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Nonbuoyant laminar jet diffusion flames in coflowing air were observed aboard the 

International Space Station with an emphasis on laminar smoke points. The tests 

extended the 2009 Smoke Points In Coflow Experiment (SPICE) experiment to new fuels 

and burner diameters. Smoke points were found for methane, ethane, ethylene, and 

propane burning in air. Conditions included burner diameters of 0.76, 1.6, 2.1, and 3.2 

mm and coflow velocities of 3.0 – 47 cm/s. This study yielded 57 new smoke points to 

increase the total number of smoke points observed to 112. Smoke point lengths were 

found to scale with burner diameter raised to the -0.67 power times coflow velocity 

raised to the 0.27 power. Sooting propensity was observed to rank according to methane 

< ethane < ethylene < propane < 50% propylene < 75% propylene < propylene. This 

agrees with past normal gravity measurements except for the exchanged positions of 

ethylene and propane. This is the first time a laminar smoke point has been observed for 

methane at atmospheric pressure. 
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Chapter 1:  Introduction 

 

 Soot is a topic in the fire and combustion research that is important yet not 

completely understood. Incomplete combustion causes the production of soot.  Radiation 

from soot is what causes the human eye to see flame as a bright yellow to dull orange 

color [1].  It can provide the light and warmth for which people build fires.    However, 

soot radiation also causes increases in heat loads and contributes to fire spread rates.   

Fire spread rates are increased from radiation  from the soot and can shorten the 

Available Safe Egress Time (ASET) in fire situations.   Increase in heat loads from 

radiation is particularly a problem with engines because radiation can cause a loss in 

efficiency and unexpected temperatures. Radiation heat losses in a conventional diesel 

engine are around 1.1% of the total fuel energy [2]. In many fire situations soot radiation 

contributes more than gaseous radiation to heat transfer [3].   Soot has significant adverse 

health effects in long term and short term exposures [4]. Soot emissions correlate with 

carbon monoxide, which is a major cause of death in fires [5].  Climate change and 

glacier melting have been linked with soot concentrations at high elevations [6].   Soot is 

an important topic in fire phenomena and continued research in soot formation can lead 

to a better understanding of predicting and eventually controlling soot production.   

 

1.1 Smoke Points 

Laminar smoke points are the generally used measure of fuel sooting tendency in 

diffusion flames.  The laminar smoke point of the flame is the condition where the flame 
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is non sooting but is at the threshold of producing soot.  Any increase in fuel flow rate 

will cause the flame to emit soot [7].   Laminar smoke point properties are usually 

measured from round buoyant jet diffusion flames with coflowing air.   The length of the 

flame at the smoke point is the indicator of the flames tendency to soot.   A longer smoke 

point length is a characteristic of a flame that produces less soot.  Smoke points have 

been measured for gaseous, liquid, and solid fuels.   Currently there is ASTM1322 

“Standard Test Method for Smoke Point of Kerosene and Aviation Turbine Fuels,” but 

this standard applies to wick fed liquid fuels and not gas jet fuels.  Smoke points of 

gaseous fuels are found from a coflowing jet flame apparatus with excess of oxygen.    

Gaseous fuels have been studied under normal gravity systems [8] as well as under 

elevated pressures [9] to help understand flame systems.   Testing smoke points under 

elevated pressures is especially useful for combustion devices and gas turbines.  Not only 

for the function of the device, but also for the environmental concerns of fuel emissions 

[9].    

There are four commonly used explanations for the occurrence of smoke points 

that are not mutually exclusive[10].   The first is a smoke point occurs when the soot 

temperature reaches its critical temperature of 1300 K (1000 K for microgravity) before 

its burnout [10, 11, 12].  Another explanation of smoke point is that the radiative loss 

fraction increases until it reaches 0.2-0.4 for normal gravity or 0.4-0.6 for microgravity 

with the increase of fuel flow rate [10, 13, 14, 15, 16, 17, 18].   The ratio of the luminous 

length and the stoichiometric length increase with increased fuel flow until it reaches a 

smoke point around two [10, 16, 19, 20].   Lastly the increase in flame residence time 

also increases the time available for soot formation and oxidation.  Longer residence 
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times can increase radiative loss fractions and the volume of radiating soot [10, 21].   

Figure 1.1 shows a smoke point condition for an ethylene flame. 

In normal gravity, laminar smoke points have been found to correlate with soot 

volume fractions and radiative loss fractions of turbulent diffusion flames.   This 

connection is important for understanding the smoke production in turbulent flames.   

Flames that have a longer laminar smoke point will have a lower soot formation rate.  

Shorter smoke points indicate greater soot formation rates.   The relationship between a 

fuel’s peak soot formation rate and its laminar smoke point is being used for CFD 

calculation of fire radiation [22].   Turbulent flow conditions are harder to model, but are 

more useful in fire simulations. 

 

Figure 1.1: Ethylene sooting flame 

  

1.2 Soot Formation 

Understanding the sooting tendencies of hydrocarbon fuels relative to one another 

is important for the highly desired control of the fuels soot production.   The tendency of 
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a flame to produce soot is strongly related to the type of flame, combustion process, and 

other physical parameters.  It is important to recognize that all of these factors contribute 

to the flames tendency to soot.  The fuels that have been tested in this study are non-

aromatic hydrocarbon fuels.  Non-aromatic fuels undergoing a pure or oxidative pyrolysis 

will form aromatic rings during combustion.  Moss (1995) and Leung (1991) simplified 

the formation of soot to four main mechanisms: nucleation, heterogeneous surface 

growth, coagulation, and oxidation [23, 24, 25].  During the combustion process aromatic 

rings are formed to create polycyclic aromatic hydrocarbons (PAHs).  Hydrocarbons with 

simple structures like methane are more difficult to thermally decompose than a more 

complex hydrocarbon like ethylene [9].  In the thermal decomposition acetylene is 

formed and combines to form benzene rings.  Those benzene rings form together to make 

PAHs.   PAHs are products of incomplete combustion and are precursors to soot 

formation [26]. These particles grow and eventually form into particle nuclei when large 

enough.  The growing particles coagulate increasing the size of the particles.  PAHs 

levels have been found to be higher in under ventilated fires that produce more smoke.  

Once soot is formed, it needs time to oxidize in the upper parts of the flame [22].  As the 

soot travels through the flame it is cooled to a point where it can no longer be oxidized 

[23].  Soot formation and oxidation increase as temperature increases, but oxidation rate 

increases faster with temperature.  

Soot formation processes are different based on the structure of the process taking 

place.   It is important to understand the structure of the process, whether it be premixed, 

coflowing flames, inverse coflowing flames, counter flowing diffusion flames, or shock 

tubes.   Buoyancy effects also need to be considered.   Santoro studies of soot formation 
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in coannular diffusion flames showed that a characteristic of smoking flames were 

“wings” or “horns” around the sides of the flame [34, 44].   These characteristic horns 

were caused by intense nucleation and agglomeration in the toroidal zone near the base.   

The soot formed in this toroidal zone is convected along streamlines towards the tip of 

the flame.  The horns are formed around the outside of the flame because of these 

streamlines of soot.  From Kent and Wagner’s [10, 27]   research on soot temperatures, 

flames start emitting soot when the soot temperature in the oxidation zone cools below 

1300 K with the effects of buoyancy.  Nonbuoyant flames were found by Urban [10, 28] 

to have temperatures of 1000 K when a smoke point condition was reached.  The 

decrease in temperature for nonbuoyant flames is the result of radiative quenching 

because of the increased residence times of nonbuoyant diffusion flames. 

The most extensive work on sooting of laminar diffusion flames done by Schalla 

[29, 40] showed that the sooting tendency decreases in the followed order: Aromatics > 

Alkynes > Alkenes > Alkanes.  Aromatics have already formed rings the transition 

making them the most likely to soot.   The bonding in the alkynes, alkenes, and alkanes 

cause the difference in sooting for the nonaromatic fuels.  Alkynes are the most likely to 

form acetylene because of its triple bond. The formation of Acetylene is the fuel 

intermediate leading to the precursors of soot formation [12].   Early data on the critical 

sooting equivalence ratio for premix flames with air as the oxidizer showed that the 

sooting tendency decreases in the followed order:  Aromatics > Alkanes > Alkenes > 

Alkynes [12, 36, 40].  Milliken’s research showed that the cooler the flame, the greater 

the sooting tendency for premixed flames. This was later found to be true for diffusion 
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flames as well [12, 41, 42, 43].  Therefore to properly compare the fuel structure with the 

sooting tendency, flame temperature needs to be controlled.     

 In diffusion flames oxygen and fuel meet in the reaction region, which is limited 

by diffusion.   Stoichiometry dictates the temperatures and location of the fuel reaction 

region.  Since stoichiometry is dominating over chemical kinetics in diffusion flame, soot 

formation is simplified [22].   Soot formation/oxidation times are much greater than the 

heat release reaction times so consideration only needs to be made for the diffusion times 

and soot formation/oxidation time [22].  With soot formation/oxidation time being the 

main factor in determining soot formation then controlling the residence times of the 

flame becomes a controlling factor in soot production.   

