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Traditional methods of performance analysis offer a code centric view, present-

ing performance data in terms of blocks of contiguous code (statement, basic block,

loop, function, etc.). Existing data centric techniques allow various program prop-

erties to be mapped directly to variables. Our approach extends these data centric

mappings. Just as code centric techniques allow lower level objects like source lines

be mapped up to functions, our inclusive technique allows low level data centric

operations like computations on scalars to be mapped up to complex data struc-

tures like those found in scientific frameworks. Our system utilizes static analysis

to collect information about the program that can be combined with runtime infor-

mation to perform data centric program analysis. By pushing most of the analysis

to pre-run and post-mortem, we can minimize the amount of data collected at run-

time. This allows us to perform less instrumentation and also minimizes program

perturbation. It also allows us to collect information that would not be possible

with existing techniques.



We present two applications of this analysis. The first application of our

analysis is targeted at mapping performance data to high level data structures with

multiple levels of abstraction. We create extended data centric mappings, which we

call variable blame, that relates data centric information to these variables.

The second application is a method for mapping cache miss information to

variables. Existing approaches for this analysis rely on explicit hardware support

and extensive program instrumentation. By utilizing our analysis and applying

software heuristics, we are able to lessen those requirements.

We apply both of these analyses to applications and show what performance

information can be provided by our analysis that can not currently be determined.

We also discuss how we can use that information to improve program performance.
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Chapter 1

Introduction

Program performance data has traditionally been presented to the user in

terms of code regions. The most common way to aggregate the data is in terms of

time spent in a function although statement, basic block, and loop nest data are also

common. The measured metric can be wall time, total cycles, cache misses, floating

point operations, etc. This code centric view is helpful in identifying hot spots in a

program. However, it is not the only way to analyze and present performance data.

The presentation of data to users in terms of program variables is another useful

approach that has less frequently been utilized. While not as commonly used as code

centric methods, data centric analysis augments code centric data with additional

insights into program behavior.

In performance profiling, analysis can be done in an inclusive or exclusive

manner. Exclusive analysis concerns only one level of abstraction. Inclusive anal-

ysis provides drill-down information. The primary motivation for this work comes

from the fact there are no existing performance analysis techniques that utilize an

inclusive, data centric analysis. Table 1.1 shows examples of how data would be

represented for inclusive and exclusive analysis for both data centric and code cen-

tric methods. The classic profiling technique is the flat, exclusive, code centric view.

This shows how much time is spent in the actual function and disregards how much

1



Code Centric Data Centric
foo() 20% fooVariable 30%

Exclusive bar() 30% barField 30%
baz() 50% bazSubField 20%
foo() 100% fooVariable 80%

Inclusive ↪→bar() 80% ↪→barField 50%
↪→baz() 50% ↪→bazSubField 20%

Table 1.1: Inclusive and Exclusive Analyses for Code and Data Centric

time is spent in functions that are called from the profiled function. The inclusive,

code centric view requires more information to be gathered at runtime, but gives

richer data that shows time spent for each calling context.

Prior work [14] has been done for mapping data centric events such as cache

misses to variables in an exclusive manner. This type of analysis attributes per-

formance information to the allocated memory region assigned to a variable, but

does not attribute data over all the fields and sub-structures in a complex data

type. Previously, inclusive analysis for complex data types did not exist. This type

of analysis and its applications is the core of this dissertation and leads us to our

thesis.

The thesis of this dissertation is that inclusive data centric analysis can be

utilized for better program understanding and to improve program performance.

Furthermore, the underlying approach used to provide the inclusive data can also

be used to expand existing data centric analysis techniques across new architec-

tures. To validate this thesis, we introduce two techniques which are capable of

mapping program data to variables in an inclusive manner. These techniques are

“variable blame” and “approximate data centric” analysis. We present results in

2



this dissertation from using these techniques to profile multiple programs.

Programs that contain multilevel abstractions are the main target applications

for our inclusive approach. Programmers think in terms of data objects (linear

systems, PDEs, matrices), not functions and low level arrays. These objects often

are inherently distributed and contain calls to message passing libraries that are

completely hidden from the user, masking both data motion and the parallelism.

Unfortunately, when these abstractions are introduced it becomes more and more

difficult to diagnose performance and correctness issues using conventional means.

The higher level the abstractions, the harder it is to figure out the lower level

constructs that map to them and subsequently discover where performance problems

are occurring. This affects both application programmers as well as the designers

of the libraries when they try to understand application performance characteristics

and tune the performance of their software. We believe a profiling environment can

represent performance data in terms of these abstractions, mainly the instantiations

of these abstractions in the form of program variables. The unique feature of our

tool and techniques is the ability to automatically combine and map performance

and debugging data from complex internal data structures (such as sparse matrices

and non-uniform grids) to higher level concepts.

Our primary approach for our inclusive data centric analysis is the variable

blame approach. Variable blame records data flow information from the program

and uses it to map performance information to variables. Blame determines what

explicit and implicit data flow was utilized to determine a variable’s value. During

event-driven sampling, if a sample occurs that falls under the set of data flow op-

3



erations that may have ultimately contributed to a given variable’s value, then the

variable is “blamed” for that sample. Variable blame is defined in Chapter 3 with

a calculus that formally represents how blame is calculated. As blame is a profiling

technique, we created a prototype tool that uses blame analysis as its core means

to profile programs.

We use the blame based tool to perform blame analysis experiments on various

benchmarks and applications. We examine how blame analysis specifically compares

against existing code centric approaches in the uniqueness of the data it presents. We

present how information given by blame analysis can assist in improving program

performance. We also present how blame analysis scales across parallel systems.

The experimental results are presented in Chapter 4.

Our inclusive, approximate data centric analysis expands upon existing ex-

clusive, data centric approaches that involve direct measurements [13]. Existing

approaches use hardware counters to assign cache and TLB misses to variables.

However, these approaches rely on specific hardware support and extensive source

and/or binary instrumentation. We show in Chapter 5 how we are able to use soft-

ware techniques to approximate these measurements. These approximations main-

tain rank order for the profiled variables while removing the hardware limitations

and instrumentation constraints.

4



The main contributions of this dissertation are:

Variable Blame Calculus

We present a language independent, formal definition of how to calculate vari-

able blame.

Blame Tool and Experimental Results

We present the tool and use it to create case studies showing how the values

determined from variable blame can help with program understanding and

compare those values to those found by code centric means. We also use

variable blame values to improve program performance over different hardware

configurations.

Approximate Data Centric Analysis

We introduce an approach to compute data centric statistics without the need

of the traditional hardware support utilized by the direct measurement meth-

ods.

5



Chapter 2

Related Work

An important concept in this work is the mapping between different abstrac-

tion levels at the source level down through to the compiled code. To have any

kind of working tool for performance analysis, there is an explicit need to associate

the chosen metric to a source level construct so that improvements to the code can

be made. This mapping becomes more complicated with parallel programming lan-

guages and languages with complex abstractions and runtime optimizations. The

related work section begins with discussion of prior work on mappings. We examine

both data centric mappings and those mappings that utilize internal abstractions to

represent both code and data centric program elements. Since inevitably these map-

pings are plugged into some kind of program analysis software (as is the ultimate

destination of the mappings for this work) a small survey of related performance

analysis programs is discussed. There is a rich history of tools that do performance

analysis. Rather than provide an exhaustive comparison, we have chosen a mixture

of tools that are most closely related and that also represent a breadth of features

previously explored. Finally, there are a series of enabling technologies that are

important to our implementation.

6



2.1 Mapping

The two kinds of mappings that we are interested in are “data centric” and

“abstraction based.” The data centric mappings directly map performance data to

variables. However, they are exclusive and are limited in the types of performance

metrics that can be assigned to the variables. The abstraction based mappings are

more complex and can have code centric and data centric elements mapped to their

abstractions at any point in the program. These mappings are not strictly data

centric and involve binding code centric regions to variables at different parts of the

program. Our mappings are an amalgam of these two approaches. Our mapping

is hierarchical like the abstraction based approaches. However, it is strictly data

centric and bound to variables at every point in the mapping.

2.1.1 Data Centric Mappings

Existing data centric mappings are exclusive, and try to map data centric

events like cache and TLB misses to the variables whose access caused the miss [9,

13,40,45]. The common limitation for all of these approaches is the special hardware

features needed to run the different kinds of analysis. The first hardware requirement

is that an effective address can be retrieved from the processor at the time the

measurement is taken. The effective address can sometimes be reconstructed by

decoding the instruction that caused the miss to determine the addressing mode

and binding the values in the applicable registers to determine the address.

The second hardware limitation concerns the skid factor. The skid factor

7



is an artifact of instruction sampling, where a triggered event (such as a cache

miss) is attributed to an incorrect instruction. One cause of skid can be due to

out-of-order execution, however, the skid factor is still an issue for processors with

in-order execution [18]. For in-order execution, skid is a function of the size of

the pipeline and any of the instructions in the pipeline at the time of the event

may be the cause. For time based metrics, skid is not as significant a factor. This is

because the instruction the event was attributed to was valid in the instruction pool.

However, for data centric events the skid factor can mean assigning the event to an

instruction that is accessing a different memory region or even assigning the event

to an instruction with no memory accesses. Certain architectures have hardware in

place to negate the skid factor and will return the precise IP (instruction pointer) for

the event and effective address of the miss when running in that mode [20,33,34]. In

cases where an architecture does not have this hardware in place, a user is completely

unable to use the existing approaches. As HPC systems move to less complex CPUs

(i.e. stream processors & GPUs), the type of hardware support required for data

centric measurement may become less available [48].

A very common approach for attributing cache misses to variables is to gener-

ate samples using memory based hardware counters and assign counts to the data

structures responsible for those misses by using the effective addresses. This method

was introduced by Buck [14]. His approach triggers samples based on cache misses

and uses the effective address of the data being accessed at the sample point to

increment a counter for the responsible variable or dynamically allocated block of

memory. This approach has the requirement that the architecture have the proper
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skid negating hardware available. Besides the hardware limitations, this approach

also has the minor disadvantage of introducing some program perturbation. In order

to map the effective addresses, you need to keep a record of all of the allocations

and frees in the program for dynamically allocated memory. For allocation rou-

tines, this involves instrumentation and performing a stack walk to gather context

sensitive information at runtime.

Itanium is one architecture with hardware support [33] for this effective address

matching technique and is the system Buck’s approach was implemented on with

his tool Cache Scope [13]. On Itanium, the proper hardware counters are available

and the effective data address of a specific cache miss can easily be retrieved.

HPCToolkit [46] has recently added data centric profiling to their tool [40].

Their approach is very similar to the approach used by Cache Scope. Like Cache

Scope, they record the allocations and frees in the program. They also rely on

hardware support to negate skid and to provide a precise effective address of the

memory that triggered the event. Their tool uses the PEBS (Precise Event Based

Sampling) feature [34] on select Intel chips and the IBS (Instruction Based Sampling)

feature [20] on certain AMD chips.

Our “approximate data centric” approach closely resembles that of Cache

Scope and the data centric capability of HPCToolkit. However, our approach is

usable on architectures without specific hardware that negates skid. Our work also

eliminates the need for monitoring all allocations and frees within the program.

Other tools that use data centric mappings include StatCache and Memphis.

StatCache [9] is a probabilistic model of the cache. It does this by wrapping all
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loads and stores in the program, which can create a large overhead. The information

gathered at runtime is used to simulate the memory hierarchy and to apply the post-

mortem model to predict cache performance. This information is used to improve

data locality. Memphis [45] is a data centric toolset that is limited to the AMD

architecture due to its reliance on IBS. It focuses primarily on finding NUMA-related

problems.

2.1.2 Abstraction Based Mappings

Irvin introduces concepts involving mapping between levels of abstraction in

parallel programs with his NV model [36] as utilized by the ParaMap [37] tool. In

the NV model, a noun is any program element that a performance measurement can

be attributed to. This can include program components such as functions, source

lines, or loops. It can also include arrays and variables within the program. A

verb consists of any action taken by or performed on a noun. This would include

things like the actual execution of a source line or function in the program, or an

assignment operation between two variables. Sentences have exactly one verb, all

participating nouns, and the associated cost of the action. The set of sentences at

any given software or hardware layer forms a level of abstraction. The mappings

then run between sentences at different levels of abstraction. The mappings can be

determined either through static analysis prior to execution (static) or at runtime

(dynamic).

Static information consists of all the information gathered before the program
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executes. An example of this type of mapping would be source lines (single or

multiple) mapped down to lower level routines that execute those line(s). Because

this all is computed before runtime, it can be stored in whatever form the user

chooses such as in the actual image, a database, or some external file.

Dynamic information contains the exact same mapping information as static,

but the information is derived at runtime. The SAS (Set of Active Sentences) is

the data structure that allows dynamic mapping of concurrent sentences between

layers of abstraction. The SAS pertains only to those sentences that are active at

that point in the program. As sentences become active/inactive at their respective

abstraction layers, they are added/removed from the SAS. Furthermore, any con-

current sentences in the SAS are dynamically mapped. The SAS is used to answer

“performance questions” based on one or more sentences within the SAS.

The SAS approach has three self-described limitations. The first is that the

approach does not handle asynchronous activation of sentences. This could mean

that certain sentences at a higher level could potentially not be available to be

mapped to the proper lower sentences so performance data would not be properly

bubbled up.

The second limitation is that sentences that are dynamically activated yet

ignored by the SAS create larger execution costs than is necessary. This limitation

is based on the fact that performance questions are raised after the set of active

sentences exists, so notifications from unused sentences within the SAS would be

ignored but the cost to raise the notification would remain. They acknowledge

this could be remedied by adding additional functionality to dynamically remove
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unneeded notifications.

The third limitation is that sentences are not ordered in performance questions.

The order that the sentences are parsed in a performance question can yield very

different performance questions.

The Semantic Entries, Attributes, and Associations(SEAA) [57], a followup to

SAS and the NV model, addresses some of the limitations discussed above and adds

other features that were not present in SAS. SEAA creates support for user-level

abstractions by allowing the definition of semantic entities as both annotations and

independent sentences. A semantic entity is an element that is defined solely on

semantics, meaning an element can be created and used without it having a direct

program construct attached to it (though regular program constructs can still be

entities). This is essentially an upgraded model of the sentence abstraction within

the NV model, with the ability to add new constructs that was not possible in

the NV model. A semantic attribute is a set of semantic information that can be

attributed to an entity for qualifying mapping relationships. A semantic association

creates a link to cost mapping based on the attributes of the entities.

The SEAA mappings follow many of the same conventions as introduced in

the NV model with the additions discussed above. These additions allow a much

larger domain of programs that can be mapped. As a result, the model directly

addresses some of the limitations that were raised in the NV model. The addition

of semantic attributes address the sentence ordering problem. The attributes could

be used to attach additional semantic information to the sentences that could allow

an ordering to take place.
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The problem of asynchronous sentences is also addressed with SEAA map-

pings. At a given layer of abstraction, sentences may be partitioned into appro-

priate entities and mapped to their respective associations using the appropriate

attributes. In the cases of asynchronous execution, the associations will map back

up to the appropriate entities and will report their respective PMEs (performance

measurement entity), regardless of the order of execution. The resolution of the

asynchronous sentence problem creates an environment that offers more accurate

bookkeeping than the NV model.

The SEAA model, however, does introduce more overhead than the NV model

to achieve the more accurate modeling. Whereas the SAS aspect of the NV model

looks at all of the currently active sentence and answers performance questions based

on that information, the SEAA model examines the attributes for the individual

entities which creates more bookkeeping.

2.2 Profiling Tools

Tools that try to represent the information in terms of aggregates and statis-

tical representations of program metrics are referred to as profiling tools. Profiling

tools are able to represent entire runs of the program in a variety of ways depending

on the granularity of the measurements and the metrics that are being measured.

A trivial profiling tool takes as input a program and returns the wall time that

program takes to run. In terms of scope, tools may use the whole program or

may drill down to specific functions, basic blocks or individual source lines. In
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terms of the metrics being measured, time is the most commonly measured ele-

ment, but other program attributes such as cache misses, floating point operations,

bytes transferred during communication, and other hardware or software attributes

may be used. Many hardware counters can be measured by utilizing APIs such as

PAPI [11] which create a machine independent abstraction to access the counters

on most current microprocessors.

Performance information traditionally has been gathered through instrumen-

tation through the insertion of calipers, either to the source or binary (statically or

dynamically). A caliper is a pair of instrumentation points that allow the profiler to

gather performance data (often time) by taking measurements at both points and

calculating the difference. The alternative method of instrumentation is sampling

based. Sampling interrupts the program at certain intervals and samples the state

of the program at these interrupt points. In the case of calipers, the area of in-

terest is delimited by instrumentation calls that measure metrics before and after

the measured region. While the caliper based approach gives exact measurements,

there are certain overhead and side effects from program instrumentation. By using

the sampled information, tools can create approximations for the same performance

metrics utilized by the traditional caliper-based profiling.

2.2.1 Caliper Based Instrumentation

The main differences between profiling tools in this category is the mecha-

nism for instrumentation and the presentation of the data collected. In terms of
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instrumentation, the application can either be instrumented at the source or binary

level. Source instrumentation allows easy insertion at specific source lines but also

has some disadvantages. The program has to be recompiled after instrumentation

is added and the instrumentation process may interfere with compiler optimizations

within the program. Binary instrumentation takes place after the image has been

generated (no recompilation necessary) so compiler optimizations would remain in-

tact. However, this does not mean that the program will necessarily perform the

same as if the instrumentation had never occurred. The instrumentation calls them-

selves may interfere with some of the performance traits the tool itself is trying to

record [43]. Binary instrumentation may occur statically or at runtime. In both

cases, the main deterrent for binary instrumentation is the extra level of complexity

required for the tools in handling instrumentation of the images. Extensive knowl-

edge of the platform specific binary formats and the compilers that generated the

code are required for successive binary instrumentation.

The choice of when to do the instrumentation is just one aspect of the in-

strumentation process. The decision of what program elements to instrument and

measure is also important. Some tools choose to represent a control flow graph of

the program by instrumenting at the basic block level. Others instrument at the

function level. Most use some combination of different program constructs chosen

by the user depending on the desired granularity. There are also several tricks used

by various programs to combat the overhead involved in instrumentation. The Tun-

ing and Analysis Utilities (TAU) tool [58] avoids the instrumentation of low level

functions called multiple times, limiting the overhead of measurement to a manage-
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able level (less than 1%). The PT project instruments selectively along nodes in the

control flow graph based on a heuristic created from data from prior runs [7].

One of the most popular active profiling tools is the aforementioned TAU tool

from the University of Oregon [58]. Its popularity comes partly by the fact it is

available on most platforms and supports a variety of languages, including Fortran,

C, C++, Java, and Python. TAU also handles language extensions such as OpenMP

and MPI implementations on the supported platforms. The framework for TAU is

divided into three layers: instrumentation, measurement, and analysis. Instrumen-

tation is primarily source based, but dynamic instrumentation is also supported by

using Dyninst [12]. The measurement phase is primarily profiling based but also

offers support for tracing. The analysis phase has a variety of options for viewing

and examining the data.

