
ABSTRACT

Title of dissertation: SPATIO-TEMPORAL REASONING
ABOUT AGENT BEHAVIOR

Paulo Shakarian, Doctor of Philosophy, 2011

Dissertation directed by: Professor V.S. Subrahmanian
Department of Computer Science

There are many applications where we wish to reason about spatio-temporal

aspects of an agent’s behavior. This dissertation examines several facets of this type

of reasoning.

First, given a model of past agent behavior, we wish to reason about the proba-

bility that an agent takes a given action at a certain time. Previous work combining

temporal and probabilistic reasoning has made either independence or Markov as-

sumptions. This work introduces Annotated Probabilistic Temporal (APT) logic

which makes neither assumption. Statements in APT logic consist of rules of the

form “Formula G becomes true with a probability [L,U] within T time units after

formula F becomes true” and can be written by experts or extracted automatically

from historical data. In this dissertation, we explore the problem of entailment,

specifically what is the probability that an agent performs a given action at a cer-

tain time based on a set of such rules. We show this problem to be coNP-hard

(in the complexity class coNP under some natural assumptions) and present several

sets of linear constraints for solving this problem exactly. We then develop a sound,

but incomplete fixpoint operator as a heuristic for such queries. This approach was

implemented and tested on 23 different models automatically generated from several

datasets. The operator quickly converged to produce tight probability bounds for

the queries.

Second, agent behavior often results in “observations” at geospatial locations

that imply the existence of other, unobserved, locations we wish to find (“part-

ners”). In this dissertation, we formalize this notion with “geospatial abduction

problems” (GAPs). GAPs try to infer a set of partner locations for a set of observa-

tions and a model representing the relationship between observations and partners

for a given agent. This dissertation presents exact and approximate algorithms for

solving GAPs as well as an implemented software package for addressing these prob-

lems called SCARE (the Spatio-Cultural Abductive Reasoning Engine). We tested

SCARE on counter-insurgency data from Iraq, attempting to locate enemy weapons

caches (partners) based on attacks (observations). On average, SCARE was able

to locate weapons caches within 690 meters of actual sites. Additionally, we have

considered a variant of the problem where the agent wishes to abduce regions that

contain partner points. This problem is also NP-hard. To address this issue, we

develop and implement a greedy approximation algorithm that finds small regions

which contain partner points - on average containing 4 times as many partners as

the overall area.

We then provide an adversarial extension to GAPs as follows: given a fixed set

of observations, if an adversary has probabilistic knowledge of how an agent were to

find a corresponding set of partners, he would place the partners in locations that

minimize the expected number of partners found by the agent. In a complementary

problem, the agent has probabilistic knowledge of how an adversary locates his part-

ners and wishes to maximize the expected number partners found. We show that

both of these problems are NP-hard and design schemes to find approximate solu-

tions - often with theoretical guarantees. With our implementation, we demonstrate

that these algorithms often obtain excellent solutions.

We also introduce a class of problems called geospatial optimization problems

(GOPs). Here the agent has a set of actions that modify attributes of a geospa-

tial region and he wishes to select a limited number of such actions (with respect

to some budget) in a manner that either causes some goal to be true (goal-based

GOPs) and/or maximizes a benefit function (benefit-maximizing GOPs). Addition-

ally, there are certain combinations of actions that cannot be combined. We show

NP-hardness (membership in NP under reasonable assumptions) as well as provide

limits of approximation for these problems. We then develop sets of integer con-

straints that provide an exact solution and provide an approximation algorithm with

a guarantee.

While we look to optimize certain geospatial properties in GOPs, we note

that for some real-world applications, such as epidemiology, there is an underlying

diffusion process that also affect geospatial proprieties. Assuming the structure of

a social network - a directed graph with weighted and labeled vertices and edges

- we study optimization with respect to such diffusion processes in social network

optimization problems (SNOPs). We show that many well-known social network

diffusion process can be embedded into generalized annotated programs [86]. Hence,

a SNOP query seeks to find a set of vertices, that if given some initial property,

optimize an aggregate with respect to such a diffusion process. We show this class

of problems is also NP-hard (NP-complete under certain assumptions). We develop

a greedy heuristic that obtains an approximation guarantee for a large class of such

queries. We implemented this algorithm and evaluated it on a real-world data-set

consisting of a graph of 103,000 edges.

SPATIO-TERMPORAL REASONING
ABOUT AGENT BEHAVIOR

by

Paulo Shakarian

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor V.S. Subrahmanian, Chair/Advisor
Professor Stuart S. Antman, Dean’s Representative
Professor Samir Khuller
Professor Dana Nau
Professor James A. Reggia

Dedication

To my son, Carter.

ii

Acknowledgments

Above all, I would like to thank my wife, Jana, for her love and understanding

throughout my graduate experience. I do not think I could have done this without

her constant support.

I would like to thank my advisor, Prof. V.S. Subrahmanian, who since 2007,

has mentored and guided me throughout this entire process.

I would also like to thank my committee, Prof. Dana Nau, Prof. Samir Khuller,

Prof. James Reggia, and Prof. Stuart Antman who have also been supportive.

Additionally, I would like to thank the following people who have all con-

tributed to my success in graduate school (in no particular order): Gerardo Simari,

Dan LaRocque, Austin Parker, Patrick Roos, John Dickerson, Geoff Stoker, Prof.

Maria Luisa Sapino, and Matthias Broecheler.

Finally, I would like to thank the U.S. Army Advanced Civil Schooling (ACS)

program and the U.S. Military Academy (USMA/West Point) instructor’s program

(Department of Electrical Engineering and Computer Science - EECS) for funding

my Ph.D. studies at the University of Maryland. In particular, COL Eugene Ressler,

who made it possible for me to earn the degree.

iii

Contents

List of Abbreviations xix

1 Introduction 1
1.1 Temporal Reasoning about an Agent’s Actions 1
1.2 Inferring Geospatial Aspects of an Agents Behavior 2
1.3 Geospatial Abduction under Adversarial Conditions 4
1.4 Optimal Selection of Agent Actions 4
1.5 Applications . 6
1.6 Summary of Major Contributions . 8
1.7 Related Work . 11

2 Annotated Probabilistic Temporal Logic: Sound and Complete Al-
gorithms for Reasoning 15
2.1 Chapter Introduction . 16
2.2 APT-Logic Programs . 26

2.2.1 Syntax . 26
2.2.2 Semantics of APT-logic programs 29
2.2.3 Frequency Functions . 32
2.2.4 Satisfaction of Rules and Programs 38

2.3 Consistency . 42
2.3.1 Complexity of Consistency Checking 42
2.3.2 Linear Constraints for Consistency Checking 47
2.3.3 World Equivalence . 51
2.3.4 Frequency Equivalence . 59
2.3.5 Combining World and Frequency Equivalence 67

2.4 Entailment by APT-logic programs 70
2.4.1 Linear Constraints for Entailment 72

2.5 Applications of APT Logic . 74
2.6 Chapter 2 Related Work . 77

2.6.1 Markov Decision Processes . 79
2.6.2 Comparison with Probabilistic Computation Tree Logic (PCTL) 89

2.7 Chapter Summary . 91

iv

3 Annotated Probabilistic Temporal Logic: Approximate Algorithms 94
3.1 Chapter Introduction . 95
3.2 Technical Background . 101

3.2.1 Syntax . 101
3.2.2 Semantics . 104

3.3 Complexity . 109
3.4 A Sound but Incomplete Fixpoint-Computation Algorithm: The Ground

Case . 112
3.4.1 Bounding Frequency Function Values 113
3.4.2 Theorems for Syntactic Manipulation 116
3.4.3 The Fixpoint-Based Heuristic 120
3.4.4 Using Γ for Consistency Checking 127

3.5 Consistency and Entailment Algorithms for Non-Ground Programs . 130
3.5.1 Consistency Checking for Non-Ground Programs 131
3.5.2 Entailment for the Non-Ground Case 136

3.6 Experimental Results . 139
3.6.1 Experimental Setup . 140
3.6.2 Run Time Evaluation . 142

3.7 Chapter 3 Related Work . 149
3.7.1 Work in Verification and PRISM 150

3.8 Chapter Summary . 153

4 Geospatial Abduction 156
4.1 Chapter Introduction . 156

4.1.1 Geospatial Abduction Problem (GAP) Definition 159
4.2 Complexity of GAP Problems . 166
4.3 Exact Algorithm for GAP Problems 169

4.3.1 Naive Exact Algorithm . 169
4.3.2 An Exact Set-Cover Based Approach 171
4.3.3 An Exact Dominating Set Based Approach 174
4.3.4 An Exact Integer Linear Programming based Approach 177

4.4 Greedy Heuristics for GAP Problems 182
4.4.1 A Linear Time Greedy Approximation Scheme 182
4.4.2 Greedy Observation Selection 186

4.5 Implementation and Experiments . 191
4.5.1 A Simple Heuristic to Improve Accuracy 197

4.6 Chapter 4 Related Work . 200
4.7 Chapter Summary . 207

5 Abducing Regions 210
5.1 Chapter Introduction . 210
5.2 Technical Preliminaries . 211
5.3 Complexity . 221
5.4 Algorithms . 223

5.4.1 Exact and Approximate Solutions by Reduction 224

v

5.4.2 Approximation for a Special Case 230
5.4.3 Practical Considerations for Implementation 234

5.5 Experimental Results . 237
5.5.1 Experimental Set-Up . 239
5.5.2 Running Time . 242
5.5.3 Area of Returned Regions . 244
5.5.4 Regions that Contain Caches 246
5.5.5 Partner Density . 251

5.6 Chapter 5 Related Work . 255
5.7 Chapter Summary . 256

6 Adversarial Geospatial Abduction 257
6.1 Chapter Introduction . 257
6.2 Overview of GAPs . 260
6.3 Geospatial Abduction as a Two-Player Game 262

6.3.1 Incorporating Mixed Strategies 267
6.4 Selecting a Strategy for the Adversary 269

6.4.1 The Complexity of Finding an Optimal Adversarial Strategy . 271
6.4.2 Pre-Processing and Naive Approach 273
6.4.3 Mixed Integer Linear Programs for OAS under wrf, crf, frf . 275
6.4.4 Correctly Reducing the Number of Variables for crf 279

6.5 Finding a Counter-Adversary Strategy 288
6.5.1 The Complexity of Finding a Maximal Counter-Adversary

Strategy . 290
6.5.2 MCA in the General Case: Exact and Approximate Algorithms292
6.5.3 Finding a Maximal Counter-Adversary Strategy, the Mono-

tonic Case . 295
6.6 Implementation and Experiments . 299

6.6.1 OAS Implementation . 300
6.6.2 MCA Implementation . 305

6.7 Chapter 6 Related Work . 311
6.8 Chapter Summary . 312

7 Geospatial Optimization 315
7.1 Chapter Introduction . 315
7.2 GOPs Formalized . 317
7.3 Complexity Results . 322
7.4 Integer Programs for Solving GOPs 325
7.5 Correct Variable Reduction for GBGOP-IP 328
7.6 The BMGOP-Compute Algorithm . 330
7.7 Chapter 7 Related Work . 335
7.8 Chapter Summary . 336

vi

8 Social Network Optimization Problems 337
8.1 Chapter Introduction . 338
8.2 Technical Preliminaries . 341

8.2.1 Social Networks Formalized 342
8.2.2 Generalized Annotated Programs: A Recap 344

8.3 Social Network Optimization (SNOP) Queries 348
8.3.1 Basic SNOP Queries . 348
8.3.2 Special Cases of SNOP Queries 351
8.3.3 Properties of SNOPs . 356
8.3.4 The Complexity of SNOP Queries 361
8.3.5 Counting Complexity of SNOP-Queries 363
8.3.6 The SNOP-ALL Problem . 364

8.4 Applying SNOPs to Real Diffusion Problems 366
8.4.1 Tipping Diffusion Models . 367
8.4.2 Cascading Diffusion Models 371
8.4.3 Homophilic Diffusion Models 377

8.5 Algorithms . 379
8.5.1 Naive Algorithm . 380
8.5.2 A Non-Ground Algorithm in the Monotonic Case 380
8.5.3 Approximation Algorithms: GREEDY-SNOP 386

8.6 Scaling GREEDY-SNOP . 391
8.7 Implementation and Experiments . 409

8.7.1 Experimental Setting . 409
8.7.2 Experimental Results . 412

8.8 Chapter 8 Related Work . 415
8.8.1 Related Work in Logic Programming 415
8.8.2 Work in Social Networks . 417

8.9 Chapter Summary . 418

9 Future Work 421

10 Conclusion 425

A Appendix for Chapter 2 429
A.1 Additional Results . 429

A.1.1 Frequency Equivalence under the PCD Restriction 429
A.1.2 The ALC-ENT Algorithm for Entailment 434
A.1.3 An Example Comparing PCTL to APT-rules 436

A.2 Proofs . 440
A.2.1 Proof of Lemmas 2.12 and 2.14 440
A.2.2 Proof of pfr Property 5 . 441
A.2.3 Proof of Proposition 2.15 . 441
A.2.4 Proof of Proposition 2.17 . 444
A.2.5 Proof of Lemma 2.19 . 445
A.2.6 Proof of Theorem 2.20 . 445

vii

A.2.7 Proof of Lemma 3.1 . 446
A.2.8 Proof of Theorem 3.2 . 447
A.2.9 Proof of Lemma 3.3 . 449
A.2.10 Proof of Theorem 3.4 . 450
A.2.11 Proof of Lemma 3.6 . 451
A.2.12 Proof of Theorem 3.7 . 452
A.2.13 Proof of Proposition 3.9 . 454
A.2.14 Proof of Lemma 3.13 . 454
A.2.15 Proof of Proposition 3.15 . 455
A.2.16 Proof of Theorem 3.17 . 456
A.2.17 Proof of Proposition 3.19 . 456
A.2.18 Proof of Theorem 3.21 . 457
A.2.19 Proof of Proposition 3.23 . 458
A.2.20 Proof of Theorem 58 . 459
A.2.21 Proof of Corollary 15 . 459
A.2.22 Proof of Corollary 16 . 461
A.2.23 Proof of Proposition 3.25 . 463
A.2.24 Proof of Theorem 4.2 . 464
A.2.25 Proof of Proposition 4.3 . 465
A.2.26 Proof of Proposition 81 . 466
A.2.27 Proof of Theorem 6.5 . 467
A.2.28 Proof of Corollary 6.6 . 467

B Appendix for Chapter 3 470
B.1 Complexity Proofs (Section 3.3) . 470

B.1.1 Small-Model Lemma for APT-Logic 470
B.1.2 Proof of Theorem 10 . 471
B.1.3 Proof of Theorem 11 . 472
B.1.4 Proof of Theorem 12 . 472

B.2 Supplementary Information for Section 3.4 476
B.2.1 Proof of Proposition 3.4.1 . 476
B.2.2 Proof of Proposition 14 . 476
B.2.3 Proof of Theorem 8 . 476
B.2.4 Proof of Theorem 13 . 477
B.2.5 Proof of Corollary 2 . 480
B.2.6 Proof of Theorem 14 . 480
B.2.7 Proof of Proposition 15 . 482
B.2.8 Proof of Proposition 16 . 483
B.2.9 Proof of Proposition 17 . 483
B.2.10 Proof of Proposition 18 . 484
B.2.11 Proof of Lemma 9 . 484
B.2.12 Proof of Lemma 10 . 485
B.2.13 Proof of Lemma 11 . 486
B.2.14 Proof of Theorem 15 . 486
B.2.15 Proof of Lemma 12 . 486

viii

B.2.16 Proof of Theorem 4 . 487
B.2.17 Proof of Proposition 19 . 487
B.2.18 Proof of Proposition 20 . 488
B.2.19 Proof of Propositon 21 . 489
B.2.20 Proof of Proposition 22 . 489

