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Chapter 1

Introduction

The security of wireless systems has become an extensively researched topic due

to the inherent broadcast nature of the medium. Transmissions sent over wireless links

must be protected from malicious message interception, forgery, modification, deletion,

and replay. The security mechanisms of the system, such as user authentication, help

mitigate acts of message forgery and the nefarious actions of impostors. However, when

the authentication mechanisms of a wireless system fail or are compromised the system

becomes vulnerable to a number of identity-based attacks, like those explored by our

work in [14, 9], and in the works of [14, 48, 53, 12, 11].

To prevent such attacks, authentication messages have been widely used in upper-

layer network protocols. However, when the authentication message is embedded in an

upper-layer protocol, a node must perform a significant amount of processing before the

message can be checked for validity. Unauthenticated messages must be systematically

processed and decoded without error at every layer of the protocol stack, before the au-

thentication message can be extracted and the credentials of the message verified. These

sophisticated upper-layer processing tasks expose the receiver to potentially malicious

transmissions designed to exploit vulnerabilities in upper-layer protocols and the imple-

mentation thereof. Additionally, when the authentication message is conveyed using an

upper-layer protocol, it is received with a quality no greater than the quality of the trans-
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mission’s payload message. Wireless transmissions that can be authenticated immediately

at the physical (PHY) layer, however, help protect upper-layer protocol processing algo-

rithms from these malicious transmissions.

PHY-layer authentication offers a number of computational benefits in addition to

the security considerations mentioned above. When a wireless signal can be authenticated

using only its PHY-layer characteristics, the source of the signal can be verified before

the signal is demodulated or decoded. Therefore, wireless nodes that must verify the

authenticity of a signal, but are otherwise uninterested in the content of the signal, can

avoid wasteful processing steps when unintended, uninteresting, or maliciously fabricated

Denial of Service style transmissions are received. This allows nodes to more quickly

authenticate legitimate users within cooperative communication systems, and implicate

the charlatans of the system. Additionally, PHY-layer authentication approaches allow

for a completely independent authentication mechanism that is decoupled from upper-

layer system design. This allows designers of wireless systems to create authentication

devices that are invariant of upper-level protocol mutability.

While there are a number of advantages when leveraging PHY-layer signal authen-

tication methods over traditional ‘bit-level’ authentication, in this work we discuss an

authentication messaging system that does not necessarily replace traditional messaging

used in higher layer protocols. Instead, we consider a method for embedding an authenti-

cation message into wireless transmissions that is capable of transmitting a digital authen-

tication message not unlike the authentication messages sent by traditional protocols. The

embedded message is completely independent from the upper-layer protocols, and thus,

independent authentication messages sent via both methods may be used to redundantly
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authenticate the transmission.

The independence offered by our fingerprint embedding scheme provides another

advantage, in terms of signaling performance. Since the specifications of the fingerprint

signaling scheme can be defined independently from the specification of original message

in which the authentication message is embedded, key signaling parameters that define

the synchronization mechanism, for example, can be relaxed to mitigate the effects of

noise and various types of interference. Very little system bandwidth is required for the

authentication message in most practical communication systems, because the fingerprint

message is typically selected to be very small compared to the bandwidth required by

the original transmission to minimize system overhead. This allows a number of signal

spreading and coding schemes to be leveraged when designing fingerprint. Thus, robust

fingerprint signaling designs can be devised that allow for transmission authentication

in scenarios where original signal itself is unrecoverable due to low signal-to-noise ratio

(SNR) or fading conditions.

1.1 Prior Work

Message fingerprinting techniques, which append or embed a message conveying

the credentials of a data source, have been successfully applied to a number applications

such as multimedia systems. One such application providing secure transmission of mul-

timedia content is described in [46].

In addition to multimedia applications, a number of PHY-layer fingerprinting ap-

proaches for wireless communications have been investigated using rudimentary signal
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superposition methods. In [61] the superposition of low-power pseudo random sequences

onto digital television transmissions is discussed. In [47], multi-resolution approaches are

considered, where a low-power fingerprint constellation is superimposed onto the original

signal constellation. Multi-resolution approaches use a low-power high resolution signal

to carry the authentication message, while the main transmission is conveyed by a low res-

olution signal. The use of wavelet transforms have also been explored to achieve a multi-

resolution composite signal. PHY-layer superposition approaches have been studied for

the specific case of telephone signals [56], where an encrypted hash of the conversation is

superimposed onto the original signal. In [37] a low-power spread spectrum watermark-

ing scheme is discussed, where the watermark is directly superimposed onto the signal.

Physical layer approaches to authentication have also been explored for the case of wired

Ethernet signals [39]. This work attempts to identify unique network adapters in a wired

network using PHY-layer signatures. General signal fingerprinting through superposition

methods are discussed in [66].

While these previous works use superposition to embed the authentication finger-

print signal onto the original transmission, there are a number of drawbacks to this ap-

proach. The main disadvantage of basic superposition techniques is that the fingerprint

signal will appear as additional noise when receiving the original signal, since the au-

thentication signal is fully present when the signal is decoded. Thus, superposition-based

methods inject the fingerprint signal as interfering noise which reduces the SNR of the

original signal.

To improve on the drawbacks of blind superposition approaches, we propose a fin-

gerprint embedding approach that exploits typical receiver preprocessing algorithms such
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as channel equalization, signal phase recovery, and timing recovery mechanisms, with

a design methodology closely resembling the Category 2 and Category 3 fingerprints

discussed in [17]. These fingerprints are designed according to anticipated channel dis-

tortions, and with consideration of how the original signal will be perceived by the re-

ceiver. Using these extra pieces of information, the undesirable effects associated with

blind superposition approaches, representing Category 1 designs [61, 47, 56, 37, 39, 66],

are partially removed by the receiver through traditional channel equalization and signal

synchronization practices. This filtering of the fingerprint signal before the original sig-

nal data signal is perceived represents a substantial performance improvement over prior

works.

1.2 Relationship between Intrinsic and Extrinsic Fingerprints

In the previous section we discussed the advantages of PHY-layer authentication,

we presented a number of prior works in the area of message fingerprinting, and we de-

scribed how we intend to leverage the perceptual model of wireless receivers and side in-

formation of the anticipated channel distortions that the fingerprint signal will encounter,

to improve on the results presented in prior works. In this section we will briefly describe

related works in which natural channel distortions are leveraged to authenticate transmis-

sions, and we will describe how the fingerprinting work presented here can augment and

improve upon these schemes.

A number of bodies of work have demonstrated how channel distortions themselves

can be leveraged for signal authentication purposes. In [64] it was demonstrated that
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robust PHY-layer fingerprints can be obtained from intrinsic features characteristic of

wireless channels, such as unique scattering environments, spatial variability, and time-

varying channel distortions. This work demonstrated that transmitters may be validated

when the multipath channel profiles for each transmitter are unique and sufficiently sta-

tionary, and provides the initial edifice for a PHY-layer authentication approach that is

cognizant of channel distortions. Intrinsic fingerprinting mechanisms have also been con-

sidered to mitigate Sybil attacks [65]. However, when channel conditions are not con-

ducive to intrinsic fingerprint recognition, due to either highly correlated multipath pro-

files between transmitters or rapidly varying channel conditions, a more robust PHY-layer

signature is required to authenticate wireless nodes.

To overcome the limitations of authentication schemes that leverage only intrinsic

channel information, in this dissertation we consider augmenting intrinsic channel-based

authentication approaches, such as [64], with an extrinsic synthetically generated finger-

print signal applied by the transmitter, in pursuit of a channel-aware PHY-layer authenti-

cation framework encompassing both intrinsic and extrinsic fingerprint features. Specif-

ically we are interested in PHY-layer fingerprints designed in the spirit of the Category

2 and Category 3 approaches in [17] exhibiting channel-like properties commensurate

with the natural channel distortions mitigated by traditional receiver perceptual models.

Specifically, we extend fingerprinting approaches that leverage intrinsic channel features

alone, i.e. [64] and [65], by augmenting these approaches with an extrinsic synthetically-

generated signal.

In this dissertation we describe how the extrinsic, synthetically generated signal is

perceived by receivers in a way that is similar to the perception of natural time-varying
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channel distortions. Thus, we use the term channel-like to denote a class of extrinsic fin-

gerprint signals designed to manipulate parameters of the transmitted signal via methods

that may be modeled as time-varying channel distortions. We will demonstrate how these

distortions are subsequently corrected by the receiver through traditional channel equal-

ization and synchronization practices. These signals, both the natural intrinsic channel

distortion and the synthetic extrinsic signal, are thus filtered from the primary signal in

pragmatic receiver designs. In other words, both the extrinsic channel-like fingerprint sig-

nal and real-world intrinsic time-varying channel distortions become an aggregate signal,

and will be jointly mitigated by the receiver before the primary signal is decoded (i.e.

perceived.)

Because both the intrinsic channel distortion and the extrinsic signal will be per-

ceived by the receiver as an aggregate signal, we demonstrate how the intrinsic channel

distortions become interference when recovering the extrinsic fingerprint signal. While

channel estimation aids, such as pilot signals, help mitigate the time-varying channel dis-

tortions experienced by the the original signal, intrinsic channel distortions will always be

present in the aggregate signal. Therefore the authentication signal must be carefully de-

signed to overcome these distortions. Multipath fading, fluctuations in gain and/or phase,

symbol timing, center frequency offsets, and Doppler effects are all distortions indicative

of real, intrinsic channels. Therefore, a fingerprint signal that manipulates one or more of

these parameters to convey an authentication message constitutes a channel-like design.

We have mentioned that the authentication devices employed by a system must

secure against forgery and replay. Because our fingerprint message is conveyed as an in-

dependent digital message, the bit-level cryptographic primitives typically used to secure
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authentication messages in upper-layer protocols may also be leveraged in the design of

the authentication message. By leveraging proven, best security practices in the design

of the digital message conveyed by the fingerprint, the forgery and replay resistance of

the fingerprint message will be at least commensurate with state-of-the-art authentication

messages used in upper layers.

While many fingerprinting schemes consider homogeneous systems, where all nodes

within the system can modified to implement the authentication signal, we instead con-

sider a heterogeneous wireless broadcast system with two classes of receivers:

• The unaware receiver: regular, unmodified, receivers that will ignore the fingerprint

signal and employ traditional channel equalization and data detection

• The aware receiver: receivers designed to detect and decode the fingerprint in ad-

dition to the primary signal

By considering heterogeneous systems, were unaware receivers will also receive

fingerprinted messages, we ensure that our fingerprint designs do not degrade the perfor-

mance of legacy receivers. In the coming sections we will describe how our channel-like

fingerprinting scheme emulates distortions typically observed in wireless channels, allow-

ing unmodified receivers to operate unhindered when the fingerprint message is present.

Now that we have defined classes for the type of receivers within our system, we

now define two classes of fingerprint designs according to the amount of information

available to the transmitter. The Open-Loop class of fingerprint designs include applica-

tions where channel state information (CSI) in unavailable to the transmitter. Fingerprint

designs in this class must be created and embedded blindly into the original signal, since
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side information on channel distortions that the transmission may encounter are unknown.

Fingerprints in the Open-Loop class must be designed such that their probability of de-

tection is optimized over the entire range of anticipated time-varying channel conditions.

Careful consideration of transmission signaling parameters, anticipated channel distor-

tions, and the perceptual model of the receiver must be taken to develop optimal designs.

In contrast to the Open-Loop class of fingerprint designs, the Closed-Loop class

of fingerprints includes applications where partial CSI is known by the transmitter. Since

the extrinsic fingerprint and intrinsic channel distortion will form an aggregate signal,

these two signals could potentially interfere with one another. A transmitter in a Closed-

Loop system can leverage this additional channel side information to create fingerprint

designs that dynamically change according time-varying channel state. Because of the

close relationship between intrinsic channel distortions and the channel-like fingerprint

signal, in this dissertation we pay close attention to the channel estimation mechanisms

comprising the perceptual model of a receiver, to ensure that channel state information is

effectively applied when designing the fingerprint.

1.3 Brief Overview of Contributions

Now that we have introduced the problem space for fingerprinting wireless signals,

we now briefly discuss the main contributions of this work.

In [24], an extrinsic channel-like fingerprint is considered for narrowband single-

input-single-output (SISO) systems using pulse-amplitude modulation (PAM) signaling,

where the fingerprint message is embedded at the transmitter by synthetically applying
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nominal multipath channel responses. This work considers blind channel estimation,

where pilot signals are not present, to aid in the channel estimation process. An authen-

tication signal BER less than the primary signal is achieved, and nearly zero degradation

to the original signal, due to the presence of the embedded fingerprint, is demonstrated.

These results are briefly discussed as a motivating channel-like fingerprinting example in

section 1.5.

In Chapter 2 we extend our work in the narrowband SISO case to designs that op-

erate in multiple dimensions. In [27] and [26], a multiple-input-multiple-output (MIMO)

Closed-Loop system is considered, and a framework for extrinsically fingerprinting space-

time coded (STC) transmissions is presented. A fingerprint function jointly manipulating

both the time and spacial domains is explored, and we discuss how the fingerprint dis-

tortions are removed by the channel equalization device employed by the receiver. An

authentication signal BER less than the primary signal is achieved, with no impact to the

original signal.

In Chapter 3 we consider another multi-dimension fingerprinting scenario, extend-

ing our work in Chapters 2 and 3 to Open-Loop systems. In [29] and [28], orthogonal

frequency division multiplexing systems (OFDM) are considered, and a number of fin-

gerprint designs are discussed that jointly manipulate the fingerprinting space in both

time and frequency via an “overlay” signal. Knowledge of time-varying channel state is

leveraged in these designs to create improved fingerprint signals. A taxonomy of Open-

Loop designs are presented that leverage various degrees of channel state knowledge to

design the embedded fingerprint signal overlay. An authentication signal BER less than

the primary signal is once again achieved, with no perceived impact to the original signal.
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While not presented in this dissertation, in [25] we improve upon our designs in

[29] and [28] by applying predictive filtering to reduce one type of fingerprint detection

error. In this work, predicted channel-state information (CSI) is leveraged when creating

the fingerprint, to increase the robustness of the fingerprint to interference caused by time-

varying channel distortions. A fingerprint BER improvement of nearly 8-9dB over [29]

and [28] is demonstrated.

Now that we have discussed the main contributions of the work in this dissertation,

we will briefly discuss the key assumptions that have been made to tie these works to-

gether. All fingerprinting approaches in this dissertation leverage the key assumption that

consecutive channel estimates are correlated in time, to some degree. Specifically, when

channel conditions are slowly changing, the sequence of channel estimates produced by

the receiver using the pilot signals embedded in the transmission contain redundant in-

formation. Channel-like fingerprinting exploits this correlation to transmit a new piece of

information to the receiver, the fingerprint signal, via explicit manipulation of the trans-

mitted signal. The fingerprint signal is typically detected by comparing time-varying

channel estimates, i.e. estimates derived from embedded pilot signals. Thus, one may

also think of channel-like fingerprinting approaches as explicit manipulation of the trans-

mitted pilot signals, where pilot signal distortions are merely duplicated onto the payload

signal to keep these two signals synchronized.

While the focus of this work is to apply this signal fingerprinting technique to wire-

less authentication problems, in general our fingerprint signal is not limited to authenti-

cation applications. Indeed, messages of all sorts may be transmitted by the fingerprint

signal, to suit a number of purposes. This being said, at first glance our work in [30] and
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[31], presented in Chapter 5, might seem very removed from the fingerprint embedding

discussions of Chapters 1 through 4. However, we will explain how these bodies of work

share some interesting similarities.

The works of [30] and [31] presented in Chapter 5 consider a four node relay sys-

tem where the relayed signal is transmitted using a best-effort delivery policy, with energy

reallocated from the pilot signals of the transmission. The power allocation parameters

of the new relayed signal change in response to the time-varying channel. Upon closer

inspection we see that this body of work leverages the same channel stationarity assump-

tions as our fingerprinting scheme, to transmit the new relay transmission signal. In short,

the relay signal is created through manipulating embedded pilot signals in response to

time-varying channel conditions. We note that the fingerprint signal discussed in Chap-

ters 1 through 4 can be described using a very similar description.

Through this argument, we see an ulterior connection between these two bodies

of work: the fingerprinting method discussed in Chapters 1 through 4 and best-effort

delivery method discussed in Chapter 5. When the amount of new information in a se-

quence of channel estimates decreases due to stationary channel conditions, the informa-

tion contained in the pilot signals from which the channel estimates are derived decreases

accordingly. While bandwidth resources devoted to pilot signals have historically been

considered useless overhead in the transmission, conveying zero information to the re-

ceiver, in both bodies of work we will show that through strategic manipulation of the

pilot signals we can actually convey additional information to the receiver. Pilot signals

convey information about time-varying channel distortions to the receiver, and when little

new information can be gleaned from pilot signals, the information conveyed by these
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signals can be increased by manipulating the transmission to modulate a new signal. In

our relay work the new signal is the relayed message, while in our fingerprinting work

this new signal is the fingerprint message.

Now that we have discussed how the best-effort relaying work in Chapter 5 is sim-

ilar to the fingerprinting methods of Chapters 1 through 4, we will briefly discuss how

a similar argument can be made to relate the works in Chapters 1 through 4 to the work

in Chapter 5. While many time-varying channel models exist to help explain the behav-

ior of mobile wireless channels, true channel state in a real world system can be a very

unpredictable indeed. Thus the channel stationary assumptions used in this dissertation

will not accurately describe all types of channel scenarios that a wireless node will en-

counter. In very unpredictable channels the channel estimation aids, i.e. the pilot signals,

are exercised to their fullest to convey timely channel state information to the receiver.

In unpredictable and rapidly-varying channel conditions the new information conveyed

by the transmitter, be it a fingerprint signal or a relayed signal, will be severely degraded

or lost entirely as the intrinsic channel distortion information measured by pilot signals

strongly interferes with the new signal. By this definition we conclude that the channel-

like fingerprint signals, like the relay signals of [30] and [31], are transmitted using a

best-effort delivery model as well.

Now that we have discussed how our channel-like fingerprinting approach will

leverage pilot-signal resources to convey new information to the receiver, we would like

to briefly discuss the amount of overhead that pilot signals impose on modern mobile

waveforms. Pilot signals or training data, used primarily for channel estimation and syn-

chronization purposes, represent a significant resource and energy overhead in modern
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waveforms [35], [1], [2], [10]. In IEEE 802.16e for example, the mobile version of the

WiMax specification, 11 percent or more of bandwidth resources are reserved for pilot

signals in the downlink signal while 33 percent or more of the bandwidth of the uplink

signal is consumed for the purpose of channel estimation [35]. As pilot signals typically

do not convey any useful payload data to the receiver, these bandwidth resources are gen-

erally wasted outside of their primary purpose of channel estimation. Thus it is obvious

that any method endowing pilot signals with the capability of transmitting useful payload

data, while also allowing these signals to fulfill their original purpose in conveying timely

channel state information to the receiver, demonstrates a substantial reduction in system

overhead and an accompanying increase in system efficiency. This potential reduction in

system overhead represents an ancillary contribution of this work that is most interesting.

1.4 Overall Problem Formulation and Design Goals

Now that we have given an overview of our fingerprinting approach, we will now

formally state the problem space and goal of this work. In this dissertation, we aim to

design channel-like fingerprint signaling schemes according to three design goals:

• Design Goal 1: The fingerprint signal should cause minimal degradation to the pri-

mary data signal and the detection thereof, when present.

• Design Goal 2: The fingerprint signal should achieve near fingerprint channel ca-

pacity, where in this work the “fingerprint channel” is band-limited by the charac-

teristics of the channel estimation mechanism employed by the transmitter/receiver.

• Design Goal 3: The broadcast authentication message conveyed by the fingerprint
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function should be resistant to common attacks, including forgery, modification,

and replay.

• Design Goal 4: Optionally, we can also consider an equi-energy transmission con-

straint, where fingerprinted transmissions are sent according to the original trans-

mission energy budget.

We make special note of Design Goal 2, which will be clarified in Chapter 3. Because our

channel-like fingerprinting mechanism uses embedded pilot signals to perform channel

estimation and convey fingerprint information as an aggregate transmission, in Chapter

3 we will demonstrate how the time-varying intrinsic channel response and projection

of receiver noise onto the received pilot signals become interference during fingerprint

detection, resulting in decreased fingerprint channel capacity.

1.5 Motivating Work

We will now briefly discuss our work in [24], which describes a pragmatic channel-

like fingerprinting scenario applicable to the IEEE 802.22 Digital Television Whitespace

FCC ruling. These results will serve as a motivating example for the work to be presented

in the coming chapters. This work will also provide an example for scenarios where

wireless nodes must detect and decode the fingerprint transmission to operate correctly,

yet may be uninterested in the original signal’s payload content.

With the ubiquitous adoption of wireless communications, access to the electro-

magnetic spectrum has become increasingly competitive. To facilitate efficient access to

shared spectrum, an arbitration method known as Dynamic Spectrum Access (DSA) was
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recently proposed [4]. Motivated by the FCC ruling regarding Wireless Regional Area

Networks (WRAN), IEEE 802.22 [20], interest in spectral sensing and shared spectrum

technologies has dramatically increased. Under this standard, access to the unused space

between Digital Television (DTV) channels, or the white space spectrum, is granted to

next-generation wireless broadband equipment. In shared spectrum scenarios such as

those proposed by 802.22, licensed DTV stations are considered primary users and are

given explicit first-right-of-access to the television spectrum, while broadband users are

allowed access to the shared spectrum as secondary users in the absence of primary user

signals only.

To ensure efficient use of white space spectrum under IEEE 802.22, spectrum al-

locations must first be sensed for primary users such as DTV and wireless microphone

signals before secondary users exhibiting varying bandwidths and modulation types are

granted access to an allocation. Since classification accuracy is exigently required for

correct spectral usage, a number of methods have been proposed for the detection and

classification of signals in DSA environments. Traditional approaches to unknown signal

identification involving the computation of various statistical properties [44] or cyclo-

stationary features [22, 57] have been proposed. Further detection and classification of

signals using these features has been discussed, including machine learning and policy-

based classification engines. In DSA environments such as the DTV spectrum, robust

spectrum sensing devices are required for the interoperability, and correct operation of

smart radios.

Previous work has demonstrated the utility of machine learning approaches to sig-

nal classification particularly in DSA applications. However, recent work [14, 48] has
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shown potential weaknesses in these approaches. When using unsupervised learning in

non-cooperative environments, adversaries may easily manipulate the learning process

compromising security and exposing DSA systems to a number of node identity attacks.

To prevent such attacks, the proposed physical layer authentication mechanism intro-

duces an unambiguous and explicit feature to the transmitted signal, providing stronger

user authentication capabilities to cognitive radios than those afforded by statistical and

cyclostationary features alone. Additionally, physical layer approaches facilitate the au-

thentication of unknown signals before higher layer processing, allowing smart radios to

quickly identify its source.

In [24] we describe an approach to primary user authentication (PUA) in the DTV

spectrum, specifically targeting the Advanced Television Systems Committee (ATSC)

broadcast standard. Since malicious nodes are motivated to conduct PUE attacks to obtain

increased bandwidth allotments and unfettered use of spectrum, the fingerprint message is

used to expose attackers and protect primary user resources. The application of the finger-

print signal to existing ATSC signals is discussed, and simulation results demonstrating

minimal impact to DTV coverage area are presented.

We now briefly discuss how our method [24] may be applied to DTV transmissions

for use in 802.22 DSA environments, in particular we focus on the ATSC DTV standard

used in the United States. The diagram of a smart receiver capable of decoding the au-

thentication signal is given in Figure 1. We note that the smart receiver applies additional

signal processing on the equalizer taps, allowing for detection of the fingerprint signal,

while legacy receivers, i.e. regular ATSC televisions, have a similar signal processing

chain sans the fingerprint signal processing. The additional signal processing required
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Figure 1: Example receiver system diagram with fingerprint decoder

by PHY-layer fingerprinting methods are one disadvantage to higher-layer authentication

approaches.

The ATSC standard [6] specifies an eight level PAM signal with a 10.76 MHz sym-

bol rate. The resulting signal is then filtered with a linear phase root raised cosine filter

with rolloff factor R = .1152 creating an bandlimited signal with an effective bandwidth

of 5.38 MHz. This filtering creates a single sideband signal with a vestigial sideband

component still present, thus giving rise to the 8-VSB modulation specified by the ATSC

standard.

We now present simulation results for the fingerprinting method proposed in [24].

In each run of the simulation, 80, 000 uncoded symbols of an 8-VSB ATSC signal were

generated and filtered according to the VSB filter specifications of the ATSC standard,

using 5 samples per symbol. The authentication fingerprint signal consisting of a symbol

alphabet with two synthetic FIR channels was then applied at IF onto the transmitted

signal at the rate of one authentication symbol for every 10, 000 symbols of the primary
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signal, for an authentication signal period ratio of 1/10000.

The augmented signal was then subjected to a AWGN channel. At the receiver, a

decision directed LMS equalizer using a 21 tap transversal filter and step-size parameter

µ = .002 was used to reverse the ISI introduced by the fingerprinting signal. Realistic

receiver timing recovery was simulated using a DLL timing recovery algorithm, however

explicit timing offsets were not introduced in the simulations conducted. Synthetic chan-

nels using authentication signal power ratios of .0015, .0025, and .004 were used, using

the impulse response alphabet depicted in Figure 2. The responses in Figure 2 are shown

with an exaggerated authentication signal power ratio of .15 to show secondary impulse

tap definition.

System BER results for the authentication signal and the primary signal were ob-

tained via Monte Carlo simulation. A second, independent simulation was also con-

ducted, producing BER results for a primary signal where the authentication fingerprint

was not present. For each value of channel SNR, 50 sub-experiments were conducted

and bit error results accumulated. Each sub-experiment consisted of repeated runs of the

80, 000 symbol Monte Carlo experiment described above, terminating when 100 authen-

tication signal bit errors were accumulated or 8, 000 total authentication symbols were

received, whichever came first. Bit error rate results are presented in Figure 3 for the

authentication signal, the primary signal, and for the original primary signal with the

fingerprint not present.

From these results we see that the authentication signal is received with a slight

BER improvement over the primary VSB signal, for authentication signal power ratios

greater than about .002. Additionally, we notice that the primary signal BER is negligibly

19



0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Synthetic channel impulse responses (exaggerated)
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impacted by the presence of the authentication signal, since the BER curve for the primary

signals with and without the authentication signal are indistinguishable, since these series

overlap.

We observe that the impact to primary signal BER is negligible for all values of

authentication power ratios used, as these series are overlapping in Figure 3. This re-

sult implies negligible impact to ATSC coverage area when the authentication signal is

present. We note that a naive authentication signal detector was used in this simula-

tion, which weighted every observation of the authentication signal over an entire baud

equally. A more correct detector considering the learning curve of an LMS equalizer and

employing maximum ratio combining of the observations would yield even better results

in practice.

Decreasing the authentication signal period ratio of the authentication signal will

improve its BER, at the expense of decreasing capacity. Since the fingerprint signal in-

troduces additional model mismatch in the receiver’s channel estimate, we note that de-

creasing the relative baud rate of the authentication channel has the effect of decreasing

the frequency at which synthetic model mismatch error is introduced into the primary

VSB signal. Thus the quality of the primary signal increases accordingly. Conversely,

an increase in the authentication signal period ratio will result in decreased BER for the

authentication signal, however this has the effect of increasing the MSE of the receiver’s

channel estimate. This increase in model mismatch error results in decreased capacity

for the primary signal. Average channel model MSE results for the experiment described

above are presented in Figure 4. We note a negligible impact to the the receiver’s channel

model estimate MSE in the presence of the authentication signal for the chosen system
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parameters, and that increasing authentication signal power ratio has negligible impact to

the channel estimate MSE.

In this motivating example, we have presented a simple channel-like fingerprinting

scheme and discussed how the fingerprint signal can be used by receivers to authenticate

the signal being transmitted. We have demonstrated that cryptographic authentication

primitives may be employed in generating the content of the fingerprint, allowing for user

authentication at the strength of the primitive. We have also discussed how the fingerprint-

ing signal may be applied to DTV signals adhering to the ATSC standard, in support of

the IEEE 802.22 dynamic spectrum access standard, and how a fingerprint authentication

device prevents a number of attacks against cognitive radio signal classifiers. In addition

to preventing primary user authentication attacks, the fingerprinting method presented

may be applied to the primary signal at IF, enabling its use on legacy equipment without

modification to the transmitter. In retrofitting existing DTV transmitters for use in 802.22

theaters, the fingerprinting device may be implemented as a preconditioning component

in the IF chain of the transmitter, before signal up-conversion and power amplification.

1.6 Outline of Thesis

This dissertation is organized as follows. In Chapter 2 our work in [27] and [26]

is presented. These works constitute a “Closed-Loop” approach to channel-like finger-

printing in the time and spacial dimensions, where CSI is not used in the design of the

fingerprint. In Chapter 3 our work in [29] and [28] is presented. These works demonstrate

“Open-Loop” approaches to channel-like fingerprinting, where partial CSI is available to
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the transmitter when designing the fingerprint. In Chapter 4 our work in [32] is presented,

where we leverage the PHY-layer fingerprinting approaches discussed in Chapters 1-3

to create a complete authentication system. In this chapter, example cryptographically

secure messages are discussed and applied to Dynamic Spectrum Access scenarios. In

Chapter 5 our work in [30] and [31] is presented, where channel stationary assumptions

similar to the fingerprinting work in Chapters 1-3 are used to create a cooperative relaying

system. Our concluding remarks and future work are presented in Chapter 6.
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Chapter 2

Extrinsic Channel-Like Fingerprint Embedding for Authenticating MIMO

Systems

2.1 Overview

A framework for introducing an extrinsic fingerprint signal to space-time coded

transmissions at the physical layer is presented, where the fingerprint signal conveys a

low capacity cryptographically secure authentication message of arbitrary length. The

multi-bit digital fingerprint message conveyed by the fingerprint signal is available to all

users within reception range and is used to authenticate the fingerprinted transmission.

