
ABSTRACT

Title of Dissertation: PROVIDING QOS WITH REDUCED ENERGY

CONSUMPTION VIA REAL-TIME VOLTAGE

SCALING ON EMBEDDED SYSTEMS

Shaoxiong Hua, Doctor of Philosophy, 2004

Dissertation directed by: Professor Gang Qu
Department of Electrical and Computer Engineering

Low energy consumption has emerged as one of the most important design

objectives for many modern embedded systems, particularly the battery-operated

PDAs. For some soft real-time applications such as multimedia applications, oc-

casional deadline misses can be tolerated. How to leverage this feature to save

more energy while still meeting the user required quality of service (QoS) is the

research topic this thesis focuses on. We have proposed a new probabilistic design

methodology, a set of energy reduction techniques for single and multiple processor

systems by using dynamic voltage scaling (DVS), the practical solutions to voltage

set-up problem for multiple voltage DVS system, and a new QoS metric.

Most present design space exploration techniques, which are based on applica-

tion’s worst case execution time, often lead to over-designing systems. We have

proposed the probabilistic design methodology for soft real-time embedded sys-

tems by using detailed execution time information in order to reduce the system

resources while delivering the user required QoS probabilistically.

One important phase in the probabilistic design methodology is the offline/online

resource management. As an example, we have proposed a set of energy reduction

techniques by employing DVS techniques to exploit the slacks arising from the tol-

erance to deadline misses for single and multiple processor systems while meeting

the user required completion ratio statistically.

Multiple-voltage DVS system is predicted as the future low-power system by

International Technology Roadmap for Semiconductors (ITRS). In order to find

the best way to employ DVS, we have formulated the voltage set-up problem and

provided its practical solutions that seek the most energy efficient voltage setting

for the design of multiple-voltage DVS systems. We have also presented a case

study in designing energy-efficient dual voltage soft real-time system with (m, k)-

firm deadline guarantee.

Although completion ratio is widely used as a QoS metric, it can only be applied

to the applications with independent tasks. We have proposed a new QoS metric

that differentiates firm and soft deadlines and considers the task dependency as

well. Based on this new metric, we have developed a set of online scheduling

algorithms that enhance quality of presentation (QoP) significantly, particularly

for overloaded systems.

PROVIDING QOS WITH REDUCED ENERGY

CONSUMPTION VIA REAL-TIME VOLTAGE

SCALING ON EMBEDDED SYSTEMS

by

Shaoxiong Hua

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Gang Qu, Chair
Professor Shuvra S. Bhattacharyya
Professor Ralph Etienne-Cummings
Professor K. J. Ray Liu
Professor Chau-Wen Tseng

c©Copyright by

Shaoxiong Hua

2004

DEDICATION

To my wife and our parents

ii

ACKNOWLEDGEMENTS

First of all, I would like to sincerely thank my advisor, Professor Gang Qu,

for his academic guidance, encouragement and patience over the past three years.

When I switched my major to computer engineering, it is him who gave me a

lot of advice and helped me find a good research topic. I wish to thank him for

dedicating so much time to help me learn how to conduct high quality research

and how to present our results. This dissertation would not be possible without

his encouragement and suggestions.

I would also like to thank Professor Shuvra S. Bhattacharyya for his kind help

and suggestions during my Ph.D. studies. I also wish to thank the other members

of my dissertation committee, Professor Ralph Etienne-Cummings, Professor K.

J. Ray Liu, and Professor Chau-Wen Tseng, for kindly serving on the committee

with invaluable comments.

Next, I would like to thank Professor Bingen Yang of University of Southern

California and Professor John S. Baras for their kind support and giving me the

chance to USA and University of Maryland to pursue further education. I would

like to thank Mr. Lane Smith and Mr. Fred Fischer, both in Agere Systems

Inc., for kindly providing me the summer intern position in the last three years.

Furthermore, I would like to thank Professor Manoj Franklin and Professor William

Hawkins for their kind help during my Ph.D. studies.

I would like to thank my officemates and colleagues in the Embedded Systems

Research Laboratory. I enjoyed the collaboration with other fellow graduate and

iii

undergraduate students, in particular Vida Kianzad, Guang Han, Pushkin R. Pari,

Yuan Lin and Melissa Barker, to name a few.

I owe a great deal to my parents and parents-in-law for their love, encourage-

ment and unconditional support throughout the course of my Ph.D. studies.

Finally and most importantly, I would like to especially thank my lovely wife,

Huixian, for her endless love, patience, encouragement and support in these many

years. Without her support, the dissertation would not have been completed.

iv

TABLE OF CONTENTS

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Soft Real-Time Embedded Systems 2
1.2 Dynamic Voltage Scaling (DVS) . 4
1.3 Quality of Service (QoS) . 12
1.4 Contribution of this Dissertation 15
1.5 Organization of this Dissertation 17

2 Probabilistic Design Methodology 20
2.1 Introduction . 20
2.2 Related Work . 22
2.3 Probabilistic Design Methodology Overview 24
2.4 Estimating the Probabilistic Timing Performance 27
2.5 Managing System Resource under Probabilistic Performance Con-

straint . 30
2.6 Conclusions . 31

3 Energy Reduction Techniques for Single and Multiple Processor
Systems 33
3.1 Introduction . 33
3.2 Problem Formulation . 39
3.3 Energy-Driven Voltage Scaling Techniques

with Completion Ratio Constraint 41
3.3.1 A Näıve Best-Effort Approach 42
3.3.2 BEEM: On-Line Best-Effort Energy Minimization 43
3.3.3 QGEM: Completion Ratio Guaranteed Energy Minimization 46

3.4 Simulation Results . 50
3.5 Conclusions . 55

v

4 Voltage Set-up Problem on Embedded Systems with Multiple
Voltages 57
4.1 Introduction . 57
4.2 The Voltage Set-up Problem . 61

4.2.1 Application Model . 61
4.2.2 Multiple-Voltage DVS System Model 62

4.3 Solving the Voltage Set-up Problem 64
4.3.1 Case I: Dual Voltages Three Applications (m=2 and n=3) . 67
4.3.2 Case II: Dual Voltages Multiple Applications (m=2 and n>3) 68
4.3.3 Case III: Multiple Voltages Multiple Applications (m>2) . . 69
4.3.4 Finding the Best Voltage Set-up 72

4.4 Simulation Results . 74
4.5 Conclusions . 77

5 Energy-Efficient Dual-Voltage System with (m,k)-Firm Guarantee
– A Case Study 80
5.1 Introduction . 81

5.1.1 Motivation . 81
5.1.2 Problem and Contributions 82
5.1.3 A Motivational Example . 83
5.1.4 Previous Work . 85
5.1.5 Chapter Organization . 86

5.2 Optimal On-Line Voltage Scheduling Policy 86
5.3 Determining the Most Energy-Efficient Dual-Voltage System with

(m,k)-Firm Guarantee . 90
5.3.1 Computing Ē for Case (k − 1, k) 91
5.3.2 Computing Ē for Case (m, k) 93
5.3.3 Determining the Optimal Dual-Voltage System 96

5.4 Simulation Results . 98
5.5 Conclusions . 102

6 QoS-Driven Scheduling for Firm/ Soft Real-Time Applications 104
6.1 Introduction . 104
6.2 A New QoS Metric . 107

6.2.1 QoS Model . 107
6.2.2 Simulation of MPEG Streams 109

6.3 Online Schedulers . 114
6.3.1 S2F: Soft to Firm Deadline Conversion 115
6.3.2 EDF*, FCFS* and LETF* 115
6.3.3 IFF: Important Task (Frame) First 117

6.4 Experimental Results . 118
6.5 Conclusions . 122

vi

7 Conclusions and Future Work 123
7.1 Conclusions . 123

7.1.1 Probabilistic Design Methodology 124
7.1.2 Voltage Set-up Problem . 125
7.1.3 A New QoS Metric . 125

7.2 Future Work . 126

Bibliography 129

vii

LIST OF TABLES

3.1 Characteristics of the tasks and the processor. (a): each entry

shows the best/worst case execution time at V1 and the probability

this execution time occurs at run time. (b): power is normalized

to the power at V1 and delay column gives the normalized processing

time to execute the same task at different voltages. 36

3.2 Expected completion ratio and energy consumption for the three

algorithms. t@V1, t@V2, and t@V3 are the average time that the

processor operates at three voltages for each iteration; E is the av-

erage energy consumption to complete one iteration; and the last

column, obtained by E ·60%/Q, corresponds to the case of shutting

the system down once 6,000 iterations are completed. 38

3.3 Average energy consumption per iteration by näıve, BEEM1, BEEM2

and QGEM to achieve Q0 = 0.900 with deadline constraints D. (n:

number of vertices in the benchmark task graph; m: number of pro-

cessors; Q: the actual completion ratio achieved by QGEM without

forcing the processors stop at Q0; energy is in the unit of the dissi-

pation in one CPU unit at the reference voltage 3.3V.) 53

4.1 The average energy consumption per iteration of dual-voltage sys-

tem with different voltage set-ups. 60

4.2 Information on the two ad hoc applications. 75

viii

4.3 The optimal voltage set-ups and their corresponding average energy

consumption per execution. (In the parenthesis of energy columns,

”-” is the energy saving over the fixed voltage system, ”+” is the

”wasted” energy comparing to the ideal voltage system.) 76

5.1 Characteristics of the iterations and the processor. (a): each entry

shows execution time at V1 and the probability this execution time

occurs at run time. (b): power is normalized to the power at V1

and delay column gives the normalized processing time to execute

one iteration at different voltages. 83

5.2 The average energy consumption per iteration for systems with dif-

ferent voltage set-ups. 84

5.3 Impact of different m to the selection of Vlo and Ē. 101

5.4 Impact of different k to the selection of Vlo and Ē. 102

5.5 Information on three periodic streams. 102

ix

LIST OF FIGURES

1.1 The overview of my Ph.D. research. 15

2.1 Design flow in the probabilistic design methodology. 26

3.1 QGEM’s offline part to determine the minimum commitment to

provide Q0. 47

3.2 QGEM’s offline part to allocate execution time for each task. 49

3.3 On-line scheduling policy for algorithm QGEM. 50

3.4 Different completion ratio requirement’s impact to the average en-

ergy consumption per iteration on benchmark TGFF8 with 3 pro-

cessors. 54

3.5 Different deadline requirement’s impact to the average energy con-

sumption per iteration on benchmark TGFF8 with 3 processors. . . 54

3.6 The average energy consumption per iteration on benchmark TGFF8

with different number of processors and different deadlines(13525,

7275, 5925 and 4725). 56

4.1 Summary of voltage set-up solutions for m-voltage system with n

applications. (V 0
i is the ideal voltage for i-th application, V 0

1 ≤

V 0
2 ≤ · · · ≤ V 0

n ; Vj is the j-th supply voltage and V1 < V2 < · · · < Vm.) 66

4.2 Voltage set-up algorithm for the case of m=2, n ≥ 3. 70

4.3 General voltage set-up problem as a nonlinear programming prob-

lem for the case of m > 2. 71

4.4 Flow to find the best voltage set-up. 73

x

4.5 MPEG video encoder execution time distributions and correspond-

ing deadlines in 104 cycles (redrawn from [59]). The lower left table

is related to motion estimation and compensation; the lower right

table is related to vle (variable length encoding). 75

4.6 Dual-voltage system’s average energy consumption for the two ad

hoc applications with different voltage set-ups. 78

4.7 Dual-voltage system’s average energy consumption for the MPEG

encoder with different voltage set-ups. 78

5.1 The on-line greedy scheduler for (m,k)-firm guarantee. 89

5.2 On-Line Greedy vs. p-random on-line schedulers. 99

5.3 Accuracy of the proposed numerical method in computing the av-

erage energy consumption per iteration Ē. 100

5.4 Simulated Ē for three applications with different (m,k)-firm require-

ments. 103

6.1 A typical GOP pattern (I-to-I=12, I-to-P=3). 110

6.2 Comparison of some widely used online schedulers on movie ”Goldfin-

ger” in the frame rate of 30 fps in the case of, from left to right,

non-preemptive and preemptive. 113

6.3 Comparison of QoP under different online schedulers on movie ”Goldfin-

ger” in the case of non-preemptive with different frame rates (15,

30, 45, 60 fps). 119

6.4 Comparison of different online scheduling policies on movie ”Goldfin-

ger” in the frame rate of 30fps in the case of, from left to right,

non-preemptive and preemptive. 120

6.5 Comparison of different online scheduling policies on movie ”Wizard

of OZ” in the frame rate of 30fps in the case of, from left to right,

non-preemptive and preemptive. 120

6.6 Comparison of different online scheduling policies on movie ”Silence

of Lambs” in the frame rate of 45fps in the case of, from left to

right, non-preemptive and preemptive. 121

xi

6.7 Comparison different online scheduling policies on movie ”Star Wars”

in the frame rate of 45fps in the case of, from left to right, non-

preemptive and preemptive. 121

xii

Chapter 1

Introduction

With the development of Very Large Scale Integration (VLSI) techniques, the

total number of devices on a chip has doubled every 24 months, known widely

as ”Moore’s Law”. It is predicted that before 2010, the chip will have 1 billion

transistors [37]! This results in the fact that embedded systems have been mov-

ing from board-level systems to System-on-Chips (SoCs) and it provides us the

opportunities to find more embedded system applications.

On the other hand, the importance of time-to-market becomes more and more

significant. The Semico Research Corporation reports that for Black & White TV,

it took almost 18 years to reach the shipment of one million units while for DVD

player it took only less than one year. The profit window is open for a short period

of time and only to the early technology providers [38]. Therefore the design of

embedded systems must move from craft to discipline to increase the productivity

and decrease the time-to-market.

With the decrease in the transistor feature size and the increase in the number

of transistors on a chip, the power dissipation has been increased dramatically. For

example, when the transistor feature size is less than 100nm, the power dissipation

1

will be more than 300Watts [1]. High power dissipation results in many hot spots

in the thermal map of the working chip that will limit the allowed performance.

More power consumption means more heat dissipation and we have to use more

and bigger heatsinks and fans, bigger and more expensive motherboards and cases.

And more power also means the lower reliability and shorter battery life time for

the battery-operated systems. Because of the importance of power, low power has

emerged as one of the most important design objectives for the embedded system

designers.

In order to reduce the design cost (e.g., decrease the time-to-market and re-

duce the fabrication cost) and system cost (e.g., power), one needs to increase

the level of design abstraction and develops system-level design methodology. In

this dissertation, I will mainly focus on the soft real-time embedded system design.

Specifically, we have developed energy reduction techniques by employing dynamic

voltage scaling (DVS) while meeting user required quality of service (QoS) statis-

tically. In this chapter, I will give the introduction of soft real-time embedded

systems, dynamic voltage scaling and quality of service.

1.1 Soft Real-Time Embedded Systems

Embedded systems are widely used in many applications such as encoding and

decoding of audio and video, digital control, the monitoring of large rotating

machinery, radar signal processing and tracking and so on. Different from the

general-purpose systems such as desktop systems, the embedded systems are those

that use single or multiple microprocessors to implement the dedicated applications

[20]. This means that every application is the subject of a special development that

must directly produce the product satisfying user requirements, costs and dead-

2

line. Therefore it is possible for the designers to get the detailed information of

the application such as sampling data rate, data distribution etc. that can be used

during the design stage.

Most embedded systems are real-time systems, which are required to react to

stimuli from the environment and complete their work and deliver their services

within time intervals dictated by the environment [75]. In real-time systems, time-

liness is the key characteristic. In such systems, we often use the deadline to be one

of the important time constraints of the task (workload). There are three types of

deadline:

• Hard deadline: A task has a hard deadline if it must be completed before

the deadline otherwise the system will be in fault and deadline missing may

cause catastrophic consequences.

• Firm deadline: A task has a firm deadline if it must be completed before

the deadline otherwise although the system will not be in fault, it will not

get any reward for serving the task.

• Soft deadline: A task has a soft deadline if the system can still benefit

even if the deadline is missed, subjected to a deadline miss penalty.

In hard real-time systems all deadlines of the tasks are hard while in soft real-

time systems portion of deadlines are soft. In this dissertation, we mainly focus

on the design of soft real-time embedded systems that conduct the repetitive data

processing that can be found in many DSP applications. Such systems require

moderately high performance and can tolerate occasional deadline misses. The

timing requirements of such systems are often specified in probabilistic terms [75].

3

And the actual execution time of the task is often varied and deviates from its

worst case execution time (WCET), sometimes by a large amount.

1.2 Dynamic Voltage Scaling (DVS)

As low power/energy consumption has emerged as one of the most important

design objectives, reducing the supply voltage (voltage scaling) becomes one of the

most effective techniques to decrease the power/energy consumption [123].

There are three major sources of power consumption, i.e., switching compo-

nent, direct-path short circuit current and leakage current [23]. Although leakage

power dissipation is gaining more and more attention recently, switch component

(dynamic) power still dominates in most embedded systems. Dynamic power in a

CMOS circuit is proportional to αCLV 2
ddfclock, where αCL is the effective switched

capacitance, Vdd is the supply voltage, and fclock is the clock frequency. As the

power and energy are the quadratic functions of supply voltage, reducing the sup-

ply voltage can result in substantial power and energy saving and in general more

effective than the technique that shuts down a processor when it is idle. Roughly

speaking, system’s power dissipation is halved if we reduce Vdd by 30% without

changing any other system parameters. The switching of voltage can be done

rapidly with negligible overhead by using efficient DC-DC converters [91]. How-

ever, this energy saving comes at the cost of reduced throughput, slower system

clock frequency, or higher gate delay. The gate delay is proportional to Vdd

(Vdd−Vt)β ,

where Vt is the threshold voltage and β ∈ (1.0, 2.0] is a technology dependent con-

stant. Dynamic voltage scaling, which varies the system’s operating voltage and

clock frequency according to the workload at run-time, can achieve the highest

possible energy efficiency for the time-varying computational loads while provid-

4

ing desired performance [18]. It has been demonstrated as one of the most effective

low power system design techniques.

In 1996, an actual hardware implementation using voltage scaling was described

in [21]. The implementation applies voltage scaling to MPEG video decoding on a

DSP. The clock frequency and voltage are adjusted to match the varying complexity

of video frames. In [22], a dedicated cryptography processor was presented that

uses voltage scaling to reduce the power and energy consumption. The research

group in Berkeley Wireless Research Center has developed a dynamic voltage scaled

microprocessor system in which the supply voltage and clock frequency can be

dynamically varied so that the system can deliver high throughput when required

while significantly extending battery life during the low speed periods [17, 18].

The system can dynamically vary the supply voltage from 1.2V to 3.8V in less

than 70µs. In [94], they showed DVS can be efficiently integrated into existing

operating systems without extensive modification. Pouwelse et al. [96] described a

low-power microprocessor system that allows power-aware applications to quickly

adjust the performance level of the processor whenever the workload changes.

Hong et al. [45] developed a design methodology for the low power core-based

real-time system-on-chip based on dynamically variable voltage hardware. Many

modern microprocessors, such as Transmeta’s Crusoe, AMD’s K-6, Intel’s XScale

and Pentium III and IV, can support dynamic voltage scaling.

Early research on voltage scaling was on systems that have multiple simultane-

ous available voltages [24, 58, 72, 106]. For example, Raje and Sarrafzadeh [106]

presented a supply voltage driven technique to minimize power consumption at the

behavioral level. They used data flow graph to define systems and exploited the

parallelism evident among all of operations. Some operations can be slowed down

5

by applying a smaller supply voltage that reduces the system energy consumption

and the system throughput still meets the given time constraint. Such variable

voltage systems can be more energy-efficient because of the flexibility of choosing

the operating voltage and clock frequency [100]. In [65, 66], the authors propose the

energy efficient synthesis techniques for datapath circuits using dynamic frequency

clocking and multiple voltages.

There are a lot of research on task-level scheduling strategies for adjusting

CPU speed and supply voltage so as to reduce power and energy consumption of

the systems. A scheduling method to reduce energy consumption by dynamically

changing the clock speed along with the supply voltage of the processor was first

proposed in [125] and was later extended in [39]. The voltage scheduling algorithms

proposed in [39, 125] have been improved with PACE (Processor Acceleration to

Conserve Energy), an approach to reducing the energy consumption of dynamic

voltage scheduling (DVS) algorithms without affecting their performance [77]. The

foundation for the simulation and analysis of DVS algorithms can be found in [93].

The above works [39, 77, 93, 125] are in the context of non-real-time workstation

environment. Furthermore, Qu et al. [103] combined the variable voltage scaling

with variable size packet fragmentation to minimize the power consumption in

system-level pipelines under latency constraints.

Recently, many research groups have investigated the DVS problem for hard

real-time systems [41, 46, 47, 64, 117, 128]. Yao, Demers and Shenker [128] have

provided the minimum-energy preemptive static scheduling algorithm for a set of

independent tasks with arbitrary arrival times and deadlines. They assumed that

tasks are scheduled according to the earliest-deadline-first (EDF) scheduling policy

[73]. In the same paper [128], the authors also proposed two on-line scheduling

6

heuristics, called Average Rate Heuristic (AVR) and Optimal Available Heuristic,

with the same model as in the static version. They showed that for the power

function P (s) = sp(p ≥ 2), the AVR has a constant competitive ratio rp satisfying

pp ≤ rp ≤ 2p−1pp. Hong etc. developed the non-preemptive offline variable voltage

scheduling heuristic with the assumption of zero delay in changing voltage levels

[45]. In [47], they focused on the preemptive variable voltage scheduling heuristic

while taking into account the inherent limitation on the rates at which voltage

and clock frequency can be changed by the power supply controllers and clock

generators. The same group also describes an on-line scheduling algorithm for hard

real-time tasks on variable voltage processor, where it is assumed that the release

times of tasks are not known a priori [46]. Ishihara and Yasuura [56] presented

some significant theorems for voltage scheduling and formulate the static voltage

scheduling problem as an integer linear programming (ILP) problem. Recently,

Quan and Hu [105] studied the problem of determining the optimal voltage schedule

for a real-time system with fixed-priority jobs implemented on a variable voltage

processor based on the assumption that the timing parameters of each job is known

offline. Manzak and Chakrabarti [85] proposed variable voltage task scheduling

algorithms (periodic as well as aperiodic) that minimize energy. Pillai and Shin

[95] presented a class of algorithms called real-time DVS (RT-DVS) that modify

the OS’s real-time scheduler and task management service to provide significant

energy savings while maintaining real-time deadline guarantees. The algorithms

have been verified through simulations and a working prototype implementation.

Reducing power and energy consumption of processors is fundamentally equiv-

alent to exploiting the idle intervals or slacks of processors [118]. Offline voltage

scheduling algorithms [45, 56] use the worst-case execution time (WCET), which

7

can be obtained through static analysis [71], profiling, or direct measurement, as

one of the timing parameters for each of the tasks. However, the execution time of

each task frequently deviates from its WCET, sometimes by a large amount. In or-

der to exploit the slacks arising from the run-time variation of each task execution,

the on-line voltage scheduling algorithms need to be applied with the offline algo-

rithms in order to achieve more energy saving [41, 46, 64, 67, 117, 118]. Krishna

and Lee [64] presented cyclic scheduling algorithm and EDF scheduling algorithm

that is voltage-clock scheduling for the EDF (Earliest Deadline First) algorithm.

Both algorithms consist an offline phase, in which voltage settings are picked to

reduce energy consumption assuming that tasks run to their WCETs, and an on-

line phase that adjusts the voltage setting on-the-fly to reclaim any slacks released

by the tasks which actual execution time are less than their WCETs, thus mak-

ing for a further round of energy saving. Shin and Choi [117] presented a power

efficient version of a widely used fixed priority scheduling method. The method

yields a power reduction by exploiting the slack times inherent in the system and

those arising form variations of execution time task instances. The same authors

also showed that combined offline and on-line components bring about more power

saving [118]. In [41] Gruian also addressed scheduling for reduced energy of hard

real-time tasks with fixed priorities assigned in a rate monotonic (RM) [73] or

deadline monotonic (DM) [6]. Taking into account the real behavior of a real-time

system, which is often better than the worst case, his method employs stochas-

tic data to derive energy efficient schedules that are combined with on-line slack

distribution to achieve energy reduction. Kumar and Srivastava [67] presented a

power-saving prediction strategy that exploits the fixed priority scheduling of the

real-time tasks running on the embedded systems. But there is a penalty of tasks

8

missing their deadlines. Pouwelse, Langendoen and Sips [97] described the energy

priority scheduling (EPS) heuristic and show that by requiring applications to be

power aware (i.e. they must specify their future demands) much better energy

reduction can be achieved while still meeting all deadlines.

Most of papers introduced so far focus on the DVS problem on task-by-task

basis on a single processor. In recent several years there are many research works

that concentrate on intra-task voltage scheduling or multiple processor voltage

scheduling.

Intra-task voltage scheduling [116] that adjusts the supply voltage within in-

dividual task boundary may not involve operating system (OS) in adjusting the

clock speed, so it has an advantage that existing OS can be used without any mod-

ifications on a variable voltage processor. Lee and Sakurrai [70] presented a novel

run-time dynamic voltage scaling scheme for low-power real-time systems that

fully exploits slack time arising from task execution time variation and reduces

the energy consumption significantly. It partitions a task into several timeslots

and performs run-time software feedback control of supply voltage on timeslot-

by-timeslot basis. Shin, Kim and Lee proposed an intra-task voltage scheduling

algorithm, which controls the supply voltage within an individual task bound-

ary [116]. The proposed algorithm makes the voltage scaling decisions in compile

time, not run time, and allows programmers with no knowledge on DVS to develop

low-energy hard real-time applications. This idea can also be found in [90] that in-

tegrated compiler-assisted techniques with power aware operating system services

and presented scheduling techniques to reduce energy consumption of applications

that have deadlines. The difference between [116] and [90] is that [90] considers an

embedded system with a single application that is divided into n sections or tasks,

9

while [116] considers single-task applications or multi-task applications where one

task is dominant in total execution time. Most recently, Dudami et al. [31] pre-

sented the energy-conserving feedback EDF scheduling for embedded systems with

real-time constraints to exploit slack time generated by the invocation of the task

at multiple frequency levels within the same invocation.