B.3 Proofs for Section 3.5 . 489
B.3.1 Proof of Lemma 13 . 489
B.3.2 Proof of Theorem 16 . 490
B.3.3 Proof of Corollary 5 . 492
B.3.4 Proof of Proposition 23 . 492
B.3.5 Proof of Proposition 24 . 492
B.3.6 Proof of Lemma 14 . 493
B.3.7 Proof of Lemma 15 . 493
B.3.8 Proof of Theorem 17 . 493
B.3.9 Proof of Lemma 16 . 494
B.3.10 Proof of Theorem 18 . 494

B.4 Supplemental Information for Section 3.6 497
B.4.1 Proof of Proposition 25 . 497
B.4.2 Proof of Proposition 26 . 497
B.4.3 Proof of Proposition 27 . 498
B.4.4 Proof of Proposition 28 . 498

C Appendix for Chapter 4 499
C.1 Proofs . 499

C.1.1 Proof of Theorem 19 . 499
C.1.2 Proof of Corollary 6 . 502
C.1.3 Proof of Corollary 7 . 503
C.1.4 Proof of Theroem 20 . 503
C.1.5 Proof of Proposition 29 . 505
C.1.6 Proof of Proposition 30 . 506
C.1.7 Proof of Theorem 21 . 507
C.1.8 Proof of Proposition 31 . 508
C.1.9 Proof of Proposition 32 . 508
C.1.10 Proof of Proposition 33 . 509
C.1.11 Proof of Theorem 22 . 509
C.1.12 Proof of Proposition 34 . 510
C.1.13 Proof of Proposition 35 . 511
C.1.14 Proof of Proposition 36 . 512
C.1.15 Proof of Proposition 37 . 512
C.1.16 Proof of Proposition 38 . 513
C.1.17 Proof of Proposition 39 . 513
C.1.18 Proof of Proposition 40 . 516
C.1.19 Proof of Theorem 23 . 516
C.1.20 Proof of Proposition 41 . 518

ix

D Appendix for Chapter 5 519
D.1 Proofs . 519

D.1.1 Proof of Lemma 17 . 519
D.1.2 Proof of Theorem 24 . 520
D.1.3 Proof of Theorem 25 . 521
D.1.4 Proof of Corollary 8 . 522
D.1.5 Proof of Corollary 9 . 523
D.1.6 Proof of Theorem 26 . 523
D.1.7 Proof of Proposition 42 . 524
D.1.8 Proof of Proposition 43 . 524
D.1.9 Proof of Proposition 44 . 525
D.1.10 Proof of Proposition 45 . 525
D.1.11 Proof of Proposition 10 . 528
D.1.12 Proof of Proposition 46 . 528
D.1.13 Proof of Proposition 11 . 529
D.1.14 Proof of Proposition 48 . 529

E Appendix for Chapter 6 530
E.1 MCA where the Solution is an Explanation 530
E.2 Proofs . 534

E.2.1 Proof of Lemma 19 . 534
E.2.2 Proof of Theorem 27 . 536
E.2.3 Proof of Proposition 49 . 536
E.2.4 Proof of Proposition 50 . 537
E.2.5 Proof of Proposition 51 . 537
E.2.6 Proof of Proposition 52 . 538
E.2.7 Proof of Proposition 53 . 540
E.2.8 Proof of Theorem 28 . 541
E.2.9 Proof of Theorem 29 . 543
E.2.10 Proof of Theorem 30 . 543
E.2.11 Proof of Proposition 55 . 544
E.2.12 Proof of Proposition 56 . 544
E.2.13 Proof of Proposition 54 . 544
E.2.14 Proof of Proposition 57 . 545
E.2.15 Proof of Proposition 58 . 546
E.2.16 Proof of Porposition 59 . 546
E.2.17 Proof of Theorem 31 . 547
E.2.18 Proof of Theorem 32 . 548
E.2.19 Proof of Lemma 20 . 549
E.2.20 Proof of Lemma 21 . 549
E.2.21 Proof of Proposition 60 . 550
E.2.22 Proof of Proposition 61 . 551
E.2.23 Proof of Theorem 33 . 551
E.2.24 Alternate Proof of Theorem 33 553
E.2.25 Proof of Theorem 34 . 555

x

E.2.26 Proof of Theorem 35 . 556
E.2.27 Proof of Theoerm 36 . 556
E.2.28 Proof of Proposition 62 . 557
E.2.29 Proof of Proposition 63 . 557
E.2.30 Proof of Corollary 12 . 557
E.2.31 Proof of Proposition 64 . 558
E.2.32 Proof of Corollary 13 . 558
E.2.33 Proof of Theoerem 37 . 559
E.2.34 Proof of Corollary 18 . 562
E.2.35 Proof of Theorem 60 . 562

F Appendix for Chapter 7 565
F.1 Proofs . 565

F.1.1 Proof of Theorem 38 . 565
F.1.2 Proof of Theorem 39 . 567
F.1.3 Proof of Theorem 40 . 569
F.1.4 Proof of Theorem 41 . 569
F.1.5 Proof of Theorem 42 . 570
F.1.6 Proof of Theorem 43 . 570
F.1.7 Proof of Theorem 44 . 571
F.1.8 Proof of Theorem 45 . 573
F.1.9 Proof of Lemma 22 . 573
F.1.10 Proof of Proposition 66 . 574

G Appendix for Chapter 8 575
G.1 Proofs for Section 8.3 . 575

G.1.1 Proof of Proposition 70 . 575
G.1.2 Proof of Proposition 71 . 575
G.1.3 Proof of Lemma 23 . 576
G.1.4 Proof of Lemma 24 . 576
G.1.5 Proof of Theorem 47 . 577
G.1.6 Proof of Theorem 48 . 582
G.1.7 Proof of Theorem 49 . 586
G.1.8 Proof of Theorem 50 . 589
G.1.9 Proof of Theorem 51 . 589
G.1.10 Proof of Theorem 52 . 595
G.1.11 Proof of Theorem 53 . 596

G.2 Proofs for Section 8.5 . 598
G.2.1 Proof of Proposition 72 . 598
G.2.2 Proof of Theorem 54 . 599
G.2.3 Proof of Proposition 73 . 600
G.2.4 Proof of Theorem 55 . 600
G.2.5 Proof of Proposition 74 . 601
G.2.6 Proof of Lemma 25 . 603
G.2.7 Proof of Lemma 26 . 603

xi

G.2.8 Proof of Proposition 75 . 604
G.2.9 Proof of Proposition 76 . 604
G.2.10 Proof of Corollary 14 . 604
G.2.11 Proof of Proposition 77 . 605
G.2.12 Proof of Theorem 57 . 605
G.2.13 Proof of Proposition 78 . 606
G.2.14 Proof of Proposition 79 . 606
G.2.15 Algorithm for Finding Disjoint Node Sets 609
G.2.16 Proof of Proposition 80 . 609

xii

List of Tables

2.1 Summary of APT Complexity Results 20
2.2 Comparison of Linear Constraints for APT Consistency Checking . . 25
2.3 Comparison of Linear Constraints for APT Entailment Checking . . . 25

3.1 APT-logic programs used in the run time evaluations. Programs K1−
K13 are based on the ISW data-set. 144

3.2 APT-logic programs used in the run time evaluations. The programs
in this table are based on the MAROB data-set. 145

4.1 key values and related observations for observations in the sun bear
scenario introduced in Example 4.1.3. 189

4.2 k-SEP Algorithm Results - Solution Size 194
4.3 k-SEP Algorithm Results - Distances to Actual Cache Sites 195
4.4 k-SEP Algorithm Performance Results 197
4.5 The Tie-Breaker heuristic on GREEDY-KSEP-OPT2 - Solution Size . . 199
4.6 The Tie-Breaker heuristic on GREEDY-KSEP-OPT2 - Distances to

Actual Cache Sites . 199

5.1 Locations and dimensions of areas considered 241

6.1 The set L partitioned by consti and supported observations. 285

8.1 Special cases of SNOP queries . 352
8.2 Properties that can be proven given certain assumptions 357
8.3 How the various properties are leveraged in the Algorithms 357
8.4 Comparison between straightforward and linear Jackson-Yariv Models 372
8.5 First iteration of the greedy algorithm. 389
8.6 Incremental Increases for Both Iterations of GREEDY-SNOP. 390
8.7 Calculating inc

(up)
2 (v5). 396

C.1 Quantities for the Greedy-Approach in the DomSet reduction. . . . 511

xiii

List of Figures

2.1 Kstock , a toy APT-Logic Program modeling the behavior to reactions
of stock-related news feeds. As all of these rules are constrained, this
is a constrained program. The English translation of each rule is also
provided. 21

2.2 A real-world set of rules extracted by APT-Extract from the Hezbol-
lah dataset. The atoms in the rules are represented as a variable and
its value. A plain English explanation of each rule is also provided. . 22

2.3 Ktrain a toy APT-Logic Program modeling rail transit. Items 1-3
are APT-Rules while items 4-5 are annotated formulas. The English
translation of each rule is also provided. 23

2.4 Kpower a toy APT-Logic Program modeling a power grid. Items 1-4
are APT-Rules, while item 5 is an annotated formula. The English
translation of each rule is also provided. 24

2.5 Example thread for the train scenario from Figure 2.3, where only
one train is present. 31

2.6 Example thread, Th with worlds Th(1), . . . ,Th(8). This figure shows
each world that satisfies formula F or formula G. 33

2.7 For a set of atoms consisting of scandal, and tmax of 3 time points, the
above chart shows the pfr for all possible threads based on a program

consisting only of rule scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]

from Figure 2.1. Figure 2.8 groups these threads in frequency equiv-
alence classes based on pfr . 60

2.8 For a program consisting only of rule scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]

from Figure 2.1, we have frequency equivalence classes E1 and E2

based on the pfr for all possible threads seen in Figure 2.7. 61
2.9 Left: Unrolled MDP in an attempt to create an MDP that satisfies in-

terpretation I in the text. Notice how the sequence 〈{a}, {}, {a}, {a}〉
must be assigned a non-zero probability. Right: A standard repre-
sentation of the MDP on the left. Notice that the MDP must allow
for non-zero probability of threads that are given a zero probability
in interpretation I. 88

3.1 Kstock , a toy APT-Logic Program about stocks. 98
3.2 KISW a real-world APT-Logic Program extracted from counterinsur-

gency data. 99

xiv

3.3 KMAROB a real-world APT-Logic Program extracted from Minorities
at Risk Organizational Behavior data. 100

3.4 Ktrain , a toy APT-Logic Program modeling rail transit. Items 1-2
are non-ground APT-Rules, the formulas in 3 are probabilistic tem-
poral formulas, and items 4-5 are annotated formulas. The English
translation of each rule is also provided. 105

3.5 Number of ground rules vs. run time (Left: ISW, Right: MAROB).
Note these run-times include the full computation of the fixed point
of the Γ operator. 143

3.6 Number of ground rules vs. run time for entailment checking (Left:
ISW, Right: MAROB). 146

3.7 Attributes of ptf’s entailed by the different logic programs (ISW
dataset) . 147

4.1 A space. Red dots denote observations. Yellow squares denote infea-
sible locations. Green stars show one (0,3) explanation, while pink
triangles show another (0,3) explanation. 160

4.2 Left: Points {o1, o2, o3} indicate locations of evidence of the Malayan
sun bear (we shall refer to these as set O). Points {p1, p2, . . . , p8} in-
dicate feasible dwellings for the bear. The concentric rings around
each element of O indicate the distance α = 1.7km and β = 3.7km.
Right: Points {p1, p2, p3} are feasible for crime-scenes {o1, o2}. {p1, p2}
are safe-houses within a distance of [1, 2] km. from crime scene o1 and
{p2, p3} are safe-houses within a distance of [1, 2] km. from crime
scene o2. 164

4.3 Results of KSEP-TO-DOMSET based on data seen in Figure 4.2 (right).
Note that {p1, p2, p′1, p′2} form a complete graph and {p2, p3, p′′2, p′3}
also form a complete graph. Note that {p2} is a dominating set of
size 1. Hence, {p2} is a 1-sized simple (α, β) explanation for O, as
depicted in Figure 4.2 (right). 176

4.4 Left: GREEDY-KSEP-OPT1 accesses the list pointed to by M [p1]
thus considering all observations available to p1. Right: GREEDY-
KSEP-OPT1 accesses the list pointed to by M [p2] and finds it has
more active observations than it found in the list pointed to by M [p1]. 184

4.5 GREEDY-KSEP-OPT1 considers the observations available to p7. The
X’s on o1 and o2 signify that OBS[o1] and OBS[o2] are set to FALSE. . 185

4.6 Left: GREEDY-KESP-OPT2 considers all observations that can be
partnered with p2. Notice that in this figure by each observation we
show a box that represents the key of the observation in the Fibonacci
heap. Right: GREEDY-KSEP-OPT2 removes o1 from the heap, and
iterates through the elements in REL OBS[o1], causing it to decrease
the key of o2. 190

5.1 Locations of illegal drug sales and suspected support zones {ra, rb, rc, rd, re, rf , rg}.
The β distance for each observation is shown with a dashed circle. . . 214

xv

5.2 Space S and the regions in set RO. 218
5.3 A set of regions in S created based on the distance β = 5km as well

as restricted areas (shown in black). 221
5.4 Given the instance of I-REP-MCZ for Example 5.4.4 as input for

circle-covering, a circle-covering algorithm returns points p1, p2, p3
(points are denoted with an “x”, dashed circles are the area of 3km
from the point). 233

5.5 REGION-GEN applied to the paleontology example (Example 5.4.4).
First, it identifies observations associated with grid points (top). It
then creates minimally-enclosing rectangles around points that sup-
port the same observations (bottom). 236

5.6 The run-time of GREEDY-MC2 in ms compared with the number of
regions considered. 244

5.7 A comparison between analytical (O(1
g2
)) and experimental results

for the run-time of REGION-GEN compared with grid spacing (g). . . 245
5.8 Average areas for solutions provided by REGION-GEN/GREEDY-MC2

for Baghdad and Sadr City. 246
5.9 Results from two runs of GREEDY-MC2 - g = 100m (top), g = 1000m

(bottom). Pinpoint-regions are denoted with plus-signs. Notice that
the average areas of the results are comparable. 247

5.10 Average caches enclosed per region for Baghdad and Sadr City for
various grid-spacing settings. 248

5.11 The output of GREEDY-MC2 for Baghdad with g = 100m compared
with the locations of actual cache sites (denoted with a “C”). Notice
that regions A-E do not contain any cache sites while regions G-I all
contain numerous cache sites. 249

5.12 Regions in the output that enclose at least one partner (cache) and
total number of regions returned for Baghdad and Sadr City. 250

5.13 Distance to nearest cache vs. grid spacing. 251
5.14 Cache density of outputs produced by GREEDY-MC2 for Baghdad and

Sadr City compared with overall cache density and linear-regression
analysis. 252

5.15 Close-up of region F from Figure 5.11. While region F contains 1
cache, there are 4 other caches < 250m from the boundary of that
region. The area-quadrupling metric helps us account for such scenarios.253

5.16 Area quadrupled cache density of output produced by GREEDY-MC2
with linear-regression analysis. 254

6.1 Map of poppy fields for Example 6.2.1. For each labeled point pi, the
“p” is omitted for readibility. 261

6.2 Dashed circles encompass all feasible points within 100 meters from
explanation {p40, p45}. 265

6.3 Set L of all possible partners for our drug laboratory location example.274

xvi

6.4 The size of the reduced partner set L∗ (left) and the time required to
compute this reduction (right). Regardless of parameters chosen, we
see a 99.6% decrease in possible partners—as well as integer variables
in our linear program—in under 3 minutes. 302

6.5 Expected detriment of the optimal adversarial strategy (left, lower
is better) and the runtime of the integer linear program required
to produce this strategy in milliseconds (right). Note the smooth
decrease toward zero detriment as k increases, corresponding with a
near-linear increase in total runtime. 304

