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Failures of engineered systems can lead to significant economic and societal 

losses. Despite tremendous efforts (e.g., $200 billion annually) denoted to reliability 

and maintenance, unexpected catastrophic failures still occurs. To minimize the 

losses, reliability of engineered systems must be ensured throughout their life-cycle 

amidst uncertain operational condition and manufacturing variability. In most 

engineered systems, the required system reliability level under adverse events is 

achieved by adding system redundancies and/or conducting system reliability-based 

design optimization (RBDO). However, a high level of system redundancy increases 

a system’s life-cycle cost (LCC) and system RBDO cannot ensure the system 

reliability when unexpected loading/environmental conditions are applied and 



  

unexpected system failures are developed. In contrast, a new design paradigm, 

referred to as resilience-driven system design, can ensure highly reliable system 

designs under any loading/environmental conditions and system failures while 

considerably reducing systems’ LCC.  

In order to facilitate the development of formal methodologies for this design 

paradigm, this research aims at advancing two essential and co-related research areas: 

Research Thrust 1 – system RBDO and Research Thrust 2 – system prognostics and 

health management (PHM). In Research Thrust 1, reliability analyses under 

uncertainty will be carried out in both component and system levels against critical 

failure mechanisms. In Research Thrust 2, highly accurate and robust PHM systems 

will be designed for engineered systems with a single or multiple time-scale(s). To 

demonstrate the effectiveness of the proposed system RBDO and PHM techniques, 

multiple engineering case studies will be presented and discussed. Following the 

development of Research Thrusts 1 and 2, Research Thrust 3 – resilience-driven 

system design will establish a theoretical basis and design framework of engineering 

resilience in a mathematical and statistical context, where engineering resilience will 

be formulated in terms of system reliability and restoration and the proposed design 

framework will be demonstrated with a simplified aircraft control actuator design 

problem. 
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Chapter 1: Introduction 

1.1 Motivation 

Failures of engineered systems can lead to significant economic and societal 

losses. Despite tremendous efforts (e.g., $200 billion annually) denoted to reliability 

and maintenance, unexpected catastrophic failures still occurs. As an example, 

Ameren Corp. experienced an unexpected power transformer fire in Missouri in 2002 

as shown in Figure 1-1, which caused $3 million property damage and $2 million 

business interruption. UPS Corp. also lost their shipping flight due to Lithium-ion 

(Li-ion) battery explosion. To minimize the losses, reliability of engineered systems 

must be ensured throughout their life-cycle amidst uncertain operational condition 

and manufacturing variability. In most engineered systems, the required system 

reliability level under adverse events1
1 is achieved by adding system redundancies 

and/or conducting system reliability-based design optimization (RBDO). However, a 

high level of system redundancy increases a system’s life-cycle cost (LCC) while 

system RBDO cannot ensure the system reliability when unexpected 

loading/environmental conditions are applied and unexpected system failures are 

developed. It is well-conceived that engineered systems designed under the 

conventional design paradigm are typically passive and thus non-responsive under 

unexpected loading/environmental conditions. 

 

                                                 
1 Adverse events could include the failure of components due to internal hazards (e.g., degradation) 
and/or external hazards (e.g., harsh operational conditions) that occur during the mission of the 
systems. 
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(a) 

 

(b) 

Figure 1-1 Disastrous system failures: (a) unexpected fire of a GSU power  
transformer, MO, in 2002 and (b) unexpected system failures of Li-ion 

battery fire in UPS Flight 1307, PA, in 2006 

 

Recently, prognostics and health management (PHM) has been successful in 

lowering system maintenance by enabling proactive maintenance decisions. A new 

design paradigm, referred to as resilience-driven system design, capitalizes on PHM 

technology at an early design stage to adaptively ensuring high system reliability 

under adverse conditions. In contrast to conventional design paradigm, resilience-

driven system design can ensure highly reliable system designs under any 

loading/environmental conditions and system failures while considerably reducing 

systems’ LCC. As a solution to overcome design deficiencies due to unexpected 

loading/environmental conditions and system failures, this new design paradigm 

enables the transformation of passively reliable (or vulnerable) engineered systems 

into adaptively reliable (or resilient) engineered systems while considerably reducing 

systems’ LCC. There is, however, no theoretical basis and design framework of 

engineering resilience to facilitate the development of formal methodologies for 

resilient engineered system design and to advance conventional engineered systems to 

resilient engineered systems. 
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1.2 Overview and Significance 

This research aims at advancing two essential and co-related research areas for 

system resilience analysis and design: Research Thrust 1 – system RBDO and 

Research Thrust 2 – system PHM to facilitate the development of formal 

methodologies for resilient engineered system design. System RBDO is capable of 

designing engineered systems with sufficiently high reliability at the early stage of 

their lifecycle, whereas capitalizing on PHM technology at the early design stage may 

enable the transformation of passively reliable (or vulnerable) conventional systems 

into adaptively reliable (or resilient) engineered systems while considerably reducing 

systems’ LCCs. In addition to advancing the above two research areas, this research 

also makes the first attempt to establish a theoretical basis and design framework of 

engineering resilience in a mathematical and statistical context, which will be 

elaborated in Research Thrust 3 – resilience-driven system design. Specifically, the 

research scope in this dissertation is to develop technical advances in the following 

three research thrusts: 

Research Thrust 1: System RBDO (Reliability Analysis) 

Research Thrust 1 addresses research challenges in system RBDO, specifically, 

reliability analysis, to design engineered systems with sufficiently high reliability at 

the early stage of their lifecycle. Reliability analyses under uncertainty will be carried 

out in both component and system levels against critical failure mechanisms. For 

component reliability analysis, the adaptive-sparse polynomial chaos expansion 

(PCE) and asymmetric dimension-adaptive tensor-product (ADATP) methods are 

proposed to efficiently address high-order interactions in system responses. For 
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system reliability analysis, the generalized complementary intersection method 

(GCIM) is developed to provide a unique system reliability estimate regardless of the 

system structures (series, parallel, and mixed systems).  

Research Thrust 2: System PHM 

Research Thrust 2 aims at designing highly accurate and robust PHM systems for 

engineered systems with a single or multiple time-scale(s). A PHM system generally 

comprises of sensor selection, sensor network configuration, data acquisition, data 

processing, and remaining useful life (RUL) prediction with prognostic algorithms. 

This thrust places the main focus on the design of PHM algorithms for data 

processing, and accurate RUL prediction in real-time. For PHM in a single time-

scale, this research achieves two technical advances: (i) an ensemble data-driven 

prognostic approach with weight optimization and k-fold cross validation (CV) is 

proposed to enhance the prediction accuracy and robustness of sole member 

algorithms; and (ii) a co-training data-driven prognostic approach is developed to 

exploit the suspension data to achieve highly-confident health prognostics with the 

lack of failure data. For PHM in multiple time-scales, this research proposes a 

multiscale framework with extended Kalman filter (EKF) and applies this framework 

to Li-ion battery systems for efficient and accurate state of charge (SOC) and capacity 

estimation.  

Research Thrust 3: Resilience-Driven System Design 

Following the development of Research Thrusts 1 and 2, Research Thrust 3 – 

resilience-driven system design will establish a theoretical basis and design 

framework of engineering resilience in a mathematical and statistical context. 
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Regarding the construction of the theoretical basis of engineering resilience, this 

research formulates engineering resilience in terms of system reliability and 

restoration. Regarding the development of the design framework of engineering 

resilience, this research proposes a resilience-driven system design framework 

composed of three hierarchical design tasks, namely the resilience allocation problem 

(RAP) as a top-level design problem, and the system RBDO and PHM design as two 

bottom-level design problems, and demonstrates this design framework with a 

simplified aircraft control actuator design problem. 

The proposed system resilience analysis and design methodologies are expected 

to make significant contributions to current knowledge in resilient engineered 

systems. This advanced knowledge will be applicable to a broad class of engineered 

system design problems. It is also believed that this innovative research will enable a 

transformative shift in engineered system design from reliability-based to resilience-

driven system design. The theoretical basis and design framework of engineering 

resilience gained from this research will facilitate the development of formal 

methodologies for resilient engineered system design. 

1.3 Dissertation Layout 

The dissertation is organized as follows. Chapter 2 reviews the current state of 

knowledge on system RBDO (specifically, reliability analysis), system PHM and 

resilience concept, and presents the main challenges in these research areas. Chapter 3 

presents the adaptive-sparse polynomial chaos expansion (PCE) and asymmetric 

dimension-adaptive tensor-product (ADATP) methods for component reliability 
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analysis. Chapter 4 discusses the generalized complementary intersection method 

(GCIM) for system reliability analysis for series, parallel and mixed systems. Chapter 

5 presents an ensemble data-driven prognostic approach with weight optimization and 

k-fold cross validation (CV) and a co-training data-driven prognostic approach for 

PHM in a single time-scale, and discusses a multiscale framework with extended 

Kalman filter (EKF) for PHM in multiple time-scales. Chapter 6 presents the 

resilience-driven system design framework and demonstrates this design framework 

with a case study on the system resilience analysis and design of an aircraft control 

actuator. Finally, Chapter 7 summarizes the contributions of the research work and 

gives insights on future works.  
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Chapter 2: Literature Review 

In this section, current state-of-art knowledge for each of the three thrusts will be 

reviewed: (i) reliability analysis methodologies; (ii) prognostics and health 

management (PHM) methodologies, and (iii) resilience concept. Literatures on each 

of these three aspects are discussed in one subsection and challenges are identified at 

the end.  

2.1 Reliability Analysis 

In the past few decades, reliability analysis has been widely recognized as of great 

importance in the development of engineered systems. Hence, various methods have 

been developed to assess the engineered system reliability while taking into account 

various uncertainty sources (e.g., material properties, loads, geometric tolerances). 

This section reviews these methods by classifying them into two categories: (a) 

component reliability analysis, and (b) system reliability analysis.  

2.1.1 Component Reliability Analysis 

Engineered systems are typically composed of multiple components. To predict 

the reliability at the system level, reliability analysis is often firstly conducted at the 

component level, referred to as component reliability analysis. The component 

reliability can be defined as the probability that the actual performance of an 

engineered system meets the required or specified design performance under various 

uncertainty sources (e.g., material properties, loads, geometric tolerances). In order to 

formulate the component reliability in a mathematical framework, random variables 
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are often used to model uncertainty sources in engineered systems. The component 

reliability can then be formulated as a multi-dimensional integration of a performance 

function over a safety region 

    ( )
Ω

= ∫ ∫� S
R f dx x  (2.1) 

where R denotes the component reliability; f(x) denotes the joint probability density 

function (PDF) of the vector of random variables; x = (x1, x2,…, xN)T models 

uncertainty sources such as material properties, loads, geometric tolerances; the safety 

domain ΩS is defined by the limit-state function as ΩS = {x: g(x) < 0}; g(x) is a 

component performance function. The concept of component reliability analysis in a 

two-dimensional case is illustrated in Figure 2-1. The dashed lines represent the 

contours of the joint PDF of the two random variables x1 (operational factors) and x2 

(manufacturing tolerance). The basic idea of reliability analysis is to compute the 

probability that X is located in the safety region ΩS = {x: g(x) < 0}.  

x1: manufacturing tolerance
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Figure 2-1 Concept of component reliability analysis. 

In practice, however, it is extremely difficult to perform the multi-dimensional 

numerical integration when the number of random variables is relatively large. The 
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search for efficient computational procedures to estimate the reliability has resulted in 

a variety of numerical and simulation methods such as the first- or second-order 

reliability method (FORM/SORM) [1-3], direct or smart Monte Carlo simulation 

(MCS) [4-7], dimension reduction (DR) method [8-10], stochastic spectral method 

[11-24], and stochastic collocation method [26-39]. This section gives a brief review 

of these approaches. 

First- or Second-Order Reliability Method 

Among many reliability analysis methods, the first- or second-order reliability 

method (FORM or SORM) [1-3] is most commonly used. The FORM/SORM uses 

the first- or second-order Taylor expansion to approximate a limit-state function at the 

most probable failure point (MPP) where the limit-state function separates failure and 

safety regions of a response. Some major challenges of the FORM/SORM include (i) 

it is very expensive to build the probability density function (PDF) of the response, 

(ii) large errors can be generated for highly nonlinear performance functions, and (iii) 

system design can be expensive when employing a large number of the responses.  

Direct or Smart MCS 

The direct or smart MCS provides an alternative way for multi-dimensional 

integration [4-7]. Although the direct MCS [4] produces accurate results for reliability 

analysis and allows for relative ease in the implementation, it demands a prohibitively 

large number of simulation runs. Thus, it is often used for the purpose of a 

benchmarking in reliability analysis. To alleviate the computational burden of the 

direct MCS, researchers have developed various smart MCS methods, among which 

the (adaptive) importance sampling methods [5-7] are the most popular. The idea 
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behind the (adaptive) importance sampling is that certain values of the input random 

variables in a simulation have more impact on the parameter being estimated than 

others. If these “important” values are emphasized by sampling more frequently, then 

the estimator variance can be reduced. Hence, an important step in the (adaptive) 

importance sampling is to choose a distribution which "encourages" the important 

values and the simulation outputs are weighted by the likelihood ratio. Despite the 

improved efficiency than the direct MCS, these methods are still computationally 

expensive, especially for component performance functions with very high or very 

low reliabilities, where an extremely large sample size is required to achieve good 

accuracy in predicting those highly tailed performance PDFs.  

Dimension Reduction Method  

Recently, the dimension reduction (DR) method [8,9] has been proposed and is 

known to be a sensitivity free method for reliability analysis. This method uses an 

additive decomposition of a response that simplifies a single multi-dimensional 

integration to multiple one-dimensional integrations by the univariate DR (UDR) 

method [8] or to multiple one- and two-dimensional integrations by the bivariate DR 

(BDR) method [9]. The eigenvector dimension reduction (EDR) method [10] 

improves numerical efficiency and stability of the UDR method with the ideas of 

eigenvector samples and stepwise moving least squares method with no extra 

expense. Results of the DR-family methods are given in the form of statistical 

moments. To further predict the reliability or PDF of the response, PDF generation 

techniques must be involved, which could increase numerical error in reliability 

prediction. Furthermore, performance functions with strong tri- and higher-variate 
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interactions among random inputs require tri- and higher-variate dimension 

decompositions for accurate reliability analysis [9]. In such cases, the computational 

effort could become prohibitively large for high input dimensions, thus making the 

decomposition strategy infeasible. 

Stochastic Spectral Method 

The stochastic spectral method [11] is an emerging technique for reliability 

analysis of complex engineered systems. This method uses a number of response 

samples and generates a stochastic response surface approximation with multi-

dimensional polynomials over a sample space of random variables. Once the explicit 

response surface is constructed, MCS is often used for reliability analysis due to its 

convenience. The most popular stochastic spectral method is the polynomial chaos 

expansion (PCE) method. The original Hermite polynomial chaos basis was proposed 

by Wiener [12] for modeling stochastic response with Gaussian input random 

variables. Xiu and Karniadakis [13] extended the method under the Askey polynomial 

scheme to non-Gaussian random variables (e.g., gamma, uniform, and beta), referred 

to as the generalized PCE. The wavelet basis [14] and multi-element generalized PCE 

[15] were developed to further extend the generalized PCE to use the polynomial 

basis functions that are not globally smooth. For the estimation of small failure 

probability, shifted and windowed Hermite polynomial chaos were proposed to 

enhance the accuracy of a response surface in the failure region [16]. In recent papers 

[17-19], researchers have applied the PCE method to various engineering reliability 

problems. Although the PCE method is considered to be accurate, the primary 

drawback of the PCE method is the curse of dimensionality, which substantially 
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increases the computational cost as the number of random variables increases. To 

alleviate the difficulty, many adaptive algorithms were recently developed. The 

authors in 20 proposed an adaptive multi-element generalized PCE, where an error 

indicator based on the decay rate of local variance was used for an h-adaptive 

refinement. Its collocation-based counterpart, the multi-element probabilistic 

collocation method, used the tensor product or sparse grid collocation [26] in each 

random element [21]. A more recent version of the multi-element probabilistic 

collocation method incorporates the ANOVA (Analysis-of-Variance) decomposition 

to truncate the PCE at a certain dimension to further enhance the computational 

efficiency [22]. In addition to the multi-element PCE, a sparse polynomial chaos 

approximation was introduced as an alternative to tensor-product polynomial bases 

[23] and a sparse stochastic collocation method based on this sparse basis was 

recently developed in [24]. Although these adaptive algorithms alleviate the curse of 

dimensionality to some degree, more efforts are still needed to fully resolve this 

difficulty. As demonstrated by Lee [25], the implementation of the PCE method 

becomes inconvenient in engineering design practice since the PCE order cannot be 

predetermined for black-box-type problems. 

Stochastic Collocation Method 

The stochastic collocation (SC) method is another stochastic expansion technique 

that approximates a multi-dimensional random function using function values given 

at a set of collocation points. A comparison between the SC and PCE methods for 

uncertainty quantification (UQ) was discussed in [38], where the SC method was 

reported to consistently outperform the PCE method. In the SC method, the great 



 

 13 
 

improvement in reducing the curse of dimensionality in numerical integration was 

accomplished by Smolyak [26], who introduced the concept of the sparse grid. Since 

then, the sparse grid has been applied to high dimensional integration [27] and 

interpolation [28], UQ in reliability analysis [38] and design [39], and PDEs with 

deterministic inputs [29] and random inputs [30-32]. Compared to a full grid, the 

sparse grid achieves the same accuracy level for integration and interpolation but with 

a much smaller number of collocation points. Recently, the so called dimension-

adaptive tensor-product (DATP) quadrature method introduced the concept of the 

generalized sparse grid and considered the dimensional importance indicated by an 

error estimator to adaptively refine the collocation points for efficient multi-

dimensional integration [33]. Klimke [34] further developed this work for 

hierarchical interpolation by using either piecewise multi-linear basis functions or 

Lagrangian polynomials. In this method, all the dimensions in the random space are 

not considered as of equal importance and the adaptive sampling scheme 

automatically detects the highly nonlinear dimensions and adaptively refines the 

collocation points in those dimensions. In [37], a priori and a posteriori procedures 

are included to update a weight vector for different stochastic dimensions, which 

combines the advantages of conventional and dimensional-adaptive approaches. As 

demonstrated in [35,36], the application of the DATP method in stochastic problems 

is promising.  

Summary and Discussion 

As discussed above, a wide variety of numerical and simulation methods have 

been developed for efficient and accurate uncertainty propagation and reliability 
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analysis of engineered components/systems subject to various engineering 

uncertainties. Recently, researchers are paying more attention to advanced sensitivity-

free reliability analysis methods such as the PCE and SC methods. Despite advances 

in these advanced methods, critical challenges still remain unresolved. In the PCE 

method, the curse of dimensionality, which substantially increases the computational 

cost as the number of random variables increases, imposes severe limitations on the 

practical use for reliability analysis. The SC method greatly reduces the curse of 

dimensionality by using the sparse grid and can even achieve a substantially higher 

convergence rate by using its generalized counterpart (i.e., the dimension-adaptive 

tensor-product method). However, the dimension-adaptive algorithm treats the 

positive and negative axial directions in a multi-dimensional cube as of equal 

importance and thus may not be approximate for engineering cases where not only 

different dimensions but also two opposite directions (positive and negative) within 

one dimension often demonstrate a large difference in response nonlinearity. The 

above difficulties must be fully resolved to make the advanced reliability analysis 

methods generally applicable to the practical engineering reliability analysis and 

design problems.  

2.1.2 System Reliability Analysis 

System reliability analysis aims at analyzing the probability of system success 

while considering multiple system performances or failure modes (e.g., fatigue, 

corrosion, fracture). Let us first stake a look at the concept of system reliability 

analysis with two performance functions (i.e., fatigue safety g1 and wear safety g1) 

and two random variables (i.e., operational factors X1 and manufacturing tolerance 
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X2), as shown in Figure 2-2. In this figure, we have two limit state functions g1 = 0 

and g2 = 0 which divides the input random space into four subspaces {g1 < 0 & g2 < 

0}, {g1 < 0 & g2 > 0}, {g1 > 0 & g2 < 0}, {g1 > 0 & g2 > 0}. Component reliability 

analysis aims at quantifying the probability that a random sample x falls into the 

component safety region (i.e., {g1 < 0} or {g2 < 0}) while system reliability analysis 

(assuming a series system) aims at quantifying the probability that a random sample x 

falls into the system safety region (i.e., {g1 < 0 & g2 < 0}). Clearly, the component 

reliability (for {g1 < 0} or {g2 < 0}) is larger than the system reliability since the 

component safety region has a larger area than the system safety region by the area of 

an intersection region {g1 < 0 & g2 > 0} or {g1 > 0 & g2 < 0}.  
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Figure 2-2 Concept of system reliability analysis (two performance 
functions) 

 

The aforementioned discussion leads to a mathematical definition of system 

reliability as a multi-dimensional integration of a joint probability density function 

over a system safety region, expressed as  
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 ( )
Ω

= ∫ ∫� SsysR f dx x  (2.2) 

where x = (x1, x2,…, xN)T models uncertainty sources such as material properties, 

loads, geometric tolerances; fX(x) denotes the joint PDF of this random vector; ΩS 

denotes the system safety domain and, for this example, reads ΩS ={x: g1(x) < 0  

g2(x) < 0}. We can see that this formula bears a striking resemblance to that of 

component reliability analysis. The only difference between these two formulae lies 

in the definition of the safety domain. For component reliability analysis, the safety 

domain can be defined in terms of a single limit-state function as ΩS ={x: g(x) < 0}. 

For system reliability analysis involving nc performance functions, the safety 

domains must be defined in terms of these nc limit-state function. 

We note that, in practice, it is extremely difficult to perform the multi-

dimensional numerical integration for system reliability analysis in Eq. (2.2) due to 

the high nonlinearity and complexity of the system safe domain. Compared with 

tremendous advances in component reliability analysis, the research in system 

reliability analysis has been stagnant, mainly due to two technical difficulties. First, it 

hard to derive an explicit formula for system reliability for given system redundancy. 

Second, even if system reliability is given explicitly, most numerical methods cannot 

effectively assess system reliability with high efficiency and accuracy. Nevertheless, 

in what follows, Nevertheless, in the subsequent sections, we will introduce the most 

widely used bounds methods for system reliability analysis as well as a recently 

developed point estimation method. 
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First- and Second-Order Bounds Methods 

Based on the well known Boolean bounds, Ang and other researchers [40] 

developed the first-order system reliability bounds for serial and parallel systems in 

1960’s and 1980’s. Consider a serial system with m components, the first-order 

bounds for the probability of system failure Pfs can be expressed as 

 ( ) ( )
1

max min ,  1
=

   ≤ ≤     
∑

m

i fs i
i

i

P E P P E  (2.3)  

It should be noted that an upper system reliability bound is given with the assumption 

that all system safety events are perfectly dependent and that a lower system 

reliability bound is obtained by assuming that all system safety events are mutually 

exclusive. Since the first-order system reliability bounds are usually too wide to be of 

practical use, the application of the first-order bound method is very limited. Thus, 

the need for narrower bounds results in the second-order bound method proposed by 

Ditlevsen and Bjerager [41] in Eq. (2.4).  
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 (2.4) 

The above bounds, also known as Ditlevsen’s bounds, are most widely used for 

system reliability analysis. Other equivalent forms of Ditlevsen’s bounds can be 

found in Refs [42-45].  Although second-order bounds method can give fairly narrow 

system reliability bounds generally assuming given the system input uncertainty 

information, evaluation of these bounds usually suffers from numerical errors, since 

most of numerical methods cannot evaluate probabilities of second or higher order 
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joint events effectively considering system coupling effects between all different 

modes. Besides, the second order method is not able to carry out system reliability 

assessment for a mixed system which does not follow a simple series or parallel 

system structure.  

Linear Programming Bounds Method 

Recently, Song and Der Kiureghian formulated system reliability to a Linear 

Programming (LP) problem, referred to as the LP bounds method [46]. The LP 

bounds method treats the system reliability as the objective function and obtains the 

lower and upper bound through minimizing and maximizing the objective function 

accordingly. The LP bounds method is able to calculate optimal bounds for system 

reliability with the component reliabilities and/or probabilities of joint failure events 

as provided input information. However, it is known that the LP bound method can 

suffer when an approximate LP algorithm is used for over-constrained problems. 

Besides, it is extremely sensitive to the accuracy of the given input information, 

which are the probabilities of the first-, second-, and high-order joint safety events.  

To assure high accuracy of the LP bound method, the input probabilities must be 

given very accurately and the problem must not be over-constrained.  

Complementary Intersection Method (CIM) 

Most recently, Youn and Wang [47] introduced a novel concept of the 

complementary intersection (CI) event and proposed the complementary intersection 

method (CIM) for system reliability analysis of series systems. The CIM provides not 

only a unique formula for system reliability but also an effective numerical method to 

evaluate the system reliability with high efficiency and accuracy. The CIM 
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decomposes the probabilities of high-order joint failure events into the probabilities 

of CI events. This probability decomposition allows the use of advanced reliability 

analysis methods for evaluating the probabilities of the second-order (or higher) joint 

failure events efficiently. To facilitate system reliability analysis for large-scale 

systems, the CI-matrix can be built to store the probabilities of the first- and second-

order CI events. The CIM with the EDR method was reported to outperform other 

methods for system reliability analysis in terms of efficiency and accuracy [47]. 

However, the application of the CIM is limited to series systems only. A 

fundamentally sound framework must be established to extend the applicability of the 

CIM to parallel and mixed systems.   

Summary and Discussion 

Although the second-order bounds method and LP bounds method can give fairly 

narrow system reliability bounds given the probabilities of the joint safety events, the 

evaluation of these bounds may suffer from numerical errors since most numerical 

methods are not capable of evaluate the probabilities of second- or higher-order joint 

safety events effectively while considering the complex coupling between the 

component safety events. Besides, these bounds methods cannot provide continuous 

system reliability estimate with respect to the system input random variables. The 

CIM resolved these difficulties in system reliability analysis of series systems. 

However, these difficulties still remain unresolved in system reliability analysis of 

parallel and mixed systems.  
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2.2 Prognostics and Health Management (PHM) 

As discussed above, tremendous research efforts have been devoted to the 

physics-based reliability analysis under uncertainties during the design stage of 

engineered systems. Recently, Research on real-time diagnosis and prognosis which 

interprets data acquired by distributed sensor networks, and utilizes these data streams 

in making critical decisions provides significant advancements across a wide range of 

applications. Maintenance and life-cycle management is one of the beneficiary 

application areas because of the pervasive nature of design and maintenance activities 

throughout the manufacturing and service sectors. Maintenance and life-cycle 

management activities constitute a large portion of overall costs in many industries 

[48]. These costs are likely to increase due to the rising competition in today’s global 

economy. For instance, in the manufacturing and service sectors, unexpected 

breakdowns can be prohibitively expensive since they immediately result in lost 

production, failed shipping schedules, no operational service, repair cost, and poor 

customer satisfaction. In order to reduce and possibly eliminate such problems, it is 

necessary to accurately assess current system health condition and precisely predict 

the remaining useful life (RUL) of operating components, subsystems, and systems. 

This section reviews the current state-of-the-art PHM technology that can predict 

system’s health condition in: (a) a single time-scale and (b) in multiple time-scales. In 

the former case, all the system health-relevant information (e.g., health condition, 

measurable physical quantities) of interest tend to vary in the same time-scale. In the 

latter case, the system exhibits a time-scale separation. In other words, certain system 

health-relevant responses (e.g., health condition) of interest tend to vary very slowly 
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as opposed to other system health-relevant responses (e.g., measurable physical 

quantities) that vary very fast. 

2.2.1 PHM in a Single Time-Scale 

Many engineered systems do not exhibit time-scale separations and their health 

prognostics can thus be done in a single time-scale. In general, technical approaches 

for health monitoring and prognostics of these engineered systems can be categorized 

into model-based approaches [49-51], data-driven approaches [52-56] and hybrid 

approaches [61-63]. 

Model-Based Prognostics 

The application of general model-based prognostics approaches relies on the 

understanding of system physics-of-failure and underlying system degradation 

models. In the literature, various stochastic degradation models have been developed 

to model degradation behaviors of different engineered systems. Luo et al [49] 

developed a model-based prognostic technique that relies on an accurate simulation 

model for system degradation prediction and applied this technique to a vehicle 

suspension system. Gebraeel presented a degradation modeling framework for RUL 

predictions of rolling element bearings under time-varying operational conditions 

[50] or in the absence of prior degradation information [51]. As practical engineered 

systems generally consist of multiple components with multiple failure modes, 

understanding all potential physics-of-failures and their interactions for a complex 

system is almost impossible.  

 

 



 

 22 
 

Data-Driven Prognostics 

With the advance of modern sensor systems as well as data storage and 

processing technologies, the data-driven approaches for system health prognostics, 

which are mainly based on the massive sensory data with less requirement of 

knowing inherent system failure mechanisms, have been widely used and become 

popular. A good review of data-driven prognostic approaches was given in [52]. 

Data-driven prognostic approaches generally require the sensory data fusion and 

feature extraction, statistical pattern recognition, and for the life prediction, the 

interpolation [53,54], extrapolation [55], or machine learning [56] and so on.  

The data-driven prognostic approaches mentioned in the above literature survey 

belongs to the category of supervised learning which relies on a large amount of 

failure data for the offline training in order to achieve good accuracy for the online 

prediction. Here, failure data refer to condition monitoring data collected from the 

very beginning of an engineered system’s lifetime till the occurrence of its failure. 

Unfortunately, in many engineered systems, only very limited failure data are 

available since running systems to failure can be a fairly expensive and lengthy 

process. In contrast, we can easily obtain a large amount of suspension data. By 

suspension data, we mean condition monitoring data acquired from the very 

beginning of an engineered system’s lifetime till planned inspection or maintenance 

when the system is taken out of service. The lack of failure data and plenty of 

suspension data with rich information on the degradation trend makes it essentially 

critical and quite possible to utilize suspension data in order to improve supervised 

data-driven prognostics and achieve more accurate remaining useful life (RUL) 
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prediction. However, the utilization of suspension data for data-driven prognostics is 

still in infancy. The very few relevant works we are aware of are the survival 

probability-based approaches [57-59] and life-percentage-based approach [60]. The 

former approaches use conditional monitoring data as inputs to an artificial neural 

network (ANN) [57] or relevance vector machine [58,59] which then gives the 

survival  probability as the output. As pointed out in [60], the drawback of these 

approaches lies in the fact that the outputs cannot easily be converted to equivalent 

RULs for practical use. In contrast, the latter approach employs the condition 

monitoring data and operation time as inputs to an ANN which then produces the life 

percentage as the output.  

Hybrid Prognostics 

Hybrid approaches attempt to take advantage of the strength from data-driven 

approaches as well as model-based approaches by fusing the information from both 

approaches. Garga et al. [61] described a data fusion approach where domain 

knowledge and predictor performance are used to determine weights for different 

state-of-charge predictors. Goebel et al. [62] employed a Dempster-Shafer regression 

to fuse a physics-based model and an experience-based model for prognostics. Saha 

et al. [63] combined the offline relevance vector machine (RVM) with the online 

particle filter for battery prognostics. Similar to model-based approaches, the 

application of hybrid approaches is limited to the cases where sufficient knowledge 

on system physics-of-failures is available. 
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Summary and Discussion 

The traditional data-driven prognostic approach is to construct multiple candidate 

algorithms using a training data set, evaluate their respective performance using a 

testing data set, and select the one with the best performance while discarding all the 

others. This approach has three shortcomings: (i) the selected standalone algorithm 

may not be robust, i.e., it may be less accurate when the real data acquired after the 

deployment differs from the testing data; (ii) it wastes the resources for constructing 

the algorithms that are discarded in the deployment; (iii) it requires the testing data in 

addition to the training data, which increases the overall expenses for the algorithm 

selection. Thus, an accurate yet robust data-driven prognostic approach must be 

developed to overcome these drawbacks. 

In addition to enhancing the prognostic accuracy and robustness, another 

important issue as mentioned above is to achieve highly-confident health prognostics 

when we only have very limited failure data but a large amount of suspension data. 

Although the approach described in [60] is capable of enhancing the accuracy in RUL 

prediction with suspension data, it still suffers from the follows drawbacks: (i) it 

simply uses all suspension data regardless of the quality and usefulness; and (ii) the 

only criteria to determine the RUL of a suspension unit is the minimization of a 

validation error in the offline training, which could lead to a largely incorrect RUL 

estimate or even a physically unreasonable estimate (i.e., less than or equal to zero) of 

that unit. Thus, a smart data-driven prognostic approach should be developed which 

can selectively utilize the suspension data as well as effectively predict the RUL of a 

utilized suspension unit.  



 

 25 
 

2.2.2 PHM in Multiple Time-Scales 

Different physical principles governing system health-relevant responses over 

time require health monitoring and prognostics in different time-scales. Challenges 

exist in PHM for such systems. For example, if we are interested in the evolution of 

the system health condition over a large time-scale and measurable physical 

quantities evolve in small time-scales, we must estimate the system health condition 

using the measurements for all the small time steps within one large time step, which 

can be very inefficient and produce large variance in the estimate.  

As a typical engineered system with time-scale separation, the Li-ion battery 

system is considered for the demonstration of PHM for systems with multiple time-

scales. Lithium-ion (Li-ion) batteries are the rechargeable batteries most commonly 

used in hybrid electric vehicles (HEV), battery electric vehicles and consumer 

portable electronics. Among these applications, the HEV environment is particularly 

harsh, imposing many stringent load requirements on the battery cells [64]. The harsh 

operation conditions and demanding requirements require the incorporation of 

resilience into a battery system. Typical parameters indicative of a battery system’s 

conditions are the state of charge (SOC), state of health (SOH) and state of life 

(SOL). The resilience must be the hallmark capability of a battery system that can be 

used to optimally maintain the SOC, and the current and future health conditions 

(SOH/SOL), and to provide this information for decision-making on cell balancing 

and maintenance (see Figure 2-3). To this end, advanced prognostic methods must be 

incorporated into the battery management system (BMS) to accurately estimate the 

SOC, SOH and SOL to manage the battery health and to maximize the useful lifetime 
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of the pack.  This section reviews current state-of-art methods for SOC and SOH/SOL 

estimation.  
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Figure 2-3 Resilience process of an HEV battery pack. Capitalizing on the 
engineering resilience enables the optimum cell equalization/replacement, thus 

maximizing the charge/discharge capacity restoration. 

 

State of Charge (SOC) Estimation 

Numerous approaches have been proposed to estimate the SOC of battery cells. 

These include coulomb-counting methods [65,66], impedance measurements [67-70], 

open-circuit voltage (OCV) measurements [71,72], Electro-Motive Force (EMF) 

measurements [73,74], adaptive systems employing Kalman filters [75-79], fuzzy 

logic [80,82] and neural networks [82,83]. An extensive review of most of these 

methods can be found in Piller [84]. The coulomb-counting procedure is easy to 

implement but it suffers from an initial value error and accumulated errors due to 

current measurements and charge lost [85]. The open-circuit voltage (OCV) 

measurement is inexpensive and accurate for predefined circumstances but it needs a 
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long rest time and thus is not suitable for real-time applications [86]. Fuzzy logic and 

neural network methods have been found to be applicable only if training conditions 

are similar to testing ones.  To compensate for the shortcomings of the 

aforementioned methods, Plett [75-78] proposed an adaptive system based on an 

extended or sigma point Kalman filter and an extension of circuit analog models. 

Accurate SOC estimation results were reported in the urban dynamometer drive 

scheme (UDDS) tests.  

State of Health (SOH) and State of Life (SOL) Estimation 

As a battery cell ages, the cell capacity and resistance directly limit the pack 

performance through capacity fade and power fade, respectively [76]. These two 

degradation parameters are often used to quantify the cell state of health (SOH). 

Thus, it is important to accurately estimate these parameters to monitoring the present 

battery SOH and to predict the remaining useful life (RUL). Recent literature reports 

various approaches to estimate the SOH with a focus on the capacity estimation. 

Joint/dual extended Kalman filter (EKF) [76] and unscented Kalman filter [78] with 

an enhanced self-correcting model were proposed to simultaneously estimate the 

SOC, capacity and resistance. To improve the performance of joint/dual estimation, 

adaptive measurement noise models of the Kalman filter were recently developed to 

separate the sequence of SOC and capacity estimation [87]. A physics-based single 

particle model was used to simulate the life cycling data of Li-ion cells and to study 

the physics of capacity fade [88,89]. In the PHM society, a Bayesian framework 

combining the relevance vector machine (RVM) and particle filter was proposed for 

prognostics (i.e., RUL prediction) of Li-ion battery cells [63]. More recently, the 
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particle filter with an empirical circuit model was used to predict the remaining useful 

lives for individual discharge cycles as well as for cycle life [90]. 