SvPablo [55] is a language independent profiling tool. One of the features that

separates it from most profiling tools is a GUI that allows a user to interactively

instrument the source program. One of the primary goals of the project was the

ability for the user to learn one program that would allow similar experiences over

different languages. This is accomplished by storing all metrics as a hierarchy of Self-

Describing Data Format (SDDF) records. Three groups of record descriptors are in

SDDF: mapping, configuration, and statistic. Each statistic based on performance

analysis is mapped to one of the constructs that was instrumented.
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2.2.2 Sampling

Sampling based profiling gathers information by periodically recording the

program state and uses that information to estimate the overall performance of

the given metric that was sampled. Because instrumentation is limited to enabling

sampling within the program, most sampling tools require no recompilation of the

executable or access to the source. The caveat is that many sampling tools require

that the application had been compiled with debugging symbols for source line

resolution or compiled with a profiling flag enabled in the case of prof [26] and

gprof [25]. Sampling is lighter weight than full caliper based instrumentation with

the accuracy tradeoff that the calculation of information is based on a small number

of data points versus the direct measurement of caliper based approaches. Most

sampling techniques either sample the program counter or the current call stack.

The program counter permits the reverse mapping to a region of code. The call

stack will give information about the exact context of the sequence of code, but has

more overhead involved since more information needs to be recorded and stored.

The frequency of sampling can be set by a number of means. One way is

to sample based on a set time interval. This was the primary approach for older

sampling tools and is the approach of prof [26]. Another approach is to sample

based on a set number of instructions issued. This is the approach for sampling tools

such as VTune and DCPI [3]. Another approach, called event sampling, involves

sampling based on metrics measured by hardware counters such as cache misses.

This approach usually involves having dedicated hardware support to count these
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events and issue interrupts when the counter overflows a pre-determined limit. Most

current architectures have this support. HPCToolkit [46] and Speedshop [56] allow

this kind of sampling.

One of the oldest, lightweight sampling tools is prof [26]. It is available as a

standard application on many Unix/Linux platforms and requires a compilation flag

to enable a program to be profiled. Prof simply interrupts at a given time interval

and uses that information to approximate the relative distribution of time over the

entire program. However, for prof the amount of time assigned to each procedure

does not include the time used by procedures further down the calling tree. The

tool gprof [25] is an extended version of prof that also counts the number of times

that each arc in the program’s call graph is traversed. Thus, the time reported for

gprof does report the time for procedures down the calling tree.

HPCToolkit [46] is a set of tools that uses sampling for its measurement phase,

but whose primary contribution is a series of visualization tools to present the data

to the end user. At the core of the toolkit is the ‘hpcview’ tool which correlates

profiling data to a hierarchical program context (file, procedure, loop, line). On

Linux, the ‘hpcrun’ tool does the actual sampling and uses the PAPI library to

access hardware counters. The event interrupts utilize the hardware counter overflow

feature discussed above. On non Linux platforms, vendor supplied tools are utilized.

A third tool, ‘hpcprof,’ maps the profiling data collected by hpcrun back to source

lines.

Intel has a set of performance profilers that use sampling. Their first tool to

use sampling was Intel VTune [32]. VTune originally had simple sampling techniques
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based on instructions issued, but now additionally supports event based sampling.

The Intel PTU (Performance Tuning Utility) [31] was more recently built as a com-

pliment to the VTune tool. The Intel PTU utilizes the Precise Event Based Sam-

pling (PEBS) system. The PEBS system allows profiling by both the Instruction

Pointer(IP) and the data address. With event based sampling, the PEBS record

can give the exact instruction that caused the interrupt.

The HP Digital Continuous Profiling Infrastructure (DCPI) [3] is a tool that

has limited support in its current incarnation, but uses sampling in ways that differ

enough from other sampling tools that bear mentioning. Originally developed at

Digital, it takes continuous samples of entire systems, including the operating sys-

tem, user programs, the kernel, drivers, and shared libraries. A database is updated

after every program is run. Positive features of DCPI are that no recompilation

is required, profiles can be provided all the way down to the instruction level, and

there is minimal overhead.

2.2.3 Hybrid

There are some tools that offer choices to the user on whether to use the

traditional instrumentation method or a more lightweight sampling method. Speed-

Shop [56], developed by SGI, is one of those tools. In terms of sampling, SpeedShop

allows event based sampling and sampling based on instructions issued. Depending

on the type of sampling involved, SpeedShop either uses the PC or call stack based

sampling to resolve performance to program locations.
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SpeedShop also supports caliper based instrumentation for certain situations.

For example, it supports an “ideal time” experiment that instruments the program

using pixie [56]. This analysis calclulates the cost per basic block and the number

of basic blocks within the executable. This information is then used to calculate

the “ideal” time for the program. Ideal is rarely attainable, however, as this form

of profiling does not take into account issues such as cache misses, stalls, etc.

2.3 Other Tools

2.3.1 Tracing Tools

Tracing tools are similar to profiling tools in that they are post-mortem per-

formance analysis tools. However, while profiling tools aggregate information to

summarize the performance for a given scope, a tracing tool will record all events

of interest that characterize the program to some log. By looking at the full log at

the end of a program, a user can recreate the execution of the program.

While the amount of information generated by tracing can obviously be of

great help to a user, there are some obvious issues that are not present in a profiling

technique. First, the storage overhead for these logs can be tremendous. This is

especially true for distributed and long running programs. Second, even when the

information can be properly stored there has to be an intuitive way in place to

examine the large amounts of data. Many tracing tools use specialized visualization

tools designed specifically for parsing and visualizing tracing data. Some of the

more popular of these visualization tools include Paraver [50], Vampir [63], and
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Jumpshot [68].

The Kit for Objective Judgement and Knowledge-based detection of perfor-

mance bottlenecks (KOJAK) [24] uses program traces to try to discover bottlenecks

within parallel programs. KOJAK uses its own CUBE viewer to visualize the data.

Like its geometric namesake, CUBE has three dimensions in its presentation of data:

the metric, source code location, and node/thread location. KOJAK is also some-

what unique in the fact it primarily relies on manual instrumentation by the user.

It does provide some mechanisms for automatic instrumentation in certain contexts,

but manual instrumentation is still expected to take care of the majority of the trace

points.

2.3.2 Online Analysis Tools

Online analysis tools are different from post-mortem tools in the fact they take

measurements of the program while it is running and allow the user to manipulate

the program during execution to modify performance. This can be accomplished by

statically instrumenting the program with hooks that allow runtime modification

of program elements to influence program behavior. Dynamic instrumentation can

also be used to modify these programs on the fly.

Paradyn [47] is an online tuning tool that aids in discovering program bottle-

necks. Paradyn searches for bottlenecks with its W 3 search model [29]. The W 3

search model asks why, where, and when the application is performing poorly. The

“why” axis is represented in the form of potential bottlenecks with hypotheses and

21



tests and is searched iteratively by going through each hypothesis and testing if it is

true. The “where” axis is a collection of logically independent resource hierarchies.

The search over the “where” axis is also iterative and involves traversing each of

the resource hierarchies. The “when” axis has the user testing hypotheses within

different time intervals throughout the program’s execution. Paradyn uses Dyninst

to perform dynamic instrumentation for its online tuning. This allows Paradyn

to insert and delete snippets of code on the fly depending on the current area of

investigation for the W 3 model.

2.4 Supporting Analyses

We present related work in areas of analysis that are similar to some of the

components used by our approach.

Dataflow analysis is utilized in many areas. Guo et al. [28] dynamically records

data flow through instrumentation at the instruction level to determine abstract

types. This is similar to the explicit data flow relationships we use in our blame

analysis. Other work dealing with information flow in control flow statements is

similar to the implicit data flow relationships we use [44,64].

Pointer and alias analysis is a large research field in and of itself. Pointer

analysis traditionally relies exclusively on static analysis, whereas our work most

closely matches other non-traditional work that combine static and dynamic infor-

mation for the generation of points-to sets [4,27,49]. Transfer functions are a way in

alias analyses to propagate information about side effects and potential mappings
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up from callee to caller. [35, 67]. However, the utilization of transfer functions for

our blame mapping differs significantly from the use in alias analysis. The primary

difference is that transfer functions in alias analysis serve as a means to propagate

pointer information, whereas we utilize transfer functions for blame mappings. An-

other difference is that in alias analysis, the use of transfer functions is performed

strictly based on information gathered by static analysis. This may lead to situa-

tions where a transfer function is forced to operate based on incomplete information.

Our transfer functions utilize both static analysis and runtime information. This

allows us to have more complete information about the context for each call site.

We discuss transfer functions in further detail in Section 3.1.4.

A related area of work to pointer analysis and transfer function generation is

escape analysis [19,51]. Escape analysis examines a function to determine whether a

variable/pointer can “escape” and be accessed outside of the scope of that function

or region in the code. We utilize escape analysis to determine which variables within

a function can be used to represent the blame for our own transfer functions.

2.5 Techniques involving ‘Blame’ Terminology

There is other work that uses the term “blame.” Although this work is not

related to our work, because of the similarity in terms we would like to explicitly

address that there is no connection between our work and other “blame” work.

One area of work that uses the term “blame” is Findler’s work on contract

checking [22]. In his work, a series of contracts are in place for methods within a
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program. Blame is assigned when a run-time check determines a contract has been

violated. In this context, the source of blame is the particular contract (usually

attributed to a method) that has been violated and the entity assigned the blame

is the individual responsible for providing the element of the program that violated

the contract. In our system, the source of blame is performance metrics and the

blame is assigned to program variables.
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Chapter 3

Variable Blame

Blame is an inclusive data centric approach that determines what explicit and

implicit data flow was utilized to determine a variable’s value. Explicit operations

are represented by the chains of data writes within the program. Implicit operations

are based primarily on control flow. During event-driven sampling, if a sample occurs

that falls under the set of data flow operations that may ultimately contribute to a

given variable’s value, then the variable is “blamed” for that sample.

To illustrate the basic concepts behind blame we examine the small C snippet

in Figure 3.1. We argue that the purpose of this entire snippet is to populate the

value of c. Since our data collection is sampling based, any sample that occurred

within this code snippet would be blamed on variable c. This small example case

would be contained within a single basic block. This chapter will show how blame

would be propagated across multiple basic blocks in a single function and how blame

would be mapped to variables across function calls using whole program analysis.

1 int a, b, c;

2 a = 5;

3 b = 6;

4 c = a + b;

Figure 3.1: Small Code Snippet
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Code centric approaches attribute values to basic blocks or functions based

on the sampling location. The difference in our approach is that we combine the

sample’s location and our analysis to attribute the sample to one or more variables

instead of attributing the sample to code regions. As is the case with traditional code

centric sampling, samples can be triggered by timers or can be event driven through

hardware counters. Blame can be attributed to variables using any metric that can

be measured on a system and has an appropriate hardware counter associated with

it. This includes cycles, instructions issued, and cache misses.

We will present the formal definition of blame in terms for a single variable

for one run of a program with sampling enabled. Let S be the set of all samples

(represented as the sampled statement) gathered for the run of the program. For a

given sampled statement s within S, let W be the set of all statements containing a

write to the memory region allocated by variable v, the aliases of v, and all fields of

v. For the fields, this includes all sub-fields within the hierarchy of v. This includes

both pointer and non-pointer fields. The blame set for v is the union of all the

statements in the backward slices [66] for each of the statements in set W,

BlameSet(v,W ) =
⋃

w∈W (v)

BackwardsSlice(w)

Variable v is blamed for a sample in the cases where s is a member of the BlameSet(v)

which we represent with this function,

isBlamed(v, s) { if(s ∈ BlameSet(v)) then 1 else 0}
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The blame percentage for a variable for the entire program is the percentage of

samples that can be blamed to a particular variable divided by the total number of

samples. This is represented with the following formula,

BlamePercentage(v, S) =

∑
s∈S isBlamed(v, s)

|S|

After we have performed this calculation, we can say variable v is “blamed” for that

fraction of whatever metric we used to generate the samples. For example, if we

were sampling off of cycles and the blame percentage was x, we would say that v

was responsible for the x fraction of all cycles over the course of the program.

The discussion above is only a means to provide a formal definition for variable

blame. It is not indicative of how blame is calculated in our system. In the next

section, we will formalize how variable blame is calculated with a calculus. We will

also present a graphical implementation of the blame calculus. We then present

our blame tool that utilizes the graphical implementation for its pre-run analysis,

has runtime data gathering, and performs post-mortem analysis on the data we

gathered statically and at runtime. We follow this up with a section detailing how

those components would be used to perform full program analysis on a small sample

program. Finally, we detail how the data would be presented to a user using our

tool.
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3.1 Blame Calculus

We define a language where all operations are performed on Single Static

Assignment (SSA) registers. Loads and stores allow data movement between these

registers and higher level variables. These variables are not limited by the SSA

requirement and can have multiple loads and stores modifying their values. This

language is typical of intermediate representations for higher level languages used

in program analysis or compilation. In this language, the blame mappings are blind

to the manner in which a variable is allocated. Local variables (stack-allocated),

global variables, and heap-allocated variables are all accessed through the load/store

operations and are internally handled in an identical manner.

We use the following notation to represent the language:

r ::= register

n ::= integer

v ::= r|n

V ::= Variable

Variable blame is based on dataflow interactions, so to formalize the propaga-

tion of information we use gen-kill sets. Gen and kill sets represent the subset of

elements for each set that are inserted and removed, respectively, for each opera-

tion [38]. All sets are initialized to the null set at the entry of the function. Each

variable and register maintains an individual copy of its corresponding blame set

and supporting sets. The gen-kill sets are calculated at the basic block level and
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propagated in standard fashion through the entire function based on the control flow

graph for the function. The propagation for each set (for each variable and register)

follows the in and out formulas shown below, where ‘n’ is a basic block identifier.

in(n) =
⋃

p∈pred(n)

out(p)

out(n) = gen(n) ∪ (in(n)− kill(n))

The analysis is a forward, may analysis [1, 2, 38].

The instructions in our language and how the sets are manipulated by these

instructions are shown in Tables 3.1 and 3.2. For these tables, the ‘@’ sign represents

a pointer dereference. For store operations, the first operand in the statement is the

data being propagated and the second operand is the location in memory where the

value of the first operand is being stored. Because of the SSA property of registers

(they are only written to once), the register ID is used to reference the register itself,

and also the statement where the register is introduced with a write. For this reason,

although the members of the sets are of different types of elements, register IDs will

appear across all of the sets. The ‘store’ instruction is handled differently than other

instructions when dealing with the gen-kill sets. It is the only instruction for which

a register ID is not the identifier placed in the set since no register is written to, only

memory locations. For store instructions, we construct a label for the instruction

with the source line number (from the original program) that the store maps up

to. That label is then placed in the appropriate set(s) in place of the register that
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would normally accompany an instruction in our language.

There are multiple cases for dealing with stores depending on properties of

the input operands. In cases where the target is a non-pointer variable, we use the

rules associated with “store r, @V1.” We make a special case for this store because

non-pointer variables are the only case that utilizes the Temp Blame Set, discussed

below. The other store instructions in the table assume the store target is associated

with a pointer variable.

The generic store case, and the one in which blame is propagated the most,

is associated with the “store r, r1” instruction. For this instruction, we assume r1

is a register holding a pointer to some variable. Because of the complexity of the

set operations in this function, we make a call to the ‘doStore’ function to make the

appropriate set insertions and deletions. This function is the main link between the

primary blame set and all of the supporting sets. The ‘doStore’ function is discussed

in detail in Section 3.1.1.

The final store case, “store V, @V 1,” concerns how we deal with alias relation-

ships. This is not meant to be an exhaustive representation of our alias analysis,

but is meant to serve as a base case corresponding roughly to the C code,

int * x, * y;

x = y;

Our full alias analysis can not be properly represented by the blame calculus lan-

guage. Because of this fact, the base case is simply meant to show how our set

operations react to an alias being generated. The set operations that occur for alias
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relations not shown by our calculus follow the same gen-kill relationships as the

base alias case. The generation of the aliases themselves is performed by following

approaches outlined in work by Wilson et al [67] and utilizing the alias functionality

provided by LLVM [41].

The complete list of gen-kill sets used for the calculation of variable blame

is listed below. For the Blame Set and Temp Blame Set, the members of the set

are individual statements from the language. For all other sets the members are

registers and variables.

Blame Set (B)

This is the primary set that is propagated by the gen-kill process. There is

no kill action for this set. For registers, this is because of the SSA property.

Since registers are written to once, that initial write creates the blame set. For

variables, the temp blame set is utilized for transferring blame from variable

to variable (and has kill sets). The blame set is only written to when we want

the value to be attributed to the final blame set.

Temp Blame Set (T)

This is a temporary blame set utilized for the higher level variables. The

reason for this set is to have a new set each time a store writes to a non-

pointer variable.
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Aliases (A)

The set of calculated aliases for a variable. Each variable has its own copy

of A, which changes based on the program point. When we detect an alias

assignment, we add that relationship to the set. When that alias is invalidated

by another assignment, we kill the old alias relationship. Therefore, depending

on the point at which the analysis is being done, each variable will have a

different alias set then it might at another program point.

Up Pointer (U)

We maintain an up pointer for every data access from the point of access to

the variable (and register) whose data space was accessed.

Down Pointer (D)

The set contained by each variable that contains all of the registers that have

accessed its data space.

Field Parent (P)

An up pointer to the containing variable for each field.

Fields (F)

The set of all fields for a given variable.

Control Flow Dependent (CFD)

The set of registers contained within the instructions that may be executed

based on the register value in the conditional branch. The calculation of this

set of registers is discussed in Section 3.1.2.

32



Blame (B) Up Pointer (U) Down Pointers (D)
Statements Gen Gen Kill Gen Kill

r = v1 r : {{r}∪B(v1)} r : {U(v1)} U(v1):{{r}}
r = v1 op v2 r : {{r}∪B(v1) r : {U(v1)} U(v1):{{r}}

∪ B(v2) }
store r, r1 doStore(r, r1)
r = @V1 r : {{r}} r : {{V1}} V1 : {{r}}
r =load @V1 r : {{r}∪T(V )}
r =load r1 r : {{r}} r : {{r1}} r1 : {{r}}
r =load 100 r : {{r}}
@V = ∀d, D(V ) V :

malloc v1 V : {{v1}} d : {{V }} {D(V )}
store V, @V1 V1:{{‘store(l)’}} ∀d, D(V1) V1 :
(at line l) V :{{‘store(l)’}} d : {{V1}} {D(V1)}
store r, @V1 V1 : { B(r)∪
(Non-Ptr V1) ‘store(l)’ }

Field Parent (P) Fields (F)
Statements Gen Kill Gen Kill

V ≡ V1 → f V : {{V1}} V1 : {{V }}
V ≡ V1.f V : {{V1}} V1 : {{V }}
@V = malloc v1 ∀f , F(V ) V : {F(V )}

f : {{V }}
store V, @V1 ∀f , F(V1) V1 : {F(V1)}

f : {{V1}}

Temp Blame Set (T) Aliases (A)
Statements Gen Kill Gen Kill

@V = malloc v1 V : {A(V )}
store V, @V1 V : {{V1}} V1 : {A(V1)}

V1 : {{V }∪A(V )}
store r, @V1 V1 : {B(r)} V1 : {T(V1)}
(Non-Ptr V1)

Table 3.1: Intraprocedural Explicit Gen Kill Sets

Blame (B)
Statements Gen
br r1, label <true>, label <false> ∀a in CFD(r1)

a : { B(r1)}

Table 3.2: Intraprocedural Implicit Gen Kill Sets
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3.1.1 Explicit Calculation Involving Pointers

We handle a store to a register holding a pointer by performing the doStore

function, shown as one of the set operations in Figure 3.2. This function recursively

goes up the pointers for the containers (designated as a Container type, which can

be either a register or variable). It also recursively goes up the parent field pointers

and also traverses the aliases for each pointer.

function upSet(Container r,
Set S)
{

if r is null
return

S.insert(r)
upSet(r, S)
∀a,A(r)

upSet(r, S)

return S
}

function doStore(Register r,
Container r1)
{

if r1 is null
return

Set S = {}
r1.B = r1.B ∪ upSet(r, S)
doStore(r, P(r1))
doStore(r, U(r1))
∀a,A(r1)

doStore(r, a)
}

Figure 3.2: Pseudocode for doStore (and upSet) function

The reasoning behind this function is that because of the inclusive nature of

blame, we want to be thorough and visit the entire pointer chain that led us to this

access. We also want to traverse the entire data structure this field was a part of

and mark each container variable until we reach the top of the field hierarchy.