6.6 The average size of the strategy recommended by MCA-LS decreases
as the distance cutoff increases. For these experiments, the minimum
cardinality for a given explanation E considered is exfd was 14, which
gives us a natural lower bound on the expected size of a strategy.
Note the convergence to this bound at cutoff distances at and above
300 meters. 307

6.7 The runtime of MCA-LS decreases as the penalizing cutoff distance
is relaxed. Note the relation to Figure 6.6; intuitively, larger recom-
mended strategies tend to take longer to compute. 308

6.8 Expected benefit of the strategy returned by MCA-GREEDY-MONO
as the budget increases, with |exfd| = 10 (left) and |exfd| = 100
(right). Note the decrease in expected benefit due to the increase in
|exfd|. Similarly, note the increase in expected benefit given a larger
cutoff distance. 309

6.9 Runtime of MCA-GREEDY-MONO as the budget increases, with |exfd| =
10 (left) and |exfd| = 100 (right). Note the increase in runtime due
to the extra determinism of a larger exfd. 311

7.1 Locations in a district - contingency groups and unpopulated areas. . 316
7.2 |ICs0 | vs. approximation ratio. 334

8.1 Example cellular network. 343
8.2 Social Network for the painting company. 356
8.3 Social network corresponding with Example 8.5.1 concerning disease

spread. 360
8.4 Social network of individuals sharing photographs. Shaded vertices

are professional photographers. All edges are directional share edges. 370
8.5 Left: Sample network for disease spread. Right: annotated atoms

entailed after each application of TΠSIR
(maximum, non-zero anno-

tations only). 375
8.6 Search tree for Example 8.5.2. 384
8.7 Effect on overall approximation given an incremental approximation

factor. 397
8.8 Left: spread graph after iteration 1. Right: spread graph after itera-

tion 2. 403

xvii

8.9 Top: Social Network for the painting company with vertex spread
shown as shaded ovals. Bottom: Spread graph GS

(ǫ)
1 (REM0) for the

painting company example. 407
8.10 Runtimes of GREEDY-SNOP for different values of α and k = 5 in

both diffusion models . 412
8.11 Runtimes of GREEDY-SNOP for different values of k and α = 0.2 in

both diffusion models . 413
8.12 Time per iteration of GREEDY-SNOP for α = 0.2 in both diffusion

models . 413

xviii

List of Abbreviations

#P Sharp-P
α alpha
β beta

AI Artificial Intelligence
ALC-ENT Entailment using Alternative Linear Constraints
APT Logic Annotated Probabilistic Temporal
ATS Associated Thread Subset
BMGOP Benefit-Maximizing Geospatial Optimization Problem
BMGOP-IP BMGOP Integer Program
crf Cutoff Reward Function
CoNP Complement of Non-deterministic Polynomial Time
DomSet Dominating Set
efr Existential Frequency Function
exfd Explanation Function Distribution
FLOT Front Line of Trace
FPRAS Fully Polynomial Randomized Approximation Scheme
FPTAS Fully Polynomial Time Approximation Scheme
fr Frequency Function
frf Fall-off Reward Function
GAP Geospatial Abduction Problem (spatial chapters)

or Generalized Annotated Program (social network chapters)
GBGOP Goal-Based Geospatial Optimization Problem
GBGOP-IP GBGOP Integer Program
GCD Geometric Covering by Discs
GOP Geospatial Optimization Problem
HSD Honest Significant Difference
In-#P Membership in the complexity class #P
In-coNP Membership in the complexity class coNP
In-NP Membership in the complexity class NP
IP Integer Program
IPB Intelligence Preparation of the Battlefield
I-REP Induced Region Explanation Problem
I-REP-MCZ I-REP Minimum Cardinality with a lower distance bound of zero
ISW Institute for the Understanding of War
JY Jackson-Yariv model
KEDS Kansas Event Data System
k-SEP k-sized Spatial Explanation Problem
lfp Least Fixed-Point
LP Logic Program or Linear Program (context-dependent)
MAROB Minorities as Risk Database
MCA Maximal Counter-Adversary Strategy
MCA-Exp Maximal Counter-Adversary Strategy - Explaining
MC Minimal Cardinality

xix

MCA-LS Maximal Counter-Adversary Strategy - Local Search
MDP Markov Decision Process
ME Maximum Explaining
MILP Mixed Integer Linear Program
NAI Named Area of Interest
NP Non-deterministic Polynomial Time
OAS Optimal Adversarial Strategy
PCD Pre-Condition Disjoint
PCTL Probabilistic Computational Tree Logic
pdf Probability Distribution Function
pfr Point Frequency Function
PITF Political Instability Task Force
PRISM Probabilistic Symbolic Model Checker
PTIME Polynomial Time
qfr Query Frequency Function
REP Region Explanation Problem
rf Reward Function
SAT Satisfiability
SC Set-Cover Problem
SCARE Spatio-Cultural Abductive Reasoning Engine
SEC Securities Exchange C omission
SEP Spatial Explanation Problem
SLC Straightforward Linear Constraints
SLC-ENT Entailment Using SLC
SNOP Social Network Optimization Problem
SOMA Stochastic Opponent Modeling Agents
SPM Sequence Probability Measure
st Such That
TD-SEP Total Distance Spatial Explanation Problem
tp Temporal-Probabilistic
wrf Weighted Reward Function
wrt With Respect To
WT-SEP Weighted Spatial Explanation Problem

xx

Chapter 1

Introduction

There are many applications where we wish to reason about spatio-temporal

aspects of an agent’s behavior. This dissertation examines several facets of this type

of reasoning.

1.1 Temporal Reasoning about an Agent’s Ac-

tions

Given a model of past agent behavior, we wish to reason about the probabil-

ity that an agent takes a given action at a certain time. Previous work combining

temporal and probabilistic reasoning has made either independence or Markov as-

sumptions. This work introduces Annotated Probabilistic Temporal (APT) logic

which makes neither assumption. Statements in APT logic consist of rules of the

form “Formula G becomes true with a probability [L,U] within T time units after

formula F becomes true” and can be written by experts or extracted automatically

1

from historical data. A set of such statements is referred to as an APT logic pro-

gram. In Chapter 2, we introduce this framework and explore two key problems:

consistency and entailment. The consistency problem for APT logic mirrors the

consistency problem of probabilistic logic introduced in [131]. The complementary

problem of entailment can be used to determine the probability that an agent per-

forms a given action at a certain time based on an APT program. We study the

computational complexity of these two problems and determine that consistency

is NP-hard while entailment is coNP-hard. Under some natural assumptions, we

are also able to show a matching upper bound on the complexity for both prob-

lems (membership in the class NP for consistency and coNP for entailment). We

then introduce several sets of linear constraints for solving this problem exactly.

In Chapter 3, we develop a sound, but incomplete fixpoint operator as a heuristic

for such queries. This operator runs in polynomial time in the size of the APT

logic program. This approach was implemented and tested on 23 different models

automatically generated from several datasets. The operator quickly converged to

produce tight probability bounds for the queries.

1.2 Inferring Geospatial Aspects of an Agents Be-

havior

Some agent behavior often results in “observations” at geospatial locations

that imply the existence of other, unobserved, locations we wish to find (“part-

2

ners”). In Chapter 4, we formalize this notion with “geospatial abduction problems”

(GAPs). GAPs try to infer a set of partner locations for a set of observations and a

model representing the relationship between observations and partners for a given

agent. We shall refer to a set of partner locations as an “explanation.” Given a

set of observations and a model of the agent, finding an explanation of a certain

size is NP-hard and in-NP under some reasonable assumptions. We provide an

enumeration-based algorithm that can find an explanation of size k - if one exists

- as well as show reductions to several well-known combinatorial problems - specif-

ically set-cover, dominating-set, and integer programming. These reductions allow

us to leverage several known algorithms to find explanations of a cardinality within

a certain factor of the minimum. We then develop a new greedy algorithm that

achieves the same approximation ratio as the classic greedy approach to set-cover

(see [136]) but allows a software designer to use one of a variety of heuristics which

do not affect the guarantee. We implement and experimentally evaluate several of

these heuristics in a software package called SCARE (the Spatio-Cultural Abduc-

tive Reasoning Engine). We tested SCARE on counter-insurgency data from Iraq,

attempting to locate enemy weapons caches (partners) based on attacks (observa-

tions). On average, SCARE was able to locate weapons caches within 690 meters

of actual sites. We then present a variant of the problem in Chapter 5 where the

agent wishes to abduce regions that contain partner points. This problem is also

NP-hard (NP-complete under some natural assumptions). To address this issue, we

develop and implement a greedy approximation algorithm that finds small regions

which contain partner points - on average containing 4 times as many partners as

3

the overall area.

1.3 Geospatial Abduction under Adversarial Con-

ditions

In Chapter 6, we provide an adversarial extension to GAPs as follows: given

a fixed set of observations, if an adversary has probabilistic knowledge of how an

agent were to find a corresponding set of partners, he would place the partners in

locations that minimize the expected number of partners found by the agent. In a

complementary problem, the agent has probabilistic knowledge of how an adversary

locates his partners and wishes to maximize the expected number partners found.

We note that the manner in which the explanation of the adversary is compared

to that of the agent can differ based on domain. As such, we axiomatically define

a “reward function” and prove results for these two problems with respect to this

generalization. We show that these problems are both NP-hard, and in-NP under

some natural conditions. We also design schemes to find approximate solutions -

often with theoretical guarantees. With our implementation, we demonstrate that

these algorithms often obtain excellent solutions.

1.4 Optimal Selection of Agent Actions

In Chapter 7, we introduce a class of problems called geospatial optimization

problems (GOPs). Here the agent has a set of actions that modify attributes of

4

a geospatial region and he wishes to select a limited number of such actions (with

respect to some budget) in a manner that either causes some goal to be true (goal-

based GOPs) and/or maximizes a benefit function (benefit-maximizing GOPs). Ad-

ditionally, there are certain combinations of actions that cannot be performed to-

gether. We show NP-hardness (membership in NP under reasonable assumptions)

as well as provide limits of approximation for these problems. We then develop sets

of integer constraints that provide an exact solution and provide an approximation

algorithm with a guarantee.

While we look to optimize certain geospatial properties in GOPs, we note that

for some real-world applications, such as some epidemiological phenomena, there

is an underlying diffusion process that also affect geospatial proprieties. Assum-

ing the structure of a social network - a directed graph with weighted and labeled

vertices and edges - we study optimization with respect to such diffusion processes

in Chapter 8 where we introduce social network optimization problems (SNOPs).

We show that many well-known social network diffusion process can be embedded

into generalized annotated programs [86]. These diffusion processes were previously

studied in a variety of different contexts including economics [150][73], epidemiol-

ogy [5][67], social media [20][167], and business [177]. In a SNOP query, we seek to

find a set of vertices, that if given some initial property, optimize an aggregate with

respect to such a diffusion process. We show this class of problems is also NP-hard

(NP-complete under certain assumptions). We also leverage the results of [46] to

provide a limit of the ability to approximate an optimal solution to such problems.

For a large class of such queries, we then develop an greedy algorithm that provides

5

the best possible approximation guarantee unless P=NP as well as techniques for

scaling it. We implemented this algorithm and evaluated it on a real-world data-set

consisting of a graph of 103,000 edges.

1.5 Applications

The various frameworks for reasoning about an agent’s behavior presented in

this dissertation are sufficiently general to solve difficult problems from a variety of

domains. Our discussion of APT logic in Chapters 2-3 include examples illustrating

how that framework can be used to reason about power-grids, the stock market,

and transportation services. Likewise, we provide examples of geospatial-abduction

and its adversarial extension of Chapters 4-6 applied to counter-drug, naturalist,

criminology, and paleontology domains. Finally, in Chapters 7 and 8 where we look

to optimally select actions for an agent, we provide examples relating to a political

campaign, disease-spread, and cell-phone usage.

In addition to the aforementioned problem domains, we note that much of this

work can be used to improve military intelligence analysis for counter-insurgency

applications. Traditionally, military intelligence practices in the US Army rely on a

process known as “Intelligence Preparation of the Battlefield” [170]. In this process,

an intelligence analyst studies terrain and cultural factors along with the capabil-

ities of an adversary in order to predict the actions of an enemy combatant on

the battlefield. Since the 9/11 attacks, this process has been modified to handle

counter-terrorism and counter-insurgency situations as well [171]. However, unlike

6

traditional military situations, these contemporary environments are often more

complex for a variety of reasons. Consider the following real-world problems:

1. In a counter-insurgency operation, enemy reconnaissance of a target may not

always be indicative of a pending attack on said target (as in a traditional

military conflict). Such activity may be designed to elicit a response from

local security forces (for evaluation) or to lull security forces into a sense of

complacency.

2. There is no “front line” or “FLOT” as in a traditional battlefield. In a conven-

tional conflict, a combatant force conducts logistic operations behind the front

line. By contrast, in a counter-insurgency situation, insurgent forces manage

logistics through systems of caches used to store weapons, ammunition, and

supplies to support their operations.

3. In a traditional military environment, the structure of a combatant is usually

well-defined and hierarchical - this is the standard military structure seen

throughout the militaries of the world. An insurgent force, by contrast, is

often de-centralized and its structure can resemble a social network which can

have a variety of different topologies. Such networks are often very survivable

- even if the leadership is killed or captured.

The above three aspects of a counter-insurgency can all be addressed with the re-

search presented in this dissertation. For instance, APT logic, introduced in Chap-

ters 2-3 can be used to help determine the probability that a given reconnaissance

event implies a pending attack. Using the abductive reasoning of GAPs introduced

7

in Chapter 4, we have created software that has been shown to be useful in locating

enemy weapons cache sites. With SNOPs, introduced in Chapter 8, we show that

annotated programs can be leveraged to find which members of a social network

cause the spread of a certain phenomenon – this can allow an analyst to select

targets whose neutralization will have the greatest impact on the insurgent forces.

Again, we would also like to point out that these three aspects of counter-insurgency

are not the only problems that can be addressed with this research. There are many

other applications of this work – both civilian and military – that will be discussed

throughout this dissertation.

1.6 Summary of Major Contributions

Chapters 2-3

• Introduced the framework of APT logic.

• Identified the complexity class of consistency and entailment problems for APT

logic as NP-complete.

• Introduced three sound and complete algorithms based on linear programming

for solving consistency and entailment problems for APT logic.

• Introduced a sound, but incomplete fixed-point operator for approximately solving

consistency and entailment problems for ground APT programs.

• Introduced a sound, but incomplete algorithms for approximately solving consis-

tency and entailment problems for non-ground APT programs while avoiding a

8

full grounding of the program.

• Implemented the ground fixed-point operator and evaluated it using a real-world

data set.

Chapters 4-6

• Introduced a framework for studying geospatial abduction problems (GAPs).

• Identified the complexity class of several geospatial abduction problems.

• Developed several exact and approximate approaches to solving GAPs based on

reductions to known combinatorial problems.

• Implemented a software package for solving GAPs called SCARE (Spatio-Cultural

Abductive Reasoning Engine) and evaluated experimentally showing it to be able

to locate weapons cache sites in Baghdad.

• Created a variant of GAPs where we look to abduce regions, proved this problem

to be NP-complete under some natural assumptions.

• Developed and implemented an approximation algorithm to abduce regions.

• Extended GAPs to the case where partner locations are place adversarily based

on probabilistic knowledge of the agent, as well as the complementary problem.

Proved these problems to be NP-complete under natural assumptions.

• Developed approximation algorithms for the adversarial problems - often with

guarantees. Showed viability of such algorithms with an implementation.

9

Chapters 7-8

• Introduced geospatial optimization problems, GOPs, in which the agent attempts

to optimally select a set of actions to cause some goal to occur and/or maximize

some function of the resulting geospatial properties.

• Proved two variants of GOPs to be NP-complete and established theoretical limits

on approximation.

• Developed integer constraints for GOPs as well as an approximation algorithm

with a guarantee.

• Introduced social network optimization problems, SNOPs, where we attempt to

optimize an agents selection of vertices with respect to an aggregate of the result

of some diffusion process.