Summary and Discussion 

In general, existing PHM techniques for engineered systems with time-scale 

separation simultaneously estimate all the system health-relevant responses of interest 

in the small scale. The joint estimation presents two difficulties: (i) it requires 

tremendous computational efforts since the vast majority of computational time must 

be spent evolving the fast time-varying health-relevant responses of the system while 

we may be primarily interested in the slowly time-varying health-relevant responses; 

(ii) it may provide noisy estimates of the slowly time-varying health-relevant 

responses. For example, commonly used joint/dual EKF for battery SOC and capacity 

estimation suffers from the lack of accuracy and efficiency in the capacity estimation. 

Thus, a prognostic approach that takes into account time-scale separation must be 

developed to achieve high-fidelity and high-efficiency health monitoring and 

prognostics for engineered systems with time-scale separation.  

2.3 Resilience Concept 

In recent years, research on resilience has been widely conducted in ecology [91-

93], psychology [94-97], economics and organizational science [98-100], and others 

to improve the ability of systems or people to respond to and quickly recover from 

catastrophic events. In contrast to the resilience research in several non-engineering 

fields, resilience in engineering design remains almost untouched. There is still a 

great need for a theoretical basis that furnishes a better understanding of how 

engineered systems achieve resilience, as well as enables the development of a 
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generic resilience principle widely applicable to the field of engineering design. In 

what follows, a brief review of the research on resilience in non-engineering fields 

will be provided with an aim to extract useful information for the theoretical basis of 

engineering resilience.  

In ecology, resilience is loosely defined as “the ability of the system to maintain 

its function when faced with novel disturbance” [91]. The current research on 

resilience applied to ecosystems mainly focuses on the analysis of ecosystem 

resilience using complex adaptive systems (CAS) theory [92]. As an extension of 

traditional systems theory, the CAS theory enables analysis of the role of adaptation 

in system resilience through specifically modeling how individual variation and 

changes in that variation lead to system-level responses [92]. Furthermore, natural 

selection and evolution play an important role in shaping ecological response to 

disturbance, which provides new insight to the understanding of resilience [93]. In 

psychology, resilience is defined as a dynamic process that individuals exhibit 

positive behavioral adaptation when they encounter significant adversity [94]. The 

process of resilience involves both the exposure of adversity and the positive 

adaptation to that adversity. Extensive research has been conducted to understand the 

protective factors that contribute to people’s adaptation to adverse conditions, e.g., 

bereavement [95], terrorist attacks [96], or urban poverty [97].  

In economics and organizational science, resilience of an organization can be 

defined as its intrinsic ability to keep or recover a stable state, thereby allowing it to 

continue operations after a disruption or in presence of continuous stress [98,99]. In 

economics, resilience can be improved by adding redundancy or increasing 
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flexibility. While investments in redundancy means a pure increase in cost, 

investments in flexibility yields many competitive advantages in day-to-day 

operations [98]. Of particular interest here is the characterization of a resilient 

organization with the following three steps within the context of a perturbation, as 

shown in Figure 2-4 [100]. Firstly, the organization should continuously monitor key 

state variables indicative of its health condition to anticipate the occurrence of a 

perturbation. Secondly, upon the occurrence of a perturbation, the system should 

conduct the situation assessment and identify an optimal way to reorganize itself and 

keep operations. Thirdly, after the occurrence of a perturbation, the organization 

should analyze various alternative ways of functioning and learn from the past 

experiences to determine the most relevant state variables for the first step and to 

enhance its capability to cope with perturbations. 

Perturbation

Alert & 
observant

Constantly self-critical 
& inquisitive

Safety planning 
Preparing for 

unexampled threats

Situation assessment,
reorganisation

Evaluation,
learning

Alternative ways of functioning

Adaptation

Figure 2-4 Resilient (Proactive) organization. 

In contrast to the aforementioned developments of resilience in many non-

engineering fields, resilience in engineering design has rarely been studied. One 

possible reason is that PHM, which is essential to make engineered systems resilient, 

has only recently received critical attention from the research community. It is fair to 

say, therefore, that there is still a great need for a theoretical basis that furnishes a 
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better understanding of how engineered systems achieve resilience, as well as enables 

the development of an engineering resilience principle readily applicable to 

engineering design. 
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Chapter 3: Component Reliability Analysis 

Engineered systems are subject to various uncertainties and variabilities such as 

physical uncertainties and variabilities, model errors (or uncertainties) and statistical 

uncertainties. Thus, system reliability analysis, as an essential step in system RBDO, 

must be able to systematically handle these uncertainties and variabilities in 

engineered systems. Component reliability analysis has been recognized as an 

essential element to successfully conducting system reliability analysis. However, 

advanced component reliability analysis methods suffer from either the curse of 

dimensionality or the lack of accuracy. To address this challenge, this research thrust 

identifies two research solutions as: (i) adaptive-sparse polynomial chaos expansion 

(PCE) method, and (ii) asymmetric dimension-adaptive tensor-product (ADATP) 

method. These research solutions are detailed in subsequent sections. 

3.1 Adaptive-Sparse Polynomial Chaos Expansion (PCE) Method  

To resolve the curse of dimensionality in the PCE method, as identified in the 

literature review, this research presents an adaptive-sparse polynomial chaos 

expansion (adaptive-sparse PCE) method for reliability analysis and design of 

complex engineered systems. To overcome the curse of dimensionality of the PCE 

method, this research first proposes an adaptive-sparse expansion scheme. This 

scheme automatically detects the most significant bivariate terms and adaptively 

builds the sparse PCE with the minimum number of bivariate basis functions. 

Moreover, the adaptive-sparse scheme offers the additional capability of 

automatically adjusting the PCE order to optimize the accuracy of the stochastic 
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response surface. The PCE model resulting from the adaptive-sparse scheme is 

expected to achieve an optimal compromise between the UDR and BDR (more 

accurate than the UDR and more efficient than the BDR). To make the proposed 

method computationally tractable for engineering design, the projection technique 

used in the EDR method is employed to effectively compute the expansion 

coefficients. Moreover, a copula theory is successfully integrated to the proposed 

adaptive-sparse PCE method, which enables the designer to handle nonlinear 

correlation of input random variables. The adaptive-sparse PCE method is expected to 

give good accuracy and efficiency for highly nonlinear responses containing only a 

specific part of bivariate terms with significant interactions.   

3.1.1 Review of Polynomial Chaos Expansion (PCE) Method  

In the following sections, we will model the N-dimensional real random variables 

x = (x1, x2,…, xN)T in a complete probability space (Ω, A, P), where Ω is a sample 

space, A is a σ-algebra on Ω, and P is a probability measure function P: A → [0, 1]. 

Then the probability density function (PDF) of the random variable xi defines a 

probability mapping fi(xi): Γi → R+, where the support Γi is a one-dimensional 

random space of xi . Under the assumption of independence, the probabilistic 

characteristics of the random variables x can be completely defined by the joint PDF 

f(x) = f1(x1)·f2(x2)···fN(xN) with the support Γ = Γ1·Γ2···ΓN. Let g(x) denote a smooth, 

measurable performance function on (Ω, A), which can be treated as a one-to-one 

mapping between N-dimensional space and one-dimensional space g: RN → R. In 

general, the performance function g(x) cannot be analytically obtained, and the 
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function evaluation of g for a given input x requires an expensive computer 

simulation. Therefore, it is important to employ a numerical method for reliability 

analysis that is capable of producing accurate probabilistic characteristics of g(x) with 

an acceptably small number of function evaluations. 

Generalized PCE Method 

The original Hermite polynomial chaos, also termed as the homogeneous chaos, 

was derived from the original theory of Wiener [12] for the spectral representation of 

any second-order stochastic response in terms of Gaussian random variables. To 

improve the expansion convergence rate, Xiu and Karniadakis [13] extended the 

method, under the Askey polynomial scheme, to non-Gaussian random variables 

(e.g., gamma, uniform, and beta). The types of random variables and the 

corresponding orthogonal polynomial families are listed in Table 3-1. In the finite 

dimensional random space Γ, a second-order stochastic response g can be expanded 

in a convergent series of generalized polynomial chaos basis as 
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where ( ) ( ) ( )( )
1 2

, ,...,ψ ζ ζ ζ
nn i i i

x x x  denotes the n-dimensional Askey-chaos of order 

n in terms of the random variables { }
1 2
, ,...,ζ ζ ζ

ni i i . According to the Cameron-Martin 

theorem [105], the polynomial chaos expansion in Eq. (3.1) converges in the L2 sense.  
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Table 3-1 Types of random inputs and corresponding polynomial chaos basis 

 Random variable Polynomial chaos Support 

Continuous 

Gaussian Hermite (-inf, +inf) 

Gamma  
(Exponential) 

Generalized 
Laguerre (Laguerre) 

[0,+inf) 

Beta Jacobi [a,b] 

Uniform Legendre [a,b] 

Discrete 

Poisson Charlier {0,1,…} 

Binomial Krawtchouk {0,1,…,N} 

Negative Binomial Meixner {0,1,…} 

Hypergeometric Hahn {0,1,…,N} 

 

For the purpose of notational convenience, Eq. (3.1) is often rewritten as 

 ( ) ( )( ) { }1 2
0

,       , ,ζ ζ
∞

=

= Φ =∑ …i i

i

g sx ζ x ζ  (3.2) 

where there exists a one-to-one mapping between the polynomial basis functions ψn 

and Φi, and the PCE coefficients si and 
1 ,..., ri i

c .  

The orthogonality of the Askey-chaos can be expressed as 

 2δ   Φ Φ = Φ   i j ij iE E  (3.3) 

where δij is the Kronecker's delta and E[·] is the expectation operator. Considering all 

N-dimensional polynomials of degree not exceeding p gives the truncated PCE as 

follows (with P denoting the number of unknown PCE coefficients): 

 ( ) ( ) { } { }
1

1 2 1 2
0

,       , , , ,   , ,ζ ζ ζ
−

=
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P

i i N N

i

g s x x xx ζ x ζ  (3.4) 

In the above summation, the number of unknown PCE coefficients P is 
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p N p
 (3.5) 

Determination of PCE Coefficients 

In this study, the reliability analysis for the performance function g under random 

inputs x is of our interest. Since the uncertainty of a stochastic response g can be fully 

characterized by the PCE coefficients in Eq. (3.2), an efficient and accurate numerical 

procedure to compute the coefficients is essential for reliability analysis.  

Based on the orthogonality of the polynomial chaos, the projection method 

[106,107] can be used as a non-intrusive approach to compute the expansion 

coefficients of a response. Pre-multiplying both sides of Eq. (3.2) by Φj(ζ) and taking 

the expectation gives the following equation 

 ( ) ( ) ( ) ( )
0

∞

=

 
 Φ = Φ Φ  

 
∑j i i j

i

E g E sx ζ ζ ζ  (3.6) 

Due to the orthogonality of the polynomial chaos, Eq. (3.6) takes the form 
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E g
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In this expression, the denominator is readily obtained in an analytical form, while the 

numerator may require a multi-dimensional integration. This integration may be 

accomplished by the full tensorization of one-dimensional Gaussian quadrature [107], 

the crude MCS [108], or the Smolyak sparse grid [26,27,33,36]. The relative merits 

and disadvantages of these approaches are discussed below: 

Approach 1. The full tensorization of one-dimensional Gaussian quadrature exhibits 

fast convergence for smooth integrand. However, the computational cost grows 
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exponentially with the dimension N: M = M1
N, which is known as the “curse of 

dimensionality”. Here, M denotes the total number of function evaluations and M1 

denotes the number of one-dimensional quadrature points. To prevent large 

integration errors, M1 should be at least equal to the PCE order p. 

Approach 2. The crude MCS is robust and has a convergence rate that is independent 

of the dimension N asymptotically [108]. However, the convergence is very slow (as 

1/ M ). Thus, accurate results require a large number of function evaluations which 

may incur intolerable computational burden, especially for complex engineered 

systems that are computationally intensive.  

Approach 3. The sparse grid collocation based on the Smolyak algorithm [26] offers 

an alternative way for the multidimensional integration [27]. Compared with the fully 

tensorized quadrature, it also achieves fast convergence for smooth integrand but with 

much lower computational cost. Recently, adaptive algorithms [33,36] have been 

developed that further reduce the computational cost. However, the sparse grid 

collocation methods still cannot fully resolve the difficulty induced by the “curse of 

dimensionality”. 

3.1.2 Adaptive-Sparse Scheme 

The aim of this section is to develop an adaptive-sparse scheme for obtaining the 

minimum number of bivariate terms. In order to make the adaptive process 

computationally efficient and convergent, the adaptive-sparse scheme takes 

advantage of the PCE as the projection basis due to the inherent characteristics of 

orthogonal polynomials. For highly nonlinear responses containing only a specific 
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part of bivariate terms with significant interactions, the PCE model resulting from the 

adaptive-sparse scheme is expected to achieve an optimal compromise between the 

UDR and BDR (more accurate than the UDR and more efficient than the BDR).  

This scheme mainly consists of two loops to determine: (outer loop) the number 

(q) of the most significant bivariate terms (denoted as a set B), and (inner loop) the 

optimal expansion order p. The detailed procedures are listed as follows: 

Initialization: (a) Initialize p = 2, q = 0, B = Ø, and set the convergence criteria ε1 

and ε2 for the outer and inner loops, respectively. 

 (b) Compute the values of the performance function g(x) at the 

univariate sample points: g(µ), g(xk
(ik), µk), for ik = 1,2,…, M1, k = 

1,2,…, N, where the superscript ik denotes the corresponding sample 

point for xk, M1 the number of univariate sample points in each 

dimension, and µk the mean vector of input random variables 

excluding xk. 

(c) With the function values obtained in step (b), construct a 2nd order 

PCE by computing the coefficients of univariate polynomial terms 

while setting the other coefficients to zero. The method for computing 

the PCE coefficients are detailed in the subsequent section.  

Outer loop:  (d)  Compute the values of g(x) at the N(N–1)/2 bivariate sample 

points which correspond to N(N-1)/2 pairs of variables: g(xk
t, xl

t, µk,l), 

for k,l = 1,2,…,N, k < l, where µk,l denotes the mean vector of input 

random variables excluding xk and xl. Based on the function values, 

compute the error indicators for all N(N-1)/2 bivariate terms. Note 
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that, for computing the error indicators, we do not require all the 

bivariate sample points that are used to compute the coefficients for 

each bivariate term but only pick one sample point for each bivariate 

term. An error indicator for testing the bivariate interaction between 

k
th and lth

 input variables [xk, xl] is defined as 
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where (u )ĝ (xk
t, xl

t, µk,l) is the functional approximation at (xk
t, xl

t, µk,l) 

by a response approximation method using the function values at the 

univariate sample points. For the response approximation, we use the 

stepwise moving least squares (SMLS) method of which the details 

can be found in the author’s previous work [10]. In this study, we 

apply xk
t = µk + 3σk and xl

t = µl + 3σl, where µk and µl denote the 

means, and σk and σl denote the standard deviations of xk and xl. The 

numerator in Eq. (3.8) can be treated as the absolute univariate 

approximation error induced by the bivariate interaction, while the 

denominator can be treated as a normalization factor. The error 

indicator is a crucial part of the outer loop in the adaptive-sparse 

algorithm. A larger error indicator implies a stronger interaction 

between a given pair of variables. The pairs of variables with stronger 

interaction are given a higher priority in the algorithm since the 

inclusion of the pairs is likely to reduce a numerical error more 

significantly in probability analysis. 
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(e) Add the bivariate term [xk
q+1, xl

q+1] with the (q+1)th largest error 

indicator to the bivariate set: B = B∪ {[xk
q+1, xl

q+1]} and increase the 

number of bivariate terms: q = q + 1. Compute the function values of 

g(x) at the bivariate sample points corresponding to the bivariate term 

[xk
q+1, xl

q+1].  

(f) With the function values obtained in step (e), compute the 

coefficients of bivariate polynomial terms in the constructed PCE 

model. The method for computing the PCE coefficients are detailed in 

the subsequent section. 

Inner Loop: (g.1) If q = 1, we intend to determine the optimum PCE order 

through a convergence analysis. For this purpose, we need an error 

estimate to assess the performance of the constructed pth order PCE 

(or stochastic response surface) ˆ
p

g . We prefer an efficient error 

estimate of which the evaluation only requires the already obtained 

response values at the sample points x(i), for 1 ≤ i ≤ M, where M is the 

total number of sample points. In this study, we use the coefficient of 

determination R2, which can be defined based on the residual sum of 

squares eRSS and total sum of squares eTSS as  
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and 
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We note that the cross-validation-based errors [109], which have been 

widely used in the machine learning technique to evaluate the model 

performance, can also be used as error estimates and deserve future 

studies.  

(g.2) Increase the PCE order: p = p + 1. 

(g.3) Repeat the steps (g.1) and (g.2) until R2 converges to within a 

relative tolerance of ε2.  

Postprocessor: (h) Compute the reliability value based on the constructed PCE 

model. The numerical method for estimating the reliability are 

detailed in the subsequent section.  

 (i) Repeat the steps from (e) to (h) until the value of reliability 

converges to within a relative tolerance of ε1.  

The completion of the adaptive-sparse algorithm entails the optimal determination 

of the set B of bivariate terms and the PCE order p. The resultant PCE model should 

guarantee the most accurate and cost-effective fit among all bivariate PCE models. 

3.1.3 Decomposition-Based Projection Method  

This section presents a decomposition-based projection method for efficiently 

computing the expansion coefficients of an optimum set of uni- and bivariate 

polynomial terms. The proposed method attempts to further reduce the computational 

cost of the projection method.  
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Uni- and Bivariate Dimension Reduction 

Let µi
 = denote the mean vector of input random variables excluding xi, and let 

µ
i1,i2 denote the mean vector of input random variables excluding 

1i
x  and 

2i
x . 

Depending on the levels of the decomposition, the uni- and bivariate decomposed 

responses [9] can be expressed as, respectively, 
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and 
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It is important to note that the univariate decomposed response g1 in Eq. (3.12) 

contains the univariate terms g(xi, µ
i) of any order in the Taylor series expansion and, 

similarly, the bivariate decomposed response g2 in Eq. (3.13) has all bivariate terms in 

the Taylor series expansion. Thus, the approximations in Eqs. (3.12) and (3.13) 

should not be viewed as first- or second-order Taylor series expansion nor do they 

represent a limited degree of nonlinearity in g(x). In fact, the residual error of a 

univariate approximation to a multidimensional integration of a system response over 

a symmetric domain contains only even-order terms of dimension two and higher 

since the integrations of odd-order terms become zeros for a symmetric integration 

domain and was reported to be far less than that of a second-order Taylor expansion 

method for probability analysis [8]. 
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Formulation of Decomposition-Based Projection Method 

To compute the coefficient of any n
th-order univariate polynomial term 

Ψn(ζk(x),…, ζk(x)) in Eq. (3.1), which corresponds to a univariate polynomial term 

Φj(ζk) in Eq. (3.2), the proposed decomposition-based projection method uses the 

univariate decomposed response in Eq. (3.12) [9]. The expansion coefficients can be 

obtained by projecting the univariate terms onto g(x) as 
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Similarly, the coefficient of any nth-order bivariate polynomial term Ψn(ζk(x),…, 

ζl(x)) in Eq. (3.1), which corresponds to a bivariate polynomial term Φj(ζk, ζl) in Eq. 

(3.2), can be computed using the decomposition-based projection method. This 

method makes use of the bivariate decomposed response in Eq. (3.13) [9]. The 

expansion coefficients can be obtained by projecting the bivariate terms onto g(x) as 
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It is noted that Eqs. (3.14) and (3.15) require only one-dimensional and two-

dimensional integrations and are computationally more efficient than performing the 

N-dimensional integration. Thus, the computational cost in calculating the coefficient 

of any uni- or bivariate polynomial term is substantially reduced by using the 

decomposition-based projection method. Similarly, the decomposition-based 

projection can be extended to compute the coefficients of tri- and higher-variate 

polynomial terms. However, the coefficient of any tri- or higher-variate polynomial 

term is treated as zero in this study. This is because of the following two facts: (i) for 

most engineering problems, considering the interaction between two variables (i.e., 

the bivariate interaction) is sufficient to yield very accurate statistical results [9], and 

(ii) the calculations of tri- and higher-variate polynomial coefficients require a 

substantially larger amount of computational effort, which may make the method 

computationally intolerable. 

Numerical Procedure of Decomposition-Based Projection Method 

The numerical integration is required to evaluate the first-order moments in Eqs. 

(3.14) and (3.15). The most straightforward and efficient way is to directly use the 

Gaussian quadrature, where Gauss-Hermite, Gauss-Legendre, and Gauss-Jacobi 

quadrature rules determine the integration points and associated weights for a random 

variable following Gaussian, Uniform, and Beta distributions, respectively. However, 

the direct numerical integration may have instability and inaccuracy problems for 

highly nonlinear performance function g and for high PCE orders while maintaining 

reasonable efficiency. To enhance the stability and accuracy of the one- and two-

dimensional integrations in Eqs. (3.14) and (3.15), we first use the stepwise moving 
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least squares (SMLS) method [10] to construct uni- and bivariate response 

approximations with the response values evaluated at the predefined samples points, 

and then carry out the Gaussian quadrature integrations with a large number of 

integration points (or a large quadrature order) from the approximate response. Note 

that the uni- and bivariate sample points used to construct the response 

approximations should not be confused with the integration points in the Gaussian 

quadrature. Thus, even if the PCE order p is increased, the numbers of uni- and 

bivariate sample points may not necessarily be increased as long as the response 

approximations by the SMLS are sufficiently accurate. We believe this is an 

innovative way to enhance the efficiency in computing the coefficients of high order 

PCE terms. More detailed information regarding the SMLS and Gaussian quadrature 

for integrations can be found in the author’s previous work [10]. 

3.1.4 Copula for Nonlinear Correlation Modeling  

In many structural reliability analysis and design problems, it is highly probable 

that the input random variables such as material properties and fatigue properties are 

correlated [110]. In this case, the reliability analysis and design requires a joint CDF 

for the exact transformation of the correlated random variables into uncorrelated 

standard normal random variables. However, it requires an infinite amount of data to 

acquire the true joint CDF. In contrast, a copula only requires marginal CDFs and a 

dependence structure to formulate an approximate joint CDF. Thus, the selection of 

dependence structure and formulation of the joint CDF can be done with a limited 

amount of data [110].  
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Introduction of Copula 

In statistics, a copula is defined by Roser [111] as “a function that joins or couples 

multivariate joint distribution functions to their one-dimensional marginal distribution 

functions”, or “multivariate distribution functions whose one-dimensional margins 

are uniform on the interval [0,1]”.  

Let F be an N-dimensional cumulative distribution function (CDF) with 

continuous marginal CDFs F1, F2,…, FN. Then according to Sklar’s theorem, there 

exists a unique N-copula C such that 

 ( ) ( ) ( ) ( )( )1 2 1 1 2 2, ,..., , ,...,=
N N N

F x x x C F x F x F x  (3.16) 

It then becomes clear that a copula formulates a joint CDF with the support of 

separate marginal CDFs and a dependence structure. The copula is capable of 

constructing the joint CDF in real applications with different types of marginal CDFs 

or dependence structures. Various general types of dependence structures can be 

represented, corresponding to various copula families, such as Gaussian, Clayton, 

Frank, and Gumbel. Let ui = Fi(xi), i = 1, 2,…, N, a N-dimensional Archimedean 

copula is defined as 

 ( ) ( )1
1 2

1

, , , | α αα −

=

 
= Ψ Ψ 

 
∑�

N

N i

i

C u u u u  (3.17) 

where Ψα denotes a generator function with a correlation parameter α and satisfies the 

following conditions:  

 ( ) ( ) ( ) ( )
2

20
1 0;   lim ;   0;   0α α α α

→
Ψ = Ψ = ∞ Ψ < Ψ >

u

d d
u u u

du du
 (3.18) 

Let Ψα(u) = uα – 1 and N = 2, then we formulate a bivariate Clayton copula as  
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 ( ) ( )
1/

1 2 1 2, | 1
αα αα

−
− −= + −C u u u u  (3.19) 

More detailed information on copula families can be found in References 

[110,111].  

Rosenblatt Transformation 

The Rosenblatt transformation has been used extensively for mapping the 

correlated random variables onto the independent standard normal variables. The 

successive conditioning procedures for a vector of correlated random variables are 

defined as [112] 
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 (3.20) 

where z1, z2,…, zN denote the independent standard random variables after the 

transformation, φ–1(·) denotes the inverse CDF of a standard normal variable, Fi(xi|x1, 

x2,…, xi-1) denotes the CDF of xi conditioned on X1 = x1, X2 = x2,…, Xi-1 = xi-1, and can 

be expressed as 

 ( )
( )

( )
1 2 1

1 2 1
1 1 2 1

, , , ,
| , , ,

, , ,
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−∞

−

− −

=
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i i

f x x x d
F x x x x

f x x x
 (3.21) 

where fi(x1, x2,…, xi) denotes the marginal joint PDF of x1, x2,…, xi.  

To use the Rosenblatt transformation for the purpose of reliability analysis and 

design, the joint CDF of input random variables should be available. However, it is 

very difficult to obtain the joint CDF in real applications. In contrast, a copula can 

easily formulate an approximate joint CDF based on separate marginal CDFs and 
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correlation parameters, which can be practically obtained from limited experimental 

data [110]. The Rosenblatt transformation for a bivariate copula is given as 

 
[ ] ( )

( ) ( ) ( )( )
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1 1
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where 
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 (3.23) 

After the Rosenblatt transformation, the independent standard random variables 

are used as the Gaussian input variables for the generalized PCE with Hermite 

polynomial basis. A vehicle side-crash example in the case study section illustrates 

the feasibility of the proposed method. 

3.1.5 Reliability and Sensitivity Analysis 

Reliability Analysis  

Once the uni- and bivariate PCE coefficients are calculated, an approximate 

function of the original implicit performance function g is obtained as 

 ( ) ( ) ( )( ) ( ) ( )( ),

1 , 1;

ˆ + ,ζ ζ ζ
= = <

= + Φ Φ∑∑ ∑ ∑
N N

k k l

j j k j j k l

k j k l k l j

g g s sx µ x x x  (3.24) 

The above expression can be viewed as an explicit mapping ĝ : RN → R, which 

approximates the exact implicit mapping g: RN → R. Thus, any probabilistic 

characteristics of g(x), including statistical moments, reliability, and PDF, can be 
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easily estimated by performing MCS. For example, any rth moment can be calculated 

as 

 
( ) ( )

( )( ) ( )( )
1

ˆ

1
ˆ ˆlim
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=

≅

= =

∫

∑
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kr r
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m g f d

E g g
ns

x x x

x x
 (3.25) 

where mr is the rth moment of the performance function g; f(x) is the joint PDF; x(k) is 

the kth realization of x; and ns is the sampling size. It is noted that, although MCS is 

used to compute the moments due to its convenience, it is not required since moments 

of a PCE can be analytically obtained. Low-order moments (e.g., mean and variance) 

have simple analytical forms while high-order moments, for which orthogonality 

cannot be fully exploited, possess complicated forms. For reliability calculation, let us 

define an approximate safe domain for the performance function g as 

 ( ){ }ˆ ˆ: 0Ω = <S gx x  (3.26) 

Therefore, the reliability R can also be estimated by performing MCS as 
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where I[·] is an indicator function of safe or fail state such that 

 ( )( )
( )
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It should be noted that the MCS performed here is inexpensive because it employs 

the explicit representation function in Eq. (3.24).  
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Probabilistic Sensitivity Analysis 

In reliability-based design optimization (RBDO), probabilistic sensitivity analysis 

is required to identify the effect of the change in the parameters of random variables 

upon the change in reliability or moments. Since MCS is used for evaluating the 

statistical properties (e.g., rth moment, reliability) of a response in the adaptive-sparse 

PCE method, this study computes the probabilistic sensitivity of the response with 

respect to a random variable using a finite difference method (FDM). The FDM uses 

the original and perturbed values of moments or reliabilities to computes their 

sensitivities.  

The sensitivity of any rth moment and reliability with respect to the jth element θj 

(e.g., µ, or σ, etc.) in a vector of deterministic distribution parameters θ is computed 

using Eqs. (3.29) and (3.30), respectively. 

 
( ) ( ) ( )θ θ θ

θ θ

+ ∆ −∂
≅

∂ ∆

r j j r jr

j j

m mm θ
 (3.29) 

 
( ) ( ) ( )θ θ θ

θ θ

+ ∆ −∂
≅

∂ ∆

j j j

j j

R RR θ
 (3.30) 

where mr(θ) is the rth moment of the constraint G (or the cost function C); ∆θj is the 

perturbed value of θj. A perturbation size of 0.1% is employed in this study. It is 

noted that, for computing a perturbed moment or reliability, an extra MCS based on 

the approximate response model in Eq. (3.24) is used without extra computational 

cost. For the extra MCS, the random number seeds for the original MCS should be 

reused to reduce numerical noise and obtain a stable sensitivity estimate. As an 

alternative to the FDM, the score function can also be used to compute the 

probabilistic sensitivities [113] and we observed similar performance.  
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3.1.6 Computational Procedure 

The overall computation procedure is shown in Figure 3-1. If nonlinear 

correlation exists between the random inputs x, the copula is employed to model the 

joint PDF f(x) and the Rosenblatt transformation to transform x to independent 

standard normal variables z. The computations of PCE coefficients sk 

j  in Eq. (3.14),  

require the response values (i.e., values of the performance function) at the univariate 

sample points: g(µ), g(xk
(i

k
), µk), for ik = 1,2,…, M1, where the superscript ik denotes 

the corresponding sample point for xk and M1 the number of univariate sample points 

in each dimension. The computations of PCE coefficients sk,l 

j  in Eq. (3.15) require the 

response values at the bivariate sample points: g(xk
(i

k,l
), xl

(i
k,l

), µk,l), for ik,l = 1,2,…, M2, 

where the superscript ik,l denotes the corresponding bivariate sample points for the 

bivariate term [xk, xl], and M2 the number of bivariate sample points for each bivariate 

term. Thus, the total number of function evaluations for the adaptive-sparse PCE with 

q bivariate terms is q(M2 – 1) + M1(M1 – 1)/2 + (M1 – 1)N + 1. Below are several 

important remarks regarding the properties of the adaptive-sparse PCE. 

Remark 1. The N-variate, pth-order adaptive-sparse PCE is a finite sum of uni- and 

bivariate polynomial terms up to the p
th order, with the coefficient of any tri- or 

higher-variate polynomial term being zero. Thus, if the tri- and higher-variate 

interactions are negligible, the adaptive-sparse PCE gives an accurate approximation 

of the function g, with a lower computational effort than the conventional PCE. 

Otherwise, numerical error in the adaptive-sparse PCE may be stacked up due to the 

tri- and higher-variate interactions. More detailed error analysis will be given in the 

subsequent section. 
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Figure 3-1 Flowchart of the adaptive-sparse algorithm. 

 Remark 2. The uni- and bivaraite dimension reduction methods have been 

extensively studied for reliability analysis and design by previous researchers [8-

10,114,115]. However, no attempt has been made to optimize the number of the 

bivariate terms to be considered for probability analysis. The common approach 

either depends on the univariate dimension reduction (UDR) [8,10,114] or makes 

comparison with its bivairate counterpart, bivariate dimension reduction (BDR) 

[9,115]. The method developed here uses the error indicator in Eq. (3.8) to adaptively 

add the bivariate terms to the PCE model until a convergence criterion is achieved. 

This adaptive process takes advantage of the PCE as the projection basis. The 

inherent characteristics of orthogonal polynomials make the adaptive process 
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computationally efficient and convergent. Therefore, we argue that the adaptive-

sparse PCE achieves an optimal compromise between the UDR and BDR (more 

accurate than the UDR and more efficient than the BDR).  

Remark 3. In addition to the Rosenblatt transformation, alternative transformation 

techniques (e.g., Nataf transformation [116]) are also capable of transforming 

Gaussian variables with nonlinear correlation to independent Gaussian variables. In 

the current study, the non-Gaussian variables with nonlinear correlation are all 

transformed to independent Gaussian variables. However, it may also be possible to 

transform the original random variables to independent non-Gaussian variables (e.g., 

gamma, beta) with distribution types supported by the PCE. Thus, the selections of an 

appropriate transformation technique and procedure are worthy of future studies.  

Remark 4. Through extensive testing with many mathematical and engineering 

examples, we observed that the parameter setting ε1 = 0.01 and ε2 = 0.001 achieves a 

near-optimum compromise between the accuracy and efficiency. Thus we intended to 

make this setting as a guideline for implementing the algorithm in most engineering 

cases. More conservative criteria may give higher accuracy but require more 

computational effort. Thus, for a specific problem, the optimum ε1 and ε2 may vary 

depending on the requirements on the accuracy and efficiency.   

3.1.7 Error Decomposition Scheme 

The proposed adaptive-sparse PCE method integrates the adaptive-sparse scheme 

and the decomposition-based projection method with the PCE method. It is obvious 

that the approximation and numerical schemes produce associated errors in the 

proposed adaptive-sparse PCE method. This study therefore analyzes the 
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approximation and numerical errors in the proposed method, which provides insights 

into identifying the most appropriate applications for the proposed method. There are 

three primary error sources: (i) a PCE truncation error (εP), (ii) an error due to a 

univariate decomposition (εU), (iii) an error due to a bivariate decomposition (εB), and 

(iv) an aliasing error of approximating the first-order moments in Eqs. (3.14) and 

(3.15) via the SMLS and Gaussian quadrature integration. The total error is a mean-

squares error of the N-variate, p
th-order adaptive-sparse PCE with the set B of 

bivariate terms and can be decomposed as 
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 (3.31) 

The detailed derivation of the first three error terms in Eq. (3.31) can be found in 

Appendix A.  

3.1.8 Case Studies for Adaptive-Sparse PCE 

Three mathematical and engineering examples are given in this section to 

demonstrate the effectiveness of the adaptive-sparse PCE method. The first two 

examples were used for studying the computational accuracy and efficiency of the 

proposed method for uncertainty quantification and reliability analysis. For 

comparison purpose, we also employ FORM as a classic reliability analysis method, 

and the univariate DR (UDR) method (with the Pearson PDF generation system) as a 

representative of the recently developed moment-based reliability methods [8-10]. In 

the last example, we carried out reliability-based robust design optimization 
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(RBRDO) for a lower control arm in a high mobility, multipurpose, wheeled vehicle 

(HMMWV). This case study demonstrates the feasibility of the proposed method in 

complex product or process design. 

V6 Gasoline Engine Power Loss: Bimodal PDF 

This example is the V6 gasoline engine problem studied by Lee [25]. The 

performance function considered in this example is the power loss due to the friction 

between the piston ring and the cylinder liner, oil consumption, blow-by, and liner 

wear rate. A ring/liner subassembly simulation model was used to compute the power 

loss. The simulation model has four input parameters, the ring surface roughness x1, 

liner surface roughness x2, linear Young’s modulus x3 and linear hardness x4. Of the 

total four inputs, the first two, ring surface roughness x1 and linear surface roughness 

x2, were treated as random inputs following normal distributions with mean 4.0 and 

6.119 µm, respectively, and with unit variance. The other two inputs, linear Young’s 

modulus x3 and linear hardness x4, were treated as deterministic inputs fixed at 80 

GPa and 240 BHV, respectively. It has been shown in [25] that the power loss has a 

bimodal PDF. To predict the bimodal PDF, the adaptive-sparse PCE used M1 = 20 

and M2 = 20. As shown in Table 3-2, the adaptive-sparse expansion scheme was 

converged with p = 25 and q = 1. Figure 3-2 shows the PDF approximations by the 

16th, 20th and 25th order PCEs with full tensorized Gaussian quadrature (M1 = 17 for p 

= 16, M1 = 21 for p = 20, and M1 = 26 for p = 25), UDR and adaptive-sparse PCE. 

Both the adaptive-sparse PCE and 20th order PCE with Gaussian quadrature produce 

accurate approximations for the left peak and tail regions of the PDF. The 16th order 

PCE cannot accurately approximate this bimodal PDF (see Figure 3-2a) while the 25th 



 

 56 
 

order PCE gives the most accurate solution. As shown in Figure 3-2b, the UDR fails 

to represent the irregular shape of this PDF. The comparison results in Table 3-3 

suggest that the adaptive-sparse PCE method is more accurate than the UDR method, 

particularly for system responses with strong bivariate interactions. The error in the 

probability estimation by FORM is due to the nonlinearity of the power loss function. 

