ y′. By the concavity property, ∆Ji′(x′) ≤ ∆Ji′(y
′). Therefore, ∆Ji′(x′) ≤

∆Ji′(y
′) ≤ ∆Ji(x). However, this conflicts with the fact that ∆Ji′(x′) > ∆Ji(x). Thus,

47

it follows that ∆R = ∆L. Finally, by Lemma 1, Lemma 2, and Lemma 3, we have

M∑
i=1

∆J̃B
i = ∆R = ∆L =

M∑
i=1

∆J̄B
i ≥

M∑
i=1

∆ĴB
i . (3.18)

Finally, the next theorem completes the proof.

Theorem 2.
M∑
i=1

Ji(k̃
B
i) =

M∑
i=1

Ji(k̂
B
i). (3.19)

Proof. Similar to the proof of Theorem 1, we have

M∑
i=1

Ji(k̃
B
i) =

M∑
i=1

∆J̃B
i +

M∑
i=1

Ji(0), (3.20)

and
M∑
i=1

Ji(k̂
B
i) =

M∑
i=1

∆ĴB
i +

M∑
i=1

Ji(0). (3.21)

by equation (3.13). By lemma 4, it follows that
∑M

i=1 Ji(k̃
B
i) ≥

∑M
i=1 Ji(k̂

B
i). Fi-

nally, because the budget allocation, k̂B1 , k̂
B
2 , · · · , k̂BM , is optimal, we have

∑M
i=1 Ji(k̃

B
i) =∑M

i=1 Ji(k̂
B
i).

3.3.3 Complexity Analysis

We now determine the complexity of DPA in terms of the number of local reward

evaluations.

Theorem 3. With batch budget allocation, the number of local reward evaluations com-

puted with DPA is:

O
(1
ϵ4
n
)
, (3.22)

48

and with incremental budget allocation, it is

O
(1
ϵ4
B
)
, (3.23)

where ϵ is a number less than 1 such that ϵ = M
n

.

The inverse of ϵ reflects the subsection length. This complexity is a vast improve-

ment over Θ(B2n3) for VoIDP-SCP. A brief outline of the proof is as follows.

Proof. Let the total budget be B = B′ +B′′, where B′′ is the remaining budget allocated

to each subsection after the initial uniform sampling with a budget of B′.

The proof with batch allocation is straight forward. In the budget allocation stage,

VoIDP-SCP is run with a budget up to the number of unobserved state variables, which

is O
(
1
ϵ

)
for each subsection. Step 1 of the algorithm requires no computation of rewards,

and Step 3 can reuse the rewards computed in Step 2. With M = ϵn and using the

complexity of VoIDP-SCP, we have the complexity of DPA as:

O
(
M ·O

(
O
(1
ϵ

)2 · (1
ϵ
)3
))

= O
(
ϵn(

1

ϵ
)2(

1

ϵ
)3
)
= O

(1
ϵ4
n
)

(3.24)

For incremental budget allocation, the complexity is similarly determined by the

budget allocation step. However, VoIDP-SCP in this case is run on each subsection with

a budget up to its allocated budget plus one. For analysis, we can ignore the constant one

and the complexity is

O
(M∑
j=1

(k̃2j (
1

ϵ
)3)

)
= O

(1
ϵ3

M∑
j=1

k̃2j
)

(3.25)

where k̃j is the allocated budget for interval j. Because
∑M

j=1 k̃j = B′′ and k̃j ≤ 1
ϵ

for all

j,
∑M

j=1 k̃
2
j reaches its maximum by letting as many intervals have budget 1

ϵ
as possible.

Each of the other intervals either has 0 budget or has the remainder of the total budget.

49

As a result, the number of intervals that have nonzero budget is ⌈B′′/1
ϵ
⌉ = O

(
(B′′/1

ϵ
)
)
=

O
(
(ϵB′′)

)
. Thus, we conclude that the number of local reward evaluation is in

O
(1
ϵ3

M∑
j=1

k̃2j
)
= O

(1
ϵ3
· ϵB′′ · (1

ϵ
)2
)
= O

(1
ϵ4
B
)

(3.26)

3.4 Data Fusion for frame sequences

In this section, we first describe how we model a video as a graphical model. This

model is a Markov chain which emits cheap and expensive features. Therefore, we can

apply DPA to this model and Section 3.4.2 describes this.

3.4.1 A Graphical Model for Video

The graphical model is a Markov model, where each frame of video corresponds

to a node. Each node contains a state variable that represents the property we wish to

infer, such as whether a face or a moving object is present. Each node can emit two

observable quantities, corresponding to cheap and expensive features extracted from the

frame. This is similar to a hidden Markov model (HMM), but here we also model de-

pendencies between observations. In our model, the value of a cheap feature at time t

is not conditionally independent of the rest of the model given the state at time t, but

is also dependent on the cheap feature at times t − 1 and t + 1. We do this to capture

the fact that when an algorithm makes an error in one frame, it is quite likely to make a

similar error at an adjacent frame. This model can be considered a type of autoregres-

sive hidden Markov model [65]. We have experimentally verified in Section 3.5.5 that if

50

(a)

(b)

Figure 3.3: Markov models for video sequences. State variables are labeled “X”, cheap obser-

vations are labeled “c”, and expensive observations are labeled “e”. They all have numbered

subscripts indicating their time steps. (a) The model we use when expensive features are not

available at every frame; (b) The model we use when all frames have expensive features.

51

we assume conditional independence between consecutive cheap features, the model will

become overconfident about the evidence of the cheap features, resulting in less accurate

inference.

We typically have expensive features for a small fraction of frames, so it is less

important to model the dependency between them. In addition, we assume the expensive

feature is accurate when predicting the state. Therefore, we assume expensive features

depend only on the state. However, in cases where we have an expensive feature at ev-

ery frame, we model their dependencies the same way we do with cheap features (see

Figure 3.3).

3.4.2 Applying DPA

We have described DPA for the case of simple, chain graphical models. However,

it is straightforward to apply it to the model in the previous section, since it has a chain

structure and the same conditional independence property. We assume that the expensive

feature is accurate in predicting the state of a node. This allows an expensive feature to

play the role of an observation in our algorithm. In practice, expensive features do make

mistakes. This means that the states before and after the frame at which we apply an

expensive feature are not truly conditionally independent, but only approximately so. We

experimentally evaluate the consequences of this approximation in the next section.

Finally, cheap features also provide useful information. Thus, we make the re-

cursive formulas for computing the optimal reward be conditioned on applicable cheap

features. Denoting ca:b as the cheap feature over the interval from variable Xa and Xb, the

52

formula (3.4) and (3.5) for computing the optimal reward become

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0),

max
a<j<b

{
∑
xj

P (Xj = xj|Xa = xa, Xb = xb, ca:b)

{Rj(Xj|Xj = xj, ca:b) + max
0≤l≤k−1

[Ja:j(xa, xj; l) +

Jj:b(xj, xb; k − l − 1)]}}}, (3.27)

where the base case is

Ja:b(xa, xb; 0) =
b−1∑

j=a+1

Rj(Xj|Xa = xa, Xb = xb, ca:b). (3.28)

Finally, when predicting the state of frames and using formula (3.27) and (3.28)

to determine where to sample expensive features, we need to determine the probabil-

ity distribution of each state based on observations. We can easily extend the standard

Forward-Backward algorithm [74] to do this.

3.4.3 Forward-backward Algorithm

When using formula (3.27) and (3.28) to determine where to sample expensive

features, and using our model to do inference to predict the state of each frame, we need

to determine the probability distribution of each state based on observations. We can use

the Forward-Backward algorithm [74] to do this. Using our model, this algorithm works

a little differently from the standard version, due to dependencies in the observations, and

we describe it below. The derivation uses the ideas in [65] and [34].

LetN be the number of states, and denote individual states as S = {s1, s2, · · · , sN}.

Let the sequence have T time slices. Also let cheap feature observations from time 1 to

53

T be c1, c2, · · · , cT respectively, and expensive feature observations from time 1 to T be

e1, e2, · · · , eT . Let fi be {ci, ei} at time i and O be all the observations. Similarly, we use

Xt to denote the state variable at time t. Then,

P (Xt = si|O) =
P (O,Xt = si)

P (O)
=
P (f1···T , Xt = si)

P (O)

=
P (ft+1···T |Xt = si, f1···t)P (Xt = si, f1···t)

P (O)

∝ P (ft+1···T |Xt = si, ft)P (Xt = si, f1···t). (3.29)

Given the forward variable defined as αt(i) = P (Xt = si, f1···t) and the backward vari-

able as βt(i) = P (ft+1···T |Xt = si, ft), we have

P (Xt = si|O) ∝ αt(i) · βt(i). (3.30)

To compute αt(i), we have

αt(i) = P (Xt = si, f1···t) = P (Xt = si, ft, f1···t−1)

= P (Xt = si, ft|f1···t−1)P (f1···t−1)

=
N∑
j=1

P (Xt = si, ft|Xt−1 = sj, f1···t−1)P (Xt−1 = sj|f1···t−1)P (f1···t−1)

=
N∑
j=1

P (ft|Xt−1 = sj, f1···t−1, Xt = si)P (Xt = si|Xt−1 = sj, f1···t−1)P (Xt−1 = sj, f1···t−1)

=
N∑
j=1

P (ft|f1···t−1, Xt = si)P (Xt = si|Xt−1 = sj)P (Xt−1 = sj, f1···t−1)

=
N∑
j=1

P (ft|f1···t−1, Xt = si)P (Xt = si|Xt−1 = sj)αt−1(j), (3.31)

where P (ft|f1···t−1, Xt = si) = P (ct|ct−1, Xt = si)P (et|Xt = si) for the left model

and P (ft|f1···t−1, Xt = si) = P (ct|ct−1, Xt = si)P (et|et−1, Xt = si) for the right model

in Fig. 3.3. This gives the recursive formula to compute the forward variable, where

54

the base condition is the same as that in [74]. The only difference from the standard

forward algorithm is that the probability of the observation needs to be conditioned on

the observation in the previous time step. To compute βt(i), we have

βt(i) = P (ft+1···T |Xt = si, ft) =
N∑
j=1

P (ft+2···T , Xt+1 = sj, ft+1|Xt = si, ft)

=
N∑
j=1

P (ft+2···T |Xt+1 = sj, ft+1, Xt = i, ft)P (Xt+1 = sj, ft+1|Xt = si, ft)

=
N∑
j=1

P (ft+2···T |Xt+1 = sj, ft+1)P (ft+1|Xt+1 = sj, ft)P (Xt+1 = sj|Xt = si)

=
N∑
j=1

βt+1(j)P (Xt+1 = sj|Xt = si)P (ft+1|Xt+1 = sj, ft), (3.32)

where P (ft+1|Xt+1 = sj, ft) = P (ct+1|Xt+1 = sj, ct)P (et+1|Xt+1 = sj) for the left

model and P (ft+1|Xt+1 = sj, ft) = P (ct+1|Xt+1 = sj, ct)P (et+1|Xt+1 = sj, et) for the

right model in Fig. 3.3. Again, the only difference from the standard backward algorithm

is that probability of the observation is conditioned on the observation in the previous

time step.

3.5 Experiments

We now apply DPA to two vision tasks involving motion detection and face detec-

tion. Our main goal is to show that inference can be used to efficiently allocate processing

in two very different tasks. We begin by first describing some common characteristics of

our experiments in the next section. We then present the results for the two tasks in Sec-

tion 3.5.2 and 3.5.3. Section 3.5.4 and 3.5.5 discuss how the expensive and cheap features

can affect DPA. Section 3.5.6 shows how the subsection size affects the performance and

55

running time of the algorithm. Finally, Section 3.5.7 discusses how the concavity assump-

tion holds for our sampling method.

3.5.1 General Experiment Setup

We use DPA described above to determine the locations at which to run the expen-

sive algorithm. We uniformly sample the expensive feature at every 20 frames to break

the sequence, while also running the cheap algorithm at every frame. We compare to

several baseline algorithms. For all algorithms, when all the cheap and the necessary

expensive observations have been made, we predict the state of each frame using the in-

ference model in Fig. 3.3(a) since expensive features are not available in every frame.

Competing algorithms are always provided the same total budget. We describe the budget

in terms of its percentage of the total number of frames.

• The first baseline method is uniform sampling, which runs the expensive algorithm

at a uniform step size. This method is in essence equivalent to running the expensive

algorithm at a lower frame rate.

• The second baseline method is most-relevant sampling. We first run the cheap

algorithm at each frame and perform inference using the model in Fig. 3.3(a) to

obtain the conditional probabilities of all state variables. We then run the expensive

algorithm on the frames that are most likely to satisfy our query. This is equivalent

to using the cheap algorithm to prune the least interesting frames.

• The third and last baseline method is most-uncertain sampling. Similar to the most-

relevant sampling method, we again run the cheap algorithm at each frame and then

56

perform inference to obtain conditional probabilities. Then, we run the expensive

algorithm on frames that have the greatest uncertainty, measured by the entropy of

the conditional probability.

• Finally, to calibrate the performance of algorithms on different tasks, we compared

to an idealized method, ceiling sampling, in which we run the cheap and expensive

algorithms at all the frames, i.e, the budget is equal to 100%. We use Fig. 3.3(b) to

model the frame sequence because the expensive feature is available everywhere.

This method should provide an upper bound on performance.

To compare these methods, we used 4-fold cross validation on each video. We

recorded each video at 30 frames per second. We then uniformly sampled 3 frames per

second to generate the training and testing sequences, as this is a reasonable frame rate

for real world surveillance videos [58]. By beginning sampling at different locations, we

produced 10 different sequences for training and also for testing. All ten sequences are

used as training data. We also use all ten for testing, helping to smooth the results a bit.

The performance measure we used was the 11-point average precision of the precision

recall (PR) curves [63]. That is, we take the average precision for 11 uniformly spaced

levels of recall. This is averaged over all 40 testing sequences from the 4 folds. We

varied the total budget from 5% to 25% of n. Because the subsection size is 20, DPA and

uniform sampling have the same performance at a budget of 5%. We next provide more

details about the experiments for both tasks.

