
  

 
 
 
 
 

ABSTRACT 
 
 
 
 
Title of Document: A HIERARCHICAL FRAMEWORK FOR 

STATISTICAL MODEL VALIDATION OF 

ENGINEERED SYSTEMS. 

  
 Byungchang Jung, Doctor of Philosophy, 2011 

  

Directed By: Dr. Byeng D. Youn  

Assistant Professor, 
Department of Mechanical Engineering 
 

  
 

As the role of computational models has increased, the accuracy of computational 

results has been of great concern to engineering decision-makers.  To address a 

growing concern about the predictive capability of the computational models, this 

dissertation proposed a generic model validation framework with four research 

objectives as: Objective 1 — to develop a hierarchical framework for statistical model 

validation that is applicable to various computational models of engineered products 

(or systems); Objective 2 — to advance a model calibration technique that can 

facilitate to improve predictive capability of computational models in a statistical 

manner; Objective 3 — to build a validity check engine of a computational model 



  

with limited experimental data; and Objective 4 — to demonstrate the feasibility and 

effectiveness of the proposed validation framework with five engineering problems 

requiring different experimental resources and predictive computational models: (a) 

cellular phone, (b) tire tread block, (c) thermal challenge problem, (d) constrained-

layer damping structure and (e) energy harvesting device.  

The validation framework consists of three activities: validation planning (top-

down), validation execution (bottom-up) and virtual qualification.  The validation 

planning activity requires knowledge about physics-of-failure (PoF) mechanisms 

and/or system performances of interest.  The knowledge facilitates to decompose an 

engineered system into subsystems and/or components such that PoF mechanisms or 

system performances of interest can be decomposed accordingly.  The validation 

planning activity takes a top-down approach and identifies vital tests and predictive 

computational models of which contain both known and unknown model input 

variable(s).  On the other hand, the validation execution activity takes a bottom-up 

approach, which improves the predictive capability of the computational models from 

the lowest level to the highest using the statistical calibration technique.  This 

technique compares experimental results with predicted ones from the computational 

model to determine the best statistical distributions of unknown random variables 

while maximizing the likelihood function.  As the predictive capability of a 

computational model at a lower hierarchical level is improved, this enhanced model 

can be fused into the model at a higher hierarchical level.  The validation execution 

activity is then continued for the model at the higher hierarchical level.  After the 

statistical model calibration, a validity of the calibrated model should be assessed; 



  

therefore, a hypothesis test for validity check method was developed to measure and 

evaluate the degree of mismatch between predicted and observed results while 

considering the uncertainty caused by limited experimental data.  Should the model 

become valid, the virtual qualification can be executed in a statistical sense for new 

product developments.  With five case studies, this dissertation demonstrates that the 

validation framework is applicable to diverse classes of engineering problems for 

improving the predictive capability of the computational models, assessing the 

fidelity of the computational models, and assisting rational decision making on new 

design alternatives in the product development process. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Technological advances and increasing customer expectations have resulted in 

new products appearing on the market at an ever-increasing pace.  In a traditional 

product development process, repeated activities of prototyping and testing bring a 

product closer to a final specification by improving its performance and reliability.  

This cost-intensive, time-consuming product development process, however, can be a 

barrier to speed, a key factor in a competitive market environment.  As engineered 

products become more complex and the product life-cycles get shorter, virtual testing 

has become more important for cost-effective product evaluation and design.  Figure 

1 shows the role of virtual product testing in the product development process.  

Virtual testing can reduce required tests and save time and cost on product 

development.  A grand challenge is to build reliable computational models with high 

accuracy (or predictive capability).  Model validation is thus essential for 

development of computational models with high accuracy [1].  However, although 

there is increasing consistency in the formal definition of the model-validation 

process, there is still open discussion about the steps of the process, which can vary 

depending on the nature of engineering problems.  This can be explained with the 

following four primary reasons.  First, computational models become invalid due to 

various sources of variability and/or uncertainty in manufacturing tolerances, 

operational conditions, material properties, and experimental error.  However, there is 

no model validation framework that accounts for the sources of variability and/or 
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uncertainty.  Second, the sources of variability and/or uncertainty are not well 

understood due to limited resources (e.g., time, budget, facility). Therefore their 

statistical models are unknown.  Third, experiments required for the validity 

evaluation of a computational model are limited.  The proposed dissertation research 

is thus designed to develop a generic framework for statistical model validation that 

tackles the addressed challenges aforementioned. 

 

Fig. 1. Virtual testing in a product development process 

1.2 Research Objectives and Scopes 

The proposed research involves four research objectives as below.  

Objective 1 – A generic framework development for statistical model validation  

This framework facilitates dealing with different sources of variability and/or 

uncertainty in a computational model.  The framework will be formed with three 

activities: (1) top-down model validation planning, (2) bottom-up model validation 

Customer 
Requirement

Product Concept

Product Design

Design Evaluation

Manufacturing

Performance 
Certification

Product Recycling

Virtual 
Testing

Product Development Process

Computer 
Model 

Development

Model 
Validation

Cornering force

Vibration & 
Noise reduction

Reliability

Thermal 
behavior

Simulation Experiment Predicted 
measure

Harvestable 
power

Product Detailing



 

3 
 

execution and (3) virtual qualification.  Specific techniques and guidelines are also 

proposed for each activity.  

Objective 2 – Integration of a statistical approach to model calibration and validation 

Model calibration is an essential step in an overall validation process to improve the 

predictive capability of computational models.  In a deterministic sense, model 

calibration involves the adjustment of a few model variables to maximize the 

agreement between the predicted (or computational) and observed (or experimental) 

outputs.  However, the deterministic approach is not appropriate because it does not 

account for variability and/or uncertainty in mathematical and computational models, 

manufacturing processes, and operational conditions.  A statistical approach must be 

developed to model the various sources of variability and/or uncertainty, to analyze 

the variability and/or uncertainty propagation (UP) through computational models, 

and to improve the predictive capability of the models through statistical calibration 

and validation.  Advanced statistical techniques (e.g., uncertainty propagation, 

statistical calibration and validity check techniques) must be integrated with 

computational model calibration and validation. 

Objective 3 – A validity check engine of a computational model 

The validity check still remains a challenge in a two-fold sense.  First, when few sets 

of experimental data are collected at different operating conditions, it is beneficial to 

integrate the evidence from all the observations into a single measure of overall 

mismatch.  Second, the small sample size of experiments will produce another layer 

of uncertainty in a validity check metric, of which the effect on model validity must 
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be carefully understood.  The hypothesis test for validity check is thus proposed to 

solve these challenges by considering the effect of limited experimental data.   

1.3 Dissertation Overview 

The dissertation is organized as follows.  Chapter 2 reviews the current state of 

knowledge in the related research topics including model verification, model 

validation, model calibration and uncertainty propagation analysis.  Chapter 3 

presents the proposed researches with three research thrusts as (1) a hierarchical 

framework for statistical model validation, (2) an advanced technique for statistical 

model calibration, and (3) a hypothesis test method for validity check.  In Chapter 4, 

five engineering problems (cellular phone, tire tread block, thermal challenge 

problem, constrained-layer damping structure, and energy harvesting device) are 

employed to demonstrate the proposed validation framework and techniques.  Finally, 

Chapter 5 discusses the contributions of this dissertation and potential future research 

directions.  The challenges, objectives and expected benefits of the proposed 

researches are summarized in Table 1. 
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Table 1 Challenges, objectives and benefits of the proposed dissertation work  

Challenges 

 No generic framework for statistical model validation of engineered

systems 

 Variability and/or uncertainty in a model validation process 

 Unknown random input variables in a computational model 

 Limited resources for validation experiments 

Objectives 

 Development of a generic framework for statistical model validation

 Development of a technique for statistical model calibration 

 Development of a practical validity check engine 

 Feasibility demonstration of the proposed validation framework

with various engineering problems 

Expected 
benefits 

 Standard guideline for statistical model validation with definitions,

procedures, statistical techniques and case studies 

 Development of computational models with high accuracy by

considering the sources of variability and/or uncertainty in a

physical system 

 Practical solution of validity check that fully utilizes limited

experimental data in determining fidelity of computational models 

 Increase of a confidence level on computational models and

reduction of confliction between predicted and experimental  results

 Extended role of computational models in designing robust and

reliable engineering products 

 Significant saving of cost and time in building valid computational

models 

 Rational decision making on new design alternatives in the product

development process 
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Chapter 2: Literature Review 

This chapter provides the related state of knowledge of the research topics within 

the scope of this dissertation.  The review is presented in the following five sections: 

In Sections 2.1 and 2.2, researches on model verification and validation (V&V) and 

statistical model calibration are reviewed.  Section 2.3 presents the literatures of 

uncertainty propagation analysis.  Finally, studies on constrained-layer damping 

structure and energy harvesting are summarized in Sections 2.4 and 2.5.  

2.1 Model Verification and Validation 

As the role of computational models has increased, the accuracy of the 

computational results becomes important to analysts who make decisions based on 

these predicted results.  For decades, researchers have sought to improve the accuracy 

of computational models through the process of the model verification and validation 

(V&V), which helps ensure that the models accurately represent the real-world 

systems (or products).  Among various works on model verification and validation 

(V&V), the survey articles that have been introduced by various engineering groups 

such as the American Institute of Aeronautics and Astronautics (AIAA) [1], the 

American Society of Mechanical Engineers (ASME) [2], the Department of Energy 

Laboratories (Sandia [3], Loss Alamos [4], and Lawrence Livermore [5]) and 

Institute for Computational Engineering and Sciences (ICES) [6] explain the state-of-

the-art concepts, terminologies, processes and techniques on model in detail.  In their 

works, the verification is briefly defined as the assessment of the accuracy of a 

computational model implementation; and, the validation is the assessment of the 
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accuracy of computational results by comparison with experimental data [1].  The 

important concepts for model V&V addressed in those references are summarized 

below. 

• Model development 

The processes of model V&V start from modeling of engineered systems.  The 

ASME guideline [2] well described the three types of models in computational solid 

mechanics from general to specific: (1) conceptual model, (2) mathematical model, 

and (3) computational model.  After identifying the physical system, the conceptual 

model, the collection of assumptions and descriptions of physical processes 

representing the mechanics behavior of the physical system, can be defined.  With the 

conceptual model defined, analysts can define the mathematical model the 

mathematical equation, boundary and initial condition, and modeling data needed to 

describe the conceptual model.  The computational model is the numerical 

implementation of the mathematical model, usually in the form of spatial/temporal 

discretization, numerical algorithm and convergence criteria.  Generally, the results of 

the computational model are compared to available experimental data for model 

validation. 

• Model verification 

In ASME guideline [2], the model verification is defined as “the process of 

determining that a computational model accurately represents the underlying 

mathematical model and its solution”.  Figure 2 briefly shows the main components 

and activities in model V&V [4,7].   
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Fig. 2. Simplified view of the model V&V process 

The verification deals with the relationship between the mathematical model and its 

programmed implementation in the code (the computational model).  The verification 

is mainly conducted by comparing numerical solutions of the mathematical model to 

highly accurate benchmark solutions.  The use of benchmark solutions in the 

verification is called “testing” in software engineering community [8].  The 

verification generally can be divided into two activities: (1) code verification and (2) 

calculation verification [3,9].  The major goal of the code verification is to confirm 

that the mathematical model (computer software) is working as intended.  Two 

activities are usually considered for the code verification: (1) software quality 

assurance (SQA) and (2) numerical algorithm verification.  The SQA activity 

identifies and eliminates programming and implementation errors within the 

mathematical model.  The SQA activity ensures that the code is reliable 

(implemented correctly) and produces repeatable results on specified computer 

hardware, operating systems and compilers.  The code developer should perform the 

Reality

Computer model

Mathematical 
model

Simulation 
results

Modeling

Programming

Validation

Confirmation

Verification

Modeling and simulation activities

Assessment activities



 

9 
 

SQA by running all relevant verification problems provided with the software using 

configuration management and static (or dynamic) software quality testing.  The 

numerical algorithm verification concerns the correctness of the numerical algorithms 

that are implemented in the code [4].  In this activity, test problems with known 

(analytical) or highly accurate (benchmark) solutions are devised and compared to 

solutions obtained from the code.  The calculation verification is to evaluate the 

accuracy of the discrete solution of the mathematical model by estimating the 

numerical errors due to discretization approximations.  The insufficient spatial or 

temporal discretization, insufficient convergence tolerance, incorrect input options, 

and finite precision arithmetic can be identified using the calculation verification.  It 

is relatively popular to perform code-to-code comparisons as a means of the 

calculation verification in the absence of sufficient verification evidence from other 

sources. 

• Model validation 

As shown in Fig. 2, the model validation deals with the relationship between the 

computational results from the computational model and reality, i.e., experimental 

results.  The model validation is defined as the process of determining the degree to 

which a model is an accurate representation of the real world from the perspective of 

the intended uses of the model [1,2].  The phrase “process of determining” 

emphasizes that the model validation is an on-going activity that concludes only when 

acceptable agreement between experiment and simulation is achieved.  The phrase 

“degree to which” emphasizes that the simulation and the experimental results are 

uncertain.  Finally, the phrase “intended uses of the model” emphasizes that the 
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validity of a model is defined over the domain of model form, input variables and 

predictive responses.  In order to determine the degree of the validity quantitatively, a 

comparison between the experimental and computational results has to be performed 

with any validity check metric.  Oberkampf et al. [10] developed a validity check 

metric based on the concept of statistical confidence intervals.  Ferson et al. [11] used 

integrated area between the cumulative distribution functions (CDFs) of experimental 

and computational results as a validation measure, and Rebba et al. [12] used the 

distance metric based on the Anderson-Darling statistics.  

• Model calibration 

Different with a model validation activity which mainly assesses the confidence 

of computational results, model calibration is a process of maximizing the agreement 

of predicted results with respect to a set of experimental data through the adjustment 

of a set of physical input variables.  In computational engineering society, model 

validation sometimes means an model calibration activity which involves the 

estimation or optimization of model input variables using experimental data from a 

system [7,13,14].  Oftentimes, model calibration may be a more appropriate process 

because of constraints in fiscal budgets and computer resources.  However, the model 

calibration should be carefully exercised, because it directly impacts the confidences 

of the computational model.  For the successful calibration, we should clearly 

understand the distinction between the calibration variable and tuning variable.  The 

calibration variables have physically interpretable meaning; however, the tuning 

variable may be notional and of little or no meaning in the physical system. 
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• Uncertainty in model validation  

Uncertainties in a computational model can be categorized as: (1) aleatory 

uncertainty, (2) epistemic uncertainty, and (3) prediction error [4].  The aleatory 

uncertainty (i.e., variability, inherent uncertainty), which always exists in physical 

systems, arises from an inherent randomness in an engineered system.  The 

knowledge of experts cannot be expected to reduce this uncertainty although their 

knowledge may be useful in quantifying the uncertainty [15].  Thus, this type of 

uncertainty is sometimes referred to as irreducible uncertainty.  Examples include 

variations in geometric or material properties, loading environment and assembly 

procedures.  The epistemic uncertainty (i.e., reducible uncertainty) derives from a 

lack of knowledge about the true value of the model input variable.  Obtaining more 

information will decrease the epistemic uncertainty and allow a better estimate of the 

true distribution; therefore, expert judgments may be useful in its reduction.  Last, the 

prediction error creates a reproducible (i.e. deterministic) bias in the prediction and 

can be acknowledged (detected) or unacknowledged (undetected).  Examples include 

inaccurate model form, physical parameters, implementation errors in the 

computational code and non-converged computational models.  

• Key principles for the successful model validation 

Important principles addressed several times in the references above are 

summarized below.  These principles should be considered to build a valid 

computational model in the model validation process.  

(1) Verification must precede validation. 
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(2) Validation is specific to a particular computational model for a particular 

intended use. 

(3) An understanding of the variability (and uncertainty) sources in both simulation 

and experimental results is important for the success of model validation 

(4) Independence between analysts and experimentalist should be maintained in 

obtaining both the predictive and experiment results.  For example, the experimental 

results should not be revealed to the analysts until they have completed the 

simulations results.  When experimental results are available to the analysts prior to 

establishing their simulation results, the human tendency is to ‘tune’ the model to the 

experimental results to produce a favorable comparison.  This tendency decreases the 

level of confidence in the computational model to predict.  

(5) The model validation requires close cooperation among analysts and 

experimentalists to make the mathematical and physical models consistent during the 

validation activities.  Collaboration and shared expertise between researchers in 

industry/academia and simulation/experiment is another key to make the predictive 

model feasible.   

• Validation challenge workshop 

In the Validation Challenge Workshop [16] sponsored by the Sandia National 

Laboratory, many researchers suggested the state of the art approaches for the model 

calibration and validation, and applied their approaches to one of the devised three 

problems: (1) thermal challenge problem in the field of heat transfer [11, 16-22], (2) 

static frame problem [12,23,27], and (3) structural dynamics challenge problem [28-

33].  Researchers utilized various technical approaches in solving the problems such 
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as Bayesian analysis, statistical inference, bootstrapping, Monte Carlo sampling, 

worst case scenario approach, etc.  For the thermal challenge problem, some of the 

works purely focused on the model calibration and a prediction of the failure 

probability with the updated model, while others study validity of the computational 

model without the model calibration.  The Bayesian calibration [34] is followed to 

calibrate the model parameters in Ref. [20,21].  A normal Markov Chain Monte Carlo 

and modular Markov Chain Monte Carlo are used to obtain posterior distribution.  

Xiong et al. [35] developed a maximum likelihood estimation approach for the model 

calibration with different formulations.  Ferson et al. [11] developed the u-pooling 

method for the validation of thermal challenge problem.  Hills et al. [19] use the first-

order sensitivity analysis to account for model parameter uncertainty.  For the static 

frame problem, the material property (the elastic modulus) was characterized using 

random field process.  The marginal distribution for the material property was 

estimated by either parametric or non-parametric procedure.  Pradlwarter et al. [27] 

and Rebba et al. [12] employed kernel density estimates and Polynomial Chaos 

expansion to approximate the marginal distribution, respectively.  For the structural 

dynamics challenge problem, the model calibration mainly involved the usage of 

Karhunen-Loeve expansion.  The stochastic term in the Karhunen-Loeve expansion 

are modeled using the Gaussian and log-normal distribution [22,31], polynomial 

chaos expansion [29], kernel density estimator [27,31,32], and empirical cumulative 

density function [22]. 
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2.2 Statistical Model Calibration 

To improve the predictive capability of a computational model, model calibration 

techniques have been developed in recent years.  Model calibration adjusts a set of 

unknown model input variables associated with a computational model so that the 

agreement is maximized between the predicted (or simulated) and observed (or 

experimental) responses (or outputs).  In a deterministic sense, model calibration is 

thought of as the adjustment of a few model input variables to minimize the 

discrepancy between the predicted and observed results.  However, the deterministic 

approach is not appropriate since various uncertainties exist in material properties, 

loading condition, boundary condition, etc.  Statistical model calibration, on the 

contrary, means refining the probability distributions of unknown input variables 

through comparison of the predicted and observed outputs [34].  Current statistical 

model calibration is mainly based on methods of moments [36], Bayesian statistics 

[18,20,25,37,40] and maximum likelihood estimation [35,41].  Statistical model 

calibration with Bayesian statics mainly focuses on the surrogate model (also called 

metamodel [42]), which replaces expensive computational models of engineered 

systems.  In the computational engineering, it is common for computational models to 

take hours or days to run.  For example, the finite element (FE) tire simulation may 

take days to execute a single run to predict the cornering or braking performance [13].  