A novel approach is discussed where the fingerprint signaling mechanism mimics distor-

tions similar to time-varying channel effects. Specifically, the fingerprint is detectable to

receivers considering previous channel state information, but will be ignored by receivers

equalizing according to current channel state information. Two example fingerprint sig-

naling mechanisms and detection rules are presented based on pulse-amplitude keying

and phase-shift keying approaches. The methods for obtaining the real (intrinsic) channel

estimate, the extrinsic fingerprint message, and the primary transmission are analytically

demonstrated using general pilot embedding schemes. The worst-case distortions caused

by non-ideal equalization of a fingerprinted message are derived using the 2x2 Alamouti

code. Simulation results including bit error rate (BER) and model mismatch error using
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a maximum-likelihood (ML) receiver are presented for both the primary and fingerprint

signal, while authentication signal BERs lower than the primary signal are demonstrated.

2.2 Introduction

In our previous work [24], the details of a cryptographically secure arbitrary-length

digital signature by using an extrinsic channel-like fingerprint for narrowband single-input

single-output (SISO) digital television signals was considered.

In this chapter we extend our work in [26], which considers one fingerprinting

function for Space-Time Coded (STC) transmissions.

This chapter is organized as follows. Section 2.3 introduces the multiple-input

multiple-output (MIMO) system model and presents a framework for embedding a channel-

like fingerprint signal of an arbitrary length in bits. In Section 2.4 the extraction of the

intrinsic channel state, the extrinsic fingerprint message, and the primary transmission are

demonstrated. Section 2.5 presents two fingerprint signaling functions and accompanying

detection rules, and the performance of these functions are derived. In 2.6 we present

bit error rate simulations for the example fingerprinting functions, and in Section 2.7 we

present our conclusions.

2.3 System Model and Problem Formulation

We assume the transmitter and receiver are MIMO systems with Lt transmit anten-

nas and Lr receive antennas, with a STC transmitted at index t described by matrix U[t]

of size Lt×M . The STC U[t] transmitted across all Lt transmit antennas in M time slots
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is a composite signal composed of both the original STC transmission data, which will

be referred to as the primary signal, and pilot signals used for channel estimation. When

the fingerprinting function F[t] is applied by the transmitter to the ST block U[t] before

transmission, the block received at the receiver Y[t] ∈ CLr×M expressed in matrix form is

Y[t] = H[t]F[t]U[t] + N[t], (2.1)

where H[t] ∈ CLr×Lt is the channel coefficient matrix representing the intrinsic channel

conditions experienced by the fingerprinted block at time t, and F[t] ∈ CLt×Lt is the

fingerprinting function applied to the transmission. The channel noise N[t] is modeled as

complex white Gaussian noise with zero mean and variance (σ2/2)I(Lr×M). We assume

the elements of H[t] to be independent Rayleigh fading and block-stationary, where H[t]

remains constant over the block, or M symbols.

We now briefly describe the pilot-embedding framework presented in [50], which

provides the edifice for the construction of U[t]. We will demonstrate how our channel-

like fingerprinting scheme conveys the fingerprint message through strategic manipulation

of the pilot signals used for channel estimation, that are embedded in the transmission.

The transmission U[t] consists of a ST code data-bearer matrix D[t] ∈ CLt×N and

data-projection matrix A ∈ RN×M . Here, N is the number of time slots reserved exclu-

sively for data transmission, while time slots M−N, N < M are reserved for data mixed

with embedded pilot signals. The ST symbol U[t] with embedded pilots signals, becomes

U[t] = D[t]A + P, (2.2)

where P ∈ RLt×M is the pilot matrix. The salient point of this data-bearing framework

is that most pilot-embedding schemes can be generalized through the superposition of
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the data-bearing structure D[t]A and the pilot matrix P[t]. The data-projection and pilot

matrix satisfy the following properties:

APH = 0 ∈ RN×Lt , AAH = I ∈ RN×N , PPH = I ∈ RLt×Lt . (2.3)

The properties (2.3) of the data-projection matrix A and P essentially allow A to

project the data component D[t] onto the orthogonal subspace of the pilot matrix P, al-

lowing for signal demodulation by means of a Maximum Likelihood (ML) receiver. The

expanded form of the signal at the receiver (2.1), with (2.2) becomes

Y[t] =H[t]X[t]A + H[t]F[t]P + N[t], (2.4)

where X[t] = F[t]D[t] is the fingerprinted data transmission before projection by A.

To the unaware receiver the distortions introduced by the fingerprinting function

F[t] can be combined with the channel distortions H[t] and will be subsequently removed

through equalization. This is because we consider the case where the fingerprinting func-

tion F[t] is applied to both the pilot and data signals of the transmission, consistent with

the distortions introduced by the intrinsic channel response. A MMSE equalizer oper-

ating on current CSI will reverse both the intrinsic and extrinsic channel-like distortions

using the block’s pilot signals as reference. This process will be explained analytically in

a moment.

The aware receiver must detect the fingerprinting signal in the presence of time-

variant channel distortions. We consider the case where the intrinsic channel estimate

H[t] is delineated from the extrinsic fingerprinting component F[t] through periodic omis-

sion of the fingerprint signal F[t], which will serve as the channel sounding mechanism
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allowing for estimation of the intrinsic channel state only. Under this assumption, the

coherence time of the channel will play an important role in the detection probability of

F[t], since time-varying changes in H[t] will become noise when detecting F[t].

Since channel coherence over many blocks is a strong assumption for general time-

variant channels [58], especially in high mobility scenarios when channel state is quickly

changing, we consider here the most frequent channel sounding case where the fingerprint

signal is omitted every even block and present on every odd block, yielding a fingerprint

transmission with a 50 percent duty-cycle. With this design, channel coherence over

only two blocks is sufficient for detecting our fingerprint message and a channel with

less stationary behavior will result in degraded performance. Changing our time index

to reflect this design, when t = 2Mk, the fingerprint is not present in the transmission

and F[t] is replaced by the identity matrix, I, for the channel sounding block. When

t = 2Mk − M , F[t] is transmitted. Thus the received signal with the fingerprinting

function applied to every other block transmission becomes

Y[t] =


H[t]U[t] + N[t], t = 2Mk,

H[t]F[t]U[t] + N[t], t = 2Mk −M.

(2.5)

While (2.5) considers a differential modulation where the perceived channel changes ev-

ery block, in [13] channel-tracking equalizers were discussed. This work demonstrated

that when equalizers that track channel state are employed, distortion to the primary-

signal can be avoided by simply extending the symbol length of the fingerprinting func-

tion to be longer than the forgetting period of the equalizer. By increasing the length of

the fingerprinting symbol, and thus decreasing the authentication symbol rate, (5) can be
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extend to any scenario where the equalizer ignores previous channel state beyond some

finite duration.

When the coherence time of the channel is large the correlation between H[2Mk]

and H[2Mk−M ] is significant, and the fingerprint function can be decoded correctly with

a higher probability. Conversely, as the coherence time of the channel decreases, there

is less mutual information between the current and outdated CSI and the performance of

fingerprint decoder degrades. The correlation between time-varying channel estimates are

discussed in [8], [34] and [60].

To ensure fair analysis of the fingerprinting system, the fingerprinting function is

designed according to transmission energy constraint

||X[t]||F = ||D[t]||F = Po, (2.6)

where || · ||F represents the Frobenius norm. Therefore, according to (2.5) the fingerprint-

ing function F[t] must be designed such that ||F[t]||F =
√
Lt, maintaining an equi-energy

transmission for the period when the fingerprint is present, i.e. during Y[2Mk−M ], and

when it is omitted, i.e. during Y[2Mk].

Extending the time-varying channel model used in [64] to MIMO transmissions,

we consider a generalized time-variant channel response matrix for the intrinsic com-

ponent of the channel H[t], where each scalar complex gain element Hi,j[t] for rows

i = 0, . . . , Lr − 1 and columns j = 0, . . . , Lt − 1 is the summation of three model

components:

• A fixed time-invariant channel gain denoted H̄i,j = E [Hi,j[t]]

• A zero-mean time-variant channel gain component denoted µi,j[t]
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• A zero-mean receiver noise component denoted Ni,j[t],

where H̄i,j is the mean of the random variable Hi,j[t]. Thus, Hi,j[t] becomes

Hi,j[t] = H̄i,j + µi,j[t] +Ni,j[t]. (2.7)

While in general each mean of the channel gains, H̄i,j , will be changing in time, we

will assume that this component will remain stationary over the duration of the channel

sounding symbol and adjacent fingerprinted symbol in (2.5). We obtain the following

matrix definition for the time-varying channel

H[t] =
(
H̄ + µ[t]

)
+N[t]

=


H̄0,0 + µ0,0[t] . . . H̄0,Lt−1 + µ0,Lt−1[t]

... . . . ...

H̄Lr−1,0 + µLr−1,0[t] . . . H̄Lr−1,Lt−1 + µLr−1,Lt−1[t]

+


N0,0[t] . . . N0,Lt−1[t]

... . . . ...

NLr−1,0[t] . . . NLr−1,Lt−1[t]

 ,

(2.8)

where each element Ni,j[t] is zero-mean complex Gaussian noise with variance σ2
N rep-

resenting the normalized receiver noise projected on the pilot signals, assuming the pro-

jected noise is uniformly distributed over PH (i.e. the pilot signals are optimally embed-

ded into the transmission). We model the time-variant portion of the channel response

gain for each element of µ[t] corresponding as an independent first-order autoregressive

(AR-1) model. The AR-1 model has been used to describe time-variant channels in pre-

vious works [66], and [36, 64]. Assuming an average AR-1 noise power σ2
T over all
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time-variant gain elements µi,j[t], the AR-1 model is given as

µi,j[t] = aµi,j[t− 1] +
√
(1− a2)ui,j[t]. (2.9)

The AR model coefficient a in (2.9) represents the influence of the previous time-variant

channel gain component µi,j[t− 1] on the current estimate µi,j[t].The random component

of the time-variant channel µi,j[t] is represented in (2.9) by ui,j[t] ∼ CN (0, σ2
T ), thus

E [µi,j[t]] = 0,∀i, j. We consider the case where the AR model coefficient a, and the

noise power σ2
T are the same for each independent channel i, j.

2.4 Fingerprint Analysis

Upon receiving the signal, the first step for both aware and unaware receivers is

channel estimation. The channel estimation problem is to extract and estimate channel

distortions in the received signal (2.5) for performing channel equalization and further

recovering D[t]. By post-multiplying both sides of (2.5) by PH and using the properties

in (2.3), the channel response H[t] can be estimated from the received signal during the

channel-sounding symbol at t = τ0 = 2Mk

Y[τ0]PH = (H[τ0](D[τ0]A + P) + N[τ0])PH

= H[τ0] + N[τ0]PH ,

(2.10)

where N[t]PH , the channel estimate noise in (2.8), is the projection of the noise vector

onto pilot signals and represents noise in the channel estimate.

Similarly the joint intrinsic and extrinsic channel distortions, H[2Mk] and F[t],

can be estimated from the received signal (2.5) during the fingerprinted symbol at τ1 =
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2Mk −M

Y[τ1]PH = (H[τ1]F[τ1](D[τ1]A + P) + N[τ1])PH

= (H[τ1]F[τ1]) + N[τ1]PH ,

(2.11)

Combining results from (2.10) and (2.11), the channel estimate at the receiver, Ĥ[t], be-

comes

Ĥ[t] =


H[t] + N[t]PH , t = τ0 = 2Mk,

H[t]F[t] + N[t]PH , t = τ1 = 2Mk −M,

(2.12)

where N[t]PH is the normalized projected channel estimate noise. Since N[t] is uniformly

distributed Gaussian noise, and since proper design of P should ensure that pilot symbols

are placed such that channel conditions are uniformly estimated throughout the ST block,

then N[t]PH should also have a uniform noise distribution.

2.4.1 Data Recovery

After the channel has been estimated via (2.10) and (2.11), the next step preformed

by the receiver is the recovery of the transmitted data D[t]. By post-multiplying both sides

of (2.5) by AH and using the properties (2.3), the data signal D[t] can be extracted from

the received signal (2.5) during the channel-sounding symbol transmitted at τ0 = 2Mk,

i.e.

Y[τ0]AH = H[τ0]D[τ0] + N[τ0]AH . (2.13)

For the sake of exposition, we consider here the case where the number of transmit an-

tenna and the number of receive antenna are equal, or Lr = Lt, and that Ĥ[t] is invertible,

which is the case considered later in simulation. Inversion for the case when Lr 6= Lt
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is obtainable via a number of methods such as the pseudoinverse, however this topic is

beyond the scope of this chapter. An estimate for the intrinsic channel response Ĥ[τ0] is

produced via (2.10), and thus the data signal can be recovered by pre-multiplying (2.13)

by the inverse of the normalized channel estimate produced by the MMSE estimator, or

Ĥ−1[τ0]. When the channel is perfectly estimated for either the τ0 or τ1 block, i.e.

Ĥ−1[t] = H−1[t], t = τ0 or τ1 (2.14)

the extracted data signal at t = τ0 = 2Mk is

D̂[τ0] =Ĥ−1[τ0]Y[τ0]A
H

=D[τ0] + Ĥ−1[τ0]N[τ0]AH .

(2.15)

Similarly, when post-multiplying by AH for t = τ1 = 2Mk −M

Y[τ1]AH = H[τ1]F[τ1]D[τ1] + N[τ1]AH , (2.16)

an estimate for the intrinsic channel response combined with the extrinsic response Ĥ[τ0]F[τ1]

is produced via (2.11) and the data signal can be recovered by pre-multiplying (2.16) by(
Ĥ[τ1]F[τ1]

)−1

. For the perfectly estimated channel (2.14) the extracted data signal at

t = τ1 = 2Mk −M becomes

D̂[τ1] = D[τ1] +
(
Ĥ[τ1]F[τ1]

)−1

N[τ1]AH . (2.17)

We note that from (2.11) and (2.17) it has been shown that the data signal D[τ1]

can be recovered from Y[τ1] in the presence of the fingerprinting distortion F[τ1] without

explicitly extracting and detecting the fingerprinting function F[τ1]. Thus the primary

transmission in the proposed fingerprinting system can be recovered independently from

the fingerprint detection by both the aware and unaware receivers.
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A further advantage to the proposed system is that channel estimates obtained dur-

ing (2.10) and (2.11), and subsequent channel equalization steps preformed in (2.15) and

(2.17) are identical steps taken by an unmodified/unaware receiver. Thus, we have demon-

strated that the fingerprinted signal is received by unaware receivers without modification

to the receiver, channel estimation procedure, or equalization device when generalized

pilot embedding and channel estimation are employed.

2.4.2 Fingerprint Detection

We now consider two methods for detecting the fingerprint signal given the se-

quence of channel state information in (2.12).

The first detection rule, also considered in [64], is the differential channel estimate

denoted ZSUB[τ1, τ0]. This detection rule is useful for detecting amplitude differences

between the even and odd block transmissions in (2.5), i.e. our differential fingerprint

signaling method, and is obtained by subtracting the sounding symbol estimate from the

fingerprinted symbol estimate. Under the assumption that the fingerprinting function is

transmitted independently from the channel response, their difference becomes

E [ZSUB[τ1, τ0]] = E
[
Y[τ1]PH −Y[τ0]PH

]
=E

[
H̄F[τ1]

]
+ E [µ[τ1]F[τ1]] + E [N[τ1]]− E

[
H̄
]
− E [µ[τ0]]− E [N[τ0]]

=H̄F[τ1]− H̄.

(2.18)

From (2.18) we note that this detector is unbiased, since only the means H̄ and F[t] are

present.

We also consider the Hadamard product, or element-wise product between two ma-
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trices, for detecting fingerprinting functions perturbing signal phase. Denoted ZHAD[τ1, τ0],

this detection rule is the element-wise product between the channel sounding estimate and

the conjugate of the fingerprinted channel estimate, and is given as

E [ZHAD[τ1, τ0]] = E
[(
Y[τ1]PH

)
◦
(
Y[τ0]PH

)∗]
=E

[(
H̄F[τ1]

)
◦ H̄∗]+ E

[(
H̄F[τ1]

)
◦ µ∗[τ0]

]
+ E [N[τ1] ◦ µ∗[τ0]] +

E [(µ[τ1]F[τ1]) ◦N∗[τ0]] + E
[
(µ[τ1]F[τ1]) ◦ H̄∗]+ E

[
N[τ1] ◦ H̄∗]+

E [(µ[τ1]F[τ1]) ◦ µ∗[τ0]] + E [N[τ1] ◦N∗[τ0]] + E
[(
H̄F[τ1]

)
◦N∗[τ0]

]
=||H̄||2F[τ1],

(2.19)

where (◦) represents the Hadamard product and (∗) represents conjugation. Here the

perturbation factor can be extracted from the argument of the product of the individual

scalar estimates. We will use these two detectors in the following fingerprint examples

and demonstrate their performance.

2.5 Some Fingerprinting Scenarios

We now consider some simple fingerprinting functions as candidates for F[t]. We

will give examples for each fingerprinting function using the 2x2 Alamouti code [5] ac-

cording to the polar representation of the complex valued intrinsic channel model (2.8),

i.e.

H[t] =

H̄0,0 + µ0,0[t] H̄0,1 + µ0,1[t]

H̄1,0 + µ1,0[t] H̄1,1 + µ1,1[t]

+

N0,0[t] N0,1[t]

N1,0[t] N1,1[t]



=

α1e
jθ1 α3e

jθ3

α2e
jθ2 α4e

jθ4

+

µ1[t] µ3[t]

µ2[t] µ4[t]

+

N1[t] N3[t]

N2[t] N4[t]

 ,

(2.20)
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where the indices {i, j} are serialized to 1, 2, . . . , LtM first column-wise and then row-

wise, for simplicity of notation. Here H̄i,j is represented in polar form, with amplitude

αx, x = 1, . . . ,MLt and angle θx, x = 1, . . . ,MLt. In the case of the 2x2 code,

N = Lt = 2.

2.5.1 Antenna Amplitude Modulation (AAM)

The first fingerprinting function we consider introduces a gain offset of ε between

symbols to be transmitted by each antenna such that the overall transmission energy con-

straint is withheld. This function can also be thought of as a modulation of the gain of

each antenna, and will be designated with the subscript AAM . The antenna gain finger-

printing function for the 2x2 code (i.e. Lt = 2, M = 3, N = 2) can be represented

as

FAAM [t] = γ

1− ε 0

0 1 + ε

 , |ε| < 1, (2.21)

where γ is a normalization constant used to maintain the constant energy constraint as in

(2.6). For the AAM fingerprinting function this normalization constant becomes

γ =
1√

1 + ε2
. (2.22)

Since the AAM fingerprinting function perturbs the amplitude of transmitted symbols,

we apply the differential channel test statistic (2.18) to detect amplitude distortions be-

tween channel estimates. Using (2.18) and (2.20) applied to the AAM fingerprint func-
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tion (2.21), test statistic for the 2x2 Alamouti code, denoted ZAAM [τ1, τ0], becomes

ZAAM [τ1, τ0] = E [ZSUB[τ1, τ0]] = H̄F[τ1]− H̄

=

α1(1− ε)ejθ1 α3(1 + ε)ejθ3

α2(1− ε)ejθ2 α4(1 + ε)ejθ4

−

α1e
jθ1 α3e

jθ3

α2e
jθ2 α4e

jθ4

 =

−εα1e
jθ1 εα3e

jθ3

−εα2e
jθ2 εα4e

jθ4

 .

(2.23)

The estimates received in each time slot i = 0, . . . , N − 1 for each antenna j =

0, 1 in (2.23), ZAAMi,j
, can be combined by subtracting the amplitude of the estimates

corresponding to the signals received by each antenna, i.e. the columns of (2.23). The

ensemble estimate for ε becomes,

ε̂ =
N−1∑
i=0

Re{ZAAMi,1 [τ1 , τ0 ]} −
N−1∑
i=0

Re{ZAAMi,0 [τ1 , τ0 ]}

= (εα3 + εα4)− (−εα1 − εα2) = ελ, λ =
LtN∑
i=1

αi,

(2.24)

is the total channel gain measured during the sounding symbol transmitted at t = τ0.

From (2.24) we see that the performance of the test signal ZAAM [τ1, τ0] depends

on the aggregate signal gain of the channel λ and the value chosen for the perturbation

amplitude ε. Therefore when using the AAM fingerprinting function we conclude that the

symbol error rate (SER) for the authentication signal, and thus the detection performance

of the fingerprint for the aware receiver, can be improved by increasing ε at the transmitter.

To analyze the performance of this fingerprinting function, we must also compute
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the variance of the test statistic. This computation, similar to the proof in [64], becomes

Var [ZSUB[τ1, τ0]]

= Var
[(
H[τ1]F[τ1] + N[τ1]PH

)
−
(
H[τ0] + N[τ0]PH

)]
= Var [µ[τ1]F[τ1]] + Var [µ[τ0]]

− 2Cov [µ[τ1]F[τ1],µ[τ0]] + Var
[
N[τ1]PH

]
+Var

[
N[τ0]PH

]
.

(2.25)

Due to the design of the AAM fingerprinting function, the gain of the jth column of

(2.23) is either increased or decreased by the perturbation factor ε, thus (2.25) becomes

Var [ZSUB[τ1, τ0]] =


σ2
T (1 + (1− 2a)(1− ε)2) + σ2

N , j = 0, i = 0, . . . , N − 1

σ2
T (1 + (1− 2a)(1 + ε)2) + σ2

N , j = 1, i = 0, . . . , N − 1.

(2.26)

Therefore, the total variance of the estimate (2.24) for the 2x2 code becomes

σ2
ε = Var [ε̂] =

σ2
T (2(1− a) + ε2(1− 2a)) + σ2

N

LtN
. (2.27)

If we select a typical antipodal binary signal constellation for the AAM fingerprint func-

tion F with parameter ε, i.e.

FAAM [t] ∈

γ

1− ε 0

0 1 + ε

 , γ

1 + ε 0

0 1− ε


 , (2.28)

it can be shown that the symbol error rate for the maximum-likelihood fingerprint detector

detecting the transmitted fingerprint function F from the noisy estimate at the receiver F̂

is

P
[
F̂ 6= F

]
= Q

(√
2ε2λ2

σε

)
, (2.29)
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where Q(·) is the Gaussian tail function. We note that the variance (2.27) decreases

linearly as the number of elements in the code increases, i.e. as Lt or N increase, however

we also note that the variance also increases quadratically in ε.

2.5.2 AAM Fingerprint Distortion

We now consider the distortions experienced by the Maximum Ratio Combin-

ing (MRC) decoder operating on the 2x2 Alamouti code when equalizing the AAM -

fingerprinted signal Y[τ1] according to an incorrect channel estimate that considers only

the intrinsic channel estimate, i.e. if H[τ0] were used as the channel estimate for a symbol

transmitted at t = τ1 = 2k instead of H[τ1]F[τ1]. This important result delineates the

worst-case degradation in performance the MRC receiver would experience due to chan-

nel model estimate mismatch, which generally destroys the orthogonality of the signals in

the transmitted space-time code D[t]. These distortions might be applicable to unaware

receivers with non-adaptive equalization, and demonstrates how the perturbation param-

eter ε must be carefully chosen to limit maximum signal degradation when considering a

heterogeneous system of receivers. For the 2x2 Alamouti code,

D[t] =

d1 −d∗2

d2 d∗1

 , (2.30)

the transmitted symbol X[t] with fingerprinting function (2.21) becomes

XAAM [t] =

1− ε 0

0 1 + ε


d1 −d∗2

d2 d∗1

 =

d1(1− ε) −d∗2(1− ε)

d2(1 + ε) d∗1(1 + ε)

 . (2.31)
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The data signal estimate using MRC on the extracted data (2.15), using (2.20) becomes

YAAM [t] =

r1 r3

r2 r4

 + N[t]PH , (2.32)

where

r1 = α1d1(1− ε)ejθ1 + α3d2(1 + ε)ejθ3 r3 = −α1d
∗
2(1− ε)ejθ1 + α3d

∗
1(1 + ε)ejθ3

r2 = α2d1(1− ε)ejθ2 + α4d2(1 + ε)ejθ4 r4 = −α2d
∗
2(1− ε)ejθ2 + α4d

∗
1(1 + ε)ejθ4 .

(2.33)

The estimates of the received signal using an MRC receiver with model mismatch distor-

tion from the fingerprinting function present are given as

d̃1AAM
= α̂1e

−jθ̂1
(
α1d1(1− ε)ejθ1 + α3d2(1 + ε)ejθ3

)
+ α̂2e

−jθ̂2
(
α2d1(1− ε)ejθ2 + α4d2(1 + ε)ejθ4

)
+ α̂3e

jθ̂3
(
−α1d2(1− ε)e−jθ1 + α3d1(1 + ε)e−jθ3

)
+ α̂4e

jθ̂4
(
−α2d2(1− ε)e−jθ2 + α4d1(1 + ε)e−jθ4

)
+ η1,

d̃2AAM
= α̂3e

−jθ̂3
(
α1d1(1− ε)ejθ1 + α3d2(1 + ε)ejθ3

)
+ α̂4e

−jθ̂4
(
α2d1(1− ε)ejθ2 + α4d2(1 + ε)ejθ4

)
− α̂1e

jθ̂1
(
−α1d2(1− ε)e−jθ1 + α3d1(1 + ε)e−jθ3

)
− α̂2e

jθ̂2
(
−α2d2(1− ε)e−jθ2 + α4d1(1 + ε)e−jθ4

)
+ η2.

(2.34)

where

η1 = α1e
−jθ1N1 + α2e

jθ2N∗
2 + α3e

−jθ3N3 + α4e
jθ1N∗

4 ,

η2 = −α1e
jθ1N∗

2 + α2e
−jθ2N1 − α3e

jθ3N∗
4 + α4e

−jθ1N3,

(2.35)

represent the the combined receiver noise in the estimates of d1 and d2, respectively. In

(2.34), α̂1, α̂2, α̂3, α̂4 are the complex channel gain estimates for the intrinsic channel
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given by (2.20), produced by the receiver during H[2Mk], θ̂1, θ̂2, θ̂3, θ̂4 are the channel

phase estimates, and N1, N2, N3, N4 are the elements of N[t]PH . We consider the case

where the intrinsic channel component is perfectly coherent over the channel sounding

symbol and the fingerprinted symbol, thus the time-variant component µ[t] of (2.20) is

omitted, i.e. µ[τ1] = µ[τ0] = 0, thus in the noiseless case, when N[τ1] = N[τ0] = 0, the

channel estimates for t = τ1 and t = τ0 are equal

Ĥ[τ1] = Ĥ[τ0], (2.36)

thus the estimates for channel amplitude and phase have perfectly determined the intrinsic

channel response, or

Ĥ[t] = H[t] =

α̂1e
jθ̂1 α̂3e

jθ̂3

α2e
jθ̂2 α̂4e

jθ̂4

 =

α1e
jθ1 α3e

jθ3

α2e
jθ2 α4e

jθ4

 , (2.37)

leaving only distortions due to the presence of the extrinsic fingerprint. Using (2.37), after

some manipulation, (2.34) becomes

d̃1AAM
= (λ− ε(α1 + α2 − α3 − α4))d1 + 2ε(α1α3e

j(θ3−θ1) + α2α4e
j(θ4−θ2))d2 + η1,

d̃2AAM
= (λ− ε(α1 + α2 − α3 − α4))d2 − 2ε(α1α3e

j(θ1−θ3) + α2α4e
j(θ2−θ4))d1 + η2,

(2.38)

From (2.38) we notice that an AAM-fingerprinted Alamouti code improperly equal-

ized according to outdated CSI (i.e. CSI that does not reflect the distortions introduced

by the fingerprinting function), is degraded in amplitude by an amount proportional to ε.

Specifically, the estimate for d1 is degraded in amplitude by ε(−α1−α2) and a cross signal

is introduced from the d2 signal proportional to 2ε. Similar distortions are experienced

for the d2 symbol, which is also degraded by ε(−α1 − α2). These are the worse-case
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distortions incurred due to channel model estimate miss-match when using (2.21) as a

fingerprinting function, and demonstrates the importance of selecting ε when considering

receivers with lower performance equalizers. For example, when the equalizer used by

a receiver has a particularly slow learning curve, or if there is delay between when the

channel is estimated and when this estimate can be used for equalization, the receiver can

equalize the channel according to an outdated channel model and thus model mismatch

distortions will occur.

We note that when the data symbol D[t] is equalized and decoded according to cur-

rent CSI, (2.10) and (2.11), the intrinsic and extrinsic channel distortions will be corrected

when decoding the symbols D[τ0] and D[τ1]. Thus, when channel model mismatch error

during the fingerprinted symbol (2.14) is omitted, D[t] will be recovered using the MMSE

channel estimate according to (2.16) and (2.17). The primary signal estimates for the 2x2

Alamouti code when the antenna amplitude offset is properly corrected by equalization

becomes

d̃1 = λ(2)d1 + η1, d̃2 = λ(2)d2 + η2, λ(2) =
LtN∑
i=1

α2
i , (2.39)

which is the anticipated performance for the 2x2 MRC Alamouti decoder with the perfect

channel estimation assumption.

2.5.3 Antenna Phase Modulation (APM)

We now consider a fingerprinting function that introduces a phase offset between

the signals to be transmitted by each antenna, denoted with the subscript APM . The
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fingerprinting function for the 2x2 code can be written

FAPM [t] =

e−jε 0

0 ejε

 , 0 ≤ ε < 2π. (2.40)

Since the APM fingerprinting function introduces a phase perturbation, we apply the

Hadamard product detector (2.19). The APM fingerprinting function in (2.40) and equa-

tion (2.20) for the 2x2 code becomes

ZAPM [τ1, τ0] = E [ZHAD[τ1, τ0]]

= E


α1e

j(θ1−ε) α3e
j(θ3+ε)

α2e
j(θ2−ε) α4e

j(θ4+ε)

 ◦

α1e
−jθ1 α3e

−jθ3

α2e
−jθ2 α4e

−jθ4


 =

α2
1e

−jε α2
3e

jε

α2
2e

−jε α2
4e

jε

 .