In addition to these three baseline methods, we also considered a greedy selection

scheme. This acquires one expensive observation at a time [8, 38], choosing the obser-

57

vation that provides the greatest increase in overall expected reward. That is, given that

we have already applied the expensive algorithm to all frames in O, we next choose the

expensive observation, Ej , that maximizes R(O ∪ Ej) − R(O). Unfortunately, this ap-

proach is not suitable for our problem. First, to implement this approach, at each iteration

we must perform inference for each possible value of Ej over the whole video to deter-

mine R(O ∪ Ej), and repeat this for each j. This requires an impractical amount of run

time. We have performed preliminary experiments in which we choose ten observations

at a time after each round of inference. However, not only is this still slow, but this ap-

proach performs poorly compared with other baseline methods. So we omit this method

from further experiments.

3.5.2 Motion Detection

We first evaluated these algorithms in a simple background subtraction task. We

collected three half hour videos at thirty frames per second, for a total of n ≈ 55, 000

per video, with each frame at 240 × 320 resolution. We hand-labeled each frame as

“interesting” if it contained a moving object, such as a person or car, “uninteresting”

otherwise.

As a cheap algorithm, we used FD [41] and we used IAGMM [113] as the expen-

sive algorithm. For FD the feature was the number of foreground pixels in a frame after

applying a threshold of 10. This avoided postprocessing, saving a significant amount of

time. It is an interesting question for future work to determine how best to build a back-

ground model suitable for the expensive algorithm based on sparsely sampled frames.

58

Figure 3.4: Top: examples from video used in the motion detection task. Middle: output of FD.

Bottom: output of IAGMM.

However, in this experiment we wish to focus on the effectiveness of our algorithm in di-

recting application of IAGMM. Therefore, we build a background model using all recent

frames and then apply IAGMM only at sampled locations. After applying IAGMM, we

performed an opening and a closing morphological operation. We then extracted the area

of the largest connected component to generate features, which were then discretized. We

had tried 8 different features, the area of the component, the width of its Bounding Box,

and the diameter of a circle with the same area as the component. They all produced

similar performance, and we chose the area of the component to show results. Figure 3.4

shows some examples; the other video and output are similar.

Next, we tested our concavity assumption on these videos, since DPA assumes that

the reward curves were concave. Table 3.1 shows the results. We can see that over a half

of all intervals produce concave reward curves, while most of the non-concave ones have

59

Figure 3.5: 11-point average precision values for the background subtraction task.

very small convexities.

We show 11-point average precision results on the three videos in Fig. 3.5. In

all three videos, our method outperforms the baseline methods. We also observe from the

plots that uniform sampling outperforms both most-relevant sampling and most-uncertain

sampling. We postulate that the reason may be that the cheap algorithm does not produce

high quality features and so decisions based purely on the cheap algorithm are unreliable.

In these videos, FD faces difficulties because leaves often move in the background.

3.5.3 Face Detection

Next, we applied our approach to the problem of identifying frames containing a

face. As with the last task, we collected three half-hour videos. We hand-labeled each

frame as “interesting” if there is a frontal or profile face in it and labeled it as “uninterest-

ing” otherwise.

For the cheap algorithm, we used IAGMM with the area of the largest connected

60

Table 3.1: Concavity of RB curves for the motion detection tasks.

Video Video 1 Video 2 Video 3

Number of intervalsa 2720 2720 2720

concave (%) 56.21 67.39 59.93

concave or ≈ concaveb(%) 94.34 97.28 94.45

Median of the rest 0.0468 0.0181 0.0834

a The total number of intervals over the 40 testing se-

quences.

b RB curves which are not concave but with a nonconcavity

measure not greater than 0.01.

component as a feature since it is relatively good at detecting the motion of a human and

is still computationally cheap compared to the face detector. The expensive algorithm was

the face detection algorithm based on OpenCV [11], using the scheme in [52]. We used

both frontal and profile face detectors and the expensive feature was a binary indicator of

whether the detectors found a face. Fig. 3.6 shows examples from one of these videos,

the others are similar.

We again first measured the concavity of the reward curves for the face detection

videos. The results are given in Table 3.2. Again, the reward curves are largely concave.

We show the 11-point average precision results on the three videos in Figure 3.7. Our

61

Figure 3.6: Top: frames from video used in face detection. Middle: output of IAGMM. Bottom:

output of the face detector.

method outperforms the baseline methods in two videos, video 4 and 5, under all budget

percentages. However, in video 6, our method has no advantage over uniform sampling

when the budget is small, but as the budget increases, the advantage of our method be-

comes clear.

3.5.4 Accuracy of Expensive Features

The accuracy of the expensive feature can cause variations in performance of DPA,

since our decisions are based on the assumption that the expensive feature is very accurate.

The prediction error rates of the expensive feature in the six videos are .0147, .0417, .0391,

.0582, .0828, and .2339 respectively. Note that the error rate is highest in the sixth video,

the video on which our method has no clear advantage over uniform sampling when given

a small budget.

62

Table 3.2: Concavity of RB curves for the face detection task.

Video video 4 video 5 video 6

Number of subsections 2720 2840 2800

concave (%) 80.22 66.16 68.61

concave or ≈ concave (%) 98.16 98.45 99.07

Rest median 0.0970 0.1014 0.1014

Radovilsky et al. [75] shows that inaccurate observations lead to bounded loss on

the subset selection version of VoIDP. To investigate how the accuracy of the expensive

features affects our method, which is based on a conditional plan setting of VoIDP, we

compare performance of different methods using synthetic expensive features with differ-

ent accuracies for each video. Based on ground truth, we generate expensive features by

randomly choosing a set of frames to make its value incorrectly reflect the actual states.

We varied the size of the set to be 0%, 10%, 20%, 30%, and 40% of the total number

of frames, and a smaller set is always the proper subset of a larger set. To measure the

performance of a method, we use the mean of average precision for budget going from

5% to 25%. Fig. 3.8 shows the performance of different methods as the accuracy of the

expensive features decreases. We observe that an accuracy over 85% in general is needed

to give DPA an advantage over other methods.

63

Figure 3.7: 11-point average precision values for the face detection task.

3.5.5 Usefulness of Cheap Features and Feature Dependency Modeling

Ideally, combining both features in DPA to determine the expensive feature sam-

pling locations should give better results than purely using expensive features. To show

this, we replace the cheap feature with a constant synthetic feature. Under this setting,

the sampling locations and inference only depends on the expensive features. In addition,

to show the importance of feature dependency modeling, we also compare to the result

of using both types of features but without modeling the dependency between cheap fea-

tures. That is, we remove the link between consecutive cheap features in Fig. 3.3(a),

and the model becomes a standard HMM. We also experiment with varying frame rates,

hoping to capture feature dependency at different levels.

Fig. 3.9 shows the performance when the frame rate is 30, 6, 3, 2, and 1. Under

3 frames per second, which is the frame rate in the experiments above, we observe that

combining both features and modeling dependency has a clear advantage over using only

the expensive features. Without dependency modeling, however, inference performance

64

Figure 3.8: Mean of average precision as the accuracy of the expensive features decreases.

can sometimes be worse. For other frame rates, modeling feature dependency still has

a clear advantage than that with no modeling. But we do observe that combining both

features has no advantage when the frame rate is 30 or 6 frames per second. In particu-

lar, using purely expensive features has better performance for the first three videos for

background subtraction at 30 frames per second. However, when the frame rate is 2 or

1 frame per second, the advantage of combining both features becomes clear again. In

particular, even using the model without feature dependency is better than that using just

expensive features when the frame rate is 1 frame per second. This is likely due to the is-

sue of how well our model fits the data. When the frame rate becomes higher and higher,

the dependency between errors made by cheap features is stronger and stronger, and our

model cannot capture this well enough. As a result, the cheap feature is overconfident in

some locations, and suppresses the correct decisions by the expensive features. Using a

65

Figure 3.9: Comparison of using constant synthetic cheap features, and cheap features from real

data with and without feature dependency modeling, using a frame rate of 30, 6, 3, 2, and 1 frames

per second. As in Fig. 3.5, the x axis is budget and the y axis is average precision.

66

Figure 3.10: 11-point average precision values as size of subsections varies in DPA.

better model that captures this dependency adequately is one possible solution, and we

discuss this more in Section 3.5.8. Real world videos, such as surveillance videos, need to

run for a long time in general. A small frame rate is more suitable for storage and power

issues [58]. At the same time, when cheap features are not helpful, DPA will still provide

significant benefits by using information from expensive features to control processing.

3.5.6 Size of Subsections and Running Time

The size of subsections determines B′, the budget used for uniform sampling. With

larger subsections, more budget can be used within the subsections. However, a smaller

subsection size does have advantages in terms of running time. Fig. 3.10 shows per-

formance of DPA as the subsection size decreases. In general, we observe that a larger

subsection size has better performance at the same budget level. This is because more

67

budget can be allocated by VoIDP-SCP with a larger subsection size, and the allocation

is affected less by the uniform sampling. However, at a high budget level, performance

of different subsection sizes start to converge. In addition, the performance at size 60

has no advantage over that of size 40 in many cases. This may indicate a saturation of

performance as the size increases. The left side of Fig. 3.11 shows an example of the run-

ning time of VoIDP-SCP as the size of the subsections increases. The plot shows that we

cannot afford to run VoIDP-SCP on the whole testing sequence in our experiment, which

has length over 1000. The right side shows the running time of DPA with increasing sub-

section size averaged over all testing sequences from all videos. Each testing sequence is

about one fourth of a 30-minute video at 3 frames per second. A large subsection size,

such as 40 or 60, requires a fair amount of running time. A small size, such as 10, runs

very fast, but suffers from disadvantages discussed above. In our experiments, we choose

20 as the subsection size, which has reasonable performance and fast running time.

3.5.7 Concavity

Our algorithm assumes that the RB curve is concave. Empirically, we find that this

assumption holds well in our two, real-life domains. We have also performed experiments

with synthetic data to get a sense of when this assumption might fail. We generate data

from a Markov process as shown in Figure 3.3(b). Our experiments indicate that the key

factor in determining the concavity of the RB curve is the probability of a state change

from one node to the next. When states persist, RB curves tend to be concave. Figure 3.12

shows the variation in concavity with the probability that a state persists from one time

68

Figure 3.11: Left: running time of VoIDP-SCP at a budget of 25% of the sequence length. Right:

running time of DPA at a budget of 25% averaged over all testing sequences from all videos. We

use the multi-dimensional array to store the memory table in the dynamic programming. This

allows the fastest table lookup speed. These measures are taken using a server with two 2.66GHz

quad-core Xeon processors with 48GB of memory)

step to the next. Each curve pools results from a large number of simulations in which

other parameters of the model vary. We also explored other state transition cases, such as

when one state tends to persist while the other does not. However, their results are not as

good as the case that both states tend to persist. We note that in our tasks, and in many

other video analysis tasks, node states will persist; once an interesting event begins in a

video it will tend to last for at least a few seconds. Therefore, we expect our results to be

applicable in many settings.

3.5.8 Discussion

Our experiments demonstrate that DPA can make two potential contributions to

video processing. First, we have shown that it is possible to use a Markov model to

69

Figure 3.12: Percentage of subsections from all sampled sequences whose nonconcavity measure

is not greater than a varying threshold. Each sampled sequence has a length of 2000, producing

100 subsections with a subsection size of 20. The threshold values are 0, 0.0001, 0.001, 0.01

and 0.02. The legend indicates probability for each state to stay in its current value. All other

parameters of the model are sparsely sampled to cover their value ranges. Going from top to down

in the legend, the number of sampled sequences used to generate the curve is 1728, 1750, 1956,

and 1960 respectively.

integrate cheap and expensive features to improve system accuracy. Second, we have

shown that by sparsely applying expensive features, our algorithm can use the results of

inference to direct processing to portions of the video where further processing is most

beneficial.

At the same time, we note that these potential benefits are dependent on some im-

portant assumptions. First, inaccurate expensive features will affect the performance of

DPA. The advantage of DPA will decreases as the accuracy of the expensive features de-

creases. The results in Section 3.5.4 indicate that an 85% accuracy is in general needed to

allow DPA to outperform other baseline methods. In many complex video analysis prob-

70

lems in unconstrained environments this accuracy is not yet achievable. For this reason

we feel that DPA will be most relevant in two situations. First, in many controlled, or

partially controlled environments, vision algorithms can achieve high accuracy. Second,

in some applications a human analyst may serve as an expensive feature. It will be an in-

teresting problem for future research to explore the use of DPA in integrating algorithmic

output with human analysis.

It might also be of interest to modify VoIDP-SCP so that rather than considering all

possible state assignments for each potential split point, it considers all possible expen-

sive feature assignments. Such a method requires modification of formulas 3.4 and 3.5

for dynamic programming such that they are based on values of features rather than val-

ues of states. Since the feature space is in general much larger than the state space, this

will be more computationally intensive. A similar idea has been exploited in the work by

Radovilsky et al. [75]. However, they consider a subset selection setting of the problem

which determines all sampling positions before samples are made, while we consider a

conditional plan setting in which the next sampling position is conditioned on the sam-

pled observations. These two problems have different recursive formulas for dynamic

programming [48], and their approach may not be directly applicable to our problem.

A second issue that deserves further exploration is the modeling of dependency

between features. Section 3.5.5 shows that this can improve inference. However, at high

frame rates (eg., 30 fps) our model is still not able to properly capture these dependencies.

It will be interesting to consider more sophisticated models, such as Conditional Random

Fields (CRFs) [89]. CRFs can capture arbitrary dependencies among input observation

variables, by conditioning on all inputs.

71

Finally, we have demonstrated our approach on relatively simple sample video that

we have collected. It would be of interest to define tasks for which expensive features

can achieve high accuracy in real-world surveillance datasets, such as i-LIDS MCTTR

dataset [33]. On these challenging datasets, it might, for example, be of interest, to con-

sider problems in which state-of-the-art algorithms act as a cheap feature and a human

analyst serves as an expensive feature.