The Blame Set for each register found in the doStore traversal has the return

set from the upSet call inserted into it. The upSet call is similar to the operations

in doSet, except there is no recursive traversal of the field up pointers. The upSet

function operates on the register that is transferring blame over. With this element,

we want to transfer over the blame from all the aliases and up pointers. However,
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we do not want to transfer over blame from other fields, as the computation for

those fields may be completely unrelated to the blame that was assigned to the field

that we are transferring blame from.

3.1.2 Implicit Calculation

We have primarily discussed how to propagate blame through direct dataflow.

Variable blame also takes into account implicit dataflow operations as well. The

algorithm for determining the implicit registers utilizes both the CFG and dominator

tree for a function.

Given CFGp as a connected graph for procedure p and is represented by a

3-tuple, (s, B, ECFG) where s ∈ B is the root node, B is the set of basic blocks, and

ECFG is the set of edges.

Given Domp as the dominator tree for procedure p and is represented by a

3-tuple, (s′, B′, EDom) where s′ ∈ B′ is the root node, B′ is the set of basic blocks,

s == s′, B ≡ B′, and EDom is the set of edges.

An important distinction to make before describing our algorithm is even

though the set of nodes for the CFG and dominator tree are equivalent, the edges

linking them will differ between the two. For example, in Figure 3.3 we see that the

dominator tree for vertex “bb12” has three children (bb17,bb21,return) while the

CFG for that same node has two children (bb17,bb21).

Figure 3.4 shows three functions for propagating implicit dataflow. One func-

tion calculates implicit operations for conditionals, one examines loop operations,
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entry

bb8

bb bb12

bb17 bb21

return

a)

entry

bb8

bb bb12

bb17 bb21 return

b)

Figure 3.3: The a) CFG versus b) dominator tree for function ‘bar’ in Figure 3.15

and the final function calls the first two with the appropriate parameters for each

function.

The conditional function recursively calculates the implicit set for each basic

block. For its parameters, v represents a basic block and I is a set of implicit

registers. In addition to the instructions, each basic block has a local copy of I,

mainly the set of implicit registers that affect it. The function is initially called by

passing in the NULL set for I and the root node for the dominator tree as parameter

v. The function works by traversing the dominator tree and looking at the number

of children that overlap between the dominator tree and the control flow graph. In

cases where edges match between the two and the base node ends with a conditional

branch, we know that the children are dependent in a conditional operation. We

perform additional checks, not shown in the pseduocode, to assure that we are not

dealing with control flow edges that are a part of loop operations. Once we establish
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function genImplicitCond(BasicBlock v, ImplicitSet I) {
v.I = I
if (deg+

Dom(v) == 1)

genImplicitCond(vchild where v
EDGE−→ vchild ∈ EDom , I)

else if (deg+
Dom(v) == 0)

return
else if (deg+

Dom(v) > 0)
{
t = terminator instruction of v
t.i = register within t that determines control flow
for all dominator tree children c of v
{

if (v
EDGE−→ c ∈ EDom and v

EDGE−→ c ∈ ECFG)
genImplicitCond(c, I ∪ {t.i})

else
genImplicitCond(c, I)

}
}
}

function genImplicitLoops(Loop L) {
comp = comparison basic block of L
t = terminator instruction of comp
t.i = register within t that determines control flow

for all basic blocks b of L
{
b.I = b.I ∪ {t.i}
}
}

function genImplicits(Function F ) {
DominatorTree DT = F .dominatorTree()
genImplicitCond(DT .root(), NULL)

Loops L = F .loops()
genImplicitLoops(L)

for all basic blocks b of F
{

for all instructions i of b
i.B = i.B ∪ {b.I}

}
}

Figure 3.4: Implicit Blame Calculation Pseudocode
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the conditional relationship, we transfer the register that determined the control flow

for the terminator instruction to the implicit set for the appropriate basic blocks.

The function that handles loops acts by determining which basic block is

responsible for the properties of the loop, mainly the one with the compare operation.

We grab the terminator instruction from that block and propagate it to all of the

basic blocks within the loop in a similar manner to the conditional implicit sets.

The function that calls the loop and conditional functions takes a variable rep-

resenting the function to be analyzed in as its input. It calculates the dominator tree

and all natural loops occurring within the input function. It uses this information

to pass the appropriate parameters to the worker functions. Once the implicit sets

are calculated, each instruction in the basic block (represented as SSA registers) has

the registers from the implicit set transferred to their respective blame sets.

3.1.3 Blame Calculus Example

To illustrate how the sets interact with each other in calculating both explicit

and implicit blame, we will now work through a small example program. We will

examine a single sample function with no outgoing calls, with the exception of one

to malloc. The function, both in original C code and represented by our language,

is shown in Figure 3.5. A table with the statements and the state of each set after

the gen-kill operations are applied is shown in Table 3.3. The blame (for both IR

statements and source lines) that is attributed to each local variable at the end of

the function is represented in Table 3.4.
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1 typedef struct {

2 int *i;

3 } StructEx;

4

5 void oneFunc()

6 {

7 StructEx s;

8 int * x, * y, z;

9 x = y;

10 z = 1;

11 if (z) {

12 x[1] = z;

13 }

14 z = 2;

15 if (z) {

16 s.i = (int*) malloc(4);

17 s.i[0] = z;

18 }

19 }

a)

entry:

1 store y, @x

2 t0 = 1

3 store t0, @z

4 t1 = load @z

5 tB = compare t1, 0

6 br tB, label bb, label bb7

bb:

7 t4 = @x

8 t5 = t4 + 4

9 t6 = load @z

10 store t6, t5

bb7:

11 t7 = 2

12 store t7, @z

13 t8 = load @z

14 tB1 = compare t8, 0

15 br tB1, label bb12, label bb20

bb12:

16 @(se.sX) = malloc(4)

18 t9 = @(se.sX)

19 t10 = load @z

20 store t10, t9

b)

Figure 3.5: The a) C code b) our IR language for ‘oneFunc’
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We begin by examining the entry basic block. The first statement creates

the alias relationship between x and y. This causes a gen operation for both of

those variables in the Alias set in respect to each other. Statement 2 has a simple

constant assignment which involves the statement being assigned to its own blame

set. For SSA registers in our calculus, they are always a member of their own blame

set. Statement 3 involves a store to non-pointer variable z. We distinguish between

stores to non-pointer and pointer variables with different instructions in our calculus,

as they are handled in different manners. The store to the non-pointer results in a

kill to the current Temp Blame Set (which is empty) and a gen to both the Blame

Set and the Temp Blame Set. The next few statements involve the loading of the z

value in order to be used in a comparison operation for the conditional branch.

The bb basic block has entry as a predecessor meaning it takes in as its IN

set the OUT set of entry. Its first statement, number 7, is our first encounter with

pointers. Since t4 contains the address of pointer variable x, we gen values in the

Up-Pointer and Down-Pointer columns. Statement 9 loads the value of z, and we

transfer the blame from the Temp Blame Set of z to the register written, t6. We

follow that up with a store to a pointer in Statement 10, which calls our doStore

function. This function follows the up pointer for t5 and assigns blame to x. It then

goes through all of the aliases of x to assign blame to y as well. Finally, we perform

implicit operations on this basic block since it has a conditional relationship with

entry. Since tB was the register the control flow is based on from entry, the blame

for that register is propagated to all of the instructions within basic block bb.

The bb7 basic block has both bb and entry as predecessors and takes in both
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entry:
# Statement B T U D P F A

1 store y, y:{1} y:{x}
@x x:{1} x:{y}

2 t0 = 1 t0:{2}
3 store t0, @z z:{2, 3} z:{2, 3}
4 t1 =load@z t1:{2:4}
5 tB =cmp t1, 0 tB:{2:5}
6 br tB, bb, bb7

bb:
# Statement B T U D P F A

7 t4 = @x t4:{7} t4:{x} x:{t4}
8 t5 = t4 + 4 t5:{7, 8} t5:{x} x:{t4, t5}
9 t6 = load@z t6:{2, 3, 9}
10 store t6, t5 x, y:{1:3, 7:10}
Implicit x, y:{1:10}

bb7:
# Statement B T U D P F A

11 t7 = 2 t7:{11}
12 store t7, @z z:{2, 3, 11, 12} z:{11, 12}
13 t8 =load @z t8:{11:13}
14 tB1 = comp t8, 0 tB1:{11:14}
15 br tB1, bb12, bb20

bb12:
# Statement B T U D P F A

16 @(s.i) = s.i:{16}
malloc(4)

17 V ≡ V1 → f s.i:{s} s:{s.i}
18 t9 = @(s.i) t9:{18} t9:{s.i} s.i:{t9}
19 t10 =load @z t10:{11:12, 19}
20 store t10, t9 s, s.i:{11:12,

16:20}
Implicit s, s.i:{11:20}

Table 3.3: Applying Blame Calculus to Sample Program
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of their OUT sets. The operations in this basic block are simlar to what occurred

in entry. However, this time the Temp Blame Set for z is not empty so the kill

operation deletes statements 2 and 3 from the set. Those statements are still valid

in the Blame Set for z. This takes program variable reuse into account. When final

blame is reported, variable z will report all of the data writes that occurred during

the entire function. However, now if any variable reads the value of z, they will only

receive the blame for the latest operations that went into populating the current

value of z, and not all the blame for each value z has held over the course of the

function.

The final basic block, bb12, mirrors the functionality of basic block bb. How-

ever, instead of dealing with pointer mappings we are dealing with field mappings.

The operation in statement 17 is not seen in the original code, and serves as a way

to create a mapping between the parent variable and its field for our calculus. This

allows us to perform operations on individual fields with the same set operators

that we would use for a standalone variable. The store used in statement 20 is

also handled by the doStore function. This time, the field mappings cause both s

and s.si to mirror each other in terms of allotted blame. This basic block also has

a conditional relationship (with register tB1 from bb7), and the implicit blame is

transferred accordingly.
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Statements Source Lines
Vars Explicit Implicit Total Explicit Implicit Total

x 1:3,7:10 2:6 1:10 8,9,10,12 10,11 8:12
y 1:3,7:10 2:6 1:10 8,9,10,12 10,11 8:12
z 2,3,11,12 2,3,11,12 8,10,14 8,10,14
s 11,12,16:20 11:15 11:20 7,14,16,17 14,15 7,14:17
s.i 11,12,16:20 11:15 11:20 7,14,16,17 14,15 7,14:17

Table 3.4: Statements & Source Lines Attributed to Variables at End of Function

3.1.4 Interprocedural Formalization and Transfer Functions

The dataflow interactions modeled in our calculus need to be propagated across

function calls. When looking at the functions involved for the call trace at each sam-

ple, we propagate blame through transfer functions. Based on the sets of blamed

parameters for each function call, the transfer functions propagate the sets we had

previously calculated through intraprocedural analysis. Transfer functions are dis-

cussed in further detail in Section 3.2.2.

We account for side effects in a similar way with a modified transfer function.

Side effects are discussed in further detail in Section 3.3.1.3. The formalization for

the transfer functions and side effects is shown in Table 3.5. The sets utilized include

the following:

Blame (B)

The same Blame Set that is utilized in intraprocedural analysis for each register

and variable.

Transfer Function Blamed Parameters (BP)

The blamed parameters are determined at runtime based on blame analysis
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on the callee function. This information is propagated through a transfer

function to determine which parameters in the caller function are the blamed

parameters. There is one instance of this set per call.

Transfer Function Non-Blamed Parameters (NBP)

The non-blamed parameters are those parameters that are determined at run-

time to not be blamed in the callee function. The intersection of the non-

blamed parameters and blamed parameters is the null set and the union is all

of the parameters for the callee function. There is one instance of this set per

call.

Side Effect Blamed Parameters (SBP)

Since the side effects occur in a function that a sample did not generate an

interrupt in, there is no true parameter that can be blamed like in the standard

function. Instead, we look for relationships between the parameters in the side

effect function. If there is a pairwise blame relationship from one parameter

to another within that function, the blamed parameter is placed in this set.

There is one instance of this set per call.

Side Effect Non-Blamed Parameters (SNBP)

The parameters that place blame on another parameter passed into a side

effect function. There is one instance of this set for each member of the set

SBP.
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Blame (B) Aliases (A)
Statements Gen Gen
r = call(v1, ...) ∀a in BP(call) ∀{a, b} in Aliases(call)
(Transfer Function) ∀b in NBP(call) A(a) : {b}

a : { B(b)} A(b) : {a}
r : {r, B(b)}

r = call(v1, ...) ∀a in SBP(call) ∀{a, b} in Aliases(call)
(Side Effect) ∀b in SNBP(b) A(a) : {b}

a : { B(b)} A(b) : {a}

Table 3.5: Interprocedural Gen Kill Sets

Aliases (A)

Alias relations are determined in the same manner as for intrapocedural anal-

ysis. However, they are limited to alias relationships between parameters to

the functions. There is a set of each pair of aliases for each call. This is in

addition to the individual set of aliases stored by each register and variable.

3.2 Blame Calculation

We use the LLVM [39] IR (intermediate representation) to instantiate the con-

cepts introduced in the formalization. LLVM can process C,C++, and FORTRAN

source code. LLVM follows the SSA convention for its registers. LLVM represents

variables from the original compiled code as memory locations that LLVM registers

move data to and from through load and store operations.

Table 3.6 shows the LLVM instructions that correspond to the code in Figure

3.1 and the blame sets generated at every step based on our defined gen-kill sets.
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3.2.1 Graph Representation

The gen-kill sets (and corresponding in-out sets) are stored per register. Be-

cause of the chained nature of dataflow interactions in the program, this can lead

to redundant data from set to set. We eliminate this redundancy by representing

the dataflow interactions as edges within a graph. This way the blame calculations

can be represented as graph traversal problems and the blame sets need only be

explicitly stored in a subset of the vertices, such as those corresponding to variables

declared in the target program. The graphical representation of the LLVM snippet

and its dataflow is shown in Figure 3.6. The variables from the original, compiled

program are represented in pink (shaded) boxes. The SSA registers generated by

LLVM and the constant values are the vertices represented by white ovals. The

LLVM instruction types are the labels for each edge.

Operations on the graph representation emulate the same operations as the

gen-kill sets. For ‘store’ operations, registers in the intermediate representation are

added to the blame set for variables from the profiled program. Implicit operations

are represented by directed edges going from every register written in the affected

LLVM Instruction Blame Sets Modified
store i32 5, i32* %a a:B{C:5}

a:T{C:5}
store i32 6, i32* %b b:B{C:6}

b:T{C:6}
%tmp1 = load i32* %a tmp1:B{tmp1, C:5}
%tmp2 = load i32* %b tmp2:B{tmp2, C:6}
%tmp3 = add i32 %tmp1, %tmp2 tmp3:B{tmp1, tmp2, tmp3, C:5, C:6}
store i32 %tmp3, i32* %c c:B{tmp1, tmp2, tmp3, C:5,C:6}

Table 3.6: LLVM representation and Blame Sets for snippet from Figure 3.1
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Figure 3.6: Internal LLVM Graph Representation of snippet from Figure 3.1
.

basic block to the conditional register. In our graph, these edges are represented by

grey, dashed edges.

The most important instruction of the LLVM IR that does not have a cor-

responding element in our formalization language is the ‘getelementptr’ (GEP) in-

struction [42]. The GEP instruction gets the address of a complex data structure

or array but does not actually access memory. A load instruction usually follows a

GEP instruction to get the value from the calculated address. We do back traversals

along GEP and load operations to resolve the pointer relationships (in the same way

as outlined by our doStore function in Figure 3.2). In our graphs, the GEP instruc-

tion is represented by “BASE” or “FIELD” depending on if the GEP instruction

was working with standard pointers or was indexing fields within a complex data

type.

In many cases, we can compress the graph by storing only the line numbers

for certain operations rather than all the registers (or constant values) that feed

into the variable. The reason for this is based on how we use our blame mappings.

At runtime, based on the debugging information and the samples that occur we
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can only resolve the sample to a line number within the program. Because the line

number is the most accurate indicator we can achieve with the runtime data, we do

not gain any accuracy in our measurements by storing the operations for our static

analysis at any level more detailed than line number.

However, since blame is propagated through writes, this does not affect our

analysis in most cases. In most of the code we examined, one statement (or write)

per line was the normal practice. If we were to encounter code that had multiple

statements per line, we could add a compilation phase step that put every state-

ment on a different “source line,” while storing the reverse mappings so our blame

information could still be utilized. However, that would involve a recompilation of

the original program.

An alternative is to perform blame analysis on assembly code. This would

achieve instruction level preciseness, but this approach has many challenges. We

discuss this option further as future work in Section 6.2.

We can compress the graph where we have redundant information until we

achieve a truncated representation. The compact representation for the graph shown

in Figure 3.6 is shown in Figure 3.7. This graph contains only the variables from

the original program and the blame relationship between them (the directed edges

with the ‘B’ label). Each node in the graph also contains additional information

about what source line that operation maps to. This allows us to map the low level

data flow operations in the intermediate representation back to the original source

code. The applicable line numbers blamed for each variable are shown in brackets

for the nodes in the compact representation.
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Figure 3.7: Compact Representation of the graph from Figure 3.6

The vertices that are moved from the raw graphical representation to the com-

pact graph meet a certain criteria to be migrated. All local variables and function

parameters are migrated automatically. Fields that are read or written also migrate.

Registers may migrate if they meet special criteria. Any register that is a pointer to

one of the elements listed are eligible. However, if there are multiple registers that

are used to calculate an address only the most relevant is included. For instance,

we may have one register that contains a pointer and another register that contains

an offset to that pointer. We can eliminate the first pointer if its only access is to

contribute to the calculation of the second register. We also migrate any register

that is a parameter to a function call. Finally, we migrate any register that is the

value transferred in a store operation. This allows us to simulate our Temp Blame

Set graphically, by having a directed edge to that register instead of the non-pointer

local variable.
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Node Type Shape

Local Variable Rectangle
Parameter Inverted Triangle
Register (pointer) Diamond
Register (non-ptr) Oval
Field Parralelogram

a)

Edge ID Closest Set Equivalent

B Blame Set
D Down Pointer
F Fields
S Temp Blame Set
A Alias

b)

Table 3.7: Graph key for a) Nodes and b) Edges

Once we have established which vertices will be migrated, we do a separate re-

cursive traversal through the graph for each migrated node. When we reach another

migrated node, we create a new edge between the two based on their relationship

and return. The set of line numbers for all non-migrated nodes encountered on the

traversal are stored by the migrated node.

The raw and compact graph representation for the example function we exam-

ined earlier, ‘oneFunc’ is shown in Figure 3.8. Table 3.7 provides a key to the types

of vertices and edges in the graphs. Those registers that are eligible to be migrated

are shown in green (shaded). By comparing the two graphs, you can see that not

all eligible nodes get migrated. This is due to multiple registers being utilized to

calculate pointers. The raw graph, with vertices for every SSA register generated by

LLVM, lines up closer to the operations that were performed by our blame calculus.