The computational cost by the adaptive-sparse PCE method is much lower than that 

by the conventional PCE method with full tensorized Gaussian quadrature. 

Table 3-2 Adaptive-sparse process of the adaptive-sparse PCE for the V6 engine 
example 

 
PCE order 

(p) 
No. of bivariate 

terms (q) 
No. FE R

2 Reliability 
Relative 
error (%) 

Step 1 2 0 41 0.98842 0.00687 26.987 

Step 2 2 1 61 0.98810 0.00717 32.532 

Step 3 3 1 61 0.97922 0.00468 13.494 

Step 4 ~ 23 … … … … … ... 

Step 24 24 1 61 0.98197 0.00547 1.109 

Step 25 25 1 61 0.98273 0.00547 1.109 

Table 3-3 Probability analysis results for the V6 engine example 

 
adaptive-sparse 
PCE (p = 25) 

MCS 
PCE (p = 20, 
Gauss Quad) 

20N+1 
UDR 

FORM 

Mean (kW) 0.3935 0.3935 0.3934 0.3935 - 

Std. dev. (kW) 0.0315 0.0310 0.0311 0.0314 - 

Skewness -0.5527 -0.5883 -0.5735 -0.5393 - 

Kurtosis 3.0249 3.0828 3.0599 3.0974 - 

Pr(PL < 0.3) 0.0056 0.0054 0.0054 0.0048 0.0057 

No. FE 61 100,000    441 41 15 
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(a) 

 

(b) 

Figure 3-2 PDF approximations by the PCEs (a), adaptive-sparse PCE and UDR 
(b) for the V6 engine example 

 

Side-Impact Crash Problem: Nonlinear Correlation 

Vehicle side-impact responses [117] are considered for system performances with 

statistical nonlinear correlation modeled by a copula theory [110,111]. The properties 

of the design and random variables are shown in Table 3-4. This example considered 

the velocity of a front door at B-pillar. The failure is defined when the velocity 

exceeds the threshold value 15.7. Thus, the system performance can be expressed as 

 ( )
1 4 2 3 5 6

2
5 7 7

16.45 0.489 0.843 0.0432
15.7

0.0556 0.000786

− − + 
= − 

− − 

x x x x x x
g

x x x
x  (3.32) 

In the study, the random variables x6 and x7 with the maximum variation were 

assumed to have a statistical nonlinear correlation described by a Clayton copula, as 

shown in Figure 3-3a. The rank correlation coefficient was used to quantify the 

nonlinear correlation. In this case, we assumed the rank correlation coefficient 

Kendall’s τ to be 0.75 and the corresponding copula parameter to be 6.0. As discussed 

in Section 3.1.4, the Rosenblatt transformation is required to transform correlated 

input variables into uncorrelated standard normal variables. Using M1 = 4 and M2 = 8, 
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the adaptive-sparse expansion scheme was converged with p = 3 and q = 1 and the 

bivariate term considered was [x6, x7], which were nonlinearly correlated. To illustrate 

the effect of statistical nonlinear correlation on the system response, the PDFs for 

both correlated and uncorrelated cases are shown in Figure 3-3b. It shows that the 

nonlinear correlation affects the PDF of the system performance significantly and that 

the adaptive-sparse PCE accurately predicted the peak and tail regions of the PDF.  

Table 3-4 Input random variables for the side impact example 

Random 
input 

Distri. type Mean Std. dev. 
Lower 
bound 

Upper 
bound 

Mode 

x1 Beta 1.500 0.050 1.000 1.800 - 

x2 Uniform - - 0.850 1.150 - 

x3 Uniform - - 0.699 0.999 - 

x4 Uniform - - 0.850 1.150 - 

x5 Triangular - - 0.327 0.363 0.345 

x6 Normal 0 10.000 - - - 

x7 Normal 0 10.000 - - - 
 
 
 

 

(a) 

 

(b) 

Figure 3-3 Scatter plot of input variables x6 and x7 (a), and PDF results (b) 
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Quantitative results are summarized in Table 3-5. To further study the effects of 

different correlation coefficients on the reliability estimation, we plotted in Figure 3-4 

the reliabilities for increasing values of Kendall’s τ. As shown in the figure, the 

correlation coefficients significantly affect the reliabilities and the adaptive-sparse 

PCE maintains consistent accuracy within ± 0.01 at all reliability levels.  

Table 3-5 Probability analysis results for the side impact example (τ = 0.75) 

 adaptive-sparse PCE (p = 3) MCS 

Mean -0.4766 -0.4813 

Std. dev.  0.1408 0.1520 

Skewness -1.7109 -1.7402 

Kurtosis 10.2690 9.2106 

Pr(g < 0) 0.9496 0.9437 

No. FE 57 1,000,000 

 

 

Figure 3-4 Reliabilities for increasing values 
of Kendall’s τ 
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Lower Control A-Arm: RBRDO against a Fatigue Failure 

Vehicle suspension systems experience intense loading conditions throughout 

their service lives. Control arms act as the backbone of the suspension system, 

through which the majority of these loads are transmitted [118]. Therefore, it is 

crucial that control arms be highly reliable while its mass is minimized. The lower 

control-arm was modeled with plane stress elements using 54,666 nodes, 53,589 

elements, and 327,961 DOFs, where all welds were modeled using rigid beam 

elements. Hyper-Works 8.0 was used for FE modeling and design parameterization. 

The loading and boundary conditions are shown in Figure 3-5a. The loading was 

applied at the ball-joint (point D) in three directions, and the boundary conditions 

were applied to simulate the bushing joints (points A and B) and the joint with a 

shock absorber and spring assemble (point C). This HMMWV lower control-arm 

model was used for RBRDO using the adaptive-sparse PCE method. 

RBRDO Formulation  

From a worst-case scenario analysis, 91 constraints (G1 to G91) were defined in 

several critical regions using the von Mises stress, as shown in Figure 3-6. With 91 

stress constraints, the RBRDO is formulated as  

 ( )
( ) ( )

Minimize     

;
Subject to  Pr ; 1 0 ,  1, ,91
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 (3.33) 

where, the objective function Q is the summation of the mean µm and standard 

deviation σm of the mass; x is the random vector; d = µ(x) is the design vector; si is 

the von Mises stress of the ith constraint; sy is the yield stress and was set to 60.9 ksi 
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for any constraint; Ri
t is the target reliability level and was set to 99.87% for any 

constraint, which corresponds to a target reliability index βi
t = 3.0. The seven design 

variables are the thicknesses of the seven major components of the control arm, as 

shown in Figure 3-5b. Three load variables (not design variables) are considered as 

random noisy variables. The statistical information of these random and design 

variables is summarized in Table 3-6 and Table 3-7, respectively.  
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(b) 

Figure 3-5 Three random load variables (a) and seven design variables (b) 

 

 

 

 

 

Figure 3-6 Ninety-one critical constraints of the lower control A-arm model. 
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Table 3-6 Random force variables for the lower control A-arm model 

Random variable Distri. type Mean Std. dev. 

FX Normal 1900 95 

FY Normal 95 4.75 

FZ Normal 950 47.5 

 

Table 3-7 Design variables for the lower control A-arm model 

Design variable Distri. type Lower bound Initial des. Upper bound Std. dev. 

x1 Normal 0.100 0.120 0.500 0.006 

x2 Normal 0.100 0.120 0.500 0.006 

x3 Normal 0.100 0.180 0.500 0.009 

x4 Normal 0.100 0.135 0.500 0.007 

x5 Normal 0.150 0.250 0.500 0.013 

x6 Normal 0.100 0.180 0.500 0.009 

x7 Normal 0.100 0.135 0.500 0.007 

 

 Optimization results  

The adaptive-sparse PCE method with 4N + 1 (= 41) FE analyses was carried out 

to evaluate the quality function, 91 reliabilities, and their sensitivities at any design 

iteration, without considering the bivariate polynomial basis functions. The 

sensitivities of the quality function and reliabilities with respect to the seven design 

variable were computed by using a finite difference method (FDM) at each design 

Iteration. The perturbed values of the quality function and reliabilities were estimated 

based on approximate stochastic response surfaces (PCE) with perturbed design 
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variables, without requiring gradients of the original mass or stress functions. A 

perturbation size of 0.1% is employed in this study.  

The design optimization problem was solved using a gradient-based optimization 

technique (e.g., sequential quadratic optimization). The histories of the design 

parameters, objective function, and reliabilities for significant constraints G6, G80 and 

G87 are shown in Table 3-8. At the initial design, the constraints G6 and G80 severely 

violated the reliability requirement. After seven design iterations, the optimum design 

was found where all the reliability requirements were satisfied. Overall, the adaptive-

sparse PCE method required 287 FE simulations for RBRDO. After the optimization, 

the direct MCS with 5,000 random samples was employed to verify the reliability 

results at the optimum design. The reliabilities of constraints G6, G80 and G87 were 

estimated by the MCS as 99.71%, 99.88%, and 99.84%, respectively, and all the other 

constraints were confirmed with 100% reliabilities. 

Table 3-8 Design history of the lower control A-arm model 

Iter. 
Design Variables 

R6 R80 R87 Obj. 
x1 x2 x3 x4 x5 x6 x7 

0 0.120 0.120 0.180 0.135 0.250 0.180 0.135 0.3235 0.0050 1.0000 31.473 

1 0.100 0.142 0.150 0.164 0.150 0.500 0.100 0.9989 0.9970 0.9620 32.044 

2 0.100 0.140 0.169 0.161 0.150 0.500 0.325 0.9988 0.9982 0.9998 32.875 

3 0.100 0.140 0.160 0.162 0.150 0.500 0.336 0.9982 0.9986 0.9963 32.513 

4 0.100 0.140 0.164 0.164 0.150 0.500 0.228 0.9988 0.9989 0.9991 32.763 

5 0.100 0.140 0.162 0.164 0.150 0.500 0.224 0.9986 0.9984 0.9982 32.607 

6 0.100 0.140 0.163 0.164 0.150 0.500 0.211 0.9985 0.9988 0.9991 32.697 

7 0.100 0.140 0.164 0.164 0.150 0.500 0.210 0.9987 0.9989 0.9991 32.717 

Opt 0.100 0.140 0.164 0.164 0.150 0.500 0.210 0.9987 0.9989 0.9991 32.717 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-7 Stress comparisons of initial and optimum design: (a) G6 at initial design, 
(b) G6 at optimum design, (c) G80 at initial design, (d) G80 at optimum design 

 
The stress contours at the initial and optimum designs for constraints G6 and G80 are 

shown in Figure 3-7. It can be seen in both constraints that the high stress areas are 

greatly reduced by the RBRDO process. 

3.1.9 Summary 

In the first part of this chapter, the adaptive-sparse PCE method is proposed for 

efficient component reliability analysis involving high nonlinearity or large 

dimension. The adaptive-sparse PCE method combines four ideas and methods: (1) 

an adaptive-sparse scheme to determine the number (q) of the most significant 

bivariate terms and PCE order (p) in the PCE model; (2) an efficient decomposition-

based projection method using the SMLS method; (3) the integration of the copula 
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system to handle nonlinear correlation of input random variables, and (4) the 

systematic error decomposition analysis in the proposed method. It was found in 

many examples that the adaptive-sparse scheme and decomposition-based projection 

method achieves greater accuracy and efficiency than other probability/reliability 

methods, including FORM/SORM and moment-based reliability methods. This high 

accuracy can be attributed to the consideration of significant bivariate response 

components and the accurate integration scheme by the SMLS method. The adaptive-

sparse PCE method can also approximate a multi-modal PDF. Moreover, the 

proposed method is stable, unlike other probability/reliability methods, since it does 

not require a distribution generation system.  

3.2 Asymmetric Dimension-Adaptive Tensor-Product Method 

As mentioned in the literature review, the stochastic collocation (SC) method 

achieves great improvement in reducing the curse of dimensionality encountered in 

other advanced reliability analysis methods. To further enhance the computational 

efficiency of the SC method, this research presents an asymmetric dimension-

adaptive tensor-product (ADATP) method. The proposed method leverages three 

ideas: (i) an asymmetric dimension-adaptive scheme to efficiently build the tensor-

product interpolation considering both directional and dimensional importance, (ii) a 

hierarchical interpolation scheme using either piecewise multi-linear basis functions 

or cubic Lagrange splines, (iii) a hierarchical surplus as an error indicator to 

automatically detect the highly nonlinear regions in a random space and adaptively 

refine the collocation points in these regions. The proposed method has three distinct 

features for reliability analysis: (a) automatically detecting and adaptively 
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reproducing tri- and higher-variate interactions, (b) greatly alleviating the curse of 

dimensionality, and (c) no need of response sensitivities. The ADATP method is 

expected to perform accuracy and efficient reliability analysis for highly nonlinear 

responses with significant tri- and higher-order interactions. 

3.2.1 Review of Stochastic Collocation methods  

Great attention has been paid to the stochastic collocation method for 

approximating a multi-dimensional random function due to its strong mathematical 

foundation and ability to achieve fast convergence for interpolation construction. This 

section reviews the stochastic collocation methods using the tensor-product grid, the 

conventional and generalized sparse grids, and the hierarchical interpolation scheme 

using multivariate hierarchical basis functions.  

In what follows, we will model the N-dimensional real random variables x = (x1, 

x
2,…, xN)T in a complete probability space (Ω, A, P), where Ω is a sample space, A 

is a σ-algebra on Ω, and P is a probability measure function P: A → [0, 1]. Then the 

probability density function (PDF) of the random variable x
i defines a probability 

mapping fi(x
i): Πi → R+, where the support Πi is a one-dimensional random space of 

x
i. Under the assumption of statistical independence, the probabilistic characteristics 

of the random variables x can then be completely defined by the joint PDF f(x) = 

f1(x
1)·f2(x

2)·····fN(xN) with the support Π = Π1·Π2·····ΠN. If the assumption of statistical 

independence does not hold, that is, the random variables such as fatigue material 

properties (fatigue ductility coefficient and exponent) are statistically dependent, a 

copula  [110,111] can be employed to select an appropriate dependence structure and 
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formulate a joint CDF of the random variables based on available input data, which 

then allows the use of the Rosenblatt transformation [112] to transform the dependant 

random variables into independent standard normal random variables. A numerical 

investigation on how to deal with dependant random variables is provided in the 

subsequent case study section. Since the construction of an interpolation in the 

stochastic collocation method often requires a specially bounded support Γ = [0, 1]N 

of the random variables x, we first truncate any unbounded one-dimensional random 

space Πi (e.g. in the case of a Gaussian random variable) to a bounded one Γi
* = [ci, 

di] that achieves a nearly full coverage of Πi and then map any truncated one-

dimensional support [ci, di] to [0, 1], resulting in a bounded hypercube Γ = [0, 1]N. Let 

g(x) denote a smooth, measurable performance function on (Ω, A), which can be 

treated as a one-to-one mapping between the transformed N-dimensional random 

space and one-dimensional space g: [0, 1]N → R. In general, the performance 

function g(x) cannot be analytically obtained, and the function evaluation of g for a 

given input x requires an expensive computer simulation. Therefore, it is important to 

employ a numerical method for reliability analysis that is capable of producing 

accurate probabilistic characteristics of g(x) with an acceptably small number of 

function evaluations.  

Classical Stochastic Collocation: Tensor-Product Grid 

The stochastic collocation method basically approximates the performance 

function g using N-dimensional interpolating functions with performance function 

values at a finite number of collocation points Θ = {xj | xj ∈  Γ, j = 1,…, MT}. 

Suppose that we can obtain the performance function value g(xj) at each collocation 
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point xj. We then aim at building an interpolation or surrogate model of the original 

performance function g by using the linear combinations of these function values 

g(xj). The sampling process to construct this interpolation can be accomplished by 

using the tensor-product grid, conventional sparse grid based on the Smolyak 

algorithm [26], or generalized sparse grid based on the dimension-adaptive tensor-

product algorithm [33]. We begin by constructing the interpolation with the tensor-

product grid, or the tensor-product of one-dimensional interpolation formulas.  

In the one-dimensional case (N = 1), we can construct the following one-

dimensional interpolation 
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j

U g a g x  (3.34) 

with a set of support nodes 

 [ ]{ }| 0,1 ,   1,2,...,= ∈ =i i i

j j iX x x j m  (3.35) 

where i∈N is the interpolation level, aj
i∈

C([0,1]) the j
th interpolation nodal basis 

functions, xj
i the j

th support nodes and mi the number of support nodes in the 

interpolation level i. Note that, by following the descriptions in References 

[31,34,35], we use the superscript i to denote the interpolation level during the 

development of stochastic collocation methods. Two widely used nodal basis 

functions are piecewise multi-linear basis functions and Lagrange polynomials. Here 

we will briefly describe the fundamentals of piecewise multi-linear basis functions. 

To achieve faster error decay, the Clenshaw-Curtis grid with equidistant nodes is 

often used for piecewise multi-linear basis functions [34]. In the case of a univariate 

interpolation (N = 1), the support nodes are defined as 
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The resulting set of the points fulfill the nesting property Xi ⊂ Xi+1 that is very useful 

for the hierarchical interpolation scheme detailed later. Then the univariate piecewise 

multi-linear basis functions, supported by the Clenshaw-Curtis grid, can be expressed 

as [34] 
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for i > 1. More detailed information on the one-dimensional interpolation can be 

found in [34].  

Applying a sequence of formulas in Eq. (3.34) on the original performance 

function g in a nested form for all N dimensions, we can easily derive the tensor-

product of multiple one-dimensional interpolation formulas as the following multi-

dimensional interpolation formula 
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where the superscript ik, k = 1,…, N, denotes the interpolation level along the k
th 

dimension, kiU are the interpolation functions with the interpolation level ik along the 

k
th dimension and the subscript jk, k = 1,…, N, denotes the index of a given support 

node in the kth dimension. The number of function evaluations required by the tensor-

product formula reads  
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 1 2⋅= ⋅ ⋅�T NM m m m  (3.39) 

Suppose that we have the same number of collocation points in each dimension, i.e., 

m1 = m2 = ··· = mN ≡ m, the total number of tensor-product collocation points is MT = 

m
N. Even if we only have three collocation points (m = 3) in each dimension, this 

number (MT = 3N) still grows very quickly as the number of dimensions is increased 

(e.g., MT = 310 ~ 6×104, for N = 10). Thus, we need more efficient sampling schemes 

than the tensor-product grid to reduce the amount of computational effort for the 

multi-dimensional interpolation. The search for such sampling schemes has resulted 

in sparse grid methods of which the fundamentals will be briefly introduced in 

subsequent sections. 

Smolyak Algorithm: Conventional Sparse Grid 

Compared to the classical tensor-product algorithm, the Smolyak algorithm 

achieves an order of magnitude reduction in the number of collocation points while 

maintaining the approximation quality of the interpolation by imposing an inequality 

constraint on the summation of multi-dimensional indices [26]. This inequality leads 

to special linear combinations of tensor-product formulas such that the interpolation 

error remains the same as for the tensor-product algorithm. 

The Smolyak formulas A(q, N) are special linear combinations of tensor-product 

formulas. Using tensor-products of one-dimensional interpolation functions, the 

Smolyak algorithm constructs a sparse multi-dimensional interpolation as [28] 
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where i = (i1,…, iN) is the multi-index, and |i| = i1 + … + iN. The above formula 
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indicates that the Smolyak algorithm builds the multi-dimensional interpolation by 

considering one-dimensional functions of interpolation levels i1,…, iN under the 

constraint that the sum of these interpolation levels lies within the range  [q – N + 1, 

q]. With the incremental interpolant, ∆i = Ui – Ui-1, U0 = 0, the Smolyak formulas can 

be equivalently written as [28] 
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The above formulas suggest that the Smolyak algorithm improves the interpolation by 

utilizing all the previous interpolation formulas Aq–1,N and the current incremental 

interpolant with the order q. If we select the sets of support nodes in a nested fashion 

(i.e., X
i ⊂ X

i+1) to obtain recurring points (e.g., the Clenshaw-Curtis grid) when 

extending the interpolation level from i to i + 1, we only need to compute function 

values at the differential grids that are unique to Xi+1, X∆
i+1 = Xi+1\Xi. In such cases, to 

build a sparse multi-dimensional interpolation with the order q, we only need to 

compute function values at the nested sparse grid 
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where ∆Hq,N denotes the grid points required to increase an interpolation order from q 

– 1 to q.  

Although the Smolyak algorithm greatly reduces the number of collocation points 

for the multi-dimensional interpolation compared to the tensor-product algorithms, 

there is still possibility of further reducing the number of function evaluations in 
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cases where the performance function exhibits different degrees of nonlinearity in the 

stochastic dimensions. To achieve such a reduction, one must adaptively detect the 

dimensions with higher degrees of nonlinearity and assign more collocation points to 

those dimensions. This can be accomplished by using the dimension-adaptive tensor-

product algorithm, which is detailed in the next subsection. 

Dimension-Adaptive Tensor-Product Algorithm: Generalized Sparse Grid 

For a given interpolation level l, the conventional sparse grid requires the index 

set Il,N = {i | |i| ≤ l + N} to build the interpolation A(l + N, N). If we loosen the 

admissibility condition on the index set, we can construct the index set of the 

generalized sparse grid 33. An index set I is called admissible if for all i∈I, 

   for 1 ,  1− ∈ ≤ ≤ >k kk N ii e I  (3.43) 

Here, ek is the kth unit vector. This admissibility condition still satisfies the telescopic 

property of the incremental interpolant ∆i = Ui – Ui-1. Thus, we can take advantage of 

the previous interpolation to construct a better interpolation by just sampling the 

differential grids that are unique to the finer interpolation, as shown in Eqs. (3.41) and 

(3.42). In each step of the algorithm, an error indicator is assigned to each multi-index 

i. The multi-index it with the largest estimated error is selected for an adaptive 

refinement, since possibly a larger error reduction can achieved. The admissible 

indices in the forward neighborhood of it are added to the index set I. The forward 

neighborhood of an index i can be defined as  

 ( ) { }F ,  1= + ≤ ≤
k

k NI i i e  (3.44) 

In each step, the newly added indices are called active indices and grouped as an 

active index set IA, whereas those indices whose forward neighborhood have been 
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refined are called old indices and grouped as an old index set IO. The overall index set 

I comprises of the active and old index sets: I = IA∪ IO. For more details of the 

dimension-adaptive algorithm, readers are referred to References [33] and [34]. 

It is noted that, in the dimension-adaptive algorithm, the generalized sparse grid 

construction allows for an adaptive detection of the important dimensions and thus a 

more efficient refinement compared to the conventional sparse grid interpolation 

[24,25]. However, in engineering practice, not only different dimensions but also two 

opposite directions (positive and negative) within one dimension often demonstrate a 

large difference in response nonlinearity. In such cases, it is desirable to place more 

points in the direction with higher nonlinearity, and the dimension-adaptive algorithm 

may not be appropriate for this purpose.   

Hierarchical interpolation scheme using multivariate hierarchical basis functions  

For the dimension-adaptive interpolation, the hierarchical interpolation scheme 

provides a more convenient way for error estimation than the nodal interpolation 

scheme [34]. Here, we start with the derivation of hierarchical interpolation formulae 

in the case of the univariate interpolation, which takes advantage of the nested 

characteristic of grid points (i.e., X
i ⊂ X

i+1). Recall the incremental interpolant 

presented earlier, ∆i = Ui – Ui-1. Based on Eq. (3.34) and Ui-1(g) = Ui(Ui-1(g)), we can 

write [34] 
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Since for all xj
i∈

X
i–1, g(xj

i) – U
i–1(g)(xj

i) = 0, Eq. (3.45) can be rewritten as 
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Since Xi
 ⊂ Xi+1, the number of grid points in X∆

i reads  
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By denoting the jth element of X∆
i by xj

i, Eq. (3.46) can be rewritten as 
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Here, wj
i is defined as the hierarchical surplus, which indicates the interpolation error 

of a previous interpolation at the node xj
i of the current interpolation level i. The 

bigger the hierarchical surpluses, the larger the interpolation errors. For smooth 

performance functions, the hierarchical surpluses approach zero as the interpolation 

level goes to infinity. Therefore, the hierarchical surplus can be used as a natural 

candidate for error estimation and control [34]. Figure 3-8 shows the comparison 

between the hierarchical and nodal basis functions with piecewise linear spline and 

Clenshaw-Curtis grid [34]. Figure 3-9 illustrates the comparison between the 

hierarchical and nodal interpolation. Based on the Smolyak formula in Eq. (3.41), a 

multivariate hierarchical interpolation formula can be obtained as [34] 
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j
a  

with the support nodes ,  1,  2,  3∆∈ =i i

j
x X i (b) for the Clenshaw-Curtis grid. 

( )3
1g x

( )3
2g x

( )3
3g x

( )3
4g x

( )3
5g x

3
1x

3
2x

3
3x

3
4x 3

5x
 

(a) 

2
1w

3
1w

3
2w

1
1w

2
2w

2
1x

3
1x

1
1x

3
2x 2

2x
 

(b) 

Figure 3-9 Nodal (a) and hierarchical (b) interpolations in 1D 

3.2.2 Asymmetric Dimension-Adaptive Tensor-Product Method  

As an attempt to enhance the adaptive feature of the dimension-adaptive 

algorithm, we, for the first time, introduce the concept of the directional sparse grid 

(DSG) which allows for the considerations of both directional and dimensional 

importance. Furthermore, a hierarchical interpolation scheme using cubic Lagrange 

splines is proposed for eliminating numerical inaccuracy of the high-order Lagrange 

interpolation as well as maintaining the smoothness property of the polynomial 
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interpolation. The hierarchical ADATP interpolation and UQ and reliability analysis 

using the proposed ADATP method will also be presented in subsequent sections. 

Directional Sparse Grid (DSG) 

For the construction of the directional sparse grid (DSG), a conventional index i 

in the case of the univariate interpolation is decomposed into positive and negative 

directional index (DI) sets as 

 { }D ,  + −= i iI  (3.50) 

where the positive DI i
+ corresponds to the DSG which belong to the index i and 

whose values are greater than the value (0.5) of the center grid point, and the negative 

DI i
– corresponds to the DSG which belong to the index i and whose values are 

smaller than 0.5. For the multivariate case (N > 1), we obtain a tensor-product 

formula of DI sets for a multi-index i as 

 
D D D

1= × ×�
N

I I I  (3.51) 

where, Ik
D = {ik

+, ik
–}, 1 ≤ k ≤ N. Here, the forward neighborhood of a multi-

dimensional DI id∈
I

D is defined as the N indices {i
d + ek

+/–}, 1 ≤ k ≤ N, and the sign 

of kth directional unit vector ek
+/– is the same with that of the kth index element ik

d (ik
+ 

or ik
–) of id. If ik

d is equal to 1, i.e., the corresponding collocation point is located at 

0.5, both the positive and negative directional unit vectors are employed to obtain the 

forward neighborhood in that dimension. Figure 3-10 shows the conventional multi-

index and the proposed DI for a 2D interpolation with the same set of the collocation 

points. From this figure, it is observed that the proposed DI divides the conventional 

index space into the four quadrants. In subsequent sections, it will be seen that this 

division allows for an adaptive refinement of the collocation points in these 
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quadrants. In general, it is noted that the DI divides the conventional multi-index 

space into 2N N-hyperoctants for more precise refinement.  

 

(a) 

 

(b) 

Figure 3-10 Conventional (a) and directional (b) index sets in 2D. 
Top row: index sets including (1, 3) and (1+, 3+) denoted by , (2, 2) 

and (2+, 2+) denoted by O, (4, 1) and (4+, 1+) denoted by . Bottom row: 
corresponding collocation points. 

Hierarchical interpolation scheme using cubic Lagrange splines 

For the dimension-adaptive interpolation, the hierarchical interpolation scheme 

provides a more convenient way for the error estimation than the nodal interpolation 

scheme. In the case of singularities or discontinuities in the random space, the 

piecewise multi-linear basis function provides a strong local support for the adaptive 

algorithm. The detailed information regarding the selection of grid type and 
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numerical scheme can be found in [34]. The Clenshaw-Curtis grid with equidistant 

nodes is recommended for piecewise multi-linear basis functions and is thus utilized 

in the ADATP method. In the case of a smooth function, the polynomial interpolation 

provides a faster error decay with increasing numbers of grid points than the 

piecewise multi-linear interpolation. However, the high-order Lagrange interpolation 

may give an inaccurate estimation of the performance function between collocation 

points due to severe oscillation, especially when the grid points are asymmetrically 

distributed with respect to the center point. To avoid this numerical inaccuracy and 

take advantage of the polynomial interpolation, a hierarchical interpolation scheme 

using cubic Lagrange splines is proposed for the ADATP method. 

Choice of Sparse Grid Type 

For the Lagrange interpolation, it is known that the Chebyshev-Gauss-Lobatto 

grid is a good choice due to its Chebyshev-based node distribution and its nesting 

characteristic [34]. However, this type of grid may not be appropriate for local 

adaptivity without a global support provided by Lagrange polynomials. In contrast, 

the Clenshaw-Curtis grid with equidistant nodes is more suitable for a local support 

provided by the cubic Lagrange spline function. In addition, it possesses the nesting 

characteristic. Thus, we propose to use the Clenshaw-Curtis grid as collocation 

points. In the case of a univariate interpolation (N = 1), the support nodes are defined 

in Eq. (3.36). As mentioned earlier, the resulting set of the points fulfill the nesting 

property Xi ⊂ Xi+1, and therefore Hq-1,N ⊂ Hq,N. 

Univariate Nodal Basis Functions 
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The interpolation for smooth functions can be improved by replacing piecewise 

multi-linear basis functions by cubic Lagrange splines. The univariate nodal basis 

functions for cubic Lagrange splines can be expressed as [119] 
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for i > 1. In Eq. (3.52), the function value at  endpoint xj
i,  j = 1, mi, is not given. Then 

the polynomial on the interval [x2
i, x3

i] is extended to the interval [x1
i, x2

i] and the 

polynomial on the interval [xmi–2
i, xmi–1

i] to the interval [xmi–1
i, xmi

i]. We observed that 

these extensions caused negligible sacrifice of the interpolation accuracy on the 

intervals [x1
i, x2

i] and [xmi–1
i, xmi

i]. 

Asymmetric Dimension-Adaptive Tensor-Product (ADATP) Interpolation 

Based on the proposed concepts of the DI and DSG, the overall procedure of the 

ADATP interpolation is briefly summarized in Table 3-9. The relative error indicator 

used in the interpolation scheme can be defined for a DI i (see Figure 3-10b) as 
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( )max min

1
ε =

−
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j

ji

i  (3.53) 

where wj
i are the hierarchical surpluses of the collocation points Xi

 = X∆
i1×···×X∆

iN, 

with j = (j1,…, jN), jk = 1,…, m∆
ik, 1 ≤ k ≤ N, and Mi = m∆

i1·m∆
i2·····m∆

iN. It is noted 
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that, for simplicity, we use i = (i1,…, iN) instead of id = (i1
d,…, iN

d) to denote a multi-

dimensional DI and that the term “index” in the description of the ADATP method 

refers to the DI. The pseudo code for the ADATP algorithm is given in Appendix B. 

Under the proposed scheme of asymmetric sampling, we expect that the error decay 

be at least as fast as that of the dimension-adaptive tensor-product interpolation. 

Table 3-9 Procedure of the proposed ADATP interpolation 

STEP 1 

Set an initial interpolation level l (q – N) = 0; set the initial old index set 
IO = Ø and the initial active index set IA = {i}, where the initial active DI 
i = (1,…,1) is the center point (0.5,…,0.5); set an initial relative error 
indicator εr(i) = 1 

STEP 2 
Select a trial index set IT (from IA) with the error indicator greater than a 
relative error threshold value εC; move the active index set IA to the old 
index set IO. If IT = Ø, go to STEP 7 

STEP 3 
Select and remove the trial index it with the largest error indicator from 
IT; if none, go to STEP 6. If the number of the collocation points M 
exceeds the maximum number Mmax, go to STEP 7 

STEP 4 
Generate the forward neighborhood IF of it and add  IF to the active index 
set IA 

STEP 5 
Compute the hierarchical surplus of each new added point based on the 
collocation points in the old index set and compute the error indicator of 
each active index. Go to STEP 3.  

STEP 6 Set an interpolation level l = l + 1 and go to STEP 2 

STEP 7 Construct an explicit interpolation ĝ  of the performance function g 

 

Uncertainty Quantification (UQ) and Reliability Analysis 

Once the asymmetric dimension-adaptive sampling procedure is completed, an 

approximate function ĝ  of the original performance function g can be obtained by 

interpolation using hierarchical basis functions at collocation points. Thus, any 

probabilistic characteristics of g(x), including statistical moments, reliability, and 
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PDF, can be easily estimated by performing MCS. For example, any rth moment can 

be calculated as 

 

( ) ( )
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where βr is the rth moment of the performance function g(x); f(x) is the joint PDFs; xj 

is the jth realization of x; and ns is the sampling size. For reliability estimation, let us 

define an approximate safe domain for the performance function g as 

 ( ){ }ˆ ˆ: 0Ω = <S gx x  (3.55) 

Therefore, the reliability R can also be estimated by performing MCS as 
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where I[·] is an indicator function of safe or fail state such that 
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It should be noted that the MCS performed here employs the explicit interpolation 

ĝ  instead of the original performance function g and is thus inexpensive. We also 

note that the way of approximating the response function over the entire (truncated) 

input domain allows for the derivation of any probabilistic characteristics (e.g., 

statistical moments, reliability, and PDF) based on the same set of collocation points 

and can be used for design problems that require both moment estimation and 

reliability analysis such as reliability-based robust design optimization [43-45]. 
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Remarks 

Several important remarks regarding the properties of the ADATP method are 

listed as follows. 

Remark 1 – Potential benefits: In the proposed method, the DI divides the 

conventional multi-index space into 2N N-hyperoctants, thus enabling asymmetric 

refinements among these hyperoctants. Therefore, for a performance function with 

unequal degrees of nonlinearity in 2N N-hyperoctants, the ADATP method is expected 

to outperform the DATP method in terms of efficiency.  

Remark 2 – Determination of an interpolation domain: It is noted that when the 

random space Π is unbounded, e.g. in the case of Gaussian random variables, we need 

to truncate it to a bounded one Γ that achieves a nearly full coverage of the original 

random space Π. Without loss of generality, we consider the case of N-dimensional 

independent standard Gaussian random vector x, the probability that a realization of 

the original random space Π belongs to the truncated random space Γ* = [–λ, λ]N
  can 

be expressed as  
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 (3.58) 

In the current study, we used λ = 3.5, which, for example, gives P(Γ*|Π) = 0.9954 for 

N = 10. We note that the truncation has a negative effect on the accuracy of reliability 

analysis, especially for problems with small numbers of random variables (i.e., small 

N in Eq. (3.58)) and low probabilities of failure, and that the truncated interpolation 

domain for a specific problem should be carefully determined based on the 
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understanding of this problem. More conservative criteria may guarantee higher 

accuracy but creates a larger interpolation domain that requires more computational 

effort. Since the goal in this work is to develop an asymmetric interpolation scheme 

for uncertainty qualification and reliability analysis, this paper does not address the 

issues regarding how a choice of the interpolation domain affects numerical accuracy 

and efficiency of reliability analysis and how to achieve an optimum λ for a given 

problem.  

Remark 3 – Discretion on an error threshold: We also note that the relative error 

threshold εC greatly affects the convergence rate and accuracy of the asymmetric 

dimension-adaptive sampling. A larger εC leads to faster error decay but results in a 

lower level of interpolation accuracy. A zero threshold, as an extreme case, results in 

a conventional sparse grid construction. In the current study, we used εC = 0.10 for 

most engineering cases. Under the hierarchical interpolation scheme, εC allows a user 

to put a preference between the convergence rate and accuracy.  

