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In this dissertation, ROLAX location determination system in 4G networks is

presented. ROLAX provides two primary solutions for the location determination

in the 4G networks. First, it provides techniques to detect the error-prone wireless

conditions in geometric approaches of Time of Arrival (ToA) and Time Difference

of Arrival (TDoA). ROLAX provides techniques for a Mobile Station (MS) to deter-

mine the Dominant Line-of-Sight Path (DLP) condition given the measurements of

the downlink signals from the Base Station (BS). Second, robust RF fingerprinting

techniques for the 4G networks are designed. The causes for the signal measure-

ment variation are identified, and the system is designed taking those into account,

leading to a significant improvement in accuracy.

ROLAX is organized in two phases: offline and online phases. During the

offline phase, the radiomap is constructed by wardriving. In order to provide the

portability of the techniques, standard radio measurements such as Received Signal

Strength Indication (RSSI) and Carrier to Interference Noise Ratio(CINR) are used



in constructing the radiomap. During the online phase, a MS performs the DLP

condition test for each BS it can observe. If the number of the BSs under DLP is

small, the MS attempts to determine its location by using the RF fingerprinting.

In ROLAX, the DLP condition is determined from the RSSI, CINR, and RTD

(Round Trip Delay) measurements. Features generated from the RSSI difference

between two antennas of the MS were also used. The features, including the variance,

the level crossing rate, the correlation between the RSSI and RTD, and Kullback-

Leibler Divergence, were successfully used in detecting the DLP condition. We note

that, compared to using a single feature, appropriately combined multiple features

lead to a very accurate DLP condition detection. A number of pattern matching

techniques are evaluated for the purpose of the DLP condition detection. Artificial

neural networks, instance-based learning, and Rotation Forest are particularly used

in the DLP detection. When the Rotation Forest is used, a detection accuracy of

94.8% was achieved in the live 4G networks. It has been noted that features designed

in the DLP detection can be useful in the RF fingerprinting.

In ROLAX, in addition to the DLP detection features, mean of RSSI and mean

of CINR are used to create unique RF fingerprints. ROLAX RF fingerprinting tech-

niques include: (1) a number of gridding techniques, including overlapped gridding;

(2) an automatic radiomap generation technique by the Delaunay triangulation-

based interpolation; (3) the filtering of measurements based upon the power-capture

relationship between BSs; and (4) algorithms dealing with the missing data.

In this work, software was developed using the interfaces provided by Be-

ceem/Broadcom chip-set based software. Signals were collected from both the home



network (MAXWell 4G network) and the foreign network (Clear 4G network). By

combining the techniques in ROLAX, a distance error in the order of 4 meters was

achieved in the live 4G networks.



ROLAX: LOCATION DETERMINATION
TECHNIQUES IN 4G NETWORKS

by

Dongwoon Hahn

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Ashok K. Agrawala, Chair/Advisor
Professor Mark A. Shayman
Professor Charles B. Silio Jr.
Professor Steven A. Tretter
Professor Atif M. Memon



c⃝ Copyright by
Dongwoon Hahn

2012



Dedication

This dissertation is dedicated to my parents, Heungsoo Hahn and Mansoon

Kim, my parents-in-law, Jaeak Kim and Yangbin Im, my sister, Sowon Hahn, my

daughter, Seunghye Chloe Hahn, and my wife, Chong Mi Kim.

ii



Acknowledgments

First, I am indebted to my advisor, Dr. Ashok Agrawala, for his continuous

guidance and teaching throughout the years I spent at the University of Maryland.

He has not only taught me how to do research but also taught me how to live. I will

keep the lessons I learned from him throughout my life. He has been my greatest

inspiration.

I am very grateful to my committee members, Dr. Mark Shayman, Dr. Charles

Silio, Dr. Steven Tretter, and Dr. Atif Memon, for serving on my committee. Their

teaching and feedback make this work stronger. I really appreciate Dr. Moustafa

Youssef for his advises and guidance when I sought for approaches to solve problems

in the area of wireless positioning.

Special thanks to those who encouraged me to start the journey to get the PhD

degree. I am deeply grateful to Dr. Youngjoong Yoon, Dr. Donghyun Kim, Dr.

Kyeongsoo Kim, and Mr. Donghoon Kwak for their support and encouragement,

which enabled me to start this challenge after five years in industry.

I was lucky to work with Mr. Manoj Pansare, Dr. Padma Mundur, Mr.

Brenton Walker, and researchers at Laboratory for Telecommunications Sciences

during my graduate study. I really appreciate their support, and I am very grateful

for giving me opportunities to pioneer a variety of technical fields.

Without the support from fantastic staff members at University of Maryland

Institute for Advanced Computer Studies, Mr. Fritz McCall and Mr. Mike van

Opstal, I would not be able to start my experimentation in 4G networks. I really

iii



appreciate Mr. Raghu Narasimhan for his expertise and help which made the initial

experimentation possible.

I really thank my dearest friends at the University of Maryland. It was for-

tunate to meet such wonderful people. I greatly appreciate support from fellow

students of MIND lab, KGECE, and KGSYS.

I always thank my parents for their love and support. I need thousands of

pages to describe everything I owed them. Without their support, I would not be

able to start this challenge. I really appreciate my parents-in-law for their love and

care. I believe I was able to go through hard times because of their support and

pray. I sincerely thank my sister, my brothers-in-law, and my sister-in-law in Korea.

It was a blessing for our family to live close to my sister when we had just come

to Maryland. With her sincere help, my family could settle smoothly into new life

in Maryland. I thank my aunt, my uncle, and my cousins, Jean, Susan, Terry, and

Casey. They have been sincerely supportive, and our family always appreciates their

invitations to their homes over holidays.

My daughter, Seunghye Chloe Hahn, is always my reason to live. She was

born just before I started my PhD. Throughout my PhD years, she always makes

me smile and cheers me up. I have no doubt that she will be the brightest and the

most creative person in our family.

My deepest appreciation goes to my wife, Chong Mi Kim. I cannot express

my gratitude enough for her love, care, sacrifice, consideration, and devotion to our

family. I feel sorry that she sacrificed her career and her PhD study to support our

family. I always relied upon her discretion and wisdom throughout my life. Thanks

iv



to her, this work was possible.

v



Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xii

1 Introduction 1
1.1 Contributions: Technical Components of ROLAX . . . . . . . . . . . 4

1.1.1 Dominant LOS Path (DLP) Condition Detection in 4G Net-
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Robust RF Fingerprinting Techniques in 4G Networks . . . . 8
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Existing Location Determination Techniques 10
2.1 RF Fingerprinting in Wireless Networks . . . . . . . . . . . . . . . . 10
2.2 Location Determination in 4G WiMAX Networks . . . . . . . . . . . 14
2.3 Comparison of 4G-Based Location Determination Techniques with

Other Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Comparison with GPS (Global Positioning System) . . . . . . 17
2.3.2 Comparison with Wi-Fi-Based Location Determination . . . . 19
2.3.3 Comparison with 2G/3G Cellular Networks-Based Location

Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Description of 4G Wireless Environment 23
3.1 Dynamic 4G Environment . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 4G Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Location Determination Procedure and Architecture of ROLAX 31
4.1 Location Determination Procedure in ROLAX . . . . . . . . . . . . . 32

4.1.1 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 System and Software Architecture of ROLAX . . . . . . . . . . . . . 35
4.3 4G Instrumentation of ROLAX . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 4G Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1.1 MAXWell 4G Network . . . . . . . . . . . . . . . . . 41
4.3.1.2 Clear 4G Networks in College Park, Maryland . . . . 43

4.3.2 4G Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 4G Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Dominant LOS Path (DLP) Condition Detection in 4G Networks 48
5.1 Range Determination under DLP . . . . . . . . . . . . . . . . . . . . 49
5.2 DLP Detection Techniques . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Wylie-Holtzman Technique Applied to RSSI . . . . . . . . . . 55

vi



5.2.2 Level Crossing Rate . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 Correlation between RSSI and RTD . . . . . . . . . . . . . . . 58
5.2.4 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . 58
5.2.5 Experimental Result: DLP Detection Using Single Feature . . 60
5.2.6 Parametric Distribution Modeling for Errors under Non-DLP . 64

5.3 DLP Detection Techniques Using Multiple Features . . . . . . . . . . 66
5.3.1 Underlying Measurements Used in Generating Multiple Features 66
5.3.2 Feature Extraction from Underlying Measurements . . . . . . 67
5.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.3.1 DLP Detection by Using Neural Networks . . . . . . 76
5.3.3.2 DLP Detection by Using K-Nearest Neighbor (K-NN) 78
5.3.3.3 DLP Detection by Rotation Forest . . . . . . . . . . 78
5.3.3.4 Evaluation of Other Pattern Matching Techniques

for DLP Detection . . . . . . . . . . . . . . . . . . . 80
5.3.4 Implication of DLP Detection Features on RF Fingerprinting . 82

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 ROLAX RF Fingerprinting in 4G Networks 88
6.1 Comparison with Existing RF Fingerprinting System . . . . . . . . . 89
6.2 Quality of Measurement Data . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Systematic Error . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Measurement Errors . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.3 Channel Fading . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.3.1 Shadow Fading . . . . . . . . . . . . . . . . . . . . . 97
6.2.3.2 Frequency-selective Fading . . . . . . . . . . . . . . . 98
6.2.3.3 Fast Fading . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3.4 Small Scale Fading(Fading over Short Distances) . . 101

6.2.4 Atmospheric Propagation Impairments . . . . . . . . . . . . . 106
6.2.5 Effect of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Generation of 4G Radiomap . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 Signal Collections for Radiomap Generation . . . . . . . . . . 111
6.3.2 Gridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.3 Interpolation of Measurements by Delaunay Triangulation . . 118
6.3.4 Illustration of Gridding and Interpolation Procedure . . . . . 121

6.4 Fingerprint Feature Selection . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1 Comparison of Underlying Measurements . . . . . . . . . . . . 124
6.4.2 Relationship between Underlying Measurements . . . . . . . . 127
6.4.3 Feature Extraction from Underlying Measurements . . . . . . 127

6.4.3.1 Offline Feature Extraction . . . . . . . . . . . . . . . 130
6.4.3.2 Online Feature Extraction . . . . . . . . . . . . . . . 131

6.5 Pattern Matching for RF Fingerprinting . . . . . . . . . . . . . . . . 132
6.5.1 K-NN (K-Nearest Neighbor) . . . . . . . . . . . . . . . . . . . 132

6.5.1.1 Distance Measures . . . . . . . . . . . . . . . . . . . 133
6.5.1.2 Algorithms Dealing with Missing Values . . . . . . . 134
6.5.1.3 BS Filtering . . . . . . . . . . . . . . . . . . . . . . . 137

vii



6.5.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 140
6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.1 4G Site Survey in College Park, Maryland . . . . . . . . . . . 141
6.6.2 RF Fingerprinting with Mean of RSSI Feature . . . . . . . . . 141

6.6.2.1 Improvement by Interpolation . . . . . . . . . . . . . 145
6.6.2.2 Improvement by Removal of Outliers . . . . . . . . . 148
6.6.2.3 Improvement by Gridding . . . . . . . . . . . . . . . 150
6.6.2.4 Improvement by Missing Value Handling Algorithms 151
6.6.2.5 Improved Distance Error by Filtering of BSs . . . . . 154
6.6.2.6 Measurement Variation over WiMAX Cards . . . . . 155
6.6.2.7 Sampling of Measurements . . . . . . . . . . . . . . . 156

6.6.3 RF Fingerprinting with Multiple Features . . . . . . . . . . . 157
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Conclusions and Future Work 162
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Measurements Available in Mobile WiMAX (IEEE 802.16e) 169
A.1 Received Signal Strength Indication (RSSI) . . . . . . . . . . . . . . . 169
A.2 Carrier to Interference Noise Ratio (CINR) . . . . . . . . . . . . . . . 171
A.3 Round Trip Delay (RTD) . . . . . . . . . . . . . . . . . . . . . . . . . 173

B Measurements Available in LTE 175

Bibliography 178

viii



List of Tables

2.1 Comparison of RF Fingerprinting Techniques . . . . . . . . . . . . . 15

4.1 Configurations of BSs Managed by Clear and MAXWell Lab in Col-
lege Park, Maryland . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Specification of WiMAX Base Station (BS) and Mobile Station (MSs)
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Specifications of WiMAX Mobile Station (MSs) Software . . . . . . . 47

5.1 Range Estimation Errors under DLP and Non-DLP . . . . . . . . . . 54
5.2 Feature Ranking for DLP Detection . . . . . . . . . . . . . . . . . . . 73
5.3 DLP/NDLP Detection Accuracy with Neural Networks . . . . . . . . 79
5.4 DLP/NDLP Detection Accuracy Achieved by Rotation Forest . . . . 81
5.5 DLP/NDLP Detection Accuracy by Classifiers . . . . . . . . . . . . . 83
5.6 Mean of RSSI and CINR at Locations in Figure 5.18 . . . . . . . . . 84

6.1 Comparison between RADAR, Horus, and ROLAX . . . . . . . . . . 92
6.2 Statistics of RSSI Difference Rd . . . . . . . . . . . . . . . . . . . . . 104
6.3 Frequency and Range of Measurements Difference from Nearest Lo-

cation Md . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Comparison of Measurement Types . . . . . . . . . . . . . . . . . . . 126
6.5 Correlation Coefficients between Measurement Types . . . . . . . . . 128
6.6 Gridding and Interpolation Options . . . . . . . . . . . . . . . . . . . 144
6.7 BS Configurations and Coverage . . . . . . . . . . . . . . . . . . . . . 146
6.8 RF Fingerprinting Performance with Multiple Features and Neural

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

ix



List of Figures

1.1 Geometric Techniques: Time of Arrival . . . . . . . . . . . . . . . . . 6

2.1 RF Fingerprinting System . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Example of Location Determination System Using RF Fingerprinting 14
2.3 Frequency Reuse Patterns in 4G Cellular Networks . . . . . . . . . . 21

3.1 Dynamic 4G Environment . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Fresnel Zone and NLOS . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Radius of First Fresnel Zone (2.5 GHz WiMAX) . . . . . . . . . . . . 29

4.1 Sequence Chart of Offline Phase . . . . . . . . . . . . . . . . . . . . . 34
4.2 Sequence Chart of Online Phase . . . . . . . . . . . . . . . . . . . . . 36
4.3 System Architecture for Offline Signal Collection . . . . . . . . . . . . 37
4.4 Software Data Flow Diagram for Offline Radiomap Generation . . . . 39
4.5 System Architecture for Radiomap Generator . . . . . . . . . . . . . 40
4.6 Frequency and Bandwidth Assignments in MAXWell 4G Network . . 42
4.7 MAXWell 4G Network’s Outdoor RF Heads . . . . . . . . . . . . . . 42

5.1 Locations for RSSI/RTD Measurements for Range Estimation . . . . 51
5.2 Measurements under DLP and Non-DLP and Their Linear Regression 53
5.3 RSSI Histogram and Kernel Density Estimators with Different Width

Values (Location 6 in Figure 5.4(b)) . . . . . . . . . . . . . . . . . . . 60
5.4 Locations for DLP Detection Experiment . . . . . . . . . . . . . . . . 61
5.5 RSSI Values over Time under Various Locations . . . . . . . . . . . . 61
5.6 RSSI Variance and RSSI Level Crossing Rate under DLP and Non-DLP 62
5.7 RSSI Kernel Density Estimator with Width 0.5 . . . . . . . . . . . . 63
5.8 Kullback-Leibler Divergence between RSSI Density under DLP and

Density at Other Locations . . . . . . . . . . . . . . . . . . . . . . . 63
5.9 Correlation Between RSSI and RTD . . . . . . . . . . . . . . . . . . . 64
5.10 Distance Error under DLP and NDLP (Estimated by RTD) . . . . . 65
5.11 Example: Spectral Centroid and Spectral Roll-off of RSSI measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.12 Processing between Underlying Measurements and Features . . . . . 71
5.13 Distribution of Features Selected for DLP/NDLP Detection . . . . . 74
5.14 Test Locations in the First DLP/NDLP Test . . . . . . . . . . . . . . 75
5.15 Test Locations in the Second DLP/NDLP Test . . . . . . . . . . . . . 76
5.16 Diagram of Neural Networks for DLP/NDLP Detection . . . . . . . . 77
5.17 DLP/NDLP Detection Accuracy by K . . . . . . . . . . . . . . . . . 80
5.18 Locations for Evaluating DLP/NDLP Features for RF Fingerprinting 84
5.19 RF Fingerprinting Performance Improvement by Using DLP Detec-

tion Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 RADAR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Horus Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



6.3 ROLAX Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Example of Systematic Errors in Reporting RTD . . . . . . . . . . . 96
6.5 Coherence Bandwidth in 4G WiMAX . . . . . . . . . . . . . . . . . . 99
6.6 Autocorrelation of RSSI Measurements at Eight Locations (1 Lag =

5 msec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7 Empirical CDF of RSSI Difference per Card . . . . . . . . . . . . . . 103
6.8 RSSI Per Antenna and RSSI Difference at Location with One An-

tenna under Radio Null . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.9 Histograms of Measurement Difference from Nearest Location . . . . 109
6.10 Empirical CDF of Scanning Duration . . . . . . . . . . . . . . . . . . 113
6.11 Wardriving Vehicle with Two 4G Receivers . . . . . . . . . . . . . . . 116
6.12 Gridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.13 Overlapped Gridding . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.14 Linearly Interpolated RSSIs using Delaunay Triangulation . . . . . . 120
6.15 Linear Interpolation Applied to Interpolate RSSI Values . . . . . . . 121
6.16 Illustration of Gridding and Interpolation Procedure (RSSI, Grid Size

= 10 meters × 8 meters) . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.17 Interpolations with Smaller Grid (RSSI, BS on 2512kHz, Grid Size =

1 meter × 0.8 meter) . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.18 Example of RTD Measurements by Wardriving (MAXWell BS on

2512GHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.19 Scatter Plots between Measurement Types . . . . . . . . . . . . . . . 128
6.20 WiMAX Scanning Misses . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.21 BS Detection Bitmap at 53 locations at University of Maryland, Col-

lege Park (Mxx:BSs in Maxwell 4G Network, Cxx: BSs in Clear 4G
Network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.22 Locations in Online Phase for Experiment in Section 6.6.2 . . . . . . 142
6.23 Locations of the Measurements for Each BS . . . . . . . . . . . . . . 144
6.24 Heatmap of Linearly Interpolated RSSIs by Coverage . . . . . . . . . 145
6.25 Distribution of the Interpolated RSSIs under Test Area . . . . . . . . 147
6.26 Improved Distance Error by Interpolation . . . . . . . . . . . . . . . 149
6.27 Improved Distance Error by Removal of Outliers . . . . . . . . . . . . 149
6.28 RSSI Radiomap for BS in MAXWell 4G Network over Gridding Options151
6.29 Comparison of Gridding Options . . . . . . . . . . . . . . . . . . . . 152
6.30 Comparison between Missing Data Algorithms, BS Selection Schemes,

and Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.31 Comparison between Alg-CF and Alg-MCF over Number of Neigh-

bors K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.32 Improved Distance Error by Filtering . . . . . . . . . . . . . . . . . . 155
6.33 Distribution of RSSI Difference between Hardware Devices . . . . . . 156
6.34 Distributions of Estimated Locations (Grid) . . . . . . . . . . . . . . 160

xi



List of Abbreviations

ADC Analog-to-Digital Converter
AGC Automatic Gain Control
A-GPS Assistant GPS
ANN Artificial Neural Networks
AP Access Point
API Application Programming Interface
BS Base Station
BSID Base Station ID
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CINR Carrier to Interference Noise Ratio
CPICH Common Pilot Channel
CQICH Fast Channel Feedback
CSMA/CA Carrier Sense Multiple Access / Collision Avoidance
DCD Downlink Channel Descriptor
DFT Discrete Fourier Transform
DL Downlink
DLP Dominant LOS Path
DL-MAP Downlink Map
D-TDOA Downlink TDOA
EIRP Equivalent Isotropic Radiated Power
eNodeB E-UTRAN Node B
ERP Effective Radiated Power
E-UTRA Evolved UMTS Terrestrial Radio Access
FBSS Fast BS Switching
FCC Federal Communications Commission
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPX GPS eXchange Format
GSM Global System for Mobile Communications
HSPA High-Speed Packet Access
HSUPA High-Speed Uplink Packet Access
IBSS Independent Basic Service Set
IP Internet Protocol
ISM Industrial, Scientific and Medical radio frequencies
KML Keyhole Markup Language
K-NN K-Nearest Neighbor
LBS Location-Based Service
LCR Level Crossing Rate
LMU Location Measurement Unit
LOS Line of Sight
LS Location Server
LS Least Square

xii



LTE Long Term Evolution
MAC-SAP Medium Access Control layer Service Access Point
MDHO Macro Diversity Handoff
MDL Minimum Discretization Length
MIMO Multiple-Input and Multiple-Output
MS Mobile Station
NAP Network Access Provider
NDLP Non Dominant Line-of-Sight Path
NLLS Non-linear Least Square
NLOS Non-line of Sight
NMEA National Marine Electronics Association
NSP Network Service Provider
OFDM Orthogonal Frequency-Division Multiplexing
P-CCPCH Primary Common Control Physical Channel
PCAP Packet Capture
PDF Probability Density Function
PDML Packet Details Markup Language
PHY-SAP Physical layer Service Access Point
PTP Precision Timing Protocol
QoS Quality of Service
RCPI Received Channel Power Indicator
RLCR RSSI Level Crossing Rate
RMS Root Mean Square
RSNI Received Signal to Noise Indicator
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indication
RTD Round Trip Delay
RTT Round Trip Time
SC Spectral Centroid
SF Spectral Flux
SR Spectral Roll-off
SUI Stanford University Interim model
SVM Support Vector Machine
TDM Time-division Multiplexing
TDOA Time Difference of Arrival
TOA Time of Arrival
TPC Transmit Power Control
UCD Uplink Channel Descriptor
UE User Equipment
UL Uplink
UMTS Universal Mobile Telecommunications System
USB Universal Serial Bus
U-TDOA Uplink Time Difference of Arrival
WCDMA Wideband Code Division Multiple Access

xiii



WiMAX Worldwide Interoperability for Microwave Access
XML Extensible Markup Language

xiv



Chapter 1

Introduction

Wireless communication networks have been evolving, and the most advanced

and widely deployed wireless communications networks, as of 2012, are 4G networks,

which include IEEE 802.16e-based WiMAX and 3GPP Long Term Evolution (LTE).

The number of mobile devices with 4G wireless access has been increasing, and,

particularly, the number of WiMAX deployments reached 583 in 150 countries in

2011 [1].

As mobile devices become ubiquitous, it is feasible to offer context-aware ser-

vices, by using location information to learn and approximate physical environment.

Feasible location-based services (LBS) can vary, depending on the quality (e.g. ac-

curacy) of the location information [2]. Location information is needed in services

for both people and things. E911 is a representative location-based service that

needs to determine location of people. Indeed, precise location determination is

crucial in Internet of Things. When people process information, missing pieces of

the information may be filled in by the human being’s discretion. For instance,

when a mobile cannot determine its location, the mobile user can manually enter

the location information (e.g. zip code) in order to get a location-based service.