Because it generally becomes impossible to conduct enough simulation runs to 

thoroughly cover the entire input variable space for the design purpose, surrogate 

models such as polynomial function [43] and kriging model [44] have been developed 

with design of experiment techniques [45].  The drawback of simply using a fitted 
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metamodel is that it may ignore metamodel uncertainty, i.e., the uncertainty that 

results from not knowing the output of the expensive computational model except at a 

finite set of sampling points.  One of the most popular approaches developed to solve 

this drawback is the response surface approximation approach using Gaussian process 

[46,47].  In that approach, the response surface is viewed as a realization of a 

Gaussian random process (GRB), and Bayesian methods are used to 

interpolate/extrapolate the response surface by calculating its posterior distribution 

given the sampling sites.  Kennedy and O’Hagan [37] proposed the inferential ideas 

behind statistical model calibration with Bayesian statistics using Gaussian process 

model.  They formulate a model for calibration that includes an observation 

(experimental) error term and a model discrepancy function.  Both the observation 

error term and the model discrepancy function are also represented by a Gaussian 

process model.  After that, they use a Bayesian approach to obtain a “posterior” 

estimate of the statistical parameters associated with the model input variables and 

model discrepancy function.  Here the purpose of Bayesian updating is to reduce 

uncertainty in the parameters through the experimental data.  In Bayesian approach, 

initial lack of knowledge of the unknown model parameters is represented by 

assigning prior distributions, and this lack of knowledge is revised by calibrating their 

distributions based on the experimental data through Bayesian analysis.  One 

limitation of the Bayesian approach is that the calibration parameters are assumed to 

remain fixed, but unknown due to lack of knowledge.  However, in reality, model 

input variables vary randomly due to manufacturing variation, variation in raw 

materials, variation in environmental or use conditions, etc.  Another limitation of 
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Bayesian approach is that for complex engineered systems, Bayesian approach 

requires a large amount of computational efforts to update the parameters in the 

Gaussian process model [37].  In spite of these limitations, the Bayesian approach 

may be advantageous when very few experimental data are available, especially when 

a good prior knowledge is available to assign the informative prior distributions for 

model parameters. Youn et al. [48] and Xiong et al. [35] applied maximum likelihood 

based model calibration approach to the thermal challenge problem, and compared 

this approach with Bayesian model calibration approach.  In contrast to Bayesian 

approach, the maximum likelihood based approach treats parameters as intrinsic 

random and estimates their distributional properties by comparing the simulation 

results with the experimental data. 

2.3 Uncertainty Propagation Analysis 

Uncertainty propagation (UP) analysis is an essential part of statistical model 

calibration.  UP analysis refers to the determination of the uncertainty in analysis 

results that is propagated from uncertainties in the input variables of a computational 

model that arise because of the inherent randomness in physical systems (material 

properties, boundary condition, etc.), modeling idealizations, experimental variability, 

measurement inaccuracy and manufacturing tolerance.  Existing UP analysis methods 

can be categorized into the four categories as: (1) the sampling method, (2) the 

expansion method, (3) the metamodeling method, and (4) the approximate integration 

method.   

(1) The sampling method: The sampling method is the most comprehensive but 

expensive method to use for estimating moments and reliability of system responses.  
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It is often used to verify a probability density function (PDF) of system responses 

when alternative UP methods are employed.  The sampling methods draw samples 

from the input parameter populations, evaluate the deterministic model using these 

samples, and then build a probability density function (PDF) of the responses.  Monte 

Carlo Simulation (MCS) [49,50] is the most widely used sampling method but 

demands thousands of computational analyses.  To relieve the computational burden, 

other sampling methods have been developed, such as quasi-MCS [51], importance 

sampling [52] and directional sampling [53].  

(2) The expansion method: The expansion method is to estimate statistical 

moments of system responses with a small perturbation to simulate input uncertainty.  

This expansion method includes Taylor expansion [54], perturbation method [55], 

Neumann expansion method [56], etc.  Taylor expansion and perturbation methods 

require high-order partial sensitivities to maintain good accuracy.  The Neumann 

expansion method employs Neumann series expansion of the inverse of random 

matrices, which requires an enormous amount of computational effort.  In summary, 

all expansion methods could become computationally inefficient or inaccurate when 

the number or the degree of input uncertainty is high.  Moreover, since it requires 

high-order partial sensitivities of system responses, it may not be practical for large-

scale engineering applications.   

(3) The metamodeling method: There currently exist a number of metamodeling 

techniques, such as polynomial response surface model (PRSM), multivariate 

adaptive regression spline (MARS), radial basis function (RBF), kriging, neural 

networks, and support vector regression (SVR).  Each technique has its own fitting 
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method.  For example, PRSM are usually fitted with the (moving) least square 

method [45] and the kriging method is fitted with the search for the best linear 

unbiased predictor [57].  All of these techniques are capable of function 

approximation with different accuracy, robustness and computational efficiency 

levels.  PRSM are not suitable for high dimensional problems because of a curse of 

dimensionality.  MARS constructs response surface from a set of coefficients and 

basis functions from the regression data, which makes it suitable for problems with 

high input dimensions [58].  However, it normally cannot produce accurate results for 

nonlinear problems [59].  RBF is useful for multivariate scattered data interpolation 

[60].  However, it is unable to interpolate large sets of data in an efficient and 

numerically stable way and maintain a good level of accuracy at the same time [61].  

In general the kriging models can produce accurate results for nonlinear problems but 

difficult to obtain and use because a global optimization process is applied to identify 

the maximum likelihood estimators [59].  Although neural networks are able to 

approximate very complex models well, they have the two disadvantages: (1) being a 

“black box” approach, and (2) having a computationally expensive training process 

[62].  It is well known that the accuracy of SVR depends on a good setting of meta-

parameters and the kernel parameters where optimal parameter selection is 

complicated [63]. 

(4) The approximate integration method: The approximate integration method is a 

direct approach to estimate the probability density function (PDF) or statistical 

moments through numerical integration.  Numerical integration can be done in the 

input uncertainty domain [64] or the output uncertainty domain [65].  Recently, the 
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dimension reduction method [64] has been proposed and is known to be a sensitivity-

free method.  In the univariate dimension reduction method, it uses an additive 

decomposition of the responses that simplifies one multi-dimensional integration to 

multiple one-dimensional integrations.  Generally, it can provide accurate lower 

moment of system responses such as mean.  However, it may produce a relatively 

large error for the second-order or higher moments of nonlinear system responses.  In 

the general dimension reduction method [66], the theoretical error of univariate 

dimension reduction method can be reduced by considering multi-dimensional 

integrations.  However, the computation effort is increased exponentially.  

2.4 Constrained-layer Damping Structure 

Adding a viscoelastic damping material to a structural surface is a typical way to 

reduce noise and vibration of structures [67].  For example, damping sheets on the 

body of passenger cars reduce noise and vibration in the cabin.  Damping materials 

are also used in airplanes, launching vehicles, ships, and electric appliances.  In these 

applications, it is important to optimize the layout and optimal location of the 

unconstrained/constrained-layer damping material to reduce vibration and noise of 

structures effectively.  However, it is difficult to obtain a robust damping layout 

design, since the viscoelastic damping material possesses frequency- and 

temperature-dependent dynamic responses.  In most cases surface damping treatments 

are exposed to an open air, so the damping material experiences a wide range of 

temperatures, which vary periodically and randomly.  As a result, substantial 

variations in the damping material properties can be observed in the service life of the 

material and are expected to reduce the quality of damping performance against noise 
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and vibration.  On the other hand, test data inherently contain experimental errors 

(e.g., experimental noise and measurement errors) due to difficulty in measuring the 

dynamic responses of the viscoelastic damping material.  For example, the loss factor 

which is one of the material properties is highly sensitive to the boundary conditions 

of a measurement apparatus, resulting in significant experimental error.  The loss 

factor estimation is known to be the least accurate among the modal parameters of a 

structure [68].  

Many researchers have suggested different optimal design formulations for 

damping layout of structures [69-76].  These studies have primarily focused on 

designing a constrained-layer damping layout to maximize damping efficiency.  Lee 

et al. proposed design optimization methods for constrained/unconstrained-layer 

damping layouts in structural noise and vibration problems, in which the frequency- 

and temperature-dependent dynamic responses of the viscoelastic damping material 

were considered [77,78].  In these works [69-78], the optimal damping layouts were 

obtained with no consideration of temperature variation and damping material 

uncertainty.  Only a few researchers have acknowledged the importance of these 

factors to random damping characteristics in structural dynamic problems [79-82].  

2.5 Energy Harvesting 

The continual advances in wireless technology and low power electronics have 

allowed the deployment of small remote sensor networks for various applications 

including building automation, smart factory, structural health monitoring, 

environmental monitoring, and body area network.  Current wireless devices must be 

designed to include electrochemical batteries as the power source.  But the use of the 
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batteries can be troublesome due to their limited lifespan, especially when the 

replacement for inaccessible and remote location is required.  Furthermore, the 

battery replacement costs $80~$500 including labor and it exceeds the price of a 

sensor [83].  This issue has initiated the rapid growth of the energy harvesting field as 

an ultimate solution to prolong the battery life or, ideally, eliminate the need of 

batteries for wireless sensors.  The energy harvesting (EH) devices harvests electrical 

energy from the ambient energy sources surrounding the electronics such as sunlight, 

thermal gradient, human motion and body heat, vibration, and ambient RF energy 

[84,85].  While each of these sources of energy can be effectively used to power 

remote sensors, vibration energy has gained much attention due to its widespread 

availability. 

Mechanical vibration energy can be converted to electrical energy using 

electrostatic, electromagnetic, or piezoelectric energy conversion.  Among them, 

piezoelectricity is the ability of some materials to generate an electric potential in 

response to applied mechanical stress, and its energy conversion can be said to 

combine most of the advantages of both electromagnetic and electrostatic converters 

[86].  It has been studied to compare piezoelectric, electromagnetic, and electrostatic 

configurations as a means of harvesting energy from a variety of vibration sources.  

This study showed that piezoelectric material is the simplest and most practical way 

of conversion [87,89].  Piezoelectric material includes PZT (Lead zirconate titanate), 

ZnO (Zinc oxide), and PVDF (Polyvinylidene Difluoride), and PZT is known to 

possess the best conversion efficiency among them [89]. 



 

22 
 

A typical energy harvesting (EH) device using piezoelectricity is a cantilever 

unimorph/bimorh and it generates AC voltage proportional to bending strain of the 

piezoelectric material.  Glynne-Jones et al. [87] screen-printed PZT on a stainless 

steel plate to get power of 3W.  Leland et al. manufactured a piezoelectric EH using 

PZT-5A4E, brass, and a mass made of tungsten [90].  They generated the power of 

29.3W using vibration from human walking for 50 minutes.  Roundy et al. 

manufactured a cantilever energy harvester using PZT and PVDF and performed 

design optimization to obtain high power output with the change of mass, length of 

cantilever beam, piezoelectric material thickness, and external resistance value [91].  

Sodano et al. formulated a model of an energy harvesting system that consists of a 

cantilever beam with piezoelectric patches attached and experimentally verified it 

[92].  Chen et al. proposed the relationship between the deduced voltage and the 

mechanical strain in a cantilever bimorph micro transducer [93].  Elvin et al. [94] 

developed a self-powered damage detection unit for energy generation and storage 

using PVDF.  The performance of the sensor was illustrated in terms of sensing and 

wirelessly communicating data about the damage state of a structure to a remote 

receiving unit.  

The studies on the optimal shape of a cantilever energy harvester have been done 

and a rectangular and a trapezoidal shape of piezoelectric beam shape were mostly 

compared in terms of tolerable amplitude and output power under vibration, and a 

trapezoidal shape turned out to be more efficient because of a uniformly large strain 

at every point on the beam surface [87,95,96].  Zheng et al. suggested a topological 

optimum design to maximize energy conversion [97], but this design raised additional 
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manufacturing issue.  The amount of power generated by piezoelectric EH devices 

has been evaluated in a number of researches.  Umeda et al. conducted a study into 

the characteristics of energy storage by a Piezo-generator with a bridge rectifier and 

capacitor [98].  The piezo-generator consisted of a steel ball and a piezoelectric 

vibrator, a bridge rectifier and capacitor.  To simulate the generation and storage 

mechanism they employed an equivalent circuit model, and showed that their 

prototype achieved a maximum efficiency of 35%.  Sodano et al. studied the storage 

of electrical energy from energy harvesting devices in batteries and capacitors [99], 

and characterized a several commercial piezoelectric materials for energy harvesting 

applications [100,101].  Using EH devices developed above, some ambient vibration 

sources have been found and utilized for electric energy generation mainly from 

machinery and human movement (several vibration sources are well introduced in the 

references [86,96]).  Granstrom et al. developed a piezoelectric polymer backpack 

strap which generated electrical energy from the oscillating tension in the strap during 

walking [102].  Leland et al. mounted an energy harvester on a wooden staircase and 

generated electricity from vibrations in the staircase to get around 30W [90].  Some 

case studies of energy harvesting from vehicle engine vibration and bridge vibration 

is found in a website [103].  Shoe-mounted energy harvester is another example of 

EH which utilized human movement; pressure by heel strikes [104,105].  

The studies on the design of piezoelectric EH devices include the design of 

mechanical characteristics (shape, material, excitation, etc) and electric circuits.  

Some researchers have found that a trapezoidal cantilever shape is more efficient than 

a rectangular cantilever shape because of a uniformly large strain at every point on 
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the beam surface [87,95].  Shen et al. [108] experimentally compared the EH 

performance of three piezoelectric materials (PZT(Lead Zirconate Titanate), fiber, 

and polymer) and verified that PZT shows the best performance.  Wideband vibration 

was considered for design of EH devices in [109-111].  Ottman et al. [112,113] 

studied the use of an adaptive step-down DC–DC converter to maximize the power 

output from a piezoelectric device.  Recent researches on piezoelectric energy 

harvesting devices are well summarized in review articles [96,106,107]. 
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Chapter 3: Proposed Research  

3.1 Scope of Proposed Research 

The objective of the research is to develop a generic framework for statistical 

model validation that facilitates to build computational models with highly predictive 

capability.  The proposed research comprises of four research thrusts as: (1) a 

hierarchical framework for statistical model validation, (2) statistical model 

calibration, (3) hypothesis test for validity check and (4) feasibility demonstration of 

the proposed validation framework.  Figure 3 summarizes the scope of the proposed 

research.   

 

Fig. 3. The scope of the proposed research 

Five engineering problems on the right box in Fig. 3 (cellular phone, tire tread 

block, thermal challenge problem, constrained-layer damping structure and energy 

harvesting device) are selected as case studies to demonstrate the feasibility of the 

proposed validation framework.  Each engineering problem requires different 
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validation techniques depending on the characteristics of engineered systems, 

performances of interest (PoI), computational models (model form, input variable, 

and response), and experimental resources. 

3.1.1 Thrust 1: A Hierarchical Framework for Statistical Model 
Validation 

The objective of this research thrust is to develop a hierarchical framework for 

statistical model validation that will be conceptually defined with its formal 

procedure.  The framework is composed of three model validation activities: (1) top-

down model validation planning, (2) bottom-up model validation execution and (3) 

virtual qualification.  In the model validation planning, engineers first define either 

the physics-of-failure (PoF) mechanisms or the performances of interest (PoI) of a 

system (or product).  The system (top-level in a hierarchy) should be first 

decomposed into subsystems or components, of which valid computational models 

can predict behaviors of the PoF or PoI.  Vital experiments and computational models 

along with both known and unknown model input variable(s) must be identified at 

each hierarchy.  Subsequently, the model validation execution and virtual 

qualification will be planned.  After the completion of the planning, the model 

validation execution takes a bottom-up approach.  It consists of three tasks: (1) model 

variable characterization, (2) statistical model calibration, and (3) hypothesis test for 

validity check.  Three tasks should be performed at any hierarchical level using the 

information of model input variables, computational models, and available 

experiments determined in the validation planning step.  As the predictive model at a 

lower hierarchical level becomes valid, the valid model is fused into a model at a 
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higher hierarchical level.  The validation execution is then continued for the model at 

the higher hierarchical level.  If the computational model in a system level turns out 

to be valid, the virtual qualification will be triggered with the valid computational 

model of the system. 

3.1.2 Thrust 2: Statistical Model Calibration 

The objective of this research thrust is to develop an advanced technique of 

statistical model calibration.  The technique can determine unknown model input 

variables by minimizing the discrepancy between predicted (or simulated) and 

observed (or experimental) results in a statistical sense.  This research objective is 

attained by integrating the following techniques: (1) likelihood function as a 

calibration metric, (2) unconstrained optimization, (3) uncertainty propagation 

analysis.  

3.1.3 Thrust 3: Hypothesis Test for Validity Check  

The objective of this research thrust is to develop a method of assessing fidelity of 

a calibrated computational model in a statistical manner.  This research objective can 

be attained by the proposed hypothesis test for validity check which evaluates null 

hypothesis—a calibrated model is valid—by comparing an area metric with a 

designated critical value.  Type 11 and 2 errors2 are employed to decide a rejection 

region which depends on the number of experimental data and degree of mismatch 

between predicted and experimental results.  The null hypothesis can be rejected only 

                                                 
1 Probability that we reject a computational model when it is valid 
2 Probability that we do not reject a computational model when it is invalid 
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when the area metric strongly suggests that the null hypothesis is false at an assigned 

significant level.   

3.1.4 Thrust 4: Feasibility Demonstration 

The objective of this research thrust is to demonstrate the procedure and 

feasibility of the proposed validation framework and techniques with five engineering 

products: (1) cellular phone, (2) tire tread block, (3) thermal challenge problem, (4) 

constrained-layer damping structure, and (5) energy harvesting device.  To achieve 

this research objective, the computational models were carefully developed and 

investigated.  Experimental data for the cellular phone, tire tread block and energy 

harvesting device were obtained with the assistance of experts in industry and 

academia.  For the thermal challenge problem and constrained-layer damping 

structure, data and information from references were employed for the validation 

activity.   

3.2 A Hierarchical Framework for Statistical Model Validation  

A general model development process and the proposed model validation 

framework are explained in Sections 3.2.1 and 3.2.2, respectively. 

3.2.1 Overview of Model Validation 

Based on the model validation procedure proposed by the ASME Standard 

Committee [2] and Xiong et al. [35], the model validation activities has been devised 

with model calibration (or model updating), validity check and model refinement as 

depicted in Fig. 4.   
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In many engineering problems, especially if unknown model variables exist in a 

computational model, model improvement is a necessary step during the validation 

process to bring a model into better agreement with experimental responses.  We can 

improve a model using two strategies: (1) to update the model through the model 

calibration and (2) to refine the model to change the model form. 