3.2.3 Case Studies for ADATP 

Three mathematical and engineering examples are given in this section to 

demonstrate the effectiveness of the ADATP method. The first mathematical example 

was designed to compare the performances of the ADATP and DATP methods for 

interpolation. The subsequent two mathematical and engineering examples were used 

for studying the performance of the proposed method for UQ and reliability analysis.  
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Mathematical Example I: Response Surface with Line Singularity 

Consider a mathematical function  

 
( ) 2 2

1 2

1

0.25 0.1
=

− − +
g

x x
x  (3.59) 

where the two random variables were assumed to be statistically independent and 

uniformly distributed between 0 and 1. It is noted that, for notational convenience, we 

use the notation xk instead of xk
 to denote the kth random variable for k = 1,…, N in 

this section. This modified function from [29] shows a line singularity in the third 

quadrant of the square Ω = [0, 1]2. We further defined the interpolation error εI as 

  ( ) ( )
1, ,

ˆmaxε
=

= −
…

I j j
j ns

g gx x  (3.60) 

where ns denotes the number of Monte Carlo samples for interpolation and was set to 

1,000,000 in this example. A relative error threshold εC = 0.10 was used in the 

ADATP method. Figure 3-11 illustrates the error decay and PDF approximations of 

the DATP and ADATP methods, both of which, for comparison purpose, employed 

the piecewise multi-linear basis functions e as the hierarchical basis functions and the 

Clenshaw-Curtis grid as the grid type. It should be noted that, since the ADATP and 

DATP methods employ different schemes for generating new collocation points, the 

numbers of collocation points achieved by both methods could be different. However, 

a meaningful comparison can still be carried out by observing a general trend of error 

decay. In Figure 3-11a, the ADATP method shows faster error decay and more 

accurate PDF approximation, compared to that of the DATP method. This is because 

the ADATP method identified high nonlinearity in the third quadrant and adaptively 

added collocation points to the quadrant region (see the shaded region in Figure 3-
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12a) while the DATP method treated all quadrants as of equal importance and thus 

assigns points equally to all quadrants (see Figure 3-12b). This example verifies that, 

for a performance function with unequal degrees of nonlinearity in 2N N-hyperoctants, 

the ADATP method is more efficient than the DATP method. 

 

(a) 
 

(b) 

Figure 3-11 Error decay (a) and PDF approximations (b) of the DATP and 
ADATP methods for example I 

 

 

(a) 

 

(b) 

Figure 3-12 Collocation points of the ADATP method (M = 68) (a) and the 
DATP method (M = 73) (b) for example I 
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Mathematical Example II: Trivariate Interaction 

Consider a mathematical function 
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where the five random variables were assumed to be statistically independent and 

uniformly distributed between 0 and L. The proposed ADATP method with εC = 0.10, 

Mmax = 120 and cubic Lagrange splines as the hierarchical basis functions was 

employed to compute the mean µG and standard deviation σg of g(x). These two 

moments were calculated using the UDR and BDR integrations [9] based on a fully 

tensorized Gauss-Legendre quadrature technique [120] with the number of one-

dimensional quadrature points mI = 5. Two cases were considered: i) Case 1: 

increasing the trivariate order (r = 0, 1, 2, or 3; L = 1.0); ii) Case 2: increasing the 

uncertainty of input random variables (L increases from 0.1 to 1.0; r = 2). The results 

for Case 1 were summarized in Table 3-10. Both the BDR and ADATP methods 

provide good approximations of the mean µg, when compared with the results of 

MCS for a trivariate order up to 3. However, the UDR method can not accurately 

estimate µg for any trivariate order. Regarding the standard deviation σg, the ADATP 

method gives a consistently more accurate estimate, while both the UDR and BDR 

methods fail to give sufficiently accurate estimates. The results of σg for Case 2 are 

plotted in Figure 3-13. All three methods can give a good approximation when the 

uncertainty (controlled by L) of input random variables is small. However, as the 

uncertainty increases, the ADATP method becomes superior to the UDR and BDR 

methods.  
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Table 3-10 Moment estimations by the ADATP and dimension reduction methods 
(L = 1.0) 

r 
Mean (µg)   Standard deviation (σg) 

UDRa BDRa ADATPa MCSb 
 

UDR BDR ADATP MCS 

0 0.2946 0.3283 0.3246 0.3336   0.1436 0.2119 0.2738 0.2691 

1 4.7588 5.4681 5.3999 5.5650 
 

2.9811 4.4782 5.7853 5.5953 

2 5.6486 6.3037 6.2180 6.4028 
 

2.9942 4.4296 5.6848 5.5264 

3 5.8516 6.4914 6.4154 6.5855   2.9131 4.3343 5.6112 5.4657 

a UDR and BDR required 21 and 181 function evaluations (FEs), respectively; ADATP required 121 FEs. 
b MCS required 1,000,000 FEs at MC sample points. 

 

 

(a) 

 

(b) 

Figure 3-13 Estimates (a) and relative errors (b) of standard deviations for 
increasing values of L 

This comparison with the UDR and BDR methods suggests that the ADATP 

method is better in terms of both accuracy and efficiency when the trivariate 

interaction is strong as in this problem. The ADATP method outperforms the UDR 

and BDR methods because of the following two reasons: (i) the UDR and BDR 

methods do not consider trivariate interactions; (ii) without an adaptive sampling 

scheme, the UDR and BDR methods may unnecessarily assign many uni- or bivariate 

sample points in regions with small nonlinearity. Even if we could resolve the first 

limitation by increasing S in the S-variate dimension reduction (DR) technique, the 
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second limitation still remains unresolved. In fact, it is often difficult or impractical to 

predetermine S in the S-variate DR technique. In contrast, the ADATP method is 

capable of automatically detecting tri- and higher-variate interactions and generating 

corresponding collocation points to reproduce the interactions in the interpolation. 

Therefore, the ADATP method is distinctively advantageous from the S-variate 

dimension reduction (DR) technique.  

Lower Control A-Arm: Nonlinear Fatigue Reliability 

Vehicle suspension systems experience intense loading conditions throughout 

their service lives. Control arms act as the backbone of the suspension system, 

through which the majority of these loads are transmitted [118]. Therefore, it is 

crucial that the fatigue life of control arms be high enough to fulfill the design 

requirement. A HMMWV lower control-arm was used for fatigue reliability analysis 

using the ADATP method. 

The lower control-arm was modeled with plane stress elements using 54,666 

nodes, 53,589 elements, and 327,961 DOFs, where all welds were modeled using 

rigid beam elements. Hyper-Works 8.0 was used for finite element modeling and 

design parameterization. ANSYS 10.0 was used for stress analyses for 14 load cases 

at four joints for the A-arm: a ball joint, a spring-damper joint and front and rear pivot 

bushing joints, respectively. The stress contours for two loading cases are shown in 

Figure 3-14. The fe-safe 5.0 was employed for durability analysis based on the 

dynamic stress results from ANSYS. A preliminary durability analysis was executed 

in fe-safe to estimate the fatigue life of the HMMWV A-Arm and to predict the 

critical regions that experience a low fatigue life. For this preliminary durability 
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analysis, the fatigue life for crack initiation was calculated using the equivalent von 

Mises stress-life approach at all surface nodes of the mechanical component (i.e., A-

arm) in order to predict the critical regions. More accurate durability analysis was 

then carried using the strain-life method at the selected critical regions of the A-arm 

that experience short life spans.  

 

 

(a) 

 

 

(b) 

Figure 3-14 Stress contours for load case 2 (a) and load case 8 (b) 

 
The random variables are the thicknesses of the eight major components of the 

control arm, as shown in Figure 3-15. The statistical information of these random 

variables is summarized in Table 3-11. From a worst-case scenario analysis, one 

hotspot with the smallest fatigue life was found at the rear pivot bushing joint and 

was selected for fatigue reliability analysis. In this case study, the fatigue reliability is 

defined as R = Pr(L > Lt), where Lt denotes the target fatigue life. 

x3

x4

x5

x7

x6

x1

x2

  

Figure 3-15 Seven thickness variables (x8 not shown) 
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Table 3-11 Input random variables for the lower control A-arm example 

Component Distri. type Mean (in) Std. dev. (in) 

x1 Normal 0.157 0.006 

x2 Normal 0.183 0.006 

x3 Normal 0.178 0.009 

x4 Normal 0.200 0.007 

x5 Normal 0.312 0.013 

x6 Normal 0.250 0.009 

x7 Normal 0.200 0.007 

x8 Normal 0.201 0.009 

 

The ADATP method with εC = 0.10, Mmax = 80 and cubic Lagrange splines was 

used to evaluate the fatigue reliability at the selected hotspot. The ADATP method 

allows for a stochastic response surface approximation from a small number of 

deterministic finite element and fatigue analyses, through constructing an explicit 

hierarchical interpolation formula with respect to the random inputs. Conducting the 

MCS on the explicit interpolation formula gives the full probability information (i.e., 

moments, reliability and PDF) of the fatigue life. A direct MCS with 1,000 samples 

was carried out as a reference. Figure 3-16 shows the PDF approximations by the 

ADATP method and MCS, where we can observe a good agreement between the two 

methods. Table 3-12 summarizes the uncertainty analysis results, where the ADATP 

method outperforms MCS in terms of efficiency while still maintaining good 

accuracy for moderate (between 0.70 and 0.80), high (between 0.90 and 0.95) and 

very high reliability levels (above 0.99). The 95% confidence intervals of the MCS 

reliability estimates include the corresponding ADATP estimates for all three 

reliability levels. 
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Figure 3-16 PDF approximations for the 
lower control A-arm example 

 

Table 3-12 Uncertainty analysis results for the lower control A-arm example 

 ADATP MCS 

Mean (blocks) 2.9014E+6 2.8866E+6 

Std. dev. (blocks) 1.1501E+6 1.1612E+6 

Skewness 8.9795E–1 1.2608E+0 

Kurtosis 4.0504E+0 5.8083E+0 

R = Pr(L > 2.0×106) 0.768 0.774 (±0.026a)   

R = Pr(L > 1.5×106) 0.920 0.930 (±0.016a)   

R = Pr(L > 1.0×106) 0.992 0.993 (±0.005a)   

No. FE 83 1,000 
a  Error bounds computed with a 95% confidence level 

 

3.2.4 Summary 

In the second part of this chapter, the asymmetric dimension-adaptive tensor-

product (ADATP) method is proposed for efficient reliability analysis involving high 

nonlinearity. The ADATP method possesses three technical contributions: (i) an 
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asymmetric dimension-adaptive sampling scheme considering both directional and 

dimensional importance, (ii) the concepts of the directional sparse grid (DSG) and 

directional index (DI) for the systematic generation of asymmetric collocation points, 

(iii) a hierarchical interpolation scheme using cubic Lagrange splines for eliminating 

the numerical inaccuracy of the high-order Lagrange interpolation. 

It was found that the asymmetric dimension-adaptive sampling scheme and the 

hierarchical interpolation method showed better accuracy and efficiency than the 

DATP method in the case of unequal degrees of nonlinearity in 2N N-hyperoctants. 

The better performance can be attributed to the fact that the ADATP method 

identifies the highly nonlinear hyperoctants and assigns more collocation points to 

these regions, while the DATP treats all the hyperoctants as of equal importance and 

thus assigns points equally.  

A limited comparative study between the ADATP method and the widely used 

reliability analysis methods, including FORM and moment-based reliability (mostly 

DR) methods, was also conducted in this work. Our initial results suggest that the 

ADATP method achieves higher accuracy and comparable efficiency for problems 

with moderate dimensions. The higher accuracy can be attributed to the automatic 

detection and adaptive reproduction of significant variate interactions in structural 

system responses, including tri- and higher-variate interactions. We also expect that 

the ADATP method perform well for high dimensional engineering problems as 

exemplified in the lower control A-arm example discussed in this work. Relative to 

the DR and PCE methods, the ADATP method has the advantage of the complexity 

reduction in the algorithm controls, since the desired interpolation accuracy and 
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resource constraints allow a user to easily define a relative error threshold and 

maximum number of collocation points. In contrast, it is often difficult or impractical 

to predetermine S in the S-variate DR technique, or the expansion order and the 

number of one-dimensional quadrature points in the PCE method. Furthermore, the 

proposed ADATP method can approximate a multi-modal PDF.  
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Chapter 4: System Reliability Analysis 

Engineered systems generally consist of numerous failure mechanisms, and 

system reliability provides a statistical description of system success in the context of 

multiple failure mechanisms. As explained in the literature review, existing methods 

can only provide system reliability bounds and requires the probabilities of joint 

safety events that are often difficult to evaluate.  Despite the technical advance by the 

CIM for series systems, one big challenge still remains as how to generalize this 

method so that it can be used for system reliability analysis and thus predictive 

resilience analysis regardless of system structures (series, parallel, and mixed 

system).  To address this challenge, this research proposes the generalized CIM 

(GCIM) method which will be detailed in this chapter. First, a closed-form system 

reliability formula for a parallel system is derived through its transformation into a 

series system using the De Morgan’s law. Second, a unified system reliability 

analysis framework is proposed for mixed systems by defining a new System 

Structure matrix (SS-matrix) and employing the Binary Decision Diagram (BDD) 

technique. The SS-matrix is used to present any system structure in a comprehensive 

matrix form. Then the BDD technique together with the SS-matrix automates the 

process to identify system’s mutually exclusive path sets, of which each path set is a 

series system. As a result, system reliability with any system structure can be 

decomposed into the probabilities of the mutually exclusive path sets. The 

development of the GCIM enables system reliability analysis for series, parallel, and 

mixed systems in system resilience analysis and design. 
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4.1 System Reliability Analysis for Series Systems  

Although the second-order system reliability bounds method or the linear 

programming (LP) bounds method can generally give fairly narrow system reliability 

bounds, they cannot provide a unique system reliability estimate. In contrast, the 

original CIM provides an explicit formula for series system reliability assessment.  

Considering a structural serial system with m components, the probability of 

system failure can be expressed as  

 
1=
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m

fs i
i

p P E  (4.1) 

where pfs represents the probability of system failure and Ēi denotes the failure event 

of the i
th component. The simplest system reliability bounds are the so-called first-

order bounds. Based on the well known Boolean bounds in Eq. (4.2), the first-order 

bounds of probability of system failure are given in Eq. (4.3). 
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The lower bound in Eq. (4.3) is obtained by assuming the component events are 

perfectly independent and the upper bound is derived by assuming the component 

events are mutually exclusive. Despite the simplicity (only component reliability 

analysis required), the first-order bounds method provides very wide bounds of 

system reliability that are not practically useful. Thus, the second-order bounds 

method was proposed by Ditlevsen [41] in Eq. (4.4) to give much narrower bounds of 

probability of system failure. 
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where E1 is the event having the largest probability of failure. 

Since the probabilities of all events are non-negative, the following inequalities 

must be satisfied as 
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Based on Eqs. (4.4) and (4.5),  the probability of system failure (pfs) of a series system 

failure can be simplified to a unique explicit formula as  
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It can be proved that this approximate probability lies in the second-order bounds in 

Eq. (4.4). Based on Eq. (4.6), serial system reliability can be assessed as (1 − the 

probability of system failure) and formulated as  
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(4.7) 

Note that the terms inside the bracket, 〈•〉, should be ignored if it is less than zero and 

Rsys should be set to zero if the approximated one given by Eq. (4.7) is less than zero. 

It is noted that Eq. (4.7) provides an explicit and unique formula for system reliability 

assessment based on the second-order reliability bounds shown in Eq. (4.4) and an 

inequality Eq. (4.5). 



 

 97 
 

4.2 System Reliability Analysis for Parallel Systems 

A parallel system reliability formula can be obtained based on the formula of 

series system reliability by using the De Morgan’s law. According to the De 

Morgan’s law, the probability of parallel system failure can be expressed as  
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where Ēi is the ith component failure event. It is noted that the above equation relates 

the probability of parallel system failure with the probability of series system safety 

(reliability). If we treat Ei as the ith component failure event in a series system, the 

right side of Eq. (4.8) is then the series system reliability. Based on this relationship, 

the probability of parallel system failure can be obtained from Eq. (4.7) by treating 

the safe events in the series system as the failure events in the parallel system as 

 ( )
1 2

1
2 1

,  if 0
( ) ( ) ,

0,  if 0

−

= =

> ≅ − − ≡   ≤
∑ ∑

m i

fs i i j

i j

A A
p P E P E P E E A

A
 (4.9) 

Finally, parallel system reliability can be obtained from Eq. (4.9)  by one minus the 

probability of system failure as 
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4.3 Mixed System Reliability Analysis 

A mixed system may have various system structures. There is no unique system 

reliability formula available for a mixed system. This study develops a generic 

procedure for mixed system reliability analysis with an aim to produce a unique 

system reliability formula. The developed procedure is introduced below with an 
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arbitrary mixed system structure. Considering a mixed system with N components, 

the following procedure can be proceeded to carry out system reliability analysis. 

Step I: Constructing a System Structure Matrix 

An SS-matrix, a 3-by-M, is proposed in this study to characterize any system 

structural configuration (components and their connections) in a matrix form. The SS-

matrix contains the information about the constituting components and their 

connection. The first row of the matrix contains component numbers, while the 

second and third rows correspond to the starting and end nodes of the components. 

Generally, the total number of columns of a SS-matrix, M, is equal to the total 

number of system components, N. In the case of complicated system structures, one 

component may repeatedly appear in between different sets of nodes and, 

consequently, M could be larger than N, for example a 2-out-of-3 system.  

Let us consider an example of a mixed system consisting of 4 components, as 

shown in Figure 4-1. The SS-matrix for the system can be constructed as a 3×4 

matrix, as shown in Figure 4-1. The first column of the system structure matrix, [1, 1, 

2]T, indicates that the 1st component connects nodes 1 and 2.  

1 2 3 4

1 2 2 3

2 4 3 4

 
 
 
  

 

Figure 4-1 Example to show the conversion of a system block diagram to SS-matrix  

 

Step II: Finding Mutually Exclusive System Path Sets 



 

 99 
 

Based on the SS-matrix, the Binary Decision Diagram (BDD) technique 

[121,122] can be employed to find the mutually exclusive system path sets, of which 

each path set is a series system. In probability theory, two events are said to be 

mutually exclusive if they cannot occur at the same time or, in other words, the 

occurrence of any one of them automatically implies the non-occurrence of the other. 

Here, system path sets are said to be mutually exclusive if any two of them are 

mutually exclusive. We note that, without the SS-matrix, it is not easy for the BDD 

technique to automate the process to identify the mutually exclusive path sets. The 

mixed system shown in Figure 4-1 can be decomposed into the two mutually 

exclusive path sets using the BDD, which is shown in Figure 4-2. Although the path 

sets 1 2 3 4E E E E  and E1E3E4 represent the same path that go through from the left 

terminal 1 to the right terminal 0 in Figure 4-1, the former belongs to the mutually 

exclusive path sets in Figure 4-2 while the latter does not. This is due to the fact that 

the path sets E1E3E4 and E1E2 are not mutually exclusive. We also note however that 

we could still construct another group of mutually exclusively path sets, {E1E3E4, 

1 2 3E E E }, which contains the path set E1E3E4 as a member. This is due to the fact that 

a mixed system may have multiple BDDs with different configurations depending the 

ordering of nodes in BDDs and these BDDs results in several groups of mutually 

exclusive path sets, among which the one with the smallest number of path sets is 

desirable. Another point deserving of notice is that the mixed system considered here 

consists of only two mutually exclusive path sets. In cases of more than two mutually 

exclusive path sets, any two path sets are mutually exclusive. This suggests that the 

system path sets can equivalently be said to be pairwise mutually exclusive. 
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1 2E E

 

1 2

1 2 3 4

,
Pathset

 
=  
 

E E

E E E E
 

Figure 4-2  BDD diagram and the mutually exclusive path sets 

 

Step III: Evaluating All Mutually Exclusive Path Sets and System Reliability 

Due to the property of the mutual exclusiveness, the mixed system reliability, Rsys, 

is the sum of the probabilities of all paths as  
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Path Path
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where Pathi is the ith mutually exclusive path set obtained by the BDD and Np is the 

total number of mutually exclusive path sets. For the system in Figure 4-1, the system 

reliability can be calculated as 
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where the probability of each individual path set can be calculated using the series 

system reliability formula given by Eq. (4.7). 

4.4 Case Studies for GCIM 

This section presents two case studies for a parallel system and a mixed system, 

respectively, to demonstrate the effectiveness of the proposed GCIM for system 
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reliability. For each case study, the generalized CIM framework is demonstrated in a 

wide range of system reliability levels and compared with MCS. For the parallel 

system, the results of the generalized CIM are also compared with the first-order 

bounds (FOB) and second-order bounds (SOB) methods. The main objective of the 

case studies is to demonstrate the theoretical accuracy of the proposed GCIM for 

system reliability analysis. So in the case studies we focus on a mathematical error 

produced by a system reliability formulae rather than a numerical error by a 

numerical method. In order to eliminate the numerical error in system reliability 

analysis, MCS with a large sample size was used to evaluate the probabilities of 

component and second-order joint safety events as shown in each case study. 

4.4.1 Parallel System Example: A Ten Brittle Bar System  

The following ten-bar system example is used to demonstrate the effectiveness of 

the GCIM framework for parallel systems. As shown in Figure 4-3, ten brittle bars are 

connected in parallel to sustain a load applied at one end. This case study is modified 

from the example employed in Ref. [123]. Ten bars are all brittle with different 

fracture strain limits εfi, 1 ≤ i ≤ 10, which are sorted in an ascending order. If the 

exerted strain ε is between the (i–1)th and ith fracture strain limits, i.e.,  εf(i–1) ≤ ε < εfi, , 

bar components with fracture strains below εfi will fail, and the allowable load is then 

the sum of the strength of components with fracture strains equal to or above εfi. 

Therefore, the strain level corresponding to the overall maximum allowable load is 

among the ten fracture strain limits. As the overall maximum allowable load, the 

system strength RT can be formulated in Eq. (4.13).  
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For example, if the exerted strain ε is equal to the fracture strain εf2, the 1st brittle bar 

fails due to the fracture and no longer contributes to the overall system strength. Thus, 

the system strength RT at this fracture strain is the sum of strength of the other nine 

brittle bars. The brittle bar system fails to sustain the load F only if the system 

strength at any of the ten fracture strains is smaller than the load F. This is a parallel 

system with ten components, corresponding to the ten fracture strains. The 

component safety events can be expressed in terms of several random variables. 

 
10 10

( ) ( ) ,        1 10ε ε
= =

= − = − ⋅ ≤ ≤∑ ∑i j fi j j fi

j i j i

G F R F E A i  (4.14) 

 
 

(a) (b) 

Figure 4-3 Ten brittle bar parallel system: (a) system structure model; (b) brittle 
material behavior in a parallel system 
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where Rj represents the allowable load that can be sustained by the jth brittle bar, Aj 

the cross section area of the jth brittle bar, and Ej the Young’s modulus of the jth brittle 

bar. Random variables and their random properties are summarized in Table 4-1. 

Table 4-1 Statistical information of input random variables for the ten bar system 

Random variable Mean Standard deviation Distribution type 

E1-E10 (GPa) 200.0 10.0 Gumbel
 
 

A1 (mm2) 100.0 5.0 Lognormal 

A2 (mm2) 120.0 5.0 Lognormal 

A3 (mm2) 140.0 5.0 Lognormal 

A4 (mm2) 140.0 10.0 Lognormal 

A5 (mm2) 140.0 10.0 Lognormal 

A6 (mm2) 150.0 10.0 Lognormal 

A7 (mm2) 150.0 15.0 Lognormal 

A8 (mm2) 150.0 15.0 Lognormal 

A9 (mm2) 200.0 15.0 Lognormal 

A10 (mm2) 300.0 25.0 Lognormal 

εf1 0.0010 0.0002 Uniform 

εf2 0.0012 0.0003 Uniform 

εf3 0.0018 0.0004 Uniform 

εf4 0.0025 0.0005 Uniform 

εf5 0.0027 0.0006 Uniform 

εf6 0.0030 0.0007 Uniform 

εf7 0.0033 0.0008 Uniform 

εf8 0.0036 0.0009 Uniform 

εf9 0.0040 0.0010 Uniform 

εf10 0.0050 0.0011 Uniform 

F (kN) --- 30.0 Normal 

 

Ten different system reliability levels are used for comparison with ten different 

loading conditions (F). These loading points are used to validate the GCIM method at 
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different reliability levels. Table 4-2 summarizes the results of system reliability 

analyses which are illustrated in Figure 4-4. It can be seen that the first-order bounds 

are too wide to be of practical use. Whereas, the second-order bounds method gives 

tighter system reliability bounds compared with the first-order bounds method. It is 

expected based on the results that the GCIM method can produce accurate system 

reliability estimates at a wide variety of reliability levels and that this high accuracy 

can be maintained at high reliability levels, which are often encountered in 

engineering practices. Similar to the first case study, only the first- and second-order 

CI events were considered and the error for the GCIM comes from the effects of the 

third- or higher-order CI events. However, for a parallel system these effects tend to 

decrease as the system reliability decreases, thus the error at a low system reliability 

level is smaller than that at a higher system reliability level, as observed from Figure 

4-4. 

 

Figure 4-4 Results of system reliability analysis at ten 
different reliability levels 
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Table 4-2 Results of system reliability analysis with MCS, FOB using MCS, SOB using MCS, and GCIM using MCS (ns = 
1,000,000) 

Analysis Method 
System Reliability Level at Each Design 

1 2 3 4 5 6 7 8 9 10 

FOB 
Upper 0.4133 0.5639 0.7331 0.9216 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Lower 0.1594 0.2054 0.2507 0.2974 0.3444 0.4395 0.4865 0.5334 0.5803 0.9705 

SOB 
Upper 0.3537 0.4670 0.5854 0.7065 0.8293 1.0000 1.0000 1.0000 1.0000 1.0000 

Lower 0.3192 0.4062 0.4849 0.5507 0.6068 0.6917 0.7161 0.7459 0.7897 0.9943 

GCIM 0.3417 0.4456 0.5490 0.6482 0.7388 0.8714 0.9017 0.9069 0.9051 0.9943 

MCS 0.3301 0.4272 0.5226 0.6131 0.6961 0.8314 0.8813 0.9192 0.9476 0.9998 

GCIM Error 0.0116 0.0184 0.0264 0.0351 0.0427 0.0400 0.0204 0.0123 0.0425 0.0055 
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4.4.2 Mixed System Example: A Power Transformer Joint System 

Power transformers are among the most expensive elements of high-voltage 

power systems [124]. The power transformer vibration induced by the magnetic field 

loading will cause the windings support joint loosening or the fatigue failures, which 

will gradually increase the vibration amplitude of the winding and eventually damage 

the core [125]. In this case study the proposed GCIM has been applied for the system 

reliability analysis of the power transformer winding support joints. We considered 

four failure modes, which are the fatigue failures at the four winding support joints. A 

power transformer simulation model was built using the finite element analysis tool 

ANSYS 10 (see Figure 4-5). Figure 4-6 shows the detail of the winding bolt joint, 

which assembles the windings of the power transformer with the bottom fixture. The 

transformer is fixed at the bottom and the vibration load is applied to the magnetic 

core with the frequency of 120 Hz. This case study employed ten random variables, 

as listed in Table 4-3, which include the geometric tolerances and material properties.  

 

 

 

 

 

 

 

Figure 4-5 A power transformer FE model (without the 
covering wall) 
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(a) 

 

(b) 

Figure 4-6 Winding support bolt joint: (a) side view, (b) bottom view 

Table 4-3 Random property of input variables for the power transformer example 

Random 
variable 

Physical meaning Mean 
Standard 
deviation 

Distribution 
type 

X1 Wall Thickness 3 0.06 Normal 

X2 Angular width of support joints 15 0.3 Normal 

X3 Height of support joints 6 0.12 Normal 

X4 
Young’s modulus of support 
joint  

2e12 4e10 Normal 

X5 
Young’s modulus of loosening 
joints 

2e10 4e8 Normal 

X6 Young’s modulus of winding 1.28e12 3e10 Normal 

X7 Poisson ratio of joints 0.27 0.0054 Normal 

X8 Poisson ratio of winding 0.34 0.0068 Normal 

X9 Density of joints  7.85 0.157 Normal 

X10 Density of windings 8.96 0.179 Normal 

 

This winding support system with the four joints was treated as a 3-out-of-4 

system as shown in Figure 4-7, which means that the system becomes safe only if at 

least three out of the four support joints survive.  The CI-matrix for this case study 

was evaluated using the MCS (with 1000 samples), as shown in Figure 4-8. Figure 4-

9 shows the system reliability block diagram and Table 4-4 displays the SS-matrix for 

Bolt 
Joints 
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this transformer joint system.  The mutually exclusive path sets can be determined 

using the BBD (see Figure 4-10) as 

 { }1 2 3 1 2 3 4 1 2 3 4 1 2 3 4Pathset , , , = E E E E E E E E E E E E E E E  

These path sets are mutually exclusive with the series system structure. As shown 

in Table 4-5, the reliabilities for these mutually exclusive path sets can be obtained 

and the system reliability for this transformer joint system can be estimated using Eq. 

(4.11). Based on the results, the GCIM is expected to accurately assess system 

reliabilities of large-scale engineered systems. This case study demonstrates the 

feasibility and capability of the GCIM for system reliability analysis with any system 

structure. 

 

0.999 0.000 0.238 0.242

0.000 0.999 0.238 0.242
CI-matrix

0.000 0.000 0.761 0.008

0.000 0.000 0.000 0.757

 
 
 =
 
 
 

 

Figure 4-7 3 out of 4 system with 
support joints  

Figure 4-8 CI-matrix for the power 
transformer example 
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Figure 4-9 System reliability block diagram for the 
power transformer example 

 E1                  E2 
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 109 
 

Table 4-4 System Structure matrix for the power transformer case study 

Component No. 1 1 1 2 2 2 3 3 3 4 4 

Starting node 1 1 1 1 2 3 4 5 6 7 8 

End node 2 3 4 5 6 7 8 9 10 10 10 

 
 

 

 

Table 4-5 Results of GCIM for power transformer case study comparing with 
MCS (ns = 10,000) 

Analysis 
Method 

Reliability of Path Set (Series System) System 
Reliability 

1 2 3E E E  1 2 3 4E E E E  1 2 3 4E E E E  1 2 3 4E E E E  

GCIM 0.761 0.000 0.000 0.002 0.763 

MCS 0.7611 0.0018 0.0000 0.0000 0.7629 

 

4.5 Summary 

This chapter presents the generalized complementary intersection method (GCIM) 

for system reliability analysis. The GCIM generalize the original CIM so that it can 

be used for system reliability analysis regardless of system structures (series, parallel, 

 

Figure 4-10 BDD diagram for the power transformer 
example 
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and mixed system). This generalization leverages two ideas: (i) transforming a 

parallel system to the equivalent series system using the De Morgan’s law to derive a 

closed-form system reliability formula; (ii) defining a new System Structure matrix 

(SS-matrix) and employing the Binary Decision Diagram (BDD) technique to 

develop a unified system reliability analysis framework for mixed systems. The two 

case studies (with one for parallel system, and the other for mixed system) were used 

to demonstrate that the proposed GCIM can assess system reliability regardless of the 

system structures. As observed through the case studies, the GCIM offers the generic 

system reliability analysis framework and thus shows a great potential to enhance our 

capability and understanding of system reliability analysis for system resilience 

analysis and design.  
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Chapter 5: System Prognostics and Health Management (PHM) 

As mentioned in the literature review, tremendous research efforts have been 

devoted to the physics-based reliability analysis under uncertainties during the design 

stage of engineered systems. Recently, research on real-time diagnosis and prognosis 

which interprets data acquired by distributed sensor networks, and utilizes these data 

streams in making critical decisions provides significant advancements across a wide 

range of applications. Maintenance and life-cycle management is one of the 

beneficiary application areas because of the pervasive nature of design and 

maintenance activities throughout the manufacturing and service sectors. 

Maintenance and life-cycle management activities constitute a large portion of overall 

costs in many industries [48]. These costs are likely to increase due to the rising 

competition in today’s global economy. For instance, in the manufacturing and 

service sectors, unexpected breakdowns can be prohibitively expensive since they 

immediately result in lost production, failed shipping schedules, no operational 

service, repair cost, and poor customer satisfaction. In order to reduce and possibly 

eliminate such problems, it is necessary to accurately assess current system health 

condition and precisely predict the remaining useful life (RUL) of operating 

components, subsystems, and systems. In general, a system’ health condition can be 

predicted in (a) a single time-scale, or (b) multiple time-scales. In the former case, all 

the system health-relevant responses (e.g., health condition, measurable physical 

quantities) of interest tend to vary in the same time-scale. In the latter case, the 

system exhibits a time-scale separation. In other words, certain system health-relevant 
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information (e.g., health condition) of interest tends to vary very slowly as opposed to 

other system health-relevant information (e.g., measurable physical quantities). This 

section presents an ensemble data-driven prognostic approach and a co-training data-

driven prognostic approach to resolve the existing challenges in PHM for systems 

with a single time-scale, and introduces a multiscale framework with extended 

Kalman filter (EKF) for systems with multiple time-scales. 

5.1 Ensemble of Data-Driven Prognostic Algorithms 

Traditionally, a data-driven prognostic approach is to construct multiple candidate 

algorithms using a training data set, evaluate their respective performance using a 

testing data set, and select the one with the best performance while discarding all the 

others. This approach has three shortcomings: (i) the selected standalone algorithm 

may not be robust, i.e., it may be less accurate when the real data acquired after the 

deployment differs from the testing data; (ii) it wastes the resources for constructing 

the algorithms that are discarded in the deployment; (iii) it requires the testing data in 

addition to the training data, which increases the overall expenses for the algorithm 

selection. To overcome these drawbacks, this research proposes an ensemble data-

driven prognostic approach which combines multiple member algorithms with a 

weighted-sum formulation. Three weighting schemes, namely the accuracy-based 

weighting, diversity-based weighting and optimization-based weighting, are proposed 

to determine the weights of member algorithms. The k-fold cross validation (CV) is 

employed to estimate the prediction error required by the weighting schemes. The 

results obtained from three case studies suggest that the ensemble approach with any 

weighting scheme gives more accurate RUL predictions compared to any sole 
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algorithm when member algorithms producing diverse RUL predictions have 

comparable prediction accuracy and that the optimization-based weighting scheme 

gives the best overall performance among the three weighting schemes. This 

approach provides PHM efficiency measure as either the CV error or validation error 

for predictive resilience analysis and enables highly-confident health prognostics for 

resilient engineered systems with a single time-scale.  

5.1.1 Weighted-Sum Formulation 

A simple average of RUL predictions obtained using the member algorithms 

means assigning equal weights to the member algorithms used for prognostics. This is 

acceptable only when the member algorithms provide the same level of accuracy for a 

given problem. However, it is more likely that an algorithm tends to be more accurate 

than others. It is ideal to assign a greater weight to a member algorithm with higher 

prediction accuracy in order to enhance its prediction accuracy and robustness. Hence, 

member algorithms with different prediction performance should be multiplied by 

different weight factors.  

Let Y = {y1, y2,…, yN} be a data set consisting of multi-dimensional sensory 

signals (e.g., acceleration, strain, pressure) from N different run-to-failure units. An 

ensemble of prognostic member algorithms for RUL prediction can be expressed in a 

weighted-sum formulation as 

 ( )
1

ˆ ˆ ,
=

=∑
M

j j t

j

L w L y Y  (5.1) 

where L̂  denotes the ensemble predicted RUL for the testing data set yt; M denotes 

the number of algorithm members in the ensemble; wj denotes the weight assigned to 
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the jth prognostic algorithm; ˆ
j

L (yt, Y) denotes the predicted RUL by the jth prognostic 

member algorithm trained with the data set Y. Let the weight vector w = [w1,…, wM]T 

and the vector of predicted RULs by member algorithms T
1

ˆ ˆ ˆ[ ,...,  ]=
M

L LL , the 

weighted-sum formulation in Eq. (5.1) can be expressed in a vector form as 

( ) Tˆ ˆ ˆ, =L w L w L . 

5.1.2 K-Fold Cross Validation 

The k-fold cross validation is used in the offline process to evaluate the accuracy 

of a given ensemble. It randomly divides the original data set Y into k mutually 

exclusive subsets (or folds) Y1, Y2,…, Yk having an approximately equal size [109]. 

Of the k subsets, one is used as the test set and the other k−1 subsets are put together 

as a training set. The CV process is performed k times, with each of the k subsets used 

exactly once as the test set. Let Im = {i: yi∈Ym}, m = 1, 2,…, k denote the index set of 

the run-to-failure units whose sensory signals construct the subset Ym. Then the CV 

error is computed as the average error over all k trials and can be expressed as 

 ( )( )( )
1

1 ˆ ˆ, , \ ,ε
= ∈

= ∑∑
m

k
T

CV i m i

m i

S L L
N I

w L y Y Y  (5.2) 

where S(•) is a predefined evaluation metric that measures the accuracy of the 

ensemble-predicted RUL; N denotes the number of run-to-failure units for CV; Li
T 

denotes the true RUL of the ith unit. The above formula indicates that all units in the 

data set are used for both training and testing, and each unit is used for testing exactly 

once and for training k–1 times. Thus, the variance of the resulting estimate is likely 

to be reduced compared to the traditional holdout approach, resulting in superior 
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performance when employing a small data set. It is important to note that the 

disadvantage of the k-fold CV against the holdout method is greater computational 

expense because the training process has to be executed k times. As a commonly used 

setting for CV, a 10-fold CV is employed in this study.  

