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Computer simulations can be intensive as is the case in Computational Fluid 

Dynamics (CFD) and Finite Element Analysis (FEA).  The computational cost can 

become prohibitive when using these simulations with multiobjective design 

optimization. One way to address this issue is to replace a computationally intensive 

simulation by an approximation which allows for a quick evaluation of a large 

number of design alternatives as needed by an optimizer.   

This dissertation proposes an approach for multiobjective design optimization when 

combined with computationally expensive simulations for heat exchanger design 

problems. The research is performed along four research directions. These are: (1) a 

new Online Approximation Assisted Multiobjective Optimization (OAAMO) 

approach with a focus on the expected optimum region, (2) a new approximation 

assisted multiobjective optimization with global and local metamodeling that  always 



  

produces feasible solutions, (3) a framework that integrates OAAMO with multiscale 

simulations (OAAMOMS) for design of heat exchangers at the segment and heat 

exchanger levels, and (4) applications of OAAMO combined with CFD for shape 

design of a header for a new generation of heat exchangers using Non-Uniform 

Rational B-Splines (NURBS).  The approaches developed in this thesis are also 

applied to optimize a coldplate used in electronic cooling devices and different types 

of plate heat exchangers. In addition many numerical test problems are solved by the 

proposed methods. The results of these studies show that the proposed online 

approximation assisted multiobjective optimization  is an efficient approach that can 

be used to predict optimum solutions for a wide class of problems including heat 

exchanger design problems while reducing significantly the computational cost when 

compared with existing methods.   
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Chapter 1: Introduction 

In this chapter, first, the motivation behind this dissertation, the research 

objectives, and the underlying assumptions are introduced. Afterwards, a brief 

description of the research thrusts is presented, followed by the organization of the 

dissertation. 

1.1 Motivation 

Coupling a CFD simulation of a new heat exchanger (HX) with an optimizer 

makes the design of an optimum HX considerably challenging from the 

computational cost point of view. Figure 1.1 shows a few examples (from left to 

right: A-Coil air-cooled HX, new generation of air-cooled HX, coldplate used in 

electronic cooling, and Chevron type plate HX) that require CFD simulations during 

the process of finding optimum design solutions. This problem with computational 

cost can be addressed by the use of approximation combined with optimization, also 

called as Approximation Assisted Optimization (AAO). Approximation involves 

three main phases: (i) design of experiments (DOE) or a sampling phase, (ii) 

metamodel development phase, and (iii) metamodel verification phase. The DOE 

phase involves systematic probing of the design space to generate a set of sample 

points for which the response from the computer simulation is evaluated. The results 

are then used to build a metamodel. A metamodel can be evaluated much more (often 

orders of magnitude) faster than an actual (high fidelity) simulation. Finally, there is a 

verification phase in which a set of points is chosen to evaluate the goodness of the 

metamodel in terms of its accuracy. 
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Figure 1.1 Heat exchanger examples 

 

AAO can be carried out online or offline. In online AAO, the metamodels for 

objective and constraint functions (or optimization model) are adaptively updated in 

concert with optimization (Nair and Keane, 1998; Farina 2001, 2002; Jin et al., 2001, 

2002; Hong et al., 2003; Nain and Deb, 2003).  Online metamodeling can gradually 

improve the metamodel accuracy (Jin, 2005) while optimization is ongoing. In offline 

AAO, optimization is performed after the metamodels are constructed (Papadrakakis 

et al., 1999; Wilson et al., 2001; Koch et al., 2002; Lian and Liou, 2004; Fang et al., 

2004).  

1.2  Dissertation Objective 

The overall objective of this dissertation is (a) to develop and verify a new 

online approximation assisted multiobjective optimization approach that updates the 

metamodels based on an estimate of optimum solutions including improving 



 

 

 

3 

 

closeness to target solutions and diversity of solutions, (b) to develop a new 

approximation assisted multiobjective optimization approach with global and local 

metamodeling by producing optimum solutions based on the samples observed using 

the actual simulation which provide always feasible solutions and eliminate the 

verification step of the obtained optimum solutions, (c) to develop an online 

approximation assisted multiobjective optimization framework for problems with 

multiscale simulation such as heat exchanger design optimization, (d) to use the 

developed AAO method for optimization of header design for novel air-cooled heat 

exchangers using Non-Uniform Rational Basis Splines (NURBS) in order to reduce 

the header volume while reducing the pressure drop inside the headers, and (e) to 

apply the online approximation assisted multiobjective optimization approaches 

developed in this dissertation to optimize the design of different types of heat 

exchangers such as coldplate and plate heat exchangers and many numerical test 

problems. 

1.3 Assumptions 

The following main assumptions are made in the development of the methods 

and models of this dissertation: 

(a) The simulation models are deterministic. No matter how many times the 

simulation is invoked for the same input, the same simulation output is 

produced. 

(b) The simulation responses are continuous and the corresponding simulation 

models are considered as z black-box. 

(c) All design variables while building metamodels are continuous.  
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(d) The computational resources available to execute the simulation for numerous 

design alternatives, as required by the optimizer, are limited. Therefore, the 

number of available simulation calls is fixed and used as a stopping criterion.  

(e) The computational time for performing a single simulation is much higher 

than that required for building a metamodel (which is an approximation to the 

simulation model). 

1.4 Research Thrusts 

A brief overview of the main research thrusts is presented in the following 

subsections.  

1.4.1 Research Thrust-1: Online Approximation Assisted Multiobjective 

Optimization (OAAMO) 

 

The focus of this research thrust is on developing a new online approximation 

assisted multiobjective optimization. In addition to reducing the computational cost, 

several issues are considered as part of this research thrust. These include: (1) 

improving iteratively the metamodels’ performance in the expected optimum region 

by adding samples with high predicted Kriging variance which helps to improve the 

metamodels’ accuracy in the expected optimum region,  (2) improving the accuracy 

of the predicted optimum solutions by adding iteratively samples with high accuracy 

(low Kriging uncertainty)  in the expected Pareto frontier, (3) handling multiobjective 

optimization problems with constraints while improving the accuracy of constraints’ 

metamodels iteratively, (4) improving the quality of the optimum solutions by adding 

samplers that can improve both the closeness to target optimum solutions and the 

diversity of the solution points. The current literature in the area of online 
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approximation assisted multiobjective optimization reports progress in some but not 

all of the above mentioned aspects.  The proposed approach uses multiobjective 

genetic algorithm as the optimization algorithm combined with a Kriging 

metamodeling technique (Cressie, 1993; Armstrong, 1998; Bakker, 2000). Several 

numerical test problems are used to investigate the new approach in addition to an 

engineering test problem and compare to previous methods.    

1.4.2 Research Thrust-2: Approximation Assisted Optimization with 

Combined Global and Local Metamodeling  

 

This research thrust proposes a new and novel online approximation assisted 

multiobjective optimization approach. The approach iteratively uses and updates both 

global and local metamodels for the objective and constraint functions in its pursuit 

for Pareto optimum solutions. The global metamodels allow the approach to explore 

the entire design space while a number of local metamodels with a higher accuracy 

focus on promising regions of the design space. These promising regions are 

determined based on a number of clusters using a newly developed clustering 

scheme. This scheme is adaptive and dynamically determines the number of clusters, 

their size and location in the design space. The proposed approach considers both 

objective and constraint functions as being computationally expensive and as such it 

can be used in a wide range of engineering design optimization applications. 

Compared to OAAMO of Research Thrust 1, all optimum solutions in the approach 

of this thrust are observed which ensure the feasibility of all optimum solutions and 

reduce the computational cost by eliminating the verification step of final solutions. A 
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numerical and an engineering test problem are used to demonstrate the new approach 

developed of this research thrust.       

1.4.3 Research Thrust-3: Online Approximation Assisted Multiobjective 

Optimization for Problems with Multiscale Simulation  

 

In the third research thrust, a new framework is proposed for optimizing new 

generations of heat exchangers. In these heat exchangers, the CFD simulations are 

used to predict thermal and hydraulic performance of the enhanced surfaces including 

the heat transfer coefficient and pressure drop values at the segment level. The 

segment level performance model is coupled with segmented ε-NTU solver to 

simulate the entire heat exchanger performance. By coupling the OAAMO developed 

in Research Thrust-1 with the multiscale simulation, the computational time required 

to find optimum heat exchanger design solutions can be reduced significantly 

compared to offline based approximation assisted multiobjective mulstiscale 

simulation approach.   

1.4.4 Research Thrust-4: Header Optimization of New Generation of Air-

Cooled Heat Exchangers using NURBS  

 

With reducing the tubes and channels diameters (using mini and micro 

channels) in heat exchangers, it is necessary to design larger heat exchangers inlet and 

outlet distribution manifolds (headers) with the purpose of reducing the pressure drop. 

Consequently, there is a tradeoff between increasing the header size to reduce the 

refrigerant pressure drop and adding volume that obstructs the airside free flow area. 

In this part of the proposed dissertation, the OAAMO approach is used to find 

optimum header design solutions for a new generation of air cooled heat exchangers. 
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A three-dimensional CFD model is developed using NURBS to represent and 

optimize the outer shape of a header for a new generation of air-cooled heat 

exchangers. 

1.4.5 Applications: Coldplate, Chevron Plate Heat Exchanger, and Rollbond 

Plate Heat Exchanger  

 

Additional applications for using online approximation assisted optimization 

for the design of different heat exchangers and thermal devices are presented. These 

include: a coldplate used for electronic cooling, and two different types of plate heat 

exchangers. A summary of the lessons learned from applying online and offline 

approximation assisted multiobjective optimization approaches to these types of heat 

exchangers is briefly discussed.  

1.5 Organization of  The Dissertation  

The dissertation is organized as shown in Figure 1.2. The background and 

terminology used in this dissertation are provided in Chapter 2, followed by the four 

research thrusts in Chapter 3 to 6, and examples for using the developed approaches 

for different heat exchangers applications in Chapter 7. The conclusions, 

contributions and recommendations for future directions are presented in Chapter 8.  

  In the next Chapter, the main definitions and terminologies used in this 

dissertation are briefly discussed.  
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Figure 1.2 Organization of Dissertation 
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Chapter 2: Definitions and Terminology 

2.1 Introduction 

The concept of a deterministic computer simulation is explained first, 

followed by the definition of a multiobjective optimization problem. Then, the multi-

objective genetic algorithm is described. Afterwards, approximation assisted 

optimization is elaborated with its different steps such as design of experiment, 

metamodeling, and verification. Three types of approximation assisted optimization 

techniques from the previous work are briefly discussed (ParEGO, PSP, and 

Forrester’s) since they are the state-of-the-art and are used for comparison with the 

AAO methods developed in this dissertation.   Finally, principles of heat exchanger 

design and CFD simulations are briefly discussed.  

2.2 Deterministic Computer Simulation 

A deterministic computer simulation can be schematically represented by 

Figure 2.1. The simulation takes the value from a vector of design variables x and 

produces the corresponding value for a vector of outputs or responses for f and g 

(objectives and constraints, respectively) as shown in Figure 2.1. The term function 

call denotes the process of invoking the simulation with a given value of input x.  In 

this dissertation, CFD models for different types of heat exchanger are treated as a 

black-box simulation.  
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Figure 2.1  Schematic of a deterministic simulation 

2.3 Multiobjective Optimization 

A Multiobjective optimization formulation is used for many engineering 

design problems. For such problems, design objectives are considered to be at least 

partly conflicting with each other. An optimization approach that is used to solve a 

multiobjective optimization problem obtains a set of solutions called Pareto optimum 

solutions (Deb, 2001). A multiobjective optimization problem can be presented 

mathematically as follows: 

minimize ( ) 1,...,

subject to: ( ) 0 1,...,

 m

j

lower upper

f x m M

g x j J

x x x

=

≤ =

≤ ≤

 (2.1) 

where x is a vector of design variables,  fm(x) is the m
th

 objective function to be 

minimized, gj(x) is the j
th

 constraint, and x
lower 

and  x
upper

 are the lower and upper 

bounds of x. 

2.3.1 Methods for Solving Multiobjective Optimization Problems 

Generally speaking, two classes of methods are used to solve multiobjective 

optimization problems; (a) classical methods and (b) non-classical methods (Deb, 

2001).  Classical methods are generally gradient-based or direct search methods. 

Examples for classical methods include: weighted-sum method (Cohon, 1978), ε-

constraint method (Haimes, 1971), value function method (Keeny and Raiffa, 1976), 

Black-Box 

Computer Simulation 

Input vector 

x 

Output vectors 

f, g 
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Schaffler’s stochastic method (Schaffler et al., 2002), normal boundary intersection 

method (Das and Dennis, 1998), goal programming (Charnes et al., 1955) and others. 

Gradient based methods are deterministic in nature and yield locally Pareto optimum 

solutions one point at a time. 

Many of the non-classical methods are nature based. These methods are 

population based such as evolutionary algorithms (Goldberg, 1989; Deb, 2001), 

particle swarm optimizers (Coello et al., 2004), multiobjective simulated annealing 

(Serafini, 1992; Nam and Park, 2000) to name a few. Several variations of population 

based multiobjective optimization based evolutionary algorithms have been reported 

in the literature (Fonseca and Fleming, 1993; Srinivas and Deb, 1994; Horn et al., 

1994; Zitzler and Thiele, 1998; Deb, 2001; Coello et al., 2007). These methods try to 

assign fitness to a design point based on its objective and constraint values. It is also 

important to note that population-based methods require numerous function calls, at 

times several thousand or more depending on the dimension of the optimization 

problem, to evaluate the objectives and constraints. However, these methods can 

obtain globally Pareto optimum solutions although there is no guarantee that they can 

converge to such solutions. 

In this dissertation, Multi-Objective Genetic Algorithm (MOGA) (Deb, 2001) 

is used for solving multiobjective optimization problems. However, the approaches 

proposed in this dissertation are not limited to MOGA. Any other multiobjective 

optimization technique can be used as well.  
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2.3.2 Dominance and Pareto Set 

Most multiobjective optimization methods use the concept of domination to 

arrive at solutions. In any multiobjective optimization problem, there are two or more 

conflicting objectives. For these problems, two solutions are compared on the basis of 

whether or not one solution dominates the other based on multiple objectives. In the 

next paragraph the concept of domination is described.  

Considering Eq. (2.1), a solution “A” is said to dominate (Goldberg, 1989; Deb, 

2001) a solutions “B”, if both conditions 1 and 2 are satisfied: 

1. Solution “A”  is better than or equal to “B” in terms of all the objectives 

and 

2. Solution “A” is strictly better than “B” in at least one of the objectives. 

When comparing two solutions, when the first condition is not satisfied, the 

two solutions are said to be non-dominated with respect to each other. In other words, 

if a point is not dominated by any other point, it is said to be non-dominated. 

As shown in Figure 2.2, amongst a set of solutions P, the non-dominated 

subset of solutions P’ are those that are not dominated by any other point in P. When 

P is the entire search space, then the resulting non-dominated set P’ is termed as the 

Pareto optimal set and the solutions are said to form a Pareto frontier in the objective 

space (i.e., f-space).  
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Figure 2.2  Feasible domain, dominated, non-dominated, and Pareto solutions in 

the objective space 

 

2.3.3 Quality Metrics 

After solving Eq. (2.1) a set of solutions is obtained. In order to evaluate the 

quality (goodness) of the solution set obtained, two quality metrics (Wu and Azarm, 

2001) are used. These metrics are Hyperarea Difference (HD) and Overall Pareto 

Spread (OS).   

Hyperarea Difference (HD): HD gives a measure of closeness of a set of points 

to a target (good) point. Geometrical interpretation for HD is presented in Figure 2.3. 

For a non-dominated set in the objective space P = {a,b,c,d,e} and Pbad and Pgood, the 

“good” and “bad” points, respectively, HD is defined by the shaded area in Figure 

3.2. This area is the difference between the rectangular area bounded between Pbad 

and Pgood and the area between Pbad and the set P (formed by a staircase): 

bad good badHD(P)=HA(P ,P )-HA(P ,a,b,c, d,e)  (2.2) 
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where HA denotes the (hyper) area. For a minimization problem, a non-dominated set 

with a lower HD value is considered to be better than that with a higher value. 

Overall Pareto Spread (OS): The overall Pareto spread is used to measure 

diversity of a set of solutions. OS, as shown in Figure 2.3, is defined as the ratio 

between the area bounded by the two extreme points, i.e., a and e, in P and the area 

bounded by Pbad and Pgood as given in Eq. (2.3). When comparing two non-dominated 

sets based on OS, the set with a higher OS value is considered to be better. 

 

bad good

HA[extreme(P)]
OS =

HA(P ,P
 

)
 

(2.3) 

 

Figure 2.3  The attainment surface and quality metrics for a set of 

non- dominated points (Hu et al., 2012) 
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non-dominated points (Voutchkov and Kean, 2010). The attainment surface can show 

how close a set of solutions is to another set or to a true Pareto set of solutions. The 

attainment surface can also represent the spread of non-dominated points. 

2.4 Multi-Objective Genetic Algorithm (MOGA) 

 

Genetic Algorithms (GAs) as defined by Goldberg (1989) are: “search 

algorithms based on natural selection and natural genetics”. GA’s maintain a pool of 

candidate points each of which is assigned a fitness based on its ‘payoff’. Fitness is a 

scalar measure of how well a particular candidate point satisfies a given problem 

objective. At each iteration or generation of GA, candidate points are selected for 

reproduction based on their fitness to form new offspring points. The reproduction 

process is carried out by the use of genetic operators such as selection, crossover and 

mutation. A set of probabilistic rules determines how a candidate solution undergoes 

crossover or mutation. A powerful feature of GA is that it is a population based, 

searches along multiple directions simultaneously, does not require derivative 

information and can obtain a global optimum solution. This makes the GA an ideal 

tool for optimization of highly non-linear (or even discontinuous or black-box) 

functions involving a combination of continuous and discrete design variables.  

 GA is extended to solve multiobjective optimization problems, as in Multi-

Objective Genetic Algorithm (MOGA). MOGA is based on using a non-dominated 

sorting GA proposed by Srinivas and Deb (1995). In this scheme, non-dominated 

sorting is performed and the solutions are ranked such that all the solutions in the 

same non-dominated set have the same fitness value which guarantees every non-

dominated individual equal reproduction opportunity. Thus the points in the first non-
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dominated set/front have the maximum fitness value.  The flowchart of MOGA, 

which follows the NSGA approach (Srinivas and Deb, 1995) as implemented in this 

dissertation is shown in Figure 2.4 using MATLAB 2007a. 

 

Figure 2.4 MOGA flowchart 

2.5 Approximation Assisted Optimization 

In this section, the main steps in approximation assisted optimization (AAO) 

are discussed in addition to a discussion for different types of AAO methods. 

2.5.1 Overview 

Computer simulations used for engineering design can be computationally 

intensive as in the case of Computational Fluid Dynamics (CFD) and aerodynamic 

shape design (e.g., Obayashi et al., 2005; Pineda et al., 2010; Sakata et al., 2011; Su 
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et al., 2011).  The computational intensity can be exacerbated when such simulations 

are combined directly with an optimization approach for engineering design. This 

limitation can be overcome by the use of an Approximation Assisted Optimization 

(AAO) technique. Typically, AAO starts with Design of Experiments (DOE) or an 

initial set of sample points in the design space. These points are used to construct 

metamodels for the objective and constraint functions of an optimization problem. 

Some popular metamodeling methods in AAO include response surface techniques 

(Otto et al., 1996; Sobieski et al., 1998) such as quadratic polynomial (Ratle, 1998), 

multi-layer neural network (Hong et al., 2003), radial basis function (Karakasis et al., 

2001), support vector machine (Nakayama et al., 2003), and Gaussian based methods 

(Buche et al., 2005) including Kriging (Jones et al., 1998). Adaptive use of various 

fidelity metamodels (Markine and Toropov, 2002) and aggregation of several 

metamodels have also been reported (Viana et al., 2009; Pilat and Neruda, 2012). 

Several comprehensive literature reviews of metamodeling approaches in engineering 

optimization have been reported as well (Simpson et al., 2001; Jin et al., 2002; Wang 

and Shah, 2007). 

Most AAO approaches can be classified into two main groups: offline and 

online as shown in Figure 2.5. The main difference between these two groups is that 

offline metamodels are not updated during AAO while online metamodels are. In 

offline AAO, the metamodels are built, verified, and if they are not accurate enough 

then more samples are added to improve the accuracy. Afterwards, the optimization is 

performed with this global metamodel (Myers, 1995; Papadrakakis et al., 1999; 

Wilson et al., 2001; Koch et al., 2002; Lian and Liou; 2004; Fang et al., 2004; Fang et 
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al., 2005; Georgopolou and Giannakoglou, 2009; Abdelaziz et al., 2010). The offline 

approach can be computationally expensive as it may require many function 

evaluations to build a globally accurate metamodel. Moreover, additional and 

separate function evaluations are needed to verify the offline metamodel. 

 

                         (a)                     (b) 

Figure 2.5 Comparison between approximation assisted optimization approaches 

(a) offline and (b) online 

 

On the other hand, in the online AAO there is a feedback loop from the 

optimizer for updating the metamodel using additional and carefully chosen sample 

points Farina, 2001; Farina, 2002; Hong et al., 2003; Jin et al., 2001; Jin et al., 2002; 

Nain and Deb, 2003; Nair and Kean, 1998; Pilat and Neruda, 2011; Hu et al., 2011; 

Hu et al., 2012). One significant advantage of the online AAO is that the predictive 

capabilities of the metamodel is progressively improved in the area where the 

optimum is expected to be, as more and more sample points are evaluated and added 

to the sample set. However, one limitation of online AAO is that in the initial stage a 

poorly estimated metamodel for objective and/or constraint functions can mislead the 

optimization process into sub-optimum or infeasible region of the design space. 
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Depending upon how frequent the metamodels (for objective and constraint 

functions) are updated, some online AAO approaches update the metamodels only 

after a certain number of iterations (Hacker, 2002; Li et al., 2008), while others 

update the metamodels at each optimization iteration (Grierso and Pak, 1993). One 

group of online AAO approaches, called Inexact Pre-Evaluation (IPE), uses 

metamodels to estimate a majority of intermediate design points, but only observe the 

best intermediate points (Nair et al., 1998; Karakasis et al., 2001; Praveen and 

Duvigneau, 2009).  

In the next section, the DOE methods used in this thesis are briefly described.   

2.5.2 Design of Experiment (DOE) 

The DOE methods reported in the literature can be classified as classical, 

space filling, and sequential or adaptive methods (Simpson et al., 2001; Wang and 

Shah, 2007).  In this thesis, the space filling sampling techniques, i.e., the Maximum 

Entropy Design (MED) and Latin Hypercube Sampling (LHS) methods are used to 

generate initial set of samples to represent the entire design space. In the next 

paragraph the MED method is described followed by LHS.  

 Maximum Entropy Design (MED):  Entropy H is used as a measure of 

information (Shannon, 1948). Lindley (1956) interpreted Shannon’s entropy as the 

amount of information retrieved from an experiment. The concept of entropy has 

been used to select the new sample point in order to maximize the retrieved 

information due to the new sample (Shewry and Wynn, 1987; Currin et al., 1988). In 

order to maximize the entropy H as a measure of information by adding a new sample 

xn+1  to a set of n current samples (x1, x2,…, xn) the following equation is applied: 
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xn+1  = argmax H (x1, x2,…, xn; x) (2.4) 

where “argmax” denotes the optimal solution of the maximum entropy optimization 

problems.  

Further, under the assumption of normal priors (Shewry and Wynn, 1987; 

Koehler and Owen, 1996), it can be shown that the maximum of the entropy criterion 

is the same as maximizing the determinant of the prior covariance matrix R, i.e., 

xn+1 = argmax det (R) (2.5) 

where det indicates a determinant and R is an ((n+1) × (n+1)) covariance matrix of x. 

Each element of R is calculated using the augmented design (x1,x2,…,xn,xn+1), where 

there are n existing designs and xn+1 is the new candidate design. The details of the 

covariance matrix based on the normal priors are given in Section 2.5.3. 

Latin Hypercube Sampling (LHS):  Latin hypercube was among the early  

DOE methods proposed specifically for computer experiments (McKay et al., 1979). 

A Latin hypercube is a matrix of n rows and k columns where n is the number of 

levels being examined and k is the number of design variables. Each of the k column 

contains the levels 1, 2,…, n, randomly permuted, and the k column are matched at 

random to form the Latin hypercube. Latin hypercube sampling offers flexible sample 

sizes while ensuring stratified sampling, i.e., each of the input variables is sampled at 

n levels (Sacks et al., 1989). Figure 2.6 shows a set of 20 samples generated in two 

design variables domain using MED and LHS methods. As it is shown in Figure 2.6, 

MED can give better spread near the boundaries. However, MED is computationally 

more expensive than LHS especially with an increase in the number of design 

variables.  
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After generating the initial samples using of the DOE methods described 

earlier, metamodels are built for all responses (objectives and constraints). In the next 

subsection, the metamodeling technique used in this dissertation is discussed in 

details.  