3.6 Summary

Our main goal has been to design inference algorithms that can be used to direct

video processing. This allows us to replace simplistic methods such as reducing the frame

rate with principled decisions that carry theoretical performance guarantees. We believe

that this is a quite general framework that can be applied to many video processing tasks

and may be extended in the future to more complex graphical structures.

To this end, we have made two more detailed contributions. First, we propose a

graphical model that maps onto a video frame sequence and allows us to combine fea-

tures from expensive and cheap algorithms to do inference. We show that in practical

situations, there is much to be gained by this combination. Second, we have shown how

to build on an existing algorithm that was designed for short chains to create an algorithm

that runs efficiently on long video sequences. Specifically, we show that by applying an

expensive algorithm in some extra locations, we can determine future sensing locations

efficiently. Experiments with two concrete video processing tasks, low-level background

subtraction and the higher level task of face detection, show that these can be mapped onto

72

our framework. The effectiveness of DPA’s inference algorithm in these tasks illustrates

the potential of our approach for general video processing.

73

Chapter 4

Learning SVMs with Latent Variables Using Structured Norms

Parts of the work from this chapter appear in the Advances in Neural Information

Processing Systems (NIPS) Workshop on Optimization for Machine Learning in Decem-

ber 2011, [14].

4.1 Introduction

In the previous two chapters, we impose a budget on the resources we want to allo-

cate. We also consider another idea for saving computational resources and maintaining

program performance in the context of latent variable models without explicitly speci-

fying the budget. We consider learning the latent state space complexity to simplify the

model and reduce inference time. We start with describing the motivation of using the

latent variable models. In the situation such that some variables relevant to the problem

are not annotated in the datasets, latent variable models provide an ideal abstraction. For

example, consider the task of training a person detector. Standard benchmarks only pro-

vide bounding box annotations indicating the presence of people. However, people tend

to be highly articulated objects and in order to detect a person, it is often essential to rea-

son about the pose of the person in terms of configuration of parts: i.e. location of head,

torso, limbs – all quantities not labelled in the dataset.

This information is, therefore, more natural to model as latent variables. It allows

74

for modelling of interaction between the observed data (e.g. image features) and latent

or hidden variables not observed in the training data (e.g. location of body parts). These

hidden variables may help explain correlations in the features, provide a low-dimensional

embedding of the input, or help with prediction. For example, in a deformable-part

model [32] for person detection, these part locations are latent variables that help model

articulations of the human body and help localize the person. In handwritten digit recog-

nition, deformations of digit images, such as rotation, can be modelled as latent variables

to greatly improve recognition accuracy [50, 110]. In document retrieval, the total rank-

ing order of all documents related to a query can be modeled as a latent variable to help

produce a higher number of relevant documents in the top k returned results.

Training latent variable models, however, is notoriously problematic, since it typ-

ically involves a difficult non-convex optimization problem. Common algorithms for

solving these problems, Expectation-Maximization (EM) [21] and the Concave-Convex

Procedure (CCCP) [32, 110, 112], are known to be highly sensitive to initialization and

prone to getting stuck in a poor local optimum. Standard techniques for mitigating the

poor behaviour of these algorithms include multiple restarts with random initializations,

smoothing the objective function and annealing. Recently, Bengio et al. [7] and Kumar et

al. [50] have presented a curriculum learning scheme that trains latent variable models in

an easy-to-difficult manner, by initially pruning away difficult examples in the dataset.

Our goal at a high-level is to study the modelling-optimization tradeoff in designing

latent variable models for computer vision problems. From a modelling perspective, we

would like to design models with ever more complex latent variables, e.g. capture location

of parts, their scale, orientation, appearance. However, from an optimization perspective,

75

Figure 4.1: Overview of our approach for the digit recognition (top) and object detection ex-

periment (bottom). In digit recognition, the latent state space is the rotation angles. For object

detection, the latent state space is the component label in the mixture of deformable part models.

The model parameter vector is partitioned into groups corresponding to different states. Parame-

ters for non-informative states become zero in the final model under such regularizers, allowing

us to select meaningful states for prediction.

complex models are more difficult to train than simpler ones, more prone to getting stuck

in a bad local minimum, ultimately resulting in poor generalization (typically even worse

than simpler models). In most existing models, the complexity of the latent variable space

is typically left as a free design choice that is hand-tuned. Thus, the question we seek to

answer is: Is there a principled way to learn the complexity of the latent space in a latent

variable model?

In this chapter, we propose the use of structured sparsity inducing norms like ℓ1-ℓ2

to estimate the parameters of a latent-variable model, thereby regularizing the complexity

76

of the latent space. Structured sparsity inducing norms are a generalization of the ℓ1 norm

and regularize solutions to be sparse in a structured way. Specifically, the group ℓ1-ℓ2

norm behaves like an ℓ1 norm at a group level and encourages groups of variables to be

sparse.

Note that this is a subtle yet important difference between our goal and the typical

scenario in which sparsity inducing norms are used. Traditional approaches are inter-

ested in variable selection, i.e. which latent variables should be included in the model.

We are interested in state design, i.e. which latent variables states should we model for

optimum performance. Our motivation is the observation that often most latent variables

have a few key informative states (e.g. is the head on top of the body or not) while most

of the remaining states may be pruned without any loss in performance (e.g. the head

being besides or below or around the body are all equally bad, so only one state may be

kept). Traditional approaches would compare the cumulative (or mean) informativeness

of different variables, while we aim to directly prune the non-informative states. The key

challenge is in identifying these informative states from data, rather than making hard

design choices before looking at the data.

Our approach for solving this problem utilizes some of the same classical ideas as

variable selection. We divide the latent variable state space into different groups, among

which the group norm is induced. Since the group norm encourages group-sparsity, this

allows simultaneous parameter estimation as well as state selection. Conceptually, this is

an elegant solution since it gives the designer of a latent model tremendous flexibility in

including plenty of latent variables without being concerned about the optimization issues

– the group norm will automatically prune out latent variable states that are not helpful

77

for prediction, while still utilizing all latent variables that have some informative states.

Our approach is in a sense orthogonal to that of Bengio et al. [7] and Kumar et al. [50],

in that they prune out difficult training examples to make the non-convex optimization

easier, while we prune out difficult (or irrelevant) latent states.

We apply our approach to SVMs with latent variables, for both the binary and struc-

tured output case. We perform two sets of experiments: handwritten digit recognition on

MNIST and object detection on the PASCAL VOC 2007 dataset [28]. Our first set of ex-

periments show that our approach is indeed able to prune the complexity of latent space,

resulting in a model that allows significantly faster inference at test time without a drop

in accuracy over a complete (non-sparse) model. Our second set of experiments show

that our approach is able to learn a better model by adapting the complexity of the latent

variable space to the category being trained.

4.2 Prior Work

Most relevant to our work are algorithms for discovering latent structure in latent

variable models and other applications of structured-sparsity-inducing norms. These are

both broad goals and cover a vast amount of literature. We mention the works most

directly relevant to our approach.

Latent variable models have been used to model observations in both generative

and discriminative settings. In the generative setting, the goal is to explain the data with a

low-dimensional latent structure. Mixture models like Gaussian Mixture Models (GMMs)

and Hidden Markov Models (HMMs) have a long history in applications such as speech

recognition [74]. More recently, a number of discriminative latent models such as Hid-

78

den Conditional Random Field [101], Latent SVMs [32] and Latent Structural SVMs

(LSSVMs) [110] have been proposed. These models have demonstrated success in a

number of applications. They differ from generative models in the sense that the ultimate

goal is prediction not explanation of the data.

In both kinds of models, the parameter learning problem is non-convex and solved

with techniques like Expectation-Maximization (EM) [21] and Concave-Convex Proce-

dure (CCCP) [32, 110, 112] respectively. Kumar et al. [50] introduce self-paced learning

for latent variable models and demonstrate its effectiveness for learning LSSVMs. Note

that for all the models above, the latent variables and their state space are predefined

and fixed for specific applications. Our approach, on the other hand, aims for parameter

estimation as well as discovery of meaningful latent variable states.

Related to this goal of discovery is the work of Chandrasekaran et al. [13], which

attempt to identify the graphical model structure assuming that latent and observed vari-

ables are jointly Gaussian. Our work is different in that we are interested in prediction

via a sparse latent model and not identification of such a model. Moreover, we make no

Gaussian assumptions, which may be infeasible for applications. Salzmann et al. [81]

propose an approach to encourage a shared-private factorization of latent space to be

nonredundant and simultaneously discover the dimensionality of the latent space. Such

state dimensionality learning is based on trace norm while we use group norm to achieve

this goal. Jia et al. [43] use the group norm to learn a latent space with shared-private

factorization with a limited number of latent dimensions. However, they follow a dic-

tionary learning approach. Regularized by the group norm, the latent space is learned

by minimizing the norm of the difference between an observation matrix and a product

79

between a dictionary and a latent embedding matrix. Our approach, however, is based

on risk minimization using slack variables and the group norm. The former is related to

continous observations and based on regression models, and the later is related to discrete

observations and is based on discriminative models.

There is a fairly mature body of work on ℓ1 regularization for sparse regression

models [18, 26, 90]. Sparse coding with ℓ1 regularization has been successfully used to

solve many problems in compressed sensing [25] and signal processing [61]. Yuan and

Lin [111] introduce group norm regularization to allow parameter estimation as well as

selection of certain groups of variables. Bengio et al. [6] the apply group norm to build

a word dictionary in bag-of-words document representations widely used in text, image,

and video processing. Bach [1] proposes general sparsity inducing structured norms. A

survey by Bach et al. [2] describes a list of applications of the group norm, including

group Lasso [92, 111], multitask learning [54, 67, 73], and multiple kernel learning [3].

The rest of this paper is organized as follows: Section 4.3 and Section 4.4 revisit

SVMs with latent variables and describe our proposed group norm modification. Sec-

tion 4.5 describes how parameter learning can be performed in this model. Finally, Sec-

tion 4.6 describes the two sets of experiments.

4.3 SVMs with Latent Variables

We begin by first giving an overview of the Latent Structural SVM model and then

specializing it to the latent SVMs used for binary classification experiments.

Notation. For any positive integer n, let [n] be shorthand for the set {1, 2, . . . , n}. We

80

denote training data asD = {(xi, yi) | i ∈ S ≡ [n]}, where xi ∈ X is the (input) observed

feature-vector and yi ∈ Y is the (possibly structured) output label for the ith sample. In

addition, let hi ∈ H denote the latent variable for the ith sample. For example, in digit

recognition, xi is the original digit image, yi ∈ {0, 1, . . . , 9} is the true digit label and hi

is the (deformation) rotation angle that must be corrected for before extracting features.

We use vT to denote transpose of v, which can either be a vector or a matrix.

Latent Structured SVMs (LSSVMs). The linear prediction rule of LSSVMs is of the

following form:

fw(x) = max
(y,h)∈Y×H

w · ϕ(x, y, h), (4.1)

where ϕ(x, y, h) is the joint feature vector that encodes the relationship between the input,

hidden and output variables, and w is the model parameter vector. In digit recognition,

this joint feature vector is the vector representation of the image x rotated by the angle

corresponding to h. Let

{ŷi(w), ĥi(w)} ≜ argmax
(y,h)∈Y×H

w · ϕ(xi, y, h) (4.2)

be the predicted output and latent variables for data-point i, written as a function of the

parameter vector w. A user-specified risk function ∆(yi, ŷi(w)) measures the loss in-

curred for predicting ŷi(w) for the ith sample, when the ground-truth label is yi. Note

that the risk function may additionally depend on the predicted latent variables, i.e. have

the form ∆(yi, ŷi(w), ĥi(w)). The parameter vector w is learned by minimizing the (reg-

ularized) risk of the prediction on the training dataset D. Unfortunately, this is a difficult

optimization problem. Yu and Joachims [110] proposed minimizing an upper-bound on

81

the risk and formulated the following optimization problem:

min
w

Ω(w) +
C

n

n∑
i=1

ξi, (4.3a)

s.t. max
hi∈H

w ·
(
ϕ(xi, yi, hi)− ϕ(xi, ŷi, ĥi)

)
≥ ∆(yi, ŷi, ĥi)− ξi, (4.3b)

ξi ≥ 0 (4.3c)

∀(ŷi, ĥi) ∈ Y ×H, i ∈ S.

where, the regularization term is Ω(w) = Ωℓ2(w) = 1
2
∥w∥22. Intuitively, we can see that

constraint (4.3b) tries to ensure that for each training instance i, the ground-truth and its

best latent variable prediction have a higher score than all other labels and latent variable

assignment pairs by a loss function ∆(yi, ŷi, ŷi), subject to a positive slack variable, ξi,

which allows this rule to be violated to some degree. ∆(yi, ŷi, ŷi) is the score margin.

High-risk configurations are forced to have a larger margin between them and the ground-

truth. It can be shown that ξi is an upper bound on the risk, i.e. ξi ≥ ∆(yi, ŷi(w), ĥi(w)).

We refer the reader to [110] for more details about this formulation.

Latent SVMs (LSVMs). The fairly general formulation of LSSVMs includes a number

of interesting models as special cases. We describe one such instantiation, the deformable-

parts based Latent SVM model of Felzenszwalb et al. [32], which we use for one set of

our experiments. In this model, xi are the HOG descriptors [20] computed at a particular

sliding window location and scale in the image; yi ∈ {+1,−1} indicates presence or

absence of a particular category in the window and hi indicates the mixture type of the

deformable template and location and scale of root and part filters. The scoring function

82

in this case can be reduced to the following form:

fw(x) = max
h∈H

w · ϕ(x, h), (4.4)

where the joint feature vector ϕ(x, h) now does not depends on the label y. The risk

function is a zero-one loss function, and the learning problem looks more like a binary

SVM:

min
w

Ω(w) + C

n∑
i=1

ξi, (4.5a)

s.t. yifw(xi) ≥ 1− ξi, (4.5b)

ξi ≥ 0 (4.5c)

∀i ∈ S.

where Ω(w) = 1
2
∥w∥22. Different from those in LSSVMs, constraints (4.5b) try to

ensure that positive and negative training instances lie on different sides of the separation

hyperplane subject to positive slack variables so that this rule can be violated to some

degree. The next section describes our proposed group norm modification to the LSSVM

and LSVM models, and Section 4.5 describes how parameter learning can be performed

in the presence of this modification.