 

Fig. 4. Model validation procedure 

Model calibration is the process of adjusting unknown model variables in the 

computational model to enhance the agreement with experimental data.  Sensitivity 

analysis and optimization techniques can be employed to define critical unknown 

model variables and to calibrate the variables.  The updated model must be validated 

with validation experimental data.  This process is referred to as a validity check in 

this thesis.  It is important to note that the experiments for model calibration should 

be designed and executed differently from the validation experiments, as shown in 

Fig. 4.  The model should be refined if the agreement between experimental and 

simulation outcomes is unacceptable in the validity check.  The feedback information 
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collected from sensitivity analysis, model calibration, and validity check should be 

used for model refinement.  Model refinement can be applied to either the conceptual 

or mathematical model.  This refinement reconsiders the physical process of system 

and changes the mathematical expressions to build a more realistic model that better 

represents the physics of the system.  For example, model refinement can perform the 

following actions: (1) to reconsider the governing principles of physical system, 

subsystem or component of interest (e.g., a replacement of linear theory by a non-

linear theory at the material, boundary and deformation sides), (2) to identify 

additional model variables, and (3) to refine a computational model with model 

verification activity (e.g., a removal of programming and implementation errors 

through Software Quality Assurance procedures, a verification of correctness of the 

numerical algorithms in the code through numerical algorithm verification, and an 

increase of mesh density through numerical error estimation).  Extensive research on 

the model refinement (or model verification) is beyond the scope of this research, 

since it requires extensive consideration of the conceptual, mathematical, 

computational models, and software.  Once the computational model is refined, the 

validation activities must be performed again as shown in Fig. 4.  Generally, the 

model validation activity without model calibration (denoted in Fig. 4) is a desired 

approach because model refinement can fundamentally improve the predictive 

capability of a computational model and validity check with high-quality 

experimental data can confirm the accuracy of the computational results; however, 

the model refinement and validity check are often restricted by the available 

knowledge and resources (e.g., time, budget, man-power).  Model calibration, on the 
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other hand, is a more practical and efficient method, so it is a more appropriate 

approach in industry.  It is believed that the well-defined calibration planning and 

metric can help increase the predictive capability of the computational model.  In this 

dissertation, the validation activity is thus defined as not merely a process of 

assessing the accuracy of a computational model, but also a process of improving the 

model accuracy through the model calibration.  The statistical model calibration in 

Section 3.3, thus important, as well as practical, for the hierarchical model validation 

proposed.  

Computational models of various engineered systems have different types of 

uncertain sources, random variables and predicted responses.  For example, 

experimental data have inherent randomness in physical systems, measurement error, 

and statistical uncertainty due to the dearth of the data.  Likewise, the responses of a 

computational model must be randomly represented as a result of inherent 

randomness in model parameters (e.g., material behavior, geometry and 

initial/loading/boundary conditions), model error (or prediction error), and statistical 

uncertainty.  As explained in Section 2.3, uncertainties in a computational model can 

be categorized as aleatory uncertainty, epistemic uncertainty and prediction error.  

Aleatory uncertainty arises from inherent randomness in a system, and epistemic 

uncertainty stems from a lack of knowledge on a true value (e.g. lack of experimental 

data for variable quantification).  The prediction error can be divided into a model 

error due to an inaccurate model form and an implementation error. Figure 5 

summarizes techniques that tackle corresponding uncertain sources.  
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Fig. 6. Random variables in a model and related characterization technique 

3.2.2 A Hierarchical Framework for Statistical Model Validation 

Validating computational models of engineered products (or systems) is not trivial 

because the computational models contain many unknown model variables (e.g., 

material properties and boundary conditions).  Model validation is even more difficult 

when the computational models involve more complicated mathematical formulations 

with many unknown model parameters.  This difficulty underscores the need of a 

systematic approach to the computational model validation for an engineered system.  

This dissertation thus proposes a hierarchical framework for statistical model 

validation, which consists of three activities as shown in Fig. 7: (1) top-down model 

validation planning, (2) bottom-up model validation execution and (3) virtual 
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system will be physically divided into three, or more, progressively simpler tiers: 

subsystems and components.  The available computational models and experimental 

resources should be summarized at each tier, and they are clearly defined and 

understood.  Experts’ opinion and available references helps identify vital 

computational models, experimental tests, and modeling details at any hierarchical 

level.  Finally, the model input variables are defined, and unknown variable vectors 

are divided into θsy, θsb, and θc as the system is decomposed into subsystems and, 

subsequently, components. 

A predicted response given by a computational model of a system can be 

expressed as 

 ˆ ( , , , , , , ) ( , , , , , , )sy sy sb c sy sb c sy sy sb c sy sb c sy syY Y e   X X X θ θ θ ζ X X X θ θ θ ζ   (1) 

where Ŷ and Y are predicted and observed (experimental) responses; X and θ are the 

known and unknown variable vectors, respectively; ζ is the controllable variable (e.g., 

operating conditions – environmental temperature or pressure of a product); e and ε 

are respectively the prediction error (model error and implementation error) and 

observation error (experimental error); the subscript sy, sb, and c mean ‘system’, 

‘subsystem’, and ‘component’, respectively.  The predicted responses in the 

computational model of a subsystem or component can be expressed as 

 ˆ ( , , , , ) ( , , , , )sb sb c c sb sb sb c c sb sb sbY Y e   X X θ θ ζ X X θ θ ζ   (2) 

 ˆ ( , , ) ( , , )c c c c c c c cY Y e   X θ ζ X θ ζ   (3) 

To help understanding on this step 1, a case study of cellular phone system in 

Section 4.1.2 is invited.  The objective of the case study is to develop a valid 

computational model that can be used to predict the reliability of a cellular phone 
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system against a dent test as shown in Fig. 8.  The cellular phone system has two 

primary failure mechanisms related to the LCD module: LCD panel fracture and 

Driver Integrated Circuit (IC) failure in the LCD module, as shown in Fig. 7.  The 

computational models that simulate the LCD failure in the cellular phone system 

include six unknown model variables (θ), such as material properties and interface 

conditions.  To make the system model calibration affordable, the computational 

model of the cellular phone system was decomposed into subsystem(s) and 

component(s).  This decomposition planning was designed to isolate the failure 

mechanisms (or PoI) and identify unknown model variables along the system 

hierarchy.  First, separation of the LCD module (subsystem) from the cellular phone 

(system) isolated the Driver IC failure mechanism.  A dent failure test (destructive 

testing) was performed to replicate the failure in the module.  The dent simulation 

model was developed with LS-DYNA software, as shown in Fig. 9.  Subsequently, 

the decomposition of the LCD panel (component) from the LCD module (subsystem) 

isolated the LCD panel failure mechanism.  A 3-point bending failure test (destructive 

testing) was designed to replicate the LCD panel breakage.  Correspondingly, the 3-

point bending simulation model was developed using an explicit method in the LS-

DYNA software, as shown in Fig. 10. 

 The cellular phone model includes many unknown model variables (θ), such as 

material properties and interface conditions.  Figure 11 shows the configuration of the 

LCD module.  Among many, six model variables were found to be unknown through 

expert knowledge about the computational model for the LCD module (subsystem).  

The six variables included four material properties (the light guide panel, chassis, 
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mold frame, and Driver IC) and two interface conditions (gap sheet thickness and tied 

scale factor as an interface condition between layers 2 and 8).  In the component level, 

the elastic modulus of the LCD panel is defined as unknown variable.  

   

Fig. 8. Dent test and simulation for cellular phone system (system level) 

     

Fig. 9. Dent test and simulation for LCD module (subsystem level) 

     

Fig. 10. 3-point bending test and simulation for LCD panel (component level) 

 
1. upper glass 2. lower glass 3. upper polarizer 
4. lower polarizer 5. gap sheet #1 6. gap sheet #2 
7. light guide panel 8. inner chassis 9. outer chassis 
10. mold frame 

Fig. 11. Configuration of LCD module 
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 (Step 2) Model validation execution planning: It includes (a) the model variable 

characterization planning, (b) the statistical calibration planning, and (c) the validity 

check planning.  

(Step 2-a) Model variable characterization planning: Material properties, 

physical parameters, etc. defined as known model variables (X) with randomness 

should be statistically characterized with multiple experimental data.  Goodness-of-fit 

(GoF) hypothesis test such as the Kolmogorov-Smirnov goodness-of-fit (K-S GoF) 

hypothesis tests or chi-square GoF hypothesis test can be employed to determine the 

statistics of statistical variables [15].  Detail procedure will be explained in next 

subsection.  For the cellular phone system, failure forces (loading conditions) of both 

3-point bending test and dent test are decided as known model input variables.  

(Step 2-b) Statistical calibration planning: The model calibration should be 

carefully executed as explained in Section 3.2.1.  The statistical calibration planning 

using expert opinion and sensitivity studies is thus very important, since it determines 

the most significant but unknown model variables that affect uncertain responses of 

the computational model at any hierarchy.  The success of statistical model 

calibration highly relies on the ability to identify a small number of unknown model 

variables (θ) that can be statistically calibrated with experimental data at each 

hierarchy.  For the LCD module, sensitivity analysis uses a finite difference method 

to perturb the six unknown model variables in a computational model by 1% and 

identifies the variables that significantly affect the two primary failure mechanisms as 

shown in Fig. 12.  The gap sheet thickness and tied scale factor turned out to be the 

most significant and were considered as the unknown model variables (θsb) in the 
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calibration process of the LCD module (subsystem).  The other variables are defined 

as known variables and the values in references are used for the model calibration.  

As the LCD panel was decomposed from the module, this planning identified two 

unknown model variables (θc): the elastic moduli of the polarizer and the LCD panel.  

Between them, it is found that the elastic modulus of the LCD panel was far more 

significant.  Therefore, the elastic modulus of the LCD panel was decided as the only 

unknown model input variable.  In this planning, it is also required to decide a 

method for the UP analysis for statistical model calibration.  The UP analysis 

develops the relation between random model variables and computational responses 

at any hierarchical level.   Among many UP analysis techniques, this research mainly 

used the eigenvector dimension reduction (EDR) method, which is one of the 

approximate integration methods, because of its less computational effort.  Details of 

the EDR method are explained in Section 3.3.2. 

 

Fig. 12. Sensitivity analysis of LCD module 

(Step 2-c) Validity check planning: Validity check will be planned with additional 

experiments because an insufficient amount of data and inaccurate basic assumptions 

could lead to false validation results after the statistical model calibration.  This 
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validity check offers a chance to refine the computational model with a more realistic 

conceptual or mathematical model that better represents the physics of the system.  It 

is recommended that the validity check be performed at any hierarchy after the 

statistical model calibration if the experimental resources are sufficient.  Some 

available validity check metrics are introduced in Section 3.2.2.2, and the hypothesis 

test for validity check developed is explained in Section 3.4.  

(Step 3) Virtual qualification planning: With a computational model after 

statistical calibration, the virtual qualification can be performed with two ways: (a) 

the absolute qualification and (b) the relatively qualification.  The absolute 

qualification is performed if the PoI of a system has a strict margin, while the relative 

qualification compares the PoIs of several design alternatives to choose the best 

design among many candidates.  By applying a technique of the reliability-based 

design optimization (RBDO), the optimal design can be also found with the 

computational model.  Details are explained in Section 3.2.2.3. 

3.2.2.2 Model Validation Execution 

The model validation execution follows the model validation planning.  The 

model validation execution is a bottom-up activity.  The execution is composed of 

three primary steps: (Step 1) model variable characterization, (Step 2) statistical 

model calibration, and (Step 3) validity check. 

(Step 1) Model variable characterization: Material properties, physical parameters 

and loading condition categorized as the known model variables in model validation 

planning should be statistically quantified with experimental data of multiple 

specimens.  The sample specimens should be produced from the same manufacturing 
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line (or lot number).  There are two types of random input variables as shown in Fig. 

6: (a) random parameter variable, and (b) random field variable.  While random 

parameter variable do not consider the spatial variability, random field variable is 

characterized as a function of spatial variables.  

(Step 1-a) Characterization of random parameter variable: The K-S GoF 

hypothesis tests or chi-square GoF hypothesis test can be employed to determine the 

statistical parameters.  Characterization of random parameter variable follows 

procedures below: 

 Obtain optimum distribution parameters for candidate distribution types (e.g., 

normal, lognormal, weibull and gamma distributions) using one of the point 

estimation methods.  The maximum likelihood estimation method is used in this 

research [15]. 

 Perform a quantitative hypothesis test for the candidate distributions.  While the 

chi-square GoF test and K-S GoF test [15] were both considered, the K-S GoF test 

is recommended for model validation because it is known that the chi-square GoF 

test does not work well with a small data size.  In the K-S GoF test, a hypothesized 

cumulative distribution function (CDF) is compared with its estimate, known as the 

empirical (or sample) cumulative distribution function.  Four activities are required 

to perform the K-S GoF test: 

(1) Assume the data follow a specified distribution with corresponding parameters, 

obtained in Step 1.  

(2) Define a sample CDF for an ordered sample y(1)<y(2)<y(3)< ··· <y(k) as  
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  (4) 

where yi is a component of the response vector y; k is total number of data. 

(3) Calculate a test statistic (K–S) to measure the maximum difference between 

Sk(z) and a hypothesized CDF, F(z), as 

 1max ( ) ( ) , ( ) ( )i k i i k i
i

K S F y S y F y S y         (5) 

(4) Reject the hypothesis if  

 ( )kK S D    (6) 

where α is an assigned significance level, and critical value for K-S GoF test, 

Dk(α), can be obtained from the Ref. [15]. 

 Select the best distribution based on p-value among the accepted distributions.  

(Step 1-b) Characterization of random field variable: A random process modeling 

technique can be used for the characterization of random field variables.  The 

technique includes the midpoint method [114], the spatial averaging method [115], 

the shape function method [116], and the proper orthogonal decomposition (POD) 

method [117].  The POD method has been improved to perform a random-field-based 

probabilistic design with few characterized random parameters [118,119].  Because 

statistical model calibration requires UP analysis repeatedly, a small number of 

random parameter is beneficial to reduce computational cost.  The improved POD 

method is thus recommended to characterize random field variable for the statistical 

model validation.  For the completeness of the thesis, the improved POD method is 
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briefly summarized although it is not demonstrated in the case studies.  In the POD 

method, random field is characterized as 
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where the random field, δ, is a function of the position, t.  (t) and 
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indicate mean and variation parts, respectively.  k indicates the number of snapshot 

(random field samples).  ϕ is eigenvector that indicates the most significant signature 

of an ensemble of the random field variation and v is the coefficient of the 

corresponding eigenvector.  The coefficients of important signatures, v, in Eq. (7) can 

be replaced by a small number of random parameters (Vi) as  
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(Step 2) Statistical model calibration: A statistical model calibration technique is 

essential to enhance the predictive capability of a computational model at any 

hierarchical level.  For successful model calibration, the predictive models must be 

constructed at all hierarchical levels with the known and unknown model variables.  

Initially, the computational model will be built by modeling unknown model 

variables with a prior knowledge from experts or reference information.  In the 

example of the cellular phone system, the initial statistics of the gap sheet thickness 

and tied scale factor are provided by manufacturing experts and product analysts, 

whereas the elastic modulus of the LCD panel is initially derived from the glass.  

Then, the constructed computational model develops the PDF of the response through 

UP analysis.  Finally, the proposed statistical calibration technique in Section 3.3.1 
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improves the predictive capability of a computational model at any hierarchical level 

by compares the observed results with the predicted ones from a computational model.  

The improved model in a lower hierarchy is then fused into a model at a higher 

hierarchical level, and the validation execution continues for the model at the higher 

level.  For the cellular phone system, validation begins at a component level (e.g. 

LCD panel model in Fig. 10) and the unknown model parameters (e.g. LCD panel 

modulus) at the component level become known at the higher hierarchical levels (e.g. 

LCD module in Fig. 9 and cellular phone system in Fig. 8).  The predicted responses 

in the computational models can recursively be enhanced as 
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 (9) 

After the model calibration, an unknown variable vector, θ, becomes a known 

variable vector, θcal.  The augmented parameter vector X* is introduced to simplify 

the notation as the computational models at all levels are aggregated into a system.  

X* indicates a new known random variable vector that includes X and θcal at a given 

hierarchical level.  In this approach, it is acknowledge that it is hard to assure the 

predictive capability of improved model without the assumption that the uncertainty 

in observed results (Y) only comes from the uncertainty of unknown model 

parameters.  For this reason, it is mandatory that the validation key principles 

addressed in Section 2.1 and the model validation planning addressed in Section 
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3.2.2.1 should be accompanied to set a model calibration problem to reduce 

unexpected observation errors (experimental error, ε) and prediction errors 

(computational error, e) during the hierarchical model validation activities. 

(Step 3) Validity check: Validity check metrics such as graphical comparison, 

confidence interval approach [120] and u-pooling method [11] can be carefully 

chosen according to characteristics of the predicted and observed responses.  For 

example, the confidence interval approach uses a type 1 error that is a conditional 

probability corresponding to the possibility that a null hypothesis (designated as H0) 

is rejected when it is indeed true, p(reject H0|H0 is true).  In other words, it is a 

probability that we reject a model when it is valid.  Using a two-sided confidence 

interval, if all corresponding experimental results are found within the confidence 

intervals created, the model is not considered to be invalid with the specified 

significance level.  The u-pooling method is explained in Section 3.4.  In this 

dissertation, a new method named ‘hypothesis test for validity check’ is proposed and 

explained in Section. 3.4.  

3.2.2.3 Virtual Qualification 

Virtual qualification is a process for qualifying a product design through the use of 

valid computational model; thus, it will be executed only if a computational model is 

evaluated as valid using hypothesis test.  The virtual qualification can be performed 

with the calibrated model in an absolute or relative manner.  An absolute qualification 

can be conducted for a product design if its performance of interest (PoI) has a strict 

margin, as shown in Fig. 13(a).  For example, the design 1 is qualified if its PoI is 

larger-the-better, whereas the design 2 is not.  A relative qualification is preferred for 
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a product design if its PoI has no strict margin.  Then, various product design 

alternatives can be compared with their PDFs of the PoI, as shown in Fig. 13(b).  For 

instance, the design 1 is more highly qualified than the design 2 or 3.  The virtual 

qualification can be performed quantitatively by constructing the design decision 

matrix, as shown in Fig. 13(c).  This matrix can aid in rational decision-making on 

product designs.  A value in the upper triangular part of the matrix indicates the 

probability that one design (i: column) is better than the other (j: row, p(di>dj)).  p 

indicates probability. di and dj indicate ith and jth designs.  The design decision matrix 

provides rich information for comparison of design alternatives and helps analysts 

make a rational decision in the product development process.  

The benefits of the design decision matrix are: (a) it provides rich information for 

comparison of design alternatives and helps analysts make a rational decision in the 

system development process, and (b) it enables a quantitative decision making in 

determining better design alternative when a system involves multiple PoIs.  Among 

the design alternatives, a design that has the highest weighted sum of probabilities 

over all the PoIs can be selected as the best design (dbest).  For instance, as shown in 

Fig. 14, the sum of p(dA>dB) over two PoIs is 0.8, while the sum of p(dA<dB) is 1.2.  

Assuming that the weights are equally given, we can select the design B rather than 

design A because the former outperforms the latter in a statistical sense.   
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(a) Absolute qualification                   (b) Relative qualification 

 
(c) Design Decision Matrix (di indicates ith design) 

Fig. 13. Virtual qualification methods 

 
 (a) Relative qualification for PoI 1 (b) Relative qualification of PoI 2            

Fig. 14.  Design decision making of a system with multiple PoIs 

3.3 Statistical Model Calibration 

3.3.1 Statistical Model Calibration Procedure 

Although model calibration is a practical and appropriate method, the ad hoc 

adjustment of model input variables may degrade the predictive capability of the 

computational model.  For example, Fig. 15 demonstrates the danger of model 

calibration with a single experimental result.  In Fig. 15(a), it is assumed that the 
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blue-dashed curves represent the uncertain domain of experimental results and the 

red-solid curves do of the same for computational results.  Since the domain 

information is normally unknown, the deterministic calibration to maximize the 

agreement between a deterministic computational result (plus mark) with 

experimental data (blue dot) may affect the predictive capability adversely, as shown 

in Fig. 15(b).  This situation can be prevented as long as statistical model calibration 

is performed with multiple experimental data because it can easily recognize that the 

initial computational model is already “nearly valid”.  This explains why this research 

focuses on the statistical calibration activity in the model development process. 