  

(a) (b) 

Figure 2.6  Design of experiment samples using (a) MED and (b) LHS 

2.5.3 Kriging Metamodeling 

Kriging is an interpolative metamodeling method for response approximation 

from a simulation (Sacks et al., 1989; Jones, 2001).  It is widely used in the field of 

Geostatistics (Cressie, 1993; Armstrong, 1998) and is named after the South African 

mining engineer D. G. Krige. Kriging metamodeling can be viewed as a linear 

predictor that estimates an unknown value of a response for an input sample point 

based on the known values of the response and the distance of the sample from the 

known design points, as shown in Figure 2.7. Kriging treats the response from a 

deterministic simulation as a realization of a stochastic process as follows:  
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( ) ( ) ( )y x f x Y x= +   (2.6) 

where y(x) is the unknown function that is being modeled and Y(x) is a normally 

distributed Gaussian process.   

 

Figure 2.7 Kriging metamodeling technique 

Several functional forms for f(x) and Y(x) are available in the literature (Jones, 

2001; Martin and Simpson, 2005). The first term in Eq. (2.6), f(x), represents a 

polynomial model in a response surface method and is equivalent to a global mean µ  

for the model. This global mean µ is the mean of all responses in the current design. 

However, Y(x) term represents the local deviation from the global mean obtained by 

interpolating the available data based on distance between the available data based on 

distance between the unobserved point x0 and the sampled points. The term Y(x) is 

represented through the use of one of many correlation functions. One of the widely 

used correlation functions (Sacks et al., 1989; Jones, 2001) is: 

1

[ ( ), ( )] exp(
d

pl

i j l il jl

i

Corr Y x Y x x xθ
=

= − −∑   
(2.7) 

σ
2



 

 

 

23 

 

where d is the dimension of vector x, xil and xjl are the l
th

 components of the vectors xi 

and xj,   θl is the degree of correlation between the responses in the l
th

 coordinate and 

is termed as the correlation parameter in the l
th

 direction,  and p controls the 

smoothness of the function in the l
th

 direction. The terms θl and pl provide a means for 

adjusting the relative importance in each dimension of the input space. For 

simplification, a single value of θ is used and the distance term is replaced by the 

Euclidean distance between xi and xj. When one value of θ is used, the model is 

termed as an isotropic model, which treats all dimensions equally. In Eq. (2.7) when 

p=1, the correlation is known as the exponential correlation. As for n responses in the 

current design, then let y represent the set of n observed true responses as given in Eq. 

(2.8):  

1( )

.

.

.

( )n

y x

y

y x

 
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 
 =
 
 
  

  

 

(2.8) 

The uncertainty in the function values (local deviations) at the n points can be 

represented by a vector of random variables Y(x) as: 
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( )n

Y x

Y x

Y x

 
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 
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(2.9) 

This vector has a covariance matrix Cov given by: 

2
( )Cov Y Rσ=   (2.10) 
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where R is an n × n correlation matrix with the (i,j) element given by Eq. (2.7). The 

diagonal elements of R are always of the form Corr[Y (xi), Y (xi)] and thus are always 

equal to 1. Let I denote an n × 1 vector of ones and r denote the correlation of Y(x0), 

the unobserved point, with Y(xi), the current designs, as 

0 1

0

[ ( ), ( )]

.

.

.

[ ( ), ( )]n

Corr Y x Y x

r

Corr Y x Y x

 
 
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 
 
  

  

 

(2.11) 

The values of the correlation parameters, such as µ , σ, θ and pl need to be 

estimated. They are obtained by maximizing the likelihood function or in other 

words, to model the functions behavior so that it closely represents the observed data. 

Maximizing the likelihood function provides an estimate of the optimal values of µ , 

σ
2
, as functions of R as follows 

1
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I R I
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(2.12) 
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µ µ
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−− −
=   

(2.13) 

Then the estimated response for an unobserved point x0 is given using the 

Kriging predictor as: 

1

0
ˆ ˆ ˆ( ) ( )T
y x r R y Iµ µ−= + −   (2.14) 

In addition to the above predictor, the Kriging measure of uncertainty in the 

estimated response can be calculated as follows: 

1 2
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The derivation for this standard error is provided in Sacks et al. (1989) and 

Jones (2001). It can be seen that the variance s
2
 is zero for an observed point. In 

utilizing Kriging predictor in approximation assisted optimization (Bakker, 2000; 

Jones, 2001), this standard error can serve as a basis for making the decision between 

using the predicted response and invoking the analyzer functions to obtain a true 

response as it will be presented in chapter 3 in this thesis. The prediction of the 

standard error is a main advantage of Kriging over other metamodeling methods since 

the metamodel can then be dynamically updated based on the responses during a 

given optimization procedure. Furthermore, as mentioned, Kriging does not require a 

functional form, though the choice of the correlation function is problem dependent. 

Simpson et al. (2001) found that Kriging is extremely flexible and suitable for 

deterministic computer experiments and recommend the use of Kriging metamodels 

when the number of input variables is less than 50. 

After building the metamodels, there is a need to measure the accuracy of 

these metamodels. In the next subsection, metamodel performance verification step is 

discussed.  

2.5.4 Metamodel Performance Verification 

In offline AAO, after creating the metamodel, a set of random samples is 

generates and the responses are predicted using the metamodels and compared with 

the true simulation responses. Let y(xi) be the true response from the simulation and 

ˆ( )iy x  be the predicted response from the metamodel for a set of samples with n 
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individuals. Several errors can be reported such as error for each sample:  Errori, 

relative absolute error: RErrori, maximum absolute error: MAE, as follows: 

i i i
ˆError y( x ) y( x )= −   (2.16) 

100
i i

i

i

ˆy( x ) y( x )
RError %

y( x )

−
= ×   

(2.17) 

1iMAE max( Error ) , i , ,n ...= =   (2.18) 

The root mean square error and relative root mean square error for a set of samples 

are defined as: 

1 2

2

1

1
1

/
n

i
i

RMSE Error , i ,...,n
n =

 
= =∑ 
 

 (2.19) 
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 (2.20) 

RMSE and MAE consider only the numerical magnitude of the errors. The relative 

RMSE metric is useful when the numerical range of the response i.e., difference 

between the minimum and the maximum values differs by several orders of 

magnitude. RRMSE is useful in practical engineering examples as demonstrated in 

this dissertation. 

In the next subsection, the different AAO methods used for comparison in this 

dissertation are briefly discussed.  

2.5.5 Overview of ParEGO, PSP, and Forrester’s Methods 

Numerous AAO approaches have been developed for multiobjective 

optimization with computationally expensive functions. A few leading approaches 



 

 

 

27 

 

among these that are: ParEGO (Knowles, 2006), PSP (Shan and Wang, 2005), and 

Forrester’s (Forrester et al., 2008). For example, an important strategy in PSP is that a 

large number of random points are generated in the design space and based on their 

objective function values obtained from the metamodels, new sample points are 

selected. In the PSP approach, a sampling guidance function is used to directly 

sample as many points as possible in order to estimate the entire Pareto optimal 

frontier. Essentially, PSP uses a version of the objective function as a probability 

distribution function for guidance in the sampling. More sample points are collected 

in the areas having lower objective function values while fewer sample points are 

selected in other areas. PSP employs a global metamodel to estimate the objective 

function values for the random points and then a combined sorting of the random 

points and previous sample points is performed. The non-dominated points are 

observed and used to further improve the metamodel iteratively. In its current form, 

PSP does not provide a provision for handling constraint functions. 

Both ParEGO and Forrester’s approaches are based on the concept of 

Expected Improvement (EI) of the objective functions, in which EI represents the 

probability that a new design point is better than the current best design points. Using 

EI, a new design point is located both in the promising areas (where the optimum is 

expected to be) in the design space and also in the areas with a limited number of 

sample points and high metamodeling uncertainty. In ParEGO, the expected 

improvement of multiple objective functions is converted into a single value using 

randomly generated weighting coefficients. A new sample point is chosen based on 

maximizing the expected improvement function.  Using the random weights, ParEGO 
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may fail to predict the entire Pareto frontier particularly with a limited number of 

sample points. Also, ParEGO can only be used for solving unconstraint multi-

objective optimization problems. On the other hand, Forrester et al. developed a 

function for the multi-objective expected improvement based on the multivariate 

integration of the probability function. The sample points are selected to maximize 

the multi-objective expected improvement function. Compared to ParEGO, one 

advantage of Forrester’s approach is that it includes a constraint handling technique. 

Heat exchanger design optimization problems are examples for 

computationally expensive engineering problems that require efficient approximation 

assisted optimization approaches. In the next subsection, different methods used to 

design heat exchangers are discussed briefly.  

2.6 Heat Exchanger Design Methods 

Heat exchangers (HXs) are widely used in the processing heat and power, air-

conditioning and refrigeration, heat recovery, transportation and manufacturing 

industries. Such equipment is also used in electronic cooling and for environmental 

issues such as thermal pollution, waste disposal and sustainable development. Various 

types of heat exchangers exist such as coil HXs, double tube HXs, shell and tube  

HXs, plate HXs, and others. A more detailed classification of heat exchangers can be 

made based on their construction features, modes of heat transfer, and heat duty 

specifications (Sukhatme and Devotta, 1998; Walker, 1990; Shah and Sekulić, 1998; 

Kuppan, 2000; Wang et al., 2007).  In this section, the basic equations for thermal 

design of heat exchangers are presented.  
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There are several techniques for heat exchanger design. Two main methods 

are: the Logarithmic Mean Temperature Difference (LMTD) method and ε-NTU 

method. In both methods, energy balance equations presented in Eq. (2.21) and Eq. 

(2.22) are used to represent heat transfer between hot and cold streams. In the LMTD 

method, total heat transfer, Q, is calculated using Eq. (2.23), overall heat transfer 

coefficient, U, is defined in Eq. (2.23) based on the convection heat transfer 

resistance in both hot and cold streams 
( )

1

o thAη
 where h is the heat transfer 

coefficient, At is total contact area between the solid the fluid and , ηo  is the fin 

efficiency, Rcontact  define contact  resistance, Rwall  is conduction resistance in the wall, 

Rfoul is the fouling resistance.  F is a temperature correction factor that depends in the 

HX configuration. LMTD is calculated from Eq. (2.25) for counter flow HX.  

, , ,( )
h p h h in h out
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(2.25) 

In the ε-NTU method, the heat transfer rate from the hot fluid to the cold fluid 

is expressed as:  

min , , min , ,( ) where min( , )
h in c in h p h c p c

Q C T T C m c m cε= − = � �  (2.26) 
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( )
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  (2.27) 
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mc
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mc
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�

�
  (2.28) 

The HX effectiveness ε, is function of number of transfer units NTU, heat 

capacity ratio CR, and HX configuration. Effectiveness ε is a measure of thermal 

performance of a heat exchanger. It is defined for a given heat exchanger of any flow 

arrangement as a ratio of the actual heat transfer rate from the hot fluid to the cold 

fluid to the maximum possible heat transfer rate as given in Eq. (2.26). The heat 

capacity ratio CR is defined as the ratio of smaller to larger heat capacity for the two 

fluid streams. Number of transfer units NTU is defined as a ratio of the overall 

thermal conductance (UA) to the smaller heat capacity rate as given in Eq. (2.27). 

NTU provides a provides a compound measure of the heat exchanger size through the 

product of heat transfer surface area A and the overall heat transfer coefficient U. 

Hence, in general, NTU does not necessarily indicate the physical size of the 

exchanger (Shah and Sekulić, 1998). 

For enhanced heat exchanger surfaces there is a need to use CFD simulations 

to determine the thermal and hydraulic performance of the enhanced surfaces. In the 

next section, the main governing equations used in CFD simulation are discussed.    

2.7 CFD Simulation 

 

Conventionally, extensive experimental investigation is used to find the heat 

transfer and fluid flow performance for different types of heat exchangers. Recently, 

with the development in computational capabilities, CFD simulations are used to 
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predict the thermal and hydraulic performance for enhanced heat exchangers designs 

(Bergles, 2002). In CFD simulations, the main fluid governing equations are solved 

numerically. The main governing equations are the continuity, the momentum 

(Navier-Stokes equations), and the energy as listed in Eq. (2.29) to Eq. (2.31) based 

on the assumptions used in this thesis as follows:   

1. Incompressible and steady state flow  

2. Single phase flow, no gravity or any other body force involved  

3. Constant wall temperature  

4. No fouling of any kind exists in the computational domain 

5.  Periodicity is established perpendicular to the flow direction 

6. Viscous dissipation is negligible in the energy equation 

7. All walls are rigid 

  

( ) 0uρ∇⋅ =
�

 (2.29) 

( )
2

3

T
uu p u u uρ µ

  
∇⋅ = −∇ +∇⋅ ∇ + ∇ − ∇⋅  
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�
  (2.31) 

where ρ  is the fluid density, u  the velocity vector, p the pressure,  h  the specific 

enthalpy, k the thermal conductivity, and T the temperature. In this dissertation, the 

available CFD commercial package, Fluent
®

 is used with the aforementioned 

assumptions. The fluid characteristics used in this dissertation are mainly calculated 

based on default models in Fluent
®

. By choosing different models, the results may 
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change based on the fluid used, viscosity models used, Reynolds number, temperature 

range and wall roughness. For rapid CFD evaluation of different CFD models used in 

this dissertation, the process of geometry generation, meshing and simulation need to 

be automated. An automated too, (Abdelaziz, 2009), termed as Parameterized Parallel 

Computational Fluid Dynamics (PPCFD) is used to carry out CFD analysis 

automatically in batch mode. More details about PPCFD are discussed in the next 

section.  

For all CFD based examples in this dissertation, the solver was allowed to 

iterate until convergence or up to a maximum number of iterations. The convergence 

criteria were based on maximum acceptable normalized residuals defined for each 

CFD example. Figures 2.8-2.12 present the residual for different CFD cases for 

different examples presented in this dissertation.  

 

 

Figure 2.8 Residuals for new generation of air-cooled heat exchanger segment 
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Figure 2.9 Residuals for coldplate model used in electronic cooling 

 

 

 

Figure 2.10 Residuals for header used in new generation of air-cooled heat 

exchanger 
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Figure 2.11 Residuals for chevron plate heat exchanger example 

 

Figure 2.12 Residuals for rollbond plate heat exchanger example 
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2.8 Parallel Parameterized CFD  

 

Any approximation assisted optimization of a computationally expensive 

model especially for CFD-based requires a large number of CFD simulations to be 

executed.  In this dissertation, a parallel parameterized CFD (PPCFD) approach 

(Abdelaziz, 2009) to automatically read the normalized design variables and then 

generate the corresponding Gambit
®

 journal files.  In this step, it is very important to 

correlate the Gambit
®

 journal files to corresponding design variables. Mesh 

refinement near the boundaries (boundary layer inflation) applied based on the design 

dimensions. Also, a finer mesh is applied in locations where higher temperature 

gradients are expected, such as near the walls, and the thermal and hydraulic entrance 

regions.  

After generating the mesh, the PPCFD program automatically generates 

Fluent
®

 journal files to read the specified mesh, set the appropriate boundary 

conditions, model parameters, and material properties.  The materials and boundary 

conditions are defined in the Fluent
®

 journal files. 

 The main steps in PPCFD can be summarized as follows: 

Step 1: reading of the parametric values of all the CFD cases, 

Step 2:  automatic generation of Gambit® script files and Fluent® script files,  

Step 3:  running the scripts and performing post processing to summarize the results 

in terms of relevant thermal and hydraulic performance indicators.  

PPCFD is used in this dissertation for all CFD models including new 

generation of air-cooled HX segment, coldplate, headers for new generation of air-

cooled HX, Chevron plate HX, and Rollbond plate HX.  
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2.9 Summary 

In this chapter, the main terminologies and concepts used in this dissertation 

are briefly discussed.  The definitions defined in this chapter can be categorized into 

two groups: approximation assisted optimization for multiobjective optimization and 

heat exchanger design for enhanced surfaces using CFD simulations. In the first 

group, several methods to solve multiobjective optimization problems are discussed 

followed by dominance concept and quality metrics to measure the quality of the 

optimum solutions. Then, the multiobjective genetic algorithm is discussed in details 

as it is used as the optimization approach in this dissertation. Finally, approximation 

assisted optimization is briefly described with its main steps, e.g., design of 

experiment, metamodeling, and metamodeling verification metrics followed by a 

description for three methods from the literature (ParEGO, PSP, and Forrester’s). In 

the second group, different heat exchanger design methods are described followed by 

the CFD simulation. Finally, PPCFD, a method to couple the CFD simulations with 

an optimizer is described.  

In the next chapter, a new method for online approximation assisted 

multiobjective optimization is introduced.  
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Chapter 3: Online Approximation Assisted Multiobjective 

Optimization (OAAMO) 

3.1 Introduction 

The material for this chapter is borrowed in part from the papers Saleh et al. 

(2010b)
1
. In this chapter a new approach for Online Approximation Assisted Multi-

objective Optimization, OAAMO, is presented. OAAMO starts with an initial set of 

sample points to build a metamodel for each objective and constraint function of a 

multi-objective optimization problem. This metamodel based optimization problem is 

solved by a Multi-Objective Genetic Algorithm (MOGA) to obtain a set of points. 

From this set, a few points are selected and added to the current sampled points. The 

points selected are aimed to (i) sample the region where the multi-objective solutions 

are expected to be, and (ii) diversify the solution points. OAAMO is compared with 

(i) AAMO, an offline Approximation Assisted Multi-objective Optimization 

technique, (ii) ParEGO, an online approximation assisted multi-objective 

optimization approach from the literature, and (iii) a conventional MOGA. The 

applicability of OAAMO is also demonstrated with an engineering example for an 

air-to-refrigerant heat exchanger segment design that involves CFD calculations. The 

results show that, for the same number of sample points, OAAMO yields a better 

estimate of the Pareto solutions for most of the examples compared to AAMO and 

ParEGO. Moreover, compared with MOGA, OAAMO obtains reasonable solutions 

while reducing significantly the number of functions calls. The goodness of solutions 

                                                 
1
 Saleh, K., Aute, V., Azarm, S., and Radermacher, R., 2010b, “Online Approximation Assisted Multiobjective 

Optimization with Space Filling, Variance and Pareto Measures,”  13th AIAA/ISSMO Multidisciplinary Analysis 

and Optimization Conference, AIAA-2010, Fort Worth, TX, USA 
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obtained from OAAMO is evaluated using two quality metrics from the literature: 

hyperarea difference and overall Pareto spread, as described chapter 2.   

The rest of this chapter is organized as follows: Section 3.2 summarizes the 

related work from the literature in the area of approximation assisted optimization. 

An overview of the new approach is provided in Section 3.3. Sections 3.4 and 3.5 

introduce numerical examples and results in addition to comparison with ParEGO 

approach respectively. Section 3.6 presents an engineering example for optimizing 

air-cooled heat exchanger segment. Section 3.7 provides conclusions and closing 

remarks. 

3.2 Related Work 

Most of the existing AAO methods focus on single-objective optimization. A 

number of methods are reported for multi-objective AAO. Examples of these methods 

are the Pareto Set Pursuing (Wang and Shan, 2004), multi-criteria sampling (Sasena 

et al., 2002; Turner et al., 2003) and methods which are based on Efficient Global 

Optimization (EGO) for single (Jones et al., 1998) and multi-objective optimization 

(Emmerich et al., 2006; Kean, 2006; Knowles, 2005; Knowles, 2006; Jeong and 

Obayashi, 2005; Ponweiser et al., 2008). Among these, some methods use a measure 

like generalized probability of improvement or expected improvement for multi-

objective optimization (Emmerich et al., 2006; Kean, 2006). Some of these methods 

use a single-objective optimization method to maximize the measure of improvement 

and obtain a sample point. However, such a point may not reflect the best candidate 

point for the original multi-objective optimization problem (Liu et al., 2008). For 

instance, ParEGO uses weighting vectors to iteratively convert multiple objective 
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functions to a single objective function and then chooses the next sample based on 

maximizing an expected improvement function (Knowles, 2005; Knowles, 2006).  

ParEGO is computationally expensive for optimization problems with more than ten 

design variables (Knowles, 2005) and is applicable only to unconstrained 

optimization problems.  

A similar observation can be made in another EGO-based approach by Joeng 

and Obayashi (2005) where NSGA-II (Deb et al., 2002) is used to optimize an 

expected improvement of all individual objective functions. However, applying 

NSGA-II requires thousands of function calls. Similarly, Li et al., (2008) developed a 

Kriging-based MOGA approach which can require a substantial number of function 

calls.  

One can also find methods in the literature that use quality metrics for guiding 

the selection of the sample point(s) (e.g., Naujoks et al., 2005; Emmerich et al., 2006; 

Ponweiser et al., 2008). For instance, a S-Metric Selection based EGO (SMS-EGO) 

method is reported (Ponweiser et al., 2008) that optimizes the S-metric to select a new 

sample point. Although SMS-EGO can produce several sample points at every 

iteration it does not make use of the uncertainty in the metamodel prediction as part 

of an updating strategy. Accordingly, SMS-EGO may not perform well in predicting 

optimum solutions (Ponweiser et al., 2008).  

The proposed OAAMO has two aims:  (i) improving the predictive capability 

of metamodeling in the region where the optimum solutions are expected to be, and 

(ii) producing globally accurate and well spread solutions.  A few distinct 

characteristics of OAAMO compared to the related AAO methods are as following: 
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(1) A significant number of the previous AAO methods only uses a globally accurate 

metamodel to find optimum solutions (e.g., Koch et al., 2002; Fang et al., 2004; Lian 

and Liou, 2004; Abdelaziz et al., 2010) which can be computationally expensive. In 

the proposed approach, online AAO is used to improve the metamodels’ performance 

in the expected optimum region.  (2) Some previous approaches (e.g., Knowels, 2006, 

Wang and Shan, 2004) try to approximate the optimum frontier using an expected 

improvement measure. Using such a scalar measure based on an aggregate of 

multiple objectives can change the nature of the original multi-objective optimization 

problem. However, OAAMO uses the information from the estimated optimum 

solutions directly and does not use any scalar measure. (3) OAAMO aims at 

improving the spread, closeness, and accuracy of the solution points while avoiding 

clustering of the points.   

In the next section, the proposed OAAMO approach is described in details.  

3.3 Proposed OAAMO  

In this section, an overview for OAAMO is presented. In order to update the 

metamodels and based on intermediate OAAMO runs, OAAMO selects samples with 

higher Kriging uncertainty to improve the metamodels performance in the expected 

optimum region. In addition, selecting the sample with minimum variance helps to 

improve the accuracy in the final optimum solutions. As for the spread and the 

closeness, selecting the two extreme optimum solutions at each iteration improves the 

spread while selecting the closest point the ideal point in the objective space helps to 

improve the closeness. Besides, a space filling filter to avoid samples clustering is 

considered and to reduce the computational cost of OAAMO approach by avoiding 



 

 

 

41 

 

adding unnecessarily samples. Obviously, each iteration can lead to select several 

samples. This is suitable for parallel computing environment which can lead to reduce 

the overall computation time especially with using newly developed workstations.   

Furthermore, OAAMO can handle constrained multi-objective problems with 

taking into account the feasibility of the approximated Pareto solutions. The approach 

was tested comprehensively for 10 numerical test problems with different number of 

design variables and constraints and also different Pareto frontier shapes. It resulted 

in more accurate results compared with ParEGO.  In addition, the approach was 

applied to 2 computationally expensive engineering test problems and the resulting 

solutions were found to be more accurate compared to offline approximation assisted 

optimization.  

OAAMO is based on an iterative scheme: It starts with an initial set of design 

points to build metamodels for objectives and constraints of an optimization problem. 

This metamodel based optimization problem is solved by a Multi-Objective Genetic 

Algorithm (MOGA) to obtain a set of approximated Pareto solution points. From 

these Pareto points, five points are selected: The closest point to an ideal point 

together with the two extreme points in the objective space. In addition the points that 

have the highest and lowest predicted variance are selected. A space filling filtering 

scheme is then used to prevent clustering. The collection of points obtained is then 

used to build and solve the next metamodel based optimization problem and the 

iterative scheme is repeated until a stopping criterion is met. A limit on the total 

number of available function calls is used as the stopping criterion. 
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3.3.1 Overview of Proposed Approach 

OAAMO works as follows. It starts with an initial design (a set of points). 