4.4 Inducing Group Norm for State Learning

LetH = {1, · · · , P} be the set of states which the latent variables can take. Such a

set of states, for example, can be the set of all possible rotation angles in digit recognition,

or the set of object components in a part based object detection model. Recall that our

goal is to regularize the complexity of the latent space and learn which hidden states are

83

really relevant for the prediction problem. To this end, we consider using the ℓ1-ℓ2 norm

in the regularizer Ω(w) in problem (4.3) and (4.5) to learn meaningful latent variable

states.

We start by describing a modification to the linear prediction rule in problem (4.3)

that makes it easier to encode the group structure of latent states. Specifically, instead of

learning a single weight vector w, we now learn P weight vectors wℏ, one corresponding

to each of the latent states. Let the parameter vector for the pth group be denoted by

wp = [wp
1, · · · , wp

np
], where np is the length of this vector. The modified linear prediction

rule is given by

fw(x) = max
y∈Y, ℏ∈[P]

wℏ · ϕ(x, y, ℏ). (4.6)

We note that with appropriate zero-padding of the features, this model is equivalent to the

original linear model. To see that, let w = [w1, · · · ,wP] be the concatenation of weight

vectors from each group. We can also define new features:

ϕ̃(x, y, ℏ) = [0n1 ,0n2 , . . . , ϕ(x, y, ℏ), . . . ,0nP
]T . (4.7)

The above equation zeros pads the joint feature vectors such that only the weight vectors

and features for the same group interact in the dot product: w · ϕ̃(x, y, ℏ) =
∑

p ̸=ℏ 0np ·

ϕ(x, y, p) +wℏ · ϕ(x, y, ℏ). Similarly, we can partition the parameter vector w and build

a joint feature vector ϕ(x, h) according to this partition in problem (4.5).

The key reason for working with this representation is that parameters for each

state are now represented separately and thus group ℓ1 regularization is possible over the

state space. We directly apply the group norm in Ω(w) to perform this regularization in

84

problem (4.3).

ΩG(w) =
P∑

p=1

λp ||wp||q , (4.8)

for any q ∈ [1,∞), where λp ≥ 0 is the regularization weight for group p. This norm is

usually referred as ℓ1-ℓq norm, and in practice, popular choices for q are {2,∞} [2]. In

our work, we only consider q = 2 and the regularizer is thus given as follows:

Ω(w) =
P∑

p=1

λp ||wp||2 . (4.9)

Within each group, the ℓ2 norm is used, which does not promote sparsity. At the group

level, this norm behaves like the ℓ1 norm and thus induces group sparsity, i.e. the param-

eters of some groups are encouraged to be set completely to zero. Uninformative states

will thus have sparse learned parameters. This gives us a way to select the most useful

states for prediction and shrink the state space size.

In problem (4.5), we use a different strategy to apply the group norm. Similar to the

idea of Elastic Nets [114], we can use the group norm in combination with the ℓ2 norm:

Ω(w) =
1

2
||w||22 +

P∑
p=1

λp∥wp∥2. (4.10)

Such a regularizer has the effect of both the original regularizer and the group norm.

When λp = 0 for all p, the regularizer is reduced to the original form (ℓ2-norm). Group

level sparsity can be induced when λp is sufficiently large. Note that both approaches are

not feasible when the latent space is structured (trees, etc) and thus exponentially large.

We will come back to discuss this issue in Section 5.2.2. The next section gives a detailed

description of our algorithm for solving these problems.

85

4.5 Coordinate Descent

From an optimization perspective, both problems (4.3) and (4.5) can be viewed as

minimizing a sum of convex and concave functions. Such problems are studied in the

context of difference of convex programming and lend themselves to the concave-convex

procedure (CCCP) [110, 112] and a similar coordinate descent approach described in

Felzenszwalb [32]. We first describe the algorithm to solve problem (4.3). We rewrite

the problem as:

min
w

L(w)
.
= min

w

[
Ω(w) +

C

n

n∑
i=1

max {0, fi(w)− gi(w)}

]
(4.11a)

where fi(w) = max
(ŷi,ĥi)∈Y×H

[
w · ϕ(xi, ŷi, ĥi) + ∆(yi, ŷi, ĥi)

]
, (4.11b)

gi(w) = max
hi∈H

w · ϕ(xi, yi, hi). (4.11c)

We can now see that L(w) is a difference of two functions fi(w) and gi(w) that are

both convex, since they are point-wise maximums of convex (linear) functions. In order

to minimize (4.11a), we follow the approach of Felzenszwalb et al. [32] and minimize the

following upper bound on L(w):

min
w,{hi}

Lh(w, {hi})
.
= min

w,{hi}

[
Ω(w) +

C

n

n∑
i=1

max {0, fi(w)− gi(w, hi)}

]
, (4.12)

where gi(w, hi) = w · ϕ(xi, yi, hi). (4.13)

Intuitively, by replacing gi(w) by gi(w, hi) implies that we enforce the margin not with

respect to the best latent assignment for the ground-truth, rather only the current latent

assignment of hi. Lh(w, {hi}) is thus the objective function with latent variables spec-

ified for the training data. Fixing the latent variables makes Lh(w, {hi}) convex in w.

86

Moreover, L(w) ≤ Lh(w, {hi}). In a manner similar to Felzenszwalb et al. [32], we

follow an alternating coordinate descent and subgradient descent scheme. At iteration t,

we first fix wt and optimize Lh(w
t, {hi}) w.r.t. {hi}. This is equivalent to computing

ht+1
i = argmax

hi∈H
wt · ϕ(xi, yi, hi), ∀i ∈ S (4.14)

This step is fairly straightforward and involves assigning the latent variables to their op-

timal states given the current setting of wt. Next, we fix {ht+1
i } and optimize w.r.t. w.

This is done via subgradient descent. The subgradient∇Lh(w, {ht+1
i }) is given by:

∇Lh(w, {ht+1
i }) = ∇Ω(w) +

C

n

n∑
i=1

mi(w, h
t+1
i), (4.15)

where

∇Ω(w) =

[
λ1w

1
1

||w1||2
, · · · ,

λ1w
1
n1

||w1||2︸ ︷︷ ︸
Group 1

, · · · , λPw
P
1

||wP ||2
, · · · ,

λPw
P
nP

||wP ||2︸ ︷︷ ︸
Group P

]T

, (4.16)

and

mi(w, h
t+1
i) =


0 if fi(w)− gi(w, h∗i) ≤ 0

ϕ(xi, ŷ
∗
i , ĥ

∗
i)− ϕ(xi, yi, ht+1

i) otherwise
(4.17)

where

(ŷ∗i , ĥ
∗
i) = argmax

(ŷi,ĥi)∈Y×H
fi(w) = argmax

(ŷi,ĥi)∈Y×H

[
w · ϕ(xi, ŷi, ĥi) + ∆(yi, ŷi, ĥi)

]
. (4.18)

These two steps, i.e. fixing wt and optimizing Lh(w
t, {hi}) w.r.t. {hi}, and fixing {ht+1

i }

to optimize w.r.t. w, keep iterating until the objective Lh converges. It can be shown that

the algorithm always converges to a local minimum or a saddle point [112]. Algorithm 3

describes the entire algorithm. Following [47], we choose the learning rate at iteration

87

t to be αt = 1
ηt+1

, where ηt is the number of times the objective value Lh(w, {ht+1
i })

has increased from one iteration to the next. This learning rate performed well in the

handwritten digit recognition experiments.

Problem (4.5) can be solved using a similar coordinate descent method and we use

similar notations to illustrate this approach. The original objective (4.5) can be written as

min
w

L(w) = min
w

F (w) +G(w), (4.19a)

where F (w) = Ω(w) + C
∑
i∈S−

max

{
0, 1 + max

hi∈H
w · ϕ(xi, hi)

}
, (4.19b)

G(w) = C
∑
i∈S+

max

{
0, 1−max

hi∈H
w · ϕ(xi, hi)

}
. (4.19c)

where S+ is the set of positive training instances and S− is the set of negative training in-

stances. The objective L(w) is not convex because F (w) is convex andG(w) is concave.

However, if the latent values for all positive training instances are fixed, the resulting ob-

jective is convex and can be minimized using gradient descent. Therefore, we consider

the latent configuration of all positive training instances as variables and minimize the

following objective

min
w,{hi}

Lh(w, {hi}) = min
w

F (w) +G(w, {hi}), (4.20a)

where F (w) = Ω(w) + C
∑
i∈S−

max

{
0, 1 + max

hi∈H
w · ϕ(xi, hi)

}
, (4.20b)

G(w, {hi}) = C
∑
i∈S+

max

{
0, 1−w · ϕ(xi, hi)

}
. (4.20c)

Similarly, it can be shown that Lh(w, {hi}) ≥ L(w) and we can minimize it using the fol-

lowing iterative method. At iteration t, it first fixs the current parameter wt and minimizes

88

w.r.t to hi for all i ∈ S+. This is equivalent to computing

ht+1
i = argmax

hi

wt · ϕ(xi, hi), ∀i ∈ S+. (4.21)

Then, it minimize w.r.t. w. This is equivalent to computing

wt+1
i = argmin

w
Lh(w, h

t+1
i). (4.22)

The objective, Lh(w, h
t+1
i), is convex and can be minimized using stochastic gradient

descent. It can be shown that each iteration always improves or maintains the value of

the learning objective and it will converge to a local minimum. Because a large amount

of negative examples are used in training, Felzenszwalb et al. [32] designs a data-mining

procedure that finds a small number of “hard negative” instances and applies it to the

iterative algorithm. It can be shown that by iteratively finding “hard negative” examples

and using them for training, it will converge to the exact solution defined by the original

large negative training set. Therefore, the minimization in (4.22) runs multiple times and

hard negative examples are detected before each run. We refer readers to [32] for details.

4.6 Experiment

We perform two sets of experiments: handwritten digit recognition on MNIST and

object detection on the PASCAL VOC 2007 dataset [28]. Our first set of experiments

show that our approach is indeed able to prune the complexity of latent space, resulting

in a model that allows significantly faster inference at test time without a drop in accu-

racy over a complete (non-sparse) model. Our second set of experiments show that our

approach is able to learn a better model by adapting the complexity of the latent variable

space to the category being trained.

89

Algorithm 3 Coordinate and subgradient descent algorithm
Input: D = {(x1, y1), · · · , (xn, yn)}, w0, learning rate α0, ϵ

1: t← 0

2: repeat

3: for i = 1 to n do {#Optimize Over {hi}}

4: g∗i ← maxhi∈H wt · ϕ(xi, yi, hi), and obtain maximizer hti

5: end for

6: tw ← 0, wtw ← wt

7: repeat {#Optimize Over w with Subgradient Descent}

8: for i = 1 to n do {#Can pick a random element here if Stochastic}

9: fi ← max(ŷi,ĥi)∈Y×H wtw · ϕ(xi, ŷi, ĥi) + ∆(yi, ŷi, ĥi), and

obtain maximizer (ŷ∗i , ĥ
∗
i)

10: mi ← 0

11: if fi − g∗i > 0 then

12: mi ← ϕ(xi, ŷ
∗
i , ĥ

∗
i)− ϕ(xi, yi, hti)

13: end if

14: end for

15: ∇Lh ← ∇Ω(wtw) + C
n

∑n
i=1mi

16: wtw+1 ← wtw − αt∇Lh

17: tw ← tw + 1

18: until |Lh(w
tw+1)− L(wtw)| < ϵ

19: t← t+ 1, wt ← wtw

20: until |(L(wt)− L(wt−1))/L(wt)| < ϵ

90

4.6.1 Handwritten Digit Recognition

We now demonstrate the efficacy of our approach in the context of handwritten

digit recognition. We follow closely the experimental setup of Kumar et al. [50], who

proposed a LSSVM approach for this problem. Each digit is represented as a vector x

of grayscale values at pixels. The goal is to predict the label of the digit, y ∈ Y =

{0, 1, · · · , 9}. It is well known that the accuracy can be greatly improved by explicitly

modeling the deformations present in each image. Kumar et al. [50] model rotations as

a hidden variable taking values in a set of 11 angles uniformly distributed from −60◦ to

60◦. We show that using our approach only a few rotations are needed to achieve the

recognition accuracy of using the full set of angles.

The joint feature vector is

ϕ(x, y, h) = [0y(m+1) ; θh(x) 1 ; 0(9−y)(m+1)]
T , (4.23)

where θh(x) is the image rotated by the angle specified by h, and then strung into a vector.

To adapt our approach to this framework, we let the angle h ∈ H = {h0, h1, · · · , h10},

where H is the set of 11 angles the digit can rotate, and induce a group norm over the

parameters corresponding to each angle.

We choose the MNIST dataset [51]. This dataset contains hand written digit images

for digits 0 to 9. We perform binary classification on four difficult digit pairs (1-7, 2-7,

3-8, 8-9). The training data for each digit contains about 6000 images and the testing data

contains approximately 1000 images. We compute exactly the same features as in Kumar

et al. [50]. We use PCA to project each image to a 10 dimensional feature vector. We

vary the number of angles chosen for each digit from 1 to 11. For each angle budget, we

91

Figure 4.2: Examples of each digit and their rotations. The original images are in column corre-

sponding to 0◦(no rotation). All other columns display the images under different rotating degrees,

which are uniformly sampled from [-60◦, 60◦]. The images are rotated counterclockwise.

select angles for a digit based on the magnitude of the ℓ2-norm of the parameter vector

corresponding to that angle. Angles with higher magnitude will be chosen first. As a

baseline, we compare our approach to uniform angle selection based on the approach by

Kumar et al. [50]. Given an angle budget B, we uniformly sample B angles from interval

[-60◦, 60◦]. Figure 4.2 shows the images rotated with sampled angles when the budget is

11, where the column with degree 0 shows the original images. We use λp = 1 for each

group in our experiment. We tried different values of C, and the prediction accuracies

were fairly similar. We set C = 1.