Since things do not always have this level of intelligence, it is important to provide

an accurate location for things.
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There is an increasing need for ubiquitous positioning as more devices have

computing capability and wireless connectivity. However, it has been very hard

for a single positioning technology to provide a location determination solution for

both indoor and outdoor. Global Positioning System (GPS) is widely used for

outdoor positioning, and the GPS accuracy is typically between six to ten meters [3].

Receiver sensitivity of the GPS can be improved by getting aids from networks

(e.g. Assisted GPS), or by getting corrected GPS signals from networks of ground

towers (e.g. Differential GPS). However, GPS is typically not usable for indoor

areas [4] due to attenuated signal power, multipath error, etc. Indoor location can

be determined by using GPS pseudolites, but the installation of expensive equipment

and the modification of the GPS receiver are required to use pseudolites. In order to

provide the indoor location, Wi-Fi-based positioning has been widely used. However,

the coverage of the Wi-Fi networks is typically limited to indoor areas or urban

areas. Thus, in general, the Wi-Fi-based positioning cannot provide the outdoor

location. Therefore, in order to provide the positioning for both indoor and outdoor

areas, multiple positioning techniques such as GPS, Wi-Fi-based positioning, dead

reckoning using inertial sensors, etc. have been combined.

Location determination, using the cellular-networks, has potential to be a so-

lution for the ubiquitous positioning since cellular signals are essentially ubiquitous.

Recent introduction of femto cells has increased indoor coverage of cellular networks.

The Small Cell Forum and the WiMAX Forum have published the first standard

to support the WiMAX femtocells in 2010, and IEEE 802.16m was developed with

a consideration of supporting the femtocells. A formal femtocell specification has
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been published for the LTE, too. There were 41 femtocell deployments as of June

2012 [5]. As femtocells are becoming widely deployed, it is expected that the 4G

will provide better coverage in indoor areas.

In outdoor areas, the 4G-based location determination techniques can be used,

either independently or complementarily to the GPS. In addition to frequency aiding

from 4G networks, an initial user location, determined by 4G-based techniques, will

allow mobile stations to choose satellites to initially seek acquisition, resulting in

a shorter initial lock time. Doppler uncertainty can also be calculated if an initial

approximate location can be provided [6]. The 4G-based positioning can perform

better than the GPS under some circumstances. A comprehensive comparison is

discussed in Section 2.3.1.

In 4G networks, sophisticated radio resource measurements such as Received

Signal Strength Indication (RSSI) and Carrier to Interference Noise Ratio (CINR)

are supported, and they have to meet certain accuracy requirements, while there

are no such requirements in Wi-Fi which is widely used for indoor positioning(See

Appendix A). Thus, the location determination in 4G networks can be vendor and

device independent as long as those standard radio resource measurements are used

in determining locations.

ROLAX is a set of robust location determination techniques in 4G networks,

which can work in a variety of 4G wireless environment 1. ROLAX provides a

wireless positioning capability without any changes on the hardware of 4G mobile

stations (MSs). It also does not require any changes on base stations (BSs), nor

1See Section 3.1 for a detailed description of the 4G wireless environment.
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an installation of any special equipment. In ROLAX, the location is determined

by radio resource measurements on a mobile station, for which the location has

to be determined. ROLAX is designed, considering a wide applicability of the

techniques across the devices from different vendors, and an extendibility to other

4G networks and future wireless networks. Thus, rather than using non-standard

radio resource measurements, it uses a standard set of radio resource measurements,

which is common in the most modern wireless networks such as WiMAX, LTE,

IEEE 802.11-based Wireless Local Area Networks (WLAN), and IEEE 802.15.4-

based ZigBee networks. These standard radio resource measurements include RSSI,

CINR, and Round Trip Delay (RTD)2.

This work targets achieving performance better than requirements set by the

IEEE 802.16m [7]: 67 percentile of the Cumulative Distribution Function (CDF) of

the position accuracy has to be less than 50 meters, and 95 percentile of the CDF of

the position accuracy has to be less than 150 meters. This is the same as the wire-

less E911 location accuracy required by the Federal Communications Commission

(FCC). According to experiments performed in this work, a mean distance error of

4 meters was achieved.

1.1 Contributions: Technical Components of ROLAX

ROLAX is composed of two major technical components, which enhance the

positioning accuracy in the 4G networks. The first technical component is detection

2Specific terms, used in referring to each type of radio resource measurement, may differ between

wireless network technologies.
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of Dominant LOS Path (DLP) conditions in 4G networks and the second component

is RF fingerprinting techniques designed for the 4G cellular networks.

1.1.1 Dominant LOS Path (DLP) Condition Detection in 4G Net-

works

To determine location in the cellular networks and other wireless networks,

geometric techniques have been widely used. The most popular geometric techniques

are trilateration and multilateration.

In the trilateration, to determine a location in a two-dimensional space, the

ranges between a node, for which the location has to be determined, and at least

three nodes with known locations have to be estimated. In order to estimate a range

between a pair of nodes, time-based measurements such as Time of Arrival (ToA)

or Round Trip Delay (RTD) can be used. While signal strength can be used to

estimate the range, time-based measurements are typically preferred. When a radio

signal travels through medium between a pair of nodes for time t , then a range, r,

between them can be calculated by (1.1).

r = (c/n) · t (1.1)

where c is speed of light (299,792,458 meters/second), and n is a refractive index of

the medium.

When the medium is air, n is 1.0003. The ToA is described in Figure 1.1. An

example of system, using the ToA to determine location, is GPS.
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Figure 1.1: Geometric Techniques: Time of Arrival

In the multilateration, to determine a location in a two-dimensional space, a

node measures differences in distances to at least two pairs of nodes with known

locations. By finding an intersection of two hyperbolic curves, the location can

be determined. The Time Difference of Arrival (TDoA) can be used to measure a

difference in distance to a pair of nodes.

For the location determination of a MS in cellular networks by TDoA, either

downlink or uplink signals can be used. In case of TDoA using the uplink signals

(Uplink TDoA; U-TDoA), a reference signal transmitted by a MS is received by

BSs or Location Measurement Units (LMUs). The TDoA is calculated between a

pair of BSs/LMUs. The MS does not need a special hardware, and the location is

determined on the network side. In case of the TDoA using the downlink signals,

BSs transmit reference signals, and the TDoA is calculated by the MS. Enhanced
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Observed Time Difference (E-OTD) is a downlink TDoA location determination

technique used for Global System for Mobile Communications (GSM) and 3G. In

E-OTD, Geometric Time Difference (GTD) is calculated by Observed Time Differ-

ence (OTD) and Real-Time Difference (RTD), which is the synchronization time

difference between BSs. Since the timing difference is measured by the MS, modifi-

cation on the MS is required to use E-OTD. In UMTS and LTE, Observed TDoA

(OTDoA), an uplink TDoA technique, is supported.

In geometric techniques, major sources of error are the absence of dominant

LOS path, multi-path, and multi-user interference [8]. If a signal, traveling over a

Line-of-Sight (LOS) path, is not received, or if the LOS path is captured by the

signals over other Non-Line-of-Sight (NLOS) paths, the estimated time of flight

between two nodes has to contain a positive bias since the LOS path is always

the shortest path between two nodes. The signals, affected by fast fading, change

quickly, and it will make the range estimation difficult since the signal characteristics

change over time very quickly. When the LOS path is not dominant, fast fading

envelop of received signals is usually modeled by Rayleigh distribution (Rayleigh

Fading) [9]. When the LOS path is dominant, fast fading envelop is usually modeled

by Rician distribution (Rician Fading) [9]. The amount of amplitude variation in

Rician fading is much less than that of the Rayleigh fading [10], thus it is expected

to have more variance in signals at the absence of dominant LOS, which can harm

the accuracy of the geometric techniques.

In ROLAX, techniques to determine the Dominant LOS path (DLP) con-

dition, using standard radio resource measurements, are developed. Test statistics
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and features that can be used to determine the DLP conditions are developed and

presented in this work.

1.1.2 Robust RF Fingerprinting Techniques in 4G Networks

If there are not enough number of BSs under favorable conditions (at least

three BSs are needed for ToA or TDoA), RF fingerprinting is used to determine the

location. RF fingerprinting systems are described in Section 2.1.

The RF fingerprinting can be used initially without the DLP condition detec-

tion. Feature set for the RF fingerprinting is a super set of the feature set used for

the DLP condition detection. Thus, the delay incurred by the RF fingerprinting is

primarily introduced by the pattern matching.

The RF fingerprinting is widely used in Wi-Fi-based location determination

for indoor areas. Since Wi-Fi is technically different from 4G, techniques developed

for the Wi-Fi-based RF fingerprinting cannot directly applied to the 4G-based RF

fingerprinting. The technical difference between Wi-Fi and 4G is described in Sec-

tion 2.3.2. In addition, some techniques can be enabled in 4G while they are not

readily applicable in Wi-Fi.

The primary disadvantage of the RF fingerprinting is that it requires a lot

of labor and time to collect the measurements to build radiomaps. In ROLAX,

automatic radiomap generation techniques, using Delaunay-triangulation-based in-

terpolation and overlapped gridding, are presented. Features and pattern matching

techniques are designed, and the missing measurement handling techniques are pre-
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sented. A connection-based signal collection procedure is introduced to deal with

long scanning time in 4G-WiMAX.

1.2 Organization

In Chapter 2, existing location determination techniques are described. Ex-

isting RF fingerprinting systems and previous research about the location deter-

mination in 4G networks are surveyed. Differences between the 4G-based location

determination techniques and other ground-based and non-ground-based location

determination techniques are discussed. In Chapter 3, the 4G wireless environment

is described. In Chapter 4, offline signal collection and online location determina-

tion procedure of ROLAX are presented. The system and software architectures of

ROLAX are also presented. In addition, 4G instrumentation, including hardware

and software, used in ROLAX is presented. The 4G networks where the experimen-

tation was performed are also described. Major technical components of ROLAX

are presented in Chapter 5 and Chapter 6. Chapter 5 introduces ROLAX DLP

condition detection techniques, and Chapter 6 introduces ROLAX RF fingerprint-

ing techniques. Chapter 7 concludes this dissertation and discusses possible future

work extending ROLAX.
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Chapter 2

Existing Location Determination Techniques

2.1 RF Fingerprinting in Wireless Networks

In the geometric techniques such as ToA, TDoA, and Angle of Arrival (AoA),

major sources of impairments are absence of LOS path, multipath, and shadowing

effect. Thus, RF fingerprinting is usually used as an alternative to provide a po-

sitioning solution, particularly for indoor areas. In RF fingerprinting, a radiomap

database, where location identifiers are associated with a set of features (RF finger-

prints), is built and used for the location determination.

A location determination procedure, using RF fingerprinting techniques, is

typically composed of two phases: offline and online phases. During the offline

phase, the radiomap is built by collecting radio signals at locations with known

location coordinates or identifiers. Each location, in the radiomap, is associated

with a radio signal fingerprint, defined by a set of features extracted from the radio

signal measurements such as RSSI. Examples of RF fingerprinting features include

a mean value of the measurements over a certain time duration, a histogram of the

measurements, and parameters of the distribution if the measurements are assumed

to come from known distributions such as Gaussian or Exponential distributions.

Measurements are collected per Access Point (AP) or Base Station (BS), so each

location is associated with a vector of features. Radio measurements are typically
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performed by issuing passive or active scanning in case of Wi-Fi. In 4G WiMAX,

scanning is not very efficient for this purpose since wide scanning can take up to

several minutes, and typically takes more than ten seconds.1

During the online phase, the mobile device, which needs to determine its lo-

cation, measures radio signals, and features are extracted from them. The features

generated during the online phase can be the same as the offline phase features.

However, the online features can be different from the offline features. For instance,

the offline feature can be the mean of the RSSI measurements while the online fea-

ture can be a single-shot RSSI measurement. Feature extraction can be done either

on the mobile device or on the network side, depending on computing capability of

mobile devices and wireless network bandwidth. In the former case, the extracted

features are sent to the location server (LS), which can access the radiomap. In the

latter case, the raw measurements are sent to the LS, and the features are extracted

on the LS side. Many device drivers for wireless chip-sets report the processed value

(e.g. average over a certain moving window) rather than the raw measurements.2

In that case, features have to be extracted from the processed measurement values

rather than from the raw measurements, or the processed values are used as the

RF fingerprinting features as they are. The LS determines the location of the mo-

bile device by using pattern matching between the feature vectors stored at the LS

and the features generated during the online phase. By finding the best match and

1See Section 6.3.1 for further discussion about scanning time in 4G WiMAX.
2The RSSI can be also regarded as a processed value by itself since RSSI is usually calculated

by averaging the samples from the ADC outputs. Appendix A.1 provides a detailed explanation.
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Figure 2.1: RF Fingerprinting System

reading the location identifier associated with it, the location is determined. The

continuous space estimation may be needed, to get an accurate location on the con-

tinuous domain. A typical composition of a location determination system, using

RF fingerprinting, is provided in Figure 2.1.

In order to design a location determination system using RF fingerprinting,

the following has to be decided.

• Underlying Measurements - received power, round trip delay, etc.

• Features Extracted from the Underlying Measurements - average,

median, variance, histogram, etc.

• Pattern Matching - K-nearest neighbor (K-NN), artificial neural networks

(ANN), support vector machine (SVM), etc.

• Distance Measure - Euclidean distance, Manhattan distance, probability,

etc.
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• Continuous Space Estimation - center of mass, etc.

An example of the RF fingerprinting system is provided in Figure 2.2. In

this example, there are three access points (APs). During the offline phase, radio

survey is done at the chosen locations. In this example, RSSI is measured multiple

times at each selected location, and mean of RSSI is calculated as a feature of RF

fingerprint. Since there are three APs, the dimension of RF fingerprint feature

vector is 3 by 1. During the online phase, RSSI is measured for each AP. The

measurements can be done once or multiple times. In the former case, a single RSSI

measurement is used as a feature by itself, and, in the latter case, features such

as mean of RSSI can be extracted from multiple measurements. In either case, a

feature vector of size 3 by 1 is generated during the online phase. By using a pattern

matching technique, a location with the offline feature vector, which has the highest

similarity with the online feature vector, is selected, and this location is reported as

the location of the device being tracked. When the nearest neighbor is the used as

the pattern matching, a distance measure (e.g. Euclidean distance) is chosen, and

the distances are calculated between the online feature vector and the offline feature

vectors. By finding an offline feature vector with the smallest distance, the location

is determined. In this example, when the Euclidean distance is used, the location 1

provides the smallest distance between its associated offline feature vector and the

online feature vector, so the location identifier for the location 1 is reported as the

location of the device.

Previous works about RF fingerprinting are presented in Table 2.1. [11] also
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Figure 2.2: Example of Location Determination System Using RF Fingerprinting

provides an extensive list of previous RF fingerprinting research for indoor envi-

ronment. In Chapter 6, RADAR and Horus are described in detail, and they are

compared with ROLAX.

2.2 Location Determination in 4G WiMAX Networks

There is less research done about the location determination in 4G WiMAX

networks. In [12], Bshara et al. proposed to use the fingerprinting depending on

Received Signal Strength (RSS) observations for positioning and tracking, and pre-

sented the results on WiMAX networks. They proposed a static localization method

called BS-strict where infinite penalty is given to non-matching values in the ra-

diomap and the online phase measurement. For instance, if a BS is observed only

in the online phase, then an infinite penalty is given to all candidate locations with

measurements with regard to that BS. However, BS-strict has limited usability since

there are frequent scanning misses during both offline and online phases, even though
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Name / Institution Network Type Measurement Pattern Matching

VUB (Bshara et al.) [12] WiMAX RSS, SCORE Nearest Neighbor

Horus by UMD (Youssef

et al.) [13]

Wi-Fi RSSI Probabilistic Method

RADAR by Microsoft

[14,15]

Wi-Fi RSSI Nearest Neighbor

Polaris Wireless and

GATech [16]

GSM RSSI Nearest Neighbor

Ecole Polytechnique de

Montreal [17]

Wi-Fi RSSI Artificial Neural Net-

works (ANN)

Tsinghua University [18] Wi-Fi RSSI Support Vector Machine

(SVM)

Table 2.1: Comparison of RF Fingerprinting Techniques
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the signal quality is fair. In addition, BS-strict method is less reliable since signal

quality can vary significantly over a small distance and over time. The underlying

assumption of BS-strict method is that the scanning misses are primarily because

of low signal quality, but scanning misses can be generated because of the captur-

ing effect particularly when all sectors are operating on the same frequency band.

They also proposed to use SCORE value, which has lower accuracy than the RSSI,

but can be obtained from multiple BSs simultaneously. Another contribution made

by this work is the utilization of particle filters to provide the dynamic location

determination.

In [19], a cooperative localization, combining TDoA and RSS measurements

from WiMAX/Wi-Fi hybrid networks, is presented. In the set-up of this work, a MS

obtains a series of TDoA measurements with BSs. Following TDoA measurements,

the MS exchanges packets with other MSs over the Wi-Fi connection, measuring

RSS over Wi-Fi from other MSs. Upon receiving RSS measurements over Wi-Fi

and TDoA measurements over WiMAX from the MS, the BSs fuse the data and

determine the location of the MS. The TDoA measurements are used in estimating

the positions by least square (LS) algorithm. These estimates are fed to the non-

linear least square (NLLS) algorithm as the initial guesses.

Downlink TDoA (D-TDoA) and Uplink TDoA (U-TDoA) can be used in 4G

WiMAX. D-TDoA can be used in 4G WiMAX only if Fast BS Switching (FBSS)

/ Macro Diversity Handoff (MDHO) is in progress. They are optional in mobile

WiMAX, both for MS and BS. Because of the conditions that have to be met to use

FBSS and MDHO, D-TDoA cannot be used under all circumstances. The required

16



conditions include that the BSs involving in FBSS / MDHO have to be synchro-

nized based upon a common time resource and have the same frame structures. In

addition, the BSs have to be on the same frequency assignment. The first condition

can be met by using the GPS, which typically has 10 MHz clock, or by using IEEE

1588v2 Precision Timing Protocol (PTP) over Ethernet. In case of the PTP, the

BSs are equipped with PTP slaves, which synchronize with the PTP grandmaster

clock. PTP’s accuracy is typically less than GPS’s. The second condition can be

usually met if the BSs are managed by the same Network Access Provider (NAP),

and the NAP uses the same frame structures for its BSs. However, the third con-

dition cannot be met under many deployments because each cell is likely to use a

different frequency band for a better use of channel resource.

U-TDoA is more flexible than the D-TDoA because it can be used even though

the BSs are not in the same frequency assignments. In both D-TDoA and U-TDoA,

the MSs have to communicate with the serving BS and its neighboring BSs. Thus, it

cannot fully utilize all the observable BSs since the MS is only able to communicate

with BSs in its subscription service provider network.

2.3 Comparison of 4G-Based Location Determination Techniques with

Other Techniques

2.3.1 Comparison with GPS (Global Positioning System)

GPS has the following disadvantages when it is compared with the 4G-based

positioning:
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• Performance Degradation under Radio Shadow and Multipath GPS-

based positioning usually fails under radio shadow where a mobile device can

only see a small number of satellites. Because initial lock needs higher power

than tracking does, initial lock may fail, or take long time when the view of

satellites is obstructed. GPS fails often in the urban areas with skyscrapers,

due to shadowing and multipath. Other than ionospheric refraction, multipath

is the major source of GPS error, which contributes the distance error in the

order of ten meters [20]. When the RF fingerprinting is used in 4G networks,

4G-based positioning techniques work well even in the urban areas since (1)

the base stations are deployed with a higher density in the urban areas, and

(2) the RF fingerprints in the urban areas are more unique because of the

multipath.

• Susceptibility to Jamming GPS is more exposed to jamming than ground-

based networks since it is operating on a smaller power.3 Relatively small

powered jammer can overpower the legitimate GPS signals,

• Performance Degradation in Indoor Areas The accuracy of GPS de-

teriorates significantly (about 50 meters [21]) when the devices are indoor.

Increasing deployments of 4G femto cells expect to provide a better 4G cov-

erage for indoor areas.

3Typical received power from a GPS satellite is -127.5 dBm while the typical received power

from cellular networks is between -70 dBm and -90 dBm.
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2.3.2 Comparison with Wi-Fi-Based Location Determination

The differences between Wi-Fi and 4G WiMAX include the following:

• Scanning In Wi-Fi, active or passive scanning is used to locate the access

points (in infra structure mode) or peer Wi-Fi nodes (in Independent Basic

Service Set mode). Scanning time differs by the wireless environment (e.g.

number of the BSs, number of supported channels, etc.). A typical scanning

time is in the order of seconds, while the wide scanning in 4G WiMAX can

take up to several minutes. Section 6.3 provides detailed comparison between

Wi-Fi and WiMAX scanning time.

• Multiplexing and Capture Effect Wi-Fi nodes are operating on the un-

licensed Industrial, Scientific, and Medical (ISM) band with other Wi-Fi or

non Wi-Fi devices. In Wi-Fi, nodes access medium based on Carrier Sense

Multiple Access / Collision Avoidance (CSMA / CA). Although beacons are

transmitted at a regular interval, an access point defers the beacon trans-

mission when it detects that the channel is busy (delayed beacon) [22]. On

contrary, the 4G WiMAX nodes operate on licensed bands. Thus, each base

station can assume that the frequency band is solely assigned for its oper-

ation. In 4G WiMAX, the channel is accessed based upon Time Division

Multiplexing (TDM), and there is no coordination in channel access between

the sectors and base stations. Particularly when the frequency reuse factor

of one is used, the nodes operating on the same frequency channel have to

suffer from interference and capturing effect. CSMA potentially decreases the
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impact of the capturing effect in Wi-Fi. Thus, the scanning in 4G WiMAX

is likely to miss the existence of some base stations because of the capturing

effect. For example, if two BSs are operating on the same frequency band,

the mobile stations are likely to detect only the base station with a better

signal quality whereas the signals from the non-detected base station can be

fair enough. The frequency reuse pattern in 4G WiMAX can be denoted by

(Nc, Ns, Nn) where Nc is the number of BS sites per cluster, Ns is the number

of sectors per BS site, and Nn is the number of unique frequency channels

required for reuse. Nc is the inter-cell frequency reuse factor, and Nn is the

intra-cell frequency reuse factor [23]. Figure 2.3(a) shows an example of (1,3,1)

reuse pattern and Figure 2.3(b) shows an example of (3,3,3) reuse pattern. In

either case, a mobile station may see signals from multiple BS sectors on the

same frequency channel, which are not coordinated each other. When a MS

receives signals from multiple BSs at the same time, the one with a higher

power is usually detected by the MS.