• Proved SNOPs to be NP-complete, explored the limits of approximation and other

properties of these problems.

• Illustrated how many known diffusion processes can be embedded into SNOPs.

• Developed exact and approximate approaches to solving SNOPs. For a large class

of SNOPs, our approximation algorithm attains the best guarantee unless P=NP.

• Experimentally evaluated our approach to SNOPs on a real-world data-set.

10

1.7 Related Work

We now provide a brief overview of work related to this dissertation. Addition-

ally, in each chapter, we also provide a related work section to give a more in-depth

look at how specific contributions relate to other work.

APT logic, introduced in Chapters 2-3, is a logic-programming framework

for reasoning about time and probability together without making independence

assumptions. Perhaps the most well-known method to reason about time and prob-

ability together is the Markov Process [140] - a stochastic process where states are

labeled with atomic propositions with a transition function that, given two states

s1, s2, returns the probability that s1 transitions to s2. A Markov Process assumes

what is known as the “Markov Property” which means that each transition prob-

ability only depends on the current state, and no previous state [146]. Hence, the

transition probability from state s1 to s2 is always the same, regardless of which

states preceded s1. The Markov Property yields independence among transitions.

For example, given function p which returns a transition probability for any two

states, we know that p(s1, s2) is independent of p(s2, s3). Hence, with a Markov

Process starting in state s1, we can calculate the probability of sequence s1, s2, s3

as p(s1, s2) · p(s2, s3). However, in many real-world scenarios, this may not be the

case. With APT logic, we can reason about the probability of events that may

depend on previous or future events - as there are no independence assumptions

among different time points. Further, for a Markov Process where each state has

a unique atomic label, we demonstrate that it is possible to create an equivalent

11

APT program, while proving that the relationship in the opposite direction is not

possible.1

Geospatial abduction, described in Chapters 4-6 uses a model of an agent, as

well as observed geospatial phenomenon, to infer unobserved “partner” locations –

a set of which is termed an explanation. Facility location [161] is a related problem

where an agent searches for a subset of “supply points” in a plane to service a set

of “demand points” in such a manner that optimizes a certain objective function.

Most facility location problems reduce to an instance of convex geometric covering

- i.e. find a small set of convex shapes centered on supply points that cover all

demand points. Geospatial abduction problems, by contrast, reduces to a geometric

problem where the shapes are irregular - i.e. they have non-uniform holes.2 The

irregular shape of the covers in geospatial abduction adds another layer of complexity

not inherent in a facility location problem. We note that this holds true for the

geospatial optimization problems introduced in Chapter 7 as well. To illustrate the

difficulty of non-convex covering, [115] shows that for the simple problem of covering

by uniformly non-convex shapes in just one dimension is NP-complete and does not

admit a fully-polynomial time approximation scheme (FPTAS).

Another problem that resembles geospatial abduction is the k -means clustering

problem [116]. In this problem, sets of points on a plane are grouped into k disjoint

1We explore these relationships in detail in Chapter 2, Section 2.6.1 on page 79.
2Note that this still holds true even for the case of region-based geospatial abduction (Chapter 5)

as the covers in such a problem are not the regions, but rather the set of points associated with

the region, based on the agent model.

12

sets such that the mean distance between any two points in a given disjoint set is

minimized. Additionally, there is a constrained variant described in [176]. However,

this work merely groups points together, and does not make any inference with

regard to unobserved phenomenon based on an agent model. For a very simple,

restricted agent model, one can naively apply a clustering algorithm as a heuristic

for a geospatial abduction problem by returning a central point in each cluster as

a partner. However, this heuristic provides no approximation guarantee and in our

tests, was outperformed by the algorithms introduced in this dissertation.

Finally, our work on social network optimization problems (SNOPs) intro-

duced in Chapter 8 seeks to find a set of vertices in a social network that optimize

an aggregate function with respect to a diffusion process. Some simple approaches

to this type of problem use a degree-maximizing or centrality measure to find the

set of vertices. It is important to note that these measures do not consider any type

of diffusion process - therefore cannot normally provide a guarantee with respect to

optimality. For example, the work of [6] describes two diffusions processes and prove

that their optimality criteria is proportional to vertex degree in the first diffusion

process, while inversely proportional to vertex degree in the second. Further, with

these approaches, it is unclear how they apply to graphs with multiple vertex and

edge labels as the ones considered in SNOPs.

The classic work of [81] is perhaps the best-known generalized framework for

finding the most “influential vertices” in a social network given some diffusion pro-

cess. However, there are some key differences. With SNOPs, the social network

can have weights and labels on the vertices and edges, whereas this is not part of

13

the framework of [81]. Further, [81] does not allow complex aggregate functions

as SNOPs does. Finally, the approximation guarantees of [81] are dependent on

an approximation guarantee associated with their encoding of the diffusion process.

This encoding was shown to be #P-hard in [23] by a reduction from the counting

version of S-T connectivity, which has no known approximation algorithm. SNOPs,

by contrast, determines the result of a diffusion process by the calculation of the

fixed-point operator of [86] - which can be accomplished in polynomial time - which

make our conditions for approximation guarantees reasonable.

14

Chapter 2

Annotated Probabilistic Temporal Logic:

Sound and Complete Algorithms for

Reasoning

Chapters 2-3 investigate reasoning about an agent’s behavior in time. The

main contribution of these chapters is Annotated Probabilistic Temporal (APT)

logic, a logic-based framework for this type of reasoning that does not make inde-

pendence or Markovian assumptions. In this chapter, we introduce the framework,

present a suite of complexity and algorithmic results for consistency and entailment

problems, and perform a detailed comparison with other frameworks for reasoning

about time and probability together.1

1This chapter is based on [155] which was completed in cooperation with Gerardo Simari, Austin

Parker, and V.S. Subrahmanian.

15

2.1 Chapter Introduction

There are numerous applications where we need to make statements of the

form “Formula G becomes true with 50−60% probability 5 time units after formula

F became true.” We now give four examples of how such statements might be

applied.

Stock Market Prediction There is ample evidence [53] that reports in newspa-

pers and blogs [33] have an impact on stock market prices. For instance, major

investment banks invest a lot of time, effort and money attempting to learn

predictors of future stock prices by analyzing a variety of indicators together

with historical data about the values of these indicators. As we will show later

in Figure 2.1, we may wish to write rules such as “The probability that the

stock of company C will drop by 10% at time (T + 2) is over 70% if at time

T , there is a news report of a rumor of an SEC investigation of the company

and (at time T) there is a projected earnings increase of 10%.” It is clear that

such rules can be learned from historical data using standard machine learning

algorithms. Financial companies have the means to derive large sets of such

rules and make predictions based on them.

Reasoning about Terror Groups The Laboratory for Computational Cultural

Dynamics at the University of Maryland has extensively dealt with historical

data on over 40 terrorist groups from the Minorities at Risk project [181] and

has published detailed analyses of some of these groups’ behaviors (Hezbol-

lah [118] and Hamas [119]). The SOMA Terror Organization Portal [120]

16

has registered users from over 12 US government agencies and contains thou-

sands of (automatically) extracted rules about the behaviors of these groups.

For such groups, we might want to say: “Hezbollah targets domestic govern-

ment security institutions/lives with a probability of 87 to 97% within 3 years

(time periods) of years when their major organizational goals were focused

on eliminating ethnic discrimination and when representing their interests to

government officials was a minor part of their strategy.” Figure 2.2 provides

a list of such rules associated with Hezbollah. Clearly, analysts all over the

world engaged in counter-terrorism efforts need to be able to reason with such

rules and make appropriate forecasts; in separate work, we have also done

extensive work on making such forecasts [121, 122].

Reasoning about Trains All of us want to reason about train schedules and plane

schedules. More importantly, railroad companies, airlines, and shipping com-

panies have an even more urgent need to do such reasoning as it directly

impacts their planning process. In such settings, a railroad company may

learn rules of the form “If train 1 is at station A at time T , then it will be

at station B at time (T + 4) with over 85% probability.” Once such rules are

learned from historical data, various types of reasoning need to be performed

in order for the railroad company to make its plans. Figure 2.3 shows a small

toy example of rules associated with trains.

Reasoning about a Power Grid Utility companies need to reason constantly

about power grids. Decisions about which lines and transformers should be

17

repaired next are based not only on the costs of these repairs, but also when

these components are likely to fail, and many other factors. Thus, for exam-

ple, a power company may derive rules of the form “if the transformer tr and

power line ln are functioning at time T , then there is a probability of over 95%

that they will continue to be functioning at time (T + 3). Figure 2.4 shows a

small toy example of rules associated with power grids.

The examples above illustrate the syntax of an APT-logic program; we will

give the formal details as we develop the technical material in this chapter. While it

is possible for designers to write such programs manually, we expect that machine

learning programs can be used to automatically learn such programs from historical

data using standard machine learning algorithms, as done in previous work on ap-

programs [83]. Though this is not claimed as a contribution of this dissertation,

in order to show that it is possible to automatically learn APT-programs, we have

developed a simple algorithm called APT-Extract and used it to learn models of

certain behaviors exhibited by several terror groups.

This chapter proceeds as follows. In Section 2.2 we introduce the syntax and

semantics of APT-logic programs, including a quick treatment of our notion of a

frequency function, a structure unique to APT-logic. In Section 2.3 we introduce

several methods to check consistency of APT-logic programs, along with appropri-

ate complexity analysis. We introduce several algorithms for consistency checking:

one that straightforwardly applies the semantics, one that exploits the relationships

between formulas in the heads and bodies of APT-rules, and one that works only on

18

specific sorts of APT-rules but often offers substantial speedup when it is possible.

These techniques can also be applied to the problem of entailment, which is covered

in Section 2.4. In Section 2.5, we explore some applications of APT-logic programs

and finally, we spend a great deal of effort in Section 2.6 distinguishing this work

from other frameworks for reasoning about time and probability together. In partic-

ular, we examine the relationship between APT-logic programs and Markov Decision

Processes (MDPs for short) [140], showing that one can create APT-logic programs

“equivalent” to a given MDP and policy, but under natural assumptions, there is no

MDP “equivalent” to certain APT-logic programs. We further address the relation-

ship between APT-logic and a well known logic called Probabilistic Computation

Tree Logic (PCTL for short) [64] and provide examples demonstrating that PCTL

cannot express various things expressible in APT-logic programs.

The entire set of complexity results for APT-logic programs derived in this

chapter is summarized in Table 2.1. Consistency of APT-logic programs is deter-

mined by solving certain linear programs. In this chapter, we develop successively

more sophisticated linear programs that try to use different types of “equivalence

classes” to collapse multiple variables in the linear program into one variable; Ta-

ble 2.2 summarizes the main results related to linear program size reduction for

consistency checking. Table 2.2 also provides an analogous summary related to

reduction of size of the linear program when considering entailment by APT-logic

programs.

19

APT Complexity Results

Problem Complexity Reference

Consistency of Single Unconstrained Rule NP-complete Thm 2

Consistency of Single Constrained Rule NP-complete Thm 3

Consistency of a mixed PCD Program with Guaranteed Thm 4

additional restrictions on lower probability bounds consistent

Entailment of an annotated formula by an program coNP-hard Thm 7

Table 2.1: Summary of APT Complexity Results

20

1. scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]

For a given sequence of events, if there is a scandal in the headlines,

this will be followed by there not being a scandal in 1 time unit

with probability [0.89, 0.93].

2. sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) :

[2, 0.65, 0.97, 0.7, 1.0]

For a given sequence of events, if there is a rumor of an SEC

investigation and an earnings increase of 10%, then the stock

price will decrease by 10% in exactly 2 time units frequency range

[0.7, 1.0] and probability [0.65, 0.97].

3. sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) ∧ cfo resigns :

[2, 0.68, 0.95, 0.7, 0.8]

For a given sequence of events, if there is a rumor of an SEC inves-

tigation and an earnings increase of 10%, this will be followed by

a stock price decrease of 10% and the CFO resigning in exactly 2

time units with a frequency range [0.7, 0.8] and probability bounds

[0.68, 0.95].

Figure 2.1: Kstock , a toy APT-Logic Program modeling the behavior to reactions of

stock-related news feeds. As all of these rules are constrained, this is a constrained

program. The English translation of each rule is also provided.

21

1. (INTERORGCON = 1)
efr
; (ARMATTACK = 1) : [2, 0.85, 0.95]

Armed attacks are carried out within two years of inter-organizational

conflicts arising, with probability between 0.85 and 0.95.

2. (DIASUP = 0) ∧ (MILITIAFORM = 2)
efr
; (KIDNAP = 1) : [3, 0.68, 0.78]

Kidnappings are carried out within three years when no support from

diaspora is received, and Hezbollah has a standing military wing, with

probability between 0.68 and 0.78.

3. (ORGST2 = 1) ∧ (ORGDOMGOALS = 1)
efr
; (DSECGOV = 1) :

[3, 0.87, 0.97]

Domestic government/state lives and security are targets of terrorism

within three years if Hezbollah represents interests to officials as a minor

strategy, and its major organizational goals are focused on eliminating

discrimination, with probability between 0.87 and 0.97.

4. (ORGST4 = 1) ∧ (INTERORGCON = 1) ∧ (MILITIAFORM = 1)

efr
; (BOMB = 0) : [1, 0.56, 0.66]

Hezbollah does not carry out bombings within the following year if it so-

licits external support as a minor strategy, there are inter-organizational

conflicts, and its military wing is being created, with probability between

0.56 and 0.66.

Figure 2.2: A real-world set of rules extracted by APT-Extract from the Hezbollah

dataset. The atoms in the rules are represented as a variable and its value. A plain

English explanation of each rule is also provided.

22

1. at station(train1, stnA)
efr
; at station(train1, stnB) : [4, 0.85, 1]

If train 1 is at station A, train 1 will be at station B within 4 time

units with a probability bounded by [0.85, 1.00]

2. at station(train1, stnB)
pfr
; at station(train1, stnC) : [2, 0.75, 0.9]

If train 1 is at station B, train 1 will be at station C in exactly 2

time units with a probability bounded by [0.75, 0.90]

3. at station(train1, stnA)
pfr
; at station(train2, stnB) : [1, 0.95, 1]

If train 1 is at station A, train 2 will be at station B in exactly 1

time units with a probability bounded by [0.95, 1.00]

4. at station(train1, stnA) : [1, 0.5, 0.5]

For a given sequence of events, train 1 will be at station A at time

period 1 with a probability of 0.50.

5. at station(train2, stnA) : [2, 0.48, 0.52]

For a given sequence of events, train 2 will be at station A at time

period 2 with a probability bounded by [0.48, 0.52].

Figure 2.3: Ktrain a toy APT-Logic Program modeling rail transit. Items 1-3 are

APT-Rules while items 4-5 are annotated formulas. The English translation of each

rule is also provided.

23

1. func(ln)
pfr
; ¬func(ln) : [1, 0.05, 0.1]

If the power line is functional, in exactly 1 time unit it will be

non-functional with a probability bounded by [0.05, 0.10]

2. ¬func(ln) efr
; func(ln) : [2, 0.99, 1]

If the power line is not functional, within 2 time units it will

functional with a probability bounded by [0.99, 1.00]

3. func(tr) ∧ func(ln)
pfr
; ¬(func(tr) ∧ func(ln)) : [1, 0.025, 0.03]

If the transformer is functional and the line is functional, then in

exactly 1 time unit, at least one of them is not functional with a

probability bounded by [0.025, 0.030]

4. ¬(func(tr) ∧ func(ln))
efr
; func(tr) ∧ func(ln) : [3, 0.95, 1]

If the transformer and/or the line is not functional, then within 3

time units, they both are functional with a probability bounded

by [0.95, 1.00]

5. func(tr) ∧ func(ln) : [1, 0.8, 0.95]

For a given sequence of events, the transformer and the power line

are functional at the first time point with a probability bounded

by [0.80, 0.95].

Figure 2.4: Kpower a toy APT-Logic Program modeling a power grid. Items 1-4 are

APT-Rules, while item 5 is an annotated formula. The English translation of each

rule is also provided.