Figure 4.3 shows the ℓ2-norms of the parameter vectors for different angles in the

4 digit-pair experiments. Figure 4.4 shows how the prediction accuracy and feature com-

putation time varies as angle budget increases. The feature computation time, which is

proportional to the final prediction time, includes rotation time and PCA projection time.

92

−60−48−36−24−12 0 12 24 36 48 60
0

50

100

150

200

Angle (degree)

L2
 n

or
m

digit 1
digit 7

−60−48−36−24−12 0 12 24 36 48 60
0

50

100

Angle (degree)

L2
 n

or
m

digit 2
digit 7

−60−48−36−24−12 0 12 24 36 48 60
0

50

100

150

Angle (degree)

L2
 n

or
m

digit 3
digit 8

−60−48−36−24−12 0 12 24 36 48 60
0

50

100

150

Angle (degree)

L2
 n

or
m

digit 8
digit 9

Figure 4.3: ℓ2 norm of the parameter vectors for different angles over the 4 digit pairs.

We note a few key observations. First, in our approach, the ℓ2-norms of the weight

vector for many angles completely zero out, and only a subset of angles actually remain

to contribute to the final prediction. In the end, the trained model essentially selects

5, 8, 7, and 9 angles in total for digit pairs 1-7, 2-7, 3-8, and 8-9 respectively. This

is a significant reduction from the hidden space of 22 angles per digit pair using the

original model in Kumar et al. [50]. Second, our approach gives very similar prediction

accuracy compared to the original approach with a full set of angles. Third, due to the

sparse solution of our model, using a maximum of 4 angles for each digit, we can achieve

prediction accuracy similar to that using the full set of angles. Fourth, running time for

feature computation increases linearly with the number of angles chosen because the time

to rotate an image and perform PCA for each angle is about the same. Thus, as shown

in Table 4.1, evaluation at test-time with our sparse method using maximumly 4 anlges

per digit is 2.5-3 times faster than the non-sparse model without any or significant loss in

accuracy.

93

0 5 10
0.85

0.9

0.95

1

Number of angles per digit

A
cc

ur
ac

y

digit pair (1,7)

uniform
`1-`2

0 5 10
0.85

0.9

0.95

Number of angles per digit

A
cc

ur
ac

y

digit pair (2,7)

0 5 10

0.86

0.88

0.9

0.92

Number of angles per digit

A
cc

ur
ac

y

digit pair (3,8)

0 5 10
0.85

0.9

0.95

Number of angles per digit

A
cc

ur
ac

y

digit pair (8,9)

Figure 4.4: Comparison of prediction accuracy vs. angle budget (top) and test-time vs. angle

budget (bottom) of our approach and uniform selection. We can see that our approach outperforms

uniform selection and is able to quickly achieve accuracy comparable to the complete model (using

all angles).

The Digit Pair (1,7) (2,7) (3,8) (8,9)

Our approach (4 ang. / digit) 6.5 7.0 5.4 6.0

Kumar et al. [50] (11 ang. / digit) 22.3 24.1 23.7 23.1

Table 4.1: Running time comparison of our approach using maximumly 4 angles per digit and

original approach by Kumar et al. [50] using 11 angles per digit. The time is measured in seconds.

The running time is based on the feature computation time of all testing digits which includes

rotation time and PCA projection time. We implement the programs in MATLAB R2011a and the

experiment is performed using a machine with 64-bit 8-Core Intel i7 machine with 12GB RAM.

4.6.2 Object Detection with Discriminatively Trained Deformable Part

Models

We also apply our approach to discriminatively trained deformable part models [32].

In this framework, an n-component mixture of symmetric deformable part models repre-

sents each object class. Each component is a star-structured part-based model consisting

of a root filter, part filters, and part displacement parameters. The score of one compo-

94

nent at a particular location and scale in the image is defined as the total scores from

responses of the root and part filters minus the deformation cost of placing part filters in

the image. The component, which gives the highest score defines the final score of the

mixture model at the particular location and scale. This model is scanned across differ-

ent locations and scales in the image, followed by some post-processing steps, such as

bounding box prediction, non-maximal suppression, and context rescoring, to detect the

actual object instances.

Each component is bilaterally symmetric and each component is grouped into a

left-right symmetric pair. Thus an n-component mixture really has 2n-members. Dur-

ing detection each image is matched to the component in both left and right orientation.

This will allow the detector to better handle the object classes with clear left-right pose

distinction, such as bicycle and car. The training data for each component is created by

separating the positive training instances into different clusters and breaking down these

clusters to separate left and right face examples using HoG features. The filters for the

two members of a symmetric component are a flipped version of each other, so we only

need to train one of them.

The mixture model can be formulated as a latent support vector machine (SVM),

which the parameters of the root filter, part filters, and deformation parameters of all

components are strung together to form the final parameter vector. The parameter learn-

ing proceeds in four stages. The first stage learns the parameters of root filter for each

component separately. The second stage adds the flipped counter part and trains the sym-

metric root filters of each component independently. These two stages provide good ini-

tialization for mixture model training in subsequent stages. The third stage concatenates

95

the parameters of all components and learns a mixture model of root filters. The fourth

stage adds the part and displacement parameters for each component and learns the final

mixture model. Stages three and four use the coordinate descent approach described in

Section 4.5.

We perform the experiment based on release 4 of the system [31], and use the

PASCAL VOC 2007 dataset following comp3 protocol [28]. This dataset contains 9,963

images with annotations from 20 different object categories. In the object detection chal-

lenge, the objects are annotated with tight rectangular bounding boxes. The image set is

divided into two main subsets: training/validation data (trainval) and test data (test), with

the trainval data further divided into suggested training (train) and validation (val) data.

The trainval data consists of 5,011 images with 12,608 annotated objects. The test data

has 4,952 images with 12,032 annotated objects. Figure 4.5 shows an image from each

object category and their bounding box annotation.

We apply our group norm approach to select and learn a subset of components to

form the final mixture model. The motivation for doing this is our observation that as the

number of components increases (from n=1 to n=6), we observe that the model trained

by the original system generally overfits the training data as the number of components

increases. We trained on the training and validation data, and performed testing on the

test data. Figure 4.6 shows how the average precision varies with the increasing number

of components, for each object category. As the number of components increases, the

training accuracies always increase. However, the testing accuracies vary across differ-

ent categories. For example, the test-accuracy for the “bottle” category keeps decreasing.

The performance for “cat” and “horse” categories peaks at two components and then de-

96

creases. The performance for the “dog” category remains relatively the same when more

than one component is used. Overall, as the number of components increases (from 1 to

6), the performance of the training dataset increases consistently, while the performance

of the testing dataset tends to saturate or even decrease. These plots also empirically ver-

ify our hypothesis that a single setting of number of components is a suboptimal choice.

We apply the group norm to stage three of the learning process so that we can select

a subset of components to do learning in stage four. Instead of using a fixed n, we consider

using all of the learned components for n = 1, 2, 3 from stage 1 and 2 for training in stage

3 and 4. This results in a six-component mixture model in which we induce sparsity.

We set λp = 0.12 in equation (4.10) for all groups. We made this choice by tuning

λp on the validation set. We vary λp and test on validation data (using models trained

on training data alone). Table 4.2 shows the complete results for each category and the

mean average precision and the average number of non-sparse components as a function

of λp. We can see that λp = 0.12 gives the highest mean average precision and produces a

reasonable number of non-sparse components on average. Note that in these experiment,

for sufficiently high values of λp, sometimes all components of a model may be “sparsed

out” for some object categories. For such categories, we clamp λp so that at least one

component survives. We do not observe any such issue for experiments trained with

λp = 0.12 on train+validation data.

Finally, bounding box prediction and context rescoring is used to further improve

the detection performance. We refer the reader to [32] and [35] for details.

Figure 4.7 and 4.8 show examples of the mixture of root model before and after the

training regularized by group norm. Some components whose filters are very similar to

97

root+part aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

λp = 0.08 27.8 52.2 9.8 14.0 22.7 43.9 48.9 10.9 16.9 14.7 13.3 4.1 45.3 44.0 32.3 3.9 10.2 12.5 40.2 34.4 25.1

num. comp. 3 6 5 4 3 6 4 5 6 6 5 5 6 6 6 3 1 5 6 4 4.8

λp = 0.10 28.0 50.4 9.6 14.0 23.8 40.3 47.0 7.3 18.0 15.3 15.3 4.6 49.0 43.1 30.8 6.7 10.2 17.3 38.9 34.2 25.2

num. comp. 4 6 3 4 2 2 4 4 6 3 4 5 5 6 6 3 1 1 6 2 3.9

λp = 0.12 25.2 49.3 6.8 14.0 24.0 42.3 48.1 8.8 17.6 14.3 17.6 4.5 51.5 43.7 31.7 9.9 10.2 20.5 44.5 32.4 25.8

num. comp. 2 3 2 4 1 2 4 1 6 5 2 5 4 4 6 1 1 1 5 2 3.1

λp = 0.14 26.6 45.5 9.9 0.7 27.3 35.4 48.5 13.0 19.1 13.5 16.8 11.2 49.3 38.7 28.5 9.4 10.2 14.9 24.0 35.3 23.9

num. comp. 1 3 2 1 1 1 4 1 6 2 1 5 5 2 6 2 1 1 1 2 2.4

λp = 0.16 22.8 51.8 9.4 0.7 26.3 27.8 47.4 10.5 17.4 16.3 18.6 11.0 45.3 36.7 31.4 9.8 10.2 14.9 24.2 33.0 23.3

num. comp. 1 5 1 1 1 1 4 1 2 2 1 4 3 2 5 1 1 1 1 2 2.0

Table 4.2: Results on VOC2007 validation data (using models trained on training data alone).

Only root+part model accuracies are shown (no bounding box prediction or context rescoring is

performed). We can see that λp = 0.12 achieves the highest mean average precision and with 3.1

non-sparse components on average (out of 6).

those in other components are removed by group norm. For example, for bus category,

the filters of the bottom three components resemble those in the top three components.

Their filters are trained to be sparse and are removed from the training of part filters and

displacement parameters. We observe similar situations for the car category. We compare

our approach to the original system in [31] with varying number of components when

n = 1, 2, 3, 4, 5, and 6. We also compare to the case when the group norm is not used in

our approach, i.e., λp is set to be 0 in (4.10). Table 4.3 summarizes the results. The mean

accuracies for root+part initially increase from n = 1 to n = 2, but then stagnate. Our

approach, on the other hand, is able to pick out a fairly non-uniform sparsity pattern (and

thus the mixture size) across the categories, performing the best in 7 out of 20 categories

with a mean average precision of 32.5. This is better than all other settings in which n

98

is fixed. In addition, when the group norm is not used in our case, the mean average

precision is only 31.7 and we perform better in 14 out of 20 categories. On average,

3.6 out of 6 components remains in the final models. This is significantly lower than

the original 6 components for each category. As is standard in this task, we also ran the

bounding box prediction and context rescoring steps, the results for which are reported

for the sake of completeness. Figure 4.9 shows some example detections produced by our

approach.

4.7 Summary

We address the problem of estimating the parameters of a latent variable model as

well as discovering meaningful states for the latent variables. This allows us to control

the model complexity and potentially speed up inference time and learn a more reliable

model. We address this problem in the context of SVMs with latent variables and use an

ℓ1-ℓ2 norm regularization. Our experiments on handwritten digit recognition show that

our approach is able to effectively reduce the size of latent variable state space and thus

reduce the inference time with no loss of accuracy compared to using the full latent state

space. Our experiment on object detection shows that we are able to control the number

of components used in the mixture model and learn a better object detector.

99

(a) Aeroplane (b) Bicycle (c) Bird (d) Boat

(e) Bottle (f) Bus (g) Car (h) Cat

(i) Chair (j) Cow (k) Diningtable (l) Dog

(m) Horse (n) Motorbike (o) Person (p) Pottedplant

(q) Sheep (r) Sofa (s) Train (t) Tvmonitor

Figure 4.5: Example images from each category in PASCAL VOC 2007 dataset. The red bound-

ing boxes are the annotated ground truth bounding boxes.
100

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

aeroplane

test

trainval

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

bicycle

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

bird

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

boat

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

bottle

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

bus

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

car

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

cat

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

chair

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

cow

1 2 3 4 5 6
0

20

40

60

80

100

of components
A

P

diningtable

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

dog

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

horse

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

motorbike

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

person

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

pottedplant

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

sheep

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

sofa

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

train

1 2 3 4 5 6
0

20

40

60

80

100

of components

A
P

tvmonitor

Figure 4.6: Behaviors of the Felzenszwalb et al. detector [31] as a function of the number of

components for each object category on VOC2007 dataset. The models are trained on the train-

ing+validation data and tested in the test data. Only root+part accuracies are shown (no bounding

box prediction or context rescoring is performed). We can see that as the number of components

increases (from 1 to 6), the accuracies on train+val increase consistently for all categories, while

those on test tends to saturate or even decrease for many categories. This suggests overfitting

occurs as the number of components increases.

101

Figure 4.7: Mixture of root model before and after the training regularized by group norm for

bus category. Each row shows the information for a component and its symmetric counterparts

are not shown to save space. Starting from the left, the first column shows a positive example

from the cluster which produces the component. The second column shows the average image of

the cluster. The third column shows the root filter of the component before the training. The last

column shows the root filter after training. A complete gray image indicates the filter is sparse and

will be removed from training the part filters and displacement parameters.

102

Figure 4.8: Mixture of root model before and after the training regularized by group norm for

car category. Each row shows the information for a component and its symmetric counterparts

are not shown to save space. Starting from the left, the first column shows a positive example

from the cluster which produces the component. The second column shows the average image of

the cluster. The third column shows the root filter of the component before the training. The last

column shows the root filter after training. A complete gray image indicates the filter is sparse and

will be removed from training the part filters and displacement parameters.