 

1.3 Flame Shapes 

The flame shape is an important factor in the recognition of the smoke point.  The 

understanding of the soot formation areas and soot paths can help in the understanding of 

soot formation.   In buoyant flames, soot streamlines converge to the centerline where the 

fuel is located, as seen in Figure 1.2.   When fuel is increased so that a smoke point 

condition is reached, the flame tip will change from a round tip to a sharp tip.   In 

nonbuoyant flames soot streamlines diverge from the nozzle axis [28].    In microgravity 

the laminar smoke point condition can occur in two flame configurations: open-tip and 

closed-tip flames. An open-tipped flame configuration is signified by a blunt tip that 

occurs because there is no soot present at the flame’s axis. The reduction of flow 

velocities and increase of radiative heat losses with increasing distance from the flame 
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base provide condition for quenching, and the opening of the tip.  A closed-tipped flame 

configuration occurs when radiative quenching is reduced at shorter residence times [18].   

Open-tip flames were observed at large characteristic flame residence times with the 

onset of soot emissions associated with radiative quenching near the flame tip. Closed-tip 

flames have soot emissions along the flame axis and open-tip flames have soot emissions 

form an annular ring about the flame axis [28, 30]. Figure 1.2 shows the soot paths as 

well as the soot formation results.  Soot formation in diffusion flames is limited to fuel-

equivalence ratios (φ) of 1-2 shown in Figure 1.2 [30].  For buoyant flames soot is 

formed near the outside of the flame where φ=1 and then moves inward to the area of 

cooler and higher fuel concentration.   In nonbuoyant flames soot forms near the core 

where φ=2 and is drawn out to the flame sheet. As nonbuoyant flames start to transition 

to a smoke point condition they will develop the characteristic horns on the outer edge of 

the flame sheet.  The horns of a sooting flame can be seen in Figure 1.1.    

 

Figure 1.2:  Soot path lines through buoyant and nonbuoyant flames 
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1.4 Buoyancy Effects 

Convection is the primary mode of transportation of soot in flames.    Soot 

movement is slightly affected by Brownian motion and temperature gradients [30].  The 

difference between smoke point properties of nonbuoyant flames and buoyant ones are 

due to the difference of hydrodynamic properties of the flames [21, 28, 30, 31, 32]. In 

buoyant flames the flow is accelerating and the streamlines converge toward the axis of 

the flame.  The flow converges to the axis of the flame because of the fuel-rich flame 

conditions.     The difference in nonbuoyant flames is the flow is decelerating and the 

soot leaves the flame over the extended flame region.  The ratio of soot nucleation and 

growth residence times to soot oxidations residence times are generally larger for buoyant 

flames than nonbuoyant flames.   Residences times are proportional to the square root of 

flame length in buoyant flames [12, 21, 33].   For the nonbuoyant flames that Dotson 

observed, residences times are not constant [10].  The soot pathlines can be seen in 

Figure 1.2.  

It is difficult to avoid buoyancy effects on earth even when using parabolic 

aircrafts and drop facilities. Drop tests have limited test times and parabolic aircrafts have 

g-jitter affecting microgravity smoke points for four different types of fuels in the 

International Space Station [10].  Before smoke points were found for nonbuoyant jet 

flames, it was thought that smoke points would not occur [12].  Urban reported that for 

comparable flame conditions nonbuoyant smoke point lengths were up to 2.3 times 

shorter than when tested in ground-based microgravity facilities and up to 6.4 times 

shorter than buoyant smoke point lengths [30].   
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1.5 Velocity Field Effects Coflow 

Laminar smoke point properties are measured from round buoyant jet diffusion 

flames with coflowing air.   The coflowing air is used to prevent the flame pulsations that 

occur in the buoyant diffusion flames in still environments.  Variations in the velocity 

field change flame shapes and residence times in the soot formation and soot oxidation 

region.  The sources of velocity change in coflowing experiments are through burner 

diameter variations and coflow velocity variations.  Reducing the burner nozzle diameter 

increases the mean jet fuel velocity and reduces the flame residence time.   For 

nonbuoyant flames Dotson found that smoke points followed d
-0.91

uair
0.41 

[10].  According 

to Dotson’s correlation, the diameter of the nozzle has a larger effect on the smoke point 

than coflow velocity in an inverse fashion.   This correlation agrees with the work of 

Kent and Wagner [10, 27] on centerline soot profiles.  Reduction in burner diameter 

caused the soot volume fraction profile to shift downstream.   With the shift in soot 

volume fractions downstream, flame lengths increase from the decreasing soot formation 

region.    

Coflow velocity also plays a role in the smoke point characteristics of the fuel.  

Faeth found that as coflow velocity was increased, the soot emissions were suppressed.    

For nonbuoyant flames there is no buoyancy related acceleration which will tend to 

dominate to flow path of the gasses and soot.   Without coflow nonbuoyant flames 

decelerate and the velocity of the coflowing air can be used to modify the residence time 

of the flame.  Lin and Faeth examined flames at low pressures where buoyancy effects 

were minimized and found that coflow velocity greater effects on weakly buoyant flames 
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than buoyancy driven flames [27, 35, 38].   Their results did not result in a relation 

between coflow velocity and smoke point length.  A relationship between mass flow rate 

and coflow velocity was found and is shown in Figure 1.3.     

 

 

Figure 1.3: The effects of coflow velocity on mass flow rate [35, 38] 

The increase in coflow reduced the soot volume fraction which increased the smoke point 

length.  Even in weakly buoyant flames of low pressure flames, the effects of buoyancy 

driven acceleration changes the effect of coflow velocity.  The effects of coflow 

velocities on buoyant flames are less pronounced than nonbuoyant ones.   Schalla and 

McDonald [36] found that coflow velocity affect the fuel mass flow rate to a point and 

then leveled off having no effect, as shown in Figure 1.4.   This is consistent with the  
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Figure 1.4: The effect of coflow velocity on fuel flow rate [36, 38] 

thoughts that buoyant flows dominate the velocity field.   A study done by Berry-  

Yelverton and Roberts [38, 39] showed that ethylene smoke point length increased  while 

the coflow increased.   The decrease in the initial fuel to air velocity ratio was associated 

with an increase in coflow velocity, which increased the smoke point length of ethylene.   

Schalla and McDonald’s test were examined at fuel to air velocity ratios of 0.14 -0.42.   

Berry-Yelverton and Roberts’s  tests were done at higher fuel to air velocity ratios of 0.6 

- 1.4 and can be seen in Figure 1.5.  The effect of coflow velocity is different to buoyant 

and nonbuoyant flames because of buoyancy driven acceleration.   Without buoyancy 

flames decelerate, as mentioned in the buoyancy discussion, and the effect of the coflow 

velocity increased. 
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Figure 1.5 Ethylene smoke point length with respect to coflow velocity [38, 39] 

 

1.6 SPICE HISTORY 

The first smoke points were reported by Sunderland [21] in a microgravity 

aircraft.   Drop facilities were also used to obtain microgravity, but both had limitations 

that caused difficulties in the acquisition of smoke point measurements.   Urban [18], 

realizing the time constraints of drop towers and the g-jitter associated with microgravity 

aircrafts, measured smoke points in Earth’s orbit.    The measurements were done in 

quiescent air.    Future work focuses on smoke points in coflowing air.   

The Smoke Point in Co-flow Experiment (SPICE) goals are to acquire a:  better 

knowledge of and ability to predict heat release, soot production and emissions of fires in 

microgravity; better design of combustors through improved control of soot formation; 
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better criteria for flammability of materials for use in next generation spacecrafts.  SPICE 

was developed in 1996 from the Middeck Glovebox and the Enclosed Laminar Flames 

(ELF) experiment in the Microgravity Glovebox program.   

 The fires nonbuoyant smoke points were found in orbit aboard the space shuttle 

Columbia.  The International Space Station (ISS) Microgravity Science Glovebox (MSG) 

began SPICE operations onboard the ISS the in 2009.   The result of the operation was 55 

smoke points for ethylene, propane, propylene, and propylene/nitrogen mixtures.   Tests 

were done for burner nozzle diameters of 0.41, 0.76, and 1.6 mm and coflow velocities 

between 5.4 and 65 cm/s.  These smoke points led to the lengths scaled with d
-0.91

uair
0.41

, 

where d is the burner nozzle diameter and uair is the coflow velocity.  The scale is also 

multiplied with a fuel factor Af, which is a characteristic of the fuel. The SPICE 

experiment found a difference between the order of soot propensity for fuels when 

comparing microgravity and normal gravity.   The fuel mixtures in microgravity sooting 

propensity was found to increase as follows:  ethylene < propane < 50% propylene < 75% 

propylene < propylene. The original spice results found by Dotson can be seen in Figure 

1.6.     A residence time analysis of the flames was done in the original study.   The 

residence times are useful in understanding smoke points, but the analysis did not provide 

any quantitative correlations [10].  The results from the residence time analysis can be 

seen in Figure 1.7.  Further work on residence time analysis can be seen in K.T. Dotson’s 

2011 Fire Safety Journal [10]. 
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Figure 1.6: SPICE original results adapted from Dotson 

 

Figure 1.7: SPICE residence time results adapted from Dotson 
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1.7 Objectives and Contributions 

 The objective of the SPICE project is to get fundamental data on soot formation.   

That data can be used in CFD soot models.  Smoke point lengths are laminar tests that 

correlate to soot volume fractions and radiative heat loss fractions in turbulent fires.  The 

smoke point lengths and their use in modeling can help provide an alternative to doing 

expensive turbulent fire tests.  

 My contribution to the SPICE project was through video analysis and 

interpretation of the data that was collected from the tests.    The actual tests were done 

by Don Pettit, a NASA astronaut, and were directed by Dr. David L. Urban.   From the 

videos, 57 new smoke points were found.   This data that I collected will be combined 

with the 2009 flight data throughout the following report.  The 2009 data was interpreted 

by Dotson in his completion of a M.S. in Fire Protection Engineering.   Future work done 

in the SPICE project should reference K.T. Dotson’s and my work for comparison of 

results.   