5.1.3 Weighting Schemes  

This section will introduce three schemes to determine the weights of member 

algorithms: the accuracy-based weighting, diversity-based weighting and 

optimization-based weighting.  

Accuracy-Based Weighting 

The prediction accuracy of the jth member algorithm is quantified by its CV error, 

expressed as  

 ( )( )
1

1 ˆ , \ ,ε
= ∈

= ∑∑
m

k
j T

CV j i m i

m i

S L L
N I

y Y Y  (5.3) 

The weight wj of the jth member algorithm can then be defined as the normalization of 

the corresponding inverse CV error, expressed as 
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−

=

=

∑

j

CV

j M i

CVi

w  (5.4) 

This definition indicates that a larger weight is assigned to a member algorithm with 

higher prediction accuracy. Thus, a member algorithm with better prediction accuracy 

has a larger influence on the ensemble prediction. This weighting scheme relies 

exclusively on the prediction accuracy to determine the weights of member 

algorithms. 
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Diversity-Based Weighting 

The weight formulation in Eq. (5.4) relies exclusively on the prediction accuracy 

to determine the weights. However, the prediction accuracy of member algorithms is 

not the only factor that affects the ensemble performance. The prediction diversity, 

which measures the extent to which the predictions by a member algorithm are 

distinguishable from those by the others, also has a significant effect on the ensemble 

performance, especially on the robustness. More specifically, a larger weight should 

generally be assigned to a member algorithm with higher prediction diversity because 

of its larger potential to enhance the ensemble robustness.   

We begin by formulating an N-dimensional error vector consisting of absolute 

RUL prediction errors by the jth member algorithm as  

 ( ) ( )
T

1 1 1
ˆ ˆ, \ ,...,  , \ = − − 

T T

j j j N m N
L L L Le y Y Y y Y Y  (5.5) 

Repeatedly computing the error vectors for all M member algorithms gives M error 

vectors e1, e2,…, eM. The prediction diversity of the jth member algorithm can then be 

computed as the sum of Euclidean distances between the error vector ej and all the 

other error vectors, given by  

 
1;= ≠

= −∑
M

j j i

i i j

D e e  (5.6) 

The prediction diversity measures the extent to which the predictions by a member 

algorithm are distinguishable from those by any other. Based on the defined 

prediction diversity, the normalized weight wj of the jth member algorithm can then be 

calculated as 
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This definition suggests that a member algorithm with higher prediction diversity will 

be given a larger weight and thus contributes more to the ensemble predicted RUL. 

For example, if, among all the member algorithms, one algorithm consistently gives 

early RUL predictions while any of the others late RUL predictions, the former will 

likely be given a larger weight than the latter. It is also noted that the weight 

formulation in Eq. (5.7) considers the prediction diversity as the only criterion for the 

weight determination. 

Optimization-Based Weighting 

Neither the accuracy-based nor diversity-based weighting scheme takes into 

account both the prediction accuracy and diversity in the weight calculation. Thus, the 

two schemes cannot produce an ensemble algorithm to achieve both high prediction 

accuracy and robustness. In what follows, an optimization-based weighting scheme is 

proposed to maximize the accuracy and robustness of data-driven prognostics by 

adaptively synthesizing the prediction accuracy and diversity of each member 

algorithm.  

In the optimization-based weighting scheme, the weights in Eq. (5.1) can be 

obtained by solving an optimization problem of the following form 
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Subject to 1

ε ε

=

= =

=∑

T

CV CV i i

M

jj

L L i N

w

w L y
 (5.8) 

After the prediction of RULs using the M member algorithms through the 10-fold CV, 

the above optimization problem can be readily solved with almost negligible 
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computational effort since the weight optimization process does not require the 

execution of member algorithms. Thus, the overall computational cost mainly comes 

from the training and testing in the CV process. We expect that, by solving the 

optimization problem in Eq. (5.8), the resulting ensemble of algorithms will 

outperform any of the ensemble’s individual member algorithms in terms of both 

accuracy and robustness. The capability of this weighting scheme to adaptively 

synthesize the prediction accuracy and diversity of each member algorithm will be 

demonstrated in the case study section.   

5.1.4 Overall Procedure 

Figure 5-1 shows the overall procedure of the proposed ensemble approach with 

the k-fold CV and three weighting schemes. This data-driven prognostic approach is 

composed of the offline and online processes. In the offline process, the offline 

training/testing process with the k-fold CV is employed to compute the CV error of an 

ensemble formulation; the weights of member algorithms are determined using the 

accuracy-based weighting, diversity-based weighting and optimization-based 

weighting. The online prediction process combines the RUL predictions from all 

member algorithms to form an ensemble RUL prediction using the weights obtained 

from the offline process. This process enables the continuous update of the health 

information and prognostic results in real-time with new sensory signals. Table 5-1 

details the proposed ensemble prognostics approach with the five steps. STEPS 2-4 

can be repeated to incorporate new training sensory signals from the online process 

and to update the RUL predictions.  
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Step 1: Training

signals

Predicted RULs

Offline Process

Step 2a: Training

& testing with CV

Online Process

Step 4a: Member 

RUL predictions

Step 3: Testing

signals

Step 2b:Weight 

determination

Step 4b: Ensemble 

of RULs

 

Figure 5-1 A flowchart of the ensemble approach 

 

Table 5-1 Detailed procedure of the ensemble approach 

STEP 1 
Determine sensor configurations and acquire training sensory signals 
from offline system units; 

STEP 2a 
Perform the offline training & testing processes with the k-fold CV 
with the training sensory signals to compute the CV error; 

STEP 2b 
Determine the weights using the accuracy-based weighting, diversity-
based weighting and optimization-based weighting schemes; 

STEP 3 Acquire testing sensory signals from online system units; 

STEP 4a 
Predict RULs using the member algorithms through the online 
prediction process which employs the background health knowledge 
obtained from the offline training process; 

STEP 4b 
Predict the ensemble RULs with the optimum weights obtained from 
STEP 2b.  

 
 

5.1.5 Case Studies for Ensemble Prognostics 

In this section, the proposed ensemble of data-driven prognostic algorithms is 

demonstrated with three PHM case studies: (i) 2008 IEEE PHM challenge problem, 

(ii) power transformer problem, and (iii) electric cooling fan problem. In each case 

study, the ensemble approach combines RUL predictions from five popular data-
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driven prognostic algorithms, namely, a similarity-based interpolation (SBI) approach 

with RVM as the regression technique (RVM-SBI) [53,126], SBI with SVM (SVM-

SBI) [53,127], SBI with the least-square exponential fitting (Exp-SBI) [53], a 

Bayesian linear regression with the least-square quadratic fitting (Quad-BLR) [55], 

and a recurrent neural network (RNN) approach (RNN) [56,127].  

2008 IEEE PHM challenge problem 

In an aerospace system (e.g., an airplane, a space shuttle), system safety plays an 

important role since failures can lead to dramatic consequences. In order to meet 

stringent safety requirements as well as minimize the maintenance cost, condition-

based maintenance must be conducted throughout the system’s lifetime, which can be 

enabled by system health prognostics. This case study aims at predicting the RULs of 

aircraft engine systems in an accurate and robust manner with massive and 

heterogeneous sensory data.  

Description of Data Set 

The data set provided by the 2008 IEEE PHM Challenge problem consists of 

multivariate time series signals that are collected from an engine dynamic simulation 

process. Each time series signal comes from a different degradation instance of the 

dynamic simulation of the same engine system [129]. The data for each cycle of each 

unit include the unit ID, cycle index, 3 values for an operational setting and 21 values 

for 21 sensor measurements. The sensor data were contaminated with measurement 

noise and different engine units start with different initial health conditions and 

manufacturing variations which are unknown. Three operational settings have a 

substantial effect on engine degradation behaviors and result in six different operation 
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regimes as shown in Table 5-2. The 21 sensory signals were obtained from six 

different operation regimes. The whole data set was divided into training and testing 

subsets, each of which consists of 218 engine units. In the training data set, the 

damage growth in a unit was allowed until the occurrence of a system failure when 

one or more limits for safe operation have been reached. In the testing data set, the 

time series signals were pruned some time prior to the occurrence of a system failure. 

The objective of the problem is to predict the number of remaining operational cycles 

before failure in the testing data set.  

Table 5-2 Six different operation regimes 

Regime 
ID 

Operating 
parameter 1 

Operating 
parameter 2 

Operating 
parameter 3 

1 0 0 100 

2 20 0.25 20 

3 20 0.7 0 

4 25 0.62 80 

5 35 0.84 60 

6 42 0.84 40 

 

 

Implementation of Ensemble Approach 

For the CV process, the training data set with 218 units were divided to 10 data 

subsets with a similar size. Each data subset was used for both training and testing 

and, more specifically, 9 times for training and once for testing.  The training data 

subsets contain complete degradation information while the testing data subsets carry 

only partial degradation information. The latter were generated by truncating the 

original data subsets after pre-assigned RULs. The RUL pre-assigned to each unit in a 



 

 122 
 

testing data subset was randomly generated from a uniform distribution between its 

zero and half-remaining life. This range in the uniform distribution was selected 

based on the following two criteria: (i) the pre-assigned RULs should be small 

enough to allow the occurrence of substantial degradation; and (ii) the variation of the 

pre-assigned RULs should be large enough to test the robustness of algorithms.  

Following the work in [53], this study selected 7 sensory signals (2, 3, 4, 7, 11, 12 

and 15) among the 21 sensory signals for the use in the member algorithms: RVM-

SBI, SVM-SBI, Exp-SBI and Quad-BLR. A monotonic lifetime trend can be 

observed from these 7 sensory signals of which the noise levels are relatively low. 

For the VHI construction, the system failure matrix Q0 was created with the sensory 

data in a system failure condition, 0 ≤ L ≤ 4, while the system healthy matrix Q1 with 

those in a system healthy condition, L > 300. The RVM employed a linear spline 

kernel function with the initial most probable hyper-parameter vector for kernel 

weights αm = [1×104,…, 1×104] and the initial most probable noise variance σm
2 = 

1×10–4. In the SVM, a Gaussian kernel function is used with the parameter settings as: 

the regularization parameter C = 10 and the parameter of the ε-insensitive loss 

function ε = 0.10. In the RNN training, the 21 normalized sensory signals together 

with the regime ID at each cycle were used as the multi-dimensional inputs of the 

RNN and the RUL at the corresponding cycle was used as the output. The 

implementation details can be found in [56]. In the RNN architecture, the numbers of 

the input, recurrent and output units are |I| = 22, |R| = 8 and |O| = 1.  

The evaluation metric considered for this example employed an asymmetric score 

function around the true RUL such that heavier penalties are placed on late 
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predictions [129].  The score evaluation metric S can be expressed as 

 ( )
( )
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where 
î

L  and Li
T denote the predicted and true RUL of the ith unit, respectively. This 

score function was used to compute the CV error εCV using Eq. (5.2) for the accuracy- 

and optimization-based weighting schemes. In this study the weight optimization 

problem in Eq. (5.8) was solved using a sequential quadratic optimization (SQP) 

method which is a gradient-based optimization technique. 

Results of Ensemble Approach 

The five selected member algorithms are RVM-SBI (RS), SVM-SBI (SS), Exp-

SBI (ES), Quad-BLR (QB) and RNN (RN). The three weighting schemes are the 

accuracy-based weighting (AW), diversity-based weighting (DW) and optimization-

based weighting (OW). Table 5-3 summarizes the weighting results by the three 

weighting schemes as well as compares the CV and validation errors of the individual 

and ensemble approaches. It is observed that the ensemble approaches with all three 

weighting schemes outperforms any of the individual member algorithm in terms of 

the CV error and that the one with the optimization-based weighting achieves the 

smallest CV error of 4.8387 on the training data set, a 38.62% improvement over the 

best individual member algorithm, ES, whose CV error is 7.8834. As expected, the 

accuracy-based weighting scheme yields better prediction accuracy than the diversity-

based weighting. This can be attributed to the fact that the former assigns larger 

weights to member algorithms with better prediction accuracy while the latter does 

not consider the prediction accuracy in the weight determination. To test the 
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robustness of the ensemble approaches, the testing data set with 218 units were 

employed to compute the validation errors. Note that the testing data set is different 

from the training data set that was used to determine the weights in the ensemble 

approach. It is apparent that the ensemble approaches again outperform the individual 

member algorithms and that the one with the diversity-based weighting performs best, 

with a 34.7% improvement over the best individual member algorithm, SS. This 

suggests that the diversity-based weighting, compared to the accuracy-based 

weighting, provides a more robust ensemble of the member algorithms. It is noted 

that the optimization-based weighting scheme still achieves a comparable validation 

error to that of the diversity-based weighting scheme. 

Table 5-3 Weighting results, CV and validation errors for 2008 PHM challenge 
problem 

 
RS SS ES QB RN 

RS-SS-ES-QB-RN 

 AW DW OW 

Weight by AW 0.3063 0.3029 0.3137 0.0151 0.0620 --- --- --- 

Weight by DW 0.1478 0.1488 0.1488 0.3354 0.2191 --- --- --- 

Weight by OW 0.0000 0.0470 0.7462 0.2068 0.0000 --- --- --- 

         

CV error 8.0743 8.1646 7.8834 163.3376 39.8583 6.9159 7.0852 4.8387 

Validation error 10.2393 9.3907 10.4710 247.0079 20.1499 8.5544 6.1280 6.1955 

 

Under the optimization-based weighting scheme, the RUL predictions by two 

individual algorithms, ES and QB, with the largest weights and the ensemble 

approach are plotted for 218 training and testing units in Figure 5-2. The units are 

sorted by the RULs in an ascending order. It is seen that ES tends to give consistently 
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early RUL predictions while QB tends to provide consistently late RUL predictions. 

In contrast, the ensemble approach gives RUL predictions closer to the true values 

while eliminating many outliers produced by the two individual algorithms. The 

optimization-based weighting scheme provides better performance since the scheme 

employs an optimum ensemble formulation. 

 

 

(a) 

 

(b) 

Figure 5-2 RUL predictions of training units (a) and testing units (b) for 2008 
PHM challenge problem (optimization-based weighting) 

 

Comparison of Different Combinations of Member Algorithms 

Out of the five member algorithms, 31 different combinations can be chosen to 

formulate an ensemble approach. It would be interesting to study how a choice of 

combination affects the performance of an ensemble approach. Table 5-4 summarizes 

the CV errors for ensemble approaches with all possible combinations of the member 

algorithms under the optimization-based weighting scheme. Three important remarks 

can be derived from the results. First of all, it is observed that the ES, as the 

individual member algorithm with the best performance, always serves as a member 



 

 126 
 

algorithm of the best ensemble approach. We also observe that the ES, when involved 

in the ensemble approach, always had a larger weight than any other. It indicates that 

the best member algorithm exhibits good cooperative performance which can be 

identified by the optimization-based weighting scheme. Secondly, the QB, which 

gives the worst individual performance, was surprisingly selected as an important 

member of the best ensemble approach. These results, though counterintuitive, 

suggest that the ensemble approach can adaptively synthesize the prediction ability 

and diversity of each individual algorithm to enhance the accuracy and robustness of 

RUL predictions. Indeed, the QB is prone to give late RUL predictions as shown in 

Figure 5-2 and thus possesses higher prediction diversity. Thirdly, both the mean and 

standard deviation of CV errors decrease as the number of member algorithms 

increases. The mean and standard deviation of CV errors of ensemble approaches 

with a single member algorithm are 45.4636 and 67.3188, respectively, and they 

monotonically decrease to 5.1896 and 0.7440, respectively, by the ensemble approach 

with four member algorithms. Thus it would be beneficial to have more member 

algorithms to enhance the prediction accuracy and reduce the uncertainty of this 

accuracy.  
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Table 5-4 Comparison of CV errors of different combinations of member 
algorithms for 2008 PHM challenge problem (optimization-based weighting) 

Combination CV error  Combination CV error  Combination CV error 

RS 8.0743   RS-SS 8.0769  RS-SS-ES 7.8834 

SS 8.1646  RS-ES 7.8834  RS-SS-QB 4.9123 

ES 7.8834  RS-QB 4.9162  RS-SS-RN 6.7983 

QB 163.3376   RS-RN 6.8002  RS-ES-QB 4.8391 

RN 39.8583   SS-ES 7.8834  RS-ES-RN 6.5194 

Mean 45.4636       

Std
a
 67.3188       

        

RS-SS-ES-QB 4.8387  SS-QB 4.9362  RS-QB-RN 4.9162 

RS-SS-ES-RN 6.5194  SS-RN 6.8376  SS-ES-QB 4.8387 

RS-SS-QB-RN 4.9123  ES-QB 4.8391  SS-ES-RN 6.5194 

RS-ES-QB-RN 4.8391  ES-RN 6.5194  SS-QB-RN 4.9362 

SS-ES-QB-RN 4.8387  QB-RN 17.5868  ES-QB-RN 4.8391 

Mean 5.1896  Mean 7.6279  Mean 5.7002 

Std 0.7440  Std 3.7182  Std 1.1234 

        

RS-SS-ES-QB-
RN 

4.8387       

a
 Standard deviation 

 

Power Transformer Problem 

The power transformer is a critical power element in nuclear power plants, since 

an unexpected breakdown of the transformer causes plant shut-down and substantial 

societal expense. So it is very important to ensure high reliability and safety of the 

transformer during its operation. Investigations of the failures causes have revealed 
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that mechanical breakdowns constitute a large portion of unexpected breakdowns of 

transformers in nuclear power plants [130]. Therefore, health monitoring and 

prognostics of the transformer with respect to mechanical failures is of significant 

importance to preventing unexpected breakdowns and minimizing interruptions to 

reliable customer service. This case study conducts transformer health prognostics 

with sensory signals obtained from a transformer finite element (FE) model.  

Model Description 

The FE model of a power transformer was created in ANSYS 10 as shown in 

Figure 5-3, where one exterior wall is concealed to make the interior structure visible. 

The transformer is fixed at the bottom surface and a vibration load with the frequency 

of 120 Hz is applied to the magnetic core. The three windings have a total number of 

twelve support joints, with each having four support joints. The random parameters 

considered in this study are listed in Table 5-5, which includes the material properties 

of support joints and windings as well the geometries of the transformer. The 

uncertainties in vibration responses propagated from these uncertain parameters will 

be accounted for when generating prognostic data.  

Since it is very difficult, if not impossible, to obtain direct measurements of the 

health condition of transformers, indirect measurements are most often used to 

diagnose the health condition and predict the RULs of transformers [131]. In 

particular, the vibrations of the magnetic core and of the windings could characterize 

transitory overloads and permanent failures before any irreparable damage occurs 

[132,133]. Thus, this case study employs the vibration signals of the magnetic core 

and of the windings of a power transformer to predict the RULs of transformers.  



 

 129 
 

Damaged joint  

Figure 5-3 A power transformer FE model (without the 
covering wall) 

Table 5-5 Random geometries and material properties for power transformer 
problem  

Component Physical meaning  Distri. type Mean Std 

x1 Wall Thickness Normal 3 0.015 

x2 
Angular width of support 
joints 

Normal 15 0.075 

x3 Height of support joints Normal 6 0.03 

x4 
Young’s modulus of support 
joint  

Normal 2E+12 1E+10 

x5 Young’s modulus of winding Normal 1.28E+12 6E+8 

x6 Poisson ratio of joints Normal 0.27 0.0027 

x7 Poisson ratio of winding Normal 0.34 0.0034 

x8 Density of joints  Normal 7.85 0.000785 

x9 Density of windings Normal 8.96 0.0896 

 

Prognostic Data Generation 

The failure mode considered in this study is the loosening of a winding support 

joint (see Figure 5-3) induced by the magnetic core vibration. The joint loosening was 

realized by reducing the stiffness of the joint. The failure criterion is defined as a 99% 
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stiffness reduction of the joint. To model the trajectory of change in stiffness over 

time, this study uses a damage propagation model with an exponential form as [129] 

 ( ) ( )( )0 1 exp= + −
E E

E t E b a t  (5.10) 

where E0 is the initial Young’s modulus of the joint; aE and bE are the model 

parameters; t is the cycle time. The initial Young’s modulus E0 follows the same 

normal distribution with x4 (see Table 5-5). The model parameters aE and bE are 

independent and normally distributed with means 0.002 and 4E+12, each of which 

has a 10% coefficient of variation.  

Since data-driven prognostic approaches require a large amount of prognostic 

data, it is computationally intolerable, if not impossible, to simply run the simulation 

to generate every data point. To overcome this difficulty, this study employed the 

univariate decomposition method that only uses a certain number of univariate 

sample points to construct the response surface for a general multivariate response 

function while achieving good accuracy [8]. This study selected 5 strain gauges (see 

Figure 5-4) from the optimally designed sensor network consisting of 9 strain gauges 

and thus requires the construction of 5 responses surfaces. The data generation 

process involves four sequentially executed procedures: (i) four univariate sample 

points were obtained from the harmonic analysis to construct response surfaces, along 

the damage propagation path, that approximate the strain components at five sensor 

locations as functions of random variables detailed in Table 5-5; (ii) 400 randomly 

generated samples of E0, aE and bE were used in conjunction with Eq. (5.10) to 

produce 400 damage propagation paths, of which 200 paths were assigned to the 

training units and the rest to the testing units; (iii) the constructed response surfaces 
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were used to interpolate the strain components at five sensor locations for a given set 

of randomly generated geometries and material properties and damage propagation 

paths, and repeatedly executing this process for 400 times gave the training data set 

with 200 training units and the testing data set with 200 testing units; (iv) 

measurement noise following a zero mean normal distribution was added to both the 

training and testing data sets to finalize the data generation. The cubic spline was 

used as the numerical scheme for the response surface construction and interpolation. 

Simulated measurements by sensors 1 and 5 are plotted against the adjusted cycle 

index, defined as the subtraction of the cycle-to-failure from the actual operational 

cycle, in Figure 5-5 for all 200 training units in the training data set.  

 

1

2

3

4

5

 

Figure 5-4 5  strain gauges located on the side wall of power 
transformer 
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(a) 

 

(b) 

Figure 5-5 Simulated measurements by sensors 1 (a) and 5 (b) for power 
transformer problem 

 

Implementation of Ensemble Approach 

The training data set with 200 units were equally and randomly divided to 10 

subsets. Similar to the first example, when used for the testing in CV, each unit in a 

subset was assigned with a randomly generated RUL from a uniform distribution 

between its zero and half-remaining life. All the five member algorithms used the 

same parameter settings with those detailed in the first case study. The score function 

in Eq. (5.9) was again used to compute the CV error εCV for the accuracy- and 

optimization-based weighting schemes.  

Results of Ensemble Approach 

Table 5-6 summarizes the weighting results by the three weighting schemes as 

well as compares the CV and validation errors of the individual and ensemble 

approaches. Compared to the first example, similar results can be observed: (i) the 

ensemble approaches with all three weighting schemes yield smaller CV error than 
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any of the individual member algorithm and the one with the optimization-based 

weighting gives the smallest CV error of 2.7258 on the training data set, a 66.48% 

improvement over the best individual member algorithm, RN, whose CV error is 

8.1323; (ii) the accuracy-based weighting scheme yields a comparable CV error to 

that of the diversity-based weighting; (iii) the optimization-based weighting scheme 

achieves a validation error of 5.6138, which is comparable to the smallest validation 

error of 5.6119 by the diversity-based weighting scheme.  

Under the optimization-based weighting scheme, the RUL predictions by two 

individual algorithms, ES and QB, with the largest weights and the ensemble 

approach are plotted for 218 training and testing units in Figure 5-6. It can be 

observed that ES and QB are prone to produce early and late RUL predictions, 

respectively, while the ensemble approach gives RUL predictions closer to the true 

values with a much smaller number of outliers.  

Table 5-6 Weighting results, CV and validation errors for power transformer 
problem 

 
RS SS ES QB RN 

RS-SS-ES-QB-RN 

 AW DW OW 

Weight by AW 0.2128 0.2265 0.2343 0.0677 0.2588 --- --- --- 

Weight by DW 0.1488 0.1486 0.1688 0.3290 0.2048 --- --- --- 

Weight by OW 0.0000 0.0000 0.6303 0.2336 0.1361 --- --- --- 

         

CV error 9.8922 9.2945 8.9849 31.0891 8.1323 3.4874 3.4124 2.7258 

Validation error 6.5737 6.8847 7.8251 20.0356 15.2265 5.7825 5.6119 5.6138 
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(a) 

 

(b) 

Figure 5-6 RUL predictions of training units (a) and testing units (b) for power 
transformer problem (optimization-based weighting) 

 

Comparison of Different Combinations of Member Algorithms 

A comparison study of different combinations of member algorithms was again 

carried out using the optimization-based weighting scheme for the power transformer 

problem. Table 5-7 summarizes the comparison results from which several important 

remarks similar to those in the first example can be derived. First of all, the member 

algorithms ES and QB can always be observed in the best ensemble approach with 

more than one member algorithms. We also observe that the combination ES and QB, 

when involved in the ensemble approach, always had a larger weight than any other. 

This result is different from what we observe in the first example, where the largest 

weight was assigned to the best individual member algorithm. This suggests that the 

optimization-based weighting scheme makes less use of or even discarded the best 

member algorithm that does not exhibit good cooperative performance with other 

members. Secondly, the QB, which gives the worst individual performance and is 

prone to give later RUL predictions (see Figure 5-6), was selected as an important 
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member of the best ensemble approach. This again suggests that the prediction 

diversity plays an important role in the weight determination. Thirdly, as is the case in 

the first example, both the mean and standard deviation of CV errors decrease as the 

number of member algorithms increases. Thus the addition of member algorithms 

tends to enhance the prediction accuracy and reduce the uncertainty of this accuracy. 

Table 5-7 Comparison of CV errors of different combinations of member 
algorithms for power transformer problem (optimization-based weighting) 

Combination CV error  Combination CV error  Combination CV error 

RS 9.8922   RS-SS 9.2945  RS-SS-ES 8.9561 

SS 9.2945   RS-ES 8.9849  RS-SS-QB 3.1688 

ES 8.9849  RS-QB 3.1764  RS-SS-RN 3.9651 

QB 31.0891   RS-RN 3.9744  RS-ES-QB 2.7894 

RN 8.1323   SS-ES 8.9561  RS-ES-RN 3.4557 

Mean 13.4786       

Std 9.8650       

        

RS-SS-ES-QB 2.7894  SS-QB 3.1815  RS-QB-RN 3.1470 

RS-SS-ES-RN 3.4557  SS-RN 3.9671  SS-ES-QB 2.7894 

RS-SS-QB-RN 3.1433  ES-QB 2.7894  SS-ES-RN 3.4557 

RS-ES-QB-RN 2.7258  ES-RN 3.4557  SS-QB-RN 3.1559 

SS-ES-QB-RN 2.7258  QB-RN 6.9724  ES-QB-RN 2.7258 

Mean 2.9680  Mean 5.4752  Mean 3.7609 

Std 0.3232  Std 2.7412  Std 1.8640 

        

RS-SS-ES-QB-
RN 

2.7258       
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Electric Cooling Fan Problem 

In addition to the numerical studies, we also conducted experimental testing to 

verify the effectiveness of the ensemble approach. In this case study, we applied the 

ensemble approach to the health prognostics of electronic cooling fan units. This 

study aims to demonstrate the proposed ensemble prognostics with 32 electronic 

cooling fans.  

Experimental Setup 

In this experimental study, thermocouples and accelerometers were used to 

measure temperature and vibration signals. To make time-to-failure testing 

affordable, the accelerated testing condition for the DC fan units was sought with 

inclusion of a small amount of tiny metal particles into ball bearings and an 

unbalanced weight on one of the fan units. The experiment block diagram of DC fan 

accelerated degradation test is shown in Figure 5-7. As shown in the diagram, the DC 

fan units were tested with 12V regulated power supply and three different signals 

were measured and stored in a PC through a data acquisition system. Figure 5-8(a) 

shows the test fixture with 4 screws at each corner for the DC fan units. As shown in 

Figure 5-8(b), an unbalanced weight was used and mounted on one blade for each 

fan. Sensors were installed at different parts of the fan, as shown in Figure 5-9. In this 

study, three different signals were measured: the fan vibration signal by the 

accelerometer, the Printed Circuit Board (PCB) block voltage by the voltmeter, and 

the temperature measured by the thermocouple. An accelerometer was mounted to the 

bottom of the fan with superglue, as shown in Figure 5-9(a). Two wires were 

connected to the PCB block of the fan to measure the voltage between two fixed 
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points, as shown in Figure 5-9(b). As shown in Figure 5-9(c), a thermocouple was 

attached to the bottom of the fan and measures the temperature signal of the fan. 

Vibration, voltage, and temperature signals were acquired by the data acquisition 

system and stored in PC. The data acquisition system from National Instruments 

Corp. (NI USB 6009) and the signal conditioner from PCB Group, Inc. (PCB 

482A18) were used for the data acquisition system. In total, 32 DC fan units were 

tested at the same condition and all fan units run till failure.  

 

 

Figure 5-7 DC fan degradation test block diagram 

 
 

 

(a) 

 

(b) 

Figure 5-8 DC fan test fixture (a) and the unbalance weight 
installation (b) 
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(a) 

 

(b) 

 

(c) 

Figure 5-9 Sensor installations for DC fan test: (a) accelerometer, (b) voltmeter 
and (c) thermocouples 

 

Implementation of Ensemble Approach 

The sensory signal screening found that the fan PCB block voltage and the fan 

temperature did not show clear degradation trend, whereas the vibration signal 

showed health degradation behavior. This study involved the root mean squares 

(RMS) of the vibration spectral responses at the first five resonance frequencies and 

defined the RMS of the spectral responses as the PHI for the DC fan prognostics. 

Figure 5-10 shows the RMS signals of three fan units to demonstrate the health 

degradation behavior. The RMS signal gradually increased as the bearing in the fan 

degraded over time. It was found that the PHI is highly random and non-monotonic 

because of metal particles, sensory signal noise, and input voltage noise.  

Among 32 fan units, the first 20 fan units were used to construct the training data 

set for the CV, while the rest were used to build the testing data set for the validation. 

Due to the small amount of training data, this case study employed the 5-fold CV 

where the training data set with 20 units was equally and randomly divided to 5 

subsets. Similar to the previous examples, when used for the testing in CV, each unit 

in a subset was assigned with a randomly generated RUL from a uniform distribution 
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between its zero and half-remaining life. To expand the number of testing units, each 

testing fan unit was assigned with two randomly generated RUL from a uniform 

distribution between its zero and half-remaining life, resulting in totally 24 testing 

units. The parameter settings detailed in the first case study was again used for the 

five member algorithms. With one cycle defined as every ten minutes, the score 

function in Eq. (5.9) was again used to compute the CV error εCV for the accuracy- 

and optimization-based weighting schemes. 

 

Figure 5-10 Sample degradation signals from DC fan testing  

 

Results of Ensemble Approach 

The weighting results by the three weighting schemes and the CV and validation 

errors of the individual and ensemble approaches are summarized in Table 5-8. 

Compared to the previous examples, we observed quite different results from which 

three important remarks can be derived. First of all, the ensemble approach with the 

diversity-based weighting scheme gives considerably larger CV and validation errors 

than the best individual member algorithms, RS and ES. This result is due to the fact 
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that the diversity-based weighting, which relies exclusively on the prediction 

diversity for the weight determination, assigned larger weights to the member 

algorithms, QB and RN, which produced very low prediction accuracy due to the 

random and non-monotonic nature of the PHI (see Figure 5-10). Secondly, compared 

to the best individual member algorithms, RS and SS, the ensemble approach with the 

optimization-based weighting gave smaller CV and validation errors. However, the 

improvement is insignificant. Since non-zero weights are only assigned to the two 

member algorithms, RS and ES, with superb prediction capability, the performance of 

the resulting ensemble is totally determined by these two algorithms. However, RS 

and ES gave similar RUL predictions and the resulting ensemble, which is indeed a 

combination of two algorithms with similar prediction behavior, cannot achieve 

significant improvement in the prediction performance. Therefore, we expect that the 

ensemble approach achieves significant improvement in the prediction performance 

only in cases where member algorithms with comparable prediction accuracy produce 

diverse RUL predictions. Thirdly, although the member algorithms, QB and RN, have 

larger prediction diversity, their prediction accuracy is not comparable with that of 

the best member algorithms, RS and SS. As a result, these two algorithms were 

discarded from the algorithm pool by the optimization-based weighting. Under the 

optimization-based weighting scheme, the RUL predictions the ensemble approach 

are plotted for the training and testing units in Figure 5-11 where we observed very 

accurate RUL predictions by the ensemble approach.  
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Table 5-8 Weighting results, CV and validation errors for electric cooling fan 
problem 

 
RS SS ES QB RN 

RS-SS-ES-QB-RN 

 AW DW OW 

Weight by AW 0.3646 0.3767 0.2552 0.0008 0.0027 --- --- --- 

Weight by DW 0.1423 0.1427 0.1496 0.3285 0.2369 --- --- --- 

Weight by OW 0.1155 0.8845 0.0000 0.0000 0.0000 --- --- --- 

         

CV error 1.4770 1.4298 2.1100 717.8430 199.0067 1.5188 11.8520 1.4292 

Validation error 0.7027 0.9223 0.7037 461.5064 84.3975 0.7185 11.0177 0.6984 

 

(a) (b) 

Figure 5-11 RUL predictions of training units (a) and testing units (b) for electric 
cooling fan problem (optimization-based weighting) 

 

5.1.6 Conclusion 

This section proposed a novel ensemble approach for the data-driven prognostics 

of high-risk engineered systems. By combining the predictions of all member 

algorithms, the ensemble approach achieves better accuracy in RUL predictions 
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compared to any sole member algorithm. Furthermore, the ensemble approach has an 

inherent flexibility to incorporate any advanced prognostic algorithm that will be 

newly developed. To the best of our knowledge, this is the first study of an ensemble 

approach with three weighting scheme for the data-driven prognostics. Since the 

computationally expensive training process is done offline and the online prediction 

process requires a small amount of computational effort, the ensemble approach 

raises little concerns in the computational feasibility. Three engineering case studies 

(2008 PHM challenge problem, power transformer problem and electric cooling fan 

problem) demonstrated the superb performance of the proposed ensemble approach 

for the data-driven prognostics. Among the three weighting scheme, the optimization-

based weighting scheme showed the capability of adaptively synthesizing the 

prediction accuracy and diversity of each member algorithm to enhance the accuracy 

of RUL predictions. Considering the enhanced accuracy and robustness in RUL 

predictions, the proposed ensemble approach is a promising data-driven prognostic 

method for resilient engineered systems with a single time-scale. 

5.2 Co-Training Prognostics 

The data-driven prognostics often requires a large amount of failure data for the 

offline training in order to achieve good accuracy for the online prediction. However, 

in many engineered systems, failure data are fairly expensive and time-consuming to 

obtain while suspension data are readily available. In such cases, it becomes 

essentially critical to utilize suspension data, which may carry rich information 

regarding the degradation trend and help achieve more accurate remaining useful life 

(RUL) prediction. To this end, this research proposes a co-training data-driven 
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prognostic algorithm, denoted by COPROG, which uses two individual data-driven 

algorithms with each predicting RULs of suspension units for the other. The 

confidence of an individual data-driven algorithm in predicting the RUL of a 

suspension unit is quantified by the extent to which the inclusion of that unit in the 

training data set reduces the sum square error (SSE) in RUL prediction on the failure 

units. After a suspension unit is chosen and its RUL is predicted by an individual 

algorithm, it becomes a virtual failure unit that is added to the training data set. The 

co-training algorithm addresses the difficulty in achieving highly-confident health 

prognostics with the lack of failure data for resilient engineered systems with a single 

time-scale. 