The scanning based measurements may result in very long location determi-

nation delay in 4G-WiMAX (Section 6.3 provides the scanning time in 4G-WiMAX

from experimental results).
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(a) (1,3,1) reuse pattern

(b) (3,3,3) reuse pattern

Figure 2.3: Frequency Reuse Patterns in 4G Cellular Networks
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2.3.3 Comparison with 2G/3G Cellular Networks-Based Location

Determination

2G and 3G cellular networks can be regarded as the predecessors of the 4G

WiMAX network. The most widely deployed 2G networks are GSM and CDMA.

The most popular 3G technology is WCDMA (UMTS). Each air interface operates

on different frequency bands with different multiple access and modulation schemes.

GSM is operating on 800–900MHz and 1.7–1.9 GHz band, CDMA IS-95 is on 800

MHz band, and WCDMA (UMTS) is on 1.9–2.1 GHz band.

4G WiMAX has a potential to provide the better positioning accuracy than

2G/3G. First, the channel bandwidth, typically used by the mobile WiMAX, is

10MHz (can be up to 20MHz), which is larger than 5MHz bandwidth used in UMTS

and 200kHz bandwidth in GSM. The wider the bandwidth is the finer resolution of

timing we have. In addition, the signal with the higher bandwidth helps in resolving

multipath components.

Second, the frequencies of 4G WiMAX is higher than the frequencies used

in 2G/3G networks. Although there is no global frequency band, WiMAX forum

published three licensed spectrum profiles, which are 2.3 GHz, 2.5 GHz and 3.5 GHz.

The density of the BS placement is higher in 2.5 GHz WiMAX than 2G/3G, and

higher density of BSs helps in increasing the accuracy. A typical 2.5 GHz WiMAX

cell radius in the rural area is 3.3 km, while a 1.9 GHz HSUPA cell radius is 7.5

km [24].
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Chapter 3

Description of 4G Wireless Environment

3.1 Dynamic 4G Environment

In 4G, BSs are fixed, and they are typically installed on towers or on top

of high-rise buildings. Between MSs and BSs, there are fixed obstacles, including

buildings and natural surroundings such as hills, trees, etc. Mobility can be in-

volved both MSs and the surroundings such as moving vehicles and crowds. The

atmospheric environment can be dynamically changing over time of year and time

of day. A MS typically can see multiple BSs, and multiple service providers may

provide the service in the same area. For instance, in College Park, Maryland, where

most of the experimentation for ROLAX was done, there are two NAPs: Clear and

MAXWell. In 4G WiMAX, the geo-locations of the some BSs are known a priori,

or can be obtained by receiving Location-based Services (LBS-ADV) messages on

the downlink. The LBS-ADV messages provide absolute position of the transmit-

ting BS, relative positions of the neighboring BSs, GPS time, GPS time accuracy,

and frequency accuracy. However, the BS is not obliged to transmit the LBS-ADV

messages. In general, the BS will not advertise the LBS information of the BSs

operated by other NAPs. MSs have to be provisioned on the network side in order

to achieve IP connectivity. This dynamic environment is depicted in Figure 3.1.

ROLAX location determination techniques are designed considering this dynamic
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Figure 3.1: Dynamic 4G Environment

wireless channel environment.

3.2 4G Wireless Channel

The sources of the positioning errors differ by the channel environment and the

types of measurements made for the positioning. For instance, the RTD value can

be affected by the system delay. The Angle of Arrival techniques have significant

errors if the reflected signal is stronger than the direct signal. The positioning errors,

in geometric techniques, increase when the MS does not have a dominant LOS path

with the BSs.

The fixed WiMAX, operating on 10–66 GHz band, does not support the NLOS

operation, but the mobile WiMAX studied in this work supports the NLOS oper-

ation. In the urban area, the MS is highly likely to be located under NLOS and

multipath from the BSs.
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There are different scales of the fading in wireless networks: large-scale, medium-

scale, and small-scale. The large-scale fading is primarily a function of the distance

between a transmitter and a receiver, the transmitter gain, the receiver gain, and

the frequency. The log-distance path loss is given in (3.1).

Path Loss(dB) = Ptx −Prx = P0 +10γ log10
d

d0
+Ng = 10γ log10 d+C +Ng (3.1)

where Ptx is the transmitted power in dBm, Prx is the received power in dBm, P0 is

the path loss at the reference distance d0, d is the distance between the transmitter

and the receiver, γ is the path loss exponent, and Ng models the influence by the

fading, which is usually modeled by the zero-mean Gaussian. C is the constant

component in the path loss (= P0 − 10γ log10 d0). C can be regarded as the system

loss. The received power is primarily a function of the distance.

More sophisticated path loss model, such as Okumura-Hata model, was devel-

oped by empirical methods. Okumura-Hata model was later extended by COST-

Hata-Model , and it is known as COST 231 model [25]. COST-Hata-Model can be

used for the frequency from 1.5 GHz to 2 GHz, MS antenna height from 1 to 10

meters, BS antenna height from 30 meters to 200 meters, and the distance between

1000 to 30000 meters. In [26], an optimized model based on COST-Hata-Model was

developed to predict the path loss in the 2.3 GHz band. The COST-Hata-model is

given in (3.2).
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Path Loss(dB) =46.3 + 33.9log10(f)− 13.82log10(hb)− ahm

+ (44.9− 6.55log10(hb))log10d+ cm

(3.2)

where f is the frequency in MHz, d is the distance between the MS and the BS

in kilometers, hb is the BS antenna height above the ground level in meters, f

is the frequency in MHz, ahm is a correction parameter for urban and suburban

environment each given as in (3.3) and (3.4), and cm is a correction parameter for

urban and suburban environment (3dB for urban area and 0dB for suburban area).

ahm = 3.2(log10(11.75Hr))
2 − 4.97 (3.3)

ahm = (1.1log10f − 0.7)Hr − (1.56log10f − 0.8) (3.4)

where Hr is the height of the MS antenna in meters.

Stanford University Interim (SUI) Model was developed empirically by col-

lecting measurements on 1.9 GHz band, and it supports three most common terrain

types found in the United States [27]: hilly terrain with moderate-to-heavy tree

densities (Category A), mostly flat terrain with moderate-to-heavy tree densities or

hilly terrain with light tree densities (Category B), and flat terrain with light tree

densities (Category C). The path loss under SUI model is given in (3.5).

Path Loss(dB) = A+ 10γlog10(
d

d0
) +Xf +Xh + s (3.5)

where d0 is 100 meters, d is the distance between the BS and the MS in meters, s

is a log-normally distributed factor used to account for the shadow fading (8.2dB–
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10.6dB), Xf is the correction factor for the operating frequency, and Xh is the

correction factor for the MS antenna height. A is defined by (3.6), and γ is defined

by (3.7).

A = 20log10(
4πd0
λ

) (3.6)

γ = a− bhb +
c

hb

(3.7)

where λ is the wavelength in meters, hb is the BS antenna height above the ground

in meters (between 10 meters and 80 meters), and the constants a, b and c are given

per terrain category type.

The LOS and NLOS conditions can be defined in terms of how much of the

first Fresnel zone is free of obstacles. Fresnel zone is one of a number of concentric

ellipsoids of revolution, which defines volumes in the radiation pattern of a circular

aperture [28]. Some obstructions in the first Fresnel zone can be tolerated, and, as

a rule of thumb, 60% of clearing is required in the first Fresnel zone to be regarded

as LOS, but the recommended obstruction is 20% or less [28] (Figure 3.2).

The equation for calculating the Fresnel zone radius, at any point P in between

the endpoints of the link, is provided in the (3.8).

Fn =

√
nλd1d2
d1 + d2

(3.8)

where Fn is the nth Fresnel zone radius in meters, d1 is the distance from one end

in meters, d2 is the distance from the other end in meters, and λ is the wavelength

of the signal in meters.
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Figure 3.2: Fresnel Zone and NLOS

The maximum radius is obtained at the middle when d1 is equal to d2. Under

this condition, the maximum radius of the first Fresnel zone in meters is provided

in (3.9).

r = 8.657

√
D

f
(3.9)

where f is the frequency of the signal in gigahertz, and D is the distance between

two ends in kilometers.

In case of 2.5GHz WiMAX, the radius and 60% radius of the first Fresnel zone

are provided in Figure 3.3. At the distance of one kilometer, 4–5 meters of clearance

is required from the ground at all locations between the MS and the BS so that the

LOS is not significantly obstructed.

When the fast fading exists due to mobility of terminals or surroundings, the

received signal envelope at the presence of a dominant LOS path is typically modeled
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K =
µ2

2σ2
(3.11)

The spectral characteristics of the received signals vary by the significance of

DLP condition. For instance, as K-factor decreases (the scattered paths are stronger

than the LOS path), the level crossing rate increases [30].
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Chapter 4

Location Determination Procedure and Architecture of ROLAX

The following is considered in designing ROLAX location determination sys-

tem in the 4G networks.

1. Adaptive to environment ROLAX can be used in any environment (LOS,

NLOS, multipath, shadowing, indoor, and outdoor).

2. Small overhead Location is determined by the everyday operations of the

MS (e.g. preamble detection, scanning, periodic neighborhood listing, etc.).

No special hardware or equipment is required to implement the techniques.

3. Accuracy ROLAX targets to provide an accuracy better than the existing

ground-based solution on 4G WiMAX.

4. Feasibility and Portability Without expensive and sophisticated testing

equipment, the location determination must be feasible and implementable.

The ROLAX techniques can be used without using special equipment such

as the network analyzer, which was used in some previous research such

as [17]. The ROLAX techniques use the information available at the device

driver level. The techniques use the readily available standard parameters

and features of the 4G MS software so that the techniques can be widely

applicable independent from a particular vendor’s implementation.
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The ROLAX location determination techniques are mainly composed of the

DLP condition detection techniques and the robust RF fingerprinting techniques in

4G networks. The DLP condition detection techniques are described in Chapter 5,

and the RF fingerprinting techniques are described in the Chapter 6.

4.1 Location Determination Procedure in ROLAX

ROLAX is organized in two phases: offline and online phases.

4.1.1 Offline Phase

During the offline phase, the radiomap is constructed. Wardriving is used

when the measurements are collected in the outdoor area. The sequence chart for

the offline phase is provided in Figure 4.1.

The MSs, used in offline signal collection, performs wide scanning multiples

times, over the frequencies assigned for the 4G WiMAX operations, to find out the

list of frequencies and bandwidths being used. The MS may have the list of frequen-

cies and bandwidths assigned for the NAPs in its non-volatile memory. In this case,

the MS may skip the wide scanning. For each frequency in the frequency list, the MS

make a connection with a BS operating on that frequency. Typically, the BS with

the best signal quality is connected with the MS. During the wardriving, we let the

MS make the measurements continuously while performing handoff between the BSs

on the same frequency band. In order to expedite the signal collection procedure,

multiple MSs, each tuned to a frequency, can be used simultaneously. Once the
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measurements are completed, features are extracted from the raw measurements,

and the radiomap is created or is updated using them. Detailed explanation about

the offline signal collection is provided in Section 6.3.

4.1.2 Online Phase

The MS’s location is determined in the online phase. During the online phase,

a MS performs a wide scanning to find out the list of BSs it can see. It may have the

list of the BSs before it performs the wide scanning. In that case, the MS may skip

the wide scanning. For each BS in the list, the MS performs the DLP test to see the

channel condition between the MS and each BS. If the number of the BSs under the

DLP condition is greater than three, MS attempts to estimate the range between

itself and each BS under the DLP condition. The measurements collected during

the scanning can be used in the range estimation. To obtain a better accuracy, the

MS may attempt to make a temporary connection with each BS to collect additional

measurements. Then the MS can apply geometric techniques such as TDoA and

ToA to determine its location.

If there are not enough number of BSs under the DLP condition, or the level of

precision does not meet the required quality of location, RF fingerprinting is applied

to determine the location of the MS. For the BSs with which the MS is allowed to

make a connection, the MS may make a temporary connection to obtain additional

measurements if additional measurements are to the benefit of increasing accuracy.

Next, the location is determined by using pattern matching between the observed
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Figure 4.1: Sequence Chart of Offline Phase
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signal fingerprint and the RF fingerprints in the location server (LS). The sequence

chart for the online phase is provided in Figure 4.2.

4.2 System and Software Architecture of ROLAX

In this Section, the software and system architecture of the ROLAX location

determination is described. The control plane of the system, for the offline signal

collection, is provided in the Figure 4.3. The preambles are typically measured since

it is modulated and coded in the same way while the modulation and coding for

the data can by dynamically changed. On the WiMAX chain, the measurements

are made on the 4G interfaces. On the GPS chain, the GPS location is logged so

that the wireless measurement can be correlated with the location coordinates.1. In

addition, it synchronizes the host clock with the GPS clock so that the timing drift

in the host can be corrected.

On the 4G WiMAX chain, the connection manager client sets up the link

by loading its configuration and making a connection command with regard to a

particular BS. The logging application registers callback functions with the WiMAX

library so that the WiMAX library can route the control packets registered with the

callback functions upon receipt to the loopback interface. The open-source packet

1In this work, the GPS location is used as the true locations while it may contain some errors.

For the deployment of ROLAX, more accurate GPS such as a survey grade GPS can be used to

log the coordinates of the locations. Survey grade GPS can provide the accuracy in the order of

centimeters [31] It is not expected to have a survey grade GPS in consumer electronics or mobiles

due to its high cost.
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Figure 4.2: Sequence Chart of Online Phase
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Figure 4.3: System Architecture for Offline Signal Collection

analyzer logs those control packets by monitoring the loopback interface. The log

is stored in the Packet Capture (PCAP) format.

On the GPS chain, the GPS synchronization application periodically obtains

the timing information from the GPS receiver and synchronizes the host clock ac-

cording to the GPS clock.2 In this way, the timing drift of the host can be corrected,

and the radio measurement can be correlated with the location information. GPS

logging application makes the location log in the NMEA 0183 format. The location

log is updated every one second.

After collecting all the information needed to create the radiomap, they have

to be merged and processed to produce the radiomap. The diagram of the software

data flow for the radiomap creation is provided in the Figure 4.4.

The WiMAX log in PCAP format is translated to Packet Details Markup

2In this work, the time synchronization was performed every one minute

37



Language (PDML) format since Extensible Markup Language (XML) is easier to

parse and handle. The NMEA log is converted to GPS eXchange (GPX) format

for the same purpose. Both PDML and GPX are in XML format. The PDML

Parser decodes the PDML log and generates the logs, such as neighbor report,

BS parameter report, and frame statistics control packets, in a proprietary format.

The frequency of the control packet differs by its type. For instance, the frame

statistics control packet is generated about every 100 msec. Since about twenty

frame statistics control packets are concatenated and encapsulated in a super-packet

with a single time stamp, the arrival time, for each frame statistics control packet,

has to be estimated. This procedure is performed within the PDML parser. The

modem status such as “connected”, “waiting for physical synchronization”, etc. is

correlated with each frame statistics control packet in this module. Both modem

state and the frame statistics are keyed with the frame number. The information

related to the BS (e.g. BSID) is retrieved from the BS parameter message. The

frequency of BS parameter message is generated with 1Hz on average, and the

frequency ranges from 1/6 Hz – 2 Hz. Each frame statistics control packet is tagged

with the BS information, retrieved from the most recently received BS parameter

message.

The neighbor report produced by the PDML parser can be fed to the Keyhole

Markup Language (KML) Creator. By correlating the location data with the neigh-

bor report, the KML creator produces a KML file, visualizing the measurements on

the map.

By combining the BS parameter report, the neighbor report, the frame statis-
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Figure 4.4: Software Data Flow Diagram for Offline Radiomap Generation

tics control packets, and the GPX, Radiomap Creator generates a radiomap. Ra-

diomap Creator is composed of a number of blocks. The processing in each block

is described in the Chapter 6. The diagram for the radiomap creator is provided in

the Figure 4.5.

4.3 4G Instrumentation of ROLAX

The techniques developed in ROLAX were implemented and tested, using the

data collected from live 4G networks in College Park, Maryland. For the DLP

condition detection, the data is primarily collected from the MAXWell 4G network,

while, for the RF fingerprinting, the data is collected from both Clear network and

MAXWell 4G network. Software was implemented using Sprint 4G Development

Kit, which supports the 4G device with Beceem (Broadcom) chip-sets. Motorola

USBW100, which uses a Beceem chip-set, is used as the MS. In this chapter, the

technical details of the 4G networks and hardware / software for both BS and MS
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Figure 4.5: System Architecture for Radiomap Generator

are provided.

4.3.1 4G Networks

The data had been collected from the MAXWell 4G network operated by

MAXWell Lab of University of Maryland as well as from the 4G WiMAX networks

operated by Clear. At the time when this work was implemented (2011 and 2012),

Clear was the 4GWiMAX Network Access Provider (NAP) in this area, and multiple

Network Service Providers (NSPs) including Clear, Time Warner, Comcast, and

Sprint provide the 4G service using the Clear 4G network.
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4.3.1.1 MAXWell 4G Network

The MAXWell 4G WiMAX network is deployed in University of Maryland to

promote research and development into applications for WiMAX mobile broadband

networks. MAXWell lab obtained an experimental license from FCC to operate its

network. It is composed of two base stations: one for outdoor service, and the other

one for indoor experiments and tests.

The summary of the MAXWell 4G network’s FCC license is as follows:

• Experimental Radio Service (other than broadcast) under Part 5 of FCC rules.

• Frequency band: 2.4985–2.6875 GHz

• Output Power: 1 W (30 dBm)

• ERP (Effective Radiated Power): 50 W (46.99 dBm)

After a site survey performed on November 2010, the frequency and band-

width assignments were updated to avoid interfering existing services, to better

utilize the available channel by providing a higher bandwidth to users, and to pro-

vide a higher timing resolution for the timing-based location determination. The

frequency assignment for the MAXWell 4G network, as of March 2012, is provided

in Figure 4.6. As of March 2012, the equivalent isotropic radiated power (EIRP) of

the BS, BS EIRP , is 34dBm.3

The picture of MAXWell 4G network’s outdoor RF heads is provided in Fig-

ure 4.7.

3BS EIRP is given by PTx + GANT BS Tx, where PTx is the transmit power, and

GANT BS Tx is the transmit antenna gain.
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(a) Frequency and Bandwidth Assign-

ment for Indoor BS

(b) Frequency and Bandwidth Assign-

ment for Outdoor BS

Figure 4.6: Frequency and Bandwidth Assignments in MAXWell 4G Network

Figure 4.7: MAXWell 4G Network’s Outdoor RF Heads
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4.3.1.2 Clear 4G Networks in College Park, Maryland

While we could configure and access the equipment of MAXWell 4G network,

we could not access the equipment of Clear 4G network because it is operated by a

commercial operator. Its configuration had to be inferred by capturing and decoding

the management frames from the BSs such as Downlink Channel Descriptor (DCD)

and Uplink Channel Descriptor (UCD).

However, the signals from the BSs operated by Clear can be observed by any

MSs, and they are used for location determination in this work. Particularly, the RF

fingerprinting in ROLAX uses the signals from the Clear 4G networks in addition

to the signals from the MAXWell 4G network.

The locations of the Clear BSs can be also inferred from publicly accessible

database such as AntennaSearch [32]. If the locations of the BSs are known, ge-

ometric techniques can be used for the mobile-based location determination even

though the BSs are neither serving BSs nor anchor BSs. In this case, there could be

some limitations because some measurements, such as timing measurements (e.g.

RTD), can be only made with serving BSs or anchor BSs.

By using the scanning operation of the MS, the frequencies, bandwidth, and

frequency reuse pattern could be found. The settings of Clear 4G network and

MAXWell 4G network, in College Park area, are provided in Table 4.1. Clear BSs’

EIRP is 42dBm, which is 8dB higher than MAXWell outdoor BS’s EIRP.

According to a scanning test performed in College Park campus, 4.7 BSIDs

were observed per scanning attempt on average.
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NAP Frequencies

(MHz)

Bandwidth

(MHz)

Frequency

Reuse

BS EIRP

(dBm)

Number of Ob-

served BSIDs

Clear 2630.5, 2647,

2657, 2667,

2673.5, 2683.5

10 3 42 25

MAXWell

(outdoor)

2512, 2522,

2532

10 3 34 3

MAXWell

(indoor)

2542 10 1 24 1

Table 4.1: Configurations of BSs Managed by Clear and MAXWell Lab in College

Park, Maryland
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4.3.2 4G Hardware

The specification of base station and mobile station hardware, operated by

MAXWell 4G network and used in this work, is provided in Table 4.2.

4.3.3 4G Software

For the most of the experimentation in this work, Beceem (Broadcom) device

driver, connection manager, and other logging facilities under Microsoft Windows

were primarily used, while some of the experimentation used the Linux-WiMAX

device driver for Intel WiMAX 6250 under the Linux operating system. The 4G

WiMAX software used in this work is provided in Table 4.3.

45



Type Model Number Manufacturer Comments

BS WAP 400 Motorola - Air-interface: IEEE 802.16e

- Channel Bandwidth: 5MHz &

10MHz

- Sectors: 3

- Duplex Mode: TDD

- Frequency Reuse: 1 & 3

MS Centrino

Advanced-N

+ WiMAX 6250

Intel - Air-interface: IEEE 802.16e

MS USBw 100

(USBw

25100) [33]

Motorola - Air-interface: IEEE 802.16e

- Beceem Chipset (PHY D1000703,

MAC 05-02-2976, BB Chip ID

BECE0310, RF Chip ID 6600)

Table 4.2: Specification of WiMAX Base Station (BS) and Mobile Station (MSs)

Hardware
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Name Developed

By

Operating

System

Supported

Hardware

Software

Components

Version

Linux

WiMAX

[34]

Intel &

open

source

commu-

nity

Linux

(kernel ≥

2.6.35)

Intel

WiMAX /

Wi-Fi Link

5x50 and

6250

firmware,

driver, net-

work service,

and test

configuration

utility

Driver 1.5

i2400m firmware

1.5.0

WiMAX tools 1.4.4

WiMAX Network

Service 1.5.1

Beceem Beceem Windows

XP, Vista

& 7

MSs using

Beceem

Chip-sets

(e.g. Mo-

torola

w100)

firmware,

driver, con-

nection

manager,

and logging

facilities

Driver 5.2.135.0

Firmware 5.2.2976

Library 05.02.0093

Table 4.3: Specifications of WiMAX Mobile Station (MSs) Software
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Chapter 5

Dominant LOS Path (DLP) Condition Detection in 4G Networks

Major sources of errors in geometric techniques are the absence of the dominant

LOS path (DLP) and the multipath. In this dissertation, when a MS has a dominant

LOS path from a BS, it is said that the MS is under DLP (condition) with regard

to that BS. When a MS does not have a dominant LOS path from a BS, the MS

is said to be under non-DLP/NDLP (condition). When the MS can see multiple

BSs, the MS can 1) discard the signals from the BSs under the non-DLP condition

or 2) assign a weight to each BS according to the non-DLP condition in using the

geometric techniques.

In ROLAX, a set of DLP condition detection techniques are designed by using

the measurements available from the standard radio resource measurements such as

RSSI, CINR, and RTD. We note that, compared to using a single feature, appropri-

ately combined multiple features lead to a very accurate DLP condition detection.

Machine learning techniques are used to detect the DLP condition from multiple

features.