 
(a) Predicted and observed results before model calibration 

 
(b) Predicted and observed results after deterministic model calibration 

 Fig. 15. Importance of uncertainty in model calibration 

The statistical model calibration is essential to enhance the predictive capability 

of a computational model in the proposed validation framework.  The purpose of 

model calibration is to adjust a set of unknown model variables so that the agreement 

is maximized between the predicted and observed results.  The relationship between 

the observed model, Y, and the predicted model, Ŷ, can be defined as 

Joint PDF of simulation results

Joint PDF of experimental results

Disagreement

Simulation result

Experimental result

Simulation result after calibration
Joint PDF of simulation results 
after calibration
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 ˆ ( , , ) ( )    l p qY Y e      X θ ζ ζ X ,θ ,ζ  (10) 

where l, p and q are the number of the known, unknown and controllable variables.  

The statistical model calibration determines the statistics of unknown model variables 

(θ) that give a maximal agreement between the predicted and observed responses.  

The uncertainty of unknown model variable, θ= {θ1, θ2, ···, θp}, can be represented by 

statistical parameters of a suitable distribution.  For example, in case of a normal 

distribution, the augmented parameter (Θ) includes mean and standard deviation of θ 

as {μθ1, σθ1, μθ2, σθ2,…, μθp, σθp}.  Then, Θ will be the calibration parameter vector in 

the statistical calibration.  A distribution type, such as normal, lognormal and weibull, 

can be assumed or determined based on both historic data and expert opinions.  Next, 

the statistical calibration determines the calibration parameter vector (Θ) that gives a 

maximal agreement between the predicted and observed responses.  The statistical 

calibration can be formulated as 

 10
1

maximize L( | ) [ ( | )]
n

i
i

log f y


 Θ y Θ  (11) 

where yi is a component of the random response (e.g., failure displacement in cellular 

phone system) vector y; n is the number of experimental data; L is likelihood function; 

f is the PDF of y for a given Θ.  The likelihood function is used as the calibration 

metric to measure the degree of the agreement between the PDF of the predicted 

response and the experimental data.  The EDR method can construct the PDF of 

predicted response (f) effectively for the statistical model calibration.  An 

unconstrained optimization problem can be solved using a nonlinear optimizer, the 

“fmincon” function of MATLAB software.  The choice of the calibration formulation 

and the calibration parameters is problem dependent.  If the prior knowledge of model 
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error (e.g. linear form or nonlinear form) is known, it is beneficial to consider the 

model error in the calibration process, but in many cases it is hard to figure out the 

model error before model calibration.  One potential weakness of the proposed 

calibration is that if many unknown parameters are involved in the calibration, the 

calibrated parameters could be going into absurd values.  To mitigate this weakness, 

the model error term is ignored in the calibration process in this dissertation.  

Sensitivity analysis is another solution to leave out parameters that are insensitive to 

the model output prior to the calibration to. Figure 16 shows the concept of the 

likelihood function in the proposed calibration method.  In the figure, x-axis denotes a 

controllable variable (e.g., operating condition), and y-axis denotes experimental data 

or predicted responses.  The likelihood function between the experimental data and 

the response PDFs of Fig. 16(a) is larger than those of Figs. 16(b) or (c): the mean 

values of the response PDFs in Fig. 16(b) are deviated from those of experimental 

data, and the standard deviations of the PDF in Fig. 16(c) are larger than those of Fig. 

16(a). Figure 17 summarizes the statistical model calibration procedure.  Given our 

focus on prediction, the usefulness of the model calibration is apparent due to the 

improvement of statistical information of random variables by the analyses based on 

field data. 
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(a) High likelihood value (b) Low likelihood value (c) Low likelihood value 

Fig. 16. The concept of likelihood function 

 

Fig. 17. Statistical model calibration procedure 

3.3.2 Uncertainty Propagation Analysis 

The proposed model calibration becomes difficult along with the increase of the 

dimensionality of the model input space, since the increased runs of the computation 

model are required.  Among many UP analysis approaches, the eigenvector 

dimension reduction (EDR) method [122] is mainly employed in the thesis because of 
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the less computational cost for UP analysis.  The EDR method is an enhancement of 

the univariate dimension reduction method that calculates the statistical moments of a 

response.  The statistical moments of the response, Ŷ, can be calculated as 

  ˆ ˆ( ) ( ) ( ) , 0,1,2,m mY Y f d m
 

 
     ZΕ Z z z z  (12) 

where Z is an augmented variable vector (Z  X  θ).  E{•} indicates the expectation 

operator and fZ(z) is the joint probability density function (PDF) of Z.  Multi-

dimensional integration in Eq. (12) can be converted into multiple one-dimensional 

integrations using an additive decomposition.  The additive decomposition, Ŷ a, is 

defined as  

 

1 1

1 1 1 1
1

ˆ ˆ( ,..., ) ( ,..., )

ˆ ˆ( ,..., , , ,..., ) ( 1) ( ,..., )

N a N

N

j j j N N
j

Y Z Z Y Z Z

Y Z N Y      




  
 (13) 

Although the additive decomposition (Ŷ a) ignores all the interactive terms, the 

produced error is less than that of a second-order Taylor expansion method for 

probability analysis.  Two reasons can explain this observation: (1) the additive 

decomposition (Ŷ a) preserves the accuracy for all uni-variable terms; (2) after the 

expansion of the true response (Ŷ) using Taylor expansion at the mean value μi, the 

integration of the interactive variable terms in Eq. (13) becomes zero as long as one 

of the variables is odd-order, provided that all variables are independent and the 

integration domain is symmetric.  The symmetry of the integration domain, namely 

the symmetric PDF of the variable, ensures that all odd-order central moments are 

zeros.  For that reason, any asymmetric distribution must be transformed to a 

symmetric distribution.  Therefore, the largest error incurred due to the additive 
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decomposition is at the fourth even-order term, producing a negligible error. In aid of 

the additive decomposition, the probability analysis of the response becomes much 

simpler.  For reliability and quality assessment, the mth statistical moments for the 

response can be approximately obtained as 

        1 1
1

ˆ ˆZ) , , , , 1 , ,

m
N

m
a j N N

j

Y Y Z N Z   


               
Ε Ε     (14) 

Using a binomial formula, Eq. (14) can be evaluated by executing one-dimensional 

integration recursively.  To enhance both accuracy and efficiency in probability 

analysis, three technical elements are considered: (1) the eigenvector sampling 

method to handle correlated and asymmetric random input variables, (2) the stepwise 

moving least squares method for one dimensional response approximation, and (3) a 

stabilized Pearson system for generating a PDF of a response.  Thus, for N number of 

random variables, the EDR method only demands 2N+1 or 4N+1 eigenvector samples 

to obtain a PDF of a response.  

3.4 Hypothesis Test for Validity Check 

For validity check of a computational model, many experimental data from 

multiple samples (or physical products) are generally required; however, it is 

impractical to manufacture lots of prototypes due to expensive manufacturing cost.  

There are two challenges for validity check due to the lack of experimental data.  

First, the experiments for validity check are normally conducted with samples of 

different designs or under various operating conditions (or experimental settings) in a 

validation domain.  When few sets of experimental data are collected for the 

corresponding prediction distributions, it is beneficial to integrate the evidence from 
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all the observations over the entire validation domain into a single measure of overall 

mismatch.  Second challenge is that the small sample size of experiments will 

produce uncertainty in a validity check metric and make it difficult to assess whether 

the disagreement between the predicted and observed results is significant or not.  

The hypothesis test for validity check is thus developed to solve these two challenges 

while considering the effect of limited experimental data.  In the hypothesis test, the 

null hypothesis (H0) is defined as the claim about a calibrated model is valid.  The 

null hypothesis can be rejected only if a validity check metric suggests that H0 is 

false; otherwise not rejected.  The rejected calibrated model should be further refined 

as shown in Fig. 4.  

3.4.1 U-pooling Method 

To solve the first challenge, the hypothesis test employed the u-pooling method 

for validity check [11].  The u-pooling method is beneficial since it allows integration 

of all experimental data from various experimental settings (e.g. environmental 

temperature, loading, etc.) into a single aggregate metric.  In the u-pooling method, 

the cumulative density, ui, should be first obtained by transforming every 

experimental datum (yi) according to its corresponding predictive CDF (Fyi) of a 

calibrated model as 

 ( )i yi iu F y  (15) 

where i is the number of experimental data.  Under the assumption that the 

experimental data, yi, truly come from the same mother distribution (i.e. the model is 

valid), the ui values corresponding to all experimental data will follow a uniform 

distribution on [0,1].  This fact is called the probability integral transform theorem in 
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statistics [121].  In other words, the CDF of the uniform distribution (Funi) indicates 

the line of perfect agreement between experimental data and predicted results of the 

calibrated model.  Therefore, we can quantify a mismatch between dispersion of 

experimental data and distribution of predicted results by calculating an area (i.e. the 

area metric (Um)) between the CDF of the uniform distribution (Funi) and the 

empirical CDF of ui values (Fu) as  

 
1

uni uni0
U ( , ) ( ) ( ) , 0 1 , 0 U 0.5m u u marea F F F u F u du u        (16) 

For example, there are three experimental data (yi) and predicted PDFs (fi) under 

different operating conditions (or experimental settings) as shown in Fig. 18(a).  The 

ui of each experimental datum is calculated and its empirical CDF is drawn in Fig. 

18(b).  The calculated area of shaded region in Fig. 18(b) indicates the Um.  The 

smaller the calculated the Um, the closer is the predicted PDF to the distribution of 

experimental data.  For example, if the model well represents the physical responses 

(i.e. the model is valid) the Um will be zero when enough experimental data exists.  

Otherwise (i.e. the model is not valid), the Um will be a positive value.  

 
 (a) Predicted and experimental results (b) Area metric (=Um) 

Fig. 18. Calculation of area metric 
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3.4.2 Epistemic uncertainty in the area metric 

If experimental data are comprehensively collected for validity check, there is no 

sampling uncertainty in the Um and it is definite the null hypothesis can be rejected 

unless the Um is zero.  While experimental data are limited in reality, the Um has 

uncertainty although mother distributions of predicted and experimental results are 

identical (i.e. the model is valid).  For example, the PDFs (fu,i) in Fig. 19(a) shows 

uncertainty in the Um when eighteen virtual experimental data (i=18) were used for 

validity check.  The uncertainty in area metric is characterized using a virtual 

sampling technique with following three steps. 

Step 1: It is assumed that mother distributions of predicted and experimental 

results are identical (i.e. the model well represents the physical responses or the 

model is valid).  

Step 2: The i number of experimental data (i=18 in Fig. 19(a)) are virtually 

sampled from the mother distribution, and the u values and the corresponding Um 

are calculated using Eq. (16).  

Step 3: Step 2 is repeated several thousand times and the statistical distribution 

(i.e. PDF) of the Um (fu,i) is constructed with Um values using pearson system 

[119].  It was check that the pearson system can appropriately represent the 

uncertainty in Um.  In Fig. 19(a), the PDFs (fu,i) were constructed using ten 

thousand Um values. 

One vital characteristic of the fu,i is that it is unique irrespective of the shape of a 

mother distribution.  To demonstrate this, three different mother distributions are used 

to characterize statistical models of Um as shown in Fig. 19(b), where N and Wbl 
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indicate normal and weibull distributions, respectively.  As shown in Fig. 19(a), the 

PDFs of area metric (fu,18) are identical.  It is because a set of ui values always follows 

uniform distribution regardless of shape of mother distributions (f in Fig. 19(b)).  

Because of this characteristic, proposed hypothesis test can be applicable to any 

computational models with different statistical distribution of predicted responses.  In 

addition, the fu,i converges to zero as the number of experimental data (i) is increased  

As shown in Fig. 20, as the number of experimental data is increased from 6 to 60, 

the uncertainty in the Um is decreased and the area metric is converged to zero.  

   
 (a) PDFs of area metric (fu,18) (b) Three different mother distributions 

Fig. 19. PDFs of the Um in case 18 experimental data are virtually sampled 

 

Fig. 20. PDFs of area metric: the effect of limited experimental data 
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3.4.3 Hypothesis test for validity check 

The hypothesis test uses the PDF of area metric (fu,i).  Because the fu,i indicates 

plausible values of Um in case mother distributions of predicted and experimental 

results are identical, upper-tailed test can be employed after deciding a rejection 

region as  

 Um > Di(α) (17) 

where Di(α) indicates a critical value of area metric; α is a significance level. For 

example, D18(0.05) is 0.137 for the upper-tailed test as shown in Fig. 19(a).  The null 

hypothesis will be rejected if and only if Um falls is the rejection region.  In the 

absence of such evidence, H0 should not be rejected, since it is still quite plausible.  

For the successful validity check, it is important to decide reasonable rejection 

region (or Di(α)).  In this study, type 1 and type 2 errors are considered to determine 

the rejection region.  A type 1 error is defined as a probability that we reject a 

calibrated model when it is valid.  The type 1 error can be calculated as  

 u,( )
Type1error ( )

i
iD

f x dx



   (18) 

The type 1 error is related with the cost of a product development.   The type 2 error is 

differently defined as a probability that we do not reject a calibrated model when it is 

invalid.  It is related with risk or confidence of predicted results.  The type 2 error 

cannot be simply estimated with the fu,i.  It varies according to the Degree of Invalid 

(DoI) that is defined as a difference between distributions of predicted results (fcompu) 

and experimental results (fexp).  Two different metrics, joint area metric and cross 

entropy metric [11], were considered to quantify the DoI as  



 

59 
 

 

compu exp
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
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


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where dJ and dC indicate the joint area metric and the cross entropy metric, 

respectively.  Then, the DoI can be formulated as  

 
DoI (1 ) 100 0 DoI 100

DoI 0 DoI
J J

C C

d J d

d C d

d

or d

    

 
 (20) 

The concept of DoI is described with five different PDFs in Fig. 21(a).  It is 

assumed that the mother distribution of experimental results is the standard normal 

distribution (f0).  The PDF, f20, shows the 20% DoIdJ (dJ=0.8) by compared to the 

mother function (f0) due to a prediction error.  Superscript in the f20 designates 20% 

DoIdJ.  Similarly, the f40, f60 and f80 have 40%, 60% and 80% DoIdJ, respectively.  

Table 2 summarizes the DoIdJ and DoIdC of PDFs in Fig. 21(a).   

Then, the PDFs of the area metric in case the mother function of predicted results 

is different with that of experimental results ( DoI
u,if , i=18, see Fig. 21(b)) can be 

constructed by comparing five PDFs in Fig. 21(a) (as distributions of predicted 

results) with the sampled experimental data from f0.  For example, the 20
u,18f  was 

constructed with the mother distribution of predicted results, f20, and experimental 

data sampled from f0.  To construct the distribution, 20
u,18f , step 2 and 3 in Section 

3.4.2 were repeated ten thousand times.  Similarly, the 40
u,18f , 60

u,18f  and 80
u,18f  were 

constructed with  f40, f60, and f80 as the mother distributions of predicted results.  We 

can check that the calculated area metric increases as the DoI increases (or as the 
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difference between predicted and experimental results increases).  Finally, the type 2 

error is defined using the 40
u,if   as  

 
u,

( ) DoI

0
Type2error ( )

i

i

D
f x dx


   (21) 

Table 3 shows the type 2 errors when D18(α) is 0.1 as shown in Fig. 21(b).  The type 2 

error is decreased as the DoI is increased. 

  
 (a) Five PDFs (fDoI) with different DoI (b) PDFs of area metric (

u,18

DoIf ) 

Fig. 21. Uncertainty in area metric due to DoI 

Table 2 DoI of different predicted PDFs 

PDF of 
predicted results 

Mother function 
of experimental 

results 
DoIdJ DoIdC 

f0 f0 0% 0 
f20 f0 20% 0.185 
f40 f0 40% 0.704 
f60 f0 60% 2.044 
f80 f0 80% 4.739 

Table 3 The calculated type 2 error 

Predictive PDF Type 2 error 
f20 0.35 
f40 0 
f60 0 
f80 0 

Based on the type 1 and type 2 errors, two approaches are devised to determine the 

rational rejection region (or the critical value) for the validity check as: 
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(1) An approach based on a significance level: With an assigned significance 

level, α, this approach rejects the null hypothesis if and only if the Um is less than the 

critical value, Di(α).  The significance level should be carefully decided based on the 

experts’ knowledge.  If the significance level is increased, the type 1 error increases 

while the type 2 error decreases.   

(2) An approach based on the type 2 error: If engineered systems have high risk 

(e.g. products having catastrophic failure mode such as a li-ion battery system, a 

bridge, an airplane, etc.), the critical value (Di(α)) should be decided based on the 

type 2 error by following three steps.  First, an acceptable maximum DoI should be 

determined.  For example, the 40% DoI is selected as the acceptable maximum DoI as 

shown in Fig. 21(a).  Next, 
u,

Max. DoI

i
f  (Max. DoI =40%) is constructed (see 

u,18

40f  in Fig. 

21(b)).  Then, the critical value (Di(α)) can be selected as the value that makes the 

type 2 error of the 
u,

Max. DoI

i
f  zero (i.e. the Di(α) that makes the type 2 error of the 

u,18

40f  

zero is 0.1).  By defining rejection region as Um > 0.1, we can reject invalid a 

computational model of which DoI is larger than 40%.  The benefit of this approach 

is that we can reject all invalid computational models that have unacceptable large 

DoIs.  

  



 

62 
 

Chapter 4: Case Studies  

For the feasibility demonstration of the proposed model validation framework, 

this chapter employs five case studies: (1) cellular phone, (2) tire tread block, (3) 

thermal challenge problem, (4) constrained-layer damping structure and (5) energy 

harvesting device.   

4.1 Cellular Phone  

4.1.1 Overview of Problem 

Hand held electronic devices, such as cellular phones, may be subjected to many 

different mechanical loads during their lifetime.  These mechanical loads include 

impact shock due to a drop, keypad pressing and phone twisting (and bending) when 

we sit down on a chair with a cellular phone in the pants pocket.  Dent and 3-point 

bending tests or simulations have been normally used to examine mechanical failures 

of LCD panel and module in cellular phone systems.  In this case study, two 

computational models are built using the proposed validation framework: (1) a 

computational model of a cellular phone system of LG Electronics (Section 4.1.2) and 

(2) a computational model of a TFT-LCD panel of Samsung Electronics (Section 

4.1.3).  

4.1.2 Model Validation of a Cellular Phone System 

4.1.2.1 Model Validation Planning 

The model validation planning of the cellular phone system is explained in 

Section 3.2.2.1.  Before the model validation execution, it is assumed that code 
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verification for the used FE models was precisely exercised by the commercial FE 

analysis code, LS-DYNA.  The calculation verification such as mesh convergence 

study went through before the model validation activities. 

4.1.2.2 Model Validation Execution 

This section is focused on the model validation execution in a hierarchical 

manner.  The statistical model calibration is executed at two levels: LCD Panel 

(component level) and LCD Module (subsystem level).  Finally the model validity 

check and virtual qualification are executed at the system level (cellular phone). 

4.1.2.2(a) LCD Panel Validation (Component-Level) 

Figure 9 displays the LCD module, which contains the LCD panel and other 

structural/electric components.  The objectives of the LCD panel calibration are (1) to 

enhance the predictive capability of the LCD panel model through the statistical 

calibration and (2) to determine a failure criterion for an LCD panel.  The validation 

planning identified a 3-point bending test for the LCD panel validation, and identifies 

the statistical property of the modulus of the panel elasticity (E) as the unknown 

model parameters.  Figure 10 shows the 3-point bending test for the LCD panel. The 

cellular phone is facing upward.  A load is applied at the center area and the two ends 

of the cellular phone are supported.  As shown in Table 4, the test employed ten LCD 

panels.  Both failure force and displacement data sets were used for the statistical 

model calibration.  In the computational model, the failure forces were treated as the 

input, while the failure displacements were considered to be the response.  