103

root+part aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

n=1 24.3 49.5 8.2 6.5 27.8 45.2 51.5 17.0 19.2 22.9 22.2 5.1 49.8 37.9 33.6 6.5 13.6 30.4 34.2 42.7 27.4

n=2 31.7 56.0 10.3 11.2 27.5 52.0 53.8 24.2 21.1 26.6 22.9 10.6 59.6 44.1 39.5 13.6 18.1 29.1 44.0 42.0 31.9

n=3 29.6 57.3 10.1 17.1 25.2 47.8 55.0 18.4 21.6 24.7 23.3 11.2 57.6 46.5 42.1 12.2 18.6 31.9 44.5 40.9 31.8

n=4 31.8 57.2 10.1 14.7 24.3 50.0 54.1 18.2 20.4 24.8 19.3 11.0 57.0 40.2 38.1 12.8 22.8 28.4 46.6 40.0 31.1

n=5 32.2 57.6 10.4 17.2 23.2 54.5 54.0 15.6 19.6 24.2 25.1 11.3 56.2 47.8 39.3 12.0 18.5 30.9 48.7 39.8 31.9

n=6 30.5 56.7 11.0 16.2 22.1 49.7 54.1 13.9 19.6 21.7 21.4 11.2 55.7 46.8 38.5 8.3 23.6 26.0 43.9 40.8 30.6

ours (λp = 0) 34.0 54.3 6.2 13.9 24.4 49.3 54.5 22.8 20.1 25.6 26.9 9.1 56.8 45.1 39.4 13.3 18.2 34.8 43.4 42.3 31.7

ours (λp = 0.12) 30.8 56.3 9.4 15.5 28.4 52.4 54.5 19.8 21.9 30.1 28.0 11.3 57.1 45.7 38.6 14.7 15.4 31.8 44.5 43.2 32.5

comp. num. 4 6 1 2 2 3 4 5 2 4 3 5 4 4 6 4 1 2 6 3 3.6

bbox aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

n=1 25.0 50.2 8.3 6.5 28.3 45.6 54.5 17.2 19.6 22.8 23.1 5.2 50.4 37.9 33.8 6.8 14.9 31.1 35.0 44.0 28.0

n=2 31.0 58.5 10.2 10.7 27.4 52.6 56.2 26.1 21.5 26.6 22.3 10.8 61.6 45.3 40.0 13.5 17.9 29.9 45.4 42.6 32.5

n=3 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 46.6 41.9 12.2 17.8 33.6 45.1 41.6 32.2

n=4 32.1 59.6 10.2 15.3 24.6 51.9 57.5 18.5 20.2 25.1 17.3 11.0 57.4 43.0 36.6 12.5 22.5 28.0 46.6 41.7 31.6

n=5 31.0 58.5 10.4 17.7 23.5 54.9 57.6 17.3 19.5 22.6 24.7 11.1 57.6 49.2 39.8 11.6 18.4 32.3 47.1 40.8 32.3

n=6 29.6 56.1 10.9 15.3 21.8 50.5 57.1 15.3 20.2 19.8 21.0 11.4 55.7 45.5 38.5 10.3 23.6 25.4 42.6 41.6 30.6

ours (λp = 0) 33.9 54.7 5.6 13.5 23.0 47.3 55.9 23.2 20.6 23.9 26.1 9.1 57.7 44.4 39.8 13.4 10.3 31.7 43.5 41.7 31.0

ours (λp = 0.12) 33.6 57.6 9.4 15.5 28.9 51.7 55.3 20.2 22.1 30.4 28.9 11.5 58.1 46.4 38.8 14.1 16.2 32.3 45.6 43.8 33.0

context aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mean

n=1 27.9 52.0 11.2 9.8 29.7 47.7 56.3 23.6 20.8 25.0 26.4 13.3 53.4 42.2 35.5 9.0 15.7 34.4 38.3 45.8 30.9

n=2 33.2 60.5 12.5 10.8 28.6 52.7 58.0 30.9 22.9 28.7 26.3 13.2 65.3 47.6 42.6 15.6 19.9 33.1 49.3 44.2 34.8

n=3 31.1 61.6 11.9 17.3 27.1 49.0 59.6 22.9 23.0 26.7 24.5 12.9 60.2 49.5 43.2 13.5 18.9 36.4 49.2 43.0 34.1

n=4 35.2 59.4 12.4 16.7 25.4 51.9 59.1 20.2 21.3 26.3 18.8 12.7 60.3 46.2 38.3 14.5 21.4 30.6 51.1 43.1 33.2

n=5 32.6 58.4 12.7 17.9 25.1 55.8 58.9 17.5 19.9 24.7 21.4 13.2 61.0 51.6 42.4 13.5 19.4 32.8 49.8 41.5 33.5

n=6 30.8 57.1 12.1 15.7 21.6 49.1 57.7 19.1 20.6 22.3 18.8 13.3 58.3 47.1 41.4 12.0 22.9 28.0 43.0 42.2 31.7

ours (λp = 0) 35.5 54.9 8.1 15.4 23.0 44.3 57.3 26.3 22.1 25.1 28.3 12.0 60.7 45.9 42.2 15.3 10.4 35.3 45.6 42.7 32.5

ours (λp = 0.12) 35.8 59.9 10.3 18.1 29.3 53.4 56.3 25.3 23.5 30.6 31.0 13.9 60.5 48.9 41.1 16.1 17.3 35.3 49.5 45.7 35.1

Table 4.3: VOC2007. Testing on testing data. Evaluation is performed based on 1) root and part

(root+part) filters, 2) bounding box (bbox) prediction, and 3) context rescoring. Cases with the

highest average precision is in bold font. The last row in the root+part table shows the number of

non-sparse components out of a total of 6 components being trained.

104

bottle

bus

car

horse

motorbike

Figure 4.9: Examples top detections for different object categories using root-plus-part models

based on our approach. Within each image, the red bounding box is the predicted location of the

root filter and the blue bounding boxes are the predicted locations of the part filters.

105

Chapter 5

Conclusions and Future Work

In this thesis, we broadly examine the problem of visual computing under resource

constraints. Specifically, we consider constraints of human resources and computational

resources. Chapter 2 describes our approach to the first constrained setting with a frame

retrieval problem in a camera network. We first map video frames in a camera network

onto a graphical model. We then perform collective classification and active inference to

produce more effective video analysis in camera networks. Chapter 3 describes the work

to direct a more resource-consuming algorithm with a less resource-consuming algorithm.

We design a new algorithm that uses this model to determine where in a video to apply the

expensive algorithm. We modify an algorithm by Krause and Guestrin [48] so that it can

be run efficiently over a Markov chain with thousands of nodes. Our final contribution is

to experimentally demonstrate the value of this algorithm in two vision tasks: motion and

face detection. Chapter 4 describes the work for latent variable state learning. We propose

the use of structured sparsity inducing norms like ℓ1-ℓ2 to estimate the parameters of a

latent-variable model, thereby regularizing the complexity of the latent space. We apply

our approach to the Latent SVM model, for both the binary and structured output case. We

demonstrate the effectiveness of our approach on two sets of experiments: handwritten

digit recognition on MNIST and object detection on the PASCAL VOC 2007 dataset [28].

There are many questions and future work and we summarize them as follows.

106

5.1 New Reward Functions for Value of Information in Graphical Mod-

els

In Chapter 2, we considered using the value of information [48] to formulate the

reward function to perform active inference. We propose a new type of reward function

based on joint probabilities. This reward function is based on energy functions on graphi-

cal models, which occur in a variety of problems in early computer vision, such as stereo

matching and image restoration.

5.1.1 Problem Formulation

We formulate the problem based on similar notations and ideas in the problem for-

mulation of Krause and Guestrin [48]. We will assume that the state of the world is

described by a collection of random variables XV = (X1, · · · , Xn), where V is the index

set. For example, V could denote a set of pixel locations, andXi model the disparity value

for a pixel at location i ∈ V . Let xi be a realization for Xi, and xv = (x1, · · · , xn) be a

realization for all random variables XV . Let XV be the set of all possible realizations for

XV . For a subset A = {i1, · · · , ik} ⊆ V , we use the notation XA to refer to the random

vector XA = (Xi1 , · · · , Xik). We assume that the variables XV are discrete. We take a

Bayesian approach, and assume a prior probability distribution P (XV) over the outcomes

of the variables. Suppose we select a subset of variables, XA (for A ⊆ V), and observe

XA = xA. For example, A is the set of locations where we observe pixel labels, or a set of

video frames in which we detect anomaly. After observing a realization of these variables

XA = xA, we can compute the posterior distribution over all variables P (XV |XA = xA).

107

Based on this posterior probability we obtain a reward R(P (XV |XA = xA)). For exam-

ple, this reward function could depend on the uncertainty (e.g. measured by entropy) of

the distribution P (XV |XA = xA).

In general, when selecting observation, we will not know ahead of time what obser-

vations we will make. Instead, we only have a distribution over the possible observations.

Hence, we will be interested in the expected reward, where we take the expectation over

the possible observations. We can also consider maximum or minimum reward over the

possible observations. We refer to them as maximum or minimum reward respectively.

When optimizing the selection of variables, we can consider different settings. In

subset selection, our goal is to pick a subset A∗ ⊆ V of variables, maximizing

A∗ = argmax
A

R(XV , XA), (5.1)

where

R(XV , XA) =
Rexp(XV , XA) =

∑
xA
P (XA = xA)R(P (XV |XA = xA)) if expected reward

Rmax(XV , XA) = maxxA
P (XA = xA)R(P (XV |XA = xA)) if maximun reward

Rmin(XV , XA) = minxA
P (XA = xA)R(P (XV |XA = xA)) if minimun reward

(5.2)

We impose some constraints on the set A we are allowed to pick (e.g., on the number

of variables that can be selected, etc.) In the subset selection setting, we commit to the

selection of the variables before we get to see their realization.

Instead, we can also sequentially select one variable after the other, letting our

choice depend on the observations made in the past. In this setting, we would like to find

108

a conditional plan π∗ that maximizes

π∗ = argmax
π

R(XV , π), (5.3)

where

R(XV , π) =
Rexp(XV , π) =

∑
xV
P (xV)R(P (XV |Xπ(xV) = xπ(xV))) if expected reward

Rmax(XV , π) = maxxV
P (xV)R(P (XV |Xπ(xV) = xπ(xV))) if maximum reward

Rmin(XV , π) = minxV
P (xV)R(P (XV |Xπ(xV) = xπ(xV))) if minimum reward

(5.4)

Hereby, π is a conditional plan that can select a different set of variables for each possible

state of the world xV . We use the notation π(xV) ⊆ V to refer to the subset of variables

selected by the conditional plan π in state XV = xV .

Using the expected reward, Problems (5.1) and (5.3) are referred to by Krause and

Guestrin [48] as the problems of optimizing value of information. With expected re-

ward, Krause and Guestrin [48] show that optimizing the value of information is wildly

intractable (NP PP -complete) even for a probability distribution for which efficient in-

ference is possible, including Naive Bayes models and discrete polytrees. Therefore,

they [48] consider chain graphical models. They use a class of local reward functions Rj ,

which are defined on the marginal probability distribution of the variables Xi. This class

has the computational advantage that local rewards can be evaluated using probabilistic

inference techniques. Furthermore, it is decomposable along the chain conditioned on

observations. The total reward will then be the sum of all local rewards. They design

efficient dynamic programming algorithms in chain graphical models based on such local

109

rewards for the above two problems.

The local reward is built using marginal probabilities. However, in many early vi-

sion problems, such as stereo matching, MAP inference is considered. Optimization is

based on energy minimization to maximize joint probability over all variables. We there-

fore consider total reward based on joint probability and hope to establish its relationship

to the energy minimization problem. We next introduce notations and briefly describe

MAP inference in undirected graphical models based on energy minimization.

5.1.2 MAP inference in Undirected Graphical Models

A graph consist of a set of vertices and associated edges, which is the set of un-

ordered pairs of vertices. A graphical model is a collection of random variables indexed

by the vertex of a graph. In our case, Xi corresponds to a vertex in the graph for all

possible i ∈ V . For notational convenience, we index all vertices in the graph by V ,

and let E = {(i, j)|i, j ∈ V } be the set of edges in the graph. We define nonnegative

potential functions ϕ(Xi = xi) for all i ∈ V and ψ(Xi = xi, Xj = xj) for all pairs of

unordered vertices defined by the edge set. The joint probability for a realization xV of

XV is computed as follows:

P (XV = xV) =
W (xV)

Z
(5.5)

where

W (xV) =
∏
i∈V

ϕ(Xi = xV (i))
∏

(i,j)∈E

ψ(Xi = xV (i), Xj = xV (j)), (5.6)

110

where xv(i) is the realization for Xi in xv, and Z is referred to as the partition function,

defined as

Z =
∑
xV

W (xV). (5.7)

Note that xv is collection of all possible realizations for all random variables, and define a

unique realization for each Xi. The MAP inference problem wants to find a xv such that

P (xv) is maximized.

We define ϕ(Xi = xi) = exp(−θi(xi))) andψ(Xi = xi, Xj = xj) = exp(−θij(xi, xj)),

where θi(xi) and θij(xi, xj) are nonnegative values modeling the energy for both types of

potential functions. Then,

W (xV) = exp(−(
∑
i∈V

θi(xV (i)) +
∑

(i,j)∈E

θij(xV (i), xV (j)))), (5.8)

Therefore, the MAP inference problem becomes

x∗V = argmin
xV

(
∑
i∈V

θi(xV (i)) +
∑

(i,j)∈E

θij(xV (i), xV (j))) (5.9)

This problem can be solved exactly for tree graphical models using belief propagation [70].

For more general graphs, exact inference is NP-hard. Various approximation algorithms,

such as loopy belief propagation, graph cut, and tree-reweighted belief propagation, have

been designed. We want to build relationships between these energy functionals and re-

ward functions for optimizing the value of information problem. We consider a class of

reward function such that a ·R(f) = R(a ·f) for any functional f and any scalar a. With-

out being strict on the definition, we refer to this as the scale invariant property of the

reward function. We next describe how the subset selection problem can be reformulated

by this new class of reward function. For conditional plan, we are not able to work out a

closed form formulation currently.