Tasks in real-world applications usually have control or data dependencies and

many systems have multiple processors. Approaches in [8, 9, 42, 79, 80, 81, 113,

114] solve the energy minimization problem for dependent tasks on multiple vari-

able voltage processors. Schmitz and Al-Hashimi [113] presented an efficient algo-

rithm for voltage scaling of a distributed embedded system considering variations

in the power dissipation among processes and inter process communications. The

same authors [114] investigated the problem of considering DVS processing ele-

ments (DVS-PEs) power variations dependent on the executed tasks, during the

synthesis of distributed embedded systems and its impact on the energy savings.

Gruian and Kuchcinski [42] assumed a given task assignment and introduced a

new scheduling approach, LEneS, that uses list-scheduling and a special priority

function to derive static schedules with low energy consumption. Given a task

scheduling Luo and Jha [79] presented a power-conscious algorithm for jointly

scheduling multi-rate periodic task graphs and aperiodic tasks in real-time multi-

processor embedded systems in order to improve the response times of soft ape-

riodic tasks and reduce the power. The same authors have extended their work

by using static and dynamic variable voltage scheduling algorithms to exploit the

slacks more efficiently and achieve more energy saving [81]. In [80] they pro-

posed static battery-aware scheduling algorithms in battery-powered distributed

real-time embedded systems to increase the battery lifespan. Bambha and Bhat-

10

tacharyya et al. have examined voltage scaling for multiprocessors under known

computation time to reduce the overall power consumption under a given through-

put constraint. The schedule of tasks on different processors is assumed to be

known a priori. In [8], they proposed a local search approach for static voltage

scaling based on the period graph model [10]. The same group presented a hybrid

global/local search optimization framework for DVS in embedded multiprocessor

systems [9]. They applied the simulated heating [131] approach to control param-

eterized local search such as hill climbing or Monte Carlo within a global search

process in order to attain high search efficiency. Zhu et al. [130] introduced the

concept of slack sharing on multiprocessor systems to reduce energy consumption.

Based on this concept, they proposed two power-aware algorithms GSSR (global

scheduling with shared slack reclamation) and LSSR (fixed-order list scheduling

with shared slack reclamation) and simulation results showed the scheduling algo-

rithms result in substantial energy saving compared to static power management.

The essence of the above works is to utilize the slacks to allow voltage scaling to

reduce power consumption without suffering any performance degradation. In [74],

a power-aware scheduling algorithm was presented for mission-critical embedded

systems with variable power constraints and heterogeneous power consumers, as

well as different energy sources such as a non-rechargeable battery and a solar

panel. It satisfies the min/max timing and max power constraints. In addition,

it also tries to satisfy the minimum power constraint in order to fully utilize free

power or to control power jitter. Mishra et al. [88] proposed a static power man-

agement algorithm (SPM) with considering processor parallelism for distributed

real-time systems. They claimed that their algorithm is better than other existing

algorithms such as simple SPM and Greedy SPM in terms of energy saving [88].

11

Finally, Zhang, Hu and Chen [129] presented a two-phase framework that in-

tegrates task assignment, ordering and voltage scaling (VS) together to minimize

energy consumption of real-time dependent tasks executing on a given number of

variable voltage processors. In the first phase, they applied an EDF scheduling that

can be proved to be optimal for a single processor, and a scheduling with priority-

based task ordering and a best-fit processor assignment for multiple processors.

In the second phase, they formulated the VS problem as an Integer Programming

(IP) problem and solve the IP efficiently. Schmitz et al. [115] presented a two-step

iterative synthesis approach for distributed embedded systems containing dynamic

voltage scalable processing elements by employing two nested genetic algorithms,

where the outer GA generates the assignments and the inner one creates various

orderings. This algorithm is not however efficient in terms of run time. Recently,

Luo and Jha [82] presented an efficient algorithm, which performs execution or-

der optimization of scheduled events, power-profile and timing-constraint driven

slack allocation to minimize the power consumption for heterogeneous distributed

real-time embedded systems.

1.3 Quality of Service (QoS)

With the increasing popularity of real-time multimedia and wireless communica-

tion applications, quality of service (QoS) attracts a lot of attention. Providing

the required QoS guarantees becomes vital for the design of embedded systems

that carry out such applications. For many embedded systems applications such

as distributed multimedia applications, the QoS requirements can be assessed in

terms of users’ subjective wishes or satisfaction with the quality of the applications-

performance, synchronization, cost, and so forth [124]. The assessment results will

12

be mapped onto the constraints of QoS parameters such as processor completion

ratio, network throughput, delay, jitter and reliability etc. for various system com-

ponents or layers [120]. The QoS parameters of the operating systems (OS) in the

end systems can have a strong impact on the QoS the users eventually perceive.

Various QoS requirements, such as bounded delay, minimal throughput, guar-

anteed synchronization or resolution, task completion ratio, were first addressed in

the network and real-time operating systems (RTOS) communities. Lawrence [68]

presented a QoS Model that is defined by three attributes: timeliness, precision

and accuracy. These attributes can be used for system specification, instrumen-

tation, and evaluation. Altmann and Varaiya [5] defined QoS as a combination

of the basic quality metrics for the network layer: delay, jitter, bandwidth and

reliability. Wijesekera and Srivastava [127] presented quality of service metrics

for continuity and synchronization specifications in continuous media. The most

formally sound and practically relevant QoS model based on the demand curve

and the service curve in the networking community was proposed by Cruz [28].

Based on service curves, Sariowan and Cruz etc. [111] propose a new schedul-

ing policy SCED(Service Curve-based Earliest Deadline first) that guarantees the

service curve for the connection in Virtual Circuit Switched Networks. The main

conceptual result in RTOS literature, i.e., Q-RAM (QoS-based Resource Alloca-

tion Model), was presented by Rajkumar et al. [107]. They introduced an analytic

approach for satisfying multiple QoS dimensions under a given set of resource

constraints. They showed that the problem is NP-hard and developed an approx-

imation polynomial algorithm for the problem by transforming it into a mixed

integer programming problem [108]. Lee et al. [69] presented a QoS management

framework to analytically allocate resources for QoS optimization in systems that

13

must satisfy application needs along multiple QoS dimensions for given relations

between QoS dimensions and resources. Comprehensive survey of QoS research

can be found in [7, 124].

Task completions [11, 19], deadline miss-ratio [78], and loss-rate [126] have been

widely used as the measurement of QoS particularly for overloaded and real-time

systems in both academic and industry [3]. Baruah et al. [11] studied how to max-

imize task completions for overloaded systems. They concluded that any online

algorithm may perform arbitrarily poorly as compared to a clairvoyant sched-

uler, but discussed competitive online schedulers for a few special cases such as

Equal Request Times, Equal Execution Times, Monotonic Absolute Deadlines and

Equal Relative Deadlines. Mittal et al. [89] proposed integrated dynamic schedul-

ing algorithms for hard and QoS degradable tasks, represented by the workload

models such as imprecise computation [76] and the (m,k)-firm guarantee [109] that

quantify the trade-off between schedulability and result quality, in multiprocessor

real-time systems. The proposed algorithms improve schedulability by exploiting

the properties of these models in QoS degradation.

Recently QoS-driven system design also received attention from EDA (Elec-

tronic Design Automation) community, in particular embedded system design au-

tomation and low power system design [86, 98, 99, 102]. Qu et al. studied system

synthesis for synchronous multimedia applications, where they focused on how to

minimize the chip size while providing synchronization guarantees [99]. The same

authors later showed how to use dynamic voltage scaling technique to provide

guaranteed QoS with the minimal energy consumption [102]. Kornegay et al. [63]

outlined foundations and framework in which QoS system design trade-offs and

optimization can be addressed. They concluded by identifying and discussing the

14

future directions related to synthesis of QoS-sensitive systems. Qiu et al. mod-

eled the power-managed multimedia system with QoS guarantees as a generalized

stochastic Petri nets and used linear programming formulation to find the most

energy-efficient solution [98]. Marculescu et al. presented a new methodology for

system-level power and performance analysis based on the product of power and

delay of wireless multimedia systems [86].

1.4 Contribution of this Dissertation

This dissertation mainly focuses on how to reduce the energy consumption of

soft real-time embedded systems by employing dynamic voltage scaling while still

delivering the user required quality of service. Fig. 1.1 shows the overview of my

Ph.D. research.

(Chapter 5)

−Firm Guarantee −−A Case Study

Dual−Voltage System with (m,k)

 (Chapter 4)

 Best Way to Use DVS

New QoS Metric (Chapter 6)meet the user required QOS

minimize the system resources

Scaling (DVS) (Chapter 3)

by Employing Dyanmic Voltage

Energy Reduction Techniques

Probabilistic Design Methodology (Chapter 2)

Figure 1.1: The overview of my Ph.D. research.

15

The main contributions of this dissertation are as follows:

• we have proposed a new design methodology, i.e. probabilistic design, for soft

real-time embedded systems in order to reduce the system resources while

meeting the user required quality of service statistically [54]. One important

phase in the probabilistic design flow is offline/on-line resource management.

By using energy/power as an example of resources, we have developed a set

of system power management techniques by using dynamic voltage scaling to

exploit the slack arising from the tolerance to deadline misses in both single

and multiple processor systems [52, 53].

• In order to find the best way to use dynamic voltage scaling, we have first

formulated the voltage set-up problem and presented practical solutions to

this problem in order to minimize the energy consumption of multiple voltage

DVS system in the system level [49]. This is a novel extension under current

DVS research framework. We have also conducted the case study of provably

most energy efficient voltage set-up for dual voltage system with (m,k)-firm

deadline guarantee.

• As the traditional completion ratio metric can only be applied to indepen-

dent tasks, we have proposed a new quality of service (QoS) metric to cap-

ture the different deadline types (firm or soft) and task dependency as well

[50]. Furthermore, we have developed a set of low run-time overhead on-line

scheduling algorithms to improve QoS and more importantly, to enhance

quality of presentation (QoP) significantly with no extra hardware [51].

16

1.5 Organization of this Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we propose the novel concept of probabilistic design for soft real-

time systems and a methodology to quickly explore such design space at an early

design stage. The two important phases in the probabilistic design flow, i.e. esti-

mating the probabilistic timing performance and managing system resources with

probabilistic performance guarantee, are discussed in detail. The method takes

advantage of soft real-time system’s unique features (e.g., tolerance for occasional

deadline misses, uncertainties in actual execution time) to relax the rigid hardware

requirements for software implementation and eventually avoid over-designing the

system.

In Chapter 3, we use energy as the example of system resources to explain

how to conduct offline/on-line resource management with quality of service guar-

antee. Specifically, we developed a set of voltage scheduling techniques by taking

the tolerance to deadline misses into account in conjunction with the modest non-

determinism in application’s execution time. First, we give a simple best-effort

approach that achieves the maximum completion ratio; then we propose an en-

hanced on-line best-effort energy minimization (BEEM) approach and a hybrid

offline/on-line completion ratio Q guaranteed energy minimization(QGEM) ap-

proach. Simulation results show that significant energy savings for both single

and multiple processor systems can be achieved while probabilistically meeting

the completion ratio requirements.

In Chapter 4, in order to find the best way to employ DVS, we formulate

the voltage set-up problem and provide the practical solutions to minimize the

system’s energy consumption. Voltage set-up problem is how many levels and at

17

which values should voltage be implemented for the multiple-voltage DVS system

to achieve the maximum energy saving. It challenges whether DVS technique’s

full potential in energy saving can be reached on multiple-voltage systems. In this

chapter, (1) we derive analytical solutions for dual-voltage system. (2) For the

general case that does not have analytic solutions, we develop efficient numerical

methods. (3) We demonstrate how to apply the proposed algorithms on system

design. (4) Interestingly, the experimental results suggest that multiple-voltage

DVS systems, when the voltages are set up properly, can be very close to DVS

technique’s full potential in energy saving.

In Chapter 5, as a case study we discuss how to design dual-voltage soft real-

time systems with (m,k)-firm guarantee for energy efficiency. We first propose

an on-line greedy deterministic scheduler that provides the (m,k)-firm guarantee

with the provably minimum energy consumption. We then develop a novel exact

method to compute the scheduler’s average energy consumption per iteration. This

leads us to the numerical solution to the voltage set-up problem, which seeks for

the values of the two supply voltages to achieve the most energy efficiency with

(m,k)-firm guarantee. Simulation results show that dual-voltage system can reduce

significant amount of energy over single voltage system. Our numerical method

finds the best voltage set-ups in seconds, while it takes hours to obtain almost

identical solutions by simulation.

In Chapter 6, we propose a new quantitative QoS metric based on task comple-

tion ratio while differentiating firm and soft deadlines and taking task dependency

into consideration. Using the decoding of simulated MPEG movies as an example,

we show that the proposed QoS metric is much better than completion ratio in

measuring the quality of presentation (QoP) of the movies. However, when replac-

18

ing the completion ratio by the new QoS metric, popular online algorithms, such

as Earliest Deadline First (EDF) and Least Execution Time First (LETF), give

only limited improvement on QoP. Therefore, we develop a set of online schedulers

with low overhead to enhance QoP significantly, particularly when the system is

overloaded.

Chapter 7 concludes this dissertation with a summary of my Ph.D. research

work. Some possible directions for future work are also provided.

19

Chapter 2

Probabilistic Design Methodology

2.1 Introduction

Soft real-time embedded systems such as multimedia embedded systems are widely

used in a lot of areas such as movies, education, entertainment, teleconferencing

and information service. These systems require the processing of signal, image, and

video data streams in a timely fashion to the end user’s satisfaction. Such applica-

tions are often characterized by the repetitive processing on periodically arriving

inputs, such as voice samples or video frames, and the tolerance to occasional

deadline misses without being noticed by human visual and auditory systems.

The deadline can be (implicitly) determined by the throughput requirement of the

input data streams. For example, in packet audio applications, loss rates between

1% - 10% can be tolerated [15], while tolerance for losses in low bit-rate voice ap-

plications may be significantly lower [60]. Furthermore, in many multimedia DSP

applications, although the execution time of a task can vary dramatically due to a

number of factors such as cache miss(es) or conditional branches, it is possible to

obtain the execution time distribution for each task by knowing (e.g., by sampling

20

technique) detailed timing information about the system or by profiling the target

hardware [122].

Prior design space exploration methods for hardware-software codesign of em-

bedded systems, e.g., [32, 44, 83], guarantee no deadline missing by considering

worst case execution time (WCET) of each task. As the soft real-time embedded

systems can tolerate some violations of timing constraints, these methods will of-

ten lead to over-designed systems that deliver higher performance than necessary

at the cost of expensive hardware, higher energy consumption, and other system

resources.

There are plenty of studies on the estimation of soft real-time system’s prob-

abilistic performance when the application’s computation time can be varied [48,

59, 122]. However, their goals are to improve system’s performance or to pro-

vide probabilistic performance guarantees. To the best of our knowledge, there

is no reported effort on systematically incorporating application’s performance re-

quirements, uncertainties in execution time, and tolerance for reasonable execution

failures to guide rapid and economic design of real-time embedded systems.

In this chapter, we study the problem of how to integrate such tolerance to

deadline misses into the design of soft real-time embedded systems. We propose

the novel concept of probabilistic design for soft real-time embedded systems and

a methodology to quickly explore such design spaces at an early design stage.

Given the execution time distribution of each task and the tolerance to deadline

misses (measured by the quantitative completion ratio), we have developed a set of

algorithms to estimate the probabilistic timing performance and to manage system

resources in such a way that the system achieves the required completion ratio

probabilistically with a reduced amount of system resources. This method relaxes

21

the rigid hardware requirements for software implementation to meet the WCET

and eventually avoids over-designing the soft real-time embedded systems. In the

next chapter we will use system’s energy consumption, one of the most critical

resources for soft real-time embedded systems, as an example to demonstrate how

our approach can lead to significant energy-efficient designs.

The rest of the chapter is organized as follows: Section 2.2 describes the related

work in design space exploration, performance analysis, and low power design tech-

niques. Section 2.3 gives the overview of our probabilistic design space exploration

methodology. Our method has two key steps, i.e., the probabilistic timing perfor-

mance estimation, which is discussed in Section 2.4, and the offline/on-line resource

management with the probabilistic performance guarantee, which is introduced in

Section 2.5. We conclude the paper in Section 2.6.

2.2 Related Work

The most relevant work is on design space exploration and performance analysis,

probabilistic performance estimation, and scheduling techniques for low power.

An integrated hardware-software codesign system should support design space

exploration with optimization [33]. There are several works on performance anal-

ysis for design space exploration based on monoprocessor architecture. In PMOSS

[32], the authors presented a methodology for rapid analysis, synthesis and opti-

mization of embedded systems by providing modularity. Henkel and Ernst [44]

have presented high-level estimation techniques for the hardware effort and hard-

ware/software communication time. They claimed that the proposed techniques

are well suited for fast design space exploration. In the LYCOS system [83], the

authors used profiling techniques and evaluations of low-level execution time for

22

hardware, software and communication to estimate the system performance. For

the rapid prototyping of hardware-software codesigns, Chatha and Vemuri [25]

introduced their performance evaluation tool to provide fast and accurate per-

formance estimates based on profiling and scheduling. However, all of the above

works specify the deadline as one of the design constraints that has to be met.

There are several papers on the probabilistic timing performance estimation

for soft real-time systems design [48, 59, 122]. The general assumption is that each

task’s execution time can be described by a discrete probability density function

that can be obtained by applying path analysis and system utilization analysis

techniques [84]. In [122], the authors extended the scheduling algorithms and

schedulability analysis methods developed for periodic tasks in order to provide

probabilistic performance guarantee for semi-periodic tasks when the total maxi-

mum utilization of the tasks on each processor is larger than one. They described

the transform-task method that transforms each semi-periodic task into a periodic

task followed by a sporadic task. The method can provide an absolute guaran-

tee for requests with shorter computation times and a probabilistic guarantee for

longer requests. In [59], a performance estimation tool that outputs the exact

distribution of the processing delay of each application was introduced. It can

help the designers develop multimedia networked systems requiring soft real-time

guarantees in a cost efficient manner. Given that the execution time of each task

is a discrete random variable, Hu et al. [48] proposed a state-based probability

metric to evaluate the overall probabilistic timing performance of the entire task

set. Their experimental results show that the proposed metric reflects well the

timing behavior of systems with independent and/or dependent tasks. However,

their evaluation method becomes very time consuming when the task has many

23

different execution time values.

Low power consumption is one of the most important design objectives. Power

is proportional to the square of the supply voltage, therefore, reducing supply volt-

age can result in great power saving. Dynamic voltage scaling (DVS), which varies

the clock frequency and supply voltage according to the workload at run-time, can

achieve the highest possible energy efficiency for time-varying computation load

[18]. For the literature review of DVS research, one can check the Section 1.2 in

this dissertation.

2.3 Probabilistic Design Methodology Overview

Many design methods have been developed based on WCET to meet the tim-

ing constraints without any deadline misses. However, the actual execution time

of each task frequently deviates from its WCET, sometimes by a large amount.

Therefore these methods are pessimistic and are suitable for developing systems

in a “hard real-time” environment, where any deadline miss will be catastrophic.

However, there are also many “soft real-time” systems, such as multimedia sys-

tems, which can tolerate occasional deadline misses. The above pessimistic design

methods can’t take advantage of this feature and will often lead to over-designed

systems. In order to avoid over-designing systems, we propose the concept of

“probabilistic design” where we design the system to meet the timing constraints

of periodic applications statistically. That is, the system may not guarantee the

completion of each execution or iteration, but it will produce sufficiently many

successful completions over a large amount of iterations to meet the user-specific

completion ratio. Or even better, the probability that any execution will be com-

pleted is not lower than the desired completion ratio.

24

Clearly, the proposed “probabilistic design” will be preferred for many embed-

ded systems such as portable multimedia systems where high portability, low power

consumption, and reasonably good performance are equally important. However,

the corresponding “probabilistic design space” becomes larger than the above men-

tioned pessimistic design space because it includes designs that fail some iterations

while still meeting the desired completion ratio requirement statistically. This in-

creases the design complexity and makes early design space exploration difficult.

The “probabilistic design” will thrive only when designers can quickly explore the

larger probabilistic design spaces.

Figure 2.1 depicts our probabilistic design space exploration approach for rapid

and economic multimedia system design. We start with the popular dataflow graph

representation of the embedded software, the system’s performance requirements

(in terms of timing and completion ratio constraints), and a pool of target system

architectures to select from. We partition the application into a set of tasks and

use profiling tools to collect detailed execution information of each task. Next,

we estimate the system timing performance to check whether it is feasible for

the current system configuration to achieve the desired performance. If not, we

change the hardware configuration and/or apply software optimization techniques

and update the software profiling results that will be used in the next round of

system timing performance estimation. We mention that any change on the target

hardware configuration and/or software optimization may affect the application’s

actual execution information and therefore the software profiling process needs to

be re-started. This iterative design loop terminates when all the design require-

ments are met.

Once the completion ratio constraint can be met, we move on to the phase of

25

Meet Completion
Ratio Constraint?

Offline/Online
Resource

Management

Optimization
Software

Configuration
Hardware

Yes

No

Constraint
Time

ResponseCompletion

Constraint
Ratio

Embedded
Software

Software Profiling

(WCET,BCET,detailed ET distribution,
cache miss rate/penalty, pipeline stall,...)

System Synthesis
and Evaluation

No

Meet Design
Requirements?

Yes

Performance Estimation
Probabilistic Timing

Configuration
System

System Prototyping

Figure 2.1: Design flow in the probabilistic design methodology.

26

offline/on-line resource management. This is the key step in the proposed proba-

bilistic design where we 1) allocate minimum system resources to each task offline

in order to make the desired completion ratio probabilistically achievable, and 2)

develop real time schedulers to manage the resources at run time such that the

required completion ratio can be achieved probabilistically. Finally, we conduct

system synthesis, simulation, and evaluation before prototyping the system.

2.4 Estimating the Probabilistic Timing Perfor-

mance

In order to determine whether a given system implementation can meet the de-

sired completion ratio constraint, we need to estimate the system’s probabilistic

timing performance. Specifically, in this step we calculate the upper bound of the

completion ratio that the system with current configuration can achieve to help us

in exploring the probabilistic design space efficiently.

We consider the task graph G = (V, E) for a given application. V is the set of

vertices in the graph that represent the task computations and E is the the set of di-

rected edges that represent the data dependencies between vertices. We adopt the

assumption that the execution time of each vertex can be described by a discrete

probability density function [48, 122]. Specifically, for each vertex vi, we associate

a finite set of possible execution times {ti,1, ti,2, · · · , ti,ki
} (under a reference system

configuration) and the set of probabilities {pi,1, pi,2, · · · , pi,ki
|
∑ki

l=1 pi,l = 1} that

such execution times will occur at run-time. That is, with probability pi,j, vertex

vi requires an execution time of ti,j. Such statistics on task’s execution time can

be obtained by profiling tools.

27

The completion time of the task graph G (or equivalently the given application)

under a fixed execution order < v1v2 · · · vn >, is the sum of each vertex’s run-

time execution time ei: C(< v1v2 · · · vn >) =
∑n

i=1 ei. The deadline constraint D

specifies the maximum time allowed to complete the application. The application

(or its task graph) will be executed periodically and its period is no less than the

deadline D. We say that an iteration is successfully completed if C(< v1v2 · · · vn >

) ≤ D. The performance requirement is measured by a real-valued completion

ratio Q0 ∈ [0, 1], which is the minimum ratio of completions that the system has

to maintain over a sufficiently large number of iterations. For the hard real-time

system, Q0 = 1; and for the soft real-time system, Q0 < 1. Let K be the number

of successfully completed iterations over a total of N >> 1 iterations, the actual

completion ratio can be denoted by Q = K
N

. We say that the completion ratio

constraint is achievable if Q ≥ Q0.

For a given system configuration, let t′i,ji
be the time to execute task vi that

requires an execution time ti,ji
under the reference configuration, where ji ∈

{1, 2, · · · , ki}, we have a completion if the completion time is less than the deadline,

that is,
∑n

i=1 t′i,ji
≤ D. The probability that this occurs is

∏n
i=1 pi,ji

. Therefore, we

have

Theorem 2.1. The maximum achievable completion ratio is given by:

Qmax =
∑

∑n

i=1
t′
i,ji

≤D

n
∏

i=1

pi,ji
(2.1)

where the sum is taken over the execution time combinations that meet the deadline

constraint D and the product computes the probability each such combination

happens.

This is similar to the state-based feasibility probability defined in [48]. Qmax

helps us to quickly explore the probabilistic design space. Specifically, if Qmax <

28

Q0, which means that the completion ratio requirement is not achievable under

current system configuration, we can make the early and correct decision to recon-

figure the hardware or optimize the software implementation rather than further

investigating the current system configuration.

The drawback of this estimation is that Equation (2.1) is computationally ex-

pensive particularly when there are many tasks and each task has multiple execu-

tion times. For example, a task graph with 50 vertices and each vertex having only

the best, average, and worst case execution time yields 350 different execution time

combinations! Due to the importance of determining whether the required Q0 is

achievable in designing fast probabilistic design space exploration techniques, we

have developed the following polynomial heuristic.

Assuming that the task’s execution times under the reference configuration are

ordered such that ti,1 < ti,2 < · · · < ti,ki
, we define the prefix sum of the occurrence

probability

Pi,li =
li

∑

j=1

pi,j (2.2)

which measures the probability that the computation at vertex vi is not longer

than ti,li. If we allocate time ti,li to task vi and drop the iteration if its actual

execution time is longer, then we achieve a completion ratio

Q =
n

∏

i=1

Pi,li =
n

∏

i=1

li
∑

j=1

pi,j (2.3)

We use a greedy approach to estimate whether completion ratio Q0 can be

achieved within the deadline D. First, we assign each vertex its WCET. This

yields Q = 1 but the total assigned completion time
∑n

i=1 ti,ki
will most likely

exceed the deadline constraint. From Equation (2.3), if we cut the time slot of

vertex vi from ti,li to ti,(li−1), the completion ratio will be reduced by the factor of

Pi,(li−1)

Pi,li

and the total assigned time will be reduced by ti,li − ti,(li−1). We iteratively

29

cut the time slot of vertex vj that yields the largest (tj,lj − tj,(lj−1)) ·
Pj,(lj−1)

Pj,lj

as

long as it gives a completion ratio larger than Q0. This greedy selection approach

frees more assigned time slot at the minimum level of completion ratio reduction.