(2.41)

Combining all scalar estimates from (2.41) by averaging the scalar estimates correspond-

ing to the signals received by each antenna and taking the conjugate of the estimates from

the second column, the ensemble estimate for ε becomes,

e−jε̂ =
N∑
j=0

ZAPM1,j
[τ1, τ0] +

N∑
j=0

Z∗
APM0,j

[τ1, τ0]

= λ(2)e−jε,

(2.42)

where the disturbance factor ε can be recovered by taking the argument of (2.42), and

λ(2) =
∑LtN

x=1 α
2
x is the anticipated signal gain for the 2x2 MRC Alamouti decoder with

the perfect channel estimation assumption.

From (2.42) we see that the performance of the test signal ZAPM [τ1, τ0] depends

on the aggregate signal gain of the channel λ(2) and the magnitude of the perturbation

factor, ε. Therefore when using the APM fingerprinting function we conclude that the

authentication signal SER can be decreased by increasing ε at the transmitter.
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The variance of the detection rule (2.42) can be written,

Var [ZHAD[τ1, τ0]] =
(
σ2
N + σ2

T

)2
1+ 2

(
σ2
N + σ2

T + aσ2
T + aσ4

T

)
H̄(2), (2.43)

where H(2) = H ◦H∗ represents the element-wise square operation on the matrix H and

it’s conjugate. Therefore, the total variance of the estimate (2.42) for the case where all

elements of H̄(2) are equal, becomes

σ2
ε =

Var [ZHAD[τ1, τ0]]

NLt

. (2.44)

If we select an antipodal signal constellation for (2.40) with phase perturbation parameter

ε = π/2, i.e.

F[t] ∈


e−jπ/2 0

0 ejπ/2

 ,

ejπ/2 0

0 e−jπ/2


 , (2.45)

it can be shown that the symbol error rate for the maximum-likelihood fingerprint detector,

detecting F from the received estimate F̂, is

P
[
F̂ 6= F

]
= Q

(
λ(2)

√
2

σε

sin
(π
2

))
, (2.46)

where Q(·) is the Gaussian tail function. From (2.44) and (2.46) we observe that the

authentication fingerprint signal SER decreases when N or Lt are increased, potentially

allowing for fingerprint BERs lower than the primary signal BER in some channel sta-

tionarity conditions.

2.5.4 APM Fingerprint Distortion

We now consider worst case distortions present when equalizing the APM-fingerprinted

signal according to incorrect channel information as was previously done for the AAM
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fingerprinting function. The transmitted symbol with fingerprinting function present,

(2.40), becomes

X[t] =

e−jε 0

0 ejε


d1 −d∗2

d2 d∗1

 =

d1e−jε −d∗2e
−jε

d2e
jε d∗1e

jε

 , (2.47)

and the received ST signal becomes

YAMP [t] =

r1 r3

r2 r4

 + N[t]PH , (2.48)

where

r1 = α1d1e
j(θ1−ε) + α3d2e

j(θ3+ε), r3 = −α1d
∗
2e

j(θ1−ε) + α3d
∗
1e

j(θ3+ε),

r2 = α2d1e
j(θ2−ε) + α4d2e

j(θ4+ε), r4 = −α2d
∗
2e

j(θ2−ε) + α4d
∗
1e

j(θ4+ε).

(2.49)

Thus, the signal estimates for dP1 and dP2 using MRC without correcting for the phase

perturbation, denoted d̃P1 and d̃P2 , become

d̃1APM
=

α̂1e
−jθ̂1

(
α1d1e

j(θ1−ε) + α3d2e
j(θ3+ε)

)
+ α̂2e

−jθ̂2
(
α2d1e

j(θ2−ε) + α4d2e
j(θ4+ε)

)
+ α̂3e

jθ̂3
(
−α1d2e

−j(θ1−ε) + α3d1e
−j(θ3+ε)

)
+ α̂4e

jθ̂4
(
−α2d2e

−j(θ2−ε) + α4d1e
−j(θ4+ε)

)
+ η1,

d̃2APM
=

− α̂1e
jθ̂1
(
−α1d2e

−j(θ1−ε) + α3d1e
−j(θ3+ε)

)
− α̂2e

jθ̂2
(
−α2d2e

−j(θ2−ε) + α4d1e
−j(θ4+ε)

)
+ α̂3e

−jθ̂3
(
α1d1e

j(θ1−ε) + α3d2e
j(θ3+ε)

)
+ α̂4e

−jθ̂4
(
α2d1e

j(θ2−ε) + α4d2e
j(θ4+ε)

)
+ η2.

(2.50)
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Using (2.37), after some manipulation, (2.50) becomes

d̃1APM
= (α1 + α2 + α3 + α4)d1e

−jε + η1, d̃2APM
= (α1 + α2 + α3 + α4)d2e

jε + η2,

(2.51)

with η1 and η2 given in (2.35).

From (2.51) we observe the worst case distortions from the extrinsic APM fin-

gerprint function when equalizing according to outdated CSI for the 2x2 Allmouti code.

Here, worst case model mismatch error introduces a phase rotation of e−jε in d̃1APM
, and

ejε in d̃2APM
. Because the amount of distortion APM fingerprint is also proportional to ε,

we note that like the AAM fingerprinting function, care must be taken when choosing ε

when the performance of equalizers employed by unaware receivers must be considered.

2.6 Simulation Results

We now present simulation results for the AAM fingerprinting constellation (2.28),

for different values ε and channel AR model parameter a in (2.9), using the MMSE chan-

nel estimator, the 2x2 Alamouti ST code with M = 4, and N = Lt = Lr = 2. A

QPSK constellation was used for the primary signal. The authentication performance

of arbitrary authentication messages can be computed directly from the fingerprint BER,

therefore we will use BER in this section to demonstrate fingerprint signaling perfor-

mance. The results for the AAM fingerprinting function for a fixed σT = 0.01 and values

of a equal to 0.7 and 0.9 are presented in Figure 1. We observe that for both values

of a, the authentication fingerprint is received with a BER advantage over the primary

signal. We also see that the BER for the fingerprint signal is less when a = 0.9 than
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when a = 0.7, suggesting that the fingerprint signal performance does indeed depend on

correlation between channel estimates in time, determined by the AR-1 model parameter

a.

A plot of the BER for both the primary signal and authentication signal is given

in Figure 2 for a fixed a = 0.7 and values of ε equal to 0.45 and 0.47. As the value

of ε increases, the signal strength for the authentication signal increases, resulting in an

improved BER for the authentication signal at the expense of a slight increase in channel

estimate MSE for the primary-user. We observe that the AAM fingerprinting function

yields an authentication signal BER advantage over the primary signal for ε = 0.47, over

the range of SNR plotted.

In Figures 3 and 4 we present results for channel estimate MSE and the worst-case

MSE for the simulations depicted in Figures 1 and 2, respectively. The worst-case MSE

results represent the additional model error incurred if Y[τ1] were incorrectly equalized

using H[τ0] as opposed to H[τ1], as suggested by (2.38).

We note that worst-case MSE is invariant of the AR-1 model parameter a, as the

MSE for a = 0.7 and a = 0.9 are nearly indistinguishable. From Figure 4 we observe that

increasing ε results in an increased channel model MSE as expected, and the worst-case

error introduced by the fingerprinting function is apparent from the difference between

MSE results when the fingerprint is present and when the fingerprint absent.

The results for the APM fingerprinting function for a fixed σT = 0.3 and values of

a equal to 0.8 and 0.9, are presented in Figure 5. We observe that like the AAM function,

the fingerprint is received with a greater BER advantage over primary signal for a = 0.9,

suggesting that the APM fingerprint signal performance also depends on correlation be-
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tween channel estimates in time, as determined by the AR-1 model parameter a. We also

observe that in higher SNR, around 8dB, the slope of the BER curve for the authentica-

tion behaves differently for the case where a = 0.8, when compared to the authentication

signal BER curve for a = 0.9. In particular, the authentication signal BER curve slope

for a = 0.8 stops changing after 8dB. This can be explained as follows:

In our time-variant channel model (2.7), the channel matrix Hi,j[t] is a summation

of two independent noise processes, Ni,j[t], which is a white Gaussian noise process with

variance σ2
N , and a colored Gaussian noise process µi,j[t], which is modeled as an AR-1

process driven by ui,j[t] ∼ CN (0, σ2
T ). For higher values of SNR, i.e. as σ2

N decreases, the

dominating noise process when decoding the authentication signals becomes µi,j[t], and

not Ni,j[t]. This effect becomes more pronounced as the bandwidth of the time-varying

component µi,j[t] increases, which is inversely proportional to the AR-1 model parameter

a. Thus, for large values of σ2
T , the performance of the authentication signal degrades

more rapidly under high SNR, as the value of a decreases. This is the scenario of rapidly

varying channel.

A plot of the BER for both the primary signal and authentication signal is given

in Figure 6 for a fixed a = 0.9 and values of σT equal to 0.1 and 0.3. As the value

of σ2
T increases, the power of the time-varying channel component increases resulting

in a greater channel estimate MSE for both the primary and authentication signal, and a

decreased system BER for both signals. We note from Figure 6 that the APM fingerprint

signal BER is lower than the primary for the range of SNR simulated.

In Figures 7 and 8 we plot the worst-case mean-squared error of the channel esti-

mate using the APM fingerprinting function, suggested by (2.51), as was done for the
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AAM fingerprinting function. We observe the MSE, and worst-case MSE, experienced

by the MMSE receiver, as suggested by (2.51). We note that worst-case MSE is relatively

invariant of the AR-1 model parameter a, as the MSE for a = 0.8 and a = 0.9 are com-

pletely overlapping and indistinguishable. From Figure 8 we observe that increasing σ2
T

results in an increased channel model MSE for worst-case distortions as expected, and the

worst-case error introduced by the fingerprinting function is apparent from the difference

between MSE results when the fingerprint is present and when the fingerprint absent.

We conclude from these results that the APM fingerprinting function generally has

better performance over the AAM fingerprinting function, for larger values of σ2
T , for

given parameters.

Some more discussion on the threat model used in this work may be in order, to

describe the kinds of security attacks our system may come under. We note that a rig-

orous security analysis is not given in this work to show how well the proposed scheme

works when attackers are present in the system. For this topic we present the following

discussion:

Because the fingerprint is embedded at the PHY-layer and recovered at the PHY-

layer, an attack model must consider a few PHY-layer attacks. We propose that the finger-

print function F[τ1], which conveys one symbol of the authentication message every two

STC blocks is applied to the entire fingerprinted block (i.e. embedded into M primary-

signal symbols), including the pilot signals. If an attacker wanted to, for example, replace

the identity of a transmission with a forgery via a PHY-layer attack, she would be required

to not only forge F[τ1] but the entire transmission U[τ1] as a whole including both the de-

terministic pilot signals P as well as the the primary-data transmission D[τ1]. If one were
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to attack only the pilot signal P with a forged F[τ1], then P would be out-of-reference

with D[τ1] (these match in a normal, healthy transmission), a phenomena that will most

certainly lead to severe distortion when decoding the primary-signal D[k] thus making

the attack ineffective (i.e. The attacker is now merely a jammer). The proposed embed-

ding scheme does not exacerbate the efficiency of jamming attacks, nor does it attempt

mitigate these attacks. If the authentication signal were designed using a modulation and

FEC that is more robust than the primary-signal D[k], then the attacker would require

more jamming energy to jam the authentication signal than is required to jam D[k], and

thus D[k] has already been destroyed at this point. The best that the attacker can do in

conducting a PHY-layer attack against the original transmission would be to jam the sig-

nal entirely, as F[τ1], P, and D[τ1] become a gestalt and are decoded as a whole.

We may also want to discuss an attacker, where the attacker targets only transmis-

sions where the fingerprint is present. We offer the following explanation: The function

F[τ1], which conveys one symbol of the authentication message every two STC blocks is

applied to the entire fingerprinted block (i.e. embedded into M primary-signal symbols),

including the pilot signals. If an attacker wanted to, for example, replace the identity

of a transmission with a forgery via a PHY-layer attack, she would be required to not

only forge a new F[τ1] but the entire transmission U[τ1] as a whole including both the

deterministic pilot signals P as well as the the primary-data transmission D[τ1]. If the

attacker were to attack only the pilot signal P with a forged F[τ1], then P would be out-

of-reference with D[τ1] (these match in a normal, healthy transmission), a phenomena

that will most certainly lead to severe distortion when decoding the primary-signal D[k]

thus making the attack ineffective (i.e. Eve is now merely a jammer). The proposed
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embedding scheme does not exacerbate the efficiency of this type of attack, nor does it

mitigate these attacks. If the authentication signal were designed using a modulation and

FEC that is more robust than the primary-signal D[k], then the attacker would require

more jamming energy to jam the authentication signal than is required to jam D[k], and

thus D[k] has already been destroyed at this point. The best that the attacker can do in

conducting a PHY-layer attack against the original transmission would be to jam the sig-

nal entirely, as F[τ1], P, and D[τ1] become a gestalt, and are decoded as a whole.

Additionally, in this work we explicitly avoid detailed discussion of the actual mes-

sage being authenticated. This is because we assume that best practices are observed

when designing the message. These are important details for the implementation of a

system, however the focus of this paper is the PHY-layer embedding of the fingerprint

signal using the differential precoding method described. This is why we use BER for

the authentication signal as a measure of performance, since we are primarily concerned

with the performance of our embedding and signaling scheme. The design of a protocol

and accompanying message structure that uses our signaling method to address a partic-

ular security problem problem is interesting, however, such designs have been discussed

heavily in distributed systems literature and are outside of the scope of this work.

One viewpoint is that we suggest replacing the strong authentication abilities pro-

vided by traditional cryptographic schemes with a potentially weaker PHY-layer mecha-

nism. This viewpoint, however, is a misconception. We do not propose the replacement

of traditional schemes, but instead want leverage traditional cryptographic schemes in the

design of the embedded authentication message. As stated in the introduction section of

this chapter, our work is on embedding a cryptographically secure message at PHY-layer.
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This implies that traditional cryptographic schemes can be applied to the physical layer

without changing higher-layer protocols.

In one embodiment a full authentication system may send independent authentica-

tion messages via both PHY-layer and higher-layer methods, and use both messages to

jointly authenticate the transmission. While we suggest that best practices are observed

in designing both of these messages, to cryptographically secure them from attack, this

paper focuses on the physical-layer details of conveying the message to the receiver as an

embedded signal.

One might also question if the proposed scheme only works when the receiver

knows the identity of the sender, and if we need to know the sender’s fingerprint sig-

nal a priori. This is of concern since because in most cases authentication is needed when

a new node joins the system, and may not know the exact message the joining node will

send, and this problem is typically called the bootstrapping problem.

While our work focuses on the PHY-layer details of embedding an authentication

message via a novel precoding approach, we do suggest that a full system should have

a trusted authority that can issue unforgeable tokens (specifically, capabilities [18]) pre-

scribing the time and frequency a signal is allowed to transmit. However, this “bootstrap-

ping” problem is outside of the scope of our work and could be considered as a future

research direction. We suggest that best practices are observed when designing the mech-

anism by which new nodes join the system, leveraging prior work conducted in the fields

of distributed computing and cryptography.

We may also want to provide additional discussion about the comprehensiveness

of our comparison of this work and existing fingerprint techniques. The PHY-layer em-
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bedding of fingerprint signals into digital wireless transmissions is a relatively new field

of research. In fact, to the best our knowledge this is the first work considering the fin-

gerprinting of MIMO transmissions (i.e. where the fingerprint message can be embedded

via both time an spacial perturbations. Four previous approaches were briefly discussed,

however these approaches are fundamentally different from the method described in this

work. These methods rely on blind superposition and do not exploit receiver prepro-

cessing algorithms in their embedding. Further, none of the approaches consider MIMO

transmissions. Of the previous work considered, [64] is the closest to our approach, is

it investigates the evolution of time-varying channel state implicate malicious transmis-

sions. This work is discussed in the most detail.

One may question why we argue that a PHY-layer authentication can be decoupled

from higher-layer authentication mechanisms. This is in part true for intrinsic fingerprint-

ing (channel based fingerprinting). However, for the extrinsic scheme we propose, we

rely on a certificate to obtain a public key/private key which is used for signing an au-

thenticator message. This approach does, therefore, rely on some notion of higher-layer

authentication. We may also want to discuss how the benefits of PHY-layer authentication

are tightly connected to the context of this work.

In this chapter we use the term “higher-layer” refers to the embedding of the au-

thentication message in the upper layers (i.e. as in the OSI model, for example) of the

protocol stack of the primary-signal; specifically, in the bit-level protocol of the payload

of the primary-signal.

We suggest leveraging traditional, cryptographically secure, best practices when

designing the digital authentication message. We do not propose the replacement of tra-
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ditional schemes, we want leverage traditional cryptographic schemes in the design of the

embedded authentication message. As stated in our introduction in the last paragraph, our

work is on embedding a cryptographically secure message at PHY-layer. So the traditional

cryptographic schemes can be applied when designing the physical layer authentication

signal, without changing the higher-layer protocol.

We would also like to discuss the odd-even delivery scheme in greater detail, an give

another explanation of its purpose. The odd-even delivery scheme describes a differen-

tial modulation scheme, where the bits of each authentication signal symbol are decoded

based on the difference between channel estimates obtained during the channel-sounding

symbol and the adjacent block. The intrinsic channel will add its own distortions to the

signal, and this differential modulation scheme helps mitigate the effects of these distor-

tions by using the channel-sounding block as a reference when decoding the authentica-

tion symbol. The odd-even transmission scheme does not suggest that only half of the

transmission is fingerprinted.

This scheme transmits one authentication symbol (i.e. through application of F[k])

every 2M space-time symbols. The channel estimate derived from the first M symbols

of the channel-sounding block is used for reference when detecting F[k], which has been

applied to the next M symbols. Changing F[k] more frequently than M symbols will

cause implicit distortion since the block-fading assumption leveraged by the channel es-

timation mechanism no longer holds (i.e. the manipulations of F[k] are happening faster

than the channel estimation mechanism can mitigate, and thus the transmitter will send

irreparably distorted blocks. Preforming channel sounding less frequently will degrade

the detection of F[k].
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Perhaps the most interesting theoretical aspects of this work are related to the fact

that F[k] and H[k] are both time-varying, and thus the product of H[k]F[k] has less coher-

ence time than H[k] alone. Some discussion on more general channel sounding practices

is in order. The most efficient channel sounding scheme would dynamically change the

frequency at which F[k] is transmitted, in relation to the actual coherence time of H[k].

For very slowly time-varying channels the physical channel does not require as frequent

sounding, and thus F[k] can be transmitted more frequently leading to an increased baud

rate for the authentication message. The trade-off here is that more frequent channel

sounding provides better resistance against quickly changing channels where less fre-

quent channel sounding results in less overhead for the transmission of the authentication

signal.

In this work we refer only to the fingerprinting of the modulated signal, or wave-

form, and not the manipulation of the bits of the payload message. In fact, we specifically

seek designs that minimize bit errors in the primary-signal and use the bit error rate of

the primary-signal as a measure of perceptual distortion to the primary-signal due to the

embedding of the authentication message. Steganography is the practice of hiding mes-

sages in such a way that no one, apart from the sender and intended recipient, suspects

the existence of the message. The practice of steganography is not limited to embedding

messages in digital data, and in striking contrast to aforementioned definition we explic-

itly want everyone, friend or foe, to know that the message exists and have the ability to

decode the message to revel the identity and authenticity of the message’s source.

When referring to the embedding of the authentication message into the primary-

signal, we use the term ’signal’ in it’s most general form, and that is the analog form of the
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signal, or the discretized version, or digital signal. Because of this generality, we use the

terms watermarking and fingerprinting interchangeably in the introduction when referring

to previous work using both of these terms. However, in both cases we are fingerprinting

the modulated signal and not the bits of the payload.

To bolster our assumption that N[k]PH will be white noise, as opposed to colored

noise, we give the following discussion: For the case where P is a sparse matrix with

pilot signals uniformly distributed throughout, N[k]PH will be Gaussian and white, as the

projection simply decimates the Gaussian process Ni,j[k], for a given row of N[k], and

combines the Gaussian elements linearly. For example, consider the case where PH is a

uniform, sparse matrix, with 1’s every 4th element (both row-wise and column-wise), and

zeros in the remaining elements. In this case N[k]PH simply decimates each row of N[k]

by 4 by selecting every 1-in-4 elements and creates a linear combination of Gaussian ran-

dom variables Ni,j[k]. In most practical pilot embedding systems, the pilot signal matrix

PH is comprised of zeros and constant energy signals, otherwise the SNR of elements in

the channel estimate H[k] would be unequal necessitating a non-ML decoder.

As the linear combination of Gaussian random variables is also Gaussian, and for

practical pilot matrices with zeros and constant energy elements the projection of N[k]PH

should be Gaussian and white if N[k] is Gaussian and white.

We note that the additive work in [66] also claims to use very little power for the

perturbation used to create the primary-signal, resulting in almost no impact on the re-

ceiver BER. To delineate the main differences between our work and this work, with

respect to primary-signal degradation, we give the following discussion:

In [66] the impact to primary-signal BER due to interference from the authentica-
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tion signal can be manipulated to achieve arbitrarily high performance through the design

of an arbitrarily long code. The length of the resulting code, however, adversely affects

the rate that the authentication signal can send information. For example, one could de-

sign a code that is spread over 10 million primary-signal symbols, perturbing each symbol

an immeasurable amount, and the matched-filter for this code would produce a high con-

fidence result for one bit of information (i.e the signal is present or not). The drawback

is, of course, that this design transmits only a single bit of authentication for every 10

million symbols of primary data. Another drawback would be the computation required

to run a 10 million tap matched-filter at the full baud rate of the primary-signal.

The blind superposition approaches, like [66], implicitly achieve authentication sig-

nal capacity by reducing primary-signal capacity, since the capacity of the original band-

limited channel must remain the same under a TX energy constraint. In the example

above, one ten-millionth of a bit of capacity is borrowed from every symbol of primary-

signal capacity and is transfered to the authentication signal.

Our system takes a fundamentally different approach. In our scheme the authen-

tication signal, as modulated by the fingerprint function F[k], is detected by analyzing

channel estimate data, not primary-signal data. As channel estimates are derived from

the pilot signals P, the capacity for our authentication signal is recovered from the pilot

signals (’recovered’ because pilot signals traditionally carry zero information at the time

of transmission). Essentially H[k]F[k] conveys two pieces of information to the receiver:

1) Changes in intrinsic channel state, and 2) Changes in F[k]. For example, in com-

pletely stationary channel conditions the channel estimates H[k] are correlated, and thus

convey zero new information to the receiver. This wasted capacity can be recovered by
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extrinsically modulating the evolution of channel estimates at the transmitter, i.e. through

H[k]F[k]. In the perfect channel stationarity case, the system capacity reserved for P can

be recovered by extrinsically increasing uncertainty in consecutive channel estimates via

F[k], without changing the density of the pilot signals (which would decrease the efficacy

of the channel estimation mechanism).

A casual reader familiar with previous blind-superposition fingerprinting methods

may assert that this work attempts to achieve equivalent perturbations in amplitude and

phase shift in the constellation points of the primary-signal, using the additive model like

[66]. This is, however, a misconception which we will offer the following clarification:

The spirit of our approach is not to change the primary-signal constellation points.

Our approach processes the evolution of channel-estimate data, exclusively, and ignores

primary-signal data. This assertion is corroborated by (2.3), since A and P are designed

such that the pilot signals and the data signals are orthogonal. Since channel estimates

are derived from pilot signals when using pilot-aided channel estimation, the underlying

constellation points used by D[k] are explicitly orthogonal to the statistics used by our

fingerprint detector, since the precoding function F[k] does not destroy the orthogonality

of (2.3).

Two example designs for F[k] are presented in this chapter, the AAM design and

the APM design, and these designs modulate the fundamental parameters of signal am-

plitude and signal phase respectively. In this chapter only the receiver perceptual model

is considered. Designs that also consider anticipated channel distortions in the design of

F[k], are presented in Chapter 3. In this chapter analysis is presented for the 2x2 Alam-

outi, however we would like to address the question of what can be said about larger
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codes. We offer the following discussion on this topic:

The performance of a particular code will, in general, depend greatly on the chan-

nel model used for H[k] and the design of F[k]. The underlying STC used for D[k] is

inconsequential, as we use only channel estimate data and not primary-signal data. The

statistical analysis in this chapter is for the fingerprint design and detection in Rayleigh

fading, which is not specific to the the dimensionality of a particular STC. It is instead

parameterized by the dimensionality of P. In the design of the fingerprint, all elements

of Q[k] are combined to produce a single statistic, ε̂, which may not be the case in all

designs of F[k]. Our embedding scheme can be easily extended to any orthogonal space-

time code just with more parameters, such as a 4 × 4 code, by simply perturbing the

additional elements (i.e. in the spirit of AAM or APM ). For example, the APM could

trivially be extended to something like:

FAPM [t] =



e−jε 0 0 0

0 ejε 0 0

0 0 e−jε 0

0 0 0 ejε


, 0 ≤ ε < 2π. (2.52)

One may question why simulation results were not presented for the stationary

channel case. We offer the following explanation on why these results were were not

presented:

The stationary channel case is obtained by setting σ2
T = 0, since σ2

T is the

predominant noise term from ui,j[t] and contributes the most uncertainty between Ĥ[τ0]

and Ĥ[τ1]. This term represents the power of intrinsic channel distortions and is primarily
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responsible for decreasing fingerprint detection performance. As depicted in Figure 6,

the two values simulated for σ2
T are currently quite large (σ2

T = .1 and σ2
T = .3). Setting

σ2
T = 0 would remove most of the uncertainty between channel estimates resulting in

extremely good authentication signal BER. Simulating this case, while possible, would

require an an exceptional number of simulations due to the infrequency of authentication

bit errors under these conditions.

The conclusions from the simulations may seem obvious: The authentication SER

goes down if you increase the amplitude or phase changes. The simulation results, how-

ever, provide a quantitative evaluation of the performance of the authentication scheme

that may useful for future system design. The primary focus of the simulation results is

to corroborate the analysis, and the veracity of the presentation of these results.

2.7 Conclusion

In this chapter we presented a framework for fingerprinting MIMO transmissions

with a digital PHY-layer message for the purpose of transmitter authentication. We

demonstrated that the fingerprint signal can be added without modifying the decoding

process of unaware, or traditional MIMO receivers. Further, the distortions introduced by

the fingerprint can be partially removed by the receiver’s equalizer to reduce the degrada-

tion in performance of the primary transmission. It was demonstrated that the fingerprint

signal can be designed with a BER lower than the primary signal, and that the probabil-

ity of symbol error for the proposed method improves as the correlation between time-

varying channel estimates increases. Our proposed scheme provides the foundation of
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fingerprint signaling which can be used to embed authentication messages of arbitrary

lengths for secure wireless transmissions.
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Chapter 3

Extrinsic Channel-Like Fingerprinting Overlays Using Subspace

Embedding

3.1 Overview

We present a physical-layer fingerprint-embedding scheme for orthogonal frequency

division multiplexing (OFDM) transmissions, where the fingerprint signal conveys a low

capacity communication suitable for authenticating the transmission and further facilitat-

ing secure communications. Our system strives to embed the fingerprint message into

the noise subspace of the channel estimates obtained by the receiver, using a number of

signal spreading techniques. When side information of channel state is known and lever-

aged by the transmitter, the performance of the fingerprint embedding can be improved.

When channel state information is not known, blind spreading techniques are applied.

The fingerprint message is only visible to aware receivers who explicitly preform detec-

tion of the signal, but is invisible to receivers employing typical channel equalization. A

taxonomy of overlay designs is discussed and these designs are explored through exper-

iment using time-varying channel-state information (CSI) recorded from IEEE802.16e

Mobile WiMax base stations. The performance of the fingerprint signal as received by a

WiMax subscriber is demonstrated using CSI measurements derived from the downlink

signal. Detection performance for the digital fingerprint message in time-varying channel
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conditions is also presented via simulation.

3.2 Introduction

In this chapter we present a physical layer (PHY) fingerprinting method for or-

thogonal frequency division multiplexed (OFDM) transmissions, where side information

about anticipated channel conditions is incorporated into the fingerprint design. A number

of PHY-layer fingerprinting approaches for wireless communications have been investi-

gated using basic signal superposition methods [61, 47, 63, 66]. The main disadvantage

of blind superposition is that the fingerprint signal appears as interference to the original

signal and is fully present when the signal is decoded, resulting in decreased SNR for the

original signal. Instead we investigate fingerprint designs that consider how the signal will

be perceived by the receiver, and side information of the channel distortions that the signal

will experience. By leveraging channel side information and considering the receiver’s

perception of the signal, improved fingerprint designs [17] are possible as the undesirable

effects of the fingerprint signal associated with blind superposition approaches [47] and

[63] are partially removed by the receiver when preprocessing the signal.

In [24] an extrinsic channel-like fingerprint for narrow-band single-input single-

output (SISO) digital television signals was considered, where the fingerprint message is

applied at the transmitter by emulating nominal multipath channel responses. In [26] an

extrinsic channel-like fingerprint signal is considered for multiple-input-multiple-output

(MIMO) systems using space-time block codes (STBC). In this work we extend these

previous approaches to Orthogonal Frequency Division Multiplexing (OFDM) signals,
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and we incorporate previous channel state knowledge as side information into the design

of the fingerprint signal.

We propose a number of techniques to spread the fingerprint message in both fre-

quency and time domain using subspace decomposition. When the full Channel State

Information (CSI) is known and leveraged by the transmitter, the fingerprint can be em-

bedded into the noise subspace of the receiver’s channel estimates to ensure that the fin-

gerprint signal incurs minimal distortion during transmission. When channel state infor-

mation is not known by the transmitter, blind spreading designs using orthogonal codes,

such as Walsh codes, can be applied. We present a number fingerprint spreading designs

that incorporate various amounts of previous CSI into the design of the spread fingerprint

signaling bases. Our designs demonstrate that additional CSI knowledge can be leveraged

by the transmitter to improve the performance of the fingerprint embedding.