In Section 5.1, how the range between an MS and a BS under DLP condition

can be estimated is demonstrated. In Section 5.2, a number of DLP detection tech-

niques are presented. In Section 5.3, machine learning techniques used in combining

multiple features to detect the DLP condition more accurately are described. In
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each section, experimental results are provided.

5.1 Range Determination under DLP

In 4G WiMAX, RSSI can be passively measured by detecting preambles on

the downlink, while measuring RTD involves dealing with the time advance, and

the RTD measurement can be done only with regard to the serving or anchor BSs.

RTD value is usually estimated through the ranging procedure, so the first value

can be observed only after the initial ranging. Details about RTD and time advance

are provided in Appendix A.3.

The range can be determined (1) by observing the change of power scale over

distance, or (2) by observing the round trip time. In multipath, the received envelope

is composed of the signal envelops over different paths, each with different path loss,

phase shift, and Doppler spread. Since RSSI can be regarded as the power of the

received envelope, the multipath can create either constructive or destructive effect

on RSSI. In a non-DLP condition, it is very likely that the signals over the NLOS

path are attenuated due to the presence of obstacles and the shadowing.

Since the LOS path is always shorter than NLOS paths, the RTD measured

over the NLOS path is always larger than that over the LOS path. In order to esti-

mate the range by RTD, it is desirable to detect the signal over the LOS path rather

than signals over NLOS paths, but, in general, the receiver detects the strongest path

rather than the shortest path. When the LOS path is not dominant, the detection

of the LOS path is difficult due to the following reasons. First, there may not neces-
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sarily be a LOS path when the attenuation by the obstruction is high. The signals

over LOS may have worse signal quality than the signals over NLOS paths. In ad-

dition, the signals over the LOS path may have power below the receiver sensitivity

of the device. Second, if the received time interval between the signal over LOS

path and the signal of NLOS path is smaller than the symbol duration, the signals

over the LOS and NLOS paths are overlapped so that they are not resolvable from

each other. In this case, the RTD estimate is likely to increase. In addition, the

correlation sidelobes appearing between the correlation peaks make the detection of

the first path harder [35]. For the ranging purpose, it would be ideal to have a DLP

condition.

A set of experiments were done under both DLP condition and non-DLP

condition. In sum, both RSSI and RTD have the potential to be used in estimating

the range under the DLP. Particularly with the RTD, a range estimation error in

the order of 30 meters was achieved in the live 4G testbed. At the absence of DLP,

the linear relation, between RSSI and logarithmic distance and between RTD and

distance, is lost. RSSI is attenuated, and RTD contains an additional positive bias.

An area, with some light density of trees and houses, was chosen to see the sig-

nal characteristics under the DLP (Figure 5.1(a)). In addition, an area surrounded

with buildings was chosen to see the signal characteristics under the non-DLP (Fig-

ure 5.1(b)).

The test was performed using wardriving, and the measurements were retrieved

from the periodic neighbor report, which is generated once every three seconds. The

wardriving vehicle was moving around 5–20 miles/hour, which leads to 6–27 meters
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(a) DLP between the BS and the MS (Lakeland Rd, College Park, Maryland)

(b) Non-DLP between the BS and the MS (University of Maryland, College

Park, Maryland)

Figure 5.1: Locations for RSSI/RTD Measurements for Range Estimation
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movement over three seconds duration. The measured RSSI and RTD values can

be regarded as measurements over the last three seconds duration.1 In addition,

quantization of the RTD and the RSSI values limits the best resolution of the mea-

surement and the estimated range (More details are provided in Appendix A.1 and

Appendix A.3).

The RSSI measurement result is provided in Figure 5.2(a) and the RTD mea-

surement result is in Figure 5.2(b). Note that the RTD value is a logical value rather

than a physical round flight trip time.

In Figure 5.2(a), the RSSI is not linear with the logarithmic distance under

the non-DLP condition. In addition to its non-linearity, the value is attenuated

by about 15dB because of the attenuation caused by the building structures. As

seen in Figure 5.2(b), under the non-DLP condition, the linearity of RTD over the

distance is weaker (R squared value of 0.82 as opposed to 0.96 under the DLP), and

the RTD value is higher. It is consistent with the fact that the LOS path is always

shorter than other paths, which result in a longer time of flight over the NLOS path.

When the logical value of RTD is zero, the difference between estimated distances

using the linear regression under the DLP and the non-DLP is about 80 meters.

RSSI and RTD are correlated higher under the DLP than under non-DLP. The

correlation coefficient ρ between RSSI and RTD is -0.95 under DLP while ρ is -0.58

under non-DLP (See Figure 5.9).

The range estimation errors, under DLP and non-DLP, are summarized in

Table 5.1. The range estimation error by the linear regression significantly increases

1It is not known whether a one-shot value or an average value is reported.
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Table 5.1: Range Estimation Errors under DLP and Non-DLP

Channel Observed Pa-

rameter

Mean Error

(meters)

Median Error

(meters)

Is Gaussian?

DLP

RSSI 56.9 50.5 Yes (p=0.20)

RTD 35.5 29.3 Yes (p=0.20)

NDLP

RSSI 410.8 407.2 No (p=0)

RTD 81.5 70.8 No (p=0)

in non-DLP. The range estimation by RTD provides a better accuracy than the

estimation by RSSI. The error distribution under DLP is Gaussian while it is not

in non-DLP.

5.2 DLP Detection Techniques

Since the range estimation is affected by non-DLP condition, the MS has to

determine whether it is under DLP or not by observing signals. In case of GSM,

the NLOS error contributes positioning errors by 500–700 meters [36].

Many previous works assume the availability of signal envelope or other phys-

ical measurements, which is not usually available at the device driver interface level.

In [37], Channel Impulse Response (CIR) from the received signals are used to ex-

tract features such as the kurtosis, the mean excess delay spread, and the root mean

square delay spread to identify NLOS condition. In [38], the NLOS condition is

determined by estimating the Rician K-factor from the CIR. Other NLOS condition
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detection technique such as Wylie-Holtzman [39] relies on the range estimation to

determine the NLOS condition.

Since most of the 4G WiMAX software provides limited access to the informa-

tion at the physical layer, ROLAX considers how the information available at MAC

Service Access Point (MAC SAP) or PHY Service Access Point (PHY SAP), which

is usually implemented at the firmware or device driver level, can be used to detect

the DLP condition.

5.2.1 Wylie-Holtzman Technique Applied to RSSI

One of the famous NLOS detection techniques is Wylie-Holtzman technique

[39]. In this technique, a priori knowledge of system noise is required. Under NLOS,

NLOS error is assumed to be added to the range estimation, and it is assumed that

the system noise is uncorrelated with the NLOS error. The range estimation rm(ti)

with regard to the BS m at time ti is modeled by (5.1).

rm(ti) = Lm(ti) + nm(ti) +NLOSm(ti) (5.1)

where Lm(ti) is the true distance between the MS and the BS m at time ti, nm(ti)

is the system measurement noise and NLOSm(ti) is the NLOS error.

Because nm(ti) and NLOSm(ti) are assumed to be uncorrelated with each

other, the variance at the presence of NLOS error is larger than the variance at the

absence of NLOS error. In this technique, the distance estimations are smoothed

and represented by sm(ti) =
∑N−1

n=0 âm(n)t
n
i where {âm(n)}N−1

n=0 is decided by the least
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square technique. The variance is computed by σ̂m =
√

1
K

∑K−1
i=0 (sm(ti)− rm(ti))2

where K is the number of measurements. Hypothesis testing is performed by cal-

culating the difference between the known variance under LOS, σm, and σ̂m. The

null hypothesis H0 is σ̂m = σm, and the alternative hypothesis H1 is σ̂m > σm. H1

is accepted when σ̂m > κσm.

In this work, the similar logic used in Wylie-Holtzman is used to determine

the LOS condition by using the RSSI or RTD at a fixed location. When the RSSI

is measured at the terminal, the RSSI with regard to signals from a BS under LOS

condition (RSSILOS) can be given by (5.2).

RSSILOS = P0 − 10α · log(d)− C +Nm (5.2)

where P0 is the transmit power of the BS, α is the path loss exponent, d is the

distance between the terminal and the BS, C is the system loss, and Nm is the

measurement noise, which is typically modeled by a Gaussian distribution.

Under the NLOS condition, the received signal strength, RSSINLOS can be

modeled by the addition of RSSILOS and the NLOS noise NNLOS. This is provided

in (5.3).

RSSINLOS = RSSILOS +NNLOS = P0 − 10α · log(d)− C +Nm +NNLOS (5.3)

If the measurement noise, Nm, is uncorrelated with the NLOS Noise, NNLOS,

then the variance of RSSILOS is always smaller than the variance of the RSSINLOS.

It is shown in (5.4).

56



V ar[RSSILOS] = V ar[Nm] ≤ V ar[RSSINLOS] = V ar[Nm] + V ar[NNLOS] (5.4)

In ROLAX, the variance of the measurements is used to detect the channel

condition with regard to a BS from a MS.

5.2.2 Level Crossing Rate

Level crossing rate is a measure of how the channel is rapidly changing due to

the mobility of the terminals or surroundings. It is defined as ξLCR = ηNC

T
, where

ηNC is the number of crossings of the specified signal level, and T is the measurement

duration. In [30], the observed level crossing rate is compared to the known value

under a variety of Rician K factor to detect the Non-DLP condition. Since LCR

increases as K-factor decreases, LCR can be used to detect the NLOS contribution

to the fast fading.

In ROLAX, rather than calculating the LCR of the received signal envelop,

standard radio resource measurements are used. For instance, when the RSSI is

measure, the RSSI Level Crossing Rate (RLCR) is calculated to detect DLP con-

dition. A priori knowledge of RLCR under DLP is needed. RLCR is expected

to imply the Non-DLP condition because the coherence time is shorter under the

stronger multipath condition (larger delay spread), and accordingly the RSSI values

are likely to change more frequently. RLCR is defined in (5.5).

ξRLCR = maxth
ηth,RSSI

T
(5.5)
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where ηth,RSSI is the level crossing rate at level th, and T is the measurement dura-

tion.

5.2.3 Correlation between RSSI and RTD

One of the observations made in Section 5.1 is that the correlation between

RTD and RSSI is higher under DLP than under non-DLP. By calculating the correla-

tion coefficient between the RSSI and the RTD, the DLP condition can be detected.

It can be used to determine the DLP condition for a relatively large area since the

variation of the RSSI and RTD has to be observed to identify the condition.

5.2.4 Kullback-Leibler Divergence

The distribution of the RSSI under non-DLP varies a lot over the locations.

Therefore, the likelihood ratio test cannot be used because the conditional pdf of the

measurement under non-DLP cannot be easily obtained while the conditional pdf

under DLP may be available. Therefore, a nonparametric method using Kullback-

Leibler divergence is used in discriminating DLP and NDLP. The Kullback-Leibler

divergence is provided in (5.6).

DKL(PDLP∥P ) =
∑
i

PDLP (i) log
PDLP (i)

P (i)
(5.6)

where P (i) is the estimated probability to have a value i and PDLP (i) is the proba-

bility known a priori to have a value i under DLP condition.

Since Kullback-Leibler divergence can be infinity if P (i) = 0 for some i such

58



that PDLP (i) > 0, the empirical pdf (Kaplan-Meier distribution) cannot be used

in calculating the divergence value. Thus, the density is estimated by using kernel

density estimation that is provided in (5.7) [40].

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(
x− xi

h

)
(5.7)

where K(•) is the kernel - a symmetric but not necessarily positive function that

integrates to one, and h > 0 is a smoothing parameter called the bandwidth.

The RSSIs are measured and quantized per antenna, and combined RSSI is

calculated by using the formula like (5.8). Thus, the intervals between the possible

combined RSSI values are not uniform.

RSSI(dBm) = 10log(
P1 + P2

1mW
) = 10log(10RSSI1/10 + 10RSSI2/10) (5.8)

where P1 is the RSSI in Watt measured at the first antenna, P2 is the RSSI in Watt

measured at the second antenna, RSSI1 is the RSSI in dBm measured at the first

antenna, and RSSI2 is the RSSI in dBm measured at the second antenna.

The bandwidth h was chosen so that the underlying probability density can

be estimated while the artifacts can be smoothed out. If the bandwidth h is too

small, peaks at the possible combined RSSI values are noted (Figure 5.3).

It has been noted a similar non-parametric test using Kullback-Leibler di-

vergence was developed in [41], too. In [41], a general NLOS identification using

the non-parametric test is provided. In this work, we specifically develop a non-

parametric test to use the combined RSSI as the measurement in 4G networks.
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(a) Indoor

(b) Outdoor

Figure 5.4: Locations for DLP Detection Experiment

Figure 5.5: RSSI Values over Time under Various Locations
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Figure 5.9: Correlation Between RSSI and RTD

condition.

5.2.6 Parametric Distribution Modeling for Errors under Non-DLP

The DLP detection experiment also showed another interesting result: the dis-

tribution of distance error was different under DLP and NDLP. The DLP error was

normally distributed confirming the assumption made for the Gaussian measure-

ment error (Figure 5.10(a)), but the error under NDLP is not normally distributed.

In previous research, Gaussian, exponential, log-normal, and mixture of exponential

and Gaussian have been used for modeling the ranging error in NLOS [42]. If the

NLOS error is additive to measurement error, the error under NLOS, rm,err, can be

regarded as the summation of measurement errors nm and NLOS errors NLOSm.

According to the data collected in Section 5.1, rm,err is observed to follow the Ex-

treme Value distribution (Figure 5.10(b)) with our experimental data. The testing
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5.3 DLP Detection Techniques Using Multiple Features

As observed in the experiments in Section 5.2.5, the detection performance

of each feature (test statistics) varies for each location. Thus, in this section, how

to combine multiple features together to detect the DLP condition is presented.

In addition, more features that can be used in detecting the DLP condition are

introduced. Those features, in addition to some features discussed in the Section

5.2, are used as the input features for the pattern matching engine to decide a DLP

condition. A number of pattern matching techniques including ANN are evaluated.

5.3.1 Underlying Measurements Used in Generating Multiple Fea-

tures

Since the DLP detection has to be done within a reasonable time limit, the

measurement duration for each BS to detect the DLP condition is assumed to be

limited to one second. The following underlying measurements are made to generate

features within one second. In 4G WiMAX, RSSI and CINR can be measured for

each downlink (DL) preamble from the MS.

• Received Signal Strength Indication (RSSI) in dBm for each antenna (RSSI1

and RSSI2)

• Carrier to Interference Noise Ratio (CINR) in dB

Combined RSSI is calculated as in (5.8). An additional feature, RSSI difference

(denoted by RSSId) is calculated by (5.10).
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RSSId(dB) = |RSSI1 −RSSI2| (5.10)

5.3.2 Feature Extraction from Underlying Measurements

Time features and spectral features are generated by processing each 200 con-

secutive underlying measurements (RSSI, CINR, and RSSId). The variance, the

Level Crossing Rate(LCR), the spectral centroid, the spectral roll-off and the spec-

tral flux of the underlying measurements are evaluated. The mean of RSSId is also

evaluated. The spectral centroid (SC), the spectral roll-off (SR) and the spectral

flux (SF) are the features commonly used in speech recognition [44].

Let xi(n), n = 0, 1, ..., N − 1 be the underlying measurement (e.g. RSSI)

samples of ith frame, where a frame is composed of N consecutive samples. A

frame is not overlapped with other frames. N is 200 since a feature is generated for

each 200 consecutive preambles received for one second duration. Let Xi(m),m = 0,

1, ..., N − 1 be the corresponding DFT (Discrete Fourier Transform) coefficients.

The spectral centroid (SC) is the spectral center of the mass of the measure-

ments. It is the weighted mean of the frequency components. The spectral centroid

(SC) of ith frame is defined in the (5.11).

SC(i) =

∑N−1
m=0 m |Xi(m)|∑N−1
m=0 |Xi(m)|

(5.11)

The spectral roll-off (SR) is a measure of the skewness of the spectral distribu-

tion. It is the frequency sample, mR
c (i), below which more than c% of the magnitude

67



Figure 5.11: Example: Spectral Centroid and Spectral Roll-off of RSSI measure-

ments

distribution of the DFT coefficients is concentrated [44]. For this frequency sample,

the following is true:

mR
c (i)∑

m=0

|Xi(m)| >=
c

100

N−1∑
m=0

|Xi(m)| (5.12)

where c is chosen to be 85 in this study.

An example of spectral centroid and spectral roll-off calculated from RSSI

measurements is provided in Figure 5.11.

Spectral flux (SF) is a measure of spectral change over time, and it is defined

in (5.13). Each two hundreds consecutive measurements are divided into two sub-

frames, each with one hundred measurement samples. The spectral flux of the ith

frame is defined as in (5.13).
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SF (i) =
N/2−1∑
m=0

(Ni,1(m)−Ni,2(m))2 (5.13)

where Ni,j(m) is the normalized magnitude of the respective DFT coefficient of the

jth subframe of the ith frame.

The reasons for choosing each feature are as follows:

• Variance of RSSI / CINR: In Section 5.2, it was discussed and demon-

strated that the variance of the RSSI can be used in detecting DLP. Since

CINR and RSSI are highly correlated as demonstrated in Section 6.4, the

variance of CINR can used as the feature to detect the DLP condition.

• Mean of RSSI difference: When only the LOS path exists, the signal

dissipation over the distance is a function of the distance from the transmitter,

and it does not change significantly over a small distance. At the presence of

the mobility on the channel and the stronger scattered paths, it is expected

to see the signal magnitude variation over a small distance (smaller coherence

distance). Thus, the RSSI difference between two antennas can be used as a

feature to detect the DLP.

• Level Crossing Rate of RSSI / CINR: In Section 5.2.2, it is demonstrated

that the Level Crossing Rate can be used in detecting DLP condition.

• Spectral Centroid and Spectral Roll-off of RSSI / CINR: The presence

of the multi-path creates a changing environment that dissipates the signal

energy in time [45]. It is expected to see more frequent change of RSSI and

CINR under NDLP, which induces higher SC and SR.
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• Spectral Flux of RSSI / CINR: It is expected that the underlying mea-

surements have a higher spectral change over time as the channel condition

changes over time.

Thirteen features were evaluated and ranked by three different criterion. The

list of evaluated features is as follows:

• Standard deviation of the RSSI (Std[RSSI])

• Standard deviation of the CINR (Std[CINR])

• Standard deviation of the RSSId (Std[RSSId])

• Mean of RSSId (Mean[RSSId])

• Level Crossing Rate of the RSSI (LCRRSSI)

• Level Crossing Rate of the CINR (LCRCINR)

• Spectral Centroid of the RSSI (SCRSSI)

• Spectral Centroid of the CINR (SCCINR)

• Spectral Roll-off of the RSSI (SRRSSI)

• Spectral Roll-off of the CINR (SRCINR)

• Spectral Roll-off of the RSSId (SRRSSId)

• Spectral Flux of the RSSI (SFRSSI)

• Spectral Flux of the CINR (SFCINR)

The processing between the underlying measurements and the extracted fea-

tures is described in Figure 5.12.

The features are selected by three feature evaluators. The statistics used by

each evaluators are Chi-square statistics, information gain, and symmetrical uncer-
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Figure 5.12: Processing between Underlying Measurements and Features

tainty. The statistics are calculated with respect to DLP/NDLP condition. All

numeric attributes are grouped into bins by discretizing the numeric values using

Fayyad and Irani’s MDL (Minimum Discretization Length) method, which uses the

information gain to find the best bins [46].

• Chi-square Evaluator: Chi-square statistic is calculated by comparing the

observed count and the expected count under the assumption of the no asso-

ciation between the feature and the DLP/NDLP condition for each bin. The

Chi-square statistics are defined as follows: χ2 =
∑Nbins−1

i=0
(Oi−Ei)

2

Ei
where Nbins

is the number of bins, Oi is the observed count in the ith bin, and Ei is the

expected count in the ith bin under the assumption of the no association.

• Information Gain Evaluator: Information gain can be regarded as the

change in the entropy from a prior state without some information to a state

that takes some information. It is also known as mutual information. In-

formation gain is defined as follows: IG(Class, Feature) = H(Class) −

H(Class|Feature) where Class is either DLP or NDLP, and H is the en-
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tropy.

• Symmetrical Uncertainty Evaluator: Symmetrical uncertainty is a non-

linear estimation of correlation between the feature and the DLP/NDLP con-

dition. Symmetric uncertainty is defined as follows: SU(Class, Feature) =

2H(Class)−H(Class|Feature)
H(Class)+H(Feature)

where Class is either DLP or NDLP, and H is the

entropy.

The ranking of the features by each feature selector is provided in the Table

5.2. Since the top eight features are the same whichever evaluator is used, they are

chosen in the DLP/NDLP detection. The selected features are as follows: SRCINR,

SCCINR, Std[CINR], LCRCINR, SCRSSI , SFRSSI , Mean[RSSId], and SFCINR.

The distributions of the selected features are provided in the Figure 5.13.

5.3.3 Experimental Results

The downlink signals from a BS in the MAXWell 4G network were measured.

The experimental settings are as follows:

• Location: Rooftop of AV Williams Building, College Park, MD

• Number of DLP Locations: 12 (5 locations in the first test. 7 locations in the

second test.)

• Number of NDLP Locations: 12 (5 locations in the first test. 7 locations in

the second test.)

• 4G Network: MAXWell 4G Network (Motorola WAP 400 BS)

• Underlying Measurements: RSSI (per each antenna of the MS); CINR (Mea-
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Table 5.2: Feature Ranking for DLP Detection

Ranking

Evaluator

Chi-Square Statistic Information Gain Symmetric Uncertainty

Score Feature Score Feature Score Feature

1 3829 SRCINR 0.5694 SRCINR 0.5694 SRCINR

2 3595 SCCINR 0.5383 SCCINR 0.5383 SCCINR

3 3236 Std[CINR] 0.4847 Std[CINR] 0.4847 Std[CINR]

4 2285 LCRCINR 0.345 LCRCINR 0.345 LCRCINR

5 1756 SCRSSI 0.2446 SCRSSI 0.2446 SCRSSI

6 1417 SFRSSI 0.1909 SFRSSI 0.1909 SFRSSI

7 1394 Mean[RSSId] 0.1907 Mean[RSSId] 0.1907 Mean[RSSId]

8 1179 SFCINR 0.1753 SFCINR 0.1753 SFCINR

9 707.4 SRRSSId 0.0871 SRRSSId 0.0871 SRRSSId

10 652.7 Std[RSSI] 0.083 Std[RSSId] 0.083 Std[RSSId]

11 652.1 Std[RSSId] 0.0816 Std[RSSI] 0.0816 Std[RSSI]

12 364.7 LCRRSSI 0.045 LCRRSSI 0.045 LCRRSSI

13 63.77 SRRSSI 0.01 SRRSSI 0.01 SRRSSI
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(a) Test Locations in First DLP/NDLP Test (bird’s eyes view)

(b) Test Locations in the First DLP/NDLP Test (zoomed view)

Figure 5.14: Test Locations in the First DLP/NDLP Test

sured on the preambles.)