First, as explained in Section 3.2.2.2, the model variable characterization is 

performed to determine statistical model of the failure force (known model parameter 
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related with loading condition).  The normal distribution (=7.578, =0.150) was 

found to be the most suitable for modeling the failure force of the LCD panel based 

on the K-S GoF, as shown in Table 5. 

Table 4 LCD panel 3-point bending failure test results 

Bending Test # Displacement [mm] Force [kgf] 
1 1.604 7.597 
2 1.627 7.405 
3 1.529 7.516 
4 1.809 7.105 
5 1.489 7.550
6 1.586 7.594 
7 1.484 7.883 
8 1.547 7.769 
9 1.388 7.469 

10 1.499 7.572 

Table 5 K-S GoF test for failure force in LCD panel 

Distribution 
K-S GoF Test 

Result p-value 
Weibull Accept 0.4661 
Normal Accept 0.7296 

Second, the statistical calibration was conducted to determine the statistical 

properties of the elastic modulus (E) in the LCD panel.  The calibration maximizes 

the likelihood function, the degree of the agreement between the observed and 

predicted failure displacement data.  The calibration procedure is summarized as 

follows: 

 Step 1: Set an initial calibration parameter vector (Θ), the statistics of the panel 

elasticity (E), and prepare the observed failure displacement test data. 

 Step 2: Obtain the PDF of a failure displacement using the EDR method.  

 Step 3: Evaluate the likelihood function. 



 

65 
 

 Step 4: Update the calibration parameter vector by maximizing the likelihood 

function. 

 Step 5: Check whether the optimization process for the statistical calibration in Eq. 

(11) is converged. 

 Step 6: If it is converged, stop the calibration procedure; otherwise go to Step 2.  

The overall calibration procedure is summarized in Fig. 22(a).  The calibration 

requires 205 simulations in total to calculate a likelihood value and its sensitivity. 

This computation was feasible with a parallel computing scheme.  The PDF with the 

initial statistics of the panel elasticity was compared with the improved PDF having 

the calibrated statistics in Fig. 22(b).  It is apparent that the likelihood value of the 

failure displacement is increased after the statistical calibration.  The calibrated PDF 

of the failure displacement agrees well with the experimental data.  As a result, the 

proposed validation determines the statistical property of the valid modulus of the 

panel elasticity, E ~ Lognormal(A, B). The parameters (A and B) are not disclosed 

since they are proprietary information of the sponsored company. 

Third, the PDF of the panel failure stress is obtained using the updated 

computational model as displayed in Fig. 23.  The obtained failure stress will be used 

for reliability prediction of the cellular phone system. 
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(a) Model calibration flow 

 
(b) Random output of failure displacement 

Fig. 22. Statistical model calibration of LCD panel 

 

Fig. 23. Failure stress of a LCD panel (unit:GPa) 

 

3‐point bending failure testRandom variables

(7 .58, 0 .15)F ailure force N

Failure force

 1 2,c   Θ

Panel elastic modulus

LCD panel simulation

Calibration result

Failure displacement

P
D
F

 ,c A BΘ

Observed response
Updated response
Initial responseNormal

Known

Unknown

Failure force Failure displacement

1 2( , )

L ognorm al

 
P
D
F

Initial response

Updated response

Observed response

Failure displacement

Failure Stress of Panel [Design A]

P
D
F



 

67 
 

4.1.2.2(b) LCD Module Validation (Subsystem-Level) 

The objectives of the LCD module validation are (1) to enhance the predictive 

capability of the LCD module and (2) to determine a failure criterion for a Driver IC 

mounted on the LCD module.  The validation planning identified a dent failure test 

for the LCD module validation as shown in Fig. 9, and employed a sensitivity study 

to define the statistical properties of the unknown model variables (gap sheet 

thickness and tied scale factor between the layers 2 and 8).  Table 6 shows the dent 

failure test results with ten LCD modules.  Both failure force and displacement data 

sets were used for the model calibration.  Similar to the LCD panel calibration, the 

failure force defined as the known parameter was modeled with a lognormal 

distribution (see Table 7). 

Table 6 LCD module dent test results 

Test number Displacement [mm] Force [kgf] 
1 0.7459 2.123 
2 0.9270 2.848 
3 1.1337 3.250 
4 0.7494 2.142 
5 0.6379 1.814 
6 0.9169 2.523 
7 0.8379 2.508 
8 0.8976 2.631 
9 0.6308 1.861 

10 0.7668 2.181 

Table 7 Hypothesis test for failure force in LCD module 

Distribution 
K-S GoF Test 

Result p-Value 
Weibull Accept 0.8364 
Normal Accept 0.8602 

Lognormal Accept 0.9348 
Gamma Accept 0.8792 
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Next, the statistical calibration was executed to determine the statistical properties 

of the gap sheet thickness and tied scale factor in the LCD module. The overall 

calibration procedure is the same as that in Section 4.1.2.2(a).  The calibration 

maximizes the likelihood function between the observed and predicted failure 

displacement data.  The uncertainty propagation analysis employed two known 

random variables: Panel E ~ Lognormal(A, B) and Failure force ~ Lognormal(0.853, 

0.187), where the parameters were two lognormal distribution parameters, 

respectively.  The calibration requires 945 simulations in total.  As a result, the 

proposed calibration of the LCD module determined the calibration parameters of the 

unknown model variables, gap sheet thickness ~ Normal(C, D) and tied scale factor ~ 

Normal(F, G).  The parameters (C, D, F and G) are not disclosed since they are 

proprietary information of the sponsored company.  Finally, the PDF of the Driver IC 

failure stress in the LCD module was also obtained using the calibrated LCD module 

model as displayed in Fig. 24.  

 

Fig. 24. Failure stress of a Driver IC (unit: GPa) 

4.1.2.2(c) Cellular Phone Validation (System-Level) 

The calibration models of the component and subsystem were included in the 

computational model of the system.  A full-set dent simulation model was constructed 

Failure Stress of Driver IC [Design A]
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for the validity check.  Figure 8 shows the dent simulation for a full set, and Table 8 

lists the statistical properties of random variables in the full set model.  The 

hierarchical model calibration process for the cellular phone model is advantageous 

for two reasons.  First, this process provides the valid failure margins (or failure 

stresses) of the LCD panel and Driver IC from Sections 4.1.2.2(a) and 4.1.2.2(b).  

Second, the hierarchical model calibration built the calibrated model, whose 

predictive capability was maximized for the cellular phone system.  The calibrated 

cellular phone system model and failure margins can be used for the validity check 

about reliability of system. 

Table 8 Properties of random variables in the full set model 

Random variables Distribution type Mean Standard deviation

X1 (panel E) Lognormal A B 
X2 (Gap sheet T) Normal C D 

X3(Tied scale factor) Normal F G 

Uncertainty propagation analysis for the cellular phone system (design A) model 

assesses the PDFs of the stresses (dashed curves) in the LCD panel (lower and upper 

glasses) for a given dent loading as shown in Fig. 25.  The PDFs of the stresses 

(dashed red curves) in Driver IC (three different designs) for a given dent loading are 

shown in Fig. 26.  The failure stress PDFs (solid curve) in Figs. 26(a)-(c) were also 

obtained using the LCD module models with different designs.  The PDFs were 

different because different materials were used for the different Driver IC designs. 

The three designs were identified by the cellular phone developers over a design 

domain.  The designs are not disclosed since they are proprietary information of the 

sponsored company.  
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Table 9 shows the reliabilities of the LCD panel and Driver IC, which are 

compared to the survival rates with five samples.  For this comparison, five 

experimental data are grossly insufficient; however, the fabrication cost of five 

cellular phones amounted to about $60,000.  In total, this validity check cost 

$180,000 for three designs.  Due to this practical difficulty, it was not possible to 

increase the amount of test data.   

Although it is difficult to extract statistical implication, the validity check results 

were very consistent for the three different designs.  Therefore, we conclude that this 

study demonstrates the feasibility of the proposed hierarchical model calibration 

approach.   

Table 9 Predicted reliability vs. tested survival rate 

 Predicted Reliability Tested Survival Rate 
Upper Panel(Design A) 99.66% 5/5 
Lower Panel(Design A) 97.56% 5/5 

Driver IC(Design A) 1.81% 0/5 
Driver IC(Design B) 57.56% 3/5 
Driver IC(Design C) 99.47 5/5 

4.1.2.3 Discussion 

A hierarchical model validation was employed to the cellular phone system.  In 

the validation planning phase, the system was decomposed in a systematic manner, 

based on ample understanding of the failure mechanisms, performance of interest of 

engineered system, available computation models and experimental resources.  

Specifically, this planning identifies vital computational models, modeling details, 

simulation tools, experimental tests, available resources for test samples at any 

hierarchical level.  Then, the statistical model calibration was planned to determine 

the most significant but unknown model variables using expert opinion and a 
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sensitivity study.  This planning helps define the calibration problems in all 

hierarchical levels.  The validation execution took a bottom-up approach.  The 

statistical model calibration was applied to improve the predictive capability of a 

computational model at any hierarchical level using the statistical calibration 

technique.  This technique compares the observed test results with those predicted 

from the computational model in a statistical manner.  This study used the likelihood 

function as the comparison metric, and employed the unconstrained optimization to 

maximize the likelihood function for determination of the unknown model variables.  

This hierarchical model validation was sequentially executed from the lowest 

hierarchical model to the highest with cellular phone computational models.  It was 

observed that the proposed hierarchical model validation worked out very effectively 

for the cellular phone system to predict the system reliability.  In this validation 

activity, the collaboration and shared expertise between researchers in 

industry/academia and simulation/experiment was another key to make the predictive 

model feasible.  

4.1.3 Model Validation of a TFT-LCD Panel  

4.1.3.1 Model Validation Planning 

The proposed validation framework is employed to validate a computational 

model of a TFT-LCD panel (see Fig. 27(a)).  This validation (1) enhances the 

predictive capability of the LCD panel model through the statistical model calibration 

and (2) evaluates the fidelity of the calibrated model with a hypothesis test for 

validity check.  The overall validation procedure is similar with that in Section 

4.1.2.2(a).  The 3-point bending test employed thirty TFT-LCD panels.  For the 
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experiments of top-x direction (i.e. the Driver IC is facing upward and jig is parallel 

to x axis), top-y direction (i.e. jig is parallel to y axis) and bottom-x direction (i.e. the 

Driver IC is facing downward) as shown in Fig. 27(b), three sets of ten TFT-LCD 

panels were prepared.  While experimental data of top-x and top-y directions were 

used for statistical model calibration, those of bottom-x direction were used for 

validity check.  The elastic moduli of glass panel (Eg) and polarizer in y direction 

(Ep_y) were selected as unknown model variables. 

   
  (a) Configuration of  TFT-LCD panel (b) Experimental settings 

Fig. 27. The computational model of TFT-LCD panel 

4.1.3.2 Model Validation Execution 

4.1.3.2(a) Statistical Model Calibration 

As shown in Figs. 28 and 29, the 3 point bending tests of top-x direction and top-y 

direction were performed with twenty TFT-LCD panels.  In the computational model, 

the failure displacement was treated as the input, while the failure force was 

considered to be the response.  First, the model variable characterization was 

performed to determine the statistical model of the failure displacement (known 

model variable related with loading condition).  The lognormal distributions 

(=1.527, =0.09 for the test of top-x direction; =0.622, =0.232 for the test of top-

y direction) were found to be the most suitable for modeling the failure displacement 
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Fig. 32. PDF of area metric (i=10) 

4.1.3.3 Discussion 

A statistical model calibration was employed to the computational model of a 

TFT-LCD panel.  The unknown model variables, elastic moduli of glass panel and 

polarizer were obtained by maximizing likelihood function.  The validity of the 

calibrated model was evaluated with the hypothesis test for validity check.  Using a 

significance level of 0.05, the calibrated model was assessed as valid.  This case study 

shows that the proposed validation techniques can systematically construct a 

computational model of a TFT-LCD panel with high accuracy. 
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4.2 Tire Tread Block 

The braking and cornering performances of a tire are highly related with a friction 

force between a tire and a road surface.  The consideration of a single tread block, 

detached from a tire body, enables investigation of a friction behavior of a tire.  

Therefore, the tread block test (or block FE analysis) in Fig. 33 are widely used to 

measure (or predict) friction forces of tread blocks with different designs.  In this case 

study, a computational model for block FE analysis was developed using the 

proposed statistical validation framework.  

4.2.1 Overview of Problem 

Figure 33 shows configuration of the block test and simulation.  Top surface of a 

tread block specimen is fixed to a steel plate and bottom surface contacts a road 

surface as shown in Fig. 33(a).  After applying a specific loading, the tread block 

specimen is pulled along x-direction in a constant velocity, and a friction force is 

measured.  

 
(a) Tread block tester 

        
(b) Tread block FE model (design A, size: 30×30×8mm) 

Fig. 33. Tread block tester and FE model 
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Commercial FE software, Abaqus, is used for the block FE analysis.  As an 

activity of model verification [3], grid (mesh) density was adjusted properly to reduce 

discretization error in FE model.  The most crucial aspect of the block analysis is the 

realistic description of a friction model.  Generally, the friction model is a function of 

a contact pressure (φ) and a sliding velocity [123,124].  In the tread block tester, the 

sliding velocity is precisely controlled as 1cm/sec, thus this study employs a contact 

pressure-dependent model as 
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 (22) 

where μf is friction coefficient; φref is reference contact pressure (= 1.0E5 Pa); υ is 

pressure exponential parameter; μ0 is a friction coefficient when pressure is equal to 

φref.  The true values of two model parameters, υ and μ0, vary according to the 

materials and the pair of surfaces in contact.   

4.2.2 Model Validation Planning 

Model validation planning follows three steps explained in Section 3.2.2.1.  The 

performance of interest (PoI) of the block analysis is a friction force between a tread 

block and a road surface.  In this case study, model decomposition is not necessary 

because the tread block is a simple system with one tier.  The tread block model has 

three random input variables: elastic modulus of a rubber and two friction model 

parameters (μ0, υ).  While the elastic modulus is classified as known model variable, 

the friction model parameters (μ0, υ) are grouped as a set of the unknown model 

variables.  To characterize the elastic modulus of the rubber, tensile tests with twelve 

samples (size: 2.62×5×20mm) are prepared.  For statistical calibration, twenty-four 
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solid block specimens (see Design A in Fig. 33(b)) are fabricated.  Tests are executed 

under four different normal loading conditions (3, 5, 7 and 9 kg/cm2) that are selected 

based on tire operating conditions.  Figure 34 shows transient responses of measured 

friction forces with six tread blocks in case normal loading is 3 kg/cm2.  After one 

second from the starting of the test, the friction force is almost converged with little 

fluctuation.  It is assumed that the fluctuation of friction force is mainly due to the 

wear of the rubber.  In such reason, the friction forces measured at the time of two 

second are used for the model validation. 

 

Fig. 34. Measured friction forces (normal loading=3kg/cm2) 

In this case study, the response surface models were constructed to reduce 

computational effort for FE analyses during statistical model calibration.  After model 

calibration, hypothesis test for validity check and virtual qualification are carried out 

one by one.  

4.2.3 Model Validation Execution 

The model validation execution consists of three steps: (Step 1) model variable 

characterization, (Step 2) statistical model calibration, (Step 3) hypothesis test for 

validity check.  
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  (Step 1) Model variable characterization: Tensile tests were conducted to 

characterize elastic modulus of rubber specimens as shown in Fig. 35.  The ambient 

temperature and cross-head speed were set to 23°C and 500mm/min, respectively.  

The ten percent modulus of each sample was used as representative of elastic 

modulus, and the statistical model of the elastic modulus was constructed as shown in 

Fig. 36.  The Weibull distribution (7.77, 22.07) is found as the most suitable 

distribution. 

 

Fig. 35. Tensile test results of twelve rubber samples 

 

Fig. 36.  Statistical distribution of elastic modulus 
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 (Step 2) Statistical model calibration: Response surface models of three model 

variables (μ0, υ and elastic modulus) were constructed with block FE analyses under 4 

different operating conditions (3, 5, 7 and 9 kg/cm2 normal loading).  Figure 37 

shows the response surface model of a 3kg/cm2 normal loading condition.  For a DOE 

table, four-level full factorial design was used.  It is checked that all the response 

surface models well represents the results of FE analyses in the calibration domain.  

The statistical model calibration was employed by comparing experimental data with 

predicted results.  The calibration parameter vector (Θ) includes mean and standard 

deviation of two unknown model variables (μ0 and υ) since it is assumed that μ0 and υ 

follows normal distribution.  Table 10 summarizes calibration results.  The predicted 

friction forces after statistical calibration show good agreement with experimental 

results as shown in Fig. 38.  

 

Fig. 37. Response surface model (normal loading = 3kg/cm2) 

Table 10 Updated calibration parameters of friction model 

Random parameters 
Normal Distribution 

Mean Standard deviation 
μ0 1.875 0.0246 
υ 0.258 0.011 
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 (a) Normal loading: 3kg/cm2  (b) Normal loading: 5kg/cm2 

 
 (c) Normal loading: 7kg/cm2 (d) Normal loading: 9kg/cm2 

Fig. 38. Predicted and observed results after model calibration 

 (Step 3) Hypothesis test for validity check: An approach based on a type 2 error 

was employed.  Twelve tread blocks of two alternative designs as depicted in Fig. 39 

(six blocks for design B and six blocks for design C) were fabricated for the validity 

check experiments.  The area metric (Um) was 0.0525 that was calculated by 

comparing eighteen test data with corresponding predicted PDFs as shown in Fig. 40.  

Based on expert knowledge, the maximum allowable DoI was set to 40%.  Then, the 

critical value, D18, is 0.1 as shown in Fig. 21(b).  Because Um is less than the D18, it is 

concluded that the calibrated model is valid, and the DoI between predicted and 

observed results is less than 40% with 100% confidence.  
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 (a) Design B (longitudinal groove)  (b) Design C (vertical groove) 

Fig. 39. Two design alternatives (contour: contact pressure) 

 
 (a) Observed and predicted results (b) Calculation of Um 

Fig. 40.  Predicted and observed results (normal loading = 7kg/cm2) 

4.2.4 Virtual Qualification 

Relative qualification is demonstrated with three PDFs of different designs in Fig. 

40(a).  Figure 41 shows the design decision matrix.  A value in the upper triangular 

part of the matrix indicates the probability that one design is better than the other.  

For example, the probability that Design C is better than the Design B is 95.61%.  

Design C, which has groove along x-direction (see Fig. 39(b)), has the higher 

probability than the other designs.  It is because of different contact pressure 

distributions that affect to the friction coefficient of the blocks in Eq. (22). 

The statistical evidence in the design decision matrix can save time and cost of 

model development by reducing a confliction between predicted and experimental 

results, which is frequently occurred in traditional virtual testing activities.  For 
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example, a deterministic computational model predicts design A is better than design 

B; however, the experimental results sometimes reveals that design B is better than 

design A.  Without statistical evidence on predicted responses, it may be easy to 

conclude the computational model is invalid and reinvest to develop a new 

computational model although the model is valid in a statistical sense.  

 

Fig. 41. Example of design decision matrix (normal loading = 7kg/cm2) 

4.2.5 Discussion 

The proposed model validation techniques were successfully applied to enhance 

predictive capability of the tread block FE model.  Uncertainty in elastic modulus was 

first quantified using experimental data.  Statistical models of unknown model 

variables (μ0, v) were obtained by the statistical model calibration.  The hypothesis 

test for validity check proved that the calibrated model is valid in a statistical sense.  

