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Ornithopters are robotic flight vehicles that employ flapping wings to generate
lift and thrust forces in a manner that mimics avian flyers. At the small scales and
Reynolds numbers currently under investigation for miniature aircraft where viscous
effects deteriorate the performance of conventional aircraft, ornithopters achieve effi-
cient flight by exploiting unsteady aerodynamic flow fields, making them well-suited
for a variety of unmanned vehicle applications. Parsimonous dynamic models of these
systems are requisite to augment stability and design autopilots for autonomous op-
eration; however, flapping flight is fundamentally different than other means of engi-
neered flight and requires a new standard model for describing the flight dynamics.
This dissertation presents an investigation into the flight mechanics of an ornithopter
and develops a dynamical model suitable for autopilot design for this class of system.

A 1.22 m wing span ornithopter test vehicle was used to experimentally investigate
flapping wing flight. Flight data, recorded in trimmed straight and level mean flight
using a custom avionics package, reported pitch rates and heave accelerations up to
5.62 rad/s and 46.1 m/s2 in amplitude. Computer modeling of the vehicle geometry
revealed a 0.03 m shift in the center of mass, up to a 53.6% change in the moments
of inertia, and the generation of significant inertial forces. These findings justified
a nonlinear multibody model of the vehicle dynamics, which was derived using the
Boltzmann-Hamel equations. Models for the actuator dynamics, tail aerodynamics,
and wing aerodynamics, difficult to obtain from first principles, were determined
using system identification techniques with experimental data. A full nonlinear flight
dynamics model was developed and coded in both Matlab and Fortran programming
languages.

An optimization technique is introduced to find trim solutions, which are defined
as limit cycle oscillations in the state space. Numerical linearization about straight
and level mean flight resulted in both a canonical time-invariant model and a time-
periodic model. The time-invariant model exhibited an unstable spiral mode, stable
roll mode, stable dutch roll mode, a stable short period mode, and an unstable short



period mode. Floquet analysis on the identified time-periodic model resulted in an
equivalent time-invariant model having an unstable second order and two stable first
order modes, in both the longitudinal and lateral dynamics.
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Chapter 1

Introduction

1.1 Background and Motivation

Unmanned air vehicles (UAVs), or aircraft without on-board pilots, are prolifer-
ating into many sectors of society and have the potential to significantly impact daily
life. Enabled by advances in electronics miniaturization and composite material man-
ufacturing, hobbyists, commercial companies, defense contractors, universities, and
government research laboratories are currently developing small unmanned platforms.
UAVs will play an important role in the future because in addition to the relatively
low cost, they can un-man aircraft to perform “dull, dirty, and dangerous” work.

In the civilian sector, UAVs are currently used as toys, hobby aircraft, and research
flight platforms. They have been employed in such tasks as airport wildlife control and
population monitoring, and are expected to contribute to autonomous crop surveying,
atmospheric weather monitoring, and search and rescue missions. In the military
sector, these vehicles are employed in intelligence, surveillance, and reconnaissance
missions. It is envisioned that these vehicles will perform missions such as chemical
substance detection and autonomous perimeter surveillance, as well as achieve multi-
mission capabilities including perch and stare, robust long-duration outdoor flight,
and agile flight through cluttered indoor environments.

To accomplish such mission profiles autonomously, a flight control system, such
as that shown Figure 1.1, must be implemented in order to stabilize the vehicle and
achieve desired performance goals while attenuating the effects of noise, disturbances,
and model uncertainty. The aircraft plant model contains a set of equations that
evolve the vehicle position and velocity state variables as a function of the control
inputs and disturbances. Sensors on board the aircraft provide measurements, which
are used in an estimator to predict the aircraft state. The tracking error is supplied
to the controller, which is designed to shape the inputs to achieve flight performance
metrics.

Fixed-wing aircraft remain the most prevalent type of UAV, as they are in general
relatively simple aircraft and the dynamic models describing their motions are well
known and understood. However, as the vehicle size decreases and viscous effects
become more pronounced, fixed-wing aircraft suffer from decreased lift to drag ratios
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Figure 1.1: Flight control architecture block diagram

that degrade flight performance [1]. Additionally, most fixed-wing aircraft require
forward speed to generate aerodynamic forces, making it difficult for them to hover
and fly slowly, which are abilities needed for indoor flight.

Miniature rotary-wing vehicles present an alternative to fixed-wing designs. These
vehicles are highly maneuverable and have the ability to hover, making them suit-
able for indoor reconnaissance and surveillance missions; however, rotorcraft have a
number of drawbacks. As with fixed-wing aircraft, viscous effects reduce the aerody-
namic efficiency of the vehicle [2]. The added complexity of the rotor and swash plate
systems increases the vehicle cost and maintenance. Furthermore, these aircraft are
noisy, open-loop unstable, and potentially hazardous to bystanders and operators,
making them difficult for human operators to fly without training and closed-loop
control.

Although both conventional fixed-wing and rotary-wing vehicles fill niches in the
design space of UAVs, a new vehicle design is needed to both fly in a robust manner
outdoors and in an agile manner in cluttered environments.

1.2 Bio-Inspired Flapping Wing Aircraft

Miniature air vehicles that use flapping wings to generate aerodynamic forces and
moments have advantages over both fixed- and rotary-wing vehicles. For vehicle sizes
on the order of 0.1 kg and below, flapping wings are required to gain maneuverability
and aerodynamic efficiency [3, 4, 5]. These vehicles are also safe for humans to operate,
as they consist only of light weight material and do not have spinning rotors or fuel
tanks, and they don a level of contextual camouflage due to the bird-like appearance.
It is envisioned that by mimicking the agility, maneuverability, and robustness of
natural flyers, such as insects, bats, and birds, these vehicles will fill the demand for
multi-mission capable UAVs.

2



Avian flapping flight is characterized by the up stroke and the down stroke of the
wings. A cross-section of a seagull wing in forward flight is illustrated in Figure 1.2,
as viewed from a body-fixed reference frame [6]. Lift and drag forces are generated
over the wing, perpendicular and parallel to the local flow direction, respectively, due
to the forward motion of the vehicle and the plunging motion of the wing. During
the down stroke, the resultant force is pointed such that a propulsive thrust force
and a lift force are transmitted to the body, whereas the resultant force is oriented
such that a lift force and a drag force are transmitted to the body during the up
stroke. Typically the wing generates most of the lift force near the root of the wing,
whereas the majority of the thrust is created on the outboard sections of the wing.
Asymmetries between the up stroke and down stroke are required to produce a net
lift and thrust force over the flapping cycle. Natural fliers achieve this effect either
by flying with a positive mean angle of attack, modulating the up/down stroke ratio,
or by changing the wing kinematics through morphing [7, 8].

1.3 Flapping Wing Literature Review

1.3.1 Vehicle Design

The first recorded ornithopter vehicle design was DaVinci’s 1490 concept for a
human-powered ornithopter, having membrane wings and a mechanically efficient
transmission. In Germany during 1894, Lilienthal created the “Kleiner Schlagfügelapparat,”
a human powered flapping device inspired by his previous glider work and experi-
ments with birds. During the late 19th century designers began experimenting with
new forms of power generation, including Trouvé’s 1870 flight powered by gunpow-
der charges and Hargrave’s steam-powered ornithopters in 1890. Beginning in 1942
with Schmid’s design, ornithopters were powered using internal combustion engines.
Man-powered ornithopter flights extending the vehicle endurance time were achieved
by Lippisch, Maule, Hartmann, Toporov, and Rousseau between 1929 and 1993. The
most successful manned ornithopter has been that of the University of Toronto, which
is able to take off under its own power [9].

Unmanned ornithopter designs began with the rubber band powered models de-
veloped by Jobert, Pénaud, and Villeneuve in the 1870’s. Begining with Spence’s
1961 ornithopter, designers incorporated smaller power sources and radio electronics
into the vehicles. Similar ornithopters include the quarter scale model by DeLaurier
in 1991 and the “Elektro Vogel” series of ornithopter started by Räbinger in 1975 [10].
Ornithopters for hobbyists have also developed, including the Kinkade and Cybird
ornithopters, in the late 1990’s. Universities have designed ornithopters, including the
University of Arizona ornithopter [11], “Microbat” at the California Institute of Tech-
nology [12], the “Phoenix” ornithopter at the Massachusetts Institute of Technology
[13], and the Morpheus ornithopter at the University of Maryland [14].

3
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1.3.2 Aerodynamics Modeling

It is difficult to model the aerodynamics of a flapping wing. One problem is that
the Reynolds number for these vehicles is typically under 105, which encompasses
a regime where aerodynamic models are currently innaccurate. Additionally, the
thin membrane airfoils and light weight structures add complex aero-elastic couplings
which require additional states or finite-element models to capture. Furthermore, the
flapping motion of the wings generates complex, unsteady, three-dimensional flow
fields that are difficult to model.

It is generally accepted in the literature that the aerodynamic lift force of flapping
wings can be crudely, but analytically, represented using the quasi-steady model [15]

CL = CLαα + CLα̇α̇ + CLḣḣ (1.1)

where the lift coefficient is a function of the instantaneous angle of attack α, its time
derivative α̇, and the local plunge velocity ḣ. The drag coefficient is often modeled
using the drag polar

CD = CD0 + CDαα + CDα2α
2 (1.2)

in order to capture the parasite drag and drag parabola. Often times these aero-
dynamic models are posed using two dimensional airfoil sections in a blade element
model [15, 16, 17, 18, 19, 20], where the local flow velocities may be more accurately
represented. Coefficients in these models are derived from first principles or measured
from experiments.

The most popular analytical model for avian flyers is the model developed by
DeLaurier, who used a quasi-steady blade element model to capture wake/vortex
interactions, post-stall phenomenon, and partial leading edge suction. Variants of
this model are used widely in the literature [21, 22, 23, 16, 17, 24, 25].

Several attempts to empirically measure aerodynamic models from data have also
been conducted, mostly as wind tunnel tests where the ornithopter is mounted to a
load cell measuring lift and drag forces, resulting in a look-up table of aerodynamic
forces and moments [11, 26, 24]. This method constrains the ornithopter in transla-
tion and rotation, thus altering the natural response of the vehicle and aerodynamic
flow environment seen by the wings, and is therefore not representative of free flight
aerodynamics.

Numerical tools have also been developed to examine flapping flight. While these
methods require more computation time and can not be used directly for feedback
control, they provide insight into the fundamental flight physics, and can be reduced
to obtain low-order models. Panel methods solving three dimensional, unsteady, in-
compressible flows around avian-based flapping models in wind tunnels have shown
good results [27]. Reynolds-averaged computational fluid dynamics solvers have also
been used to illuminate the aerodynamic flow field around flapping wings and con-
tribute the the fundamental understanding of flapping flight [28, 29].

The field currently lacks an accurate and low-order model for predicting aero-
dynamic flows over wings, useful in a control-theoretic framework. This is in part
due to the variety of ornithopter designs, having membrane wings, thin airfoils, and
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structural deformations. Another reason is the lack of experimental data available
for flapping-wing vehicles in free flight, due in part to the difficulty in obtaining mea-
surements. Recently developed conformal sensors show potential in measuring lift
and drag forces in real-time and produce direct measurements of the aerodynamic
flow fields [30]. Additionally, non-invasive, vision-based measurements are becom-
ing popular, which when combined with system identification methods can produce
aerodynamic measurements.

1.3.3 Vehicle Dynamics Modeling

There are several types of models that describe the flight dynamics of flapping-
wing aircraft. These models are traditionally derived first as nonlinear models that
evolve position and velocity states. For larger aircraft that have significant mass
and inertia in the wings, and/or where the flapping frequencies are near the rigid
body and control frequencies, multibody models are required. These models are
more complicated and contain more states, but can capture the inertial effects of the
flapping wings. Orlowski concluded, based upon a multibody model and empirical
scaling laws observed in nature, that linear momentum effects from flapping wings
are always significant, but angular momentum effects begin to attenuate for flapping
frequencies above 40 Hz [20]. Rigid body dynamics for multibody ornithopters have
been derived using a variety of methods [18, 31, 32, 33], and have also been included
with finite-element models to capture fluid/structure interactions [25].

If the inertial effects of wings are negligible and the wings flap significantly faster
than the dynamics of interest, then the conventional single-body equations of motion
for aircraft [34, 35, 36] can be used to model the vehicle dynamics. These models
are simpler, and the wing motion is either a kinematic state or a control input. This
approach is common in the literature [37, 38, 39], even for larger vehicles where its
validity is questionable [22, 11, 40].

Linear perturbation models are often desired for stability analysis and controls
synthesis. Linear time-invariant (LTI) models result in equilibrium points with Eigen-
values and Eigenvectors, for which a large set of classical and modern control tools
can be applied. Several authors have employed averaging theory to simplify the pe-
riodic forcing of the wings [39, 41, 20]. Taylor et al. computed the state matrix using
empirical finite differences on insects in a wind tunnel [42, 43]. Faruque and Hum-
bert used system identification to obtain a low-order equivalent system for an insect
[44, 45]. Kim et al. used a linear discrete-time model of hyper-states to map inputs
to outputs [46]. Analyses have resulted in a wide variety of modal structures, most of
which have unstable motions. Several authors have questioned the validity of these
LTI models [42, 43, 46, 47] and have consequently developed more complex models
[48].

The higher fidelity models result in trim conditions characterized as limit cycle
oscillations in the state space, rather than fixed points. Stability has been inferred
from simulation runs [48], and also proven analytically. For instance, Dietl and Garcia
applied Floquet analysis using Poincare maps to create an analogous discrete-time
system. Both their findings and a similar study by Bolender showed unstable trim
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solutions [22, 49].

1.3.4 Feedback Control

One of the goals of modeling the flapping wing vehicle is to be able to control the
vehicle and complete mission scenarios autonomously. These goals range from robust
way-point navigation in outdoor gusty environments, to agile flight through cluttered
indoor environments, to outdoor precision perching maneuvers.

Smaller flapping wing vehicles flap at frequencies too high to perform continuous
control; instead, a control signal is computed at the beginning of each flap cycle,
in a sample and hold fashion. Several authors used variables parameterizing the
stroke kinematics of each wing, as well as a mechanical bob weight, to achieve a fully
actuated system capable of position tracking in simulation [19, 23, 37]. Deng et al.
used averaging theory to obtain an analogous discrete-time, under-actuated system,
for which stabilized hover was demonstrated in simulation [41].

Control methods for larger vehicles resemble those of standard aircraft. Krashan-
itsa et al. integrated a commercial fixed-wing autopilot into an ornithopter and was
able to demonstrate navigation between two way point coordinates using tuned pro-
portional control loops [11]. The work demonstrated successful closed-loop control,
but also the limits of using conventional avionics and control without a model for
flapping-wing aircraft. Recently, Dietl and Garcia explored short comings of using
classical control and suggested a discrete-time linear quadratic regulator control based
on a linear time-periodic model [50]. Lee et al. has also recently explored using a bio-
inspired nonlinear control for the tail to attenuate pitch oscillations and stabilize the
vehicle [25]. Tedrake has suggested coupling a simple flight dynamics model with an
advanced machine learning technique to achieve agile flight [51].

1.4 Scope and Contributions of Current Research

There is currently no flight dynamics model of ornithopter flight that is both
accurate and amenable for control purposes. The goal of this work is to create such
a model, with insights into design and control, so that the community may progress
towards realizing an autonomous ornithopter flight platform.