When we cannot reduce the completion ratio any further and the total assigned

time
∑n

i=1 ti,li is not larger than the deadline D, our heuristic will conclude that the

required Q0 is achievable. Otherwise, it will report that Q0 cannot be guaranteed,

even though in some cases Qmax is actually larger than Q0. The complexity of the

proposed heuristic is O(n2).

2.5 Managing System Resource under Probabilis-

tic Performance Constraint

When Qmax ≥ Q0, it becomes theoretically possible to deliver the probabilistic

performance guarantee (in terms of completion ratio) with the current system con-

figuration. The resource management phase in our design space exploration aims

to reduce the design cost. Specifically, we are given a task graph corresponding

to the application that includes a set of vertices (tasks), each of which represents

certain computation, and a set of directed edges, each of which represents data

dependency. Each task has a finite set of possible execution time, which can be

obtained by profiling or simulation on target hardware. Based on the above infor-

mation together with the deadline constraint D and user required QoS Q0, we want

to 1) determine the minimum system resource required to provide the probabilis-

tic performance guarantee; and 2) develop on-line scheduling algorithms to guide

the system to achieve such guarantee at run time with the determined minimum

resource.

30

As energy consumption has emerged as one of the most important concerns

in the design of embedded systems particularly for the battery-operated portable

systems, in this dissertation we consider energy as one example of resource to man-

age and present our newly developed offline/on-line energy reduction techniques

with completion ratio guarantee. We achieve the energy saving by the dynamic

voltage scaling method on multiple supply voltage and multiple threshold voltage

system, which has been identified by the International Technology Roadmap for

Semiconductors (ITRS) as the trend of future systems [2]. Specifically, we consider

the following problem:

For a given task graph, its deadline, its completion ratio constraint and

the task execution time distribution, find a scheduling strategy for a

multiple voltage system such that the resource (e.g., energy) consumed

to satisfy the completion ratio constraint is minimized.

In the next chapter, we will present our recent results on energy/power manage-

ment methods for both single and multiple processor systems in order to minimize

the system energy consumption while meeting user required completion ratio.

2.6 Conclusions

In this chapter we present the novel concept of probabilistic design for soft real-time

embedded systems and a methodology to quickly explore such design spaces at the

early design stage in order to rapidly achieve economic system design. By taking

advantage of soft real-time DSP application’s unique features, namely application’s

performance requirements, uncertainties in execution time, and tolerance for rea-

sonable execution failures, our method systematically relaxes the rigid hardware

31

requirements for software implementation and eventually avoids over-designing the

system. There are two key steps in our probabilistic design methodology, which

are the probabilistic timing performance estimation and the offline/on-line resource

management. In this chapter, we have introduced our heuristic method to rapidly

estimate the probabilistic timing performance. In the next chapter, we will show

how to design soft real-time embedded systems with reduced resource (energy con-

sumption in our case) while providing the desired performance (completion ratio)

statistically.

32

Chapter 3

Energy Reduction Techniques for

Single and Multiple Processor

Systems

In Chapter 2, we propose a probabilistic design methodology to avoid over-designing

the systems. One important step in the design flow (see Fig. 2.1) is offline/on-line

resource management. In this chapter, by using energy as one example of resource,

we show how to reduce the system resource while the system still meets the user

required quality of service (completion ratio).

3.1 Introduction

Performance guarantee and energy efficiency are becoming increasingly important

for the design of embedded systems. Traditionally, the worst case execution time

(WCET) is considered to provide performance guarantee, however, this often leads

to over-designing the system (e.g., more hardware and more energy consumed than

33

necessary), We discuss the problem of how to implement single or multiprocessor

embedded systems to deliver performance guarantee with reduced energy consump-

tion.

Many applications, such as multimedia and digital signal processing (DSP)

applications, are characterized by repetitive processing on periodically arriving

inputs (e.g., voice samples or video frames). Their processing deadlines, which

are determined by the throughput of the input data streams, may occasionally

be missed without being noticeable or annoying to the end user. For example, in

packet audio applications, loss rates between 1% - 10% can be tolerated [15], while

tolerance for losses in low bit-rate voice applications may be significantly lower

[60]. Such tolerance gives rise to slacks that can be exploited when streamlining

the embedded processing associated with such applications. Specifically, when the

embedded processing does not interact with a lossy communication channel, or

when the channel quality is high compared to the tolerable rate of missed deadlines,

we are presented with slacks in the application that can be used to reduce cost or

power consumption.

Typically, slacks arise from the run-time task execution time variation and can

be exploited to improve real-time application’s response time or reduce power. For

example, Shin and Choi used fixed priority scheduling method to achieve power

reduction by exploiting slack times in real-time systems [117]. Bambha and Bhat-

tacharyya examined voltage scaling for multiprocessor with known computation

time and hard deadline constraints [8]. Luo and Jha presented a power-conscious

algorithm [79] and static battery-aware scheduling algorithms for distributed real-

time battery-powered systems [80]. Zhu et al. introduced the concept of slack shar-

ing on multi-processor systems to reduce energy consumption [130]. The essence

34

of these works is to exploit the slacks by using voltage scaling to reduce energy

consumption without suffering any performance degradation (execution failures).

The slack we consider in this chapter comes from the tolerance of execution

failures or deadline missings. In particular, since the end user will not notice a small

percentage of execution failure, we can intentionally drop some tasks to create slack

for voltage scaling as long as we keep the loss rates to be tolerable. Furthermore,

much richer information than task’s WCET is available for many DSP applications.

Examples include the best case execution time (BCET), execution time with cache

miss, when interrupt occurs, when pipeline stalls or when different conditional

branch happens. More important, most of these events are predictable and we

will be able to obtain the probabilities that they may happen by knowing (e.g. by

sampling technique) detailed timing information about the system or by simulation

on the target hardware [122]. This gives another degree of freedom to explore on-

line and offline voltage scaling for energy reduction.

Dynamic voltage scaling(DVS), which can vary the supply voltage and clock

frequency according to the workload at run-time, can exploit the slack time gener-

ated by the workload variation and achieve the highest possible energy efficiency

for time-varying computational loads [18, 100]. It is arguably the most effective

technique to reduce the dynamic energy, which is still the dominate part of system’s

energy dissipation despite the fast increase of leakage power on modern systems.

The relevant works on DVS can be found in Section 1.2 in this dissertation.

Finally, we mention that early efforts on single and multiple processor em-

bedded system design range from the design space exploration algorithm [61] to

the implementation of such systems [40, 121]. And scalable architectures and

co-design approaches have been developed for the design of multiprocessor DSP

35

systems (e.g., see [57, 112]). These approaches, however, do not provide systematic

techniques to handle voltage scaling, non-deterministic computation time, or com-

pletion ratio tolerance. Performance-driven static scheduling algorithms that allo-

cate task graphs to multiprocessors [119] can be used in conjunction with best- or

average-case task computation time to generate an initial schedule for our proposed

methods. It can then interleave performance monitoring and voltage adjustment

functionality into the schedule to streamline its performance.

A Motivational Example

We consider a simple case when a multiple-voltage processor executes three tasks

A,B, C in that order repetitively. Table 3.1(a) gives each task’s only two possible

execution time and the probabilities that they occur. Table 3.1(b) shows the

normalized power consumption and processing speed of the processor at three

different voltages.

Table 3.1: Characteristics of the tasks and the processor. (a): each entry shows

the best/worst case execution time at V1 and the probability this execution time

occurs at run time. (b): power is normalized to the power at V1 and delay

column gives the normalized processing time to execute the same task at different

voltages.

task BCET WCET voltage power delay

A (1, 80%) (6, 20%) V1 = 3.3V 1 1

B (2, 90%) (7, 10%) V2 = 2.4V 0.30 1.8

C (2, 75%) (5, 25%) V3 = 1.8V 0.09 3.4

(a) Three tasks. (b) Processor parameters.

36

Suppose that each iteration of “A → B → C” must be completed in 10 CPU

units and we can tolerate 40% of the 10,000 iterations to miss their deadlines. We

now compare the following three different algorithms:

(I) For each iteration, run at the highest voltage V1 to the completion or the

deadline whichever happens first.

(II) Assign deadline pairs (0,6), (5,8), and (10,10) to A, B, and C respectively.

For each task, terminate the current iteration if the task cannot be completed

by its second and longer deadline at V1; otherwise, run at the lowest voltage

without violating its first and shorter deadline or run at V1 to its completion.

(III) In each iteration, assign 1, 7, and 2 (a total of 10) CPU units to A, B, and

C respectively. Each task can only be executed within its assigned slot: if it

cannot be finished at V1, terminate; otherwise run at the lowest voltage to

completion.

Assuming that the execution time of each task follows the above probability, for

each algorithm, we obtain the completion ratio Q, each iteration’s average process-

ing time (at different voltages) and power consumption (Table 3.2). We mention

that 1) algorithm I gives the highest possible completion ratio; 2) algorithm II

achieves the same ratio with less energy consumption; and 3) algorithm III trades

unnecessary completion for further energy reduction. Although algorithm I is a

straightforward best-effort approach, the settings for algorithms II and III are not

trivial: Why the deadline pairs are determined for A and B? Is it a coincidence

that such setting achieves the same completion ratio as algorithm I? How to set

execution slot for each task in algorithm III to guarantee the 60% completion ra-

tio, in particular if we cannot find 80% and 75% whose product gives the desired

completion ratio?

37

Table 3.2: Expected completion ratio and energy consumption for the three algo-

rithms. t@V1, t@V2, and t@V3 are the average time that the processor operates at

three voltages for each iteration; E is the average energy consumption to complete

one iteration; and the last column, obtained by E ·60%/Q, corresponds to the case

of shutting the system down once 6,000 iterations are completed.

Q t@V1 t@V2 t@V3 E E@(Q = 60%)

I 91.5% 6.94 0 0 6.94 4.55

II 91.5% 4.21 4.54 0 5.57 3.65

III 60% 2.56 0 4.90 3.00 3.00

In this chapter, i) we first formulate the energy minimization problem with deadline

miss tolerance on single and multiple processor (DSP) systems; ii) we then develop

on-line scheduling techniques to convert deadline miss tolerances into energy reduc-

tion via DVS; iii) this departs us from the conservative view of over-implementing

the embedded systems in order to meet deadlines under WCET; iv) our result is

an algorithmic framework that integrates considerations of iterative single or mul-

tiple processor scheduling, voltage scaling, non-deterministic computation time,

and completion ratio requirement, and provides robust, energy-efficient single or

multiple processor implementation of embedded systems for DSP applications. In

the following sections, we will mainly focus on the energy reduction techniques for

multiprocessor embedded systems. One can easily adapt and apply them to single

processor embedded system design.

38

3.2 Problem Formulation

We consider the task graph G = (V, E) for a given application. Each vertex in

the graph represents one computation and directed edges represent the data de-

pendencies between vertices. For each vertex vi, we associate it with a finite set

of possible execution time {ti,1 < ti,2 < · · · < ti,ki
} and the corresponding set of

probabilities {pi,1, pi,2, · · · , pi,ki
|
∑ki

l=1 pi,l = 1} that such execution time may occur.

That is, with probability pi,j, vertex vi requires an execution time in the amount of

ti,j. Note that ti,ki
is the WCET and ti,1 is the BCET for task vi. We then define

the prefix sum of the occurrence probability

Pi,l =
l

∑

j=1

pi,j (3.1)

Clearly, Pi,l measures the probability that the computation at vertex vi can be

completed within time ti,l and we have Pi,ki
= 1 which means that a completion is

guaranteed if we allocate CPU to vertex vi based on its WCET ti,ki
.

A directed edge (vi, vj) ∈ E shows that the computation at vertex vj requires

data from vertex vi. For each edge (vi, vj), there is a cost for inter-processor

communication (IPC) wvi,vj
, which is the time to transfer data from the processor

that executes vi to a different processor that will execute vj. There is no IPC cost,

i.e. wvi,vj
= 0, if vertices vi and vj are mapped to the same processor by the task

scheduler. For a given datapath < v1v2 · · · vn >, its completion time is the sum of

the execution time at run-time, of each vertex, ei, and all the IPC costs. That is,

C(< v1v2 · · · vn >) = e1 +
n

∑

i=2

(wvi−1,vi
+ ei) (3.2)

The completion time for the entire task graph G (or equivalently the given applica-

tion), denoted by C(G), is equal to the completion time of its critical path, which

has the longest completion time among all its datapaths. (Note for the single pro-

39

cessor system, there is no IPC cost and C(G) is equal to the sum of the execution

time of each vertex in the entire task graph.)

We are also given a deadline constraint D, which specifies the maximum time

allowed to complete the application. The application (or its task graph) will be

executed on a multiprocessor system periodically with its deadline D as the period.

We say that an iteration is successfully completed if its completion time, which

depends on the run-time behavior, C(G) ≤ D. Closely related to D is a real-

valued completion ratio constraint(or requirement) Q0 ∈ [0, 1], which gives the

minimum acceptable completion ratio over a sufficiently large number of iterations.

Alternatively, Q0 can be interpreted as a guarantee on the probability with which

an arbitrary iteration can be successfully completed.

Finally, we assume that there are multiple supply voltage levels available at the

same time for each processor in the multi-processor system. This type of system

can be implemented by using a set of voltage regulators each of which regulates

a specific voltage for a given clock frequency. In this way, the operating system

can control the clock frequency at run-time by writing to a register in the system

control state exactly the way as in [18] except that the system does not need to

wait for the voltage converter to generate the desired operating voltage. In sum we

can assume that each processor can switch its operating voltage from one level to

another instantaneously and independently with the power dissipation P ∝ CV 2
ddf

and gate delay d ∝ Vdd

(Vdd−Vth)α at supply voltage Vdd and threshold voltage Vth,

where 1 < α ≤ 2 is a constant depends on the technology [23]. Furthermore,

on a multiple voltage system, for a task under any time constraint, the voltage

scheduling with at most two voltages minimizes the energy consumption and the

task is finished just at its deadline [100].

40

In this chapter, we consider the following problem:

For a given task graph G with its deadline D and completion ratio

constraint Q0, find a scheduling strategy for a multi-processor multi-

voltage system (a means of (1) assigning vertices to processors, (2)

determining the execution order of vertices on the same processor, and

(3) selecting the supply voltage for each processor) such that the energy

consumption to satisfy the completion ratio constraint Q0 is minimized.

It is well-known that the variable voltage task scheduling for low power is in

general NP-hard [46, 100]. On the other hand, there exist intensive studies on

multi-processor task scheduling problem with other optimization objectives such

as completion time or IPC cost [87, 119]. In this chapter, We focus on developing

on-line algorithms for voltage scaling (and voltage selection in particular) on a

scheduled task graph. That is, we assume that tasks have already been assigned to

processors and our goal is to determine when and at which voltage each task should

be executed in order to minimize the total energy consumption while meeting the

completion ratio constraint Q0.

3.3 Energy-Driven Voltage Scaling Techniques

with Completion Ratio Constraint

In this section, we first obtain, with a simple algorithm, the best completion ratio

on multi-processor system for a given task assignment. We then give a lower bound

on the energy consumption to achieve the best completion ratio. Our focus will

be on the development of on-line energy reduction algorithms that leverage the

required completion ratio, which is lower than the best achievable.

41

3.3.1 A Näıve Best-Effort Approach

Even when there is only one supply voltage, which results in a fixed processing

speed, and each task has its own fixed execution time, the problem of determining

whether a set of tasks can be scheduled on a multi-processor system to be completed

by a specific deadline remains NP-complete (this is the multiprocessor scheduling

problem [SS8], which is NP-complete for two processors [36].). However, for a

given task assignment and ordering, the highest possible completion ratio can

be trivially achieved by simply applying the highest supply voltage on all the

processors. That is, each processor keeps on executing whenever there exist tasks

assigned to this processor ready for execution;and stops when it completes all its

assigned tasks in the current iteration or when the deadline D is reached. In the

latter, if any processor has not finished its execution, we say the current iteration

is failed; otherwise, we have a successful completion or simply completion. Clearly

this näıve method is a best-effort approach in that it tries to complete as many

iterations as possible. Since it operates all the processors at the highest voltage,

the näıve approach will provide the highest possible completion ratio, denoted by

Qmax. In another word, if a completion ratio requirement cannot be achieved by

this näıve approach within the given deadline D, then no other algorithms can

achieve it either.

When the application-specified completion ratio requirement Q0 < Qmax, a

simple counting mechanism can be used to reduce energy consumption. Specifi-

cally we cut the N iterations into smaller groups and shut the system down once

sufficient iterations have been completed in each group. For example, if an MPEG

application requires a 90% completion ratio, we can slow down the system (or

switch the CPU to other applications) whenever the system has correctly decoded

42

90 out of 100 consecutive frames. This counting mechanism saves total energy by

preventing the system from over-serving the application.

For system with multiple operating voltages, we mention that energy could

have been saved over the above näıve approach in the following scenarios: i) if we

knew that an iteration would be completed earlier than the deadline D, we could

have processed with a lower voltage; and ii) if we knew that an iteration cannot be

completed and have stopped the execution earlier. To save the maximal amount

of energy, we want to determine the lowest voltage levels to lead us to completions

right at the deadline D and find the earliest time to terminate an incompletable

iteration. However, additional information about the task’s execution time (e.g.

WCET, BCET, and/or the probabilistic distribution) is required to answer these

questions. In the rest of this section, we propose on-line voltage scaling techniques

to reduce energy with the help of such information.

3.3.2 BEEM: On-Line Best-Effort Energy Minimization

The best-effort energy minimization (BEEM) technique gives the minimum energy

consumption on single or multiple processor system to provide the highest achiev-

able completion ratio. Here we propose algorithm BEEM1, which assumes task’

execution time are know a priori, and BEEM2, which does not, on a multiprocessor

systems. The BEEM technique on a single processor system can be found in [53].

We define the latest completion time T v
l and the earliest completion time T v

e

for a vertex v using the following recursive formulas:

T v
e = T v

l = D (if v is a sink node) (3.3)

T vi
e = min{T vj

e − tj,kj
− wvi,vj

|(vi, vj) ∈ E} (3.4)

T vi

l = min{T
vj

l − tj,1 − wvi,vj
|(vi, vj) ∈ E} (3.5)

43

where tj,1 and tj,kj
are the BCET and WCET of vertex vj , wvi,vj

is the cost of

IPC from vertices vi to vj which is 0 if the two vertices are assigned to the same

processor.

Lemma 3.1. If an algorithm minimizes energy consumption, then vertex vi’s

completion time cannot be earlier than T vi
e .

[Proof]: Clearly such algorithm will complete each iteration at deadline D.

Otherwise, one can always reduce the operating voltage and processing speed (or

adjust the combination of two operating voltages) for the last task to save more

energy.

Let t be vertex vi’s completion time at run time. If t < T vi
e , for any path from vi

to a sink node v, u0 = vi, u1, · · · , uk = v, let WCETuj
be the worst case execution

time of vertex uj, then the completion time of this path will be

T ≤ t +
k−1
∑

j=0

(wuj ,uj+1
+ WCETuj+1

) < T vi
e +

k−1
∑

j=0

(wuj ,uj+1
+ WCETuj+1

)

= T u0
e + wu0,u1 + WCETu1 +

k−1
∑

j=1

(wuj ,uj+1
+ WCETuj+1

)

≤ T u1
e +

k−1
∑

j=1

(wuj ,uj+1
+ WCETuj+1

) ≤ · · · ≤ T v
e = D

This implies that even when the WCET happens for all the successor vertices

of vi on this path, the completion of this path occurs before the deadline D. Note

that this is true for all the path, therefore the iteration finishes earlier and this

cannot be the most energy efficient. Contradiction.

Lemma 3.2. If vertex vi’s completion time t > T vi

l , then the current iteration

is not completable by deadline D.

[Proof]: Assuming that best case execution time occur for all the rest vertices at

time t when vi is completed, this gives us the earliest time that we can complete the

44

current iteration and there exists at least one path from vi to one sink node v (u0 =

vi, u1, · · · , uk = v), and for each pair (uj, uj+1) T
uj

l = T
uj+1

l −BCETuj+1
−wuj ,uj+1

.

The completion of this path happens at time

T = t +
k−1
∑

j=0

(wuj ,uj+1
+ BCETuj+1

) > T vi

l +
k−1
∑

j=0

(wuj ,uj+1
+ BCETuj+1

)

= T u1
l +

k−1
∑

j=1

(wuj ,uj+1
+ BCETuj+1

) = · · · = T v
l = D

Combining these two lemmas and the näıve approach that achieves the highest

possible completion ratio Qmax, we have:

Theorem 3.3. (BEEM1) If we know the execution time tve of vertex v, the

following algorithm achieves Qmax with the minimum energy consumption.

Let t be the current time that v is going to be processed and tve be v’s

real execution time,

• if t + tve > T v
l , terminate the current iteration;

• if t + tve < T v
e , scale voltage such that v will be completed at T v

e ;

• otherwise, process at the highest voltage as in the näıve approach;

However, it is unrealistic to have each task’s real execution time known a priori,

we hereby propose algorithm BEEM2, another version of BEEM that does not

require tasks’ real-time execution time to make decisions, yet still achieves the

highest completion ratio Qmax:

Algorithm BEEM2

Let t be the current time that v is going to be processed,

45

• if t + BCETv > T v
l , terminate the current iteration;

• if t + WCETv < T v
e , scale voltage such that WCETv will be

completed at T v
e ;

• otherwise, process at the highest voltage;

Without knowing task’s real execution time, BEEM2 conservatively i) termi-

nates an iteration if it is incompletable even in vertex v’s best case execution time

BCETv; and ii) slows down to save energy while still guaranteeing that vertex

v’s worst case execution time WCETv can be completed at its earliest comple-

tion time T v
e . We mention that the pair {T v

e , T v
l } can be computed offline only

once and both BEEM1 and BEEM2 algorithms require at most two additions and

two comparisons. Therefore, the on-line decision making takes constant time and

will not increase the run time complexity. Finally, similar to our discussion for

the näıve approach, further energy reduction is possible if the required completion

ratio Q0 < Qmax.

3.3.3 QGEM: Completion Ratio Guaranteed Energy Min-

imization

Both the näıve approach and BEEM algorithms achieve the highest completion

ratio. Although they can also be adopted to provide exactly the required com-

pletion ratio Q0 for energy reduction, they may not be the most energy efficient

way to do so when Q0 < Qmax. In this section, we propose a hybrid offline on-line

completion ratio Q guaranteed energy minimization (QGEM) algorithm, which

consists of three steps:

In Step 1, we seek to find the minimum effort (that is, the least amount of

computation tis we have to process on each vertex vi) to provide the required

46

completion ratio Q0 (Fig. 3.1). Starting with the full commitment to serve every

task’s WCET (line 2), we use a greedy heuristic to lower our commitment the

vertices along critical paths (lines 6-13). Vertex vj is selected first if the reduction

from its WCET tj,kj
to tj,kj−1 (or from the current tj,l to tj,l−1) maximally shortens

the critical paths and minimally degrades the completion ratio, measuring by their

product (line 10).

/* Step 1: Minimum effort for completion ratio guarantee. */

1. find a topological order of the vertices: v1, · · · , vn;

2. tis = ti,ki
; /* assign WCET to each vertex */

3. Q = 1; /* completion ratio must be 1 if each vertex gets its WCET */

4. determine the completion time L;

5. while (Q > Q0)

6. { for each vertex vj along critical paths;

7. { determine the completion time L′ when reduces tjs

from its current tj,l to tj,l−1;

8. compute the completion ratio Q′
j = Q ·

Pj,l−1

Pj,l
;

9. }

10. pick the vertex vj that achieves the maximum gain (L − L′) ·
Pj,l−1

Pj,l
;

11. Q = Q ·
Pj,l−1

Pj,l
;

12. if (Q > Q0) tjs = tj,l−1 ;

13. }

Figure 3.1: QGEM’s offline part to determine the minimum commitment to provide

Q0.

The goal in Step 2 is to allocate the maximum execution time tiq for each task

47

vi to process the minimum computation tis and to have the completion time L close

to deadline D (Fig. 3.2). Lines 3-9 repetitively scale tiq for all the tasks. Because

the IPCs are not scaled, maximally extending the allocated execution time to each

task by a factor of D/L (line 6) may not stretch the completion time from L to D.

Furthermore, this unevenly extends each path and we re-evaluate the completion

time (and critical path) at line 7. To prevent an endless repetition, we stop when

the scale factor r is less than a small number ǫ (line 5), which is set as 10−6 in

our simulation. Lines 11-22 continue to scale tiq for vertices off critical paths in a

similar way.

Now for vertex vi, we have the pair (tis, t
i
q) which represent the minimum amount

of work and maximal execution time we commit to vi. Define, recursively, the

expected drop-time for vi to be

Di = tiq + max{Dk + wvk,vi
|(vk, vi) ∈ E} (3.6)

Step 3 defines the on-line voltage scheduling policy for the QGEM approach in

Fig. 3.3, where we scale voltage to complete a task vi by its expected drop-time Di

assuming that the real-time execution time requirement equals to the minimum

workload tis we have committed to vi (line 2). If vi demands more, it will be

finished after Di and we will drop the current iteration (line 4).

Note that if every task vi has real execution time less than tis in an iteration,

QGEM’s on-line scheduler will be able to complete this iteration. On the other

hand, if longer execution time occurs at run-time, QGEM will terminate the iter-

ation right after the execution of this task. From the way we determine tis (in Fig.