 

1.8 Computational Fluid Dynamics (CFD) 

 For CFD models to accurately predict fire growth there are necessary inputs for 

characterization of the fire.   Materials and geometric arrangements affect the burning 

process. Turbulent buoyant jet flames would be an example of a characterization that is 

used in CFD models.   Delichatsios worked on simple correlations for the relationship 

between laminar smoke point lengths and smoke yield in turbulent buoyant jet flames 
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[14].  Laminar smoke point lengths are related to soot volume fractions and radiant 

fraction of flames.   Using laminar data for turbulent flow is useful because of the 

difficulty and unpredictability of turbulent tests.   It is important to have fundamental data 

set that can be used in these correlations.   Since nonbuoyant flames are not driven by 

buoyant forces, then there is one less parameter affecting the fundamental data.  The Fire 

Dynamics Simulator (FDS) and FireFoam are models that currently use laminar smoke 

point lengths in correlations for turbulent conditions.  
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Chapter 2 Test Setup and Experimental Procedure 

The Smoke Point In Co-flow Experiment (SPICE) tests were done in order to 

determine a smoke point length for the various fuels burned.  The transitions between 

smoking and non-smoking flames were sometimes past the video’s field of view.  The 

transition between the smoking and non-smoking conditions are indicated by a few key 

flame shapes.  When a flame has transitioned into a smoking flame it changes from a 

bright luminous rounded boundary at the flame tip to a flame tip with horns.   The flame 

tip opens up and becomes more of a red color because the soot is cooling for release.  The 

test setup and experimental procedure for the SPICE test is important.  In order to ensure 

that the data from the previous flights, the 2012 flight tests being examined, and future 

flight tests can be compared the experimental procedure and test setup must remain 

consistent.  

 

2.1 SPICE  

The SPICE operations were started in February 2009.  The flames were observed 

in the ISS Microgravity science box.   The flames in the 2009 tests were successful and 

showed a strong impact of the burner diameter and the co-flow air velocity.   The strong 

results called for a reflight and tests were done beginning in February 2012.    

The Smoke Point In Co-flow Experiment Reflight (SPICE-R) tests were 

conducted to expand the knowledge from the first tests.   This expansion of knowledge 

was meant for examining new fuels with a wider range of fuel diameters, as well as 
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expanding the statistical data that was gained from the first flight.   The reflight dealt with 

pure fuels of Ethane, Ethylene, Methane, and Propane at a range of 0.76-3.2 mm inside 

burner diameters.  The emphasis was to look at pure fuels where the 2009 flights 

considered diluted fuels as well.  The original SPICE burners had inside diameters of 

0.41, 0.76, and 1.6 mm where the SPICE-R had 0.76, 1.6, 2.1, and 3.2 mm burners.  The 

SPICE test flight plans included the 0.4 mm burner, but there were no tests done with the 

burner.  The reflight tests were done by astronaut Don Pettit.   

The rationale for the reflight was that the previous results have shown a strong 

relationship with burner size and coflow velocity to microgravity smoke point lengths.   

Normal gravity smoke points do not show such a strong relationship.   Originally there 

were only three burners tested, the largest being 1.6 mm.   The increase in burner sizes to 

2.1 and 3.2 mm burners would yield a larger number of smoke points with more fuels.  In 

the previous flight the effect of the burner diameter and coflow velocity was less known.   

The knowledge gained from the previous flight helped with the creation of the test matrix 

of the current study to maximize the number of smoke points that could be found.   

 

2.2 Microgravity Science Glovebox 

The redesign of the Middeck Glovebox, used in the Enclosed Laminar Flames (ELF) 

experiment, led to the ISS Microgravity Science Glovebox.    The glovebox, shown in 

Figure 2.1, encapsulates the SPICE module where the flames are examined. The SPICE 

experimental assembly, shown in Figure 2.2, is a rectangular duct that is approximately 
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200 mm in length with a square cross section of 76 x 76 mm.  The duct has a basic setup 

from left to right of fan with a ceramic flow straightener, an anemometer for the 

 

Figure 2.1:  ISS Microgravity Science Glovebox 

 

Figure 2.2:  Diagram of SPICE experimental chamber adapted from Dotson 
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air stream, the fuel burner nozzle, an ignitor, an area for flames, and a soot trap for the 

exit flow.  The module’s coflowing air is supplied by a DC fan that is connected to a 

ceramic flow straightener.  The ceramic flow straightener reduces the swirling flow of the 

air from the fan and provides steady airflow to the system.    The fan flow is changed by 

adjusting the air knob on the controller box.  An anemometer is used to measure the 

coflow velocity of the system.   Before the air and combustion products exit the flow 

chamber, they enter a copper screen soot trap to filter the flow.  The fuel flow was 

controlled by the astronaut with the fuel knob on the controller box.  0.76, 1.6, 2.1, and 

3.2 mm burner nozzles were exchanged between test runs for the desired fuel diameter.  

The SPICE experimental assembly is harnessed in the MSG.   The MSG includes other 

 

Figure 2.3: The Microgravity Science Glovebox with the SPICE experimental assembly  

                   installed inside. The MSG includes all necessary equipment for SPICE. 
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equipment seen in figure 2.3.  The MSG includes the SPICE experimental assembly, a 

Nikon D100 Camera, a video camera, a control box, power box, and a video box.   The 

Nikon camera is there to supplement the video images with high resolution flame images.  

The high resolution flame images are taken by the astronaut.  The control box controls 

the fan flow and the fuel flow in the experimental assembly.   

The tests were first done test point by test point with ignitions before every test.   

The astronaut would set the fan setting, adjust the fuel to a beginning setting, ignite the 

flame, and adjust the fuel flow rate.   The fuel flow rate would be adjusted until a smoke 

point condition was reached.   As the experiment progressed the astronaut became more 

comfortable with the test procedure.   Eventually multiple smoke points were found per 

ignition without extinction of the flame.   This procedure change was done in order to 

save fuel for all of the test points.    The ground support crew in Cleveland, OH was 

guiding the astronaut through the tests indicating when to take pictures and when the 

flame was smoking.   The astronaut was eventually asked to indicate when the smoke 

point condition occurred because he had the best view of the flame.   The astronaut 

indicated a smoke point conditions with an “elbow wiggle” for the second half of the 

tests.   Propane and a portion of ethane’s smoke point conditions were indicated by the 

ground crew. The rest of the ethane, the methane, and the ethylene tests were all indicated 

by the astronaut.    A few test runs were done before the MSG was purged and cleaned of 

the soot.  The video was recorded on digital tapes.  The videos were then matched up to 

the audio and compressed into a multi-view video.  The compressed videos contained 

both the video of the MSG chamber and the video of the astronaut.    
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Once all of the tests were completed and the videos were compiled, the video and 

camera images had to be analyzed for smoke point conditions.  The smoke point 

conditions were associated with the coflow rates from the video.   The camera images, 

although having much better quality, were not always at the smoke point condition.  

Smoke point conditions were indicated by the scientists as well as identified through 

characteristic qualities of a smoking flame.   When the smoke point conditions were all 

found their length were measured in Spotlight 16.  Spotlight-16, a NASA created 

software package, was designed to perform image analysis for images created by 

microgravity combustion and fluid experiments.    The flame endpoints were indicated by 

the intensity.  The endpoint of the flame was indicated by the intensity reaching fifty 

percent of the bright yellow body of the flame.   Further discussion of flame length 

measurement can be found in the videography section 2.5. 

 

2.3 Air Meter 

The SPICE flow duct anemometer measures the coflow velocity of the system.  

The anemometer is located on the fan side of the glove box near the fuel burner shown in 

Figure 2.2.    The coflow flows through the SPICE experimental assembly shown in 

Figure 2.5. The preflight fan calibration was done by Denis Stocker with the results 

shown below in Figure 2.4.   “AIR” reading is correlated to y = -0.0044x
2
 + 1.2899x - 

11.828 in cm/s as shown in Figure 2.4.  The fan provided co-flow velocities ranging from 

5 to 50 cm/s.   A knob that controls the coflow velocity adjusts the fan flow and changes 

“AIR” and “FAN” readings on the MSG video display.    It is important to note that the 
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fan calibrations were done in normal gravity and the readings show some minor day-to-

day variation.  

 

 

 

 

 

 

 

Figure 2.4: The velocity as a function of AIR value. Calibrations done by Dennis Stocker,   

                   2/3/2012. 

 

 

Figure 2.5:  SPICE Experiment Assembly. NASA Fan Inlet/ FilterOutlet. 
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2.4 Fuel Meter 

Sierra® manufactured the mass flow controller used for the variation of the fuel 

flow in the SPICE experiments.  The mass flow controller provided the required fuel 

range of 25 to 500    standard cubic centimeters per minute (sccm).  The controller gives 

the volumetric flow as if the fluid was nitrogen at 21°C and 101.325 kPa.  A gas constant 

K is needed to convert the flow from terms of nitrogen to terms of the specific gas in 

question.   The equations are as follows: 

                    
 

∑     
⁄ 

 

where K is the is constant for the gas and X is the mole fraction of the gas.   K can be 

calculated for mixtures of gases, but in the extension of the SPICE study only pure gasses 

were used.  Table 2.1 has the relevant K factors for SPICE.  The K factor converts the 

FUEL meter reading to an  

Gas               C2H6            C2H4 CH4           C3H8 C3H6-N2 3C3H6-N2           N2 

K                0.5            0.60 0.72       0.36 0.481 0.582              1.00 

 

Table 2.1: K-factor for the gases used in the SPICE experiments.  K-factors provided by  

                the manufacturer Sierra.   

equivalent volumetric flow rate for the given in sccm.   Once the volumetric flow rate 

was found for the given fuel, a mass flow rate could be derived.  The mass flow rate was 

found through the given conditions and ideal gas law.   The conversion is as follows:  
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             ̇(    )   

              
  

   
      

  

The molecular weight and volumetric flow rate of the fuel are the two factors needed for 

the mass flow rate.  The mass flow rates for the corresponding FUEL reading are given in 

Figure 2.6.  It is important to note that while the mass flow rates are relatively similar the 

fuel velocity can be substantially different between fuels.  