In Chapter 2, standard nomenclature is discussed and the experimental flight
platform used in this study is introduced. As models and flight data for this type
of vehicle are not available in the literature, a series of experimental investigations
into the characteristics of flight are presented. The results suggest a nonlinear multi-
body model is needed to capture the dynamics. Those nonlinear multibody vehicle
dynamics are derived in Chapter 3. Energy methods are used determine equations
of motion, which were then cast into a canonical form that is useful for simulation,
system identification, and nonlinear feedback control design.

Chapter 4 presents the system identification work performed to identify parts of
the ornithopter flight dynamics model that are not known a priori and are difficult
to model analytically. A wind tunnel test is discussed where lift and drag models for

7



the ornithopter tail were identified. Afterwards, an experiment is presented using a
visual tracking system to obtain flight test data, from which an aerodynamic model
for the wings was identified.

Chapter 5 presents flight simulation results obtained using the flight dynamics
model developed in Chapters 3 and 4. A method for determining trim solutions is
presented and is employed to trim the ornithopter model for straight and level mean
flight. The model is then linearized about the trim trajectory, resulting in a canonical
time-invariant model as well as a time-periodic model. Feedback control laws are then
designed for the ornithopter longitudinal dynamics that could be implemented in an
autopilot.

The original contributions of this research to the state of the art are the following:

• Flight data suitable for modeling

This work presents flight data of an ornithopter, sampled at a bandwidth that
illuminated the effects of the flapping wings. Trimmed flight data showed pitch
oscillations up to 4.97 rad/s and heave accelerations up to 41.7 m/s2, which re-
quire nonlinear multibody models to capture. Additionally, harmonic responses
were seen in the data, indicating either structural modes or nonlinearities. High
accelerations preclude the use of traditional attitude determination methods and
require model-based techniques for state estimation.

• Modeling of mass distribution variation due to flapping wings

The effects of the flapping motion on the mass distribution of the ornithopter
were investigated using a CAD model. The center of mass travels 10.3 cm in
the vertical direction, the moments of inertia can vary up to 53.6%, and the
inertia rates are significant. Multibody models are required to capture these
variations.

• Derivation of rigid multibody vehicle dynamics

It was determined that a three-body model was sufficient to model the or-
nithopter. Vehicle dynamics were derived using the Boltzmann-Hamel equa-
tions, and were cast into a canonical form used for the nonlinear control of
Euler-Lagrange systems.

• Tail aerodynamics system identification

Wind tunnel tests were conducted on the ornithopter tail, having free stream
velocities, angles of attack, and angles of sideslip ranging between 4.50 to 6.33
m/s, −0.88 to −0.35 rad, and ±0.57 rad, respectfully. System identification
methods were applied to determine models of the aerodynamic coefficients.

• Flight testing and wing aerodynamics system identification

Flight data, obtained using a visual tracking system, was presented. This data
and the vehicle dynamics model were used to explore variations in angle of
attack, Reynolds number, reduced frequency, velocity, and structural deforma-
tions over the wing and throughout the wing stroke cycle. Additionally, force
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and moment sources were identified throughout the wing stroke. This data
was also used to determine aerodynamic models for the wings using system
identification techniques.

• Models for stability and control

In addition to the full nonlinear model, a linear time-invariant model and a
linear time-periodic model are presented. The time-invariant model is shown to
not contain enough accuracy for control design; rather, the time-periodic model
is needed.
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Chapter 2

Ornithopter Test Platform
Characterizations

The form and structure of mathematical models describing conventional aircraft
flight dynamics are well known [34, 52, 36]; however, it is not obvious whether these
same models can be used to describe the flight dynamics of ornithopters. This chapter
presents experimental investigations into flapping wing flight using an ornithopter test
platform. Standard nomenclature for describing aircraft flight dynamics is introduced,
followed by a description of the ornithopter test platform. Afterwards, flight data is
presented which exhibits nonlinear phenomenon including fast and large amplitude
motions, as well as limit cycle oscillations. The mass distribution of the ornithopter
is then explored, and it is shown that the flapping wings induce significant changes
in the center of mass location, inertia tensor, and inertia rates. An experiment is
summarized where measured lift and thrust forces were modeled using quasi-steady
aerodynamics. Finally, implications for flight dynamics modeling are discussed and a
new model for flapping-wing aircraft is outlined.

2.1 Mathematical Representation of an Aircraft

Consider the generic aircraft shown in Figure 2.1. An inertial reference frame
KI = {exI , eyI , ezI} is fixed on the surface of the Earth at CI with unit vectors
pointing North, East, and down, respectively. A body frame K0 = {ex0, ey0, ez0} is
fixed to the aircraft center of mass C0, located at

rI0,I =

 x
y
z

 , (2.1)

with axes pointing out the nose, right wing, and underside of the aircraft. A wind
frame KW is collocated with the body frame and is oriented into the oncoming wind.

The attitude, or orientation, of the vehicle is specified by ηI0,I . An Euler angle
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Figure 2.1: An annotated generic aircraft

parametrization admits the three-element attitude vector

ηI0,I =

 φ
θ
ψ

 (2.2)

with corresponding rotation matrix

R0,I =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.3)

where φ, θ, and ψ are the roll, pitch, and yaw angles. Alternatively, a quaternion
parametrization admits the four-element attitude vector

ηI0,I =

[
ε
δ

]
(2.4)

and corresponding rotation matrix

R0,I = (δ2 − εTε)I + 2εεT − 2δS(ε) (2.5)

where ε is the vector part and δ is the scalar part of the quaternion, and where the
skew operator is defined

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (2.6)
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for any three-element vector.
The aircraft has body-fixed translational velocity

ν0
0,I =

 u
v
w

 (2.7)

and body-fixed rotational velocity

ω0
0,I =

 p
q
r

 . (2.8)

Finally, the local airspeed, angle of attack, and sideslip angle

V =
√
u2 + v2 + w2

α = arctan(w/u)

β = arcsin(v/V ) (2.9)

are used to construct the rotation matrix

RW,0 =

 cosα cos β sin β sinα cos β
− cosα sin β cos β − sinα sin β
− sinα 0 cosα

 (2.10)

to rotate from the body frame to the wind frame.

2.2 Ornithopter Aircraft Description

The commercially available “Slow Hawk” ornithopter, by Sean Kinkade [53], was
selected for this study due to its payload capacity, durability, and handling character-
istics. A photograph of this ornithopter is shown in Figure 2.2 and relevant aircraft
parameters are provided in Table 2.1.

The fuselage is a 3 mm ply of carbon fiber and has affixed the electronic compo-
nents. The wings are a rip-stop polyester membrane having 5 mm and 3 mm diameter
carbon fiber spars along the leading edge and near the trailing edge, respectively. The
tail is also a membrane, with small carbon fiber spars running from forward to aft.
Planform geometries are illustrated in Figure 2.3.

To fly the ornithopter, the aircraft is launched into the air and then piloted using
standard 72 MHz hobby radio electronics. Power is delivered from a two-cell, 7.4 V,
1320 mAh lithium-polymer battery to an electronic speed controller, which drives a
brushless DC motor. This motor is attached to a gear box, four-bar mechanism, and
leading edge wing spar, and drives the flapping motion of the wing. As the throttle
is increased, the wings flap faster, thereby increasing the lift and thrust. Power is
also delivered to two servo motors which pitch and roll the tail in a serial fashion to
create pitching and yawing moments on the aircraft, respectively. Flight duration for
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Figure 2.2: Ornithopter flight test platform

Table 2.1: Aircraft parameters

Parameter Symbol Value Unit
total mass m 0.45 kg
wing span bw 1.22 m

wing mean aerodynamic chord c̄w 0.29 m
wing area Sw 0.30 m2

wing aspect ratio ARw 4.40 -
tail span bt 0.20 m

tail mean aerodynamic chord c̄t 0.20 m
tail area St 0.04 m2

tail aspect ratio ARt 1.50 -
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Figure 2.3: Ornithopter planform geometries
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(a) obverse (b) reverse

Figure 2.4: Custom avionics board used to record flight data

this aircraft is approximately 15 minutes.

2.3 Measurements from Flight Data

Flight data can help guide the flight dynamics modeling process; however, there
was no adequate flight data for ornithopter flight available in the literature. As such,
the ornithopter was outfitted with an avionics unit to record vehicle pose and inertial
sensor data during flight. This section presents the experimental setup, flight test,
and data analysis. See reference [54] for a complete discussion.

2.3.1 Experimental Setup

Autopilot and stability augmentation systems commonly used on aircraft employ
sensors including magnetometers, accelerometers, and gyroscopes to provide infor-
mation on the vehicle motion. Commercially available packages for unmanned air-
craft typically include sensors that have range and bandwidth too low to investigate
ornithopter flight. A custom avionics package was therefore developed to provide
measurements in flight from inertial and pose sensors.

The avionics board, pictured in Figure 2.4 has a 40 cm by 70 cm footprint and
a 27.9 g mass. The board was designed using CadSoft Eagle, manufactured by an
external company, and populated using re-flow solder equipment. Power is supplied
by a dedicated 2-cell, 7.4 V, 200 mAh lithium-polymer battery. Four voltage regu-
lators deliver power at 3.3 V, 5 V, and 7 V for the on-board processing and sensors.
Additional connections are included to reprogram the microprocessor and to connect
to the RS-232 interface

The MemSense Mag3d inertial measurement unit (IMU) was chosen for its small
1.78 cm by 1.78 cm footprint and 10 g mass. This IMU provides analog voltage
outputs, filtered to 50 Hz, from orthogonal triads of magnetometers, gyroscopes,
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Table 2.2: Avionics measurement specifications

Measurement Range Resolution Error Unit
time - 0.03× 10−3 - s

throttle input 0 to 1 1.53× 10−3 1.42× 10−3 -
longitudinal input −0.87 to −0.31 8.52× 10−6 6.85× 10−3 rad

lateral input ±0.70 0.02× 10−3 7.44× 10−3 rad
wing angle ±3.14 0.10× 10−3 20.8× 10−3 rad

longitudinal angle −0.87 to −0.31 9.37× 10−6 25.1× 10−3 rad
lateral angle ±0.70 0.02× 10−3 55.1× 10−3 rad

magnetic field ±3.17 0.05× 10−3 5.83× 10−3 -
rotational velocity ±5.24 0.08× 10−3 0.14× 10−0 rad/s
linear acceleration ±98.1 1.50× 10−3 49.6× 10−3 m/s2

and accelerometers, which measure local magnetic fields h0
0,I , body-fixed rotational

velocities ω0
0,I , and local accelerations a0

0,I , respectively. Additional sensors were
installed on the ornithopter to measure temperature, power consumption, wing angle,
pilot stick commands, and tail surface deflections.

The board is controlled with a reprogrammable 40 MHz Microchip Pic18f8722
microprocessor, programmed in the C computer language. During data collection,
analog sensor outputs are digitized using 16 bit analog to digital converters and are
recorded on a removable 1 GB memory card. Aggregate delays from data acquisition,
computation, and memory write times resulted in a maximum sampling rate of 146
Hz. Measurement specifications are summarized in Table 2.2.

The IMU was installed on the ornithopter at the wings level center of mass loca-
tion, which mitigated DC motor magnetic field effects and mechanical vibrations, as
well as minimized accelerometer corrections due to rotation [55]. Sensors that mea-
sured power consumption, wing angle, pilot stick inputs, and tail surface deflections
were calibrated in the laboratory. Inertial sensors were calibrated at the time and
place of flight testing using the method presented in Appendix A.

2.3.2 Results

A flight test was conducted where the ornithopter was manually piloted and
trimmed for straight and level mean flight. A 6.4 s segment of data containing 28 com-
plete wing strokes was chosen for analysis; a confined flight volume and the presence
of wind gusts prohibited longer segments of usable flight data.

The flight data is periodic with the flapping period Tf . As such, ensemble averag-
ing techniques were applied to compute mean wave forms and variances. For a noisy
measurement of a Tf -periodic signal ym, the ensemble average and variance are

y̌m(t) =
1

n

n−1∑
k=0

ym(t+ kTf ) (2.11)
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σ2
y(t) =

1

n

n−1∑
k=0

[ym(t+ kTf )− y̌m(t)]2 (2.12)

where here n is the number of complete periods contained within the data.
Ensemble averages are shown in Figure 2.5 with 2σ error bounds. The wing

angle δw, defined as the roll angle of the right wing relative to the fuselage, oscillates
with a 0.44 rad amplitude at 4.69 Hz. Magnetometer measurements, normalized
to the strength of the magnetic field of the Earth, exhibit oscillations in the pitch
axis. The gyroscopes show that while there is some roll and yaw oscillation, the
dominant motion is in the pitch rate, which obtains a maximum value of +4.97 rad/s
at 0.40Tf and a minimum value of −4.36 rad/s at 0.90Tf . Periodic forcing of the
wings and gravitational forces create large heave motions, which are evident by the
+41.7 m/s2 acceleration at 0.25Tf , and the −21.8 m/s2 acceleration at 0.68Tf . These
fast and large amplitude motions observed in trimmed flight require nonlinear models
to capture. Moreover, the fact that these signals are periodic indicates the presence of
limit cycle oscillations, which are a nonlinear phenomenon. Increases in error bounds
at 0.75Tf in the rotational velocity and linear acceleration measurements may indicate
the presence of unsteady aerodynamic forces in the transition from down stroke to
up stroke.

The frequency content of the flight data was also examined using a high accuracy
implementation of the chirp-z algorithm [56, 35] to compute the Fourier transform

F{y(t)} =

∫ t

0

y(τ)e−jωτdτ (2.13)

using an arbitrarily specified set of frequencies ω. Frequency transforms were com-
puted using a 0.10 Hz spacing up to 50 Hz, and are shown in Figure 2.6. The sensors
show power at harmonics of the flapping frequency, which indicate structural modes
in the airframe and/or nonlinear effects in the flight dynamics.

2.4 Configuration-Dependent Mass Distribution

Flight dynamics models typically approximate aircraft as a single rigid body and
neglect changes in mass distribution due to rotating machinery, control surface deflec-
tions, and fuel burn. The ornithopter wings however have appreciable mass compared
with the rest of the vehicle and flap at frequencies near the expected rigid body modes
of the system. In this section it is shown that the flapping wings create significant
changes in the center of mass location, inertia tensor, and inertia rate, which cannot
be captured by the standard aircraft flight dynamics model.

The ornithopter consists of three sections of parts: the fuselage, wings, and tail.
For this ornithopter, the moving parts constitute a significant portion of the vehi-
cle mass, as illustrated in Figure 2.7. Both a component build up method and a
computer-aided design (CAD) program were employed to model the vehicle mass dis-
tribution. The first method consisted of measuring part masses and geometries from
which inertia tensors were then computed and transformed to the vehicle center of
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Figure 2.5: Ensemble averages of flight data with two standard deviation error bounds
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Figure 2.7: Ornithopter mass distribution contributions

mass. In the second method, software was used to compute the inertia tensor from
mass measurements and three-view photographs. Both methods produced consistent
results, however the CAD results were used because they are generally considered to
be more accurate.

The effect of wing position on the gross vehicle center of mass location, referenced
to the fuselage center of mass, is shown in Figure 2.8(a). The symmetric motion of
the wings creates a 10.3 cm (0.36 c̄w) variation in the vertical center of mass position.
The vertical bias is due to the wings-level position being located above the fuselage
center of mass. This change in center of mass location introduces complexity into the
conventional aircraft model, as the body and stability axes are located at the center
of mass.