• Number of Measurements per Each Location: 50,000 samples (250 seconds)

• Number of Components in a Feature Vector: 8 (See Section 5.3.2 for the list)

• Total Number of Feature Vectors Generated per Each Location: 250 (One

feature vector generated per each second.)

The measurements were done at the same place for two days. The locations

chosen as the DLP locations as well as the NDLP locations are provided in Fig-

ure 5.14 and Figure 5.15.
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(a) Test Locations in Second DLP/NDLP Test (bird’s eyes view)

(b) Test Locations in the Second DLP/NDLP Test (zoomed view)

Figure 5.15: Test Locations in the Second DLP/NDLP Test

5.3.3.1 DLP Detection by Using Neural Networks

A number of pattern matching techniques were evaluated, and one of the

pattern matching techniques that provided a better detection performance was ar-

tificial neural networks. The configurations of the artificial neural networks used in

DLP/NDLP detection are as follows:

• Nodes in the neural networks: Sigmoid.

• Algorithm: Back propagation algorithm.

• Number of Input Nodes: 8

• Number of Hidden Layers: 1

• Number of Neurons: 5
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Figure 5.16: Diagram of Neural Networks for DLP/NDLP Detection

• Learning Rate (The amount the weights are updated): 0.3

• Momentum (Applied to the weights during updating): 0.2

• Attribute Normalization: Yes

• Training Time (The number of epochs to train through): 500

The diagram of this neural network is provided in Figure 5.16.

The performance of the artificial neural networks is evaluated with the strat-

ified cross-validation with ten folds. In each iteration (out of ten iterations), nine

folds are used for training while one fold is reserved for testing. In each fold, the

number of DLP instances and NDLP instances are roughly about the same. The

accuracy is calculated by averaging the values over iterations. The result is pro-
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vided in the Table 5.3. With all eight features, the DLP condition can be accurately

determined with 92%.

5.3.3.2 DLP Detection by Using K-Nearest Neighbor (K-NN)

An instance-based learning, K-NN, achieved a better performance than the

neural networks. In K-NN, rather than creating a model from the training samples,

the feature vectors of all training instances are stored with DLP/NDLP tag. For each

test instance, the K nearest neighbors are found by calculating the distance between

the feature vector of the test instance and the stored feature vectors. By using the

voting, the DLP/NDLP condition is determined. Thus, odd values are chosen as the

K value. When the K is seven, 94.5% of accuracy is achieved. The accuracy by the

value of K is provided in Figure 5.17. Since the distance between each offline feature

vector and online feature vector has to be calculated, the DLP/NDLP decision takes

long time in K-NN if the number of stored instances is high.

5.3.3.3 DLP Detection by Rotation Forest

Rotation Forest is a meta classifier introduced by Rodriguez, J.J., Kuncheva,

L.I., and Alonso, C.J. [47]. To create the training data for an underlying classifier,

the feature set is randomly split into K subsets and principal component analysis

(PCA) is applied to each set. A new feature set is reassembled while keeping all the

components. An underlying classifier is trained for this data set.
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Table 5.3: DLP/NDLP Detection Accuracy with Neural Networks

SRCINR SCCINR

Std

[CINR]

LCRCINR SCRSSI SFRSSI

Mean

[RSSId]

SFCINR Accuracy

O O O O O O O O 91.57%

O O O O O O O 90.93%

O O O O O O 90.10%

O O O O O 89.87%

O O O O 89.43%

O O O 88.87%

O O 87.82%

O 87.08%

O 85.17%

O 83.67%

O 77.08%

O 58.90%

O 55.22%

O 53.30%

O 61.77%
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Table 5.4: DLP/NDLP Detection Accuracy Achieved by Rotation Forest

Classifier Name Weka Class Name

Accuracy (%)

Without Ro-

tation Forest

With Rota-

tion Forest

K-NN (K=7) IB7 94.5 94.82

Random Forest Random Forest 93.72 94.32

Grafted C4.5 Decision Tree J48graft 93.08 94.13

Logistic Model Trees LMT 92.95 94.2

C4.5 Decision Tree J48 92.85 94.17

Repeated Incremental Prun-

ing to Produce Error Reduc-

tion (RIPPER)

Jrip 92.78 94

K* Kstar 92.72 93.95

Minimal Cost-complexity

Pruning

Simple Cart 92.7 93.85

Best-first Decision Tree Clas-

sifier

BFTree 92.65 93.67

Functional trees FT 92.65 93.88

Fast Decision Tree Learner REP Tree 92.45 93.92

Artificial Neural Networks Multilayer Per-

ceptron

91.57 92.87

Support Vector Machine LibSVM 91.38 92.07
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90% of the accuracy are provided in Table 5.5. The classifiers included in the Table

5.4 are not included in this table. Weka 3.6 library is used for the evaluation of the

classifiers.

5.3.4 Implication of DLP Detection Features on RF Fingerprinting

The mean of RSSI is primarily used in the previous research on RF finger-

printing (e.g. RADAR [14, 15]) in generating RF fingerprints. However, in this

section (Section 5), it is demonstrated that two locations with the similar level

of RSSI/CINR may have very different RSSI/CINR characteristics (different DLP

condition).

Two locations are chosen to see if the DLP detection features can be used to

improve the performance of the RF fingerprinting. In Figure 5.18, the mean of RSSI

is about the same at the location 1 and 2. The mean values of RSSI and CINR at

these locations are provided in Table 5.6.

Artificial neural networks are modeled to see how well two locations can be

classified by using the features evaluated in the DLP detection. The configurations

of the neural networks are as follows:

• Nodes in the neural networks: Sigmoid.

• Algorithm: Back propagation algorithm.

• Number of Input Nodes: 1, 13, 15 (depending on the choice of feature sets)

• Number of Hidden Layers: 3, 9, 10 (depending on the choice of feature sets)

• Number of Neurons: 5
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Table 5.5: DLP/NDLP Detection Accuracy by Classifiers

Weka Class Name Accuracy (%)

Bagging 93.45

Random Committee 93.32

Decorate 92.95

Nested Dichotomies 92.87

Ordinal Class Classifier 92.87

Classification Via Regression 92.75

IB1 92.53

PART 92.38

Random Subspace 91.87

Filtered Classifier 91.8

ADTree 91.5

DTNB 91.4

Random Tree 91.15

NBTree 91.07

Nnge 90.95

Ridor 90.87

Decision Table 90.23

LADTree 90.1

Bayes Net 90.02
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Figure 5.18: Locations for Evaluating DLP/NDLP Features for RF Fingerprinting

Table 5.6: Mean of RSSI and CINR at Locations in Figure 5.18

Location ID Mean [RSSI] Mean [CINR]

1 -63.4354 23.33866

2 -63.4862 26.32538
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Figure 5.19: RF Fingerprinting Performance Improvement by Using DLP Detection

Features

• Learning Rate (The amount the weights are updated): 0.3

• Momentum (Applied to the weights during updating): 0.2

• Attribute Normalization: Yes

• Training Time (The number of epochs to train through): 500

The classification accuracy was calculated after the stratified cross validation

with ten folds (described in the Section 5.3.3.1). The result is provided in Fig-

ure 5.19. When only the mean of RSSI is used as the feature, two locations can be

differentiated with the accuracy of 53%. When fifteen features including the mean

of CINR and all DLP detection features evaluated in the Section 5.3.2 are used, the

classification accuracy improves to 99.8%.
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5.4 Summary

When the MS is under a NDLP condition, the range estimation error has

significantly increased. In a set of experiments, the range was estimated by RSSI

and RTD in live 4G networks. Under DLP, the range error was in the order of 30

meters, while, under NDLP, the range error was in the order of 70 meters. Thus,

it was confirmed that the NDLP condition could be a crucial source of errors in

geometric techniques such as ToA and TDoA.

In ROLAX, the DLP condition is determined from the RSSI, CINR, and RTD

measurements. Since the RSSI is measured per each antenna of the MS, the RSSI

difference (RSSId) between two antennas is also calculated and used as the mea-

surement. The test statistics, including (1) the RSSI variance, (2) the RSSI level

crossing rate, (3) the correlation between the RSSI and RTD, and (4) Kullback-

Leibler Divergence between the RSSI distributions, have been successfully used in

detecting the DLP condition.

It is noted that, compared to using a single feature, appropriately combined

multiple features lead to a very accurate DLP condition detection. Multiple features

are combined, and machine learning techniques are used to detect the DLP condi-

tion. Time features (variance, mean, level crossing rate) and spectral features (spec-

tral centroid, spectral roll-off, spectral flux) were evaluated and ranked. Top eight

features are chosen to detect the DLP condition: SRCINR, SCCINR, Std[CINR],

LCRCINR, SCRSSI , SFRSSI , and Mean[RSSId].

A number of pattern matching techniques are evaluated for the purpose of the
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DLP condition detection. Artificial neural networks, lazy learning using K-nearest

neighbor (K-NN), and a meta classifier called Rotation Forest are particularly used,

while other pattern matching techniques were also evaluated. When the neural

network is used, a detection accuracy of 92% is achieved, and, when the K-NN

instance based learning is used, an accuracy of 94.5% was achieved. In case of

Rotation Forest meta classifier, we can choose an underlying classifier. When K-NN

is chosen as the underlying classifier for Rotation Forest, the best detection accuracy

(94.8%) was achieved.

It has been noted that features designed in the DLP detection can be useful in

the RF fingerprinting. Thus, the features developed for the DLP condition detection

are used in ROLAX RF fingerprinting.
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Chapter 6

ROLAX RF Fingerprinting in 4G Networks

In ROLAX, when the required accuracy cannot be achieved using signals from

BSs under the DLP condition, RF fingerprinting is used in positioning the mobile

station. If the target area is large, then the location estimation by the RF finger-

printing may take a lot of time. Therefore, a location determined by the geometric

techniques can be used to choose the search domain of the radiomap in order to

decrease the computation of the RF fingerprinting. In order to design a location

determination system using RF fingerprinting, the following has to be considered.

• How to design features?

• How to deal with the variation of measurement data?

• How to deal with the missing data?

In ROLAX, fourteen features, including the features developed for the DLP

detection, are designed to construct the radiomap. The sources of the measurement

variation over a distance and time are identified, and techniques are developed to

deal with the variation. A major drawback of the RF fingerprinting techniques is

that it takes a tremendous amount of time to build the radiomap. Time and labor

needed to build the radiomap increase as the resolution of the radiomap increases.

To ease the signal collection, automatic radiomap generation techniques are devel-

oped and used in ROLAX. In ROLAX, a novel measurement technique for building
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a radiomap is designed since the existing techniques developed for other wireless

networks such as Wi-Fi cannot be applied to 4G due to the technical discrepancies.

6.1 Comparison with Existing RF Fingerprinting System

The most widely known RF fingerprinting systems include RADAR [14, 15]

and Horus [13]. In this section, ROLAX is compared with RADAR and Horus.

RADAR and Horus provide the location determination solution in Wi-Fi networks,

particularly for indoor areas. In order to determine the location, the online mea-

surement and features stored in the radiomap are compared using pattern matching

techniques. In both RADAR and Horus, the signal strength (RSSI) is measured

on the client device with regard to the beacons transmitted from the Access Points

(APs) during the offline and online phases.

During the offline phase, the radiomap is created by collecting measurements

at known locations. A series of RSSI measurements are collected to create feature

vectors in both RADAR and Horus. In RADAR, sample mean of RSSI with regard

to each AP is calculated. In Horus, a distribution of the RSSI with regard to each

AP is estimated. The distribution can be a parametric distribution (e.g. Gaussian

with an estimated mean and an estimated variance) or a non-parametric distribution

(e.g. Histogram of RSSI).

In ROLAX, in addition to RSSI, CINR is used as the underlying measure-

ment. RSSI can be measured per each antenna of the terminal, so RSSI difference

(RSSId) can be retrieved from the RSSI measurements to create additional features.
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RTD is also considered, but due to its low measurement frequency, RTD is not cur-

rently used in ROLAX. In ROLAX, fourteen features, including time features (e.g.

mean, variance) and spectral features (e.g. spectral centroid, spectral roll-off), are

generated from the underlying measurements. In Wi-Fi, the measurements are per-

formed upon receiving the beacons from the AP while, in 4G, the measurements are

performed on the downlink preambles from the BS. While a typical Wi-Fi beacon

interval is 100 msec, a typical 4G WiMAX preamble interval is 5 msec. Because of

the higher measurement frequency, the spectral feature generation is more feasible

in 4G WiMAX than in Wi-Fi. When only a single feature is used in ROLAX, the

mean of the RSSI is used as the feature.

During the online phase, RSSI measurements are collected for each AP in

RADAR and Horus, and these measurements can be used as the online phase feature

by itself. In RADAR, distances are calculated between the online phase feature

vector and the offline feature vectors, and Euclidean distance is primarily used as

a distance measure, while other distance measure can be also used. In Horus, the

probability to get the online feature vector is calculated given an offline feature

(parametric or non-parametric RSSI distribution) in the radiomap. Probability can

be regarded as a distance measure to calculate a distance between an offline feature

and an online feature. In both RADAR and Horus, a nearest neighbor search is

performed given the calculated distances between the online feature vector and the

offline feature vectors in the radiomap.

In ROLAX, the online and offline feature vectors have the same set of features.

The pattern matching techniques, such as artificial neural networks (ANN) and
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Rotation Forest, have been used in ROLAX to determine a location given an online

feature vector. However, other pattern matching techniques can be used as long as

they can deal with the missing values because the measurement miss is a frequent

event in 4G WiMAX. When a single feature is used, nearest neighbor search is

performed in ROLAX while other pattern matching technique can be also used.

The comparison between RADAR, Horus, and ROLAX is summarized in Table

6.1.

The three systems are compared in an example. In this example, measurements

are performed at three locations during the offline phase with regard to three APs.

In RADAR, the mean of RSSI is calculated to create the offline features. The

offline features associated with a location i is denoted by RSSIi. The created offline

features are RSSI1 = [−56,−72,−83], RSSI2 = [−62,−90,−56], and RSSI3 =

[−73,−83,−64]. During the online phase, RSSI is measure for each AP, and it is

denoted by RSSIonline. RSSIonline is [−62,−81,−75]. The Euclidean distance, Di

is calculated between RSSIonline and RSSIi(i = 1, 2, 3). (Figure 6.1)

In Horus, the distribution of the RSSI is estimated for each location in the

radiomap. In this example, parametric distribution using the Gaussian is used.

The offline features associated with a location i is denoted by Histi. The created

offline features are Hist1 = [N(−56, 3), N(−72, 4), N(−83, 2)], Hist2 = [N(−62, 4),

N(−90, 4), N(−56, 1)], and Hist3 = [N(−73, 4), N(−83, 4), N(−56, 1)] where (N(µ,

σ2)) is the Gaussian distribution with a mean µ and a variance σ2. The probability,

Pi to get RSSIonline of [−62,−81,−75] is calculated for each Histi. (Figure 6.2)

In ROLAX, the offline features at location i is denoted by Featurei. Since
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Table 6.1: Comparison between RADAR, Horus, and ROLAX

Underlying

Measure-

ments

Offline Feature Online

Feature

Distance

Measure

Pattern

Matching

RADAR RSSI Sample Mean RSSI Euclidean

Distance

Nearest

Neighbor

Horus RSSI Parametric

Distribution,

Non-parametric

Distribution

(Histogram)

RSSI Probability

(Maximum

Likelihood)

Nearest

Neighbor

ROLAX

(single

feature)

RSSI Sample Mean RSSI Euclidean

Distance /

Manhattan

Distance

Nearest

Neighbor

ROLAX

(mul-

tiple

features)

RSSI

and

CINR

(RTD in

future)

14 Features

generated from

RSSI, CINR,

and RSSId

Same as

offline

features

N/A ANN,

Rotation

Forest,

etc.

92



Figure 6.1: RADAR Example

Figure 6.2: Horus Example
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Figure 6.3: ROLAX Example

there are three APs, 14 features are generated for each AP. Thus, the size of Featurei

is 42 (14*3) by 1. During the online phase, an online feature vector with the same

size is generated from the measurements. By using a pattern matching such as

ANN, the location is determined.(Figure 6.3)

The client may miss the presence of the AP, but how to manage the missing

value is not well addressed in both RADAR and Horus. In ROLAX, the handling

of missing values is strongly needed because there are very frequent measurement

misses. ROLAX is designed to deal with missing values by using techniques includ-

ing overlapped Gridding, interpolation, and distance measures that can deal with

missing values.
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6.2 Quality of Measurement Data

The measurements vary over time and over (small) distance. The quality of

measurement data matters in both the offline and the online phases. In ROLAX,

to provide an accurate geo-location, the sources of the signal variation and outliers

are identified, and each of them is handled.

The outliers can be generated either by errors (e.g. systematic errors, mea-

surement errors), or by having legitimate data with very different values from its

surrounding values. For the power and time related measurements, the variation

of the radio channel condition known as fading can be a significant source of the

variation. The causes of measurement variation are summarized as follows:

• Systematic error - implementation error of the software, etc.

• Measurement error - combination of unknown measurement error sources

• Channel fading - fading over frequency/time/location

• Atmospheric propagation impairments and thermal noise - impair-

ments by rain, atmospheric absorption, fog, snow, and atmospheric multipath

6.2.1 Systematic Error

One systematic cause of outliers is the systematic implementation errors of

the 4G hardware or the software. For instance, the device driver of Beceem chip-set

reports a RTD value of zero under two different conditions.1 Zero RTD value can

be a legitimate value, but it can be also reported when the link is almost lost. It is

1The RTD value reported by the software of Beceem chip-set MS is in the range of [-39,104].
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Figure 6.4: Example of Systematic Errors in Reporting RTD

conjectured that zero value is reported under a certain error condition. Thus, when

the RTD value is zero, it would be hard to tell whether the measured RTD value is

zero or an indication of a certain error condition (Figure 6.4).

Similarly, CINR of -10 dB and RSSI of -123 dBm are observed when the phys-

ical synchronization is lost in the Beceem chip-set software. They are the minimum

values set each for RSSI and CINR in the Beceem device driver. The outliers, gen-

erated by systematic errors, have to be handled before processing the data further.

6.2.2 Measurement Errors

The measurements come with the measurement errors, which are usually mod-

eled by the Gaussian distribution. This assumption can be justified by the Lindeberg

Central Limit Theorem (CLT). Let Xi be a sequence of random variable with finite

mean mi and variance σ2
i . sn is defined by

√∑n
j=1 σ

2
j . If, for every ε > 0, the con-

dition given in (6.1) is met, then the distribution of the 1
sn

∑n
i=1 (Xi − µi) converges
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in distribution to a standard Gaussian distribution [49].

lim
n→∞

1

s2n

n∑
i=1

E
[
(Xi − µi)

2 · 1{|Xi−µi|>εsn}
]
= 0 (6.1)

where 1{··· } is the indication function.

Thus, as long as the sources of errors are independent and meet a certain

conditions, the combined errors can be modeled by the Gaussian distribution.

6.2.3 Channel Fading

The fading of the radio channel causes the variation in the power and the time

measurement such as RSSI, CINR, and RTD. At a fixed location, the amplitude can

vary over frequency, time, and location because of multipath, Doppler spread, etc.

6.2.3.1 Shadow Fading

The surrounding obstacles between the BS and the MS can cause shadow

fading, and the measured signals under the shadow fading can be very different

from the average value and between two locations. The shadowing over a number

of locations is usually modeled by log-normal distribution.

The implications of the shadowing on the generation of the radiomap are as

follows:

• The measurement value in the unvisited area can be predicted precisely as long

as the affect by obstacles on the radio signals can be identified and known a

priori. The adjusted path loss model can be used to construct the power-
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related measurement values in the area that could not be visited during the

offline signal collection.

• At a particular location, the characteristic of the radio signals does not vary

vastly due to the shadowing as long as the surroundings between the MS

and the BS are static. Since the surroundings can change over the time (e.g.

the density of the tree leaves is different between summer and winter), the

measurement values can change over time. Thus, the profiling of the radiomap

over the time (e.g. months, seasons) is needed.

6.2.3.2 Frequency-selective Fading

The coherence bandwidth, Bc, is the bandwidth over which the channel is

considered to be flat. It is inversely proportional to the delay spread of the channel,

and the relaxed ballpark definition is Bc =
1

5στ
, where the στ is the rms delay spread.

When the coherence bandwidth is smaller than the bandwidth of the channel, the

frequency-selective fading can be observed. The change of amplitude and the phase

is different per radio frequency channel in the frequency-selective channel. The

rms delay spread in 4G WiMAX is dependent on the terrain type, and, under

the Stanford University Interim (SUI) model, it ranges between 0.111 µsec (SUI-1

channel) to 5.240 µsec (SUI-6 channel) [27] when the omni-directional antenna is

used. These rms delay spread values result in the coherence bandwidth from 0.038

MHz to 1.8 MHz, which is much larger than the channel bandwidth used by an

OFDM subcarrier. When the 10MHz bandwidth is used, the subcarrier spacing in
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Figure 6.5: Coherence Bandwidth in 4G WiMAX

4G WiMAX is 0.011 MHz. If the 30◦ directional antenna is used, the coherence

bandwidth increases more than twice the coherence bandwidth under the use of

the omni-directional antenna. Therefore, we can assume that the fading is not

frequency-selective in general. The channel is not considered flat over a 10MHz

band, but it is considered flat over an OFDM subcarrier.

The RSSI value is calculated typically at the baseband, as a function of ADC

outputs with the Gaussian distribution assumption for the ADC inputs and out-

puts,2 and the sample power is averaged over the samples, each on a different sub-

carrier in a preamble.3 Even though the channel is frequency-selective, the variation

over the frequencies is averaged out because of the way the RSSI value is calculated.

6.2.3.3 Fast Fading

In the fast-fading channel, primarily due to the mobility, the received signal

strength varies over time relatively faster (the coherence time Tc of the channel is

small relative to the delay constraint of the channel). In this case, the radio receiver

typically uses the time diversity since the signal may be at a deep fade at time t

2See the equation (A.1) in Appendix A.1.
3In 4G WiMAX OFDMA PHY, a preamble is composed of a single OFDM symbol. In the case

of 10MHz bandwidth, an OFDM symbol is composed of 1024 subcarriers.
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while it may not be at time t+ δt.

If the channel is completely static, then the coherence time is merely a function

of the coherence distance (Dc/v where Dc is the coherence distance, and v is the

speed of the MS). If the Doppler spread can be found, then Tc ≈ 1
fm

. If the mobility

of the MS dominates over the mobility of the surroundings, then Tc ≈ 1
vfc/c

, where

v is the speed of the MS, fc is the center frequency, and c is the speed of light.

In 2.5 GHz 4G WiMAX networks such as MAXWell 4G WiMAX network, the

coherence time is 200 msec at the speed of 1.2 miles/hour, 10 msec at the speed of 27

miles/hour, and 4 msec at the speed of 60 miles/hour [29]. Therefore, the amplitude

and the phase of the signal can be regarded as flat over the duration of a preamble,

which is composed of a single OFDM symbol spanning over 0.1 msec. During the

offline signal collection in this work(Section 6.6.2), the vehicle was driven at a speed

below 10 miles/hour.