3.1), we know that the required completion ratio Q0 will be guaranteed. Energy

saving comes from two mechanisms: the early termination of unnecessary itera-

tions (line 5 in Fig. 3.3) and the use of low voltage to fully utilize the time from

48

/* Step 2: Maximum execution time allocation

with deadline constraint.*/

1. for each vertex vi

2. done(vi) = 0; tiq = tis; /* allocate time tis to each vertex */

3. determine the completion time L;

4. r = D

L
− 1;

5. while (r ≥ ǫ) /* to prevent an endless loop */

6. { tiq = tiq · (1 + r); /* scale the time allocated to each vertex */

7. determine the completion time L;

8. r = D

L
− 1;

9. }

10. for each vertex vi on critical paths done(vi) = 1;

11. while (done(vi) = 0 for some vertex vi)

12. { determine the completion time L;

13. while (L < D)

14. { for each vertex vi with done(vi) = 0

15. tiq = tiq · (1 + δ); /* δ is a small positive number */

16. determine the completion time L;

17. } /* L may exceed deadline D, so we have to scale back tiq. */

18. for each vertex vi with done(vi) = 0

19. { tiq = tiq/(1 + δ);

20. if vi is on the critical path done(vi) = 1;

21. } /* it is still possible to scale vertices off critical paths. */

22. }

Figure 3.2: QGEM’s offline part to allocate execution time for each task.

49

now to a task’s expected drop-time (line 2 in Fig. 3.3). We will confirm our claim

on QGEM’s completion ratio guarantee and demonstrate its energy efficiency by

simulation in the next section.

/* Step 3: On-line voltage scheduling. */

1. t = current time when vertex vi is ready for processing;

2. scale voltage such that the fixed workload tis can be completed by time Di;

3. execute task vi to its completion;

4. if the completion occurs later than Di

5. report failure; break and wait for the next iteration;

Figure 3.3: On-line scheduling policy for algorithm QGEM.

3.4 Simulation Results

In this section we present the simulation results to verify the efficacy of our pro-

posed approaches. We have implemented the proposed algorithms and simulated

them over a variety of real-life and random benchmark graphs. Some task graphs,

such as FFT(Fast Fourier Transform), Laplace(Laplace transform) and karp10

(Karplus-Strong music synthesis algorithm with 10 voices), are extracted from

popular DSP applications. The others are generated by using TGFF [30], which

is a randomized task graph generator. We assume that there are a set of homo-

geneous processors available. However, our approaches are general enough to be

applied to embedded systems with heterogeneous multiprocessors.

Before we apply our approaches to the benchmark graphs, we need to schedule

50

all of tasks to available processors based on the performance such as latency. Here

we use the dynamic level scheduling (DLS) [119] method to schedule the tasks,

however, our techniques could be used with any alternative static scheduling strat-

egy. The DLS method accounts for interprocessor communication overhead when

mapping precedence graphs onto multiple processors in order to achieve the la-

tency from the source to the sink as small as possible. We apply this method to

the benchmarks and obtain the scheduling results which include the task execution

order in each processor and interprocessor communication links and costs. Fur-

thermore, we assume that the interprocessor communication is full-duplex and the

intraprocessor data communication cost can be neglected.

After we obtain the results from DLS, we apply the proposed algorithms to

them. There are several objectives for our experiments. First, we want to compare

the energy consumption by using different algorithms under same deadline and

completion ratio requirements. Secondly, we want to investigate the impact of

completion ratio requirement and deadline requirement to the energy consumption

of the proposed approaches. Finally, we want to study the energy efficiency of our

algorithms with different number of processors.

We set up our experiments in the following way. For each task, there are three

possible execution time, e0 < e1 < e2, that occur at the following corresponding

probabilities p0 >> p1 > p2 respectively. All processors support real time voltage

scheduling and power management (such as shut down) mechanism. Four different

voltage levels, 3.3V, 2.6V, 1.9V, and 1.2V are available with threshold voltage

0.5V. For each pair of deadline D and completion ratio Q0, we simulate 1,000,000

iterations for each benchmark by using each algorithm. Because näıve, BEEM1

and BEEM2 all provide the highest possible completion ratio that is higher than

51

the required Q0, in order to reduce the energy, we take 100 iterations as a group

and stop execution once 100Q0 iterations in the same group have been completed.

Table 3.3 reports the average energy consumption per iteration by different

algorithms on each benchmark with deadline constraint D and completion ratio

constraint Q0(0.900). From the table we can see that both BEEM1 and BEEM2

provide the same completion ratio with an average of nearly 29% and 26% energy

saving over näıve. Compared with BEEM2, BEEM1 saves more energy because it

assumes that the actual execution time can be known a priori. However, without

this assumption the QGEM approach can still save more energy than BEEM2 in

most benchmarks. Specifically, it provides 36% and 12% energy saving over näıve

and BEEM2 and achieves 0.9111 average completion ratio which is higher than

the required completion ratio 0.9000. It is mentioned that for FFT2 benchmark,

QGEM has negative energy saving compared to BEEM2 because the deadline D

is so long that BEEM2 can scale down the voltage to execute most of the tasks

and save energy.

Fig. 3.4 depicts the completion ratio requirement’s impact to energy efficiency

of different algorithms with same deadline D(9705). We can see that with the

decrement of Q0, the energy consumption of each algorithm is decreased. However,

different from näıve, BEEM1 and BEEM2, the energy consumption of QGEM

doesn’t change dramatically. Therefore, although under high completion ratio

requirement (Q0 >0.75 in Fig. 3.4), using QGEM consumes the least energy, it

may consume more energy than BEEM1, BEEM2 even näıve when Q0 is low.

The deadline requirement’s impact to the energy consumption is shown in Fig.

3.5 with the same Q0(0.900). Because the näıve approach operates at the highest

voltage till the required Q0 is reached, when the highest possible completion ratio

52

Table 3.3: Average energy consumption per iteration by näıve, BEEM1, BEEM2

and QGEM to achieve Q0 = 0.900 with deadline constraints D. (n: number of

vertices in the benchmark task graph; m: number of processors; Q: the actual

completion ratio achieved by QGEM without forcing the processors stop at Q0;

energy is in the unit of the dissipation in one CPU unit at the reference voltage

3.3V.)

näıve BEEM1 BEEM2 QGEM

No. saving saving saving saving

Bench- n m
IPCs

D
energy vs. vs. vs. vs. Q

mark
näıve näıve näıve BEEM2

FFT1 28 2 15 1275 1040 6.78% 6.07% 35.71% 31.56% 0.9118

FFT2 28 2 16 2445 2122 18.15% 18.15% 15.96% -2.67% 0.9104

Laplace 16 2 13 2550 1800 42.75% 32.63% 45.12% 18.53% 0.9232

karp10 21 2 12 993 593 23.44% 15.84% 50.54% 41.23% 0.9392

TGFF1 39 2 20 4956 4438 33.98% 30.75% 38.94% 11.82% 0.9090

TGFF2 51 3 36 4449 6103 34.20% 31.27% 34.36% 4.49% 0.9185

TGFF3 60 3 51 5487 8541 29.73% 27.01% 33.13% 8.39% 0.9034

TGFF4 74 2 49 9216 8839 32.08% 30.68% 38.67% 11.53% 0.9109

TGFF5 84 3 74 6990 11138 29.38% 27.85% 34.56% 9.31% 0.9065

TGFF6 91 2 59 11631 10799 33.23% 32.25% 41.16% 13.16% 0.9057

TGFF7 107 3 89 9129 13608 31.15% 29.71% 36.23% 9.28% 0.9027

TGFF8 117 3 111 9705 15674 28.30% 27.07% 34.51% 10.21% 0.9074

TGFF9 131 2 85 15225 15166 31.00% 30.31% 37.81% 10.77% 0.9084

TGFF10 147 4 163 10124 21926 30.09% 29.04% 31.69% 3.71% 0.9029

TGFF11 163 3 159 13068 22984 25.61% 24.95% 31.76% 9.08% 0.9100

TGFF12 174 4 169 12183 25220 29.89% 29.08% 33.35% 6.02% 0.9074

average 28.73% 26.42% 35.84% 12.28% 0.9111

53

0.450.50.550.60.650.70.750.80.850.9
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

Completion ratio requirement

En
er

gy
 co

ns
um

pt
ion

 p
er

 ite
ra

tio
n

Naive approach with shut−down
BEEM 1 with shut−down
BEEM 2 with shut−down
QGEM

Figure 3.4: Different completion ratio requirement’s impact to the average energy

consumption per iteration on benchmark TGFF8 with 3 processors.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

x 10
4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

Iteration deadline requirement(sample period)

En
er

gy
 co

ns
um

pt
ion

 p
er

 ite
ra

tio
n Naive approach with shut−down

BEEM 1 with shut−down
BEEM 2 with shut−down
QGEM

Figure 3.5: Different deadline requirement’s impact to the average energy con-

sumption per iteration on benchmark TGFF8 with 3 processors.

54

of the system is close to 1, its energy consumption keeps constant regardless of the

change of the deadline D. However in BEEM1 and BEEM2, the latest completion

time T v
l and the earliest completion time T v

e for each vertex v depend on D(see

Equations (3.3)-(3.5)), and the energy consumption will be reduced dramatically

with the increment of D. For QGEM, the increment of deadline also has positive

effect on the energy saving while it is not as dramatic as it does to BEEM1 and

BEEM2. Similar to the completion ratio requirement’s impact, we conclude that

QGEM consumes less energy than BEEM1 and BEEM2 in the short deadline

(with the condition that Q0 is achievable), while consuming more energy when the

deadline is long.

From Table 3.3 and Fig. 3.4-3.5, we can conclude that QGEM save more

energy than BEEM1 and BEEM2 when Q0 is high and D is not too long. Actually

this conclusion is valid regardless of the number of multiple processors. Fig. 3.6

shows the energy consumption of different algorithms under different deadlines and

different number of processors. With the increment of the number of processors,

its latency will be reduced. So for the same deadline(e.g., 7275), it is not relatively

long and QGEM saves more energy than BEEM1 and BEEM2 for the system with

small number of processors (e.g., 4 processors), however, for the system with large

number of processors(e.g., >5 processors), QGEM will consume more energy than

BEEM1 and BEEM2.

3.5 Conclusions

Many embedded applications, such as multimedia and DSP applications, have

high performance requirement yet are able to tolerate certain level of execution

failures. We investigate how to trade this tolerance for energy efficiency, another

55

2 3 4 5 6 7 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

Number of processors

En
er

gy
 co

ns
um

pt
ion

 p
er

 ite
ra

tio
n

13525

7275 5925
4725

Naive approach with shut−down
BEEM 1 with shut−down
BEEM 2 with shut−down
QGEM

Figure 3.6: The average energy consumption per iteration on benchmark TGFF8

with different number of processors and different deadlines(13525, 7275, 5925 and

4725).

increasingly important concern in the implementation of embedded systems. In

particular, we consider systems with multiple supply voltages that enable dynamic

voltage scaling, arguably the most effective energy reduction technique. We present

several on-line scheduling algorithms that scale operating voltage based on some

parameters pre-determined offline. All the algorithms have low run-time complex-

ity yet achieve significant energy saving while providing the required performance,

measured by the completion ratio.

56

Chapter 4

Voltage Set-up Problem on

Embedded Systems with Multiple

Voltages

4.1 Introduction

Energy consumption has become a major design issue for modern embedded sys-

tems especially battery-operated portable devices. The aggressive push for low-

power design has prompted the International Technology Roadmap for Semicon-

ductors (ITRS) to predict that the future system will feature multiple supply

voltages (Vdd), and multiple threshold voltages (Vth), on the same chip [2]. Al-

though leakage power, which can be reduced from multiple Vth, becomes more

significant in such systems, dynamic power still dominates in designs with the

current technology such as most DSP systems. Dynamic voltage scaling (DVS)

technique varies the clock frequency and supply voltage according to workload at

run time to save energy. It achieves the highest energy efficiency for time-varying

57

computational loads if voltage can be varied arbitrarily [18, 100]. However, phys-

ical constraints of CMOS circuit limit the applicability of having voltage varying

continuously. Instead, it is more practical to make multiple discrete voltages si-

multaneously available for the system. Transmeta’s Crusoe [35], AMD’s Athlon 4

[4], Intel’s XScale [55], and some DSPs developed in Bell Labs are all examples of

advanced high-performance microprocessors that support voltage scaling for low

power.

Most existing work on multiple voltage DVS systems assumes that the voltage

set-up, which includes the number of voltage levels and the voltage value at each

level, are given a priori and focuses on developing the voltage scheduling algo-

rithms to minimize system’s energy consumption [56, 70, 103, 105, 125]. However,

for multiple voltage DVS systems, the energy consumption depends on not only the

scheduler but also the voltage set-up. To the best of our knowledge, how to set up

the voltages has been discussed in the following contexts: Chen and Sarrafzadeh

[26, 27] studied the power minimization problem on dual-voltage system at gate

level, where 5.0V was used as the high voltage and different voltages from 2.0V

to 4.2V were used as the low voltage. They suggested that the voltages should be

chosen carefully based on the slack distribution of the circuits. Qu and Potkon-

jak [103] gave analytical solutions on how to build energy efficient communication

pipelines under latency constraints by voltage scaling and careful packet fragmen-

tation, where each pipeline stage receives one fixed voltage. Dhar and Maksimovic

[29] considered the design of finite impulse response filters and applied Lagrangian

method to find the 2N+1 voltages for power minimization, where N is the order

of the filter.

In this chapter, we consider the following voltage set-up problem at the appli-

58

cation level: how to determine the number of voltages and each voltage value on

a multiple-voltage application specific DVS system such that the system’s energy

consumption is minimized? The differences between our work and the ones men-

tioned above are: 1) we do voltage scaling at the application level, not the gate

level, 2) we determine the voltage values for any number of voltages, not only for

dual-voltage or levels tightly bounded to the applications, and 3) we also find the

best number of voltage levels.

We first use an example to show multiple-voltage system’s energy efficiency and

the importance of the voltage set-up. Suppose that a system periodically executes

one application with period equals to 8. The application’s possible execution times,

at the reference voltage 3.3V, are 6, 4, 3, and 2 that occur with probabilities 0.05,

0.20, 0.45, and 0.30 respectively. The application has a deadline that equals to

its period. We normalize the average energy consumption per iteration at fixed

supply voltage 3.3V and threshold voltage Vth = 0.5V to be 1. As the worst case

execution time (WCET) is 6 that is less than the deadline 8, we can reduce the

voltage to 2.7V to utilize the slack and this best fixed voltage system consumes

only 67% of the amount consumed by the same system running at 3.3V as shown in

Table 4.1. The rest of the table gives the average energy consumption per iteration

by various dual-voltage systems. We compute such system’s energy consumption

by the optimal voltage scaling strategy reported in [56] and [100].

From Table 4.1, we have the following findings:

• Multiple-voltage systems in general save more energy over fixed-voltage sys-

tems. For example, the voltage set-ups (Vhigh=3.0V, Vlow=2.0V) and (Vhigh=

2.7V, Vlow=1.8V) save more than 35% and 43% energy respectively over the

best fixed-voltage system with the lowest voltage 2.7V without any deadline

59

Table 4.1: The average energy consumption per iteration of dual-voltage system
with different voltage set-ups.

Set-up 1 2 3 4 5 6

Vhigh 3.3 2.7 3.3 3.0 3.0 2.7

Vlow – – 1.0 1.0 2.0 1.8

Energy 1 0.67 0.83 0.70 0.43 0.38

missing.

• Different voltage set-ups result in significantly different energy reduction as

we can see from the last four columns. Moreover, if not set properly, set-

ups 3 (Vhigh=3.3V, Vlow=1.0V) and 4 (Vhigh=3.0V, Vlow=1.0V) for example,

the multiple-voltage system may consume more energy than the best fixed-

voltage system!

We formulate and provide practical solutions to the voltage set-up problem

that seeks the most energy efficient voltage setting for the design of multiple-

voltage DVS systems. This work is a novel extension under the DVS research

framework. Our main contributions include: (1) analytical solutions and a linear

search algorithm for dual-voltage DVS systems; and (2) an iterative approach and

an approximation method for the general multiple-voltage DVS systems. These

results can be used to guide system design as we show by simulation. Surprisingly,

our results show that the 3- or 4-voltage system can actually be (almost) as energy-

efficient as the ideal system that varies voltage arbitrarily.

The remainder of this chapter is organized as follows. In the next section, we

formulate the voltage set-up problem and present the solutions in Section 4.2 and

Section 4.3 respectively. Validation of our solutions and experimental results are

60

reported in Section 4.4. We give the conclusion in Section 4.5.

4.2 The Voltage Set-up Problem

We consider the design of an embedded system to perform a set of applications (or

a single application with uncertainties in execution time). The system supports

DVS for energy minimization. In this section, we first introduce the application

model and multiple-voltage DVS system model, then we propose the voltage set-up

problem.

4.2.1 Application Model

Each application has a (or a set of) specific amount of computation requirement

[90], or equivalently, a certain amount of CPU time to complete the computation

before a deadline constraint. This situation occurs in systems (such as DSP sys-

tems) that run a single application characterized by the repetitive processing on

periodically arriving input samples and each iteration must be completed during

its period. It may also happen in systems that assign a fixed amount of time to

each of the applications. Another example is an event-triggered system, in which

the application requests arrive with a fixed deadline and the time between any

two consecutive requests is not less than the deadline. For such system, there is

typically one application at a time and the system executes the computation in

the non-preemptive way.

Note that an application’s execution time can vary dramatically due to a num-

ber of factors such as data locality and correlation, I/D cache misses, or pipeline

stalls etc. However, it is possible to obtain the application execution time distri-

61

bution from system’s detailed timing information or from simulation on the target

hardware [122]. For example, input sample statistics and throughput constraints

can be used to model the execution time distribution for many DSP applications

such as MPEG decoding. We adopt the assumption in [21] that the real execution

time can be known a priori, which is possible particularly in application specific

DSP systems. We also assume that the applications are characterized by triples

< ei, di, pi > (i = 1, 2, · · · , n), where ei is the execution time, di is the deadline, and

pi is the probability that the system executes the application. We mention that

ei’s can be the execution times for different applications or the different execution

times for the same application.

4.2.2 Multiple-Voltage DVS System Model

We assume that the target multiple-voltage DVS system has m levels of supply

voltage (V1 < V2 < · · · < Vm) and supports the system shut-down mechanism for

energy efficiency. Unlike the DVS system that uses voltage converter to control

the operating voltage at run-time [18], our system has all the m voltages physically

implemented on the chip, for example by using m standard voltage regulators each

of which regulates a specific voltage Vi for a given clock frequency. In this way,

the operating system can control the clock frequency at run time by writing to

a register in the system control state exactly the way as in [18] except that the

system does not need to wait for the voltage converter to stably generate the desired

operating voltage. Furthermore, for the execution of each iteration, we will use

no more than two different voltages [56]. In sum, we can assume that the system

can instantaneously switch its operating voltage from one level to another with

very small switching time/energy overhead. There exist hardware overhead, such

62

as the power dissipation on the voltage regulators, to support multiple voltages.

However, this is a constant overhead independent of how we set up the m voltage

levels.

We adopt the following relationships among the multiple-voltage system’s volt-

age, delay, power and energy consumption: suppose that at the reference (high-

est) supply voltage Vdd(ref) and threshold voltage Vth(ref), the processor’s power

dissipation is P (ref) and the execution time is T (ref) for a fixed amount of com-

putation, then at supply voltage Vdd and threshold voltage Vth, to accumulate the

same amount of computation, execution time T , power dissipation P , and energy

consumption E are given by [23]:

T =
Vdd

(Vdd − Vth)2

(Vdd(ref) − Vth(ref))2

Vdd(ref)
T (ref) (4.1)

P =
Vdd(Vdd − Vth)

2

Vdd(ref)(Vdd(ref) − Vth(ref))2
P (ref) (4.2)

E = P · T =
V 2

dd

Vdd(ref)2
P (ref)T (ref) (4.3)

Note that the voltage set-up problem exists regardless of how we model the

relationships among the system’s voltage, delay, power and energy consumption.

Our presented approaches to solve this problem is still valid for the other models

and similar results (but not exactly the same) can be expected.

Based on the above application and system models, we consider the following

voltage set-up problem. For a given set of applications characterized by triples

of < ei, di, pi > (i = 1, 2, · · · , n), determine each voltage level for a multiple-voltage

DVS system with m voltages (V1 < V2 < · · · < Vm) in order to minimize its

energy consumption without missing any deadline; and determine m, the number

of voltage levels, together with the value of each voltage to achieve the maximum

energy saving. The first part of the problem considers the case when the system

63

has a given number of voltages and seeks for the most energy efficient voltage

set-up. The second part takes into consideration the overhead to support multiple

voltages and questions both how many levels of voltage and what value of each

voltage level should be implemented on the multiple-voltage system.

4.3 Solving the Voltage Set-up Problem

In this section we first introduce three basic lemmas and then present the analytic

solution and an exact approach for the dual-voltage DVS system. We also propose

an iterative approach and a linear (to the number of voltages) approximation

method for solving the problem in the general case. Finally we discuss how to find

the best voltage set-up (both the number of voltage levels and the value of each

voltage) in order to achieve the maximum energy saving.

Suppose that the i-th application has deadline di and requests ei ≤ di as exe-

cution time under the reference voltage Vdd(ref). We define its ideal voltage V 0
i

to be the level at which the system will complete the workload ei at di with mini-

mum energy consumption [56]. From Equation (4.1), we can compute the value of

V 0
i (for a fixed threshold voltage) or determine the relationship between V 0

i and

its corresponding threshold voltage. Without loss of generality, we assume that

V 0
1 < V 0

2 < · · · < V 0
n are the ideal voltages for the n applications characterized by

< ei, di, pi > (i = 1, 2, · · · , n) and V1 < V2 < · · · < Vm are the m voltage levels to

be set up on the system. Any solution to the voltage set-up problem must satisfy

the following lemmas:

Lemma 4.1: Vm = V 0
n .

Proof: If Vm < V 0
n , the system will not be able to complete the n-th application

64

by its deadline.

If Vm > V 0
n , we consider a new voltage set-up where we replace Vm by V ′

m = V 0
n .

No deadline will be missed because V ′
m ≥ V 0

i . We only need to show that the new

voltage set-up reduces energy consumption. It is well-known (see [56] or [100]

for example) that on a multiple voltage system, the energy consumption for the

i-th application is minimized if we use only two voltages Vj and Vj+1, which are

immediate neighbors to V 0
i , such that Vj < V 0

i < Vj+1. Therefore, the new voltage

set-up will only affect the energy consumption for applications with ideal voltages

higher than Vm−1. For such applications, the original set-up uses voltages Vm−1

and Vm, while the new voltage set-up uses Vm−1 and V ′
m (< Vm). Due to the fact

that the power/energy consumption is a convex function of the supply voltage, the

energy consumption under the new voltage set-up will be less.

Lemma 4.2: V1 ≥ V 0
1 .

Proof: Similar to the proof of Lemma 4.1, if V1 < V 0
1 , we consider a new

voltage set-up where we replace V1 by V ′
1 = V 0

1 . The new voltage set-up will only

affect the energy consumption for applications with ideal voltages lower than V2.

For such applications, the energy consumption under the original voltage set-up

that uses voltages V1 and V2 is more than that under the new voltage set-up, which

uses V ′
1 (> V1) and V2. Therefore, setting up the lowest voltage V1 lower than the

lowest ideal voltage V 0
1 will not benefit any application.

Lemma 4.3: There exists at most one Vi ∈ (V 0
k−1, V

0
k] for any integer k > 1.

Proof: If there are two or more voltages in (V 0
k−1, V

0
k], we can replace them by

V 0
k−1 and V 0

k without changing others. Similar to the proof of Lemma 4.1, this will

result in more energy reduction.

65

Example: Suppose that an application has 5 possible execution times, corre-

sponding to 5 ideal voltages, 1.2V, 1.6V, 2.4V, 2.8V, and 3.2V. Lemma 4.1 says that

the highest voltage must be set at 3.2V; Lemma 4.2 implies that the lowest voltage

should not be lower than 1.2V; and Lemma 4.3 guarantees that any voltage set-up

that has two or more voltages fall in the interval of (1.2,1.6], (1.6,2.4],(2.4,2.8], or

(2.8,3.2] cannot be optimal. For example, none of the following set-ups is optimal:

{1.6, 3.3}, {1.2, 2.4, 3.0}, {1.1, 2.4, 3.2}, {1.8, 2.0, 2.8, 3.2}.

These lemmas not only identify non-optimal voltage set-ups, they are also fun-

damental for our proposed solutions to the voltage set-up problem. In the rest

of this section, we first address the problem of how to set up m-voltage systems,

where m is given, for application(s) with n distinct possible execution times. Fig-

ure 4.1 gives the details on how we approach the problem. We then discuss how

to determine both the number of voltage levels m and the voltage of each level in

order to achieve the maximum energy saving.

Vn

0

V
0

n−1

Vm

Vm−1

m−2V

V
0

V1

V V2n

0

V1

V
0

n−1

V
0

n−2

V2

0

V1

0

V V23

0

V
0

2

V
0

1
V

0

1

2

V

V1

Vn−2

0

(I) m=2, n=3 (II) m=2, n>3 (III) n>m>2

VV

Figure 4.1: Summary of voltage set-up solutions for m-voltage system with n
applications. (V 0

i is the ideal voltage for i-th application, V 0
1 ≤ V 0

2 ≤ · · · ≤ V 0
n ; Vj

is the j-th supply voltage and V1 < V2 < · · · < Vm.)

66

4.3.1 Case I: Dual Voltages Three Applications (m=2 and

n=3)

We consider a dual-voltage system (m=2) with three applications (n=3). For

simplicity, we assume that each application has one fixed execution time. (This

does not lose the generality because one can treat an application with k different

possible execution times as k applications.) Clearly, this is the simplest non-trivial

case because one can simply use all the ideal voltages if m ≥ n.

Let V1 < V2 be the system’s two voltages and V 0
1 ≤ V 0

2 ≤ V 0
3 be the ideal

voltages for three applications characterized by < e1, d1, p1 >, < e2, d2, p2 >, and <

e3, d3, p3 >. From the above lemmas, we know that V2 = V 0
3 and V1 ∈ [V 0

1 , V 0
2]

(because V2 ∈ (V 0
2 , V 0

3]). Under such voltage set-up,

• The third application will be executed at V2 and completed at its deadline

d3;

• For the second application, the system runs at the lower voltage V1 for a

certain amount of time to save energy before speeds up to V2 to meet its deadline

d2;

• The first application will be executed at V1 till its completion.