The effect of wing position on the gross vehicle inertia tensor, referenced to the
gross vehicle center of mass, is shown in Figure 2.8(b). The products of inertia
are small and do not exhibit large changes. The roll inertia shows 32.2% variations
due to the wing hinge location above the gross center of mass location. The pitch
inertia is biased due the hinge offset and the moving center of mass, and experiences
a 53.6% increase in value as the wings rotate. The yaw inertia is centered about
the wings-level position and experiences a symmetric 52.6% change in inertia as the
wings move. These variations introduce a position-dependent inertia matrix into the
standard aircraft model.

The time rate of change of the inertia tensor also contributes inertial forces to the
equations of motion. Inertia rates resulting from a sinusoidal approximation to the
wing trajectory

δw = 0.56 sin(2πff t)− 0.13 (2.14)

are shown in Figure 2.9 as a function of the wing angle, where the flapping frequency
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Figure 2.9: Moment of inertia rates due to flapping between 0 Hz and 10 Hz

ff = 1/Tf is varied between 0 and 10 Hz. The pitch inertia rate is smaller in amplitude
because the pitch inertia experiences smaller changes, and is much larger above −0.5
rad due to a greater slope. The pitch rate inertia and yaw rate inertia are null at
approximately 0.1 rad and 0 rad, where the inertias reach a minimum and a maximum,
respectively. The plots grow in magnitude for negative wing angles because the
asymmetric nature of (2.14) puts more travel and faster velocity in that regime. The
inertial rate effects are on the same order as magnitude as the inertial effects for the
ornithopter and require multibody models to capture.

2.5 Quasi-Hover Aerodynamics

It is difficult to model aerodynamic forces and moments on an arbitrary flapping
wing aircraft from first principles. To experimentally study the ornithopter aero-
dynamics, force and wing shape measurements were collected while flapping in a
quasi-hover state.

The experimental setup is pictured in Figure 2.10 [17]. Lift and thrust measure-
ments were recorded from a six-axis strain gauge transducer, and wing angle mea-
surements form a potentiometer, at 1000 Hz using LabVIEW. The ornithopter wing
was also fitted with one hundred 3 mm diameter retro-reflective spherical markers.
A visual tracking system, consisting of six cameras and a software suite, was used to
track the spatial position of each marker at a rate of 350 Hz, providing a discretized

22



Figure 2.10: Quasi-hover test experimental setup [17]

measurement of the wing shape. The ornithopter was flapped at a number of frequen-
cies between 3 and 7 Hz while the aerodynamic forces, wing angle, and wing shape
were recorded.

A representative segment of lift and thrust data is shown in Figure 2.11, where
the ornithopter was flapping at 4.7 Hz. Thrust forces range between 0.26 and 6.86 N,
and oscillate at twice the flapping frequency, with the larger peak occurring at the
transition between down stroke to up stroke and the smaller peak occurring at the
transition between up stroke and down stroke. The lift force oscillates at the flapping
frequency, and is zero mean with a 15.6 N amplitude.

This experiment resulted in two models that used wing shape data as input to
validate the aerodynamic forces. The first was a computational fluid dynamics model,
which used a Reynolds-averaged, Navier-Stokes solver called Umturns [57] and a
deforming grid algorithm to capture the wing deformations [28]. Good agreement
was found at the low flapping frequencies; however at higher frequencies inaccuracies
were found in the thrust model. The second analysis was a blade element model using
aerodynamics from first principles [16, 17]. It was found that the forward section of
the wing creates the lift while the aft section creates the thrust. A quasi-steady
aerodynamics model could predict the lift force but not the thrust force.
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Figure 2.11: Representative thrust and lift measurements while flapping at 4.7 Hz

2.6 Implications for Flight Dynamics Modeling

The flight data showed the presence of fast and large amplitude motions, as well as
limit cycle oscillations. Additionally, the harmonic responses measured by the sensor
are representative of nonlinear systems or structural vibrations. The large heave
accelerations preclude the used of conventional attitude determination algorithms
[58] and require model-based state estimators to estimate orientation.

The flapping wings generate a moving center of mass, a variable inertia tensor,
significant inertia rates, and a moving reference frame. These difficulties can be
modeled in a straight forward manner using multibody system techniques.

The quasi-hover experiment provided a priori information on the thrust and lift
waveforms that can be expected in free flight. Modeling results showed that quasi-
steady models may be sufficient to model the lift force.

A block diagram for the proposed ornithopter flight dynamics model is shown in
Figure 2.12. The pilot control inputs µ are the flapping rate and the tail angles, which
impact the aerodynamics. These forces and torques, along with gravitational effects,
force the rigid body dynamics, which evolve the generalized position p and velocity v
states. The rigid body dynamics are nonlinear multibody equations of motion which
will be developed in Chapter 3, along with the gravitational effects. The aerodynamic
effects will be determined using system identification techniques on wind tunnel and
free flight data in Chapter 4. Additional actuator models for this ornithopter have
been determined using system identification and are provided in Appendix B.
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2.7 Chapter Summary

This chapter presented an investigation into the flight characteristics of an exper-
imental flapping-wing ornithopter test platform. A flight test was conducted where
the ornithopter was fitted with a custom avionics package. Results showed that the
ornithopter experiences harmonic responses, large amplitude pitch excursions, fast
pitch rates, and large heave accelerations. Geometry modeling using a CAD software
showed that as the ornithopter experiences large changes in the vertical position of
the center of mass, inertia tensor, and inertia rates as the wings flap. An experiment
in a quasi-hover condition showed small deformations of the wing spars, complex
flow structures, and the effectiveness of a quasi-steady blade element model of the
aerodynamics. Findings in this chapter suggest a nonlinear multibody model of the
ornithopter vehicle dynamics and a quasi-steady model of the aerodynamics.
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Chapter 3

Rigid Multibody Vehicle Dynamics

Chapter 2 concluded with a recommendation to model ornithopter flight dynam-
ics using nonlinear multibody techniques. In this chapter, the nonlinear equations
of motion are derived for a multibody ornithopter. The model configuration is first
presented, where the ornithopter is simplified as a system of three rigid bodies. The
kinematic equations are then derived for this system, followed by the dynamic equa-
tions. Energy methods were employed, which resulted in a minimum state model,
cast into a canonical form and having Lyapunov functions derived from scalar energy
functions. At the conclusion of this chapter, only the aerodynamics model remains
to be determined.

3.1 Model Configuration

The ornithopter is assumed to be a set of three rigid bodies, with one body
allocated for the fuselage and one for each wing, all connected by revolute joints.
Although susceptible to bending and torsion, the fuselage is assumed rigid for control
modeling purposes. Similarly, the wings are flexible membranes and the aft section
deflects to create thrust; however, the wings are assumed to be a rigid body for control
modeling, and the aft section contains only 12% of the wing mass, which is 2.3% of
the vehicle mass. The mass and inertia of the tail was absorbed into the fuselage, as
the tail comprises only 4.9% of the vehicle mass, is actuated slowly (see Appendix B),
and adds considerable complexity to the multibody model. Similarly, the four-bar
linkage that flaps the wings was not modeled because although it does integrate the
flapping kinematics into the equations of motion, it does not contribute a significant
source of momentum and adds considerable complexity. Momentum contributions
from spinning gears were also neglected.

A generic rigid body, linkage i along chain j, is shown in Figure 3.1. Each rigid
body has at its center of mass Cij a mass mij and inertia tensor Iij. Position vectors
lij and rij describe the locations of in-board and out-board joint locations, which
rotate about vectors zij and z(i+1)j through angles θij and θ(i+1)j. Additionally, an
arbitrary point P can be specified by the vector rP,ij.

The ornithopter multibody configuration is shown in Figure 3.2 with mass and
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Cij

zij z(i+1)j

θij θ(i+1)j

lijrij

rP,ij

Figure 3.1: Generic rigid body linkage i on chain j

Table 3.1: Multibody model mass properties

Index Mass (kg) Inertia Tensor (kg·m2) ×10−6

ij m Ixx Iyy Izz Ixy Ixz Iyz
00 0.3412 +112.57 +3799.3 +3739.4 −51.394 +5.3746 −1.1234
11 0.0414 +915.06 +422.48 +1337.5 −166.07 −0.0001 −0.0000
12 0.0414 +915.06 +422.48 +1337.5 −166.07 −0.0001 −0.0000

inertia properties listed in Table 3.1. The generalized position vector is

p =

 rI0,I
ηI0,I
δw

 (3.1)

where the first term is the inertial position of fuselage, the second term is a quaternion
describing the orientation of the fuselage, and where the last term

δw = θ11 = π − θ12 (3.2)

is the wing angle. The generalized velocity vector is

v =

 ν0
0,I

ω0
0,I

δ̇w

 (3.3)

where the first two terms are the body-fixed translational and rotational velocities of
the fuselage, and where the last term is the wing rate. This choice of state variables
is the same as for conventional aircraft, except that an additional degree of freedom
is provided for the wings.
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Figure 3.2: Multibody ornithopter model schematic
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3.2 Kinematic Equations of Motion

The kinematic equations describe the evolution of the position state as a function
of the velocity state. A generic point P on link i of chain j has the position vector

rIP,I = rI0,I + RI,0r00j +
i−1∑
k=1

RI,kj(rkjkj − l
kj
kj) + RI,ij(rijP,ij − l

ij
ij) (3.4)

expressed in the inertial reference frame. The rotational velocity of a linkage in the
ornithopter system can be written in its body frame as

ωijij,I = Rij,0ω0
0,I +

i∑
k=1

zkjkj θ̇kj

= Rij,0ω0
0,I + Zij

ijθ̇ (3.5)

which forms a convenient way of writing the equations of motion. The translational
velocity of a point P on linkage i of chain j is

ν0
P,I = ν0

0,I +S(ω0
0,I)r

0
0j +

i−1∑
k=1

S(ω0
kj,I)R

0,kj(rkjkj − l
kj
kj) +S(ω0

ij,I)R
0,ij(rijp,ij− l

ij
ij) (3.6)

expressed in the fuselage frame of reference.
The kinematic differential equation relating the position and velocity states is

ṗ = Φv (3.7)

where

Φ =

 RI,0 0 0
0 JI,0η 0
0 0 I

 (3.8)

is a block-diagonal Jacobian matrix with an inverse relation Ψ. The first entry is
a rotation matrix, defined using either (2.3) or (2.5), that rotates the translational
velocities of the fuselage frame into the inertial coordinate frame. The second term
is a rotational Jacobian matrix, defined as either

JI,0η =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ cos θ cosφ cos θ

 (3.9)

or

JI,0η =
1

2

[
δI + S(ε)
−εT

]
(3.10)

and relates body-fixed velocities to attitude rates. The last entry is an identity matrix,
reflecting the kinematically flat relationship of the joint angles and their rates.
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3.3 Dynamic Equations of Motion

The dynamic equations describe the evolution of the velocity as a function of the
states and controls. These equations are derived here using energy methods, which
produce first-order state space equations with a minimal number of state variables.
As aircraft dynamics are not typically derived using energy methods, Appendix C is
included to provide detail and familiarity.

The kinetic and potential energy, which may serve as future Lyapunov control
functions [59], are

T (p,v) =
1

2

ni∑
i=0

nj∑
j=0

mij(ν
0
ij,I)

T (ν0
ij,I) + (ωijij,I)

T Iijij(ω
ij
ij,I) (3.11)

U(p) = −
ni∑
i=0

nj∑
j=0

mij(r
I
ij,I)

TgI (3.12)

where nj are the total number of kinematic chains, ni are the number of linkages on
chain j, and g is the local acceleration due to gravity.

The Boltzmann-Hamel equations [60, 61], a generalization of the Lagrange equa-
tions which account for different reference frames,

d

dt

[
∂T

∂v

]T
+

(
nv∑
k=1

∂T

∂vk
Γk

)
v −ΦT

[
∂T

∂p

]T
= τ (3.13)

may then be applied, where potential energy sources are neglected and the Hamel
coefficient matrices are defined as

Γk = ΦTΛkΦ (3.14)

with individual matrix elements

{Λk}ij =
∂Φki

∂pj
− ∂Ψkj

∂pi
. (3.15)

For a given multibody system and choice of reference frames, the relationship between
the velocities and quasi-velocities of the system is fixed, and so the Hamel coefficient
matrices (3.14) are constant, skew symmetric matrices.

The equations (3.13) can be manipulated into a canonical form used in the non-
linear control of Euler-Lagrange systems [62, 63, 64, 59]. The kinetic energy of the
system can be written

T (p,v) =
1

2
vTM(p)v (3.16)

which is a quadratic form in the velocity. Inserting (3.16) into (3.13), differentiating,
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and regrouping the terms, yields the reformulation

Mv̇ +

(
Ṁ +

nv∑
k=1

∂T

∂vk
Γk −

1

2
ΦT (I⊗ vT )

[
∂M

∂p

]T)
v = τ (3.17)

where ⊗ is a Kronecker product operator [65].
Grouping terms in (3.17) and adding forces imparted on the vehicle by the external

environment yields the canonical form

M(p)v̇ + C(p,v)v + g(p) + a(p,v) = τ (3.18)

where M(p) is a generalized mass matrix, C(p,v) contains nonlinear coupling forces
arising from centripetal and Coriolis accelerations, g(p) describes gravitational effects,
and a(p,v) describes aerodynamic effects. With this choice of state variables, the
forcing vector τ corresponds to forces on the fuselage center of mass, torques on
the fuselage center of mass, and torques on the wings. In the following sections these
matrices and vectors are derived and discussed, with the exception of the aerodynamic
terms, which are presented in Chapter 4. Properties of the canonical form are further
discussed in Kelly et al. [63] and Lewis et al. [62].

3.3.1 Inertial Effects

The mass matrix M(p) describes the generalized mass and inertia of the system
as a function of the vehicle pose. Contributions to this matrix can be determined for
each rigid body by using algebraic manipulations to rearrange the kinetic co-energy
(3.11) into the quadratic form (3.16), for which the mass matrix is then obvious.

The mass matrix for the fuselage body is found by rearranging the energy and
has the same form as that found in conventional aircraft equations of motion [34, 36].
The mass matrix is

M(p) =

m0I 0 0

0 I00 0

0 0 0

 (3.19)

which is a diagonal matrix with the mass and inertia tensor along the block diagonal.
The mass matrix for the first linkage (i = 1, e.g. the wings) is given in (3.20), and
should a second linkage (i = 2, e.g. the four-bar mechanism, tail surface, etc.) need
to be modeled, the mass matrix is given in (3.21). Each mass matrix has along its
block diagonal the scalar mass, the inertia relative to the fuselage center of mass, and
the inertia of the linkage. Off-diagonal terms represent inertial couplings within the
system. The total mass matrix of the system is a summation of the mass matrices of
each rigid body.
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3.3.2 Nonlinear Coupling Effects

The nonlinear coupling matrix is a non-unique, square matrix that contains forces
arising from Coriolis and centripetal accelerations, and is most easily derived from
the mass matrix. It is apparent that one definition of the coupling matrix is

C(p,v) = Ṁ +
nv∑
k=1

∂T

∂vk
Γk −

1

2
ΦT (I⊗ vT )

[
∂M

∂p

]T
(3.22)

from comparing (3.17) and (3.18). A property exploited in passivity-based control is
that there exists a representation of the coupling matrix that satisfies

Ṁ(p,v)− 2C(p,v) (3.23)

is a skew-symmetric matrix [64, 66]. The representation (3.22) does not satisfy this
relation; rather, by extension of the discussion by Lewis et al. [62], the representation
is

C(p,v) =
1

2
Ṁ +

(
nv∑
k=1

∂T

∂vk
Γk

)
+

1

2

[
∂M

∂p

]
(v⊗ I)Φ− 1

2
ΦT (I⊗ vT )

[
∂M

∂p

]T
(3.24)

so that

Ṁ− 2C = −2

(
nv∑
k=1

∂T

∂vk
Γk

)
−
[
∂M

∂p

]
(v ⊗ I)Φ + ΦT (I⊗ vT )

[
∂M

∂p

]T
(3.25)

which satisfies the property (3.23) because the first term is a summation of skew
Hamel coefficient matrices and the last two terms represent the skew decomposition
of a matrix.