The autocorrelation functions over 100 lags (500 msec) for RSSIs measured at

eight different locations are provided in Figure 6.6. This figure shows that the RSSI

values are highly correlated within, at least, 100 msec window.

The implications of the coherence time on the radiomap generation are as

follows:

• The measurements have to be done multiple times to absorb the variability of

the signals over the time.

• The interval between the measurements can be larger than the coherence

time since the channel does not change significantly over the coherence time.
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distance is the dual of angular spread5, which refers to the statistical distribution

of the angle of the arriving energy. Large angular spread implies that the channel

energy is coming from many different directions, and the coherence distance is small

[29]. When there is no dominant path, and the angles of the arrivals are uncorrelated,

the in-phase component and quadrature-component follow the Gaussian distribution

at a fixed time because of the central limit theorem. Thus, the signal envelope follows

the Rayleigh distribution. Rayleigh fading is the channel model typically assumed

when there is no apparently strong LOS. In addition, it eases in computing the

coherence time because a uniform angular spread is assumed [50]. The coherence

distance in an omnidirectional Rayleigh channel is given by (6.2) [45].

Dc =
9λ

16π
(6.2)

In case of the 2.5GHz mobile WiMAX, Dc =
9·3×108/2.5×109

16π
= 0.021(meter) =

2.1(cm). If the directional antenna is used, Dc increases because fading contributions

are minimized by the spatial filtering effect of the antenna pattern [51]. In general,

the coherence distance is usually greater than 0.5λ (6 cm in case of 2.5GHz), and

the antenna spacing for the BS with low-medium and high antenna heights is in the

order of 10 to 20 λ (1.2–2.4 meters) if 120◦ antenna is used [27].

In this work, Motorola USBw 25100 was primarily used as the 4G MS for the

experimentation. It has dual omni-directional antennas, and the distance between

them is 2.5 cm [33]. The antennas are located on the left and right ends of the USB

5Angular spread is defined by Λ =
√

1− |F1
2|

F 2
0

where Fn =
∫ 2π

0
p(θ)exp(−jnθ)dθ and p(θ) is

the angular distribution of multipath power [45].
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Card (MAC Ad-

dress)

Mean

[RSSId]

Median

[RSSId]

Std

[RSSId]

Min

[RSSId]

Max

[RSSId]

Corrcoef

(RSSI1,

RSSI2)

0024A0DC7A90 -0.45 0 5.09 -31 31 0.91

0024A0DC7AC6 0.02 0 2.56 -36 39 0.93

Table 6.2: Statistics of RSSI Difference Rd

Figure 6.8. At this location, large RSSId is observed over the whole measurement

duration, with a mean of 8.7(dB) and a standard deviation of 8.5(dB). RSSI1 was

consistently higher than RSSI2. At this location, the correlation coefficient between

the RSSI1 and the RSSI2 is 0.26, which is much smaller than correlation coefficient

of 0.91 calculated over all samples measured by the same card. Thus, it has been

confirmed, by the observation, that the coherence distance can be smaller than 2.5

cm in some environment. Indeed, the coherence distance varies according to the

multipath environment (angular spread).

The RSSI values measured per antenna are combined to calculate the combined

RSSI as in (5.8). The locations where one of the antennas is located at deep radio

null can have outliers in the radiomap. If one of the antennas is located at a deep

radio null, the combined RSSI can be decreased as much as 3dB.

These observations about the coherence distance have implications on the

filtering and the processing of the measurements for the radiomap as follows:

1. To capture the radio signal pattern completely in the radiomap, the resolution
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surement can be declared as an outlier and should not be included in gener-

ating the radiomap.

6.2.4 Atmospheric Propagation Impairments

The signals are attenuated at the presence of atmospheric propagation im-

pairments such as rain, atmospheric absorption, fog, snow, atmospheric multipath,

etc. There are few previous researches studying the atmospheric impairments on 4G

networks. [52] evaluated the environmental effects on the signals by using ITU-R

and other models on the 2–66 GHz band.

Rain attenuation can be a significant issue particularly in fixed WiMAX

networks using the frequency over 10GHz. At this frequency band, the rain atten-

uation can be a dominating factor as the attenuation by multipath is lower [53].

However, the rain attenuation at 2.3–2.5 GHz is negligible [52]. At the rain rate of

102 mm/hour (4 inches/hour), 2.4GHz signal and 5.8GHz signal is attenuated each

by 0.05dB/km and 0.5dB/km [54].

The attenuation by snow is primarily due to the moisture content of the

particles, and it is usually less than the rain attenuation [52]. Thus, snow attenuation

can be regarded as negligible at 2–3GHz band.

The attenuation by atmospheric gases, due to dry air and water vapor

for 1–350GHz band, is studied in [55]. The attenuation at 2–3GHz at sea level is

0.007–0.008 dB/km, so this effect can be regarded as negligible for our purpose.

The attenuation by vapor components in the nature such as fog is also
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negligible unless the frequency is above 100GHz. Even at the 10GHz, the attenuation

by fog is less than 0.01 dB, and the attenuation at 2–3GHz band is much less [52].

The thermal noise can cause a variation of the power measurement over the

time. It is calculated by (6.3).

PdBm = 10log10 (kBT × 1000) + 10log10(B) (6.3)

The temperature change, from -20◦ Celsius to 40◦ Celsius, results in 0.9 dB

difference in thermal noise. For example, in Washington DC, the average low tem-

perature in January is -4◦ Celsius, and average high temperature in July is 33◦

Celsius. The thermal noise has a range of 0.7 dB in Washington DC region over a

year. The effect by the temperature change is higher than that by the rain attenu-

ation.

4G WiMAX can operate on 2–66GHz, and the most popular band in US is

2.5GHz. The US license free spectrum, at 5.8 GHz and 3.65 GHz band, has a few 4G

vendors building products. The 4.9 GHz will be used for public safety (Homeland

security band).

The summary of the atmospheric propagation impairments is as follows:

• In case of 2.3–2.5GHz, most of the atmospheric impairments can be ignored

since their contribution is more than 10 times smaller than the RSSI quanti-

zation size.

• For the 3–5GHz operation, the rain attenuation needs to be considered in

calibrating the readings particularly if the precipitation rate is high.
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• Since the thermal noise can cause about 1dB variation over the time of the

year, it would be better if the power measurement can be calibrated according

to the temperature when the measurements are made.

The location determination system and the context aware system such as Rover

[56] can be beneficial to each other. The technologies developed in this work can

provide location information to the location context server. At the same time, to

increase the location accuracy provided by the location context server, it can benefit

from the other context servers in the context-aware ecosystem. For instance, the

rain rate and temperature information from weather context server can enhance the

accuracy of the location determination system.

6.2.5 Effect of Outliers

The outliers have to be removed before data processing. The filtering of the

outliers can be done before the gridding and interpolation in ROLAX. Particularly,

when the Euclidean distance is used as the measure in a pattern matching algorithm

such as K-NN, outliers is the dominant component affecting the distance between

two RF fingerprints because of the squaring operation. Thus, choice of distance

(similarity) measure is dependent on the frequency of the outliers if they are not

filtered out. If the outliers occur frequently, the distance measure has to be chosen

or designed so that it is not sensitive to the presence of outliers. For instance,

Manhattan distance can be used in this case since it is less subjective to outliers

than Euclidean distance is. It is discussed further in Section 6.5.1.1.

108





Parameter Measurement

Density

Range

[Md]

Mean

[Md]

Std

[Md]

Prob

(Md ∈

[µ − σ,

µ+ σ])

Prob

(Md ∈

[µ−2 ·σ,

µ+2·σ])

Prob

(Md ∈

[µ−3 ·σ,

µ+3·σ])

RSSI
dense

(0.7

samples/m2)

[-5.5,

5.5]

0.00 0.39 0.87 0.97 0.98

sparse

(0.04

samples/m2)

[-42,

3.5]

-0.01 0.53 0.85 0.86 0.99

CINR
dense

(0.7

samples/m2)

[-5.5,

5.5]

0.00 0.44 0.96 0.99 1.00

sparse

(0.04

samples/m2)

[-20, 6] 0.00 0.49 0.83 0.85 0.99

Table 6.3: Frequency and Range of Measurements Difference from Nearest Location

Md
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the outliers in the radiomap.

Definition 1 Outlier Density

density(x, k) =

∑y∈(x,k)
distance(x,y)

D(x,y)

|N(x, k)|

−1

(6.4)

where N(x, k) is the set containing k-nearest neighbors of x, |N(x, k)| is the size of

that set, y is the nearest neighbor, distance(x,y) is the distance between measure-

ments at x and y, and D(x,y) is defined as in (6.5).

D(x,y) =


log10 ∥x− y∥ if the measurement is RSSI

∥x− y∥ if the measurement is RTD

(6.5)

The rationale behind this definition is that the RSSI linearly changes over the

logarithmic distance while RTD linearly changes over the distance. The data points

with low density are removed as outliers.

6.3 Generation of 4G Radiomap

6.3.1 Signal Collections for Radiomap Generation

Scanning operations are typically used in building a radiomap for wireless

networks such as Wi-Fi. In building radiomaps for 4G networks, scanning can be

used, but it has a huge limitation because the scanning typically takes longer in

4G than in Wi-Fi. Thus, in 4G, it is hard to use scanning operations in building a

radiomap for large areas while meeting high accuracy requirements.
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In 4G, during the initial entry scanning, the MSs passively receive preambles

and decode Downlink Maps (DL-MAPs) from BSs. The presence of a BS is reported

when the MS can achieve a downlink synchronization (i.e. when the DL-MAPS

are decoded) and obtain uplink parameters from the UCD. The MSs listen to the

frequencies listed in its configuration on the non-volatile memory. This takes a

minimum of two frames at each channel [58]. The maximum time between DL

MAPs can be as high as 11 seconds [59]. Once the MS decodes the DL-MAP/DCD

and UCD, it obtains all channel information and link measurements it needs to

perform the next stage of the network entry (ranging process). Then it switches the

frequency channel to look for another BS.

The number of frequency bands being used differs by the region and the regu-

latory domain. In a standard 4G WiMAX configuration for the United States, two

bandwidths (5MHz and 10MHz) in 22 frequency bands are needed to be scanned.

In the area under study (College Park, Maryland), as of March 2012, six frequency

bands were being used by Clear, and three frequency bands were being used by

the MAXWell 4G network. Both of the networks use 10MHz bandwidth.6 It was

observed that decreasing the number of frequencies to be scanned, from twenty-two

to nine, does not help so much in decreasing the total scanning time. It is believed

that most of the scanning time is spent on achieving synchronization rather than

making a decision whether the channel is being used or not. Scanning time also

depends on the scanning mode, which differs by the association level (0, 1 or 2) of

6MAXWell 4G network used to use one frequency for all three outdoor sectors and 5MHz

bandwidth in 2010. Some experiments were performed under this setting.
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cannot be used in 4G unless the accuracy requirement is very low. In this work,

a novel radiomap generation technique is introduced. The radiomap is generated

in the following procedure. If the target area is large, then the target area has to

be segmented into smaller areas. For each segmented area, perform the following

procedure.

1. Perform continuous scanning of mode 1 (scanning with no association) at

the target area. Create a hashtable TBS with the frequency as the key Kfreq

and the array list of the BSIDs BSIDKfreq
[] that were seen on the frequency

Kfreq as the value. Hash function is denoted by HBS(Kfreq).

2. For each key (frequency) Kfreq of HBS,

(a) Set the frequency of the connection manager to Kfreq.

(b) Attempt to connect the BSs (BSIDKfreq
[]) on the frequency Kfreq.

(c) Once the connection is made with a BS, start wardriving over the target

area.

Instead of scanning in the step 1), neighbor advertisement messages (MOB NBR-

ADV) can be used. Neighbor advertisement messages provide the information about

the neighbor BSs of the serving BS, which is typically managed by the same service

provider. In order to receive these messages, the connection has to be made with

a BS (serving BS). This information also can augment the information collected in

the step 1.

Due to the limitation of the software, it is hard to build a radiomap per a

BSID. The software used in this work only lets the user to choose the frequency
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band rather than BSID. MSs scan their neighbor BSs during the scanning interval

assigned by the BS for the handoff. Unless the handoff is disabled, the MS attempts

to handoff to other BSs on the same or other frequency channels. Thus, the firmware

of the MSs was configured not to perform handoff during the radiomap generation.

However, even though the handoff is disabled, the MSs attempt and execute handoff

to the other BSs on the same frequency channel with the software used in this work.

When the scanning is used in building the radiomap, 4.8 signal quality readings

per minute (RSSI and CINR) are obtained for each BS on average. Since one reading

is generated per 12.5 seconds on average, hardly can wardriving be used. Only

one reading is obtained while driving 55 meters when the vehicle is driven at 10

miles/hour.

If signal collection procedure of ROLAX is used to build the radiomap, 12,000

signal quality readings per minute can be obtained. In other word, one reading can

be obtained while driving 2.2 cm distance.

The wardriving vehicle used in this work is equipped with the following hard-

ware and software components.

• Two Windows XP netbook computers installed with 4G software (firmware,

device driver, connection manager, logging facilities, Wireshark, etc.) and PC

clock synchronization software, which synchronizes the clock of the PC with

the GPS clock.

• Two 4G WiMAX MS receivers (USB dongle type).

• One GPS receiver with Bluetooth interface: It provides the location log-
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Figure 6.11: Wardriving Vehicle with Two 4G Receivers

ging and the clock synchronization (once every one second) so that the time

stamped measurement data can be correlated with the time stamped location.

The vehicle has to go over the area at least Nfreq={the number of frequencies

being used in the target area} times. In other words, the vehicle needsNfreq receivers

each tracking the signals on a frequency band. The measurement locations are

scattered along the wardriving path.

6.3.2 Gridding

In [61], an approach called gridding was used (Figure 6.12). The RSSI his-

togram was constructed using all measurements inside each grid cell. The resolution

has to be reduced to the size of the cell, but this approach can construct scalable

radiomap by selecting an appropriate resolution that suits the needs of the selected

location-based services. If the cell size is too small, we cannot obtain enough sam-

ples to create features for some pattern matching techniques. For instance, in order

to apply the probability distribution-based techniques (e.g. Horus), enough number

of measurements is needed to estimate the empirical distribution function. By the
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Figure 6.12: Gridding

strong law of large numbers, the empirical distribution function F̂n(t) converges to

the true distribution F (t) almost surely as n → ∞. Gridding helps to obtain enough

number of samples at the expense of the resolution.

In ROLAX, the gridding approach is extended to provide a better resolution

while maintaining the size of the cell. It is called overlapped gridding (Figure 6.13).

In this approach, the measurements in a small cell can be a part of multiple large

cells. While the resolution remained as the size of the small cell, the measurements

in the large cell are combined to create a RF fingerprint. The sizes of the small

cell and the large cell have to be chosen carefully by considering the measurement
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Figure 6.13: Overlapped Gridding

density and the target resolution required by the location-based service.

6.3.3 Interpolation of Measurements by Delaunay Triangulation

The locations of the measurement samples are scattered and non-uniformly

distributed. Because of the data misses, caused by a variety of the factors including

the capturing effect and the uncontrollable handoff between the BSs on the same

frequency band, the data samples are scattered along the wardriving path. The grid-

ding and the overlapped gridding can be extended by the scattered data interpolation

fitting a smooth surface through the scattered samples.
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In ROLAX, interpolation of the measurements is done by using Delaunay

triangulation over two-dimensional space. A Delaunay triangulation for a set P of

points in the plane is a triangulation DT (P ) such that no point in P is inside the

circumcircle of any triangle in DT (P ) [62]. The Delaunay triangulation is used in

scattered data interpolation because of its favorable properties such as the rejection

of sliver-shaped triangles and the empty circumcircle property [63].

The interpolation, based on Delaunay triangulation, produces a surface of the

form V = F (X), where the location matrix is given by X = [LAT LON ] (LAT

is a column vector of latitudes, and LON is a column vector of longitudes of the

measurement locations), and the measurement (e.g. RSSI, CINR, etc.) associated

with the locations X is given by V . The surface can be evaluated at any query

location QX, using QV = F (QX) where QX lies within the convex hull of X,

and QV is the interpolated measurement value. When there is more than one

measurement at a location, average value of the measurements is used for that

location.

In ROLAX, linear interpolation was used. In linear interpolation, the interpo-

lated value of a query point is given by the weighted summation of the measurement

value on the vertices of the enclosing triangle.

Since the interpolated points cannot be outside the convex hull in the most of

interpolation methods, the boundary of the convex hull polygon defines the coverage

of the radiomap.7 If the density of the measurement locations is sparse, then it would

7There are some interpolation techniques, such as nearest neighbor interpolation method, which

can interpolate the points outside the convex hull.
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Figure 6.14: Linearly Interpolated RSSIs using Delaunay Triangulation

be hard to capture the small-scale variation over the space by the interpolation. An

example of the interpolated RSSI radiomap is provided in Figure 6.14.

The interpolation method has to be chosen or designed so that the method

can reflect the physical phenomenon and the systematic variation of the observed

parameter over the space. When the RSSI is measured, it is better to design the

interpolation method considering the fading of the RF signals. Particularly, the

large-scale fading known as path loss (described in Chapter 3) needs to be considered.

The path loss prediction is mostly based upon the statistical (empirical) method. If

the shadow fading effect on the path loss in (3.1) is ignored, the path loss exponent

γ and the system loss C in the equation have to be found.

The logarithm of the distance can be approximated by a linear function when

the location is far from the BS (between 200 meters and 1000 meters). In the College

Park, Maryland area, the average radius of the 4G cell is about 700 meters. In the

longer distance, RSSI interpolations using the linear method do not deviate from
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6.4 Fingerprint Feature Selection

6.4.1 Comparison of Underlying Measurements

Features are extracted from the underlying measurements such as RSSI, CINR,

and RTD. Detailed description of each measurement type is provided in the Ap-

pendix A. Each measurement type has different limitations, and they are summa-

rized below.

• Types of BSs : While RSSI and CINR can be measured with regard to any

BSs by passively monitoring the signals from them, RTD can be measured only

with regard to the serving or the anchor BSs. Since many service providers

provide web-based authentication, the MS may be able to measure the RTD

with a BS, which belongs to a foreign network.

• Measurement Frequency : RSSI and CINR measurements are made for

each downlink preamble of the frames. In OFDMA PHY of IEEE 802.16e,

preambles are typically sent once every 5 milliseconds, but it can be between

2 milliseconds and 20 milliseconds (2 msec, 2.5 msec, 4 msec, 5 msec, 8 msec,

10 msec, 12.5 msec, and 20 msec) [64]. The measurement frequency of the

RTD is much less than that of RSSI and CINR. Since RTD measurement is

typically involved with the calculation of the time advance, RTD measure-

ment can be updated during the ranging, in which the correct timing offset

between the MS and the BS is acquired. Thus, RTD measurement can be

made only after the initial ranging between the MS and the BS. In addition,

the RTD measurement value is typically updated during the periodic ranging.
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In OFDMA PHY of IEEE 802.16e, the periodic ranging interval is defined

by T4, which can be as large as 35 seconds [64]. In MAXWell 4G network,

the periodic ranging interval was set to five seconds at the time this work

was done (2012). The device driver used in this work updates the RTD value

once every three seconds. Thus, even though the periodic ranging interval

can be reduced, the RTD sampling frequency could not be increased over 1/3

Hz. This low frequency makes it hard to use the wardriving because the low

measurement frequency results in coarse resolution.8 The sample RTD mea-

surements confirmed that the RTD measurement frequency is fairly low to be

used to create the radiomap with a fine resolution (Figure 6.18).

• Requirement for the demodulation lock : While RSSI can be measured

without the receiver demodulation lock, CINR and RTD can be measured

only after the receiver demodulation lock is acquired. Particularly, the RTD

can be measured only after the downlink synchronization and the acquisition

of the uplink parameters are made.

The summary of the comparison between the underlying measurement types

is provided in the Table 6.4.

In 4G WiMAX, the MS performs transmit power control (TPC) during its

operation to combat the near-far effect while the BS does not perform the transmit

power control. It makes harder to obtain consistent RSSI and CINR readings on

uplink since the MS adjusts its transmit power. In addition, the power on the UL

822 meters of resolution if the speed of the wardriving vehicle is 10 miles/hour and the RTD

measurement is performed every five seconds (resolution = {speed} / {measurement frequency}).
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Figure 6.18: Example of RTD Measurements by Wardriving (MAXWell BS on

2512GHz)

Table 6.4: Comparison of Measurement Types

Types of BSs Measurement

Frequency

Demodulation

Lock Re-

quired

UL Parameter

Acquisition

Required

RSSI Any BSs 50 Hz – 500 Hz No No

CINR Any BSs 50 Hz – 500 Hz Yes No

RTD Serving BSs

Anchor BSs

maximum

1/35 Hz

Yes Yes
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channel is dependent upon the number of active carriers, so it is hard to obtain

consistent reading when the UL traffic is dynamically changing. Thus, it would be

best to measure the preamble of the DL channel rather than UL channel for the

measurements in the RF fingerprinting. The BS can obtain the measurement at the

MS side (DL channel) from the scanning result report (MOB SCN-REP) message.

6.4.2 Relationship between Underlying Measurements

Throughout the University of Maryland, College Park campus, the RSSI, RTD,

and CINR values were measured with regard to each RF sector in MAXWell 4G net-

work using the periodic neighbor report. A high positive correlation is observed be-

tween RSSI and CINR, but the correlation is low and negative between RSSI/CINR

and RTD. This value is negative because, on the large scale, RSSI decreases and

RTD increases as the range between the MS and the BS increases (Table 6.5 and

Figure 6.19).

Since the correlation between RSSI/CINR and RTD is low, combining RSSI

and RTD has the potential to increase the uniqueness of the RF fingerprints. RSSI

and RTD are less correlated under the non-DLP as discussed in the Section 5.1.

6.4.3 Feature Extraction from Underlying Measurements

In the RF fingerprinting, the features are extracted from the signal measure-

ments (e.g. RSSI, CINR, RTD) during both the offline phase and online phase.

If a shorter positioning delay is preferred, a single measurement can be used as a
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feature by itself. In ROLAX, features are extracted from RSSI and CINR. Since

the RTD measurement frequency is fairly low, features are not extracted from RTD.

The same set of underlying measurements, used in the DLP detection, are used for

the RF fingerprinting: RSSI per each antenna and the CINR. Combined RSSI and

RSSI difference (RSSId) are calculated from the underlying measurements.

In ROLAX, the mean of the RSSI (Mean[RSSI]) and the mean of the CINR

(Mean[CINR]) are used as features in addition to DLP detection features. The

mean of RSSI is chosen since the received signal strength, on a large scale, is af-

fected by the distance and the presence of the obstacles between the MS and the BS.

The mean of the RSSI is used primarily in the previous research such as RADAR.

An important observation is made during the DLP detection study: while two loca-

tions have the similar average level of the signal strength (e.g. RSSI) or the signal

quality (e.g. CINR), the underlying radio characteristics can be fairly different. For

example, a location under the DLP condition and another location under the non-

DLP condition, from a BS, may have the similar level of the RSSI and/or CINR,

but they may have different spectral signal characteristics (e.g. level crossing rate).