The compact graph represents a higher level view of the blame calculations and

relationships that are occurring within the program.
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Figure 3.8: The a) raw graph and b) compact graph for ‘oneFunc’
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3.2.2 Transfer Functions and Interprocedural Blame

The data flow relationships we have discussed so far were recorded at the

function level and calculated prior to program execution through intraprocedural

analysis. For interprocedural analysis, we need a mechanism to communicate the

blame between functions. We utilize our transfer functions for this step. When

looking at the data flow graph, we utilize a form of escape analysis [19] to determine

for each function the set of variables, which we call exit variables, that are live

outside of the scope of the function. These could be parameters passed into the

function, global variables, or return values. All explicit and implicit blame for each

function’s transfer function is represented in terms of these exit variables during

static (pre-execution) analysis.

We use a graphical representation for our interprocedural analysis as well. For

callee functions, we look at the vertex representing each exit variable and deter-

mine whether that exit variable is blamed for that sample point at runtime. For

caller functions, we have multiple parameters that have incoming edges to a node

representing a function call. At runtime, we use the transfer function to match the

blamed exit variable(s) from the callee to the blamed parameter(s) in the caller.

Once we have that information, we can reorder the edges of the graph such that

the blamed parameters have outgoing directed edges to each parameter that is not

blamed.

Figure 3.9 shows source code, LLVM intermediate representation, and cor-

responding compact internal blame representation for a small snippet of code that
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performs a call to function foo. At runtime, we can determine how the call to foo (the

callee) affects the data flow relations within our caller function. With information

from foo, we have four possible blame relationships for the parameters detailed in

Figure 3.10. Based on which parameter(s) are blamed, we manipulate the dataflow

graph in the caller function and then perform our blame calculations on our graph

accordingly.

Because of the potential of graph manipulations for transfer functions, in ac-

tuality there are always two versions of our blame graph. The first version is the

base graph that we initially generate based on the intraprocedural analysis. This

base graph has the call nodes represented with input parameters, but performs no

deeper interprocedural analysis. The second graph is the graph with the manipu-

lations displayed in Figure 3.10. The graph is manipulated based on the results of

the transfer function and information we have gathered from the callee. The graph

manipulation changes the blame relationships, and this graph is the one we use

to assign blame to the variables. When the sample has been processed, the graph

reverts back to its base state and awaits the next sample point.

3.3 A Blame Tool

Variable blame is fundamentally a technique for program understanding and

performance analysis. We have discussed the formalization of variable blame and its

graphical representation, but did not go into detail about the components needed

for a tool that could utilize variable blame.

53



int *x, * y;

...

foo(x,y);

a)

%y = alloca i32*
%x = alloca i32*
...
%tmp_x = load i32** %x
%tmp_y = load i32** %y
call i32 @foo(i32* %tmp_x,

i32* %tmp_y)

b)

y

tmp_y

 D

x

tmp_x

 D

foo

Call Param 1Call Param 2

c)

Figure 3.9: a) C code, b) LLVM Intermediate Representation, and c) Internal blame
representation for snippet that uses a transfer function
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(a) None Blamed
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tmp_x
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(d) X and Y Blamed

Figure 3.10: Transfer function graph transformations based on parameter(s) blamed

This section discusses the construction of a blame centric tool. An important

factor for our analysis was minimizing program perturbation. For this reason, we de-

signed our system to push as much processing as possible to static analysis (pre-run

and post-mortem). At runtime, we utilize sampling instead of direct measurement

through caliper based instrumentation. Figure 3.11 shows the components of the

tool we built for determining blame. Step 1 consists of all intraprocedural analysis

and can be run on a single processor. Step 2 is the actual running of the program
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Figure 3.11: Blame Tool Components

that has been modified to enable event driven sampling. Step 3 is an embarassingly

parallel post processing step, but could be run on a single processor. Step 4 involves

the presentation of the aggregated data via a GUI. This section will describe each

of these steps in further detail.

3.3.1 Intraprocedural Static Analysis

Although our complete analysis is interprocedural, we limit the analysis to in-

traprocedural at this point for two reasons. First, we need runtime information for

interprocedural data flow relations and alias analysis. Some interprocedural anal-

ysis could be performed before the program is run, but it would be incomplete.
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Secondly, by limiting static analysis to intraprocedural information we can easily

reuse analyses from run to run (or among programs that use shared libraries). For

example, in libraries such as PETSc [5, 6] the code will be used by multiple appli-

cations. Performance profiling is an iterative process where code may be modified

based on values given by the tool. We store analysis at the procedure level, so the

analysis need only be rerun on those procedures that are modified.

We perform intraprocedural analysis to create transfer functions, to perform

container resolution for complex data types, for alias analysis, and to perform side

effect analysis. Each one of these analyses is augmented with runtime information,

but we discuss each analysis here because the majority of the analysis is stored at

the procedure level.

3.3.1.1 Transfer Functions

We discussed transfer functions previously in Sections 3.2.2 and 3.1.4. For

each procedure, we export a list of exit variables, local variables, and the elements

of the graph that map up to them in an ancestor relationship. The exported graph is

the minimal representation with redundant data eliminated. To resolve the transfer

function, we determine post-mortem which variables are blamed for each sample

point. This is determined by analyzing if a blamed vertex is a descendant of a given

exit or local variable. This section will discuss special cases that transfer functions

need to address.

One special case that requires manual intervention is when source code is not
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available. The common case for this is when dealing with library functions and

system calls. For these cases, transfer functions can be created based on knowledge

about the functionality. A small case study of this can be found with a common

library, “math.h.” Every function within that library (sin, cos, tan, . . . ) has a

prototype that takes in all scalars as parameters and returns a scalar. Since none of

the parameters are pointers or pass by reference if we make a small assumption that

the function does not significantly utilize global variables, we can safely claim that

all the blame for the function lies within the return value. Therefore, any call to

one of these functions will transfer all blame to the variable that stores the return

value for the function.

When faced with a complete lack of knowledge about about a function (no

source or documentation) a series of heuristics are used that divides up the blame

between the parameters and return values from these functions. These heuristics

deal primarily with the function prototype for the function. In cases where there

is a return value and void parameters, we assign all blame to the return value. In

cases where pointers are passed in as parameters, we split blame evenly among the

pointers to the function.

Another special case is when dealing with function pointers. We are able to

handle this case with our base implementation. Because our pre-run analysis is

intraprocedural, we mark a call using a function pointer in the exact same manner

as any other call and no further analysis is needed. At runtime, we gather the stack

traces and can resolve the function pointer. At that point, we can apply the transfer

function in the same way we would with any standard call.
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A final special case to address is the way transfer functions deal with recursion.

In the case where the recursive function is repeatedly called from the same source

line in frame after frame, the transfer function is reapplied at each frame as we

progress up the call stack. We are able to do this because the transfer function

would resolve to the same blame relationships because the inputs would be the

same from function to function. However, if the recursive function is called from

a different source line from frame to frame we recompute the transfer function for

each caller function. This is because the blame results differ based on the point in

the function where a call occurs.

3.3.1.2 Container Resolution

Container resolution refers to the resolution of blame within complex data

types. For instance, a structure or class may have multiple fields which acquires

blame through the course of the program. Some of these fields may themselves be

classes or pointers to classes. Container resolution is simply the bubbling up of

blame until it reaches the top most container type. Much of this resolution can be

taken care of statically, though there could be cases where a field may be referenced

through a set of pointers (such as void*) where runtime information will be needed

to fully attribute blame to the proper container. Container resolution is the core

piece of analysis that allows blame to be an inclusive profiling method.
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void doStuffOnSide(int * x, int * y)
{

for (int i = 0; i < N; i++)
x[i] = y[i]; // SAMPLE POINT 1 (No side effect)

}

void baz(int * x, int * y)
{

doStuffOnSide(x,y);
x[0] = 0; // SAMPLE POINT 2 (Side effect)

}

void main()
{

...
baz(x,y);

}

Figure 3.12: Sample Side Effect

3.3.1.3 Alias and Side Effect Analysis

We discuss alias and side effect analysis together because they both rely on

similar interprocedural components. There is also some overlap since some of the

alias relations are also side effects themselves. Alias analysis at the procedure level

is performed using the same graphs we use to perform blame analysis. The GEP in-

struction presents explicit representations of memory locations and we create points-

to sets based on these locations.

Side effect analysis is important for our blame analysis because our data gath-

ering is sampling based. For that reason, we have to account for what occurs in

those function calls that are not in the calling context of the actual sample. An

example of side effects we have to account for is presented in Figure 3.12. The first

sample point has no side effect associated with it. The sample occurs with the con-
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void absorbEV(int * x, CStruct * s)
{

s->x = x;
}

void doStuff(CStruct * s)
{

s->x[0] = 1;
}

void top(int * x)
{

CStruct s;
absorbEV(x, &s);
doStuff(&s);

}

Figure 3.13: Sample Side Effect Alias

text main→baz→doStuffOnSide. At the point of the sample there are no function

calls that could affect the blame relationships for that sample. However, for the

second point the context for the sample is main→baz. There is a possibility that

the call to the doStuffOnSide function on the line before the sample could cause a

side effect, specifically in the blame relationship between x and y. For these cases,

we perform special transfer functions for the side effect calls based on the sample

point. In this example, regardless of control flow, x would get the blame for the

operations on y. In cases where control flow would dictate which parameter would

get the blame (such as in the bar function from Figure 3.14), we assign blame to all

possible parameters for side effect functions.

An example showing side effects and alias analysis together is shown in Figure

3.13. This example is especially relevant for our analysis because of the potential to

mask an exit variable in a transfer function. The function top has one exit variable,
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a pointer to the integer x. This would be the variable passed through a transfer

function. The function top makes a call to absorbEV which creates an alias to a field

within a structure. The next function called from top, doStuff now only passes in

that structure instead of the original pointer. This style of aliasing is very common

with work vectors in scientific applications. These vectors are defined locally within

a function and then are aliased to fields within large derived types that are passed

in as parameters or defined globally. At runtime, we examine the potential aliases

from side effects based on the sample points. We resolve these aliases to attribute

values correctly to locally declared variables that are complex types and to make

sure there is not a break in our chain of transfer functions.

3.3.2 Execution

The execution step is run on a program that has been modified to enable event

driven sampling.

3.3.2.1 Instrumentation

Instrumentation is accomplished by modifying a binary program (or source)

to add code at the beginning of program execution to trigger periodic sampling and

to record results at the end of the program. The resulting binary is also linked with

a shared library that contains the per sample handler routine which performs the

stack walk to get the full call path for each sample. Since the instrumentation is

done on the binary and the new executable is rewritten, no source changes need to
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be made and the program need not be re-compiled. We accomplish this by using

the Dyninst binary rewriter tool. When profiling programs on architectures where

Dyninst is not supported, we perform standard source instrumentation.

We enable sampling by using the hardware counters and overflow interrupts

provided by PAPI [11]. We are able to generate samples based on any of the available

hardware counters for the architecture where the profiled program is running. At

each interrupt point, we are given the thread context which includes the register

state at the time of sample. We use this register state (mainly the registers for the

program counter, frame pointer, and stack pointer) to get the full calling trace by

performing a stack walk at the sample point. The stack walking for each sampling

point is performed using the StackWalker API [62].

3.3.2.2 Running the Program

The modified binary is run exactly the same way as the original. By pushing

most of the analysis to pre-run, and by using sampling, we can minimize program

perturbation relative to that of a traditional context sensitive profiling approach. A

file is output for each thread containing raw addresses of the sampled instruction at

every level of the call trace for each sample.

3.3.3 Post Processing (per thread)

The final step is to take the raw context sensitive samples and the stored

intraprocedural analysis to determine the final blame for each thread. After resolving
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the addresses to functions and line numbers, we can use the predetermined exit

variables to apply transfer functions at each level of the call trace. This means we

can bubble blame information up as far as we need to assign it to the appropriate

complex data type. For local variables, blame can be assigned without the use of

transfer functions. The percentage blame for any given variable is the number of

samples attributed to the variable divided by the total number of samples.

3.4 A Small Example

To make the calculation more concrete, we now show the steps of calculating

blame using a small sequential program (shown in Figure 3.14).

3.4.1 Intraprocedural Analysis

We first examine the bar function. The LLVM IR and its graphical represen-

tation are shown in Figure 3.15. The exact LLVM instructions have been slightly

modified to make them more readable for this document. The original LLVM in-

structions for foo and bar can be viewed in Appendix A. The exit variables, x addr

and y addr are represented as green inverted triangles. Registers that are pointers

are shown as diamonds. This function highlights implicit operations (both loops

and conditionals) and the handling of GEP instructions in terms of array indices.

The GEP operation provides a pointer for the index into both arrays (in this case

0). This pointer is the target of the store. The implicit operations are highlighted

by dashed directed edges. We see implicit edges from the x and y array indices
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1 typedef struct {
2 int * sX; int * sY;
3 } StructEx;
4
5 void bar(int *x, int *y)
6 {
7 int i, loopC = 0;
8 for (i = 0; i < N; i++)
9 loopC++; // SAMPLE POINT
10
11 if (loopC %2)
12 { x[0] = loopC;} //SAMPLE POINT
13 else
14 { y[0] = loopC;} //SAMPLE POINT
15 }
16
17 void foo()
18 {
19 StructEx se;
20 se.sX =(int*)malloc(N*sizeof(int));
21 se.sY =(int*)malloc(N*sizeof(int));
22 bar(se.sX,se.sY);
23 }
24
25 void main()
26 {
27 foo();
28 }

Figure 3.14: Sample Blame Program

64



x_addr

x1

store

y_addr

y2

store

loopC

tmp5

store

toBool

i

Constant
 Value:

 0

store

tmp7

store

tmp

load

add

tmp6

load

add

tmp9

load

tmp10

icmp

tmp1011

zext

icmp

tmp13

load

tmp14

and

tmp1415

trunc

toBool16

icmp

tmp18

load

tmp19

BASE

tmp20

store

load

tmp22

load

tmp23

BASE

tmp24

store

load

a)

define void @bar(i32* %x1, i32* %y2)  {
entry:
// LINE NUMBER 8                                                                                         
        store 0, i
        br label bb8

bb:             
// LINE NUMBER 9
        tmp = load loopC                                                                                           
        tmp5 = tmp + 1                                                                                                     
        store tmp5, loopC
// LINE NUMBER 8
        tmp6 = load i                                                                                                
        tmp7 = tmp6 + 1                                                                                                   
        store i32 tmp7, i
        br bb8

bb8:            
// LINE NUMBER 8
        tmp9 = load i                                                                                              
        tmp10 = compare tmp9, 9                                                                                               
        tmp1011 = cast tmp10                                                                                               
        toBool = compare tmp1011, 0                                                                                           
        br toBool, bb, bb12
        br bb12

bb12:           
// LINE NUMBER 11     
        tmp13 = loopC                                                                                       
        tmp14 = and tmp13, 1                                                                                                
        tmp1415 = cast tmp14                                                                                            
        toBool16 = compare tmp1415, 0                                                                                          
        br toBool16, bb17, bb21

bb17:           
// LINE NUMBER 12
        tmp18 = load x_addr                                                                                     
        tmp19 = tmp18 + 0                                                                              
        tmp20 = load loopC                                                                                         
        store i32 tmp20, tmp19
        br return

bb21:            
// LINE NUMBER 14                                                                                                               
        tmp22 = load y_addr           
        tmp23 = tmp22 + 0                                                                               
        tmp24 = load loopC                                                                                         
        store tmp24, tmp23
        br return

return:                                                                                                                               
        ret void
}

b)

Figure 3.15: The a) internal graph representation of ‘bar’ function and b) LLVM IR

to the load from loopC (specifically the branch register, toBool16, that is blamed

for that load), since both of these writes are based on conditional operations on

that variable. We also see an implicit operation between loopC and the load for i,
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Figure 3.16: Final Internal Representation of ‘bar’ function

because i is the loop iterator for the loop that increments the value of loopC.

The compact graph representation of the bar function is shown in Figure 3.16.

The down-pointer relationship with the index into their respective arrays is repre-

sented with a directed edge to the pointer to the address with the ‘D’ label. There

are blame edges between the indices and the loopC variable, but there is no direct

blame edge from loopC to i, though we have established there is an implicit rela-

tionship between the two. This is due to the fact that i has multiple data writes

and the edges are to each of the sources for the ‘store’ operations (represented by

the dashed edge and the ‘S’ label), and not the variable itself.

The operations in the foo function details how we internally represent de-
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 0
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call 0

tmp6
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Constant
 Value:

 1

FIELD

tmp8

load

bar--22

call 2

tmp10

load call 1

a)

define void @foo() {
entry:
// LINE NUMBER 20
        tmp2 = call @malloc( 40)                                                                               
        tmp3 = ptr to address of first field of se                                                                
        store tmp2, tmp3
// LINE NUMBER 21
        tmp45 = call @malloc( 40 )                                                                               
        tmp6 = ptr to address of second field of se                                                          
        store i32 tmp45, tmp6
// LINE NUMBER 22
        tmp8 = load tmp6                                                                                       
        tmp10 = load tmp3                                                                                
        call @bar( tmp10, tmp8 ) 
        ret void
}

b)

Figure 3.17: The a) LLVM IR and b) internal graph representation of ‘foo’ function

rived types, and also shows how function calls are represented. The LLVM IR and

its graphical representation are shown in Figure 3.17. We can see that the GEP

instruction is used to access fields from a derived type.

The truncated version of the graph is shown in Figure 3.18. The ‘F’ edges
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Figure 3.18: Final Internal Representation of ‘foo’ function

represent a “field” relation between a variable and its fields. We also see how the

fields are passed in as parameters to the bar function. After the program is run, we

can determine which parameter is to blame and readjust the graph accordingly.

Name Function Local/Exit Blame Lines

i bar Local 7, 8
loopC bar Local 7, 8, 9
x bar Exit 7,8,9,11,12
y bar Exit 7,8,9,11,14

se foo Local 19,20,21,(22)
se.sX foo Local 20, (22)
se.sY foo Local 21, (22)

Table 3.8: Blamed source lines for each local variable

With the final internal graph representations of both foo and bar, we can

determine the blamed source lines for each program variable in our program. This

is represented in Table 3.8. We place line number 22 in parentheses. This is because
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depending on the outcome of the transfer function, this may be attributed to either

of the fields of se. The resolution of the transfer function depends on runtime

information, specifically where the sample occurs within the callee function and

how blame is calculated in the callee as a result. Since our analysis is inclusive, the

parent variable se gets the union of the blame for all of its fields. For this reason, it

has both lines 20 and 21 attributed to it.

3.4.2 Runtime Sampling

In this example we will assume that when the program is run, three samples

occur. Each sample is marked by “SAMPLE POINT” in the code depicted in Figure

3.14. The sample points and their context are shown in Table 3.9.

Sample Context Line Number

1 main→foo→bar 9
2 main→foo→bar 12
3 main→foo→bar 14

Table 3.9: Line numbers and context for samples

We use the runtime data to attribute the samples to the appropriate variables.

Sample 1 occurs calculating the local variable loopC, and blame is attributed to that

variable. Furthermore, the calculation of loopC falls within the blame set of x and

y, so they are assigned blame as well. For any given sample, multiple variables may

share blame. In a given function, the total percentage assigned to all variables may

be more than 100% for this reason. Sample 2 occurs on a direct write to x, and x

is the sole variable blamed. Sample 3 is a write to y, and y is blamed.
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Name Function Blame %

se foo 100%
se.sX foo 67%
se.sY foo 67%
loopC bar 33%

Table 3.10: Blame Percentages for Sample Program

3.4.3 Post-Mortem Interprocedural Analysis

After execution, a post-mortem processing is performed to combine the sam-

pled data and the static analysis. The transfer function is then applied to each

sample. We resolve through the transfer function that the exit variable x from bar

corresponds to se.sX and y applies to se.sY . We also see that foo has no exit

variables so no further transfer function needs to be applied. se is the container

variable for both of the fields so it also gets blame attributed to it. The final blame

percentages for all the local variables in the program are shown in Table 3.10. All

percentages are in terms of the entire program, not just local to the function the

variable is defined in. Recall, exit variables are only intermediate steps to bubble

blame information up, so we do not list them.