5.2.1 Description of Prognostic Algorithms 

An artificial neural network (ANN) can be treated as a non-linear model that 

establishes a set of interconnected functional relationships between input patterns and 

desired outputs where a training process is employed to adjust the parameters (mainly 

network weights) of the functional relationships to achieve optimal performance. In 

recent years, neural networks have been extensively applied to predict the remaining 

useful lives (RULs) in various contexts such as machinery prognostics [57,60], flight 

control prognostics [134] and battery prognostics [135]. This section briefly 

introduces two selected neural network approaches for data-driven prognostics: a 

feed-forward neural network (FFNN) approach and a radial basis network (RBN) 

approach. A validation mechanism with multiple trials is used to train both the FFNN 

and RBN with an aim to minimize the overfitting as well as improve the 

generalization.  
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Feed-Forward Neural Network 

Network Structure 

The feed-forward neural network (FFNN), also known as the multi-layer 

perceptron, can fit any finite input-output mapping problem with a sufficient number 

of neurons in the hidden layer [136]. The network is composed of three layers (see 

Figure 5-12), namely, the input layer I, hidden layer H, and output layer O. Units of 

the input layer and the hidden layer are fully connected through the weights W
HI 

while units of the hidden layer and output layer are fully connected through the 

weights WOH. Let I(t) = (I1
(t),…, Ii

(t),…, I|I|
(t)), H(t) = (H1

(t),…, Hj
(t),…, H|H|

(t)) and O(t) = 

(O1
(t),…, Ok

(t),…, O|O|
(t)) be the input patterns, hidden activities and output activities at 

the time step t, respectively, where |I|, |R| and |O| denote the numbers of the input, 

hidden and output units, respectively, and let bH and bO be the bias terms added to the 

net inputs of hidden units and that of the output unit, respectively. The net input of the 

i
th hidden unit can then be computed as 

 ( ) ( )= +∑	 t tHI H

j ji i ji

i

H W I b  (5.11) 

Given the hyperbolic tangent sigmoid transfer function as the activation function fH, 

the output activity of the jth hidden unit can then be computed as 

 ( ) ( )( ) ( )( )
1

1 ex

2

2p
= = −

+ −
	

	
t t

j H j t

j

H f H
H

 (5.12) 

Given the linear transfer function as the activation function fR, the net input and 

output activity of the ith output unit can be computed, respectively, as 

  ( ) ( )=∑	 t tOH

k kj j

j

O W H  (5.13) 
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and 

 ( ) ( )( ) ( )= =	 	t t t

k O k k
O f O O  (5.14) 

We note that, in order to use the FFNN for RUL prediction, both the network weights 

and biases need to be determined through the network training which will be detailed 

in the subsequent section.  

 

Ok

H1

Hj

H|H|

…
…

I1

Ii

I|I|

…
…

WHI WHO

Input Layer Hidden Layer Output Layer

O1

O|O|

…
…

 

Figure 5-12 Structure of a FFNN with one hidden layer. 

 

For data-driven prognostics, the inputs to the FFNN are the normalized current 

cycle value, normalized sensory measurements at the current and previous cycles. If 

we have Ns sensory measurements as the condition monitoring data at each cycle, the 

vector of network input patterns I(t) is denoted by an input vector x = (x1, x2,…, x2Ns+1) 

with x1 being the current cycle value, x2i and x2i+1 being the (i−1)th sensory 

measurement at the current and previous cycles, respectively, for 1 ≤ i ≤ Ns. The 

output is the normalized predicted RUL associated with the current sensory 

measurement, denoted by L
P. As pointed out in previous works [60,137], the 

combined use of two consecutive data points provides valuable information regarding 
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the rate of change of sensory measurements and thus the rate of system health 

degradation. We do not intend to use more than two data points due to the following 

reasons: (i) more out-of-date information regarding the “trend” of sensory 

measurements is carried by earlier data points, the addition of which may lead to the 

distortion of the most up-to-date information obtained from the two most recent data 

points; and (ii) an increase in the number of input patterns causes an increase in the 

network weights to be trained, which results in a higher chance of over fitting and 

deteriorates the generalization performance.  

Training Process 

The training of FFNN refers to the adjustment of network parameters (weights 

and biases) by exposing the network to a set of training input instances, observing the 

network outputs, and readjusting the parameters to minimize a training error. With the 

improvement of generalization being the main focus of FFNN training, we employ a 

validation mechanism based on the so-called holdout approach. In this mechanism, 

the holdout approach divides the original training data set into two mutually exclusive 

subsets called a training set and a validation set (or a holdout set). The training set is 

used to compute the gradient and update the network weights in order to minimize a 

performance function. The sum-square error (SSE) on the validation set is treated as 

the performance function or validation error, expressed as 

 ( )
22

1 1= =

= = −∑ ∑
N N

P T

k k k

k k

SSE e L L  (5.15) 

where N is the number of training input and output instances, ek is the prediction error 

for the k
th training instance, and Lk

P and Lk
T are the predicted and true normalized 
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RULs for the k
th instance. During the initial phase of training, the training error as 

well as the validation error typically decreases since the network is learning to find a 

good mapping between the training inputs and outputs. However, when the network 

begins to fit the noise, not just the signal, the overfitting occurs, leading to an increase 

in the validation error in spite of an uninterrupted decrease in the training error. The 

training is stopped when the increase in the validation error lasts for a specified 

number of training iterations, and the network weights and biases at the minimum of 

the validation error will be used to construct the FFNN model for RUL prediction. In 

this work, we used 60% of the original data set as the training data set and the rest as 

the validation set. We observed that this setting resulted in a FFNN model with good 

modeling and generalization performance. The backpropagation training with an 

adaptive learning rate [136] is employed to obtain the optimal weights and biases of 

the FFNN. Since the training algorithm is random, resulting in slightly different SSE 

values produced by different training executions, we train the FFNN 10 times to 

obtain 10 trained FFNNs among which the one with the lowest SSE is saved for 

future use. 

Radial Basis Network 

Network Structure 

Another neural network approach we employ for data-driven prognostics is the 

radial basis network (RBN) which was reported to have important universal 

approximation properties [138], and whose structure bears a striking resemblance to 

that of FFNN shown in Figure 5-12. In an RBN, each unit in the hidden layer is a 

radial basis function φ with its own center, and for each input pattern x = (x1, x2,…, 
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x2Ns+1), it computes the Euclidean distance between x and its center and then applies a 

polyharmonic basis function, expressed as 

 ( )
( )

,                     1,3,5,...
,

ln ,  2,4,6,...
φ

 − =
= 

− − =

j

j
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j j

j k

j j j

k

k

x c
x c

x c x c
 (5.16) 

where cj and kj are the center and function order of the jth unit in the hidden layer. We 

can observe from the above expression that each hidden unit in the RBN computes an 

output that depends on a radially symmetric function and, when the input is at the 

center of the unit, the strongest output can be obtained. The network output is the 

normalized predicted RUL LP, expressed as a weighted summation of the outputs of 

hidden units  

 ( )
1

,φ
=

=∑
M

P OH

kj j

j

L W x c  (5.17) 

We note that, although the RBN and FFNN (or MLP) share a similar network 

structure, there are mainly three differences between these two networks:  

(1) The activation function of the hidden layer in an RBN is a radially symmetric 

function (or a radial basis function) which computes the Euclidean distance 

between the input pattern and its center, whereas the activation function of a 

FFNN computes the inner product between the input pattern and the input weight 

vector.  

(2) The output layer of an RBN is always in a linear form, whereas in a FFNN it can 

be in a linear or nonlinear form.  

(3) An RBN typically has a single hidden layer, whereas a FFNN can have multiple 

hidden layers. 
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In order to use the RBN for RUL prediction, both the centers of hidden units and 

network weights need to be determined through the network training which will be 

detailed in the subsequent section.  

Training Process 

The training of an RBN can be viewed as a curve-fitting problem in a 

multidimensional space from the following two perspectives: (i) the objective of the 

training is to find an optimal response surface in a multidimensional space that 

provides the best fit to the training instances; and (ii) the testing (i.e., output of the 

network to input data not seen before) is equivalent to the use of this 

multidimensional surface to interpolate the test data. In this study, a two-phase 

learning scheme [139] is used to train the RBN with the multivariate polyharmonic 

basis function as the activation function. This training process is detailed as follows:  

Phase 1:  Initialize the centers C of radial basis functions (RBFs) with training input 

instances randomly selected from the original training data set, i.e., C = [c1,…, cM] 

with cj being the jth RBF center. The width σ of any RBF neuron is set to be one.  

Phase 2: Determine the output layer weights W
OH which best approximate the 

training instances by a matrix pseudo-inverse technique, expressed as  

 ( )
1T T−

=OH TW Φ Φ Φ L  (5.18) 

where the target output vector L
T = [L1

T,…, LN
T]T, and Φ is an N×(M+1) design 

matrix constructed based on the training instances and RBF centers with Φij = φ(xi,cj). 

It is noted that the gradient-descent error backpropagation learning method is not used 

in this study since, compared to the matrix pseudo-inverse technique, it requires much 
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higher computational effort. With an aim to improve the generalization performance 

of the RBN, we divide the original training data set into the mutually exclusive 

training set (60% of the original set) and validation set (40% of the original set), train 

the RBN with randomly selected RBF centers and evaluate the validation error 10 

times, and choose the trained RBN with the lowest validation error for future use.  

5.2.2 Co-Training Prognostics 

This section presents the proposed co-training algorithm (COPROG) for data-driven 

prognostics. Firstly, the overall procedure of this algorithm is described. Next, details 

are provided on the measure to quantify the confidence of an individual data-driven 

algorithm in predicting the RUL of a suspension unit. This is followed by an 

introduction of the weight optimization scheme for combining RUL estimates from 

two algorithms for online prediction. Finally, remarks on how COPROG can help 

improve the prognostic performance are given. 

Overall Procedure 

Under the context of machine learning, the two data-driven prognostic algorithms 

(FFNN and RBN) detailed earlier can be treated as two regressors whose focus is to 

model the relationship between the RUL (dependant variable) and the current cycle 

value and sensory measurements (independent variables). Furthermore, failure data 

can be treated as labeled data since each input combination (current cycle value and 

sensory measurements) has its corresponding label (RUL), while suspension data can 

be named as unlabeled data since the label (RUL) of each input combination is 

unknown. 
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Let L = {(x1,L1
T),…, (x|L|,L|L|

T)} and U represent the failure (labeled) and 

suspension (unlabeled) training data sets, respectively, where xi is the i
th input 

instance composed of 2Ns + 1 elements, Li
T is its normalized RUL, i.e., its label, |L| is 

the number of labeled instances, and the RULs (labels) of instances in U are unknown. 

The pseudo-code of the COPROG algorithm is shown in Table 5-11, where the 

function TrainFun(L,j) returns the jth trained algorithm (j = 1 for FFNN and j = 2 for 

RBN) based on the labeled data L. In the training process (see Figure 5-13), COPROG 

works as follows: initially two trained algorithms h1 and h2 are generated from L., 

and, for a predefined number T of iterations, the refinement of each algorithm is 

executed with the help of unlabeled instances labeled by the latest version of the other 

algorithm. For each iteration, a set U' of u suspension units is randomly sampled from 

U. Each algorithm hj predicts the labels of input instances of each unit in U' and 

selects the unit Xj' with the highest labeling confidence. Then the other algorithm is 

refined with the labeled unlabeled instances πj added to its training data set Lj. Note 

that a failure or suspension unit contains multiple input instances and, to distinguish a 

failure or suspension unit from an input instance, we use the notation X to denote the 

former and the notation x to denote the latter. In the testing process, the RUL estimate 

for a given testing instance is the weighted sum of the outputs of two algorithms built 

after the last COPROG iteration.  
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Table 5-9 Pseudo-code of the COPROG algorithm 

ALGORITHM:  COPROG  

INPUT: L − failure data set, U − suspension data set, T – maximum number 

of  co-training iterations, u − suspension pool size  

TRAINING PROCESS:  

1  L1 = L; L2 = L  

2  h1 = TrainFun(L1, 1);  h2 = TrainFun(L2, 2);  

3  Repeat for T times  

4 Create a pool U' of u suspension units by random sampling from U  

5 for j = 1 to 2 

6  for each Xu ⊂ U'  

7  Lu
P = hj(Xu); 

8  hj' = TrainFun(Lj∪{Xu, Lu
P}, j);  

9  ∆j,Xu = ∑(Li
T − hj(xi))

2 − ∑(Li
T − hj'(xi))

2  
10  end 

11   if there exists an ∆ j,Xu > 0  

12  Xj' = argmaxXu⊂U' ∆j,Xu;  Lj' = hj(Xj'); 

13  πj = {(Xj', Lj')}; U' = U' \ πj; 

14   else  

15  πj = Ø; 
16  end 

17 end 

18 if πj == Ø && π2 == Ø  exit  

19 else L1 = L1∪π2; L2 = L2∪π1;  

20  h1 = TrainFun(L1, 1);  h2 = TrainFun(L2, 2);  

21  end  

TESTING PROCESS:  

22  LP
 = w1h1(x) + w2h2(x) for any test data x 
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Unlabeled data (suspension data)

Labeled data (run-to-failure data)

Algorithm 1 
(FFNN)

Algorithm 2 
(RBN)

Labeled unlabeled 
data by RBN

Labeled unlabeled 
data by FFNN

 

Figure 5-13 Flowchart of training process in COPROG 

 

Confidence Measure  

One critical issue in the co-training prognostics is how to select an appropriate 

suspension unit to utilize. An inappropriate selection may lead to a mislabeled 

suspension unit (or with an incorrect RUL estimate) which, if added to the training 

data set, may negatively affect the performance of an algorithm. We believe that the 

most confidently labeled suspension unit by a data-driven prognostic algorithm 

should help decrease the error of that algorithm on the labeled data set to the greatest 

extent. Therefore, we quantify the confidence in labeling a suspension unit by the 

extent to which the inclusion of that unit in the training data set reduces the sum 

square error (SSE) in RUL prediction on the failure units. Mathematically, the 

confidence measure of the j
th algorithm on a suspension unit Xu can be expressed as 
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where Li
T denotes the true RUL of the input instance xi contained in the labeled data 

set Lj, Lj
P(xi, L j) denotes the predicted RUL by the j

th prognostic algorithm trained 

with the labeled data set Lj, Lu
P denotes the predicted RULs of input instances 

contained in the suspension unit Xu, hj denotes the original algorithm and hj' denotes 

the one refined with the suspension information {Xu, Lu
P}. The above confidence 

measure reflects the fact that the most confidently selected suspension unit is the one 

which keeps the prognostic algorithm most consistent with its existing training data 

set.  
 

Weight Optimization  

After using two data-driven prognostic algorithms to select and label the 

unlabeled suspension units during the offline training, we then obtain two augmented 

labeled training data sets L1 and L2, each of which contributes a trained algorithm for 

the online prediction. Then, the RUL predictions of these two algorithms are 

combined in a weighted-sum formulation as the final prediction. The simplest way is to 

average the two predictions, which is acceptable only when the prognostic algorithms 

provide the same level of accuracy. However, it is more likely that an algorithm tends 

to be more accurate than the other. In such cases, it would be ideal to assign a greater 

weight to a member algorithm with higher prediction accuracy in order to enhance its 

prediction accuracy. Hence, two individual algorithms with different prediction 

performance should be multiplied by different weight factors. In what follows, we 

propose a weight optimization scheme to maximize the accuracy in RUL prediction 

by adaptively synthesizing the prediction accuracy of each individual algorithm. In 
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this scheme, the weights can be obtained by solving an optimization problem of the 

following form 

 
( ) ( )( )( )
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1 1 2 1

1 2
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+ =
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i i i
SSE L w h w h

w w
x

x x
L  (5.20) 

where L denotes original training data set. After the prediction of RULs using the two 

prognostic algorithms, the above optimization problem can be readily solved with 

almost negligible computational effort since the weight optimization process does not 

require the re-execution of these algorithms. We expect that, by solving the 

optimization problem in Eq. (5.8), the resulting ensemble of the two algorithms will 

outperform its counterpart with equal weights in terms of prediction accuracy. 
 

Remarks on Co-Training Prognostics 

In what follows, we intend to elaborate on how the proposed COPROG algorithm 

can utilize the suspension data to improve the prognostic performance from two 

perspectives: (i) how an individual prognostic algorithm can benefit from the 

utilization of suspension data; and (ii) how the use of two algorithms can enhance the 

prognostic accuracy as compared to an individual algorithm.  

Regarding the utilization of suspension data, Figure 5-14 illustrates that using one 

prognostic algorithm (FFNN or RBN) to label the unlabeled instances help improve 

the prediction accuracy on the test data in a prognostic sample space P. Here, P 

consists of all possible prognostic samples obtained under different testing situations 

(e.g., manufacturing condition, health condition and degradation rate). We have 

sparse labeled data (or failure data) but plenty of unlabeled data (or suspension data). 
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For test data in the close vicinity of labeled data, we believe the training algorithm 

used to build the prognostic algorithm with only labeled data can generalize 

sufficiently well to make reasonable predictions. This is not to say all predictions 

made in such cases are highly accurate: at points that are sparsely populated by 

labeled data, relatively large errors are expected (as is the case in Figure 5-14), but 

the predictions will still be meaningful. For test data that fall significantly away from 

labeled data, we expect that FFNN or RBN outputs could contain intolerably large 

errors. If the unlabeled data can be properly labeled and added to the labeled data set, 

the algorithm can provide more accurate RUL predictions for test data that are close 

neighbors of these labeled unlabeled data. We note that the proper labeling is realized 

by selecting appropriate unlabeled data according to the maximization of the 

confidence measure in Eq. (5.19).  
 

P

Labeled data

Unlabeled data

Test data

 

Figure 5-14 Prognostic space with labeled, 
unlabeled and test data 

 

Regarding the use of two prognostic algorithms, we note that this strategy can 

produce the following two desirable effects: 
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Creating diversity: The two algorithms with different network structures and training 

procedures lead to the diversity in RUL prediction, based on which the ensemble 

obtains better predictive performance than could be obtained from any individual 

algorithm. Since, during each iteration, the suspension unit chosen by h1 will not be 

chosen by h2, the suspension units two algorithms label for each other are different, 

which can be treated as another mechanism for encouraging the diversity. 

Reducing overfitting: If we consider that the labeled training data set contains noise, 

the use of two prognostic algorithms can be helpful to reduce overfitting. Let N 

denote the set of noisy data in L. For a suspension (unlabeled) unit Xu, either of the 

algorithms h1 and h2 will rely on a set of neighboring labeled data to label Xu. 

Assume this set is Ω and Xu is labeled by h1. Then, {Xu,h1(Xu)} is added to L1, where 

the labels h1(Xu) suffers from the noisy data in Ω∩N. For another unlabeled unit Xv, 

which we assume is very close to Xu, the neighboring labeled data for labeling Xv will 

be approximately Ω∪{Xu,h1(Xu)}. Thus, h1(Xv) will be roughly affected by 

(Ω∩N)∪{Xu,h1(Xu)}. Note that {Xu,h1(Xu)} has already suffered from the noisy data 

in Ω∩N. Thus, h1(Xv) will be affected by Ω∩N more seriously than h1(Xu) does. As 

we label more suspension units, the effect of noise continues to propagate and 

becomes more severe. Whereas if the unit Xu is labeled by h2 and {Xu,h2(Xu)} is put 

into L1, then h1(Xv) will suffer from Ω∩N only once, thereby preventing the effect of 

noise from propagating.  
 

5.2.3 Case Study: Rolling-Element Bearing Prognostics 

In this section, the proposed COPROG algorithm for data-driven prognostics is 
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demonstrated with a PHM case study on rolling-element bearing health prognostics 

(simulation). The rolling-element bearing is a critical component in rotational 

machines, since an unexpected failure of the bearing leads to machine shut-down and 

catastrophic damage. Thus, it is very important to ensure high reliability and safety of 

the bearing during its operation. This case study conducts bearing health prognostics 

with sensory signals obtained from a vibration model of the rolling-element bearing.  

To study how the exploitation of suspension data affects the prognostic 

performance, we compared the co-training approach and the FFNN and RBN without 

the use of suspension data in terms of prognostic accuracy and robustness. 

Bearing Defect Simulation 

We employed an existing vibration model [140,141] to simulate the vibration 

signal produced by a single point defect on the inner race of a rolling-element bearing 

under constant radial load. The model takes into account the effects of the single 

point defect, shaft speed, bearing load distribution, and the exponential decay of 

vibration. The simulation assumes the following bearing parameters: pitch angle θ = 

0o, shaft rotational speed vr = 100rpm corresponding to shaft rotational frequency fr ≈ 

1.67Hz, bearing-induced resonant frequency fs = 5000Hz, pitch diameter dp = 23mm, 

roller diameter dr = 8mm and number of rollers nr = 9. Then the characteristic 

defective frequency corresponding to an inner race fault can be computed as  

 ( )1 cos 10.11Hz
2

θ
 

= + ≈  
 

r r r
IRF

p

n f d
f

d
 (5.21) 

Figure 5-15(a) plots the simulated vibration signal of a bearing with an inner race 

fault in the time domain. Using the fast Fourier transform (FFT), we converted this 
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signal to the frequency domain and obtained its frequency spectrum in Figure 5-15(b) 

where the spectrum is dominated by high-frequency resonant signals. Through band-

pass filtering and rectifying the raw vibration signal, we excluded these resonant 

signals by other parts of the rotational machine and derived a demodulated signal as 

shown in Figure 5-15(c). The frequency domain plot of the demodulated signal in 

Figure 5-15(d) indicates the presence of a defect with the characteristic frequency of 

10.13Hz which exhibits good consistency with the calculated inner race fault 

frequency in Eq. (5.21).  
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Figure 5-15 Simulated signal of outer-race defect: (a) time domain plot and (b) 
frequency spectrum of raw signal; (c) time domain plot and (d) frequency spectrum 

of demodulated signal. 
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We then repeatedly generated the vibration signals with exponentially increasing 

defect magnitudes corrupted by random fluctuations. A set of initial values and 

increasing rates of defect amplitudes were randomly generated to produce a set of 

bearing units. The lifecycle evolution of vibration spectra of an example bearing unit 

is plotted in Figure 5-16(a) where it can observed that, as degradation progresses over 

time, the defect magnitudes at harmonic defective frequencies (positive integer 

multiples of the characteristic defective frequency) begin to appear and increase 

exponentially. The feature we employed for data-driven prognostics is the entropy as 

shown in Figure 5-16(b). We can observe from both figures that the degradation 

undergoes two distinct stages. The first stage is referred to as normal operation period 

characterized by a relatively flat region. In this stage, no obvious defect can be found 

in the bearing. In the second stage, the degradation of the bearing begins and the 

signal is characterized by exponentially increasing defect magnitudes with random 

fluctuations. This two-stage degradation behavior is consistent with previous works 

on bearing prognostics [50,51,142].  

For the training process, we generated a training data set consisting of 100 failure 

(labeled) units and 100 suspension (unlabeled) units. As shown in Figure 5-16(b), the 

failure data contain complete degradation information while the suspension data carry 

only partial degradation information. The latter were generated by truncating the 

original failure data after pre-assigned suspension times. The suspension time pre-

assigned to each suspension unit was randomly generated from a uniform distribution 

between 90 and 100 percentile lives. This range in the uniform distribution was 

selected based on the assumption that the suspension unit is taken out of service when 
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it approaches its end of life. For the testing process, we generated a testing data set 

consisting of 100 testing units by truncating the original failure data after pre-

assigned RULs. The RUL pre-assigned to each testing unit was randomly generated 

from a uniform distribution between its zero and half-remaining life. The lifecycle 

evolution of entropy of a testing unit is plotted in Figure 5-16(b), where we can 

observe a smaller portion of health degradation pathway compared to a suspension 

unit.   
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Figure 5-16 Lifecycle evolution of vibration spectra (a) and entropy (b) with an 
inner race defect. 

Implementation of COPROG Algorithm 

To investigate the effect of the amount of failure data on the performance 

improvement by COPROG, we evaluated algorithms under two different settings: 

Setting 1 (lack of failure data) ‒ 3 failure units and 10 suspension units (i.e., 3L-10U) 

and Setting 2 (plenty of failure data) ‒ 10 failure units and 10 suspension units (i.e., 

10L-10U). For each setting, the failure and suspension data were randomly selected 

from the training data set consisting of 100 failure units (labeled) and 100 suspension 

units (unlabeled). To comprehensively test the performance of algorithms under 
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various sets of failure and suspension data as well as account for the randomness in 

the training of FFNN and RBN, we repeatedly executed the evaluation process 50 

times, each with a different set of failure and suspension units, and computed the 

mean (accuracy) and standard deviation (robustness) of root mean square errors 

(RMSEs) on the testing data. Mathematically, the mean RMSE can be expressed as  
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 (5.22) 

where LT(x) denotes the true RUL of the input instance x, LP(x) denotes the predicted 

RUL by an algorithm, Nt denotes the number of input instances in the testing data set 

T. Since the health degradation at a very early stage is almost negligible and thus the 

occurrence of a failure is almost impossible, we extracted the testing input instances 

from the time step 6 of each testing trajectory. Since the RUL prediction at a late 

stage exerts a larger influence on maintenance decision-making than that at an early 

stage, we intended to separately investigate the prognostic accuracy when a bearing 

approaches its end of life. For this purpose, we extracted the testing input instances at 

the last 5 time steps of each testing trajectory and computed a critical-time RMSE 

using Eq. (5.22). In the COPROG algorithm, both the maximum number of co-training 

iterations T and the suspension pool size u were set to 5. Regarding the FFNN 

training, we employed 8 hidden units in the hidden layer and set the maximum 

training epochs to 100. Regarding the RBN training, we employed 20 RBF centers 

with first-order polyharmonic functions.  



 

 163 
 

Results of COPROG Algorithm 

Table 5-10 summarizes the RMSE results of supervised (FFNN and RBN) and 

semi-supervised (COPROG) learning. Here, FFNN and RBN refer to initial algorithms 

before utilizing any suspension data. In what follows, we intend to interpret the 

results from the following two perspectives: 

Prognostic accuracy: It can be observed from Table 5-10 that the COPROG algorithm 

under any setting always outperforms any of the initial algorithms in terms of the life- 

and critical-time mean RMSEs, which verifies that COPROG is capable of exploiting 

the suspension data to improve the prognostic accuracy. Under the setting with the 

lack of failure data (i.e., 3L-10U), COPROG achieves the life- and critical-time mean 

RMSEs of 5.2674 and 4.5505 on the testing data set, 16.26% and 15.19% 

improvements over the best initial algorithm, RBN, whose mean RMSEs are 6.2905 

and 5.3654, respectively. The accuracy improvement can be attributed to the effective 

utilization of valuable information that is only carried by the suspension data. As 

expected, the accuracy improvement becomes less significant when we have more 

failure data (i.e., 10L-10U). This is due to the fact that a larger amount of failure data 

captures more information regarding the degradation trend and leads to a reduced 

amount of information gained by utilizing suspension data. 

Prognostic robustness: In addition to the prognostic accuracy, we also evaluated the 

algorithms in terms of the prognostic robustness, that is, the extent to which the 

performance of an algorithm is insensitive to the variation in the training data. Here, 

the prognostic robustness was quantified using the standard deviation of RMSEs 

obtained from 10 random sets of training data. As shown in Table 5-10, COPROG 
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always performs significantly better than the initial algorithms, which suggests that 

the exploitation of suspension data by COPROG helps improve the prediction 

robustness. The superior performance of COPROG in robustness can be attributed to 

the enrichment of degradation information by utilizing the suspension data and the 

combined use of two algorithms.  

To illustrate the accuracy improvements obtained by exploiting suspension data, 

the RUL predictions by the initial algorithms (that is, FFNN and RBN trained without 

the utilization of any suspension data) and final algorithms (that is, FFNN and RBN 

after the co-training process) under the setting of 3L-10U are plotted for 200 training 

and testing units in Figure 5-17. The units are sorted by the RULs in an ascending 

order. The relative large scatter of RUL predictions around the true curve can be 

attributed to the lack of failure units (only 3) as well as the large noise in the entropy 

feature data (see Figure 5-16(b)). It can be  seen that, compared to the two initial 

algorithms, the final algorithms yield RUL predictions that are closer to the true 

values while eliminating many outliers produced by the initial algorithms.  

Table 5-10 RMSE results of supervised (FFNN and RBN) and semi-supervised 
(COPROG) learning for rolling-element bearing problem 

Training 
data  

Statistics  
Life-time RMSE (cycles) Critical-time RMSE (cycles) 

FFNN RBN  COPROG FFNN RBN  COPROG 

3L-10U  
Mean  6.3119  6.2905  5.2674  5.5487  5.3654  4.5505  

Std
a 
 1.2980  1.2593  0.4851  1.5794  1.3378  0.7659  

10L-10U  
Mean  5.2051  5.0116  4.7928  4.5234  4.2165  4.0406  

Std  0.3501  0.4143  0.2637  0.6504  0.6291  0.5108  
 a

 Standard deviation 
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(a) (b) 

Figure 5-17 RUL predictions by initial and final FFNNs (a) and RBNs (b) for 
rolling-element bearing problem (3L-10U) 

5.2.4 Conclusion 

This section presents a co-training prognostics (COPROG) algorithm, which, to the 

best of our knowledge, is one of the earliest efforts on semi-supervised learning for 

data-driven prognostics. By utilizing the suspension data, the COPROG algorithm 

achieves better accuracy and robustness in RUL predictions compared to any 

individual algorithm without utilizing the suspension data. Results from an 

engineering case study (rolling element bearing problem) suggested that COPROG is 

capable of effectively exploiting the suspension data to improve the prognostic 

performance and that the improvement becomes more pronounced when we have lack 

of failure data for the offline training.  

5.3 A Multiscale Framework with Extended Kalman Filter (EKF) 

In general, system’s health condition is a slow time-varying system state, which 

can be highly correlated with a fast time-varying system state. For instance, the health 

condition (or capacity) of a battery is highly correlated with a fast time-varying 



 

 166 
 

system state, such as the state-of-charge (SOC). Should the existing techniques be 

used for such a system, they generally demand tremendous computational efforts and 

provide noisy estimates of the slow time-varying system state (or health condition). 

To overcome these shortcomings, this research proposes a multiscale framework with 

an extended Kalman filter (EKF) and applied this framework to Li-ion battery SOC 

and capacity estimation. When applied for battery prognostics, the proposed 

framework comprises two ideas: (i) a multiscale framework to estimate SOC and 

capacity that exhibit time-scale separation and (ii) a state projection scheme for 

accurate and stable capacity estimation. As a hybrid of coulomb counting and 

adaptive filtering techniques, the framework achieves higher accuracy and efficiency 

than joint/dual EKF. This multiscale framework enables highly-confident health 

prognostics for resilient engineered systems with multiple time-scales. 

5.3.1 System Description 

To make the discussion more concrete, we will use discrete-time state-space 

models with multiple time-scales.  Without loss of generality, we assume the system 

has two time-scales: the macro and micro time-scales. System quantities on the macro 

time-scale tend to vary slowly over time while system quantities on the micro time-

scale exhibit fast variation over time. The former are referred to as the model 

parameters of the system while the latter are called the states of the system. We then 

begin by defining the nonlinear state-space model considered in this work as  
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where xk,l is the vector of system states at the time tk,l = tk,0 + l·T, for 1 ≤ l ≤ L, with T 
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being a fixed time step between two adjacent measurement points, and k and l being 

the indices of macro and micro time-scales, respectively; θk is the vector of system 

model parameters at the time tk,0; uk,l is the vector of observed exogenous inputs; yk,l 

is the vector of system observations (or measurements); wk,l and rk are the vectors of 

process noise for states and model parameters, respectively; vk,l is the vectors of 

measurement noise; F(•,•,•) and G(•,•,•) are the state transition and measurement 

functions, respectively. Note that L represents the level of time-scale separation and 

that xk,0 = xk–1,L. With the system defined, we aim at estimating both the system states 

x and model parameters θ from the noisy observations y.   

Let us take the battery system as an example. In the battery system, the system 

state x refers to the SOC, which changes very rapidly and may transverse the entire 

range 100%-0% within minutes. Here we use an italic, non-bold letter x to indicate 

that the system state in the battery system is a scalar rather than a vector, and the 

same notational rule applies to all other functions and variables. The system model 

parameter θ represents the cell capacity which tends to vary very slowly and typically 

decreases 1.0% or less in a month with regular use. The state transition equation 

F(•,•,•) models the variation of SOC over time while the cell dynamic model G(•,•,•) 

relates the measured cell terminal voltage y with the unmeasured state (SOC) and 

model parameter (capacity) and the measured exogenous input u. Given the system’s 

state-space model in Eq. (5.23) and knowledge of the measured input/output signals 

(cell current/cell terminal voltage), we are interested in estimating the unmeasured 

state (SOC) and model parameter (capacity) in real-time and in a dynamic 

environment.  
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5.3.2 Review of Dual Extended Kalman Filter Method 

The dual extended Kalman filter (EKF) method is a commonly used technique to 

simultaneously estimate the states and model parameters [143]. The essence of the 

dual EKF method is to combine the state and weight EKFs with the state EKF 

estimating the system states and the weight EKF estimating the system model 

parameters. In the algorithm, two EKFs are run concurrently and, at every time step 

when observations are available, the state EKF estimates the states using the current 

model parameter estimates from the weight EKF while the weight EKF estimates the 

model parameters using the current state estimates from the state EKF. This section 

gives a brief review of the dual EKF method. The first part of this section presents the 

numerical formulation and the second part describes the numerical implementation. 

Numerical Formulation: Dual Estimation  

The algorithm of the dual EKF for the system described in Eq. (5.23) is 

summarized in Table 5-11. Since the dual EKF does not take into account the time-

scale separation, θk is estimated on the micro time-scale. To reflect this, we use the 

notations θk,l and rk,l to replace θk and rk, respectively. Also note that, to be consistent 

with the system description in Eq. (5.23), we use two time indices k and l to present 

the dual EKF algorithm and this presentation is equivalent to a simpler version in 

[144] with only one time index l. The algorithm is initialized by setting the model 

parameters θ and states x to the best guesses based on the prior information. The 

covariance matrices Σθ and Σx of estimation errors are also initialized based on the 

prior information. At each measurement time step, the time- and measurement-

updates are performed in the following two EKFs: weight EKF and state EKF.  
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Table 5-11 Algorithm of dual extended Kalman filter [144]  

Initialization 
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For k∈{1,…, ∞}, l∈{1,…, L}, compute 

 Time-update equations for the weight filter 
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 Time-update equations for the state filter 
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 Measurement-update equations for the state filter 
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 Measurement-update equations for the weight filter 
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Weight EKF (Parameter Estimation) 

The weight EKF first executes the time-update, where prior parameter estimates 

,
ˆ −

k l
θ  and their error covariance 

,

−

k lθ
Σ  are computed with Eq. (5.25). Due to the 
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addition of unpredictable process noise rk,l in Eq. (5.23), the uncertainties 
,

−

k lθ
Σ in the 

parameter estimates always increase. Following the time-update step, the estimated 

measurements are then computed by  

 
( ), , , ,

ˆˆ ˆ , ,− −=
k l k l k l k l

y G x u θ  (5.32) 

The above predicted measurements are compared with the real measurements yk,l to 

obtain prediction errors which state the novelty or the new information that the 

measurements yk,l brought to the filter relative to the parameters θk,l. The prediction 

errors are used to adapt the current parameter estimates and obtain posteriori 

parameter estimates ,
ˆ

k l
θ using Eq. (5.30). Due to the addition of one set of 

measurements, the error uncertainties are reduced as can be seen in Eq. (5.30). This 

process is referred to as the measurement-update.  

In the battery system, the measured terminal quantities are the cell terminal 

voltage y and current u. Since the capacity affects the SOC transition which further 

affects the cell terminal voltage, the cell terminal voltage measurement y can be used 

to adapt the capacity by following the steps detailed above.  

State EKF (State Estimation) 

The state EKF essentially follows the same manner as the weight EKF. One 

difference lies in the fact that the time-update in the weight EKF employs the state 

transition function F(•,•,•) as shown in Eq. (5.26). Similar to the weight EKF, the 

measurement-update in the state EKF also uses the differences between the predicted 

measurements in Eq. (5.32) and the real measurements to adapt the states xk,l. As 

shown in Eq. (5.28), the posteriori state estimates are obtained by correcting the priori 
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state estimates with the prediction errors multiplied by gain factors. 

When applied to the battery system, the state EKF aims at estimating the SOC x 

based on the measured cell terminal voltage y and current u. Since the SOC directly 

affects the cell terminal voltage through the cell dynamic model G(•,•,•), the cell 

terminal voltage measurement, as the model output, can be used to back-estimate the 

SOC, as one model input, by following the steps detailed above.  

Numerical Implementation: Recurrent Derivative Computation 

The dual EKF method, which adapts the states and parameters using two 

concurrently running EKFs, has a recurrent architecture associated with the 

computation of Ck,l
θ in the weight filter. The computation of Ck,l

θ involves a total 

derivative of the measurement function with respect to the parameters θ as  
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This computation requires a recurrent routine similar to a real-time recurrent learning 

[145]. Decomposing the total derivative into partial derivatives and propagating the 

states back in time results in the following recursive equations 
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The last term in Eq. (5.36) can be set to zero with the assumption that Kk,l
x is not 

dependant on θ. Indeed, since Kk,l
x is often very weakly dependant on θ, the extra 

computational effort to consider this dependence is not worth the improvement in 

performance. Therefore, we drop the last term in Eq. (5.36) in this study. Then the 

three total derivatives can be computed in a recursive manner with initial values set as 

zeros. It noted that the partial derivatives of the transition and measurement functions 

with respect to the states x and parameters θ can be easily computed with the 

explicitly given function forms.  