111

5.1.3 Subset Selection

We first consider the subset selection problem. We considerR(P (XV |XA = xA)) =

max(P (XV |XA = xA)). Since the reward function is scale invariant, we therefore

have P (XA = xA)R(P (XV |XA = xA)) = R(P (XA = xA)P (XV |XA = xA)) =

R(P (XV , XA = xA)). In addition, since A ⊆ V , P (XV = xV , XA = xA) = 0 if

XV = xV conflict with XA = xA. We use xx(V,A)
to denote a valid realization of XV with

XA = xA such that xV does not conflict with xA, and Xx(V,A)
to denote the set of all such

valid realizations.

Without providing rigorous proof, Rmax(XV , XA) = maxxV
(P (XV = xV)), and

all choices ofA share the same reward value. In addition,Rmin(XV , XA) ≤ maxxV
(P (XV =

xV)), and when A is the empty set, the equality holds. This means that the choice of A

which maximizes Rmin(XV , XA) is the empty set. These two objective functions are not

valid for optimization. Finally, Rexp(XV , XA) ≥ maxxV
(P (XV = xV)). Futhermore,

Rexp(XV , XA1) > Rexp(XV , XA2), for A1, A2 ⊂ V and A2 ⊂ A1. Denote the maximum

cost for observation as B, which is also referred to as the budget for observation. This,

then, means a larger B can always produces a maximum expected reward which is not

smaller than that of a lower B. This can be achieved by adding additional variables to

the subset which maximize expected reward of a smaller B if the budget permits. We

therefore can use this objective function for optimization.

Based on equation (5.7), we know that the value of the partition function is inde-

112

pendent of the actual realization of XV . We therefore have

P (XA = xA)R(P (XV |XA = xA)) = R(P (xx(V,A))) = R(
W (Xx(V,A))

Z
) ∝ R(W (Xx(V,A)))

(5.10)

Objective function (5.2) for subset selection can thus be formulated as

Rexp(XV , XA) =
∑
xA

P (XA = xA)R(P (XV |XA = xA)) ∝
∑
xA

R(W (Xx(V,A)
)) (5.11)

In addition, different choices of A share the same partition function value Z. Therefore,

A∗ = argmaxARexp(XV , XA) is the same as A∗ = argmaxA
∑

xA
R(W (Xx(V,A)

)). We

can redefine

Rexp(XV , XA) =
∑
xA

R(W (Xx(V,A)
)) (5.12)

Finally, the subset selection problem becomes

A∗ = argmax
A⊂V,β(A)≤B

Rexp(XV , XA) (5.13)

where, β(A) is the cost of observing A and B is the total budget for the observation.

The remaining questions are: 1) does this problem has an efficient solution over a chain

graphical model, and 2) does this problem has an efficient solution over a more general

graphical model? For either question, if the answer is positive, we need to design the

actual algorithm that solves this problem. If not, we need to give a reason, and then

possibly provide some approximation algorithm to the problem.

113

5.2 Future Work for Learning SVMs with Latent Variables Using Struc-

tured Norms

We mention three main directions of future work. Section 5.2.1 describes the future

work for the object detection experiment using the idea of subcategories. Section 5.2.2

describes the possibility of learning the complexity of the structured state space. Finally,

Section 5.2.3 describes the challenges of working on the dual forms of the learning prob-

lem of SVMs with latent variables.

5.2.1 Object Detection with Deformable Part Models Using Subcate-

gories

In the object detection experiment in Section 4.6.2, each component corresponds to

its own set of positive training examples. This requires a partition of the positive training

examples. In Felzenszwalb et al. [32], they cluster the positive examples based on their

aspect ratios and produce left-right flipped subclusters using appearance (HoG) features.

Divvala et al. [24] notices that by only using appearance-based clustering, considerable

improvement in performance is obtained. In addition, they observe that with the new

components, the part deformations can be turned off, yet obtaining results that are almost

on par with the original object detectors using deformable part models. Interestingly, with

only root filters, as they increase the number of components, the mean average precision

on VOC2007 dataset does tend to saturate and stabilizes around 15 components. Futher-

more, different categories behave differently. For instance, the performance of boat and

train stabilizes around 15 components, while the performance of tvmonitor peaks at 25

114

components and then decreases [23]. This is similar to the behavior of the origial detec-

tion system as the component number increases in Section 4.6.2 and suggests that each

catergory has its own optimal number of components. Our group norm approach can be

directly applied in this scenario.

5.2.2 Structured State Space

Chapter 4 described how to use group norm to learn the latent variable state space

in latent SVMs. As described in Section 4.4, we consider that latent variables are inde-

pendent and directly map to all the states into the joint feature vector. However, when

the latent state space is not independent, it can be impractical to map the total number of

possible states each into the joint feature vector. For example, Vedaldi and Zisserman [95]

use structured output regression with latent variables to do object category detection. To

handle partially occluded or truncated objects, they introduce a vector z of binary latent

variables that encode the parts of the object that are visible. To do this, an image is de-

composed into rectangular cells and each variable in z corresponds to one such cell. To

learn the state space of z, we should not treat each variable in z as independent, because

nearby cells are correlated. A state of z consists of the visibility value of each cell in the

image. The number of possible states is 2N , where N is the number of cells in the image.

Consider a typical image of size 512× 512 where the cell size is 16× 16. The number of

cells is 32. The state size of z is therefore 232 = 4, 294, 967, 296. Each state has its own

feature, and the size of the joint feature vector will be larger than 4 billion and the size

will be similar for the model parameter vector. Therefore, in the case of such structured

115

state spaces, certain technique must be designed to make the size of the joint feature vec-

tor tractable, and this makes the parameter vector practical to train. For example, we can

define some meaningful distance metric among states and cluster the states into different

groups. We can treat these groups as new states and apply the old technique to learn them.

A proper method to handle this issue is subject to future research.

5.2.3 The Dual Form of Learning SVMs with Latent Variables Regular-

ized by Group Norms

Problem (4.3) and (4.5) in Chapter 4 are formulated as primal forms. For SVMs

with ℓ2 regularzed norm, it is well-known that we can work on the dual form of the

problem and use kernel methods to train a nonlinear classifier [12]. We therefore consider

the possibility of working on the dual form of our problems, hoping that the kernel method

can help us build a better model. However, we encounter two challenges: 1) our training

objective is not convex and it is not obvious that we can derive a dual problem which

has exactly the same solutions as the primal problem, and 2) we use group norm as the

regularizer and this creates another difficulty to derive dual problem in closed form.

To handle the first challenge, Yang et al. [108] propose an iterative algorithm for

the dual problem of latent SVMs regularized by ℓ2 norm. They notice that if the latent

configuration for all positive examples are fixed (or observed), then the learning objective

is convex. We can derive the kernelized dual form of this new learning objective that can

be solved using standard dual solver in regular SVMs. When the latent configuration for

positive examples are indeed observed, for example, we have the ground-truth bounding

116

boxes of the objects in an object detection task, we can directly use this method to estimate

the parameters. When the latent configuration for positive examples are unknown, they

consider finding a configuration so that the resultant nonlinear decision function from the

dual form separates the two classes as widely as possible. In other words, they look for

a set of latent configurations for positive examples that can maximize the SVM margin.

This is equivalent to minimizing the dual objective w.r.t. the positive examples’ latent

configuration with the lagrangian multipliers in the function fixed. They thus introduce

an iterative algorithm. In each iteration, they first use a co-ordinate ascent algorithm to

minimize the dual objective function w.r.t. to the latent configuration of positive exam-

ples. They then maximize the dual function w.r.t. the lagrangian multipliers using the

standard dual solver. Please refer to Yang et al. [108] for details of their approach.

Problem (4.5) differs from the problem in Yang et al. [108] in that we choose group

norm as the regularizer. We thus mimic their approach and try to solve the dual form of our

problem. In particular, we only consider ℓ1-ℓ2 norm as the regularizer. However, we are

not able to derive a closed form dual objective function for both problem (4.3) and (4.5).

We provide our derivation and analysis for problem (4.5). The issue in problem (4.3) is

similar and we omit the description.

First, assume the latent configuration for all positive examples are fixed and denote

such latent configuration as h∗j for each j ∈ S+, where S+ is the set of positive examples.

Let S− be the set of negative examples. We rewrite problem (4.5) as follows:

min
w

Ω(w) + C
∑
i∈S−

∑
h∈H

ξi,h + C
∑
j∈S+

ξj, (5.14)

s.t. −w · ϕ(xi, h) ≥ 1− ξi,h, ξi,h ≥ 0 ∀i ∈ S−, ∀h ∈ H (5.15)

117

w · ϕ(xj, h∗j) ≥ 1− ξj, ξj ≥ 0 ∀j ∈ S+ (5.16)

For simplicity of derivation, we consider

Ω(w) =
1

2

P∑
p=1

λp ||wp||2 . (5.17)

This objective is convex and the corresponding Lagrangian of the problem is given by

L(w,α,β,γ,µ) =
1

2

P∑
p=1

λp ||wp||2 + C
∑
i∈S−

∑
h∈H

ξi,h + C
∑
j∈S+

ξj−

∑
i∈S−

∑
h∈H

αi,h [−w · ϕ(xi, h) + ξi,h − 1]−

∑
j∈S+

βj
[
w · ϕ(xj, h∗j) + ξj − 1

]
−

∑
i∈S−

∑
h∈H

γi,hξi,h −
∑
j∈S+

µjξj (5.18)

where {αi,h}, {βj}, {γi,h}, and {µj} are Lagrange multipliers. The corresponding set of

KKT conditions are given by

αi,h ≥ 0, (5.19a)

−w · ϕ(xi, h) + ξi,h − 1 ≥ 0, (5.19b)

αi,h [−w · ϕ(xi, h) + ξi,h − 1] = 0, (5.19c)

βj ≥ 0, (5.19d)

w · ϕ(xj, h∗j) + ξj − 1 ≥ 0, (5.19e)

βj
[
w · ϕ(xj, h∗j) + ξj − 1

]
= 0, (5.19f)

γi,h ≥ 0, (5.19g)

ξi,h ≥ 0, (5.19h)

118

γi,hξi,h = 0, (5.19i)

µj ≥ 0, (5.19j)

ξj ≥ 0, (5.19k)

µjξj = 0, (5.19l)

∂L

∂w
= 0, (5.19m)

∂L

∂ξi,h
= 0, (5.19n)

∂L

∂ξj
= 0, (5.19o)

∀i ∈ S−, h ∈ H, ∀j ∈ S+. (5.19p)

Our goal is to express the objective L in terms of Lagrange multipliers, which we

need to optimize out w, {ξi,h}, and {ξj}. We know

∂L

∂ξi,h
= 0⇒ C − αi,h − γi,h = 0 (5.20)

∂L

∂ξj
= 0⇒ C − βj − µj = 0 (5.21)

From equation (5.19m), we have the following formulas:

w = Q(α,β) ∗R(w) (5.22)

where

Q(α,β) =
∑
j∈S+

βjϕ(xj, h
∗
j)−

∑
i∈S−

∑
h∈H

αi,hϕ(xi, h) (5.23)

R(w) =

[
||w1||2
λ1

, · · · , ||w
1||2
λ1

, · · · , ||w
P ||2
λP

, · · · , ||w
P ||2
λP

]T
, (5.24)

and ∗ is element-wise multiplication of two vectors. Let R(w)∗−1 be the element-wise

inverse of R(w). (When ||wp||2 = 0 for a group p, the inverse is not defined, and we let

119

the corresponding entry in R(w)∗−1 be 0.) Then we also have

R(w)∗−1 ∗w = Q(α,β) (5.25)

wT ·
[
R(w)∗−1 ∗w

]
=

P∑
p=1

λp ||wp||2 (5.26)

Based on equations (5.19a), (5.19d), (5.19g), (5.19j), (5.20), (5.21), (5.22), (5.25), and (5.26),

we obtain the the dual Lagrangian for equation (5.18) in the form.

L(w,α,β) =
∑
i∈S−

∑
h∈H

αi,h +
∑
j∈S+

βj −
1

2
[Q(α,β) ∗R(w)]T ·Q(α,β) (5.27)

where 0 ≤ αi,h ≤ C and 0 ≤ βj ≤ C for all i ∈ S−, h ∈ H, and j ∈ S+.

Because of the existence of R(w), it is not clear how to use kernel to express this

dual function. In addition, it is not clear how to express R(w) in terms of α and β. Here

we provide some discussion for R(w).

To express R(w) in terms of α and β, we need to express ||wp||2 for each group p

in terms of α and β. Based on equation (5.22), for a specific group p, we have

(wp
1)

2 =
(Qp

1)
2

λ2p
||wp||22 =

(Qp
1)

2

λ2p

[
(wp

1)
2 + · · ·+ (wp

np
)2
]
,

...

(wp
np
)2 =

(Qp
np
)2

λ2p
||wp||22 =

(Qp
np
)2

λ2p

[
(wp

1)
2 + · · ·+ (wp

np
)2
]
.

where wp
n is the nth entry of w in group p, Qp

n is the corresponding nth entry of Q(α,β)

in group p, and np is the size of group p. If we let

a =
[
(wp

1)
2, · · · , (wp

np
)2
]T
, (5.28)

b =

[
(Qp

1)
2

λ2p
, · · · ,

(Qp
np
)2

λ2p

]T

, (5.29)

120

M = [b, · · · ,b]︸ ︷︷ ︸
np columns

(5.30)

Then, we have a = Ma. Then we know that a, which is the element-wise square of the

parameter vector of group p, is either a zero vector or an eigenvector of M corresponding

to eigenvalue 1 if 1 is indeed an eigenvalue of M . In addition,
√
1T · a = ||wp||2. This

provides a way to build relationship between ||wp||2 and α and β becauseM is expressed

in terms of α and β. Another interesting observation is that 1T · a = ||wp||221T · b =(
1T · a

)
1T · b. This means that either 1T · a = ||wp||22 = 0 or 1T · b = 1. The former

case means that the parameters of the entire group is sparsed out and the latter case means

that (Qp
1)

2

λ2
p

+ · · ·+ (Qp
np)

2

λ2
p

= 1 when the the group is not sparsed.

121

Bibliography

[1] F. Bach. Structured sparsity-inducing norms through submodular functions. In
Advances in Neural Information Processing Systems, 2010.