24

Type of Linear Number of Number of Cost of Identifying Equivalence Classes

Constraints Constraints Variables

SLC (Straightforward 2|K|+ 1 2|BL|tmax (equivalence classes not used)

Linear Constraints)

WELC (World Equiv. 2|K|+ 1 22|K|tmax O
(

22|K|+BL

)

Linear Constraints)

FELC using BFECA 2|K|+ 1 2|K| O
(

2|BL|tmax · F (tmax) · |K|
)

to identify classes

(Frequency Equiv.

Linear Constraints,

created via brute-force)

FELC using WEFE 2|K|+ 1 2|K| O
(

22|K|·tmax · tmax · |K|
)

+

to identify classes O
(

22|K|+BL

)

(Frequency Equiv.

Linear Constraints,

created via world euqiv.)

FELC w. 2|K|+ 1 2|K| (equivalence classes guaranteed)

PCD restrictions on K

(Pre-Condition Disjoint)

Table 2.2: Comparison of Linear Constraints for APT Consistency Checking

Algorithm Intuition Reference

SLC-ENT Determining both the minimization and maximization Section 2.4

of a constraint wrt SLC

ALC-ENT Determining both the minimization and maximization Appendix A.1.2

of a constraint wrt FELC or WELC

Table 2.3: Comparison of Linear Constraints for APT Entailment Checking

25

2.2 APT-Logic Programs

In this section, we first define the syntax of APT-logic programs, and then

define the formal semantics.

2.2.1 Syntax

We assume the existence of a first order logical language L, with a finite set

Lcons of constant symbols, a finite set Lpred of predicate symbols, and an infinite set

Lvar of variable symbols. Each predicate symbol p ∈ Lpred has an arity (denoted

arity(p)). A (ground) term is any member of Lcons ∪ Lvar (resp. Lcons); if t1, . . . , tn

are (ground) terms, and p ∈ Lpred , then p(t1, . . . , tn) is a (resp. ground) atom. A

formula is defined recursively as follows.

Definition 1. A (ground) atom is a (ground) formula. If f1 and f2 are (ground)

formulas, then f1 ∧ f2, f1 ∨ f2, and ¬f1 are (ground) formulas.

We use BL to denote the Herbrand base (set of all ground atoms) of L. It is

easy to see that BL is finite.

We assume that all applications reason about an arbitrarily large, but fixed

size window of time, and that τ = {1, . . . , tmax} denotes the entire set of time points

we are interested in. tmax can be as large as an application user wants, and the user

may choose his granularity of time according to his needs. For instance, in the stock

market and power grid examples, the unit of time used might be days, and tmax may

be arbitrarily set to (say) 1,095 denoting interest in stock market and power grid

movements for about 3 years. In the case of the train example, however, the unit

26

of time might be seconds, and the application developer might set tmax to 93,600,

reflecting that we are only interested in reasoning about one day at a time, but at a

temporal resolution of one second. In the case of the terrorism application, on the

other hand, our temporal resolution might be one month, and tmax might be 360

reflecting an interest in events over a 30-year time span.

Definition 2 (Annotated Formula). If F is a formula, t ∈ τ is a time point, and

[ℓ, u] is a probability interval, then F : [t, ℓ, u] is an annotated formula.

Intuitively, F : [t, ℓ, u] says F will be true at time t with probability in [ℓ, u].2

Example 2.2.1. Let us reconsider the program Ktrain from Figure 2.3. The anno-

tated formula at station(train1, stnB) : [4, 0.85, 1] says that the probability that train1

will be at station stnB at time point 4 is between 85 and 100%.

Throughout this chapter, we assume the existence of a finite set F of symbols

called frequency function symbols. Each of these symbols will denote a specific

“frequency function” to be defined later when we define our formal APT semantics.

We are now ready to define the syntax of Annotated Probabilistic Temporal (APT

for short) rules and logic programs which will form the main topic of study for this

chapter.

Definition 3 (APT Rule). Let F , G be two formulas, ∆t be a time interval, ℓ, u be

a probability interval, fr ∈ F be a frequency function symbol and α, β ∈ [0, 1].

2Assumption: Throughout the chapter we assume, for both annotated formulas and APT-

rules, that the numbers ℓ, u can be represented as rationals a/b where a and b are relatively prime

and the length of the binary representations of a and b is fixed.

27

1. F
fr
; G : [∆t, ℓ, u] is called an unconstrained APT rule.

2. F
fr→֒ G : [∆t, ℓ, u, α, β] is called a constrained APT rule.

An APT logic program is a finite set of APT rules and annotated formulas.

Note that we use the symbol ‘
fr
;’ for unconstrained APT rules with frequency

function symbol fr, while the symbol ‘
fr→֒’ is used for constrained rules with fre-

quency function fr. The formal semantics of these rules is quite complex and will

be explained shortly. But informally speaking, both types of rules try to check the

probability that a formula F is true ∆t units before a formula G becomes true.

Figures 2.1, 2.2, 2.3, and 2.4 respectively show the APT-logic programs associ-

ated with our stock market, counter-terrorism, trains, and power grid applications.

We now define three types of APT-logic programs.

Definition 4 (Types of APT-Logic Programs).

• An unconstrained APT-Logic Program consists only of unconstrained APT-rules.

• A constrained APT-Logic Program consists only of constrained APT-rules.

• A mixed APT-Logic Program consists both of constrained and unconstrained APT-

rules.

Consider the APTprograms from the introduction of this chapter, we see that

Kstock is a constrained APT-logic program, Ktrains , Kpower , and Kterror are uncon-

strained APT-logic programs.3

3Notably absent from the types of APT-Logic Programs described above are annotated formulas.

28

2.2.2 Semantics of APT-logic programs

In this section, we will provide a formal declarative semantics for APT-logic

programs. As the syntax of these programs is quite complex, we will do this one

step at a time. We start with the well known definition of a world.

Definition 5. A world is any set of ground atoms.

The power set of BL (denoted 2BL) is the set of all possible worlds. Intuitively,

a world describes a possible state of the (real) world or real world phenomenon being

modeled by an APT-logic program. The following are examples of worlds:

Example 2.2.2. Consider the atoms present in the program Ktrain from Fig-

ure 2.3. A few possible worlds are: {at station(train1, stnA), at station(train2, stnB)},

{at station(train1, stnB)}, and {}.

As worlds are just ordinary Herbrand interpretations [106], we use w |= F to

denote the standard definition of satisfaction of a ground formula F by world w as

expressed in [106].

Definition 6 (Satisfaction of a formula by a world). Let f be a ground formula and

w be a world. We say that w satisfies f (denoted w |= f) iff:

• If f = a for some ground atom a, then a ∈ w.

• If f = ¬f ′ for some ground formula f ′ then w does not satisfy f ′.

We will show later in Theorem 1 that APT-rules can be used to express annotated formulas and

hence there is no loss of expressive power.

29

• If f = f1 ∧ f2 for formulas f1 and f2, then w satisfies f1 and w satisfies f .

• If f = f1 ∨ f2 for formulas f1 and f2, then w satisfies f1 or w satisfies f2.

We say a formula f is a tautology if for all w ∈ 2BL , w |= f . We say f is a

contradiction if for all w ∈ 2BL , w |= ¬f .

A thread, defined below, is nothing but a standard temporal interpretation [42,

96] in temporal logic.

Definition 7 (Thread). A thread is a mapping Th : {1, . . . , tmax} → 2BL.

Th(i) implicitly says that according to the thread Th, the world at time i will

be Th(i). We will use T to denote the set of all possible threads, and Th∅ to denote

the “null” thread, i.e., the thread which assigns ∅ to all time points.

Example 2.2.3. Consider the train scenario shown in Figure 2.3 and the worlds

described in Example 2.2.2. Let τ = {0, . . . , 9} represent one-hour time periods in

a day from 9:00am to 6:00pm, i.e., 0 represents 9-10am, 1 represents 10-11am, and

so forth. Figure 2.5 shows a sample thread for this setting, where only one train is

present. According to this thread, the train is at station A at 9 o’clock; at 10 o’clock

the thread has an empty world, since the train is still between stations, reaching

station B at 12. The thread shows how the train moves throughout the rest of the

day.

A thread represents a possible way the domain being modeled (e.g., where the

train is) will evolve over all time points. A temporal probabilistic (tp) interpretation

gives us a probability distribution over all possible threads.

30

Th(1) = {at station(train1, stnA)}, Th(2) = {},

Th(3) = {}, Th(4) = {at station(train1, stnB)},

Th(5) = {}, Th(6) = {at station(train1, stnC)},

Th(7) = {}, Th(8) = {at station(train1, stnB)},

Th(9) = {}, Th(10) = {at station(train1, stnA)}

Figure 2.5: Example thread for the train scenario from Figure 2.3, where only one

train is present.

Definition 8 (Temporal-Probabilistic Interpretation). A temporal-probabilistic (tp)

interpretation I is a probability distribution over the set of all possible threads, i.e.,

∑

th∈T I(th) = 1.

Thus, a tp-interpretation I assigns a probability to each thread. This reflects

the probability that the world will in fact evolve over time in accordance with what

the thread says about the state of the world at various points in time.

Example 2.2.4. Consider once again the setting of Figure 2.3. A very simple ex-

ample of a tp-interpretation is the probability distribution that assigns probability 1

to the thread from Figure 2.5 and 0 to every other possible thread. Another example

would be a distribution that assigns probability 0.7 to the thread from Figure 2.5

and 0.3 to the thread Th ′ defined as follows: 〈Th ′(1) = {at station(train1, stnA)},

Th ′(2) = {}, Th ′(3) = {}, Th ′(4) = {}, Th ′(5) = {at station(train1, stnB)}, Th ′(6) =

{at station(train1, stnC)}, Th ′(7) = {}, Th ′(8) = {at station(train1, stnB)}, Th ′(9) =

{}, Th ′(10) = {at station(train1, stnA)}〉; this thread specifies that the train’s trip

from station A to station B takes one time unit longer than specified by the previous

31

thread (Th).

We now define what it means for a tp-interpretation to satisfy an annotated

formula.

Definition 9 (Satisfaction of an Annotated Formula). Let F : [t, ℓ, u] be an an-

notated formula, and I be a tp-interpretation. We say that I satisfies F : [t, ℓ, u],

written I |= F : [t, ℓ, u], iff ℓ ≤∑

Th∈T ,Th(t)|=F I(Th) ≤ u.

Thus, to check if I satisfies F : [t, ℓ, u], we merely sum up the probabilities

assigned to those threads Th ∈ T which make F true at time t. If this sum is in

[ℓ, u] then I satisfies F : [t, ℓ, u].

2.2.3 Frequency Functions

When defining the syntax of APT-logic programs, we defined frequency func-

tion symbols. Each frequency function symbol denotes a frequency function. The

basic idea behind a frequency function is to represent temporal relationships within

a thread. For instance, we are interested in the frequency with which G will be true

∆t units after F is true. When we study this w.r.t. a specific thread Th, we need

to identify when F was true in thread Th, and whether G really was true ∆t units

after that. For instance, consider the thread shown in Figure 2.6. Here, F is true

at times 1, 3, 6, and 8. G is true at times 2, 4, 5, and 7. F and G should be true

at the times indicated above.

• The probability (within the thread of Figure 2.6) that G follows F in exactly two

units of time is 0.33 if we ignore the occurrence of F at time 8. If, on the other

32

F G
F G

G F
G

F

Th(1) Th(2) Th(3) Th(4) Th(5) Th(6) Th(7) Th(8)

Figure 2.6: Example thread, Th with worlds Th(1), . . . ,Th(8). This figure shows

each world that satisfies formula F or formula G.

hand, we do count that occurrence of F at time 8 (even though no times beyond

that are possible), then the probability that G follows F in exactly two units of

time is 0.25.

• The probability that G follows F in at most 2 units of time is 100% if we ignore

the occurrence of F at time 8; otherwise it is 0.75.

Each of these intuitions leads to different ways to measure the frequency (within

a thread) with which G follows F . As we will show shortly, many other possibil-

ities exist as well. To the best of our knowledge, no past work on reasoning with

time and uncertainty deals with frequencies within threads; as a consequence, past

works are not able to aggregate frequencies across multiple threads in T or w.r.t.

tp-interpretations. This capability, we will show, is key for the types of applications

described in the Introduction of this chapter.

We see above that there are many different ways to define this frequency from

a given body of historical data. Rather than make a commitment to one particular

way and in order to allow applications and users to select the frequency function

that best meets their application needs, we now define axioms that any frequency

33

function must satisfy. Later, we will define some specific frequency functions.4

Definition 10 (Frequency Function). Let Th be a thread, F and G be formulas,

and ∆t > 0 be an integer. A frequency function fr is one that maps quadruples of

the form (Th, F,G,∆t) to [0, 1] such that it satisfies the following axioms:

(FF1) If G is a tautology, then fr(Th, F,G,∆t) = 1.

(FF2) If F is a tautology and G is a contradiction, then fr(Th, F,G,∆t) = 0.

(FF3) If F is a contradiction, fr(Th, F,G,∆t) = 1.

(FF4) Under the following conditions, there exist threads Th1,Th2 ∈ T such that

fr(Th1, F,G,∆t) = 0 and fr(Th2, F,G,∆t) = 1:

• F is not a contradiction

• G is not a tautology

• F or ¬G is not a tautology

Axiom FF1 says that if G is a tautology, then fr(Th, F,G,∆t) must behave like

material implication and assign 1 to the result. Likewise, if F is a tautology and G

is a contradiction, then FF2 says that fr(Th, F,G,∆t) must behave like implication

and have a value of 0 (A→ B is false when A is a tautology and B is a contradiction).

Axiom FF3 requires fr(Th, F,G,∆t) to be 1 when F is a contradiction, also mirroring

implication. Axiom FF4 ensures that in all cases not covered above, the frequency

4Note: Throughout this chapter, we will assume that frequency function for a given thread

can be computed in polynomial time (i.e. O(|BL| · tmax)). Additionally, we shall assume that a

frequency function will return number that can be represented as a rational number a/b where a

and b are relatively prime and the length of the binary represenations of a and b is fixed.

34

function will be non-trivial by allowing at least one thread that perfectly satisfies

(probability 1) and perfectly contradicts (probability 0) the conditional. Note that

any function not satisfying Axiom FF4 can be made to do so as long as it returns

distinct values: simply map the lowest value returned to 0 and the highest value

returned to 1. We now give examples of two frequency functions.

Definition 11 (Point Frequency Function). Let Th be a thread, F and G be formu-

las, and ∆t ≥ 0 be an integer. A Point Frequency Function, denoted pfr(Th, F,G,∆t),

is defined as:

pfr(Th, F,G,∆t) =
|{t : Th(t) |= F ∧ Th(t+∆t) |= G}|
|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}|

If there is no t ∈ [0, tmax −∆t] such that Th(t) |= F then we define pfr to be 1.

The point frequency function expresses a simple concept: it specifies how

frequently G follows F in ∆t time points. Mathematically, this is done by finding

all time points from [1, tmax − ∆t] at which F is true and of all such time points

t, then finding those for which G is true at time t + ∆t. The ratio of the latter

to the former is the value of pfr . The following lemma says that this is a valid

frequency function. Note that the denominator of the point frequency function does

not include times where the thread satisfies F after tmax −∆t because the “end of

time” of our finite time model comes before ∆t units elapse after F becomes true.

Lemma 1. pfr satisfies Axioms FF1-FF4.

Example 2.2.5 (Point Frequency Function). Consider thread Th from Figure 2.5.

Suppose we want to calculate pfr(Th, at station(train1, stnB), at station(train1, stnC), 2).

35

In English, this is the ratio of time at station(train1, stnB) is followed by

at station(train1, stnC) in two units of time in thread Th.

We can see that at station(train1, stnB) is satisfied by two worlds: Th(4) and Th(8).