5.3.3 A Multiscale Framework with Extended Kalman Filter 

As discussed in Section 5.3.2, the dual EKF method estimates both the states and 

parameters on the same time-scale. However, for systems that exhibit the time-scale 

separation, it is natural and desirable to adapt the slowly time-varying parameters on 

the macro time-scale while keeping the estimation of the fast time-varying states on 

the micro time-scale. This multiscale framework is expected to reduce the 

computational effort and provide more stable estimates of model parameters. This 

section is dedicated to the discussion of this framework and is organized in a similar 

manner as Section 5.3.2: the first part of this section presents the numerical 

formulation of the multiscale framework with EKF and the numerical implementation 

of the recurrent derivative computation in the multiscale framework is described in 

the subsequent part.  

Numerical Formulation: Multiscale Estimation 

As opposed to the dual estimation, we intend to derive a multiscale estimation 

which allows for a time-scale separation in the state and parameter estimation. More 
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specifically, we aim at estimating the slowly time-varying model parameters on the 

macro time-scale and, at the same time, intend to keep the estimation of fast time-

varying states on the micro time-scale to utilize all the measurements. The algorithm 

of the multiscale framework for the system described in Eq. (5.23) is summarized in 

Table 5-12. Note that, in contrast to the dual EKF algorithms in Table 5-11, we only 

use the macro time-scale index k to present the macro EKF since the parameter 

estimation is performed only every macro time step.  

The algorithm is initialized by setting the model parameters θ and states x to the 

best guesses based on the prior information. The covariance matrices Σθ and Σx of 

estimation errors are also initialized based on the prior information. The main 

algorithm essentially consists of the so-called micro and macro EKFs running on the 

micro and macro time-scales, respectively. Note that, the micro time-scale here refers 

to the time-scale on which system states exhibit fast variation while the macro time-

scale refers to the one on which system model parameters tend to vary slowly. For 

example, in the battery system, the SOC, as a system state, changes every second, 

which suggests the micro time-scale to be approximately one second. In contrast, the 

cell capacity, as a system model parameter, typically decreases 1.0% or less in a 

month with regular use, resulting in the macro time-scale being approximately one 

day or so. The time- and measurement-updates performed in the macro EKF and 

micro EKF are detailed as follows. 
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Table 5-12 Algorithm of a multiscale framework with extended Kalman filter 

Initialization 
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For k∈{1,…, ∞}, compute  

 Time-update equations for the macro EKF 
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 For l∈{1,…, L}, compute 

 Time-update equations for the micro EKF 
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 Measurement-update equations for the micro EKF 
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Macro EKF (Parameter Estimation) 

At every macro time step, the macro EKF executes the time-update where prior 

parameter estimates ˆ −

k
θ  and their error covariance −

kθ
Σ  are computed with Eq. (5.38). 

The addition of unpredictable process noise rk increases the uncertainties −

kθ
Σ

 
in the 

parameter estimates. After the time-update step, the state projection is conducted to 

project the state estimates from the micro EKF through the macro time step, 

expressed as the state projection function F0→L(•,•,•) in Eq. (5.39). We note that 

F0→L(•,•,•) can be expressed as a nested form of the state transition function F(•,•,•) in 

Eq. (5.23) and that the computational effort involved in computing F0→L(•,•,•) is 

negligible compared to the time- and measurement-updates conducted in L micro 

time steps. In the measurement-update step, the macro EKF computes the difference 

between the projected states and the estimated states from the micro EKF and uses the 

difference to obtain posterior parameter estimates, which is detailed in Eq. (5.41). 

Compared with the weight EKF, the macro EKF possesses two distinctive 

characteristics: (i) the time- and measurement-updates are performed over the macro 

time-scale (L·T) instead of the micro time-scale (T), leading to the possibility to 

greatly reduce the computational complexity; and (ii) the macro EKF uses the state 

estimates from the micro EKF for the measurement-update, enabled by the state 

projection in Eq. (5.39), and the resulting parameter estimation becomes decoupled 

with the state estimation where the real measurements in Eq. (5.23) are used for the 

measurement-update. The first characteristic could magnify the effect of the 

parameters on the states, i.e., that the parameters could affect the states projected on 

the macro time-scale (L·T) more significantly than those projected on the micro time-
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scale (T). The second characteristic helps distinguish the effects of the two unknowns 

(states and parameters) on the only measurements. In the subsequent section, these 

characteristics will be further explained and verified when we apply the algorithm to 

the battery system. 

Micro EKF (State Estimation) 

The micro EKF bears a strong resemblance to the state EKF in the dual EKF. The 

only difference is that, for the state transition, the micro EKF uses the capacity 

estimate from the previous macro time step (see Eq. (5.42)) while the state EKF 

employs that the previous micro time step (see Eq. (5.26)). It is important to note that, 

at the start of every macro time step, i.e., at the time tk−1,0, the micro EKF sends the 

state estimate to the macro EKF which then projects it through the macro time step 

according to the state projection equation in Eq. (5.39). Upon the completion of the 

state projection at the end of every macro time step, i.e., at the time tk−1,L, the micro 

EKF sends another state estimate to the macro EKF which then compares it with the 

projected estimate and uses the difference to adapt the parameter estimate in the 

measurement-update step detailed in Eq. (5.41).   

Numerical Implementation: Recurrent Derivative Computation 

In the multiscale framework, the computation of Ck
θ in the macro EKF involves a 

total derivative of the state projection function with respect to the parameters θ as  
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Similar to the total derivative in Eq. (5.33), this computation also requires a recurrent 
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routine. Decomposing the total derivative into partial derivatives, we then obtain the 

following equation 
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The total derivative in the last term can be obtained by using the recursive equations 

Eqs. (5.34)-(5.36). The partial derivatives of the state projection function with respect 

to the states x and parameters θ can be easily computed with the explicitly given 

function forms.  

5.3.4 Application to Li-Ion Battery System 

In this section, we use the proposed framework to estimate the SOC and capacity 

in a Li-ion battery system. When applied to the battery system, the multiscale 

framework can be treated as a hybrid of coulomb counting and adaptive filtering 

techniques and comprises two new ideas: (i) a multiscale framework to estimate SOC 

and capacity that exhibit time-scale separation and (ii) a state projection scheme for 

accurate and stable capacity estimation. The first part of this section presents the 

discrete-time cell dynamic model used in this study. The second part presents the 

multiscale estimation of SOC and capacity in the battery system. 

Discrete-Time Cell Dynamic Model  

In order to execute the time-update in the micro and macro EKFs, we need a state 

transition model that propagate the SOC forward in time. In order to execute the 

measurement-update in the micro-EKF, we need a “discrete-time cell dynamic 
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model” that relates the SOC to the cell voltage. Here we employ the enhanced self-

correcting (ESC) model which considers the effects of open circuit voltage (OCV), 

internal resistance, voltage time constants and hysteresis [75]. The effects of voltage 

time constants and hysteresis in the ESC model can be expressed as [75] 
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where x is the SOC, f the filter state, h the hysteresis voltage, α the vector of filter 

pole locations, γ the hysteresis rate constant, i the current, M(·, · ) maximum 

hysteresis, ηi the coulombic efficiency, T the length of measurement interval, C the 

nominal capacity. The coulombic efficiency of a battery cell is defined as the ratio of 

the amount of charge that is stored in the cell during charging compared to the 

amount that can be extracted from the cell during discharging. We then obtain the 

state transition and measurement equations as  
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where OCV is the open circuit voltage, yk the predicted cell terminal voltage, R the 

cell resistance, S a vector of constants that blend the time constant states together in 

the output.  

Multiscale Estimation of SOC and Capacity  

We then begin to introduce the multiscale framework with EKF for the Li-ion 

battery system by drawing a flowchart in Figure 5-18, where T is a fixed time step 



 

 179 
 

between two adjacent measurement points, xk,l is the SOC estimate at the time tk,l = tk,0 

+ l·T., for 1 ≤ l ≤ L (k and l are the indices of macro and micro time-scales, 

respectively), y and i are the cell voltage measurement and the cell current 

measurement (equivalent to u used before), respectively, and C is the cell capacity 

estimate (equivalent to θ used before).  

Time update EKFX

xk,l
– = xk,l-1 + ηi·T·ik,l-1/Ck-1

Time update EKFC

Ck
– = Ck-1

+

Ck
–

xk,l
–

Ck

xk,l-1

Ck-1
+

ik,l-1

Measurement 

update EKFC

Measurement 

update EKFX

xk,l

yk,l ik,l

State projection 

EKFC

xk,L
~

Macroscale: 

l = L?

xk,l

No

Yes xk,L

(SOC)

Micro EKF

Macro EKF

(Capacity)

 

Figure 5-18 Flowchart of a multiscale framework with EKF for battery SOC and 
capacity estimation 

 
The framework consists of two EKFs running in parallel: the top one (micro EKF) 

adapting the SOC in the micro time-scale and the bottom one (macro EKF) adapting 

the capacity in the macro time-scale. The micro EKF sends the SOC estimate to the 

macro EKF and receives the capacity estimate from the macro EKF. In what follows, 

we intend to elaborate on the macro EKF, the key technical component of the 

multiscale framework, which consists of the following recursively executed 

procedures (see Figure 5-19): 

Step 1: At the macro time step k, the capacity transition step, also referred to as the 

time-update step, computes the expected capacity and its variance based on the 

updated estimates at the time step k ‒ 1, expressed as 

 
1 11, .

− −

− + − +
−= Σ = Σ + Σ

k k kk k C C r
C C  (5.50) 
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For a stable system, the capacity variance term 
1−

+Σ
kC  tends to decrease over time with 

the measurement-update (see Step 3 in Figure 5-19). However, the process noise term 

1−
Σ

kr
always increases the uncertainty of the capacity estimate. To clearly illustrate the 

proposed idea, we intend to classify the capacity estimates into three cases (see Figure 

5-19): a larger estimate Ck‒1
(L), an accurate estimate Ck‒1

(N), and a smaller estimate 

Ck‒1
(S). 

Step 2: Based on the capacity estimate Ck
‒, the state projection scheme projects the 

SOC through the macro time step, expressed as a state projection equation derived 

from Eqs. (5.39) and (5.49) 
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As can be seen in Figure 5-19, the projected SOCs exhibit large deviations from their 

true values (obtained from the micro EKF), which suggests a magnified effect of the 

capacity on the SOC.  

Step 3: Following the state projection step, the difference between the projected SOC 

and the estimated SOC by the micro EKF is used to update the capacity estimate, 

known as the measurement-update. It is noted that the measurement-update requires 

accurate SOC estimates which can be obtained from the micro EKF. The updated 

capacity estimate equals the predicted capacity estimate in Step 1 plus a correction 

factor, expressed as 

 
( ), ,ˆ , 1 .+ − + − = + − Σ = − Σ 	

k k

C C C

k k k k L k L C k k CC C K K Cx x  (5.52) 

where the Kalman gain Kk
C  and the total derivative Ck

C can be estimated using Eqs. 

(5.40) and (5.45), respectively.  
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Figure 5-19 Procedures of capacity estimation in macro EKF 

Remarks on Mutiscale Framework 

We note that the proposed framework decouples the SOC and capacity estimation 

in terms of both the measurement and time-scale, with an aim to avoid the concurrent 

SOC and capacity estimation relying on the only measurement (cell terminal voltage) 

in the dual EKF [76]. In fact, the very motivation of this work lies in the fact that the 

coupled estimation in the dual EKF falls short in the way of achieving stable capacity 

estimation, precisely because it is difficult to distinguish the effects of two states 

(SOC and capacity) on the only measurement (cell terminal voltage), especially in the 

case of the micro time-scale where the capacity only has a very small influence on the 

SOC. Regarding the measurement decoupling, the multiscale framework uses the cell 

terminal voltage exclusively as the measurement to adapt the SOC (micro EKF) 

which in turn serves as the measurement to adapt the capacity (macro EKF). 

Regarding the time-scale decoupling, the state projection using the coulomb counting 

in Eq. (5.51) significantly magnifies the effect of the capacity on the SOC, i.e., that 

the capacity affects the SOC projected on the macro time-scale (L·T) more 

significantly than that projected on the micro time-scale (T). The larger influence of 
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the capacity on the SOC leads to the possibility of more stable capacity estimation, 

and that is precisely the main technical characteristic that distinguishes our approach 

from the dual EKF. 

5.3.5 Experimental Results 

The verification of the proposed multiscale framework was accomplished by 

conducting an extensive urban dynamometer drive schedule (UDDS) test. This 

section reports the UDDS test results of five Li-ion prismatic cells.  

Description of Test Procedure 

In addition to the numerical study using synthetic data, we also conducted the 

UDDS cycle test to verify the effectiveness of the multiscale framework. The cells 

used in the test are Li-ion prismatic cells with a nominal capacity of 1.5Ah. Since the 

cell cannot withstand the high current pulse on a typical HEV cell, the UDDS profile 

was scaled down to within the rate range of ±2C. The scaled UDDS cycle was 

replicated two times to obtain the final UDDS cycle used in this test (see Figure 5-

20a). It is noted that, in a battery system, we often use C or C-rate to measure the rate 

at which a cell is charged or discharged relative to its full capacity. For the Li-ion 

prismatic cell with the capacity of 1.5Ah, a discharge current with a 1C rate (1.5A) 

will discharge the full cell capacity in 1 hour. Here, 2C or a 2C rate (3.0A) defines the 

upper and lower bounds (±3.0A) of the scaled UDDS profile (see Figure 5-20a). The 

cycle test is composed of 12 UDDS cycles, separated by 1C constant current 

discharge for 6min and 30min rest. This test profile resulted in the spread of SOC 

over the 100%-4% range. The SOC profile for 12 UDDS cycles is plotted in Figure 5-

20b, where the cell experiences an SOC increase by about 3% during each UDDS 
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cycle, and an SOC decrease by about 10% due to the 1C discharge between cycles. 

The discharge setting (1C for 6min) was designed in order to excite the entire SOC 

range (100%-4%) for the UDDS cycle test as well as to practice the UDDS cycle test 

at many different SOC levels separated by a small gap (about 7%).  

 

 

(a) 

3% increase

10% decrease

 

(b) 

Figure 5-20 SOC profile and one cycle rate profile for UDDS cycle test. 
Figure (a) plots the rate profile for one UDDS cycle and (b) plots the SOC 

profile for 12 UDDS cycles. 

 
We set up a UDDS test system (see Figure 5-21) which comprises of an Arbin 

BT2000 cycle tester with a data acquisition device, an Espec SH-241 temperature 

chamber at 25oC and a test jig as a connector holder for prismatic cells. Five prismatic 

cells were placed in the temperature chamber and held by the test jig throughout the 

test.  

Arbin Cell Tester

Data Acquisition Device Temperature Chamber

Prismatic Cells Prismatic Cells

Test Jig

 

Figure 5-21 Experiment setup – UDDS test system. 
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Training of ESC Cell Model 

The current and voltage measurements of one cell (cell 1) were used to train the 

ESC model [75] while the other four cells (cells 2-5) were treated as the testing cells. 

We followed the procedures described in [146] to obtain the open circuit voltage 

(OCV) curve. Through numerical optimization, optimum ESC model parameters 

were obtained which minimize the root mean squared (RMS) error of the cell 

terminal voltage. The numerical optimization was performed using with a sequential 

quadratic programming (SQP) method. In this study, we employed a nominal 

capacity of 1.5Ah, a measurement interval of T ≈ 1s with “≈” indicating small 

measurement-to-measurement fluctuation, and four filter states nf = 4. The voltage 

modeling results for one UDDS cycle are shown in Figure 5-22a, where a good 

agreement can be observed between the modeled and measured cell terminal voltage. 

The RMS error of voltage modeling for 12 UDDS cycles was 13.3mV.  

SOC and Capacity Estimation Results 

The SOC estimation results for the training cell for all 12 UDDS cycles, the 3rd 

UDDS cycle and the 7th UDDS cycle are shown in Figure 5-22b, Figure 5-22c and 

Figure 5-22d, respectively, where the initial SOC is set to be smaller (90%) than the 

true SOC (100%) and the multiscale framework (L = 1200) still produced converged 

SOC estimate. Table 5-13 summarizes the SOC estimation errors under four different 

settings of the initial SOC and capacity. Here, the RMS and maximum errors take into 

account the initial offset in the case of an incorrect initial SOC and are formulated as  
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where nm is the number of measurements and reads 74,484 (about 1250mins) in this 

study; and xk,l is the true SOC at the time tk,l. In this study, we computed the true 

SOCs based on the coulomb counting technique. We attempted to achieve an accurate 

approximation to the true SOCs through the following ways: (i) we first fully charge a 

battery cell with a constant-current (0.1A constant current up to 4.2V) constant-

voltage (4.2V constant voltage down to 0.01A) strategy to ensure an accurate initial 

SOC (100%); (ii) we measure the cell current with the Arbin current sensors whose 

high measurement accuracy leads to a sufficiently small error in the current 

accumulation over a relatively short test duration (around 20hours).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-22 Voltage modeling results and SOC estimation results for UDDS 
cycle test. Figure (a) plots modeled and measured cell terminal voltage for one 

UDDS cycle; (b), (c) and (d) plot the estimated and true SOCs for all 12 
UDDS cycles, the 3rd UDDS cycle and the 7th UDDS cycle, respectively. 
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Table 5-13 SOC estimation results under different settings of initial SOC and 
capacity 

Initial SOC Initial capacity SOC errors  Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

Correct 
(100%) 

Correct 
(1.5Ah) 

RMS (%) 1.02 1.34 0.81 1.05 0.75 

Max (%) 2.19 2.37 1.82 2.79 1.91 

  
 

Incorrect 
(1.0Ah) 

RMS (%) 1.31 1.59 1.10 1.39 1.14 

Max (%) 4.84 4.84 4.84 4.85 4.84 

  
  

  
  

  

Incorrect 
(90%) 

Correct 
(1.5Ah) 

RMS (%) 1.91 2.07 1.84 2.03 1.8 

Max (%) 10.00 10.00 10.00 10.00 10.00 

  
 

Incorrect 
(1.0Ah) 

RMS (%) 2.65 2.77 2.59 2.76 2.58 

Max (%) 14.74 14.75 14.74 14.76 14.75 

 

Three important observations can be made from the results. First of all, it is 

observed that the RMS SOC estimation errors produced by the multiscale framework 

are less than 3.00%, regardless of initial values of the SOC and capacity. Secondly, 

under both initial SOC settings, the SOC estimation errors with incorrect initial 

capacity (1.0Ah) are consistently larger than those with correct initial capacity 

(1.5Ahs). These results suggest that the SOC is strongly dependant on the capacity 

and that the lack of accuracy in the capacity estimation may reduce the accuracy in 

the SOC estimation. It is thus important to produce accurate capacity estimation not 

only to provide insights into the cell SOH but also to enable accurate SOC estimation. 

Thirdly, under both initial capacity settings, the SOC estimation with incorrect initial 

SOC (90%) consistently shows larger errors than that with correct initial SOC (100%). 

Clearly, the larger SOC errors under incorrect initial SOC (90%) can be attributed to 
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the larger errors before the convergence of SOC estimation (at the initial stage). After 

the convergence, the SOC errors under different initial SOCs become almost the 

same. We note that the RMS SOC estimation errors with incorrect initial SOC (90%) 

are still less than 3.00% since the multiscale framework produced converged SOC 

estimate for both cases.  

Regarding the capacity estimation, both methods with initial values smaller than 

the true value (see Figure 5-23a and Figure 5-23c) and larger than the real value (see 

Figure 5-23b and Figure 5-23d) for all the five cells achieves convergence to the true 

capacity within an error range of around 5%.  Compared with the capacity estimation 

(see Figure 5-23a and Figure 5-23b) by the multiscale framework, the capacity 

estimation (see Figure 5-23c and Figure 5-23d) by the dual EKF contains larger noise. 

The poorer accuracy produced by the dual EKF (consisting of an SOC EKF and a 

capacity EKF) can be attributed to the measurement and time-scale coupling in the 

SOC and capacity estimation. Regarding the measurement coupling, the dual EKF 

uses the cell terminal voltage as the measurement to adapt both the SOC and capacity. 

When the voltage modeling contains relatively large errors, the capacity estimation 

can be largely compromised by the measurement update (in the capacity EKF) which 

only aims at minimizing the difference between the modeled and measured voltages. 

In other words, the measurement update may give an incorrect capacity estimate to 

counteract the voltage modeling error. In this experimental study, the relatively large 

voltage modeling errors directly affect the accuracy in the capacity estimation by the 

dual EKF. Regarding the time-scale coupling, the dual EKF estimates both the SOC 

and capacity on the micro time-scale, which makes the capacity estimation vulnerable 



 

 188 
 

to the local voltage modeling error (on the micro time-scale). This vulnerability 

further leads to noisy capacity estimation. In contrast, the multiscale framework 

decouples the SOC and capacity estimation in terms of both the measurement and 

time-scale and avoids the concurrent SOC and capacity estimation relying on the only 

measurement (cell terminal voltage). The decoupling enables accurate capacity 

estimation in spite of SOC estimation error.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-23 Capacity estimation results for UDDS cycle test. Figures (a) and (b) 
plot capacity estimation results by the multiscale framework with the initial values 
smaller than and larger than the true value, respectively; (c) and (d) plots capacity 
estimation results by the dual EKF with the initial values smaller than and larger 

than the true value, respectively. 

 
To quantify the accuracy of both methods, we computed average RMS errors after 

convergence (at t = 200mins and 1000mins for smaller and larger initials, 

respectively). For the smaller initial, the average RMS errors produced by the dual 
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EKF and the multiscale framework are 0.108Ah (relative error 7.227%) and 0.063Ah 

(relative error 4.200%), respectively. For the larger initial, the errors are 0.049Ah 

(relative error 3.233%) and 0.023Ah (relative error 1.533%). Finally, we note that, 

since the 12 UDDS cycle test on one cell can be treated as one unique cycle test, we 

do not expect large deviation from the current results (based on the small difference 

between capacity estimation results on different cells in Figure 5-23) if we conduct 

another 12 UDDS cycle test. 

To investigate the long-term behavior of capacity estimation after convergence, 

we set the initial capacity value as the real value and executed the two methods over 

the 12 UDDS cycles for all the five cells. It is noted that this is virtually equivalent to 

adding another 12 UDDS cycles (after convergence of capacity estimates) for the 

cases of smaller and larger initial capacities (see Figure 5-23). As can be seen in 

Figure 5-24a and Figure 5-24b, both methods produced capacity estimates around the 

real value. Again, the capacity estimation (see Figure 5-24a) by the multiscale 

framework contains smaller noise than that (see Figure 5-24b) by the dual EKF. To 

quantify the accuracy of both methods, we computed average RMS errors over the 

entire time domain. The errors of the dual EKF and the multiscale framework read 

0.099Ah (relative error 6.573%) and 0.059Ah (relative error 3.931%), respectively. 

In addition to the accuracy comparison, we also compared the two methods in 

terms of computational efficiency. To minimize the effect of randomness, we 

executed both methods ten times with the test data obtained from each of the five 

cells. The mean computational time is summarized in Table 5-14, where we observe 

that the multiscale framework consumed less computational time than the dual EKF. 
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(a) 

 

(b) 

Figure 5-24 Capacity estimation results after convergence (by setting initial 
capacity as real value). Figures (a) and (b) plot capacity estimation results by the 

multiscale framework and by the dual EKF, respectively. 

Table 5-14 Comparison results of computation efficiency with UDDS test data 

Method Computational time (s) Improvement (%) 

Dual EKF 5.813 --- 

Mutiscale Framework with EKF 3.711  36.163 

 
 

5.3.6 Conclusion 

The multiscale framework with EKF is proposed in this chapter for efficient and 

accurate state and parameter estimation for engineered systems that exhibit time-scale 

separation. The proposed framework was applied to the Li-ion battery system for 

SOC and capacity estimation. When applied to the battery system, the multiscale 

framework can be treated as a hybrid of coulomb counting and adaptive filtering 

techniques. Our contribution to battery SOC and capacity estimation lies in the 

construction of a multiscale computational scheme that decouples the SOC and 

capacity estimation from two perspectives, namely the measurement and time-scale. 

The resulting decoupled estimation greatly reduces the computational time involved 

in obtaining the SOC and capacity estimates, while enhancing the accuracy in the 
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capacity estimation. It is noted that the higher efficiency makes the proposed 

methodology more suitable for onboard estimation devices that require 

computationally efficient estimation techniques. Experiments with the synthetic data 

and UDDS cycle test verify that the proposed framework achieves more accurate and 

efficient capacity estimation than the dual EKF, suggesting that the proposed 

framework is a promising methodology for the battery prognostics.   
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Chapter 6:  System Resilience Analysis and Design 

This chapter is dedicated to integrating system RBDO and PHM introduced in the 

previous chapters with an aim to develop a theoretical basis and design framework of 

engineering resilience in a mathematical and statistical context. A conceptual 

definition of a resilient engineered system is firstly instituted by introducing 

engineering resilience into a conventional engineered system, followed by the 

development of a mathematical definition of engineering resilience with a generic 

formula in terms of reliability and restoration. The mathematical definition of 

engineering resilience gives rise to a resilience-driven system design framework 

composed of three hierarchical design tasks, namely the resilience allocation problem 

(RAP) as a top-level design problem, and the system RBDO and PHM design as two 

bottom-level design problems. The proposal design framework is demonstrated with a 

simplified aircraft control actuator design problem.  

6.1 Definition of Resilient Engineered Systems 

Conventionally, an engineered system is composed of hardware, software, and 

human elements in a physical domain, which interact through a functional 

decomposition in a functional domain. This conventional system could fail 

catastrophically in the presence of adverse events (e.g., extreme weather, hardware 

fault, human error) because the system can neither respond nor adapt to the adverse 

events. There is thus a desperate need to build resilient engineered systems by 

introducing a pioneering feature, engineering resilience, into conventional engineered 

systems (see Figure 6-1).  
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We then investigate a conceptual definition of a complex engineered system 

having engineering resilience, characterized with three key functions including:  

• Sensing function: It senses the effect of adverse events on engineered systems. 

The sensing function can be realized by employing an optimally designed sensor 

network. 

• Reasoning (diagnostics and prediction) function: It extracts system health-

relevant information in real-time with feature extraction techniques, classifies 

system health condition with health classification techniques, and predicts the 

time remaining before an engineered system no longer performs the required 

function(s) or the remaining useful life (RUL) in real-time with advanced 

machine learning techniques. The system health condition and RUL provide 
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Figure 6-1 Resilience practice in a resilient engineered system. 
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valuable information for field engineers to make proactive mitigation/replacement 

(M/R) actions to prevent catastrophic system failure. 

• Mitigation or recovery (M/R) action process: This process enables engineered 

systems to respond to and quickly recover from catastrophic system failures. It 

employs two types of actions, namely, mitigation and recovery. In general, the 

mitigation can be categorized as an M/R action for a short-term resilience while 

the replacement contributes to a long-term resilience.  

In what follows, the focus is to seek for a mathematically definition of engineering 

resilience, which then gives rise to a design framework of engineering resilience, 

namely resilience-driven system design. 

6.2 Definition of Engineering Resilience  

This section aims at proposing a conceptual definition of engineering resilience, 

which will facilitate the derivation of its generic formula in terms of reliability and 

other key PHM attributes. Non-resilient system designs encounter gradual 

degradation of system capacity and performance due to adverse events (see Figure 6-

2a). In contrast, resilient system designs will be able to recover from their critical 

health states by restoring the system capacity (see Figure 6-2b). PHM will support 

logical decisions about when and how to restore the system capacity. The capacity 

restoration (ρ) can be defined as the degree of reliability recovery. It can be found 

that the restoration is a joint probability of a system failure event (Esf), a correct 

diagnosis event (Ecd), a correct prognosis event (Ecp), and an M/R action success 

event (Emr), expressed as 
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where κ, ΛP and ΛD are the conditional probabilities of the M/R action success, 

correct prognosis and diagnosis, and (1−R) is the probability of system failure. In this 

study, the value of κ is held constant here by assuming that M/R maintenance actions 

are consistently performed. However, there is no restriction on the form of κ. In 

particular, κ can be a nonlinear function of the system reliability R, indicating that the 

performance of an M/R action is affected by the health condition of the engineered 

system. Since both ΛP and ΛD measure the efficiency for PHM (diagnostics and 

prognostics), we combine these terms as a PHM efficiency measure as: Λ = ΛP·ΛD. 
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Figure 6-2 System performance changes over lifetime without (a) and with the 
resilience practice (b). 

 
The conceptual definition of engineering resilience is the degree of a passive 

survival rate (or reliability) plus a proactive survival rate (or restoration). 

Mathematically, the resilience measure can be defined as the addition of reliability 

and restoration as (see Figure 6-2b) 
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It is noted that the above definition turns engineering resilience to a quantifiable 

property, making it possible to analyze the resilience potential of an engineered 

system. In what follows, we intend to further elaborate on the two hallmarks of 

engineering resilience: reliability and restoration.  

• Reliability: Reliability quantifies the ability of an engineered system to maintain 

its capacity and performance above a safety limit during a given period of time 

under stated conditions. Accordingly, resilience is characterized by preserving an 

acceptable level of capacity and performance despite adverse events. We note that 

reliability should be treated as an important system characteristic that contributes 

to engineering resilience from the perspective of system self-preservation. 

Conventional reliability-based design optimization (RBDO) practice endeavors to 

pursue high reliability with low cost through cost minimization under stringent 

reliability constraints [101-104].  

• Restoration: Restoration measures the ability of an engineered system to restoring 

its capacity and performance by detecting, predicting and mitigating or recovering 

from the system-wide effects of adverse events. It can be viewed as the 

adaptability of an engineered system to its changing performance and capacity 

due to adverse events. This adaptability enables an adaptive reliability throughout 

the system’s lifetime.  

From the perspective of conventional reliability engineering, the failure of an 

engineered system typically refers to a breakdown or malfunctioning of the system 
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and/or its components. This view assumes that success or failure is only an 

observable consequence that does not necessarily reflect the system’s characteristic of 

adaptation. From the perspective of engineering resilience, however, success is due to 

the ability of an engineering system to make right adjustments in a timely manner, in 

particular to anticipate failures before they occur. Failure is due to the absence of that 

ability — either temporarily when the system performance falls below the safety limit 

or permanently. Reliability and restoration works in a highly cooperative manner to 

build the system’s resilience. System design must encompass enhancing this 

cooperative strength, rather than just reducing the probabilities of failures. For this 

purpose, one should be able to enhance the reliability and restoration (or PHM 

efficiency levels) for given engineered system designs. This necessitates the 

developments of system RBDO (including reliability analysis) and PHM 

methodologies which have been discussed in details in the previous chapters. The 

framework of system design integrating system RBDO with PHM will be discussed 

in details in the next section. 

6.3 Framework of Resilience-Driven System Design (RDSD)  

We begin with an overview of the resilience-driven system design (RDSD) 

framework. This framework is composed of three hierarchical design tasks (see 

Figure 6-3), namely the resilience allocation problem (RAP) as a top-level design 

problem to define a resilience measure as a function of reliability and PHM efficiency 

in an engineering context, the system RBDO as a bottom-level design problem for the 

detailed design of components, the system PHM design as a bottom-level design 

problem for the detailed design of PHM units.  
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� Sensor Network Design

� Prognostic Algorithm Design  

Figure 6-3 A hierarchical resilience-driven system design framework. 

 
It is noted that, since optimal design of PHM units depends on failure mechanisms 

and layouts of components, PHM units must be designed upon the completion of 

component design. Therefore, we should first solve the system RBDO to determine 

an optimal component design while ensuring the optimally allocated reliability of the 

component and then conduct the system PHM design to determine an optimal PHM 

unit design for the optimal component design while meeting the optimally allocated 

PHM efficiency. It is natural that with reliability and PHM efficiency being the 

focuses of the system RBDO and system PHM design, respectively, one should be 

able to predict the reliability and PHM efficiency levels for given components and 

PHM unit designs. This necessitates the developments of system reliability analysis 

and PHM analysis for these two bottom-level design problems which then completes 

the framework. 
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6.4 Aircraft Control Actuator Case Study 

This section presents a case study for the design of a simplified aircraft control 

actuator. The aircraft control actuator considered is the electro-hydrostatic actuator 

(EHA). In this case study, we aim at demonstrating the RDSD framework by 

designing a highly resilient EHA with optimized reliability, PHM efficiency and 

redundancy. Hypothetical data will be used for demonstration purposes. 

The EHA (see Figure 6-4), as a closed-loop, hydrostatic control system, mainly 

consists of an electronic control unit (ECU), a variable-speed electric motor (EM), a 

fixed-displacement hydraulic pump and a hydraulic piston actuator [148]. In the 

EHA, a variable-speed electric motor (typically DC) is used to drive a fixed-

displacement hydraulic pump, which in turn, powers a hydraulic piston actuator. 

Compared to a conventional hydraulic actuator, the EHA can achieve higher energy 

efficiency (with on-demand usage) and positional accuracy with enhanced 

compactness. These advantages have led to the wide use of the EHA for flight surface 

actuation in today’s commercial and military aircrafts. Failures of the EHAs in these 

safety critical applications can be catastrophic, resulting in great loss of lives. 

Therefore, the EHA must be designed to achieve a sufficiently high reliability level. 

To this end, a common practice is to introduce a great deal of redundancy into the 

EHA (e.g., a triplex-redundant flight control system [149]). While a high redundancy 

level improves reliability, it results in a strikingly high life-cycle cost (LCC) to be 

incurred in development, operation, and maintenance processes. To reduce the LCC 

while still maintaining an equivalent reliability level, we apply the proposed RDSD 

framework to the EHA with an aim to compensate the redundancy reduction with the 
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PHM technology. It is worth noting that the RDSD framework leads to the possibility 

to implement this compensation in an optimum manner.  
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Figure 6-4 An airplane control actuator with series-connected subsystems 

6.4.1 Top-Level Resilience Allocation Problem (RAP) 

This subsection aims at demonstrating the top-level RAP in the RDSD framework 

by allocating a target system resilience into the target component-reliabilities, 

component-PHM efficiencies and component-redundancies of the four subsystems.  

RAP Formulation 

Solving the top-level RAP will allocate a target system resilience level into the 

target resilience levels of the four subsystems. Assumptions under which this design 

problem is solved are listed as follows:   

(1) The failure times all components considered in the example are exponentially 

distributed, leading to constant failure rates. 

(2) PHM will detect critical system health states and predict system RUL through 

health diagnostics and prognostics  

(3) The redundancy level of each subsystem should be no more than nine due to 

subsystem weight and volume constraints. 
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(4) All the components and PHM units fail independently. An observed failure is 

due to the loss of resilience, i.e., the failures of both a component and its 

associated PHM unit. 

The top-level RAP can be formulated as follows: 
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where LCC is the system life-cycle cost (LCC), Ψ and Ψt are system resilience and its 

target value, the lower and upper bounds for any target component-reliability or target 

component-PHM efficiency are 0 and 1, respectively, and the lower and upper bounds 

for any target component-redundancy are 1 and 9, respectively.  

Life-Cycle Cost (LCC) Analysis with PHM 

In this study, we derive a LCC model by modifying and adding PHM relevant 

cost elements to an existing LCC model for deteriorating structural systems [150]. 

The LCC model consists of four cost elements: the expected initial development cost 

of components, the expected cost of preventive maintenance, the expected cost of 

corrective maintenance, and the expected development cost of PHM. Given the target 

component-reliability vector rt, the target component-PHM efficiency vector λλλλt, and 

the target component- redundancy vector m, this LCC model can be expressed as 

 ( ), , = + + +I PM CM PHM
LCC C C C Cr m λ  (6.4) 

where CI denotes the initial development cost of components,  CPM denotes the cost of 

preventive maintenance, C
CC denotes the cost of corrective maintenance, and C

PHM 
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denotes the cost of PHM units. In the following subsections, the four cost elements 

will be discussed in details.  