Relative qualification was demonstrated with the design decision matrix that provides 

statistical evidence for rational decision-making on new product designs. This case 

study shows that the validation framework is likely applicable to tire tread block 

problem to improve and assess the predictive capability of the block FE model.  
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4.3 Thermal Challenge Problem 

In this case study, the statistical model validation was applied to the thermal 

challenge problem that was devised to compare various model validation approaches 

in the validation challenge workshop [16].  It is a heat conduction problem to predict 

a temperature in a body of a solid slab at a specific location and time.  

4.3.1 Overview of Problem 

Figure 42 shows the schematic of thermal challenge problem, i.e. a solid slab with 

thickness, L. 

T(x=0)=T0

q q=0

L
x=Lx=0

x

Material Property: k, Cp

 

Fig. 42. Schematic of thermal challenge problem 

The boundary conditions are heat flux, q, on the face with zero distance(x=0) from the 

surface to the point being measured and adiabatic on the x=L face.  The problem has 

two thermal properties, thermal conductivity, k, and volumetric heat capacity, Cp.  

The computational model is based on one-dimensional, linear heat conduction in a 

slab.  The temperature in the body at a specific location and time is calculated as 
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where x is the distance from the surface to the point being measured; t is time; and  T0 

(= 25ºC) is the initial temperature of the device at t=0.  

Three sets of experimental data are provided: (1) material characterization (MC) 

data, (2) ensemble validation (EN) data and (3) accreditation validation (AC) data.  In 

the MC data, the thermal properties, k and Cp, are measured over the temperature 

range of the validation database and intended application as depicted in Fig. 43.  It is 

note that k looks dependent on the temperature, but Cp has not tendency to 

temperature.  In the ensemble validation experiment (EN data), four sets of 

experiments are conducted at different thicknesses and heat flux magnitudes with 

randomly selected four specimens (see Table 11).  The experimental data are 

measured at discrete time spots with time interval 100sec within 0~1000sec.  In the 

accreditation validation experiment (AC data), three sets of experiments at different 

thicknesses and heat flux magnitudes, which are different from the values 

investigated during the ensemble validation, are conducted with two specimens, 

respectively (see Table 11).  The measured time interval is 50sec within 0~1000sec.  

All the test data are described in Ref. [125]. 

   
 (a) Thermal conductivity, k (b) Volumetric heat capacity, Cp 

Fig. 43. Material characterization(MC) data 
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Table 11 Configuration of experiment sets 

Data Set Configuration Number x(cm) q(W/m2) , L(cm) 

EN 

Configuration 1 

x=0 

q=1000, L=1.27 
Configuration 2 q=1000, L=2.54 
Configuration 3 q=2000, L=1.27 
Configuration 4 q=2000, L=2.54 

AC 
Configuration 5.1 x=0 

q=3000, L=1.90 Configuration 5.2 x=L/2
Configuration 5.3 x=L 

The failure probability of a system under the application condition is the PoI of 

the thermal challenge problem, and a predicted failure probability is defined as  

 ( ( ) )s f fp T t t T p    (24) 

where p indicates a probability.  Ts is measured temperature at a specific time, t', after 

exposure to a heat flux.  Tf is a failure temperature (marginal temperature) and pf is a 

marginal failure probability.  Table 12 shows the application condition where the 

failure probability is predicted.  

Table 12 The application condition for failure probability prediction 

x(cm) q(W/m2) L(cm) Tf(ºC) t'(sec) pf 

0.0 3500 1.9 900 1000 0.01 

4.3.2 Model Validation Planning 

The PoI is the failure probability in Eq. (24).  Similar with the tread block 

problem, this problem only has one tier, the system level.  The computational model 

has two random variables, k and Cp, and two controllable variables, q and L.  k and 

Cp are first characterized with the MC data.  Three scenarios are considered to find 

out the best statistics for the variables.  Next, the statistical model calibration is used 

to refine the characterized k and Cp with the EN data.  Finally, validity check is 



 

90 
 

performed with the AC data, and virtual qualification is performed under the 

operating condition.  

4.3.3 Model Validation Execution 

The model validation execution consists of three primary parts: (Step1) the model 

variable characterization, (Step 2) the statistical model calibration, (Step 3) the 

hypothesis test for validity check.  

(Step 1) Model variable characterization: For the characterization of random 

variable, k, two cases are were considered: (a) k is not dependent on temperature and 

follows normal distribution, and (b) k is dependent on temperature.  For the case (a), 

the K-S GoF hypothesis test is was employed with all the MC data in Fig. 43(a).  The 

initial statistics of k are listed in Table 13.  For the case (b), k is was modeled with 

linear regression model on temperature as  

 1 2( )k T T     (25) 

The regression coefficients are listed in Table 13.  When it comes to volumetric heat 

capacity (ρCp), the K-S GoF test is was employed with MC data in Fig. 43(b).  Unlike 

the other journal papers in which ρCp is assumed as the normal distribution [11,18-

20,35], the lognormal distribution is also considered.  The results of the K-S GoF test 

results and calculated statistics are listed in Table 14 and 15, respectively.  

Table 13 Statistical model of the thermal conductivity 

Distribution type Characterized statistics 

Normal 
μk σk 

0.06284 0.0099 

Linear regression 
ξ1 ξ2 ̂  

0.0505 2.25E-5 0.0047 
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Table 14 K-S GoF test of the volumetric heat capacity 

Distribution type p-Value 
Normal 0.8768 

Lognormal 0.9454 

Table 15 Statistical model of the volumetric heat capacity 

 ρCp 

Normal 
μρCp σρCp 

393900 36252 

Lognormal 
μρCp σρCp 

12.88 0.0914 

To evaluate the statistics of k and ρCp, three scenarios were considered as listed in 

Table 16.  Predicted response (mean and 95% confidence intervals (CIs)) and the EN 

data of scenarios are plotted in Figs. 44, 45, and 46.  It can be easily proved by Figs. 

that the PDF of scenario II and III show better agreement with EN data than scenario 

I.  Likelihood and area metrics were calculated to quantitatively determine the best 

scenario.  High likelihood and low area metrics mean better agreement with test data.  

The scenario III was evaluated as the best scenario (see Table 17).  

Table 16 Three scenarios for random parameter characterization 

 k ρCp 
Scenario I Normal Normal 
Scenario II Linear Regression Normal 
Scenario III Linear Regression Lognormal 

Table 17 Metrics for scenario selection 

 Likelihood Estimation Area metric 
Scenario I -301.1 0.1812 
Scenario II -276.4 0.0508 
Scenario III -274.2 0.0393 
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 (a) Configuration 2 (b) Configuration 4 

Fig. 44. Predicted temperature profile of scenario I and EN data 

   
  (a) Configuration 2  (b) Configuration 4 

Fig. 45. Predicted temperature of scenario II and EN data 

      
 (a) Configuration 2 (b) Configuration 4 

Fig. 46. Predicted temperature of scenario III and EN data 

 (Step 2) Statistical model calibration: The statistical model calibration was 

executed to refine the statistics of k and ρCp with the EN data.  The calibration 

approach can be divided into two stages due to the temperature dependency of the k: 

(Stage 1) to find a converged temperature profile with respect to the dependency of 
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k(T) on temperature, and (Stage 2) to find optimal statistics of k and ρCp by the 

statistical model calibration.  Fig. 47 shows the calibration procedure. 

 Stage 1: In a closed-loop situation where output temperature is not only the 

response of a computational model but also a factor changing the k (one of the 

model input variables), k should be iteratively updated according to the change of 

output temperature.  Starting from the initial value of k, output temperature is first 

obtained.  After that, k is recalculated based on the obtained output temperature.  

The resulting value of k conditional on current temperature is then used to calculate 

next output temperature.  This process is repeated until the k and temperature 

distribution is converged to a specific value.  

 

Fig. 47. Model calibration procedure of thermal challenge problem 

 Stage 2: Statistical model calibration is conducted with the EN data (Configuration 

1, 2, 3 and 4).  The updated calibration parameters should be passed to the first 
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stage to find converged temperature profile for UP analysis.  Table 18 and Fig. 48 

show the optimal values of calibrated parameters and the predicted temperature 

profile after model calibration.  After the model calibration, likelihood value is 

increased from -274.2 to -272.8 and area metric is decreased from 0.0393 to 0.0333.   

Table 18 Model variables after statistical model calibration 

       K         ρCp 
β1 β2 ̂  μρCp σρCp 

0.05326 1.452E-5 0.002145 12.8569 0.08940 

     
 (a) Configuration 2 (b) Configuration 4 

Fig. 48. Predicted temperature profile after model calibration and EN data 

 (Step 3) Hypothesis test for validity check: Figure 49 shows the predicted 

temperature of the calibrated model (mean and 95% CIs) and the AC data 

(Configuration 5.1-5.3).  Validity check is performed with the six data at 1000 sec as 

shown in Fig. 50.  The area metric is first calculated as shown in Fig. 51(a).  With a 5% 

significance level, we cannot reject the hypothesis test since the area metric (0.191) is 

less than the critical value (0.2375); therefore, the calibrated model is evaluated as 

valid.  
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 (a) Calculation of Um (b) PDFs of area metric (fu,6) 

Fig. 51. Hypothesis test for validity check (i=6)  

4.3.4 Virtual Qualification 

As defined in model validation planning, the probability of failure under the 

application condition is the PoI of this problem.  Since the computational model is 

evaluated as valid, absolute qualification is executed. Figure 52 Table 19 show the 

PDF of the predicted temperature and its statistical moments.  The predicted 

probability of failure to the marginal temperature (Tf =900°C) is 0.1024, which is far 

larger than the marginal failure probability (pf=0.01); thus the design is not applicable 

under the application condition.  This result is consistent with those of other 

researches [16]. 

 

Fig. 52. Predicted PDF of temperature under the application condition 
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Table 19 Statistical moments of the predicted temperature PDF 

Mean Standard deviation Skewness Kurtosis 
843.92 45.364 0.22967 3.10678 

4.3.5 Discussion 

This case study first showed that the variable characterization should be carefully 

performed to succeed the statistical model validation.  The statistical model 

calibration was executed with two stages to take care of a closed-loop situation of this 

problem (i.e. an input of a computational model (k) is function of predicted output 

(temperature)).  After the model calibration, the computational model is evaluated as 

valid using the hypothesis test for validity check.  Finally, the failure probability was 

predicted, and it was concluded that the predicted probability was far larger than the 

marginal failure probability. This case study clearly provided a guideline of the 

statistical model validation for the heat conduction problem to improve and assess the 

predictive capability of the computational model.  
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4.4 Constrained-layer Damping Structure 

4.4.1 Overview of Problem 

The performance of surface damping treatments may vary once the surface is 

exposed to a wide range of temperatures because the performance of viscoelastic 

damping material is highly dependent on operational temperature.  In addition, 

experimental data for dynamic responses of viscoelastic material are inherently 

random, which makes it difficult to design a robust damping layout.  In this case 

study, the statistical model calibration is applied to the variability characterization of 

viscoelastic damping material to increase predictive capability of the computational 

model of the constrained-layer damping structure.  First, the viscoelastic material 

property is decomposed into two sources: (i) a random complex modulus due to 

operational temperature variability, and (ii) experimental/model errors in the complex 

modulus.  Next, the variability in the damping material property is obtained using the 

statistical calibration method by solving an unconstrained optimization problem with 

a likelihood function metric.  Two computational models are developed to show the 

influence of the material variability on the acoustic performances in the structural-

acoustic systems.  It is shown that the variability of the damping material is 

propagated to that of the acoustic performances in the systems.  In this study, a 

validity check activity of the computational models is not performed due to lack of 

experimental resources.  As an activity of virtual qualification, the reliability-based 

design optimization (RBDO) is performed to obtain the robust and reliable damping 

layout designs of the two structural-acoustic systems amidst severe variability in 

operational temperature and the damping material.  
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This case study is organized as follows.  In Section 4.4.2, a hybrid model for a 

structural-acoustic system analysis is briefly explained.  Section 4.4.3 presents a 

variability characterization approach of a viscoelastic damping layer using statistical 

model calibration.  In Section 4.4.4, reliability-based design optimization (RBDO) is 

carried out to determine an optimal robust design of two different constrained-layer 

damping layouts in structural-acoustic systems.  

4.4.2 Structural-acoustic system analysis 

A boundary-element analysis is employed to calculate an acoustic response of the 

structural-acoustic systems.  As a viscoelastic constitutive model, the fractional 

derivative model is chosen to demonstrate variability characterization of the damping 

material property.   

4.4.2.1 Boundary-element analysis of structural-acoustic systems 

To compute an acoustic response of a structural-acoustic system, it is assumed 

that the structural-acoustic system is semicoupled; that is, the structural responses 

influence the acoustic responses but the acoustic responses do not affect the vibration 

of the structures.  As a result, structural-acoustic problems can be solved sequentially. 

Finite element analysis for structural response and boundary element analysis for 

acoustic response are used in this study.  The detailed procedures for these analyses 

can be found in Ref. [77].  The air density and the speed of sound are given as 

functions of temperature: 

    0 331 3 1 273 15p / R T , c . T / .        (26) 

where ρ is the air density, c is the speed of sound, p0 is sea-level standard atmospheric 

pressure, R is the specific gas constant, and T is temperature in Kelvin. 
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The constrained-layer damping beam in this study consists of three layers: a base 

beam, a viscoelastic damping layer, and a constraining layer.  To compute a structural 

response of the constrained-layer damping beam, a 10-degree-of-freedom finite 

element is used.  The eigenvalue problem of the constrained-layer damping beam 

problem is defined as: 

 Ku = λcMu. (27) 

Here, M and K represent the global mass and stiffness matrices, respectively, and u is 

the complex eigenvector and λc is the complex eigenvalue.  It should be noted that the 

stiffness matrix, K, becomes a complex-valued and frequency-dependent matrix due 

to the viscoelastic damping layer.  The natural frequency, ψk, and the modal loss 

factor, ηk, of the k-th mode are defined as: 

  
Re( ) Im( )

Re( )

c c
k k

k k c
k

λ λ
= , η =

2π λ
   (28) 

where Re(•) and Im(•) refer the real and the imaginary parts of the argument, 

respectively.  To calculate the forced responses of the constrained-layer damping 

beam, the modal superposition method is used. 

4.4.2.2 Fractional derivative model 

Viscoelastic damping material is made of very long intertwined and cross-linked 

molecular chains, each containing thousands or even millions of atoms.  The internal 

molecular interactions that occur during deformation in general and vibration in 

particular give rise to macroscopic properties such as stiffness and energy dissipation 

during cyclic deformation.  The material properties of the viscoelastic material show 

highly frequency- and temperature-dependent characteristics.  By introducing an 

accurate mathematical model for those dependencies, one can enhance the efficiency 
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of the finite element analysis in dynamic problems.  The fractional derivative model 

is one of the most popular models in describing frequency-dependent characteristics 

of viscoelastic damping materials because of accuracy and simplicity of the model.  

In the fractional derivative model of order one, the constitutive equation is given as 

follows. 

 1 0 1( ) ( ) ( ) ( )t c D t a t a D t           (29) 

where ~ refers the Fourier transform; 0 < β < 1; and Dβ indicates the fractional 

derivative [87].  a0, a1, c1, and β are the four variables of fractional derivative model.  

The Fourier transform gives a complex modulus expression as 
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where fc is frequency; E' and E" are storage and loss moduli, respectively.  

Introducing the shift factor from the temperature-frequency equivalence hypothesis, 

the temperature-dependent characteristics of the complex modulus can be described 

as follows. 

 0 1

1

[i ( )]
* ( i )

1 [i ( )]
c

c

a a f T
E E E

c f T








   


 (31)  

where α(T) is the shift factor and fcα is called as reduced frequency.  Knowing the 

shift factor at any given temperature (T) and a master curve at a reference temperature 

T0, the complex modulus can be predicted from Eq. (31).  The shift factor and 

temperature can be related by the Arrhenius equation as  

 1 0log[ ( )] (1 / 1 / )T d T T    (32) 

where d1 is a material constant.  It is known that the four-variable fractional 

derivative model sufficiently represents the real behavior of viscoelastic material over 
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a wide frequency range [126].  Finally, it is evident that the complex modulus 

expression of Eq. (31) can be applied to the shear modulus as well as Young’s 

modulus.  Therefore, in this case study the complex Young’s modulus and complex 

shear modulus will not be distinguished in symbols hereafter. 

4.4.3 Statistical characterization of the viscoelastic damping material 

The damping performance of a constrained-layer damping structure is related to 

the dynamic properties of the viscoelastic damping material.  However, the dynamic 

properties of the damping material are highly sensitive to the environmental 

temperature and/or chemical composition of the material.  In this section, a statistical 

approach to characterize the variability of the viscoelastic damping material using 

statistical model calibration is explained.  In addition, the consequence of variability 

in the damping material on the variability of the dynamic response of the structural-

acoustic systems is examined. 

4.4.3.1 Variability decomposition of the viscoelastic damping material 

The variability in the dynamic material properties of viscoelastic material 

primarily results from two sources: (1) operational temperature variation and (2) 

experimental/model errors associated with the viscoelastic damping material. To 

characterize the variability in the viscoelastic damping material properties, the 

complex modulus of the damping material can be expressed as 
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*( , )cE f T  indicates the uncertain complex modulus of the viscoelastic damping 

material, which is decomposed into two terms: the random complex modulus ( *
1E ) 

and the error in the complex modulus ( *
E ).  *

1E  considers the operational temperature 

variability, whereas *
E  considers experimental/model errors at a given temperature 

(T0).  It is assumed that * ( )E cf  is the function of frequency only, and follows a 

Gaussian process.  We need to determine the statistical information of two terms 

( *
1 ( , )cE f T  and * ( )E cf ) to characterize the variability in * ( , )cE f T .  The variability of 

*
1E  and *

E  is characterized using the Arrhenius equation, the fractional derivative 

model and statistical calibration method in the next section. 

4.4.3.2 Variability characterization using statistical model calibration 

For the characterization of the random complex modulus, *
1 ( , )cE f T , an 

environmental temperature variation was first characterized with hourly temperature 

data measured for one year in Seoul as shown in Fig. 53.  The variation in the 

temperature profile in Fig. 53 results in the variation in the Arrhenius shift factor 

((T)) in Eq. (32).  Sequentially, the variation in the Arrhenius shift factor propagates 

to the one in the complex modulus.  It is thus definite that the storage shear modulus 

and the loss factor vary significantly due to the temperature variation, and the 

variation of the material properties can also affect the dynamic responses of 

structural-acoustic systems.  
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Fig. 53. Temperature histogram of Seoul in 2007 

For the error in the complex modulus, *
E , the statistical model calibration is 

employed to characterize the variability.  The statistical calibration determines the 

unknown calibration parameter vector (Θ) of the four fractional derivative model 

variables (a0, a1, c1, and β) while maximizing the agreement between the predictive 

response of the fractional derivative model and experimental data (storage shear 

modulus and loss factor data).  The variability of the model variables (a0, a1, c1, and 

β) can be represented by statistical parameters of a suitable distribution.  For example, 

in case of the normal distribution, the Θ includes standard deviations of the model 

variables.  Then, the statistical calibration method can determine the most suitable 

variability information of the complex modulus parameters for the best description of 

the experimental data (storage shear modulus and loss factor data). 

4.4.3.3 Variability characterization of the ISD-110 damping material 

In this section the variability characterization method is applied to a damping 

material, 3M ISD-110 which is a typical damping adhesive generally used in 

constrained-layer damping.  Using the sandwich beam test data (storage shear 

modulus and loss factor data) in Ref. [87], the master curve at a reference temperature 
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(T0) and the variables of the fractional derivative model are estimated. Figure 54 

shows the uncertainty propagation map for variability characterization.  Each side of 

the diagram in Fig. 54 displays the variability propagation for *
1 ( , )cE f T  and *

E , 

respectively.  First, for the characterization of *
1 ( , )cE f T , the uncertainty propagation 

using Monte Carlo simulation is employed using the temperature profile results in 

Fig. 53, Eqs. (31) and (32).  The effect of the material constant (d1) on the shift factor 

(α) is ignored during the Monte Carlo simulation, even though α is a function of both 

T (operational temperature) and d1, due to its negligible effect on α(T).  The estimated 

statistics of temperature and log(α(T)) are listed in Table 20..  