 

Figure 2.6: Calibrations for the fuel rotameter.  Mass flow given in mg/s of the specific 

fuel. 
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2.5 Videography  

The image analysis was done in Spotlight-16, a NASA created software package 

designed to perform image analysis for images created by microgravity combustion and 

fluid experiments.   Spotlight-16 is capable of performing analysis on single images or 

sequences of images.  Spotlight works with one or more subsets of the image that are 

called an “Area Of Interest” (AOI).   The main function used to find the smoke point 

length was “Line Profile AOI.”  The line profile has the ability to count the number of 

pixels along that line and displays a graph of the intensities along the line.   Besides 

showing the intensity, the AOI can show the minimum, maximum, and mean intensities 

along the line. The line profile function  and luminance plot can be seen in Figure 2.7 

 

Figure 2.7: Spotlight-16 Image analysis software.   The flame lengths were measured by  

                 pixel length.   Luminance graph was used to find the end of the flame.  The X  

                 denotes when the luminosity is at the 50% of the maximum.   
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 The line profile was used to determine the length of the smoke points observed.  

Before the tests a ruler was shown as a reference to determine the pixel length 

correlation.   After determining the pixel length correlation, flame lengths were found 

based on the number of pixels. An anchor was set at the end of the burner before each set 

of tests that denoted the beginning of the flame.   The end of the flame length was 

determined by the intensity graph.  When the intensity dipped below fifty percent it was 

considered to be the end of the flame.   An example of the flame length pixel correlation 

can be seen in Figure 2.7.  The pixel length correlation for the uncompressed video was 

found to be 336.02 pixels per 70 mm.  All of the videos were checked for accuracy before 

measurements were taken.  

 

2.6 Test Procedures 

The test procedures for the smoke point flame test were predetermined by NASA.  

The only part of the testing that differed from run to run was the number of flames that 

were observed.  As the astronaut became more comfortable with the test equipment and 

procedures, more flames were observed in succession without extinguishment.  The 

succession of tests were performed in order to save fuel.   Before each test the astronauts 

were to refer to their execution notes for the test point number.  Then the camera settings 

were checked and adjusted as needed.   The FUEL and FAN flow knobs were rotated to 

the ignition values given by the test matrix.   After the AIR value was verified as greater 

than five then fuel and ignitor switches, on the SPICE control box assembly, were turned 
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to “ON”.  Once the switches were turned to “ON” then the gas bottle valve must be 

turned to “OPEN”.  Opening the valve released the fuel and the ignitor was immediately 

pulled forward until the flame appears.  After the flame is lit the ignitor should be 

released.   On the SPICE control box assembly the FUEL flow was adjusted to find the 

smoke point.   Initially the procedure involved the ground scientist directing the astronaut 

to the smoke point.  Target points were given to the astronauts as seen in Figure 2.8.   

Eventually the astronaut was directed to indicate when the smoke point occurred and did  

               

Figure 2.8 Cues for the onset of smoke points for astronauts 
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so with a shoulder movement.  At the smoke point the camera button was pushed, taking 

a series of images.   After the images were taken the FAN was adjusted to the next flow 

in the run.   This was repeated until all the smoke points were found in the run.   After the 

run or set of test points was finished the fuel and ignitor switch were turned off.   The test 

assembly was then setup for the next run.   
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Chapter 3 Results and Discussion 

 Smoke points were observed for four different fuels, including two fuels in which 

smoke points were not previously found.  A total of 57 smoke points were found to 

double the previous study’s 55 smoke points to expand to a total of 112 smoke points 

observed.   Smoke point information from this study and Dotson’s study can be seen in 

Appendix 5.1.   Smoke points were found for methane and ethane along with more smoke 

point data for propane and ethylene.    In the previous microgravity study done by Dotson 

smoke points were tested but smoke point conditions were not reached.   The flames 

would reach the copper plate at the end of the duct before approaching a smoke point 

condition.   Some of the fuels that produce less soot smoke points were too long to 

examine all of the burner nozzle sizes.   The smaller nozzles of 0.76 and 1.6 mm were not 

examined or the tests failed to produce smoke points for methane and ethane.  None of 

the 0.4 mm burner tests were examined for the four fuels because the results would not 

yield smoke points due to the length.  The smoke point information is shown in Table 

3.1.     Flame images of the smoke points can be seen in the Appendix 5.2. Some of the 

desired smoke point tests were planned for but not reached due to the limited supply of 

fuel.    There were some additional tests for the 3.2 mm burner of propane.   A few of the 

test points were thrown out due to a smoke point condition not being reached or the 

smoke point was reached far out of the field of view.   Five propane test points were lost 

due to the flame not being brought to a smoking condition and one ethane smoke point 

was past the field of view and could not be interpolated.    
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Fuel  CH4 C2H6 C2H4 C3H8 

d (mm) 3.2-2.1 3.2-1.6 3.2-0.76 3.2-0.76 

uair (cm/s) 4.2-15.5 3.0-41.7 3.0-39.1 4.2-39.9 

ufuel (cm/s) 66.2-170 19.9-180.3 10.1-714.2 8.4-389.1 

Re (fuel) 123.9-211.6 94.7-387.5 36.6-683.1 57.4-788.5 

LSP (mm) 75-97.5 44.2-112.1 20.8-115.2 26.5-97.7 

Af (mm) 98.2 64.9 34.8 32.9 

Number of Smoke 

Points 
6 13 19 19 

Total number of 

Smoke Points 
6 13 25 25 

 

Table 3.1 Results from the microgravity smoke points. 

 

The transition of flames to their smoke points can be seen in Figure 3.1.  Figure 3.1 

shows the transition from the non-soot emitting flame to the soot emitting flames for the 

four fuels.   The smoke point for each sequence of flames is between the third and fourth 

flame pictures.    Figure 3.1 shows increasing fuel flow at a constant coflow velocity with 

the increase in flame length for all of the fuels.   The four fuels shows the dependence of 

smoke point length on the type of fuel.   Ethane and Methane have much longer smoke 

points than the ethylene and propane at equivalent coflow velocities.     
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Figure 3.1:  Flames at constant coflow and burner diameter with varying fuel flow rates 

 

3.1 Coflow effects 

 The smoke point lengths are plotted against coflow velocity in Figure 3.2.   

Smoke point data from the Dotson tests was added to the plot as well, representing all of 

the microgravity smoke point data found in the SPICE.  The linear fits indicate the smoke 

point data for the given fuel and a given burner size with increasing coflow.  Not all the 

linear fits are increasing with coflow velocity at the same rate suggesting that there are 

other contributing factors.  The smaller burners and cleaner burning fuel increase more 
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rapidly with coflow velocity.    One explanation could be that the increases in coflow 

velocities decrease the residence time.   The decrease in residence time decreases the 

amount of time in the soot formation region causing less soot production.  Another reason 

for the increase in coflow leading to an increase in smoke point length is through soot 

oxidation.    Increases in coflow velocity could increase the rate of soot oxidation.  

Coflow contributes less to smoke point length than burner diameter but is still a large 

contributor and cannot be overlooked.  

 

Figure 3.2: Smoke point flame length vs. coflow velocity.   The linear fits are shown for  

                   each burner diameter for a given fuel.  
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3.2 Fuel Injection Velocity 

 Burner size is an important factor when discussing smoke points in microgravity.   

Burner diameter controls the fuel inlet velocity which by examination of the correlation is 

dominant over the coflow velocity.   Smoke point length increases with decreasing burner 

diameter.   The decrease in diameter creates an increase in fuel jet injection velocity.   

The increase in injection velocity pushes the centerline soot volume fraction downstream 

Kent and Wagner’s research states [10, 27].  Fuel injection velocity is factored into the 

residence times of that flame.   

Figures 3.3-3.6 show the laminar smoke point lengths at the individual burner 

diameters.   Each plot has a different fuel tested at that individual burner.   For the 1.6 

mm burner six fuels were tested and given the most data.   The plots follow decreasing 

burner size and increasing fuel injection velocity.  Figure 3.3 shows the 3.2 mm burner  

 

Figure 3.3: Smoke point flame length vs. coflow velocity.  3.2 mm burner only. 
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having a slight variation in slope from fuel to fuel with the exception of ethane. The 

similar slopes throughout Figure 3.3 and 3.4 show that the effect of the coflow velocity is 

very similar at low fuel injection velocities.  Switching from fuel to fuel at a larger burner 

diameter will not dramatically affect the rate of change of smoke point length with 

coflow velocity.  Injection velocities for the two burners range from 8.43 cm/s to 105.4 

cm/s with methane being the outlier.  The largest injection velocity at these two burners is 

methane at 153.8 cm/s at the 2.1 mm burner.   With only two test points found at the 2.1 

mm burner for methane, it is hard to tell whether or not it would fit the same profile as 

the rest of the fuels.  More test points would be needed for methane to add to the analysis 

of the 2.1 mm burner.   Once the tests were switched to the 1.6 and 0.76 mm burners the  

 

Figure 3.4: Smoke point flame length vs. coflow velocity.  2.1 mm burner only. 

results started to produce outliers in changing smoke point length with respect to coflow 
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Figure 3.5: Smoke point flame length vs. coflow velocity.  1.6 mm burner only. 