System Development Cost C
I
 

In the binary-state reliability-redundancy allocation problem, it is often assumed 

that there is an inverse power relationship between component cost and component 

failure rate [151,152]. Under the assumption of a constant failure rate, the initial 

development cost of the jth subsystem with mj parallel components can be expressed 

as [151,152] 

 ( ) ( )
( )

exp ,   where  
4 ln

β

α
   
 = ⋅ + = −        

C
j

jI I t I t C

j j j j j j j t

j

m T
C c r m c r

r
 (6.5) 

where cj
I(rj

t) is the cost function of a component in the jth subsystem, cj
I(rj

t)·mj is the 

cost of components in the jth subsystem, an additional cost cj
I(rj

t)·exp(mj/4) accounts 

for the cost for interconnecting parallel components, T is the required system mission 

time, αj
C and βj

C denote constants representing the physical characteristics of each 

component in the jth subsystem and can be determined based on the collected data of 

component cost and reliability. Therefore, the system initial development cost can 

computed as  
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Preventive Maintenance Cost C
PM

 

That preventive maintenance occurs if PHM successfully detects critical system 

health states and accurately predicts the system RUL. As a function of the component 
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reliability, subsystem redundancy and PHM efficiency, the preventive maintenance 

cost can be expressed as  

 ( )
1

1λ
=

= −∑
N

PM t t PM

j j j j

j

C m r C  (6.7) 

where Cj
PM denote the preventive maintenance cost of each component in the j

th 

subsystem. The assumption here is that a preventive maintenance occurs when any 

component approaches its end of life predicted by the PHM and that all the 

components and PHM systems fail independently.  

Corrective Maintenance Cost C
CM

 

The corrective maintenance occurs if PHM fails in detecting critical system health 

states and making an accurate prediction of the system RUL. As a function of the 

component reliability, subsystem redundancy and PHM efficiency, the corrective 

maintenance cost can be expressed as  

 ( )( )
1

1 1λ
=

= − −∑
N

CM t t CM

j j j j

j

C m r C  (6.8) 

where Cj
CM denote the corrective maintenance cost of each component in the j

th 

subsystem. The assumption here is that a corrective maintenance occurs upon the 

failure of any component and that all the components and PHM systems fail 

independently.  

PHM Unit Cost C
PHM

 

The PHM unit cost is specifically the costs associated with developing PHM units 

to be integrated with components.  In this study, the PHM unit cost will be formulated 

as a parametric model with the subsystem redundancy and component PHM 
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efficiency as inputs. Inspired by the component cost function for reliability-

redundancy allocation, shown in (3), we define the PHM unit cost as  
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where αj
PHM and βj

PHM denote constants representing the physical characteristics of 

each PHM unit in the jth subsystem. Prior to solving the optimization problem in Eq. 

(6.3), these constants can be determined based on the collected data of the PHM unit 

cost and efficiency. It is noted that, in general, there is no interconnections between 

parallel PHM units. Therefore, unlike the component cost, the additional cost for 

interconnecting parallel elements is not considered in the PHM unit cost.   

The parameters for the cost models are listed in Table 6-1 and the system mission 

time T = 1000. The RAP problem is a mixed-integer non-linear programming 

problem. To determine an optimum solution of the RAP problem, we employed a 

genetic algorithm of which the details will be presented in the subsequent subsection.  

Table 6-1 Model parameters for the EHA case study 

Subsystem αj
C (×10-5) βj

C Cj
PM Cj

CM αj
PHM(×10-6) βj

PHM 

1 0.5 1.5 2.5 7.5 3.3 1.5 

1 0.8 1.5 5.0 15.0 5.3 1.5 

2 1.0 1.5 6.5 19.5 6.7 1.5 

3 0.7 1.5 12.5 37.5 4.7 1.5 
 

Genetic Algorithm as the Optimization Solution Method 

This problem is a mixed-integer nonlinear programming (MINLP) problem. As 

far as we know, the most widely used algorithm to solve this type of problem is the 

so-called genetic algorithm (GA) [153] due to the following advantages: (i) the 
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encoding scheme (binary or decimal encoding) in the GA leads to the flexibility to 

represent both continuous and discrete design variables; and (ii) the search in the 

solution space for optimal solutions can be very efficient due to the use of fitness 

evaluation and genetic operator functions.  We note that the RAP in Eq. (6.3) can be 

readily solved using the GA with almost negligible computational effort since the 

system LCC and resilience are computed through the evaluation of analytic functions. 

In the GA, each candidate solution is called a chromosome and a set of candidate 

solutions is called a population. The GA for solving the RAP in this case study 

employed the decimal encoding. The solution procedures are presented as follows 

[153]:  

Step 1 (Initialization): Set the population size and maximum number of iterations as 

500 and 100, respectively. Since one decimal digit represents one design variable in 

the RAP shown in Eq. (6.3), the length L of a chromosome reads: L = 3N. Set the 

upper and lower bounds for both component-reliability and component efficiency to 0 

and 1, respectively. Set the upper and lower bounds for component-redundancy to 1 

and 9, assuming the redundancy level should not be too high. Set the generation index 

kg = 1 and randomly generate an initial population Γ(1). 

Step 2 (Evaluation): Evaluate the fitness function ftn for each chromosome in the 

current population Γ(kg). The fitness function is a composite of both the objective 

value (i.e., system LCC) and the penalty arising from the violation of the constraint 

(i.e., system resilience). Mathematically, the fitness function ftn can be expressed as  

 
( , , ), if  
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t t tLCC
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Step 3 (Parent Selection): Select chromosomes from the current population based on 

their fitness values to form a new generation Γ(kg + 1). Here the roulette-wheel 

selection scheme is used. These chromosomes are called parent and will be used in 

the next step to generate new chromosomes in the new generation.  

Step 4 (Crossover & Mutation): Implement the two-point crossover operator with a 

crossover rate of 0.85 and the uniform mutation operator with a mutation rate of 0.10 

to generate new chromosomes in the new population.  

Step 5 (Termination Check): If the generation index kg exceeds the maximal number 

of iterations, terminate the iteration and report the solution. Otherwise, increase the 

generation index: kg = kg + 1, and go back to Step 2. 

Results and Discussion  

We would like to investigate scenarios with different target system resilience 

levels. First let us look at the scenario in which the target system resilience Ψt is set 

as 0.90. The optimum solution is shown in Table 6-2. It can be seen that the 

incorporation of PHM by the proposed RDSD reduces the system redundancy from m 

= (3, 2, 3, 2) to m = (2, 2, 2, 1). As a consequence, the system LCC decreases from 

73.6301 under the traditional design (without PHM) to 38.3416 under the RDSD 

(with PHM). It is noted that, even though the target component-reliabilities are 

relatively low for both traditional design (below 0.8500) and RDSD (below 0.7500), 

the incorporation of redundant components (traditional design and RDSD) and PHM 

(RDSD) still leads to high subsystem reliabilities (above 0.90). Finally, the system 

resilience levels under both optimum designs read 0.9000, which just satisfies the 

system resilience requirement. 
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Table 6-2 Optimum results of traditional design and RDSD with Ψt = 0.90 

Subsystem 
Traditional design (without PHM)  RDSD (with PHM) 

rj
t mj λj

t LCC Ψ  rj
t mj λj

t LCC Ψ 

1 0.7371 3 0 73.6301 0.9000  0.6291 2 0.6721 38.3416 0.9000 

2 0.8088 2 0    0.6412 2 0.6682   

3 0.7287 3 0    0.6519 2 0.6732   

4 0.8292 2 0    0.7363 1 0.7679   

 
 
Raising the target system resilience to 0.95 and 0.99, respectively, we then 

obtained two sets of optimal designs, which are listed in Table 6-3 and Table 6-4, 

respectively. We observe that, in order to meet higher target system resilience level, 

more components are used with higher component-reliabilities and PHM efficiencies. 

Compared with the traditional design, the RDSD still yields optimum designs with 

much lower LCCs by considering PHM in the early design stage. The target 

component-reliabilities and component-PHM efficiencies allocated in this RAP can 

serve as design specifications for bottom-level system RBDO and PHM design that 

will be detailed in the subsequent subsections.  

Table 6-3 Optimum results of traditional design and RDSD with Ψt = 0.95 

Subsystem 
Traditional design (without PHM)  RDSD (with PHM) 

rj
t mj λj

t LCC Ψ  rj
t mj λj

t LCC Ψ 

1 0.7901 3 0 82.2774 0.9500  0.6152 2 0.6448 45.9357 0.9500 

2 0.7731 3 0    0.6437 2 0.6644   

3 0.7872 3 0    0.6486 2 0.6677   

4 0.8574 2 0    0.7539 2 0.7423   
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Table 6-4 Optimum results of traditional design and RDSD with Ψt = 0.99 

Subsystem 
Traditional design (without PHM)  RDSD (with PHM) 

rj
t mj λj

t LCC Ψ  rj
t mj λj

t LCC Ψ 

1 0.8102 4 0 111.6017 0.9900  0.6488 3 0.6772 55.0199 0.9900 

2 0.7745 4 0    0.6483 3 0.7049   

3 0.7850 4 0    0.6567 2 0.8014   

4 0.8411 3 0    0.7720 2 0.7678   

 

6.4.2 Bottom-Level System RBDO  

This subsection aims at demonstrating the bottom-level system RBDO in the 

RDSD framework. We intend to determine the optimal design of the hydraulic 

actuator satisfying the target reliability obtained from the RAP with the target system 

resilience Ψt being 0.99. The success event of the actuator is considered as a series 

system success event consisting of four component success events.  

Description of EHA Model  

In order to investigate the performance of different actuator designs, we employed 

an EHA model built in a 1D multi-domain simulation platform LMS Imagine.Lab 

AMESim [154]. A simplified schematic of the EHA model is shown in Figure 6-5, 

where each submodel (e.g., motor, pump and actuator) is composed of a set of 

algebraic and differential equations accounting for linear and nonlinear effects such 

as friction and leakage. Here, a variable-speed DC motor drives a fixed-displacement 

hydraulic pump, which supplies oil to the actuator. A proportional controller controls 

the flow rate by varying the speed of the electric motor. An accumulator is used to 

prevent cavitation and compensate leakage loss with re-feeding valves. The pressure 

relief valves aim at preventing excessive pressure build-up in the hydraulic lines. As 
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the flow encounters the actuator, the fluid pressure increases. The pressure difference 

between the two actuator chambers results in an actuation force and thus a linear 

piston motion. A mechanical arm (not shown in Figure 6-5) then transforms the 

piston motion to an equivalent aileron angle while taking into account the aileron 

inertia. 
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Figure 6-5 Schematic of an electro-hydrostatic actuator (EHA) model 

 

System RBDO Formulation 

For the system RBDO, we used the weight of the actuator to build the objective 

function and the control performance to formulate the reliability constraints. 

Regarding the control performance, we intended to take into account two aspects: 

timeliness and robustness. We applied a step request (1cm) on the piston position at 

the time t = 0.5s and a resistive torque (2000N·m) at the time t = 1.0s to test the 

control timeliness and robustness, respectively. The piston position response is shown 

in Figure 6-6, where the reliability constraints G1 and G2 are treated as timeliness-

relevant constraints and G3 and G4 robustness-relevant. Specifically, this system 

RBDO problem can be formulated as follows: 



 

 210 
 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( ) ( ){ }

2 2

4

1

2

1 0

2 , ,
0.5 2

Minimize  , 1 ,

where 0.098,  / 2 ,  / 2

Subject to Pr Pr 0

(normal control error)

arg min   (stabiliz

ω ω

ω π π

ε

=

≤ ≤

= ⋅ + − ⋅

= = ⋅ = ⋅

= = ≤ ≥

= − −

= − ≤ −

∫

∩

s p s r r s

s s p r s r

sys sys t

ii

ref nc

ref tol s c s
t

C V d l V d l

V l d V l d

r E G r

G Y t Y t dt e

G Y t Y t t

x
x

x

( ) ( )

( ) ( ){ }

4

3 2

4 ,
2 4

5

)

(disturbed control error)

min   (disturbed steady-state )

/  (rod-to-piston diameter ratio

ation

)

 time

 errorε

η
≤ ≤

= − −

= − −

= −

∫ ref pc

ref tol d
t

r p

G Y t Y t dt e

G Y t Y t

G d d

 (6.11) 

where the critical normal control error enc = 0.20cm·s, the stabilization error tolerance 

εtol,s = 0.03cm and is used to determine whether a stable state is achieved, the critical 

stabilization time tc,s = 0.90s, the critical perturbed control error enp = 0.05cm·s, the 

steady-state error tolerance under a disturbance εtol,d = 0.04cm and the rod-to-piston 

diameter ratio η = 1/3. To avoid having a weak rod relative to a piston, we also add 

the fifth constraint G5 in Eq. (6.11) which ensures that the rod-to-piston ratio exceed a 

certain level. The following two design variables are considered: the piston diameter 

dp, the rod diameter dr. These design variables are assumed to follow normal 

distributions with their standard deviations, initial values and lower and upper bounds 

detailed in 0. Three model parameters (i.e., the leakage coefficient β, viscous friction 

coefficient υ and the stroke length ls) are considered as random noise variables with 

their statistical information summarized in Table 6-6. In summary, five random 

design and noise variables are considered in this study. 

 



 

 211 
 

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Time [s]

N
o
rm

a
liz

e
d
 d

is
p
la

c
e
m

e
n
t

 

 

Actual

Requested

G4 (Disturbed 
steady-state error)

G3 (Disturbed 
control error)

G2 (Stabilization time)

εtol,s

G1 (Normal control error)

Time (s)

D
is

pl
ac

em
en

t (
cm

)

 

Figure 6-6 Piston position response under a step request and 
resistive torque 

 

Table 6-5 Random design variables for the hydraulic actuator model 

Design variable 
Distri. 
type 

Lower 
bound 

Initial des. Upper bound Std. dev. 

dp (mm) Normal 55.0 62.0 75.0 3.5 

dr (mm) Normal 10.0 22.0 30.0 1.0 
 

Table 6-6 Random noise variables for the hydraulic actuator model 

Random variable Distri. type Mean Std. dev. 

β (L/min/Bar) Normal 1.2E-3 6.0E-5 

υ (N·s/m) Normal 5.0E3 2.5E2 

ls (mm) Normal 50.0 2.5 
 

 

Results of System RBDO 

The adaptive-sparse polynomial chaos expansion (PCE) method with 4nv + 1 (= 

21) univariate samples was carried out to evaluate the objective function, system 

reliability and their sensitivities at any design iteration, without considering the 

bivariate polynomial basis functions. The sensitivities of the objective function and 



 

 212 
 

system reliability with respect to the two design variable were computed using a finite 

difference method (FDM). The perturbed values of the objective function and system 

reliability were estimated based on approximate stochastic response surfaces (PCE) 

with perturbed design variables, without requiring gradients of the original weight or 

displacement functions. A perturbation size of 0.1% is employed in this study.  

The design optimization problem was solved using a gradient-based optimization 

technique (e.g., sequential quadratic optimization). The histories of the design 

parameters, objective function, component reliabilities and system reliability are 

shown in Table 6-7. At the initial design, the system reliability rsys severely violated 

the reliability requirement due to the relatively low component reliabilities r3 and r4. 

After six design iterations, the optimum design was found where the system 

reliability requirement was satisfied.  

Table 6-7 Design history of the hydraulic actuator model 

Iter. 
Design variables 

r1 r2 r3 r4 r5 r
sys Obj. 

dp dr 

0 62.0000 22.0000 0.9985  0.9978  0.4955  0.5350  0.8053  0.3093  3.2015E4  

1 65.8472 24.5219 0.9819  0.9767  0.7695  0.8162  0.9522  0.7136  3.8062E4  

2 66.7479 24.7483 0.9694  0.9617  0.8309  0.8699  0.9471  0.7620  3.8916E4  

3 66.9844 24.7694 0.9640  0.9551  0.8459  0.8826  0.9429  0.7698  3.9075E4  

4 67.1807 24.6941 0.9586  0.9479  0.8607  0.8947  0.9314  0.7707  3.9044E4 

5 67.1847 24.7177 0.9587  0.9479  0.8604  0.8944  0.9331  0.7717  3.9088E4  

6 67.1617 24.7268 0.9594  0.9488  0.8587  0.8929  0.9346  0.7720  3.9092E4  

Opt 67.1617 24.7268 0.9594  0.9488  0.8587  0.8929  0.9346  0.7720  3.9092E4  

 
 

Overall, the adaptive-sparse PCE method required 126 simulations for system 

RBDO. After the optimization, the direct MCS with 10,000 random samples was 
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employed to verify the reliability results at the optimum design. The component 

reliabilities r1, r2, r3, r4 and r5 and system reliability rsys were estimated by the MCS 

as 95.36%, 94.40%, 85.99%, 89.74%, 93.65% and 77.24%, respectively.  

6.4.3 Bottom-Level System PHM Design  

This subsection is dedicated to demonstrating the bottom-level system PHM 

design in the RDSD framework. We intend to design a data-driven prognostic 

algorithm for the actuator leakage prognostics by identifying the most appropriate 

algorithm from an algorithm pool. We assume that the PHM unit can successfully 

identify the incipient leakage degradation of the actuator among various possible 

failure modes (ΛD = 1) and that, upon a correct prognosis event, the M/R maintenance 

actions can fully restore the reliability of the actuator (κ = 1).  

Prognostic Data Generation 

The failure mode considered in this study is the actuator cross-line leakage which 

is relatively common in practice [155,156]. The wear of the piston seal causes an 

increase of internal cross-port leakage and thus an increase in the leakage coefficient 

of the actuator. Thus, the cross line leakage was realized by increasing the leakage 

coefficient of the actuator. The end of life is defined as the time when the actuator 

leakage reaches ten times its initial value. We note that, for demonstration purposes, 

this study only considers a single failure mode, but the same idea can be readily 

extended to cases with multiple failure modes.  

Since it is very difficult, if not impossible, to obtain direct measurements of the 

leakage coefficients of actuators, indirect measurements are most often used to 
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diagnose the health condition and predict the RULs of actuators [155,156]. In 

particular, the stabilized piston displacement after disturbance (measured by a 

position sensor) and the stabilized rotary speed of the motor shaft after disturbance 

(measured by a rotary speed sensor) could characterize the actuator leakage 

degradation before any irreparable damage occurs [155]. Thus, this case study 

employs these two sensory signals of an EHA to predict the RULs of actuators. To 

model the trajectory of increase in leakage over time, this study uses a damage 

propagation model with an exponential form as [129] 

 ( ) ( )( )0 exp 1β β= + −
E E

t b a t  (6.12) 

where β0 is the initial leakage coefficient; aE and bE are the model parameters; t is the 

cycle time. The initial Young’s modulus E0 follows the same normal distribution with 

β (see Table 6-6). The model parameters aE and bE are independent and normally 

distributed with means 0.01 and 1.2E-3, each of which has a 10% coefficient of 

variation.   The random parameters considered in this study are listed in 0 and Table 

6-6, which include the material properties as well the geometries of the actuator. The 

uncertainties in the two sensory signals propagated from these uncertain parameters 

will be accounted for when generating prognostic data. The prognostic data 

generation was conducted under the optimal actuator design obtained in the bottom-

level system design (see Subsection 6.4.2). 

Since data-driven prognostic approaches require a large amount of prognostic 

data, it is computationally expensive, if not impossible, to simply run the simulation 

to generate every data point. To overcome this difficulty, this study employed the 

univariate decomposition method that only uses a certain number of univariate 
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sample points to construct the response surface for a general multivariate response 

function while achieving good accuracy [157]. Since this study employed two sensory 

signals, namely the stabilized piston displacement after disturbance and the stabilized 

rotary speed of the motor shaft after disturbance, the data generation requires the 

construction of two responses surfaces. Specifically, the data generation process 

involves four sequentially executed procedures:  

Step 1: Obtain univariate sample points from the dynamic simulation in LMS 

Imagine.Lab AMESim to construct response surfaces, along the damage propagation 

path, that approximate the two sensory measurements as functions of random 

variables detailed in 0 and Table 6-6. We used four univariate sample points for each 

random variable. The piecewise linear spline was used as the numerical scheme for 

the response surface construction. 

Step 2: Generate 400 random samples of β0, aE and bE and use these samples in 

conjunction with Eq. (6.12) to produce 400 damage propagation paths, of which 200 

paths were assigned to the training units and the rest to the testing units.  

Step 3: Interpolate, based on the constructed response surfaces, the two sensory 

measurements for a given set of randomly generated geometries and material 

properties and damage propagation paths and repeatedly execute this process for 400 

times to obtain the training and testing data sets with each having 200 units.  

Step 4: Add measurement noise following a zero mean normal distribution to both the 

training and testing data sets to finalize the data generation.  
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The two simulated measurements are plotted against the adjusted cycle index, defined 

as the subtraction of the cycle-to-failure from the actual operational cycle, for all 200 

training units in Figure 6-7, where we can clearly observe monotonic lifetime trends.  

 

(a) 

 

(b) 

Figure 6-7 Simulated measurements by piston displacement sensor (a) and rotary 
speed sensor (b) for the hydraulic actuator model 

Description of Prognostic Algorithms 

This subsection provides a brief overview of the five selected data-driven 

prognostic algorithms: Method 1 - a similarity-based interpolation (SBI) approach 

with RVM as the regression technique (RVM-SBI) [53,126], SBI with SVM (SVM-

SBI) [53,127], SBI with the least-square exponential fitting (Exp-SBI) [53], a 

Bayesian linear regression with the least-square quadratic fitting (Quad-BLR) [55], 

and a recurrent neural network (RNN) approach (RNN) [56,127]. A data processing 

scheme with a generic health index system is used for the first four algorithms while a 

data processing scheme with a simple normalization scheme for the last algorithm. 

These five algorithms represent the current state-of-art in data-driven prognostics and 

cover a wide range of techniques that include the interpolation (Methods 1-3), 

extrapolation (Method 4) and machine learning (Method 5).  
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For the construction of the virtual health index in Methods 1-3, the system failure 

matrix Q0 was created with the sensory data in a system failure condition, 0 ≤ L ≤ 4, 

while the system healthy matrix Q1 with those in a system healthy condition, L > 250. 

The RVM employed a linear spline kernel function with the initial most probable 

hyper-parameter vector for kernel weights αm = [1×104,…, 1×104] and the initial most 

probable noise variance σm
2 = 1×10–4. In the SVM, a Gaussian kernel function is used 

with the parameter settings as: the regularization parameter C = 10 and the parameter 

of the ε-insensitive loss function ε = 0.10. In the RNN training, the two normalized 

sensory signals were used as the multi-dimensional inputs of the RNN and the RUL at 

the corresponding cycle was used as the output. The implementation details can be 

found in [56]. In the RNN architecture, the numbers of the input, recurrent and output 

units are |I| = 2, |R| = 4 and |O| = 1. 

Results of System PHM Design 

Table 6-8 summarizes the prognostic accuracy of the five candidate algorithms as 

well as the detailed information regarding the empirical error PDFs. The lower bound 

eC of the error tolerance zone was set as -35cycles. Among the five candidate 

algorithms, RNN yields the highest prognostic accuracy of 0.790 on the testing data 

set, a 43.6% improvement over the second best algorithm, Exp-SBI, whose 

prognostic accuracy reads 0.550. To further investigate this accuracy gap, we plotted 

the RUL predictions by the two algorithms for 200 testing units in Figure 6-8(a) and 

their error PDFs in Figure 6-8(b). It can be observed from both plots that RNN 

consistently gives early RUL predictions while Exp-SBI is prone to produce RUL 

predictions being randomly distributed around zero. Therefore, RNN provides higher 
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accuracy in spite of a larger variance and, with failure prevention being the main goal 

of PHM, one would select RNN among the candidate algorithms to have moderately 

early RUL predictions. Indeed, it is noted that only RNN satisfies the target 

component-PHM efficiency 0.7678 obtained in Subsection 6.4.1 with the assumption 

of perfect diagnostics and M/R actions. Finally, we note that, by capitalizing on PHM, 

the EHA is capable of detecting, predicting and mitigating or recovering from the 

actuator leakage, and thus achieves the resilience characteristics intended by the 

underlying idea of RDSD, namely the optimal restoration of system performance. 

Table 6-8 Prognostic accuracy and empirical error PDF results for the hydraulic 
actuator model 

Algorithm 
Prognostic 
accuracy 

Distri. 
type 

Mean 
(cycle) 

Std. dev. 
(cycle) 

Parameters for non-
normal distributions 

RVM-SBI 0.480 Weibull -2.66 12.14 α1 = 49.22,  β1 = 4.15a 

SVM-SBI 0.430 Weibull -3.40 14.91 α2 = 60.10,  β2 = 4.12a
 

Exp-SBI 0.550 Normal -3.17 12.03 - 

Quad-BLR 0.125 Weibull 10.62 12.76 α4 = 63.82,  β4 = 5.31a 

RNN 0.790 Weibull -12.10 13.07 α5 = 55.17,  β5 = 4.35a 
a e1 ≥ -47.36; b e2 ≥ -57.96; c e4 ≥ -48.17; d e5 ≥ -62.35 
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(b) 

Figure 6-8 RUL prediction results (a) and error PDFs (b) for the hydraulic actuator 
model 
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6.5 Conclusion 

This chapter presents a novel design framework, namely resilience-driven system 

design (RDSD), to incorporate resilience characteristics into engineered systems. This 

design framework consists of three hierarchical tasks, namely the top-level RAP, the 

bottom-level system RBDO and the bottom-level system PHM design. The top-level 

RAP incorporates the trade-off decisions regarding the component-reliability, 

component-PHM efficiency and component-redundancy into the system-level design 

for an optimum integration of PHM with minimum LCC. The bottom-level system 

RBDO determines an optimal component design while ensuring the optimally 

allocated target component-reliability from the top-level RAP. Following the system 

RBDO, the bottom-level system PHM design derives an optimal PHM unit design for 

the optimal component design while meeting the optimally allocated PHM efficiency 

from the top-level RAP.  

The proposed RDSD framework is demonstrated with a simplified aircraft control 

actuator design problem, in which the incorporation of PHM significantly reduces the 

system LCC and the detailed component and PHM unit designs respectively satisfy 

the target component-reliability and component-PHM efficiency. 

It is noted that, despite the difficulty in simultaneously and comprehensively 

exploring system RBDO and PHM in an integrated case study, this chapter provides a 

strategic guidance for carrying out this exploration through an engineering case study 

on the design of a safety-critical aerospace system. The proposed RDSD framework, 

featured with a rigorous theoretical basis and design strategy of engineering 

resilience, is expected to ensure highly resilient system designs under various 
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loading/environmental conditions and system-wide effects of adverse events while 

considerably reducing systems’ LCC.  
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Chapter 7:  Contributions and Future Works 
 

7.1 Contributions and Impacts 

The proposed research in this dissertation aims at establishing a solid theoretical 

basis and systematic design framework of engineering resilience to facilitate the 

development of formal methodologies for resilient engineered system design and to 

advance conventional engineered systems to resilient engineered systems. This 

research is composed of three research thrusts: (i) system RBDO, (ii) system PHM, 

and (iii) resilience-driven system design. It is expected that the proposed research 

offers the following potential contributions and broader impacts in various 

engineering fields: 

• Contribution 1: An adaptive-sparse polynomial chaos expansion (PCE) method 

for component reliability analysis involving bivariate interactions 

This dissertation proposes an adaptive-sparse PCE method for performing 

engineering reliability analysis and design. The proposed method consists of three 

technical contributions: (i) an adaptive-sparse scheme to build sparse PCE with 

the minimum number of bivariate basis functions, (ii) a new projection method 

using dimension reduction techniques to effectively compute the expansion 

coefficients of system responses, and (iii) an integration of copula to handle 

nonlinear correlation of input random variables. To the best of our knowledge, the 

proposed method can be treated as the first attempt to optimize the number of the 

bivariate terms to be considered for reliability analysis. The optimization process 
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takes advantage of the PCE as the projection basis and proceeds by adaptively 

adding the most significant bivariate terms to the PCE model until a convergence 

criterion is achieved. The inherent characteristics of orthogonal polynomials make 

the adaptive process computationally efficient and convergent. Therefore, the 

adaptive-sparse PCE achieves an optimal compromise between the univariate 

dimensional reduction (UDR) and bivariate dimension reduction (BDR) methods 

(more accurate than the UDR and more efficient than the BDR). 

• Contribution 2: An adaptive stochastic collocation method for component 

reliability analysis involving tri- and higher-variate interactions 

This research presents an asymmetric dimension-adaptive tensor-product 

(ADATP) method as an adaptive stochastic collocation method for component 

reliability analysis involving tri- and higher-variate interactions. The proposed 

method leverages three ideas: (i) an asymmetric dimension-adaptive scheme to 

efficiently build the tensor-product interpolation considering both directional and 

dimensional importance, (ii) a hierarchical interpolation scheme using either 

piecewise multi-linear basis functions or cubic Lagrange splines, (iii) a 

hierarchical surplus as an error indicator to automatically detect the highly 

nonlinear regions in a random space and adaptively refine the collocation points 

in these regions. The adaptive hierarchical interpolation scheme possesses both 

directional and dimensional adaptivity. The proposed sensitivity-free method 

achieves faster error decay than its non-asymmetric counterpart and greatly 

alleviates the curse of dimensionality. 

• Contribution 3: A unified framework for system reliability analysis  
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The unified framework proposed in this dissertation automatically decomposes a 

mixed system (represented by a system block diagram) into multiple disjoint 

series systems (not independent but mutually exclusive), which allows one to 

apply the original CIM to these series systems and obtain a unique estimate of 

system reliability, and that’s precisely the main contribution of the proposed 

framework, brought by way of a BDD-based algorithm for computing mutually 

exclusive path sets. Indeed, the basic idea behind this generalization is to add 

another computational layer in the original CIM structure and to reformulate the 

problem in a way that allows for the use of the original CIM. Such a 

reformulation is an extension of the original work on CIM, with the advantage 

that it greatly expands the application domain and achieves a unique solution of 

system reliability regardless of system structures (series, parallel, and mixed 

systems). 

• Contribution 4: An ensemble data-driven prognostic approach for PHM in a 

single time-scale 

This research proposes an ensemble approach that employs the k-fold cross 

validation (CV) to estimate the accuracy of a given weighted-sum ensemble and 

proposes three weighting schemes, namely, namely, the accuracy-based weighting, 

diversity-based weighting and optimization-based weighting, to determine the 

weight values. By combining the predictions of all member algorithms, the 

ensemble approach achieves better accuracy and robustness in RUL predictions 

compared to any sole member algorithm. The proposed ensemble approach 

enables highly accurate and robust life predictions for resilient engineered 
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systems with a single time-scale. 

• Contribution 5: A co-training data-driven prognostic approach for PHM in a 

single time-scale 

The proposed co-training-based data-driven prognostic algorithm, denoted by 

COPROG, uses two individual data-driven algorithms with each predicting RULs 

of suspension units for the other. The confidence of an individual data-driven 

algorithm in predicting the RUL of a suspension unit is quantified by the extent to 

which the inclusion of that unit in the training data set reduces the sum square 

error (SSE) in RUL prediction on the failure units. After a suspension unit is 

chosen and its RUL is predicted by an individual algorithm, it becomes a virtual 

failure unit that is added to the training data set. COPROG gives more accurate 

RUL predictions compared to any individual algorithm without the consideration 

of suspension data and that COPROG can effectively exploit suspension data to 

improve the accuracy in data-driven prognostics. 

• Contribution 6: A multiscale filtering technique for PHM in multiple time-scales 

The proposed multiscale filtering technique achieves efficient and accurate state 

and parameter estimation for engineered systems that exhibit time-scale 

separation. When applied to the battery system, the multiscale framework can be 

treated as a hybrid of coulomb counting and adaptive filtering techniques. The 

contribution of this framework lies in the fact that the construction of a multiscale 

computational scheme decouples the SOC and capacity estimation from two 

perspectives, namely the measurement and time-scale. The resulting decoupled 

estimation greatly reduces the computational time involved in obtaining the SOC 
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and capacity estimates, while enhancing the accuracy in the capacity estimation.  

• Contribution 7: Enhancement of the understanding of resilient engineered systems 

and support for system design paradigm shift 

This research develops a rigorous definition of engineering resilience and 

constitutes solid theoretical basis of resilient engineered systems. A systematic 

decomposition of resilience process in resilient engineered systems enables 

thorough understanding of resilience behavior and cohesively integrates this 

behavior into future system design. The proposed system resilience analysis and 

design framework enables a transformative shift in engineered system design 

from reliability-based to resilience-driven system design. The theoretical basis 

and design framework of engineering resilience gained from this research will 

facilitate the development of formal methodologies for resilient engineered 

system design. 

7.2 Suggestions for Future Research 

Although the technical advances presented in this dissertation successfully 

address critical challenges in both system RBDO and PHM as well as make the first 

attempt to derive a systematic framework for resilient engineered system design, there 

are still several research areas where further investigations and developments are 

required to truly bring resilience-driven system design into reality. Specific 

suggestions for the continuation of the study on resilience-driven system design are 

listed as follows:   

• Advancement of model-based prognostics techniques 
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This research develops two advanced data-driven prognostics techniques, namely 

ensemble prognostics and co-training prognostics, to design a highly accurate and 

robust PHM system for resilient engineered system design. However, no efforts 

have been devoted to the advancement of model-based prognostics techniques in 

this research. When we have ample understanding of system physics-of-failure 

and underlying system degradation models but possess very limited run-to-failure 

and suspension data, the model-based prognostics techniques become more 

desirable than their data-driven counterparts. Thus, to expand the application 

domain of PHM technologies, advanced prognostics techniques based on system 

physics-of-failure and underlying system degradation models must be developed 

and applied to resilient engineered system design.  

• Development of PHM techniques for Li-ion battery SOL prediction 

This research proposes a multiscale framework with EKF for real-time estimation 

of SOC and capacity by tracking readily available measurements (e.g., voltage, 

current and temperature) for Li-ion battery systems. However, the online 

prediction of SOL with these measurements was untouched in this research. 

Future research should be focused on the development of data-driven, model-

based or hybrid PHM techniques for online prediction of SOL. To verify the 

effectiveness of the techniques to be developed, we can conduct an extensive 

accelerated life testing (ALT) on a number of battery cells of the same 

specifications. 

• Consolidation and verification of the proposed RDSD framework  
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The proposed RDSD framework provides the first strategic guidance for 

simultaneously and comprehensively exploring system RBDO and PHM to 

enhance the resilience of an engineered system in its early design stage. However, 

further research works are still needed to consolidate and verify the proposed 

design framework. Specifically, future investigations should be devoted to the 

following tasks: (i) the definition of engineering resilience and the design 

framework of system PHM must be generalized to consider multiple failure 

mechanisms; (ii) the diagnostics design (SN design) should be coherently 

integrated with the prognostics design (prognostic algorithm design) for the 

bottom-level system PHM design; and (iii) the verification of the  proposed 

framework needs to be conducted using testing data from a real engineered 

system, as opposed to the use of a simulation model with hypothetical data in this 

dissertation.   

• Decision-making on maintenance/restoration (M/R) action  

The conditional probability κ of the M/R action success quantifies the extent to 

which the system is able to restore the system’s original performance. This 

research has assumed κ as a constant. However, in engineering practice, the 

restoration (M/R action) requires a decision-making process that optimizes the 

allocation of available resources based on the system health information from the 

diagnostics and prognostics processes, making κ non-constant. Thus, in addition 

to the three tasks mentioned earlier, research efforts should also be devoted to   

systematically carrying out the decision-making process and determining the 

optimum κ for a specific restoration context. One possible way is to define key 
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metrics that are indicative of system capacity and conduct a trade-off analysis 

between the system capacity restoration and resource consumption. In this way, 

the reasoning process can identify the most effective M/R actions as well as 

allocate the available resources to these M/R actions in such a way that the system 

capacity restoration can be maximized.  
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Appendices 

Appendix A: Derivation of the Error Decomposition  

Error Source I: Truncation 
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Error source II: Bivariate decomposition 
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Error source III: Univariate decomposition 
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Error source IV: Aliasing error 
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where ( )ˆ ⋅E  denotes the approximate expectation by using the SMLS and Gaussian 

quadrature integration.  
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Appendix B: Pseudo Code of ADATP Algorithm  
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Glossary 
 

ADATP:  Asymmetric Dimension-Adaptive Tensor-Product 

CDF:   Cumulative Distribution Function 

CIM:  Complementary Intersection Method 

CV:  Cross Validation 

DI:  Directional Index 

EKF:  Extended Kalman Filter 

FOB:  First-Order Bounds 

FORM:  First-Order Reliability Method 

PCE:  Polynomial Chaos Expansion 

PDF:  Probability Density Function 

PHM:  Prognostics and Health Management 

RBDO:  Reliability-Based Design Optimization 

RUL:  Remaining Useful Life 

RVM:  Relevance Vector Machine 

SBI:  Similarity-Based Interpolation 

SOB:  Second-Order Bounds 

SOC:  State of Charge 

SOH:  State of Health 

SOL:  State of Life 

SORM:  Second-Order Reliability Method 

SVM:  Support Vector Machine 
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