We also notice that Th(6) |= at station(train1, stnC) and Th(10) 6|= at station(train1, stnC).

Hence, the pfr is simply 0.5.

Our second type of frequency function, called an existential frequency function,

does not force G to occur exactly ∆t units of time after F is true. It can occur at

or before ∆t units of time elapse after F becomes true.

Definition 12 (Existential Frequency Function). Let Th be a thread, F and G be

formulas, and ∆t ≥ 0 be an integer. An Existential Frequency Function, denoted

efr(Th, F,G,∆t), is defined as follows:5

efr(Th, F,G,∆t) =
efn(Th, F,G,∆t, 0, tmax)

|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}|+ efn(Th, F,G,∆t, tmax −∆t, tmax)

If the denominator is zero (if there is no t ∈ [0, tmax − ∆t] such that Th(t) |= F

and efn(Th, F,G,∆t, tmax −∆t, tmax) = 0) then we define efr to be 1.

Note that in the denominator of efr , after time tmax − ∆t, we only count

satisfaction of F if it is followed by satisfaction of G within [tmax −∆t, tmax].

Lemma 2. efr satisfies Axioms FF1-FF4.

The point frequency function expresses what is desired in situations where

there is a precise temporal relationship between events (i.e., if one drops an object

5Where efn(Th, F,G,∆t, t1, t2) = |{t : (t1 ≤ t ≤ t2) and Th(t) |= F and there exists t′ ∈

[t+ 1,min(t2, t+∆t)] such that Th(t′) |= G}|.

36

from a height of 9.8 meters in a vacuum, it will hit the ground in exactly
√
2 seconds).

However, it can be very brittle. Consider mail delivery where one knows a package

will arrive in at most 5 business days 95% of the time. The existential frequency

function efr allows for the implied condition to fall within some specified period of

time rather than after exactly
√
2 seconds as before.

Example 2.2.6 (Existential Frequency Function). Consider thread Th ′ from Ex-

ample 2.2.4. Suppose we want to calculate

efr(Th ′, at station(train1, stnB),¬at station(train1, stnC), 2).

In English, this is the ratio of times that at station(train1, stnB) is followed by

¬at station(train1, stnC) in two units of time in thread Th ′.

We can see that formula at station(train1, stnB) is satisfied by two worlds: Th ′(5) and

Th ′(8). Consider world Th ′(6), which occurs one time unit after world Th ′(5). We

can easily see that Th ′(6) 6|= ¬at station(train1, stnC). However, Th ′(7), two units

later, does satisfy ¬at station(train1, stnC). As Th ′(9) also satisfies ¬at station(train1, stnC),

we have a world within two time units after every world that satisfies at station(train1, stnB).

Hence, the efr is 1 in this case.

Properties of pfr : Because of the requirement for F2 to be satisfied after a spe-

cific ∆t, pfr has several properties (all formulas F1, F2 below are assumed to be

satisfiable).

1. pfr(Th, F1, F2 ∨ F3,∆t) ≥ max(pfr(Th, F1, F2,∆t), pfr(Th, F1, F3,∆t)) (valid

for efr as well)

37

2. pfr(Th, F1, F2 ∧ ¬F3,∆t) = pfr(Th, F1, F2 ∧ F3,∆t)− pfr(Th, F1, F3,∆t)

3. pfr(Th, F1, F2,∆t) ≤ pfr(Th, F1 ∧ F3, F2,∆t) ⇒ pfr(Th, F1 ∧ ¬F3, F2,∆t) ≤

pfr(Th, F1, F2,∆t)

4. pfr(Th, F1, F2 ∧ F3,∆t) ≤ min(pfr(Th, F1, F2,∆t), pfr(Th, F1, F3,∆t))

5. If pfr(Th, F1, F2,∆t) = a and pfr(Th, F1, F3,∆t) = b then

pfr(Th, F1, F2 ∧ F3,∆t) ≥ a+ b− 1.

Properties of efr : efr satisfies all the properties that pfr has above. In addition,

efr has the property that:

efr(Th, F1, F2,∆t) ≥ efr(Th, F1, F2,∆t− 1)

The following result provides some links between pfr and efr .

Proposition 1. Let Th be a thread, F and G be formulas,

1. Let ∆t1 and ∆t2 be two positive integers. If ∆t1 ≤ ∆t2, then:

pfr(Th, F,G,∆t1) ≤ efr(Th, F,G,∆t2).

2. Let ∆t be a temporal interval. The following inequality always holds:

efr(Th, F,G,∆t) ≤
∆t∑

i=1

pfr(Th, F,G, i)

2.2.4 Satisfaction of Rules and Programs

We are now ready to define satisfaction of an Annotated Probabilistic Tem-

poral (APT) rule.

38

Definition 13 (Satisfaction of APT rules). Let r be an APT rule with frequency

function fr and I be a tp-interpretation.

1. For r = F
fr
; G : [∆t, ℓ, u], we say that I satisfies r (denoted I |= r) iff

ℓ ≤
∑

Th∈T
I(Th) · fr(Th, F,G,∆t) ≤ u.

2. For r = F
fr→֒ G : [∆t, ℓ, u, α, β], we say that I satisfies r (denoted I |= r), iff

ℓ ≤
∑

Th∈T ,

α≤fr(Th,F,G,∆t)≤β

I(Th) ≤ u.

Intuitively, the unconstrained APT rule F
fr
; G : [∆t, ℓ, u] evaluates the prob-

ability that F leads to G in ∆t time units as follows: for each thread, it finds the

probability of the thread according to I and then multiplies that by the frequency

(in terms of fraction of times) with which F is followed by G in ∆t time units ac-

cording to frequency function fr. This product is a little bit like an expected value

computation in statistics where a value (frequency) is multiplied by a probability

(of the thread). It then sums up these products across all threads in much the same

way as an expected value computation.

On the other hand, in the case of constrained rules, the probability is computed

by first finding all threads such that the frequency of F leading to G in ∆t time units

is in the [α, β] interval, and then summing up the probabilities of all such threads.

This probability is the sum of probabilities assigned to threads where the frequency

with which F leads to G in ∆t time units is in [α, β]. To satisfy the constrained

APT rule F
fr→֒ G : [∆t, ℓ, u, α, β], this probability must be within the probability

interval [ℓ, u].

39

Example 2.2.7. Coming back to the train scenario from Figure 2.3, the following

is an example of an unconstrained rule (r1) and a constrained rule (r2):

r1 : at station(train1,stnC)
efr
; at station(train1,stnB) : [2, 0.85, 1]

r2 : at station(train1,stnB)
efr→֒ at station(train1,stnC) : [2, 0.9, 1, 0.5, 1]

Consider the second tp-interpretation from Example 2.2.4, which we will call I. By

analyzing the two threads considered possible by I, it is clear that I |= r1, since both

threads have the property that after being at station C the train reaches station B

within two time units, and thus the probability of this event is 1. A similar analysis

leads us to confirm that I |= r2, but we must now verify that the constraints placed by

the rule on the threads hold; these constraints require that at least half of the times

in which the train is at station B, station C be reached within 2 time units. This is

indeed the case, since the train stops twice at station B, once going towards C and

once going towards A on its way back. As before, the sum of probabilities of reaching

the station within 2 time units is 1. Finally, consider the rule:

r3 : at station(train1,stnA)
efr
; at station(train1,stnC) : [2, 0.5, 0.6]

Clearly, I 6|= r3, since neither of the threads considered possible by the tp-interpretation

satisfy the condition that the train reaches station C within two time units of being

at station A.

The following proposition says that any tp-interpretation that satisfies certain

kinds of constrained or unconstrained APT-logic programs also satisfies a certain

APT rule that can be easily constructed from the APT-rules in the original APT-

logic program.

40

Proposition 2. Let I be a temporal interpretation, F and G be formulas, and ∆t

be a temporal interval.

1. If I |= ⋃∆t
i=1

{

F
pfr
; G : [i, ℓi, ui]

}

then I |= F
efr
; G :

[

∆t,max(ℓi),min
(
∑∆t

i=1 ui, 1
)]

.

2. If I |= F
fr→֒ G : [∆t, ℓp, up, a, b] then ∀aℓ, bℓ, au, bu such that aℓ ≤ a ≤ au

and bℓ ≤ b ≤ bu we have I |= F
fr→֒ G : [∆t, ℓp, 1, aℓ, bu] and I |= F

fr→֒ G :

[∆t, 0, up, au, bℓ].

Note that in unconstrained APT-rules, the ℓ, u probability bounds account

for the frequency function as well. In the case of constrained APT-rules, the ℓ, u

probability bounds do not account for the frequency function. We now show that

using a special frequency function called a query frequency function, we can use

constrained and unconstrained rules to express annotated formulas.

Definition 14 (Query Frequency Function). Let Th be a thread, F and G be formu-

las, and ∆t ≥ 0 be an integer. A query frequency function, denoted qfr(Th, F,G,∆t)

is defined as follows:

1. If G is a tautology then qfr(Th, F,G,∆t) = 1

2. If F is a tautology and G is a contradiction, then qfr(Th, F,G,∆t) = 0

3. If F is a contradiction then qfr(Th, F,G,∆t) = 1

4. If Th(1) |= F and Th(∆t) |= G then qfr(Th, F,G,∆t) = 1

5. Else, qfr(Th, F,G,∆t) = 0

The following result shows that qfr is a valid frequency function.

41

Lemma 3. qfr satisfies Axioms FF1-FF4.

qfr allows us to construct constrained and unconstrained rules that are equiv-

alent to arbitrary annotated formulas.

Theorem 1. Let q = Q : [t, ℓ, u] be an annotated formula, and I be an interpreta-

tion.

1. For constrained rule r = TRUE
qfr→֒ Q : [t, ℓ, u, 1, 1], I |= q iff I |= r.

2. For unconstrained rule r = TRUE
qfr
; Q : [t, ℓ, u], I |= q iff I |= r.

The following is an example of how an annotated formula can be expressed as

a rule using qfr .

Example 2.2.8. Consider the train setting from Figure 2.3. One of the anno-

tated formulas given in this example was at station(train1, stnA) : [1, 0.5, 0.5]. By

applying Theorem 1, this formula is equivalent to the constrained rule r1 and the

unconstrained rule r2:

r1 : TRUE
qfr→֒ at station(train1, stnA) : [1, 0.5, 0.5, 1, 1]

r2 : TRUE
qfr
; at station(train1, stnA) : [1, 0.5, 0.5]

2.3 Consistency

2.3.1 Complexity of Consistency Checking

We are now ready to study the complexity of the problem of checking consis-

tency of APT-logic programs. We say that an APT-logic program K is consistent iff

42

there is a tp-interpretation I such that I |= K. Before stating complexity results,

we give results that hold for any frequency function and any APT-rule. The first

result follows from axioms FF1-FF4 on frequency functions.

Lemma 4. Consider the APT-Program {r = F
fr
; G : [∆t, ℓ, u]}.

1. If G is a tautology, then {r} is consistent iff u = 1.

2. If F is a tautology and G is a contradiction, then {r} is consistent iff ℓ = 0.

3. If F is a contradiction, then {r} is consistent iff u = 1.

4. If F is not a contradiction, G is not a tautology, and either F is not a tautology

or G is not a contradiction then {r} is consistent.

Using this lemma, we can show that for any unconstrained APT-rule, the

problem of determining if an APT-logic program consisting of just that APT-rule is

consistent using any frequency function is NP-complete.

Theorem 2. Deciding the consistency of an APT-logic program containing a single

unconstrained APT-rule is NP-complete in the size of BL.

The proof of hardness above is by reduction from the SAT problem, while

membership in NP relies on manipulating Lemma 4.

In deciding the consistency of a single constrained rule, we take a slightly dif-

ferent approach. The intuition is that if the lower probability bound is not zero,

we must have a thread whose frequency function value falls within [α, β]. Other-

wise, there is no thread available that would ensure a non-zero probability mass

43

as per the definition of satisfaction. The idea of classifying threads in this manner

for constrained rules comes into play later when we present consistency-checking

algorithms in Section 2.3.4.

Lemma 5. Let K = {r = F
fr→֒ G : [∆t, ℓ, u, α, β]} be a constrained APT-logic

program consisting of a single rule. K is consistent iff at least one of the following

conditions hold.

• u = 1 and there exists a thread Th in such that α ≤ fr(Th in, F,G,∆t) ≤ β.

• ℓ = 0 and there exists a thread Thout such that either α > fr(Thout, F,G,∆t) or

β < fr(Thout, F,G,∆t).

• There exists a thread Th in such that α ≤ fr(Th in, F,G,∆t) ≤ β and a thread

Thout such that either α > fr(Thout, F,G,∆t) or β < fr(Thout, F,G,∆t).

Lemma 5, used in conjunction with the frequency function axioms, allow us to

prove that deciding the consistency of a single constrained rule is also NP-complete.

Theorem 3. Deciding the consistency of an APT-logic program containing a single

constrained APT-rule is NP-complete in the size of BL.

The NP-hardness of consistency checking for APT programs (whether con-

strained, unconstrained, or mixed) with more than one rule follows trivially from

Theorems 2 and 3. In the next chapter, we show that the consistency-checking

problem is in the complexity class NP for general APTprograms (under some natu-

ral assumptions).

44

However, if we assume that certain conditions hold, we can show that consis-

tency for an APT-logic program containing multiple APT-rules can be guaranteed.

These restrictions are termed Pre-Condition Disjoint, or PCD; intuitively, they refer

to an APT-Program such that there exists a unique world that satisfies exactly one

of the rule pre-conditions (the F formulas). Hence, we say that the pre-conditions

are “disjoint” from each other. Perhaps such conditions could be specified by a a

tool used to learn the rules from the data-set.

Definition 15 (Pre-Condition Disjoint (PCD) APT-Logic Program). Let K be an

APT-Logic Program such that K = {r1, . . . , rn}, where ri = Fi
fr
; Gi : [∆ti, ℓi, ui]

or ri = Fi
fr→֒ Gi : [∆ti, ℓi, ui, αi, βi]. K is Pre-Condition Disjoint (PCD) if the

following conditions hold true.

1. ∀i, if ri is constrained, then βi = 1.

2. ∀i, ∆ti ≥ 1.

3. ∀i there exists a world wi such that wi |= Fi and ∀j where j 6= i, wi 6|= Fj.

4. ∀i, fri is equal to either pfr , or efr .

5. tmax ≥ |K| ·max(∆ti) (where tmax is the length of each thread).

6. ∃ world w∅ such that ∀i w∅ 6|= Fi and w∅ 6|= Gi.

7. ∀ri ∈ K, ui = 1.

While somewhat limiting, this restriction still allows APT-Logic Programs that

are useful. Consider the following example.

45

Example 2.3.1. Consider the set of rules shown in Figure 2.3. These rules do not

constitute a PCD program for various reasons. For instance, the upper bound on the

probability of the second rule is not 1. Likewise, condition 3 is not satisfied since the

first and third rule have the same antecedent. However, the following set of rules

satisfies all of the conditions for being a PCD program:

at stn(trn1, stnA) ∧ ¬at stn(trn1, stnB) ∧ ¬at stn(trn1, stnC) efr
;

at stn(trn1, stnB) : [4, 0.85, 1]

at stn(trn1, stnB) ∧ ¬at stn(trn1, stnA) ∧ ¬at stn(trn1, stnC) pfr
;

at stn(trn1, stnC) : [2, 0.75, 1]

at stn(trn1, stnC) ∧ ¬at stn(trn1, stnA) ∧ ¬at stn(trn1, stnB) efr
;

at stn(trn1, stnB) : [3, 0.9, 1]

Conditions 1, 2, 4, and 7 are trivially satisfied, and tmax can be easily chosen to

satisfy condition 5. Condition 3 can be seen to hold by noting that no two antecedents

of rules can be satisfied at once. Finally, condition 6 holds since the empty world

does not satisfy any of the formulas involved in the rules.