 

the same path with coflow velocity because of its cleaner burning characteristics.  

Besides ethane all of the fuels increase with coflow at a similar rate.   The 0.76 and 0.41 

mm burner, seen if Figure 3.6, is when the fuels do not follow the same path with 

increasing coflow velocity.  Ethylene and propane also switch in sooting propensity.  At 

the 0.76 mm burner injection velocities are much higher than previous burners and could 

be a factor in the change in effect of the coflow velocity on smoke point length.    

 It is important to notice that there is an increasing change when decreasing the 

size of the burner.   The change in smoke point lengths between the 3.2 to 2.1 mm 

burners is not as larger as the difference between the 1.6 and 0.76 mm burners.   The 

injection velocity doubles in the first change and is four times as much in the second 

change.  The fuel injection velocity is not linearly dependent with the change in burner 

size.   This nonlinear dependence can account for the degree of increase in the smoke  
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Figure 3.6: Smoke point flame length vs. coflow velocity.  0.76 and 0.41 mm burner  

                   only. 

 

point length when examining the 0.76 mm burner.     Figure 3.7 shows the difference in 

injection velocity of the 3.2, 2.1, and 1.6 mm burners against  the 0.76 mm burner.   The 

fuels shown are propane and ethylene because they were the fuels that were tested over 

the full range of burners.    The 3.2, 2.1, and 1.6 mm burners for the fuel are all below the 

150 cm/s range and are all relatively similar.   While the mass flow rates at the same 

burner size stays close because it is user controlled.   The difference between mass flow 

rates of the fuels is negligible and can be seen in Figure 2.6, the calibrations for the fuel 

rotameter. The large increase in injection velocity would have less of an effect in buoyant 

flows.   Buoyancy driven acceleration dominates over the injection velocity and the effect 

of the injection velocity is dampened.    When buoyancy is removed from the flow 

injection velocity seems to become a larger factor in the time the fuel is in the soot 

formation region.   
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Figure 3.7: Smoke point flame length vs. fuel injection velocity.   The linear fits are  

                   shown for each burner diameter for a given fuel.  
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Ethylene at the 0.76 mm burner is an outlier as seen in the other plots.  Reynolds data can 

be seen in Appendix 5.1. 

 

Figure 3.8: Smoke point flame length vs. Reynolds number based on fuel injection  

                   velocity.    

 

3.3 Fuel comparison  
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longer.  Methane flames throughout the tests were open tipped flames.  Their smoke 

points were identified by the horns associated with smoke points.   The horns are less 

pronounced than other fuels because of the methane’s small propensity to create soot.  

 

Figure 3.9: Standard pressure nonbuoyant methane smoke point lengths. 

 Ethane flames had the next longest smoke point lengths.   Ethane smoke points 

were tested for 3.2, 2.1 and 1.6 mm burners.   The 1.6 mm burner tests began to pass the 

edge of the field of view and the tests were stopped.   Ethane flames were clean burning, 

but were more luminous than the methane flames.    The ethane smoke point was 

signified by the transition to an open-tip flame with horns.    As the coflow velocities 

increased the smoke point condition came before the transition to an open-tipped flame.   

The smoke point occurred when the flame was still closed tip.  The smoke point was 

recognized by the reddening of the flame tip.   The decrease in burner size saw the same 

result.   In the 1.6 mm burner, closed tip smoke points occurred at much lower coflow 

velocities.    The ethane smoke point results are shown in Figure 3.10. 
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Figure 3.10: Standard pressure nonbuoyant ethane smoke points lengths. 

 Propane and ethylene had the greatest propensity for soot.   Their smoke points 

were identified by the dimming, reddening, and rounding of the flame tip.   The horns 

seen at a smoke point condition were more visible in the higher sooting propane and 

ethylene.   The propane and ethylene flames have close smoke point lengths until the 0.76 

mm burner as seen in Figure 3.11.  When the 0.76 mm is reached the smoke point of 

ethylene greatly lengthens and becomes longer than the propane smoke points.   This 

counters the results from the other burner sizes as well as what happens in normal 

gravity.   For the 3.2, 2.1, and 1.6 mm burners propane flames have longer smoke points 

than the ethylene flames at respective burner sizes.   This relationship is consistent with 

normal gravity smoke points in coflowing air.   The other fuels followed the recognized 
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Figure 3.11: Smoke point flame length vs. coflow velocity for ethylene and propane.    

                      The linear  fits are shown for each fuel.   Ethylene and propane smoke  

                      lengths are relatively similar except in 0.76 mm burner. 

  

order of smoking diffusion flames: Aromatics > Alkynes > Alkenes > Alkanes.   Ethylene 

does not follow the conventional form for a 0.76 mm burner in nonbuoyant conditions 

and its mechanisms need to be examined for a better understanding of the result.   

The sooting propensity based on the derived Af values is as follows from least to 

greatest propensity: methane (98.2) < ethane (64.9) < ethylene (34.8) < propane (32.8) < 

50% propylene (20.04) < 75% propylene (12.15) < propylene (10.37).  Values for 

propylene were rederived based on their new fit in the correlation.   The order of sooting 

propensity is contradictory with normal gravity, which is discussed in the following 
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section.   Normal gravity tests yield the results: methane < ethane < propane < ethylene  < 

50% propylene < 75% propylene < propylene.  The Af values with respect to normalized 

1g gravity smoke points can be seen in Figure 3.12.  The normalized smoke point lengths 

were obtained from Li and Sunderland [1]. It is important to note  that ethylene has a 

larger Af value than propane while having a shorter normalized smoke point length.   

 

Figure 3.12: The derived fuel factor, Af with respect to NSP of normal gravity flames  

                   from Li and Sunderland [7]. 

 

3.4 Correlation 

 The original correlation of smoke point was of the form        
     

 ,  where 

d is in mm, a and b are fitted constants, uair is in cm/s, and Af  is a constant derived for 

each fuel in mm.   Data from Dotson’s previous study was combined with the current 

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350

A
f,

  
m

m
 

Normalized Smoke Point NSP, mm  (1 g) 

C2H6 
C2H4 

C3H8 

C3H6 



44 
 

study to update the correlation. The correlation quantifies smoke point length’s 

dependence of burner diameter, coflow velocity, and fuel.   The a, b, and Af values were 

determined from maximizing the R
2
 of the fit while the slope of the fit remained a 

constant one.  Once the exponents a and b were set the fuel Af was found by maximizing 

the R
2
 value of the correlation.  The original study done by Dotson lead to the a= - 0.910 

b= 0.414 values used for smoke point length estimation.   The exponent’s respective 

signs of positive and negative are consistent with the previously discussed effects of 

coflow and diameter change.   As more fuels and data were added and more data was 

added that correlation was no longer applicable.   The original correlation done by 

Dotson can be seen in Figure 3.13.   

 

Figure 3.13: Smoke point flame length and scaled correlation.  Original correlation found  

                 by Dotson. 
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 With two more fuels and more than double the original data the correlation had to 

be updated to reflect the new data.   The addition of the new smoke points brought the 

original correlation R
2
 value to a value close to 0.8.   The scaling can be seen in Figure 

3.14 and it is important to mention that the data from Urban [18] is not included in the 

statistical fit.     The original format,        
     

    of the scaling was kept because of 

its connection with the data.   However, when the new data was analyzed new a, b, and Af  

 

Figure 3.14: Smoke point flame length and scaled correlation.  All of the data found from  

                 the MSG was used to update the correlation. 
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values were determined from maximizing the R
2
 of the fit.  The updated correlation 

values found in this study are a= 0-.665 and b= 0.272.    These updated exponents better 

reflect the cumulative data set. The updated Af values can be seen in Table 3.2 along with  

Fuel CH4 C2H6 C2H4 C3H8 50 % C3H8 75 % C3H8  C3H8 

Af original  N/A N/A 21.2 18.5 13.9 7.65 6.05 

Af (mm) 98.21 64.92 34.8 32.88 20.04 12.15 10.37 

 

Table 3.2 The change in fuel factors from the original study to the current study 

 

the previously derived fuel factors.  With the addition of new data, the R
2 of the fit 

reduce from 0.90 to 0.873 with the addition of the new data.   The reduction in the R
2
 

ofthe fit is to be expected because of the number of data points that were added.  Another 

factor to the reduction of the R
2
 value was the addition of more 0.76 mm ethylene smoke 

points.  The smoke points for ethylene at the 0.76 mm burn do not follow the correlation 

well.   The difference between the correlation for the ethylene smoke point length and 

ethylene’s measured smoke point length can be seen in Figure 3.15.   Ethylene was the 

fuel that did not recognize the order of diffusion flames given earlier by Glassman [29].  

Without the four Ethylene points in the 0.76 mm, the correlation could be refined to a R
2
 

value of 0.93 seen in Figure 3.16.  The exponents of the correlation would change to a= - 

0.5 b= 0.34.  The effect of coflow increases. This increase is because at the 0.76 mm 

burner the diameter of the burner starts having a larger effect than previous burner sizes.  