3.5 Data Presentation

At this point we will have blame mappings from performance data to program

variables, but still at a per process level. For parallel and distributed programs,

we aggregate the results across the processes for ease in presentation while still

maintaining the drill down information for single processes. This information can
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be used to identify load imbalances associated with populating the values of the

data structure. This section discusses how we aggregate and present the data. A

screenshot of the components of the GUI with all of the elements is shown in Figure

3.19.

Figure 3.19: GUI Screenshot

3.5.1 Main Display Categories

There are three ways to view the data: a flat data centric view, a traditional

code centric view, and a hybrid approach. Figure 3.20 shows each of these views

with the data from the example in Section 3.4.
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Figure 3.20: Main Display Categories

3.5.1.1 Flat Data Centric

The default view we provide to the user is a flat view of all of the variables

defined in the program, ranked in descending order by the percentage blame they

are assigned. We also present an interface to filter what data types the user sees.

This is especially useful when the user is only interested in derived types or certain

abstractions (such as a specific sparse matrix or solver in a numeric library).

3.5.1.2 Blame Points

The second view is a hybrid approach between code and data centric using

“blame points.” Blame points are points in the program that are deemed to have

interesting variables. These points can either be explicit or implicit.

Implicit blame points are automatically defined by the tool whenever there

are variables that can not be bubbled up any further in the call stack. This occurs

in the case where the set of exit variables for a function is null (i.e. a void function
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with no parameters and no global variables accessed).

Explicit blame points can be assigned using whatever criteria the user decides.

An example heuristic would be to assign an explicit blame point to any function

containing a variable that has over 50% of the program’s blame.

Once the blame points are determined, they are presented to the user as a list

of the functions for each type of blame point with the opportunity to examine the

local variables for each.

3.5.1.3 Code Hierarchical

We also include a traditional code view. We maintain that blame augments

code centric views, not supplants them. Furthermore, since we have already obtained

the context sensitive samples, a code hierarchical view is something we can present

with no additional overhead.

3.5.2 Secondary Displays

For each view the user has the opportunity to drill down and look at the

samples that make up the percentage blame for a variable. For each sample, the

full stack trace can be viewed with each frame having the corresponding source file

viewable. Each primary view also has metadata information within the window. In

the case of the variable view, it contains information about where the variable was

defined, and statistical values (max, min, median) from the threads (the mean is

the blame percentage displayed in the primary view).
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Figure 3.19 shows the GUI with the flat, data centric main display and utiliz-

ing all of the secondary displays discussed in this section. The screenshot is from

PFLOTRAN [52], which we will discuss in detail in Section 4.3.3. The hierarchical

view in the window on the left is from the primary view and represents the data

structure for the blamed variable. Each new level represents a progression through

the fields of the type. Starting from the top, simulation is the name of the variable.

simulation has a field called tran stepper which has a field called solver. The data

types, which we can choose to filter by, are in brackets next to the name of the

variable/field. Double clicking on a variable name drills down to the view displayed

in the other two windows. The right window gives the complete stack trace for that

sample and the source view of the exact line number for the point that triggered

the sample for that level in the call stack.

3.6 Summary

In this chapter we have formally defined variable blame and given a calculus

to show how it can be calculated using gen-kill sets. We discussed how we optimize

space by representing the dataflow, registers, and variables as a compact graph. We

discussed the blame tool we created using these representations and discussed how

blame data can be represented to the user. Finally, we showed how to calculate

blame for a small example program.
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Chapter 4

Variable Blame Experiments

Our set of experiments were designed to cover a breadth of program types and

show how blame can be used to improve program understanding and performance.

This chapter also reports the overhead of computing variable blame at all phases in

respect to the profiled program (pre-execution, execution, and post-execution). We

also introduce a metric to determine how unique the results given by blame are in

comparison to established code centric techniques. This metric is then applied to

our case studies along with the blame data.

4.1 Preliminary Experimental Results

To show how our mapping differs from traditional techniques, we chose two

small programs that directly exhibit properties that would be found in large par-

allel programming abstractions. For both programs, the blame metric is computed

based on sampling triggered every predetermined number of cycles. For the first

experiment, we present the absolute blame numbers that are matched one to one

with the samples taken while profiling the program. For both programs, we present

the percentage of the program cycles that were used in the calculation of the vari-

able according to our blame mappings. For these preliminary experiments, variable

blame is divided equally for each sample across every variable blamed for that sam-
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ple. For that reason, the sum of the percentages of the variables will add up to

100%. This is not the case for the later experiments presented in this chapter and

for our current blame tool. Under our current implementation, blame is not divided

among the blamed variables for a sample.

For both experiments, we used the blame mappings derived from LLVM and

real sample points generated by using the PAPI framework [11]. After running the

experiments with our tool, we manually inspected the code to verify our blame anal-

ysis was reporting the correct information in regards to our defined blame calculus.

4.1.1 FFP SPARSE

One of the test programs we examined was FFP SPARSE [21], a small open

source C++ program that uses sparse matrices and a triangle mesh to solve a form of

Poisson’s equation. It consists of approximately 6, 700 lines of code and 63 functions.

Although this program is sequential, the problem space and data structures utilized

are typical of parallel scientific programs and thus make it an attractive case study.

We ran the FFP SPARSE program and recorded 101 samples which are the

basis of the mappings discussed in this section. After removal of the debugging

output, the only blame point for this program is the main function, with the program

culminating in the output of the final solution vector.

This program does not have complex data structures to represent vectors and

matrices, but the variable names for the scalar arrays map nicely to their mathe-

matical counterparts in many cases. Table 4.1 shows the blame mappings for the
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Base
Name Type Description Data Blame(%)

Centric

node u double * Solution Vector 0 35(34.7)
a double * Coefficient Matrix 0 24.5(24.3)
ia int * Non-zero row indices of a 1 5(5.0)
ja int * Non-zero column indices of a 1 5(5.0)
element neighbor int * Estimate of non-zeroes 0 10(9.9)
node boundary bool * Bool vector for boundary 0 9(8.9)
f double * Right hand side Vector 0 3.5(3.5)
Other - - 0 9(8.9)
Total - - 2 101(100)

Table 4.1: Variables and their blame for run of FFP SPARSE

variables in main. The “Base Data Centric” column represents explicit memory op-

erations on the memory space of the defined variable. This means that the sample

was taken when an assignment was occurring to an actual index within the array,

and not to another statement from the backwards slice of that array that would

have contributed to the blame. “Blame” refers to the number of samples in which

blame was assigned to those variables.

One thing that stands out from this run is the lack of sample points (only

two) where an explicit write was taking place to the arrays present at the top scope

of main. This number includes any writes to these memory locations under all

aliases as many of these arrays are passed as parameters throughout the program.

In sparse matrix implementations, many of the computations take place behind

layers of abstraction between the defined variable and where the work is actually

taking place (i.e. the bookkeeping code that maintains the internal representation

of the data structure). When blame mapping is introduced we get a clearer picture

of what the program is trying to accomplish. The solution vector and the coefficient
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matrix are the clear recipients for most of the blame of the program.

We manually inspected the code and the samples that were generated during

the run. We mainly wanted to examine the interaction between the variables detailed

in Table 4.1 and how their blame was determined. In the case for each of these

variables (all declared within main), there was a series of calls within main that

individually populated their values with minimal interaction between the variables

themselves for the majority of the program. Finally, all of these variables became

input parameters for the function that finally computes the solution for the system.

At this point, much of the blame is transferred to the solution vector.

4.1.2 QUAD MPI

QUAD MPI [53] is a C++ program which uses MPI to approximate a multidi-

mensional integral using a quadrature rule in parallel. While the previous program

illustrated how a sparse data structure can be better profiled using variable blame,

this program helps to illustrate how some MPI operations will be modeled. It is

approximately 2, 000 lines of code and consists of 18 functions.

We ran the QUAD MPI program on four Red Hat Linux nodes (using one core

per node) using OpenMPI 1.2.8 and recorded a range of 94− 108 samples per node.

All calls to MPI functions were handled by assigning blame to certain parameters

based on the prototypes of the MPI programs utilized. The program exits after

printing out the solution, represented by the variable quad.

The results for the run are shown in Table 4.2. The variables are listed in
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MPI Blame (per Node)
Name Type Call N1(%) N2(%) N3(%) N4(%) Total(%)

dim num int Bcast 32.3 95.7 84.3 94.4 76.7
quad double Reduce 24.3 1.1 4.3 4.6 8.6
task proc int Send 20.2 - - - 5.1
w double* - 14.1 - - - 3.5
point num proc int Recv - 1.1 6.1 - 1.9
x proc double* Recv - 2.1 4.3 - 1.4
Other - - 3.0 - - - 0.7
Output - - 6.1 - 0.9 0.9 1.9
Total - 100 100 100 100 100

Table 4.2: Variables and their blame for run of the QUAD MPI

descending order based on the total amount of blame assigned across all nodes. For

each variable, it is shown whether an MPI operation was a contributing factor, but

not necessarily the only source, of the blame.

We manually examined the code to determine if our blame information was

accurate and to try to understand why certain variables got assigned the blame they

did. Most of the variable blame in this program is tied to the MPI operation they

are a part of with little other computation occurring in the program. The variable

with the most blame, dim num, is due to program input from the master node

at the beginning of the program, which causes the three other nodes to create an

implicit barrier. The second highest blame count goes to quad, which is the variable

that holds the output for the program so a high number is to be expected. This

program has little data flow mappings contributing to blame, but is an interesting

case study. Because certain variables are passed in as parameters to MPI operations

(and blamed for them), we can use variables as an implicit aggregate for bunches of

MPI operations operating on the same variable.
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4.2 Uniqueness Factor

Traditional performance analysis tools primarily use code centric techniques.

For data centric techniques to be useful, they need to produce insight that the

code centric techniques cannot. In this section, we will discuss how we measure the

“uniqueness” of information provided from data centric approaches.

For data centric approaches like those discussed in Section 2.1.1, every sample

is attributed to a variable. This assignment is based on a memory related hardware

counter triggering a sample due to that variable being accessed. This is information

that is completely orthogonal to and can not be duplicated by code centric means.

There are cases where results from blame analysis may appear similar to values

found from code centric techniques. This is because every sample is assigned at least

to a local variable, and then bubbled up the call stack when applicable. This can

lead to variables that are passed in as parameters having blame percentages very

close to the percentages a code centric tool might give for the function that has

that variable as a parameter (i.e. when a function operated on exactly one data

structure). Figure 4.1 shows an example program that illustrates the relationship

between functions (measured by code centric means) and variables (measured by

variable blame) in terms of the percentages attributed to them.

The case where a variable might match up closely to the function is repre-

sented by func1 and the variable blameSingle. In this case, func1 has only one

parameter, and blameSingle has only one function that it is passed into. Assuming

that within func1 the data flow maps primarily to blameSingle, and not some local
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void main()
{

int * blameSingle;
int *blame1, *blame2, *blame3, *blame4;
int noBlame;

func1(blameSingle);

func2(blame1, blame2, blame3);
func2(blame2, blame3, blame4);
func2(blame4, blame3, blame1);

func3(blame1, noBlame, noBlame);
}

Figure 4.1: Code displaying different uniqueness factors

variable, then the final percentages for time spent in func1 and the variable blame

for blameSingle will mirror each other. We claim this information is “redundant”

since the variable blame for func1 doesn’t give us any additional information about

the program that we couldn’t have derived from code centric means.

The more common case is one where a function takes multiple parameters and

the variables are passed in to multiple functions. This is shown by variables blame1,

blame2, blame3, and blame4. They are all passed into func2 in different parameter

combinations. In this situation, it would be very hard for a code centric tool to

tease apart the amount of blame that is associated with each variable compared

to the results that come back from the different func2 calls. Thus, we claim this

information is “unique” to a data centric view.

We also include a call to func3 to show that we only consider “exit variables”

to functions for this uniqueness classification. This means scalars that do not have

a pointer, such as noBlame, are not a factor in determining uniqueness. Read only
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Functions
Applicable
To Each
Variable

Average Number of Exit
Variables Per Function

Unique

redundant

Figure 4.2: Uniqueness of Data from Variable Blame

parameters would also not be counted.

The relationship between code and data centric approaches is shown by the

cartoon in Figure 4.2. We claim there is a sliding scale between redundant informa-

tion and unique information. There are two factors that determine the “uniqueness”

of information displayed in the figure. The first is the number of functions that take

a variable in as a parameter. The second is the average number of exit variables

per function. func1 and blameSingle are examples of redundant information. The

situation detailed by func2 would be in the unique area of the graph. As illustrated

in the figure, we have no hard cut-off point for where redundant data ends and

unique data begins. It may be the case a function has only one exit variable but the

majority of the blame goes to a local function. In that case, the blame attached to
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the variable would be very different than the function that it is passed into. On the

other side, a function may have multiple exit variables but have only one variable

that receives the majority of the blame. In that case, the one variable would map

closely to the function in terms of performance.

Redundant data does not necessarily mean useless data. There are cases where

a variable may provide good insight into the program and be much more visible than

when looking at the code centric view. One example of this would be a program

with a series of vectors with various operations performed on them. If any given

vector was only passed to one function, the data centric and code centric views

would essentially be the same. At this point, the usefulness of the information is

a function of how likely the user is to see the data based on the view. In a code

centric view, this data may not ever be seen if it is buried deep in the call trace. In a

data centric view, the measured vector may be a top level field for a highly utilized

variable which would make it very visible. Our approach also allows variables to be

filtered by type, meaning that looking at all of the vectors in the program based on

this filter would also bring this data to the forefront.

When referring to the “uniqueness of a variable” for the rest of this disserta-

tion, we will give two numbers. The first number is the count of functions that the

variable is passed into uniquely within a call path. This means that in the above

code example if func1 calls func1a and passes blameSingle as a parameter, that

would not count since func1 is in that call path and had already been counted.

The second number is the mean number of exit variables for the functions where

the variable is passed in. We chose mean instead of median because one function
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with a large number of blamed parameters may completely change how unique the

blame data is. For compactness, the uniqueness factor will be given as the tuple

< Function Count, Mean Exit V ariables > so the uniqueness factor for blame1

would be < 3, 2.3 > For our running example, the uniqueness for the five variables

is shown in Table 4.3.

Name Uniqueness Factor

blameSingle < 1, 1.0 >
blame1 < 3, 2.3 >
blame2 < 2, 3.0 >
blame3 < 3, 3.0 >
blame4 < 2, 2.0 >

Table 4.3: Uniqueness Values for Example Variables

We also distinguish cases where the variable is passed in as a parameter at

a point in the call stack further down then where the variable is declared. This

is a common case with complex types, where the parent variable is passed in to

functions at the declaration site, and various fields may not be utilized until farther

down the call stack. We add an asterisk (*) after the tuple to designate these cases.

An example of this scenario is shown in Figure 4.3. The se variable is declared in

the main function but for field sx it is not passed into a function until case1. The

asterisk is used to distinguish that we are acknowledging the call to foo with the

field as a parameter as separate to the call to case1 with the container variable as

a parameter.

There are also cases where a variable is never passed in as a parameter. This

also can occur with complex types, where the parent is passed into a function and the
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typedef struct {

int *sX; int *sY;

} StructEx;

void case1(StructEx * se)

{

foo(se->sx);

}

void case2(StructEx * se)

{

se->sy[0] = 5;

}

void main()

{

StructEx * se;

...

case1(se);

bar(se->sx);

}

Figure 4.3: Special Uniqueness Cases

field is written to without ever being passed on. We represent this with <∞,∞ >.

An example of this scenario is shown in Figure 4.3 in the case2 function. The field

sy is never passed as a parameter but is written.

Based on these special cases, the uniqueness factors for these variables would

be the values shown in Table 4.4.

Name Uniqueness Factor

se < 2, 1.0 >
se→sx < 2, 1.0 > *
se→sy <∞,∞ >

Table 4.4: Uniqueness Values for Special Case Variables

As we previously stated, the uniqueness factor is a continuum, not a binary
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int ** arrays, *arrSizes, i;

init(arrays, arrSizes);

for (i = 0; i < N; i++)

qsort(arrays[i], arrSizes[i], sizeof(int), compare);

Figure 4.4: Sample program using qsort

threshold technique. However, a value of one or less for either of the components

points to redundant information, whereas values of two or higher from both indicates

unique information.

4.2.1 glibc Sort Case Study

The GNU C Library [61] contains an open source implementation for quicksort

(contained in qsort.c). A small example utilizing this sorting function serves as a

useful case study into how uniqueness might be a factor within a program and how

variable blame compares to code centric methods in handling this use case.

The qsort() call takes four arguments. The first is a pointer to the data that

is to be sorted. The second parameter is the number of elements to be sorted.

The third parameter is the size of each element. Finally, the fourth parameter is

the comparison function that determines how the sort is conducted. Our sample

program using qsort is shown in Figure 4.4.

Our program contains an array of arrays which we loop through to sort each

array individually. The uniqueness factor for the value of the arrays variable is

< 2, 1.5 >. It is passed in as a parameter to init and qsort with those two functions

having 2 and 1 parameters, respectively, that could be considered exit variables.
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An important factor to notice is the qsort call occurs within a loop. By

collecting runtime information about the loop index (the array offset) at each sample

point, we can use the variable blame information to identify exactly how much time

is spent sorting each array. Because of the call to qsort, exclusive code centric

tools would not be able to provide that data. Inclusive code centric tools would

also perform poorly with this scenario since each call has the same stack trace.

Furthermore, since the call to qsort occurs at the same line every time, loop level

and even individual line profiling would aggregate the data, losing the array specific

data we seek.

To get the same information provided by variable blame from standard profil-

ing techniques, we would have to perform caliper based instrumentation within the

loop, surrounding the call to qsort. This would give us the proper values for this use

case, since the operations on the arrays and the iterations through the loop match

up in a 1:1 manner. In the majority of programs this mapping will not be the case.

Multiple iterations of a loop may affect one index of an array (or data structure)

while other elements may not be touched at all. While blame handles this style

of problem natively, most code centric techniques would not be able to handle this

type of problem.

We used four different arrays for our sample program. The first array was

50, 000 randomly generated elements. The next three arrays were 100, 000 elements.

The second array was also randomly generated. The third array was already sorted.

The fourth array was reverse sorted. We performed two runs. The first run we

measured the time spent processing each array using our variable blame technique.

87



Array Blame Caliper
Description Time Time

50, 000 Random Elements 25.1% 25.3%
100, 000 Random Elements 74.9% 74.7%
100, 000 Sorted Elements < 0.1% < 0.1%
100, 000 Reverse Sorted Elements < 0.1% < 0.1%

Table 4.5: Time spent to sort each array

The second run we measured the time spent using manually inserted caliper based

instrumentation at the beginning and end of the loop that contained qsort. The

results of the experiment are shown in Table 4.5.