Therefore, the system’s expected energy consumption can be expressed as:

E =
P (ref)

Vdd(ref)2
[p3V

2
2 e3 + p2(V

2
2 (e2 − t2) + V 2

1 t2) + p1V
2
1 e1] (4.4)

where t2 satisfies

V2

(V2 − Vth2)2

(Vdd(ref) − Vth(ref))2

Vdd(ref)
(e2 − t2)

+
V1

(V1 − Vth1)2

(Vdd(ref) − Vth(ref))2

Vdd(ref)
t2 = d2 (4.5)

The physical meaning of t2 is as follows. Suppose that W is the portion of the

67

workload from the second application being executed at voltage V1. t2 is the time

required to complete the same workload W at the reference voltage.

If V1 and V2 are associated with different threshold voltages Vth1 and Vth2,

we can prove that analytical solutions do not exist and the problem can only

be solved numerically. However, if the threshold voltage remains the same, i.e.

Vth1 = Vth2 = Vth, we can apply the first order condition and conclude that energy

consumption (4.4) is minimized only if V1 is the solution to the following equation:

(−2V2p2d2p + 2V 2
2 p1e1)V

3
1 + [(2V2Vth − V 2

2 + 3V 2
th)p2d2p − 4V2V

2
thp1e1]V

2
1

+[(−4V 3
th + 2V2V

2
th)p2d2p + 2V 4

thp1e1]V1 + p2d2pV
2
th(V2 − Vth)

2 = 0 (4.6)

where

d2p =
d2(V2 − Vth)

2Vdd(ref)

(Vdd(ref) − Vth)2
− V2e2 (4.7)

The cubic equation (4.6) can be solved analytically and we conclude

Theorem 4.1. Analytical optimal solution exists for Case I with fixed thresh-

old voltage.

4.3.2 Case II: Dual Voltages Multiple Applications (m=2

and n>3)

In this case, we know that V2 = V 0
n and V1 ∈ [V 0

1 , V 0
n−1] .

• The n-th application will be executed at V2 to its completion;

• For applications with ideal voltages larger than V1, both voltages will be used

to meet the deadlines and save energy;

• For applications with ideal voltages less than V1, only V1 will be used as it is

sufficiently fast to finish these applications earlier than their deadlines.

68

We seek for V1 that minimizes the total energy consumption and meets all

applications’ deadlines. These two conditions can be expressed as:

E =
n

∑

i=1

P (ref)pi

Vdd(ref)2
[V 2

2 (ei − ti) + V 2
1 ti] (4.8)

V2

(V2 − Vth2)2

(Vdd(ref) − Vth(ref))2

Vdd(ref)
(ei − ti)+

V1

(V1 − Vth1)2

(Vdd(ref) − Vth(ref))2

Vdd(ref)
ti ≤ di (4.9)

where ti is defined the same as t2 in equation (4.4).

These conditions are similar to equations (4.4) and (4.5) in Case I except that

(4.9) imposes a set of nonlinear inequality constraints. It is well-known in the

context of nonlinear programming that this makes the problem difficult to solve

[14].

Figure 4.2 depicts an optimal algorithm with linear complexity, O(n), for the

problem in this case. Assuming that V1 ∈ [V 0
k−1, V

0
k], we can remove the inequality

constraints in (4.9). Specifically, for applications k, · · · , n, deadlines will be met

exactly for energy reduction (step 4); for the other applications, their deadlines

will be satisfied automatically because V1 is higher than their ideal voltages (step

5). Now this becomes the same problem as Case I and we can apply Theorem 4.1

to solve it optimally (step 6). Voltage V1 that satisfies (4.8) and (4.9) must be in

one of the above intervals, and we will find it when we visit that interval in step 3.

4.3.3 Case III: Multiple Voltages Multiple Applications

(m>2)

Even when there are more than two voltages available, the system will still use at

most two voltages to execute each application [56]. Define δij = 1 if voltage Vj is

69

Input: n applications {< ei, di, pi >: i = 1, 2, · · · , n} with their corresponding

ideal voltages V 0
1 ≤ V 0

2 ≤ · · · ≤ V 0
n .

Output: V1 and V2 that minimize (4.8) and satisfy (4.9).

Algorithm:

1. V2 = V 0
n ;

2. for each k = 2, 3, · · · , n − 1

3. { assume V1 ∈ [V 0
k−1, V

0
k];

4. replace “ ≤ ” by “ = ” for i = k, k + 1, · · · , n in (4.9);

5. delete the rest of the inequalities in (4.9);

6. solve the problem as in Case I;

7. let V1,k be the voltage and Ek be the energy;

8. }

9. report the voltage V1,k that has the least Ek as V1.

Figure 4.2: Voltage set-up algorithm for the case of m=2, n ≥ 3.

used during the execution of the i-th application and δij = 0 otherwise. Similar to

t2 defined in equation (4.5), define tij be the required execution time of the i-th

application under the reference voltage to finish the same portion of computation

that is done with Vj. We then can formulate this general voltage set-up problem

as a nonlinear programming problem in Figure 4.3.

As analytic solutions for this general case do not exist, numerical approaches

can be used to exhaustively search for the solution to this nonlinear programming

problem. We can further speed up the search process by eliminating all the voltage

set-ups that have two or more voltages between two consecutive ideal voltages

(Lemma 4.3). However, this exhaustive search will still be expensive particularly

70

Find V1, V2, · · · , Vm

Minimize E = P (ref)
Vdd(ref)2

n
∑

i=1
pi

m
∑

j=1
V 2

j δijtij (4.10)

Subject to tij ≥ 0,

Vj > 0,
m
∑

j=1
δij ≤ 2, δij is 0 or 1,

m
∑

j=1
tij = ei,

m
∑

j=1

Vj

(Vj−Vthj)2
(Vdd(ref)−Vth(ref))2

Vdd(ref)
tij ≤ di.

Figure 4.3: General voltage set-up problem as a nonlinear programming problem

for the case of m > 2.

when m is large. We thus propose two heuristics, an iterative approach and an

approximation method to efficiently search for the solution based on the convexity

of the energy function.

An Iterative Approach:

• Start with the single voltage system with voltage V1,1 = V 0
n , at which the

system has the least energy consumption;

• Apply the algorithm in Figure 4.2 to solve for V2,1 and V2,2, the best voltage

set-up for dual-voltage system;

• For k-voltage (k≥3) systems repetitively do the following: let Vk,k = Vk−1,k−1,

search Vk,i between Vk−1,i−1 and Vk−1,i for the most energy efficient set-up such that

V 0
1 ≤ Vk,1 ≤ Vk−1,1 ≤ Vk,2 ≤ Vk−1,2 ≤ · · · ≤ Vk,k−1 ≤ Vk−1,k−1 = Vk,k = V 0

n .

Note that if we know the energy overhead Ek to support k voltages on the

system, we can add it to the energy consumption of the best k-voltage system and

determine how many voltages we should implement on the system.

71

An Approximation Method:

• Start with a random m-voltage set-up;

• Fix the (m-1) high voltages and compute the lowest voltage V1 by a procedure

similar to the algorithm in Figure 4.2;

• Determine V2 by fixing the obtained V1 and the other (m-2) high voltages;

• Continue till after we update the value of Vm−1, the second highest voltage;

(This is one round of updating.)

• If there is energy improvement, go back to the second step with this new

obtained voltage set-up;

• Report the optimal voltage set-up.

This method is based on the convexity of the energy function. Although we

cannot guarantee how many rounds we need to update the voltage set-ups to

reach the optimal values, simulation shows that the voltage set-up converges to

the optimal solution (calculated by numerical method) after 2 ∼ 3 rounds.

Finally, we mention that these two techniques and Lemmas 1∼3 can be com-

bined together to solve the problem efficiently.

4.3.4 Finding the Best Voltage Set-up

Once m, the number of voltages on the system, is fixed, we now know how to

find the most energy-efficient voltage set-up from the above discussion. The corre-

sponding average energy consumption per execution can be conveniently obtained

from Equation (4.10). If we ignore the hardware overhead (e.g., the area and power

on the voltage regulators or DC-DC converters) to support multiple levels of volt-

ages, then clearly the more voltages we have, the less energy will be consumed.

A simple reason is that m-voltage systems can also be treated as (m+1)-voltage

72

systems where two of the (m+1) voltages have the same value.

E > E th,mm+1− Em

m=1, E1

Voltage setting for m+1
levels and calculating E

m <− m +1

Yes

 m+1

?

Output m and
voltage setting

No

Figure 4.4: Flow to find the best voltage set-up.

However, supporting multiple voltages on the same system does require addi-

tional hardware and will cause area, delay, and also power penalties. It becomes

important to investigate the trade-off between more voltage levels and the over-

head they introduce. Figure 4.4 shows a scheme on how to find the best voltage

set-up, i.e. the optimal number of voltage levels and the value of each level, to

minimize the energy consumption, assuming that there is a threshold energy cost

Eth,m. If the energy saving by including the (m+1)st voltage, Em−Em+1, is higher

than this threshold Eth,m, then (m+1)-voltage system is more energy efficient than

any m-voltage systems. Otherwise, it is not worth going to (m+1) voltages and

we report the best m-voltage set-up as the overall optimal solution. The threshold

energy cost Eth,m can be measured by the additional hardware cost to have (m+1)

voltages over m voltages that can be obtained empirically. We mention that in

general this threshold energy cost increases as one attempts to implement more

and more different voltages on the same system.

73

4.4 Simulation Results

There are two goals in our simulation: demonstrating the importance of voltage

set-up problem and validating our proposed approaches. We formulate the voltage

set-up problem in two occasions based on a set of randomly generated applications

and the MPEG video encoder. The problems are then solved both analytically and

numerically by using our approaches. Finally we compare the energy consumption

under different voltage set-ups obtained by using exhaustive simulation in Matlab

in order to test the correctness of the results and the effectiveness of our proposed

methods. Note in this section the energy is in the unit of dissipation in one CPU

unit at the reference voltage 3.3V.

Table 4.2 describes the two randomly generated abstract applications with their

deadlines, execution time distributions, and ideal voltages computed from Equation

(4.1). Figure 4.5 depicts the flow of MPEG encoding process as a set of subtasks.

Next to each subtask, its <execution time Texec, deadline, probability> triple is

reported [59].

For each example, we apply the proposed approaches to find the best voltage

set-ups for dual-voltage, 3-voltage, and 4-voltage DVS systems as reported in Table

4.3. The dual-voltage case is solved by the algorithm in Figure 4.2. 3-voltage and

4-voltage solutions are obtained by the approximation method. We also list the

energy consumption of the best fixed-voltage system and the ideal DVS system

in the table for comparison. Note that the energy consumption of the ideal DVS

system, where we have the ideal voltage for each possible execution time, is the

lower bound of the system energy consumption.

For the first example of two ad hoc applications, multiple-voltage DVS systems

save significant amount of energy over the fixed-voltage system. The saving is more

74

Table 4.2: Information on the two ad hoc applications.

Deadline Execution Time Probability Ideal Voltage
Application

di ei pi V 0
i

9 0.03 3.0564

A 10 4 0.18 1.8124

3 0.39 1.5516

6 0.04 2.6888

4 0.10 2.0669
B 8

3 0.12 1.7479

2 0.14 1.4176

source

 vle
and compensation
motion estimation dct quant

(2) frame
 processing(1) frame

processing

idct

iquant

sink

Texec Deadline Prob.

(20, 24, 1.0) (30, 36, 1.0) (10, 12, 1.0)

(10, 12, 1.0)

(30, 36, 1.0)

 0 96 0.08

Texec Deadline Prob.

 70 96 0.28
 80 96 0.55

 20 240 0.1

 60 96 0.09 50 240 0.5
 100 240 0.3
 200 240 0.1

(30, 36, 1.0)

Figure 4.5: MPEG video encoder execution time distributions and corresponding

deadlines in 104 cycles (redrawn from [59]). The lower left table is related to motion

estimation and compensation; the lower right table is related to vle (variable length

encoding).

75

Table 4.3: The optimal voltage set-ups and their corresponding average energy

consumption per execution. (In the parenthesis of energy columns, ”-” is the energy

saving over the fixed voltage system, ”+” is the ”wasted” energy comparing to the

ideal voltage system.)

DVS 2-Application MPEG Encoder

Systems Voltages Energy Voltages Energy

fixed- 2.9536 26.7125

voltage
3.0564

(+151.1%)
2.8934

(+20.1%)

1.3833 23.1478
dual- 3.0564

(-53.2%)
2.8934

(-13.3%)
voltage 1.8124

(+17.6%)
1.8511

(+4.0%)

3.0564 1.2337 2.8934 22.4958

3-voltage 2.0688 (-58.2%) 1.8558 (-15.8%)

1.5514 (+4.9%) 1.3031 (+1.1%)

3.0564 2.8934

2.0768
1.2071

2.6374
22.3020

4-voltage
1.8119

(-59.1%)
1.8554

(-16.5%)

1.5509
(+2.6%)

1.3031
(+0.2%)

ideal – 1.1763 – 22.2506

than 53% when we carefully choose the second voltage on the dual-voltage system.

With the addition of the third and fourth voltages, we see the continuous increase

in energy reduction. (We did not consider the hardware overhead to support these

new voltage levels. However, once such overhead is measured, we can easily tell

whether the energy reduction is sufficient to cancel this overhead and decide how

many levels of voltage should be implemented on the system.) Finally, we mention

that, comparing to the lower bound in the ideal system, the best fixed-voltage set-

up consumes more than 151% additional energy. But this ”wasted” energy drops

76

to 17.6%, 4.9%, and 2.6% for the dual-, 3-, and 4-voltage system respectively. It

indicates the effectiveness of multiple-voltage DVS system’s energy saving, which

is very close to maximal energy saving by DVS when the number of voltage levels

is large enough.

We have similar observations from the MPEG encoder example except that the

energy saving (over the fixed-voltage system) is much lower, albeit a notable 13%.

This is because that majority of the energy is consumed on the deterministic sub-

tasks. However, multiple-voltage systems again successfully reduced the ”wasted”

energy from more than 20% (for fixed voltage) to 4.0%, 1.1%, and 0.2%.

To validate the correctness of our results, we use Matlab to simulate 100,000

iterations of each application under different voltage set-ups for dual-, 3-, and 4-

voltage systems. In all the cases, this exhaustive search finds the same solution,

within the precision of voltage increment 0.01V we set, as we reported in Table

4.3 by our methods. Figures 4.6 and 4.7 illustrate this for the dual-voltage system

where the energy is in the unit of dissipation in one CPU unit at 3.3V. We set the

high voltage V2 to go from V 0
n (3.0564V in Figure 4.6 and 2.8934V in Figure 4.7)

to the reference voltage 3.3V, and the low voltage V1 to go from 1.0V to 3.3V, both

with an increment of 0.01V. In both figures, we see that the energy consumption

is minimized at the same set-up as we obtained theoretically.

4.5 Conclusions

In this chapter, we consider the voltage set-up problem for application specific

multiple-voltage DVS system design. The problem seeks to determine the number

of voltage levels and the voltage at each level to minimize the average energy

consumption for a given set of applications. We give optimal solutions in analytic

77

3.05

3.1

3.15

3.2

3.25

3.3

1
1.5

2
2.5

3
3.5

1

1.5

2

2.5

3

3.5

Voltage V2 (v)
Voltage V1 (v)

E
ne

rg
y

co
ns

um
pt

io
n

pe
r e

xe
cu

tio
n

Figure 4.6: Dual-voltage system’s average energy consumption for the two ad hoc

applications with different voltage set-ups.

2.8

2.9

3

3.1

3.2

3.3

1

1.5

2

2.5

3

3.5
22

24

26

28

30

32

34

Voltage V2 (v)Voltage V1 (v)

E
ne

rg
y

co
ns

um
pt

io
n

pe
r e

xe
cu

tio
n

Figure 4.7: Dual-voltage system’s average energy consumption for the MPEG en-

coder with different voltage set-ups.

78

form for the dual-voltage system and develop two heuristics (an iterative approach

and an approximation method) for the general case. The hardware overhead to

supply multiple voltages, once obtained, can be conveniently integrated into our

techniques to solve the voltage set-up problem. We apply our methods to the

designs of an ad hoc application specific system and the MPEG video encoder.

Simulation results show the correctness and efficiency of our approaches. We also

observe that multiple-voltage system, if the voltage levels are set properly, can

indeed achieve energy reduction very close to the full potential by DVS.

79

Chapter 5

Energy-Efficient Dual-Voltage

System with (m,k)-Firm

Guarantee – A Case Study

In Chapter 4, we have formulated the voltage set-up problem and presented the

practical solutions in order to achieve maximum energy saving of embedded sys-

tems. In this chapter, we conduct a case study. Specifically, we consider the low

power design of soft real-time embedded systems. The soft real-time feature is

captured by the (m,k)-firm deadline and the power/energy efficiency is achieved

by using the dual-supply-voltage system.

80

5.1 Introduction

5.1.1 Motivation

Unlike hard real-time systems where deadlines must be met at all cost to avoid

catastrophic consequences, soft real-time systems are characterized by their tol-

erance to occasional deadline misses. The targeted soft real-time applications,

such as multimedia and electronic games among others, are often characterized by

the repetitive process on periodically arriving inputs like voice samples or video

frames, with their soft deadlines determined by the sample periods. The toler-

ance to deadline misses in these applications is largely due to the imperfect human

visual/auditory systems.

Although the tolerance to deadline misses has been traditionally expressed as

a maximum allowable loss percentage (or minimum completion ratio). A more

accurate model, (m,k)-firm deadline, has been proposed recently to capture the

timing constraint where at least m iterations in any window of k consecutive itera-

tions meet their deadlines [43]. A dynamic failure occurs if the (m,k)-firm deadline

is violated. Note that this not only gives a k−m
k

maximum loss rate, but also

ensures that the deadline misses are adequately spaced to be acceptable. When

m=k, the (m,k)-firm deadline becomes hard deadline. It has been shown to be

a better measurement for the quality of service (QoS) provided by soft real-time

systems [13, 43, 72, 110]. However, these studies focus on overloaded systems with

traditional optimization goals such as reducing the dynamic failure and averaging

response time.

Meanwhile, low energy consumption has emerged as one of the most impor-

tant design objectives for many real-time embedded systems particularly battery-

81

operated systems such as PDAs. Many energy-driven voltage scheduling algorithms

have been developed in the past to reduce system’s energy consumption while still

meeting the hard timing constraints [90, 98, 101, 105]. But only recently has the

energy reduction problem in soft real-time applications been discussed within the

context of completion ratio guarantee [53]. In this chapter, we investigate how

to leverage the (m,k)-firm deadline constraint to achieve energy efficiency on such

soft real-time embedded systems that are normally not overloaded.

5.1.2 Problem and Contributions

We consider serving multiple applications (or input streams) on a dual-voltage

system. Each stream consists of periodic real-time tasks with an (mi, ki)-firm

deadline. Each task has an unknown execution time which is less or equal to a

given worst case execution time (WCETi) and a deadline that equals to its period.

We seek to determine the most energy efficient dual-voltage system that provides

all the individual (mi, ki)-firm guarantees.

By the term most energy efficient, we refer to that the average energy consump-

tion per iteration, after a sufficiently large number of iterations, is minimized. The

solution to this problem includes the values of voltages Vlo and Vhi (the voltage

set-up problem), as well as an on-line scheduler that decides the voltage at which

each task should be executed (the voltage scheduling problem).

To the best of our knowledge, this is the first work on energy reduction using

dual supply voltages on soft real-time systems with (m,k)-firm deadlines. We

formulate and solve the voltage scheduling and set-up problem by proposing

1. an on-line greedy scheduler that is provably the most energy efficient for

dual-voltage system with (m,k)-firm guarantee;

82

2. a novel exact method that computes the average energy consumption per

iteration for any dual-voltage system; and

3. a numerical method that is several magnitude faster than a simulation-based

search, the only other way to solve the voltage set-up problem.

These results can be integrated into system design flow to implement energy effi-

cient dual-voltage systems with (m,k)-firm deadline guarantee for multiple periodic

streams.

5.1.3 A Motivational Example

It bas been long known that different voltage scheduling policies can result in

very different energy savings on dual-voltage systems [24, 26, 106]. The following

example shows the importance of the voltage set-up problem as being recognized

recently [49].

Table 5.1: Characteristics of the iterations and the processor. (a): each entry

shows execution time at V1 and the probability this execution time occurs at run

time. (b): power is normalized to the power at V1 and delay column gives the

normalized processing time to execute one iteration at different voltages.

case execution time distribution voltage power delay

I (2, 90%) (4, 9%) (8, 1%) V1 = 3.3V 1 1

II (2, 1%) (4, 90%) (8, 9%) V2 = 1.65V 0.125 2

III (2, 1%) (4, 1%) (8, 98%) V3 = 0.825V 0.016 4

(a) Application’s execution time information. (b) Processor’s parameters.

83

Consider a system iteratively executing a periodic application stream. The

application has a (1,2)-firm deadline and a period of 8. The possible execution

times of each iteration are 2, 4, and 8. We consider three cases, as illustrated in

Table 5.1(a), when the probabilities that those execution times occur are different.

We can integrate up to two voltages from the set of {3.3V, 1.65V, 0.825V} onto

the system. Table 5.1(b) gives the simplified power consumption and processing

speed of the system at different voltages.

Table 5.2: The average energy consumption per iteration for systems with different

voltage set-ups.

Case I Case II Case III

A: 3.3V 8 8 8

B: 3.3V + shut-down 4 4 4

C: (3.3V, 0.825V) 0.84 4.04 4.04

D: (3.3V, 1.65V) 1.07 1.58 4.46

Table 5.2 reports the average energy consumption per iteration on four systems

with different voltage set-ups. The “3.3V + shut down” system can also be treated

as a special case of dual-voltage system where the second voltage is zero for shut

down. System shut-down is not allowed for the other three settings. The energy

figures of the best setting for the three different cases are shown in bold. They

clearly indicate that voltage values must be selected carefully in order to achieve

the most energy saving.

84

5.1.4 Previous Work

The (m,k)-firm deadline model was first proposed by Hamdaoui and Ramanathan

for a more precise description of the maximum allowable deadline misses in over-

loaded soft real-time systems [43], where they developed a distance-based priority

assignment scheme to reduce the probability of dynamic failure. This scheme was

extended to deal with streams in networking traffic where messages traverse more

than one hop in reaching their destination [72]. Bernat and Burns integrated the

(m,k)-firm deadline constraint into dual priority scheduling to reduce the aver-

age response time of soft real-time tasks [13]. In [110], Ramanathan proposed a

scheduling approach that partitions the tasks into mandatory and optional and

provides deterministic (m,k)-firm guarantee to each task. Quan and Hu improved

such partitions to better exploit the (m,k) constraints in overloaded systems [104].

They also gave a sufficient condition for the schedulability of a task set with arbi-

trary (m,k)-patterns.

Low power design using multiple supply voltages has been studied extensively

in the past decade. Most work are on how to reduce power/energy consumption

without sacrificing system’s performance [24, 26, 49, 106]. Recently, there are

plenty of approaches on how to trade performance (or QoS in general) for energy

reduction. Qu and Potkonjak discussed how to partition the applications and al-

locate system resources to satisfy a given QoS requirement with minimum energy

consumption [101]. Mossé et al. considered power-aware scheduling techniques

at compiler and operating system levels for real-time applications [90]. Qiu et

al. proposed a framework for the power management with guaranteed QoS in a

distributed multimedia system [98]. Most recently, Hua et al. proposed schedul-

ing algorithms to minimize the system’s energy consumption while statistically

85

meeting the completion ratio requirements [53].

Dual-voltage (and multiple voltage) systems have received special attention for

practical reasons. There have been several reported studies on how to select the

voltage levels on such systems to achieve energy efficiency. Raje and Sarrafzadeh

[106] used dual-voltage (5.0V and 3.0V) and three-voltage (5.0V, 3.0V, and 2.4V)

in their experiments [106]. Chang and Pedram used four levels (5.0V, 3.3V, 2.4V,

and 1.5V) for no specific reasons [24]. Chen and Sarrafzadeh empirically studied

dual-voltage system with 5.0V as high voltage and low voltage goes from 2.0V to

4.2V [26]. Hua and Qu first formulated the voltage set-up problem and provide

analytic and numerical solutions with rather simplified assumptions [49].

5.1.5 Chapter Organization

The rest of the chapter is organized as follows. Section 5.2 presents our optimal

solution to the voltage scheduling problem, where we give the most energy efficient

on-line scheduler and analyze its competitive ratio. Section 5.3 focuses on our

analytic and practical approach to the voltage set-up problem. We report the

simulation results in Section 5.4 and conclude this chapter in Section 5.5.

5.2 Optimal On-Line Voltage Scheduling Policy

We only consider schedulers that meet the (m,k)-firm deadline. For a dual-voltage

system with voltages (Vlo, Vhi), we seek for an on-line scheduler that provides a

single stream’s (m,k)-firm guarantee with the least amount of (average) energy

consumption. We will show how our solution can be conveniently extended for

multiple periodic streams at the end of next section. We necessarily assume that Vhi

86

is sufficiently high to guarantee a completion even when WCET occurs. Otherwise,

if WCET happens k −m or more times in k consecutive iterations, the (m,k)-firm

deadline cannot be made.

Lemma 5.1. In any scheduler that minimizes the average energy consumption

with the (m,k)-firm guarantee, high voltage Vhi is used only when there are exactly

k − m execution failures in the previous k − 1 iterations.

[Proof:] We prove this by contradiction. Let S be a most energy-efficient sched-

uler and the i-th iteration be the first time that S uses Vhi but there are less than

k − m failures in the previous k − 1 iterations. We now construct another on-line

scheduler S ′ and show that it consumes less energy than S.