This chapter is organized as follows: Section 3.3 describes the OFDM system and

presents a framework for introducing the channel-like fingerprint. A time-varying channel

model is given. In Section 3.5 an analysis of the extrinsic fingerprint overlay design is

given, and the embedding and recovery of the fingerprint message is demonstrated. A

taxonomy of overlay designs is also presented. In Section 3.6 we present experimental

results, where one fingerprint overlay design is evaluated using CSI extracted from an

IEEE802.16e WiMax transmission. In Section 3.7 we present simulation results for two of

the fingerprint overlay designs. In Section 3.8 we present our conclusions. The following

is a list of the most frequently used notation in Sections II, III, and VI.

• ξ[k] : Extrinsic fingerprint signal vector
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• f[k] : Extrinsic fingerprint signaling vector to be applied the TFB transmission at

time k

• Ĥ[k] : Block of frequency domain intrinsic channel estimate vectors

• F[k] : Block of frequency domain extrinsic fingerprint vectors

• Q̂[k] : Block of frequency domain aggregate channel estimate vectors

• L̂[k] : Block of frequency domain intrinsic channel estimate vectors

• U2[k] : Time-spreading fingerprint signaling basis

• V2[k] : Frequency-spreading fingerprint signaling basis

• K[k] : Extrinsic fingerprint overlay block

• E[k] : Intrinsic channel model mismatch error block

3.3 System Model

We consider an OFDM system where the transmission is subjected to a linear time-

domain channel response g(t), given as

g(t) =
∑
c

Ac(t)δ(t−∆τc), (3.1)

where ∆ is the sampling interval, τc are the delays for each channel component, and Ac(t)

are the complex valued delay-spread gains at time t for multipath component c. The

OFDM system is modulated using an N -point discrete-time inverse Fourier transform
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(IDFTN ), and then subsequently demodulated using an N -point discrete-time Fourier

transform (DFTN ). The matrix representation of the OFDM system is given as

y = gWX + n, (3.2)

where y = [y0 y1 · · · yN−1] is the received band-limited signal vector after DFTN ,

where elements yn ∈ C, the matrix X = diag([x0 x1 · · · xN−1]) is of size C(N×N), x =

[x0 x1 · · · xN−1] are the data symbols to be fingerprinted and transmitted, W is a C(N×N)

DFT-matrix with elements W nk
N = 1√

N
e−j2π nk

N , using row index n = 0, . . . , N−1 and col-

umn index k = 0, . . . , N − 1, the vector g = [g0 g1 · · · gN−1] is the sampled channel im-

pulse response, where each element gi ∈ g is defined as gi =
∑

c Ace
j π
N
(i+(N−1)τc) sin(πτc)

sin( π
N
(τc−i))

,

and n = [n0 n1 · · · nN−1] is the frequency-domain representation of complex Gaussian

noise.

To recover the data transmission the receiver must estimate the channel response g

or its frequency-domain equivalent h = gW. A number of channel estimation techniques

have been considered for OFDM systems, including the minimum mean-squared error

(MMSE) estimator, and the least-squares (LS) estimator. These estimators, with some

improvements, are discussed in [59]. A discussion of particular channel estimation tech-

niques is beyond the scope of this chapter, therefore without loss of generality, we use the

least-square (LS) channel estimator [59] in Section 3.6 and Section 3.7 due its widespread

adoption in OFDM systems and low computational complexity.

We now augment the OFDM transmission system with our extrinsic fingerprint

function f = [f0 f1 · · · fN−1]
T , and its matrix equivalent F(N×N) = diag ([f0 f1 · · · fN−1]).

The transmitted OFDM symbol of (3.2) with fingerprinting function applied after the
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modulating IDFT matrix becomes

y = gWFX + n = ux,f,g + n, (3.3)

where ux,f,g is the received noiseless OFDM transmission.

To facilitate channel estimation, we use pilot-aided channel estimation, where pi-

lot signals are periodically embedded into the transmitted signal. To represent periodic

preamble and pilot signals, we expand the OFDM symbol transmission system above (3.3)

to a block-based system consisting of M consecutive OFDM symbol vectors in time. The

resulting Time-Frequency Block (TFB) received by the receiver at time index t = kM

is represented by the matrix U[k] ∈ C(N×M), where each column of U[k] is an OFDM

symbol vector um
x,f,g received at time (k − 1)M + m, m = 0, 1, . . . ,M − 1. The TFB

received at time index k becomes Y[k], i.e.

Y[k] = U[k] + N[k], (3.4)

with

U[k] =
[{

u0
x,f,g
}T {

u1
x,f,g
}T

. . .
{

uM−1
x,f,g

}T]
, (3.5)

and N[k] =
[
nT
0 nT

1 . . . nT
M−1

]
k

are the noise vectors from (3.2).

If we assume the elements of g to be independent Rayleigh block-stationary and

quasi-static, then g in (3.3) remains constant over the entire TFB for a total of M symbols.

Similarly, if the fingerprinting function is also designed to be block-stationary, then (3.4)

can be written as

Y[k] = H[k]F[k]X[k] + N[k], (3.6)

where H[k] = diag (h[k]), F[k] = diag (f[k]), f[k] is the fingerprinting function applied
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to the entire TFB, and g[k] is the block-stationary channel response experienced by the

received TFB, Y[k].

We construct X[k] as a composite signal composed of two components: the user-

data signal and the embedded preamble and pilot signals used for channel estimation and

equalization. Such a scheme enables the channel-like fingerprints to be detected using the

known pilot signals. The frame preamble occupying M − L time slots is followed by a

section containing user-data symbols mixed with pilot signals occupying the remaining

L time slots [50]. The TFB to be transmitted, augmented with embedded pilots signals

becomes

X[k] = D[k]A + P, (3.7)

where D[k] ∈ C(N×L) is the TFB data matrix, A ∈ R(L×M) is the data-projection matrix,

and P ∈ R(N×M) is the pilot signal matrix. The data-projection and pilot matrix satisfy

the following properties:

APT = 0 ∈ R(L×N) , AAT = I ∈ R(L×L) , PPT = I ∈ R(N×N). (3.8)

The properties (3.8) of the data-projection matrix A and pilot matrix P essentially allow

A to project the data component D[k] onto the orthogonal subspace of the pilot matrix P,

allowing for signal demodulation by means of a Maximum Likelihood (ML) receiver. In

the simulation Section, 3.7, we will use a Time-Multiplexed (TM) single symbol preamble

structure [50], which is given as

A =
[
0(L×1); I(L×M−1)

]
P =

[
I(N×1); 0(N×M−1)

]
, (3.9)

where I(·) and 0(·) are the identity matrix and the zero matrix, respectively, with dimen-

sionality denoted in the superscript (·).
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The expanded form of the TFB signal at the receiver (3.4), using (3.3), (3.6), and

(3.7), becomes

Y[k] =Q[k](D[k]A + P) + N[k], (3.10)

where Q[k] = diag (H[k]F[k]) = diag (q[k]) is the aggregate channel-like distortion.

In [26] delineation of the intrinsic channel response and the extrinsic fingerprint

signal was accomplished through an even-odd time-division delivery (TDD) scheme that

implemented a differential modulation scheme for transmission of the fingerprint signal.

In the even-odd transmission scheme the fingerprint transmission F[k] is omitted during

even block transmissions, i.e. k = [0, 2, 4, . . . ], and is present during odd block trans-

missions, i.e. k = [1, 3, 5, . . . ]. To sound the physical channel, the fingerprint function

is omitted by simply replacing F[k] with the identity matrix. This scheme allows for

periodic sampling of intrinsic channel distortions, denoted g[k] in this work, when a gen-

eralized pilot embedding scheme, (3.7), (3.8), and (3.10), is employed. In Section 3.5

we will consider a similar fingerprint transmission scheme that enables periodic channel-

sounding.

In this paper, we aim to design channel-like fingerprint signaling schemes that result

in minimal degradation to the primary data signal, D[k], and the detection thereof, when

the fingerprint is present.

3.4 Signal Recovery

In this section we briefly describe how the primary signal is recovered, using tradi-

tional unmodified channel estimation algorithms, when the fingerprint signal is present.

76



Upon receiving the TFB, the first step for both aware and unaware receivers is channel

estimation. The channel estimation problem is to extract and estimate channel distortions

in the received signal (3.10) for performing channel equalization and further recovering

D[k]. By post-multiplying both sides of (3.10) by PHWH and using the properties of

(3.8), an estimate of the aggregate channel response Q[k] = (H[k]F[k]) of (3.26) can be

obtained from Y[k], i.e.

Q̂[k] = Y[k]PHWH

= H[k]F[k]W(D[k]A + P)PHWH + N[k]PHWH

= Q[k] + N[k]PHWH .

(3.11)

If the fingerprinting function is replaced by the ones vector, a channel-sounding process

that will be described in Section 3.5, F[k] from (3.11) becomes the identity matrix and

the intrinsic channel response estimate Ĥ[k] can trivially be recovered from Y[k], i.e.

Ĥ[k] = Y[k]PHWH

= H[k]W(D[k]A + P)PHWH + N[k]PHWH

= H[k] + N[k]PHWH .

(3.12)

In (3.11) and (3.12), N[k]PHWH is the projection of the noise vector n from (3.2) onto

the pilot signals embedded in the TFB, and represents noise in the channel estimate.

The next step preformed by the receiver is the recovery of the transmitted primary-signal

data D[k]. By post-multiplying both sides of (3.10) by AH and using the properties (3.8),

the data signal D[k] can be extracted from the received signal Y[k], i.e.

Y[k]AH = H[k]F[k]W (D[k]A + P)AH + N[k]AH

= (H[k]F[k])WD[k] + N[k]AH .

(3.13)
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An estimate for the aggregate channel response Q[l] = (H[l]F[l]) is demonstrated in

(3.11), and thus the data signal may be recovered by pre-multiplying (3.13) by the inverse

of the aggregate channel estimate and taking the FFT, i.e. WHQ−1[k]. For the block-

stationary channel case, both H[l] and F[l] are square, diagonal, non-negative matrices of

size C(N×N) and thus the inverse of Q[l] exists and is simply the element-wise inverse of

its diagonal elements.

While equations (3.11) and (3.12) demonstrate that the channel estimate can be recovered

using generalized pilot embedding schemes, in Sections 3.6 and 3.7 we will specifically

consider the LS channel estimator in experiment and simulation due to its widespread

use. When using LS channel estimation, the columns of the embedded pilot signals of P

in (3.7) become the training data for the estimator.

3.5 Subspace Extrinsic Channel-Like Fingerprinting

In this section, we will first derive the capacity of the extrinsic fingerprint under

time-varying channels, and then demonstrate the maximal-capacity fingerprint embed-

ding scheme using subspace decomposition of the channel information. We will also

introduce the fingerprint recovery process at the receiver’s side, as well as example fin-

gerprint design. In this section we consider the subspace decomposition of channel state

information and describe how a fingerprint message can be embedded in the noise sub-

space of these channel estimates. While a perfectly embedded fingerprint will occupy

only the noise subspace of the received fingerprint message, we will use the framework
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presented in this section to create a number of sub-optimal fingerprint designs that lever-

age various amounts of CSI.

3.5.1 Time-Varying Channel Model

We now briefly consider the capacity of an extrinsic message, signaled via the fin-

gerprinting function f[k] and decoded through consideration of historical CSI obtained

via pilot-aided channel estimation in time-varying channels. In this motivating example,

we leverage the fact that the time-variant noise process modeling the intrinsic channel

response, (3.15) and (3.17), is a colored Gaussian noise process. By a water-filling argu-

ment we surmise that an extrinsic fingerprint process, applied by way of the fingerprinting

function f[k], may be designed as a Gaussian process with a power spectrum that is large

at frequencies where the intrinsic channel noise spectrum is small.

We now briefly describe the channel model of our intrinsic time-varying channel

response g[k], or equivalently, its frequency-domain representation h[k] = diag (G[k]W)

by the time-variant OFDM channel model used in [64] where the block-stationary channel

response vector h[k] has scalar complex gain elements hj[k], j = 0, . . . , N − 1 corre-

sponding to the N independent OFDM subcarriers. Each element hj[k] is the summation

of three model components:

• A fixed time-invariant channel gain denoted h̄j = E [hj[k]] , j = 0, . . . , N − 1

• A zero-mean time-variant channel gain component denoted µj[k], j = 0, . . . , N−1

• A zero-mean receiver noise component denoted nj[k], j = 0, . . . , N − 1 ,
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where h̄j is the mean of the random variable hj[k], and µj[k] is a linear system. Thus,

hj[k] becomes

hj[k] = h̄j + µj[k] + nj[k], j = 0, . . . ,M − 1. (3.14)

While in general the channel gain means h̄j will vary in time, for the sake of exposition

we will assume that this component will remain stationary between the interval when

the intrinsic channel is sounded and the fingerprint is detected. According to the block-

stationary channel model, hj[k] remains constant over i = 0, . . . ,M − 1 symbols, which

allows H[k] to be defined as H[k] = diag ([h0[k], h1[k], . . . , hN−1[k]]). To model the

time-varying channel gain elements, µj[k], we adopt the wide-sense stationary uncorre-

lated scattering (WSSUS) temporal fading model [8], where the complex magnitudes in

(3.1) are zero-mean, i.e. E [Ac(t)] = 0, and ∆τ = 1/W is the carrier spacing of the DFT.

The frequency response of the variable channel gains is the Fourier transform of g(t, τ),

i.e.

µj[r] =F {g(t, τ)} |t=rT,f=fo−W/2+j∆f =
∞∑
c=0

Ac[r]e
−j2π(fo−W/2+j∆f)c∆, (3.15)

where Ac[r] = Ac(rT ) is the discrete sample of the multipath item at time rT . In [64], a

one-sided exponential distribution is considered for modeling the power delay spectrum

of Ac[r], i.e.,

Pτ [c] = Var [Ac[r]] = σ2
T (1− eγ∆τ )e−γ∆τc, (3.16)

where γ = 2πBc, Bc is the coherence bandwidth of the time-variant noise, and σ2
T is the

average power of Al[r] over all taps. Each tap gain is modeled as an order 1 autoregressive

model (AR-1) characterizing the process Ac[r] as

Ac[r] = aAc[r − 1] +
√
(1− a2)Pτ [c]uc[r], (3.17)
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where the AR coefficient a controls the temporal correlation between two gains, Ac, sep-

arated in time by T for a given delay index c, and the independent noise process of (3.17)

is represented by uc[r] ∼ CN (0, 1), uc[r] ⊥ Ac[r − 1]. Therefore σT is the variance of

the driving source of the AR-1 process that is used to model each channel gain. When σT

increases, the amplitude of the fluctuation of each channel gain in the model increases,

and changing channel conditions become more violent. We note that (3.17) models the

gains of each multipath component as a colored Gaussian noise process, an important

property that will be considered in the next section for fingerprint analysis.

In essence, an optimal extrinsic fingerprint signaling scheme, embodied by f[k],

would adapt to the intrinsic channel response g[k], and by means of spectral water-filling

these two processes work in consort to produce the received band-limited signal, Y[k],

given in (3.10). Traditional transmission precoding by way of water-filling methods typ-

ically strive to increase the capacity of the primary-signal, represented by D[k], using

partial CSI at the transmitter. Instead, in this work we consider the case where any ad-

ditional capacity obtained via water-filling is provisioned to the fingerprint signal which

operates independently of the primary-signal.

In [64] it was demonstrated that the differential test statistic for the intrinsic channel

noise process has the relationship

g[k]− g[k − 1] ∼ CN (0,R), (3.18)

with covariance matrix

R = Cov [g[k]− g[k − 1]] = [r(m− n)]m×n, m, n = 0, . . . , N − 1, (3.19)
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and has an autocorrelation function r(τ) given as

r(τ) =


2(1− a)σ2

T + 2σ2
N τ = 0

2σ2
T (1−a)(1−e−2πBc/W )
1−e−2πBc/W−j2τ/N τ = −N + 1, . . . , N − 1.

(3.20)

From (3.20) we can derive the noise spectrum of the intrinsic channel gains g[k] in time,

which is given as the Fourier transform of the autocorrelation function, i.e.

S(f) =

∫ ∞

−∞
r(τ)e−j2πfτdτ

=

∫ ∞

−∞

2σ2
T (1− a)

(
1− e−2πBc/W

)
e−j2πfτ

1− e−2πBc/W−j2τ/N
dτ

= γe−πf ,

(3.21)

with constants ξ, γ, ρ

ξ = e−2πBc/W , γ = 2σ2
T (1− a) (1− ξ)

∫ ∞

−∞

1

ej2τ − ρ
dτ , ρ = ξe−1/N . (3.22)

We see that the power spectrum of this channel model is a decaying complex exponential

with constants π and γ. It can be shown that the water-filling capacity C of an additive

Gaussian noise channel with power spectrum S(f) is simply [16]

C =

∫ π

−π

1

2
log

[
1 +

(ν − S(f))+

S(f)

]
df (3.23)

where the spectral water-level ν is selected such that
∫
(ν − S(f))+df = P .

3.5.2 Subspace Decomposition of Channel Information

We consider a sequence of P previous block-stationary channel estimate vectors

ĥ[k], obtained via channel estimation and arranged as column vectors in a matrix Ĥ[k] ∈

C(N×P ), N ≥ P , i.e.

Ĥ[k] =
[
ĥ
T
[k − P + 1] ĥ

T
[k − P + 2] . . . ĥ

T
[k − 1]

]
. (3.24)
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We note from this point forward that Ĥ[k] and any derivations are based on the estimate of

the true channel gain H[k] =
[
hT [k − P + 1] . . . hT [k − 1]

]
since both the receiver and

transmitter only have the information of the estimated channel gain. We consider the case

where the fingerprinting function is designed using a block-based scheme such that f[k]

in (3.10) is applied by the transmitter to a sequence of TFBs as a matrix denoted F[k]. We

select the length of the fingerprint block to be P , so that manipulations of one fingerprint

block over P consecutive TFBs will coincide with the evolution of CSI at the receiver,

i.e. Ĥ[k] which is also of length P TFBs. Let the block-based fingerprinting function,

F[k] ∈ C(N×P ), be the matrix-representation of P fingerprinting functions fT [k] applied

by the transmitter, such that

F[k] =
[
fT [k − P + 1] fT [k − P + 2] . . . fT [k − 1]

]
. (3.25)

For the fingerprinting transmission scheme described by (3.10), we arrange the aggre-

gate block-stationary channel estimate vectors q̂[k] that are observed by the receiver as

columns in Q̂[k], which are related to Ĥ[k] and F[k] via the Hadamard product, i.e.

Q̂[k] =Ĥ[k] ◦ F[k], (3.26)

where (◦) represents the Hadamard product. The intrinsic time-varying channel mea-

surement Ĥ[k] is easily obtained by omitting the fingerprint component and replacing the

fingerprinting function f[k] with the ones vector 1(1×N). Thus F[k] in (3.26) becomes

the identity matrix for the Hadamard product, which is the ones matrix 1(N×P ). We de-

note this process as the channel-sounding phase with accompanying channel-sounding

fingerprint function Fsnd[k]. The aggregate distortion perceived by the receiver during the

83



channel-sounding phase, denoted Q̂snd[k], is simply

Q̂snd[k] = Ĥ[k] ◦ Fsnd[k] = Ĥ[k] ◦ 1(N×P ) = Ĥ[k]. (3.27)

CSI used by the transmitter must first be estimated by the receiver and then con-

veyed to the transmitter as feedback, resulting in a delay. Thus, we denote CSI obtained

by the transmitter during the channel-sounding phase as Q̂snd[l − ε] = Ĥ[l − ε], where ε

is the number of OFDM symbols of delay experienced by the channel-sounding CSI, as

received by the transmitter, and the current fingerprint transmission at time l = b k
P
c. The

diagonalization of Q̂snd[l − ε] in (3.27) via singular-value decomposition (SVD) for the

case N ≥ P yields

ĤT [l − ε] = Q̂T
snd[l − ε] = U[l − ε]S[l − ε]VH [l − ε], (3.28)

where U[l− ε] ∈ C(P×P ) is the left unitary matrix of the decomposition with orthonormal

columns representing the left singular-vectors of Ĥ[l− ε], and V[l− ε] ∈ C(N×N) contains

the right orthonormal columns of the singular-vectors of Ĥ[l− ε], and S[l− ε] ∈ R(P×N)

contains the diagonalized eigenvalues of the decomposition. The column vectors of U[l−

ε] are the projections of the eigenvectors of Ĥ[l−ε] in the time dimension for the previous

P TFBs, while V[l− ε] are the projections of the eigenvectors of Ĥ[l− ε] in the frequency

dimension.

According to our time-varying channel model (3.14), we surmise that linearly cor-

related time-varying channel components h̄ and µj[k] can be separated from the uncor-

related noise components Nj[k] of (3.14) via subspace decomposition of (3.28), if P is

large enough [19]. Hence, U[l − ε] and V[l − ε] form a basis describing the linear depen-

dencies in Ĥ[l − ε] in both time and frequency. We consider the case where P is selected
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to be large enough so that the decomposition of Ĥ[l− ε] is over-determined. Via subspace

decomposition we bifurcate each matrix of (3.28) into two subspaces:

1. A correlated time-varying signal subspace characterizing the linear dependencies

in Ĥ[l − ε] spanning both time and frequency, thus forming a temporal-spectral

model for the linearly correlated components present in previous CSI estimates.

2. An uncorrelated noise subspace, also spanning Ĥ[l− ε] in both time and frequency,

and thus characterizing the noise component present in previous CSI.

The correlated signal subspace will also be referred to as the intrinsic distortion sub-

space, as this subspace characterizes the principle linear relationships between consecu-

tive channel estimates intrinsic to the linear time-varying fading channel. The bifurcation

of U[l − ε], S[l − ε], and V[l − ε] into principal components and noise, according to a

model parameter p, becomes

ĤT [l − ε] =
{
USVH

}
l−ε

=

[
U(P×p)

1 U(P×(P−p))
2 ,

]
l−ε

[
Λ(P×P ) 0(P×(N−P )),

]
l−ε

[
V(N×p)

1 V(N×(N−p))
2 ,

]H
l−ε

,

(3.29)

where the columns of U1 and V1 represent the singular-vectors of the left and right unitary

matrices U and V, respectively, spanning the correlated time-varying signal subspace,

U2 and V2 represent the singular-vectors of U and V, respectively, spanning the noise

subspace, and Λ ∈ R(P×P ) = diag (λ0, λ1, . . . , λP−1), are the eigenvalues λi, i =

0, 1, . . . , P − 1 of S. The dimensionality of these subspaces, determined by p, should

be chosen to be equal to the effective rank of Ĥ[l − ε], for optimal bifurcation of the
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subspaces. That is, if we sort the eigenvectors of S[l − ε] according to magnitude in

descending order, i.e. λ0 ≥ λi ≥ λP−1, i = 1, . . . , P − 2, the effective rank of H[l − ε],

and thus the optimal value for p, is equal to the number of eigenvalues of diag (Λ) that

are not equal to σ2
H , i.e.

λ0 ≥ λi ≥ λj = σ2
H , i = 1, . . . , p− 1, j = p, . . . , P − 1, (3.30)

where σ2
H is the noise power of N[l − ε] projected onto the pilot matrix P. In practice,

the eigenvalues of the noise subspace may not all be equal, making the estimation of the

effective rank of Ĥ[l − ε] difficult. However, these values will be very close to σ2
H [40].

Additionally, the spectrum of the signal spanned by the noise subspace is orthogonal to the

intrinsic channel disturbance spectrum. We will exploit this orthogonality property later

in our fingerprinting designs to be discussed in Section 3.5.3. Various criteria have been

proposed to estimate p in these cases [40], however this discussion is beyond the scope

of this chapter. For the sake of exposition we will assume that p is perfectly selected to

be the effective rank of H[l − ε], λj = σ2
H , j = p, . . . , P − 1, and note that improper

estimation of p will result in degraded performance as the orthogonality between the two

subspaces is degraded in this case.

For sufficiently stationary and non-trivial time-varying channels, the channel esti-

mates ĥ[k − i], i = 1, . . . , P + 1 obtained using embedded pilot signals are correlated in

both frequency and in time. Thus, when P is properly selected, the resulting decomposi-

tion of H[l− ε] in (3.28) will be over-determined and therefore p < P and the size of both

subspaces will be non-zero. For the case p ≥ P , the system is under-determined and an
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accurate delineation of both subspaces in (3.29) is not possible. Therefore, for the sake of

exposition we consider here the case

1 ≤ p < P, P ≥ 2, (3.31)

which is the most interesting case for our extrinsic fingerprinting method, as both the

intrinsic time-varying channel distortion subspace and the noise subspace are of non-zero

size.

3.5.3 Fingerprint Design using Subspace Modeling

We now describe how the fingerprinting function F[k] is embedded into the trans-

mission to produce a time-frequency fingerprint that leverages knowledge of the channel,

H[k].

According to a spectral water-filling observation that was presented in (3.23), the

capacity of a sequence of channel estimate data, i.e. the amount of information conveyed

by Q̂[k] to the receiver using the embedded pilot signals P of (3.7) to drive Q̂[k], can be

maximized by introducing a Gaussian process with energy where the spectrum of H[k]

is lowest. The transmitter can first estimate the noise subspace of H[k] by decomposing

Ĥ[k] as in (3.30), in which diag (Λ) denotes spectral magnitudes and the smallest eigen-

values represent the power spectrum of the noise subspace of Ĥ[k]. We introduce our

fingerprinting signal using a fingerprint overlay onto these parts of the spectrum.

Hence, the fingerprint function should be in the noise subspace, and the transmit-

ter has to ensure that the receiver can detect the fingerprint from the aggregate channel

estimate Q̂[k]. To aid in analysis, we split the subspace decomposition of the channel
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state information in possession by the transmitter, (3.29), into a summation of significant

channel gains and noise, i.e.

ĤT [l − ε] = L̂[l − ε] + N̂[l − ε], (3.32)

where L̂[l−ε] is an estimate of the significant intrinsic channel gains L[l−ε] on the signal

subspace, and N̂[l − ε] is an estimate of noise on the noise subspace N[l − ε], of H[l − ε].

From this definition, the principle linear components of the intrinsic time-varying channel

fading patterns are parameterized by the basis L[l]. The definition of L[l− ε] and N[l− ε]

according to (3.29) and (3.30) is

L̂[l − ε] =

[
U1 0(P×(P−p))

]
l−ε

[
diag

(
λ(p), 0(P−p)

)
0((N−p)×P )

]
l−ε

 VH
1

0((N−p)×N)


l−ε

,

(3.33)

where λ[l − ε] is defined as

λ[l − ε] = [λ0 λ1 . . . λp−1]l−ε , (3.34)

and

N̂[l − ε] =

[
0(P×p) U2,

]
l−ε

[
diag

(
0(p),σ(P−p)

)
0(P×(N−P ))

]
l−ε

0(p×N)

VH
2


l−ε

,

(3.35)

where σ[l − ε] is defined as

σ[l − ε] = [λp λp+1 . . . λP−1]l−ε , λp = λp+1 = · · · = λP−1 = σ2
H . (3.36)

This low-rank modeling of intrinsic channel conditions by L[l] will help reduce feed-

back overhead when conveying CSI to the transmitter, as this feedback decreases system

efficiency.
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3.5.3.1 Subspace Fingerprint Design

The transmitter designs F[l], which will be recovered by the receiver using the esti-

mate of the aggregate channel, Q̂[l]. Since Q̂[l] = F[l]◦Ĥ[l], for the transmitter, designing

F[l] is the same as designing Q̂[l] if the transmitter has the current channel estimate, Ĥ[l].

However, the transmitter possesses only a delayed version of the channel estimate data,

Ĥ[l − ε]. If prediction of future channel state is not employed, the transmitter must ap-

proximate Ĥ[l] using Ĥ[l − ε]. Therefore, the transmitter will approximate the aggregate

channel estimate Q̂[l] at the receiver’s side by Q̂des[l], where Q̂des[l] = F[l] ◦ Ĥ[l − ε].

Similarly, we can decompose Q̂des[l] using a summation model

Q̂des[l] = P[l] +K[l], (3.37)

where P[l] is the the projection of Q̂des[l] onto the intrinsic channel subspace correspond-

ing to L̂[l] in (3.32), and K[l] is the extrinsic fingerprinting overlay matrix that we will

design to overlay the noise component N̂[l] in (3.32).

Consequently, the transmitter will design F[l] according to Q̂des[l], such that

F[l] = (P[l] +K[l]) ◦
(
L̂[l − ε] + N̂[l − ε]

)(−1)

, (3.38)

where (·)(−1) is the Hadamard inverse operation.
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3.5.3.2 Fingerprint Extraction

The aggregate channel estimate Q̂[l] that the receiver will obtain can be formulated

by substituting (3.38) into (3.26), i.e. Q̂[l], becomes

Q̂[l] = Ĥ[l] ◦ (P[l] +K[l]) ◦
(
L̂[l − ε] + N̂[l − ε]

)(−1)

=
(
L̂[l] ◦ P[l] + L̂[l] ◦K[l] + N̂[l] ◦ P[l] + N̂[l] ◦K[l]

)
◦
(
L̂[l − ε] + N̂[l − ε]

)(−1)

.

(3.39)

We will now show that Q̂[l] is an unbiased estimate of Q̂des[l] = P̂[l]+K̂[l] enabling

recovery of the fingerprint F̂[l] by the receiver, without bias. Equivalently, we want to

show that E
[
Q̂[l]

]
= P[l] +K[l].

Assuming that L̂[l] and L̂[l − ε] are unbiased estimates of their respective channel

gain components, i.e.

E
[
L̂[l]
]
= L[l] and E

[
L̂[l − ε]

]
= L[l − ε], (3.40)

then the expectation of (3.39) yields

E
[
Q̂[l]

]
=
(
L[l] ◦ P[l] + L[l] ◦K[l] + E

[
N̂[l]
]
◦ P[l] + E

[
N̂[l]
]
◦K[l]

)
◦(

L̂[l − ε] + E
[
N̂[l − ε]

])(−1)

.

(3.41)

In the derivation of (3.41), we recall that (◦) is the Hadamard product, therefore regular

matrix multiplication and inversion is not used in this result.