However, further testing would need to be done to find the dominating factors affecting 

these test points.    In Sunderland’s [38] method of normalizing smoke points propane has 
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the greater smoke point length.  The differences in the fuel need to be examined 

molecularly to give thought to this change.  Propane consists of only  

 

 

 3.15: A comparison of the measured smoke point data to the correlated smoke point data  

          for ethylene. 

 

single bonds which give it a lower propensity to soot than a double bonded ethylene.   

This would back up the theory and results of propane being a less sooty flame.   

There is a difference in molecular weight between C3H8 (44.1 g/mol) and in C2H4 

(28.05 g/mol) that can be explained by the residence time theory of microgravity smoke 

points.  In microgravity there is greater control of residence time.  The lower fuel velocity 

of propane increases the available time for soot formation.  With a longer available time 

for soot formation the propane would have a higher propensity to soot.   The jump in fuel 

velocity from the 1.6 mm burner to the 0.76 mm burner is more pronounced.   The fuel 
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Figure 3.16: Smoke point flame length and scaled correlation.  All of the data found from  

                   the  MSG was used to update the correlation.  Ethylene at the 0.76 mm burner  

                not included in this plot. 

 

injection velocity from the 3.2 mm burner to the 2.1 mm burner increased by a factor of 

two.  In the transition from the 1.6 mm to the 0.76 mm burner the fuel velocity increased 

by a factor of six.   At the 1.6 mm burner the difference of injection velocities of ethylene 

and propane is 40.78 cm/s-115 cm/s and 39.24-64.46 cm/s respectively.  When switching 

to the 0.76 mm burner the injection velocity of ethylene and propane increases to 551.07-

714.21 cm/s and 330.64-389.1 cm/s.      The difference in the change in injection 
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velocities as the burner diameter is minimized could account for the switch in sooting 

propensity.   Propane’s injection velocity is always smaller than ethylene but when 

switching to the 0.76 mm burner the difference is 325 cm/s instead of around 50.5 cm/s 

for the 1.6mm burner.  The large difference in the injection velocity of the propane and 

ethylene at the 0.76 mm burner gives propane a larger amount of time in the soot 

formation region.   Dotson did work to measure these residence times but the results were 

inconclusive.    Extensive research on residence times will provide some more differences 

between the 0.76 mm and 1.6 mm burners.   

 The change in the correlation shows a few new thoughts about the contributors on 

smoke points in microgravity.     While burner size and diameter are still a dominating 

factor in the smoke point length, it is not as pronounced as originally thought.  The effect 

of coflow decreased from 0.412 to 0.272 and the effect of burner size decreased from   -

0.91 to -0.665.   Both of the factors were scaled down by closely equivalent amounts with 

coflow being scaled down slightly more.   The decrease in the exponents of the 

correlation was counteracted by the increase in fuel factors.  The fuel factors all increased 

by around thirty percent.   The type of fuel is a larger factor in the smoke point length 

than in the original correlation.   The fuel should be a large factor in the correlation 

because molecular shape has a large effect on a fuels sooting propensity.   A fuel like 

propane is cleaner burning than the double bonded propylene.   According to Af values, 

propylene (10.37) is more likely to produce soot than propane (32.88).   The same is true 

for ethylene and ethane.   Ethylene (34.8) is more likely to produce soot than ethane 

(64.92).    Relating these fuel factors to a flame’s actual soot production would be the 

next step.  Further testing would need to be done to find out how much more an Af value 
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of 20 is to a value of 40.  This kind of testing could be done through smoke sampling of 

burning flames.   The smoke point length is dominated by the fuel type and modified by 

coflow velocity and burner size.   

 The correlation was thought up based on the controlling factors of the experiment.   

There correlation was created because the dependence on one factor other than mass flow 

rate could not be found.   Mass flow rate dependence, seen in Figure 3.17, is expected 

because of its relationship with smoke point length.   This high R
2
 doesn’t provide any 

explanation into smoke point lengths and their existence.  Many different approaches 

were tried for finding meaningful smoke point length plots.   Residence times were 

examined in Dotson’s work without the result of quantitative correlations.  Radiative 

losses of the flames were measured but those measurements were not reliable.   Mass 

flow rate over stoichiometric mixture fractions were examined as well in Dotson’s work 

[38].  Further work on residence times and radiative loss fractions could provide some 

insight on the controlling mechanisms of soot formation.   The difficulty in finding 

quantitative correlations for the smoke point length suggests that there may be multiple 

contributing factors.   The next step would be to find the level of contribution of these 

factors.   The four common smoke point explanations are: a smoke point occurs when the 

soot temperature reaches its critical temperature of 1300 K (1000 K for microgravity) 

before its burnout; a smoke point occurs when the radiative loss fraction increases until it 

reaches 0.2-0.4 for normal gravity or 0.4-0.6 for microgravity;  a smoke point occurs 

when the ratio of the luminous length and the stoichiometric length increase with 

increased fuel flow until it reaches a smoke point around two;   a smoke point occurs 

when the increase in flame residence time also increases the time available for soot 
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formation and oxidation.    The definitions were discussed earlier as not being mutually 

exclusive.  There may be contributions from a number of factors discussed.    

 

Figure 3.17: Smoke point flame length against the mass flow rate of the given fuel. 

 

3.5 Procedures 
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the people on the ground do not.   Smoke points that are observed and indicated by the 

astronaut or whoever has a firsthand view of the experiment will reduce the error 

associated with the smoke points.   The person with a firsthand view of the experiment 

can explicitly see whether the flame is smoking or not.    

It is more difficult to see smoke in the video version of the test. This may be due 

to the quality of the video camera and an update in equipment would be beneficial.  The 

smoke point is the transition from smoking to non-smoking flame so small amounts of 

smoke need to be observed.    An astronaut better trained in what a smoke point condition 

is would provide the best results.   Towards the middle of the study the astronaut started 

to indicate when the smoke point condition occurred with at shoulder movement.   This 

visual movement took away any ambiguity of when the flame was at its transition point.  

Other visual cues, like an LED light, would be beneficial in the flame’s video.   There 

should also be a standard way of finding a smoke point condition.   The clearest tests 

were when the flame was brought past the smoke point and the fuel was slowly decreased 

until a smoke point was reached.   When approached from a smoking flame the transition 

is more distinctive.   Some of the tests were approached from the nonsmoking side and 

the transition was not reached.  Each data point is very important due to the environment 

it takes to recreate the data.  
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Chapter 4 Conclusions  

Microgravity smoke points of four different fuels were observed.   Methane, 

ethane, ethylene, and propane were observed with varying burner sizes of 0.76, 1.6, 2.1, 

and 3.2 mm.  A total of 57 smoke points were found to double the previous study of 55 

smoke points to expand to 112 smoke points total.  Previous work by Dotson emphasized 

the relationship of microgravity smoke point length with burner size and coflow velocity.   

Decreasing the burner diameter will increase the smoke point length.  Increasing the 

coflow velocity will increase the smoke point length.   The increase in smoke point 

lengths can be attributed to the change in residence times in the soot formation and soot 

oxidation region.  The increase in coflow velocities and reduction in burner diameter can 

cause the soot volume fraction profile to shift downstream creating a longer smoke point 

length.    Previous work on residence time and soot formation time to soot oxidation time 

ratio did not provide any relation between residence time and smoke points and was not 

evaluated for the new data.    

With the previous smoke point data collected by Dotson, the fuel sooting 

propensity are shown as follows: methane < ethane  < ethylene < propane < 50% 

propylene < 75% propylene < propylene.   The ranking is based on the Af values found 

for the fuels, which can be found in Table 3.1.   There is an exception in the 0.76 mm 

burner for ethylene and propane.   Propane produces less soot than ethylene in the 3.2, 

2.1, and 1.6 mm, but ethylene is less sooty than propane in the 0.76 mm burner.    This is 

contrary to normal gravity studies where sooting propensity is as follows:  methane < 

ethane < propane < ethylene < 50% propylene < 75% propylene < propylene.   In normal 
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gravity the propane fuel produces less soot in all cases.   The switch in sooting 

characteristics from the 1.6 to 0.76 mm burn could be a result of the fuel injection 

velocity.   The fuel injection velocity increases more in the change from the 1.6 to the 

0.76 mm burner than any other burner change.    The increase is so substantial that it 

could account for the switch in sooting characteristics of the flames.  Further testing 

could be done to validate this effect.  Similar fuel pairings to the ethylene/propane pairing 

could be used to study this velocity effect.  The important factor to consider is what the 

0.76 mm burner and high injection velocities do to the fuels being studied. 

Previously microgravity smoke points were scaled in the form        
     

 , 

with a= - 0.910 b= 0.414.     Given the work in the present study and the previous scaling 

equation        
     

 , a and b were updated to a = -0.665 and 0.272.   The updated 

correlation involves two new fuels and 57 additional smoke points.   The new correlation 

comes with new fuel factors (Af).   The Af values are increased by approximately 30 

percent of the originally derived factors.   The increase in Af values and decrease in a and 

b values shows a greater dependence on the particular fuel type than previously found.   

The a and b values decreasing show that their effect is less pronounced than originally 

thought.    However, the ratio of burner size and coflow velocity effect was very similar, 

but each was scaled down.   Even though the burner diameter and coflow velocity 

decreased that does not diminish their effect.   The two parameters are still controlling 

factors in the length of the smoke point.    

Methane smoke points were found for the first time at normal pressures.   Since 

methane produces less soot than other fuels, its smoke point is too long for normal 

gravity tests.   Methane’s simple structure makes it difficult to decompose into acetylene.   
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The methane smoke points nearly reached the edge of the field of view in the MSG with 

coflow velocities up to 15.51 cm/s.  Where in tests of other fuels in microgravity, coflow 

velocities of up to 65 cm/s were used.  With the addition of methane smoke points, 

methane flames can be compared with the sooting of other fuels when it previously could 

not.   