Evaluating the coupling matrix (3.24) for a given ornithopter state is not a trivial
task. The mass matrix derivatives, both respect to time and position, were derived.
Some simplifications of the equations arise, as the Kronecker products have many null
entries and the mass matrix is only a function of the joint position states.

3.3.3 Gravitational Effects

Gravitation effects depend on the orientation of the ornithopter, and are derived
from the potential energy as

g(p) = ΦT

[
∂U

∂p

]T
(3.26)

however, this formulation leads to complicated expressions involving tensors. It is
simpler in this case to include gravitational effects as external forces applied at the
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centers of mass

g(p) =

ni∑
i=0

nj∑
j=0

Jf,ij

 0
0

mijg
I

 (3.27)

where the force Jacobian matrices are

Jf,0 =

 R0,I

0
0

 (3.28)

for the fuselage i = 0,

Jf,1j =

 R0,I

S(r00j −R0,1jl1j1j)

(Z1j
1j)

TS(−l1j1j)R1j,I

 (3.29)

for the first linkage i = 1 on a chain j, and

Jf,2j =

 R0,I

S(r00j + R0,1j(r1j1j − l
1j
1j)−R0,2jl2j2j)R

0,I

(Z1j)
TS((r1j1j − l

1j
1j)−R1j,2jl2j2j)R

1j,I + (Z2j
2j)

TS(−l2j2j)R2j,I

 (3.30)

for the second linkage i = 2 on a chain j.

3.4 Chapter Summary

In this chapter, the nonlinear multibody equations of motion for an ornithopter
were derived. A rigid body is allocated for the fuselage and each wing. Kinematic and
dynamic equations of motion are presented. The Boltzmann-Hamel equations were
used, which result in Lyapunov control functions and a minimal state space model
that was cast into a canonical form. Gravitational effects were also derived. At this
point, the only unmodeled forces on the ornithopter are due to aerodynamics, which
will be presented in Chapter 4.
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Chapter 4

System Identification of
Aerodynamic Models

In Chapter 2 it was determined that a nonlinear multibody model was needed to
describe the flight dynamics of the ornithopter. In Chapter 3 the rigid body equa-
tions of motion, as well as the gravitational effects, were derived from first principles.
The aerodynamics for an arbitrary flapping wing vehicle are difficult to model ana-
lytically, and are determined in this work using system identification methods with
experimental data. This chapter begins with a presentation of the system identifi-
cation methods employed herein. Afterwards, tail aerodynamic models are identified
from wind tunnel data, and wing aerodynamic models are identified from flight test
data. This chapter concludes the nonlinear multibody model of the ornithopter flight
dynamics.

4.1 System Identification Method

System identification is the process of determining, using observations of inputs
and outputs, a mathematical model that behaves similarly to the physical system
under specified conditions. Applied to aircraft, system identification can be used to
create flight simulators, validate numerical codes, design control laws, assess handling
qualities, perform model reduction, and gain physical insight into the system. In this
work, system identification was employed to develop aerodynamic models for the
ornithopter that could not be determined from first principles modeling. Several
texts provide a thorough description of system identification techniques [67, 35, 68].

The system identification process begins with an experiment where inputs and
outputs are recorded while the system is sufficiently excited. After any necessary
calibration, signal processing, data compatibility and data collinearity analyses, the
next step is model structure determination, which is the process of finding an adequate
functional representation relating inputs to outputs. While there are many techniques
for this step, step-wise regression is most heavily relied on in this work [69, 35]. In this
method, a pool of candidate regressors are selected and are sequentially included in or
excluded from the model per engineering intuition and several statistical metrics. The
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process is iterative and interactive, and can be applied to linear or nonlinear problems,
in the time or frequency domains, using any method of parameter estimation.

Once the form of the model is known, the next task is to estimate the unknown
parameters in the model. For the system

ż = f(t, z,µ) (4.1)

with states z, inputs µ, and measurements ym, the maximum likelihood cost function

J(φ) =
1

2

n∑
i=1

eTW−1e (4.2)

where φ is the vector of unknown parameters, e is the residual vector between
the measurements and the outputs, and W is the inverse noise covariance matrix.
Two simplifications of the maximum likelihood estimator are the equation-error and
output-error methods [70, 35]. In equation-error, process noise is assumed and the
measurements are the state derivatives. This results in a linear estimation problem
with an analytical solution. In output-error, measurement noise is assumed and the
measurements are the states. This results in a nonlinear, iterative solution that re-
quires initial guesses, but is considered more accurate than equation-error. Once
parameter estimates are obtained, a new data set is used to test the predictive capa-
bility of the identified model.

All signal processing and system identification algorithms are implemented in this
work using a Matlab toolbox called System IDentification Programs for AirCraft
(Sidpac), developed at Nasa Langley Research Center and documented in Reference
[35].

4.2 Tail Aerodynamics

This section describes the system identification of the ornithopter tail aerodynamic
model using wind tunnel data. The tail aerodynamics are assumed to be steady due to
limited pilot bandwidth [71] and actuator bandwidths (provided in Appendix B), and
independent of the wing aerodynamics. These simplifying assumptions are common
in the literature due to the complex nature of the interactions [25, 22, 18].

4.2.1 Experimental Setup

The ornithopter was tested in a free-jet wind tunnel, having a 0.56 m by 0.56 m
test section. The wings were removed and the ornithopter was fitted on a custom
test stand in the center of the test section, as shown in Figure 4.1. Free stream
velocity measurements were obtained using a U-tube manometer and a barometer.
The test stand included a load cell that produced six-axis force and torque data. Tail
positions were measured using the internal potentiometers in the servo motors. The
tail orientation was controlled using potentiometers and Pic18F452 microprocessors,
as well as a signal generator.
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Figure 4.1: Wind tunnel test experimental setup for tail aerodynamics modeling
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Figure 4.2: Flow states from four concatenated wind tunnel tests used for modeling
the tail aerodynamics

Four tests were selected for system identification of aerodynamic force and moment
coefficients. Each test occurred at a different free stream velocity, and a potentiome-
ter was used to step the angle of attack on the wings while the sideslip angle was
cycled at 0.06 Hz using a signal generator. Aerodynamic quantities for these tests are
concatenated and shown in Figure 4.2. Flow velocities ranged between 4.50 m/s and
6.33 m/s; the lower bound was the slowest velocity with an acceptable signal to noise
ratio, and the upper bound began to exhibit structural deformations and increases
in actuator current consumption. The angle of attack range, -0.88 to -0.35 rad, and
angle of sideslip range, ±0.57 rad, comprise the full travel of the tail orientation. A
frequency domain analysis showed that no significant unsteady effects were present
in the data due to the cycling of the sideslip angle, and the associated reduced fre-
quency ranges between 0.006 and 0.009, which is a regime where unsteady effects are
not significant [15].
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4.2.2 Results

Data were calibrated, filtered to 1 Hz using a low-pass smoother, and then con-
catenated together. Aerodynamic force and moment coefficients were computed as

Cx = X/QSt

Cy = Y/QSt

Cz = Z/QSt

Cl = L/QStbt

Cm = M/QStct

Cn = N/QStbt (4.3)

where

Q =
1

2
ρV 2 (4.4)

is the dynamic pressure, X, Y , and Z are the body axis forces, L, M , and N are the
body axis moments, and tail geometry parameters are listed in Table 2.1.

Model structure determination was performed using step-wise regression in the
time domain using equation-error. The model structure

Cx = Cx0 + Cxα2α
2

Cy = Cyαβαβ

Cz = Cz0 + Czαα + Czββ

Cl = Clββ + Clαβαβ

Cm = Cm0 + Cmαα + Cmββ + Cmβ2β
2 + CmαV αV

Cn = Cnββ (4.5)

was found to fit the data well. The model is nonlinear and expresses the aerodynamic
force and moment coefficients in terms of the measured aerodynamic flow variables.
The lateral models are zero mean while the longitudinal models contain biases to
account for profile drag, as well as lift and pitching moment at zero angle of attack.
The model for drag is the traditional drag polar. The yawing moment is dependent
only on the sideslip angle. The remaining models contain a coupling between the angle
of attack and sideslip angle, due to the serial configuration of the tail surface. The
measured yawing moment is much larger than the rolling moment, which indicates
the lateral control is primarily in yaw.

Time domain equation-error was used to estimate model parameters, as the model
equations precluded an output-error analysis, and testing at steady free stream ve-
locities prohibited an accurate frequency domain analysis. Measured and modeled
coefficients are shown in Figure 4.3, and estimated parameters with standard errors
are given in Table 4.1. The Cz model had a lower fit value due to the residual seen in
the third and fourth data sets, and the Czα and Cmβ2 coefficients had slightly larger
errors, but otherwise the models produced high fit values and parameter errors below
10%, indicating good model fits.
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Figure 4.3: Tail aerodynamic model fits

Table 4.1: Tail aerodynamic parameters and standard errors

Parameter Estimate Fit

φ φ̂± σ(φ̂) R2

Cx0 −0.3181± 0.0058
0.88

Cxα2 −0.2310± 0.0123
Cyαβ +0.1153± 0.0035 0.88
Cz0 +0.3346± 0.0243

0.59Czα −0.2729± 0.0364
Czβ +0.0884± 0.0066
Clβ −0.0054± 0.0005

0.93
Clαβ −0.0161± 0.0007
Cm0 −0.3486± 0.0272

0.96

Cmα −3.3182± 0.1131
Cmβ +0.0975± 0.0067
Cmβ2 −0.4184± 0.0847

CmαV +0.3053± 0.0195
Cnαβ −0.5094± 0.0141 0.97
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Figure 4.4: Tail aerodynamics model prediction case

A similar test, not used for identification and having a free stream velocity of
4.86 m/s, was used to validate the identified model. Measured and predicted force
and moment coefficients are shown in Figure 4.4. The rolling and pitching moment
coefficients have small residuals at low angles of attack, but overall the models predict
well and all have coefficients of determination above 0.81, indicating a good model.

4.3 Wing Aerodynamics

This section describes the system identification of the ornithopter wing aerody-
namics model from flight data. The experimental setup is first presented, followed by
a discussion of the data reduction and kinematic flight results, and lastly a presenta-
tion of the system identification results.

4.3.1 Experimental Setup

It is difficult to obtain flight data for system identification of an ornithopter.
Avionics add weight and inertia to the ornithopter, and must sample faster than
with conventional aircraft to measure the effects of flapping. Additionally, the large
heave accelerations prohibit an attitude estimation using conventional methods with
magnetometers and accelerometers, and air data probes incur inaccuracies due to
the fast pitching and heaving motions. Flexibility in the aircraft also adds errors to
the responses at harmonics of the flapping frequency. To mitigate these problems, a
visual tracking system was used to measure the spatial location of markers placed on
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Figure 4.5: Flight testing experimental setup for wing aerodynamics modeling

the ornithopter. At the cost of restricting the capture volume for data collection, this
is a non-invasive and highly accurate method that additionally averages out effects
due to flexibility.

Flight tests consisted of flying the ornithopter down a corridor, as shown in Fig-
ure 4.5, while collecting data. This method was sufficient for modeling straight and
level flight while minimizing atmospheric disturbances and facilitating the use of the
visual tracking system. Eight cameras were placed at the corners of a capture volume
10 m long by 6 m wide and 5 m tall. These cameras recorded at 500 Hz the spatial
position of retro-reflective markers placed on the ornithopter fuselage, wings, and tail,
as shown in Figure 4.6. Marker position measurements were filtered to 250 Hz using
a low-pass smoother.

To compute the state vector, rigid bodies were fit to the marker data at each data
frame. A simplex search algorithm was used find the center of mass position and
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(a) fuselage

(b) wings (c) tail

Figure 4.6: Retro-reflective marker locations on the ornithopter

Table 4.2: Marker position, rigid body position, and rigid body orientation standard
errors

Rigid Body Marker Position Orientation
Cij σ(rIk,I) [m] σ(r̂Iij,I) [m] σ(η̂Iij,I) [rad]

fuselage 0.0009 0.0009 0.0056
right wing 0.0017 0.0011 0.0041
left wing 0.0018 0.0013 0.0037

tail 0.0008 0.0006 0.0036

orientation that minimized the cost function

J(φ) =
1

2
eTWe (4.6)

where φ is a vector containing the rigid body position and orientation quaternion,
W is a unity weighting matrix, and the error

e = rIk,I − (rIij,I + RI,ijrijk,ij) (4.7)

is the difference between the measured marker locations and those computed from
the rigid body center of mass position, a rotation matrix derived from its orientation,
and known positions of the markers relative to the center of mass. An example of the
fit is shown in Figure 4.7. Errors for the marker measurements, as well as the rigid
body positions and orientations, are given in Table 4.2. From these estimates, the
position states are assembled and subsequently smoothly differentiated [35] to yield
the velocity states. Previous studies have shown these measurements contain lower
noise levels than measurements obtained using Mems gyroscopes and accelerometers
[72].

45



fuselage

right wing

left wing

tail

+3.6

+3.8

+4.0

+4.2

+4.4

exI [m]

-0.6

-0.3

+0.0

+0.3

+0.6

eyI [m]

-1.1

-1.0

-0.9

-0.8

ezI [m]

Figure 4.7: Rigid body ornithopter geometry fit to retro-reflective marker data

4.3.2 Measurements

Longitudinal state variables for a representative segment of flight data, where the
ornithopter was flapping at 5.91 Hz, is shown in Figure 4.8. The periodic wing forcing
induces a heave velocity between −1.1 m/s and +0.90 m/s, which results in a 0.08
m oscillation about the nominal altitude. Smoothly differentiating the heave velocity
shows that at the fuselage center of mass, the ornithopter experiences translational
accelerations between −4.0 and +4.9 times the that of gravity. The wing beats also
induce a pitch rate between −1.4 and +1.6 rad/s, resulting in a 0.02 rad oscillation
about the mean pitch angle. These observations are consistent with the inertial
measurements presented in Chapter 2. The longitudinal tail deflection, although
commanded to a trim condition, oscillates due to the vehicle and actuator dynamics.
The down stroke phase of the flapping cycle has a range of −0.67 to +0.39 rad, which
occurs between 0.25Tf and 0.78Tf , yielding a 1.18 down stroke to up stroke ratio.

Using the identified model structure (3.18), the flight data can be partitioned into
contributions arising from inertial, dynamic coupling, gravitational, and aerodynamic
sources. Magnitudes of force and moment contributions are shown in this manner in
Figure 4.9 as polar plots, where the angle represents the location within the flap-
ping cycle and the radius denotes the magnitude. Figure 4.9(a) shows that forces
arising from inertial and wing aerodynamic contributions dominate just before and
after transitions between up and down stroke. Figure 4.9(b) shows that the nonlin-
ear coupling and wing aerodynamic terms contribute most heavily to the moments
throughout the wing stroke, but diminish at the transitions between up and down
stroke, which is when the wing changes direction.