The useful feature in a PCD program is that (based on the axioms) we are

guaranteed threads with certain frequency function values for each rule. Consider

Lemma 6 below, where for any subset of a given APT-program, we are guaranteed

the existence of a thread whose frequency is 1 according to the rules in the subset

and is 0 according to the other rules.

Lemma 6. Consider APT-Program K = {r1, . . . , ri, . . . , rn} where ri = Fi

fri→֒

Gi[∆ti, ℓi, ui, αi, βi] or ri = Fi
fri
; Gi : [∆ti, ℓi, ui], depending on whether ri is

46

a constrained or unconstrained rule. If K is PCD, then for any disjoint parti-

tion of rules, K1, K2, there exists a thread Th such that for all rules ri ∈ K1,

fri(Th, Fi, Gi,∆ti) = 1 and for all rules ri ∈ K2, fri(Th, Fi, Gi,∆ti) = 0.

The PCD conditions add a “one-tailed” requirement (the first requirement of

Definition 15) to the constrained rules so that β is always one. This allows us to

be guaranteed the existence of threads in the [α, β] bounds. As it turns out, if the

lower bounds on the probabilities are less than a certain amount, we can create an

interpretation to guarantee the consistency of the PCD program.

Theorem 4. For a mixed PCD APT-Program K = {r1, . . . , ri, . . . , rn}, if for all ri,

ℓi ≤
|K| − 1

|K| then K is consistent.

In the appendix, we show how PCD assumptions can be leveraged for a sig-

nificant reduction in complexity for constrained APT-programs.

2.3.2 Linear Constraints for Consistency Checking

A straightforward algorithm to find a satisfying interpretation given an APT-

logic program K is a brute-force approach that considers each thread. Given k atoms

and tmax timepoints, there are 2k possible worlds at each timepoint, and 2k·tmax

possible threads. For ease of notation, we shall refer to the number of threads as n.

Hence, note that a function that is linear in the number of threads is exponential in

the number of atoms.

Let T = {Th1, . . . ,Th i, . . . ,Thn} be the set of threads. In our linear program,

we will use the variables V = {v1, . . . , vj, . . . , vn}. Each vi represents the (as yet

47

unknown) probability of thread Th i. We will design the linear program so that solu-

tions of the linear program are in a one to one correspondence with interpretations

that satisfy the APT-logic program. Thus, if θ is a solution of the linear program,

we want to be sure that the tp-interpretation Iθ such that Iθ(Th i) = θ(vi) is an

interpretation that satisfies K.

Hence, given an APT-logic program K, we will construct a set of “straightfor-

ward” linear constraints SLC(K) over variables V = {v1, . . . , vj, . . . , vn}, such that

the interpretation Iθ associated as above with any solution θ satisfies K. The set of

constraints are as follows:

Definition 16 (Straightforward Linear Constraints (SLC)). Let K be an APT-logic

program; the set of straightforward linear constraints contains exactly the following:

1.
∑n

j=1 vj = 1

2. For each unconstrained rule Fi
fri
; Gi : [∆ti, ℓi, ui] ∈ K

(a) ℓi ≤
∑n

j=1 fri(Thj, Fi, Gi,∆ti) · vj

(b) ui ≥
∑n

j=1 fri(Thj, Fi, Gi,∆ti) · vj

3. For each constrained rule Fi
fri→֒ Gi : [∆ti, ℓi, ui, αi, βi] ∈ K

(a) ℓi ≤
∑

Thj∈T αi≤fri(Thj ,Fi,Gi,∆ti)≤βi

vj

(b) ui ≥
∑

Thj∈T αi≤fri(Thj ,Fi,Gi,∆ti)≤βi

vj

We refer to this set as SLC(K).

48

The first constraint above says that the threads are exhaustive. The second

constraint is derived from the formula for satisfaction of an unconstrained rule, while

the third constraint is derived from the formula for satisfaction of a constrained rule.

Note that the coefficient of vj in constraints (2) and (3) above are both constants

(after the calculations are performed), so these constraints are all linear.

Example 2.3.2. Recall the program Kpower from Figure 2.4. In this simple example,

we supposed the power plant delivers power to a transformer (named tr), which is in

turn connected via a power line (named ln) to a home. Hence, the atoms func(tr) and

func(ln) denote that the various components are functioning, and the home receives

power only if both tr and ln are func. Therefore, we have four possible worlds:

w0 = {func(tr), func(ln)}, w1 = {func(tr)}, w2 = {func(ln)}, and w3 = ∅. If we set

the time limit to 4 days, then there are 44 = 256 possible threads (each world may

occur at each time point). We name these threads Th0, ...,Th255 so that the world

at time point t of thread Th i is ((i/4t) mod 4) (i.e. Th25 is 〈w1, w2, w1, w0〉) and

associate the variable vi with I(Th i). We now show the constraints in SLC(Kpower):

1.
∑i<256

i=0 vi = 1

2. 0.025 ≤∑i<256
i=0 pfr(Thi, func(tr) ∧ func(ln),¬(func(tr) ∧ func(ln)), 1) · vi ≤ 0.03

3. 0.95 ≤∑i<256
i=0 efr(Thi,¬(func(tr) ∧ func(ln)), func(tr) ∧ func(ln), 3) · vi ≤ 1

4. 0.05 ≤∑i<256
i=0 pfr(Thi, func(ln),¬func(ln), 1) · vi ≤ 0.1

5. 0.99 ≤∑i<256
i=0 efr(Thi,¬func(ln), func(ln), 2) · vi ≤ 1

Given a solution θ of these constraints, we can see immediately that Iθ satisfies K.

49

Algorithm 1 Compute consistency of K using SLC.

SLC-CONSISTENT(APT-Program K)

1. Construct SLC(K).

2. Attempt to solve SLC(K).

3. If solvable, return consistent, otherwise, inconsistent.

We provide the following proposition about correctness of the above procedure

for mixed programs.

Proposition 3. For mixed APT-Logic Program K, K is consistent iff SLC(K) has

a solution.

The size of the linear program for SLC follows immediately from the definition.

As each rule requires two linear constraints, and one linear constraint is required to

ensure the variables sum to 1, we have 2|K|+1 constraints. The number of variables

is equal to the number of threads.

Remark 1. SLC contains 2|K|+ 1 constraints and 2|BL|·tmax variables.

Using SLC we can create Algorithm 1, which is guaranteed to give a correct

answer to the question of consistency for any APT-Logic Program. However, the

linear program’s size is exponential in terms of |BL|·tmax , making it a very expensive

operation in many situations. There are several obvious ways to reduce this cost.

One such way would be to consider the set of atoms to be only the atoms present

in the rules. An obvious method to reduce the other factor in the exponent, tmax ,

would be to adjust the granularity of time used. For example, convert all time to

50

hours instead of minutes. However, this would only provide a correct result in terms

of the new granularity. This is an issue we intend to explore in future research.

It turns out that for arbitrary sets of rules and annotated formulas, one need

not use one variable for each of the 2|BL|·tmax threads. Some threads are equivalent,

and may in fact be considered together. We provide two such methods that consider

equivalent threads. One that reduces the number of worlds based on world equiva-

lence and one that reduces the number of threads based on frequency equivalence.

2.3.3 World Equivalence

World equivalence uses the following intuition: when two worlds satisfy ex-

actly the same formulas from the APT-program, they are identical from the APT-

program’s point of view. By partitioning the set of worlds into classes of identical

worlds, and working with the classes instead of the individual worlds, we can create

smaller linear programs by associating just one variable with each equivalence class

(rather than one variable with each world as is the case of SLC).

Consider the rule F
fr→֒ G : [∆t, ℓ, u, α, β]. The four world-based equivalence

classes resulting from this rule would be the sets of worlds that satisfy F∧G, F∧¬G,

¬F ∧G, and ¬F ∧ ¬G. We apply this concept to APT-Logic Programs and divide

the set of worlds accordingly. We can treat these resulting equivalence classes as

worlds and create world-based thread equivalence classes, and use them instead of

threads. This reduces the number of linear constraints for an algorithm similar to

SLC. One must note, however, that the equivalence classes must be computed first,

51

which we will show to be NP-complete.

As world equivalence for APT-Logic is based on the formulas found in APT-

Rules and annotated formulas, we will formalize the set of formulas associated with

a program. We introduce the notation formula(K) to denote the set of all formulas

present in an APT-logic program:

formula(K) = {F,G | F fr→֒ G : [∆t, ℓ, u, α, β] ∈ K} ∪

{F,G | F fr
; G : [∆t, ℓ, u] ∈ K}

Example 2.3.3. Recall the program Kpower from Figure 2.4. The set formula(Kpower)

is then

{func(ln),¬func(ln), func(tr) ∧ func(ln),¬(func(tr) ∧ func(ln))},

since these are the only formula appearing in Kpower .

The cardinality of formula(K) for a given APT-Logic Program is bounded by

2|K| since APT-Rules have two formulas, F and G. We notice that for each world

w in 2BL there is a subset of formula(K) that w satisfies and a disjoint subset of

formula(K) that w does not satisfy. Hence, with respect to a given set of formulas,

certain worlds are indistinguishable: that is, they satisfy exactly the same formulas

from the set. We call such worlds K-equivalent.

Definition 17 (World Equivalence). For APT-logic program K, a world w is K-

equivalent to a world w′ (denoted w ≡K w′) iff for all F ∈ formula(K), w |= F iff

w′ |= F .

52

Example 2.3.4. Continuing with Kpower from Figure 2.4, recall the 4 worlds: w0 =

{func(tr), func(ln)}, w1 = {func(tr)}, w2 = {func(ln)}, and w3 = ∅ and the formula

from Kpower :

formula(Kpower) = {func(ln),¬func(ln), func(tr) ∧ func(ln),¬(func(tr) ∧ func(ln))}.

Here w1 is Kpower -equivalent to w3, since both w1 and w3 do not satisfy the first

formula, do satisfy the second formula, do not satisfy the third formula, and do

satisfy the fourth formula. However, w1 is not Kpower -equivalent to w2 since w1

satisfies ¬func(ln) (the second formula), while w2 does not.

The relation ≡K can be extended to threads in the obvious way.

Definition 18 (Thread Equivalence). For APT-logic program K, a thread Th1 is

K-equivalent to a thread Th2 (denoted Th1 ≡K Th2) iff for all time points t, the

world Th1(t) is K-equivalent to world Th2(t).

Example 2.3.5. In Example 2.3.4, we saw that w1 is Kpower -equivalent to w3. As-

suming four time points, then the thread Th = 〈w3, w1, w1, w0〉 will be equivalent

to Th ′ = 〈w1, w3, w3, w0〉, since at every time point t, Th(t) is a world that is K-

equivalent to world Th ′(t).

The relation ≡K is an equivalence relation (i.e., it is transitive, reflexive, and

symmetric) both for threads and for worlds; therefore, it can be used to construct a

partitioning of threads into equivalence classes. Let T [≡K] = {P1, · · · , Pm} be that

partitioning. All threads in each Pi are K-equivalent. The following result states

that these partitions have the useful property that all threads in any partition Pi

have the same value for pfr , efr , or qfr for formulas in formula(K):

53

Lemma 7. For APT-logic program K, partitioning P1, . . . , Pm of T induced by ≡K,

for all threads Th,Th ′ ∈ Pi, all F,G ∈ formula(K), and all ∆t;

1. pfr(Th, F,G,∆t) = pfr(Th ′, F,G,∆t)

2. efr(Th, F,G,∆t) = efr(Th ′, F,G,∆t)

3. qfr(Th, F,G,∆t) = qfr(Th ′, F,G,∆t)

Lemma 7 tells us that each partition Pi has a unique value for pfr , efr ,

and qfr (for each F , G, and ∆t). We introduce the notation pfr(Pi, F,G,∆t),

efr(Pi, F,G,∆t), and qfr(Pi, F,G,∆t) to denote these values. For technical reasons,

we associate a label with each thread Th such that all threads in the same partition

Pi have the same label. To define the label, we first order the set formula(K) =

{F1, · · · , Fn}. Then, for a thread Th, we assign label(Th) to be a length tmax · n

bitstring where bit t′ · i (1 ≤ t′ ≤ tmax and 1 ≤ i ≤ n) is 1 if Th(t′) |= Fi and 0 if

Th(t′) 6|= Fi.

Clearly, all Th,Th ′ in the same partition Pi have the same label. Also, all

partitions Pi have a unique label equivalent to the labels of the contained threads

and denoted label(Pi). There are at most as many partitions as there are length

tmax · n bitstrings, and determining if there is a partition associated with a given

bitstring b can be done by checking if there is thread whose label is b.

Example 2.3.6. Using Kpower from Figure 2.4, we number formula(Kpower) as fol-

lows:

{F1 = func(ln), F2 = ¬func(ln), F3 = func(tr) ∧ func(ln), F4 = ¬(func(tr) ∧ func(ln))}.

54

Here, the label for Th = 〈w3, w1, w1, w0〉 (worlds wi defined in Example 2.3.4) is

0101
︸︷︷︸

w3

0101
︸︷︷︸

w1

0101
︸︷︷︸

w1

1010
︸︷︷︸

w0

.

To see this, consider the first four digits 0101 for world w3. World w3 does not

satisfy F1, hence the first 0. It does, however, satisfy F2 and F4 causing the second

and fourth digits to be 1.

The thread Th ′ = 〈w1, w3, w1, w0〉 has the same label: 0101010101011010; any

two threads which are Kpower -equivalent will have the same labels.

We immediately notice that the number of thread partitions is potentially

smaller than the number of threads. While there are 2BL·tmax threads, there are

only 2|formula(K)|·tmax ≤ 22|K|·tmax partitions. Therefore, using these partitions, rather

than threads, is preferable in designing linear constraints. We can use Lemma 7

to construct smaller sets of linear constraints than SLC. For these constraints,

we introduce the variable v̂lbl, where lbl is a length tmax · |formula(K)| bitstring

(lbl ∈ {0, 1}|formula(K)|tmax) representing the probability mass assigned to the set of

threads in the partition labeled lbl (v̂lbl =
∑

Th∈Pi,label(Pi)=lbl I(Th)). We can now

define the world-equivalence linear constraints.

Definition 19 (World Equivalence Linear Constraints (WELC)). Let K be an APT-

logic program that uses only the frequency functions pfr and efr ; the set of World

Equivalence Linear Constraints, WELC(K), contains exactly the following:

1.
∑

i v̂i = 1.

2. For F
fr→֒ G : [∆t, ℓ, u, α, β]

55

(a)
∑

lbl∈{l|α≤fr(Pi,F,G,∆t)≤β∧l=label(Pi)} v̂lbl ≥ ℓ

(b)
∑

lbl∈{l|α≤fr(Pi,F,G,∆t)≤β∧l=label(Pi)} v̂lbl ≤ u

3. For F
fr
; G : [∆t, ℓ, u]

(a)
∑

Pi
fr(Pi, F,G,∆t)v̂label(Pi) ≥ ℓ

(b)
∑

Pi
fr(Pi, F,G,∆t)v̂label(Pi) ≤ u

4. For all lbl ∈ {0, 1}|formula(K)|·tmax for which there is no Pi such that lbl =

label(Pi), v̂lbl = 0.

Example 2.3.7. WELC(Kpower) (based on program Kpower from Figure 2.4) is con-

structed using variables v̂lbl for each of the 24·4 = 65, 536 possible labels. Due to

constraint 4, at most 256 of these variables will be non-zero, since there are 256

worlds to populate these 65, 536 possible equivalence classes. We will therefore be

able to eliminate all but at most 256 of the variables from the representation al-

together, since they will be known to be zero in every possible solution. As such,

we only need to use the variables not eliminated via constraint 4 when constructing

WELC(Kpower), and we will do so in this example. The only labels that will have

associated threads are those that are combinations of the labels for the worlds w0,

w1, w2, and w3 (defined in Example 2.3.2). With formula(Kpower) being:

{F1 = func(ln), F2 = ¬func(ln), F3 = func(tr) ∧ func(ln), F4 = ¬(func(tr) ∧ func(ln))}

these labels are lbl(w0) = 1010, lbl(w1) = 0101, lbl(w2) = 1001 and lbl(w3) = 0101.