 

Fig. 54. Uncertainty propagation map for variability characterization 
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Table 20 Statistical model of random variables (γlog(a1),log(c1) =0.4239) 

Random Variable Mean Standard Deviation Distribution Type
Temperature(ºC) 13.28 9.79 Bimodal Data 

log(α(T)) -1.14 0.63 Bimodal 
log(a0) log(0.0287) 0.06897 Normal 
log(a1) log(1.0350) 0.05360 Normal 
log(c1) log(0.0115) 0.05360 Normal 
β 0.5 0.05574 Normal 

Next, for the variability of *
E , the statistical calibration method is applied with the 

experimental data of ISD-110. Figure 55 shows the log-log plots of the experimental 

data (dots) at a reference temperature T0 and the master curve (the solid line) of the 

complex modulus.  The statistical properties of the model variables in the master 

curve are listed in Table 20.  To define the calibration parameter vector, it is first 

assumed that logarithmic values of the three fractional derivative model variables 

(log(a0), log(a1), log(c1)) and β follow normal distribution.  Because log(a1/c1) is 

equal to the asymptotic logarithmic value of the storage shear modulus, in the high 

frequency range (around 108 Hz in Fig. 55), log(a1) is linearly proportional to log(c1), 

say, log(a1/c1) = constant or log(a1) = log(c1) + constant.  Therefore, the principal 

directions of the anticipated joint PDF are [-1, 1] and [1, 1], which means that log(a1) 

and log(c1) have identical standard deviations and correlation coefficients [127].  

Then, the calibration parameter vector, Θ, is decided as {slog(a0), sβ, slog(a1),log(c1), 

γlog(a1),log(c1)}, where s and γ indicate standard deviation and correlation coefficient, 

respectively.  The experimental data shown in Figs. 55(a) and (b) are employed to 

calculate the likelihood function.  Optimal values of the parameter vector, Θ, are 

obtained by statistical model calibration.  The calibrated statistics of four parameters 

are listed in Table 20.  When compared to the author’s previous works in Ref. [127], 
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the standard deviation of β is significantly increased due to the consideration of the 

loss factor data in the variability characterization process.  The increased standard 

deviation results in the wider 95% confidence interval (see Fig. 55) for the storage 

shear modulus and the loss factor than those in Ref. [127].  The characterized material 

parameters in Table 20 are used for RBDO of the constrained-layer damping layout in 

Section 4.4.4. 

  
 (a) Storage shear modulus  (b) Loss factor 

Fig. 55. Experimental data, master curve, 95% CI of ISD-110 

4.4.3.4 Influence of material variability on structural-acoustic response 

Two structural-acoustic systems are considered to show the influence of the 

material variability on the dynamic response in a structural-acoustic system as shown 

in Fig. 56.  Figure 56(a) shows an interior rectangular cavity surrounded by three 

rigid walls and a constrained-layer-damping beam with simply supported boundary 

condition.  A unit force, F, is imposed on the center of the aluminum beam. Figure 

56(b) illustrates an air duct that consists of four flat panels under harmonic pressure 

loading.  Four constrained-layer damping patches are bonded on the center of the 

panels to reduce the radiated sound power into infinite air space.  
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The four variables (a0, a1, c1, β) in the fractional derivative model and operational 

temperature (or shift factor, ) are selected as the random variables as listed in Table 

20.  For the structure in Fig. 56(a), the sound pressure levels at a point A are 

calculated with one thousand random samples of the random variables generated by 

Monte Carlo simulation.  For the structure in Fig. 56(b), the radiated powers are 

calculated with one thousand random samples. Figures 57(a) and (b) show the 

calculated variability bound (with 95% confidence interval) of the sound pressure 

level in a decibel scale over a specified frequency range.   

  
 (a) Rectangular cavity problem  (b) Air duct radiation problem  

Fig. 56. Structural-acoustic systems with constrained-layer damping 

  
 (a) Rectangular cavity problem (b) Air duct radiation problem 

Fig. 57. Acoustic response variability in the structural-acoustic systems 
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The magnitude of the amplitude variation at the peak is beyond 10 dB.  Because the 

variability of the viscoelastic damping material causes large variability on the 

acoustic responses of the structural-acoustic systems, it is important to consider the 

variability in the optimization of a damping layer design. 

4.4.4 Reliability-based Design Optimization of structural-acoustic systems 

The design objective of a constrained-layer damping treatment in structural-

acoustic systems is to maximize the robustness of acoustic responses with the 

computational model while minimizing the amount of the damping layer and 

satisfying a reliability target on the acoustic response.  Sections 4.4.4.1 and 4.4.4.2 

deal with RBDO formulations and results of the structural-acoustic systems in Figs. 

56(a) and (b), respectively. 

4.4.4.1 RBDO of the rectangular cavity problem 

A simple rectangular cavity problem surrounded by a simply supported aluminum 

beam with a constrained-layer damping in Fig. 56(a) is first considered.  The ISD-110 

damping material is used for the damping layer of the structure.  The rectangular 

cavity problem has 3 design variables: the length of the constrained-layer (Ω), the 

thicknesses of the damping layer (H1) and the constraining layer (H2).  The thickness 

of the base beam is 20 mm and remains constant during the optimization.  The 

random variables for the damping material in Table 20 are used in the RBDO 

formulation.  The manufacturing variability of the design variables is also considered.  

As listed in Table 21, their coefficients of variations are assumed to be 1%, 10%, and 

5%, respectively.  In addition, the variance of the location for sound pressure 

calculation (point A in Fig. 56(a)) is considered by treating the coordinates of the 
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location as random variables.  In this study, it is assumed that the x and y coordinate 

of point A is distributed with the beta distribution as listed in Table 22, to reflect the 

uncertainty of the observation point. 

Table 21 Design variables of the rectangular cavity problem 

Design 
Variable 

Initial 
Value 

Lower 
Bound 

Upper 
Bound 

Coefficient 
of Variation 

Distribution 
Type 

Ω [m] 0.2 0.1 0.45 1% Normal 
H1 [mm] 0.5 0.1 3 10% Normal 
H2 [mm] 5 1 10 5% Normal 

Table 22Variance of the location for sound pressure calculation 

 Lower Bound Upper Bound Distribution Type 
Ax 0.6 0.8 Beta(2, 2) 
Ay 0.5 0.7 Beta(2, 2) 

The RBDO problem can be formulated as: 
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Ω H H

s
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 

     

b

b X b b b X X X

  (34) 

where b is the design variable vector; X is the random variable vector; Φ is the 

objective function; p() indicates probability; G is the constraint function; and Rt is 

the target reliability.  The RBDO formulation minimizes the mean and standard 

deviation of the objective function for system robustness.  The objective function is 

the weight performance in the damping structure as  

  1 1 2 2( ) 2 tw H w H        b  (35) 

where w1 and w2 are the densities of damping and constraining layers, respectively. ξ1 

is the width of the beam structure.  Two performances are defined to represent the 

constraint function as 
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df df        b X b X  (36) 

where ζc is the sound pressure at point A; ζc
ref = 20.0×10-6 Pa; ζc

dB0 is a prescribed 

level in the decibel scale; and <ζc> = ζc if ζc > 0, <ζc> = 0 otherwise.  The first 

performance, Π1(b,X), is a sound pressure level, which corresponds to the integration 

of the sound pressure level beyond a target value (60dB in Fig. 57) within a specified 

frequency range (e.g., up to 600Hz in Fig. 57).  The second performance, Π2(b,X), is 

an overall acoustic damping performance that corresponds to the sum of sound power 

within the frequency range.  With these performances, the constraint functions can be 

defined as 

 0 ( 1,2) where   0.95t t
i i iG G i G       (37) 

where Πi0 is the functional value of Πi at initial design, and Gt refers to the target 

constraint value.  Two cases of the rectangular cavity design problem were conducted 

for each constraint function: Case I with G1 and Case II with G2. 

The RBDO problems defined in Eqs. (34) to (37) are solved for the rectangular 

cavity (Fig. 56(a)) problem using the sequential quadratic programming algorithm in 

MATLAB.  Case I (or Case II) considers G1 (or G2) as the constraint function, 

respectively.  The frequency responses (Π1, Π2) and the design sensitivity information 

are calculated using the discretized boundary element matrices and used for the 

optimization.  The constrained-layer damping beam in the rectangular cavity is 

discretized with 20 elements: the 10-degree-of-freedom finite elements for the 

constrained part, and the degenerated elements for the bare part.  The acoustic cavity 

is discretized with 80 quadratic boundary elements.  The EDR method uses 41 

analysis calls (4×N+1, N is the number of random variables in Tables 20, 21 and 22) 
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for estimating the objective function and constraint in a probabilistic manner.  The 

target reliability (Rt) is set to 3-sigma level (99.865%).  For each case, deterministic 

design optimization (DDO) is first performed and the results are compared with the 

RBDO results.  RBDO uses the statistical information of the random variables shown 

in Tables 20, 21 and 22.  The optimization results of Case I and Case II are listed in 

Table 24.  

Table 23 The optimization results of case I and case II 

 Initial DDO RBDO 
Case I Case II Case I Case II Case I Case II

Design 
Variable 

Ω [m] 0.20 0.20 0.1000 0.1163 0.1419 0.1430 
H1 [mm] 0.50 0.50 0.1838 0.2127 0.1781 0.1777 
H2 [mm] 5.00 5.00 7.0553 6.5335 9.7632 9.7611 

Object Function 0.286 0.2856 0.1965 0.2121 0.4042 0.4072 

Reliability 
EDR 18.7 19.25 45.34 56.03 99.865 99.865 
MCS - - - - 99.8 99.8 

When RBDO results are compared with the initial model, the weight 

performances (design objective) for Case I and II are sacrificed to improve the 

reliability of the acoustic performance (design requirement) to 3-sigma level by about 

41.5% and 42.6%, respectively.  In RBDO, the acoustic performances become 

reliable by reducing overall sound pressure level.  As found in Table 23, the 

deterministic optimum designs turn out to be unreliable (45.34%, 56.03% reliability 

for Case I and II, respectively).  The design becomes reliable by increasing the total 

amount of the damping material (the objective function).  This underscores the strong 

need to consider the uncertainties in the design of constrained-layer damping layout.  

Fig. 58 shows the PDFs of each constraint at the initial, deterministic, and 

reliability-based optimum design points.  The acoustic performances (design 

requirement) are considerably improved to meet the reliability requirements. Figure 
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59 shows the sound pressure responses at the three different design points.  As the 

design is improved from the initial to RBDO, it is clearly shown that the design 

requirement (damping performance) becomes reliable by increasing the damping 

performance.  In Fig. 60, the PDF of G1 from the EDR method is compared with the 

histogram from MC simulation with 1,000 random samples at the RBDO optimal 

design.  Results show that the EDR method very accurately predicts the PDF and 

reliability in structural-acoustic systems. 

 
 (a) Case I  (b) Case II 

Fig. 58. PDFs of the constraint: initial, DDO and RBDO points 

  
 (a) Case I (b) Case II 

Fig. 59. Acoustic responses: initial, DDO and RBDO points 
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 (a) Case I  (b) Case II 

Fig. 60. MCS and EDR results 

4.4.4.2 RBDO of the air duct radiation problem 

The air duct radiation problem in Fig. 56(b) has four design variables as shown in 

Table 24: the length of the constraining layer in the top and bottom panels (b1), the 

thicknesses of the damping layer (b2), the thickness of the constraining layer (b3), and 

the length of the constraining layer in the left and right panels (b4).  The thickness of 

the base beam is 2 mm and remains constant during the optimization.  In this 

problem, the variability of ISD-110 damping material in Table 20 is only considered.  

Table 24 Design variables of the air duct radiation problem 

Design Variable Initial Value Lower Bound Upper Bound 
b1 [m] 0.15 0.1 0.29 

b2 [mm] 1.5 0.1 3 
b3 [mm] 5 1 10 
b4 [m] 0.15 0.1 0.19 

The RBDO problem is formulated as: 
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  (38) 

Here, the objective function is the weight of the damping structure as  

EDR

MCS

G1

P
D

F
EDR

MCS

G2

P
D

F

(a) (b)



 

115 
 

  1 4 3 2 4 3 2( ) 4 ( )b b w b w b         b  (39) 

where w3 and w4 are the densities of damping and constraining layers, respectively. ξ2 

is the width of the beam structure.  Two performance functions are defined to 

represent the constraint functions as  
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where r is radiated power from the structure into the air medium, vn is outward-

normal velocity of the structure to the boundary, and the overbar(-) represents 

complex conjugate of the argument. rref is 1.0×10-12 W, and rdB0 is a prescribed level 

in the decibel scale.  The first function, Π3(b,X), is a radiated sound power 

performance, which corresponds to the integration of the radiated sound power graph 

beyond a target value (80dB) within a specified frequency range (e.g., up to 600Hz in 

Fig. 57).  The second function, Π4(b,X), is the sum of radiate sound power 

performance within the frequency range.  Then, the constraint functions can be 

defined as 

 0 ( 3,4) where   0.5t t
i i iG G i G      (41) 

where Πi0 is the functional value of Πi at initial design, and Gt refers to the target 

constraint value.  Two cases of the air duct radiation design problem were conducted 

for each constraint function: Case III with G3 and Case IV with G4. 

DDO and RBDO are performed by considering the variability in the ISD-110 

damping material.  The target reliability of this RBDO problem (Rt) in Eq. (38) is also 
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set to 3-sigma level (99.865%).  The optimization results of Case III and Case IV are 

listed in Table 25.  

Table 25 The optimization results of case III and case IV 

 
Initial DDO RBDO 

Case 
III 

Case 
IV 

Case 
III 

Case 
IV 

Case 
III 

Case 
IV 

Design 
Variable 

b1[m] 0.15 0.15 0.1519 0.1379 0.29 0.2780
b2 [mm] 1.5 1.5 2.6009 2.8587 3.0 3.0 
b3 [mm] 5 5 1.0 1.0 1.9390 1.0 
b4 [m] 0.15 0.15 0.1 0.1 0.1 0.1 

Object 
Function 

 1.6573 1.6573 0.4810 0.4758 1.1653 0.7601

Reliability 
EDR 0.835 18.74 45.76 0.4179 99.865 99.865
MCS - - - - 99.8 99.8 

In the DDO results, b3 and b4 have converged at the low bounds.  This result can 

be analyzed from the main effect plot in Fig. 61.  This plot indicates the average 

response at each level of design variables. In this plot each design variable is set to 

have four levels.  These plots show larger sensitivities of G3 and G4 with respect to b1 

and b2 than those with respect to b3 and b4.  Based on these plots, it is analyzed that b3 

and b4 contribute to the minimization of the objective function rather than to the 

constraint satisfaction.  Fig. 62 shows the PDFs of the constraint.  As observed in the 

previous section, the RBDO results show the design with the reliability constraints 

satisfied: most of the PDF is located below i0Gt in Eq. (41) (the black bar in Fig. 

62).  Table 25 shows that the acoustic performance (design requirement) becomes 

reliable by increasing the total amount of the damping material.  That is, the weight 

performances (design objective) are sacrificed to improve the reliability of the 

acoustic performance to 3-sigma level (0.48 to 1.17 for Case III, 0.48 to 0.76 for Case 

IV).  



 

117 
 

 

 
(a) The object function 

 
 (b) The constraint function G3  (c) The constraint function G4 

Fig. 61. Main effect plot 

 
 (a) Case III  (b) Case IV 

Fig. 62. PDFs of the constraint: initial, DDO and RBDO points  

Figure 63 shows the acoustic responses at the initial, DDO, and RBDO design 

points.  It is evident that the design requirement (radiated power) becomes reliable by 

increasing the amount of damping material. Figure 64 shows the mode shapes at the 

initial condition.  Noting that the pressure loading in the air duct radiation problem is 

in-phase on the four panels, it can be seen that three modes (mode 2, mode 5 and 
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mode 10) are excited by the loading in Fig. 64.  In addition, from the mode shapes we 

can understand why the contribution of the side panels is less dominant in the 

constraint functions than that of the top and bottom panels: the acoustic response 

especially around 430Hz (Mode 10) is reduced significantly where the relative 

vibration of the side panel is minimal. 

  
 (a) Case III  (b) Case IV 

Fig. 63. Acoustic response: initial, DDO and RBDO points 

 

Fig. 64. Mode shapes of the air duct radiation problem 
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4.4.5 Conclusion 

This case study mainly applied the statistical model calibration to build accurate 

computational models of the viscoelastic damping material and structural-acoustic 

systems. In the modeling of the viscoelastic damping material, two factors on the 

variability in the complex modulus were considered: operational temperature 

variation and experimental/model errors.  The statistical calibration method 

characterized the variability of the complex modulus by maximizing the agreement 

with all available experimental data (storage shear modulus and loss factor data) 

using the likelihood function metric.  The statistical calibration method can be easily 

expanded to other viscoelastic constitutive models for the variability characterization 

of the damping material property. 

While the validity check is not considered due to lack of experimental resources, 

an RBDO of the structural-acoustic system was performed with the improved 

computational model as an activity of virtual qualification.  Operational condition 

variability in addition to the material property variability was considered in the 

reliability-based robust designs of the constrained-layer damping layout.  Two 

structural-acoustic systems were considered with acoustic performance requirements.  

It was demonstrated that the variability of the damping material is significantly 

propagated to that of the acoustic performances in two structural-acoustic systems.  

For the rectangular cavity problem, variability on manufacturing, the location for 

sound pressure calculation, the operational temperature, and the damping material 

were considered.  The weights (design objective) were increased by about 40%, while 

the reliability of the acoustic performance (sound pressure and power) requirement 
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was improved to 99.865%.  This formulation can be applicable for the damping 

layout design in a passenger vehicle to achieve robust and reliable cabin noise 

reduction.  As an example of a sound radiation problem, an air duct problem with 

constraint on a radiated sound power was introduced and solved.  This formulation 

can be applicable for general structure-borne noise problems in, for example, 

electronic appliances and automobiles.  The numerical results show that RBDO yields 

more robust and reliable damping layout designs than the deterministic design 

optimization.  
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4.5 Energy Harvesting Device 

4.5.1 Overview of Problem 

As mentioned in Section 2.5, most investigations on piezoelectric energy 

harvesting (EH) devices have focused on a cantilever-type energy harvester; however, 

it has some drawbacks as (1) the cantilever-type harvester requires an extra space for 

a bulky proof mass and additional clamping part, (2) the cantilever-type harvester 

must be protected from dirt, moisture, and other environmental harms; therefore, it is 

usually suggested that the cantilever-type harvester be kept inside a case, and (3) a 

great deal of vibration energy may be lost due to loosened clamping conditions after a 

long-time vibration.  To solve the drawbacks of a cantilever-type harvester, Lee and 

Youn newly proposed the concept of a skin-type EH device (the EH skin) that 

generates electrical energy from the vibrating skin structure with an additional thin 

piezoelectric layer as one embodiment [128,129].  