Next, the Kriging based metamodels are built for the objectives and constraints to 

create a metamodel assisted multi-objective optimization problem. This problem is 

solved by MOGA to obtain an estimate of Pareto optimal points. These points with 

their corresponding predicted variance from the Kriging metamodels are used to 

select the next sample points. [Although, for simplicity, the description that follows is 

given based on the objective functions, the effects of the constraints have also been 

accounted for by using a penalty approach, see e.g., (Kurpati et al., 2002).] The 

predicted variance is obtained and normalized as follows: 

(i) Obtain the variance for the objective functions, say for the case of 

two-objective functions as f1 and f2, for all estimated Pareto points.  

(ii) Determine the maximum and minimum values for the variance for 

f1 and f2.  

(iii) Calculate the normalized objective variance, i.e., varf1 and varf2 for 

f1 and f2, respectively. For example, varf1 = (varf1 - varf1min)/ 

(varf1max - varf1min), where varf1 is the raw value of the variance for 

f1. Also, varf1min and varf1max are the minimum and maximum of the 

variance for f1.  A similar equation is used to obtain the normalized 

varf2. Also, a similar procedure is used for normalizing the 

variance for constraints. 

 Then the normalized variance var1 and var2 are calculated (see Eq.(3.2)) 

considering the variance in the objectives and constraints. 
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 The normalized objective F1 (and similarly F2) is also obtained as follows:  

(i) From all the estimated Pareto points obtained so far, identify those 

with the maximum and minimum of f1. 

(ii) Calculate the normalized objective: F1 = (f1 - f1min)/ (f1max - f1min).  A 

similar equation is used to obtain the normalized for F2. 

Five points from the current estimated Pareto points are selected as follows. In 

the normalized variance space of objectives, as shown in Figure 3.1(a), a point with 

the lowest normalized variance for f1 and f2, i.e., the closest point to the origin, is 

selected. An additional point is selected, as shown in Figure 3.1(a), where the 

normalized variance (e.g., both var1 and var2) is large in order to improve the 

performance of the metamodels globally. Also, in the normalized objective space for 

the current estimated Pareto points, Figure 3.1(b), the closest point to the ideal point 

is selected which may be considered as the best point in the objective space. Finally, 

the two extreme points shown in Figure 3.1(b) in the normalized objective space are 

selected to improve the diversity of the estimated Pareto frontier. The five points 

obtained are checked (filtered) with respect to a space filling criterion (described in 

Section 3.3.3) to prevent clustering. The true responses are then evaluated for the 

filtered points, these points are added to the current sample points and the 

metamodels for the objectives and constraints are updated.  
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                                  (a)                                 (b) 

Figure 3.1 (a) Normalized objective variance space, and (b) normalized objective 

space 

 

The following sub-sections provide more details on each of the steps 

summarized above in this section. 

3.3.2 Choice of Initial Design 

The proposed approach starts with an initial design using maximum entropy 

design (Shewry and Wynn, 1987). The initial design is used to obtain a representation 

of the response space and chosen to be a space-filling design with a pre-specified 

number of points. The initial design is a function of the problem dimension and as 

such is problem dependent. 

3.3.3 Space Filling Metric 

In order to avoid the clustering of sample points in the design space, a space 

filling metric is used (Aute et al., 2008). This space filling metric is based on the 

Euclidean distance in the design space. The space filling metric used is the maximin 

distance in the design space as follows. For each experiment in an existing design D, 

var1

var2

1

1

F2

Ideal Point

F1
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the minimum non-zero distance of this point from all other points in D is computed. 

The maximum of these distances is computed and then the space filling metric is set 

to be equal to one-half of this maximum value. This will ensure that the new sample 

points will not be placed too close to the existing points. This space filling metric S is 

independent of the metamodeling technique used. Mathematically, S can be 

represented as given in Eq. (3.1).  

 

2
( ) min ( ) , ( )

0.5 max( ( )),

i i j i

i i

ds x x x x D i j

S ds x x D

= − ∀ ∈ ∧ ≠

= × ∀ ∈
  (3.1) 

3.3.4 Choosing Next Sample Points 

Once the optimization problem (with the current metamodels for 

objectives/constraints) is solved using MOGA, a set of estimated Pareto points is 

generated. From this set of Pareto points one can select five sample points according 

to Eq. (3.2), which as mentioned before are filtered to avoid clustering. As mentioned 

before, points x1 and x2 are points in the normalized variance space with the lowest 

and highest variance respectively and x3  is a point closest to the ideal point in the 

normalized objective space in addition to the two extreme points x4 and x5 in the 

normalized objective space where var1 and var2 are the normalized objectives 

variances respectively and F1 and F2 are the normalized objectives and Fideal is the 

ideal point. Although Eq. (3.4) is shown for a bi-objective optimization problem, it 

can be readily extended to any number of objectives. 
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3.3.5 Design Update 

For the design update, the simulation is invoked for the new samples obtained 

in the last step and then the points are added to the current design D. The metamodels 

are updated and then MOGA solves the corresponding metamodel based optimization 

problem, producing a new set of Pareto points which will then be sampled according 

to Eq. (3.2).  

3.3.6 Step-by-Step Description of Proposed Approach 

Figure 3.2 shows a flowchart for the proposed approach. The stopping 

criterion used is the maximum number of function calls. The steps in OAAMO are as 

follows: 

Step-1: Generate an initial set of design points using the maximum entropy design 

method and observe the corresponding responses, i.e., obtain the 

objectives/constraints values. 
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Step-2: Develop a metamodel for each objective and constraint function.  So, several 

metamodels are developed in this step.  

Step-3: Formulate a multiobjective optimization problem based on the metamodels 

and solve this problem using MOGA. 

Step-4: Obtain Pareto points from Step-3.  

Step-5: For all Pareto points calculate the objectives and constraints’ variance from 

Kriging metamodels and select the best point and worst point in the normalized 

objective variance space. In the normalized objective space, select the point which is 

closest to the ideal point in addition to the two extreme points. 

Step-6: Filter the newly selected points using the space filling filtering scheme as in 

Eq. (3.1). 

Step-7: Evaluate the true response (i.e., run the simulation) for the newly chosen 

points and then go to Step-2. 

Step-8: Repeat Step-2 to Step-7 until a limit on the number of function calls is 

achieved. 
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Figure 3.2 Flowchart of OAAMO approach 

 

3.4 Numerical Examples and Results 

In this section, the proposed approach is applied to several numerical 

examples selected from the literature and compared with offline approximation 

assisted multiobjective optimization approach. 
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3.4.1 Numerical Examples 

The proposed approach is applied to several numerical examples selected 

from the literature, namely, TNK, CTP, ZDT1,ZDT2, ZDT3 (Deb, 2001), and SR 

(Azarm and Li, 1989). The formulations of all numerical test problems are listed in 

Eq. (3.3) to Eq. (3.8). Among others, these examples have different Pareto frontier 

shapes: concave, convex, and discontinuous. The number of design variables ranges 

from 2 to 30. Table 3.1 shows the specifications of the test problems including their 

names as referred to in the literature, problem size, i.e., number of variables, number 

of points in the initial design, number of new sampled points and number of 

optimization runs due to stochastic nature of MOGA (MATLAB
®

 2007a) For the 

numerical examples, OAAMO is compared with offline approximation assisted 

optimization, AAMO, and a conventional MOGA. In AAMO, the maximum entropy 

design method is used to select initial designs and then Multi-response Space Filling 

Cross Validation Tradeoff (MSFCVT) method (Aute et al., 2008) is used to add 

sample points until the available number of function calls are exhausted. Then 

metamodels are built all-at-once (using MSFCVT) for all objectives and constraints 

and thus an offline metamodel assisted optimization problem is obtained. This 

problem is then solved with MOGA. 
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 TNK Test Problem 
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CTP Test Problem 
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ZDT1 Test Problem 
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ZTD2 Test Problem 
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ZDT3 Test Problem 
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Table 3.1 Test problems data 

 

For all test problems the initial metamodels are built using a set of initial 

sample points equal to: 5×d, where d is the number of design variables. The total 

number of available function calls is set to (10×d). The summary of the results 

including the number of function calls, average and standard deviation for both HD 

and OS for the six test problems is presented in Table 3.2. For all these test problems, 

for each generation of MOGA, 100 points (or individuals) are used in the population. 

For the TNK, SR, and CTP problems, MOGA was run for 200 generations. However 

for the ZDT1, ZDT2, and ZDT3 problems the number of generations is increased to 

500 because there are 30 design variables.  

 # of 

Design 

Variables 

# of 

Objective

s 

# of 

Constraints 

# of 

Samples 

in Initial 

Design 

# of   

New 

Samples 

# of  

Repeat 

Runs 

TNK 2 2 2 10 10 10 

SR 7 2 11 35 35 10 

CTP 10 2 1 50 50 10 

ZDT1 30 2 0 150 150 10 

ZDT2 30 2 0 150 150 10 

ZDT3 30 2 0 150 150 10 
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3.4.2 Numerical Results 

For all test problems, in order to apply OAAMO, a set of initial design points 

were generated using MED. This is followed by the actual simulation runs for these 

design points. After that the Kriging metamodels were built for all objectives and 

constraints. Next, MOGA was used to solve a corresponding metamodel based multi-

objective optimization problem. The obtained Pareto points were tested to select next 

sample points according to the measures described in Section 3.3. Finally a space 

filling filtering scheme was applied to the selected points.  This procedure was 

repeated and continued until the stopping criterion was met. The same procedure was 

used for the other numerical examples: SR, CTP, ZDT1, ZDT2, and ZDT3 as well.  

As shown in Tables 3.2-3.4, based on the quality metrics HD and OS, the 

solutions obtained from OAAMO is comparable with AAMO and MOGA. And, as 

expected, the total number of function calls is reduced significantly using OAAMO 

and AAMO compared to MOGA. However, for most of the numerical examples (5 

out of 6 examples), the Standard Deviations (STDs) in OAAMO are less than those of 

AAMO which means solutions obtained from OAAMO are more robust than those 

obtained from AAMO. In order to compare the performance of OAAMO and AAMO, 

the errors for the obtained solutions are calculated as given in Eqs. (2.16) – (2.20). 
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(a) TNK 

 

(b) SR 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1

OAAMO

Offline AAMO

Conventional MOGA

600

700

800

900

1000

1100

1200

1300

1400

2500 3000 3500 4000 4500 5000 5500 6000

f2

f1

OAAMO

Offline AAMO

Conventional MOGA



 

 

 

55 

 

 

(c) CTP 

 

(d) ZDT1 
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(e) ZDT2 

 

(f) ZDT3 

Figure 3.3 Optimal solutions for numerical examples: (a) TNK, (b) SR, (c) CTP, 

(d) ZDT1, (e) ZDT2, and (f) ZDT3 
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Table 3.2 OAAMO results for test problems 

 

Test 

Problem 

OAAMO 

# Fn 

Calls 

HD OS 

Average STD Average STD 

TNK 20 0.22 0.04 0.83 0.17 

SR 70 0.77 0.15 0.52 0.65 

CTP 100 0.66 0.03 0.78 0.09 

ZDT1 300 0.74 0.04 0.91 0.09 

ZDT2 300 0.33 0.06 0.72 0.14 

ZDT3 300 0.58 0.03 0.85 0.31 

 

 

Table 3.3 AAMO results for test problems 

 

 

 

 

 

 

Table 3.4 Conventional MOGA results for test problems 

 

Test 

Problem 

Conventional MOGA 

# Fn 

Calls 

HD OS 

Average STD Average STD 

TNK 2100 0.21 0.06 0.78 0.13 

SR 2100 0.79 0.17 0.80 0.98 

CTP 2100 0.63 0.04 0.76 0.01 

ZDT1 5100 0.66 0.01 0.64 0.02 

ZDT2 5100 0.32 0.02 0.79 0.09 

ZDT3 5100 0.57 0.05 0.81 0.09 

 

 

A summary of the error results for the numerical test problems is reported in 

Table 3.5 and Table 3.6. Based on the RMSE and  RRMSE, OAAMO outperforms 

AAMO for all test problems except TNK. Also, OAAMO results in a smaller STDs 

compared with AAMO, which again means that OAAMO is more robust and predicts 

more accurate and consistent results compared with AAMO.  

 

Test 

Problem 

AAMO 

# Fn 

Calls 

HD OS 

Average STD Average STD 

TNK 20 0.23 0.07 0.54 0.23 

SR 70 0.74 0.21 0.98 0.86 

CTP 100 0.66 0.03 0.65 0.06 

ZDT1 300 0.66 0.05 0.87 0.15 

ZDT2 300 0.45 0.07 0.89 0.12 

ZDT3 300 0.59 0.05 0.93 0.32 
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Table 3.5 Pareto verification for OAAMO and AAMO (RMSE) 

 
OAAMO AAMO 

Test 

Problem  
f1 f2 f1 f2 

Mean STD Mean STD Mean STD Mean STD 

TNK 1.9×10
-5

 0.1×10
-5

 1.2×10
-5

 0.2×10
-5

 1.3×10
-5

 0.3×10
-5

 9.6×10
-6

 0.4×10
-5

 

SR 2.0537 1.82 0.515 0.329 397.48 365.28 210.46 129.126 

CTP 0.00 0.00 0.229 0.128 0.00 0.00 0.575 0.339 

ZDT1 0.00 0.00 0.012 0.045 0.00 0.00 0. 014 0.015 

ZDT2 0.00 0.00 0.004 0.0024 0.00 0.00 0.026 0.0173 

ZDT3 0.00 0.00 0.049 0.035 0.453 1.8×10
-6

 0.672 0.04 

 

 

Table 3.6 Pareto verification for OAAMO and AAMO (RRMSE) 

  OAAMO AAMO 

Test 

Problem  
f1 f2 f1 f2 

Mean STD Mean STD Mean STD Mean STD 

TNK 0.002 2×10
-4

 0.0019 0.4×10
-8

 0.0014 4×10
-8

 0.0015 0.4×10
-5

 

SR 0.065 0.012 0.059 0.019 13.204 48.23 22.378 28.89 

CTP 0.00 0.00 23.043 2.949 0.00 0.00 37.694 12.78 

ZDT1 0.00 0.00 2.842 0.128 0.00 0.00 2.842 0.043 

ZDT2 0.00 0.00 0.719 0.001 0.00 0.00 6.475 0.112 

ZDT3 0.00 0.00 0.824 0.0288 0.00 0.00 37.529 1.50 
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3.5 Comparison with ParEGO 

In this section, the proposed method OAAMO is compared with ParEGO 

(Knowels, 2005) for four test problems, all unconstrained, as listed in Eq (3.9) to Eq. 

(3.12). These test problems have different degrees of difficulty and characteristics. As 

shown in Figure 3.4, and Table 3.7 and Table 3.8, OAAMO outperforms ParEGO in 

terms of the average HD metric for OKA1, KNO1 and VLMOP2 test problems. In 

terms of the average OS metric, OAAMO performs significantly better than ParEGO 

for OKA2 and KNO1 problems.  

Table 3.9 reports the RMSE and RRMSE results for OAAMO solutions only. 

The errors are reported for OAAMO because its solutions are obtained based on 

metamodels. On the other hand, while ParEGO uses metamodeling internally, the 

final solutions are obtained based on the observed points and thus no error is reported 

for its solutions. From these results, it can be concluded that for almost all test 

problems the accuracy of the OAAMO solutions is reasonable.  

OKA1 Test Problem 
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OKA2 Test Problem 
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KNO1 Test Problem 
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VLMOP2 Test Problem 
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(a) OKA1 

 

(b) OKA2 
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(c) KNO1 

 

(d) VLMOP2 

Figure 3.4 Optimum solution for numerical examples using OAAMO and 

ParEGO 
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Table 3.7 OAAMO results 
Test 

Problem 

OAAMO 

#Fn 

Calls 

      HD OS 

Average  STD  Average  STD  

OKA1  20  0.49  0.07  0.35  0.28  

OKA2  20  0.61  0.05  0.58  0.29  

KNO1  20  0.39  0.13  0.70  0.50  

VLMOP2  20  0.61  0.07  0.32  0.11  

  

 

Table 3.8 ParEGO results 
Test 

Problem 

ParEGO 

#Fn 

Calls 

      HD OS 

Average  STD  Average  STD  

OKA1  20  0.60 0.08 0.44 0.14 

OKA2  20  0.59 0.05 0.38 0.17 

KNO1  20  0.59 0.09 0.13 0.09 

VLMOP2  20  0.68 0.05 0.36 0.18 

 

 

Table 3.9 Pareto verification for OAAMO  

 
RMSE RRMSE % 

Test 

Problem  

f1 f2 f1 f2 

Mean STD Mean STD Mean STD Mean STD 

OKA1  0.05 0.08 0.23 0.12 2.74 3.81 7.94 3.33 

OKA2  0.02 0.02 0.30 0.10 1.22 1.08 10.12 4.35 

KNO1  0.03 0.04 0.04 0.06 0.19 0.25 0.35 0.42 

VLMOP2  0.02 0.01 0.01 0.01 13.17 21.08 3.78 3.99 

 

3.6 Engineering Example 

The OAAMO approach was also applied to optimize air-to-refrigerant heat 

exchanger segment with six design variables as summarized in Table 3.10. A 

commercially available CFD simulation tool (Fluent, 2007) was used to evaluate the 

actual values of objectives and constraints.  

The initial metamodels are built using an initial design with 30 samples. 100 

individuals in the population in each generation of MOGA are used with the total 

number of generations is set equal to 500. For the engineering example, OAAMO is 
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just compared against AAMO since the computational time for solving these two 

examples was prohibitively large to solve them directly with MOGA. Only 60 actual 

simulations were used with OAAMO or AAMO.    

3.6.1 Air Cooled Heat Exchanger Segment Model 

A schematic of a cross-flow air-to-refrigerant heat exchanger (Abdelaziz et 

al., 2010) is shown in Figure 3.5(a) and corresponding heat exchanger segment in 

Figure 3.5(b).  The performance measures for this heat exchanger element are the air 

side heat transfer coefficient and the air side pressure drop. The overall goal is to find 

via optimization the best segment design that provides a heat exchanger segment with 

higher air side heat transfer coefficient and lower pressure drop.  

The different dimensions or design variables which dictate the air side performance of 

the element are marked in Figure 5(c). The corresponding temperature distribution is 

shown in Figure 5(d) for inline arrangement when there is no offset. The air side heat 

transfer and pressure drop are obtained by solving the continuity and momentum 

equations using CFD.  

Overall, this air to refrigerant heat exchanger problem has six input variables 

and two responses.  For the purpose of this study, individual metamodels are 

developed for each response. The six design variables are as follows (see Figure 3.5): 

Tube internal diameter, center to center vertical and horizontal spacing, the number of 

ports, offset, and the inlet air velocity. The time required for each simulation is 

approximately 5 minutes on a Dual 2 GHz Xeon workstation.  
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Table 3.10 Test problems data 

 

 

 

 

 

 

 

 

 

Test 

Problem 

# of Design 

Variables 

Initial 

Design 

New 

Samples 

Repeat 

Runs 

HXSegment 6 30 30 10 

 

 

 

 

 

(a) (b) 

 

 
 

(c) (d) 

Figure 3.5 (a) Air to refrigerant heat exchanger, (b) heat exchanger segment 

Schematic, (c) computational domain and (d) sample results (Abdelaziz et al., 2010) 

 

 



 

 

 

66 

 

3.6.2 Air Cooled Heat Exchanger Segment Optimization Problem Definition 

The input variables used to build the metamodel and their limits are given in 

Table 3.11. The outer diameter, the tube thickness and the horizontal and the vertical 

spacing are a function of the inner diameter. Thus accounting for inner diameter also 

accounts for outer diameter, thickness and spacing. The vertical and horizontal 

spacing needs to be accounted for, since it has a direct influence on the air-side heat 

transfer and pressure drop. Since the limits imposed on the inner diameter differ by an 

order of magnitude, it is imperative to have the limits on the other design variables 

scale accordingly. The velocity limit was chosen based on the velocity limits for 

conventional air-conditioning applications. All design variables are normalized within 

the interval [0, 1] when used in the DOE and metamodel development. The 

optimization problem for the heat exchanger segment can be summarized as shown in 

Eq. (3.13). 

 

Table 3.11 Design Variables for Heat Exchanger Segment Optimization 

Design Variable Lower Limit Upper Limit 

Inner diameter, Din 0.1mm 1mm 

Horizontal spacing, Hs [mm] 1.5 × Dout 6.0 × Dout 

Vertical spacing, Vs [mm] 2 × Dout 4 × Dout 

Depth, w [mm] Function of Din Function of Din 

Offset, l [mm] Function of Hs Function of Hs 

Air velocity, v [m/s] 1.0 3.0 

 

1

2 air

air

2

 ( )

( )

: 50

100 /

minimize  f  x  AirHTC

minimize f  x  P  

subject  to  P kPa

AirHTC W m K

=

= ∆

∆ ≤

≥

 (3.13) 
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3.6.3 Results 

Two different metamodels were built for the two responses or objectives, one 

for Air pressure drop (∆Pair) and the other for Air Heat Transfer Coefficient 

(AirHTC). Kriging with logarithmic response (to avoid negative values during 

prediction) was used to develop the metamodels. For AAMO, a non-adaptive 

approach was used and 60 samples were generated using the MED method. 

Figure 3.6 shows the obtained Pareto sets for OAAMO and AAMO. As 

observed from Figure 3.6, OAAMO resulted in an improved Pareto set such that it 

obtains solutions with higher heat transfer coefficient and lower pressure drop than 

AAMO. CFD verification for the Pareto set also shows smaller errors for the 

OAAMO compared to AAMO, see Table 3.12.  

Table 3.12 Relative Errors in Pareto Solutions from OAAMO and AAMO for 

Heat Exchanger Segment 
 

 

 

 

 

 

   

RError 
OAAMO AAMO 

∆Pair % AirHTC % ∆Pair % AirHTC % 

Average 1.20 0.30 4.62 2.34 

Max 6.30 1.70 8.94 4.89 

Min 0.02 0.01 0.06 0.16 

STD 1.99 0.54 1.52 2.63 
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Figure 3.6 Comparison between OAAMO and AAMO for heat exchanger 

segment optimization 

3.7 Summary  

In this chapter, a new online approximation assisted multiobjective 

optimization approach called OAAMO is presented. In the proposed approach, 

metamodels of objectives and constraints are iteratively developed and updated in 

concert with an optimizer. This updating of the metamodels is based on selecting a 

few (five) sample points from an estimated set of Pareto solutions obtained in each 

iteration of the approach. An accumulation of these sample points together with an 

initial design form a set of samples for building metamodels. The five selected points 

include: (i) two points with the lowest and highest (normalized) predicted variance in 
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the normalized objective functions’ variance space, (ii) three points from the current 

estimated Pareto points (two end points and one in the middle). A space filling filter 

is applied to prevent any clustering of the samples. The proposed approach is applied 

to a total of 10 numerical and an engineering test problems with different degrees of 

difficulty. The OAAMO solutions are compared with AAMO, ParEGO and MOGA. 

Based on the results obtained, it is concluded that OAAMO obtains a better estimate 

of the Pareto solutions for most of the examples compared to AAMO and ParEGO. 

Moreover, compared with MOGA, OAAMO obtains reasonable solutions while 

reducing significantly the number of functions calls. 

In the next chapter, a new global and local search based approach is proposed 

for multiobjective optimization. The new approach is mainly developed to reduce 

further the computational cost by eliminating the verification of final optimum 

solutions. In addition, the new approach always delivers feasible solutions.  
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Chapter 4: Approximation Assisted Multiobjective Optimization 

with Combined Global and Local Metamodeling 

4.1 Introduction 

The approximation assisted multiobjective optimization with global and local 

metamodeling approach of this chapter is presented in Hu et al., (2012)
2,3

.  

In this chapter, a new approximation assisted multiobjective optimization 

approach is developed. Both global and local metamodels for objective and constraint 

functions are used. Numerical example is used to compare the proposed approach 

with previous approaches in the literature. Additionally, the proposed approach is 

applied to a CFD-based engineering design example. It is found that the proposed 

approach is able to estimate Pareto optimum points reasonably well while 

significantly reducing the number of function evaluations.   

The rest of this chapter is organized as follows: Section Section 4.2 

summaries the related work from the literature. An overview of the new approach is 

provided in Section 4.3. Sections 4.4 introduce numerical example and results in 

addition to comparison with approaches from the literature. Section 4.5 presents an 

engineering example for optimizing coldplate device that is used for electronic 

cooling. Section 4.6 provides conclusions and closing remarks. 