First, define S ′ be identical to S in the first i − 1 iterations but use the low

voltage Vlo for the i-th iteration. The voltage selection for iteration (i + 1) and

thereafter will be determined on the fly based on the execution status of the i-th

iteration as follows:

Case I. S ′ completes iteration i with low voltage Vlo. Then we simply let S ′

makes the same voltage selection as S. It will meet the (m,k)-firm deadline as long

as S does with less energy consumption because if running Vlo at the i-th iteration.

Case II. S ′ fails to complete iteration i with low voltage Vlo. Define S ′ be the

same as S for iterations i+1, i+2, · · · , j−1, j +1, j +2, · · ·, where j > i is the first

iteration that S fails. For iteration j, S ′ selects Vhi if j < i + k and Vlo otherwise.

It suffices to show that S ′ meets the (m,k)-firm deadline and consumes less energy

than S.

When j > i + k, the only difference between S ′ and S is that S ′ fails to

complete iteration i with Vlo but S completes it with Vhi. Clearly, S ′ is more

energy efficient. To show that S ′ meets the (m,k)-firm deadline, we observe that

87

the failure at iteration i may only affect whether the (m,k)-firm deadline is met for

any k consecutive iterations between i− k + 1 and i + k− 1. From the hypothesis,

S ′ (same as S) has less than k−m failures from i−k +1 to i−1, one more failure

at i, and the next failure won’t happen until iteration j > i + k. So there are

at most k − m failures between iterations i − k + 1 and i + k − 1, and hence the

(m,k)-firm deadline will not be violated.

When i < j < i+ k, S ′ will not violate the (m,k)-firm deadline before iteration

j for the same reason. Because S fails iteration j with Vlo and S ′ completes it with

Vhi, 1) from iteration i to i + k − 1, S ′ and S have the same number of failures; 2)

from iteration i + k to j + k − 1, S ′ has one failure less than S; 3) from iteration

j + k, the completion status of iteration j does not have any impact to the (m,k)-

firm deadline anymore. This means that S ′ makes the (m,k)-firm deadline as long

as S does. Recall that in this case, S ′ differs from S by using Vlo for iteration i and

Vhi for iteration j, therefore, they have the same energy consumption. We mention

that S ′ is statistically better because the failure at iteration i has less impact to

the future than a later failure at iteration j.

Figure 5.1 outlines the On-Line Greedy scheduler based on Lemma 5.1, where

we only need a counter n to track the number of execution failures in the previous

k − 1 iterations and make the voltage selection based on whether n has reached

the threshold k − m.

We now perform the competitive ratio analysis of the On-Line Greedy sched-

uler. For any fixed voltage pair (Vlo, Vhi), let Elo and Ehi be the average energy

consumption per iteration at voltages Vlo and Vhi respectively, and l be the ex-

pected number of completed iterations at Vlo in k consecutive iterations, we have

Theorem 5.1. On-Line Greedy is the most energy-efficient deterministic on-line

88

On-Line Greedy scheduler:

1. n = 0; /* initially no failure in the previous k − 1 iterations */

2. for (i = 1, 2, · · ·)

3. if (n < k − m)

4. use Vlo for the current iteration i;

5. if (the current iteration fails) n = n + 1;

6. else

7. use Vhi for the current iteration i;

8. if (iteration i − k + 1 was failed)

9. n = n − 1; /* the failure on iteration i − k + 1 will not

affect the (m,k)-firm deadline after iteration i */

Figure 5.1: The on-line greedy scheduler for (m,k)-firm guarantee.

scheduler that provides (m,k)-firm guarantee with a competitive ratio

1 +
m · (Ehi − Elo)

k · Elo

(if l ≥ m) (5.1)

1 +
l · (Ehi − Elo)

k · Elo + (m − l) · (Ehi − Elo)
(if l < m) (5.2)

[Proof]: Suppose that a scheduler chooses to operate at Vlo for nlo iterations and

Vhi for nhi iterations without violating the (m,k)-firm deadlines, then the average

energy consumption per iteration is

Ē =
Elo · nlo + Ehi · nhi

nlo + nhi

(5.3)

Clearly, a scheduler is more energy efficient if it has more iterations running at

voltage Vlo. On-Line Greedy scheduler selects the high voltage only when there

89

have already been k − m failures and the system cannot afford another failure

due to the (m,k)-firm deadline. Lemma 5.1 indicates that this is the most energy

efficient way. From the construction of the On-Line Greedy scheduler, we see that

no other on-line deterministic scheduler will consume less energy.

The worst case for the On-Line Greedy scheduler happens when all the first

k − m iterations fail (at Vlo) and the system has to run at Vhi for the next m

iterations to make the (m,k)-firm deadline. The total energy consumption is (k −

m) ·Elo +m ·Ehi. On the other hand, the best offline scheduler uses Vhi only when

running at Vlo cannot produce m completions in any consecutive k iterations.

Statistically, l completions are expected in any k consecutive iterations. If l ≥ m,

there is no need to use Vhi and the offline scheduler consumes energy k · Elo; if

l < m, then m − l iterations are expected to be processed at Vhi while the rest at

Vlo, giving a total energy consumption of (m − l) · Ehi + (k − m + l) · Elo. The

competitive ratio of an on-line algorithm is defined as the ratio of its worst case

performance over the best offline approach. Simple arithmetic operations give us

Equations (5.1) and (5.2) as above.

5.3 Determining the Most Energy-Efficient Dual-

Voltage System with (m,k)-Firm Guarantee

Theorem 5.1 shows that the On-Line Greedy scheduler is the most energy-efficient

for any given dual-voltage system. However, the average energy consumption Ē

depends on the values of Vlo and Vhi as we have seen in Equation (5.3). In this

section, we solve the voltage set-up problem. That is, determining Vlo and Vhi

to minimize Ē. We first give efficient and accurate methods to compute Ē and

90

then present our approach in finding Vlo and Vhi to minimize Ē. We also explain

how to generalize our results from single stream to multiple periodic streams with

different (m,k)-firm requirements.

5.3.1 Computing Ē for Case (k − 1, k)

For the i-th iteration, define ai = 0 if the On-Line Greedy scheduler selects Vlo as

the operating voltage; otherwise define ai = 1. Therefore, we can represent the

execution of n iterations by a bit stream of length n. Define Sj = 00 · · ·011 · · ·1

be a sequence of j 0’s followed by k−1 1’s and S0 be any sequence of zero or more

0’s followed by no more than k − 2 1’s.

Lemma 5.2. Any bit stream that represents the On-Line Greedy scheduler’s

voltage selection for (k − 1, k)-firm guarantee can be uniquely decomposed to

Si1Si2 · · ·S0, where ij > 0.

[Proof:] The On-Line Greedy scheduler starts with Vlo (that is, a1 = 0) and

continues with Vlo until there is a failure at iteration i (that is a2 = a3 = · · · =

ai = 0). To meet the (k − 1, k)-firm deadline, the next k − 1 iterations have to

be processed at Vhi, ai+1 = · · · = ai+k−1 = 1. This produces an instance of Si

with length i + k − 1. Then the On-Line Greedy scheduler starts with Vlo again

yielding another sequence of 0’s followed by k − 1 1’s. The only exception occurs

at the end of the execution: if the failure happens within the last k − 1 iterations,

we have S0 which is a sequence of 0’s followed by k − 2 or less 1’s; if there is no

failure through the end, we will have S0 which is a sequence of 0’s only; if the last

iteration happens to be last one of the k − 1 1’s in the previous Sij , then we have

an empty sequence S0.

Theorem 5.2. Let pf be the probability that an arbitrary iteration can not

91

be completed at low voltage Vlo before its deadline, then the On-Line Greedy

scheduler’s average energy consumption per iteration is

Ē =
Elo + pf · (k − 1) · Ehi

1 + pf · (k − 1)
(5.4)

[Proof:] Sequence Si represents i iterations at Vlo followed by k − 1 iterations at

Vhi, therefore it consumes energy Ei = i·Elo+(k−1)·Ehi. Any bit stream (of infinite

length) satisfying the (k − 1, k)-firm requirement can be uniquely decomposed to

a sequences of Si’s. Let Pi1i2··· be the probability that bit stream decomposition

Si1Si2 · · · occurs, then the On-Line Greedy scheduler’s average energy consumption

per iteration is

Ē =

∑

Pi1i2··· · (Ei1 + Ei2 + · · ·)
∑

Pi1i2··· · [(i1 + k − 1) + (i2 + k − 1) + · · ·]
(5.5)

where both sums are taken over all the possible bit streams that represents the

On-Line Greedy scheduler’s voltage selection decision.

Note that each Si ends with k − 1 iterations running at Vhi with guaranteed

completions, therefore none of the previous failures can affect On-Line Greedy

scheduler’s voltage selection for the following iterations. In another word, the

sequence Si’s are independent and the probability that each sequence Si occurs

will be pf · (1 − pf)
i−1. Ē from the above equation can be rewritten as:

Ē =

∑∞
i=1 pf · (1 − pf)

i−1 · Ei
∑∞

i=1 pf · (1 − pf)i−1 · (i + k − 1)

=
Elo

∑∞
i=1 i · (1 − pf)

i−1 + (k − 1) · Ehi

∑∞
i=1(1 − pf)

i−1

∑∞
i=1 i · (1 − pf)i−1 + (k − 1)

∑∞
i=1(1 − pf)i−1

=
Elo + pf · (k − 1) · Ehi

1 + pf · (k − 1)

We now give two simple examples for Theorem 5.2. First, on a single voltage

system, the energy consumption for each iteration will be identical and hence

92

Ē = Ehi = Elo. Considering this case as Vhi = Vlo, and pf = 0, we get the same

result from Equation (5.4). Now, if the system with single voltage Vhi can shut

down for the entire iteration to save energy, the On-Line Greedy scheduler will

repetitively shut down for the first iteration and then process for k − 1 iterations.

This results in Ē = k−1
k

· Ehi. If we consider system shut-down as Vlo = 0 with

pf = 1 and Elo = 0, then Equation (5.4) gives the same Ē.

5.3.2 Computing Ē for Case (m, k)

We extend the concept of independence in the proof of Theorem 5.2 to compute

On-Line Greedy scheduler’s average energy consumption to meet the (m, k)-firm

requirement. For iteration i, define string bi = v if we complete the i-th iteration

and bi = x otherwise. A string that ends with m consecutive v’s is called inde-

pendent. m consecutive v’s indicate that the last m iterations are all completions.

So the On-Line Greedy scheduler can safely choose Vlo for the next k − m iter-

ations without causing any dynamic failure. After that, only the m completions

followed by the k −m new iterations, a total of k iterations, may impact the volt-

age decision in the future. The iterations priori to these m consecutive v’s are

in some sense blocked and cannot affect any iterations after these m consecutive

completions. Similar to the discussion in the (k−1, k) case, any string representing

On-Line Greedy scheduler’s decision can be decomposed to a series of independent

substrings. We classify these independent substrings based on their first k − 1

iterations. Let Eb1b2···bk−1
, Lb1b2···bk−1

, and Pb1b2···bk−1
be the expected energy con-

sumption, the expected number of iterations of the independent substring starting

with b1b2 · · · bk−1 (to its end of m v’s), and the probability that such substring

may occurs respectively. Then we can use a formula similar to equation (5.5) to

93

compute the average energy consumption per iteration Ē. Now we explain how to

obtain Eb1b2···bk−1
, Lb1b2···bk−1

, and Pb1b2···bk−1
.

Theorem 5.3. Let E ′
b1b2···bk−1

be the expected energy consumption to complete

an independent substring starting with b1b2 · · · bk−1 to its end, but does not include

the first k − 1 iterations. We have (L′
b1b2···bk−1

can be defined similarly)

E ′
xx···vv···v = Ehi (5.6)

E ′
b1b2···bk−1

= Ehi + E ′
b2b3···bk−1v (if b1b2 · · · bk−1 has k − m x’s) (5.7)

E ′
b1b2···bk−1

= Elo + pf · E ′
b2b3···bk−1x + (1 − pf) · E

′
b2b3···bk−1v (5.8)

[Proof]: If there are less than k−m x’s (failures) in b1b2 · · · bk−1, On-Line Greedy

scheduler selects Vlo for the current iteration (Step 4 in Figure 5.1) and consumes

energy Elo. When the execution fails with probability pf , the latest k−1 iterations

result in the substring b2b3 · · · bk−1x and requires in average E ′
b2b3···bk−1x energy to

complete this independent substring; when we have a completion with probability

1 − pf , the latest k − 1 iterations become b2b3 · · · bk−1v and requires in average

E ′
b2b3···bk−1v energy to complete this independent substring. This gives us Equation

(5.8) for E ′
b1b2···bk−1

.

When there are already k − m failures, the On-Line Greedy scheduler will

select Vhi (Step 7 in Figure 5.1). This gives a completion and the required energy

to complete this independent substring E ′
b2b3···bk−1v (Equation (5.7)). There is one

special case: if there are k−m x’s (failures) followed by m− 1 completions at Vhi,

we need only one more iteration at Vhi to complete this independent substring as

in Equation (5.6)

There are
(

k−1
k−m

)

equations of type (5.6) and (5.7),
(

k−1
k−m−1

)

+
(

k−1
k−m−2

)

+ · · · +
(

k−1
1

)

+
(

k−1
0

)

linear equations of type (5.8). One can solve this linear system to

94

obtain E ′
b1b2···bk−1

. Adding the energy consumption for the first k − 1 iterations

b1b2 · · · bk−1 gives us Eb1b2···bk−1
. Lb1b2···bk−1

can be calculated in the same way and

the probability Pb1b2···bk−1
= pr

f · (1 − pf)
t, where r and t are the numbers of x’s

and v’s, respectively, in b1b2 · · · bk−1 before the first iteration that requires Vhi. We

now use two examples to illustrate this approach.

Example 5.1. computing Ē for case (k − 1, k)

There are k different types of independent substrings: xvv · · · v, vxv · · · v, · · · , vv · · · vx,

and vv · · · v. We have

E ′
xvv···v = Ehi

E ′
vxv···v = Ehi + E ′

xvv···v

· · ·

E ′
vv···v = Elo + pf · E ′

vv···vx + (1 − pf) · E
′
vv···v

This can be easily solved and we have E ′
vv···v = Elo

pf
+(k−1)·Ehi and E ′

v···xv···v = i·Ehi,

where i is the index of the ‘x’ in v · · ·xv · · · v. Note that each iteration before and

including the ‘x’ is operated at Vlo and all the iterations after the ‘x’ are at Vhi, so

we have

Evv···v =
Elo

pf

+ (k − 1) · Ehi + (k − 1) · Elo

Ev···xv···v = i · Ehi + i · Elo + (k − 1 − i) · Ehi

with Pvv···v = (1 − pf)
k−1

Pv···xv···v = pf · (1 − pf)
i−1

and Lvv···v =
1

pf

+ (k − 1) + (k − 1)

Lv···xv···v = i + i + (k − 1 − i)

Ē =
Pvv···v · Evv···v + Pxv···v · Exv···v + · · ·Pv···vx · Ev···vx

Pvv···v · Lvv···v + Pxv···v · Lxv···v + · · ·Pv···vx · Lv···vx

95

=
Elo + pf · (k − 1) · Ehi

1 + pf · (k − 1)

which is the same as we obtained earlier.

Example 5.2. computing Ē for case (2, 4)

The independent substrings are partitioned into
(

3
2

)

+
(

3
1

)

+
(

3
0

)

= 7 groups

based on their starting three iterations: vvv, vvx, vxv, xvv, vxx, xvx, xxv. We only

list the equations corresponding to equations (5.6)-(5.8) and ignore the tedious

calculation:

E ′
xxv = Ehi

E ′
xvx = Ehi + E ′

vxv

E ′
vxx = Ehi + E ′

xxv

E ′
xvv = Elo + pf · E

′
vvx + (1 − pf) · E

′
vvv

E ′
vxv = Elo + pf · E

′
xvx + (1 − pf) · E

′
xvv

E ′
vvx = Elo + pf · E

′
vxx + (1 − pf) · E

′
vxv

E ′
vvv = Elo + pf · E

′
vvx + (1 − pf) · E

′
vvv

5.3.3 Determining the Optimal Dual-Voltage System

We consider a dual-voltage system that serves n real-time applications. Each

application consists of a stream of periodic tasks with (mi, ki)-firm deadlines. Our

goal is to determine the two supply voltages Vhi and Vlo at which the system

consumes the minimum energy to process these streams without any dynamic

failure. We assume that the execution time distribution of each stream is known

a priori (e.g. by profiling), but do not require the real execution time of each

iteration to be known.

96

The system uses Earliest Deadline First (EDF) to schedule the tasks from

different streams. The utilization of the system at the reference (highest) voltage

can be calculated by U =
∑n

i=1
Ci

Ti
[73], where Ci is the WCET and Ti is the period

of the tasks in the ith stream. We necessarily assume that the tasks are schedulable

at the reference voltage, i.e., U ≤ 1; otherwise, dynamic failure becomes inevitable.

For the same reason, the high voltage Vhi, if different from the reference voltage,

should provide processing speed sufficiently fast such that the tasks are schedulable.

On the other hand, let C ′
i be the WCET of stream i and U ′ be the utilization of

the system at Vhi. If U ′ < 1, we can reduce Vhi to save energy while keeping the

tasks schedulable. Therefore, the high voltage Vhi is selected such that the system

utilization at Vhi is exactly 1. Specifically, when U < 1 at the reference voltage

Vref , Vhi can be obtained by solving the following equation:

1

U
=

Vhi

(Vhi − Vth)2

(Vref − Vth)
2

Vref

(5.9)

where Vth is the threshold voltage.

Because the streams are independent each other, the proposed On-Line Greedy

scheduler can be used for each stream in order to minimize the energy consumption.

To determine the best value of low voltage Vlo, we follow the following procedure:

1. for each stream, compute pf,i, the probability of execution failure at a fixed

Vlo, from the execution time distribution of the ith stream;

2. for each stream, compute On-Line Greedy scheduler’s average energy con-

sumption per iteration Ēi, which is a single-variable function of Vlo;

3. let LCM be the least common multiple of all the periods (T1, · · · , Tn), the

energy consumption during an LCM period (hyperperiod) is

Ē =
n

∑

i=1

Ēi ·
LCM

Ti

(5.10)

97

4. (numerically) find the value of Vlo to minimize Ē.

5.4 Simulation Results

Our simulation goals include: 1) verifying that On-Line Greedy is the most energy

efficient scheduler; 2) demonstrating the energy efficiency of dual-voltage systems

and the importance of voltage set-up; 3) validating our solutions to the voltage set-

up problem; and 4) investigating the impact of parameters, such as m, k, WCET,

and BCET (Best Case Execution Time).

We first consider dual-voltage systems that provide (m,k)-firm deadline guar-

antees to a single stream. The period tasks in the stream have execution time

between BCET and WCET following normal distribution. The high voltage Vhi,

at which level the system completes the WCET exactly on the deadline, is assumed

to be the reference voltage 3.3V. The energy consumption is normalized in the unit

of power dissipation in one unit of CPU time at 3.3V.

To show the optimality of our On-Line Greedy scheduler, we simulate an ar-

bitrary on-line scheduling policy by the following p-random scheduler: for each

iteration, using Vhi with a probability p unless that there are k-m failures in the

previous k-1 iterations, in which case we use Vhi to guarantee the (m,k)-firm dead-

line. Clearly, our On-Line Greedy is 0-random. Figure 5.2 compares the On-Line

Greedy with other p-random on-line schedulers, where p goes from 0 to 1 with an

increment of 0.1, for (5,8)-firm deadline. For each p, we vary Vlo from 1.4V, the

lowest voltage to complete BCET within the deadline, to 3.3V with an increment

of 0.05V and simulate 100,000 iterations to obtain the average energy consumption

per iteration. We see that On-Line Greedy consumes the least energy in all cases

and the closer Vlo is to the best voltage setting, the more energy On-Line Greedy

98

saves.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Voltage Vlo (v)

Av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n

pe
r i

te
ra

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.2: On-Line Greedy vs. p-random on-line schedulers.

Figure 5.2 also indicates the impact of the selection of Vlo to the system’s energy

efficiency. We now verify the accuracy of our method to calculate the average

energy per iteration Ē as well as the efficiency of this method. Figure 5.3 depicts

the values of Ē, obtained by the proposed numerical method and a pure simulation

based approach, for the (5,8)-firm guarantee with different BCET/WCET ratio.

We see that the two methods give almost the same Ē (the difference is less than

0.5%). However, they have a huge discrepancy in run-time. While it takes more

than 80 minutes for the pure simulation method to get a stable solution for each

setting of Vlo and a BCET/WCET ratio, our numerical method needs less than

one second on the same UNIX machine.

Both Figure 5.2 and Figure 5.3 show the energy efficiency of dual-voltage sys-

tems over fixed-voltage systems. In Figure 5.2, the p = 1.0 line, which means

running at Vhi with probability 1, corresponds to the fixed 3.3V system without

99

0 0.5 1 1.5 2 2.5 3 3.5
3

4

5

6

7

8

9

10

Voltage Vlo (v)

Av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n

pe
r i

te
ra

tio
n

0.01
0.05

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Calculation
Simulation

Figure 5.3: Accuracy of the proposed numerical method in computing the average

energy consumption per iteration Ē.

shut down. The dashed horizontal line in Figure 5.3 gives the average energy con-

sumption Ē of the fixed 3.3V system with shut down. However, they also reveal

that if Vlo is not selected properly, the full potential of dual-voltage system’s en-

ergy saving may not be reached. For example, when BCET/WCET=0.1, setting

Vlo = 2.40V saves 32.6% energy over the fixed-voltage system with shut-down and

57.9% when system shut-down is not allowed. But Vlo = 3.0V gives only 26.3%

saving over the 3.3V system without shut-down and consumes 17.9% more energy

than the 3.3V system with shut-down. In all the cases, the approach proposed in

Section 3.3 finds the best Vlo. We will further demonstrate the correctness of this

approach in Figure 5.4 for multiple application streams.

Table 5.3 reports the impact of m, when k is fixed, to the average energy con-

sumption Ē for (m,k)-firm guarantee on the best dual-voltage system obtained by

our method (E1) and the fixed-voltage system with shut-down (E2). As expected,

100

Table 5.3: Impact of different m to the selection of Vlo and Ē.

(1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8)

Vlo(V) 1.36 1.36 2.35 2.46 2.56 2.70 2.85

E1 1.69 2.88 3.89 4.50 5.16 6.03 7.28

E2 1.25 2.5 3.75 5 6.25 7.5 8.75

E1 vs. E2

saving(%)
-35.2 -15.1 -3.81 10.1 17.4 19.6 16.8

E2 increases linearly with m. But E1 increases at a much slower pace because

the optimal value for Vlo gradually increases at the same time, which increases the

number of completions at Vlo. We conclude that fixed-voltage system with shut-

down is preferable for small m and dual-voltage system is more energy efficient

when m is large.

Note that small m for fixed k implies less number of completions required for

the (m,k)-firm guarantee. In such case, it is more beneficial to operate at Vhi to

complete m iterations and then shut down, than to try running greedily at Vlo for

most of the time. This applies to the similar situation when k is large and m is

fixed as one can see from Table 5.4.

Finally, we show the energy efficiency of dual-voltage system serving multiple

streams with different (mi, ki)-firm deadlines as given in Table 5.5. It takes only

several seconds for our proposed approach to find the best voltage set-up {Vhi =

3.07V, Vlo = 2.41V }, which has energy consumption 12.77. We then simulate

100,000 hyperperiods on Matlab on dual-voltage systems with different voltage

set-ups {Vlo, Vhi}, where Vlo goes from 1.0V to 3.3V and Vhi goes from 3.07V to

101

Table 5.4: Impact of different k to the selection of Vlo and Ē.

(5,6) (5,7) (5,8) (5,9) (5,10) (5,11) (5,12)

Vlo(V) 2.79 2.66 2.57 2.51 2.47 2.42 2.37

E1 7.01 5.85 5.17 4.72 4.38 4.12 3.89

E2 8.33 7.14 6.25 5.56 5.00 4.55 4.17

E1 vs. E2

saving(%)
15.8 18.1 17.2 15.1 12.3 9.44 6.55

Table 5.5: Information on three periodic streams.

Stream BCET WCET Period (mi, ki)

A 0.6 2 8 (5,8)

B 1.0 2 6 (6,7)

C 0.6 4 12 (2,3)

3.3V, both with an increment of 0.01V. After more than 10 hours of simulation,

this exhaustive search finds the same solution (Figure 5.4), within the precision of

voltage increment 0.01V we set, as the proposed approach.

5.5 Conclusions

In this chapter, we address the voltage scheduling and set-up problem for soft

real-time dual-voltage systems that serve multiple streams with (mi, ki)-firm guar-

antee in order to minimize the energy consumption. First we propose an on-line

102

3.05
3.1

3.15
3.2

3.25
3.3

1
1.5

2
2.5

3
3.5
12

14

16

18

20

22

24

Voltage Vhi (v)Voltage Vlo (v)

En
er

gy
 c

on
su

m
pt

io
n

pe
r h

yp
er

pe
rio

d

Figure 5.4: Simulated Ē for three applications with different (m,k)-firm require-

ments.

greedy scheduler which we prove is the most energy efficient deterministic on-line

scheduler. Based on this scheduler, given the execution time distribution of the

iteration and voltage levels, we present a novel energy calculation method which

can fast and accurately obtain the average energy consumption per iteration for

dual-voltage systems. Simulation results show that compared with the simulation

method, the proposed calculation method can save significant CPU execution time

while still obtaining very precise energy consumption value. Based on this energy

calculation method, we have proposed a numerical approach to linearly search for

the best voltage set-up. Simulation shows that different voltage set-ups give sig-

nificantly different energy savings and the best set-up obtained from simulation

coincides with our numerical solution.