The variable blame approach was able to achieve the same measurements as

the caliper based instrumentation. It is important to note that the blame approach

was able to perform the measurements as a part of its base operation. However,

the results from the caliper based instrumentation was achieved from hand coded

instrumentation that is not present in existing profiling tools. This simple example

allowed us to compare the two approaches directly and allowed caliper based instru-

mentation to measure the same computation. However, it is not representative of

the type of problem caliper based instrumentation can solve on a normal case. In

real programs, where the uniqueness factor is higher and complex data types are

involved, the ability to emulate the data being gathered by variable blame in a code

centric manner becomes increasingly difficult and in most cases is not possible.

4.3 Case Studies

For all of the programs in this section, we ran on 32 Red Hat Linux nodes (one

core per node) on the UMIACS bug cluster [15]. Each node contains two 2.6GHz
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Xeon processors and 2GB RAM and are connected via Myrinet using OpenMPI

1.2.8. PAPI [11] is utilized to trigger samples based on the hardware counter mea-

suring total cycles reaching a threshold, 1, 073, 807, 359, which is a large prime.

For each program, we have chosen the variables (and their fields) that have

the highest degree of importance (highest blame percentage) for the program. The

variables are listed in Table 4.6 for HPL, Table 4.7 for SMG2000, and Tables 4.8

and 4.9 for PFLOTRAN. The name column represents the name of the variable. In

cases where the variable is a field tied to another variable, a ↪→ symbol is used to

represent that relationship (with the parent variable listed above it in the table).

The type is the defined type as given by our analysis. The Blame % is the mean of

all assigned blame across the cores (32 for these results). None of the variables had

significant variance between cores. The “Where Defined” column refers to the point

in the code where the variable was declared, and not necessarily where the variable

is first used.

4.3.1 HPL

HPL is an implementation of the “High Performance Computing Linpack

Benchmark” that solves a linear system in double precision on distributed sys-

tems [30]. HPL offers a variety of attractive features as a test program for blame

mapping. It utilizes MPI and BLAS calls and has wrappers for the majority of the

functions from both libraries. HPL is interesting to examine because it is similar

to many parallel frameworks in that MPI communication is completely hidden from

89



the user. This means tracing MPI bottlenecks using traditional profiling techniques

may technically give you information about where the bottleneck is occurring. How-

ever, that information may be useless because the MPI operations are buried deeply

enough in complex data structures that knowledge of how these bottlenecks affect

variables at the top levels of the program is difficult to discover.

Blame % Where
Name Type (Mean) Defined Uniqueness
mat HPL S pmat 95.6% main→HPL pdtest < 18, 3.3 >

panel HPL T panel** 68.1% HPL pdgesv01 < 2, 1.0 >

panel[0] HPL T panel* 68.1% HPL pdgesv01 < 9, 1.8 >

↪→A double* 35.0% HPL pdgesv01 <∞,∞ >

↪→U double* 27.5% HPL pdgesv01 <∞,∞ >

↪→L2 double* 25.4% HPL pdgesv01 < 3, 2.0 >*
grid HPL T grid 5.34% main < 4, 3.67 >

Table 4.6: Variables and their blame for run of HPL

The main function serves primarily to read in program specifications and

iterate through the tests, which have their own output. For this reason, many of

the more interesting variables are defined deeper down the call stack. The blame

points for this program are main, main→HPL pdtest, and

main→HPL pdtest→HPL pdgesv→HPL pdgesv0.

mat The variable mat is the focus of all of the computation in the program and

therefore receives the majority of the blame. mat itself is a container for

the raw data for the matrix A, solution vector X, and right hand side b,

plus all of the metadata. The matrix information is regenerated randomly at

each time step. The uniqueness factor shows mat to be unique, being passed

1Full path is main→HPL pdtest→HPL pdgesv→HPL pdgesv0
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into 18 functions. However, with mat taking up such a large part of the

computation it becomes obvious that mat is tied very closely to the function

HPL pdtest, which is the workhorse function for the program. This kind of

special redundancy can sometimes occur for variables defined very close to

main in the call trace when a disproportionate focus is placed on a small

subset of variables.

panel The panel itself (after accessing the first index in the panel array) has

fields associated with it that can provide insight into the program. The panel

components have a high uniqueness factor and the fields that are a part of each

panel give insight into the functionality of the program. The program uses LU

factorization, represented in each panel by the A, U , and L2 variables. The

U variable is a pointer to an offset within A, and much of the blame overlaps

between the two. All of the variables within panel are pointers to offsets within

the top level mat variable.

grid The variable grid is the container variable for all of the functionality in-

volved in setting up the computational grid (mostly low level MPI operations)

for the parallel solver to operate. It is passed into most of the functions in

the program, mostly in a read only context with a write to grid happening

occasionally. Most of the blame associated to the variable comes from the

occasional calls to MPI Barrier.

The profiling numbers for the panel variable is the most telling data about

what is going on in the program. The blame data for this variable serves as an
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implicit aggregate to many of the MPI operations within the program, and thus

looking at the data at a per core level could yield information about possible load

imbalances and other inefficiencies. Conveniently, many underlying parameters in-

volved with panel are all customizable. The configuration file loaded for each HPL

run has various panel parameters specified, ranging from individual panel size to the

choosing which algorithm to use to broadcast the panels. The modification of any

of these parameters will change the blame percentages associated with the panel

variable.

4.3.2 SMG2000

SMG2000 [10,59] is a benchmark that uses a parallel semicoarsening multigrid

solver for those linear systems that arise from finite difference, finite volume, or

finite element discretizations of the diffusion equation on logically rectangular grids.

It is written in C and performs data decomposition by dividing the grid into logical

chunks of equal size. It is a good candidate to profile using variable blame due to

its hierarchical data structures.

solver The solver variable is the top of the data hierarchy for the program. It has

a significant number of void* fields that map to different data types depending

on some of the input parameters to the program. The variable solver itself

starts as a void* and is cast based on the solver type chosen at runtime.

relax data Relaxation operations are a core mechanism for the solver in this

benchmark. There are multiple functions that deal with relaxation. The
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blame for this variable is useful because it serves as an implicit aggregate for

all of the relaxation operations that take place in the entire program.

solve data Each variable of type hypre SMGData (such as the top level solver)

has a field of type hypre SMGRelaxData which itself has a field of type

hypre SMGData. Using the blame mappings, one can determine at what

point in the relax-solve cycle the data is actually being written. The solve data

variable is passed into fifteen unique functions with an average of 1.9 writable

parameters. By our metric, the uniqueness of this variable is very high meaning

that it would be hard to calculate this same information with code centric

means. Furthermore, by being a container variable for various work vectors,

discussed below, it provides a useful aggregate for the kinds of operations

found in the relax-solve cycle.

Blame % Where
Name Type (Mean) Defined Uniqueness
solver hypre SMGData* 98.6% main < 4, 2.8 >

↪→relax data l[0] hypre SMGRelaxData* 84.0% main < 22, 1.7 >*
↪→solve data[*] hypre SMGData* 80.0% main < 15, 1.9 >*

↪→x l hypre StructVector** 45.6% main < 11, 4.0 >*
↪→r l hypre StructVector** 30.8% main < 4, 5.0 >*
↪→b l hypre StructVector** 4.7% main < 9, 4.2 >*
↪→A l hypre StructMatrix** 2.4% main < 7, 4.3 >*

Table 4.7: Variables and their blame for run of SMG2000

Most of the processing takes place to populate various fields for solve data.

The benchmark is memory access bound, with various work vectors getting multiple

writes. A direct data approach would be able to identify some of these writes, but

would not be able to perform the additional mappings that our approach allows.
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The importance of this additional mapping capability comes into play when dealing

with the solve data vectors. The benchmark switches between relaxation and solving

depending on the data decomposition. The blame attributed to vectors map closely

to certain operations within the program. The writes to the x l vector correspond to

the computation to perform the cyclic reductions. The blame attributed to the r l

vector is an aggregate all of the writes that take place when calculating the residual.

4.3.3 PFLOTRAN

PFLOTRAN [52] is a large-scale parallel 3-D reservoir simulator that can

model multiphase reactive flows in geologic formations based on continuum scale

mass and energy conservation equations. PFLOTRAN itself is written primarily

in FORTRAN, with a few auxiliary functions and wrapper functions to integrate

external libraries in C. It employs PETSc’s solver framework, written in C, and also

utilizes MPI, BLAS, and LaPACK. This is another program that is appropriate for

our technique because of the links between mathematical constructs and variable

types, mainly those involving PETSc. This program also hides much of the parallel

computation inside calls to PETSc operations. For this reason it is very desirable

to map performance information to these variables.

PFLOTRAN is hierarchical in terms of its data types, essentially written as an

object-oriented program. The simulation variable, defined in main, has virtually all

of the blame in the entire program assigned to it. The simulation variable consists

of three main fields, flow stepper, tran stepper, and realization. The first two are
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the time stepper container types and contain, as part of their hierarchy, most of the

PETSc variables. The final field is a holder for most of the useful information that

is calculated within the program.

The internal PETSc variables are utilized by the solver within the time stepper.

The solver performs a residual function evaluation and performs the calculation

of the Jacobian matrix. This information than feeds back into the higher level

PFLOTRAN variables.

The top level PFLOTRAN variables serve mostly as containers for information

and can give useful insight into the program.

Blame % Where
Name Type (Mean) Defined Uniqueness
simulation simulation* 99.3% MAIN < 3, 1.3 >

↪→flow stepper stepper* 87.9% MAIN < 1, 3.0 >

↪→solver solver* 87.3% MAIN < 3, 1.0 >*
↪→snes p SNES* 87.3% MAIN < 2, 3.5 >*

↪→realization realization* 7.0% MAIN < 1, 3.0 >

↪→discretization discretization* 3.1% MAIN < 25, 4.8 >*
↪→field field* 2.0% MAIN <∞,∞ >

↪→tran stepper stepper* 4.4% MAIN < 1, 3.0 >

↪→solver stepper* 4.0% MAIN < 3, 1.0 >*
↪→snes p SNES* 4.0% MAIN < 2, 3.5 >*

Table 4.8: Variables and their blame for run of PFLOTRAN

simulation We have already discussed how the simulation variable (of simulation

type) serves as the root variable for the entire function.

flow stepper and tran stepper The two stepper variables maintain all of the

data calculated during the various time steps. PFLOTRAN has computation

for multicomponent reactive flow (flow stepper) and transport (tran stepper)
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at each time step. Since the time step data is written to both of the stepper

variables, these variables give the percentage of time spent populating the data

structures that store the values for the respective multicomponent flow and

transport operations.

realization The realization variable is the container variable for the discretization

and field variables associated with the simulation. The realization object

contains auxiliary data needed by the solver, but the writes to this object are

limited. For this reason, the potential for optimizing this variable is limited.

The PETSc variables are internal to the stepper variable hierarchy, which each

contain a PETSc non-linear solver context (SNES) as one of their fields. Table

4.9 is a continuation to the hierarchy of the flow stepper variable, specifically,

simulation→flow stepper→solver→snes.

PETSc variables, in general, are very customizable. By changing certain fac-

tors during variable initialization, the underlying computation can change from se-

rial to parallel and the data layout can be significantly altered. Furthermore, other

parameters can completely change the underlying algorithm utilized to compute

the contents of the variable. For example, using the PETSc options database, a

user could change the type of preconditioner used at runtime. This would result in

changing which functions are utilized by the preconditioner, as well as the “data”

variable within the “pc” object being cast to a different data structure. Therefore,

depending on the parameters passed to the initialization function for these PETSc

variables, the blame percentage could change significantly.
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Blame % Where
Name Type (Mean) Defined Uniqueness
snes p SNES* 87.3% MAIN < 2, 3.5 > ∗
↪→ksp p KSP* 83.3% MAIN < 3, 3.3 > ∗

↪→work p Vec** 71.3% MAIN <∞,∞ >

↪→work[0](R) p Vec* 32.6% MAIN 2 < 6, 3.3 >*
↪→work[4](S) p Vec* 19.2% MAIN 2 < 4, 3.7 >*
↪→work[2](V) p Vec* 18.8% MAIN 2 < 5, 3.4 >*
↪→work[5](P) p Vec* 1.8% MAIN 2 < 4, 3.8 >*
↪→work[3](T) p Vec* 1.7% MAIN 2 < 4, 4.3 >*
↪→work[1](RP) p Vec* 0.1% MAIN 2 < 2, 3.0 >*

↪→pc p PC* 48.7% MAIN < 20, 2.9 >*
↪→mat p Mat* 16.7% MAIN < 5, 3.0 >*

Table 4.9: PETSc Variables within a run of PFLOTRAN (drill down from the solver
for flow stepper from Table 4.8)

snes The snes variable is the container variable for a PETSc non-linear solver.

Modifying parameters during the creation of this variable will impact the solver

context, thus significantly altering the blame percentage associated with the

snes variable. This variable falls in the redundant camp, however, as the

computation used to populate the snes variable almost directly mirrors the

function SNESSolve.

ksp The ksp variable is the container variable for computation involved in solving

a linear system. ksp, and its internal components, are very customizable

and can yield very telling information about what is going in the program.

Unfortunately, like snes, the blame percentage is redundant and maps to the

KSPSolve function. However, the internal components to ksp provide unique

data and are also tunable.

2The work field is a descendant of the simulation variable, declared in
MAIN . The local vectors that are aliased to the work array are declared in
MAIN →stepperrun→stepperstepflowdt→snessolve →SNESSolve→SNESSolve LS
→SNES KSPSolve→KSPSolve→KSPSolve BCGS
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work The work variable is actually a pointer to a series of vectors. The number

of vectors and how they are utilized is completely dependent on how the user

configures their ksp object. In the case of PFLOTRAN, these vectors are

generated in a worker function and aliased to different indexes of the work

array. This is a good showcase of the successful alias analysis of our system,

as the local vector name (in parentheses in the table) and the offset of the

work array is correctly determined through static analysis. As the work is

performed by PETSc vectors, blame percentages for the work may be affected

by the customization of these vectors. Among the options upon initialization

is whether the user wants the array to be distributed or not.

pc The preconditioner for the Krylov space methods (solving approach used by

KSP) can be chosen among many provided by PETSc. The choice of precon-

ditioner can make a difference in the blame associated with the pc object, and

also the ksp object. The preconditioning of a matrix is done with the idea

that the time spent doing the preconditioning will be made up with a faster

solution to the linear system. The pc variable has a very high uniqueness fac-

tor as it is passed in as a parameter to 20 unique functions and each function

has an average of approximately 3 writable parameters. The operations on

the preconditioner are an integral element of the computation, making it an

excellent variable to focus on for tuning.

mat The mat object is a core data structure within the pc object. The pc also

uses some of the generic ksp work vectors in its computation. Matrices in
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PETSc are customizable. One of the interesting ways to manipulate matrices

in PETSc at initialization time is to choose whether to make them dense

or sparse (with choices on what kind of sparse matrix to use). Obviously, the

choice of how to represent the matrix internally can affect the blame associated

with that variable. Although this is the only PETSc matrix we are explicitly

discussing here, the Matrix objects (along with Vectors) are very common in

PETSc computations.

Much of the blame for PFLOTRAN is assigned to the underlying PETSc

objects, which execute non-linear solvers at each time step. PFLOTRAN utilizes

custom implementations for its preconditioners and solvers. Furthermore, the un-

derlying data structures for the PETSc vectors and matrices are optimized specif-

ically for the data sets used by PFLOTRAN. Our analysis could prove useful for

PFLOTRAN developers when trying out new custom configurations as our analysis

could localize the time spent populating individual data structures. This could be

compared across runs among different candidate customizations. We can also use

our analysis to optimize performance on different hardware configurations based on

information our analysis gives us. For the rest of this section, we will use variable

blame to narrow the parameter space and use that information to improve perfor-

mance.

The following experiments were first performed on either 4 or 16 bug cluster

nodes where we used one core per node with the default configuration file that

was packaged with the input data. Two input sets (100x10x10, 100x100x100) were
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sample data sets derived for testing purposes. The final input set (30x30x15) was

actual data from the Hanford simulation.

For these experiments, we did not modify any of the parameters for SNES or

KSP values. Performance gains can be achieved by modifying the options for these

variables (such as max iterations for SNES or solver type for KSP), but these mod-

ifications could affect the accuracy of the solver. For consistency, we only modified

the behavior of variables that would have no bearing on the accuracy.

After evaluating the performance on the bug cluster, we also performed the

experiments on up to 512 cores on Carver [17], a NERSC machine. Carver has 400

compute nodes with 2 quad-core Intel Xeon 5500 (“Nehalem”) 2.67 GHz processors

for 3, 200 total cores. The memory for each node ranges from 24− 32 GBs.

4.3.3.1 Example 100x10x10

For this data set, we approached the problem by looking at the flat view of all

the blamed variables within the program. These values are show in Table 4.10.

Blame % Where
Name Type (Mean) Defined
simulation simulation* 99.3% MAIN
↪→flow stepper stepper* 84.2% MAIN

↪→solver solver* 84.2% MAIN
↪→snes p SNES* 84.2% MAIN

↪→ksp p KSP* 63.4% MAIN
↪→pc p PC* 42.1% MAIN

Table 4.10: Variables and their blame for 100x10x10 data set run on four cores

We have already stated we are not going to modify the behavior of the snes or

ksp variables so the next variable we could possibly optimize is the pc variable. For
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this data set, the pc variable takes 42.1% of the time. Since the preconditioner serves

as a means to make the solver complete faster (and subsequently the whole program)

it is counterproductive to have a preconditioner consume a large percentage of the

computation time unless it can make up the difference in how much it speeds up

the solver.
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Figure 4.5: 100x100x10 performance on a) bug cluster and b) Carver

One option is to eliminate the preconditioner. The other option is to find a

preconditioner that runs faster but still manages to speed up the solver. These two

alternatives are shown in Figure 4.5. The runs with no preconditioner run slower

for both the 4 and 16 core cases. For 4 cores, the jacobi and sor preconditioner

improve overall performance. For 16 cores, the sor preconditioner performs better.

When performing the same runs on Carver, similar trends occur. Using no

preconditioner performs worse on most cases, while the sor preconditioner performs

better through 512 cores. The absolute times are presented in Figure 4.6. We can
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Figure 4.6: Absolute times for 100x100x10 runs on Carver

see this data input set has poor strong scaling performance when extending out to

512 cores. We should note the scaling performance is not the focal point of these

experiments. For these experiments, we are mostly concerned with displaying the

pair-wise comparison between different preconditioner inputs for the the different

core counts.

4.3.3.2 Example 100x100x100

For this data set, we utilized the type filter. The counts for the variables that

have PETSc types are in Table 4.11.

Type Count
p PC* 2
p SNES* 5
p Mat* 20
p Vec* 131

Table 4.11: The number of variables with each associated PETSc types
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There are only two variables of a “ p PC” type. When looking at the blame

values for these two preconditioners we see that the values are 0.43% and 0.45% for

the flow stepper and tran stepper preconditioner, respectively. Therefore, for this

example, we have the opposite problem we had from the last problem, mainly that

the preconditioner is taking much less time than we would expect. When looking

deeper, we find that the preconditioner had been been disabled for both solvers in

one of the input configuration files. The type view is helpful in this case because in

a flat view these variables would have been buried down the list.
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Figure 4.7: 100x100x100 performance on a) bug cluster and b) Carver

Figure 4.7 shows the normalized overall runtime when using a preconditioner(sor)

and using the default configuration of no preconditioner on the bug cluster. For that

configuration, using the sor preconditioner makes the entire program run faster than

not using any preconditioner at all. When performing the same runs on Carver, the

difference is even more apparent. The absolute times for Carver are presented in
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Figure 4.8: Absolute times for 100x100x100 runs on Carver

Figure 4.8.