In a similar fashion, kinematic quantities can be displayed through the wing stroke,
as in Figure 4.10, where the angular coordinate denotes the position in the flapping
cycle, and where the radial component denotes the position along the wing span.
Figure 4.10(a) shows estimates of the main wing spar bending deformation, found by
interpolating three marker locations along the wing span. Maximum tip deflections
of ±0.02 m, which are relatively small, are found 0.13Tf after the transitions between
up and down strokes. Figure 4.10(b) shows the velocity magnitude, which has a
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Figure 4.8: Longitudinal state variable measurements from flight data
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minimum value of 8.9 m/s due to forward velocity, and a maximum value at the
wing tips of 11.0 m/s due to the flapping motion. The angle of attack distribution
is shown in Figure 4.10(c), which varies between −0.94 rad and +0.86 rad. The
Reynolds number is shown in Figure 4.10(d) and varies between 19,000 and 232,000
for this flight, which encompasses the transition region where steady lift to drag ratios
decrease [1]. Reduced frequency measurements in Figure 4.10(e) show that this flow
regime may be classified as unsteady [15].

4.3.3 Results

System identification was performed to determine a model for the longitudinal
force, heave force, and pitching moment generated by the wings. Rearranging (3.18),
the generalized aerodynamic force due to each wing is

awing(p,v) = τ − [M(p)v̇ + C(p,v)v + g(p) + atail(p,v)] (4.8)

where atail(p,v) is the aerodynamic contributions of the tail identified in the previous
section. The first, third, and fifth elements of this vector represent the longitudinal
force, heave force, and pitching moment, respectively, and are normalized in a similar
fashion as (4.3). Other forces and moments were not identified because the excitation
during flight testing was only in the longitudinal axis.

Model structure determination was performed in the time domain with equation-
error and step-wise regression. The resulting model structure was

Cx = Cx0 + Cxδw δw + Cxqq + Cxδ̇w δ̇w + Cx
δ2w
δ2w

Cz = Cz0 + Czqq + Czδ̇w δ̇w

Cm = Cm0 + Cmδ̇w δ̇w (4.9)

which is a nonlinear expansion in terms of the state variables. Model structures were
also found using orthogonal regressors [73] and a traditional quasi-steady model [33],
but yielded less accurate results. The thrust force includes a polar to capture the
effects of drag, and also depends on the pitch rate and wing motion. The lift is a
function of the pitch rate and wing motion, similar to a quasi-steady model. The
pitching moment variation is due only to the wing motion.

As many state variables are periodic with harmonics of the flapping frequency, a
collinearity analysis was performed on the model regressors. One method examined
the correlation matrix between the regressors, which had maximum value of 0.57;
because this value is less than 0.9, guidelines indicate that collinearity is not an
issue [35, 74]. Additionally, an Eigensystem analysis was performed, which resulted
in condition numbers under 3.70; because these numbers are much less than 100,
guidelines also indicate here that collinearity is not an issue [35, 75].

Equation-error was used to find the parameters in (4.9) that fit the aerodynamic
coefficients found using (4.8). Time domain and frequency domain fits are shown in
Figure 4.11 and parameter estimates are provided in Table 4.3. The time domain

49



(0/4)Tf

(1/4)Tf

(2/4)Tf

(3/4)Tf

-0.02

-0.01

+0.00

+0.01

(a) wing deformations (m)

(0/4)Tf

(1/4)Tf

(2/4)Tf

(3/4)Tf

10

11

12

13

14

(b) velocity magnitude (m/s)

(0/4)Tf

(1/4)Tf

(2/4)Tf

(3/4)Tf

-0.8

-0.4

+0.0

+0.4

+0.8

(c) angle of attack (rad)

(0/4)Tf

(1/4)Tf

(2/4)Tf

(3/4)Tf

4e+04

8e+04

1e+05

2e+05

2e+05

(d) Reynolds number

(0/4)Tf

(1/4)Tf

(2/4)Tf

(3/4)Tf

+0.1

+0.2

+0.3

+0.4

+0.5

+0.6

+0.7

(e) reduced frequency

Figure 4.10: Scalar measurement distributions over a wing stroke
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Figure 4.11: Parameter estimation of wing aerodynamic models using equation-error
in the time and frequency domains

results for the longitudinal force coefficient had larger error bounds and a lower fit
value than the frequency domain results. While frequency domain modeling is often
superior to time domain, this may also be due to low excitation, a short data record,
or a large number of regressors. Heave force results were similar to the longitudinal
force results. Moment coefficient results were very similar and accurate.

The identified models were used to predict the aerodynamic forces and moments
in a second set of flight data. These results are shown in Figure 4.12. The heave
force and the pitching moment were well predicted by both models. The longitudinal
force model, however, appears to be over-parametrized; longer data records with more
airspeed excitation, e.g. from flap variation or during push-over/pull-up maneuvers,
are required to improve this model. The frequency domain model had higher fit values
and was selected as the wing aerodynamic model.

4.4 Chapter Summary

Previously in Chapter 3, the rigid body dynamics of the multibody ornithopter sys-
tem were derived analytically. This chapter applied system identification techniques
to extract models for the aerodynamic forces on the tail and wings from experimental
data.

A wind tunnel test was conducted to determine the aerodynamic forces resulting
from deflections of the tail flap. Simple models based on angle of attack and side slip
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Table 4.3: Wing aerodynamic parameters and standard errors

Parameter Time Estimate Frequency Estimate Time Fit Frequency Fit

φ φ̂± σ(φ̂) φ̂± σ(φ̂) R2 R2

Cx0 +0.2262± 0.1068 +0.0634± 0.0145
Cxδw −0.1010± 0.0896 −0.0568± 0.0071
Cxq −0.1913± 0.1168 −0.3647± 0.0068 0.66 0.80
Cxδ̇w +0.0127± 0.0030 +0.0205± 0.0002

Cx
δ2w

−1.4455± 0.2236 −1.1843± 0.0165

Cz0 −0.9222± 0.2052 −0.9655± 0.0628
Czq −1.8822± 0.4566 −2.4701± 0.0594 0.73 0.86
Czδ̇w −0.0627± 0.0197 −0.0619± 0.0018

Cm0 +0.0955± 0.0172 +0.0942± 0.0154
0.96 0.96

Cmδ̇w +0.0862± 0.0038 +0.0836± 0.0005
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Figure 4.12: Wing aerodynamic model prediction case
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angle were able to describe the aerodynamic forces generated.
A flight test was conducted to observe the ornithopter under free flight condi-

tions. A visual tracking system was employed to measure the spatial position of
retro-reflective markers placed on the ornithopter, from which the state vector was
computed. Several kinematic variables were presented for the ornithopter over the
course of a wing stroke from flight data, providing insight into the flight physics.
System identification yielded a low-order model for the aerodynamic forces generated
by the flapping wings.

This chapter and the previous chapter fully describe the nonlinear, multibody
model of the ornithopter flight dynamics, determined using a combination of analyt-
ical and experimental methods.
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Chapter 5

Simulation Results

In the previous chapters, the equations of motion were determined for the or-
nithopter. In this chapter, those equations are programmed into a nonlinear flight
simulator for the purposes of simulation and model simplification. An overview of
the simulation environment is first presented. Afterwards, a method is discussed for
trimming the model for straight and level mean flight. Numerical methods are then
employed to numerically linearize the model about straight and level mean flight, re-
sulting in both a conventional time-invariant model as well as a time-periodic model.

5.1 Software Simulation Architecture

The ornithopter flight dynamics (3.7) and (3.18) were written as the first-order
state space model

ż = f(z,µ) (5.1)

and were coded in both Fortran 95 and Matlab, according to the block diagram
shown in Figure 5.1. The Fortran code ran very quickly; however, at the expense of
computation time, the Matlab environment provided a wealth of internal functions
and tools such as plotting and optimization routines. Simulation of a single wing flap
using Matlab used approximately 0.94 seconds of computation time on a dual-core
laptop, which was sufficient for this work.

A main script is first run, which initializes an ornithopter configuration file, sim-
ulation parameters, control laws, and an initial state vector. This information is
given to an ordinary differential equation (ODE) solver, and returns the state vector
time history. Data is then plotted, animated, analyzed, and saved. The ODE solver
numerically integrates the equations of motion from an initial state and returns the
state vector time history. In the Fortran implementation of the code, an explicit,
fourth-order, Runge-Kutta method was employed, where inversion of the mass matrix
was accomplished using a Cholesky decomposition and back-substitution. Solution
time histories converged using a 10−4 s fixed time step interval. The Matlab imple-
mentation of the code utilized the internal solver ode15s, which was chosen because
it is an adaptive time step method for accurate solutions, implicit solver for saving
computation time, and valid for stiff ODE problems.
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The ODE solver calls the equations of motion file and computes the current state
derivative. Within the routine, several subroutines are called. The first is a configu-
ration file, specific to each ornithopter, that loads mass and inertia properties, linkage
lengths, and actuator constants into the workspace. Next is a kinematics subroutine,
which computes the necessary rotation matrices and kinematic variables. Lastly, sub-
routines are called that assemble the mass matrix, coupling matrix, gravitational and
aerodynamic forces, and control inputs.

Several checks were performed to validate the flight simulation. First, the hand-
derived equations of motion were checked against output of the software algebra
package Mathematica. Second, simulations from random initial conditions without
external forces resulted in state trajectories having constant kinetic energy. Third,
simulations from random initial conditions with only conservative forces resulted in
state trajectories having constant total energy, again within numerical accuracy.

5.2 Determining Trim Solutions

Conventional aircraft have trim solutions characterized by fixed points in the state
space that correspond to a constant state z∗ and control µ∗. Nonlinear, iterative
solvers are traditionally used to numerically solve

ż = f(z∗,µ∗) = 0 (5.2)

for the trim states and controls. Flapping-wing vehicles, on the other hand, have
Tf -periodic forcings which manifest as limit cycles, or trim conditions that are closed
trajectories in the state space. Stable limit cycles are relatively easy to find because
state trajectories beginning within the basin of attraction converge on the limit cycle
as time progresses. While Lee et al. [23] developed a simulation that exhibits a stable
limit cycle behavior, the majority of work in the literature consists of models that
yield instabilities in forward flight [22, 49, 42, 76, 20].

Simulations of the the ornithopter dynamics model, during straight and level mean
flight, exhibited divergent flight trajectories, suggesting an unstable limit cycle. As
limit cycles are periodic orbits defined as

z(t) = z(t+ Tf ) (5.3)

the cost function

J(φ) =
1

2
eTWe (5.4)

can be minimized to find the the initial state and control to start a trajectory on this
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limit cycle. In this cost function, the error vector

e =


z(Tf )− z(0)
θ(Tf )− θ(0)
u(Tf )− u(0)
w(Tf )− w(0)
q(Tf )− q(0)

 (5.5)

is the difference between the longitudinal states after one flap cycle, and the unknown
parameter vector

φ =


θ(0)
u(0)
w(0)
q(0)
δ∗lon

 (5.6)

consists of the initial longitudinal states and longitudinal trim control setting. The
simplex search optimization method was employed to minimize the cost function (5.4),
where the weighting matrix

W = diag{1, 10000, 10, 100, 100} (5.7)

accounted for the relative magnitudes in the error vector and produced adequate re-
sults. Figure 5.2 shows an example of the errors and the total cost for a solution,
which required approximately 200 iterations before convergence, although solutions
were close after about 50 iterations. This is a simple method to trim to the or-
nithopter; other more complicated methods in the literature include multiple shoot-
ing algorithms [22] and monitoring mean values of flight variables after an initial
launching force vector is supplied [25].

The ornithopter was trimmed for a range of flapping frequencies between 4 Hz and
10 Hz. Below this range the ornithopter could not be trimmed, and above this range
the dynamics model loses validity. Flight variables are shown as a function of flapping
frequency in Figure 5.3. The longitudinal tail deflection becomes more negative as
the wings flap faster in order to counter an increasing pitching moment. Although
this deflection adds more drag, even more thrust is produced as the flapping rate
increases, which in turn increases the mean forward speed. The faster wing movements
also generate a lower mean pitch angle and oscillation, as the inertial effects cause a
more rapid pitching motion that has less time to travel. Interestingly, the pitch rate
amplitude remains approximately constant with flapping frequency because the tail is
adjusted to compensate for the mean change in the pitching moment, which has also
been reported by Lee et al. [25]. In addition, the altitude oscillation decreases and
the heave velocity oscillation increases with increasing flapping frequency. Similar to
the pitching dynamics, this is due to a faster excitation, behind which the response
lags.

The main features of the trim condition consist of the heave dynamics, involving
the altitude and heave velocity, and the pitch dynamics, involving the pitch angle and
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pitch rate, which are shown in Figure 5.4. The characteristics shown in Figure 5.3
are evident in these plots, as well as a change in shape, or bifurcation, of the limit
cycles around 7 Hz. A similar phenomenon has been reported by Lee et al. [25], who
claimed that simplified models may be possible for these higher flapping frequencies.

The remainder of this chapter will deal with a single flapping frequency of 5.91
Hz, to correspond with the flight test used for system identification of the aerody-
namics model. The trimmed flight trajectory for this flapping frequency is shown in
Figure 5.5, which has similar trajectories as those reported in the literature [50, 25].
Due to the instability of the trim solution, integration over more than approximately
five wing strokes will tend to diverge from the limit cycle due to the accumulation
of numerical errors. The trimmed model resulted in lower longitudinal velocity mean
and oscillations than measured in the visual tracking flight test, which is due to the
difficulty in modeling the thrust and drag of the wings. The altitude and heave oscil-
lations, as well as the pitch oscillations and rates were consistent with those measured
in flight tests. The simulation data also has much lower frequency content than the
flight data, due to the unmodeled fluid/structure interactions, actuator dynamics,
and simplified aerodynamics.

5.3 Numerical Linearization about Straight and

Level Mean Flight

Within the range of its validity, a linearized model of the flight dynamics facilities
the use of modern linear analysis tools, which can provide physical insight into the
system and be used to design control laws to guarantee performance metrics. Ad-
ditionally, linear models can be incorporated with standard commercial autopilots.
Towards these goals, a linear model of the ornithopter flight dynamics

ẋ = Ax + Bu (5.8)

is desired, where

x = z− z∗

u = µ− µ∗ (5.9)
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are state and control perturbations away from the trim values. To parallel the models
currently employed in autopilots, the reduced state and control vectors are

z =



θ
u
w
q
φ
v
p
r


µ =

[
δlon
δlat

]
. (5.10)

Linear models may be determined using a variety of methods. The nonlinear model
may be linearized analytically using Jacobian matrices, but this method is prohibitive
for complex and large-order systems. Alternatively, system identification experiments
can be performed on the nonlinear simulation, but this method may require several
iterations or long records of data to obtain adequate information content. In this work,
the nonlinear model is linearized numerically, using finite differences, which requires
little analysis and can be automated. A nonlinear system (5.1) can be numerically
linearized about some point or trajectory in the state space z∗ and some control µ∗.
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Let

ξ1 = f(z∗ + εiei,µ
∗)

ξ2 = f(z∗ − εiei,µ∗)
ξ3 = f(z∗ + 2εiei,µ

∗)

ξ4 = f(z∗ − 2εiei,µ
∗) (5.11)

where εi is a small perturbation and ei is an elementary vector. Then the ith column
of the system state matrix A is computed

8(ξ1 − ξ2)− (ξ3 − ξ4)
12εi

(5.12)

and is accurate to O(ε3i ). A similar process, where instead each control variable
is perturbed, is performed to find columns of the system control matrix B. The
perturbations εi are typically decreased iteratively until the system matrices converge
[36].