103

Chapter 6

QoS-Driven Scheduling for Firm/

Soft Real-Time Applications

6.1 Introduction

With the increasing popularity of real-time multimedia and wireless communica-

tion applications, quality of service (QoS) attracts a lot of attention. Providing the

required QoS guarantees becomes vital for the design of embedded systems that

carry out such applications. The most popular way to specify time-related QoS

requirements, such as synchronization and latency, is deadline. In hard real-time

systems such as most control systems, deadlines are hard in the sense that missing

deadline will cause fatal errors of the system. However, as the application-driven

system design keeps on pushing for high performance, low energy consumption,

light weight and high portability among others, it becomes difficult to meet these

more and more system resource demanding QoS requirements. For example, one

would like to view high-resolution movies one after another on a DVD player, but

104

it cannot be done without recharging the battery. Consequently, we have soft real-

time systems such as multimedia systems, where the deadlines can be either firm or

soft. Firm deadlines are timing constraints that must be satisfied in order for the

system to get rewards. Missing soft deadlines, on the other hand, still can bring

system some rewards if the deadline failures are within an acceptable range. For

instance, many MPEG video applications such as videoconferences require reliable

communication and consistently high throughput, while being able to tolerate rea-

sonable amount of packet error, jitter, or unsynchronization. Soft deadlines can

also be found in many other applications such as web browsing and file transfer.

Task completion ratio [11, 19], which is equal to the percentage of completed

tasks over all the requested tasks, has been widely used to measure QoS. However,

it does not capture the firm/soft deadlines and data dependency that presents

in many real-time applications. Therefore, it cannot accurately reflect the user

perceived quality of presentation (QoP), which can be conveniently measured by

the correctly completed tasks over the total tasks. (Note that due to the data

dependency, some completed tasks may not be correct. For example, in MPEG

decoding, B frames cannot be decoded correctly if the previous I/P frame has er-

ror.). This leads us to a new QoS metric to which every task completed before

its deadline contributes, and every task completed after its soft deadline also con-

tributes but subject to a penalty for missing its (soft) deadline. The new QoS

metric decreases on any task drop according to the (dependent) tasks that may be

affected. Putting these together, we define QoS as a weighted sum of the reward

for completed tasks, the penalty for completing tasks after their soft deadlines,

and the penalty for dropped tasks.

In this chapter, we first show that our new QoS metric describes QoP more

105

accurately than the completion ratio metric. Then we modify several widely used

on-line algorithms such as EDF (Earliest Deadline First), FCFS (First Come First

Serve) and LETF (Least Execution Time First) [34] by replacing completion ratio

with our new QoS metric. This results in better QoS and QoP. However, the QoP

remains far below the system’s computation power. That is, a significant portion

of the completed tasks are computed incorrectly due to the factors such as data

dependency. We then develop a new on-line scheduling algorithm, i.e., important

task (frame) first, to improve the QoP. This scheduler makes on-line decisions

based on our new QoS metric and achieves QoP very close to the system’s compu-

tation power. It has the same run-time complexity as other on-line schedulers and

therefore can be easily integrated into embedded systems to deliver better QoS or

to provide the same QoS with less system resource (CPU, power, memory, etc.).

The rest of the chapter is organized as follows. In Section 6.2 we define the

new quantitative QoS metric and show that it describes user perceived QoP better

than the completion ratio on MPEG movies. Section 6.3 presents our on-line QoS-

driven scheduling policies based on a drop lemma. In Section 6.4, we apply the

general discussion to simulated MPEG movies and demonstrate that these simple

scheduling algorithms are effective in improving not only our defined QoS but also

the user perceived quality of presentation over classic scheduling policies such as

EDF. We conclude this chapter in Section 6.5.

106

6.2 A New QoS Metric

6.2.1 QoS Model

We consider a system processing real-time applications. Each application consists

of a sequence of tasks, and each task is characterized by < a, d, e, f/s >, where a

is the arrival time, d is the deadline, e is the execution time which can be obtained

a priori by pre-simulation or predicting, and f/s specifies whether the deadline is

firm or soft.

• A task has a firm deadline if it must be completed before the deadline oth-

erwise the system will not get the reward for serving the task and the appli-

cation.

• A task has a soft deadline if the system can still benefit even if the deadline

is missed, subjected to a deadline-miss penalty.

• A task is non-preemptive means that once the task gets the CPU, it will

occupy the CPU until its deadline or completion, whichever comes earlier.

• A task is preemptive means that the task may lose control of the CPU during

its execution, but when it gets the CPU back, it can resume the interrupted

execution.

An online scheduler will allocate system resource to process the task it selects.

The completion ratio is defined as the ratio of completed tasks over the total

number of tasks according to the given scheduler. Although it has been widely

used in real-time embedded systems, completion ratio may not give an accurate

measure for the QoS due to the following reasons: 1) it does not distinguish the

completion of tasks with firm deadlines and those with soft deadlines, on which

107

the system may provide different QoS and get different rewards; 2) it does not

distinguish tasks which are completed before their soft deadlines and those that

are completed but miss their deadlines; and 3) it does not reflect data dependency

among tasks because all deadline misses are treated in the same way. Based on

these observations, we define our new QoS as follows:

Suppose that a scheduler S completes Kf firm-deadline tasks and Ks soft-

deadline tasks out of a total of N tasks, the QoS provided by such scheduler is:

Q(S) =
αsKs + αfKf

N
−

β

N

∑ δi

di − ai

−
γ

N

∑

1i∆i (6.1)

where αs and αf are the weights for the completion of soft-deadline tasks and

firm-deadline tasks respectively (in general, αs < αf), β is the penalty parameter

or the tolerance factor for deadline missing; δi is the difference between the task’s

deadline and completion time when the soft deadline is missed (if the task is

completed before its deadline or eventually dropped, then δi is 0); di−ai is the life

time of the task; γ is penalty parameter for task dropping; 1i = 1 if the i-th task

is dropped, otherwise 1i = 0; ∆i is the number of tasks that will be affected by

the i-th task. In (6.1), the first term rewards task completion; in the other terms,

the first sum is taken over all the completed tasks that miss their soft deadlines;

and the second sum is taken over all the dropped tasks regardless of their deadline

type.

The QoS defined in (6.1) is a direct extension of completion ratio, in the case

when there is no penalty for missing soft deadlines (β = 0) or dropping tasks (γ =0)

and firm deadline tasks are considered equally important as soft ones (αs = αf =

1), which has been used for QoS measurement in many occasions. Soft deadlines

and firm deadlines are treated differently by assigning them different weights αs

and αf . Soft deadline missing is penalized by the relative amount that the deadline

108

has been missed with the penalty factor β. Data dependency is captured in the

last term by reducing QoS in the amount of tasks depending on dropped tasks

with a penalty factor γ.

From (6.1), we can see that the completion of the firm-deadline task will get

more reward than the completion of the soft-deadline task before its deadline if

αf > αs. Furthermore, their deadline misses lead to different rewards. For the

firm-deadline task, the system will get no reward and even negative reward because

of its deadline missing. However, for the soft-deadline task, the system may still

have positive reward. Therefore, in order to maximize Q(s) as defined in (6.1),

the system prefers to execute the firm-deadline task than execute the soft-deadline

task. This exactly matches the fact that the firm deadline task is more important.

6.2.2 Simulation of MPEG Streams

We have implemented several widely used on-line algorithms such as EDF, FCFS

and LETF and tested these algorithms on MPEG video streams decoding at the

frame level. In the simulation we compare the completion ratio (CR), which only

consider the number of completed frames, our proposed new QoS metric, and user

perceived quality of presentation (QoP), which can be conveniently measured by

the number of correctly decoded frames by using different online schedulers. Our

objective is to demonstrate that our new QoS metric reflects user perceived QoP

much better than the completion ratio.

Standard MPEG encoders generate three types of compressed frames: I frames

(intra-pictures), P frames (predicted pictures) and B frames (bi-directional pre-

dicted pictures). In general, encoders use a fixed GOP (Group of Pictures) pattern

when compressing a video sequence. A typical GOP in display order and decoding

109

order is shown as in Fig. 6.1.

0 1 2 3 4 5 6 7 8 9 10 11 12

I0 P1 B2 B3 P4 B5 B6 P7 B8 B9 I10 B11 B12 decoding order

I0 B2 B3 P1 B5 B6 P4 B8 B9 P7 B11 B12 I10 display order

Figure 6.1: A typical GOP pattern (I-to-I=12, I-to-P=3).

On average, I frames are the largest in size (since they are self-contained),

followed by P frames and B frames. Krunz and Tripathi present a comprehensive

model for MPEG video streams [66]. This model captures the bit-rate variations

at multiple time scales. Long-term variations are captured by incorporating scene

changes, which are noticeable in the fluctuations of I frames. Three models are

introduced to simulate the frame sizes of different types of frames, and the complete

model is finally obtained by intermixing these three sub-models according to a given

GOP pattern. Statistically, the generated MPEG streams fit the empirical video

and are sufficiently accurate in predicting the queuing performance for real video

streams. We simulate the frame information for movies, Wizard of OZ, Star Wars,

Silence of the Lambs, and Goldfinger, from the parameters reported in [66].

Based on the frame size and type, we generate the normalized execution time

for each frame using a linear model of MPEG decoding [12]. In the simulation

we assume that the execution time of MPEG-decoding can be obtained a priori

by predicting based on the information from previously decoded frames and the

size and type of MPEG-encoded frames [12]. Furthermore, in some scenario such

as the voice-on-demand scenario we can get the exact information about the exe-

cution time directly from the user-data fields in the stream [16]. We also assume

that the frames arrive in the decoding order and their inter-arrival times are inde-

pendent with exponential distribution. The mean of the exponential distribution

110

is approximately equal to the reciprocal of frame display rate (in terms of fps or

frame per second) to generate a balanced loaded system. We simulate underloaded

and overloaded systems by varying the fps requirement. The absolute deadline of

each frame is monotonically increasing in its arrival time. We use several standard

display rates (in terms of fps) in our simulation: 15, 30 (standard for computer

video and graphics), 45 and 60 (suitable to sports and other fast-action programs).

The deadline type is assigned to each individual frame based on the dependency

of different frames. I frame is the most important because the correct processing

of all the P frames and B frames in the same GOP depends on the completion

of the corresponding I frame. P frame is also important because it is required by

the following P and B frames in the same GOP. We assign I and P frames firm

deadlines rather than giving them soft deadlines. We also assign soft deadlines to

B frames to create tasks with mixed type of deadlines.

Each GOP can be viewed as one “application” independent of others as the

correct decoding of all the frames in one GOP depends on the leading I frame.

Each “application” consists of a set of tasks (frame decoding) and the drop of

firm-deadline I and P frames will cause the incorrect decoding of the remaining

frames in this “application”. To better model the data dependency among “tasks”,

we assign different values ∆I and ∆P,i, which are corresponding to the number of

frames that will not be decoded correctly because of a dropped frame, to frames

with firm deadlines. For example if I-to-I, the number of frames between two

consecutive I frames (see Fig. 6.1), is 12, then we assign ∆I =11; ∆P,i are assigned

10, 7, and 4 for the three P frames in the GOP pattern based on Fig. 6.1; and

∆B = 0 because there is no frame depends on the B frame. As a result, I frames

have higher priority than P and B frames; P frames have higher priority than B

111

frames. This exactly matches the MPEG decoding mechanism. In sum, we use the

following QoS, based on formula (6.1) with consideration of MPEG application’s

characteristics, in our simulation:

QMPEG(S) =
Ks + Kf

N
−

β

N

Ks
∑

i=1

δi

Td

−
γ

N
(mI∆I +

nP
∑

i=1

mP,i∆P,i) (6.2)

Where Td – the reciprocal of frame display rate;

∆I , ∆P,i – the number of tasks that will be affected if the I frame or

P frame is dropped;

mI , mP,i – the number of dropping I, P frame;

nP – the number of P frames in a GOP pattern;

KS, Kf , β, γ, δi, N are same as in (6.1).

Note that this QoS measurement is calculated incrementally at run time and

there are only a few arithmetic operations involved at each frame. The penalty

parameter β and γ are stream specific. For example, the β and γ for decoding

Cartoon Video (e.g., 0.8) should be smaller than those for decoding Action Video

(e.g., 1.0) because the human being are less sensitive to the artificial movements in

Cartoon Video, but are very sensitive to the smoothness of the motions in Action

Video [92]. The values of these parameters can be stored as user-defined data

within the stream. In the simulation, β and γ are both set to be the default value

1.

We have applied the popular online scheduling algorithms such as EDF, FCFS

and LETF to the simulated MPEG movies. For each movie, we simulate under-

loaded, balanced, and overloaded systems by changing the frame rate from 15 fps,

to, 30, 45, and 60 fps. And for each case, we consider the case of non-preemptive

and preemptive. Fig. 6.2 is the typical relationship of completion ratio, our pro-

posed new QoS metric and user perceived QoP, which considers the actual number

112

0

0.2

0.4

0.6

0.8

1

 EDF FCFS LETF

Completion Ratio
New QoS Metric
QoP

Figure 6.2: Comparison of some widely used online schedulers on movie ”Goldfin-

ger” in the frame rate of 30 fps in the case of, from left to right, non-preemptive

and preemptive.

of correctly decoded frames, under different online scheduling policies (EDF, FCFS

and LETF) on movie ”Goldfinger” in the frame rate of 30fps. EDF and FCFS

in our simulation are actually same because the system has monotonic absolute

deadlines. From Fig. 6.2 we can see that the completion ratios under different

schedulers are almost same, whereas the QoPs are very different. We can conclude

that the completion ratio does not measure QoP properly and it cannot test dif-

ferent online schedulers. However, our new QoS metric is much closer to the QoP

and it is necessary to develop low overhead online scheduler to maximize this new

QoS metric in order to eventually improve user perceived QoP without using extra

hardware.

In the next section, we consider the following QoS-driven online scheduling

problem: for a set of real-time tasks with mixed firm and soft deadlines on a single

processor system, determine an online schedules S to maximize Q(S).

113

6.3 Online Schedulers

Due to the uncertainty of the arriving tasks and the nature of online scheduling, it

becomes unavoidable to drop tasks and hard to provide absolute QoS guarantees.

Our objective is thus to develop online scheduling algorithms that give competitive

average QoS. An online scheduling policy must have low complexity because it will

be executed frequently on the fly. It should also specify its drop policy as the task

drop becomes inevitable. In this section, we first give the drop lemma and then

explain a set of online scheduling heuristics based on the widely used EDF, FCFS

and LETF.

Lemma 6.1 (Drop Lemma):

If a scheduler (online or offline) maximizes the QoS as defined in Equation

(6.1), then it must

1) drop task < a, d, e, f > at time t > d − e∗

2) drop task < a, d, e, s > at time t > αs+γ·∆
β

(d − a) + (d − e∗)

where e∗ is the task’s remaining execution time, and e∗ = e for non-preemptive

tasks.

[Proof:] At time t, the earliest time that we can complete task < a, d, e, f/s >

is t + e∗, where e∗ is the task’s remaining execution time. If the task has a firm

deadline d, it cannot be completed and will not contribute for QoS at time t when

t+e∗ > d. If the task has a soft deadline, we will execute it if and only if the benefit

of completion (with deadline missing penalty if applicable) exceeds the penalty for

dropping the task, that is, αs − β δ
d−a

≥ −γ · ∆, where δ = t + e∗ − d. A simple

calculation leads us to 1) and 2) as above.

Intuitively, Drop Lemma suggests us to drop firm-deadline tasks as soon as we

114

discover that we are unable to finish on time. However, for soft-deadline tasks,

Drop Lemma implies that we should wait an extra period because soft deadline

miss will still be beneficial to some extent. Clearly, the smaller is the deadline

missing penalty parameter β, the larger is the weight of completion and drop

penalty, the longer we should wait.

6.3.1 S2F: Soft to Firm Deadline Conversion

From Drop Lemma, we see that task < a, d + αs+γ·∆
β

(d − a), e, f > and task

< a, d, e, s > will always be dropped at the same time although they have different

type of deadlines. Based on this we propose the following online scheduler:

Algorithm S2F:

(1) For each soft deadline task < a, d, e, s >

(2) change its deadline from d to d + αs+γ·∆
β

(d − a);

(3) change its deadline type from soft to firm;

(4) apply EDF on the new set of firm real-time tasks;

It converts soft deadline to firm and thus unifies task’s deadline type. Its

advantage is that online scheduling algorithms do not need to treat different types

of deadlines. Moreover, the Drop Lemma shows that whenever EDF achieves the

best QoS, S2F also gives the best QoS.

6.3.2 EDF*, FCFS* and LETF*

The EDF, FCFS and LETF service strategies are among the most popular ones for

real-time applications. On the completion of one task, they aggressively schedule

the next task with the earliest deadline, the earliest arrival time and the least

execution time respectively. However, neither of them distinguishes firm deadlines

115

and soft deadlines and they may decide to execute the task that should be dropped

according to the Drop Lemma. We integrate the Drop Lemma into these three

scheduling policies and propose scheduling algorithms EDF*, FCFS* and LETF*.

Algorithm EDF*, FCFS* or LETF*:

(1) On the completion of the current task τ or on the arrival of a new task if

preemption is allowed)

(2) if preemption is assumed

(3) replace the execution time of task τ by its remaining execution time;

(4) drop all the tasks that meet the condition in Drop Lemma;

(5) schedule the remaining tasks using EDF, FCFS or LETF.

Non-preemptive execution stops only at the completion of the current task.

We are guaranteed that this completion will either meet the task’s deadline or still

gives positive contribution to the QoS even its soft deadline is missed. The reason

is that the current task is the winner of all the tasks in the previous round, which

mean it survives the drop policies. During the drop policy checking in step 4,

unlike the original schedulers, EDF*, FCFS* and LETF* will treat firm and soft

deadline tasks differently to maximize QoS. Finally, we argue that the drop policy

checking takes only constant time. For example, in the implementation, we can

first choose the task picked by EDF, FCFS or LETF and check whether it meets

the drop policies. If the Drop Lemma is satisfied, we drop the task and ask EDF,

FCFS or LETF for their next choice. Therefore, EDF*, FCFS* or LETF* will

have the same run-time complexity as the original one.

116

6.3.3 IFF: Important Task (Frame) First

From Equation (6.1), we see that missing firm deadline immediately erases the

efforts that we have already put on the task completely. However, when we miss

the soft deadline, we still get the chance to improve the QoS by finishing the task

in a reasonable amount of extra time. Thus, for the point view of maximizing

QoS, we should assign tasks with firm deadline higher priority than those with

soft deadlines. The IFF online scheduling algorithm is a variation of EDF based

on this observation.

Algorithm IFF:

(1) On the completion of the current task τ (or on the arrival of a new task if

preemption is allowed)

(2) if preemption is assumed

(3) replace the execution time of task τ by its remaining execution time;

(4) drop all the tasks that meet the condition in Drop Lemma;

(5) select the task τ ′ with the earliest deadline in the ready list;

(6) if τ ′ is not the most important task in the ready list

(7) check the drop policy at time t= current time + execution time of task

τ ′ ;

(8) if there is a more important task drop, unselect τ ′ and goto step 5;

(9) schedule the current pick;

IFF is similar to EDF* with special treatment to important tasks such as firm

deadline tasks. In particular, if the task with earliest deadline is a soft, we check

whether there will be any firm deadline task dropping because we execute this soft

deadline task first. In another word, a task with soft deadline will be processed only

if its execution will not cause any firm-deadline task drops. Furthermore, among

117

the tasks with the same deadline type, there may exist data dependency. Therefore

IFF also prioritizes certain same deadline tasks that potentially contribute more

to the QoS measurement. The complexity of IFF is approximately the same as

EDF*.

6.4 Experimental Results

We have implemented the proposed QoS-driven online schedulers and applied them

to a set of simulated MPEG movies [66]. The setup of the simulation on MPEG

movies is same as that in Section 6.2.2. In this section we report the simulation

results.

We applied the proposed online scheduling algorithms to the simulated MPEG

movies under different frame rates and different preemptive types. For underloaded

system with a frame rate of 15fps, the deadlines are relatively loose and we observe

that almost all the algorithms achieve the maximal QoS and QoP in the amount

of 1 without the task drop and deadline missing. However, when the computation

load increases, the system becomes balanced and overloaded eventually. Then

we see, for instance in the movie of ”Goldfinger” as shown in Fig. 6.3, different

online schedulers provide very different QoP which have the same trends as the

new defined QoS metrics. In general we can rank them in the increasing order

of QoS: LETF*, EDF, EDF*, S2F, and IFF. When the system goes to overload

state (such as 45 fps and 60 fps), the algorithm IFF achieves significant higher

QoS and user perceived QoP comparing to other algorithms in both preemptive

and non-preemptive cases.

It is of our particular interest to study overloaded systems where task drop and

deadline missing become unavoidable. Fig. 6.4-6.7 give the detailed reports on the

118

0

0.2

0.4

0.6

0.8

1

15 30 45 60

Frame rate (fps)

Q
oP

EDF
S2F
EDF*
LETF*
IFF

Figure 6.3: Comparison of QoP under different online schedulers on movie

”Goldfinger” in the case of non-preemptive with different frame rates (15, 30,

45, 60 fps).

new QoS metric as defined in Equation (6.2), completion ratio and QoP, achieved

by different schedulers at certain frame rate. We mention that the negative QoS

comes from the fact of task drop and deadline missing as well as their associated

penalties. It is possible to give a more accurate modified measure of QoS in this

case to keep QoS positive. For example, in the fast-forward mode, the task drop

penalty should be much less, as is the soft deadline missing penalty, and more

weight should be assigned for each completion as not all the frames are expected

to be decoded in such mode. From these figures we can see that almost all the

schedulers achieve similar performance for completion ratio, however, they behave

very differently under the new QoS metric and QoP. The conclusion is that it is

crucial to finish important tasks as many as possible, not the raw counter of task

completions. It is mentioned that although LETF algorithm is 1/2 -competitive in

the completion ratio on our monotonic-absolute-deadline task system [11], LETF*,

which is better than LETF in QoP, achieves very bad user perceived QoP because,

119

in general, the execution time of B frame is shorter than that of I or P frame,

therefore, it will prefer to select B frame that actually is the least important frame.

0

0.2

0.4

0.6

0.8

1

 EDF S2F EDF* LETF* IFF

Completion Ratio

New QoS Metric

QoP

Figure 6.4: Comparison of different online scheduling policies on movie ”Goldfin-

ger” in the frame rate of 30fps in the case of, from left to right, non-preemptive

and preemptive.

0

0.2

0.4

0.6

0.8

1

 EDF S2F EDF* LETF* IFF

Completion Ratio

New QoS Metric

QoP

Figure 6.5: Comparison of different online scheduling policies on movie ”Wizard

of OZ” in the frame rate of 30fps in the case of, from left to right, non-preemptive

and preemptive.

120

-0.5

-0.2

0.1

0.4

0.7

1

EDF S2F EDF* LETF* IFF

Completion Ratio
New QoS Metric
QoP

Figure 6.6: Comparison of different online scheduling policies on movie ”Silence of

Lambs” in the frame rate of 45fps in the case of, from left to right, non-preemptive

and preemptive.

-1.4

-1

-0.6

-0.2

0.2

0.6

1

 EDF S2F EDF* LETF* IFF

Completion Ratio

New QoS Metric

QoP

Figure 6.7: Comparison different online scheduling policies on movie ”Star Wars”

in the frame rate of 45fps in the case of, from left to right, non-preemptive and

preemptive.

121

6.5 Conclusions

With the increasing popularity of real-time multimedia and wireless communi-

cation applications, quality of service (QoS) attracts a lot of attention. In this

chapter, we present a new metric on how to measure the QoS provided by an em-

bedded system for real-time applications with mixed firm and soft deadlines. It

captures the mixed firm and soft deadline nature of such applications and models

data dependency as well. We show that the new defined QoS metric can reflect user

perceived quality of presentation (QoP) much better than the completion ratio. We

then find that the most commonly used online scheduling policies do not achieve

good performance for such firm/soft real time applications. Based on the proposed

quantitative QoS, we develop a set of online scheduling algorithms to maximize it.

Simulations on popular MPEG movies show that most of them achieve much bet-

ter QoS and QoP for users with about the same run time complexity and without

extra hardware.

122

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation has mainly focused on the soft real-time embedded system de-

sign. For the soft real-time embedded system, occasional deadline misses can be

tolerated. When the highest achievable performance is higher than the user re-

quired performance, we can transfer this performance gap into energy saving. We

have presented probabilistic design methodology and a set of energy reduction

techniques by employing dynamic voltage scaling (DVS). We have also formulated

the voltage set-up problem and proposed the practical solutions to this problem

in order to find the best way to use DVS. Finally we have proposed our new QoS

metric and a set of low overhead on-line schedulers in order to enhance both QoS

and QoP, particularly for overloaded systems.

123

7.1.1 Probabilistic Design Methodology

As traditional design methodology only uses the worst case execution time (WCET)

of each task in order to avoid any deadline missing, it often leads to over-designed

systems, especially for the soft real-time embedded systems. We have proposed the

novel concept of probabilistic design for soft real-time systems and a methodology

to quickly explore such design space at an early design stage. The probabilistic de-

sign takes advantage of soft real-time embedded system’s features, such as applica-

tion’s moderately high performance requirements, uncertainties in execution time

(while the execution time distribution may be obtained by profiling or simulating

on the target hardware) and tolerance to reasonable execution failures, to relax the

rigid hardware requirements for software implementation and eventually minimize

the system resources while still meeting the user required performance statistically.

Our main contributions in this part are the probabilistic timing performance esti-

mation method and the offline/on-line resource management approaches. We use

energy as one example of resource and develop a set of energy reduction techniques

by employing dynamic voltage scaling for both single and multiple processor sys-

tems. Our techniques exploit the slacks arising not only from the cases when the

utilization of the processors based on the WCET is less than 1 or the run-time

execution time deviates from WCET, but also from the intentional task (iteration)

dropping. Simulation results show that our proposed techniques can significantly

reduce the system energy consumption while statistically meeting the performance

(e.g. completion ratio) constraint.

124

7.1.2 Voltage Set-up Problem

Dynamic voltage scaling (DVS) has been widely accepted as one of the most energy

efficient techniques. Although ideal DVS system that supports continuous voltage

changes gives more energy saving, the multiple-voltage system that supports dis-

crete voltage changes is more practical and has been predicted as the future low

power system [2]. We have formulated the voltage set-up problem that questions

both how many levels of voltage and what value of each voltage level should be

implemented on the multiple-voltage DVS system in order to minimize the en-

ergy consumption. Furthermore we have presented the practical solutions to this

problem. Specifically, we derive analytical solutions for the dual-voltage system

and efficient numerical methods for the general case. The experimental results

validate our proposed approaches and suggest that multiple-voltage DVS systems,

when the voltages are set up properly, can be very close to DVS technique’s full

potential in energy saving.