This study does not prove the cause of smoke points or distinguish which of the 

four commonly used mechanisms is dominant.   This study provides fundamental data set 

that can be used in CFD soot models. It has updated original correlations for smoke point 

length correlations.   A total of 57 smoke points were found to double the previous study 

of 55 smoke points to expand to 112 smoke points total.   Methane and ethane were two 

new fuels observed, leading to the first standard pressure methane smoke points.   There 

were hopes in the experimentation to find the radiative losses at the smoke point 

condition, but the data was not reliable.   The results of the study will hopefully lead to a 

better idea of smoke points and lead to further experiments distinguishing the dominant 

mechanisms in sooting flames.   
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Chapter 5 Appendices  

5.1 Microgravity Smoke Point Results 

Fuel 
Nozzle 

(mm) 
GMT Author 

Time 

Observed 

Fuel 

Velocity 

(cm/s) 

Flow 

Rate 

(mg/s) 

Coflow 

Velocity 

(cm/s) 

Length 

(mm) 

 

 

Reynolds 

Number 

Methane 3.2 72 DeBold 10:46:22 66.25 3.47 4.20 77.50 

 

127.89 

Methane 3.2 72 DeBold 10:46:52 64.16 3.36 3.02 75.00 

 

123.86 

Methane 3.2 72 DeBold 10:47:21 68.19 3.57 8.83 81.25 

 

131.63 

Methane 3.2 72 DeBold 10:48:09 73.56 3.85 15.51 85.63 

 

142.00 

Methane 2.1 72 DeBold 10:58:14 153.83 3.47 5.37 89.17 

 

194.88 

Methane 2.1 72 DeBold 10:58:40 166.99 3.77 6.53 97.50 

 

211.560 

Ethane 3.2 69 DeBold 12:45:41 19.89 1.95 3.02 44.17 

 

94.67 

Ethane 3.2 69 DeBold 12:46:33 27.87 2.74 13.32 61.46 

 

132.64 

Ethane 3.2 69 DeBold 12:47:26 33.78 3.32 22.91 76.25 

 

160.74 

Ethane 3.2 69 DeBold 12:48:06 40.62 3.99 34.59 95.21 

 

193.28 

Ethane 3.2 69 DeBold 12:48:44 43.31 4.25 40.81 99.17 

 

206.10 

Ethane 2.1 69 DeBold 13:08:23 48.36 2.04 5.37 50.21 

 

151.02 
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Ethane 2.1 69 DeBold 13:08:57 66.65 2.82 14.42 69.17 

 

208.12 

Ethane 2.1 69 DeBold 13:09:34 82.28 3.48 25.95 88.96 

 

256.95 

Ethane 2.1 69 DeBold 13:10:09 98.64 4.17 35.50 106.04 

 

308.05 

Ethane 2.1 69 DeBold 13:10:31 105.38 4.45 41.67 112.08 

 

329.09 

 

Ethane 1.6 69 DeBold 14:22:15 92.01 2.26 3.02 60.42 

 

218.92 

Ethane 1.6 69 DeBold 14:23:00 121.85 2.99 12.21 81.67 

 

289.92 

Ethane 1.6 69 DeBold 14:23:36 162.89 4.00 21.88 110.83 

 

387.55 

Ethylene 3.2 83 DeBold 11:35:21 10.07 0.92 3.02 20.83 

 

36.60 

Ethylene 3.2 83 DeBold 11:35:48 13.30 1.22 6.53 28.33 

 

48.35 

Ethylene 3.2 83 DeBold 11:36:10 16.66 1.53 16.60 34.79 

 

60.56 

Ethylene 3.2 83 DeBold 11:36:31 20.89 1.91 26.94 41.25 

 

75.92 

Ethylene 3.2 83 DeBold 11:36:50 23.62 2.16 35.50 47.71 

 

85.86 

Ethylene 2.1 83 DeBold 11:06:29 21.65 0.85 4.20 22.08 

 

51.65 

Ethylene 2.1 83 DeBold 11:07:01 29.74 1.17 11.09 29.17 

 

70.93 

Ethylene 2.1 83 DeBold 11:07:34 38.98 1.54 20.84 37.92 

 

86.08 

Ethylene 2.1 83 DeBold 11:07:59 51.39 2.03 30.83 47.29 

 

118.44 
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Ethylene 2.1 83 DeBold 11:08:32 58.90 2.32 39.08 56.25 

 

140.48 

Ethylene 1.6 83 DeBold 11:53:25 40.78 0.93 3.02 24.17 

 

74.11 

Ethylene 1.6 83 DeBold 11:53:45 61.67 1.41 7.68 36.46 

 

112.07 

Ethylene 1.6 83 DeBold 11:54:10 80.57 1.85 17.67 46.88 

 

146.41 

Ethylene 1.6 83 DeBold 11:54:31 94.00 2.15 24.94 51.04 

 

170.82 

Ethylene 1.6 83 DeBold 11:54:56 108.42 2.48 34.59 61.25 

 

197.03 

Ethylene 1.6 83 DeBold 11:55:12 115.88 2.65 37.31 65.00 

 

210.59 

Ethylene 1.6 45 Dotson 15:00:23 141.71 3.31 58.02 75.35 

 

257.55 

Ethylene 1.6 45 Dotson 14:37:08 102.93 2.41 33.57 53.99 

 

187.07 

Ethylene 1.6 45 Dotson 14:50:07 104.92 2.45 39.21 55.83 

 

190.68 

 

Ethylene 1.6 168 Dotson 9:49:13 103.92 2.43 36.39 57.50 

 

188.87 

Ethylene 1.6 45 Dotson 15:48:39 69.61 1.63 18.53 36.99 

 

126.52 

Ethylene 0.76 83 DeBold 12:18:08 551.07 3.16 3.02 89.79 

 

527.07 

Ethylene 0.76 83 DeBold 12:18:27 588.87 3.37 6.53 95.63 

 

563.22 

Ethylene 0.76 83 DeBold 12:19:00 714.21 4.09 18.74 115.21 

 

683.09 

Ethylene 0.76 45 Dotson 17:28:29 734.59 3.89 17.59 105.22 

 

635.76 
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Propane 3.2 72 DeBold 14:35:31 8.43 1.21 4.20 26.92 

 

60.62 

Propane 3.2 72 DeBold 14:35:55 10.74 1.55 9.96 35.62 

 

77.25 

Propane 3.2 72 DeBold 14:36:18 13.88 2.00 20.84 44.94 

 

99.77 

Propane 3.2 72 DeBold 14:36:48 17.98 2.59 33.66 56.12 

 

129.28 

Propane 3.2 72 DeBold 14:37:15 19.92 2.87 39.95 63.37 

 

143.23 

Propane 3.2 55 DeBold 12:53:15 7.98 1.15 5.37 26.46 

 

57.40 

Propane 3.2 55 DeBold 12:53:57 10.59 1.53 15.51 34.38 

 

76.17 

Propane 3.2 55 DeBold 12:57:12 13.58 1.96 27.93 46.04 

 

97.63 

Propane 3.2 55 DeBold 12:58:12 17.01 2.45 38.20 55.00 

 

122.30 

Propane 2.1 72 DeBold 14:44:56 16.98 1.05 5.37 26.46 

 

84.19 

Propane 2.1 55 DeBold 11:52:58 16.98 1.05 4.20 24.38 

 

80.11 

Propane 2.1 55 DeBold 11:56:33 23.39 1.45 15.51 34.38 

 

110.35 

Propane 2.1 55 DeBold 12:08:09 33.61 2.08 25.95 49.17 

 

150.40 

Propane 2.1 55 DeBold 12:09:08 41.40 2.57 38.20 60.83 

 

195.36 

Propane 2.1 55 DeBold 12:11:57 47.98 2.98 46.61 69.17 

 

226.42 

Propane 1.6 55 DeBold 15:12:23 32.53 1.17 5.37 30.21 

 

116.94 
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Propane 1.6 55 DeBold 15:13:13 48.04 1.73 14.42 44.38 

 

169.51 

Propane 1.6 55 DeBold 15:14:00 64.46 2.32 25.95 57.29 

 

217.78 

Propane 1.6 48 Dotson 16:54:27 82.34 3.03 44.85 71.38 

 

296.07 

Propane 1.6 48 Dotson 17:12:08 68.62 2.52 36.39 61.12 

 

246.72 

Propane 1.6 48 Dotson 17:45:17 48.93 1.80 22.29 45.52 

 

175.93 

Propane 0.76 55 DeBold 15:36:51 389.13 3.50 28.91 97.71 

 

736.31 

Propane 0.76 52 Dotson 11:39:28 460.49 3.84 33.57 105.45 

 

788.45 

Propane 0.76 52 Dotson 11:43:05 315.76 2.63 21.35 75.58 

 

540.65 

Propane 0.76 52 Dotson 11:49:43 271.03 2.26 16.65 64.33 

 

464.06 

50% 

Propylene  
1.6 55 Dotson 9:40:13 98.80 2.89 40.15 41.73 

 

181.04 

50% 

Propylene  
1.6 55 Dotson 9:37:29 75.18 2.20 26.05 32.50 

 

137.77 

50% 

Propylene  
1.6 167 Dotson 9:23:36 55.42 1.62 12.89 26.52 

 