We recall that N̂[l] is the projection of N[k] on the noise subspace of channel es-

timates Ĥ[l]. As N[k] is a matrix of zero-mean Gaussian random variables and the ba-

sis of the noise subspace is formed from Gaussian random variables N[k] projecting on

the pilot signals P, then N̂[l] is also Gaussian with each element having zero mean, i.e.
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E
[
N̂[l]
]
= 0. The elements of N[k] are also i.i.d. Gaussian, thus E

[
N̂[l − ε]

]
is also

zero-mean Gaussian and N̂[l − ε] is uncorrelated with N̂[l], therefore by a similar argu-

ment E
[
N̂[l − ε]

]
= 0, and (3.41) becomes

E
[
Q̂[l]

]
= (P[l] +K[l]) ◦ L[l] ◦ L[l − ε](−1). (3.42)

The above equation demonstrates that if the intrinsic channel is stationary over ε blocks,

i.e., L[l] = L[l − ε], then the aggregate channel estimate at the receiver’s side Q̂[l] is an

unbiased estimate of the information that the transmitter conveyed, Q̂des[l].

Moreover, to obtain an estimate for only the extrinsic fingerprinting overlay K[l]

from Q̂[l], in (3.42) we immediately see that our estimate Q̂[l] will be biased by P[l]. By a

water-filling argument which was discussed in Section 3.5.1, the extrinsic fingerprinting

signal should contribute energy to the noise subspace of H[l] to maximize the information

conveyed by H[l] to the receiver, as this basis represents the spectral elements of H[l]

with the lowest energy. Thus, we design F[l] to contribute only to the noise subspace

while leaving the intrinsic channel subspace unperturbed by setting P[l] to be the identity

matrix for the Hadamard product, i.e.

P[l] = 1. (3.43)

With (3.43), (3.42) becomes

E
[
Q̂[l]

]
= L[l] ◦ L(−1)[l − ε] + L[l] ◦K[l] ◦ L(−1)[l − ε]

= (1 +K[l]) ◦M[l],

(3.44)

where we introduce the definition

M[l] = L[l] ◦ L(−1)[l − ε]. (3.45)
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In (3.45), M[l] is the intrinsic-channel model mismatch error in estimating K[l], and is

the Hadamard product between L[l] and the Hadamard inverse of the previous intrinsic

channel estimate, L(−1)[l − ε]. From this definition, the model error mismatch matrix,

E[l], is simply E[l] = 1(N×P ) −M[l].

From (3.45) we readily see that when the low-rank subspace approximation of H[l],

L[l−ε], is a perfect match of the low-rank approximation of the current channel conditions

L[l], then M[l] = 1, and by removing the bias introduced by (3.43), (3.44) becomes

E
[
Q̂[l]

]
− 1 = K[l], (3.46)

thus an unbiased estimate for K[l] can be obtained from Q̂[l]. When the error matrix E[l]

has non-zero elements, additional model mismatch error will result in degraded perfor-

mance when detecting the fingerprint signal.

Using (3.43), the design of the fingerprinting function F[l] from (3.38) becomes

simply

F[l] = K[l] ◦ L(−1)[l − ε]. (3.47)

We note from (3.47) that either the transmitter or the receiver may apply L(−1)[l−ε]

before recovering K[l] as the Hadamard product is commutative. The case where L(−1)[l−

ε] is applied by the transmitter is analogous to linear OFDM block precoding [62], for

the purpose of channel fade mitigation. If we assume that the receiver has memory and

can store L(−1)[l − ε] for future computation, this would allow the receiver to preform

this computation, eliminating the need to transmit L(−1)[l − ε] to the transmitter, thus

decreasing the amount of CSI feedback required and reducing overhead.
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3.5.4 Subspace Fingerprinting Overlays

We now discuss a methodology for designing the extrinsic fingerprint overlay K[l]

that will allow the authentication signal to overlay the noise subspace N[l] of H[l]. Ad-

ditionally, we demonstrate how K[l] can be used to modulate the extrinsic fingerprinting

signal.

Similar to the definition of L̂[l] in (3.33) and N̂[l] in (3.35), according to (3.29) and

(3.30) we define the extrinsic fingerprinting overlay matrix K[l] as

KT [l] =Ul−εSlVH
l−ε

=

[
0(P×p) U2,

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0(P×(N−P ))

]
l

0(N×p)

VH
2


l−ε

,

(3.48)

where ξ[l] ∈ R((P−p)×(P−p)) is defined as

ξ[l] = [ξp ξp+1 . . . ξP−1]l , ξp, ξp+1, . . . , ξP−1 > 0, (3.49)

and U2 and V2 are the left and right singular bases, respectively, that are constructed

using CSI obtained during the channel-sounding phase at time l − ε, and will be used as

an orthonormal basis to signal our extrinsic fingerprinting function. Using this signaling

basis, the vector [ξp ξp+1 . . . ξP−1]l will convey the extrinsic fingerprint message to the

receiver.

In general, the channel stationary conditions will not hold, thus some model mis-

match error between L[l − ε] and L[l] will occur. This model mismatch error manifests

itself as M[l], defined in (3.45). We will first consider system design and performance

using the assumption of quasi-stationary behavior between L[l − ε] and L[l] without at-

tempting to predict L[l].
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3.5.5 Fingerprint Recovery and Modulation

We now describe how the fingerprint signal vector [ξp ξp+1 . . . ξP−1]l may be re-

covered from K[l], of which Q̂[l] − 1 is an unbiased estimate. Substituting (3.48) into

(3.44) we obtain

E
[
QT [l]

]
− 1 =

(
1 +KT [l]

)
◦ (1 − ET [l])− 1

=

[
0(P×p) U2

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0(P×(N−P ))

]
l

0(p×N)

VH
2


l−ε

− ET [l]−KT [l] ◦ ET [l],

(3.50)

where the terms E[l] and (K[l] ◦ E[l]) represent model mismatch error in (3.50). These

model mismatch error terms degrade the performance of the fingerprint detector. To re-

cover the fingerprint signal [ξp ξp+1 . . . ξP−1]l, we must first estimate S[l] from (3.48).

To produce the estimate Ŝ[l], the receiver pre-multiplies (3.50) by
[

0 U2

]H
l−ε

and post-

multiplies by
[

0 V2

]
l−ε

, and (3.50) becomes

Ŝ[l] =

 0

UH
2


l−ε

(
E
[
QT [l]

]
− 1
) [

0 V2

]
l−ε

= Ru[l − ε]

[
diag

(
0(p), ξ(P−p)

)
0

]
l

Rv[l − ε]− B[l],

(3.51)

where we define the fingerprint model mismatch error component B[l],

B[l] =
[

0 U2,

]H
l−ε

(K[l] ◦ E[l]− E[l])T
[

0 V2

]
l−ε

, (3.52)

and

Ru[l − ε] =

 0

UH
2


l−ε

[
0 U2,

]
l−ε

, (3.53)
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and

Rv[l − ε] =

 0

VH
2


l−ε

[
0 V2

]
l−ε

. (3.54)

The left and right correlation matrices, Ru[l − ε] and Rv[l − ε] respectively, can be used

as a measure of the closeness of the left and right extrinsic signaling basis U2 and V2,

respectively, to a true unitary basis for their respective subspaces. An optimal selection

of extrinsic fingerprinting bases, yielding the correlation matrices R∗
u[l− ε] and R∗

v[l− ε],

respectively, would preserve the orthogonality of the intrinsic and extrinsic subspaces.

Thus, an optimal selection of bases would yield R∗
u[l − ε] =

[
0(P×p) I(P×P−p)

]
and

R∗
v[l− ε] =

[
0(N×p) I(N×N−p)

]
, respectively. We define deviation from a true orthonor-

mal signaling basis for the left and right bases, eRu and eRv respectively, as the Frobenius

norm of the difference between Rv[l − ε] and
[

0(P×p) I(P×P−p)

]
, and Ru[l − ε] and[

0(N×p) I(N×N−p)

]
, respectively, i.e.,

eRu = ‖Ru −
[

0(P×p) I(P×P−p)

]
‖
F

, (3.55)

and

eRv = ‖Rv −
[

0(N×p) I(N×N−p)

]
‖
F

, (3.56)

which are both non-negative values.

When both Rv[l − ε] and Ru[l − ε] are perfectly unitary, a condition which we will
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denote with the subscripts (ru) and (rv) respectively, (3.51) becomes simply

Ŝru,rv[l] =

 0

UH
2


l−ε

[
0 U2

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0

]
l

 0

V2


l−ε

[
0 V∗

2

]
l−ε

− B[l]

=

[
diag

(
0(p), ξ(P−p)

)
0

]
l

− B[l].

(3.57)

From (3.57) we note that the channel model mismatch error term B[l] is still present.

However, under perfect channel estimation conditions when L[l] = L[l − ε], a condition

which we will denote with the subscript (m), the channel model-mismatch term becomes

the zero matrix and no model mismatch error is present. Thus (3.57) is simply

Ŝru,rv,m[l] = S[l] =
[
diag

(
0(p), ξ(P−p)

)
0(P×N−P )

]
l

, (3.58)

and the extrinsic fingerprint signal of a fingerprinted block transmitted at time l may be

recovered from Ŝ[l] by simply extracting the elements [ξp ξp+1 . . . ξP−1] using (3.58) and

(3.49). From (3.57) we observe that any model mismatch will degrade the fingerprint

statistics [ξp ξp+1 . . . ξP−1] as interference.

3.5.6 Extrinsic Fingerprint Overlay Design

In this section we evaluate various methodologies for incorporating previous CSI

into the design of the left and right signaling bases U2 and V2, respectively, and discuss

the performance trade-offs of these designs. The design taxonomy we present will be

ordered according to the amount of CSI required, in descending order. Therefore, we

will lead our discussion with designs that require the greatest amount of CSI, and end our

discussion with designs that do not require CSI at the transmitter at all.
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3.5.6.1 Direct Fingerprint Overlay Using Full CSI

We first consider the possibility of directly using the left and right singular vectors

U2 and V2 from (3.48) to implement U2 and V2, respectively, and denote this design

Kdirect, i.e.

Kdirect[l] =

[
0(P×p) UH

2 ,

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0(P×N−P )

]
l

0(p×N)

VH
2


l−ε

. (3.59)

While Kdirect demonstrates that U2 and V2 can be used directly to implement an or-

thonormal basis for signaling [ξp ξp+1 . . . ξP−1], there are a number of downfalls to this

approach. To recover Kdirect via (3.51), both U2 and V2 must be communicated to the

transmitter from the receiver, requiring a total of P (P −p)+N(N −p) units of feedback

information. Also, if V2[l − ε] accurately models the noise subspace in the frequency

dimension under particular channel conditions while the singular vectors of U2[l − ε]

inaccurately model the noise subspace in the time dimension, U2[l − ε] will predomi-

nately contribute to model mismatch error component, E[l]. This would be the case when

U2[l− ε] captures transient fading or other irrelevant temporal information. Vice-versa, a

similar argument may be made for U2[l− ε] under some channel conditions, where in this

case U2[l − ε] is an accurate model of U2[l] but V2[l − ε] has captured some inaccurate

information and thus predominately contributes to model-mismatch error. To ameliorate

these effects we will now consider the possibility of using a standard, uniform orthonor-

mal basis for U2[l − ε] and/or V2[l − ε] when designing the overlay.
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3.5.6.2 Uniform Fingerprint Overlays Using Partial CSI

In general, the columns of U2 forming the left signaling basis for our fingerprint

message in the time dimension can be selected from any unitary matrix that is at least

size C(P×(P−p)). Similarly, the columns of V2 forming the right signaling basis for our

fingerprint message in the frequency dimension can be selected from any unitary matrix

that is at least size C(N×N−p), and further, this basis may be selected independently from

U2. We note that deviation from U2 and/or V2 as used in Kdirect necessarily degrades the

orthogonality between the intrinsic bases U1[l − ε] and V1[l − ε] and the extrinsic finger-

printing overlay formed by U2 and V2. When the orthogonality between these subspaces

is degraded U1 will partially project on U2 as interference, V1 will partially project onto

V2 as interference, and vice-versa.

A number of matrices with the unitary property exist in the literature that would

suffice for selecting V2 and/or U2, however three typical unitary matrices will be consid-

ered here: the Identity matrix, the Discrete Fourier Transform matrix (DFT) matrix, and

the Walsh-Hadamard matrix. Since Q[k] in (3.26) is the Hadamard product between in-

trinsic channel estimate matrix H[k] and the fingerprinting matrix F[k], another desirable

property of F[k] is that it does not unduly bias particular elements of Q[k] in either the

time or frequency dimensions when conveying [ξp ξp+1 . . . ξP−1] to the receiver. Both

the Walsh-Hadamard matrix, denoted H and the DFT matrix, denoted W , are felicitous

choices for selecting U2 and/or V2, since the majority of elements in these matrices are

non-zero. This property effectively allows these bases to spread the extrinsic fingerprint

signal in the respective dimension, i.e. frequency spreading for V2 and time spreading for
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U2. We define the following design criteria when selecting U2[k] and V2[k]:

• If U2[k] is to be designed from a uniform signaling basis, select the P − p columns

of U2[k] from a column subset of a unitary matrix of size C(P×P ).

• Similarly, if U2[k] is to be designed from a uniform signaling basis, select the N−p

columns of V2[k] from a column subset of a unitary matrix of size ∈ C(N×N).

Using the criteria above, U2[k] can be designed using either a Walsh-Hadamard

matrix or a DFT matrix as a basis, and V2[k] can use either a Walsh-Hadamard matrix or

a DFT matrix as a basis, and the the basis selections for U2[k] and/or V2[k] may be made

independently.

With this design criteria, we define an extrinsic fingerprint overlay design for K[l]

where U2 is drawn from a Walsh-Hadamard basis such that

KT
hu[l] =

[
0(P×p) H(P×P−p)

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0(P×N−P )

]
l

0(N×p)

V2


H

l−ε

,

(3.60)

where the subscript (hu) on Khu denotes that the columns of U2 are selected from a

subset of columns of a Walsh-Hadamard matrix of size R(P×P ), while V2 are the orig-

inal columns of the noise subspace projected in the frequency dimension derived from

channel-sounding information obtained from H[l − ε]. While Khu can be an improve-

ment over Kdirect for some channel conditions, it still requires transmission of V2 to the

transmitter using N(N − p) resources of feedback.

To improve on the feedback requirement of (3.60), we also consider the case where
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V2 is selected from a standard, uniform basis, i.e.

Khv[l] =

[
0(P×p) U2

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0(P×N−P )

]
l

 0(N×p)

H(N×N−p)


H

l−ε

, (3.61)

where the subscript hv on Khv denotes that V2[k] is selected from a subset of columns of

a Walsh-Hadamard matrix of size R(N×N), while U2 are the original columns of the noise

subspace projected in the time dimension and derived from channel-sounding information

obtained from H[l − ε]. While Khv improves on the feedback required by Kwu, requiring

transmission of only U2 to the transmitter using P (P − p) resources for feedback, Khv

leverages much less CSI in the design of K[l]. Additionally, if the information captured

by U2 represents transient temporal information while V2 captures accurate frequency-

selective fading behavior, Khu may yield greater model mismatch error than Khv because

the CSI used in the design of Khv may be an inaccurate representation of channel state

during H[l].

3.5.6.3 Fingerprint Overlays Requiring Zero CSI

For comparison, we also consider the blind orthonormal signaling basis overlay,

where both U2 and V2 are selected from standard, uniform signaling bases and previous

CSI is not needed or used by the transmitter. When both U2 and V2 are replaced with

columns of the Walsh-Hadamard matrix, we denote the result Khu,hv

Khu,hv[l] =

[
0(P×p) H(P×P−p)

]
l−ε

[
diag

(
0(p), ξ(P−p)

)
0(P×N−P )

]
l

 0(N×p)

H(N×N−p)


H

l−ε

.

(3.62)
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One advantage of using Khu,hv[l] is that no previous CSI is required in the design of the

extrinsic fingerprint overlay, as receiver feedback is not required. The primary disadvan-

tage of Khu,hv[l] is that orthogonality between the intrinsic channel distortions and the

extrinsic fingerprinting subspace is not present, thus distortions indicative of the intrinsic

time-varying channel will act as interference in the detection of the extrinsic fingerprint

signal. Since the Khu,hv[l] design does not need or use CSI, in (3.62) p is not the effective

rank but merely determines the dimensionality of the fingerprint. We will consider this

design for comparison in our experiments in Section 3.6 and simulations in Section 3.7.

Similarly, (3.60), (3.61), and (3.62) may select columns from the DFT matrix for U2

and/or V2, yielding Kwu[l], Kwv[l], and Kwu,wv[l], respectively, however the delineation

of these designs will be omitted as they are similarly defined. The bases for U2 and V2

may be selected independently, yielding the following possible designs:

Kx1,x2[l], x1 ∈ {−, hu, wu} , x2 ∈ {−, hv, wv} . (3.63)

3.6 Experimental Results

We now present experimental results for the fingerprinting method described, using

time-varying channel estimate data collected from the IEEE 802.16e WiMax waveform.

Raw signals were collected from a 5 MHz WiMax base-station configured to use a N =

512 subcarrier FFT, and a sequence of channel estimates were obtained using the training

data present in each 5ms frame preamble. This experiment data represents the channel

conditions of a hand-held mobile unit, where other than subtle hand movement the mobile

user is stationary.
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The WiMax preamble uses a known data sequence that is duplicated three con-

secutive times in the time domain, therefore a 3× sinc interpolating filter was used to

complete the channel estimate. A sequence of P = 64 frames was selected to form

H[l − ε], and the magnitudes of the equalizer-tap gains associated with each of the N

subcarriers are presented in top view in Figure 1(a). From Figure 1(a) we readily observe

the slow frequency-selective fading behavior of this channel where areas of deepest fade

are lightest, while the areas with the least fading are darker. We observe that the locations

of frequency-selective fades are highly correlated in time, and that the environment is

slightly changing since the locations of frequency-selective fades drift slightly.

After diagonalizing the time-varying CSI of H[l − ε] presented in Figure 1(a) via

SVD, a plot of the sorted singular values of diag (Λ[l − ε]) is given in Figure 1(b). From

Figure 1(b) we estimate the effective rank of H[l − ε] to be approximately 8, and thus

we select p = 8 accordingly, yielding a fingerprinting subspace of size |ξ[l]| = P − p =

56, i.e. 56 eigenvectors and accompanying eigenvalues may be used for embedding the

fingerprint message. The water-level used in this experiment was selected to be equal to

ξp = 0.0013. In a full fingerprinting system, the elements ξi, i = p + 1, . . . , P will be

selected from a uniform PAM-like constellation to signal the digital fingerprint message.

In this experiment the Khu[l] fingerprint overlay design was used, where the left

singular-vectors of U2[l − ε] spanning K[l] in time are replaced with columns from a

Hadamard matrix of size H ∈ R(P×P ) yielding the augmented version of this basis de-

noted U2[l−ε]. According to the Khu[l] design, the right singular-vectors are used directly,

i.e. V2[l − ε] = V2[l − ε]. This design effectively spreads the fingerprinting signal in the

time dimension using a time-uniform basis consisting of Walsh codes, in a way similar
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to frequency spreading via Walsh codes in CDMA systems. The modified singular basis,

U2[l− ε], used in the design of Khu[l] is presented in Figure 2(a). In Figure 2(a) the “+1”

values of the Walsh code column vectors are represented by white, the “−1” values are

represented by black, and the zero values represented by gray.

When a non-unitary basis is used in the construction of U[l−ε], the innate orthogonality of

the columns of the original matrix is degraded. For example, this degradation is apparent

in Ru[l−ε] from equation (3.53), depicted in Figure 2(b) for a truncated Hadamard matrix.

In this example the top eight rows of the matrix are zero, thus truncating the Walsh codes

that form the columns of U[l− ε]. From Figure 2(b), we notice that the diagonal elements

of UH [l−ε]U[l−ε] represented by the white elements, which were exactly 1 for the P×P

sized Hadamard matrix, now take on values slightly less than 1 while the off-diagonal el-

ements which were previously equal to zero now have non-zero elements represented by

dark gray. The gray elements denote off-diagonal correlation, or cross-projection of the

fingerprint signaling vectors which leads to inner-signal interference during fingerprint

recovery.

We first consider the case of no model-mismatch error, i.e. when L[l] = L[l− ε], by

applying the fingerprint to the same block of CSI used in the construction of Khu[l]. The

magnitude of the fingerprinted time-varying CSI, Q[l], using the same intrinsic channel

distortions of Figure 1(a) and precoding using the Khu[l] fingerprinting design, is depicted

in Figure 3(a). We note that the fingerprinted CSI of Figure 3(a) and the original CSI of

Figure 1(a) are very similar, and that the fingerprinted version is visually a noisier version

of the original intrinsic time-varying channel distortions. By preforming the fingerprint

recovery steps of (3.51), Ŝ[l − ε] can be recovered and the fingerprint signal elements
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[ξp+1 . . . ξP−1] can then be recovered from the diagonal elements of Ŝ[l− ε], as depicted

in Figure 3(b), while the elements [ξi ξ0 . . . ξP ] are omitted.

From Figure 3(b) we readily observe the effect of receiver noise on the received

fingerprint signal, as the values [ξp+1 . . . ξP−1] should all be identically equal to ξi =

ξp = 0.0013, ∀i = p+1, . . . , P −1. We note that even in the absence of model-mismatch

error these values are distorted by noise. It is clear, however, that in this example a ML

receiver can recover the digital fingerprint, all 1’s in this case, without bit errors using 2-

level PAM signaling and a symbol decision region that is half way between 0 and 0.0013.

While Figures 3(a) and 3(b) demonstrate fingerprint application in the absence of

model mismatch error, we now consider the performance of a the fingerprint overlay when

K[k] is applied to a future block of data transmissions. For this result we select the next

P = 64 channel estimates from the same signal used to create Figure 1(a). The resulting

fingerprinted time-varying CSI, Q[l], for the more general case when L[l] 6= L[l − ε] is

presented in Figure 4(a), using the same Khu[k] design delineated in Figure 3(a). We

note that the fading behavior depicted in Figure 4(a) is highly correlated with the fading

behavior shown in Figure 3(a), as this channel estimate data was obtained from the same

WiMax signal and these blocks of CSI are exactly P = 64 OFDM frames, or 320ms,

apart. This adjacent block of CSI also demonstrates frequency-selective fade locations

that are highly correlated in time. We also present the the extracted fingerprinting signal

elements [ξp+1 . . . ξP−1] in Figure 4(b).

Comparing the results of Figure 4(b) to Figure 3(b), the recovered fingerprinting

signal elements [ξp+1 . . . ξP−1] are even more distorted due to the additional model miss-

match error.
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3.7 Simulation Results

In this section we present simulation results for one of the fingerprint overlay de-

signs in (3.63), using the intrinsic time-varying channel model described by (3.14), (3.15),

(3.16), and (3.17) in [64]. In [64], each channel gain of the delay profile is modeled using

an Auto Regressive process of order 1 (AR-1), and the driving process for each AR-1

model is a Gaussian process with variance σ2
T . As σT increases, the magnitude of the

fluctuation of each channel gain in the model increases, and channel conditions change

more violently.

Through simulation, we can quantitatively compare the performance of overlay de-

signs and measure any degradation experienced by the primary signal from the embedding

of the fingerprint. To measure primary signal degradation, we compare the BERs of the

primary signal with and without the fingerprint present. Additionally, we use BER to

compare the efficacy of each overlay design.

To simulate the embedding of various fingerprint designs, a full OFDM system and

accompanying channel simulator were created in Matlab. The OFDM signal generated

uses a 512-point FFT with 430 occupied subcarriers and 41 left and right guard subcar-

riers. A BPSK-modulated preamble occupies the first symbol of each frame using a 2×

time-domain repetition. The preamble is represented in (3.9) by P, while the primary

signal payload is represented by D[k]. In the simulated signal, every odd frame is finger-

printed while every even frame is used for channel sounding.

The OFDM frame is then subjected to a simulated time-varying channel by applying

g(t) in the time domain using a transversal filter, according to (3.1). Timing jitter was also
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added to test the fingerprint’s affect on typical frame synchronization algorithms. For

the channel delay-spread gains, h̄j , the simplified Typical Urban delay spread profile of

section B.1 in the 3GPP specification [2] was used, while the values for the AR-1 model

coefficients, αj were chosen empirically.

To decode the signal, the Schmidl and Cox algorithm [51] was first applied for

course timing synchronization. The LS channel estimator [59] was applied to estimate the

aggregate channel distortion using the frame preamble as training data, and the resulting

estimate was then up-sampled using 2× sinc interpolation. The channel sounding symbol

and fingerprinted symbol were then equalized independently, and q̂[l − ε] and ĥ[l] are

recorded for each frame for later use during the fingerprint recovery phase. Both the

BPSK preamble data and QPSK payload data are demodulated into bits, and bit errors for

the fingerprinted frames and non-fingerprinted frames are recorded.

In Figures 5(a) through 5(d), the Khu,wu overlay design was used using p = 0 and

the Typical Urban channel delay spread profile. A plot of the simulated time-varying CSI,

H[l], is given in Figure 5(a), while a plot of the fingerprinted CSI, i.e. Q[l], is given in

Figure 5(b) By selecting Khu,wu and p = 0, CSI is not used in the design of Khu,wu. We

will use this design for comparison when considering designs that do leverage knowledge

of previous CSI.

In Figure 5(b) we observe minimal distortion in the fingerprinted CSI due to the

embedding of the fingerprint, while the actual embedded fingerprint signal, F[l], is de-

picted in Figure 5(c) for the Khu,wu overlay design using p = 0. The recovered fingerprint

signal, F̂[l], is depicted in Figure 5(d), where we see the effects of the intrinsic time-

varying channel on the blind superposition design in the additional distortions in Figure

110



5(d) which are not present in Figure 5(c). This is caused by the lack of orthogonality be-

tween the intrinsic and extrinsic subspaces discussed in Section 3.5, thus demonstrating

the susceptibility of the blind fingerprint approach to intrinsic channel distortions. For

comparison, the same plots are presented for the Khu overlay design using p = 8 in Fig-

ure 6(a) and 6(b). By comparing Figure 5(c) to Figure 6(a), we see that the fingerprint

in Figure 6(a) is more noise-like since its basis incorporates CSI derived from the noise

subspace.

The BER results for the Khu,wu, p = 0 design are given in Figure 7(a) with

σ2
T = 0.01 and the values λfp = 0.7 and λfp = 1.0, where λfp is the signal magni-

tude of ξi representing transmission of a 1 while transmission of a 0 is represented by

zero, when using two-level signaling. Figure 7(b) shows results for the Khu,wu, p = 0

design, with λfp = 1.0 and the values σ2
T = 0.01 and σ2

T = 0.015. We observe that the

Khu,wu fingerprint design does yield a BER improvement of 10 to 20 dB over the primary

signal for both values of λfp, for SNR greater than 7 dB. This design also operates with

a BER advantage for the low SNR regions of Figure 7(b), however, for σ2
T = 0.015 the

authentication signal BER flattens out around 10−5 as σ2
T becomes the predominate noise

term in (3.14) and the time-varying distortions represented by µj[k] further degrade the

fingerprint signal.

For comparison, BER results for the Khu, p = 8 overlay design are given in Figures

7(c) and 7(d). We observe that the Khu fingerprint design also achieves a BER improve-

ment over the primary signal for SNR greater than 7 dB. The ‘flattening out’ phenomenon

of the authentication signal BER for σT = .015 is also apparent, as the fingerprint yields

BER slightly lower than 10−5 in higher SNR. In Figures 7(a), 7(b), 7(c), and 7(d), we see
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zero impact to primary signal BER do to the presence of the fingerprint message, since

the primary signal series with and without the fingerprint present completely overlap for

a given value of σT .

To observe the benefits of incorporating previous CSI into the design of the fin-

gerprinting overlay, we display the authentication signal BERs for the Khu,wu, p = 0

and Khu, p = 8 designs together, for the values σT = [0.02, 0.03] in Figure 8(a). The

primary signal BER for these simulations is depicted in Figure 8(b), and from this fig-

ure we observe nearly zero impact to primary signal BER for both values of σ2
T . From

8(a) we observe that the fingerprint overlay design incorporating CSI, i.e. Khu, outper-

forms the design that does not incorporate previous CSI, i.e. Khu,wu. This advantage is

demonstrated by the lower BER of the Khu design, for all values of σT . From 8(a) we

also observe that the BER advantage of the Khu design increases as σT increases. This

is because an increase in σT corresponds to an increase in model mismatch error, which

manifests itself as B[l] in (3.51). The incorporation of CSI into the Khu design helps

mitigate the distortions caused by model-mismatch error.

One observation that can be made is that the proposed extrinsic fingerprinting over-

lays are very similar to pre-coding or pre-filtering in OFDM systems. However, some

of the fingerprint designs discussed in this chapter require much more detailed channel

information than common precoding schemes typically require. One may question the

practicality of the required channel information used in some designs, in pragmatic wire-

less systems. Additional comment on the amount of feedback required on the transmitter

side may also be in order. On these topics we present the following discussion.

Our work presents a design taxonomy that incorporates various amounts of CSI into
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the fingerprint design and one very important design that we discuss, the Khu,hv[l] design,

does not require CSI at the transmitter, because it simply spreads the fingerprint in both

time and frequency using both the Hadamard and DFT spreading bases. Therefore, we

lead our discussion with designs that require the greatest amount of CSI, and end our

discussion with designs that do not require CSI at the transmitter at all.

Because of the practicality of the Khu,hv[l] design, and similar designs that require

zero CSI feedback, we compare every simulation result is compared to this extremely

important design. Our goal is to discuss, analyze, and critique the performance of vari-

ous subspace fingerprint embedding designs, using different amounts of CSI, via a design

taxonomy. The Khu,wu design is practical for sure, and depending on the application,

other designs using partial CSI can be leveraged in scenarios when feedback channels are

available.

One may question why we consider the Least Squares (LS) channel estimator in the

simulation section of this paper, instead of more accurate methods such as MMSE, when a

great deal of channel information is assumed to be known. On this topic, we note that any

other channel estimator can work for our embedding scheme, however the selection of a

particular channel estimator does not necessarily influence the design of the fingerprint.