We also conduct a case study to address the voltage scheduling and set-up

problem for the dual-voltage soft real-time systems that serve multiple streams

with (mi, ki)-firm guarantee in order to minimize the energy consumption. First

we propose an on-line greedy scheduler that we have proved is the most energy

efficient deterministic on-line scheduler. Based on this scheduler we present a novel

energy calculation method and a numerical approach to linearly search for the best

voltage set-up. Simulation results have validated our approaches.

7.1.3 A New QoS Metric

Traditional completion ratio as a quality of service (QoS) metric does not measure

quality of presentation (QoP) properly and cannot test different on-line schedulers

125

as well. We have proposed a new quantitative QoS metric based on task completion

ratio while differentiating firm and soft deadlines and taking task dependency

into consideration. Using the decoding of MPEG movies as an example, we have

shown that the proposed QoS metric is much better than the completion ratio in

measuring the QoP of the movies. Based on this new QoS metric, we presented a

set of new on-line algorithms that outperform popular scheduling algorithms such

as earliest deadline first (EDF) and least execution time first (LETF) and enhance

QoP significantly, particular for the overloaded systems. All the proposed on-

line algorithms have low computation overhead and can be easily integrated into

real-time operating systems (RTOS) to improve embedded system’s performance

and/or to save system resources.

7.2 Future Work

There are several possible directions to extend the work reported in this disserta-

tion.

Although we have proposed the probabilistic design methodology, until now we

only conduct simulation to show that it can reduce the system resources such as

energy consumption while delivering the user required quality of service statisti-

cally. The future work includes applying the probabilistic design method to build

prototype soft real-time embedded systems (e.g., multimedia systems) on FPGA

devices, measuring the overall energy consumption, and evaluating the systems

performance at the user level. It will also need to be extended to distributed em-

bedded system by considering communication bandwidth and latency. The results

will be compared with the systems developed by the traditional design methodol-

ogy based on worst case execution time of each task.

126

As the feature sizes of the silicon VLSI shrink below 100nm, leakage (static)

power is emerging as a significant contributor to power consumption in CMOS

circuits [62]. The energy reduction techniques we have proposed in this dissertation

only focus on reducing dynamic power. These techniques must be reinvestigated

in future in order to reduce both dynamic and leakage power and conduct power-

aware computing.

The energy reduction techniques for multiple processor systems that we have

developed so far have the assumption that the task assignment and ordering are

given a priori. However, different task assignments and orderings do affect the

system energy consumption. If we simply apply the state-of-the-art task assign-

ment and ordering algorithm, which goal is to minimize the completion time of the

task graph, and our energy reduction techniques as two separated phases to the

application task graph, we will not achieve the energy minimization. In future,

we plan to create the framework that integrates the task assignment, ordering and

voltage scheduling in order to save further energy. The framework will be applied

not only for the homogeneous distributed real-time embedded systems but also for

the heterogeneous systems.

We have conducted a case study for the design of energy-efficient dual-voltage

soft real-time system with (m,k)-firm deadline guarantee. As most systems may

have more than two voltages, how to determine the voltages for this kind of sys-

tems in order to minimize the energy consumption while still meeting (m,k)-firm

deadline guarantee is the problem we need to solve. We also hope to create the

framework to integrate the voltage set-up with task assignment ,ordering and volt-

age scheduling and apply it to real-life applications.

In this dissertation we have proposed a new QoS metric that differentiates firm

127

and soft deadlines and captures the task dependency as well. More experiments

on real multimedia systems need to be conducted in order to show that the new

QoS metric is much better than the traditional completion ratio in terms of the

QoP measurement. In future, we also plan to establish a solid performance mod-

eling framework for integrated specification of throughput, delay, jitter and loss in

embedded multimedia applications. This model is anticipated to reflect the QoP

much better than the one we have proposed. Based on the new model, we need

to develop new real-time scheduler to maximize th QoP. The new offline/on-line

algorithms for better system resource management with probabilistic performance

guarantees need also to be developed. All of above work will finally be conducted

on the prototype multimedia systems.

128

BIBLIOGRAPHY

[1] EDA roadmap taskforce report–design of microprocessors. Silicon Integration
Initiative Inc. and Electronic Design Automation Industry Council, Mar.
1999.

[2] International technology roadmap for semiconductors. http://public.itrs.net,
2001.

[3] Network monitoring using cisco service assurance agent.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/
121cgcr/fun c/fcprt3/fcd301d.htm, August 2001.

[4] Inc. Advanced Micro Devices. AMD Athlon 4 processors, data sheet reference
no.24319. 2001.

[5] J. Altmann and P. Varaiya. INDEX project: User support for buying QoS
with regard to user’s preferences. International Workshop on Quality of
Service, pages 101–104, 1998.

[6] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-time
scheduling: The deadline-monotonic approach. Proceedings IEEE workshop
on Real-Time Operating Systems and Software, pages 133–137, 1991.

[7] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A survey of QoS architec-
tures. Multimedia Systems, 6(3):138–151, May 1998.

[8] N. K. Bambha and S. S. Bhattacharyya. A joint power/performance op-
timization technique for multiprocessor systems using a period graph con-
struct. Proceedings of the International Symposium on System Synthesis,
pages 91–97, 2000.

[9] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid search
strategies for dynamic voltage scaling in embedded multiprocessors. Proceed-
ings of the International Workshop on Hardware/Software Co-Design, pages
243–248, April 2001.

129

[10] N. K. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharyya. Interme-
diate representation for design automation of multiprocessor DSP systems.
Journal of Design Automation for Embedded Systems, 7(4):307–323, Nov.
2002.

[11] S. K. Baruah, J. Haritsa, and N. Sharma. On-line scheduling to maximize
task completions. IEEE Real-Time Systems Symposium, pages 228–236, Dec,
1994.

[12] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting MPEG execution
times. ACM SIGMETRICS, pages 131–140, June 1998.

[13] G. Bernat and A. Burns. Combining (n,m)-hard deadlines and dual priority
scheduling. Proceedings of Real-Time Systems Symposium, pages 46–57, Dec.
1997.

[14] D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[15] J. Bolot and A. Vega-Garcia. Control mechanisms for packet audio in the
internet. Proceedings of IEEE Infocom, pages 232–239, March 1996.

[16] L. O. Burchard and P. Altenbernd. Estimating decoding times of MPEG-2
video streams. Proceedings of the International Conference on Image Pro-
cessing, pages 560–563, Sep. 2000.

[17] T. D. Burd and R. W. Brodersen. Design issues for dynamic voltage scaling.
International Symposium on Low Power Electronics and Design, pages 9–14,
July 2000.

[18] T. D. Burd, T. Pering, A. Stratakos, and R. W. Brodersen. A dynamic
voltage scaled microprocessor system. IEEE Journal of Solid-State Circuits,
35(11):1571–1580, Nov. 2000.

[19] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline scheduling in
overload conditions. IEEE Real-Time Systems Symposium, pages 90–99,
Dec. 1995.

[20] J. P. Calvez. Embedded real-time systems. John Wiley & Sons, 1993.

[21] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven signal
processing: an approach for energy efficient computing. International Sym-
posium on Low Power Electronics and Design, pages 347–352, 1996.

[22] A. P. Chandrakasan and J. Goodman. An energy-efficient reconfigurable
public-key cryptography processor. IEEE Journal of Solid-State Circuits,
pages 1808–1820, Nov. 2001.

130

[23] A. P. Chandrakasan, S. Sheng, and R. W. Broderson. Low-power CMOS
digital design. IEEE Journal of Solid-State Circuits, 27(4):473–484, April
1992.

[24] J.-M. Chang and M. Pedram. Energy minimization using multiple supply
voltages. International Symposium on Low Power Electronics and Design,
pages 157–162, 1996.

[25] Karam S. Chatha and Ranga Vemuri. Performance evaluation tool for rapid
prototyping of hardware-software codesigns. 9th International Workshop on
Rapid System Prototyping, pages 218–224, June 1998.

[26] C. Chen and M. Sarrafzadeh. Provably good algorithm for low power con-
sumption with dual supply voltages. IEEE/ACM International Conference
on Computer Aided Design, pages 76–79, 1999.

[27] C. Chen and M. Sarrafzadeh. Power reduction by simultaneous voltage scal-
ing and gate sizing. Design Automation Conference, pages 333–338, 2000.

[28] R. L. Cruz. Quality of service guarantees in virtual circuit switched networks.
IEEE Journal on Selected Areas in Communications, 3(6):1048–1056, August
1995.

[29] S. Dhar and D. Maksimovic. Low-power digital filtering using multiple volt-
age distribution and adaptive voltage scaling. International Symposium on
Low Power Electronics and Design, pages 207–209, 2000.

[30] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task graphs for free. Proc.
Int. Workshop Hardware/Software Codesign, pages 97–101, Mar. 1998.

[31] A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving feedback edf schedul-
ing for embedded systems with real-time constraints. ACM SIGPLAN Joint
Conference LCTES’02 and SCOPES’02, pages 213–222, June 2002.

[32] H. J. Eikerling, W. Hardt, J. Gerlach, and W. Rosenstiel. A methodology for
rapid analysis and optimization of embedded systems. International IEEE
Symposium and Workshop on ECBS, pages 252–259, March 1996.

[33] Rolf Ernst. Codesign of embedded systems: Status and trends. IEEE Design
& Test of Computers, 15(2):45–54, 1998.

[34] A. Fiat and G. L. Woedinger (eds). On-line algorithms: the state of the art.
Springer, Berlin, Germany, 1998.

[35] Marc Fleischmann. LongRun power management - dynamic power manage-
ment for Crusoe processors. Whitepaper, Transmeta Corp., 2001.

131

[36] M. R. Garey and D. S. Johnson. Computer and intractability: A guide to the
theory of np-completeness. W.H. Freeman and Company, New York, NY,
1979.

[37] P. P. Gelsinger. Microprocessors for the new millennium: Challenges, oppor-
tunities , and new frontiers. International Solid-State Circuits Conference,
pages 22–25, Feb. 2001.

[38] I. Goldberger and S. Kasapi. Current challenges in traditional design ver-
ification and its application in flip-chip devices. International Electronics
Manufacturing Technology Symposium, pages 207–210, July 2003.

[39] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for dynamic
speed-setting of a low-power CPU. Proc. ACM International Conference on
Mobile Computing and Networking, pages 13–25, Nov. 1995.

[40] A. Grbic, S. Brown, and S. et al. Caranci. Design and implementation of the
NUMAchine multiprocessor. 35th ACM/IEEE Design Automation Confer-
ence, pages 65–69, June 1998.

[41] F. Gruian. Hard real-time scheduling for low-energy using stochastic data
and DVS processors. International Symposium on Low Power Electronics
and Design, pages 46–51, 2001.

[42] F. Gruian and K. Kuchcinski. LEneS: Task scheduling for low-energy systems
using variable supply voltage processors. Proc. of Asia and South Pacific
Design Automation Conference, pages 449–455, 2001.

[43] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment tech-
nique for streams with (m,k)-firm deadlines. IEEE Trans. on Computers,
44(12):1443–1451, Dec. 1995.

[44] J. Henkel and R. Ernst. High-level estimation techniques for usage in hard-
ware/software co-design. Aisa and South Pacific Automation Conference,
pages 353–360, February 1998.

[45] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power
minimization of variable voltage core-based systems. 35th ACM/IEEE De-
sign Automation Conference, pages 176–181, 1998.

[46] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of hard
real-time tasks on variable voltage processor. IEEE/ACM International Con-
ference on Computer Aided Design, pages 653–656, 1998.

[47] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis techniques for
low-power hard real-time systems on variable voltage processors. Proceedings
of Real-Time Systems Symposium, pages 178–187, 1998.

132

[48] X. Hu, T. Zhou, and E. H.-M. Sha. Estimating probabilistic timing per-
formance for real-time embedded systems. IEEE Trans. on VLSI systems,
9(6):833–844, December 2001.

[49] S. Hua and G. Qu. Approaching the maximum energy saving on embedded
systems with multiple voltages. IEEE/ACM International Conference on
Computer Aided Design, pages 26–29, November 2003.

[50] S. Hua and G. Qu. A new QoS metric for hard/soft real-time applications.
International Conference on Information Technology: Coding and Comput-
ing, pages 347–351, April 2003.

[51] S. Hua and G. Qu. QoP-driven scheduling for MPEG video decoding. IEEE
Transactions on Consumer Electronics, 49(4):1341–1347, November 2003.

[52] S. Hua, G. Qu, and S. S. Bhattacharyya. Energy-efficient multi-processor
implementation of embedded software. 3rd ACM International Conference
on Embedded Software, pages 257–273, October 2003.

[53] S. Hua, G. Qu, and S. S. Bhattacharyya. Energy reduction techniques for
multimedia applications with tolerance to deadline misses. 40th ACM/IEEE
Design Automation Conference, pages 131–136, June 2003.

[54] S. Hua, G. Qu, and S. S. Bhattacharyya. Exploring the probabilistic design
space of multimedia systems. 14th IEEE International Workshop on Rapid
System Prototyping, pages 233–240, June 2003.

[55] Intel. The Intel Xscale microarchitecture. Technical Summary, 2000.

[56] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. International Symposium on Low Power Elec-
tronics and Design, pages 197–202, 1998.

[57] R. S. Janka and L. M. Wills. A novel codesign methodology for real-time
embedded COTS multiprocessor-based signal processing systems. Proceed-
ings of the International Workshop on Hardware/Software Co-Design, pages
157–161, 2000.

[58] M. C. Johnson and K. Roy. Datapath scheduling with multiple supply volt-
ages and level converters. ACM Trans. on Design Automation of Electronic
Systems, 2(3):227–248, 1997.

[59] A. Kalavade and P. Moghe. A tool for performance estimation of networked
embedded end-systems. 35th ACM/IEEE Design Automation Conference,
pages 257–262, 1998.

133

[60] M. J. Karam and F. A. Tobagi. Analysis of the delay and jitter of voice
traffic over the internet. Proceedings of IEEE Infocom, pages 824–833, April
2001.

[61] I. Karkowski and H. Corporaal. Design space exploration algorithm for het-
erogeneous multi-processor embedded system design. 35th ACM/IEEE De-
sign Automation Conference, pages 82–87, June 1998.

[62] N. Kim, T. Austin, D. Blaauw, and T. Mudge et al. Leakage current:
Moore’s law meets static power. IEEE Computer Special Issue on Power-
and Temperature- Aware Computing, pages 68–75, Dec. 2003.

[63] K. T. Kornegay, G. Qu, and M. Potkonjak. Quality of service and system
design. IEEE Computer Society Annual Workshop on VLSI, Theme: System
Level Design, pages 112–117, 1999.

[64] C. M. Krishna and Y. Lee. Voltage-clock-scaling adaptive scheduling tech-
niques for low power in hard real-time systems. 6th IEEE Real Time Tech-
nology and Applications Symposium, pages 156–165, 2000.

[65] V. Krishna, N. Ranganathan, and N. Vijaykrishnan. Energy efficient datap-
ath synthesis using dynamic frequency clocking and multiple voltages. Proc.
of the 12th International Conference on VLSI Design, pages 440–445, 1999.

[66] M. Krunz and S. K. Tripathi. On the characterization of VBR MPEG
streams. ACM SIGMETRICS, pages 192–202, 1997.

[67] P. Kumar and M. Srivastava. Predictive strategies for low-power RTOS
scheduling. IEEE International Conference on Computer Design, pages 343–
348, 2000.

[68] T. F. Lawrence. The quality of service model and high assurance. Proceedings
of High-Assurance Engineering Workshop, pages 38–39, 1997.

[69] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek. On quality of service
optimization with discrete QoS options. IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 276–286, June 1999.

[70] S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time
systems. 37th Design Automation Conference, pages 806–809, 2000.

[71] S. Lim and Y. et al. Bae. An accurate worst case timing analysis for RISC
processors. IEEE Transactions on Software Engineering, 21(7):593–604, July
1995.

134

[72] Y. R. Lin, C. T. Hwang, and A. C. H. Wu. Scheduling techniques for variable
voltage low power designs. ACM Trans. on Design Automation of Electronic
Systems, 2(2):81–97, 1997.

[73] C. L. Liu and J. W. Layland. Scheduling algorithm for multiprogramming in
a hard-real-time environment. Journal of the ACM, 20(1):46–61, Jan. 1973.

[74] J. Liu, P. H. Chou, N. Bagherzedeh, and F. Kurdahi. Power-aware scheduling
under timing constraints for mission-critical embedded systems. Proc. Design
Automation Conference, pages 840–845, June 2001.

[75] J. W. S. Liu. Real-time systems. Prentice Hall, 2000.

[76] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. Y. Chung. Imprecise
computations. Proc. IEEE, 82(1):83–94, Jan. 1994.

[77] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms
with PACE. Proceedings of the ACM SIGMETRICS, pages 50–61, June 2001.

[78] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Marley.
Performance specifications and metrics for adaptive real-time systems. IEEE
Real-Time Systems Symposium, pages 13–23, Dec. 2000.

[79] J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic task
graphs and aperiodic tasks in distributed real-time embedded systems.
IEEE/ACM International Conference on Computer Aided Design, pages
357–364, 2000.

[80] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed real-
time embedded systems. Design Automation Conference, pages 444–449,
2001.

[81] J. Luo and N. K. Jha. Static and dynamic variable voltage scheduling algo-
rithms for real-time heterogeneous distributed embedded systems. Proc. of
Asia and South Pacific Design Automation Conference, pages 719–726, Jan.
2002.

[82] J. Luo and N. K. Jha. Power-proflie driven variable voltage scaling for het-
erogeneous distributed real-time embedded systems. Proc. of the 16th Inter-
national Conference on VLSI Design, pages 369–375, 2003.

[83] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen, and A. E. Haxthausen.
LYCOS: the lyngby co-synthesis system. Journal for Design Automation of
Embedded Systems, 2(2):195–235, March 1997.

[84] S. Malik, M. Martonosi, and Y. S. Li. Static timing analysis of embedded
software. Design Automation Conference, pages 147–152, June 1997.

135

[85] A. Manzak and C. Chankrabarti. Variable voltage task scheduling algorithm
for minimization energy. International Symposium on Low Power Electronics
and Design, pages 279–282, 2001.

[86] R. Marculescu, A. Nandi, L. Lavagno, and A. Sangiovanni-Vincentelli.
System-level power/performance analysis of portable multmedia systems
communicating over wireless channels. International Conference on Com-
puter Aided Design, pages 207–214, Nov. 2001.

[87] C. L. McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle. A
comparison of heuristics for scheduling DAGs on multiprocessors. Proceedings
of the International Parallel Processing Symposium, pages 446–451, April
1994.

[88] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem. Energy aware
scheduling for distributed real-time systems. International Parallel and Dis-
tributed Processing Symposium, April 2003.

[89] A. Mittal, G. Manimaran, and C. Siva Ram Murthy. Integrated dynamic
scheduling of hard and QoS degradable real-time tasks in multiprocessor
systems. Journal of Systems Architecture, 46(9):793–807, July 2000.

[90] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic
power-aware scheduling for real-time applications. Workshop on Compiler
and OS for Low Power, Oct. 2000.

[91] N. Namgoong, M. Yu, and T. Meng. A high efficiency variable-voltage CMOS
dynamic DC-DC switching regulator. Proc. IEEE International Solid-State
Circuits Conference, pages 380–381, 1997.

[92] J. K. Ng, K. R. Leung, W. Wong, V. C. Lee, and C. K. Hui. Quality of service
for MPEG video in human perspective. International Conference on Real-
Time and Embedded Computing Systems and Applications, pages 233–241,
March 2002.

[93] T. Pering, T. Burd, and R. W. Brodersen. The simulation and evaluation of
dynamic voltage scaling algorithms. Proceedings of the International Sym-
posium on Low Power Electronics and Design, pages 76–81, August 1998.

[94] T. Pering, T. Burd, and R. W. Brodersen. Voltage scheduling in the lparm
microprocessor system. International Symposium on Low Power Electronics
and Design, pages 96–101, 2000.

[95] P. Pillai and G. Shin. Real-time dynamic voltage scaling for low-power em-
bedded operating systems. Proc. of the 18th ACM Symposium on Operating
Systems Principles, pages 89–102, 2001.

136

[96] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-
power microprocessor. Proceedings of the 7th Conference on Mobile Com-
puting and Networking, pages 251–259, 2001.

[97] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for vari-
able voltage processors. International Symposium on Low Power Electronics
and Design, pages 28–33, 2001.

[98] Q. Qiu, Q. Wu, and M. Pedram. Dynamic power management in a mobile
multimedia system with guaranteed quality-of-service. ACM/IEEE Design
Automation Conference, pages 834–839, 2001.

[99] G. Qu, , M. Mesarina, and M. Potkonjak. System synthesis of synchronous
multimedia applications. International Sysmposium and System Synthesis,
pages 128–133, Nov. 1999.

[100] G. Qu. What is the limit of energy saving by dynamic voltage scaling?
IEEE/ACM Interantional Conference on Computer-Aided Design, pages
560–563, Nov. 2001.

[101] G. Qu and M. Potkonjak. Power minimization using system-level partition-
ing of applications with quality of service requirements. IEEE/ACM Intl.
Conference on Computer-Aided Design, pages 343–346, 1999.

[102] G. Qu and M. Potkonjak. Energy minimization with guaranteed quality of
services. ACM/IEEE Intl. Symposium on Low Power Electronics and Design,
pages 43–48, 2000.

[103] G. Qu and M. Potkonjak. Techniques for energy-efficient communication
pipeline design. IEEE Trans. on Very Large Scale Integration (VLSI) Sys-
tems, 10(5):542–549, October 2002.

[104] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm
guarantee. Proceedings of Real-Time Systems Symposium, pages 79–88, 2000.

[105] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processors. 38th IEEE/ACM Design Automation
Conference, pages 828–833, 2001.

[106] S. Raje and M. Sarrafzadeh. Variable voltage scheduling. International
Symposium on Low Power Electronics and Design, pages 9–14, 1995.

[107] R. Rajkumar, Lee C., J. Lehoczky, and D. Siewiorek. A resource allocation
model for QoS management. Proceedings of Real-Time Systems Symposium,
pages 298–307, 1997.

137

[108] R. Rajkumar, Lee C., J. Lehoczky, and D. Siewiorek. Practical solutions for
QoS-based resource allocation problems. Proceedings of Real-Time Systems
Symposium, pages 296–306, 1998.

[109] P. Ramanathan. Graceful degradation in real-time control applications using
(m,k)-firm guarantee. Proc. IEEE Fault-Tolerant Computing Symposium,
pages 132–141, 1997.

[110] P. Ramanathan. Overload management in real-time control applications us-
ing (m,k)-firm guarantee. IEEE Trans. on Parallel and Distributed Systems,
10(6):549–559, 1999.

[111] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of service
guarantees via service curves. Proc. Fourth International Conference on
Computer Communications and Networks, pages 512–520, 1995.

[112] D. Scherrer and H. Eberle. A scalable real-time signal processor for object-
oriented data flow applications. Proceedings of the International Conference
on Parallel and Distributed Computing Systems, pages 183–189, September
1998.

[113] M. T. Schmitz and B. M. Al-Hashimi. Low power process assignment for
distributed embedded systems using dynamic voltage scaling. Proceedings
IEE Hardware-Software Co-Design, pages 7/1–7/4, 2000.

[114] M. T. Schmitz and B. M. Al-Hashimi. Considering power variations of DVS
processing elements for energy minimisation in distributed systems. Proceed-
ings of 14th International Symposium on System Synthesis, pages 250–255,
2001.

[115] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Energy-efficient mapping
and scheduling for DVS enabled distributed embedded systems. Design,
Automation and Test in Europe Conference, pages 514–521, March 2002.

[116] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy
hard real-time applications. IEEE Design and Test of Computers, 18(2):20–
30, 2001.

[117] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard
real-time systems. 36th ACM/IEEE Design Automation Conference, pages
134–139, 1999.

[118] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time em-
bedded systems on variable speed processors. International Conference on
Computer-Aided Design, pages 365–368, 2000.

138

[119] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE
Tran. on Parallel and Distributed Systems, 4(2), February 1993.

[120] R. Steinmetz. Analyzing the multimedia operating system. IEEE Multime-
dia, 2(1):68–84, Spring 1995.

[121] R. A. Sutton, V. P. Srini, and J. M. Rabey. A multiprocessor DSP system
using PADDI-2. 35th ACM/IEEE Design Automation Conference, pages
62–65, June 1998.

[122] T. S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-S.
Liu. Probabilistic performance guarantee for real-time tasks with varying
computation times. Proc. Real-Time Technology and Applications Sympo-
sium, pages 164–173, 1995.

[123] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Brez. Re-
duced power in high-performance microprocessors. 35th ACM/IEEE Design
Automation Conference, pages 732–737, June 1998.

[124] A. Vogel and B. et al. Kerherve. Distributed multimedia and QoS: a survey.
IEEE Multimedia Magaazine, 2(2):10–19, Summer 1995.

[125] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced
CPU energy. USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 13–23, 1994.

[126] R. West, K. Schwan, and C. Poellabauer. Scalable scheduling support for
loss and delay constrained media streams. IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 24–33, June 1999.

[127] D. Wijesekera and J. Srivastava. Quality of service (QoS) metrics for con-
tinuous media. Multimedia Tools and Applications, 3:127–166, 1996.

[128] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. 36th Annual Symposium on Foundations of Computer Science, pages
374–382, 1995.

[129] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for
energy minimization. Design Automation Conference, pages 183–188, 2002.

[130] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi-processor real-time systems.
IEEE 22nd Real-Time Systems Symposium, pages 84–94, 2001.

139

[131] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Optimizing the efficiency
of parameterized local search within global search: A preliminary study.
Proceedings of the Congress on Evolutionary Computation, pages 365–372,
July 2000.

140