Therefore, the time and spectral features evaluated in DLP detection are also

included in the feature set. The SRRSSI is not selected due to its poor performance

in discriminating the DLP condition. The list of the features used in constructing

the RF fingerprints is as follows:

• Mean of the RSSI (Mean[RSSI])

• Mean of the CINR (Mean[CINR])
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• Standard deviation of the RSSI (Std[RSSI])

• Standard deviation of the CINR (Std[CINR])

• Standard deviation of the RSSId (Std[RSSId])

• Mean of RSSId (Mean[RSSId])

• Level Crossing Rate of the RSSI (LCRRSSI)

• Level Crossing Rate of the CINR (LCRCINR)

• Spectral Centroid of the RSSI (SCRSSI)

• Spectral Centroid of the CINR (SCCINR)

• Spectral Roll-off of the CINR (SRCINR)

• Spectral Roll-off of the RSSId (SRRSSId)

• Spectral Flux of the RSSI (SFRSSI)

• Spectral Flux of the CINR (SFCINR)

6.4.3.1 Offline Feature Extraction

During the offline phase, for each grid, the signals are combined, and features

are extracted. When a single feature (e.g. mean of RSSI) is generated per each grid,

all measurements are combined to create a single feature. When multiple feature

sets are generated per each grid, in order to have the same number of feature vectors

for each grid, artificially generated feature sets are added.

Let us denote the number of measurements in series needed to generate a

feature, by Nmf , the number of measurements made in a grid i with regard to BS j

by nij, the number of feature sets generated for each grid by Nfs, and the required
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minimum number of measurements to generate the features by Nmin. Thus, in order

to produce Nfs feature sets in a grid, Nfs · Nmf measurements are required. Nmin

is much smaller than Nfs ·Nmf (Nmin << Nfs ·Nmf ).

When multiple feature sets are generated per each grid, the offline features are

generated as follows:

For each grid i and for each BS j,

• Case 1 if nij >= Nfs · Nmf , choose Nfs · Nmf measurements in series and

extract features from them.

• Case 2 if nij < Nfs ·Nmf and nij >= Nmin, choose
⌊

nij

Nmf

⌋
·Nmf measurements

in series and extract
⌊

nij

Nmf

⌋
feature sets from them. Create a parametric or

non-parametric probability distribution from the extracted features. Generate

Nfs −
⌊

nij

Nmf

⌋
feature sets according to the created distribution.

• Case 3 if nij < Nmin, assign “NaN” value for the features with regard to BS

j in the grid i.

6.4.3.2 Online Feature Extraction

In ROLAX, the online phase measurements can be made by 1) the scanning

operation or 2) by making a physical connection with each BS. With the scanning,

the measurement frequency is fairly limited - in the order of one second for each BS.

If a connection can be made to the BS, the measurement frequency is the same as

the BS’s preamble transmission frequency.

When the scanning is used for the signal collection, the extraction of the
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spectral features is not very feasible (200 measurements take in the order of 200

seconds). However, when the physical connection is actually made for the signal

collection, the features can be extracted in the same way as when the offline feature

extraction is made. If multiple features are used in ROLAX, the MS makes a

connection to each BS to collect enough number of measurement samples.

6.5 Pattern Matching for RF Fingerprinting

In the previous research about RF fingerprinting, a number of techniques have

been used for matching between online and offline RF fingerprints. They include

K-nearest neighbor (K-NN), probabilistic method, support vector machine (SVM),

artificial neural networks (ANN), etc. In [11], pattern matching techniques for

the RF fingerprinting were compared to each other. It showed that the K-NN

performs better than neural networks in accuracy and precision at the expense

of complexity during the online phase. K-NN performs better than parametric

probabilistic techniques with normality assumptions, but other previous research

has demonstrated that non-parametric probabilistic technique performs better than

K-NN in terms of accuracy [13].

6.5.1 K-NN (K-Nearest Neighbor)

When a single feature is used in ROLAX, K-NN pattern matching is used.
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6.5.1.1 Distance Measures

To use the K-nearest neighbor (K-NN), similarity (distance) measure has to

be defined.

The grid points in the radiomap is given as {gj}Lj=1, where L is the number of

locations in the radiomap. Let an offline feature vector recorded at the location gj in

the radiomap (the RF fingerprint at location gj) denoted by M̂ j
off = [M̂ j

1 M̂
j
2 . . . M̂

j
N ],

where N is the number of the base stations in the radio map, and M j
i is the offline

feature vector or scalar with regard to BS i at the location gj. Let the online feature

vector denoted by Ŷon = [Ŷ1 Ŷ2 . . . ŶN ] where Ŷi is the online feature vector or scalar

with regard to BS i. The distance measures have to be defined between the online

feature and the offline feature.

If the measurement cannot be made with regard to the BS i, then the corre-

sponding feature is set to NaN (scalar) or [NaN NaN . . . NaN ]T (vector). It may

be because the BS is out of range from the MS, or the MS fails to detect this BS

due to some reasons. The difficulty comes in dealing with this NaN value caused by

data misses.

Let the distance between a RF fingerprint at location gj and the online phase

feature with regard to a BS i denoted by dji . dji is provided in (6.6) where f is the

distance function to be chosen.

dji = f(M̂ j
i , Ŷi) (6.6)

Distance measure, between a RF fingerprint M̂ j
off at location gj and the Ŷon,
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can be defined as in (6.7).

Dj = w
(
d̂j
)

(6.7)

where d̂j = [dj1 dj2 . . . d
j
N ], and w is a function calculating the overall distance given

d̂j.

f(M̂ j
i , Ŷi) = (M̂ j

i − Ŷi)
2 and w(d̂j) =

√∑N
i=1 d

j
i result in the classical Euclidean

distance. Manhattan distance is less sensitive against outliers than the Euclidean

distance is. In case of Manhattan distance, f(M̂ j
i , Ŷi) =

∣∣∣M̂ j
i − Ŷi

∣∣∣ and w(d̂j) =

∑N
i=1 d

j
i .

6.5.1.2 Algorithms Dealing with Missing Values

Since the online and offline feature may contain NaN values for some non-

detected BSs, the distance has to be defined considering the non-detected BSs. In

[12], two algorithms dealing with the non-detected BSs were introduced. In Classical

Fingerprinting algorithm, NaN values are ignored. In BS-strict algorithm, infinite

penalty is given to the non-matching NaN values. For instance, if a BS is observed

only in the online phase, then an infinite penalty is given to all candidate locations

with measurements with regard to that BS. While [12] showed the accuracy of BS-

strict is better than that of classical fingerprinting, our data show a different result.

Because the data misses are frequent events, and the data misses are not always

generated by having the MS far from the BSs, the BS-strict algorithm tends to

result in the worst performance with the 4G data collected in the experiments. One
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of the causes for the data misses is due to the capturing effect. It is probable that [12]

collected data from a WiMAX network with different configuration. For instance,

the WiMAX networks, from which they collected the data, may be operating over

non-overlapping frequency bands.

In this work, in addition to the algorithms in the [12], new algorithms have

been designed and used.

Classical Fingerprinting (Alg-CF) In classical fingerprinting, the offline and online

measurement pair with non-matching NaN values is ignored, and the distance is

set to zero. When both offline and online measurements are NaN, the distance is

also set to zero. When both of them are not NaN, the distance is calculated. The

distance function in classical fingerprinting is provided in (6.8).

f(M̂ j
i , Ŷi) =


g(M̂ j

i , Ŷi) if M̂ j
i ̸= NaN and Ŷi ̸= NaN

0 otherwise

(6.8)

where g is a distance function defined for two non-NaN inputs.

As an exception case, when M̂ j and Ŷ are all NaNs, Dj is set to ∞.

BS-Strict (Alg-BSS) In the BS-Strict algorithm, infinite penalty is given to the

online and offline feature pair if either of them is NaN. The distance function in BS

strict fingerprinting is provided in (6.9).
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f(M̂ j
i , Ŷi) =



0 if M̂ j
i = NaN and Ŷi = NaN

g(M̂ j
i , Ŷi) if M̂ j

i ̸= NaN and Ŷi ̸= NaN

∞ otherwise

(6.9)

where g is a distance function defined for two non-NaN inputs.

Modified Classical Fingerprinting (Alg-MCF) Modified Classical Fingerprinting is

designed by combining ideas from the classical fingerprinting and BS Strict finger-

printing. The classical fingerprinting may result in higher errors when the number of

matching non-NaN pairs is small. When the K-nearest neighbor pattern matching

is used, the performance of classical fingerprinting is not good, particularly when

the number of neighbors K used in pattern matching is small. It is demonstrated in

Section 6.6.2.4.

Two modifications are done to improve the performance. First, only when the

number of non-NaN pairs is larger than a certain value, the distance is calculated.9 It

is intended to emphasize the identity of BSs in calculating the distance. Otherwise,

infinite penalty is given. Secondly, the distance measure is normalized by using the

number of matching non-NaN pairs.

Fingerprinting with an Assumed Threshold Value (Alg-TH) In this algorithm, an

assumed threshold value replaces the NaN value. It works well if the data misses

are primarily because the signal from the BSs is not fair enough. For instance, the

minimum RSSI value of -123 dBm can replace NaN value if the RSSI feature is

9Threshold value of three is used in the experiment in Section 6.6.2
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used. It may not perform well if the data misses are due to the capturing effect.

The captured signal may be much larger than the assumed threshold value. The

distance function in classical fingerprinting is provided in (6.10). In ROLAX, the

similar approach is used to deal with missing values in ANN when multiple features

are used.

f(M̂ j
i , Ŷi) =



0 if M̂ j
i = NaN and Ŷi = NaN

g(M̂ j
i , Ŷi) if M̂ j

i ̸= NaN and Ŷi ̸= NaN

g(M̂ j
i , THtype) if M̂ j

i ̸= NaN and Ŷi = NaN

g(THtype, Ŷi) if M̂ j
i = NaN and Ŷi ̸= NaN

(6.10)

where THtype is the threshold value set for a feature type (e.g. mean RSSI) type,

and g is a distance function defined for two non-NaN inputs.

6.5.1.3 BS Filtering

The measurement vector created during offline phase contains missing data

frequently. The sources of missing data can be the marginal signal quality as well

as the capturing effect.

The frequency reuse pattern in 4G WiMAX can be denoted by (Nc, Ns, Nn)

where Nc is the number of BS sites per cluster, Ns is the number of sectors per

BS site, and Nn is the number of unique frequency channels required for reuse (See

Section 2.3.2). In MAXWell 4G network, (1, 3, 1) pattern had been used by the end

of 2010. Since 2011, it has used (1, 3, 3) pattern.
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As discussed in Section 2.3.2, a MS may be in a communication range from

multiple BS sectors operating on the same frequency. In the frequency reuse pattern

with Nn = 1, all sectors are operating on the same frequency band. The coverage

by each sector is overlapped with the coverage by other sectors (See Figure 2.3).

Particularly, at the intersection of the sectors, a MS observes multiple BSs. Due

to fading, the signal equality from each sector may vary over time. Even though

Nc > 1 and Nn > 1, multiple BSs on the same frequency band may be observed at

a location because the signals from other network cluster can travel to a network

cluster, which shares the same frequency channels, with a weaker power.

Since the 4G network may not be fully loaded, the weaker signal can be de-

tected just because of no transmission from other BSs on the same frequency band.

When more than two sector antennas are transmitting over the overlapped time

duration on the same set of carriers, the frames with weaker power are captured by

the stronger ones.

In addition, when the signal is around the marginal quality, it can be easily

affected by the fading so that the signal quality frequently goes below the receiver

sensitivity of the MS.

In an experiment, scannings were attempted 30 times at nine locations where

eight 4G BSs were visible (Figure 6.20). Out of 270 attempts, only 7% of the

scannings can detect all eight BSs. In this experiment, the BS-A and BS-B (with

square marker) were operating on the same 2.617 GHz. Even though the signals

from a BS-A were with fair RSSI (around -50 dBm), the scanning missed the BS-A

quite often because the signals from BS-B captured the signals from BS-A. The
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Figure 6.20: WiMAX Scanning Misses

signals from BS-D were missed some times because it had marginal signal quality.

These observations help in creating the following rules to deal with the scan-

ning misses in 4G:

• Scanning misses by power capture

– Only one BS per frequency band is considered in matching the RF fin-

gerprints. Or,

– The frequency with multiple BSs is discarded.

• Scanning misses by marginal signal quality If the signal quality is below

a certain threshold, the measurement is not considered in matching the RF

fingerprints.
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6.5.2 Artificial Neural Networks

Artificial neural networks (ANN) are primarily used as the pattern matching

technique in ROLAX when multiple features are used because (1) ANN can prioritize

the feature by adjusting the weights during the modeling, and (2) ANN can deal

with missing value (feature with “NaN” value) during the offline modeling and the

online classification.

Let us denote the number of BSs in the target area by NBS, the number of

features generated with regard to each BS by Nfb, and the number of grids by Ng.

The configurations of the artificial neural networks used for RF fingerprinting

are as follows:

• Nodes in the neural networks: Sigmoid.

• Algorithm: Back propagation algorithm.

• Number of Input Nodes: Nfb ·NBS

• Number of Hidden Layers: 1

• Number of Neurons:
⌊
Nfb·NBS+Ng

2

⌋
• Number of Output Nodes: Ng

• Learning Rate (The amount the weights are updated): 0.3

• Momentum (Applied to the weights during updating): 0.2

• Attribute Normalization: Yes

• Training Time (The number of epochs to train through): 500
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Figure 6.21: BS Detection Bitmap at 53 locations at University of Maryland, College

Park (Mxx:BSs in Maxwell 4G Network, Cxx: BSs in Clear 4G Network)

6.6 Experimental Results

6.6.1 4G Site Survey in College Park, Maryland

To see if the RF fingerprinting in 4G is feasible, 53 locations in University

of Maryland, College Park were chosen, and 4G scanning was performed. The list

of the BSs observable at each location is provided in the Figure 6.21. 28 BSIDs

including 3 BSIDs in the MAXWell 4G network and 25 BSs in Clear 4G network

were observed. Out of 53 locations, only two locations share the same set of BSs.

6.6.2 RF Fingerprinting with Mean of RSSI Feature

During the offline phase in this experiment, wardriving was performed to col-

lect the signals for generating the radiomap. During the online phase, 24 locations
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Figure 6.22: Locations in Online Phase for Experiment in Section 6.6.2

were selected, and signals were collected (Figure 6.22). The experiment was done

at a campus parking lot in College Park, Maryland. The size of parking lot is 123

meters by 150 meters. Median distance errors were calculated over all locations in

the online phase. The achieved accuracy obtained during this experiment showed

a high potential in achieving better accuracy than those achieved in the previous

research.

The number of BSIDs observed in the test area was twelve. The following

set-ups were used.

• Measurement technique: wardriving and techniques described in Section 6.3

• Observed measurements: RSSI

• Pattern matching techniques: K-nearest neighbor (equal weight for each neigh-

bor)

• Distance measure: Euclidean distance and Manhattan distance

• Feature: mean
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• Missing value handling algorithm: classical fingerprinting (Alg-CF), modified

classical fingerprinting (Alg-MCF), BS-strict fingerprinting (Alg-BSS), and

fingerprinting with an assumed threshold value (Alg-TH)

• Continuous domain estimation: center of mass

• Interpolation of the measurements over space: by Delaunay triangulation with

linear interpolation method. Duplicate measurements are replaced by the

mean value.

• Gridding: Grid-L, Grid-S, Grid-O, and Grid-LS (See Table 6.6)

• BS Selection: All BSs vs. BSs in MAXWell 4G network.

• BS and Frequency Filtering: All frequencies with detected BSs vs. frequencies

with a single BS.

• Outlier Remover: Outliers by systematic errors were removed.10

• Distance calculation by the latitude and longitude values: Great-circle dis-

tance in radian multiplied by the mean radius of the Earth in meters (6371000

meters)

The number of measurements with regard to each BS was mostly between

150,000 and 200,000. The locations where the measurement was made for each BS

are demonstrated in Figure 6.23. This figure shows that the measurements were

not made completely for those BSs captured by other BS(s) on the same frequency

band.

After the interpolation, about 85–90% of the area in the radiomap was covered

10All RSSI measurements with -123 dBm with the modem state of lost physical synchronization

or unknown state are removed.
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Grid Size (meters

by meters)

Overlapped

Grid

Interpolation

Resolution (me-

ters by meters)

Number

of Points

Grid-L 8 by 10 No 8 by 10 228

Grid-S 0.8 by 1 No 0.8 by 1 19314

Grid-O 8 by 10 (supercell)

0.8 by 1 (subcell)

Yes 0.8 by 1 22800

Grid-LS 8by 10 No 0.8 by 1 20091

Table 6.6: Gridding and Interpolation Options

Figure 6.23: Locations of the Measurements for Each BS
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Figure 6.24: Heatmap of Linearly Interpolated RSSIs by Coverage

with regard to the most of the BSs. For those BSs with captured signals and

marginal signal quality, the number of measurements and the portion of the covered

area were limited (5% in the worst case). The comparison between BS radiomaps

with a large coverage and a small coverage is provided in Figure 6.24. The observed

BSs’ configurations, the number of measurements, and the percentage of the area

covered by interpolation (area within the convex hull) compared to the whole area is

provided in the Table 6.7. Two 4G cards were used as MSs, and each MS collected

signals from different set of BSs.

The distance error by randomly choosing the positions ranges between 60–80

meters. This value can be regarded as the worst-case error and can be compared to

the achieved distance error.

6.6.2.1 Improvement by Interpolation

The distribution of the interpolated measurement values was calculated for

each BS in order to see the range of the measurement in the test area as opposed to
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Table 6.7: BS Configurations and Coverage

Card (last

2 octets)

Freq

(kHz)

BSID (last

8 octets)

Preamble

Index

Number of

Measure-

ments

Coverage

c6 2512000 01:00:00:11 2 168484 0.87

90 2522000 01:00:00:12 4 152838 0.87

c6 2522000 01:00:00:12 4 149630 0.87

90 2532000 01:00:00:13 6c 143484 0.87

90 2630500 02:02:0c:74 44 198478 0.87

c6 2647000 02:02:0a:54 28 182662 0.91

c6 2647000 02:02:14:95 52 10841 0.05

90 2657000 02:02:1a:01 51 150760 0.91

c6 2667000 02:02:29:a6 24 108637 0.89

c6 2667000 02:02:27:d6 7 50175 0 0.63

90 2673500 02:02:24:be 1 163655 0.9

c6 2683500 02:02:1c:c1 54 139329 0.87

c6 2683500 02:02:54:be 1 78612 0 0.57
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• Distance measure: Euclidean distance and Manhattan distance.

• Distance error: calculated and averaged over the results from two MSs.

• BS selection: all BSs

• Missing data handling algorithm: Alg-MCF

• Outliers by systematic errors are disregarded.

When the interpolation is not used, many points in radiomap tend to contain

larger number of NaNs corresponding to invisible BSs simply because there are

points, which were not visited during the wardriving. Thus, there are a smaller

number of points with a rather complete measurement vector. Much smaller K

value for K-nearest neighbor has to be chosen when the interpolation is not used.

Otherwise, the distance error gets worse.

This gain is demonstrated in Figure 6.26. The gain obtained by applying

the interpolation was different by the gridding options and the distance measures.

The gain by the interpolation ranged between 20–35% when appropriate K value

was selected for each interpolation and gridding option pair. The figure shows that

smaller K value is preferred when the interpolation is not used.

6.6.2.2 Improvement by Removal of Outliers

For the comparison, the following settings were used.

• Gridding: Grid-L (K=10), Grid-S (K=750) and Grid-O (K=1000).

• Distance measure: Euclidean distance and Manhattan distance.

• Distance error: calculated and averaged over the results from two MSs.
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6.6.2.3 Improvement by Gridding

By decreasing the resolution of the gridding and the interpolation, a radiomap

with a higher resolution was generated. If the grid size is too small, then the

radiomap tends to have overfitted interpolation values. In addition, higher resolution

results in a higher computation time in both offline and online phases. Four different

gridding settings were used and compared. It is described in Table 6.6. The following

settings were used.

• Number of neighbors in K-NN: K = 10 for Grid-L, K = 750 for Grid-S, and

K= 1000 for Grid-O and Grid-LS.

• Distance measure: Euclidean distance

• Missing data handling algorithm: Alg-MCF

• Distance error: Calculated and averaged over the results from two MSs

• BS Selection: All BSs

• Outliers by systematic errors are disregarded.

The RSSI radiomap with regard to a BS in MAXWell 4G network is provided

in Figure 6.28 over the four gridding options.

The results show that Grid-O and Grid-LS have a small gain over Grid-S in

achieving a smaller distance error. Compared to Grid-S, Grid-O and Grid-LS im-

proved the distance error by 8–15% when Alg-MCF and Euclidean distance were

used. The result is provided in Figure 6.29. Grid-LS with Euclidean distance mea-

sure achieved a median distance error of 16.9 meters. In this experiment, high den-

sity of samples were obtained. It is expected that the distinction between gridding
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Figure 6.28: RSSI Radiomap for BS in MAXWell 4G Network over Gridding Options

options may be clearer when the measurements are sparse.

6.6.2.4 Improvement by Missing Value Handling Algorithms

The distance error was calculated over different data algorithms. For the

evaluation, the following settings were used.

• Gridding: Grid-L with K=10.

• Distance Measure: Euclidean distance and Manhattan distance.

• Distance Error: calculated and averaged over the results from two MSs.

• BS Selection: all BSs, MAXWell BS.

• Outliers by systematic errors are disregarded.

The result is provided in Figure 6.30.

Alg-BSS resulted in the worst accuracy over all cases, and sometimes it resulted

in worse result than random selection. Thus, this algorithm is regarded non-usable
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at the presence of frequent missing data.

When all BSs were taken into account, Alg-MCF performed better than Alg-

TH. When only the MAXWell BS was taken into account, Alg-TH and Alg-BSS

performed similar to Alg-MCF. Signals from the MAXWell BS were not frequently

missed during the experiment because each MAXWell sector was operating on a

channel, which is not shared with other BSs, and the signal quality was fair in the

experiment area since MAXWell BS is located relatively in proximity.

Alg-TH assumes the missing data are primarily due to the marginal signal

quality. When there are many signal misses due to other causes such as the capturing

effect, its assumption fails. Thus, it is believed Alg-TH can perform reasonably well

in the area where each BS is assigned a unique frequency band such as in MAXWell

4G network.

Between Alg-CF and Alg-MCF, Alg-MCF performs better than Alg-CF for

small K values. Alg-CF tends to pick up the locations with small number of non-

NaN matching pairs, so it does not perform well particularly when the K is small.

The distance error over the number of K in two gridding settings is provided in

Figure 6.31. Apparently, Alg-MCF performed better than Alg-CF for small K values.

In order to decrease the computation complexity, small K value is preferred. Thus,

Alg-MCF is preferred to Alg-CF.