                                                 
2
Hu W., Saleh, K., and Azarm, S., 2012a, “Approximation Assisted Optimization with Combined Global and 

Local Metamodeling,” ASME 2012 International Design Engineering Technical Conference, IDETC 2012, 

August 12-12, 2012, Chicago, IL, USA.  
3
 Hu W., Saleh, K., Azarm, S., and Mosier, G., 2012b, “Approximation Assisted Optimization with Combined 

Global and Local Metamodeling,” Manuscript Submitted to Journal of Mechanical Design, June 5, 2012. 
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4.2 Related Work 

As introduced early in Chapter 3, Approximation Assisted Optimization 

(AAO) is widely used in engineering design problems to replace computationally 

intensive simulations with metamodeling. Traditional AAO approaches employ 

global metamodeling for exploring an entire design space. Recent research works in 

AAO report on using local metamodeling to focus on promising regions of the design 

space. However, very limited works have been reported that combine local and global 

metamodeling within AAO. A summary of the related work in the area of using 

global and local metamodeling in approximation assisted optimization is provided in 

the this section. 

According to the coverage of design space by a metamodel, AAO can be 

categorized as either a global or local approach. A global AAO uses a metamodel to 

estimate each objective and constraint function for the entire design space (Sasena et 

al., 2002; Huang et al., 2006). A local AAO approach focuses on certain local regions 

in the design space and constructs the metamodels in those focused regions for the 

objective and constraint functions (Fonseca et al., 2010; Picheny et al., 2010; Pilat 

and Neruda, 2011). For example, local approximation with a Taylor expansion has 

been used based on a coarsely sampled global space (Haftka, 1991). Also, work has 

been reported with only one cluster to focus on an expected optimum region for 

single-objective optimization (Wang and Simpson, 2004). Both global and local 

AAOs have their advantages and limitations. A global AAO is useful in exploring the 

entire design space and obtaining a global optimal solution. While for local AAO, 

since the focus is on a relatively small region in the design space, a higher accuracy 
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of solutions can be achieved. But AAO with local metamodeling alone is not capable 

of exploring the entire design space and may be stuck at a local optimum or 

suboptimal solutions.  

In this chapter, a newly developed online approximation assisted 

multiobjective optimization approach is presented. The proposed approach combines 

global and local metamodels to significantly improve metamodeling accuracy while 

using fewer sample points during AAO. The basic idea is to screen a set of randomly 

generated points by using metamodels and select the non-dominated ones. The 

observed non-dominated points are grouped in multiple clustered regions in the 

design space and then local metamodels of objective/constraint functions are 

constructed in each region. The observed points are also used to update the 

metamodels and this procedure is repeated until a pre-specified number of sample 

points is exhausted. One numerical and one engineering examples are tested with this 

approach. The results from the numerical example are compared with several well-

known previous approaches, namely ParEGO (Knowles, 2006), PSP (Shan and 

Wang, 2005) and Forrester’s approach (Forrester et al., 2008).  

A few distinct characteristics of the proposed approach compared to the 

related AAO methods in the literature are: (1) The majority of previous AAO 

methods focus either on global or local metamodeling and very few consider using 

both global and local metamodel with multiobjective optimization. In the proposed 

approach, online sample points are iteratively placed in both global and local design 

spaces and consequently used to construct multiple metamodels to explore the design 

space. Combining global and local metamodels with AAO allows the proposed 
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approach to explore the entire design space better, while focusing on promising local 

regions. (2) While a previous approach (Wilson et al., 2001) uses a clustering method 

to support the refinement of a local optimum region for single-objective optimization, 

the proposed approach identifies a number of clusters in the promising local design 

spaces for a multiobjective optimization problem. This multiple clustered regions are 

helpful for the proposed approach to estimate better a wider range of Pareto solutions. 

(3) An adaptive procedure is developed in the proposed approach to determine the 

number and location of clusters according to a “spread distance” of the non-

dominated points. Since the spread distance is calibrated in both design variable and 

objective space, the clusters are able to quickly identify the most promising region 

and further improve the non-dominated points iteratively. (4) The clusters in the 

proposed approach are located around the current best design points. In this way, the 

local metamodels significantly enhance the accuracy of metamodeling and predictive 

capability of the approach. In addition, the best design point is always observed and is 

feasible. As such, there is no need to verify the final solutions separately.  In the next 

section, the details of the proposed approach are presented.  

4.3 Proposed Approximation Assisted Multiobjective Optimization with Combined 

Global and Local Approach  

The following sub-sections provide details on the global and local search 

methodology, the adaptive clustering technique and the steps in the proposed 

approach. 
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4.3.1 Overview of Proposed Approach 

The approach starts with global metamodels for objective and constraint 

functions and using them it selects the most promising points from a large number of 

randomly generated points. The actual simulation for the selected points is run, which 

means their actual objective/constraint function values are computed. Based on these 

values, the “best” points are grouped in multiple clustered regions in the design space 

and then local metamodels of objective/constraint functions are constructed in each 

region. All observed points are also used to iteratively update the metamodels. In this 

way, the predictive capabilities of the metamodels are progressively improved as the 

optimizer approaches the Pareto optimum frontier. An advantage of the proposed 

approach is that the most promising points are observed and that there is no need to 

verify the final solutions separately. 

4.3.2 Global and Local Search 

The main goal of the proposed approach is to find a good estimate of the 

global Pareto optimum design points while reducing the total number of function 

calls. In order to achieve this, both global and local metamodeling and search of the 

design space are considered. Iteratively, global metamodels are built for the entire 

design space while a large number of random points are generated and evaluated 

using the global metamodels. The global metamodels are iteratively updated to better 

estimate global optimum design points and to avoid getting stuck at local optimum 

solutions. Additionally, after non-dominated points are obtained, clusters are defined 

and local metamodels are built in each cluster. For each cluster, random points are 

also generated and evaluated (according to the objective/constraint functions) based 
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on the local metamodels. The method for creating clusters and iteratively and 

adaptively updating them is described next.  

4.3.3 K-Means Clustering 

In the proposed approach, the purpose of clustering is to divide a population 

of non-dominated points into a few groups or subpopulations (Seber, 1984; Hastie et 

al., 2001). Each of these groups consists of non-dominated points which are close to 

each other in the design space. When using metamodels to estimate the objective and 

constraint functions, the response over the entire design space can be highly non-

linear and multi-modal. However, the non-dominated points in one cluster can be 

selected to have more similar responses for the estimated objective and constraint 

functions. Therefore, using a clustering method that divides the non-dominated points 

into different clusters and constructing local metamodels for each cluster can 

significantly improve the accuracy of the metamodels.  

In this approach, a standard K-means clustering method (Seber, 1984) is used 

to divide a set of N non-dominated points xj (j = 1, 2, … N) and determine the location 

of cluster centers. In K-means clustering, the mean value of the K cluster centers ck 

(k=1, 2,… K) are determined so that the within-cluster sum of the distances between 

the non-dominated points and center of the cluster are minimized, as expressed in Eq. 

(4.1): 

1 1

min || ||
K N

j k
k j= =

−∑ ∑ x c   (4.1) 

where the quantity ||•|| computes the Euclidean distance for the inside term. Since the 

K-means cluster method minimizes the Euclidean distances of the elements within the 



 

 

 

76 

 

same cluster, different clustering results can be identified with different values of K. 

In the next section, an adaptive method is developed to determine the value of K.  

After the non-dominated points are clustered, a rectangle (or a hyper-box in 

multiple dimensions) is formed around each cluster, enclosing all the non-dominated 

points within the cluster. The boundary of the rectangle is extended by adding a small 

margin around the rectangle. This will allow the proposed approach to better explore 

the design space adjacent to the current clusters. Within the rectangle for each cluster, 

a local metamodel for the objective and constraint functions is constructed using the 

non-dominated points (which are all observed). The details of the cluster-based 

metamodeling are discussed in the next section. 

4.3.4 Adaptive Clustering 

The number of clusters is mainly identified based on the number of non-

dominated points and the distance between the non-dominated points in the design 

space. The number of clusters helps to improve the spread of the final optimum 

designs while avoiding sample crowding in the design space. The steps to determine 

the number of clusters are listed below: 

Step 1: Start with one cluster, k=1. 

Step 2: Use the K-means clustering approach (Seber, 1984) to determine k clusters 

and the centers of these clusters ck (k=1, 2, …, K) 

Step 3: Calculate the maximum in-cluster distance dmax. First, the maximum in cluster 

distance for cluster k, dk, is computed:  

 max || c ||
k

k j k
j S

d
∈

= −x   (4.2) 
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where ck represent the center (or centroid) for cluster k and Sk represents the set of all 

the points xj inside the cluster k. Among all the maximum in-cluster distances dk (k=1, 

2, …, K), the maximum in-cluster distance for different clusters, dmax, is obtained: 

max max( )k
k

d d=   (4.3) 

Step 4: Check the stopping condition, with Dmax being a user specified maximum 

acceptable in-cluster distance: 

 max maxd D≤  (4.4) 

If this condition is not satisfied, increase the number of clusters by one: k =k+1, and 

return to Step 2. Otherwise, the number of clusters equals to k.  

The quantity Dmax is a problem dependent parameter. It represents an upper 

bound for an acceptable distance between any sample point and centroid of a cluster. 

Typically, a smaller Dmax results in more clusters and thus better accuracy of the 

metamodels and solutions. However, this smaller value also increases the number of 

function calls needed in the proposed approach.  

4.3.5 Sample Selection 

The initial samples are generated using a space filling sampling technique 

such as the Maximum Entropy Design (MED) or Latin Hypercube Sampling (LHS) 

method (Koehler and Owen, 1996). After the non-dominated random points are 

identified, one new sample from the non-dominated set is selected based on the 

spread distance. The spread distance is computed using a Euclidean distance between 

a non-dominated (candidate) point and the existing sample points considering both 

design and objective space. In calculating the spread distance, the design variables 
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and objectives are scaled between 0 and 1. The spread distance in the design space is 

given by the following equation: 

  max || ||i

i S
d

∈
= −x x x  (4.5) 

where x and x
i
 represent a candidate point and a sample point, respectively. The max 

in Eq. (4.5) is over all existing sample points where S refers to the sample set. 

Similarly, the distance in the objective function space is expressed as: 

 max || ||i

i S
d

∈
= −f f f   (4.6) 

A weighted sum of both distances Eqs. (4.6) and (4.7) is used to account for the 

closeness (or spread distance) in both spaces: 

 1/2 1/ 2d dγ = +
x f   (4.7) 

A non-dominated random point with the largest γ value is selected as a new sample 

point in every iteration of the proposed approach. 

4.3.6 Step-by-Step Description of Proposed Approach 

Figure 4.1 shows a flowchart for the proposed approach. The steps are 

described as in the following. 

Step 1: Initialize 

Create an initial set of sample points (or samples), run the simulation and calculate 

the responses (for objectives and constraints).  

Step 2: Build Global Metamodels 

Build a global metamodel for each objective and constraint function. 

Step 3: Generate Global Random Points 
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Generate random samples in the entire design space and estimate the responses using 

the global metamodels obtained in Step 2; combine initial samples and the random 

points into a universal sample set. 

Step 4: Identify Global Non-Dominated (ND) Points 

Identify the ND points from the universal set of points from Step 3 and observe (or 

compute the objectives/constraints for) the non-dominated points that are not 

observed yet. 

Step 5: Create Clusters and Local Metamodels 

Create a few clusters based on the non-dominated points as described in Section 

4.3.3; place additional samples (if necessary) in each cluster to build locally accurate 

metamodels for objectives and constraints. 

Step 6: Generate Local Random Points in Clusters 

Generate random points in each cluster and estimate their response using local 

metamodels; again combine existing samples and the random points in the clusters 

into a universal sample set.  

Step 7: Identify Local Non-Dominated (ND) Points 

Identify the non-dominated points from the universal set in Step 6 and observe the 

non-dominated points that are not observed before. 

Step 8: Repeat and Stop 

Repeat steps 2-7 until a certain stopping criterion is satisfied. 

 The stopping criterion can be based on one or more of the following criteria:  

(i) No change in clusters (location and size) for several iterations. (ii) Total number of 



 

 

 

80 

 

available function calls is exhausted. (iii) No change to the non-dominated points for 

a number of iterations. 

   
Figure 4.1  Flowchart of the proposed approach 

 4.4 Numerical Examples and Results 

In this section, the two-variable two-objective ZDT3 example from the 

literature (Shan and Wang, 2005) is chosen to demonstrate the approach. The 

formulation of the optimization problem is: 

Step 3: Generate random points in the global 

space and estimate points’ responses

Start

Step 4: Run Non-Dominated (ND) sorting and

observe new sample points 

Step 5: Create clusters based on ND points   

and build local metamodels

Step 6: Generate random points in each   

cluster and estimate points’ responses

Step 8: Stop?

End

Step 7: Run Non-Dominated (ND) sorting and 

observe new sample points 

Step 1: Create initial set of sample points

Step 2: Build global metamodels
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1 1

2 1 1 1

1 2

2

min   

min   [1 / ( / ) sin(10 )]

. .:   , [0,  1]

where  1 9

f x

f u x u x u x

s t x x

u x

π

=

= − −

∈

= +

  (4.8) 

As summarized in Table 4.1, a response surface metamodeling technique is 

used in this example. The values of initial and total number sample points are 6 and 

20 respectively. The maximum in-cluster distance Dmax which adaptively determines 

the number of clusters, is 0.07. 

Table 4.1. Number of samples and maximum in-cluster distance for ZDT3 

example 

 Metamodel 
# of total 

samples 

# of initial 

samples 

Max. in-

cluster 

dist. 

ZDT3 Kriging 20 6 0.07 

Coldplate Kriging 30 10 0.09 
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(b) 

 

(c) 

 

Figure 4.2 Number of sample points (N) and Non-Dominated (ND) points 

with clusters (a) N=7 ND=2, (b) N=13 ND=5, and (c) N=20 ND=9 

 

Following the steps of the proposed approach, 6 initial sample points are 

placed in the global design space in the beginning. Based on these sample points, a 

global metamodel for each objective function is constructed. Next, 200 random points 

are generated in the global design space and both objective function values are 

estimated using their global metamodels. The global random points are then 

combined with the current sample points, and the non-dominated points are 

identified. Among the non-dominated points, some points might have already been 
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observed from the existing sample set. For the unobserved non-dominated points, one 

point is selected based on the spread distance in both design and objective space as 

discussed earlier in Section 4.3.5. Consequently, the selected point is observed.  

In Figure 4.2 (a), the initial 6 sample points and the newly observed non-

dominated point are shown in the design variables space. As can be seen, only two 

non-dominated points are identified. The non-dominated points are clustered 

adaptively based on the maximum in-cluster distance, where the rectangle represents 

the boundary of the clusters. As shown in Figure 4.2 (a), two clusters are identified 

and the local metamodel is constructed for each cluster using the sample points within 

the clusters. In the following, 100 random points are generated in each cluster and 

their objective function values are estimated using the local metamodels. Finally, the 

local random points are combined with the sample (observed) points, and the non-

dominated points are identified. Again one sample is selected based on the spread 

distance and if a selected non-dominated random point is not observed, it should be 

observed. After that, the iteration counter is increased by one and the previous steps 

are repeated. Figure 4.2 (b) and (c) shows the progressive improvement of the sample 

points and non-dominated points from an intermediate iteration and the final iteration 

for the illustrative example. It can be seen from the figure that both the area and 

location of the rectangles (or clusters) change iteratively. Because only a limited 

number of sample points are used, the optimization is stopped when the total number 

of sample points (i.e., 20) is exhausted. One interesting observation is the overlapping 

of clusters in Figures 4.2. This happens because a small Dmax value is used which 

allow more clusters to be adaptively created, and also because the area of each cluster 
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is extended with a margin. However, this overlap effect does not degrade the 

performance of the proposed approach. 

 

Figure 4.3 Optimal solution for ZDT3 test problem 

 

The final non-dominated points based on 20 sample points are shown in the 

design variable space in Figure 4.2(c). The same set of sample points and non-

dominated points are also plotted in the objective space in Figure 4.3. The true Pareto 

frontier is also shown in the same figure for comparison. It can be seen that the 

majority of the sample points are located around the true Pareto and the proposed 

approach identified a reasonable set of optimum solutions in terms of closeness as 

well as the spread in the objective function space. 

Then the results obtained from the proposed approach are compared with 

three approaches from the literature, PSP (Shan and Wang, 2005), Forrester (Forrester 

et al., 2008), and ParEGO (Knowles, 2006). The summary of the comparison is 

presented in Table 4.2. and Figure 4.4. Considering the randomness of initial sample 
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points generated by the LHS, all compared approaches are run for 10 times for with 

the same number of initial and total number of sample points as shown in Table 4.1.  

HD, and overall spread, OS in addition to the number of non-dominated points 

obtained from each approach are used in the comparison. The attainment surfaces for 

the best and worst non-dominated solutions based on the HD value from each 

approach are shown in the objective function space in Figure 4.4. Table 4.2 

summarizes the mean and standard deviation of the number of non-dominated points, 

HD and OS. 

Table 4.2 Number ND points and quality metrics for numerical and engineering 

examples 

 
Approach 

#ND pts. 

Mean/std. 

HD 

Mean/std. 

OS 

Mean/std. 

ZDT3 

Proposed 7/1 0.19/0.02 0.37/0.15 

PSP 7/1 0.21/0.02 0.36/0.27 

Forrester 6/2 0.22/0.02 0.87/0.37 

ParEGO 6/2 0.20/0.06 0.22/0.16 

     

Coldplate 
Proposed 11/1 0.43/0.01 0.36/0.13 

Forrester 9/1 0.42/0.01 0.65/0.08 
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Figure 4.4 Optimal solutions for numerical examples ZDT3 

4.5 Engineering Example 

The proposed approach is applied to optimize the design of a microchannel 

coldplate. The coldplate schematic is shown in Figure 4.5(a) (Saleh et al., 2010). The 

objectives considered are: minimizing the maximum channel temperature Tmax while 

minimizing the refrigerant pressure drop ∆P inside the channel as formulated in Eq. 

(4.9).   
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Table 4.3 Design Variables for Coldplate Optimization 

Design Variable Lower Limit Upper Limit 

Channel height, H [mm] 0.8 2.0 

Channel width, W [mm] 5.0 70.0 

Refrigerant velocity, v [m/s] 0.5 3.0 

 

In this example, three design variables are considered as shown in Table 4.3: 

channel height H, channel width W, and refrigerant velocity ν. The constraints are the 

allowed refrigerant pressure drop inside the channel and limitation on both maximum 

channel wall temperature (material constraint) and temperature difference between 

outlet and inlet of the channel. Only half of the channel, as shown in Figure 4.5(b), is 

simulated as there is symmetry at the center of the channel. Parallel parameterized 

CFD (PPCFD) approach (Abdelaziz et al., 2010) is used to automatically read the 

normalized design variables and then generate the corresponding Gambit
®

 and 

Fluent
®

 journal files (Fluent, 2007).  

Because all constraint functions in the coldplate example are obtained from an 

expensive CFD simulation, the PSP and ParEGO approaches are not applied to this 

example since both approaches cannot handle constraints. However, the Forrester’s 

approach is applied and the results of both the proposed approach and Forester’s 

approach are given in Figure 7 where the non-dominated solutions from the best and 

worst runs from both approaches are shown. The number of non-dominated points 

and the quality of the non-dominated solutions are shown in the last two rows of 
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Table 4.2.  Note that the proposed obtains slightly more number of non-dominated 

points compared with the Forrester’s approach. On the other hand Forrester’s 

diversity is slightly better than the proposed approach. In terms of the attainments 

surfaces, the two approaches are comparable. 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 4.5 Coldplate (a) Schematic (b) Computational domain   

(Saleh et al., 2010) 
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Figure 4.6 Optimal solution for coldplate example 

 

In terms of the coldplate design itself, it can be depicted from the results in 

Table 4.4 that for a smaller channel width and high refrigerant velocity the pressure 

drop constraint tends to approach the upper bound while the maximum temperature is 

significantly reduced. This trend can be seen in the upper left corner in Figure 4.6. 

However for the maximum channel width and intermediate refrigerant velocities the 

pressure drop is significantly reduced while the temperature increased as the surface 

is subjected to the constant heat flux. 
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Table 4.4 Optimum solutions for coldplate example 

W H ν Tmax ∆P 

mm mm m/s K Pa 

5.20 1.04 2.57 388.21 34344.28 

5.88 1.12 2.69 390.05 31629.56 

5.33 1.11 2.31 393.48 27373.30 

5.12 1.80 2.65 395.68 16341.62 

5.89 1.67 2.30 403.68 14450.23 

6.65 1.78 2.37 407.12 13429.33 

6.51 1.84 2.10 411.72 11169.17 

5.93 1.83 1.55 421.38 7999.49 

5.34 1.85 1.41 422.53 7281.43 

5.09 1.97 1.29 426.01 6090.60 

9.61 1.99 1.29 449.77 5155.07 

46.33 1.98 1.25 550.26 4384.63 

4.6 Summary  

A new and novel online approximation assisted multiobjective optimization 

approach is developed and presented in this chapter. The approach iteratively uses 

and updates both global and local metamodels for the objective and constraint 

functions in its pursuit for Pareto optimum solutions. The global metamodels allow 

the approach to explore the entire design space while a number of local metamodels 

focus on promising regions with higher accuracy. These promising regions are 

determined based on a number of clusters using a newly developed clustering 

scheme. This scheme is adaptive and dynamically determines the number of clusters, 

their size and location in the design space. 

The proposed approach considers both objective and constraint functions as 

being computationally expensive and as such it can be used in a wide range of 

engineering design optimization applications.  Both numerical and engineering 

examples are tested using the proposed approach. A CFD coldplate design example is 
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demonstrated with the proposed approach as well. It is found that a reasonable set of 

optimum design solutions are obtained with a few number of CFD simulations.    

In the next chapter, a new framework for applying OAAMO to heat exchanger 

design problems with multiscale simulations is presented.  
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Chapter 5: Online Approximation Assisted Multiobjective 

Optimization for Problems with Multiscale Simulation 

(OAAMOMS)  

5.1 Introduction 

In this chapter, an online multiobjective approximation assisted optimization 

approach is used to design a novel air-cooled heat exchanger using a multiscale 

simulation.  The material of this chapter is essentially the same as that given in the 

paper by Saleh et al. (2011a)
4
.  

In OAAMOMS, design optimization is performed using multiobjective 

genetic algorithm while the computational cost is reduced significantly by applying 

an online approximation technique. Higher model fidelity is achieved by applying the 

multiscale heat exchanger simulation method. This approach uses a CFD technique 

on the segment level coupled with ε-NTU solver for the entire heat exchanger 

performance evaluation.  

The rest of this chapter is organized as follows: Section 5.2 summaries the 

related work from the literature. An overview of the new approach is provided in 

Section 5.3. Sections 5.4 presents an engineering example for applying the new 

approach to optimize a new generation of air-cooled heat exchanger with comparison 

with offline approximation assisted multiobjective optimization based approach. 

Section 5.5 provides conclusions and closing remarks. 

                                                 
4
Saleh, K., Radermacher, R., Aute, V., and Azarm, S., 2011a, “Online Approximation Assisted Optimization of a 

Novel Air-Cooled Heat Exchanger,” 10th IEA Heat Pump Conference, Tokyo, Japan, Paper No. 00272. 
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5.2 Related Work 

Conventional heat transfer and pressure drop correlations for air side in air- 

cooled heat exchangers (HXs) cannot be used for new heat exchangers 

configurations. In addition, experimental investigations require developing several 

prototype designs which can be expensive, time consuming and do not ensure finding 

optimum design solutions. Consequently, numerical models using CFD simulations 

are considered to predict amount of heat transfer and pressure drop of the new HX 

configuration (Sunden, 2007). Computationally, it can be difficult to build an accurate 

CFD model for the entire heat exchanger. Therefore, there is a need to use multiscale 

simulation to overcome this problem. Multiscale means that the CFD simulation used 

at the heat exchanger segment level, to predict the thermal and hydraulic 

performance, is coupled with the entire heat exchanger simulation tool such as ε-NTU 

method.  

Previously, experimental results have been used to predict the hydraulic and 

thermal performance in the area of HX design (Kays and London, 1998). Recently, 

many works reported using CFD simulations to predict the heat transfer and hydraulic 

performance. Bergles (2002) recommended using numerical techniques for the 

prediction of thermal performance for new HXs geometries. According to Sunden 

(2007), there are two different ways to use CFD in heat exchangers simulation. The 

first approach uses large scale or coarse-mesh schemes with local averaging or porous 

medium to predict the flow distribution within the heat exchanger by the method of 

flow and thermal resistance. In the second approach, periodic modules with the heat 

exchanger are used with fine meshes to predict the heat transfer and friction 
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coefficients with high accuracy (Romero-Mendez et al., 2000; Li et al., 2006; Wu and 

Tao, 2007; De Losier et al., 2007; Abdelaziz et al., 2010). In the next sub-section, the 

work reported in the literature for heat exchangers’ optimization is discussed. 