Hence we use LS channel estimation in the simulation and experiment sections due to

its widespread adaptation in OFDM systems and low computational requirements which

make the LS channel estimator very practical to implement.

One may also question why proposed scheme is based on the assumption that the

attackers cannot forge the fingerprints F[k], while the transmitter could potentially derive

the fingerprint according to the channel information feedback from the receiver side. To
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this question, we offer the following discussion.

The elements of the fingerprint signal vector ξ[l] which determines the fingerprint-

ing function F[k] are used as symbols to modulate a multi-bit digital authentication mes-

sage. Therefore, to forge F[k] an attacker would also need to fabricate the fingerprint

signal vector ξ[l], and thus the bits of the digital authentication message, which is pro-

tected from forgery using a cryptographic signature and secret key as stated in paragraph

1 of page 2 of the manuscript. While our paper focuses on the embedding and signal-

ing of a digital fingerprint message for OFDM systems, and the design of specific digital

authentication messages is outside of the scope of the paper. We note that the basic au-

thentication message example in Section III-F is only an example message, and is not the

focus of our work.

We would like to offer some additional discussion on compromised keys. The se-

curity of the authentication signature systems rests on the secrecy of the private keys used

to design the secure signatures within the authentication message that is conveyed by

ξ[l]. In the event that an attacker knows all information about the signaling bases used

by F[k], the signal constellation and symbol-to-bit-map used by the elements in ξ[l], all

channel state information used to design F[k], and the authorized user’s secret keys are

compromised, an attacker would be able to forge an authentic fingerprint signal F[k] and

masquerade as an authorized user. Therefore secret keys should be used to sign the au-

thentication message are protected.

Figures 4-7 depict some useful information on the spreading behavior of our fin-

gerprint designs, by demonstrating how the received channel estimates are perturbed by

the presence of the fingerprint overlay. The primary purpose of these figures is to show
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how the fingerprint is uniformly spread throughout fingerprinted block, and to demon-

strate the relative magnitude of the perturbed channel estimates when compared to the

original channel estimates. Error rates for a particular digital authentication message of

any given length can be formulated using the BER results presented in Figures 8 and 9,

and by considering any additional coding that may be employed.

In this chapter we assume that eigenvalues for components p + 1 through P − 1

are all equal to σ2
H . Clearly, as shown by experiment, the eigenvalues are decreasing, and

many will be close enough to zero to be useful as ’extrinsic’ eigenvectors. However, in

this chapter we do not provide a general proof that eigenvalues for components p + 1

through P − 1 are all equal to σ2
H , and some additional discussion on this topic may be

in order. We do acknowledge that, in practice, the eigenvalues will not be exactly σ2
H ,

however, a detailed explanation of effective rank and its relationship to real and modeled

noisy signals is given in [18]. We note our fingerprinting system does not require that

these diminishing singular values p + 1 through P − 1 be equal for correct operation.

Because our fingerprint overlay is designed to occupy the noise subspace represented by

the singular values p+1 through P − 1, these values represent the power spectrum of the

noise subspace. When p + 1 through P − 1 are not identically equal, the noise spectrum

of the recovered fingerprint overlay will be nonuniform, but the fingerprint can still be

recovered with nonuniform SNR.
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3.8 Conclusion

In this chapter we presented a new OFDM physical-layer fingerprint embedding

scheme that incorporates previous channel-state information into the design of a over-

lay signaling basis. The transmitter embeds the fingerprint only onto the noise subspace

of the wireless channel in a water-filling manner that maximizes the fingerprint capac-

ity. We have demonstrated the embedding scheme through experimentation using real

channel data collected from WiMax base stations, and the presented simulation results

demonstrate that the BER of the primary signal is not influenced by the presence of the

fingerprint. Also, the BER of the fingerprint signal outperforms the primary transmission

by 20 dB, or more, in the channel conditions tested. Additionally, the proposed embed-

ding scheme has demonstrated robustness to time-varying block-stationary fading.
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Figure 5: Simulated fingerprint embedding using the Khu,wu overlay design with p=0
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Figure 6: Simulated fingerprint embedding using the Khu overlay design with p=8
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Chapter 4

Active Sensing for Dynamic Spectrum Access

4.1 Overview

We present a physical-layer mechanism for dynamic spectrum access (DSA) ap-

plications that takes an active approach to spectral sensing. In wireless shared spectrum

scenarios, such as the Wireless Regional Area Networks (WRAN) proposed by IEEE

802.22, licensed digital television stations take a primary user role and are given ex-

plicit first-right-of-access to the television spectrum. When a primary user signal is not

present, broadband users are allowed to use shared spectrum, and assume a secondary

user role. While various detection and classification techniques using cyclostationary

behavior, modulation characteristics, signal bandwidth, and spectral shape have been pro-

posed to discern users of various roles in DSA theaters, these methods have limited detec-

tion performance, are susceptible to channel distortions such as multipath effects, and are

vulnerable to malicious Primary User Emulation (PUE) attacks. In PUE attack scenar-

ios, passive spectrum sensing techniques have poor performance or fail completely, when

a secondary user mimics some or all of the features of a primary user . In this chapter

we assume that a secondary user is capable of mimicking all features typically employed

by passive identification techniques, and instead propose embedding an explicit unforge-

able physical-layer fingerprint signature into wireless transmissions for disambiguating

and authenticating users. When applied to orthogonal frequency-division multiplexing
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signals in time-varying multipath channels, we demonstrate that our “channel-like” over-

lay fingerprint authentication scheme achieves 99.99 percent detection accuracy and 100

percent classification accuracy, with SNR as low as 5-6 dB.

4.2 Introduction

As wireless communication has become a ubiquitous part of every-day life, access

to the electromagnetic spectrum has become increasingly competitive. To facilitate effi-

cient use of limited spectral resources, an arbitration method known as Dynamic Spectrum

Access (DSA) was recently proposed [4]. Inspired by a FCC ruling regarding Wireless

Regional Area Networks (WRAN), IEEE 802.22 [20] has dramatically increased inter-

est in spectrum sensing and shared spectrum technologies. Under IEEE 802.22, limited

access to the unused spectrum between Digital Television (DTV) channels, or the white

space spectrum, is granted to next-generation wireless broadband equipment. In partic-

ular, licensed DTV stations, or primary users , are given explicit first-right-of-access to

television spectrum, while broadband users known as secondary users , are allowed ac-

cess to the shared spectrum only when a primary user is not transmitting. While DSA

shows promise in facilitating efficient spectrum access, accurate signal classification al-

gorithms are required to facilitate the robust operation of next-generation wireless radios

and the interoperability of DSA equipment.

To ensure efficient use of white space spectrum under IEEE 802.22, spectral alloca-

tions must first be tested to guarantee that primary users are not present before secondary

users are granted access to an allocation. Since the accurate detection of primary users
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is required for correct utilization of the shared spectrum, this difficult issue has become

known as the Primary User Authentication (PUA) problem.

Traditional approaches to signal identification involving the computation of statis-

tical properties [44] or cyclostationary features [22, 57, 68] have been proposed. These

approaches can be considered passive signal characterization methods since the transmit-

ter does not explicitly participate in the detection and classification process, nor does it

modify characteristics of its signal to aid the detection and classification process. Classifi-

cation approaches using these features in DSA scenarios have also been discussed, includ-

ing machine learning [23] and policy-based classification engines [67]. These works have

demonstrated the utility of machine learning approaches in signal classification applica-

tions; however, recent work [14, 48] has shown potential weaknesses in these approaches.

In non-cooperative environments, adversaries can easily manipulate the learning process

by fooling passive signal characterization methods, exposing DSA systems to a number

of identity-based attacks.

While passive approaches readily admit to low complexity implementations, they

are also prone to manipulation and forgery, allowing secondary users to masquerade as

primary users by simply mimicking basic features of a primary user signal. Once a sec-

ondary user has been incorrectly classified as a primary user , the user can unfairly gain

unfettered access to the spectrum. These attacks have become known as Primary User

Emulation (PUE) attacks [13, 12], and to prevent malicious behavior the proposed physi-

cal authentication mechanism embeds an explicit and unambiguous (PHY) layer message

into the signal to be transmitted, providing stronger signal identification and user authen-

tication capabilities than those afforded by passive approaches.
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We present a three faceted approach to creating a holistic signal authentication

mechanism that can be applied to DSA theaters. First, we leverage the orthogonal fre-

quency division multiplexing (OFDM) fingerprint overlay embedding scheme presented

in [28] to embed a multi-bit, digital message at the PHY-layer, that is broadcast to all

users within reception range of the transmission. Since the message is broadcast to all

users, allowing every user to authenticate the fingerprinted transmission, we make no at-

tempt to establish a covert or secret transmission. Secondly, we demonstrate that a digital

message, embedded using the “channel-like” fingerprinting method, can achieve a bit er-

ror rate (BER) much lower than the original signal. Since we consider the embedding

of multi-bit digital digital messages, we use BER of the received fingerprint message

as a measure of performance. We describe an example digital authentication message

to illustrate our authentication message, leveraging proven cryptographic primitives and

best design practices in the security literature, and discuss how such mechanisms prevent

PUE attacks. Lastly, we combine our PHY-layer approach with existing passive spectrum

sensing techniques to create a hybrid spectrum sensing metric that outperforms passive

sensing techniques, when passive techniques are used alone.

This chapter is organized as follows. Section 4.3 introduces our system model,

briefly describes the fingerprinting method described in [28], and introduces the “two

role” user model. Section 4.4 considers the bit-level content of the fingerprint message,

and discusses how the cryptographic devices of the message prevent typical authentication

attacks. In Section 4.5 we present simulation results for the proposed method, where

we focus on disambiguating a homogeneous set of signals that would cause traditional

passive classification techniques to fail. In Section 4.6 we present our conclusions.

125



4.3 System Model and Problem Formulation

We consider an OFDM system where the transmission is subjected to a linear time-

domain channel response g(t), given as

g(t) =
∑
c

Ac(t)δ(t−∆τc), (4.1)

where ∆ is the sampling interval, τc are the delays for each channel component, and Ac(t)

are the complex valued delay-spread gains at time t for multipath component c. The

OFDM system is modulated using an N -point discrete-time inverse Fourier transform

(IDFTN ), and then subsequently demodulated using an N -point discrete-time Fourier

transform (DFTN ).

While [28] presents a taxonomy of channel-like OFDM fingerprinting overlay de-

signs using various amounts of previous channel state information (CSI) to improve fin-

gerprint detection performance, in this work we leverage only overlay designs that require

zero CSI knowledge, such as the Khu,wv design, since these designs feature the lowest

computational complexity, are the simplest to implement, and require zero CSI feedback

overhead.

While the advantage of the Khu,hv[l] design is that knowledge of previous CSI and

CSI feedback is not required to design the overlay, the main disadvantage of this design

is that linear time-varying channel distortions will interfere with the fingerprint signal,

since knowledge of such distortions are not considered when designing the left and right

spreading bases of the overlay.
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4.3.1 Fingerprint Overlay Variance

In [28] it was demonstrated that an unbiased estimate for the fingerprint overlay

K[l] can be obtained from the block aggregate channel response Q̂[l] at the receiver. It

can be shown that the variance for the recovered overlay estimate is

Var
[
Q̂[l]

]
= (P[l] +K[l])2

 E
[
N̂2
]
+ L2[l]

E
[
N̂2
]
+ L2[l − ε]

− L̂2[l]

L̂2[l − ε]

 , (4.2)

where each element of E
[
N̂2
]

is the noise variance of the channel.

4.3.2 PHY-layer Threat Model

We assume that adversaries are capable of generating a transmission using the same

methods that generate Y[k], and we further assume that adversaries have full knowledge

of the fingerprint overlay design and how the fingerprinting function f[k] is applied, but

do not have knowledge of the fingerprint signal vector [ξp ξp+1 . . . ξP−1]l. In Section 4.4,

we will give examples for digital multi-bit authentication messages that incorporate cryp-

tographic security features to prevent forgery and reply of the authentication message to

be signaled via [ξp ξp+1 . . . ξP−1]l. Thus, adversaries are able to mimic all primary user

features but are unable to forge the fingerprint signal vector [ξp ξp+1 . . . ξP−1]l. When

K[k] is designed to sufficiently spread the fingerprint over frequency and time, all signal

characterization methods relying on passive features such as cyclostationary behavior,

modulation characteristics, signal bandwidth, and spectral shape, will fail when attempt-

ing to discern users.

Fabrication of an authentic transmission would require forgery of F[k]. We will

protect the digital multi-bit authentication message conveyed by [ξp ξp+1 . . . ξP−1]l and
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its associated F[k] from forgery and replay by using cryptographic primitives and best

security design practices, to be discussed in Section 4.4. Thus, an attack attempting

to forge F[k], and an authentic looking fingerprinted transmission Y[k], is not possible

unless the cryptographic keys used to sign the digital multi-bit message conveyed by

[ξp ξp+1 . . . ξP−1]l are compromised.

In Section 4.4 we will demonstrate that the digital multi-bit authentication mes-

sage conveyed by [ξp ξp+1 . . . ξP−1]l is designed to incorporate self-verifying information

about the transmitted signal Y[k]. The entire multi-bit message conveyed by [ξp ξp+1 . . . ξP−1]l

is then signed using cryptographic keys to authenticate the digital message and the self-

verifying information fields. By including self-verifying information in the authentica-

tion message, if an adversary were to ever compromise the keys used to sign the digital

multi-bit transmission conveyed by [ξp ξp+1 . . . ξP−1]l, and is able to completely repli-

cate F[k], a forged transmission would be limited to the frequencies and times prescribed

by the compromised key since any deviation in these parameters would implicate the

transmission of forgery.

4.4 The Digital Fingerprint Message

To modulate a multi-bit digital authentication message, the elements [ξp ξp+1 . . . ξP−1]l

can be selected by the transmitter as symbols from a typical Pulse Amplitude Modulation

(PAM) signal constellation, and using an appropriate bit-to-symbol mapping the receiver

can recover the digital authentication message from [ξp ξp+1 . . . ξP−1]l after extracting

these statistics. While the vector [ξp ξp+1 . . . ξP−1]l is only P − p symbols long, the
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concatenation a number of consecutive vectors over ω fingerprinted blocks will yield a

digital authentication message of length ρ = ω(P − p) symbols long. For example, for

the values P = 128, p = 8 ω = 10 a digital authentication message of ρ = 1200 bits can

be employed. Recovery of the fingerprint signal vector [ξp ξp+1 . . . ξP−1] at the receiver

is discussed in [28], where the receiver projects the received equalizer channel estimate

data onto the left and right signaling bases,
[

0 U2

]H
l−ε

and
[

0 V2

]
l−ε

, respectively, to

de-spread the fingerprint signal.

4.4.1 Basic Authentication Message

To address the needs of DSA applications, the digital authentication message em-

bedded in each node’s transmission should contain basic self-verifying information such

as the frequency, location, and time the signal is authorized for transmission. We will

denote these fields as F , L, and T , respectively. A message hash of these parameters

is then digitally signed using a secret key owned by the transmitter and included in the

message, while a timestamp denoted TS is also included with the authentication message

to prevent future replay of the message by malicious users. The timestamp allows for the

enforcement of an expiration deadline on the content of the message, and in the event an

authentication message is received with a timestamp that has passed the expiration dead-

line it will be discarded by the receiver. The authentication message for a primary user

Uj , denoted msgUj ,A, is given as

msgUj ,A =
{
TS, F, L, T ,KA

+, [Hashm [TS, F, L, T ]]KA

}
, (4.3)
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where [·]KA
is a digital signature of the content within [·] using the private key owned by

the primary user group, the subscript A is used to denote that user Uj is a member of the

primary user group A, KA
+ is the public key of the primary users group, and Hashm [·]

is message digest of length m for the content within [·].

The hash algorithm Hashm [·] can be any of a number of widely used collision-

resistant hash algorithms, such as MD5 or SHA-1 [21], which provide reasonable security

against malicious fabrication of messages. Depending on the details of the DSA applica-

tion, an authentication message similar to (4.3) could be established for secondary users ,

or to reduce the implementation complexity of secondary user transmitters the fingerprint

message F[k] could be omitted entirely from secondary user transmissions and thus any

transmission that does not contain a valid primary user fingerprint will be classified as a

secondary user .

4.4.2 Decoding of the Basic Authentication Message

To decode the authentication message, the receiver first recovers the embedded

multi-bit digital fingerprint message and then extracts parameters from the payload of

the message. Once each field has been extracted, the authenticity of the primary user

group’s public key, KA
+, is verified from a mutually accepted trust anchor or certificate

authority (CA). The receiver then independently verifies [Hashm [TS, F, L, T ]]KA
using

the primary user group’s public key, KA
+, which is embedded in the authentication mes-

sage. Malicious forgery of the authentication message is prevented through the signature

process, and by including this signature as part of the authentication message. The modi-
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fication of any subset of the authentication message parameters TS, F , L, and T , would

cause the message signature to fail validation when it is received, enabling the receiver to

detect and discard modified messages.

If the authenticity of KA
+ and the message signature were both deemed valid, and

the operating signal is within the specifications of F , L, and T , it will then be recognized

as an primary user . This authentication messaging system relies on the existence of a trust

anchor, sometimes referred to as a Certificate Authority (CA), to verify the authenticity

of KA
+. While primary users in the PUA problem posed by IEEE 802.22 are digital tele-

vision transmissions adhering to the American Television Standards Committee (ATSC)

specification which does not use OFDM signaling, in this chapter we consider DSA appli-

cations employing OFDM due to its widespread adoption in modern waveforms [35, 1].

The establishment of a trust anchor is still required for correct operation of the

system. In the United States, for example, the FCC could establish a CA to sign certifi-

cates for individual licensed transmitters, and the address of the CA could be distributed

to wireless devices requiring accurate authentication of DSA users. Smaller wireless

networks could establish a similar centralized trust anchor for the purpose of validating

user’s public keys. A number of decentralized methods for establishing a CA have been

discussed [38, 3] to overcome shortcomings of centralized schemes, however discussion

of these methods are outside of the scope of this chapter .
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4.4.3 Secure Group Entry

While an authentication message such as (4.3) provides a mechanism for nodes

within an established system to differentiate transmissions by users of various roles, it

does not address initial network entry, also known as the bootstrapping problem, that

exists when a new user needs to enter the system for the first time. While in practice

wireless networks with any number of user roles are conceivable, for the sake of discus-

sion we consider the two-role wireless network consisting of a group of primary users ,

a group of secondary user nodes, and a designated CA. A secure system addressing the

bootstrapping problem must provide a mechanism for nodes to securely enter the network

as a member of one of these two groups. To ensure that the system is highly available, the

bootstrapping mechanism should allow new nodes to enter into the network via a number

of points of access.

We consider a replicated bootstrapping service, where a percentage of nodes within

the network are designated as trusted bootstrapping agents, and are allowed to bootstrap

new nodes into the network. We denote the group of bootstrapping agents as Qi, i =

0, · · · , QN , where QN is the number of bootstrapping agents distributed throughout the

network. It is assumed that Qi have been vetted by the network and CA, and are trusted

agents for facilitating initial network entry. When a new network node Uj attempts to enter

the network for the first time as a primary user , it first sends a bootstrapping broadcast

request to locate one of the bootstrapping agents. To locate a bootstrapping agent, Uj

sends a broadcast message, denoted bootUj ,A, which is given as

bootUj ,A =
{[

A,Uj, T,KA
+
(
RP,KUj ,A

)]
Uj

,
[
Uj, KUj

+
]
CA

}
, (4.4)
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where the subscript A denotes that the user Uj is attempting to join the primary user

group, T is a message timestamp designed to establish an expiration deadline to validate

the message, [·]CA denotes that the enclosed fields have been signed by the CA, KUj ,A

is the shared key that Uj wants to securely transmit to the group, and RP is a secret

Replay Pad which will be used by Qi to encrypt KUj ,A in subsequent messages. The[
Uj, KUj

+
]
CA

component becomes a certificate denoting that the group’s trust anchor has

verified the authenticity of Uj
′s public key.

In this example basic message, KA
+
(
RP,KUj ,A

)
denotes that the relay pad RP

and Uj
′s primary user shared key KUj ,A have been encrypted with the primary users group

public key KA
+, therefore only the group’s private key KA

− can decrypt these fields. By

encrypting this message using the group’s public key, node Uj is protected from malicious

key exchange attacks, where an attacker poses as an authentic bootstrapping node. The

proceeding steps of the bootstrapping process will securely convey KA
− to the joining

user, allowing Uj to decrypt and use KA
− in future transmissions.

When one of the bootstrapping nodes, Qi, eventually receives a bootstrapping re-

quest and verifies that Uj is allowed to join group A, it will respond to node Uj and

proceed to the next step of the bootstrapping process. The reply message sent by Qi,

denoted bootreplyQi,Uj
, becomes

bootreplyQi,Uj
=
[
Uj, N, CKA ⊕RP,CKA

(
KA

−)]
Qi

, (4.5)

where N is a nonce, or a randomly generated piece of information, CKA is the group’s

shared secret which will be used to encrypt the primary user group’s private key, KA
− is

the primary user ’s group’s private key, CKA⊕RP denotes that the group’s shared secret
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CKA has been xor’ed with the replay pad RP , and [·]Qi
denotes that the enclosed fields

have been signed with Qi
′s private certificate. By applying the xor operation to CKA and

RP , Qi can securely transmit the group shared secret CKA to Uj . The nonce N will be

used in subsequent transmissions to verify that Uj has successfully decrypted KA
−.

Once Uj receives the bootreplyQi,Uj
message, it uses the RP which it has secretly

retained to recover the group shared secret CKA. After CKA has been recovered, node

Uj can use the group’s shared secret to decrypt the group’s private key KA
−, which it will

use in future group communications. To notify that Qi that the bootreplyQi,Uj
has been

successfully processed, Uj will send the final confirmation message, bootconfirmUj ,Qi
,

to Qi, i.e.

bootconfirmUj ,Qi
= KUj ,A (N), (4.6)

which is simply the nonce N from the bootreplyQi,Uj
message encrypted with Uj

′s pri-

mary user shared key, KUj ,A, which Qi has had in it’s possession since the bootUj ,A mes-

sage. After receiving this message, Qi decrypts the nonce, and compares it to the value

N which it sent to Uj in (4.5). If the two values match, Qi now has confirmation that Uj

has successfully joined the group.

The use of the nonce ties Uj
′s confirm message, bootconfirmUj ,Qi

, to bootreplyQi,Uj
,

and together with use of the replay pad between the bootUj ,A and bootreplyQi,Uj
all of the

messages in the exchange are tied together as one authentic bootstrapping session.

Using the given secure group entry method, any number of groups representing var-

ious roles in a DSA theater could be derived. For the two role system, another secondary

user group UA could be created, in addition to the primary user group A in the previous
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example.

4.4.4 Message Security Evaluation

To be considered secure, cryptographic protocols need to be robust against forgery,

modification, deletion, and replay. Since we are considering a broadcast authentication

system, where every user is able to decode and subsequently verify the fingerprint mes-

sage, all notions of privacy are non-applicable since we want every user to have the ability

to extract the authentication message.

Provided the hashing algorithm used is collision-resistant, forgery is not possible.

Modification of (4.3) and the self-verifying fields is prevented through use of the signa-

ture itself. If any of the fields, TS, F , L, T , or KA are changed, then the signed hash

is no longer valid. By leveraging proven cryptographic primitives in the design of keys,

message signatures, and message hashes, the probability of making an authentication er-

ror is reduced to the probability of a hash collision. A well designed hash algorithm such

as SHA-1 will feature a collision probability which is nearly zero in all practical appli-

cations, thus preventing the acceptance of incorrect authentication messages. For exam-

ple, when using a 64-bit message hash a malicious node would require approximately

5.1× 109 attempts to achieve one collision using a brute force ’birthday’ attack. Current

best practices when using secure hashing algorithms suggest using at least a 256-bit hash,

i.e. SHA-256, further decreasing the probability of an authentication error and making

the probability of accepting a forgery in the unlikely event an attacker were to fabricate a

hash collision, virtually impossible.
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Since the authentication message msgUj ,A is transmitted as a multi-bit digital signal,

the probability of a fingerprint detection miss is the same as the probability of receiving

the entire authentication message with one or more bit errors. Since a single bit error

in either the authentication message or the signature will cause the authentication to fail,

the probability of missing the authentication message is the same as the probability of a

at least one bit error in the message. Therefore for an uncoded binary transmission, the

probability that the received authentication message is received in error is simply

P [ ˆmsgUj ,A 6= msgUj ,A] = 1− (1− Pe)
M+N , (4.7)

where Pe is the probability of a bit error in the authentication signal, M = length{TS, F, L, T}

and N = length{[Hashm [TS, F, L, T ]]KA
}. The use of forward error correction (FEC)

on the authentication signal, combined with a continuously repeated message (i.e. repeti-

tion encoding), can further decrease the probability of an authentication miss.

The authentication message in (4.3) also includes the frequency F that the transmit-

ter is allowed to transmit on, which would presumably be associated with the transmitter’s

key and recorded by a CA like the FCC. Therefore even if we assume that an adversary

can compromise an primary user ’s key and forge F[k] at the PHY-layer, the attacker will

be constrained to the frequency or frequencies prescribed by the compromised key. Using

a forged F[k] on a frequency other than the original frequency prescribed by the key will

implicate the transmission as a forgery when validating the credentials of the key against

the CA’s records.

In the secure group entry method discussed in Section (4.4.3), the authenticity of
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messages are guaranteed using signatures and shared keys, while session coherence and

replay attacks are prevented through the use of the replay pad and nonce.

4.5 Simulation Results

In this section we present simulation results for the Khu,wv fingerprint overlay de-

sign, using the intrinsic time-varying channel model described in [64] and applying the

same assumptions and parameters as used in [28]. Through simulation we quantitatively

compare the detection performance for primary and secondary user signals in complex

time-varying channels, and measure any degradation experienced by each user’s signal

due to the presence of the embedded fingerprint. To measure user signal degradation, we

compare the BERs of the primary signal with and without the fingerprint present.

To simulate the embedding of both user fingerprint signals, a full OFDM system and

accompanying channel simulator were created in Matlab. The generated OFDM signal

uses a 512-point FFT with 430 occupied subcarriers and 41 left and right guard subcar-

riers. A BPSK-modulated preamble occupies the first symbol of each frame using a 2×

time-domain repetition, while the following payload symbols are modulated using QPSK.

To allow for periodic sampling of the intrinsic channel response, the odd-even differential

modulation scheme discussed in [28] was used, where odd frames are fingerprinted and

even frames are left unfingerprinted to aid in channel sounding; a process that is required

to measure and reverse distortions of the intrinsic time-varying channel.

Each OFDM frame was then subjected to a simulated time-varying channel by ap-

plying g(t) in the time domain using a transversal filter, according to (4.1). Timing jitter
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was also added to test the fingerprint’s affect on typical frame synchronization algorithms,

and the Schmidl and Cox algorithm [51] was used for course timing recovery. The LS

channel estimator was applied to estimate the aggregate channel distortion using the frame

preamble as training data, and the resulting estimate was then up-sampled using 2× sinc

interpolation.

A number of channel estimation techniques have been considered for OFDM sys-

tems, including the minimum mean-squared error (MMSE) estimator, and the least-squares

(LS) estimator. These estimators, with some improvements, are discussed in [59] for

the system model described above. A discussion of particular channel estimation tech-

niques is beyond the scope of this chapter , therefore without loss of generality, we use

least-square (LS) channel estimator [59] in Section 4.5, due to its widespread adoption in

OFDM systems, ease of implementation, and low computational complexity.

The channel sounding symbol and fingerprinted symbol were then equalized inde-

pendently, and q̂[l − ε] and ĥ[l] were recorded for each frame for later use during the

fingerprint recovery phase. Both the BPSK preamble data and QPSK payload data are

demodulated into bits, and the bit errors for fingerprinted and non-fingerprinted frames

were recorded.

We model a DSA system using the two-node model consisting of primary and sec-

ondary users . Primary users embed the message msgPj ,A, j = 1, . . . , NA into their trans-

mission, where NA are the number of users in the primary users group A, while secondary

users embed msgPk,U , k = 1, . . . , NU into their transmission, where NU is the number of

users in the secondary user group. Two other model parameters, namely the fingerprint

strength, denoted λ, and the excitation noise variance of the time-varying channel pro-
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cess, σT , are both discussed in depth in [28]. A detailed discussion of these parameters

is omitted here for space considerations, therefore we refer the reader to this work for a

detailed channel model and description of these parameters.

In consideration of a worst-case PUE attack scenario, all other aspects of both the

primary user and secondary user ’s transmissions, such as the number of subcarriers, the

bandwidth of the transmission, signal strength, modulation details, and preamble struc-

ture, are identical, while the exact contents of the multi-bit digital fingerprint message

transmitted by each user is different and assumed to be unknown by the opposing group.

We assume that secure group assignment has been performed, therefore crypto-

graphic keys have been securely transfered such that secondary users cannot fabricate a

primary user ’s message, and vice-versa. While a message containing all fields suggested

by (4.3) might be several hundred bits long, for the sake of discussion we select both

the primary user message, msgUj ,A, and the secondary user message, msgUk,UA, to be

ρ = 224 bit sequences generated by a pseudo-random number (PN) generator, therefore

making both messages completely uncorrelated PN sequences.

To correctly detect either msgPj ,A or msgPk,UA we require that the entire 224 bit

sequence be received without bit errors, while reception of a message with at least one bit

error will constitute a detection miss. While longer authentication messages may require

use of forward error correction (FEC) to ensure that the entire message is received without

bit errors, FEC was not considered in our simulations.