4.3.3.3 Hanford 30x30x15

For this example, we will use the comparison view. Using two runs, with 4 and

16 cores on the bug cluster, we will compare how the computation to populate a vari-

able (as given by blame) scales across different variables. When looking at absolute

time (taking the percentage blame times the per core runtime), there are 3 variables

where the time to populate a variable increases (per core) as the number of process-

ing cores increases. These 3 variables are flow stepper, flow stepper→solver and

flow stepper→solver→snes. We look at the input configuration files to see what

makes this solver behave differently than the tran solver, which is parallelizing well.

The input configuration is explicitly setting the flow stepper to the aij matrix for-

mat, where the default in the program is the baij format. Switching this over to
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Figure 4.9: 30x30x15 performance on a) bug cluster and b) Carver

the default baij for the flow stepper solver does make the matrix parallelize better

(the 16 core case takes less time per core to calculate the solver than the 4 core

case), but switching the matrix configuration makes the overall program run slower

for both hardware configurations. Using the knowledge that the default overriding

input configuration for the flow solver increases overall program performance, we

tested to see if using that configuration for the tran stepper solver would increase

performance as well. As shown in Figure 4.9, the 4 core performance for the bug

cluster remains the same with an improvement in the 16 core performance.

The comparison view for carver shows different results than the bug cluster,

with zero variables increasing their blame values across runs from 4 to 16 (the

three flow stepper variables’ computation time decreases per core on carver). The

experiments with the modified configuration reflect this difference as well. The runs

are fairly comparable regardless of configuration through 512 cores. Because the
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plots are virtually identical, we do not present the absolute numbers for Carver for

these experiments.

4.4 Blame Overhead

The overhead for performing blame analysis can be divided into three main

areas. The first is the time it takes to do the intraprocedural analysis and storing

the results of that analysis, before the target program is executed. The second is

the overhead to do the stack walk at each of the samples during runtime. The final

measure of overhead is the post processing step, which can be done in parallel imme-

diately after the run completes. This step also raises concern of scalability for both

runtime and the sizes of files that are generated while profiling HPC applications.

4.4.1 Pre-Run Static Analysis

We have a one time cost for running the initial intraprocedural analysis, which

forms the basis for our blame mappings. Once this initial analysis is run, we only

need to run it again on a module if a change is made to the source within that

module. Table 4.12 displays the time required to run the initial blame analysis for

eight shared libraries utilized by PETSc. The runs were performed on one Carver

core.

The table shows the sequential time taken to perform the static analysis. This

work could be parallelized at the library or module level by simply assigning one core

per input file. Parallelism could also be exploited at the function level as well. This
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Total Avg Max
Library Time Num Time Time
Name (seconds) Functions (functions) (functions)

mat 155 1850 0.08 4
ksp 60 1223 0.05 1
sys 58 1235 0.05 2
dm 40 489 0.08 14
vec 36 690 0.05 1
ts 18 268 0.07 1
snes 12 315 0.04 1
contrib 2 35 0.07 1

Total 381 6105 0.06 14

Table 4.12: Blame Static Analysis Run Times for PETSc libraries

would only involve doing a split of a module into separate input files by function.

The average time to process a function is 0.06 seconds. The max time is 14

seconds, which occurs with the DACreate3d function within the dm library. This

function is over 1, 500 lines of code and has multiple nested loops and conditionals,

which causes a bottleneck with the implicit processing.

4.4.2 Runtime

The runtime overhead is a product of the sampling rate and the time it takes

to walk the stack at each sample point. All other computation is pushed to pre

and post run. When using a time-based metric, we try to have between 100 − 200

samples per second. This leads to an overhead of approximately 30 − 35 percent.

This overhead is almost entirely caused by the time needed to walk the stack, as the

stack walk overhead alone is consistently within one percent of the overhead of our

full implementation. Therefore, reducing the runtime overhead becomes an issue of

optimizing the stack walk. Froyd et al [23] showed that by representing the samples
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as a calling context tree, as opposed to explicitly storing the call stack for each

sample, overhead can be reduced to approximately 2− 10 percent. Tallent et al [60]

perform a linear scan of the object code, apply heuristics to reconstruct the stack,

and then cache the results. They average approximately a 2 percent overhead with

their approach. Future work would involve applying either of these optimizations

to our current stack walking techniques.

4.4.3 Post-Mortem Analysis and Scalability

We examined how the blame post-processing scaled in terms of both time and

aggregate file size. The figures presented in this section are presented from data

taken from the Carver runs presented in Section 4.3.3, specifically from the analysis

of the 100x100x10 data set with the default bjacobi preconditioner.

4.4.3.1 Processing Time as Core Count Increases

Our post processing falls into three steps. The first step is the per-thread

resolution of samples to variables relying mainly on the blame analysis we complete

pre-run. At this stage, the drill down information for each sample and stack frame

is still intact. The second step is a mapping step that takes the resolved blame file

from each thread and outputs the percentage blame for each variable over the course

of the entire program. Finally, we have a reduction phase that takes the mapped

output and creates one file that represents the aggregate blame for each variable

across all threads. Steps 1 and 2 are done in parallel, while step 3 is done serially
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Figure 4.10: Post Processing Time for Each Stage

on one core. We detail the time it takes to perform these steps on one of our runs

in Figure 4.10.

The main blame resolution phase, which is done in parallel, scales well with

the increase of cores. For the purpose of Figure 4.10, we break this phase into two

distinct steps. The first step is the startup phase, in which the program loads in

the results of the pre-run static analysis. This step takes approximately the same

amount of processing time, regardless of the number of samples. The second step is

to actually resolve the blame for each sample. This is an embarrassingly parallel step

due to the fact that the raw context sensitive samples are independent from each

other for each thread. Because this is an embarrassingly parallel step, the processing

time is tied more closely to the average number of samples being processed on each

core, rather than any increase in core count. The mapping phase consistently takes
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Figure 4.11: Post Processing Time versus Number of Samples Per Core

under a second for all core counts. This phase is also done in parallel. The reduction

phase is not done in parallel and also consistently takes less than a second.

4.4.3.2 Processing Time as Samples Increases

Figure 4.11 shows the processing time for the blame resolution phase as the

number of samples increases. This graph contains data from each of the core count

and input set combinations for the PFLOTRAN runs in Section 4.3.3. The rela-

tionship between processing time and number of samples is not strictly linear. The

main factors that create the outliers come from the average size of the stack trace

and the number of side effects that need to be dealt with at each frame in the stack

trace.
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4.4.3.3 Aggregate File Sizes Across All Cores

A factor with scalability is the aggregate size of the output files as the number

of cores increase. This is displayed in Table 4.13. The different types of output files

are:

• Raw Stack Traces The raw stack frames (PC address) for each sample.

• Resolved Blame The list of blamed variables for each frame in the stack.

• Blame by Variable For each core, a list of local variables and its percentage

blame for that core.

• Aggregate Blame For the entire system, the percentage blame for each local

variable.

For all of our files, the files are output as human readable text. The file sizes

could be reduced at each stage by using binary output. The stack trace file sizes

could be curbed slightly by combining common frames between successive samples.

Once the blame is resolved, these files can be safely deleted. The resolved blame

files are the largest, but are also optional. For those runs where drill down data at

the stack frame level is not required, the generation of these files can be completely

bypassed. The aggregate blame files are what is fed into the GUI and only take up

0.02 MBs total across all nodes. This file is the result of the Map-Reduce operation

where the file represents the blame for the variables across all cores.
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Aggregate Files Sizes (MBs)
Num Raw Stack Resolved Blame by Aggregate
Cores Traces Blame Variable Blame
4 1.9 25.6 0.9 0.02
16 2.3 29.1 2.2 0.02
32 4.5 45.1 4.5 0.02
64 8.6 73.5 8.3 0.02
128 32 166 17 0.02
256 93 523 33 0.02
512 193 1800 65 0.02

Table 4.13: File Sizes at Different Stages of Post Processing

4.5 Summary

In this chapter, we have presented sets of experiments detailing the informa-

tion blame can provide and the overhead of running blame. We have established a

metric for describing the ‘uniqueness’ of the information provided by running blame

analysis on a program in comparison to the information given by a standard code

centric tool. This metric helps illustrate that redundant data is not being calculated.

The uniqueness factor was one element discussed in a series of case studies, where

we used variable blame to better program understanding. We followed up these case

studies by using blame analysis to improve performance on the PFLOTRAN pro-

gram across different hardware configurations. Finally, we examined the overhead

of using variable blame at the preprocessing, runtime, and post-processing stages.
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Chapter 5

Approximate Data Centric

Variable blame is mainly concerned with mapping time based metrics to data

centric objects. Most of the prior work for data centric mappings concerned mapping

data centric metrics (such as cache misses) to variables. As outlined in Section

2.1.1, these approaches have certain limitations, mainly concerning the need for

specific hardware support. Using much of the same analysis approaches as we used

for variable blame, we have created an alternative approach for these data centric

mappings.

Our technique is concerned with two main ideas. First, we want to have a

generic approach that works on any architecture, regardless of hardware support for

negating skid. Our only hardware requirement is that some data centric hardware

counter exists on the system for measuring cache or TLB misses. Second, we want to

minimize program perturbation and program instrumentation as much as possible.

We do this by using sampling instead of direct measurement. Furthermore, our

instrumentation is at the binary level and is limited to inserting two calls at the

beginning and ending of main. These calls simply assign which hardware counter

and threshold will be used to trigger the samples.

In this chapter, we will use the term “direct data centric” to refer to the

approach utilized by Cache Scope and HPCToolkit for their data centric profiling.

113



This is because the performance counter relating to each variable is only incremented

during a direct access of that variable. This is verified by the effective address infor-

mation provided by the hardware. Our approach will be designated as “approximate

data centric” since we are using software techniques to approximate which variable

triggered the cache miss.

5.1 Intraprocedural Static Analysis and Execution

The majority of the analysis occurs at this step before the program is run.

Using the LLVM intermediate format [39], we can analyze different properties at the

program, function, and variable level. For the variables, we record the line number

information for each read and write performed to that variable. At the function

level, we can record the line numbers within every loop within the function. Loop

information is utilized in tuning the results and is discussed later in this section. We

also use the LLVM information to perform intraprocedural alias analysis. The alias

analysis is a very important factor in generating approximate data centric values.

Consider the snippet shown in Figure 5.1.

1 int * x = (int *) malloc (sizeof(int) * N);

2 int z = x[N-1];

3 int * y = x;

4 z = y[N-2];

Figure 5.1: Code snippet highlighting aliasing

In a direct data approach, a miss on line 2 or 4 would be attributed to variable

x, allocated on line 1, because effective addresses of the read would resolve to the
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memory range allocated to x. In an approximate approach without alias analysis,

a miss on line 2 would be attributed to x and a miss on line 4 would be attributed

to y. With alias analysis, x and y would be identified as aliases to one another, and

the results would line up with the direct method. Interprocedural alias analysis is

also performed after we gather the runtime information and know the full call trace

for the samples.

The execution stage is performed in the same way as it is for variable blame.

We use instrumentation to enable event driven sampling and we record these samples

at runtime.

5.2 Approximation Techniques and Post-Processing

Our post-processing step takes the raw context sensitive samples and the stored

intraprocedural analysis to determine the approximate data centric values for each

of the variables per node. We start by generating a raw approximate assignment to

the variables. We then apply further passes to refine those assignments.

5.2.1 Raw Approximate Assignment

After resolving the addresses to functions and line numbers, the raw values

attributed to each variable are calculated by taking the number of misses per source

line and dividing them equally among the reads for a line. Further passes may modify

these values, but the starting point for our approximation uses this method. Only

unique reads are counted towards the total. Given the snippet in Figure 5.2, assume
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Approx. Misses Raw
Line x[] y[] a b
2 0.25 0.25 0.25 0.25
3 0 0.5 0.25 0.25
4 0.5 0 0 0.5

Table 5.1: Cache misses assigned using ‘Approximate Raw’ technique

1 for (a = 0; a < b; a++) {

2 i = x[a] + y[b]

3 j = y[a] + y[b]

4 k = x[b] + x[b]

5 }

Figure 5.2: Sample Code Snippet

exactly one cache miss occurs at each line in the body of the loop making three total

misses. Our approach would initially attribute the following miss numbers, shown

in Table 5.1, to the variables within the above code snippet.

Line 2 has the misses appropriated evenly across the two arrays and two in-

tegers that index the arrays. Line 3 has half of the misses appropriated to array y,

because y has two reads indexed by two separate integers. In the case that y was

indexed twice by the same integer, y would only have one read counted. For the

accesses on line 3, it is possible that a equals b, meaning the same memory location

would be accessed twice. However, we assume each access to be different unless a

constant is used to access the array. Finally, for line 4 the allocation is split between

x and b. Four reads take place on this line, but only two unique memory addresses

are read.
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1 for (i = 0; i < N; i++)

2 {

3 int x = a[i];

4 x += b[i];

5 x += c[i];

6 }

Figure 5.3: Simple Loop Code Snippet

5.2.2 Loop Compensation

The values assigned to the variables are initially divided equally based on the

reads per source line. However, there are common cases with scalar variables used

successively as indices, where their cache miss rate should intuitively be much less

than an access to a variable or complex data type in the same line of code.

Consider the snippet shown in Figure 5.3. In this example, the variable i is

read on every line. At line 5, the likelihood of a miss for i is likely lower than that of

the index to the array c. Using the raw approach previously described would result

in an inflated miss count for the index variable i, while having lower than expected

counts for each of the variables a, b, and c. We account for this by assigning weights

to the variables within loops based on the frequency that they are accessed.

We define the source line where a miss occurred as S. We define the inner most

loop that S is contained in as L. Within S, we define V to be the set of variables

where a read occurs. For each variable v in V , equation 5.1 details the calculation

of the raw weights,

vraw weight = 1.0−
(Number of lines v is read in L

Number of lines in L

)2

(5.1)
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The raw weights for all variables will be below 1.0 as they will have at least one

read within L. The weights will be redistributed favoring those variables with higher

initial weights, with the sum of the final weights for all variables equaling the number

of reads for the original line S. The equations for calculating the final weights are

given below.

weight to redistribute =
∑

(1.0− vraw weight) (5.2)

We set a threshold for the raw weights. All variables above the threshold have their

weights distributed according to their raw weight. Set V ′ is the set of variables with

raw weights above the threshold. For all variables, v′ within V ′,

threshold weights =
∑

v′raw weight (5.3)

The adjusted weight is then calculated in equation 5.4.

v′adj weight =

(( v′raw weight

threshold weights

)
∗weight to redistribute

)
(5.4)

Finally, the adjusted weight is added to the raw weight for our final weight. For

those variables below the threshold, the final weight is equal to the raw weight.

v′final weight = v′raw weight + v′adj weight (5.5)

With the loop adjustment, the values for the weights from the code in Figure 5.2

are shown in Table 5.2. For this example, we assume a threshold of 0.75. Since
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Weights
Variable Raw Adjusted Final
x

x[a] .94 .52 1.46
x[b] .94 .52 1.46

y
y[a] .94 .52 1.46
y[b] .75 .42 1.17

a .44 .00 .44
b .00 .00 .00

Sum 4.0 2.0 6.0

Table 5.2: Weight used in calculating the loop adjustment

the threshold is being compared against raw weights, this threshold value marks the

point where a variable is read in at most half of the lines in the loop. The threshold

is represented by instantiating equation 5.1,

1.0− (0.52) = 0.75

The different accesses for x and y are treated independently. We see that the

final weight is equal to the number of memory locations (as distinguished through

static analysis) that are read within the loop. When these final weights are applied

to the original approximate misses (one miss from each source line) from before, we

get the numbers shown in Table 5.3, with “LA” corresponding to the loop adjusted

numbers.
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Approximate Misses
x[] y[] a b

Raw LA Raw LA Raw LA Raw LA
Line

2 .25 .37 .25 .29 .25 .10 .25 .00
3 .00 .00 .50 .60 .25 .10 .25 .00
4 .50 .73 .00 .00 .00 .10 .50 .00

Sum .75 1.10 .75 .89 .50 .30 .50 .00

Table 5.3: Cache misses assigned using ‘Loop Compensation’ technique

5.2.3 Skid Negation

The raw assignment and loop correction pass work best when skid is not a

factor. However, when skid is taken into account, we need to provide a further pass

to help negate the skid. The range and effect of skid manifests differently between

architectures. We wanted our approach to be general, so that a minimal number

of parameters would have to be specified to have our approach apply to a given

architecture. By using an approach similar to that utilized by ProfileMe [18], we

can generate a histogram for the distance between the true instruction and where

the event based sample landed (the skid factor). Using this information, we can

generate a probabilistic model for the effect of the skid. It should be noted that

this histogram would not need to be generated per test program, but rather only

once when wanting to run code on a new architecture. With this information,

our approach need only two parameters: the mean and the variance. Using that

information, we assign weights to the reads within the skid range.

An additional mapping is needed since our approach is source line based, and

the skid distribution would be in terms of instructions. There are a few possibilities
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for this mapping. The first would be to do a one-time linear scan of the instructions

in the program and the associated valid source lines. With this information you can

calculate the average number of instructions associated to a source line within the

program. This could then be used to determine all possible “real” source lines the

miss could correspond to. The second approach is more exact, and may be useful for

programs with very large skid. This approach would look at the exact instruction

given by the event and all of the instructions within the range of the skid distribution

for that architecture. The associated source lines would be mapped accordingly.

In the results presented in this chapter, we experimented on architectures

that utilize in-order execution and have more manageable skid factors. For this

reason, we currently use the first mapping described in the above paragraph. For

experiments on architectures with out-of-order execution, we will utilize the second

style of mapping.

The process for calculating the skid negation is as follows. Formally, for set

V which is all variables with reads within the possible distribution of the skid, for

each v in V let p be probability assigned to the source line containing the read to v.

v raw skid val = p (5.6)

We then take the sum of all the values in the skid distribution.

sum skid vals =
∑

vraw skid val (5.7)
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Approximate Misses
x[] y[] a b

Raw SA Raw SA Raw SA Raw SA
Line

2 0 .07 0 .07 0 .07 0 .07
3 0 .14 0 .14 0 .14 0 .14
4 .5 .07 0 0 0 0 .5 .07

Sum .5 .28 0 .21 0 .21 .5 .28

Table 5.4: Cache misses assigned using ‘Skid Negation’ technique

We use that sum to normalize all weights, so the sum of all weights for a particular

cache miss will equal one. For all v,

v final skid val =
(v raw skid val

sum skid vals

)
(5.8)

The final skid value is not used as a weight, which was the case with the loop com-

pensation weights. It is used as a replacement to the raw approximate assignment

values. In cases where there is skid, the skid negated value would be the base for

passes such as the loop compensation. Table 5.4 shows the comparison between raw

approximate assignment values versus skid adjusted values. We assume the cache

miss was given as being on line 4, the skid distribution has a mean of line 3, with

the variance being ± 1. We assign a probability of .5 to line 3 and .25 to line 2 and

4.

For both approximate miss methods, the sum of the attributed cache misses

for the variables is 1. The raw methods assumes correct data for the attributed cache

miss, which is why values are only present for line 4. The skid negation technique
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assumes a probabilistic distribution over the source lines, which is why there are

values assigned for lines 2, 3, and 4, even when the given line for the cache miss was

line 4. Since this miss occurred within a loop, the next step would be to apply the

loop compensation weights to the new values, which would see an increase in the

attributed cache misses for the arrays, and a decrease for the scalars used to index

them.