In addition, it is interesting to see distance error of about 30 meters was

achieved by only using the RF fingerprint with regard to a single BS. In MAXWell

4G network, a single BS controller unit manages three RF sectors.
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overhead. The sampling rate has to be chosen depending on the wardriving vehicle

speed since the coherence time is dependent on it.

6.6.3 RF Fingerprinting with Multiple Features

The experiment was done at the same location where the experiments in Sec-

tion 6.6.2 were performed. The setting of the experiment is as follows:

• Grid Size: 8 meters by 11 meters

• Number of BSs: 11

• Number of Instances per Grid: 20

• Number of Measurements Used to Generate a Feature: 200

• Number of Measurements per Grid: 44000 (200 * 20 * 11)

• Number of Grids: 200

• Number of Features: 14

The summary of the Neural Networks modeled for the RF fingerprinting is as

follows:

• Nodes in the neural networks: Sigmoid.

• Algorithm: Back propagation algorithm.

• Number of Input Nodes: 154

• Number of Hidden Layers: 1

• Number of Neurons: 177

• Number of Output Nodes: 200

• Learning Rate (The amount the weights are updated): 0.3
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Table 6.8: RF Fingerprinting Performance with Multiple Features and Neural Net-

works

Number of Fea-

tures

Features Accuracy

(%)

Distance

Error

(meters)

14 All features 97.94% 4.02

12 All features but

mean(RSSI)/mean(CINR)

97.57% 4.14

3 mean(RSSI), mean(CINR),

and mean(RSSId)

89.26% 6.07

• Momentum (Applied to the weights during updating): 0.2

• Attribute Normalization: Yes

• Training Time (The number of epochs to train through): 500

Since the estimated location is represented by the centroid of the grid, and

the measurements are combined per grid during the online phase in this evaluation

of the RF fingerprinting (i.e. measurements are made while the mobile station is

moving around during the online phase), the distance error has to be calculated

taking these into account. The distance error is calculated numerically, and the

average distance error and the accuracy are presented in the Table 6.8.

When the rotation forest is used for the pattern matching with the neural

networks as its underlying classifier, 98.5% of accuracy (4.00 meters of distance

158



error) was achieved.

The distribution of the estimated locations (grid), when only three features

(See Table 6.8) are used, is provided in the Figure 6.34(a). The distribution of

the estimated locations (grid), when all fourteen features in Table 6.8 are used, is

provided in the Figure 6.34(b). As seen from those figures, the estimated locations

are distributed around the true location. When all features are used, it can be seen

that the estimated locations are within the true grid with very high probability

(98%) and all estimated grids are very close to the true locations.

6.7 Summary

The causes for the signal measurement variation are identified, and the system

is designed considering those, leading to a significant improvement in accuracy.

Systematic errors, measurement errors, channel fading (shadow fading, fast fading,

small scale fading), atmospheric propagation impairments in 2.5GHz 4G WiMAX

are studied. It has been also noted that the measurement misses are frequently

caused by the power capture between BSs. Techniques are developed to deal with

each source of measurement variation and measurement misses.

In ROLAX, in addition to the DLP detection features (top twelve features

evaluated in Section 5.3.2), mean of RSSI and mean of CINR are used to create

unique RF fingerprints. The same set of features are used during the online phase.

In total, fourteen features are used to create the RF fingerprint in ROLAX. Neural

networks are trained by the radiomap data and used in determining the location.
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(a) Three Features

(b) Fourteen Features

Figure 6.34: Distributions of Estimated Locations (Grid)
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When a single feature is used for a smaller positioning latency, mean of RSSI is used

as the feature, and K-NN pattern matching is used.

ROLAX RF fingerprinting techniques include: (1) a number of gridding tech-

niques, including overlapped gridding; (2) an automatic radiomap generation tech-

nique by the Delaunay triangulation-based interpolation; (3) the filtering of measure-

ments based upon the power-capture relationship between BSs; and (4) algorithms

dealing with the missing data.

In order to deal with the measurements misses due to power capturing, handoff,

etc., the overlapped gridding with the interpolation based upon Delaunay triangu-

lation is designed. It also helps to deal with the small scale variation and to get

enough number of samples to construct features for the radiomap.

Algorithms to deal with the missing values, in both offline and offline phase

measurements, are developed for K-NN pattern matching. In addition to two al-

gorithms introduced from previous work, two addition algorithms (Alg-MCF and

Alg-TH) are designed. Particularly, modified classical fingerprinting (Alg-MCF)

performs better than other algorithms.

With the combination of the techniques, an average distance error of 4 meters

was achieved on the live 4G networks composed of MAXWell 4G Network and Clear

4G Network.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, ROLAX location determination system in 4G networks is

presented. There is an increasing need for ubiquitous positioning, but it has been

very hard for a single location technology such as GPS to provide the ubiquitous

positioning capability. Since the cellular signals are virtually ubiquitous and the

indoor coverage is improved by increasing deployment of femto cells, 4G-based loca-

tion determination has the potential to provide the location solution ubiquitously.

Geometric techniques such as Time of Arrival (ToA) and Time Difference of

Arrival (TDoA) have been widely used to pinpoint the mobile terminal’s location in

wireless networks. The major sources of the impediments in geometric techniques

are NLOS error, multipath error, and co-channel or inter-channel interference. Par-

ticularly, the signals over NLOS can cause positive bias on the timing-based mea-

surements. The signal variation due to multipath and interference also make precise

location difficult.

In RF fingerprinting systems, we can provide a location determination solution

without using geometric techniques. In that way, the NLOS and multipath errors

can be dealt with. For indoor positioning, RF fingerprinting has been successfully

used by using the Wi-Fi signals. Due to the technical difference between 4G and
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Wi-Fi, the techniques developed for the Wi-Fi networks cannot be directly applied

to the 4G networks. Since the signal characteristics vary over time and over a small

distance, it is challenging to develop RF fingerprinting techniques that are robust

against the signal variation and the signal misses. Another challenge in the RF

fingerprinting is that it takes very long time and lots of labor to collect the signals

in order to build the radiomap. Thus, automatic radiomap generation techniques

are highly needed.

ROLAX provides two primary solutions for the location determination in 4G

networks. First, it provides techniques to detect the error-prone wireless conditions

in geometric approaches of Time of Arrival (ToA) and Time Difference of Arrival

(TDoA). Dominant Line-of-Sight Path (DLP) is a term coined in this work to refer

to the channel condition where Line-of-Sight path is dominant over the Non-Line-of-

Sight path. ROLAX provides techniques for a MS to determine the DLP condition

given the measurements of the downlink signals from the BS. Second, the robust

RF fingerprinting techniques for 4G networks are designed and used in ROLAX.

The causes for the signal measurement variation are identified, and the system is

designed taking those into account, leading to a significant improvement in accuracy.

The problems are approached by using Explanatory Data Analysis (EDA). By

collecting data from the live 4G networks, the sources of signal variations are iden-

tified, and the techniques are developed to deal with each source of signal variation.

Machine learning is used in both the DLP detection and the RF fingerprinting. By

collecting signals from the offline phase, a priori knowledge about the signals under

the DLP and the non-DLP condition is gained. In the RF fingerprinting, the signals
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collected during the offline phase are used to create the radiomap that contains the

signal pattern at each location. The techniques developed in this work were tested

in live 4G networks.

ROLAX provides a location determination solution that can be used indepen-

dently from the vendor and the device. In order to provide the portability of the

solution, ROLAX uses a set of standard radio resource measurement that is sup-

ported in the most of the wireless networks—RSSI, CINR, and RTD. Typically, a

MS has two antennas for the MIMO and the antenna diversity, and the measurement

can be made per each antenna. Since these standard radio resource measurements

have to meet a certain accuracy required by the standard, the signal pattern gath-

ered during the offline phase can be compared with the online phase measurement

whatever device is used. Due to this characteristic, it may be feasible to apply the

ROLAX techniques to other wireless networks that support the similar set of radio

resource measurements (e.g. LTE).

In ROLAX, the system architecture and the software architecture, for the of-

fline signal collection and the online location determination, are designed. Software

for the MS is developed for both offline and online phase operations. In this work,

the software was developed using the interfaces provided by Beceem/Broadcom chip-

set based software(device driver, connection manager, logging facilities, etc.). Sig-

nals were collected from both the home networks and the foreign networks by the

wardriving. Since scanning takes a long time in 4G, the MS makes a connection

with each BS to gather enough number of measurements.

ROLAX is organized in two phases: offline and online phases. During the
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offline phase, the radiomap is constructed by the wardriving. During the online

phase, a Mobile Station (MS) performs the DLP condition test for each Base Station

(BS) it can observe. If the number of the BSs under DLP is small, the MS attempts

to determine its location by using the RF fingerprinting.

In ROLAX, the DLP condition is determined from the RSSI, CINR, and RTD

(Round Trip Delay) measurements. A number of signal features that can be used

to detect the DLP condition were designed. Features generated from the RSSI

difference between two antennas of the MS were also used. The features, including

the variance, the level crossing rate, the correlation between the RSSI and RTD, and

Kullback-Leibler Divergence, were successfully used in detecting the DLP condition.

We note that, compared to using a single feature, appropriately combined multiple

features lead to a very accurate DLP condition detection. In addition to time

features, spectral features, such as spectral centroid, spectral roll-off, and spectral

flux, are used in the DLP detection using multiple features. A number of pattern

matching techniques are evaluated for the purpose of the DLP/NDLP condition

detection. Artificial neural networks, lazy learning using K-nearest neighbor (K-

NN), and a meta classifier called Rotation Forest are particularly used in DLP

detection, while other pattern matching techniques were also evaluated in this work.

When the Rotation Forest is used with the K-NN, a detection accuracy of 94.8% was

achieved in the live 4G networks. It has been noted that features designed in the

DLP detection can be useful in the RF fingerprinting. Thus, the features developed

for the DLP condition detection are used in ROLAX RF fingerprinting.

In ROLAX, in addition to the DLP detection features, mean of RSSI and mean
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of CINR are used to create unique RF fingerprints. ROLAX RF fingerprinting tech-

niques include: (1) a number of gridding techniques, including overlapped gridding;

(2) an automatic radiomap generation technique by the Delaunay triangulation-

based interpolation; (3) the filtering of measurements based upon the power-capture

relationship between BSs; and (4) algorithms dealing with the missing data. In or-

der to deal with the measurements misses due to the power capturing, handoff, etc.,

the overlapped gridding with the interpolation based upon Delaunay triangulation

is designed. Interpolation and gridding each improves the performance by 20–35%

and 8–15%. Algorithms to deal with the missing values, in both offline and offline

phase measurements, are developed. Particularly, modified classical fingerprinting

(Alg-MCF) performs better than other algorithms in K-nearest neighbor pattern

matching.

By combining the techniques in ROLAX, a distance error in the order of 4

meters was achieved in the live 4G networks.

7.2 Future Work

ROLAX has been demonstrated on live 4G mobile WiMAX (IEEE 802.16e)

networks. Since it uses the standard radio resource measurements, it would be

applicable to other 4G networks such as WiMAX2, LTE, and LTE-advanced. In

LTE, the radio resource measurements similar to those available in WiMAX (IEEE

802.16e) are provided. The power measurements in the LTE include Reference Signal

Received Power (RSRP) and Reference Signal Received Quality (RSRQ). LTE also
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supports other power measurements for the mobility between LTE (E-UTRAN) and

2G/3G networks. In the LTE, the round trip time between an UE and an eNodeB

can be measured on the eNodeB side by Time Advance Type 1 and Type 2. The

detailed description of the measurements available in LTE is provided in Appendix

B. Since LTE supports similar radio resource measurements to those in the mobile

WiMAX, the techniques developed in ROLAX are expected to be applicable in the

LTE with a limited modification.

In this work, it has been demonstrated that there is a strong possibility to

create a more unique RF fingerprint by combining the features from the timing

measurements (e.g. RTD) and the features from the power measurements (e.g.

RSSI, CINR). Due to the low measurement frequency of the RTD, it was hard to

create a RF fingerprint using the timing measurements. If the RTD measurements

with a higher measurement frequency can be supported, the timing measurements

can be considered in the future ROLAX RF fingerprinting. The RTD with a limited

measurement frequency can be still used, for instance, in clustering the radiomap

before the RF fingerprinting to reduce the positioning delay.

Another possible future extension of ROLAX is to make it be adaptive to a

given LBS Quality of Service. The LBS quality of service is defined by horizontal

accuracy, vertical accuracy, latency, QoS class (assured and best), LBS priority,

and age in the 4G. In this work, it has been demonstrated that each techniques will

result in the different positioning delay and the accuracy. For instance, using a single

feature in the RF fingerprinting results in the worse accuracy than using multiple

features, but it has a smaller positioning delay. Each pattern matching evaluated
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in this work has a different accuracy and a computation time complexity. Thus, by

choosing the technical components given the LBS Quality of Service, ROLAX can

be evolved to perform suiting the needs of the Location-based Service.

168



Appendix A

Measurements Available in Mobile WiMAX (IEEE 802.16e)

Received Signal Strength Indication (RSSI), Carrier to Interference Noise Ra-

tio (CINR), and Round Trip Delay (RTD) are widely used in wireless networking

operation to evaluate the signal quality. Not only mobile WiMAX but also other

wireless networks such as IEEE 802.11 and IEEE 802.15.4 supports the measure-

ment of similar metrics. Each network has its own definition and requirements for

those metrics. They are typically used in link adaptation and the selection of the

peer (e.g. Access Point, Base Station). In this work, they are used in composing

RF fingerprint vector.

A.1 Received Signal Strength Indication (RSSI)

RSSI is more clearly defined in WiMAX than in Wi-Fi. In Wi-Fi, the defi-

nition of RSSI is not consistent between vendors. In general, it is relative level of

signal power measured at the RF front end of the Wi-Fi receiver. Each chip ven-

dor implements the RSSI measurement in a different way, and there is no accuracy,

resolution, and reporting range (e.g. maximum and minimum value) requirements.

Therefore, this situation has made the RF fingerprinting in Wi-Fi hard to be de-

ployed widely because the user’s Wi-Fi device during online phase is highly likely

to use different vendor’s Wi-Fi chipset from the one used during the generation of
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the radiomap (offline phase). In addition, the user chooses the Wi-Fi device from

a huge set of selections, so the level of performance can differ from user to user a

lot. In order to fix this situation, Received Channel Power Indicator (RCPI) has

been defined in IEEE 802.11k but it has not widely implemented yet. Also since the

RCPI measures the entire frame rather than only the preamble, the value may be

changing as the link rate is being adapted to wireless channel particularly because

the different transmit power level is used for each channel rate.

In WiMAX (IEEE 802.16e), measuring RSSI does not necessarily require re-

ceiver demodulation lock. Therefore, RSSI measurements offer reasonably reliable

channel strength assessments even at low signal levels. Statistics shall be quantized

in 1 dB increments, ranging from -40 dBm to -123 dBm. The relative accuracy of

a single signal strength measurement shall be ±2 dB with an absolute accuracy of

±4 dB. The standard deviation shall be quantized in 0.5 dB increments [64].

Measurements by MS can be reported to its serving BS over the scanning

result report message (MOB SCN-REP). Not only the mean RSSI but also mean

CINR, relative delay, and BS RTD for the requested BSs specified in the scanning

result report message are reported. The RSSI measurement shall be performed

on the frame DL burst preamble, and values are averaged over the measurement

period [64].

The method of RSSI measurements is up to the vendor as long as the mea-

surements meet the requirements set in [64]. One possible method to calculate the

RSSI is proposed in the (A.1) [64] [65].
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RSSI = 10−(Grf/10)
1.2567× 104V 2

c

(22B)R

(
1

N

N−1∑
n=0

|YI or Q[k, n]|
)2

mW (A.1)

where B is ADC precision, number of bits of ADC, R is ADC input resistance (Ω),

Vc is ADC input clip level (V), Grf is analog gain from antenna connector to ADC

input, YI or Q[k, n] is n-th sample at the ADC output of I or Q-branch within signal

k and N is number of samples.

In this method, the RSSI is estimated at the output of Analog Digital Con-

verter (ADC), and it is assumed that the inputs and outputs of the ADC are Gaus-

sian with zero mean. RSSI is calculated as a function of ADC parameters (precision,

input resistance, input clip level), analog gain from antenna connector to ADC, and

the sample values at the ADC output of I and Q-branch.

A.2 Carrier to Interference Noise Ratio (CINR)

It is demonstrated that CINR can be used in RF fingerprinting in this work.

CINR is typically used to judge the signal quality at the receiver end. One of its

usages is for the computation of the handoff trigger.

In the IEEE 802.11, the measurement of CINR is not supported by the spec-

ification. IEEE 802.11k supports the measurement of the Received Signal to Noise

Indicator (RSNI).

In mobile WiMAX, measuring CINR requires receiver lock while RSSI mea-

surement does not require receiver lock. Thus, CINR is measurable only when the

signal quality is fair enough to obtain the receiver lock. CINR provides information
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on the actual operating condition of the receiver, including interference and noise

levels and signal strength.

There are two types of CINR: physical CINR and effective CINR. The effective

CINR is a function of physical CINR, varying channel conditions, and implemen-

tation margin. One possible method to estimate the CINR is by normalizing the

mean-squared residual error of detected data symbols by the average signal power.

It is given in equation (A.2) [64] [66].

CINR[k] =

∑N−1
n=0 |s[k, n]|2∑N−1

n=0 |r[k, n]− s[k, n]|2
(A.2)

where r[k, n] is the received sample n within message measured at time index k in

frame units, s[k, n] is the corresponding detected or pilot sample (with channel state

weighting), and N is the total number of samples within a message.

In (A.2), the average signal power
∑N−1

n=0 |s[k, n]|2 is normally kept constant by

the operation of the Automatic Gain Control (AGC).

Depending on the frequency reuse configuration (one or three), the reported

CINR shall be the estimate over different sets of the subcarriers. If the frequency

reuse configuration is one, then the CINR shall be the estimate of the average CINR

over all subcarriers of the preamble except the guard and the DC subcarriers.

In this work, physical CINR with the frequency reuse configuration of one was

obtained and used as RF fingerprints.

MS can transmit CINR information to the BSs by using the REP-RSP MAC

message or fast-feedback channel (CQICH).
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It is quantized in 1 dB increments, ranging from a minimum of -20 dB to a

maximum of 40 dB. Relative and absolute accuracy of a CINR measurement derived

from a single message shall be ±1dB and ±2dB.

A.3 Round Trip Delay (RTD)

RTD can be measured only with regard to the serving BSs or anchor BSs in

WiMAX. How RTD can be calculated is implementation-dependent, but the latest

time advance taken by MS can be used as RTD according to the IEEE 802.16

standard release in 2009 [64]. Time advance is calculated to adjust the timing of the

MSs during the ranging procedure. Ranging adjusts each MS’s timing offset such

that it appears to be co-located with the BS. The MS shall set its initial timing

offset to the amount of internal fixed delay, implementation-specific delays, etc. It

is conjectured that the history of time advances has to be accumulated and used in

calculating the RTD. How the software used in this work calculates the time advance

is not known. The RTD values observed with the Beceem software are logical values,

and they can be mapped to the physical time value, which can be converted to the

physical distance by backward engineering.

The RTD value’s unit is 1/Fs where Fs is the sampling frequency. Since the

Fs is a function of channel bandwidth in WiMAX, increasing bandwidth results in

higher resolution in RTD measurement. The Fs is given as

Fs = floor(n ·BW/8000)× 8000 (A.3)
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where BW is the channel bandwidth and n is the sampling factor. Sampling factor

is set as follows: for channel bandwidths that are a multiple of 1.75 MHz, then n =

8/7; else, for channel bandwidths that are a multiple of any of 1.25, 1.5, 2, or 2.75

MHz, then n = 28/25; else, for channel bandwidths not otherwise specified, then n

= 8/7.

Thus, in case of 5MHz channel bandwidth, the Fs is 5.6MHz, and accordingly

the distance resolution given by (speedoflight) /Fs is 53.6 meters. In case of 10MHz

channel bandwidth, Fs is 15MHz, and the corresponding distance resolution is 20

meters.
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Appendix B

Measurements Available in LTE

LTE is another 4G standard developed by 3GPP. LTE is specified in release 8

and release 9 documents. LTE is evolved to LTE-Advanced in the following 3GPP

releases. In LTE, the mobile terminal is referred to User Equipment (UE), and the

base station is referred to E-UTRAN Node B (eNodeB or eNB). UE measures two

power parameters on reference signals, which are Reference Signal Received Power

(RSRP) and Reference Signal Received Quality (RSRQ).

RSRP is a type of signal strength measurement, and it is defined in 3GPP TS

36.214 (Evolved Universal Terrestrial Radio Access; Physical layer; Measurements)

[67]. RSRP is the linear average over the power contributions (in [W]) of the resource

elements that carry cell-specific reference signals within the considered measurement

frequency bandwidth. For RSRP determination, the cell-specific reference signals

R0 according TS 36.211 [68], shall be used. If the UE can reliably detect that R1 is

available, it may use R1 in addition to R0 to determine RSRP.

RSRQ is a type of signal quality measurement, and it is also defined in

3GPP TS 36.214 [67]. Evolved UMTS Terrestrial Radio Access (E-UTRA) Car-

rier Received Signal Strength Indicator (RSSI), comprises the linear average of the

total received power (in [W]) observed only in OFDM symbols containing refer-

ence symbols for antenna port 0, in the measurement bandwidth, over N num-
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ber of resource blocks by the UE from all sources, including co-channel serving

and non-serving cells, adjacent channel interference, thermal noise etc. RSRQ is

the ratio N ·RSRP/E − UTRAcarrierRSSI, where N is the number of Resource

Block’s(RB’s) of the E-UTRA carrier RSSI measurement bandwidth. The measure-

ments in the numerator and denominator shall be made over the same set of resource

blocks.

For the mobility between LTE and 3G UMTS, other set of measurements can

be supported. For the mobility between LTE(E-UTRAN) and 3G(UTRAN), FDD

CPICH RSCP, FDD carrier RSSI and FDD CPICH Ec/No, TDD carrier RSSI, and

TDD P-CCPCH RSCP are supported. For the mobility with GSM, carrier RSSI is

supported.

LTE also supports the measurement of round trip delay between the UE and

eNodeB. eNodeB can report a type of timing measurement referred by the Timing

Advance, and it is also defined in in 3GPP TS 36.214 [67]. There are two types of

Timing Advance measurements: the Timing Advance Type 1 and Timing Advance

Type 2. UE also may have the capability to report the RTT. UE can make Rx-

Tx time difference which defined by TUE−RX − TUE−TX , where TUE−RX is the UE

received timing of downlink radio frame i from the serving cell, defined by the first

detected path in time, and TUE−TX is the UE transmit timing of uplink radio frame

i. In type 1, the UE reports this Rx-Tx time difference to its serving eNodeB,

and the eNodeB calculates its own receive transmit time difference. The Type 2

measurement is the receive transmit time difference at the eNodeB. Potentially,

Type 1 provides a better timing measurement accuracy [69]. It is not clear if the
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UE can measure the RTT by itself in LTE.
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