101.56 

50% 

Propylene  
1.6 167 Dotson 9:32:48 74.70 2.18 26.05 33.41 

 

136.89 

50% 

Propylene  
1.6 167 Dotson 9:41:01 99.76 2.91 40.15 42.38 

 

182.81 

50% 

Propylene  
1.6 167 Dotson 9:45:36 112.78 3.29 48.61 49.51 

 

206.66 

50% 

Propylene  
1.6 55 Dotson 8:56:28 49.64 1.45 11.01 22.12 

 

90.96 
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75% 

Propylene  
1.6 52 Dotson 16:14:10 59.39 1.91 64.60 37.68 

 

144.12 

75% 

Propylene  
1.6 173 Dotson 10:38:23 58.59 1.88 58.96 35.84 

 

142.18 

75% 

Propylene  
1.6 52 Dotson 16:26:48 46.63 1.50 51.43 31.70 

 

113.17 

75% 

Propylene  
1.6 173 Dotson 11:09:27 41.85 1.34 42.03 26.65 

 

101.57 

75% 

Propylene  
1.6 52 Dotson 16:23:20 31.49 1.01 28.87 21.14 

 

76.41 

75% 

Propylene  
1.6 52 Dotson 16:09:59 19.93 0.64 12.89 14.47 

 

48.36 

75% 

Propylene  
1.6 119 Dotson 10:29:30 19.53 0.63 12.89 14.16 

 

47.39 

75% 

Propylene  
1.6 119 Dotson 10:38:53 28.70 0.92 26.99 20.36 

 

69.64 

75% 

Propylene  
1.6 136 Dotson 15:57:52 20.73 0.67 16.65 15.61 

 

50.30 

75% 

Propylene  
1.6 136 Dotson 15:53:36 24.31 0.78 23.23 17.88 

 

59.00 

75% 

Propylene  
0.76 52 Dotson 17:30:19 261.89 1.91 37.33 39.52 

 

302.65 

75% 

Propylene  
0.76 136 Dotson 17:23:30 123.04 0.90 14.77 21.97 

 

142.18 

75% 

Propylene  
0.76 136 Dotson 17:21:52 119.52 0.87 14.77 20.15 

 

138.12 

75% 

Propylene  
0.76 173 Dotson 12:40:44 274.20 2.00 38.27 43.98 

 

316.86 

Propylene  1.6 58 Dotson 9:55:18 28.54 1.00 51.43 25.73 

 

92.72 

Propylene  1.6 58 Dotson 9:47:05 20.73 0.73 33.57 19.63 

 

67.33 
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Propylene  1.6 58 Dotson 9:44:17 15.63 0.55 22.29 15.79 

 

50.77 

Propylene  1.6 58 Dotson 9:37:52 12.57 0.44 9.13 13.99 

 

40.84 

Propylene  1.6 174 Dotson 10:45:25 16.31 0.57 20.41 15.49 

 

52.98 

Propylene  1.6 174 Dotson 10:48:31 11.21 0.39 10.07 13.42 

 

36.42 

Propylene  1.6 174 Dotson 11:04:43 20.39 0.71 29.81 17.56 

 

66.23 

Propylene  1.6 174 Dotson 11:13:17 33.30 1.17 57.08 26.53 

 

108.17 

Propylene  1.6 174 Dotson 11:20:47 27.52 0.96 46.73 23.08 

 

89.41 

Propylene  1.6 174 Dotson 11:24:30 21.75 0.76 40.15 19.40 

 

70.65 

Propylene  0.76 58 Dotson 10:41:14 125.87 1.00 41.09 26.63 

 

194.71 

Propylene  0.76 58 Dotson 10:36:19 103.39 0.82 28.87 22.80 

 

159.94 

Propylene  0.76 58 Dotson 12:45:46 95.90 0.76 26.99 21.67 

 

148.35 

Propylene  0.76 174 Dotson 12:34:00 92.90 0.74 24.17 21.93 

 

143.71 

Propylene  0.76 174 Dotson 12:36:12 65.93 0.52 12.89 15.95 

 

101.99 

Propylene  0.76 174 Dotson 12:43:03 166.32 1.32 50.49 31.82 

 

257.29 

Propylene  0.76 174 Dotson 12:46:17 119.87 0.95 31.69 26.30 

 

185.43 

Propylene  0.76 58 Dotson 10:13:22 61.44 0.49 7.24 14.21 

 

95.03 
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Propylene  0.41 58 Dotson 11:32:00 716.43 1.62 26.99 53.28 

 

591.08 

Propylene  0.41 58 Dotson 11:25:49 595.27 1.35 14.77 46.96 

 

491.12 

Propylene  0.41 174 Dotson 11:46:06 763.84 1.73 10.07 59.19 

 

630.20 

Propylene  0.41 58 Dotson 11:23:08 484.64 1.10 5.36 37.70 

 

399.85 
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5.2 Flame Images and Information 

 

Fuel C3H8 C3H8 C3H8 C3H8 C3H8 

Nozzle 3.2 3.2 3.2 3.2 3.2 

GMT 079 079 079 079 079 

Time  14:35:31 14:35:55 14:36:18 14:36:48 14:37:15 

Air (cm/s) 4.20 9.96 20.84 33.65 39.94 

Length 

(mm) 

26.92 35.62 44.94 56.12 63.37 
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Fuel C3H8 C3H8 C3H8 C3H8 

Nozzle 3.2 3.2 3.2 3.2 

GMT 055 055 055 055 

Time  12:53:15 12:53:57 12:57:12 12:58:12 

Air (cm/s) 5.37 15.51 27.93 38.20 

Length (mm) 26.46 34.38 46.04 55 
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Fuel C3H8 C3H8 C3H8 C3H8 C3H8 C3H8 

Nozzle 2.1 2.1 2.1 2.1 2.1 2.1 

GMT 055 079 055 055 055 055 

Time  11:52:58 14:44:56 11:56:33 12:08:09 12:09:08 12:11:57 

Air (cm/s) 4.20 5.37 15.51 25.95 38.20 46.61 

Length 
(mm) 

26.46 24.38 34.38 49.17 60.83 69.17 
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Fuel C3H8 C3H8 C3H8 C3H8 

Nozzle 1.6 1.6 1.6 0.76 

GMT 055 055 055 055 

Time  15:12:23 15:13:13 15:14:00 15:36:51 

Air (cm/s) 5.37 14.42 25.95 28.91 

Length (mm) 30.21 44.38 57.29 97.71 
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Fuel C2H4 C2H4 C2H4 C2H4 C2H4 

Nozzle 3.2 3.2 3.2 3.2 3.2 

GMT 083 083 083 083 083 

Time  11:35:19 11:35:48 11:36:10 11:36:31 11:36:50 

Air (cm/s) 3.02 6.53 16.60 26.94 35.50 

Length(mm) 20.83 28.33 34.79 41.25 47.71 
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Fuel C2H4 C2H4 C2H4 C2H4 C2H4 

Nozzle 2.1 2.1 2.1 2.1 2.1 

GMT 083 083 083 083 083 

Time  11:06:29 11:07:01 11:07:34 11:07:59 11:08:32 

Air (cm/s) 4.20 11.09 20.84 30.83 39.08 

Length 

(mm) 

22.08 29.17 37.92 47.29 56.25 
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Fuel C2H4 C2H4 C2H4 C2H4 C2H4 C2H4 

Nozzle 1.6 1.6 1.6 1.6 1.6 1.6 

GMT 083 083 083 083 083 083 

Time  11:53:25 11:53:45 11:54:10 11:54:31 11:54:56 11:55:12 

Air (cm/s) 3.02 7.68 17.67 24.94 34.59 37.31 

Length 
(mm) 

24.17 36.46 46.88 51.04 61.25 65 
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Fuel C2H4 C2H4 C2H4 

Nozzle 0.76 0.76 0.76 

GMT 083 083 083 

Time  12:18:08 12:18:27 12:19:00 

Air (cm/s) 3.02 6.53 18.74 

Length (mm) 89.79 95.63 115.21 
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Fuel C2H6 C2H6 C2H6 C2H6 C2H6 

Nozzle 3.2 3.2 3.2 3.2 3.2 

GMT 069 069 069 069 069 

Time  12:45:41 12:46:33 12:47:26 12:48:06 12:48:44 

Air (cm/s) 3.02 13.32 22.91 34.59 40.81 

Length 

(mm) 

44.17 61.46 76.25 95.21 99.17 
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Fuel C2H6 C2H6 C2H6 C2H6 C2H6 

Nozzle 2.1 2.1 2.1 2.1 2.1 

GMT 069 069 069 069 069 

Time  13:08:23 13:08:57 13:09:34 13:10:09 13:10:31 

Air (cm/s) 5.37 14.42 25.95 35.50 41.67 

Length 

(mm) 

50.21 69.17 88.96 106.04 112.08 
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Fuel C2H6 C2H6 C2H6 

Nozzle 1.6 1.6 1.6 

GMT 069 069 069 

Time  14:22:15 14:23:00 14:23:36 

Air (cm/s) 3.02 12.21 21.88 

Length (mm) 60.42 81.67 110.83 
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Fuel CH4 CH4 CH4 CH4 CH4 CH4 

Nozzle 3.2 3.2 3.2 3.2 2.1 2.1 

GMT 072 072 072 072 072 072 

Time  10:46:22 10:46:52 10:47:21 10:48:09 10:58:14 10:58:40 

Air (cm/s) 4.2 3.02 8.83 15.51 5.37 6.53 

Length 
(mm) 

77.5 75 81.25 85.63 89.17 97.5 
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