5.2.1 Heat Exchanger Optimization 

In the area of heat exchanger optimization, most CFD studies have focused on 

segment level optimization. Few studies used approximation assisted optimization for 

the entire heat exchanger design (Lee et al., 2001). Some existing methods have used 

curve fitting to correlate the response from CFD calculations inside the optimization 

step. Other methods use DOE, metamodeling, and optimization in heat exchanger 

design applications (Jing et al., 2005; Park and Moon, 2005; Park et al., 2006). The 

most recent work in the area of heat exchanger optimization using multiscale 

simulation was based on adaptive DOE which was used to build offline metamodels 

for both air heat transfer coefficient and air pressure drop (Aute et al., 2008 and 

Abdelaziz et al., 2010). The main advantage of using offline metamodels is the ability 

to work with different optimization objectives, derived from the same metamodel. In 

other words, based on offline metamodels, different optimization problems can be 

solved with the same metamodels. However, the metamodels used for offline 

metamodel assisted optimization should be globally accurate. This means additional 

CFD simulations will be required to achieve a reasonable level of global accuracy. 

However, in many instances, an optimization task is very narrowly defined. For 

instance, manufacturer aims at reducing the heat exchanger weight and reducing the 

pumping power for aerospace applications. There might be many constraints on the 

heat exchanger dimensions, aspect ratios, as well as the pumping power, the weight 
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and so on. This means, in terms of optimization, both the objectives and the 

constraints are well known. In such cases, we just need to improve the performance of 

metamodels near the expected optimum region. Therefore, online approximation 

assisted multiobjective optimization is a better choice for such cases. 

In the proposed approach, the online approximation assisted optimization 

presented in chapter 3 is applied to heat exchanger design.  More specifically, the 

proposed approach in chapter 3 is used to integrate the use of CFD for segment level 

simulation with the ε-NTU model (Shah and Sekulić 2003) to evaluate the 

performance of the entire heat exchanger. Metamodels are used for the optimization 

to replace the computationally expensive CFD simulations. The metamodels are 

updated in the direction of improving their performance in the region where the 

optimum heat exchanger design solutions are expected to be. In addition, the 

solutions from online approximation are compared with solutions from offline 

approach (Abdelaziz et al., 2010). As will be shown for the case studies considered, 

the current results show that the online approximation approach outperforms the 

offline approximation approach in terms of reducing the computational time 

significantly and obtaining more accurate solutions. 

5.2.2 CoilDesigner Solver 

CoilDesigner is a control volume based simulation tool that can simulate the 

performance of air-to-refrigerant and refrigerant-to-refrigerant heat exchangers (Jiang 

et al., 2006). The solver discretizes the individual tubes in a heat exchanger into 

smaller heat exchanger elements termed as segments.  CoilDesigner internally uses 

this discretization on the segment level along with the ε-NTU method (Shah and 
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Sekulic, 2003) of heat transfer calculations which helps to account for the changes in 

transport properties (density and viscosity) during evaporation and condensation 

processes resulting in accurate prediction of the entire heat exchanger performance. 

CoilDesigner is described in more details with experimental validation in Jiang et al. 

(2006) and more recently in Singh et al. (2008). Optimization of heat exchangers 

using MOGA with CoilDesigner has been described and demonstrated in Aute et al. 

(2004), Abdelaziz et al. (2010). It is important to note that CoilDesigner uses 

correlations for air and refrigerant side heat transfer and pressure drop calculations. 

This makes CoilDesigner very flexible, because once a correlation is available for a 

given geometry, CoilDesigner can be used to simulate the coil performance using the 

particular tube/fin geometry. Correlations are generally based on experimental data 

sets, but in cases where experimental data is not available for new heat exchangers, 

the heat transfer and pressure drop characteristics can be obtained using CFD 

simulation. That can help to use CoilDesigner to explore the performance of new heat 

exchangers without significant change in the solver itself. 

CoilDesigner requires detailed geometrical and design information to evaluate 

performance of heat exchangers. This information includes tube diameters, thickness, 

fin thickness, tube horizontal and vertical spacing, tube length, number of parallel 

tubes.  The results predicted by CoilDesigner include the overall heat load, refrigerant 

side heat transfer coefficients, refrigerant side pressure drop, outlet refrigerant and air 

conditions, the volume of heat exchanger, material weight. 
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5.2.3 Multiscale Simulation 

In order to reduce the time associated with simulating the new heat exchanger 

designs, multiscale simulation concept is introduced by Abdelaziz et al. (2010) as 

shown in Figure 5.1.  In multiscale simulation, CFD simulations are performed in 

heat exchanger (HX) segment level to predict the thermal and hydraulic performance 

of the new enhanced HX surfaces whereas a segmented based ε-NTU solver such as 

CoilDesigner is used to predict the performance of the entire heat exchanger. In order 

to apply the multiscale simulation approach, the following assumptions should be 

satisfied (Abdelaziz et al., 2010):  

1- Heat Exchangers are periodic in nature 

2- Symmetry planes should be identified 

3- Neglecting the side wall effects  

4- The overall heat transfer coefficient is mainly depending on the airside 

performance 

5- Constant wall temperature for liquid inside the tubes 

6- Constant air properties and constant liquid in tube properties 
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Figure 5.1 Multiscale simulation for heat exchangers (HXs) 

5.3 Proposed Online Approximation Assisted Optimization for Problems with 

Multiscale Simulation (OAAMOMS) 

5.3.1 Overview 

The OAAMO approach presented in chapter 3 is combined with a multiscale 

simulation technique (Abdelaziz et al., 2010) in order to reduce the computational 

time and improve the accuracy of the predict optimum results. The new approach, 

OAAMOMS, integrates CFD simulations on the segment level with a conventional 

segmented heat exchanger simulation tool to reduce the computational time while 

improving the accuracy of the optimum designs. The commercial CFD package, 
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Fluent
®

 (Fluent 6.3.26) is used and integrated with segmented ε-NTU solver, 

CoilDesigner (Jiang et al., 2006) to simulate the overall heat exchanger performance. 

CFD is used to calculate the segment air heat transfer coefficient and air pressure 

drop which are used later in ε-NTU solver to predict the entire heat exchanger 

performance. 

5.3.2 Step-by-Step Description of Proposed Approach 

The flowchart for the overall approach is presented in Figure 5.2. The air-cooled 

HX segment model used in this section is described in Section 3.6. After developing a 

robust CFD model that is valid for the entire range of design variables, a set of initial 

designs is selected based on the maximum entropy DOE method. Afterwards, CFD 

runs using Parallel Parameterized CFD (PPCFD) described in Section 2.8 is used.  

Based on PPCFD results, metamodels are built for both air heat transfer 

coefficient (AirHTC) and air pressure drop (∆Pair) using the Kriging metamodeling 

method. Having the metamodels, CoilDesigner can be used to predict the AirHTC and 

∆Pair based on the metamodels. After that, MOGA is used to optimize two design 

objectives: to minimize HX volume and minimize the air side total pressure drop 

based on CoilDesigner simulations. Subsequently, the obtained optimum design 

solutions are filtered using OAAMO approach presented in chapter 3 to select the 

new set of to update the metamodels. CFD simulations are performed for the new 

selected candidates using PPCFD. Thereafter, metamodels are updated. The previous 

steps are repeated several times until a certain stopping criterion is met. In this study, 

a limit on total number of CFD runs is used as the stopping criterion. Finally, the 

optimum solutions are verified using CFD simulations. 
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Figure 5.2 Flowchart of OAAMOMS 
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The prescribed approach is generic. It can be used with any online 

approximation assisted optimization technique. In addition, it can be applied for any 

HX type with any segmented based solver such as ε-NTU or LMTD solver with a 

great reduction in the computational time required. In the next section an example is 

used to demonstrate an application of the approach for finding optimum designs of a 

new generation of air-cooled HXs including a comparison with an offline approach. 

 

5.4 New Generation of Air-Cooled Heat Exchangers Example  

In this section, the online approximation assisted multiobjective optimization 

for problems multiscale simulation approach (OAAMOMS) described earlier in this 

chapter is used to design a novel air-cooled HX.  

5.4.1 Problem Definition 

The optimization problem objectives for this design are to minimize HX 

volume and to minimize the air side pressure drop. These two objectives are 

conflicting. The HX design is based on segment configuration shown in Figure 3.5 

(Abdelaziz et al., 2010). There are six design variables as shown in Table 5.1. 

 

Table 5.1 Design Variables for Heat Exchanger Segment Optimization 

Design Variable Lower Limit Upper Limit 

Inner diameter, Din[mm] 0.2 0.7 

Horizontal spacing, Hs [mm] 1.5 × Dout 6.0 × Dout 

Vertical spacing, Vs[mm] 2 × Dout 4 × Dout 

Number of Ports 3 19 

Offset, l [mm] 0 × Hs 1 × Hs 

Air velocity, v [m/s] 0.5 3.0 
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The optimization problem can be summarized as shown in Eq. (5.1)3. The 

main objectives are to minimize both the HX volume and the air side pressure drop. 

This is subjected to certain constraints on the pressure drop for air side. Also, the 

aspect ratio which is the ratio between the tube length (L) and the coil height (Nt × 

Vs) is constrained. There is one more limitation on the HX volume. 

3

min  

min 

s.t.: 100
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∆ <

< <

< <

<

  (5.1) 

5.4.2 Solution Procedure  

The solution starts with CFD model development that is valid for the entire 

design space. Then MED method is used to generate a set of initial designs. In this 

particular problem, 65 samples are used in order to fill the design space boundaries 

with initial designs. Then, PPCFD runs. The results are used to build a metamodels 

for both ∆Pair and AirHTC. Afterward, MOGA runs with a population of 150 with 

200 generations to find the optimum designs. The objectives/constraints evaluations 

are based on CoilDesigner to evaluate the performance of the entire HX. In lieu of 

CoilDesigner runs, metamodels are used to predict both ∆Pair and AirHTC on the 

segment level. After obtaining some intermediate optimum solutions, OAAMO 

approach is applied to filter some of the optimum solutions and select the next set of 

samples to update the metamodels in the expected optimum region. The results are 

presented at intermediate iterations in the next section.  
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5.4.3 Results and Comparison with Offline Multiscale Simulation 

In this section, the results obtained from applying OAAMOMS approach are 

presented. Firstly, after running MOGA based on 65 samples, the optimum solutions, 

i.e., the approximated Pareto solutions, are presented as Iteration #1 as shown in 

Figure 5.3. Next, after different updates of the metamodels based on intermediate 

MOGA runs, the results are presented for a total number of samples of 95 and 120 

respectively.  

As it is apparent from the results, better solutions can be obtained using fewer 

number of CFD simulations. To compare the results with offline multiscale 

approximation approach, an offline metamodels are built for both ∆Pair and AirHTC 

using 500 samples based on MED method. As it can be depicted from the results, 

OAAMOMS approach resulted in better optimum designs in terms of closeness and 

spread compared with offline approach based on MED designs. Approximately 76% 

CFD simulations are saved when using the OAAMOMS approach.  

In addition, OAAMOMS approach is compared with offline approach based 

on adaptive sampling. The adaptive sampling technique used in this comparison is 

MSFCVT (Aute, 2009). As it can be illustrated from Figure 5.4, the results are 

comparable. However using OAAMOMS, we can save 60% of the computational 

simulations in addition to obtaining better optimum frontier in terms of spread. 
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Figure 5.3 Online multiscale approximation results at different iterations and 

comparison with Offline results using MED 

 

Figure 5.4 Online multiscale approximation results vs. Adaptive Offline 

results using MSFCVT method 
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5.4.4 Pareto Solutions Verification 

In order to verify the accuracy of the obtained results, all Pareto solutions are 

verified using CFD runs. The errors in predicting air side pressure drop (∆Pair) and air 

heat transfer coefficient (AirHTC) are summarized in Table 5.2. The definition of 

error metrics used is given in Section 2.5.2. By examining the results, it is clear that 

the performance of the metamodels is improved by adding more samples in the 

expected optimum region using OAAMOMS approach. Comparing with offline line 

based multiscale simulation using both adaptive sampling,  MSFCVT, with 300 

samples, and space filling sampling technique, MED, with 500 samples, OAAMOMS 

gives acceptable and comparable accurate results while reducing significantly the 

computational cost.   This is the main advantage of using OAAMOMS approach. In 

case of limitation in the computational resources, OAAMOMS gives reasonably 

accurate results in shorter time. By adding more samples the accuracy of the obtained 

results is improved.  

Table 5.2 Optimum solution verification 

 

Method 

(Number of 

Samples) 

 

RMSE RRMSE 

∆Pair  

( Pa) 

AirHTC  

( W/m
2
 K) 

∆Pair % AirHTC % 

OAAMOMS 

(120) 
3.80 18.32 16.7 14.82 

Offline-MED 

(500) 
8.78 2.56 20.78 2.698 

Offline-MSFCVT 

(300) 
8.58 15.51 30.41 12.75 
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5.5 Summary 

A new approach for online multiscale approximated assisted optimization for 

problems with multiscale simulations such as heat exchanger is presented in this 

chapter. The approach combines adaptive update of metamodels for air heat transfer 

coefficient and air pressure drop on the segment level with the entire heat exchanger 

simulation for new generation of air-cooled heat exchangers. The approach resulted in 

a significant reduction of computational cost compared with offline approximation 

techniques. The accuracy of the results is comparable with offline approximation 

results. The online multiscale approximation approach can save more than 60 % of 

the computational time required to obtain similar results as the offline multiscale 

approximation techniques. The approach is generic in nature and can be applied to 

any similar heat exchanger optimization. 

In the next chapter, online approximation assisted optimization is used to 

optimize headers for a new generation of air-cooled heat exchangers. 
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Chapter 6:  Header Optimization for New Generation of Air- 

Cooled Heat Exchangers using NURBS 

6.1 Introduction 

The material presented in this chapter is presented with slight modification in 

Saleh et al., (2012a)
5
 for the header optimization and in Saleh et al. (2012b)

6
 for the 1 

kW integrated heat exchanger module optimization presented in Section 6.7.  

In this chapter, an online multiobjective approximation assisted optimization 

approach is used to design optimum headers for compact air cooled heat exchangers. 

A CFD model is developed to predict single-phase fluid flow in headers with multiple 

parallel ports. This CFD model applies the porous jump interior condition in order to 

reduce the computational domain. In addition, Non Uniform Rational B-Splines 

(NURBS) are used to define and manipulate the header outer shape with the purpose 

of reducing the mass flow rate maldistribution. Design optimization is performed 

using a multiobjective genetic algorithm while the computational cost due to CFD 

analysis is reduced significantly by applying an online approximation technique. 

Optimization is performed to reduce both the mass flow rate maldistribution in 

different ports and the header frontal area with respect to the total heat exchanger 

frontal area. The optimization results predicted from metamodels are verified using 

CFD runs with high accuracy of prediction. Finally design guidelines are provided 

based on the optimization results and the effect of header shape is presented.   

                                                 
5
Saleh, K., Abdelaziz, O., Aute, V., Radermacher, R., and Azarm, S., 2012a, “Approximation Assisted 

Optimization of Headers for New Generation of Air-Cooled Heat Exchangers,”  Applied Thermal Engineering 

Journal (2012) http://dx.doi.org/10.1016/j.applthermaleng.2012.06.007   
6
Saleh, K., Abdelaziz, O., Aute, V., Radermacher, R., and Azarm, S., 2012b, “New Generation of Air Cooled 

Heat Exchanger 1 kW Module Design Optimization, ” 14th International Refrigeration and Air-Conditioning 

Conference at Purdue, IN, USA, Paper No. 2178  
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The rest of this chapter is organized as follows: Section 6.2 provides 

introduction and motivation for using online approximation assisted multiobjective 

optimization for header optimization and summaries the related work from the 

literature. In Section 6.3, the details of the new CFD model developed for header 

simulation is presented. Section 6.4 describes in detail the online approximation 

assisted multiobjective header design optimization approach. Section 6.5 summarizes 

the results obtained with CFD verification and proposes some design guidelines for 

headers. Section 6.6 discusses the effect of NURBS. Finally, Section 6.7 presents the 

efforts to optimize 1 kW integrated heat exchanger module based on the header 

optimization results.  

6.2 Related Work 

Headers play an important role in the refrigerant flow distribution in heat 

exchangers in addition to providing structural strength and stability to the tubes and 

fins. Properly designed headers strive to achieve uniform flow distribution with 

minimum additional volume, material and pressure drop. In the case of novel Heat 

Exchanger (HX) designs such as those with a large number of parallel flow channels, 

header design becomes an important challenge. In air-cooled heat exchangers, large 

headers also reduce the effective frontal face area of the heat exchanger thereby 

reducing heat transfer. 

Current development in the area of air-cooled HX resulted in using channels 

in the range of micro or mini scale. As a result, reducing the maldistribution of mass 

flow rate entering different channels is an important issue in order to reduce the 

deterioration in heat transfer while reducing the pressure drop on the refrigerant side. 
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Remarkable attention has been paid to designing better HX headers to reduce the 

mass flow rate maldistribution.  

However, most of work in the literature used traditional header design 

approaches and parametric studies to find a better design. In this way, such a design 

may not be an optimum solution to header design. In addition, the technique of 

approximation assisted optimization has not been applied to find optimum header 

designs.  

Generally speaking, current industrial practice is mainly focused on CFD 

simulations to predict the flow maldistribution in the headers of heat exchangers with 

high agreement with experimental results (Shah, 2006).  Recent research in the area 

of HX header design can be classified into two categories, viz., (1) numerical 

analysis, and (2) experimental work. Researchers focused mainly on plate heat 

exchangers to minimize the variance in velocity distribution at each channel or to 

reduce the mass flow rate maldistribution factors by experimental and numerical 

approaches (Jiao et al., 2003; Zhang and Li, 2003; Wen and Li, 2004; Jiao and Baek, 

2005; Wen et al., 2007 ). The effect of varying geometry and operating conditions on 

refrigerant distribution in minichannel evaporator manifolds were experimentally 

explored to provide design guidelines (Hwang et al., 2007). CFD models were 

developed to take into account the effect of flow maldistribution on plate HX, e.g., 

(Galeazzo et al., 2006). Few efforts were focused on finding optimum HX header 

designs for other types of HXs.  For instance, cross flow microchannel evaporator 

was analyzed to minimize the flow maldistribution for two phase fluid and resulted in 

novel radial header design instead of conventional longitudinal header (Kulkarni et 
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al., 2004). Constructal Theory (Bejan, 1997; Bejan, 2000; Bejan and Lorente, 2006) 

was used to design new fluid distributions in order to reduce the pressure drop by 

minimizing the viscous dissipation and the residence time simultaneously (Tondeur 

and Luo, 2004; Luo and Tondeur, 2005). However, for mini and micro channels, it is 

unclear whether using the traditional round tube (4mm-10mm diameter) correlations 

for pressure drop would yield adequate results or not. For example, maldistribution in 

air-cooled HX was studied for 32 tubes of diameter 25.65 mm and different flow 

velocities between 1 and 2.5 m/s to decrease the standard deviation of mass flow rate 

in tubes (Habib et al., 2008).  However, the results of that research cannot be applied 

to mini (10 µm ~200 µm) or micro (200 µm~3 mm) scale tubes (Kandlikar et al., 

2006).  Therefore there is a need for more accurate method to predict the pressure 

drop and flow maldistribution inside headers used for a HX with mini and micro 

channels.  

In order to optimize the header design such that the refrigerant pressure drop 

will decrease while decreasing the header size, it is important to have the flexibility to 

change the header shape. Non Uniform Rational B-Splines (NURBS) are 

mathematical models commonly used for generating and representing curves and 

surfaces and can offer great flexibility and precision for handling both analytic and 

freeform shapes (Piegl and Tiller, 1997). NURBS can be used to define the shape of 

the heat exchanger inlet and outlet manifolds or headers. This flexibility of 

numerically representing header shapes can greatly facilitate optimization of header 

designs.  
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The research described in this chapter has two objectives. The first is to 

develop a new CFD model for fluid flow inside headers for compact heat exchangers 

using NURBS to represent the header geometry. The second objective is to develop 

an approach to optimize header designs so as to minimize the refrigerant 

maldistribution inside the tubes and at the same time reduce the frontal area of the 

header. The header frontal area is considered an obstacle to the air flow for new 

generations of air-cooled HX that use mini and micro scale tubes.  

6.3 Proposed Approach 

In this section, the proposed approach to optimize headers for new generation 

of air-cooled heat exchangers is presented. First, the CFD model is presented.  Then 

the application problem is elaborated. Finally, the optimization procedure is 

discussed. 

6.3.1 Header CFD Model with NURBS 

Traditional CFD simulations of HX including headers would suggest that the 

entire HX shown in Figure 6.1 (Abdelaziz, 2009) be included in the computational 

domain. A common simplification would be to model just a periodic section of the 

HX assuming symmetry planes as denoted in Figure 6.1. This would result in a 

significant reduction in the computational domain. The HX shown in Figure 6.1 is 

modeled by considering 1 port per tube as shown in Figure 6.1. This assumption is 

valid only in the case of neglected side wall effects; i.e. the shear at the side walls is 

neglected such as in tubes with larger number of ports. The approach used here 

suggests the use of the porous jump interior boundary conditions to represent the 
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tubes. Hence, the computational domain can further be reduced as shown in Figure 

6.2. In this case, the CFD solver artificially creates a pressure jump across the faces 

representing the tubes. This modeling approach will not be able to capture the vena 

contracta and the flow dynamics in the tubes; however, it will be able to account for 

the effect of overall pressure drop in each flow channel on the mass flow rate 

distribution (Abdelaziz, 2009). 

 

Figure 6.1 Computational domain for a compact heat exchanger 

 Made  of 10 × 10 ports (Abdelaziz, 2009) 
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Figure 6.2 Conventional computational domain simplification  

(Abdelaziz, 2009) 
 

The aforementioned CFD model was modified by adding NURBS to change 

the surface of the header as shown in Figure 6.3. Non-uniform rational basis spline 

(NURBS) is a mathematical model commonly used in computer graphics for 

generating and representing curves and surfaces which offers great flexibility and 

precision for handling both analytic (surfaces defined by common mathematical 

formulae) and modeled shapes. NURBS is commonly used in computer-aided design 

(CAD), manufacturing (CAM), and engineering (CAE) and are part of numerous 

industry wide used standards. The shape of the surface is determined by control 

points. In Fluent (2007), there is an option to create curves based on NURBS. In the 

current CFD model, NURBS is used to change the shape of the header outer surface 

by connecting control points as defined in Figure 6.3.  
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Figure 6.3 New header geometry represented with NURBS 

 

According to  Fluent (2007), the porous jump condition is capable of 

modeling a thin porous media based on the velocity pressure-drop characteristics. The 

pressure drop across the porous jump condition is correlated to the average velocity 

through the cell faces as shown in Eq. (6.1) where µ is the laminar fluid viscosity, α is 

the permeability of the medium, C2 is the pressure-jump coefficient, v is the velocity 

normal to the porous face, and ∆m is the thickness of the medium which equal to the 

tube length, L, in the current simulation. The first term in Eq. (6.1) represents an 

inertial loss term that is required for actual porous media; and can be neglected in HX 

header simulations. The second term represents the pressure drop due to skin friction 

which is fundamental to finding the accurate mass flow rate distributions. 
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In order to find the value for C2, the pressure drop correlation of interest 

should be considered. An investigation of single phase water flow in microtubes 

(Abdelaziz, 2009) suggests the use of (Shah and London, 1978) correlation. Solving 

Eq. (6.1) along with the pressure drop correlation given in Eq.(6.2) and Eq.(6.4), the 

value of C2 can be evaluated as shown in Eq.(6.5). This shows the dependence of C2 

on x
+
 and the tube length L. The quantity x

+
 is a dimensionless number representing 

the ratio between (L/D) and Re as given in Eq.(6.3). Hence, C2 varies as the flow 

conditions change. Accordingly, it is required to update the value of C2 for each port 

periodically while the solver is iterating. The solution procedure used is as follows: 

1. Set the solver controls, boundary conditions, and initialize the flow. 

2. Use average mass flow rate per port assuming uniform flow distribution to 

calculate C2, initial according to Eq.(6.5) to set all porous jumps in the header. 