5.3.1 Linear Time-Invariant Model

Conventional aircraft flight dynamics models used for control design are typically
linear time-invariant (LTI) models, where the system matrices are constant in time.
The ornithopter flight dynamics can be cast into an LTI model by using averaging
theory [77, 39, 37, 20]. The cycle-averaged state derivatives (5.11) are then

ξ1 = (1/Tf )
∫ Tf
0

f(z∗ + εiei,µ
∗)dt

ξ2 = (1/Tf )
∫ Tf
0

f(z∗ − εiei,µ∗)dt

ξ3 = (1/Tf )
∫ Tf
0

f(z∗ + 2εiei,µ
∗)dt

ξ4 = (1/Tf )
∫ Tf
0

f(z∗ − 2εiei,µ
∗)dt (5.13)

and the remainder of the process is the same. Typically when this technique is applied,
a time scale separation exists in the dynamics. Since the flapping frequency is close
to the expected rigid body modes of the ornithopter, this method is questionable,
as is the practice of using commercial autopilots, based on LTI models, with an
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ornithopter. The LTI model resulting from numerical linearization with averaging is

∆θ̇
∆u̇
∆ẇ
∆q̇

∆φ̇

∆v̇
∆ṗ

∆ṙ


=



−0.69 +0.01 −0.83 +0.84 −0.04 −0.01 +0.06 −0.03
−7.38 −0.51 +2.42 −2.59 +0.06 −0.01 −0.21 +0.09
+0.33 −0.72 −0.59 +0.41 +0.04 +0.03 −0.01 −0.03
−2.64 −2.03 −12.4 +0.74 +0.26 +0.12 +0.66 −0.62
−0.00 −0.00 −0.00 −0.00 −0.50 −0.12 +0.87 +0.42
−0.00 +0.00 −0.00 −0.01 +8.65 −0.60 +1.65 −6.27
+0.00 −0.01 −0.08 +0.00 +4.79 +1.87 −0.14 −3.27
−0.01 +0.01 −0.00 −0.00 −0.13 +0.06 +1.67 +0.49





∆θ
∆u
∆w
∆q

∆φ

∆v
∆p

∆r



+



−3.10 +0.27
+10.0 −0.82
−2.09 +0.32
−44.5 +3.37
−0.02 +0.05
−0.03 −3.20
−0.30 −2.91
−0.02 +4.84


[

∆δlon

∆δlat

]
. (5.14)

where states represent perturbations from an averaged trim value. While linearized
lateral dynamics are presented in this chapter for completeness, their validity is ques-
tionable, as lateral motions were not excited during the flight test used to model the
wing aerodynamics in Chapter 4.

There are several points of interest in these matrices as compared to those of a
fixed-wing aircraft, for example the F-16 model in Appendix D. This ordering of the
state vector illustrates that the state matrix decouples in much the same manner as
conventional aircraft in straight and level flight. The first and second 4 × 4 block-
diagonal matrices represents the longitudinal and lateral dynamics, respectively. Here
however, the pitch rate dynamics however still have significant coupling with the
lateral dynamics, which is not common to fixed-wing aircraft and is due to the wings
flapping. The block-diagonal matrices are also more heavily populated than models
for fixed-wing aircraft: typically the equations for the pitch angle and bank angle
derivatives involve only the pitch rate and roll rate; however, for the ornithopter,
they involve many states. The equations for the forward and side velocity typically
involve the acceleration of gravity; here the signs are correct but the value is slightly
lower than expected.

The control matrix is also significantly populated and decouples in a similar man-
ner as the state matrix. A positive longitudinal tail angle perturbation creates less
drag and negative lift on the tail, resulting in a positive forward acceleration, a nega-
tive heave acceleration, and a negative pitching moment. A positive lateral tail angle
perturbation creates a negative side force, a negative roll rate, and a positive yaw
rate. The controllability matrix for this system has full rank and is fully controllable.

The modes of this system, described by Eigenvalues and Eigenvectors of the state
matrix, are shown in Figures 5.6 and 5.7 and tabulated in Table 5.1. The longitudinal
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dynamics include two oscillatory modes, one unstable and one stable, occurring at
approximately the same frequency. The unstable mode is under-damped, while the
stable mode is highly damped. The Eigenvectors of these modes indicate that they
both are short period type motions, involving a fast and strong interplay of the pitch
rate and forward velocity. Unlike conventional aircraft, a phugoid mode does not
appear. The classical spiral, dutch roll, and roll modes are present in the decoupled
lateral dynamics. The spiral mode is first order and unstable, involving mostly the
sidewards velocity. The dutch roll mode is unstable and is strongly dependent on the
sideways velocity. The roll mode is a first order mode, strongly dependent on the roll
rate.

5.3.2 Linear Time-Periodic Model

There is not a time scale separation between the periodicity of the wings flap-
ping and the rigid body modes found in the LTI model, which calls into question
the validity of using LTI models. A linear time-periodic (LTP) model results from
computing (5.11) at each time step over the wing stroke, so that the system matrices
vary with time. Elements of the system matrices are shown for the longitudinal and
lateral decoupled systems in Figures 5.8(a) and 5.8(b), respectively.

From observations of the frequency content, a functional representation of the
matrix elements was obtained using the model

y = φ0 + φ1 sin(2πff t) + φ2 sin(4πff t) + φ3 cos(2πff t) (5.15)
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Table 5.1: Modal parameters of the decoupled linear time-invariant model

Mode Eigenvalue Eigenvector Damping Frequency
Ratio [rad/s]

λi vi ζi ωi

stable
short period

−2.07± 1.57j


+0.17± 0.19j
−0.56± 0.32j
−0.11∓ 0.00j
−0.72

 +0.80 2.60

unstable
short period

+1.55± 2.75j


−0.14∓ 0.06j

+0.74
−0.18± 0.13j
−0.36∓ 0.50j

 −0.49 3.16

spiral −0.50


+0.58
−0.18
−0.36
+0.71

 +1.00 0.50

dutch roll +0.98± 1.68j


+0.07∓ 0.25j
+0.49± 0.23j

+0.58
+0.18∓ 0.53j

 −0.51 1.94

roll −2.23


+0.26
+0.65
−0.61
+0.37

 +1.00 2.23
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and applying an equation-error analysis, where {φ}i are unknown, constant coeffi-
cients. The functions consists of a bias and harmonic functions that are Tf -periodic
and capture the major features of the responses. Simulation data and curve fits are
shown in Figure 5.8, whereas parameter estimates, standard error bounds, and coeffi-
cients of determination for each matrix element are provided in Table 5.2. Generally
the function (5.15) fits all the elements well with high coefficients of determination
and relatively low standard errors. Whereas the curve fits for the lateral dynamics
retain most of the frequency content, some elements in the longitudinal model, for
instance a41 and a43, contain frequency content up to 10 times the flapping frequency
and is not captured by the curve fit. This higher frequency content in the longitudinal
dynamics is due to the longitudinal flapping of the wings.

For a linear time varying system with x ∈ <n×1, controllability at time t requires
that the matrix

C(t) =
[

M0(t) M1(t) ... Mn−1(t)
]

(5.16)

have rank n, where in general

Mk+1(t) = −A(t)Mk(t) + Ṁk(t) (5.17)

M0(t) = B(t) (5.18)

for k ∈ [0, n−2]. Employing (5.15) and the identified parameters, computation of the
controllability matrix for a wing stroke shows that both the longitudinal and lateral
decoupled dynamics are fully controllable for all time.

Given the functional representation of the LTP system (5.15), the state transition
matrix can be computed by assembling the responses to initial conditions xi(0) = ei
as a fundamental matrix

Φ(Tf , 0) =
[

x1(Tf ) x2(Tf ) x3(Tf ) x4(Tf )
]

(5.19)

stemming from a Floquet decomposition [78]. The decoupled longitudinal and lateral
systems result in the analogous LTI system matrices

Alon =


+0.75 +0.06 −0.01 +0.07
−0.96 +0.73 −0.21 −0.15
+0.02 +0.07 +1.05 +0.03
−2.16 +0.16 −1.04 +0.20

 (5.20)

Alat =


+0.53 −0.06 +0.05 +0.40
+1.05 +1.00 +0.21 −0.84
−1.95 +0.69 +0.25 +1.48
−1.20 −0.38 −0.10 +2.08

 (5.21)

from which the stability can be ascertained using a discrete Eigenvalue analysis.
Poles are are tabulated in Table 5.3 and shown in Figure 5.9. The longitudinal
dynamics exhibit a stable oscillatory mode, a stable subsidence mode, and an unstable
divergence mode. The oscillatory mode looks most like a short period mode. The
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Figure 5.8: Numerically linearized (solid) and curve fitted (dashed) decoupled system
matrix element time histories over one wing stroke
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Table 5.2: Estimated parameters and standard errors for the decoupled linear time-
periodic model

element φ̂0 ± s(φ̂0) φ̂1 +±s(φ̂1) φ̂2 ± s(φ̂2) φ̂3 ± s(φ̂3) R2

a11 −0.44± 0.05 +0.19± 0.07 +0.46± 0.07 +0.31± 0.07 0.28
a21 −9.03± 0.10 −2.31± 0.15 −0.52± 0.15 −0.25± 0.14 0.62
a31 −0.18± 0.30 −0.70± 0.43 −1.23± 0.43 −0.67± 0.43 0.07
a41 −18.7± 1.71 +4.23± 2.43 +12.8± 2.43 +14.0± 2.42 0.28
a12 +0.13± 0.02 −0.62± 0.03 +0.05± 0.03 −0.44± 0.02 0.85
a22 −1.24± 0.07 +4.91± 0.10 −0.83± 0.10 +1.75± 0.10 0.95
a32 −0.39± 0.24 +7.63± 0.34 −2.23± 0.34 +0.86± 0.34 0.77
a42 +1.89± 1.62 +14.3± 2.29 −17.1± 2.29 −27.5± 2.28 0.59
a13 +0.21± 0.02 −0.40± 0.03 +0.34± 0.03 −0.07± 0.03 0.66
a23 −1.53± 0.09 +8.02± 0.12 −1.83± 0.12 +3.03± 0.12 0.97
a33 −0.12± 0.27 +3.92± 0.38 −1.83± 0.38 +0.03± 0.38 0.43
a43 −11.3± 1.30 +6.82± 1.85 −8.52± 1.85 −14.0± 1.84 0.36
a14 +0.79± 0.00 +0.19± 0.01 −0.04± 0.01 +0.12± 0.01 0.87
a24 −1.14± 0.02 −0.60± 0.03 +0.04± 0.03 −0.81± 0.03 0.87
a34 +0.35± 0.02 −0.90± 0.03 +0.07± 0.03 +0.51± 0.03 0.90
a44 −5.50± 0.30 −0.21± 0.43 −2.10± 0.43 +7.76± 0.42 0.68
b1 +0.55± 0.02 −0.90± 0.03 +0.19± 0.03 −0.17± 0.03 0.88
b2 −5.55± 0.09 +3.71± 0.13 +0.11± 0.13 +3.69± 0.12 0.91
b3 +0.78± 0.03 +0.77± 0.04 +0.06± 0.04 −2.05± 0.04 0.94
b4 −15.0± 0.86 −12.6± 1.22 +15.2± 1.22 −36.5± 1.21 0.88
a11 −0.90± 0.01 +1.33± 0.01 −0.55± 0.01 +0.66± 0.01 0.99
a21 +8.21± 0.07 +1.99± 0.09 +0.35± 0.09 +0.17± 0.09 0.74
a31 −28.0± 0.66 −0.61± 0.94 +1.13± 0.94 +33.5± 0.93 0.89
a41 −1.43± 0.03 +1.83± 0.05 −0.78± 0.05 +1.45± 0.05 0.94
a12 −0.22± 0.01 +1.23± 0.01 −0.07± 0.01 +0.49± 0.01 0.98
a22 −0.76± 0.06 +2.06± 0.09 +0.49± 0.09 +0.07± 0.09 0.78
a32 +4.41± 0.71 −19.6± 1.00 +8.24± 1.00 +46.6± 1.00 0.94
a42 +0.04± 0.07 +1.30± 0.10 +0.20± 0.10 +0.96± 0.10 0.61
a13 +0.89± 0.00 +0.27± 0.00 −0.06± 0.00 +0.09± 0.00 1.00
a23 +1.24± 0.02 +0.20± 0.02 +0.15± 0.02 +0.00± 0.02 0.45
a33 −5.94± 0.12 +1.00± 0.18 +0.82± 0.18 +8.62± 0.18 0.94
a43 +1.47± 0.04 −3.38± 0.06 +0.59± 0.06 −0.61± 0.06 0.96
a14 +0.67± 0.01 −0.61± 0.01 +0.06± 0.01 −0.36± 0.01 0.97
a24 −5.99± 0.04 −1.16± 0.05 −0.58± 0.05 +0.36± 0.05 0.80
a34 +20.9± 0.43 +4.60± 0.61 +0.02± 0.61 −22.6± 0.61 0.90
a44 +1.79± 0.26 −0.76± 0.36 +4.68± 0.36 −3.30± 0.36 0.60
b1 +0.25± 0.00 −0.20± 0.01 +0.01± 0.01 −0.12± 0.01 0.91
b2 −0.24± 0.01 −0.26± 0.02 −0.26± 0.02 +0.28± 0.02 0.85
b3 +9.27± 0.13 −0.36± 0.19 +0.73± 0.19 −8.58± 0.19 0.93
b4 +6.64± 0.12 +0.17± 0.17 +2.46± 0.17 −1.95± 0.16 0.69
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Figure 5.9: Linear time-periodic model pole locations

first order modes involve most of the state variables and in that regard are consistent
with previous findings [42, 22, 50], although these modes are much slower. The
lateral dynamics contain two subsidence modes and two divergence modes. One of
the subsidence appears to be a roll mode, and one of the divergence appears as a
spiral mode.

5.4 Modeling Implications for Control

In this chapter, three models have been presented: a nonlinear multibody model,
a LTP model for straight and level mean flight, and a LTI model for straight and
level mean flight.