The BER plots for the fingerprinted signal with and without the fingerprint present,

for fingerprint strength values λ = [2, 6] and time-varying channel excitation noise vari-

ance σT = .001, are depicted in Figure 4.5, along with the BER of the authentication
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fingerprint signal. From Figure 4.5 we note that the authentication signal is received with

a substantial BER advantage over the user signal, and that this advantage increases with

the strength of the fingerprint, i.e as λ increases. Detection performance for the 224 bit

0 5 10 15

10
−5

10
−4

10
−3

10
−2

10
−1

N=512 P=64 ρ=224 − t=0.01

SNR dB

B
E

R

 

 
User Signal w/o Authentication− λ

p
 2

Authentication Signal − λ
p
 2

User Signal − λ
p
 2

User Signal w/o Authentication− λ
p
 6

Authentication Signal − λ
p
 6

User Signal − λ
p
 6

Figure 1: Original Signal and Auth. Signal BER with and without Fingerprint Present,

various λi

authentication message transmitted by both the primary and secondary users is depicted

in Figure 4.5, for values of λ = [2, 6]. For comparison, we also include the message de-

tection performance for a message of the same length sent via the payload of the OFDM

signal. We note from Figure 4.5 that the detection performance for both users is identi-

cal, as the series for the primary and secondary users are completely overlapping for both

values of λ. We also note that the detection performance increases with respect to λ, and

that increasing the strength of the fingerprint, by increasing λ, allows the fingerprint to be

detected in lower SNR. From Figure 4.5 we notice that the threshold between the 0% de-
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tection rate and 100% detection rate is very steep, and that this threshold occurs between

5 and 7 dB SNR, for the values of λ chosen. This proves that the signal can be authenti-

cated nearly 100 percent of the time, in SNR conditions as low as 6− 7 dB. Additionally

we note that the authentication message sent using fingerprint embedding outperforms a

similar message sent via the payload of the signal by a margin of nearly 5 dB.
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Figure 2: Detection Rate of Primary and Secondary Users for Various λi, (overlapping

series)

For comparison, we plot the message detection rate results of 4.5 with predicted

message detection results based on the BER of the authentication signal using (4.7). These

results are depicted in 4.5, where we observe that the simulated detection rates are very

close to those predicted using BER rates.

Detection performance for both user messages is also depicted in Figure 4.5, for

values of σt = [.01, .015]. From 4.5 we see that the detection performance for both
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users is again identical, as the series for the primary and secondary users are completely

overlapping for both values of σT , and we also note that the detection performance is

relatively invariant of σT , for the values of chosen. We note from 4.5 that the threshold

between the 0% detection rate and 100% detection rate is again very steep, and that this

threshold occurs at 6 dB SNR, for both values of σT . We again include the message

detection performance for a message of the same length sent via the payload of the OFDM

signal, and note that in this case the fingerprint authentication message detection rate

outperforms the payload authentication message by 4 dB.

We plot the message detection rate results of 4.5 with predicted message detection

results based on BER, observing that the simulated detection rates are also very close to

the predicted values.
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4.6 Conclusion

In this chapter we have discussed a holistic authentication system for OFDM wire-

less transmissions that leverages channel-like fingerprint embedding techniques. We have

extended the basic embedding approach by considering a digital authentication message

for the dual-role system, to illustrate our approach. Additionally, the bootstrapping prob-

lem was addressed by presenting a mechanism for providing secure group entry. A de-

tailed analysis of the security features of the authentication message, and the secure group

entry messages, were discussed. Simulation results were presented for detecting the au-

thentication fingerprint message for the two-role system. We have shown that our authen-

tication scheme achieves 99.99 percent detection accuracy and 100 percent classification
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accuracy, with SNR as low as 5-6 dB.
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Chapter 5

Best-Effort Cooperative Relaying

5.1 Overview

Traditional cooperative communications consider dedicated-relays, while often such

relays may not be available. In this chapter, we consider wireless transceivers that relay

signals in addition to their own primary communication mission. We consider a best-

effort delivery policy, where a node is not obligated to devote energy to cooperatively

relay signals, nor does it provide a guarantee of signal quality on retransmissions. Instead

the relay sacrifices energy at its own discretion, with priority given to the primary commu-

nication mission. We consider one best-effort delivery problem: a system that transmits

an additional relay signal within its original transmission energy budget while inducing

minimal degradation to the primary-user’s signal. To maintain this constraint, we con-

sider the feasibility of reallocating energy from pilot signals used for channel estimation

toward the relaying service, when channel conditions are stationary. We demonstrate that

transmitter energy may be dynamically allocated between a relay component and a pilot

component of the transmission using best-effort delivery. This power allocation is critical

to system performance, since both the primary-user and the secondary-user may require

pilot energy to correctly decode transmitted signals. Sub-optimal power allocation rules

with respect to primary-user channel estimate mean-square error and pairwise error prob-

ability are derived.
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5.2 Introduction

Cooperative communication through the judicious use of relay-nodes has proven

extremely advantageous in decreasing outage probabilities, [45, 42] and frame error rates

[43] when the channel between the source and destination is of poor quality. Traditional

relay schemes typically consider only nodes dedicated to relaying signals [15]. However,

when a dedicated-relay is not available, nodes with their own communication mission

must assist in relaying signals. We consider a relaying system where nodes provide relay

services to a secondary-user in addition to their own primary communications, and the re-

lay service is provided on a best-effort basis. Under the proposed scheme, a node with its

own communication mission may also offer relay services while maintaining its original

energy constraint. We extend the traditional three node relay problem considered in [15]

to include the secondary-user node, and focus on the power allocation problem presented

to the relay in this scenario. The best-effort relay system and the relationship between the

secondary-user, or relay-user, and primary-user channels is depicted in Fig. 1, where the

three node system of [15] is augmented to include the secondary-user.

The terms primary-user and secondary-user have been used numerous times in the

literature to describe precedence roles in cognitive radio and cooperative communications

[12]. When a constrained resource is shared by a number of users, it is the primary-

users that typically have first-right-of-access to the shared resource, and are given higher

priority than the secondary-users. Our use of the terms in this work is similar.

As a motivating example for adaptive best-effort relaying we consider the scenario

of stationary channel conditions for the primary-user channel, when less energy is re-
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quired for channel estimation purposes. A number of studies have attempted to char-

acterize the correlation of time-varying channel estimates, including the works of [34]

and [60]. These studies have shown that in fixed and low-mobility scenarios consecutive

channel estimates in multipath scenarios are highly correlated. Under these conditions

the relay may choose to devote more power toward relaying services and less power to-

ward pilot signals for the primary-user channel, according to the quality of service (QoS)

requirements of the primary-user.

When channel conditions require additional channel estimation energy, as is the

case when the primary-user channel is undergoing change, the relay may choose to al-

locate more power toward the pilot component of the transmission for channel estima-

tion purposes and less power for relay transmissions. The proposed best-effort delivery

method introduces a unique power allocation problem in which the relay must select op-

timal power settings for the pilot and relayed signals. Power allocation for the relayed

transmission is not guaranteed, and is rationed to aid the secondary-user only at the dis-

cretion of the primary-user. Thus, energy for the purpose of cooperative diversity through

the relaying of signals is scavenged, when feasible, and the relayed transmissions are

delivered on a best-effort basis.

Traditional pilot-aided channel estimation techniques, such as pilot symbol assisted

modulation (PSAM), are discussed in [7]. Channel estimation schemes like PSAM create

a composite signal consisting of two components: pilot signals used for channel esti-

mation, and the user’s data signal. To implement the relay service we instead consider

a composite space-time code (STC) composed three components: the primary-user data

signal, the pilot signal, and the relayed signal destined for the secondary-user. The density
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of the pilot signals and bandwidth resources for each component are assumed to be preal-

located and constant, as we focus solely on the power allocation subproblem in this work.

Also, we consider the case where the transmission power used for the primary-user data

signal will remain constant in the composite signal; however the power devoted to the

pilot signal component and the secondary-user component will be dynamically allocated.

While many pilot-embedding techniques have been proposed before, we formulate

our best-effort delivery channel using the pilot-embedding framework proposed in [50],

which generalizes how pilot signals may be embedded into data signals using a STC

approach. With this embedding method, mutually orthogonal pilot and data signals are

combined as a composite STC block before transmission. The STC approach is used

as a general method for generating a sequence of symbols with periodically occurring

pilot signals comprising a single block code, and allows for maximum flexibility in the

design of pilot-aided transmissions for systems with one or more transmit antenna. The

method easily extends to broadband signals such as OFDM, through the Space Time

Frequency (STF) block code model [55]. Here, we investigate best-effort cooperative

relaying using generic pilot embedding when the data-component of a data-bearing pilot

block is reserved for relay transmissions.

Cooperative and Cognitive Radio (CR) systems can be complex systems faced with

a number of resource allocation problems. Nodes that choose to cooperate must con-

stantly ration resources such as transmission energy and bandwidth when these resources

are limited [52, 41, 33]. While the rationing of bandwidth, for example, is an important

resource allocation problem, in this chapterwe focus solely on the four node power al-

location subproblem suggested by Fig. 1 and leave the extension of this subproblem to
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multi-node systems where bandwidth may also be rationed, as future work. The important

cooperative system reciprocity issues of altruism and avariciousness are also not consid-

ered here; therefore, the motivations of the relay for aiding the secondary user, while

interesting, are not applicable as this work focuses on cooperation once the decision to

cooperate has been made.

In this chapter, we discuss a number of optimization problems that arise when con-

sidering the best-effort delivery of signals, and derive sub-optimal power allocation poli-

cies with respect to the upper-bound mean squared error (MSE) of the channel estimate,

and the pairwise error probability (PEP) of the primary-user. The power allocation prob-

lem and general feasibility of best-effort delivery are considered using these two QoS

criterion. We extend our work in [31] to consider the MSE-based power allocation rule

and the total bit error rate (BER) of the system, comparing the performance of both allo-

cation rules in greater detail. Additionally, sub-optimal power allocation considering the

aggregate capacity of both the primary and secondary users is discussed.

This chapteris structured as follows: Section 5.3 generalizes data-bearing pilot

frameworks (DBPF) and briefly introduces previous power-allocation work with secondary-

channels. In Section 5.4 the best-effort relay problem is discussed, and a model for an-

alytic system design is presented. Sub-optimal power allocation policies, with respect to

the primary-user, are derived taking the upper-bound channel estimate MSE and PEP into

consideration. In Section 5.5 simulation results are presented, and in Section 5.6 we give

some concluding remarks.
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5.3 System Model and Problem Formulation

We briefly describe the channel model used in our best-effort delivery scheme. We

assume all nodes are MIMO systems with Lt transmit antenna(s) and Lr receive an-

tenna(s) and use a Space Time (ST) block scheme, where the block transmitted at time

index t is described by matrix U(t) of size Lt × M . The ST block U(t) is a composite

signal composed three components: the primary-user data signal, the pilot signal, and

the relayed signal destined for the secondary-user. The composite signal is transmitted

across all Lt transmit antennas in M time slots, and is broadcast to both the primary and

secondary users. The received block Y(t) expressed in matrix form is

Y(t) = H(t)U(t) + N(t), (5.1)

with the channel coefficient matrix H(t) of size Lr × Lt describing the channel condi-

tions experienced by the block at time t. The channel noise N(t) is modeled as complex

white Gaussian noise with zero mean and variance (σ2/2)I(Lr×M). We assume Rayleigh

block fading for the elements of H(t), where the entries of H(t) are independent zero

mean complex Gaussian random variables that remain constant over each symbol block.

The channel estimation problem is to estimate H(t) and recover the original ST block

U(t), where the channel estimate is computed from the pilot / training signals. The pi-

lot or training signal is embedded in the original transmission U(t), using a generalized

embedding scheme to be described as follows.

We now briefly describe the pilot-embedding framework presented in [50], which

provides the edifice for the design of U(t). The ST block to be transmitted is given as

U(t) = D(t)A + P, (5.2)
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where P ∈ RLt×M is the pilot matrix, ST block data-bearer matrix D(t) ∈ CLt×N , and

data-projection matrix A ∈ RN×M . Here, N is the number of time slots reserved for

data transmission, while time slots M −N, N < M are reserved for the embedded pilot

signals and the relayed signal for the secondary-user. The pilot-embedding structures

discussed in [50] have a bandwidth efficiency which is proportional to (M − Lt)/M

for the case M = N + Lt. The ST channel matrix is assumed to follow the constraint

E[||H(t)||]2 = Lt, or constant energy under the Frobenius norm. The salient point of the

data-bearing framework is that pilot-embedding schemes may be generalized through the

superposition of the data-bearing structure D(t)A and the pilot matrix P(t). The data-

projection and pilot matrix satisfy the following properties:

APT = 0 ∈ RN×Lt , AAT = βI ∈ RN×N , PPT = αI ∈ RLt×Lt . (5.3)

where β is the real-valued power of the relayed signal, and α is a real-valued power

coefficient of the pilot portion of the signal. The α coefficient will become an important

parameter in the analysis to come, as it represents the fraction of divertable power that

is retained for pilot signals. Since the power allocated to the relay and pilot signals is

allocated dynamically, it is assumed that both the primary and secondary user receivers

employ either independent gain control for each signal, or convey the value of α used for

each block to the receivers using a control channel signal that is not considered here.

We assume that the number of time slots M in the ST transmission U(t) remains

constant, and the number of time slots used for data transmission N also remains constant.

Using this criteria the number of time slots available for best-effort transmissions also

remains constant.
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The properties (5.3) of the data-projection matrix A and P essentially allow A to

project the data component D(t) onto the orthogonal subspace of the pilot matrix P, al-

lowing for signal demodulation by means of a Maximum Likelihood (ML) receiver. These

properties imply that Rank(A) = N , Rank(P) = Lt, and the number of time slots M

required of the ST symbol U(t) is M = Rank(A) + Rank(P). The pilot structures of

(5.3) operate under a power constraint

β = Pp − α, (5.4)

with Pp being the original normalized block transmission power of the node. According

to (5.4) the power allocated to the composite signal consisting of the pilot plus secondary-

user data signal is equal to the power of the original node transmission. To understand the

behavior of the power allocation term α in terms of secondary-user performance, we first

note that the normalized block power may be expressed as

Pp =
E [||U(t)||2]

Lt

=
E [||D(t)A||2]

Lt

+
E [||P||2]

Lt

,

= β + α = 1.

(5.5)

The signal at the receiver becomes

Z(t) = H(t)(D(t)A + P) + N(t), (5.6)

Three basic structures are discussed in [50] for the design of A and P, including the

Time-Multiplexed (TM) structure which generalizes the previous PSAM pilot embedding

techniques. The TM structure, which will be used later in simulation, is given as

A =
√

β
[
0(N×Lt); I(N×N)

]
P =

√
α
[
I(Lt×Lt); 0(Lt×N)

]
,

(5.7)
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Since the relay node must make the primary communication mission top priority,

we adopt a conservative policy for prioritizing transmissions. Therefore, upper-bounds

are used to ensure that the primary-user QoS constraint is met even in worst-cast channel

conditions. The Chernoff upper-bound pairwise error probability (PEP) with respect to

an independent Rayleigh distributed channel is expressed by [50]

P (d → e)Ĥ(t) ≤

(
L∆∏
i=1

λi

)−Lr
 σ2

Q

4
N

(
N
β
+ Lt

α

)
σ2

−L∆Lr

, (5.8)

where λi are the eigenvalues of the code error matrix defined as Cp,q = xH
q xp and

xp = (dP1 − eP1 , · · · , dPN − ePN)
T is the pairwise difference between the code and the

erroneously detected code. In (5.8), σ2
Q = 1 + (σ2/α) represents the variance of an ele-

ment in the estimated channel coefficient matrix Ĥ(t), and L∆ is the rank of the ST code

with maximum achievable rank Lt. This PEP expression will be used in the next sections

to analyze performance of the primary-user signal and the secondary-user signal, when

adapting to different channel conditions. Another important result is the pair-wise er-

ror probability for the maximum-likelihood receiver, where the channel state information

H(t) is known exactly. We refer the reader to [49] for this result, and the derivation of

channel estimate MSE.

Relay-aided cooperative communication is achieved when a signal transmitted by a

source node is received by one or more intermediate relay-nodes, who in turn retransmit

the source’s signal to the destination. Such systems offer performance advantages in terms

of spatial diversity and power gain [45]. In the relaying scheme known as Decode-and-

Forward (DF), a relay first receives and then decodes the signal from the source node

before retransmitting the signal to the destination. It may be shown that the tight upper-
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bound PEP for the DF dedicated-relay scheme in sufficiently high SNR can be expressed

as

PsDF ≈ N2
0

b2
· 1

P1δ2s,d

(
A2

P1δ2s,r
+

B

P2δ2r,d

)
, (5.9)

where N2
0 is the receiver noise power, δ2s,d, δ2s,r, and δ2r,d are the instantaneous channel

gains between the source and destination, the source and relay, and the relay to destination

respectively, and A, B, and b are modulation specific constants defined in [54]. For

example, if QPSK is employed A, B, and b take on particular values, and if 16QAM

is employed A, B, and b take on another set of values. The real-valued terms P1 and

P2 represent the optimal power allocations used for transmission by the source and the

dedicated DF relay, and are given respectively as

P1 =
δs,r +

√
δ2s,r + 8(A2/B)δ2r,d

3δs,r +
√
δ2s,r + 8(A2/B)δ2r,d

P,

P2 =
2δs,r

3δs,r +
√
δ2s,r + 8(A2/B)δ2r,d

P.

(5.10)

We will compare the fixed power allocations for the dedicated-relay DF scheme, (5.9) and

(5.10), to the dynamic QoS-based allocation rules presented in Section 5.4.

The power optimization problem can be formulated as finding the minimum pilot

power factor α that maintains a QoS level with respect to the primary-user, denoted Gp,

according to some QoS rule G(α, η). That is minimizing α subject to

G(α, η) ≥ Gp, 0 ≤ α ≤ 1, 0 ≤ η ≤ 1, (5.11)

where the coefficient η represents the influence of previous primary-channel state infor-

mation when equalizing the current primary-user block, and will be defined in Section

5.4. One may also interpret η as the confidence of previous channel state information in
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modeling current channel state. If channel conditions have deviated from the previous

channel estimate and there is less confidence in previous channel state information, the

receiver will update its channel estimate using the pilot signals embedded in the transmis-

sion. The estimation of channel variances and η may be performed by the receiver and

communicated to the transmitter through a side control channel; however the discussion

of this control channel is outside the scope of this work.

5.4 Analysis

In the following subsections we present the pairwise error probability, MSE for

the channel estimate, and power allocations for the best-effort relaying system. Since the

power allocations presented are derived with respect to upper-bound system pairwise error

probability and MSE, to ensure that these QoS criterion are unconditionally maintained

for system users, the following allocations are sub-optimal.

5.4.1 PEP and MSE for the Best-Effort Delivery Policy

In this section we consider the PEP and channel estimate MSE experienced by

the primary and secondary users using the system model presented in Section 5.3. Let

us consider the case where channel between the relay and the primary-user, depicted as

the bold/solid line in Fig. 1, is stationary over at least two consecutive blocks, and the

primary-user is able to detect this event. Such conditions may occur between fixed or im-

mutable nodes, and in this motivating example we assume that transmission of additional

pilot signal energy will not dramatically alter or improve the receiver’s channel estimate.
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When the primary-user channel estimate Ĥp(t) has perfectly estimated the channel Hp(t),

that is

Ĥp(t) = Hp(t), (5.12)

the Chernoff upper-bound PEP for the primary-user becomes

P (d → e)Hp(t) ≤

L∆p∏
i=1

λip

−Lrp (
Pp

4σ2
p

)−L∆pLrp

, (5.13)

where L∆p is the rank of the primary-user’s channel Hp(t), λip are the eigenvalues of the

primary-channel, Lrp are the number of receive antennas used by the primary-user, and Pp

is the normalized power used by the primary/relay-node for transmission. The Chernoff

upper-bound PEP for the secondary-user can be expressed as

P (d → e)Ĥs(t)
≤

(
L∆s∏
i=1

λis

)−Lrs
 1 + σ2

s

α

4σ2
s

N

(
N

Pp−α
+ Lts

α

)
−L∆sLrs

, (5.14)

where L∆s is the rank of the the channel estimate Ĥs(t) between the the relay and the

secondary-user, λis are the eigenvalues of the secondary-channel, and Lrs are the num-

ber of receive antennas used by the secondary-user. We note that in this situation the

node is fullfilling primary mission obligations while concurrently acting as a relay for the

secondary-user. Thus the channel Hs is analogous to δr,d and its MIMO representation

Hr,d, referring to the dedicated-relay notation used in Section 5.3.

Under the proposed best-effort delivery policy, power for channel estimation pur-

poses is diverted by the primary-user toward relay transmissions for the secondary-user.

It should be noted that the secondary-user also requires energy for proper channel esti-

mation, thus there exists a performance tradeoff for the secondary-user as power to the

pilot signals is decreased. A plot of the PEP upper-bound for the secondary-user vs SNR,
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with respect to the PEP of the primary-user, for various values of pilot power allocations

α is depicted in Fig. 2 for the conditions Lrp = Lrs = 2 with N = 2 time slots and

Lts = 2, for unit gain channels ∆p = ∆s = 1 and λis = λip = 1. In this figure, SNR

is defined as SNR = PpLtp/σ
2
p, as suggested by (5.25) and (5.28). From this figure we

note that as the value of α decreases the PEP for the secondary-user increases; however

the secondary-user is always at a disadvantage with respect to the primary-user, when

both users experience identical channel conditions.

We now look at the power allocation problem between the pilot-part and relay-part

of the proposed scheme, and how this criteria may change with respect to the needs of the

primary-user. This model will be used in the coming subsections to derive sub-optimal

power allocation rules. By substituting the power constraint (5.5) into the PEP mismatch

equation given in [50], the power optimization problem with respect to the secondary-user

becomes

min
α

ln

(
(N − Lt)α+ PpLtp

(α+ σ2)(Pp − α)

)
. (5.15)

Since the primary-user may use its prior channel estimate when current channel

conditions do not warrant re-estimation of the channel, the MSE for the primary-user

does not depend directly on α because pilot signals are ignored in this case. However,

for each block transmission there is a chance that channel conditions will significantly

change, requiring the primary-user to update its channel estimate using the pilot signal

embedded in the transmission. We model this scenario in simple probabilistic terms as a
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two-state model, with channel state ν given as

ν =


0, Ĥp(t− 1) = Ĥp(t) = Hp(t)

1, Ĥp(t− 1) 6= Hp(t).

(5.16)

We define the model parameter η such that

η = P (ν = 0) = 1− P (ν = 1), (5.17)

thus η is the probability that the previous channel state information is sufficient for equal-

izing the current block, and 1− η is the probability that the primary-user must update its

channel estimate based on the pilot signals present. In reality the estimates Ĥp(t− 1) and

Ĥp(t) will never perfectly match current channel conditions Hp(t); therefore, in practice

the assertion of estimates being a ’perfect match’ can be described in terms of being within

some extremely small threshold of error from Hp(t), and that this error is negligible.

In state ν = 0, the primary-channel is considered stationary. Thus the channel

estimate for the current code remains unchanged from the previous channel estimate, and

we assume that the previous channel estimate has converged to match the current channel

state. The channel estimate MSE for perfectly estimated channel conditions is given as

E [MSEp(t|ν = 0)] = tr
{
Cov

[
h̃p(t)

]}
= σ2

pLtpLrp , (5.18)

where h̃p(t) is the vectorization of Ĥp(t) discussed in [50]. The primary-user PEP is

given as

P (d → e|ν = 0)Hp(t) ≤

L∆p∏
i=1

λip

−Lrp (
Pp

4σ2
p

)−L∆pLrp

. (5.19)

When the channel state is ν = 1, channel conditions for the primary-user have changed

substantially, requiring the receiver to update its channel estimate Ĥp(t). In this state the
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receiver will experience an MSE and PEP from (5.14) expressed as

E [MSEp(t|ν = 1)] = tr
{
Cov

[
h̃p(t)

]}
=

σ2
pLtpLrp

α
, (5.20)

P (d → e|ν = 1)Ĥp(t)
≤

L∆p∏
i=1

λip

−Lrp
 1 +

σ2
p

α

4σ2
p

N

(
N
Pp

+
Ltp

α

)
−L∆pLrp

, (5.21)

where parameters L∆p , λip , Lrp , and σ2
p for the primary-user in state ν = 1 are defined

similarly to those of the secondary-user in (5.14) and are independent from those of the

secondary-user except for the common factors Ltp , α, and Pp. We notice that while energy

allocated to the data part of the primary-user’s signal remains constant in the best-effort

scheme, the PEP expression for a primary-user using pilot signals to re-estimate channel

conditions is dependent on α since both the primary and secondary-users must use the

energy in these signals for channel estimation when ν = 1. The expected MSE for the

primary-user defined by the two-state model becomes

E [MSEp(t)] = MSEp(t|ν = 0)P [ν = 0] +MSEp(t|ν = 1)P [ν = 1]

=
σ2
pLtpLrp

α
(ηα + 1− η).

(5.22)

The signal power of the pilot component for the current block is determined by the trans-

mitter’s selection of α for that block transmission. The MSE and PEP for the secondary-

users will be similar to (5.20) and (5.21) respectively; however the parameters σ2
p, Lrp , Ĥp(t), λip , λδp

become the parameters of the secondary-channel, σ2
s , Lrs , Ĥs(t), λis , and λδs .

5.4.2 Sub-optimal Power Allocation with Respect to Channel Estimate

MSE

We now consider the power optimization problem with respect to a QoS rule limit-

ing the MSE of the primary-user channel estimate. Since channel estimation performance
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for the primary-user (5.22) depends on pilot signal energy, proper selection of α to main-

tain a minimum QoS for the primary-user is critical. For comparison, we first consider

the sub-optimal power allocation considering only the relay signal to the secondary-user,

i.e. when the primary-user is omitted from Fig. 1. The sub-optimal power allocation con-

sidering only the relay transmission, α∗, can be found by taking the derivative of (5.15)

and setting to zero, i.e

α∗ =


Pp−σ2

p

2
N = Ltp

PpLtp−
√

PpN(PpLtp+σ2
p(Ltp−N))

Ltp−N
N 6= Ltp ,

(5.23)

where α∗ is the sub-optimal power allocation considering only the secondary-user, Pp is

the power allocated to pilot plus relay transmissions, Ltp is the number of transmit an-

tenna which is the same for all transmissions, and σ2 is the channel variance experienced

by the pilot signal. Thus, the sub-optimal power allocation rule considering only the

secondary-user is simply α∗
s = α∗. We now derive the sub-optimal power allocation rule

considering a minimum level of QoS for the primary-user only, denoted α∗
p. The primary-

user maximum MSE threshold condition, derived according to the two-state model, is

given as

MSEp =
σ2
pLtpLrp

α
(ηα + 1− η) ≤ Tp, (5.24)

where Tp is the maximum channel estimation error allowed for the primary-user. It is

worth noting that for the case N 6= Lt, the sub-optimum solution for the pilot-power

allocation factor α∗ in (5.23) exists if and only if SNR ≥ (N − Ltp), where SNR =

PpLtp/σ
2
p. In Section 5.5 we consider the case where Ltp = N = 2, thus for the sake

of exposition we will consider the case of N = Ltp in our analysis here. We substitute
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the sub-optimal power allocation α =
Pp−σ2

p

2
from (5.23) into (5.24) producing the SNR

constraint

SNRp ≥ L2
tpLrp

2− 2η − σ2
pη +

Tp

LtpLrp

Tp − LtpLrpησ
2
p

 , (5.25)

where 0 ≤ α ≤ 1, and SNRp is the signal to noise ratio of the primary user as a function

of the MSE threshold, Tp, and the noise variance of the primary-user’s channel, σ2
p. Us-

ing (5.24) and (5.25) and solving for α, the sub-optimal allocation for the primary-user

according to the maximum channel estimate MSE threshold rule, α∗
pMSE

, considering the

SNRp constraint and MSEp ≤ Tp becomes

α∗
pMSE

=
(η − 1)(γ + Tp ±

√
ξ)

η(γ − Tp ±
√
ξ)

, (5.26)

with

γ = LtpLrp(Ppη − 2η + 2),

ξ = 4LtpLrpη
(
LtpLrp

(
Ppη

4
+ Pp − Ppη +

1

η
+ η − 2

)
+ Tp

(
1

η
− Pp

2
− 1

))
+ T 2

p .

(5.27)

We observe from (5.26), that the power allocation rule α∗
pMSE

is valid only when ξ is

positive. For the sake of exposition, we will only consider the case when ξ > 0 here, and

will assume that α will take on the values of either zero or one otherwise. Also, since α

must be positive and in the range 0 ≤ α ≤ 1, only the positive values of (5.26) will be

considered as valid allocations.

While the best-effort policy relay-node will optimize its parameters with respect to

its own transmissions before secondary-user requirements are considered, for comparison

the optimum pilot-power allocation considering only the secondary-user under the same
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maximum channel estimate MSE threshold criterion for the case N = Lt is simply

SNRs ≥ Ltp +
2L2

tpLrs

Ts

(5.28)

with QoS threshold Ts, secondary-user signal to noise ratio SNRs, and sub-optimum

value of αs satisfying (5.28) under the maximum MSE rule, αsMSE
∗, becomes

αsMSE
∗ =

LtpLrsPp

Ts + 2LtpLrs

, 0 ≤ α ≤ 1. (5.29)

We note that the MSE experienced by the secondary-user is a function of α but not η, and

is expressed as

MSEs =
σ2
sLtpLrs

α
≤ Ts, 0 ≤ α ≤ 1. (5.30)

To demonstrate behavior of the best-effort power allocation policy, in Fig. 3 we

plot the values of α∗
pMSE

and α∗
sMSE

with respect to η, according to (5.26) and (5.29)

respectively. Here we choose Ltp = Lrp = Lrs = 2, Pp = Ps = 1, and the select

Ts = Tp = 7 for the MSE thresholds. These results demonstrate sub-optimal pilot-power

allocations for the primary and secondary users under various primary-channel stability

scenarios, η.

For comparison, in Fig. 3 we plot the power settings P1 and P2 using the dedicated-

relay-node criteria (5.10) discussed in Section 5.3. These are plotted in Fig. 3 against

the sub-optimal MSE QoS rules (5.26) and (5.29), using δ2s,r = .001 and δ2r,d = .001.