5.3 Experimental Results

For our experiments, we ran tests on three programs from the SPEC CPU2000

benchmark suite on an Intel Itanium 2 machine running Linux. The test programs

and hardware configurations are the same that Buck used for his experiments. As

we are comparing our approach against existing direct methods, it was important

to have verified direct data centric results to compare against.

For our experimental programs, we gather data from three types of runs. All

runs use event driven sampling to measure cache misses. For each type of run, we

take the average values from five runs.

1. Sampling with skid free IP and precise effective address gathered using hard-

ware support that negates the skid

2. Sampling with skid free IP without effective address gathered using hardware

support that negates skid

3. Sampling with skid using generic hardware counter that does not negate skid
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We use the values from the first type of run to perform a traditional direct

data centric approach. This serves as a baseline to compare our approach against.

For each graph in the results section, the given approximation approach will be

compared against the direct approach.

We use the second type of run to perform our loop compensation adjustment.

The lack of effective address information means we use our approach exclusively to

assign the cache misses to the proper variables. The data from the final type of run

suffers from skid, so we perform the loop compensation and the skid negation pass

to assign miss responsibility to variables.

For the distribution of skid values, present in the third type of run, we use a

probabilistic distribution similar to the one we used in our prior example. The Ita-

nium used in these experiments utilizes in-order execution of instructions, meaning

the skid is an artifact of the pipeline and is less severe compared to most out-of-order

execution architectures. We set the skid distribution to be three source lines, with

the mean being one source line prior to the one given. We use the same probabilistic

distribution given in the example, .5 for the mean instruction and .25 for the other

two (one of which is the source line given by the event driven sample).

For the graphs in the following sections, the direct approach will be shown

as black bars on the left for each variable on each graph. The raw approximate

adjustment is the first pass and is not meant to closely match the the direct mea-

surements. The raw approach will be shown as white bars in the middle of the bars

for each variable. The results of the loop adjustment, and when applicable, skid

adjustment, are shown as gray bars to the far right. For each benchmark, the top
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Figure 5.4: Cache misses for ‘ammp’ with skid negated

20 variables are shown, sorted in rank by the number of cache misses attributed by

the direct method. The variable names are listed followed by the allocation method

for the variable in parentheses. ‘S’ is for stack allocated variables, ‘G’ is for global,

and ‘H’ is for heap.

5.3.1 188.ammp

The ammp benchmark is a C program that runs molecular dynamics on a

protein-inhibitor complex that is embedded in water [65].

5.3.1.1 No Skid

We begin by applying our raw approximate assignment, shown in white bars,

to the no-skid run. The results of this run are shown in Figure 5.4. The source lines
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given for this run are guaranteed to be correct, so we compare our software only

approach to the direct method, which was accomplished by comparing the effective

address of the miss to a record of all the allocations and frees within the program.

Our method compares favorably against the direct method. The heap allocated

variable new, which is a node from a linked list, and the heap allocated variable

nodelist suffer a decrease in the attributed cache misses, but the relative rank-order

remains consistent. Since our approach is a software approximation, our goal is not

an exact match to the ‘true’ data, but rather a light-weight mechanism to find the

same hotspots that a direct approach (if possible on the hardware) would provide.

We then apply our loop compensation pass to the data, also shown in Figure

5.4 as the grey bars. This program has few loop nests. The loops within this

program are very large with little use of loop iterators serving as indices into the

arrays. Because of this, there are few artificially inflated outliers that the loop

compensation pass would need to take care of, and the results are similar to that

found by the the raw approximate approach.

5.3.1.2 Skid

The skid effect plays a major role in skewing the miss results as shown in

Figure 5.5. The approximate raw results are significantly different than the true

results given by the direct method. The skid adjustment pass does improve these

results, but still struggles on some of the stack allocated scalars. This is due to the

way the code is organized. Within the hotspots of the code is a series of memory
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Figure 5.5: Cache misses for ‘ammp’ with skid

accesses using various local variables as the indices to the arrays and data structures.

There is no locality in the use of the local variables and ten successive lines of code

may use ten different local variables. For this reason, the skid makes a significant

impact on the accuracy of the results. Because our approach tries to approximate

the skid, we are able to correct the behavior and improve the results. For the heap

allocated variables, locality plays a bigger factor and our results are more accurate.

5.3.2 173.equake

The equake benchmark is a C program that simulates the propagation of waves

in large, heterogeneous valleys [8].
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Figure 5.6: Cache misses for ‘equake’ with skid negated

5.3.2.1 No Skid

The results of the raw approximate assignment and loop compensation are

shown in Figure 5.6. For this benchmark, there are outliers based on misappropri-

ated misses to scalars. The loop compensation pass takes care of many of these

discrepancies. After applying the loop compensation the main inaccuracy, as com-

pared to the direct method, is the lower than expected values for variable disp. The

reason for this is that disp and k are present together on the same lines for most of

their reads and have the same number of unique reads on each one of these lines.

In terms of the lines where the misses actually occur, their signatures are virtually

identical in regards to our analysis. This leads to a close to expected value for k,

but a lower value for disp.
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Figure 5.7: Cache misses for ‘equake’ with skid

5.3.2.2 Skid

The prior runs benefited from having the correct source line associated with the

cache miss. The raw assignments with the skid active give us the data in Figure 5.7.

Due to the skid factor, the outliers are more apparent and the variable assignments

are much different than the baseline direct data method. By applying our software

skid negation, we achieve more reasonable data. The results of the skid adjustment

(with combined loop adjustment) are also shown in Figure 5.7, with the adjustments

represented by the gray bars.

The two main variables, disp and k, are once again linked together and at the

top of the list of the appropriated misses. The skid adjustment helped to improve the

results for these two variables. This is because the source line wrongly attributed for

many cache misses was one line ahead of a statement that performed multiple reads.
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The attributed misses for variable Exc was low before the skid adjustment and the

value remained low after the skid adjustment. This was due to the misattributed

source line being directly after a call in which a read to Exc was the comparison

operation before the return. At this time, our analysis does not move backwards

through calls, so we were unable to redistribute values to that variable.

5.3.3 179.art

The ART 2 benchmark is a C program that uses neural network models to

recognize objects in a thermal image. [16]
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Figure 5.8: Cache misses for ‘art’ with skid negated
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Rank Order
Variables Direct Skid Raw Skid Adjusted
f1 layer(H) 1 2 1
ti (S) 2 1 2
tnorm(S) 3 19 3
Y(H) 4 15 4
bus[](H) 5 9 14
tds[](H) 6 8 6
tsum(S) 7 16 7
theta(G) 8 10 8
b(G) 9 12 11
d(G) 10 11 12

Table 5.5: Rank-Order Comparison for Top 10 Miss Causing Variables

5.3.3.1 No Skid

We first examine our raw approach versus the direct data method, shown in

Figure 5.8. Our initial method performs comparably against the direct method with

the exception of the outliers for stack allocated variables ti, tj, and ti. These are all

loop iterator variables, and are the motivation for the loop adjustment pass. The

loop adjustment pass eliminates the outliers. For this program, our method lines

up almost perfectly with the direct method.

5.3.3.2 Skid

The raw approximate values for the skid run are shown in Figure 5.9. The

skid factor results in diminished values for most of the top 10 variables found by the

direct method. Our skid adjusted approach gives us a rank-order approximately the

same as the direct method. Table 5.5 shows the rank-order for the top ten variables

(as given by the direct data approach).
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Figure 5.9: Cache misses for ‘art’ with skid

The low number of misses assigned to bus is due to the reads for that variable

occurring in the middle of a set of conditionals, with the misappropriated instruction

occurring immediately after the block for the final ‘else.’ A solution to this problem

would be assigning probabilistic weights to different regions in the conditional block

based on generic profiling numbers, but that is not present in our current analysis.

5.3.4 Correlation to Direct Measurement

Our approaches utilize approximation techniques. We have discussed the com-

parisons of rank order between the direct method, which serves as the ground truth,

and our approximation. We can also examine the correlation coefficient between the

cache misses assigned by direct measurement and those assigned by our technique(s).

Table 5.6 shows the correlation coefficient (PPMCC) [54] between our ap-
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Correlation Coefficient
No Skid Skid

Benchmark App. Raw Loop Adjust App. Raw Loop & Skid Adjust

ammp .97 .97 .79 .95
equake .91 .99 .61 .99
art .72 .98 .65 .98

Table 5.6: Correlation Coefficient of our approaches versus Direct Measurement

proaches and the direct measurement method. The approximate raw technique is

highly correlated in those programs where loops are not a factor. This is due to

the locality issues and the misattributed misses to loop index variables. The art

program is especially guilty of these misattributions and has a lower correlation

coefficient as a result. When the loop adjustment is applied, all three benchmarks

have very high correlation for the misses attributed to the variables in our approach

versus the direct method.

The raw skid correlations are lower across the board. There is still a strong

positive correlation due to the locality of variable accesses within the program, but is

not a high enough correlation to be useful as an approximation technique. When the

loop and skid adjust passes are applied, however, we get the very high correlation

numbers that we saw in the negated skid runs. This result shows that our skid

negation techniques are a valid approach on hardware where direct measurement is

not possible.
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5.4 Summary

In this chapter, we have discussed a technique for approximating cache miss

totals for variables using only static analysis and runtime data gathered from event

driven sampling utilizing generic hardware counters. Existing techniques resolve

these misses by matching the effective address to a maintained list of allocated

memory by monitoring allocations and frees. Our approach allows this type of

analysis to run on systems without dedicated hardware support that provides exact

effective address and IP information unaffected by skid. It also removes the need to

maintain the allocation list. Our approach is meant to be a supplementary method

to existing techniques, in cases where the hardware does not allow the existing types

of analysis to be run or allocation monitoring adds too much overhead.
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Chapter 6

Future Work

6.1 Large Scale Data Presentation

We currently separate how we internally store drill down data for small (32

processes or less) and large runs. For small runs, we input all of the data into our

GUI explicitly so drill down operations can be done without having to pull external

data. Conversely, for large runs, we utilize map-reduce operations to aggregate

data to alleviate storage concerns effectively eliminating some of the drill down

data. We want to examine ways to compactly store runtime information so we can

maintain a small storage footprint while still being able to provide extensive drill

down information for large runs.

6.2 Blame at the instruction level

One area of future work would involve doing the mappings at the instruction

level to compare the accuracy. This would have the advantage of not having to

divide the sample over all of the reads on the mapped source line as is the case

in our current approach. However, this would involve having reliable alias analysis

and other static analysis at the machine code level for any platform we wished to

support.
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6.3 Blame combined with autotuning

The next step for this work is continuing to utilize the data to improve program

performance. Our work is able to localize the amount of time spent in populating

the data for a given data structure. Many of the variables shown in our results have

tunable parameters that affect how much computation goes into calculating the data

for that variable. These tunable parameters range from the communication patterns

used for distributed data structures to the underlying data structures that represent

the variable such as whether to use a sparse or dense matrix. Our current work

involves taking the most blamed variables and tweaking those tunable parameters

to try to increase program performance. Our future work will entail a two pass

approach, where we use our analysis to figure out relevant problem variables to

reduce the state space and then use a combination approach of our analysis and

autotuning to find optimal data structures to solve the problem.

6.4 Runtime and Post-Processing Optimizations

We have discussed how our runtime overhead can be reduced by creating a

call context tree instead of storing each individual call trace. We can also use

similar data structures to improve our post-processing. We currently apply transfer

functions to individual samples at every frame in the call context. By storing past

transfer functions that we have applied to various calling contexts, we can alleviate

the need to apply transfer functions to a sample if they have already been applied

on previous samples.
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6.5 Skid approximation algorithms on out of order architectures

The main area of future work for the approximate data centric approach is

to apply the techniques to other architectures that have skid-negating hardware,

specifically those platforms with out of order execution. An increased distribution

of skid values creates backtracking problems in terms of control flow. We have

already encountered issues with conditionals and function calls. The greater the

skid factor, the more considerations about control flow become a factor. Expanding

our approach to other platforms would allow us to further test the validity of our

technique across different degrees of skid and cache replacement policies, both of

which may affect how our approach will perform.
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Chapter 7

Conclusions

In this dissertation, we introduced new techniques for performing data centric

performance profiling. These techniques allow developers to gather information

about program performance in ways that were not possible before. In the case of

variable blame, performance information can be mapped to program variables in

a unique manner that can not be duplicated by existing code centric techniques.

In the case of our approximate data centric technique, existing direct measurement

approaches can be approximated on architectures that do not have the hardware

features that existing approaches require. The results presented in this document

show that our techniques succeed in calculating new forms of data centric analysis

that provide useful information for performance profiling.

To evaluate the effectiveness of our variable blame analysis, we established a

metric to determine the uniqueness of the data presented in comparison to what data

could be recorded by classic code centric analysis techniques. We then ran our blame

analysis on real systems to increase program understanding of the profiled programs.

We were able to find multiple variables with unique blame values (as defined by our

uniqueness metric) for each program, and showed how these variables held useful

aggregates of operations occurring within the program. In the case of PFLOTRAN,

we used this information to better program performance. We did this by modifying
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input parameters for those variables deemed interesting by our blame metric (based

on the calculated computation time to populate these variables).

For our approximate data centric technique, our concern was not to find unique

data in comparison to existing techniques, but rather to approximate those tech-

niques. We examined established data centric techniques that had limitations on

which architectures they could be run on based on hardware counter support. The

evaluation of the effectiveness of our technique was done by comparing our results,

gathered using only basic hardware support, with the results from those techniques

that required more dedicated hardware. We showed that our technique is able to

maintain the approximate rank order as the existing technique with a range of .97-

.99 correlation coefficients with no skid and a .95-.99 correlation range with skid.

We also provide a formal definition for variable blame and details about the

graphical representation used within our internal blame implementation. Our sys-

tem mixes pre-run, runtime, and post-run information before presenting the final

data to the user. Much of our blame tool is interconnecting components that can

be used for other forms of analysis. Our approximate data centric had minimal

overlaps with variable blame in regards to how the metric was computed. However,

it exclusively used the same internal graph representation that was utilized by the

blame computation, as well as the same runtime engine, and the same GUI used by

the blame tool. We believe that other types of data centric analysis tools can be

built based on the same concepts introduced in this document. Mainly, the use of

pre-run static analysis to expose fundamental program properties and binding that

information to the minimum amount of necessary data gathered at runtime.
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Appendix A

Raw LLVM Code

define void @bar(i32* %x1, i32* %y2) nounwind {
entry:

%x_addr = alloca i32* ; <i32**> [#uses=3]
%y_addr = alloca i32* ; <i32**> [#uses=3]
%loopC = alloca i32 ; <i32*> [#uses=6]
%i = alloca i32 ; <i32*> [#uses=5]
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
%x = bitcast i32** %x_addr to { }* ; <{ }*> [#uses=1]
store i32* %x1, i32** %x_addr
%y = bitcast i32** %y_addr to { }* ; <{ }*> [#uses=1]
store i32* %y2, i32** %y_addr
%loopC3 = bitcast i32* %loopC to { }* ; <{ }*> [#uses=1]
%i4 = bitcast i32* %i to { }* ; <{ }*> [#uses=1]
store i32 0, i32* %loopC, align 4
store i32 0, i32* %i, align 4
br label %bb8

bb: ; preds = %bb8, %0
%tmp = load i32* %loopC, align 4 ; <i32> [#uses=1]
%tmp5 = add i32 %tmp, 1 ; <i32> [#uses=1]
store i32 %tmp5, i32* %loopC, align 4
%tmp6 = load i32* %i, align 4 ; <i32> [#uses=1]
%tmp7 = add i32 %tmp6, 1 ; <i32> [#uses=1]
store i32 %tmp7, i32* %i, align 4
br label %bb8

bb8: ; preds = %bb, %entry
%tmp9 = load i32* %i, align 4 ; <i32> [#uses=1]
%tmp10 = icmp sle i32 %tmp9, 9 ; <i1> [#uses=1]
%tmp1011 = zext i1 %tmp10 to i8 ; <i8> [#uses=1]
%toBool = icmp ne i8 %tmp1011, 0 ; <i1> [#uses=1]
br i1 %toBool, label %bb, label %bb12
br label %bb12

bb12: ; preds = %1, %bb8
%tmp13 = load i32* %loopC, align 4 ; <i32> [#uses=1]
%tmp14 = and i32 %tmp13, 1 ; <i32> [#uses=1]
%tmp1415 = trunc i32 %tmp14 to i8 ; <i8> [#uses=1]
%toBool16 = icmp ne i8 %tmp1415, 0 ; <i1> [#uses=1]
br i1 %toBool16, label %bb17, label %bb21
br label %bb17

Figure A.1: LLVM IR for ‘bar’
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bb12: ; preds = %1, %bb8
%tmp13 = load i32* %loopC, align 4 ; <i32> [#uses=1]
%tmp14 = and i32 %tmp13, 1 ; <i32> [#uses=1]
%tmp1415 = trunc i32 %tmp14 to i8 ; <i8> [#uses=1]
%toBool16 = icmp ne i8 %tmp1415, 0 ; <i1> [#uses=1]
br i1 %toBool16, label %bb17, label %bb21
br label %bb17

bb17: ; preds = %2, %bb12
%tmp18 = load i32** %x_addr, align 4 ; <i32*> [#uses=1]
%tmp19 = getelementptr i32* %tmp18, i32 0 ; <i32*> [#uses=1]
%tmp20 = load i32* %loopC, align 4 ; <i32> [#uses=1]
store i32 %tmp20, i32* %tmp19, align 4
br label %bb25
br label %bb21

bb21: ; preds = %3, %bb12
%tmp22 = load i32** %y_addr, align 4 ; <i32*> [#uses=1]
%tmp23 = getelementptr i32* %tmp22, i32 0 ; <i32*> [#uses=1]
%tmp24 = load i32* %loopC, align 4 ; <i32> [#uses=1]
store i32 %tmp24, i32* %tmp23, align 4
br label %bb25

bb25: ; preds = %bb21, %bb17
br label %return

return: ; preds = %bb25
ret void

}

Figure A.2: LLVM IR for ‘bar’ (continued)
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define void @foo() nounwind {
entry:

%se = alloca %struct.StructEx ; <%struct.StructEx*> [#uses=5]
%"alloca point" = bitcast i32 0 to i32 ; <i32> [#uses=0]
%se1 = bitcast %struct.StructEx* %se to { }* ; <{ }*> [#uses=1]
%tmp = call i8* @malloc( i32 40 ) nounwind ; <i8*> [#uses=1]
%tmp2 = bitcast i8* %tmp to i32* ; <i32*> [#uses=1]
%tmp3 = getelementptr %struct.StructEx* %se, i32 0, i32 0 ; <i32**> [#uses=1]
store i32* %tmp2, i32** %tmp3, align 4
%tmp4 = call i8* @malloc( i32 40 ) nounwind ; <i8*> [#uses=1]
%tmp45 = bitcast i8* %tmp4 to i32* ; <i32*> [#uses=1]
%tmp6 = getelementptr %struct.StructEx* %se, i32 0, i32; <i32**> [#uses=1]
store i32* %tmp45, i32** %tmp6, align 4
%tmp7 = getelementptr %struct.StructEx* %se, i32 0, i32 1 ; <i32**> [#uses=1]
%tmp8 = load i32** %tmp7, align 4 ; <i32*> [#uses=1]
%tmp9 = getelementptr %struct.StructEx* %se, i32 0, i32 0 ; <i32**> [#uses=1]
%tmp10 = load i32** %tmp9, align 4 ; <i32*> [#uses=1]
call void @bar( i32* %tmp10, i32* %tmp8 ) nounwind
br label %return

return: ; preds = %entry
ret void

}

Figure A.3: LLVM IR for ‘foo’
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