[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through
convex optimization. Statistical Science, 27:450–468, 2012.

[3] F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal
of Machine Learning Research, 9:1179–1225, 2008.

[4] S. Barotti, L. Lombardi, and P. Lombardi. Multi-module switching and fusion for
robust video surveillance. In IEEE International Conference on Image Analysis
and Processing, 2003.

[5] V. Bayer-Zubek. Learning diagnostic policies from examples by systematic search.
In Conference on Uncertainty in Artificial Intelligence, 2004.

[6] S. Bengio, F. Pereira, Y. Singer, and D. Strelow. Group sparse coding. In Advances
in Neural Information Processing Systems, 2009.

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In
International Conference on Machine Learning, 2009.

[8] M. Bilgic and L. Getoor. Effective label acquisition for collective classification. In
International Conference on Knowledge Discovery and Data mining, 2008.

[9] M. Bilgic and L. Getoor. Reflect and correct: A misclassification prediction ap-
proach to active inference. ACM Transactions on Knowledge Discovery from Data,
3:1–32, 2009.

[10] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & re-
gion segmentation of objects in n-d images. In IEEE International Conference on
Computer Vision, 2001.

[11] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[12] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–167, 1998.

[13] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical
model selection via convex optimization. Annals of Statistics, 40:1935–1967, 2012.

[14] D. Chen, D. Batra, W. T. Freeman, and M. K. Johnson. Group norm for learning
latent structural svms. In Advances in Neural Information Processing Systems
Workshop on Optimization for Machine Learning, 2011.

122

[15] D. Chen, A Bharusha, and H. Wactlar. People identification through ambient cam-
era networks. In International Conference on Data Engineering Worshop on Mul-
timedia Ambient Intelligence, Media and Sensing, 2007.

[16] D. Chen, M. Bilgic, L. Getoor, and D. Jacobs. Dynamic processing allocation in
video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33:2174–
2187, 2011.

[17] D. Chen, M. Bilgic, L. Getoor, D. Jacobs, L. Mihalkova, and T. Yeh. Active in-
ference for retrieval in camera networks. In IEEE Workshop on Person Oriented
Vision, 2011.

[18] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Review, 43:129–159, 2001.

[19] S. S. Cheung and C. Kamath. Robust techniques for background subtraction in
urban traffic video. In Visual Communications and Image Processing, 2004.

[20] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society, Series B,
39:1–38, 1977.

[22] G. Denina, B. Bhanu, H. Nguyen, C. Ding, A. Kamal, C. Ravishankar, A. Roy-
Chowdhury, A. Ivers, and B. Varda. Videoweb dataset for multi-camera activities
and non-verbal communication. In B. Bhanu, C. Ravishankar, A. Roy-Chowdhury,
H. Aghajan, and D. Terzopoulos, editors, Distributed Video Sensor Networks.
Springer, 2010.

[23] S. K. Divvala. Context and Subcategories for Sliding Window Object Recognition.
PhD thesis, Carnegie Mellon University, 2012.

[24] S. K. Divvala, A. A. Efros, and M. Hebert. How important are ‘deformable parts’
in the deformable parts model? In Parts and Attributes Workshop, European Con-
ference on Computer Vision, 2012.

[25] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52:1289–1306, 2006.

[26] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The
Annals of Statistics, 32:407–451, 2004.

[27] A. M. Elgammal, D. Harwood, and L. S. Davis. Non-parametric model for back-
ground subtraction. In European Conference on Computer Vision, 2000.

123

[28] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
[Online: accessed 24-February-2013].

[29] R. Farrell, D. Doermann, and L. Davis. Learning higher-order transition models
in medium-scale camera networks. In International Conference on Computer Vi-
sion workshop on Omnidirectional Vision, Camera Networks and Non-classical
Cameras, 2007.

[30] P. F. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with
deformable part models. In IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[31] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively trained
deformable part models, release 4. http://www.cs.brown.edu/∼pff/latent-release4/.
[Online: accessed 24-February-2013].

[32] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object de-
tection with discriminatively trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32:1627–1645, 2010.

[33] J. Fiscus, J. Garofolo, T. Rose, and M. Michel. Avss multiple camera person track-
ing challenge evaluation overview. In IEEE International Conference on Advanced
Video and Signal Based Surveillance, 2009.

[34] T. Fletcher. Switching autoregressive hidden markov model. Technical report,
Department of Computer Science, University College London, 2009.

[35] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester. release4-notes.pdf.
http://www.cs.brown.edu/∼pff/latent-release4/. [Online: accessed 24-February-
2013].

[36] D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an ensemble
of localized features. In European Conference on Computer Vision, 2008.

[37] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The
weka data mining software: An update. SIGKDD Explorations, 11, 2009.

[38] R. A. Howard. Information value theory. IEEE Transactions on Systems Science
and Cybernetics, 2:22 –26, 1966.

[39] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain. Face detection in color images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:696–706,
2002.

[40] C. Huang, H. Ai, Y. Li, and S. Lao. Vector boosting for rotation invariant multi-
view face detection. In IEEE International Conference on Computer Vision, 2005.

124

[41] R. C. Jain and H. H. Nagel. On the analysis of accumulative difference pictures
from image sequences of real world scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1:206–213, 1979.

[42] O. Javed, K. Shafique, and M. Shah. Appearance modeling for tracking in multi-
ple non-overlapping cameras. In IEEE Computer Vision and Pattern Recognition,
2005.

[43] Y. Jia, M. Salzmann, and T. Darrell. Factorized latent spaces with structured spar-
sity. In Advances in Neural Information Processing Systems, 2010.

[44] M. J. Jones and J. M. Rehg. Statistical color models with application to skin detec-
tion. International Journal of Computer Vision, 46:81–96, 2002.

[45] J. Keller. Dcrp review: Canon powershot s5 is.
http://www.dcresource.com/reviews/canon/powershot s5-review, 2011. [On-
line; accessed 24-February-2013].

[46] K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time foreground-
background segmentation using codebook model. Real-Time Imaging, 11:172–
185, 2005.

[47] T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposi-
tion for parsing with non-projective head automata. In Conference on Empirical
Methods in Natural Language Processing, 2010.

[48] A. Krause and C. Guestrin. Optimal value of information in graphical models.
Journal of Artificial Intelligence Research, 35:557–591, 2009.

[49] R. Krishna, K. McCusker, and N. E. O’Connor. Optimising resource allocation
for background modeling using algorithm switching. In ACM/IEEE International
Conference on Distributed Smart Cameras, 2008.

[50] P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models.
In Advances in Neural Information Processing Systems, 2010.

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86:2278–2324, 1998.

[52] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object
detection. In IEEE International Conference on Image Processing, 2002.

[53] Z. Lin and L. Davis. Learning pairwise dissimilarity profiles for appearance recog-
nition in visual surveillance. In International Symposium on Visual Computing,
2008.

[54] H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate descent procedures
for the multi-task lasso, with applications to neural semantic basis discovery. In
International Conference on Machine Learning, 2009.

125

[55] B. P. L. Lo and S. A. Velastin. Automatic congestion detection system for under-
ground platforms. In IEEE International Symposium on Intelligent Multimedia,
Video and Speech Processing, 2001.

[56] D. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60:91–110, 2004.

[57] C. C. Loy, T. Xiang, and S. Gong. Modelling activity global temporal depen-
dencies using time delayed probabilistic graphical model. In IEEE International
Conference on Computer Vision, 2009.

[58] C. C. Loy, T. Xiang, and S. Gong. Multi-camera activity correlation analysis. In
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[59] Q. Lu and L. Getoor. Link based classification. In International Conference on
Machine Learning, 2003.

[60] S. Lyall. London bombers visited earlier, apparently on practice run.
http://www.nytimes.com/2005/09/21/international/europe/21london.html, 2005.
[Online; accessed 13-February-2013].

[61] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse
coding. In International Conference on Machine Learning, 2009.

[62] D. Makris, T. Ellis, and J. Black. Bridging the gaps between cameras. In IEEE
Conference on Computer Vision and Pattern Recognition, 2004.

[63] C. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[64] T. Mita, T. Kaneko, and O. Hori. Joint haar-like features for face detection. In
IEEE International Conference on Computer Vision, 2005.

[65] K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. PhD thesis, UC Berkeley, Computer Science Division, 2002.

[66] J. Neville and D. Jensen. Iterative classification in relational data. In AAAI Work-
shop on Learning Statististical Models from Relational Data, 2000.

[67] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing,
20:231–252, 2010.

[68] N. Olivarez-Giles. Flickr reaches 6 billion photos uploaded.
http://latimesblogs.latimes.com/technology/2011/08/flickr-reaches-6-billion-
photos-uploaded.html, 2011. [Online; accessed 13-February-2013].

[69] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an ap-
plication to face detection. In IEEE Conference on Computer Vision and Pattern
Recognition, 1997.

126

[70] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[71] M. Piccardi. Background subtraction techniques: a review. In IEEE International
Conference on Systems, Man and Cybernetics, 2004.

[72] PRWeb. Brickstream launches video analytics managed services program.
http://www.prweb.com/releases/2008/05/prweb955134.htm, 2008. [Online; ac-
cessed 24-February-2013].

[73] A. Quattoni, X. Carreras, M. Collins, and T. Darrell. An efficient projection for
ℓ1-ℓ∞ regularization. In International Conference on Machine Learning, 2009.

[74] L. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77:257–286, 1989.

[75] Y. Radovilsky, G. Shattah, and S.E. Shimony. Efficient deterministic approxima-
tion algorithms for non-myopic value of information in graphical models. In IEEE
International Conference on Systems, Man and Cybernetics, 2006.

[76] M. Rattigan, M. Maier, and D. Jensen. Exploiting network structure for active
inference in collective classification. In IEEE International Conference on Data
Mining Workshop on Mining Graphs and Complex Structures, 2007.

[77] J. Rittscher, J. Kato, S. Joga, and A. Blake. A probabilistic background model for
tracking. In European Conference on Computer Vision, 2000.

[78] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: interactive foreground extrac-
tion using iterated graph cuts. ACM SIGGRAPH, 23:309–314, 2004.

[79] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:23–38, 1998.

[80] R. Ryan and Agencies. July 7 bombers staged dummy run.
http://www.guardian.co.uk/uk/2005/sep/20/july7.uksecurity, 2005. [Online:
accessed 24-February-2013].

[81] M. Salzmann, C. Ek, R. Urtasun, and T. Darrell. Factorized orthogonal latent
spaces. In International Conference on Artificial Intelligence and Statistics, 2010.

[82] H. Schneiderman and T. Kanade. Probabilistic modeling of local appearance and
spatial relationships for object recognition. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 1998.

[83] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collec-
tive classification in network data. AI Magazine, 29:93–106, 2008.

[84] B. Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

127

[85] P. Sinha. Object recognition via image invariants: A case study. Investigative
Ophthalmology and Visual Science, 35:1735–1740, 1994.

[86] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object match-
ing in videos. In IEEE International Conference on Computer Vision, 2003.

[87] B. Song and A. Roy-Chowdhury. Stochastic adaptive tracking in a camera network.
In IEEE International Conference on Computer Vision, 2007.

[88] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time
tracking. IEEE Conference on Computer Vision and Pattern Recognition, 1999.

[89] C. Sutton and A. McCallum. An introduction to conditional random fields for
relational learning. In L. Getoor and B. Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press, 2007.

[90] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, 58:267–288, 1996.

[91] K. Tieu, G. Dalley, and W. Grimson. Inference of non-overlapping camera network
topology by measuring statistical dependence. In IEEE International Conference
on Computer Vision, 2005.

[92] B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection.
Technometrics, 2005.

[93] P. D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid ge-
netic decision tree induction algorithm. Journal of Artificial Intelligence Research,
2:369–409, 1995.

[94] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for ob-
ject and scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32:1582–1596, 2010.

[95] A. Vedaldi and A. Zisserman. Structured output regression for detection with par-
tial occulsion. In Advances in Neural Information Processing Systems, 2009.

[96] S. Vijayanarasimhan and K. Grauman. Whats it going to cost you?: Predicting
effort vs. informativeness for multi-label image annotations. In IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[97] S. Vijayanarasimhan, P. Jain, and K. Grauman. Far-sighted active learning on a
budget for image and video recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2010.

[98] S. Vijayanarasimhan and A. Kapoor. Visual recognition and detection under
bounded computational resources. In IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

128

[99] P. Viola and M. Jones. Robust real-time object detection. International Journal of
Computer Vision, 57:137–154, 2002.

[100] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen. Interactive video
cutout. ACM SIGGRAPH, 24:585–594, 2005.

[101] S. B. Wang, A. Quattoni, L.-P. Morency, and D. Demirdjian. Hidden conditional
random fields for gesture recognition. In IEEE conference on Computer Vision and
Pattern Recognition, 2006.

[102] X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu. Shape and appearance
context modeling. In IEEE International Conference on Computer Vision, 2007.

[103] D. Weiss and B. Taskar. Structured prediction cascades. In International Confer-
ence on Artificial Intelligence and Statistics, 2010.

[104] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking
of the human body. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19:780–785, 1997.

[105] R. Xiao, L. Zhu, and H. Zhang. Boosting chain learning for object detection. In
IEEE International Conference on Computer Vision, 2003.

[106] G. Yang and T. S. Huang. Human face detection in a complex background. Pattern
Recognition, 27:53–63, 1994.

[107] M. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces in images: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:34–58, 2002.

[108] W. Yang, Y. Wang, A. Vahdat, and G. Mori. Kernel latent svm for visual recogni-
tion. In Advances in Neural Information Processing Systems, 2012.

[109] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing
Survey, 38:13, 2006.

[110] C. J. Yu and T. Joachims. Learning structural svms with latent variables. In Inter-
national Conference on Machine Learning, 2009.

[111] M. Yuan, M. Yuan, Y. Lin, and Y. Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society, Series B, 68:49–
67, 2006.

[112] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Compu-
tation, 15:915–936, 2003.

[113] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtrac-
tion. In International Conference on Pattern Recognition, 2004.

[114] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal Of The Royal Statistical Society Series B, 67:301–320, 2005.

129