The proposed model validation framework facilitates to develop the valid 

computational model of a piezoelectric EH device.  The EH skin was designed to 

generate a maximum electric power for wireless sensors.  After a careful manufacture 

of the EH skin, a predicted electric voltage was compared with the experimental 

result for the validity check.  It is also demonstrated that the EH skin can generate 

enough electric power for wireless temperature sensors and LEDs. 
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4.5.2 Model Validation Planning 

In this case study, statistical model validation consists of two hierarchical levels: 

(i) top level: electrical response and (ii) bottom level: mechanical response, as 

summarized in Fig. 65.   

 

Fig. 65. Statistical model validation framework for a EH device 

The statistical model calibration was conducted with ten cantilever-type energy 

harvesters from Piezo System Inc. [130].  The specimen is composed of 9 layers in 

total as shown in Fig. 66: two PZT patches (with PZT-5A and two nickel electrode 

layers), a center brass shim and two conductive adhesive layers.  The nickel 

electrodes and adhesive are ignored in the FE model because of their ignorable 

thickness in the simulation and an assumption of a perfect bonding condition.  The 

computational model was developed with Ansys software as shown in Fig. 67.  The 
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center shim by SOLID45 element with three translation degrees of freedom.  The 

specimen harvests energy using ‘31’ mode; when it extends or compresses in x-

direction (due to a bending in y-direction) and, as a result, voltage drop is generated 

in z-direction (see Fig. 67 for axes).  The specimen with series operation is modeled 

by facing two polarization axes (along z-direction).  The two electrode surfaces facing 

the center shim are grounded.  The voltage degrees of freedom at the finite element 

nodes on both top and bottom surfaces are coupled to simulate the electrodes.  These 

two electrodes are connected with a resistor. 

 

Fig. 66. Ten cantilever-type energy harvesters and its cross section 

 

Fig. 67. FE model of a cantilever-type energy harvester 
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spectrum at a specific excitation and resistance.  To make the statistical model 

calibration affordable, the EH model was decomposed into top and bottom levels.  

This decomposition was designed to isolate the responses of the EH device and 

identify unknown model variables along the hierarchy.  Energy harvesting tests were 

conducted to measure the electric responses as shown in Fig. 65.  Subsequently, 

sweep tests were designed to measure the natural frequency of the cantilever-type 

energy harvester.  A mechanical damping ratio ( ) is measured through frequency 

sweep tests and calculated as half power bandwidth method as 

  
2

r

r

f

f
 



 (42) 

where fr is natural frequency, and Δfr indicates half-power bandwidth.  In this study, 

damping ratio was measured with 10 energy harvesters and the average value was 

1.73%.  

Model calibration must be carefully conducted using expert opinion and a 

sensitivity study, which determine the most significant but unknown model variables 

affecting the uncertain responses of the computational model at any hierarchy.  The 

constitute equations of linear piezoelectricity is  
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where Sz, Tz, Ez, and Dz represents strain, stress, electric field and electric 

displacement tensors, respectively. sE, d and εT are strain compliance matrix, 

piezoelectric matrix and permittivity matrix, respectively.  Among many, three model 

variables, s11, d31, and ε33, which are sensitive to the responses of a cantilever-type 

energy harvester, were decided as unknown model variables.  According to the 

analytical equations of a bimorph energy harvester in Ref. [131], the natural 

frequency is related with compliance of PZT and brass, geometry information and 

mass of the bimorph.  The voltage is a function of piezoelectric coupling coefficient 

(k31= d31/(s11·ε33), excitation, capacitance of PZT, geometry information of bimorph 

and resistance.  Thus, the compliance (s11) was considered as an unknown model 

variable (θbot) in the bottom level, whereas the piezoelectric strain coefficient (d31) 

and the permittivity (ε33)) were selected as unknown model variables (θtop) in the top 

level. 

4.5.3 Model Validation Execution 

4.5.3.1 Bottom level calibration: mechanical response 

The statistical calibration in the bottom level consists of two steps: (step 1) to 

characterize the statistical model of a known random variable related with 

manufacturing tolerance, PZT thickness, and (step 2) to obtain the statistical 

distribution of an unknown random variable (s11) using the statistical model 

calibration.  

(Step 1) The thickness of PZT is back-calculated using the weights of 10 

cantilever-type energy harvesters measured.  It is assumed that the densities of brass 

shim and PZT are constant, and the weights among harvesters are different mainly 
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due to the manufacturing tolerance of a PZT thickness.  The weibull distribution (TPZT 

~ Weibull(0.1272,60.42)) was found to be most suitable for modeling the thickness of 

PZT based on the K-S GoF test, as shown in Table 26. 

Table 26 K-S GoF test results 

Distribution 
K-S GoF Test 

Result p-value 
Weibull Accept 0.2695 
Normal Accept 0.1506 

Lognormal Accept 0.1462 
Gamma Accept 0.1320 

 
The characterized statistical model of PZT thickness is shown in the left box of Fig. 

68(a).  

(Step 2): The statistical model calibration was conducted to determine the 

statistical distribution of the s11. Figure 68(a) shows the 4-staged calibration 

procedure.  

• Stage 1: The observed data of the natural frequency must be provided with an 

initial setting of the calibration parameter vector (Θ), which includes the statistics 

of the compliance (lognormal~(μs11, σs11)) and the elastic modulus of brass (Ebrass), 

(i.e., Θ={ μs11, σs11, Ebrass}).  

• Stage 2: The UP analysis approximates the PDF of the natural frequency.  

• Stage 3: The likelihood function is calculated in the optimization process for the 

statistical model calibration. 

• Stage 4: If the process is converged, stop the calibration procedure; otherwise 

update the calibration parameter vector and go to Step 2 to maximize the 

likelihood function.  
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Table 29 summarizes the model input variables after the model calibration.  The 

deterministic values in strain compliance matrix, permittivity matrix and piezoelectric 

matrixes are taken from the Ref. [133] and summarized in Table 30. 

Table 28 Measured voltages of the energy harvesters. 

Test Number 1 2 3 4 5 
Voltage at 30kΩ 5.01 4.63 5.63 5.77 5.72 

Test Number 6 7 8 9 10 
Voltage at 30kΩ 5.44 5.6 5.70 5.60 5.51 

Table 29 Summary of model input variables  

Classification Variable Value Sources of value 

Known 

Deterministic 

Length 63.5mm Measurement 
Width 31.8mm Measurement 

ρbrass 7858 kg·m3 
Back-calculated 
using measured 

weight 
ρPZT 7800kg·m3 Catalog 

Random TPZT Weibull(0.1272,60.42) 
Back-calculated 
using measured 

weight 

Unknown 

Deterministic Ebrass 126.6GPa Calibration(Bottom)

Random 
s11 

Lognormal(0.537, 
0.015E-3) 

Calibration 
(Bottom) 

d31 Lognormal(0.730,0.168) Calibration (Top) 
ε33 Lognormal(6.892,0.035) Calibration (Top) 

Table 30 Material properties of PZT-5A 

PZT-5A 

Components of compliance matrix 

s11 in Table 4 
s12 -5.74E-12 m2/N 
s13 -7.22E-12 m2/N 
s33 1.88E-11 m2/N 
s44 4.75E-11 m2/N 
s66 4.43E-11 m2/N 

Piezoelectric coupling coefficient 
d31 in Table 4 
d33 3.74E-10 C/N 
d15 5.84E-10 C/N 

Relative permittivity at constant strain
11 916 
33 in Table 4 
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4.5.4 Development of the Energy Harvesting Skin 

4.5.4.1 Design of the EH skin 

The EH skin consists of two thin plates to harvest electric power: (1) vibrating 

shell structure (base structure), and (2) thin piezoelectric patches that are directly 

attached onto a base structure.  First, a base structure (steel plate) was designed and 

manufactured to have the first natural frequency of 50Hz under fixed boundary 

condition. Figure 70(a) shows the prototype of the base structure with a size of 

483ⅹ431ⅹ1mm.   

Next, the piezoelectric layer was designed to avoid cancellation effect [128,129] to 

maximize harvestable power.  Figure 71 shows an example of the cancellation effect 

from the second vibration mode of a cantilever beam.  Voltage cancellation occurred 

where the dynamic strain distribution changes sign in the direction of beam length.  

This effect can be minimized by eliminating material where the amount of in-plane 

strain is small due to strain change. Figure 70(b) and (c) shows the first and second 

mode shapes of the base structure. Figure 72 shows the corresponding inflection lines 

and the final design of piezoelectric layer for the EH skin. 

     
 (a) Size of base structure  (b) 1st mode shape (50Hz)  (c) 2nd mode (94Hz)  

Fig. 70. Base structure of the EH skin 
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Fig. 73. Predicted power of PZT segments 

4.5.4.2 Manufacturing of the EH skin 

The EH skin designed in Section 4.5.4.1 was manufactured to evaluate the 

performance and check the validity of the computational model by experiments.  The 

manufacturing process was composed of five steps: (1) assigning PZT patches, (2) 

cutting, (3) bonding, (4) curing and (5) checking short circuitry as shown in Fig. 74.  

First the PZT patches are assigned on the base structure for cutting.  Eleven PZT 

patches are needed for one-quarter of the base structures. Thus total 44 PZT patches 

from Piezo System Inc. (PZT-5A with two nickel electrode layers; size of 50ⅹ

50mm) to prototype the EH skin.  Next, the PZT patches were cut by Universal Laser 

M300 from Universal Laser System Inc.  For the machining process in Fig. 74 (a) and 

(b), a special care must be made to cut the PZT plates because piezoelectric material 

is very brittle.  The power and speed of laser were set to prevent brittle fracture of 

PZT patches.  In the bonding process, a conductive epoxy was used to glue the 

machined PZT segments on the base structure.  Epoxy adhesive was applied to the 

PZT segments in a thin layer by spreading with a knife blade.  The PZT segments are 

attached on the base structure, and cured for 15 minutes (70°C) in a hot chamber.  
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The process was repeatedly done for all area of the base structure.  Lastly, the short 

circuitry was checked between the top and bottom electrode because the “paste” state 

epoxy may be squeezed out and reached at top electrode.  

    
 (a) Assigning PZT patches on base structure  (b) Laser cutting of PZT patches  

    
 (c) Bonding  (d) Curing  (e) Checking short circuitry 

Fig. 74. Manufacturing process of the EH Skin 

4.5.4.3 Power verification of the EH skin 

The voltage of the each segment was measured to check the validity of the 

computational model. Figure 75 shows testbed to measure the voltage.  

 

 Fig. 75. Testbed for the EH skin verification  

EH skin 
design

9 PZT 
patches

Laser 
cutting

Shaker

PC w/ 
Labview

SCC68

Amplifier

Function Generator

Excitation

Signal  
ConditionerEH Skin



 

 

The EH

one segme

patch.  Th

conductive 

the base st

Group A in

Similarly, G

NI USB

open circui

sinusoidal 

H skin has 1

nt were co

hat is, top e

tapes to sh

tructure wa

ncludes segm

Group B, C,

(b) E

F

B-6009 port

it voltage o

vibration –

Functio

DAQ 
unit

DAQ 
unit

16 PZT seg

onnected pa

electrodes o

hare the sam

s electricall

ments 1, 5, 

, and D incl

(a) PZT

Experiment

Fig. 76. Tes

table DAQ d

of each segm

– 50 Hz at

n Generator

Amplifier

Shaker

134

gments as sh

arallel so th

of the PZT

me voltage in

ly connecte

9 and 13 th

lude four se

T segments 

al setting fo

stbed for vo

device (see 

ment.  Tabl

t 1g accele

4 

hown in Fig

hat they ele

T patches w

n one segm

ed to bottom

hat experien

egments as s

of the EH s

or voltage m

oltage measu

Fig. 76(b))

le 31 shows

eration – is

DAQ 
unit

DAQ 
unit

g. 76(a).  T

ectrically be

were conne

ment, and the

m electrode

nce same v

shown in Fi

    
skin 

measuremen

urement  

) were insta

s the measu

s applied. 

Group 

Group 

Group 

Group 

The PZT pa

ehaved as 

cted togeth

e wire conn

e of each s

vibration exc

ig. 76(a). 

 
nt 

alled to mea

ured voltage

 To preven

A

C

B

D

atches in 

one big 

her with 

nected to 

egment.  

citation.  

asure the 

es when 

nt short 



 

135 
 

circuitry, a nice method to bond the PZT segments on the base structure should be 

devised in the future.  The measured voltages are graphically compared with 

predicted PDFs as shown in Fig. 77(a).  Among 16 PZT segments, only eight 

segments can generate voltages that are within 99% confidence intervals of the 

corresponding predicted PDFs (see Fig. 76(b)).  The voltages of the other segments 

are lower than the predicted voltages.  

Table 31 Summary of measured and predicted voltage 

# of 
segment 

Measured 
(V) 

Predicted 
(mean; V) 

# of 
segment 

Measured 
(V) 

Predicted 
(mean; V) 

1 0.535 1.050 9 0.443 1.050 
2 0.337 0.462 10 0.585 0.462 
3 0.000 0.870 11 0.352 0.870 
4 2.343 2.087 12 0.036 2.087 
5 0.395 1.050 13 0.723 1.050 
6 0.095 0.462 14 0.365 0.462 
7 1.001 0.870 15 0.875 0.870 
8 1.765 2.087 16 0.425 2.087 

 
 (a) All measured data (b) Valid data only 

 Fig. 77. Graphical comparison of measured and predicted voltage 

Hypothesis test based on a significance level was employed.  The area metric 

(Um) between the predicted response and experimental data in Fig. 77(a) was 0.2896 

as shown in Fig. 78(a).  The critical value of area metric at a significance level of 

0.05, D16(0.05), was 0.1451 in case sixteen experimental data were employed for the 
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validity check.  The null hypothesis would be rejected since Um (=0.2896) is far larger 

than the Di(α) (=0.1451).  

    
  (a) Calculation of area metric (b) PDF of area metric (i=16) 

Fig. 78. Hypothesis test for validity check  

The discrepancy between the predicted and measured voltages can primarily be 

attributed to some of the following factors: 

 Imperfect bonding condition of PZT patches: The simulation assumes perfect 

bonding of PZT patches. However, perfect bonding is never possible in a real-

world setting; in addition, the quality of bonding is highly dependent on the skill 

of workers. Thus, it is necessary to develop an advanced technique to tightly 

bond the PZT patches and minimize the manufacturing uncertainty.  

 Possible partial damage or degradation in PZT patches due to high temperature 

during laser cutting and curing.  

Although the null hypothesis is rejected, the main reasons of the mismatch were 

the manufacturing error and the unexpected uncertainty due to material damage 

and/or degradation.  This founding reveals that the uncertainty in the experimental 

data should be carefully considered in the model validation process.  This will be the 

future work of this research. 
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significant power level has been achieved.  This case study illustrates the greater 

capabilities of the EH skin from three primary perspectives as:  

(1) A framework of building the statistical model of the EH skin to design robust 

and reliability EH skin while considering variability in materials. 

(2) Sustainable and relatively high power generation to operate low-power 

electronics, such as wireless sensors used for health monitoring of engineered systems 

in plant, airplane, or ground transportation [134] and/or building automation. 

(3) Compact design to require no need of fixture and proof-mass. 
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Chapter 5:  Contributions and Future Works 

5.1 Principle Contributions and Significances 

This dissertation presented a hierarchical framework for statistical model 

validation and conducted a feasibility study of the framework with various industrial 

problems.  The contributions made through this study can be summarized as: 

(1) With the help of commercial FE software and high computational power, 

simulation engineers can easily develop sophisticated computational models and 

carry out virtual testing for an efficient system development.  However, the predictive 

capability of a computational model has been a grand challenge for use in the product 

development process since there is no generic validation framework in a statistical 

sense.  This dissertation research thus aims at developing a generic model validation 

framework so that it offers a standard guideline to simulation engineers (or validation 

engineers) for improving the predictive capability of computational models.  It is 

shown that the proposed hierarchical model validation framework plays a great role in 

doing so.  Model validation planning allows analysts to systematically decompose a 

computational model while identifying the PoIs, required experiments and model 

input variables.  This strategic planning facilitates the execution of the model 

validation successfully for an engineered system with a large number of unknown 

model input variables.  Various statistical techniques have been integrated into the 

model validation execution at every decomposed level so as to improve and assess the 

predictive capability of computational models of engineered products.  The increased 

confidence in the computational model and reduction of conflict between predicted 
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and experimental results can significantly save on the cost and time of developing 

new computational models of engineered systems. 

(2) A good agreement between the computational and experimental results could 

mislead design engineers unless the agreement is made in a statistical sense.  This 

dissertation developed a statistical model calibration technique to improve the 

predictive capability of computational models under various sources and types of 

variability and/or uncertainty.  

(3) In the model validation process, it is unrealistic to manufacture many 

prototypes for the validation experiments due to expensive manufacturing cost.  In 

this dissertation, a validity check engine named the hypothesis test for validity check 

is developed to overcome this challenge of limited experimental data.  The hypothesis 

test for the validity check can give a clear guideline to accept (or reject) 

computational models while considering uncertainty in the validity check metric, and 

help utilize limited experimental data measured at different operating conditions for 

the validity check.  In addition, statistical fidelity evaluation can increase a 

confidence level about a computational model and significantly save the cost and time 

in developing new computational models.   

(4) Virtual qualification will be a great addition to the existing system 

development capability.  This enhanced capability such as absolute qualification, 

relative qualification and reliability-based design optimization enables design 

engineers to explore various design alternatives in an efficient manner.  It can also 

promote the knowledge base of system design engineers and analysts along with 

plenty of simulation model database.  
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 (5) The feasibility of the framework has been successfully demonstrated with five 

engineering problems having different computational models, experimental resources, 

analysis types, and PoIs.  The model validation activity has been executed by fully or 

partially implementing the proposed statistical techniques.  Although this feasibility 

study is somewhat limited, it shows that the framework is likely applicable to diverse 

classes of engineering problems with uncertainties in computational models and 

experimental data.   

5.2 Recommended Future Researches 

Although the proposed research solutions in this dissertation have addressed 

critical challenges in model validation, it is still a grand challenge to promote a 

generic model validation methodology.  Continuous researches and technical 

developments are needed to make the model validation framework feasible and 

effective.  The rest of this section presents possible future researches needed to 

improve the proposed model validation framework.  

1. The experimental errors such as random and bias errors were not quantified in the 

calibration process.  In practice, it is not feasible to find a true computational 

model through the model calibration procedure because the unknown errors are 

highly dependent on the current knowledge of experimental researchers or the 

quality of experimental devices.  For example, it is impossible to obtain the 

experimental random error in the case of destructive testing such as 3-point 

bending failure and dent failure test.  

2. The choice of the calibration model (Eqs. (1)-(3)) should be problem-dependent.  If 

prior knowledge of a model error form (e.g. linear form or nonlinear form) is given, 
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it is beneficial to consider the model error (e) in the calibration process; however, 

in many cases it is not easy to figure out the model error form before the model 

calibration.  Should the inappropriate model error form be used in the model 

calibration process, the calibrated model can be severely misrepresented.  To 

eliminate risk associated with the unknown model form, model error is ignored in 

this dissertation.  A method to extract the appropriate model error in the calibration 

process will be further investigated.  

3. In this dissertation, the distribution type candidates of unknown model variables 

were decided based on the best of the experts’ knowledge.  The effect of different 

distribution types on model validation results needs to be further studied.  In 

addition, a guideline of deciding unknown random variables among many model 

input variables needs to be developed.  

4. A situation in which “component” and “subsystem” data are available but “system” 

data are not, or vice versa frequently occurs in the model validation process of 

engineered systems. To address this situation, a systematic validation process to 

allocate validation resources including experiments needs to be further developed.  

5. A statistical table that considering a significance level, a number of experimental 

data, low and upper bounds of area metric needs to be provided as a reference for 

validity evaluation, so that engineers in various fields can easily perform the 

proposed hypothesis test for validity check.  
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