3. Set the solver to iterate for 100 iterations. 
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4. Re-calculate the C2 coefficient for each port based on the current value of 

mass flow rate pert porous jump, refine the mesh based on pressure gradients 

and let the solver run for 20 iterations and repeat 20 times (400 iterations 

total). 

5. Set the solver to run for 100 iterations.  

6. Re-calculate the C2 coefficient for each port based on the current value of 

mass flow rate, refine the mesh based on pressure gradients and let the solver 

run for 100 iterations and repeat 5 times (500 iterations total). 

The procedure listed above provides a means for Fluent
®

 to update the 

pressure drop coefficient of the porous jump. This is achieved through the use of 

Scheme programming language (Dybvig, 2003) which is supported within the 

Fluent
®

 text interface. 

The CFD simulations were automated using the PPCFD approach (Abdelaziz 

et al., 2010). The mesh was generated using either hexahedral or tetrahedral elements 

based on the design complexity. In the case of low aspect ratio headers, hexahedral 

mesh elements were used and the boundary layer was carefully accounted for by 

ensuring that enough elements covered the boundary layer. On the other hand, for 

large aspect ratios, tetrahedral mesh was easier to generate. In the case of tetrahedral 

mesh generation, the mesh was further refined in Fluent
®

 using the adapt boundary 

tool to split the elements near the walls. An additional mesh adaptation step was 

introduced to the solving procedure listed above to allow Fluent
®

 to refine the grid in 

areas of high pressure gradient before Step-4.  
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The CFD simulations resulted in a distribution of mass flow rates across the 

different tubes. The relative standard deviation in mass flow rate per tube was used as 

a measure of flow uniformity.  As for the CFD simulations, PPCFD automatically 

generates Fluent
®

 script files to define the problem and the appropriate solver 

settings. The CFD simulations did not consider energy equation. The no-slip 

boundary conditions were set for all walls and a pressure outlet condition was used 

for the water outlet port. Inlet velocity boundary condition was used for the water 

inlet header. Symmetry planes were identified as shown in Figure 6.2. The flow 

channels were simulated using the porous jump interior boundary conditions with 

updated pressure loss coefficient using Scheme programming language as discussed 

earlier. Second order upwind discretization schemes were used for the governing 

equations and SIMPLEC algorithm (Van Doormaal and Raithby, 1984) was used for 

the pressure coupling. The convergence criterion was based on maximum acceptable 

normalized residuals of 10
-5

 for all equations (Abdelaziz, 2009).  

 

6.3.2 Problem Definition  

In optimizing the header shape, the header total height (LH,i + LH,o), the header 

size ration (LH,i / LH,o), and the location of the NURBS control point (σ) are defined as 

the three design variables as shown in Table 6.1. In the current study a particular heat 

exchanger is considered with different parameters including tube length, tube 

diameter, horizontal spacing and vertical spacing, and average water velocity as 

presented in Table 6.2.  Two objectives are considered, (a) minimizing refrigerant 

mass flow rate relative standard deviation (σMFR), and (b) minimizing the header 
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frontal area with respect to the total heat exchanger frontal area (Area Ratio).  The 

first objective addresses the reduction of pressure drop and better heat transfer 

distribution along the tubes which is necessary to avoid the deterioration in heat 

transfer inside the HX. The second objective reduces the obstruction in the air flow 

direction which enables more compact HX design. The optimization problem 

definition is given in Eq. (6.6). 

MFR

total

min σ

min Area Ratio

subject to:

 P 1000Pa

Area Ratio 0.06

∆ ≤

≤

  (6.6) 

 

 

Table 6.1 Air-cooled heat exchanger design variables for header optimization 

Design Variables Lower limit Upper Limit 

(LH,i + LH,o) 0.002  m 0.01 m 

(LH,i/LH,o) 1 16 

σ 0 1 

where σ= 0 at control point height equal to 0.5 LH,o  while  σ= 1 at control point 

height equal to 1.5 LH,i   

Table 6.2 Design parameters for header optimization 

Design parameter Value 

Tube length 0.1 m 

Tube inner diameter 0.4 mm 

Horizontal spacing 0.8 mm 

Vertical spacing 0.8 mm 

Average water velocity per port  0.5 m/s 
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6.3.3 Proposed Optimization Approach  

The overall approach for online approximation assisted optimization of 

headers using NURBS is summarized in the flowchart of Figure 6.4. A 3D CFD 

model is first established for a header; NURBS is used to represent the outer shape of 

the header as shown in Figure 6.3. Several CFD cases are generated and tested to 

study the applicability of Gambit
®

 and Fluent
®

 journals for the entire design space. 

Next, initial samples are selected using Maximum Entropy Design (MED) method. 

CFD analysis is conducted using PPCFD (Abdelaziz et al., 2010) for the selected 

initial samples.  

Afterwards, metamodels are built for refrigerant mass flow rates and total 

pressure drop. Then the optimization is carried out based on the metamodels. Next, a 

previously developed Online Approximation Assisted Multiobjective Optimization 

(OAAMO) approach presented in chapter 3 is used to select new samples among the 

current optimum designs in order to update the metamodels with the purpose of 

improving the accuracy in the expected optimum region.   Finally the metamodels are 

updated by adding new samples to improve the performance in the expected optimum 

region and then optimization is carried out based on the updated metamodels. The 

summary of optimum header design is presented in the next section.  
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Figure 6.4 Header online approximation assisted multiobjective optimization 

flowchart 

6.4 Results and Discussion    

The results from solving the optimization problem are shown in Figure 6.5 in 

the form of a Pareto set. As expected, there is a tradeoff between the two objectives. 

In order to minimize the pressure drop, the mass flow rate standard deviation should 

be minimized.  To achieve this target, both the header height and the header size ratio 

should be increased. On the other hand, by increasing both the header height and the 
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header size ratio, the area ratio will increase. In addition, the position of the control 

point varies significantly amongst the different designs in the Pareto set. 

A comparison of three optimum designs (Case-1, Case-2, and Case-3), as 

shown in Figure 6.5 is presented in Table 6.3. As seen from Table 6.3, when 

decreasing both the header total size (LH,i + LH,o) and the control point height ratio (σ 

= 0.1), the area ratio decreases while the pressure drop increases significantly as it can 

be seen in Case-1. Whereas increasing the header total size and shifting the position 

of the control point up (σ = 0.24), the pressure drop decreases while the area ratio 

increases as shown in Case-2. For higher header total size and higher control point 

height ratio (σ = 0.68), the pressure drop reduces significantly while the area ratio 

increases to the upper limit as noticed in Case-3. The CFD verifications for these 

cases are presented in Table 6.4. During verification, full 3D CFD simulations are 

performed for the three cases and the output is compared to the results predicted by 

the metamodels used in optimization. The relative error in predicting the pressure 

drop and the mass flow rate standard deviation is acceptable and less than 7.5% 

which proves the accuracy of the online approximation assisted optimization as it is 

shown in Table 6.4. 
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Figure 6.5 Header optimum designs, refrigerant mass flow rate relative 
standard deviation (σMFR) vs. Area Ratio 

 

Table 6.3  Design data and objectives for verification Pareto designs 
 

 
LH,i + LH,o 

    (m) 

LH,i/LH,o σ Area Ratio σMFR %
 

Case-1 0.00201 6.21 0.1 0.0107 18.89 

Case-2 0.00301 7.95 0.24 0.0232 4.61 

Case-3 0.00669 7.96 0.68 0.0598 1.32 

 

Table 6.4 CFD verification for of selected Pareto designs 

 
Relative Error % 

∆ Ptotal σMFR 

Case-1 3.45 6.74 

Case-2 5.47 3.52 

Case-3 4.32 7.21 
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6.5 Header Design Guidelines    

The optimum frontier can be divided into three zones as shown in Figure 6.5. 

Selected optimum designs representing different zones are given in Table 6.5.  For 

Zone 1, the header total size (LH,i + LH,o) is minimum however the header size ratio 

(LH,i /LH,o) is very large and the control point height ratio (σ = 0). That leads to reduce 

significantly the area ratio. On the other hand, the mass flow rate relative standard 

division is very large as well as the pressure drop. This zone is recommended if the 

designer mainly needs to reduce the total volume and the pressure drop is not a solid 

constraint. Zone 2 represents very well the relation between the header size ratio   

(LH,i /LH,o)  and the height of the control point  (σ). For approximately the same header 

total size, with increasing both the header size ratio and the height of the control 

point, the area ratio increases from 1% to 2 % which helps to reduce the 

maldistribution inside the header and the pressure drop by more than 60 %. As for 

Zone 3, increasing the header total size and reducing both the header size ratio and 

the height of the control point result in reducing significantly the maldistribution and 

total pressure drop by approximately 67 %. However the area ratio increases by 

approximately 78%.   

In summary, for reducing the pressure drop inside the headers while reducing 

the header area ratio with respect to the entire heat exchanger frontal area, one can 

find two different scenarios. First scenario, in case of limited total header size, 

designer should increase the header size ratio and increase the height of the control 

point in order to reduce the maldistribution as it is shown in Zone 2 in Figure 6.5. 

Second scenario, if there is no limitation on the header total size, it is recommended 
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to use larger header size which will help to reduce the refrigerant pressure drop but it 

should be considered that the larger header size and hence the larger area ratio will 

result in increasing the obstacles and the pressure drop in the air side.  

Table 6.5 Design data and objectives for selected Pareto designs 

 

 

6.6 Effect of Control Point Height Ratio    

For Case-2, the effect of the control point height ratio (NURBS) is predicted 

from the metamodels as shown in Figure 6.6.  By changing the control point position, 

the area ratio changes and the pressure drop changes as well.  As shown in Figure 6.6, 

with increasing value of σ, the pressure drop will decrease to a certain minimum 

value at  (σ = 0.24) beyond which flow separation occurs at walls. As a result, eddies 

are formed resulting in a slightly increased in pressure drop. With further increasing 

in the value of σ, the pressure drop decreases because of the increase in the header 

area.   

  
LH,i + LH,o LH,i/LH,o σ Area 

Ratio 

σMFR % ∆Ptotal 

 (Pa)    (m) 

 Zone 1 0.00200 13.038 0 0.011 0.19 18.90 

 Zone 2  0.00200 9.384 0.006 0.011 0.13 13.38 

  0.00200 8.551 0.033 0.012 0.12 11.54 

  0.00201 8.542 0.061 0.013 0.11 10.76 

  0.00201 8.534 0.151 0.015 0.09 9.26 

  0.00206 10.642 0.277 0.017 0.09 8.65 

  0.00201 14.010 0.402 0.020 0.08 7.60 

  0.00201 14.846 0.451 0.021 0.06 6.39 

  0.00203 15.746 0.486 0.022 0.05 5.03 

 Zone 3 0.00208 15.853 0.995 0.033 0.04 4.22 

  0.00508 10.845 0.500 0.040 0.04 3.92 

  0.00574 9.973 0.495 0.047 0.03 2.90 

  0.00589 9.079 0.498 0.050 0.02 2.24 

  0.00598 8.488 0.496 0.053 0.02 1.78 

  0.00989 3.877 0.137 0.059 0.01 1.39 
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Figure 6.6 Effect of changing control point position on the area ratio and total 
pressure drop for Case-2 

 

In order to further understand the effect of the control point position, a 

separate 3D CFD parametric study was conducted for a heat exchanger with only 5 

tubes. The header design parameters are the same as the ones listed in Table 6.2 and 

the design variables are given in Table 6.6. It is evident from Figure 6.7 and Figure 

6.8 that beyond the control point position value of 0.2, there is a slightly small change 

in both the mass flow rate relative standard deviation and the pressure drop.  This 

approximately corresponds to the case of a straight line, i.e., the header surface is flat.  

Therefore using headers with a flat surface is a good option if both the header total 

height and the header size ratio are optimized as well, leading to reduced pressure 

drop and mass flow maldistribution. As it can be seen from the results, there is a 

tradeoff between the location of the control point, the header total height and the 
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header size ratio. One should consider the effect of these three variables while 

optimization the header shape in order to reduce the total pressure drop and to reduce 

the header area ratio.  

 

Table 6.6 Header design variables for control point position parametric study 

  
 

 

 

 
 

 

 

 

Figure 6.7 Effect of changing control point position on the mass flow rate 
relative standard deviation 

 

Design 

Variables 
value 

(LH,i + LH,o) 0.002  m 

(LH,i/LH,o) 4 

σ 0, 0.1, .., 1 
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Figure 6.8 Effect of changing control point position on pressure drop 

6.7 1 kW integrated Heat Exchanger Module  

In this section we will introduce the efforts to integrate 1 kW heat exchanger 

module with headers based on the previous header optimization results presented in 

this chapter. The schematic of the integrated module is presented in Figure 6.1. The 

number of tubes on the flow direction is called Ntube; however the number of tubes in 

the perpendicular direction is called Nport as shown in Figure 6.1. The header total 

height (LH,i + LH,o)  and the header size ratio (LH,i /LH,o) are two important variables 

that can affect the refrigerant distribution inside the tubes.   

6.7.1 Integrated Heat Exchanger Module and Results  

In the current header simulation, blocked geometry technique is used with 

hexahedral mesh to simulate the flow distribution inside the inlet and outlet headers. 

The main advantage of using the blocked geometry with hexahedral mesh is to reduce 

the number of cells significantly. This reduction enables solving the header 
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simulation problem in shorter time compared to the conventional meshing strategies. 

The heat exchanger considered in this study is fixed and the characteristics presented 

in Table 6.7. The selected header in this study is mainly based on the optimization 

results presented early in this chapter. Some results for header simulations with 

different header size ratios, (LH,i /LH,o), as defined in ranged from 1 to 8 as shown in 

Figure 6.9 The results show improved performance with header size ratios of 4 and 5.  

 

 

 

 

 

 

 

 

In this section SR is referring to size ratios (LH,i /LH,o), where  SR1, SR2, SR4, 

SR5, SR8 are referring to headers with size ratios equal to 1, 2 ,4 ,5 ,and 8 

respectively. H1, H2, and H3 refer to three different headers design as it is presented 

in Table 6.8. Integrated module results for the three headers (H1, H2, and H3) are 

presented in Table 6.8.   

 

Table 6.7  Heat exchanger design data 

Design parameter value 

Number of tubes (Ntube) 69 

Number of ports ( Nport) 17 

Horizontal spacing (H.S.) 0.875  mm 

Vertical spacing (V.S.) 1.24  mm 

Refrigerant MFR 0.025 kg /s 

Tube length (L) 120.073 mm 

Tube inner diameter (Din) 0.467  mm 

Air Pressure Drop(∆Pair) 52.88 Pa 
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Figure 6.8 Mass flow rate (MFR) distribution for different header configurations 

 

 

As observed from Figure 6.9 and Figure 6.10, there is a tradeoff between the 

total volume and the refrigerant pressure drop. In H1, the refrigerant pressure drop is 

minimum however the total volume is maximum. The main reason behind the 

reduction of the pressure drop is the large header which also causes the increase in the 

total volume. On the other hand, H3 has the smallest header height with the minimum 

total volume however the refrigerant pressure drop is maximized. As for the air side 

pressure drop and heat transfer coefficient, it is the same for all cases as the heat 

exchanger configuration is fixed as given in Table 6.7. The effect of changing the 

header size ratio (SR) is presented in the next section.  
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Table 6.8 Integrated module results 

Design 

Heat 

Load 

(W) 

Total 

Volume 

(cc) 

Material 

Volume 

(cc) 

∆Pref 

(Pa) 

Header 

Height 

(mm) 

SR 

Area 

Ratio σMFR% 

H1 1000.08 185.87 23.02 422.43 16.21 5.00 0.119 12.2 

H2 999.56 184.01 22.89 432.37 14.86 10.00 0.110 14.4 

H3 1001.21 174.72 22.2 481.91 8.11 5.00 0.063 7.06 
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Figure 6.9  Refrigerant pressure drop versus total module volume 

 

 

Figure 6.10 Refrigerant pressure drop versus area ratio 

6.7.2 Header Size Ratio Parametric Study  

Additional investigation for header size ratio effects is performed for H1, H2 

and H3 are shown in Figures 6.11-6.16 and Tables 6.9-6.11 respectively. 3D-CFD 

simulations are performed for different header size ratios. Then heat exchanger solver 

for each case was run. Finally overall integrated module solver used to obtain the 

integrated heat exchanger module performance. The results show the impact of 

header size ratio on the module performance. For H1, the results are shown in Table 
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6.9. and Figures 6.11 and 6.12.   It can be concluded that an optimum header size 

ratio of 2 is obtained for H1 design. At this optimum value the refrigerant pressure 

drop is minimum at 400.266 Pa with total module volume of 185.874 cc.  

 

 

Figure 6.11 Refrigerant MFR standard 

deviation versus header size ratio for H1 

 

Figure 6.12 Refrigerant pressure 

drop versus header size ratio for H1 

 

 

 

Table 6.9 Parametric study results for header H1 

SR Heat 

Load 

(W) 

Total 

Volume 

(cc) 

∆Pref 

(Pa) 

Header 

Height 

(mm) 

Area 

Ratio 
σMFR% 

1 1001.202 185.874 411.350 16.210 0.119 6.260 

2 1001.624 185.874 400.266 16.210 0.119 3.680 

4 1000.480 185.874 411.350 16.210 0.119 11.060 

5 1000.080 185.874  422.430 16.210 0.119 12.200 

8 999.682 185.874 430.045 16.210 0.119 13.751 

 

 

Similarly, the results for H2 are presented in Table 6.10 and Figures 6.13 and 

6.14. However, the optimum header size ratio is changed to be 5 as it can be depicted 

from the figures. Likewise, H3 parametric study results are presented in Table 6.11 

and Figures 6.15 and 6.16.  where the optimum header size ratio is equal to 5 too.  
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Figure 6.13 Refrigerant MFR standard 

deviation versus header size ratio for H2 

 

Figure 6.14 Refrigerant pressure 

drop versus header size ratio for H2 

 

 

 

Table 6.10 Parametric study results for header H2 

SR Heat 

Load 

(W) 

Total 

Volume 

(cc) 

∆Pref 

(Pa) 

Header 

Height 

(mm) 

Area 

Ratio 
σMFR% 

1 991.395 174.721 22.193 1116.122 8.110 0.063 

2 1000.197 174.721 22.194 544.780 8.110 0.063 

4 999.820 174.721 22.195 472.837 8.110 0.063 

5 1001.210 174.720 22.200 481.910 8.110 0.063 

8 999.817 174.721 22.197 442.827 8.110 0.063 

 

 

 

Figure 6.15 Refrigerant MFR standard 

deviation versus header size ratio for H2 

 

Figure 6.16 Refrigerant pressure 

drop versus header size ratio for H2 
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Table 6.11 Parametric study results for header H3 

SR Heat 

Load 

(W) 

Total 

Volume 

(cc) 

∆Pref 

(Pa) 

Header 

Height 

(mm) 

Area 

Ratio 
σMFR% 

1 991.395 174.721 1116.122 8.11 0.063 30.725 

2 1000.197 174.721 544.78 8.11 0.063 12.143 

5 1001.21 174.72 481.91 8.11 0.063 7.06 

8 999.817 174.721 442.827 8.11 0.063 13.622 

 

 

In summary, an optimized 1 kW air-cooled heat exchanger module is 

presented in this section.   Two different designs can be considered; the first design 

leads to minimize the header frontal area however the refrigerant mass flow rate 

maldistribution will increase. The alternative design has a low refrigerant mass flow 

rate maldistribution while increasing the header frontal area. Optimum designs with 

area ratio between 1 % and 12 % are presented. The corresponding refrigerant mass 

flow rate relative standard deviation is between 1 % and 14 %. The heat exchanger 

solver accounts for the variation in refrigerant mass flow rates inside the tubes 

calculated based on the header 3D-CFD simulation. The results confirmed the 

importance of header total height and header size ratio on the final design. Using 

headers with larger height and low header size ratio improves the refrigerant mass 

flow rate distribution and reduces the refrigerant pressure drop while increasing the 

total module volume.  On the other hand, headers with smaller height need larger 

header size ratio and lead to increased pressure drop while reducing the module total 

volume. 

6.8 Summary  

In this chapter, 3D-CFD model is used and modified for headers used in next 

generation of air-cooled heat exchangers based on mini and micro tubes. The model 
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uses porous jump condition to represent the pressure drop inside the tubes in order to 

reduce the computational domain. The porous-jump parameters are updated during 

the CFD solver iterations using Scheme programming language. In addition, NURBS 

are used to represent and manipulate the header shape in order to reduce the mass 

flow rate maldistribution inside the header. Then a systematic and generic approach 

for header optimization is developed using online approximation assisted 

multiobjective optimization that enables to find more accurate optimum header 

designs while significantly reducing the computational cost.  Based on the results 

obtained, there is a tradeoff between header area ratio and refrigerant mass flow rate 

relative standard deviation. Increasing the mass flow relative standard deviation also 

results in increased pressure drop and vice-versa. A proper header design can be 

selected to optimize the header total size, the header size ratio, and the header outer 

shape. For instance, some of the optimum designed obtained had mass flow rate 

standard deviations of less than 2% and other designs had headers area ratio less than 

2%.  The three extreme designs were validated using CFD simulations. The error in 

the predicted total pressure drop was less than 6% and that for the mass flow rate 

relative standard deviation was less than 8%, thus verifying the acceptable accuracy 

of the metamodels. In addition, design guidelines are presented to reduce the pressure 

drop and the header area ratio based on the optimum results.  Using online 

approximation assisted optimization enables to find the optimum solutions while 

significantly reducing the computational cost. Only 25 CFD simulations were 

required for building the metamodels, compared to several thousands of actual CFD 

simulations that would be required when conventional MOGA is used. In addition, 
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several CFD simulations were needed to verify the optimized results. The approach 

proposed in this chapter is generic and can be used to find optimum headers designs 

for other types of heat exchangers and to study the effect of changing the header outer 

surface on both the total pressure drop and header total volume. In addition, 

parametric studies are accomplished to optimize 1-kW integrated heat exchanger and 

header module.  

In the next section, more applications are presented to demonstrate the 

advantage of using online approximation assisted multiobjective optimization 

(OAAMO) for optimization of several types of heat exchangers and thermal devices. 
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Chapter 7:  Applications: Coldplate, Chevron Plate Heat 

Exchanger, and Rollbond Plate Heat Exchanger 

7.1 Introduction 

In this chapter additional applications of OAAMO and offline AAMO for 

design of different heat exchangers and thermal devices are presented. These 

applications include: design of a coldplate used for electronic cooling and design of 

two different types of plate heat exchangers.  

This is chapter is divided into three sections corresponding to the 

aforementioned applications. In Section 7.2, coldplate optimization using OAAMO is 

presented including a comparison with offline AAMO results. The material in Section 

7.2 was published in Saleh et al (2010a)
7
, and Saleh et al. (2011b)

8
. In Section 7.3, 

Chevron type plate heat exchanger is presented based on the materials published in 

Han et al (2011)
9
 and Saleh et al. (2012c)

10
. Rollbond plate heat exchanger 

optimization is presented in Section 7.4 based on the material published in Lee et al. 

(2012)
11

. Finally, in Section 7.5, a summary of the lessons learned from using 

OAAMO and offline AAMO for optimization of different types of heat exchangers is 

briefly discussed.  

                                                 
7
Saleh, K., Abdelaziz, O., Aute, V., Radermacher, R., and Azarm, S., 2010a, “Microchannel Approximation 

Assisted Design Optimization and CFD Verification,” 13th International Refrigeration and Air-Conditioning 

Conference at Purdue, IN, USA, Paper No. 2312. 
8
Saleh, K., Aute, V., Radermacher, R., and Azarm, S., 2011b, “Online Approximation Assisted Optimization and 

CFD verification of Microchannel Designs,”  Thermal &Fluid Analysis Workshop (TFAWS), Newport News, VA, 

USA, Paper No. TFAWS2011-AT-007  
9
 Han, W., Saleh, K., Aute, V., Ding, G., Hwang, Y., and Radermacher, R., 2011, “Numerical Simulation and 

Optimization of Single Phase Turbulent Flow in Chevron-type Plate Heat Exchanger with Sinusoidal 

Corrugations,” HVAC & R Research, Vol. 17, No. 2, pp.186-197. 
10

Saleh, K., Aute, V., Radermacher, R., and Azarm, S., 2012c, “Plate Heat Exchanger Optimization Using 

Different Approximation Assisted Multiobjective Optimization Techniques,” 14th International Refrigeration and 

Air-Conditioning Conference at Purdue, IN, USA, p.2188. 
11

Lee, H., Saleh, K., Hwang Y.,  and Radermacher, R., 2012, “Optimization of Novel Heat Exchanger Design for 

the Application of Low Temperature Lift Heat Pump,” Energy Journal, Vol. 42,  pp.204-212  
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7.2 Coldplate Optimization   

Developing an optimized compact heat exchanger is crucial for many 

applications. In general, two objectives mainly are considered while designing a heat 

exchanger for naval and aeronautics applications. These two objectives focus on 

minimizing heat exchanger volume as well as minimizing the total pressure drop.  