The nonlinear model contains the full set of modeled dynamics, including the mass
variation, inertial couplings, and nonlinear aerodynamics, from which trim solutions
and simplified models can be determined. This model is of the highest fidelity, and
could be used to explore perching maneuvers and agile flight. Although it is difficult
to design controllers for nonlinear systems, this model has been cast into a canonical
form for Euler-Lagrange systems so that techniques such as passivity control can
be applied in a straight forward manner [64, 62, 63, 66]. Additionally, techniques
such as sliding mode or nonlinear damping could be used to attenuate the pitch
oscillation, so that video images are more stable and electronic components experience
less vibration; similar control strategies have shown promise [24, 20, 33]. The heave
motion, however, cannot be attenuated without morphing the wing structure to more
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Table 5.3: Modal parameters of the decoupled linear time-periodic model

Eigenvalue Magnitude Eigenvector Damping Frequency
Ratio [rad/s]

λi ‖λi‖2 vi ζi ωi

+1.04 1.04


+0.13
−0.17
−0.78
+0.59

 −1.00 0.21

+0.60 0.60


−0.20
−0.47
+0.03
+0.86

 +1.00 3.01

+0.54± 0.41j 0.68


−0.09∓ 0.16j
+0.36∓ 0.07j
−0.07∓ 0.04j

+0.91

 +0.52 4.45

+1.04 1.04


+0.59
+0.19
+0.14
+0.77

 −1.00 0.23

+0.70 0.70


+0.41
−0.03
−0.86
+0.29

 +1.00 2.11

+1.84 1.84


+0.28
−0.42
+0.24
+0.83

 −1.00 3.60

+0.28 0.28


−0.13
−0.18
+0.97
−0.07

 +1.00 7.52
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Figure 5.10: Periodic control gains designed for the LTP system using LQR

gracefully generate the lift and thrust forces.
The LTP model describes the dynamics of perturbations about a trimmed straight

and level mean flight trajectory. This model is still complex and must be determined
and scheduled for each flight condition. However, controllers are simple enough for
implementation on microprocessors, the dynamics still reflect the true motions, and
analytical tools can be applied, e.g. the controllability result. This model could be
used for an accurate model for navigation, or for inner-loop stabilization. Straight
forward synthesis tools, such as a periodic Linear Quadratic Regulator (LQR) result,
also exist [79]. For instance, solving LQR problem, using unity weighting matrices,
results in the periodic controller gains shown in Figure 5.10. For an impulse applied
at any point within the flapping cycle, the state responses settle within 0.6 seconds.
Dietl and Garcia [50] have also shown that a discrete-time, infinite-horizon version
of this control works well in simulation and suggests it is practical for flight control,
despite control computations, controller gain memory requirements, and knowledge
of the wing angle.

The simplest model presented is the LTI model, which describes the stroke-
averaged dynamics of perturbations away from trimmed flight trajectories. This
model enables a large set of analysis and synthesis tools. However, models must still
be determined and scheduled for each flight condition, but more importantly these
models average the significant effects of the wings flapping. For that reason, it should
not be trusted for fast or accurate tasks, and should be relegated to slow, forgiving
tasks such as navigation. Krashanitsa et al. were able to demonstrate navigation us-
ing a heuristically-tuned proportional/derivative control law [11]; however, the flight
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trajectories exhibited a large amount of variation between laps. Dietl and Garcia
noted that although classical controllers are easy to implement, the system dynam-
ics are periodically changing, so that these controllers are sometimes improving the
flight performance, and sometimes degrading the flight performance. To control the
pitch angle based on the identified LTI model, the proportional/integral/derivative
controller

δlon(t) = −6.67∆θ(t) + 0.27

∫ t

0

∆θ(τ)dτ − 2.03∆θ̇(t) (5.22)

can be used, but only predicts a settling time of 32.7 seconds. Applying the LQR
controller, again solved with unity weighting matrices,

δlon(t) = −0.23∆θ(t) + 0.14∆u(t)− 0.02∆w(t)− 0.15∆q(t) (5.23)

can more effectively capture cross couplings and predicts settling times under three
seconds. Another possibility is to use this simple model in conjunction with a robust
control scheme, such as H∞ or µ-synthesis, or rather a robust adaptive control law
such as L1, to learn how to compensate for the changing system dynamics [51].

5.5 Chapter Summary

This chapter presented an investigation into the dynamics of the identified or-
nithopter model using simulation tools. The model was programmed into both For-
tran and Matlab simulation environments, which offered trade offs between com-
putational speed and the availability of analysis tools. A time step of 10−4 s was
determined necessary for convergence with a fourth order Runge-Kutta routine.

The periodic forcing of the wings admits trimmed flight trajectories that are limit
cycle oscillations in the state space. Simulations from initial conditions suggest that
these limit cycles are unstable, and a simple method was introduced for locating initial
conditions and trimmed control settings that would put the ornithopter state on the
limit cycle. This method was used to trim the ornithopter for straight and level mean
flight for a variety of flapping frequencies. As the flapping frequency increased, the
tail angle became more negative, the mean forward speed increased, the mean pitch
angle and pitch oscillations decreased, the altitude variation decreased and the heave
velocity oscillations increased. Additionally a bifurcation is evident around 7 Hz, due
to a shape change in the pitch dynamics and heave dynamics limit cycles.

Linear time-periodic and linear time-invariant models were numerically deter-
mined from the nonlinear model. The LTI model exhibited a stable and unstable
short period mode, while the LTP model showed a stable short period mode, a stable
subsidence mode, and an unstable divergence mode.

Finally, implications for control strategies were discussed. For high precision or
rapid maneuvering control, the nonlinear model should be used. Although not a
straight forward process, the model has been cast into a canonical form for nonlin-
ear control. The LTP model is suitable for accurate regulation of trimmed flight
conditions, and the LTI model is only suitable for simple tasks such as heading or
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altitude-hold navigation.
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Chapter 6

Concluding Remarks

6.1 Summary of Work

Flight dynamics models are needed for flapping-wing aircraft, so that the dy-
namics can be better understood and flight controllers can be designed to perform
mission scenarios ranging from robust outdoor navigation to indoor agile flight and
perching. This work contributes a nonlinear model of the flight dynamics, as well as
an investigation into linearizing the model and the ramifications on control design.

Chapter 2 presented characterizations of an ornithopter flight test platform. The
aircraft design and operation is first discussed. Then an experiment is presented
where the ornithopter was fitted with a custom avionics package to measure state
variables, in real time, during trimmed straight and level mean flight. Afterwards, the
variation in the mass distribution is examined using computer aided design software.
An experiment is then summarized where aerodynamic and configuration data were
measured in a constrained quasi-hover condition. The implications for flight dynamics
modeling are then discussed.

The results of Chapter 2 suggest a nonlinear multibody model of the ornithopter
vehicle dynamics. Chapter 3 begins with a review of the available tools for obtaining
multibody models. Based on this review, a Lagrangian type model was selected and
the derivation is presented using the Boltzmann-Hamel equations. The equations of
motion are then cast into a canonical form for nonlinear control and the model is
discussed.

Chapter 4 presents the system identification work completed to identify parts
of the ornithopter flight dynamics model not known a priori. A review of system
identification techniques and methods is presented. Afterwards, a wind tunnel test is
discussed where lift and drag values were calculated for the ornithopter tail. Finally
an experiment is presented using a visual tracking system to obtain flight test data
with which an aerodynamic model for the wings was identified.

Chapter 5 presents flight simulation results obtained using the flight dynamics
model developed in Chapters 3 and 4. A method for finding trim solutions is presented
and was employed to trim the ornithopter model for straight and level mean flight.
The model was then linearized about the trim trajectory, resulting in a canonical
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time-invariant model as well as a time-periodic model.

6.2 Summary of Modeling Assumptions

• Vehicle dynamics are approximated by three interconnected bodies

The ornithopter multibody model consisted of a fuselage and two wings, which
comprise 95.1% of the mass and captures the inertial effects of the flapping
wings. Extra bodies for the tail surface were not modeled, as the tail has only
4.9% of the mass, moves slowly relative to the flapping wings, and does not
create a significant change in the mass distribution. Instead, the tail mass and
inertia was absorbed into the fuselage. Similarly, no additional benefit was
observed from modeling the four-bar mechanism used to flap the wings.

• Structural dynamics in the vehicle dynamics are ignored

Structural deformations have been observed in the fuselage, wing spars, and
wing sail membrane; however, these bodies are assumed to be rigid in order to
develop models for control. Torsion and lateral bending modes in the fuselage
are at higher frequencies than used in control. Additionally, tip displacements of
the wing spars are relatively small, less than 8% of the wingspan [17]. Finally,
although the aft section of the wings deflect to produce thrust, this portion
contains less than 2.3% of the vehicle mass and does not significantly vary the
mass distribution.

• Actuator dynamics are negligible

It is assumed that the pilot or autopilot directly controls the flapping frequency
and orientation of the tail. This bypasses the actuator dynamics, presented in
Appendix B, and thus any transmission delays, time lags, backlash, mechanical
slop, and current/torque saturation limits. These models can be easily incorpo-
rated to increase model fidelity. Momentum sources from the spinning motors
and gears are assumed negligible.

• Tail aerodynamics are steady and do not interact with the wings

The downwash from the wings onto the tail is assumed negligible due to the
placement of the tail between and above the wings. Additionally, limited actu-
ator and pilot bandwidths led to steady models of the tail aerodynamics. The
full effect of downwash from the wings, unsteady aerodynamic effects from the
body pitching motion, and flexibility in mechanisms is not currently known.

6.3 Summary of Original Contributions

• Flight data suitable for modeling

This work presented flight data of an ornithopter, sampled at a bandwidth
that illuminated the effects of the flapping wings. Trimmed flight data showed
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pitch oscillations up to 4.97 rad/s and heave accelerations up to 41.7 m/s2,
which require nonlinear multibody models to capture. Additionally, harmonic
responses were seen in the data, indicating either structural modes or nonlinear-
ities. High accelerations preclude the use of traditional attitude determination
methods and require model-based techniques.

• Modeling of mass distribution variation due to wings flapping

The effects of the flapping motion on the mass distribution of the ornithopter
was investigated using a CAD model. The center of mass travels 10.3 cm in
the vertical direction, the moments of inertia can vary up to 53.6%, and the
inertia rates are significant. Multibody models are required to capture these
variations.

• Derivation of rigid multibody vehicle dynamics

It was determined that a three-body model was sufficient to model the or-
nithopter. Vehicle dynamics were derived using the Boltzmann-Hamel equa-
tions, and were cast into a canonical form used for the nonlinear control of
Euler-Lagrange systems.

• Tail aerodynamics system identification

Wind tunnel tests were conducted on the ornithopter tail, having free stream
velocities, angles of attack, and angles of sideslip ranging between 4.50 to 6.33
m/s, −0.88 to −0.35 rad, and ±0.57 rad, respectfully. System identification
methods were applied to determine a models for the aerodynamic coefficients.

• Flight testing and wing aerodynamics system identification

The ornithopter flight data, obtained using a visual tracking system, was pre-
sented. This data and the vehicle dynamics model were used to explore vari-
ations in angle of attack, Reynolds number, reduced frequency, velocity, and
structural deformations over the wing and throughout the wing stroke cycle.
Additionally, force and moment sources were identified throughout the wing
stroke. Finally, this data was used to determine a wing aerodynamics model
obtained from flight data using system identification methods.

• Models for stability and control

In addition to the full nonlinear model, a linear time-invariant model and a
linear time-periodic model was presented, with modeling implications and ram-
ifications for control.

6.4 Recommendations for Future Research

• Aerodynamic model expansion

The aerodynamic model presented in Chapter 4 is valid for a relatively small
region of the flight envelope. The tail was tested in steady conditions for flow
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velocities between 4.50 and 6.33 m/s, angles of attack between −0.88 and −0.35
rad, and angles of sideslip between ±0.57 rad. The model could be improved
by increasing these ranges and be looking at the dynamic effects of actuating
the tail.

The flight test was conducted for a flapping frequency of 5.91 Hz forward speeds
between 9 and 10 m/s. For these tests the tail was fixed, and so the only
dynamics excited were a result of the flapping wings. More testing should
be performed where the lateral dynamics are excited, the throttle changed,
and the tail excited, in order to expand the aerodynamic model of the wings.
Additionally, longer sets of data are needed to excite the forward speed dynamics
in order to model the thrust force more accurately. In order to complete these
tasks, a larger flight space is needed. This could be accomplished using a large
building instrumented with numerous tracking cameras, or perhaps by flying
outdoors with more instrumentation; however, problems still arise when using
air data booms and trying to solve the attitude problem due to the pitching
and heaving motion.

• Wing/tail aerodynamic interactions

In this work, it was assumed that the wing and tail aerodynamics do not in-
teract. Although the tail is centered between and located above the wings, it
is currently unknown how much downwash from the wing impinges on the tail.
Flow visualization or particle image velocimetry experiments would provide this
information, which would then be used to update the aerodynamic model struc-
ture of the tail. Additionally, the flight test mentioned above where the wings
and tail were both excited could also provide this insight.

• Aeroelastic effects

It is known that aeroelastic effects play a role in the flight dynamics of or-
nithopters; however, this work focus on models for flight control design and
neglected the aeroelastic effects. The nonlinear model fidelity could be im-
proved by incorporating finite element models to capture the fluid/structure
interactions, as in Lee et al. [25], so that the effect of aeroelasticity could be
assessed.

• Control law design

Control laws can now be designed from the models presented in this work. It
remains then to implement these in flight controllers and evaluate their perfor-
mance. This capability would allow direct comparison of controllers developed
from the LTI and LTP models, and would facilitate the development of perching
and aggressive maneuvering experiments.

• Integrated platform for morphing

Provided a flight dynamics model and a stabilized flight platform, work on
morphing wing structures could progress. Morphing would allow more degrees
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of freedom, with which the ornithopter could perform more efficient and agile
flight.
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Appendix A

Field Calibration of Inertial
Measurement Units

Inertial measurement units (IMUs) consist of orthogonal triads of magnetometers,
gyroscopes, and accelerometers, and are used in autopilots to provide information on
the vehicle pose and motion. The IMUs used on unmanned aircraft suffer from
the low signal-to-noise ratios and strong temperature dependencies typical of Micro-
electromechcanical systems (Mems) devices, requiring tedious laboratory testing or
on-board state estimators for calibration. In this appendix, a method is presented for
estimating IMU calibration constants, based on three successive least-squares compu-
tations. Memory and computation requirements are low enough for implementation
on 8 bit microprocessors, and experimental data shows adequate calibration results.

A.1 Theory and Method

The IMU provides measurements of the magnetic field h0
d, linear acceleration a0

d,
and rotational velocity ω0

d, corrected to the aircraft body frame [55, 35]. The subscript

d is used to denote measurements in raw digital format, e.g. an integer between 0 and
65535. Assuming a constant temperature, as unmanned aircraft have limited flight
durations and altitude ceilings, the calibration model is

y0 = Λy0
d + b + n (A.1)

where y is the measurement, Λ = diag{λx, λy, λz} is a matrix of scale factors, b is a
vector of biases, and n is a vector of additive measurement noise.

A block diagram of the calibration process is shown in Figure A.1. Data is collected
from a maneuver where quick angular deviations are made to excite each sensor
channel without introducing large translational accelerations. Existing least-square
calibration algorithms can be used to calibrate the magnetometer and accelerometer
[80, 81], which can then estimate the vehicle attitude [58, 82].

Substituting the sensor model (A.1), the rotational kinematic equation of motion
is

η̇I = Φ
(
Λωω

0
d + bω + nω

)
(A.2)

80



Inertial
Measurement

Unit

Magnetometer
Calibration

Accelerometer
Calibration

Attitude
Estimation

Gyroscope
Calibration

h0
d

a0
d

ω0
d

h0

a0

ηI

ω0

Figure A.1: IMU calibration method block diagram

Table A.1: Measurement specifications for avionics and visual positioning system

Sensor Symbol Range Resolution Error Units
time t - 25.6× 10−6 - s

magnetometer h0 ±3.17 48.3× 10−6 5.83× 10−3 -
gyroscope ω0 ±5.24 0.16× 10−3 0.14× 10+0 rad/s

accelerometer a0 ±98.1 3.88× 10−3 0.05× 10+0 m/s2

attitude ηI - - 0.03× 10−3 rad

which is a least-squares problem that solves for the gyroscope calibration parameters
using the attitude estimates in a certainty-equivalence fashion. Using a quaternion
to represent attitude, (A.2) can be solved quickly and accurately by using only the
scalar portion of the quaternion.