For a typical dedicated decode-and-forward relaying scheme, the relay would allocate

P1 = .408 and P2 = .372. From Fig. 3 we note that the sub-optimal power allocation

using the MSE rule tends toward the dedicated-relay power allocation, P2, as η → 0.

Additionally, we observe that as the channel becomes more stationary, i.e. as η → 1, less
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pilot power is required to maintain a fixed channel estimate MSE for the primary-user,

and α decreases under (5.26) accordingly.

Heuristically, we expect that frequent channel re-estimation will be required when

the primary-channel is undergoing change, thus in this scenario the relay-node will be less

inclined to sacrifice power for relay transmissions, and α will increase accordingly. Con-

versely, we expect that when channel conditions require less frequent channel estimation,

the relay will behave altruistically and sacrifice energy for relay transmissions. Thus, in a

typical power allocation policy α will be a monotonically decreasing function of η. This

behavior is demonstrated in the MSE-based power allocation rule depicted in Fig. 3.

Next, we observe the general behavior of the channel estimate MSE for both the

primary and secondary users as the pilot-power allocation α varies. In Fig. 4 a plot of the

channel estimate MSE for the primary-user, MSEp, and the secondary-user, MSEs, is

presented for the range 0 ≤ α ≤ 1, for fixed values of η. We expect that as α increases,

the energy devoted to pilot signals used for channel estimation will also increase, and the

MSE of the channel estimate for the secondary-user will decrease. In general, channel

estimate MSE for both users will be a decreasing function of α, which is demonstrated

in Fig. 4. Also, when η is exactly 1 the channel estimator is a perfect representation of

the channel with probability 1, and the error of the channel estimate remains constant and

invariant of the choice of α.

Fig. 5 demonstrates the PEP of the primary and secondary users for fixed values of

α, with respect to η. The results presented here are for the values of Ltp = Lrp = Lrs = 2

and Pp = 1. We note that as η → 1 the channel becomes increasingly stationary, and the

PEP for the primary-user decreases accordingly under the fixed MSE rule. Conversely,
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as it is assumed that the secondary-user is unconditionally required to preform channel

estimation based on the pilot energy present, the PEP response for the secondary-user

under the fixed MSE rules remains constant and independent of η, when α is fixed.

We now observe the behavior of a relay-node operating under the dynamic MSE-

based power allocation rule (5.27). Fig. 6 demonstrates the PEP results of (5.13) and

(5.14) using α = α∗
pMSE

, with respect to η, for various values of Tp. For comparison,

PEP results for both users are also shown for the fixed power allocation policy α = 0.5.

The best-effort behavior this system is readily discernible, as the primary-user enjoys

a general PEP advantage over the secondary-user. As the relay-node sacrifices energy

for pilot signals used for channel estimation purposes, that is as η → 1 in response to

increasingly stationary channel conditions, the PEP of the primary-user improves as the

PEP of the secondary-user degrades, for the values Tp = 3 and Tp = 5. This trend is

demonstrated by the PEP offset between the primary and secondary-user PEP curves for

Tp = 3 and Tp = 5. The behavior of the system when Tp = 7 will be discussed shortly.

From Fig. 6 we note that as channel conditions become more deterministic, i.e.

η → 1, the PEP for the secondary-user degrades, a curious result indeed. This phenomena

may be explained by the increasingly worsened channel estimate a secondary-user would

obtain as energy devoted to pilot signals is drastically decreased, since both the primary

and secondary users use the same pilot signals for channel estimation. We observe that

the PEP curve for the secondary-user is highly determined by the value chosen for Tp.

As less model estimate MSE is permitted in the primary-user’s channel estimate, i.e. as

value of the threshold Tp is decreased, the primary-user becomes increasingly more con-

servative with the amount of energy it diverts from channel estimation devices resulting
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in a decreased PEP for the primary-user. Since the secondary-user is required to uncon-

ditionally use pilot energy for channel estimation independently of η, it will benefit from

additional pilot energy when preforming channel estimation; however the signal strength

of its data signal will suffer as the relay diverts less energy toward the relay services, and

thus, PEP of the secondary-user degrades.

We observe that for larger values of Tp, as is the case Tp = 7, increased model

error severely degrades the general performance of both receivers resulting in detrimental

effects for both users. In particular, we observe that as η → 1 the PEP actually increases

for both users when larger values of Tp are used. We conclude that the value for Tp must be

carefully chosen with respect to the SNR experienced by both users under the MSE-based

QoS rule (5.27), to ensure that sufficient pilot energy is retained. The main drawback

of the MSE-based QoS rule is that the secondary-user cannot benefit from additional

relay assistance when the primary communication mission becomes less difficult, i.e. as

η → 1, since the PEP for the primary-user decreases while the PEP for the secondary-user

dramatically increases, in this scenario.

In this motivating example we use identical channel SNRs for the primary and

secondary users, that is σ2
p = σ2

s , and we have shown that an overall benefit to a secondary-

user is obtainable in the form of useful relay bandwidth, without significant degradation of

service to the primary-user. Thus, we have demonstrated that relay-diversity is achievable

when a node with primary transmission responsibilities also employs cooperative relaying

techniques, under the channel estimate MSE QoS rule.
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5.4.3 Sub-optimal Power Allocation With Respect to PEP constraint

In the previous subsection, the sub-optimal power allocations for the best-effort

relaying problem were presented for a power allocation policy that optimizes with respect

to channel estimate MSE. We now consider the power allocation problem for relays that

instead optimize with respect to a rule limiting the PEP experienced by the primary-user.

From (5.19) and (5.21) the Chernoff upper-bound PEP expression under the two-state

model can be expressed as

P (d → e)Hp(t) ≤ P (d → e|ν = 0)Hp(t)P (ν = 0) + P (d → e|ν = 1)Ĥp(t)
P (ν = 1)

= ηQp [Rp − (1− 1/η)Sp(α)] , 0 ≤ α ≤ 1.

(5.31)

where

Qp =

(
1

4σ2
p

)−L∆pLrp

L∆p∏
i=1

λip

−Lrp

, (5.32)

Rp = P
−L∆pLrp
p , (5.33)

Sp(α) =

 1 + σ2
s

α

1
N

(
N
Pp

+
Ltp

α

)
−L∆pLrp

. (5.34)

The previous simplifications allow us to observe the behavior of sub-optimal power allo-

cations with respect to the terms Q, R, and S when manipulating α and η. For a fixed

channel and antenna arrangement Lrp , Ltp , λip , and σ2
p, we note that Q, R, and S become

constants with respect to a fixed α. For a fixed η, we observe that the only term depen-

dent on α is S, and all other aspects of the result are fixed for a power constraint Pp. We

evaluate this system under the constraint that the relay-node must maintain a minimum

QoS with respect to the PEP of its primary transmissions. The QoS constraint (5.11) for
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the primary-user minimizing α with respect to the PEP of (5.31) is simply

Gp(α, η) = ηQp [Rp − (1− 1/η)Sp(α)] , 0 ≤ α ≤ 1. (5.35)

Similarly, the constraint for the secondary-user from (5.14) has a QoS threshold deter-

mined by maximum allowable PEP. This constraint is a function of the relay’s choice of

α, or exactly

Gs(α) =

(
L∆s∏
i=1

λis

)−Lrs
 1 + σ2

s

α

4σ2
s

N

(
N

Pp−α
+ Lts

α

)
−L∆sLrs

. (5.36)

The sub-optimal power allocation for the best-effort relay with respect to a maximum

allowable PEP for the primary-user is found by solving (5.35) for αpPEP
, i.e.,

α∗
pPEP

=
−Pp

(
Ltp −Ψ(Gp, η)σ

2
p

)
N − PpΨ(Gp, η)

(5.37)

where

Ψ(Gp, η) =

ηP
−LrpL∆p
p −Gp

(
N
4σ2

p

)LrpL∆p

η − 1


1

LrpL∆p

. (5.38)

The PEP behavior using the PEP-based sub-optimal power application rule (5.37) with

respect to η is shown in Fig. 7 for the threshold value Gp = 1.4e−5.

We have now proposed two QoS criteria for allocating power under the best-effort

relay model, given as α∗
pPEP

and α∗
pMSE

derived in (5.27) and (5.37), respectively. If we

compare the PEP behavior demonstrated in Fig. 7 with the MSE-based power allocation

rule depicted in Fig. 3, we see that for (5.27) the acceptable power allocation range

0 ≤ α ≤ 1 is valid over a much wider range of η for the MSE-based rule, when compared

to the PEP-based rule (5.37), for the value of Gp selected.

The PEP behavior of a relay-node operating under the power constraint (5.37) is

shown in Fig. 8 according to (5.35) and (5.36), with respect to the channel estimate
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confidence coefficient η, for various values of Gp. As was demonstrated with the MSE-

based power allocation rule, cooperative diversity gains are also obtainable using the PEP

rule, as the relay diverts energy to secondary-user transmissions. The same phenom-

ena of increased secondary-user PEP under high channel stationary (η → 1) is apparent

for the same reasons mentioned in Section 5.4.2. As the relay diverts too much energy

away from pilot signals, the PEP for the secondary-user suffers since the performance

of this receiver requires sufficient pilot energy for channel estimation. Conversely, the

primary-user enjoys an increasingly stationary channel with a high probability while its

PEP remains the same. The salient difference between the MSE-based and PEP-based

power allocation rules is demonstrated in their PEP behaviors: We expect that a power

allocation rule optimizing with respect to specific maximum primary-user PEP threshold

will exhibit a constant PEP response over all channel stationary states. This behavior is

clearly discernible from Fig. 8, as PEP for the primary-user is constant-valued for the

entire range 0 ≤ η ≤ 1.

The best-effort behavior of the system under this rule is also apparent, as the primary-

user consistently enjoys an PEP advantage over the secondary-user. The behavior of the

PEP threshold Gp is shown in Fig. 8 and may be compared to that of the MSE-based rule

in Fig. 6. As Gp increases, the relay will too readily divert energy from pilot signals and

the PEP of the primary and secondary-users suffer accordingly. In general, decreasing Gp

has the effect of improving PEP for both the primary and secondary-users, at the cost of

decreasing useful capacity for the best-effort channel when channel stability confidence

is reduced (i.e. the PEP curve for the secondary-user is shifted to the right). We conclude

that the threshold Gp, like Tp, must also be carefully chosen with respect to the SNR
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experienced by the primary-user under the PEP-based QoS rule (5.37). In this example

identical channel SNRs were used for both channels, demonstrating an overall benefit for

the secondary-user using best-effort cooperative relaying.

5.5 Simulation Results

In this section we present simulation results for the proposed system for various

values of α, using the minimum mean-squared channel estimator MMSE [5] and 2x2

Alamouti ST codes with M = 3 and N = Ltp = 2. A block-stationary channel model

was used with QPSK constellations and an ML symbol decoder. In Fig. 9, we plot

the BER experienced by the primary and secondary-users obtained through Monte Carlo

MATLAB simulations using values of α equal to 0.5, 0.6, 0.75, and 0.9. In The BER in

Fig. 9 is plotted vs. SNR, where SNR in this figure is defined the same as in Fig. 2. We

observe that as power is retained for pilot signals the BER for the primary-user improves;

however this improvement is achieved at the expense of decreased SNR for the secondary-

user’s data signal. We also observe that the BER for the secondary-user when α = 0.6

is better than the BER experienced at α = 0.5 and α = 0.75, suggesting that secondary-

user BER is a convex function of α with a BER maximum somewhere between these two

values. This behavior is due to the trade-off between data signal energy and pilot signal

energy afforded to the secondary-user. A plot of the channel estimate MSE for both users

is given in Fig. 10 vs. SNR, where SNR in this figure is defined the same as in Fig. 2. We

observe that as the value of α increases more energy is allocated for channel estimation,

thus the MSE of the receiver decreases accordingly.
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We would like to note that the previous sections presented the behavior of the pri-

mary and secondary-nodes as a function of η operating with a best-effort policy using

two different power allocation rules. While these results are sub-optimal with respect to

the primary-user, they fail to achieve optimal allocation with respect to the cooperative

system. We now compare the results of the best-effort policy with a power allocation

policy that attempts to maximize overall system capacity. The maximum-capacity QoS

rule is defined by a policy that allocates power with respect to the primary and relay

transmissions in a way that minimizes the sum of the BERs for both links.

The overall system BER is

BERtot = rpPp(d → e) + rsPs(d → e), (5.39)

where rp and rs are the bits/code/Hz for the primary and secondary transmissions respec-

tively, and Pp(d → e), Ps(d → e) are the PEP expressions for the primary and secondary-

users respectively. A plot of the PEP for the overall system for various values of α is given

for the case rs = rp = .5 in Fig. 11. The results shown are for channel estimate confi-

dence coefficients η = .25, η = .5, η = .75, and η = .95, with Lrs = Lrp = Lt = 2, with

primary signal to noise ratio SNRp = 13 dB, the left hand side of (5.25), and secondary

signal to noise ratio SNRs = 20 dB, the left hand side of (5.28). We note that Fig. 11

clearly demonstrates that an optimal value for α exists that minimizes the total BER for

the cooperative system, and this value changes with respect to the channel stability η.

Unfortunately, an analytical solution for this value is difficult to derive due to the large

number of variables in (5.39). We note, however, that tractable analytical solutions for

α exist for specific antenna configurations Lrs , Lrp and, Lt and fixed channel conditions
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λip , λis ,∆Lp , and ∆Lp , and the exploration of solutions to (5.39) under various scenarios

remains future work.

In this work we always assume that the orthogonal resource for the secondary user

data is allocated in the primary user frame. One may question if the assumption of the

availability of a pre-allocated resource for the secondary is applicable to conventional CR

systems.

Cooperative and Cognitive Radio systems can be complex systems faced with a

number of resource allocation problems. Nodes that choose to cooperate must constantly

ration resources such as transmission energy and bandwidth when these resources are

limited. Choosing when and when not to cooperate is, in itself, a difficult problem. While

the dynamic allocation of bandwidth is also an extremely important resource allocation

problem, in this work we focus solely on the four node power allocation subproblem sug-

gested by Figure 1 and leave the extension of this subproblem to multi-node systems,

where bandwidth may also be rationed, as future work.

In other words, we first focus on the power allocation subproblem for the scenario

where a node has already chosen to cooperate and has allocated resources for this pur-

pose, so that future work may use this result to solve larger, more complex problems.

We would like to briefly discuss why the values derived in this section are sub-

optimal and not optimal. In best effort delivery policy the relay must, at all costs, prior-

itize the primary-user transmissions over any secondary-user cooperative transmissions.

Because the relay must make the primary communication mission top priority, we adopt

a conservative policy for prioritizing transmissions. Therefore, upper-bounds are used to

ensure that the primary-user QoS constraint is met even in worst-case channel conditions.
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Because of this cautious approach the power allocation rules given will be sub-optimal

under specific channel conditions, however the derivation of closed-form power alloca-

tion rules using a less conservative approach could be presented in future work.

One may wonder why the results in Fig.s 9 and 10 do not present series for the

optimum values of α. Figures 9 and 10 demonstrate the effect of manipulating α using

the block-based structure presented in the System model, and their purpose is to is to de-

pict BER performance for both users for particular values of α, over a range of channel

SNRs. In other words, at this point the more sophisticated model parameters, such as η,

are omitted for clarity. Since both of the optimal allocation rules are a function of η, in-

cluding these results (i.e. for some arbitrary value of η) would be confusing and irrelevant

because the other series in the plot are not functions of η. The behaviors of the optimal

allocation rules, as functions of η alone, are instead presented in separate plots showing

analytical results.

In this chapter the relay node sacrifices some of its own resources to help out the

secondary node, however this chapter does not explain the node’s motivation for cooperat-

ing. In this chapter we focus on the power allocation subproblem for the scenario where a

node has already chosen to cooperate and has allocated resources for this purpose, so that

future work may use this result to solve larger, more complex problems. Therefore the

results presented tackle the power allocation problem by developing optimal transmission

strategies, once the relay has determined that it in his interest to cooperate. These results

can be leveraged when considering more complex problems that take things like motiva-

tion into consideration. The important cooperative system reciprocity issues of altruism

and avariciousness are also not considered in this work, therefore the motivations of the
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relay for aiding the secondary user, while interesting, are irrelevant in this context as this

work focuses on optimal cooperation once the decision to cooperate has been made.

The requirement that the primary source has to decode the secondary source’s data

before forwarding might be unreasonable for energy constrained mobile terminals. This is

an important consideration when implementing the Decode-and-Forward relay strategy in

a mobile system. Closed-form solutions considering the alternative Amplify-and-Forward

strategy would be useful for comparison but will be reserved for future work.

Since the primary source is assumed to know the presence of secondary source and

user, from overall power and bandwidth efficiency points of view, one may question if

it makes more sense to treat the system in Fig. 1 as a two-source and two-user cooper-

ative wireless network, where each source relays the information of the other source by

apportioning its own resources as and when necessary with the hope that the favor will be

returned back by the other source.

Our results focus on solving the power allocation subproblem with respect to a sin-

gle relay, node once the decision to cooperate has been made. This smaller subproblem

can be applied to larger, more complex problems in future work. For example, a new

problem could be formulated for the 2 node cooperative system described by applying

the results of the 4-node subproblem twice, first from the perspective of user 1 and sec-

ond from the perspective of user 2. This new problem could be formulated in many ways,

such as a phase-based system where user 1 relays in during odd-numbered phases and

user 2 relays during even-numbered phases, etc. The problem could also be formulated

using concurrent transmissions on orthogonal frequencies. The power allocation subprob-

lem we consider here can be applied in both cases, yielding interesting results for these
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more complex problems.

If the primary source is far away from the secondary source then the successful de-

coding probability in the relaying phase is low. On the other hand, if the primary source

is far away from the secondary user then gains of relaying (due to path-loss arguments)

are diminished. One may question if this limits the usefulness of the proposed method.

This is a very good point, and is considered in depth in [45] for the classic 3-node fixed

relay case. In this work, transmissions are broken into 2 phases: In Phase 1, the source

transmits and this message is received by both the relay node and the destination, and

in Phase 2 the relay transmits to the destination, and both messages are considered by

the destination. In this work, we consider only the transmission of Phase 2 and focus on

optimal power allocations for the new 4-node ’best-effort’ problem. These results could

be applied to solving the more complex 2 Phase problem in future work, however, the

current work focuses on optimal power allocation using best-effort delivery policy once

the relay has decided that relaying the signal is in its best interest. It does guarantee that

the relayed signal will be useful to the secondary-user, but instead it participates to the

extent it believes is prudent. Therefore all results in our chater focus on the performance

of the Phase 2 with respect to the best-effort delivery policy, leaving consideration of the

2 Phase problem as future work.

5.6 Conclusion

We have demonstrated that cooperative diversity can be achieved through a best-

effort delivery policy. In one example best-effort relaying scenario, energy scavenged

174



from pilot signals was re-purposed for relay transmissions when channel conditions ac-

commodate. It was demonstrated that in certain circumstances a node may sacrifice re-

sources for relaying signals while maintaining a level of QoS for the primary-user, allow-

ing the node to cooperate at its own discretion. Allowing nodes with primary communi-

cation missions to cooperate on a best-effort basis may lead to increased performance in

cooperative communication systems, when compared to systems in which only dedicated-

relays are allowed.

In deriving a sub-optimal power allocation policy, the MSE and PEP QoS rules

were considered. It was demonstrated that the MSE QoS rule may yield lower PEP for the

primary-user than the PEP-based QoS rule, for certain ranges of η, and that the MSE QoS

rule yields acceptable relay service over a larger range of channel stationary conditions,

when compared to the PEP-based rule. The drawback of the MSE-based QoS rule is

that the secondary-user does not receive extra assistance from the relay when the primary

communication mission becomes less difficult, i.e. as channel conditions become more

stationary for the primary-user, since the PEP for the primary-user increases and the PEP

for the secondary-user decreases using this rule. Conversely, the PEP-based QoS rule

provides a constant PEP for the primary-user over all values of η while providing extra

assistance to the secondary-user via decreased PEP; however it yields acceptable relay

performance over a small range of η only.
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Figure 1: System diagram of a best-effort relay system
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Chapter 6

Concluding Remarks and Future Work

6.1 Concluding Remarks

As wireless communication systems become a ubiquitous part of everyday life, se-

cure authentication systems become increasingly important. In this dissertation we have

discussed a wireless fingerprint authentication scheme which can be used prevent a num-

ber of identity-based attacks that next-generation wireless systems face. Our wireless

fingerprinting scheme has a number of advantages over authentication schemes that em-

bed authentication messages in upper-layer protocols. We have discussed how our method

can decrease wasteful processing of unauthenticated and malicious transmissions, by pre-

venting unauthenticated messages from traversing the entire protocol stack before the

messages’s credentials are verified. We have discussed how potentially malicious trans-

missions, designed to exploit vulnerabilities in upper-layer protocols, can be avoided us-

ing our explicit PHY-layer signal. We have also shown how authentication messages em-

bedded using our fingerprint embedding scheme can achieve detection rates much greater

than messages embedded in the transmission’s payload, enabling signal authentication in

scenarios where original signal itself is unrecoverable due to low signal-to-noise ratio or

fading conditions.

To address aforementioned security and robustness problems, our fingerprint em-

bedding scheme provides signal authentication using only PHY-layer characteristics, al-
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lowing the signal’s source to be verified before the signal is demodulated or decoded.

We have demonstrated that our PHY-layer approach creates a completely independent au-

thentication mechanism that is decoupled from upper-layer system design, allowing the

designers of wireless systems to create authentication devices that are resistant to upper-

level protocol mutability.

While delineating the advantages of PHY-layer authentication approaches, we have

described how our fingerprinting method improves on previous works that use blind su-

perposition techniques. We have shown that our method overcomes a number of the

disadvantages associated with basic superposition, namely the noise-like appearance of

superimposed signals which causes the fingerprint signal to interfere with the original

transmission and decrease its reception quality. We have shown how our fingerprint em-

bedding approach can exploit typical receiver preprocessing algorithms, and side infor-

mation on anticipated channel distortions, to mitigate the undesirable effects associated

with blind superposition approaches. By exploiting preprocessing algorithms, our method

yields a substantial improvement over prior works.

In addition to improving existing fingerprint superposition methods, we have de-

scribed how the fingerprinting work presented here can augment and/or improve upon

previous fingerprinting schemes that leverage only intrinsic channel information. Our

method can be used when channel conditions are not conducive to intrinsic fingerprint

recognition, and it addresses many of the drawbacks of intrinsic authentication schemes

such as highly correlated multipath profiles and rapidly varying channel conditions. We

have described how extrinsic, synthetically generated signals are perceived by receivers,

and shown that these extrinsic signals are handled by the receiver in an nearly identi-
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cal fashion to natural time-varying channel distortions. Lastly, we have defined a class of

channel-like fingerprinting methods to describe fingerprint signals designed to manipulate

parameters of the transmitted signal using methods that may be modeled as time-varying

channel distortions.

By designing our fingerprint signal using time-varying channel models, we have

demonstrated how fingerprint distortions are subsequently corrected by the receiver through

traditional channel equalization and synchronization practices. This causes the natural in-

trinsic channel distortion and the synthetic, extrinsic signal, to be partially filtered from

the original signal in pragmatic receiver designs, allowing our fingerprint scheme to be ap-

plied in heterogeneous systems where legacy and/or unmodified receivers may be present.

We have demonstrated how the intrinsic channel distortions become interference when re-

covering the extrinsic fingerprint signal, and we have shown how the authentication signal

must be carefully designed to overcome these distortions.

Leveraging the perceptual model of the wireless receiver has led us to a number

of improved fingerprint designs, however additional improvements are obtainable when

extra information is available to the transmitter. Open-Loop designs that exploit the re-

ceiver perceptual model alone must be created and embedded blindly into the original

signal, since side information on channel state is unavailable to the transmitter. Neverthe-

less, through careful consideration of anticipated channel distortions, the detection per-

formance of our fingerprint designs can be improved further in the Closed-Loop system.

We have defined the Open-Loop and Closed-Loop fingerprint design classes to denote the

two design approaches.

To demonstrate how Closed-Loop and Open-Loop fingerprints can be created to
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suit many transmission schemes and modulations, we have discussed fingerprinting sce-

narios for a number of modern and traditional wireless transmission designs. We have

considered SISO systems using rudimentary pulse-amplitude modulation signaling and

blind channel estimation; we have extended this work to MIMO systems, where manipu-

lation of both the time and spacial domains is explored; and we have discussed wideband

OFDM fingerprinting scenarios, where the fingerprint can be applied as an overlay in both

time and frequency. In all of these transmission schemes an authentication signal BER

that is less than the original signal was achieved, with nearly zero perceivable degrada-

tion. By leveraging proven, best security practices and cryptographic primitives in the

design of the digital authentication message conveyed by the fingerprint, we have shown

how to protect the fingerprint from forgery and replay by malicious nodes.

While a number of improvements over prior works have been discussed, our finger-

printing approach has demonstrated another key contribution, above and beyond previous

work. We have shown that when the sequence of channel estimates produced by the

receiver using embedded pilot signals contains redundant information, our channel-like

fingerprinting scheme can exploit these correlations to transmit new information to the

receiver. While the impetus for this dissertation has been wireless signal authentication,

our fingerprint signal can be leveraged to transmit messages of arbitrary content, to suit

a number of purposes. Our work presented in Chapter 5 demonstrates that, via similar

assumptions to the authentication work, a relay system using a best-effort delivery pol-

icy can be created. Throughout this work we have demonstrated an ulterior connection

between the fingerprinting method discussed in Chapters 1 through 4, and best-effort de-

livery method discussed in Chapter 5. Specifically, we have shown that when the amount
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of new information in a sequence of channel estimates decreases due to stationary chan-

nel conditions, the information contained in the pilot signals from which the channel

estimates are derived decreases accordingly.

By demonstrating that correlations between consecutive channel estimates can be

used to convey new information to the receiver, we have shown how bandwidth resources

devoted to pilot signals, historically treated as useless transmission overhead, can serve

a useful purpose. An ancillary contribution of this work is that when little new informa-

tion can be gleaned from pilot signals, supplemental information can be added via the

same manipulations used in channel-like fingerprinting. We have also discussed how the

works of Chapters 1 through 4 relate to the work in Chapter 5, by discussing how intrin-

sic time-varying channel distortions can interfere with the fingerprint signal, making the

fingerprint message a ‘best-effort’ style delivery as well. We have shown that our method

endows pilot signals with the capability of transmitting useful data, while also allowing

these signals to fulfill their original purpose. This capability demonstrates an increase in

system efficiency and represents an ancillary contribution of this work.

6.2 Future Work

We will now discuss a number of areas for future work for the fingerprinting schemes

presented in this dissertation.

In the introductory chapter, we presented our second design goal, namely, the de-

sign of optimal, “near-capacity” fingerprints. Since this fingerprint “capacity” will be

determined by an almost unlimited set of model parameters jointly describing the charac-
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teristics of the original transmission, the embedded pilot signals within the transmission

that prescribe the quality of channel estimates that a receiver may obtain, and all of the

particulars of the physical time-varying channel between the transmitter and receiver, a

complete exploration of optimal fingerprints would be and intractable goal for this work.

While a number of designs were discussed in the previous chapters, the shear quantity

of fingerprinting scenarios that can be concocted with this number of variables is numer-

ous, making the exploration of optimal channel-like fingerprint designs in scenarios not

explicitly addressed in this work open for future research.

We also discussed a forth design goal in the introductory chapter, namely the “equi-

energy” fingerprint constraint. This constraint was considered in the work of Chapter

2 and Chapter 5, however, exploration of the equi-energy fingerprint design constraint

for the modulation schemes discussed in Chapters 3 and 4 remains future work. We

note, however, that fingerprint designs that do not adhere to the equi-energy constraint

are very useful and pragmatic, therefore exploration of designs that meet the equi-energy

constraint may commence in parallel with designs that do not meet this constraint, and

therefore, both design paths remain future work.

Another advantage of physical-layer authentication that was mentioned in passing

throughout this work, is that authentication at the physical layer can protect upper-layer

protocol processing from unauthenticated messages that can potentially expose the re-

ceiver to malformed or malicious transmissions. A whole class of attacks designed to

exploit vulnerabilities in the upper-layer protocols, and the implementation of these pro-

tocols, exists in the literature. In this work, we have focused on the embedding of the

fingerprint message, and the physical layer details pertaining to robust recovery of the
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embedded signal. Therefore, the exploration of how physical-layer authentication ap-

proaches can protect upper-layer protocol processors from malicious users is outside of

the scope of this dissertation and remains future work.

We have also claimed that authentication at the PHY-layer can prevent wasteful

processing of unintended, uninteresting, or maliciously fabricated transmissions, allow-

ing nodes to more quickly authenticate legitimate users and implicate malicious users.

This statement has not been specifically considered in this work, therefore the potential

for physical-layer fingerprints to ameliorate these undue receiver burdens remains future

work.

Additionally, the claim that physical-layer embedding approaches allow for com-

pletely independent authentication mechanisms which are decoupled from upper-layer

authentication devices and protocols, has not been discussed in detail. A detailed delin-

eation of this statement is also outside of the scope of our fingerprint embedding discus-

sion, therefore this claim also remains future work.

While a great deal of the content of Chapter 4 has discussed how proven crypto-

graphic primitives and best security practices can be leveraged to secure the authentication

message from attack, the security discussion and example messages given in this chapter

serve only to illustrate a complete authentication system. Therefore, a detailed presen-

tation all of the security aspects of the authentication message that is conveyed by the

fingerprint would be intractable and outside of the scope of this work. While the authors

suggest that system designers adhere to the best design practices routinely discussed in se-

cure systems research circles and the literature that these communities publish, and that to

the best of the authors knowledge much of the work in these areas can be directly applied
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in the design of the independent authentication message transmission scheme discussed

in this work, a detailed discussion of security considerations specifically pertaining to our

fingerprint embedding scheme may also be in order, and thus, remains future work.

Lastly, the results of Chapter 3 clearly demonstrate that predictive filtering could

be used to improve the performance of a number of fingerprint overlay designs, therefore

research into the application of predictive filtering to improve fingerprinting performance

in Closed-Loop designs is perhaps the most fruitful area for future work.
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