Conventionally, designers used exhaustive search and other trial-and-error methods to 

find the best heat exchanger design. However, it is very difficult to apply exhaustive 

search if the heat exchanger model is computationally expensive, i.e., it takes several 

hours or even days to run one single simulation. Also, it is computationally 

prohibitive in cases of dealing with large number of design variables and design 

objectives. In addition, using some conventional optimization approaches such as 

multiobjective genetic algorithms and other heuristic optimization techniques can 

help reduce the total number of simulations needed but still it is not feasible to apply 

these techniques for large scale design problems. Therefore, using approximation 

assisted optimization techniques can help to reduce the computational time associated 

with the optimization process.   

This section considers a microchannel design optimization problem with the 

objective of minimizing the maximum channel temperature while minimizing the 

refrigerant pressure drop inside the channels. This is a two-objective optimization 

problem resulting in a tradeoff between the aforementioned two conflicting 

objectives. In order to find optimally compact heat exchanger designs, mini and 

microchannel geometries are being considered. The goal in this study is to evaluate 

the potential in designing high heat density microchannels for a given application and 
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at the same time reduce the computational effort required to do so. Online 

approximation assisted optimization technique, described in chapter 3, OAAMO, is 

applied to optimally design a microchannel with single phase flow and constant heat 

flux. A comparison with offline AAMO built using space filling sampling technique 

(MED) described in chapter 2, and a Kriging metamodeling method are used to build 

metamodels for the maximum temperature, fluid outlet temperature, and pressure 

drop inside the channels based on CFD analysis. A multi-objective genetic algorithm 

(MOGA) is used as the optimizer. The solutions present the effect of changing the 

channel dimensions and the coolant flow rate on controlling both the channel 

maximum temperature and pressure drop.  The optimum solutions are verified using 

CFD simulations. It is observed that online approximation assisted optimization 

obtains reasonably accurate optimum design solutions while reducing significantly 

the computational time. 

7.2.1 Related Work 

Optimum microchannel heat sink design can lead to significant improvements 

in the performance and heat density. In most electronic cooling devices there is high 

heat flux as it can be seen in many industrial applications such as high heat load 

optical components, power electronics, plasma facing components, X-ray medical 

devices and hybrid vehicle power electronics. Microchannel structures have been 

shown to generate significant heat transfer rates from extremely small volumes 

(Tuckerman and Pease, 1981; Sobhan and Garimella, 2001).  

Microchannel optimization studies can be found in the recent literature 

reflecting the increasing interest in the practical implementation of such systems 
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(Chong et al., 2002; Liu and Garimella, 2005; Gopinath et al, 2005; Cetegen et al., 

2009).  Previous work has used Multi-Objective Genetic Algorithm (MOGA) to 

optimize the selection of a heat sink (Gopinath et al, 2005; Foli et al., 2006; Cetegen 

et al., 2009), including combining CFD analysis with an analytical method and multi-

objective genetic algorithm were described (Foli et al., 2006). Simple duct flow 

correlations were used to predict the heat transfer coefficient and friction coefficients 

(Gopinath et al., 2005). In the next section, the CFD model for the coldplate is 

presented.  

7.2.2 CFD Model 

An essential step to optimize any heat exchanger or thermal device using 

approximation assisted optimization technique is to automatically generate all CFD 

cases. In this study, parallel parameterized CFD (PPCFD) approach (Abdelaziz et al., 

2010), described in chapter 2 is used to automatically read the normalized design 

variables and then generate the corresponding Gambit
®

 journal files. The 

microchannel model is presented in Figure 7.1.  Mesh refinement near the boundaries 

(boundary layer inflation) is applied. Also, a finer mesh is applied in locations where 

higher temperature gradients are expected, such as near the channel walls, as shown 

in Figure 7.2. 
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Figure 7.2 Mesh refinement near the boundaries and near areas of expected 

higher temperature gradients 

 

 

 

 

 

 

 

(a) 

 
(b) 

Figure 7.1  Coldplate (a) Schematic (b) Computational domain 
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After generating the mesh, the PPCFD program automatically generates 

Fluent
®

 journal files to read the specified mesh, set the appropriate boundary 

conditions, model parameters, and material properties. The inlet velocity is read from 

a text file. The boundary conditions are fixed for all designs. The materials and 

boundary conditions are defined in the Fluent
®

 journal files and are fixed for the 

microchannel. For the case study, the temperature distribution at the channel exit and 

along the channel is shown in Figure 7.3(a) and Figure 7.3(b) respectively. By using 

Fluent
®

 for solving the flow field, we take into consideration the effect of entrance 

length.  The accuracy for the case shown in Figure 3 is determined by monitoring the 

energy balance error of 0.00037.  

7.2.3 Problem Definition 

The goal is to find optimized designs that have least maximum temperature 

and minimum pressure drop. The different design variables that define the 

microchannel performance are shown in Figure 7.1(b). The six design variables are 

  

(a) (b) 

Figure 7.3 Temperature contours (a) at channel exit, and (b) along the channel 
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defined in Table 7.1. The corresponding computational domain is shown in Figure 

7.1(b). The maximum plate temperature and the channel pressure drop are obtained 

by solving the continuity and the momentum equations using a commercially 

available CFD tool. For different designs, the solutions are obtained for a fixed 

uniform heat flux at the top of the microchannel with variable coolant flow rate. 

Table 7.1 Design Variables for Coldplate Optimization 

 

In this approximation assisted optimization problem, individual metamodels 

are developed for each response and also for the fluid outlet temperature.  The 

optimization problem can be summarized as shown in Eq. (7.1). The first objective is 

to minimize the maximum temperature at the top surface of the channel that is 

subjected to the heat flux. The second objective is to reduce the refrigerant pressure 

drop thus reducing the pumping power required. 
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  (7.1) 

Design Variable Lower Limit Upper Limit 

Channel height, Hch Ho 2.5× Ho 

Channel width, Wch Ho 75× Ho 

Channel length, Lch 300× Ho 80000× Ho 

Side wall thickness, Tside 0.1× Wch 0.5× Wch 

Top and bottom thickness, Ttop, Tbottom 0.1× Hch 0.5× Hch 

Coolant velocity, v [m/s] 0.2  12 
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7.2.4 Online Approximation Assisted Optimization for Coldplate 

Figure 7.4 shows the flowchart for coldplate online approximation assisted 

optimization approach. The stopping criterion is the maximum number of available 

simulations. The steps in OAMAO are as follows, as shown in Figure 7.4: 

Step-1: Generate an initial set of design points using the maximum entropy design 

method and observe the corresponding responses for the maximum temperature on 

the microchannel surface (Tmax) and the fluid pressure drop inside the microchannel 

(∆P). 

Step-2: Develop a metamodel for each objective; i.e., Tmax and ∆P.   

Step-3: Formulate a multiobjective optimization problem based on the metamodels 

and solve it using MOGA. 

Step-4: From all Pareto points, select five points to improve the metamodel accuracy 

in the expected optimum region and to improve the diversity of the optimum designs 

according to OAAMO approach described in chapter 3.  The two extreme points in 

the objective space are selected to improve the diversity. In addition, the closest point 

to the ideal point is selected in the objective space is selected as well.   However, the 

points with minimum and maximum Kriging predicted variance are selected to 

improve the metamodels performance in the next iteration. 

Step-5: Filter the new selected points to avoid sampling cluster in the design space. 

Step-6: Evaluate the true response (i.e., run the simulation) for the newly chosen 

points and then go to Step-2. 

Step-7: Repeat Step-2 to Step-6 until a limit on the number of function calls is 

achieved. 
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Figure 7.4   Coldplate online approximation assisted optimization flowchart 

7.2.5 Results and Discussion 

Two different metamodels were built for the two responses viz., Tmax and 

coolant ∆P. The initial design comprising of 30 points is generated using the MED 

method and then OAAMO method developed in chapter 3 is used to sample 30 

additional points. Kriging with logarithmic response (to avoid negative values during 

prediction) was used to develop the metamodel. For offline AAMO, 60 samples are 

generated using MED, a space filling sampling method. 
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Figure 7.5 Comparison of OAAMO with AAMO optimum results for Coldplate 

optimization 

As it can be seen from Figure 7.5, the performance of the OAAMO is better 

than offline AAMO. OAAMO can add more samples near the Pareto frontier. As a 

result Pareto obtained from OAAMO is better than offline AAMO as shown in Table 

7.2 in terms of closeness. Generally speaking, having more sample points should 

improve the performance of both methods. However the error measures, for the 

Pareto points obtained using OAAMO are lower than those from offline AAMO 

given that the same number of sample points are used for both methods.  

Table 7.2 Errors in optimum designs when using OAAMO vs. offline AAMO 
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Average 3.59 0.508 4.16 1.293 

Max 15.80 1.828 16.31 3.684 

Min 0.016 0.043 0.013 0.035 

STD 4.3 0.365 5.24 0.612 
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7.2.6 Summary of Coldplate optimization 

In this section, online approximation assisted multiobjective optimization 

method developed in chapter 3, OAAMO, is used to obtain optimum coldplate 

designs based on single phase liquid flow inside the channel. Kriging metamodels are 

built for maximum surface temperature and for the pressure drop inside the channel. 

These metamodels are used to predict the objectives and constraints within multi-

objective genetic algorithm. Then the optimum solutions are filtered in order to select 

best samples to update the metamodels. The samples are selected in the expected 

optimum region with a space-filling constraint to prevent clustering of samples in the 

design space. This procedure is iterative in nature and is carried out until a predefined 

stopping criterion is met. This online optimization approach, OAAMO,  predicted 

better optimum designs with high accuracy compared to offline approximation 

assisted optimization approach. The final results are verified using CFD simulations. 

The errors are small which indicates that the accuracy of the online approximation 

assisted optimization method is acceptable. The approximation technique resulted in a 

significant reduction in computational time compared to conventional optimization 

technique. Only 60 CFD simulations are required for building the metamodels, 

compared to several thousands of actual simulations required when conventional 

MOGA is used (5100 simulations). The approach proposed in this section is generic 

and can be applied for any heat exchanger or electronic cooling device optimization. 

In the next exaction, another application for optimization Chevron plate heat 

exchanger is presented based on online approximation assisted multiobjective 

optimization.  
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7.3 Chevron Plate Heat Exchanger 

This section presents a comparison between OAAMO and offline AAMO 

techniques to optimize chevron-type plate heat exchanger.  The thermal-

hydrodynamic characteristics of single phase turbulent flow in chevron-type plate 

heat exchangers with sinusoidal-shaped corrugations have been used in this section. 

The computational domain contains a corrugation channel and the simulations 

adopted the shear-stress transport (SST) κ-ω model as the turbulence model. Two 

different approximation assisted optimization approaches are tested. Offline 

approximation assisted optimization (AAMO), and online approximation assisted 

optimization (OAAMO) are compared to optimize plate heat exchanger design. For 

both approximation techniques (offline and online), design optimization is performed 

using multiobjective genetic algorithm based on metamodels that are built to 

represent the entire design space. In offline approximation, globally accurate 

metamodels are built which requires adding more samples. However in online 

approximation assisted optimization, samples are added just to improve the 

metamodels performance in the expected optimum region. Approximated optimum 

designs are validated using computationally expensive actual CFD simulations. 

Finally, a comparison between offline and online approximation assisted optimization 

is presented with guidelines to apply both approaches in the area of heat exchanger 

design optimization.  

7.3.1 Related Work  

Plate heat exchangers (PHXs) are widely used in the area of refrigeration, heat 

pumping, food industry and chemical processing. High thermal performance, ease of 
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maintenaunous, compactness and the ability to work with small temperature 

differences are the main advantages of using PHXs (Wang et al., 2007). Recently 

CFD models are being used to optimize different type of heat exchangers (Abdelaziz 

et al., 2010).  

PHXs optimization studies can be found in the recent literature reflecting the 

increasing interest in the practical implementation of such systems (Kanaris et al., 

2009; Han et al., 2011). Kanaris et al. (2009) searched the optimal design of PHXs 

with undulated surfaces using CFD techniques. An objective function that combines 

heat transfer together with friction losses accounting for the energy costs was 

employed in the optimization procedure using response surface methodology. 

However, the optimal designs of their study cannot be necessarily extrapolated to the 

cases of PHXs with sinusoidal-shaped corrugations.  Recently AAMO technique was 

used to optimize single phase turbulent flow in chevron-type PHX with sinusoidal 

corrugations (Han et al., 2011). However, AAMO is computationally expensive as it 

requires building globally accurate metamodels. 

The objective of this section is to present the method and results of a study on 

the optimal design of PHX using a multi-objective genetic algorithm based online 

approximation assisted multiobjective optimization method developed in chapter 3  

(OAAMO) and compare the results with offline AAMO.  The results are verified 

using CFD simulations.  In the next section, the CFD model for chevron-type PHX is 

presented.  
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7.3.2 CFD Model 

An essential step in AAMO is using a parallel parameterized CFD (PPCFD) 

approach (Abdelaziz et al., 2010) to automatically read the normalized design 

variables and then generate the corresponding Gambit
®

 journal files. The PHX 

segment model is presented in Figure 7.6.  Mesh refinement near the boundaries 

(boundary layer inflation) is applied. Also, a finer mesh is applied in locations where 

higher temperature gradients are expected, such as near the plate walls, as shown in 

Figure 7.7.  More details about the model can be found in Han et al. (2011).  

 

w w
y yρ τ ρ µ+ =   (7.2) 

 

 

Figure 7.6 (a) Schematic diagram of corrugation plate; (b) Calculation domain; 

(c) Sinusoidal shape (Han et al., 2011) 
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Figure 7.7 Mesh refinement near the boundaries 

 

 

A small segment of the PHX is simulated to calculate both the pressure drop 

per unit length and the heat transfer coefficient. Steady state, 3-D model with pressure 

based solver and implicit scheme is used to solve the computational domain. In this 

case, the shear-stress transport (SST) κ-ω model is chosen as the turbulence model 

because of its robustness and the capability of combining both κ -ω model and κ-ε 

model, which makes it more accurate and reliable for a wide range of flow 

applications. It should be noted that in order to correctly utilize the SST  κ -ω model, 

the mesh quality near the wall boundary must be sufficiently fine so that the 

dimensionless wall distance y
+
  presented in Eq.( 7.2) is of the order of 1 as imposed 

by the turbulent model (Kanaris et al. 2009; ANSYS FLUENT 12.0 Documentation, 

2009). 

The governing equations of continuity, momentum (Navier-Stokes) and 

energy are solved in Cartesian coordinates based on the assumptions as follows:  
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• Three-dimensional, incompressible and steady state flow  

• Single phase flow, no gravity or any other body force involved  

• Constant wall temperature with water as the working fluid  

• No fouling of any kind exists in the computational domain  

• The computational domain is located in the central part of the novel heat 

exchanger and the periodicity is established perpendicular to the flow 

direction 

• Viscous dissipation is negligible in the energy equation 

The PHX segment thermal and hydraulic performances are evaluated in terms 

of heat transfer coefficient (h) as given in Eq.(7.3) and pressure drop per unit length 

(∆P/L) where L is the segment length and ∆P is reported directly from  CFD 

simulation as given in Eq. (7.4). 
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From the CFD simulation mass flow rate ( m�  ) and outlet temperature (Tout) is 

calculated for a given inlet temperature (Tin = 295 K) and wall temperature (Tw = 300 

K) and inlet design variables.  
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7.3.3 Problem Definition 

The schematic of the PHX segment is shown in Figure 7.6.  The goal is to find 

optimized designs that have maximum heat transfer coefficient h and minimum 

pressure drop per unit length ∆P/L.   The different design variables that define the 

PHX segment performance are shown in Figure 7.6. The four design variables are 

defined in Table 7.3. The corresponding computational domain is shown in Figure 

7.7. The heat transfer coefficient and the PHX segment pressure drop are obtained by 

solving the continuity, the momentum, and the energy equations using a 

commercially available CFD tool such as Fluent
®

. For different designs, the solutions 

are obtained for a fixed wall temperature, Tw = 300 K, and constant coolant inlet 

temperature Tin = 295 K with variable coolant flow rate. Water is used in this study as 

the working fluid.  

 

Table 7.3 Design variables for plate heat exchanger segment optimization 

Design Variable Lower limit Upper limit 

b [mm] 3.18 6.35 

β 22° 68° 

p [mm] 9.50 38.00 

u  [m/s] 0.10 1.20 

  

Individual metamodels are developed for each response, i.e., for heat transfer 

coefficient h and pressure drop per unit length ∆P/L.  The optimization problem can 

be summarized as shown in Equation 7.5. The first objective is to maximize the heat 

transfer coefficient. The second objective is to reduce the pressure drop thus reducing 

the pumping power required.  
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7.3.4 Online Approximation Assisted Optimization 

The same steps described in Figure 7.4 are applied here with building 

metamodels for heat transfer coefficient and pressure drop per unit length.  For 

OAAMO, the stopping criterion is the maximum number of available simulations. 

The steps in OAAMO are as follows: 

Step-1: Generate an initial set of design points using the maximum entropy design 

method and observe the corresponding responses for the heat transfer coefficient (h) 

and the fluid pressure drop per unit length inside the PHX segment (∆P/L). 

Step-2: Develop a metamodel for each objective; i.e., h and ∆P/L.   

Step-3: Formulate a multiobjective optimization problem as given in Eq. (7.5) based 

on the metamodels and solve it using MOGA. 

Step-4: From all Pareto points, select points to improve the metamodel accuracy in 

the expected optimum region and to improve the diversity of the optimum designs 

both in the design space and objective space base on OAAMO approach developed in 

chapter 3.  

Step-5: Evaluate the true response (i.e., run the simulation) for the newly chosen 

points and then go to Step-2. 

Step-6: Repeat Step-2 to Step-5 until a limit on the number of function calls is 

achieved. 
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7.3.5 Results and Discussion 

Two different metamodels are built for the two responses viz., h and ∆P/L. 

The initial design comprising of 50 points is generated using the MED method and 

then OAAMO method is used to sample additional 62 additional points in several 

runs as presented in Figure 7.8. In each run, metamodels are built then optimizer is 

run based on these metamodels and finally Pareto solutions are filtered to select the 

next samples to update the current metamodels.  For offline AAMO, a set of 200 

samples is generated before building the metamodels using MED method. 

 

Figure 7.8 Comparison between online and offline approximation assisted 

optimization results 

 

As it can be seen from Figure 7.8, the performance of the OAAMO is 

improved gradually by adding more samples in the expected optimum region.  

Compared with offline AAMO, OAAMO can add more samples near the Pareto 

frontier and can find better designs while reducing more than 40 % of the 
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computational cost.  Consequently, Pareto obtained from OAAMO appears to be 

better than offline AAMO especially in the right upper corner as shown in Figure 7.8. 

Generally speaking, having more sample points in the excepted optimum region 

assistance to improve the performance of both methods. The relative error in the 

prediction is reported in Table 7.4.  As it can be seen, OAAMO is performing much 

better in pressure drop prediction however offline AAMO is better in predicting heat 

transfer coefficient.  The main advantage in using OAAMO as described earlier is the 

saving in the computational cost.  

 

Table 7.4 Relative absolute error in Pareto set when using AAMO and OAAMO 

 
RError in h % RError in ∆P/L % 

AAMO OAAMO AAMO OAAMO 

Average 1.16 2.08 10.50 3.29 

Maximum 6.12 4.56 41.82 6.43 

Minimum 0.03 0.83 3.41 0.64 

STD
 

1.31 1.15 7.89 2.10 

 

It can be seen from the results that OAAMO is performing better while 

reducing significantly the computational cost, i.e., reducing the total number of CFD 

simulation required. These are the main advantages of using online approximation 

assisted optimization. However, offline approximation assisted optimization requires 

more samples to build a globally accurate metamodels which means more samples are 

wasted in the entire design space without affect the performance in the expected 

optimum region. Although the previous conclusion is true for a particular 

optimization problem, it is important as well to mention that offline approximation 

assisted optimization is more efficient if the globally accurate metamodels will be 

used later to optimize other products with different objectives based on the same 
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design space. In this case, no more CFD simulations will be needed. On the other 

hand, using online approximation assisted optimization with new objectives requires 

more runs as a result of changing the excepted optimum region.  

In the next section, another example for rollbond plate heat exchanger 

optimization using simplified online approximation assisted is presented. 

7.4 Rollbond Plate Heat Exchanger 

As presented in the previous section, plate heat exchangers (PHXs) are the 

most widely used compact heat exchanger, due to its high thermal efficiency, and 

ease of manufacture. For application with low temperature lift heat pump, there is a 

need to improve the plate heat exchanger thermal and hydraulic performance. A 

modified rollbond PHX model is developed (Lee et al., 2012) to minimize the 

pumping power per unit length and to improve the heat transfer coefficient using an 

online approximation assisted optimization approach. The thermal-hydrodynamic 

characteristics of single phase turbulent flow in rollbond type plate heat exchangers 

with adapted wavy curve configuration have been used in this section. The 

computational domain contains a wavy curve configuration and the simulations 

adopted the shear-stress transport (SST) κ-ω model as the turbulence model. An 

online approximation assisted optimization approach is used to optimize the rollbond 

plate heat exchanger in order to maximize the heat transfer coefficient (h) and the 

pumping power per unit length (Power/L). Design optimization is performed using 

multiobjective genetic algorithm based on metamodels that are built to represent the 

entire design space. An online approximation assisted optimization approach based 

on space filling filter is used to add more samples to improve the metamodels 
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performance in the expected optimum region. Approximated optimum designs are 

validated using computationally expensive actual CFD simulations. The majority of 

the material presented in this section is presented in Lee et al. (2012).  

7.4.1 CFD Model 

A new heat exchanger is developed to improve the performance of PHX for 

the application of the low temperature lift heat pump. Two fluids are used: refrigerant 

and water. The refrigerant undergoes phase change, while the water undergoes 

temperature change only in single phase. By adapting a wavy curve configuration, the 

pressure drop on the single phase side is designed to decrease. In addition, heat 

transfer performance design enhancement is achieved by balancing the heat transfer 

coefficients of the two fluids, through regulating the flow area ratio between single 

phase flow and working fluid. The overall schematic of the novel heat exchanger is 

shown in Figure 7.9. Water flows over the outside of the plates, and refrigerant flows 

through the inside of the plates, perpendicular to the water flow, as shown with 

arrows in the figure.  The refrigerant side inlet and outlet ports are connected to the 

header. Single phase side flow is designed to be a wavy curve by offsetting the 

refrigerant flow channel to single phase flow direction, thus reducing the pressure 

drop of water side. By adjusting the gap between the plates and the channel width or 

height, the flow area ratio of two fluids can be regulated. Design variables of the 

novel heat exchanger channel are defined as shown in Figure 7.10. A channel width 

(a), channel distance (b), plate width, plate length, channel number, summit width (a), 

channel height (h), plate gap (d), and thickness of plate (t) are defined in the novel 

heat exchanger. 
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Figure 7.9  Schematic of novel heat exchanger 

 

Figure 7.10  Parameters of novel heat exchanger channel 

 

The calculation domain is presented in Figure 7.11, which simulates a section 

of the single phase flow side of the novel heat exchanger. The mesh of the plate and 

inner space are generated using Gambit
®

. An unstructured mesh system with a 
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tetrahedral type mesh is created for the inner space, and a structured mesh system 

with a hex type mesh is used for the wall space. To create a small viscous sub-layer, a 

boundary layer function is used with a 1.26 growth factor. 

 The governing equations of continuity, momentum (Navier-Stokes) and 

energy are solved in Cartesian coordinates based on the assumptions as follows:  

• Three-dimensional, incompressible and steady state flow  

• Single phase flow, no gravity or any other body force involved  

• Constant wall temperature with water as the working fluid  

• No fouling of any kind exists in the computational domain  

• The computational domain is located in the central part of the novel heat 

exchanger and the periodicity is established perpendicular to the flow 

direction 

• Viscous dissipation is negligible in the energy equation 

The thermal and hydraulic performances of numerical modeling are evaluated in 

terms of heat transfer coefficient (h) and the pumping power (Power/L), which are 

calculated using Eq. (7.3) and Eq. (7.6) where V�   is the volume flow rate in (m
3
/s), 

and /P L∆  is the pressure drop per unit length in (Pa/m). The shear-stress transport 

(SST) k- ω model is chosen as the turbulence model because of its robust and 

accurate formation of combining both the k- ω and k- ε models, which makes it more 

precise and reliable for a wider class of flows (ANSYS FLUENT 12.0 

Documentation).    