A.2 Results

The avionics package shown in Figure 2.4, was used to record measurements from
an IMU, through a 16 bit analog to digital converter, at 185 Hz. A visual tracking
system was employed to obtain high accuracy estimates of the avionics orientation, de-
rived from spatial measurements of ten retro-reflective markers placed on the avionics
board. Hardware specifications for the IMU and the visual tracking system are given
in Table A.1. The maneuver chosen for analysis was a sequence of rotational doublets
along each sensing axes, as shown by the digitized measurements in Figure A.2.

The least-squares routine developed by Gebre-Egziabher [80] was used to cali-
brate the magnetometers and accelerometers. Field domain calibrations are shown
in Figure A.3. Vehicle attitude was then computed using the Quest algorithm, and
equation-error was used to match the quaternion, as shown in Figure A.4. Estimated
parameters and standard errors are given in Table A.2. Magnetometer scale factors

81



+
20

+
30

+
40

+
50

h
0

dx

[counts]×10
3

+
20

+
30

+
40

+
50

h
0

dy

[counts]×10
3

+
20

+
30

+
40

+
50

h
0

dz

[counts]×10
3

t
[s

]

(a
)
m
ag
n
et
om

et
er

+
20

+
30

+
40

+
50

a
0

dx

[counts]×10
3

+
20

+
30

+
40

+
50

a
0

dy

[counts]×10
3

+
20

+
30

+
40

+
50

a
0

dz

[counts]×10
3

t
[s

]

(b
)
a
cc
el
er
o
m
et
er

+
20

+
30

+
40

+
50

ω
0

dx

[counts]×10
3

+
20

+
30

+
40

+
50

ω
0

dy

[counts]×10
3

+
20

+
30

+
40

+
50

ω
0

dz

[counts]×10
3

t
[s

]

(c
)
g
y
ro
sc
o
p
e

F
ig

u
re

A
.2

:
U

n
ca

li
b
ra

te
d

16
b
it

IM
U

m
ea

su
re

m
en

ts
fr

om
a

ro
ll
-p

it
ch

-y
aw

m
an

eu
ve

r

82



-1.0

-0.5

+0.0

+0.5

+1.0

h
0

x

[−]

-1.0
-0.5

+0.0
+0.5

+1.0

h
0

y

[−]

-1.0

-0.5

+0.0

+0.5

+1.0

h
0

z

[−]

(a) magnetometer

-10

-5

+0

+5

+10

a
0

x

[m/s2]

-10
-5

+0
+5

+10

a
0

y

[m/s2]

-10

-5

+0

+5

+10

a
0

z

[m/s2]

(b) accelerometer

Figure A.3: Calibrated magnetometer and accelerometer signals with centered spheres

had a high error bound, perhaps due to the small amount of data used, but otherwise
all estimated parameters had less than a 10% predicted error, indicating an accurate
set of measurements.

The method presented in this section is a batch method, executed after the data
has been collected. Alternatively, the least-squares routines could be implemented in
a recursive fashion, as in [35, 83], so that the calibration constants and their associated
error bounds evolve in real-time as more data becomes available. Estimating parame-
ters in real-time would also allow for variations in the calibration due to temperature
or flight condition changes over long periods of time.
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Figure A.4: Model fit to the attitude kinematic equation using equation-error

Table A.2: IMU calibration estimates and standard errors
Parameter Equation-Error Multiplier

φ φ̂± σ(φ̂)
λhx +0.16± 2.05 10−3

λhy +0.14± 1.89 10−3

λhz +0.16± 2.04 10−3

bhx −6.36± 0.40 10+0

bhy −4.98± 0.36 10+0

bhz +5.47± 0.37 10+0

λνx +0.50± 0.02 10+0

λνy +0.34± 0.01 10+0

λνz +0.37± 0.02 10+0

bνx −15.6± 3.17 10+0

bνy −11.7± 2.74 10+0

bνz −12.3± 2.81 10+0

λωx +0.27± 0.01 10−3

λωy +0.37± 0.04 10−3

λωz +0.33± 0.02 10−3

bωx +8.58± 0.46 10+0

bωy −12.5± 1.20 10+0

bωz −10.2± 0.76 10+0
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Appendix B

Actuator Dynamics System
Identification

The ornithopter has on board a Feigao GF2030 brushless motor to drive the
flapping motion, and two Hitec HS-56 servo motors to orient the tail. Due to time
lags observed in flight, models for the actuator dynamics were identified to determine
actuator bandwidths and to enable higher fidelity models of the flight dynamics. This
section presents the system identification experiments and modeling results.

B.1 Experimental Setup

The actuators were mounted to a reaction torque sensor for measuring the gen-
erated torque. The DC motor was fitted with a shaft encoder for a rotary speed
measurement, while the servo motor internal potentiometer was measured for a ro-
tary position measurement. A Pic18F452 microprocessor was used to generate input
waveforms and to measure data at 500 Hz using 16 bit analog to digital converters.
The experimental setup is shown in Figure B.1 and measurement specifications are
provided in Table B.1.

The data used for system identification are shown in Figure B.2. Both actuators
were excited with a digital waveform that had an increasing and decreasing frequency.

Table B.1: Actuator system identification measurement specifications

Measurement Range Resolution Error Unit
time - 0.05× 10−3 - s

throttle input 0.00 to 1.00 0.25× 10−3 0.07× 10−3 -
angle input ±0.70× 10+0 0.35× 10−3 0.16× 10−3 rad

velocity ±3.77× 10+3 8.47× 10−3 0.03× 10+0 rad/s
angle ±0.70× 10+0 0.16× 10−3 0.13× 10+0 rad
torque ±0.35× 10+0 0.77× 10−6 0.90× 10−3 N·m
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(a) DC motor (b) servo motor

Figure B.1: Actuators and instrumented test stand

Table B.2: DC motor parameter estimates and standard errors

Method Mass Damping Stiffness Fit
m× 10−3 c× 10−3 k × 10+0 R2

time equation-error +0.28± 0.01 +0.92± 0.06 −64.1± 3.08 0.69
frequency equation-error +0.23± 0.01 +0.89± 0.02 −58.4± 1.30 0.78

time output-error +0.22± 0.01 +1.01± 0.03 −64.6± 2.07 0.98
frequency output-error +0.20± 0.01 +0.92± 0.04 −58.0± 2.98 0.99

B.2 Results

DC and servo motors are typically linear transducers. Step-wise regression in the
time domain using equation-error showed that a second order system

mq̈ + cq̇ + kq + τ = bµ (B.1)

was sufficient to model the systems. The mass encompasses the shaft inertia; damping
describes effects of friction, back electro-mechanical force, current/torque coupling,
and electrical resistance; stiffness models the position feedback used in the servo
motor; τ is the shaft torque; and µ is the pilot stick input. Higher fidelity models
such as Coulomb friction and third-order dynamics [84, 85, 62] made no significant
increase in model fidelity.

Equation-error and output-error parameter identification methods were applied in
both the time and frequency domains, as shown in Figure B.3. Estimated parameters
are provided in Table B.2 and Table B.3. All models had coefficients of determina-
tion of 0.70 or above, and output-error parameter estimates were within statistical
agreement. The DC motor has a bandwidth of 0.48 Hz and the servo motor 3.20 Hz.
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Figure B.2: Measurements used for actuator system identification
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Figure B.3: Model fits for actuator dynamics using equation-error and output-error
in the time and frequency domains
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Table B.3: Servo motor parameter estimates and standard errors

Method Mass Damping Stiffness Fit
m× 10−3 c× 10−3 k × 10+0 R2

time equation-error +0.01± 0.00 +0.15± 0.01 +2.22± 0.27 0.81
frequency equation-error +0.03± 0.00 +0.15± 0.01 +2.15± 0.03 0.96

time output-error +0.04± 0.00 +0.53± 0.04 +7.12± 0.82 0.98
frequency output-error +0.04± 0.00 +0.57± 0.01 +5.58± 0.14 0.97

B.3 Coupling to Vehicle Dynamics

The rigid body dynamic equations (3.18) can be written as

Mbv̇ + Cbv + g + a = τ . (B.2)

The actuator dynamics (B.1) can be written in matrix form, in terms of the or-
nithopter state variables as

Mav̇ + Cav + Gaτ + Kap = Baµ (B.3)

where Ga is a matrix of gear ratios, relating the actuator outputs to the ornithopter
joint angles. Substituting (B.2) into (B.3) and rearranging yields

(Ma + GaMb)v̇ + (Ca + GaCb)v + (Gag + Gaa + Kap) = Baµ (B.4)

which is the same canonical form as the equations of motion described in Chapter 3.
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Appendix C

Equations of Motion for
Single-Body Flight Vehicles

Many flight vehicles, including conventional fixed-wing aircraft, rotary-wing air-
craft, and spacecraft, can often be modeled as a single body. Derivation of the
equations of motion is most commonly performed using the Newton-Euler approach
[34, 35]; however, to provide familiarity with the energy approach presented in Chap-
ter 3, the equations of motion for a single-body vehicle are derived here using the
Boltzmann-Hamel equations.

Consider the single-body vehicle in Figure 2.1, having position and velocity state
variables

p =

[
rI0,I
ηI0,I

]
v =

[
ν0
0,I

ω0
0,I

]
. (C.1)

Written in terms of these state variables, the kinetic energy

T (p,v) =
1

2
(ν0

0,I)
T (m0I)(ν0

0,I) +
1

2
(ω0

0,I)
T I00(ω

0
0,I) (C.2)

is the summation of the system energy. Using algebraic manipulations, (C.2) can be
rearranged into the quadratic form

T (p,v) =
1

2
vTMv (C.3)

to admit the generalized mass matrix

M =

[
m0I 0
0 I00

]
. (C.4)

As the mass matrix does not depend on the position states of the aircraft, the
coupling matrix given by (3.22) reduces to

C(p,v) = Ṁ +
nv∑
k=1

∂T

∂vk
Γk (C.5)
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where the number of velocity states nv is six. Partial differentiation of (C.3) with
respect to the velocity states reveals that the derivative term in (C.5) refers to kth

entry of the (nv × 1) row vector vTM. The second term in (C.5) is the set of Hamel
coefficient matrices Γk, which can be computed using (3.8), (3.14), and (3.15) as

Γ1 =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

 Γ2 =


0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0



Γ3 =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

 Γ4 =


0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0



Γ5 =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

 Γ6 =


0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0



(C.6)

regardless of the attitude parametrization. Applying these terms yields the dynamic
coupling matrix

C(p,v) =

[
ṁ0I 0

0 İ00

]
+

[
0 −m0S(ν0

0,I)
−m0S(ν0

0,I) −S(I00ω
0
0,I)

]
(C.7)

for a single body vehicle. Furthermore, if the vehicle can be assumed rigid so that it
neither changes mass nor inertia, the mass rate matrix in (C.5) and (C.7) is null.

The remaining forces on the vehicle are those imparted by the environment through
which it passes. The effects of gravity can be modeled by first writing the potential
energy of the aircraft

U(p) = −m0(r
I
0,I)

TgI (C.8)

and then using (3.26) to form the generalized gravitational forces vector

g(p) =

[
m0R

0,IgI

0

]
. (C.9)

Combining terms and adding aerodynamic contributions a(p,v), the full nonlinear
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dynamics of the rigid body are

M(p)v̇ + C(p,v)v + g(p) + a(p,v) = τ (C.10)

where τ is a vector of exogenous forces and torques. This parametrization of the
dynamics satisfies the property used in passivity control design that Ṁ − 2C is a
skew-symmetric matrix [66, 59, 64].
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Appendix D

Linearization of a Conventional
Aircraft Model

This section presents the linearization of a conventional aircraft model to provide
a baseline for comparison with the results presented in Chapter 5. The aircraft chosen
was the single-seat fighter F-16 Fighting Falcon, which has a nominal 9279 kg mass
and 9.96 m wing span. A nonlinear dynamics model is contained within Sidpac, and
is documented in references [35, 36, 86].

The aircraft was set at a 3048 m altitude and a 0.09 rad pitch angle. A modified
Newton-Raphson algorithm was then used to solve (5.2) for the remaining trim states,
which were a 137 m/s airspeed, a 19.5% throttle setting, and a −0.08 rad elevator
deflection. The center of mass is at the mean aerodynamic quarter-chord location to
synthetically increase open loop stability.

Numerical linearization using finite differences resulted in the time-invariant model

∆θ̇
∆u̇
∆ẇ
∆q̇

∆φ̇

∆v̇
∆ṗ

∆ṙ


=



+0.00 +0.00 +0.00 +1.00 +0.00 +0.00 +0.00 +0.00
−9.77 −0.01 +0.06 −11.5 +0.00 +0.00 +0.00 +0.00
+0.00 −0.08 −0.68 +127. +0.00 −0.00 +0.00 +0.00
+0.00 +0.00 −0.03 −1.15 +0.00 +0.00 +0.00 +0.00
+0.00 +0.00 +0.00 −0.00 +0.00 +0.00 +1.00 +0.00
+0.00 −0.00 −0.00 +0.00 +9.77 −0.21 +12.1 −136.
+0.00 −0.00 +0.00 −0.00 +0.00 −0.16 −2.37 +0.60
+0.00 −0.00 +0.00 −0.00 +0.00 +0.05 −0.05 −0.35





∆θ
∆u
∆w
∆q

∆φ

∆v
∆p

∆r



+



+0.00 +0.00 +0.00
+2.08 +0.00 +0.00
−11.2 +0.00 +0.00
−6.43 +0.00 +0.00
+0.00 +0.00 +0.00
+0.00 +1.54 +4.20
+0.00 −25.3 +4.28
+0.00 −1.11 −2.28



∆δe

∆δa

∆δr

 (D.1)
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Figure D.1: Linearized F-16 model pole locations

where δe is the elevator deflection, δa is the aileron deflection, and δr is the rudder
deflection.

In this flight condition, the block-diagonal structure of the system matrices results
in a decoupling of the longitudinal and lateral dynamics. Kinematic integrations are
seen in the equations for the pitch angle and bank angle. The local acceleration due
to gravity, 9.77 m/s2, appears in the equations for longitudinal and lateral velocity.
The elevator primarily affects the pitch rate, but also the longitudinal and heave
velocities. The aileron and rudder primarily affect the roll and yaw rate, respectively,
but also couple into the other lateral states.

Poles are shown in Figure D.1, and modal parameters of the decoupled subsystems
are provided in Table D.1. The longitudinal dynamics have two oscillatory, under-
damped modes. The phugoid mode is slower and involves primarily the forward
velocity, whereas the short period mode is faster and involves primarily the heave
velocity. The lateral dynamics comprise three modes. The spiral mode is slow, first-
order mode that involves primarily the bank angle and side velocity. The roll mode
is fast, first-order mode that involves mostly the roll rate. The dutch roll mode is a
fast, second-order mode using mostly the side velocity.
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Table D.1: Modal parameters of the decoupled F-16 linear model

Mode Eigenvalue Eigenvector Damping Frequency
Ratio [rad/s]

λi vi ζi ωi

phugoid −0.01± 0.09j


−0.00∓ 0.01j

+0.99
+0.05∓ 0.00j
+0.00± 0.00j

 +0.11 0.09

short period −0.91± 1.84j


+0.01∓ 0.00j
−0.07± 0.03j

+0.99
−0.00± 0.01j

 +0.44 2.06

spiral −0.01


+0.89
+0.44
−0.02
+0.06

 +1.00 0.01

dutch roll −0.35± 2.82


+0.01± 0.01j

+0.99
−0.03± 0.04j
−0.00∓ 0.02j

 +0.12 2.84

roll −2.22


−0.34
−0.56
+0.75
+0.03

 +1.00 2.22
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