    / /Power L V P L= × ∆�   (7.6) 
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Figure 7.11 Computational domain and mesh refinement near the boundaries 

Fig. 7.12 shows the contours of water temperature distribution in the rollbond 

heat exchanger segment for a certain operating conditions. Water flows along the X-

axis from the left to right side. Water temperature decreases as the flow approaches 

near the wall. Fig. 7.13 shows velocity vectors by velocity magnitude. It can be found 

that high velocity developed near refrigerant channels. The wave shaped pattern 

enhanced the heat transfer between the wall and the fluid.  

 

Figure 7.12 Temperature distribution in (K) for rollbond heat exchanger 

segment (Lee et al., 2012)  
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Figure 7.13 Velocity vectors in (m/s) inside the rollbond heat exchanger segment 

(Lee et al., 2012)    

7.4.2 Problem Definition 

For the rollbond heat exchanger optimization design, the objectives are to 

maximize the heat transfer coefficient (h) while minimizing the unit pump power per 

unit length (Power/L, along the HX flow direction) as given in Eq. (7.7). Because 

CFD simulation is conducted on a section of the heat exchanger, pumping power per 

unit length is used instead of pumping power. The final formulation of the 

optimization problem is given in Eq. (7.7). 
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(7.7) 

  

The different design variables that define the rollbond segment performance 

are shown in Figure 7.10. The four design variables are defined in Table 7.5. The 

corresponding computational domain is shown in Figure 7.11. The heat transfer 
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coefficient and the segment pressure drop are obtained by solving the continuity, the 

momentum, and the energy equations using a commercially available CFD tool such 

as Fluent
®

. For different designs, the solutions are obtained for a fixed wall 

temperature, Tw = 291 K, and constant coolant inlet temperature Tin = 293K with 

variable coolant flow rate. Water is used in this study as the working fluid. Individual 

metamodels are developed for heat transfer coefficient h and pressure drop per unit 

length ∆P/L.   

Table 7.5 Normalized design variables for rollbond heat exchanger  

segment optimization 

Normalized Design Variable Lower limit Upper limit 

x1,  gap between the plates 0 1 

x2,  channel height 0 1 

x3,  channel width 0 1 

x4,  summit width 0 1 

x5,  water velocity 0 1 

  

7.4.4 Online Approximation Assisted Optimization 

Initially, MED sampling approach described in Chapter 2 is used to generate 

150 designs. The responses of heat transfer coefficient, h,   and the pumping pressure 

drop per unit length Power/L are obtained from these 150 numerical simulation runs, 

and then correlated into the metamodel using Kriging metamodel technique. After 

obtaining some intermediate optimum solutions calculated by the multiobjective 

genetic algorithm (MOGA), a simple online approximated assisted optimization 

approach based on space filling filter method is applied to filter some of the optimum 

solutions and select the next set of samples to improve the metamodels’ performance 

in the excepted optimum region. 



 

 

 

163 

 

The metamodels have been built based on the 200 cases of CFD simulation 

with the aforementioned approach. These h and Power/L metamodels are then 

verified using a set of 20 random samples. The detailed validation of various building 

methods is shown in Table 7.6 using different correlation function and regression 

models in Kriging. It could be seen that the first order polynomial Gauss model has 

the best accuracy among these methods. The detailed comparisons of h and ∆P/L 

between the CFD and metamodel are shown in Table 7.6. The relative root mean 

squared error (RRMSE) between the CFD and current metamodel is 1.15% for the 

heat transfer coefficient and 4.24% for the pumping power per unit length, which is 

good enough for further optimization. 

Table 7.6 Validation of different metamodel building methods 

Correlation  

functions 

Regression  

models 

RMSE RRMSE (%) 

h 

(W/m
2
K) 

Power/L 

(W/m) 
h Power/L 

Gauss 

Poly0 138.85 0.03 1.38 5.29 

Poly1 120.58 0.03 1.15 4.24 

Poly2 105.46 0.05 1.02 10.49 

Exponential 

Poly0 142.04 0.07 1.38 9.51 

Poly1 105.32 0.06 1.09 12.41 

Poly2 112.05 0.07 1.26 29.91 

7.4.5 Results and Discussion 

The Pareto set solutions are obtained from three different runs of MOGA. 

Figure 7.14 shows the Pareto solutions as well as the DOE samples. It should be 

noted that the Pareto solutions are not obtained in the highlighted region A, because 

the constraints would have been violated.   

The optimum designs selected from the Pareto solution set are shown in Table 

7.7. Design variables in the optimum design are well distributed, except for summit 
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width (x4) and channel width (x3). A large summit width increased both h and 

Power/L. The effect of increased h is higher than that of an increased Power/L, so the 

optimum designs are developed at a relatively large summit width that ranged from 

0.552 to 0.942. Furthermore, it can be seen that channel width (x3) exhibited low 

value ranges in optimum designs. A small channel width creates more periodic wavy 

curves per unit length. This can increase the turbulence in the water flow, and 

eventually increase both h and Power/L. Therefore, the h increased faster than the 

Power/L, thus optimum designs were obtained in the regions of small channel width. 

 

 

Figure 7.14 DOE points and optimum rollbond heat exchanger segment 

 

Optimum designs in Table 7.7 are verified with the results obtained directly 

the from CFD simulation. The RRMSE between the approximated results and CFD 

simulation are 0.82% for the h and 16.15% for the Power/L. This indicates that the 
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optimum results obtained from approximated assisted optimization approach used in 

this study are acceptable, given the number of samples. 

Table 7.7 Optimum designs selected from Pareto solution set 

Optimum 

Designs 
x1 x2 x3 x4 x5 

h 

(W/m
2
K) 

Power/L 

(W/m) 

∆P/L 

(kPa/m) 

1 0.399 0.120 0.323 0.662 0.508 9958 0.696 8.87 

2 0.728 0.021 0.474 0.943 0.674 10618 0.962 9.28 

3 0.291 0.022 0.361 0.645 0.674 10204 0.787 9.64 

4 0.020 0.173 0.296 0.934 0.000 9139 0.345 8.49 

5 0.078 0.008 0.098 0.853 0.195 9937 0.492 9.71 

6 0.001 0.278 0.390 0.920 0.000 9152 0.353 8.81 

7 0.660 0.171 0.780 0.733 0.981 10826 1.193 10.00 

8 0.509 0.106 0.249 0.709 0.527 10357 0.789 9.35 

9 0.503 0.575 0.808 0.701 0.527 9965 0.812 9.65 

10 0.260 0.024 0.169 0.885 0.250 9908 0.542 9.06 

11 0.007 0.351 0.431 0.749 0.167 9321 0.432 9.20 

12 0.006 0.376 0.711 0.771 0.190 8671 0.378 7.90 

13 0.221 0.637 0.027 0.552 0.038 9842 0.460 9.50 

14 0.000 0.014 0.320 0.918 0.000 8356 0.271 6.76 

 

 

7.5 Summary 

In this chapter, three examples are presented for coldplate as an example for 

electronic cooling devices and two different types of plate heat exchanger, i.e., 

chevron and rollbond plate heat exchangers. The advantages of using online 

approximation assisted optimization to optimize these different heat exchangers are 

discussed.   

For coldplate example, two objectives are considered; minimizing the 

maximum temperature and minimizing the refrigerant pressure drop. OAAMO 

method developed in chapter 3 is used as the online approximation assisted 

optimization approach. OAAMO predicted better optimum designs with higher 

accuracy compared to offline approximation assisted optimization approach. The final 
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results are verified using CFD simulations. The errors are small which indicates that 

the accuracy of the online approximation assisted optimization method is acceptable. 

The approximation technique resulted in a significant reduction in computational time 

compared to conventional optimization technique. Only 60 CFD simulations are 

required for building the metamodels, compared to several thousands of actual 

simulations required when conventional MOGA is used (5100 simulations). 

As for the chevron plate heat exchanger, Online and offline approximation 

assisted optimization approaches are used to obtain optimum plate heat exchanger 

designs based on single phase liquid.  Kriging metamodels are built for both the heat 

transfer coefficient and for the pressure drop per unit length. These metamodels are 

used to predict the objectives and constraints within multiobjective genetic algorithm 

(MOGA). In online approximation assisted optimization, OAAMO method is used  to 

find the optimum designs.   OAAMO approach predicted better optimum designs 

with high accuracy compared to offline approximation assisted optimization 

approach. The final results are also verified using CFD simulations. The errors are 

small which indicates that the accuracy of the online approximation assisted 

optimization method is acceptable. The approximation technique resulted in a 

significant reduction in computational time compared to conventional optimization 

technique. Only 112 CFD simulations are required for building and updating the 

metamodels in online approximation assisted optimization compared with 200 

samples required for offline approximation approach. Both offline and online 

approximation techniques are efficient when compared to several thousands of actual 

simulations required for conventional MOGA (~ 5100 simulations).  
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In rollbond plate heat exchanger, a simplified online approximation assisted 

multiobjective optimization approach is used.  The water heat transfer coefficient and 

pumping power associated with the heat exchanger are optimized using the simplified 

online approximation assisted optimization approach. The plate gap, channel height, 

channel width, summit width, and fluid inlet velocity are defined as design variables, 

and 200 samples are selected using the maximum entropy design method to build a 

metamodel for obtaining the heat transfer coefficient, as well as the pumping power 

per unit length. The optimized designs are calculated using a multi-objective genetic 

algorithm, and are presented. Finally, the Pareto optimal designs are verified against 

the values that were directly obtained from CFD simulations. When the refrigerant 

side heat transfer coefficient is properly designed according to the water side heat 

transfer coefficient, overall heat transfer of the rollbond heat exchanger can be 

maximized. This can decrease the cost of the heat exchanger and increase the 

performance of a low temperature lift heat pump system. 

In the next chapter, the conclusion of this dissertation is presented. The 

chapter highlights the contributions of the four research thrusts of this dissertation 

followed by the recommendations for future work.  
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Chapter 8:  Conclusions  

8.1 Introduction 

This dissertation is focused on four research thrusts. These are: (i) A new 

online approximation assisted multiobjective optimization (OAAMO), (ii) a new 

approximation assisted multiobjective optimization with global and local 

metamodeling, (iii) a new framework for integrating OAAMO heat exchanger design 

problems with multiscale simulations (OAAMOMS), and (iv) a new header 

optimization model for a new generation of air-cooled heat exchangers. In addition, 

several heat exchanger types are optimized using the newly developed methods.   

This chapter is organized as follows: Section 8.2 provides a summary of the 

four research thrusts including the different heat exchangers applications presented in 

the dissertation. This is followed by a statement of the main contributions in Section 

8.3. Finally, the recommendations for the future work are provided in Section 8.4.   

8.2 Summary 

In Chapter 3, a new online approximation assisted multiobjective optimization 

approach called OAAMO is presented.  Two main goals are considered while 

building this new approach: (a) improving both the metamodel performance for 

objectives and constraints in the expected optimum region and the accuracy of the 

predicted optimum solutions, and (b) improving the quality of the predicted optimum 

solutions by improving both the closeness to target solution and diversity of the 

optimum solutions obtained. In order to achieve these goals, selected points are 

chosen to update the metamodels iteratively. The proposed approach starts with initial 

samples and initial metamodels are built for all objectives and constraints. Then 
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MOGA is applied to the metamodel based optimization problem and a set of 

predicted optimum solutions are generated. Afterwards, five points are selected based 

on the criterion described in OAAMO in order to achieve the above mentioned goals. 

Finally, a space filling filter is used to avoid samples’ clustering in the design space. 

OAAMO is tested and compared with an offline approach called AAMO. The results 

show that OAAMO outperforms AAMO in terms of accuracy of the predicted 

solutions. Also, OAAMO is compared with ParEGO, an online AAMO method from 

the literature. OAAMO performs better in terms of closeness and diversity for most of 

the problems with respect to ParEGO.  In addition, OAAMO is applied to an 

engineering test problem and compared with an offline AAMO approach. The results 

of the engineering example show that OAAMO produced better optimum solutions in 

terms of both the accuracy and the quality (closeness to target optimum solutions and 

diversity).  

In Chapter 4, a new and novel online approximation assisted multiobjective 

optimization approach using both global and local metamodeling is presented. The 

approach combines both metamodeling in the global and local optimum regions and 

random search in both regions to find the best optimum solutions.  The approach 

starts with generating initial samples that are used to build global metamodels for 

objectives and constraints and then using these metamodels to predict the responses 

(objectives and constraints) for a large number of randomly generated points. Then, 

using non-dominating sorting, the most promising points (among the initial samples 

and the randomly evaluated samples) are selected. The actual simulation is run for a 

few new points selected based on spread in both design and objective spaces. Based 
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on these values, the “best” points are grouped in multiple clustered regions in the 

design space and then local metamodels of objectives/constraints are constructed in 

each region. These clusters are adaptively built and updated. All observed points are 

also used to iteratively update the global metamodels. In this way, the accuracy of the 

metamodels is gradually improved as the optimizer approaches the Pareto optimum 

frontier.  One of the important advantages of the proposed approach is that: the most 

promising points are observed which means that there is no need to verify the final 

solutions separately and all the final solutions are feasible as well. Both numerical 

and engineering examples are tested using the proposed approach. A CFD coldplate 

design example is demonstrated with the proposed approach as well. It is found that a 

reasonable set of optimum design solutions are obtained with a few number of CFD 

simulations.  

In Chapter 5, a new approach for online approximated assisted multiobjective 

optimization for problems with multiscale simulations such as heat exchanger design 

is presented. The approach aims at reducing the computational cost while improving 

the accuracy of the predict optimum solutions by combining an adaptive update of 

metamodels used to predict the performance in the segment level while running the 

optimizer for the entire heat exchanger based on a heat exchanger solver. For 

examples, the metamodels for air heat transfer coefficient and air pressure drop on the 

segment level are updated while the MOGA is run based on the entire heat exchanger 

solver for new generation of air-cooled heat exchangers. The accuracy of the results is 

comparable with an offline based multiscale simulation approach. The online 

multiscale multiobjective approximation assisted optimization approach saved more 
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than 60% of the computational time required to obtain similar results as the offline 

multiscale approximation techniques. The approach presented in this chapter is 

generic in nature and applicable to any similar heat exchanger optimization problem. 

In Chapter 6, a 3D-CFD model is used and modified for headers used in the 

next generation of air-cooled heat exchangers based on mini and micro tubes. In order 

to reduce the mass flow rate misdistribution inside the header and to reduce the total 

header volume, NURBS are used to represent and manipulate the header shape.  Then 

a systematic and generic approach for header optimization is developed using an  

OAAMO approach developed in Chapter 3 that enables to find more accurate 

optimum header designs while significantly reducing the computational cost. Finally, 

design guidelines for headers used in the new generation of air-cooled heat 

exchangers are provided.  Based on the results obtained, there is a tradeoff between 

header area ratio and refrigerant mass flow rate’s relative standard deviation. For 

instance, some of the optimum designs obtained have mass flow rate standard 

deviations of less than 2% while other designs had headers area ratio less than 2%.  

Selected designs are validated using CFD simulations. The error in the predicted total 

pressure drop is less than 6% and that for the mass flow rate relative standard 

deviation is less than 8%, thus verifying the acceptable accuracy of the metamodels. 

Finally, parametric studies are presented in this chapter to optimize 1-kW integrated 

heat exchanger and header module.  

In Chapter 7, three examples are presented to optimize the different types of 

electronic cooling devices and heat exchangers. Coldplate is used as an example for 

electronic cooling devices and two different types of plate heat exchanger are used as 
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well, i.e., chevron and rollbond plate heat exchangers. The advantages of using online 

approximation assisted optimization to optimize these different heat exchangers are 

discussed at the end of this chapter. For the coldplate example, two objectives are 

considered: minimizing the maximum temperature and minimizing the refrigerant 

pressure drop. Six design variables are optimized: channel height, length, and width, 

thickness of the middle wall, top and bottom channel wall, in addition to the 

refrigerant inlet velocity. Comparing with offline based AAMO, OAAMO predicted 

better optimum designs with a higher accuracy. Finally, only 60 CFD simulations are 

required for building the metamodels, compared to several thousands (5100 

simulations)of actual simulations required when a conventional MOGA is used. 

As for the chevron plate heat exchanger, two objectives are considered: 

minimizing the pressure drop per unit length and maximizing the heat transfer 

coefficient. Four design variables are optimized: chevron angle, pitch, height and 

fluid velocity. Similarly, the OAAMO approach predicts better optimum designs with 

a high accuracy compared to an offline AAMO approach. The errors are small which 

indicates that the accuracy of the online approximation assisted optimization method 

is acceptable. Only 112 CFD simulations are required for building and updating the 

metamodels in online approximation assisted optimization compared with 200 

samples required for offline approximation approach which means that OAAMO 

approach can save more than 40% of the computational cost while obtaining better 

optimum solutions.  

In a rollbond plate heat exchanger, a simplified online approximation assisted 

multiobjective optimization approach is used to optimize the rollbond heat exchanger 
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design with two objectives: minimizing the pumping power per unit length and 

maximizing the heat transfer coefficient Five design variables are optimized: gap 

between the plates, channel height and width, summit width and water inlet velocity. 

The water heat transfer coefficient and pumping power associated with the heat 

exchanger are optimized using the simplified online approximation assisted 

optimization approach. Only 150 samples are selected using the maximum entropy 

design method to build a metamodel for obtaining the heat transfer coefficient, as 

well as the pumping power per unit length. Another 50 samples are added based on 

the simplified online approximation assisted optimization approach used in this 

chapter. The final optimum designs are validated using CFD simulations. Based on 

the results, it is observed that when the refrigerant side heat transfer coefficient is 

properly designed according to the water side heat transfer coefficient, overall heat 

transfer of the rollbond heat exchanger can be maximized. This can decrease the cost 

of the heat exchanger and increase the performance of a low temperature lift heat 

pump system. 
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8.3 Contributions 

The main contributions of this dissertation are discussed in the following 

subsections.  

 

8.2.1 Online Approximation Assisted Multiobjective Optimization 

A new approach (OAAMO) is proposed which has some distinct 

characteristics as in the following: (i) A significant number of the previous AAO 

methods only uses a globally accurate meta-model to find optimum solutions. In the 

proposed approach, online AAO is used to improve the meta-models’ performance in 

the expected optimum region.  (ii) Some previous approaches try to approximate the 

optimum frontier using an expected improvement measure. However, OAAMO uses 

the information from the estimated optimum solutions directly and does not use any 

scalar measure. (iii) OAAMO aims at improving the spread, closeness, and accuracy 

of the solution points while avoiding clustering of the points.  

8.2.2 Approximation Assisted Multiobjective Optimization with Combined and 

Local Metamodeling  

  

A new online approximation assisted multiobjective optimization approach 

that combines global and local metamodeling is developed. The approach is 

developed collaboratively by the coauthors of the papers (Hu et al., 2012a; Hu et al., 

2012b). The main idea for using global and local metamodeling to enhance the online 

approximation assisted multiobjective optimization is developed by me. In addition, 

the sampling selection criterion based on both design and objective spaces is 

proposed by me. 
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The approach has the following characteristics: (i) combining online 

metamodeling updating in both global and promising local optimum regions can 

reduce significantly the computational cost, (ii) selecting the clusters adaptively in the 

promising optimum regions based on “spread distance” of the non-dominated points 

which is calibrated in both the design variable and objective spaces, and (iii) creating 

the clusters around the current best design points which helps to significantly enhance 

the accuracy of the local metamodels.  

8.2.3 Online Approximation Assisted Multiobjective Optimization for Problems 

with Multiscale Simulation (OAAMOMS) 

 

A new framework is developed for applying OAAMO to problems with 

multiscale simulation such as heat exchanger design optimization.  This framework 

combines an adaptive update of metamodels for air heat transfer coefficient and air 

pressure drop at the segment level with the entire heat exchanger simulation for a new 

generation of air-cooled heat exchangers.  

8.2.4 Header Optimization for New Generation of Air Cooled Heat Exchanger 

using NURBS 

 

A 3D-CFD model for a header is used in a new generation of air-cooled heat 

exchangers by adding NURBS to represent and manipulating the header shape in 

order to reduce the mass flow rate maldistribution inside the header. In addition, a 

systematic and generic approach for header optimization is developed using OAAMO 

that helps to find more accurate optimum header designs while significantly reducing 

the computational cost.  Finally, design guidelines are provided for header 

optimization for a new generation of air-cooled heat exchangers. The results output 
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from this study can enhance the design of all header used in micro channels based 

tubes heat exchangers.    

8.4 Future Research Directions 

There are a number of directions for future research as discussed in the 

following. 

1. Discrete Design Variables  

The approaches developed in this dissertation are developed with the 

assumption that all design variables are continues. This is not the case in many heat 

exchanger design optimization problems where there are several discrete design 

variables. An example for discrete design variables in heat exchanger problem 

includes the number of tubes, number of fins, and others. So, there is a need to 

consider discrete design variables as well under online approximation assisted 

multiobjective optimization framework in order to reduce the computational cost.  

2. Large Number of Design Variables 

The approaches developed in this dissertation are developed for problems with 

the number of design variables of about 50, which is the limit for the Kriging 

metamodeling technique. This is not the case in some optimization problems where 

there are several hundreds or even thousands of design variables are used, as is the 

case in topology optimization.  There is a need to consider problems with a large 

number of design variables combined with online approximation assisted 

multiobjective optimization framework. 

 Proper Orthogonal Decomposition (POD) method (Loéve, 1955) is a possible 

method that can be used to handle this problem. POD has been developed as an 
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alternative method of deriving a basis vector for high-order systems.   POD has been 

widely used in CFD applications (Sirovich, 1987; Berkooz et al., 1993). Coupling 

POD with the methods in this dissertation should be explored particularly for 

problems with a large number of design variables.  

3. Resource Allocation  

In many optimization problems, the total number of available function calls is 

fixed and limited. Although the performance of any approximation assisted 

optimization technique depends on the relation between the design variables, there are 

several questions that should be addressed such as: a) how many samples should be 

used as initial designs?  What is the relation between the number of design variables 

and the total number of samples in the initial designs? Is it better to generate the 

initial designs using space filling DOE method such as MED or LHS or to use an 

adaptive sampling technique such as SFCVT (Aute et al., 2008)? 

4. Metamodeling Methods 

 It is important to investigate the use of non-Kriging based metamodels 

especially for problems with a large number of design variables. In addition, in the 

case of using Kriging, it is important to explore how to identify the best regression 

model and correlation function before applying the Kriging metamodeling technique. 

Poor choice of these can lead to an increase in the computational cost. 

5. Heat Exchanger Applications 

 In chapter 5, OAAMOMS approach was applied only to a new generation of 

air-cooled heat exchangers. It is important to apply this approach to optimize different 

types of heat exchangers such as plate type, shell and tube, and spiral heat exchanger. 
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6. Combining Headers with Heat Exchanger Body 

 In chapter 6, OAAMO approach was applied only to optimize the header for 

the new generation of air-cooled heat exchangers. Then based on the results, a 

parametric study was used to find an integrated optimum 1 kW heat exchanger 

module. However, it should be more accurate to use multi-disciplinary optimization 

(MDO) approach to optimize the heat exchanger module and consider both the heat 

exchanger body and the headers as subsystems while defining the main objectives to 

minimize the heat exchanger volume and the refrigerant pressure drop as system 

objectives.  That can result in more compact heat exchangers.   

7. Flexible Heat Exchanger Walls 

One of the assumptions for all CFD based models in this dissertation is that; 

the heat exchanger wall is rigid as stated in section 2.7. However, due to using thin 

wall thicknesses and sometimes high fluid pressures, it is important as well to 

consider using flexible walls instead of rigid walls as boundary conditions. That will 

lead to modify the computational model to consider fluid-structure interactions. In 

addition, using flexible walls will result in changing the dimensions of the model. 

Consequently, finding the robust optimum designs should consider uncertainties as 

well in both design variables and design parameters.  

8. Heat Exchanger Design Under Uncertainty 

In this dissertation, uncertainties in heat exchanger geometric parameters and 

design variables and flow conditions are not considered. However, using micro and 

mini channels in new generation of heat exchangers make manufacturing processes 

very challenging. As a result, large tolerances might exist compared with the original 
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design variables. In addition, uncertainties can result in fouling and even blockage 

resulting from the flow distribution and hence pressure drop. Accordingly, it is 

important to use robust optimization approaches to find optimum heat exchangers 

which are relatively insensitive to uncertainties.  
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