So, for any label lbl, each four digit sequence must be 1010, 0101, or 1001. Otherwise

there cannot possibly be a thread Th such that label(Th) = lbl. In fact, since there

56

are only 3 labels for the worlds (w1 and w2, being Kpower -equivalent, share a label),

we know that when there are four time points, there are only 34 = 81 variables that

can be non-zero in our linear program (one label at each time point). So, leaving out

the zeroing constraints and supposing each sum
∑

lbl sums over those 81 variables

not known to be zero via the zeroing constraints, the set of linear constraints is:

WELC(Kpower) =

1.
∑

lbl v̂lbl = 1

2. 0.025 ≤∑

lbl pfr(Thi, func(tr) ∧ func(ln),¬(func(tr) ∧ func(ln)), 1) · v̂lbl ≤ 0.03

3. 0.95 ≤∑

lbl efr(Thi,¬(func(tr) ∧ func(ln)), func(tr) ∧ func(ln), 3) · v̂lbl ≤ 1

4. 0.05 ≤∑

lbl pfr(Thi, func(ln),¬func(ln), 1) · v̂lbl ≤ 0.1

5. 0.99 ≤∑

lbl efr(Thi,¬func(ln), func(ln), 2) · v̂lbl ≤ 1

Note that this set of linear constraints is substantially smaller than SLC(Kpower),

which used 256 variables where WELC(Kpower) uses only 81 variables and exactly the

same number of constraints (after removal of trivial zeroing constraints).

Proposition 4. For any APT-program K, WELC(K) is solvable iff K is consistent.

This approach can provide a substantial speedup. As we noted earlier, the

number of partitions is bounded by 22|K|·tmax which will often be much smaller than

the number of threads, 2|BL|·tmax . Further, the number of partitions is bound by the

number of threads, regardless of the size of K.

Proposition 5. WELC requires 2|K|+1 constraints and at most 22|K|tmax variables.

57

Algorithm 2 Compute consistency of K using WELC.

WELC-CONSISTENT(APT-Program K)

1. Construct WELC(K).

2. Attempt to solve WELC(K).

3. If solvable, return consistent, otherwise, inconsistent.

This suggests Algorithm 2 for checking consistency of K. The complexity of Al-

gorithm 2 comes from both creating and solving WELC. Proposition 5 gives the num-

ber of constraints required of a linear program to implement WELC-CONSISTENT.

Building WELC is also difficult: we have constraint 4, which requires the inclusion

of the constraint v̂lbl = 0 if there is no non-empty partition in T [≡K] with label lbl.

Unfortunately, this is an NP-complete operation.

Theorem 5. For APT-Logic Program, K, and label lbl, determining if there is non-

empty Pi ∈ T [≡K] such that label(Pi) = lbl is NP-complete.

To properly constructWELC, we must solve SAT for every subset of formula(K).

As formula(K) ≤ 2|K|, this amounts to O(22|K|) calls to a SAT solver. Assum-

ing O(2|BL|) operations per SAT solution procedure, this operation will take time

O(22|K|+|BL|). However, as for most linear program implementations, the running

time for WELC-CONSISTENT will be exponential in terms of 7|K|tmax [79], the gen-

eration of world equivalence classes will be dominated by WELC itself. Therefore,

in most cases, Algorithm 2 will have a better big-O run time than solving the set of

straightforward linear constraints.

58

2.3.4 Frequency Equivalence

For constrained rules it is possible to develop a different set of linear con-

straints. Rather than considering equivalent worlds, we develop a partition of the

set of threads based on the value of the frequency function with respect to each rule

in the program. We will then create a new set of linear constraints based on this

equivalence, as with WELC, in order to improve performance.

Therefore, the partitions will depend on the thread’s relationship to the prob-

ability interval [α, β], which we shall refer to as the frequency bounds for a given

rule. Due to the requirement of considering the frequency bounds, this type of

thread equivalence will be referred to as frequency equivalence and apply only to

constrained rules, though there are manipulations one can apply to include anno-

tated formulas; we first define an equivalence relation over threads.

Definition 20 (Frequency Equivalence). For threads Th1 and Th2, and constrained

rule r = F
fr→֒ G : [∆t, ℓ, u, α, β], we say Th1 is r-frequency-equivalent to Th2

(denoted Th1∼rTh2) iff (α ≤ fr(Th1, F,G,∆t) ≤ β ⇔ α ≤ fr(Th2, F,G,∆t) ≤ β).

For APT-Logic Program K containing only constrained conditionals, we say Th1

is K-frequency-equivalent to Th2 (denoted Th1 ∼K Th2) iff for all rules r ∈ K,

Th1 ∼r Th2.

Example 2.3.8. Consider rule scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0] from

Figure 2.1, where we used APT-Rules to represent the behavior of stock price based

on news reports. Let Kfr-ex be an APT-program containing exactly this rule. We will

consider the set of atoms to consist only of scandal and tmax to be 3. In Figure 2.7

59

Thread pfr(Th, scandal,

¬scandal, 1)

〈scandal, scandal, scandal〉 0

〈scandal, scandal,¬scandal〉 1/2

〈scandal,¬scandal, scandal〉 1

〈scandal,¬scandal,¬scandal〉 1

〈¬scandal, scandal, scandal〉 0

〈¬scandal, scandal,¬scandal〉 1

〈¬scandal,¬scandal, scandal〉 1

〈¬scandal,¬scandal,¬scandal〉 1

Figure 2.7: For a set of atoms consisting of scandal, and tmax of 3 time points, the

above chart shows the pfr for all possible threads based on a program consisting

only of rule scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0] from Figure 2.1. Figure 2.8

groups these threads in frequency equivalence classes based on pfr .

60

Kfr-ex = {scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]}

T [∼Kfr-ex] =

E1 =

〈scandal,¬scandal, scandal〉,

〈scandal,¬scandal,¬scandal〉,

〈¬scandal, scandal,¬scandal〉,

〈¬scandal,¬scandal, scandal〉,

〈¬scandal,¬scandal,¬scandal〉

,

E2 =

〈scandal, scandal, scandal〉,

〈scandal, scandal,¬scandal〉,

〈¬scandal, scandal, scandal〉

Figure 2.8: For a program consisting only of rule scandal
pfr→֒ ¬scandal :

[1, 0.89, 0.93, 0.8, 1.0] from Figure 2.1, we have frequency equivalence classes E1 and

E2 based on the pfr for all possible threads seen in Figure 2.7.

61

we compute the pfr based on this single rule for all possible threads. In Figure 2.8 we

can then group these threads into two equivalence classes, those whose pfr is within

[0.8, 1] and those whose frequency is outside this range.

For instance, threads 〈scandal, scandal, scandal〉 and 〈scandal, scandal,¬scandal〉

both have a pfr less than 0.8. Therefore, we have that 〈scandal, scandal, scandal〉 ∼Kfr-ex

〈¬scandal, scandal, scandal〉.

The relation ∼K satisfies several common properties of relations.

Proposition 6. For any constrained APT-logic program K, ∼K is reflexive, sym-

metric, and transitive.

Therefore ∼K is an equivalence relation, and we can partition T (the set

of all possible threads) into equivalence classes according to a given ∼K. We let

T [∼K] be this partitioning, where each set E ∈ T [∼K] contains only K-frequency-

equivalent threads. We then assign each set E a binary string str(E) of length m

(the number of constrained formulas in K) where digit i is 1 if for all Th ∈ E,

αi ≤ fr(Th, Fi, Gi,∆ti) ≤ βi, and 0 otherwise.

Example 2.3.9. In Figure 2.8 we see a partitioning of the threads T [∼Kfr-ex] with

two partitions: E1 and E2. The associated binary strings are: str(E1) = 1 and

str(E2) = 0. Notice that we only have two frequency equivalence classes of threads,

which is only 25% of the 8 threads we had originally.

In the following linear program, we introduce variables v̄b for each binary string

b of length |K|.

62

Definition 21 (Frequency-Equivalence Linear Constraints). For constrained APT-

Logic Program K, the set of Frequency-Equivalence Linear Constraints FELC(K)

contains only the following:

1.
∑

E∈T [∼K] v̄str(E) = 1 (where str(E) is the binary number that labels frequency

equivalence class E)

2. For all length |K| binary strings b if there is no E ∈ T [∼K] such that str(E) = b

then v̄b = 0

3. For all Fi
fr→֒ Gi : [∆ti, ℓi, ui, αi, βi] ∈ K, ℓi ≤

∑

s∈[0,1]m,si=1 v̄s ≤ ui

Theorem 6. For constrained APT-Logic Program K, K is consistent iff there is a

solution to FELC(K).

As FELC provides a correct result for consistency, we can use it to develop the

consistency-checking algorithm FELC-CONSISTENT shown below.

Algorithm 3 Compute consistency of K using FELC.

FELC-CONSISTENT(APT-Program K)

1. Construct FELC(K).

2. Attempt to solve FELC(K).

3. If solvable, return consistent, otherwise, inconsistent.

If the frequency equivalence classes of threads for a given program are known,

FELC also offers an improvement in complexity over SLC.

Proposition 7. FELC requires 2|K|+ 1 constraints and 2|K| variables.

63

Example 2.3.10. Consider the APT-Program Kstock from Figure 2.1. Let BL be

the set of atoms seen in that program (hence |BL| = 5). We consider a tmax of 4.

From Proposition 1, we know that using SLC to determine the consistency of Kstock

would require 7 constraints and 220 = 1, 048, 576 variables. We show below a set of

linear constraints based on FELC below that requires 7 constraints and only 23 = 8

variables. For the program Kstock , we have the following linear constraints:

• For rule scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]

0.89 ≤ v̄001 + v̄011 + v̄101 + v̄111 ≤ 0.93

• For rule sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) : [2, 0.65, 0.97, 0.7, 1.0]

0.65 ≤ v̄010 + v̄011 + v̄110 + v̄111 ≤ 0.97

• For rule

sec rumor∧ earn incr(10%)
pfr→֒ stock decr(10%)∧ cfo resigns : [2, 0.68, 0.95, 0.7, 0.8]

0.68 ≤ v̄100 + v̄101 + v̄110 + v̄111 ≤ 0.95

• v̄000 + v̄001 + v̄010 + v̄011 + v̄100 + v̄101 + v̄110 + v̄111 = 1

The running time of consistency checking via FELC is independent of the num-

ber of atoms or time points or number of worlds. Thus, even though it runs in time

exponential in |K|, it will in many cases run faster than SLC, which runs in time

linear in |K| and exponential in the number of worlds or the number of time points.

Further, since the size of K, the number of worlds, and the number of time points

are all known in advance, one can tell which approach will be faster dynamically,

and dispatch the smaller, faster linear program.

64

However, as with WELC, significant computation cost is required to construct

the linear constraints, specifically in identifying the frequency equivalence classes

that are empty. We refer to the obvious, exhaustive, and exact method for identify-

ing empty frequency equivalence classes as the Brute Force Frequency Equivalence

Class Algorithm or BFECA.

Algorithm 4 Find Frequency Equivalence Classes of Constrained Program K
BFECA(APT-Program K)

1. Generate all possible threads.

2. For each thread, Th, for all i, compute fri(Th, Fi, Gi,∆ti).

3. Determine for each thread, Th, for each rule, ri, if the associated frequency

function, fri for Th falls within the range [αi, βi].

4. Based on the result of step 3, determine which frequency equivalence class Th

belongs to.

5. After all threads are generated, return EMPTY if there are no threads found

for a given frequency equivalence class is empty and OK otherwise.

As BFECA exhaustively considers all threads, we have the following trivial

proposition concerning correctness.

Proposition 8. For each frequency equivalence class C, if C is empty BFECA re-

turns EMPTY; otherwise, if C contains at least one thread, BFECA returns OK.

For each thread, BFECA calculates the frequency function with regard to each

65

rule. Hence, for each of the 2|BL|tmax threads, it calculates |K| frequency functions.

This leads us to the complexity result below.

Proposition 9. The complexity of BFECA is:

O
(
2|BL|tmax · F (tmax) · |K|

)

where F (tmax) is defined as follows. Suppose timei is the time required to compute

fri(Th, Fi, Gi,∆ti). Then F (tmax) equals maxi(timei).

Note that if F (tmax) is linear, then the complexity of finding the frequency

equivalence classes and then performing FELC is still better than SLC. The domi-

nating term in the complexity of FELC has an exponent of |BL| · tmax when BFECA

is used. SLC, on the other hand, will have an exponent of 3.5 · |BL| · tmax for most

linear program solvers [79]. The following example shows how BFECA works.

Example 2.3.11. Consider the FELC constraints set up for Kstock in Example 2.3.10.

Look at rules sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) : [2, 0.65, 0.97, 0.7, 1.0]

and sec rumor∧earn incr(10%)
pfr→֒ stock decr(10%)∧cfo resigns : [2, 0.68, 0.95, 0.7, 0.8].

For a given thread, Th, consider the pfr ’s associated with those rules. Let p1 =

pfr(Th, sec rumor∧earn incr(10%), stock decr(10%), 2) and p2 = pfr(Th, sec rumor∧

earn incr(10%), stock decr(10%) ∧ cfo resigns, 2).

We note that p2 must be less than or equal to p1 as the G formula for both rules

differs only by one conjuncted atom. Therefore, there is no possible Th such that

p2 > p1. Hence, variables v̄100 and v̄101 from the FELC constraints in Example 2.3.10

must be set to zero.

66

To find such variables, BFECA calculates the frequency function for all possible

threads. However, with SLC-CONSISTENT, the dominating term in this example

requires 270 operations, where BFECA requires only 220 operations. Note that the

complexity of BFECA often will dominate the complexity of FELC-CONSISTENT.

As suggested earlier, FELC can be used on programs that consist of both con-

strained rules and annotated formulas. We can include annotated formulas in our

constrained program by writing rules that are essentially equivalent to annotated

formulas, as described earlier through use of the Query Frequency Function in Def-

inition 14.

Note that if the PCD conditions are met (Page 46), we can often be guaranteed

that all FELC equivalence classes will be non-empty, making the BFECA algorithm

unnecessary. See the Appendix for a complete discussion of this special case.

2.3.5 Combining World and Frequency Equivalence

We have introduced two improved methods for computing consistency: FELC-

CONSISTENT/BFECA and WELC-CONSISTENT. We now introduce a hybrid ap-

proach that uses the world-equivalence classes of WELC to ease the computation

necessary to compute the frequency-equivalence classes needed in FELC. World-

equivalence can be used to determine if a frequency equivalence class is empty or

not. The intuition is simple: we follow the approach of BFECA, generating the set

of threads and finding the frequency function for each one. However, rather than

generating the set of threads, we generate the set of world-based thread partitions

67

and find their frequency functions. As shown in the discussion of WELC, the num-

ber of world-based thread partitions can be considerably less than the number of

threads. Hence, we present world equivalence for finding frequency equivalence, or

WEFE.

Algorithm 5 World Equivalence for finding Frequency Equivalence Classes of Con-

strained Program K
WEFE(APT-Program K)

1. Find the world equivalence classes based on formula(K).

2. Generate all world-equivalence based thread partitions for K.

3. For each world-equivalence thread partition, P , for all i, compute

fri(P, Fi, Gi,∆ti).

4. For each rule, ri let INi be the set of thread partitions such that αi ≤

fri(P, Fi, Gi,∆ti) ≤ βi. For each rule, let OUTi be all partitions not in INi.

5. For string s ∈ [0, 1]|K| let the set PCLASSs be defined as
{⋂

si=1 INi

}
∩

{⋂

si=0 OUTi

}
.

6. For each class cls return EMPTY if PCLASSs ≡ ∅ and OK otherwise.

As WEFE exhaustively considers all world equivalence based thread partitions,

and each thread belongs to exactly one partition, WEFE provides a correct answer.

Proposition 10. If a given frequency equivalence class is empty, WEFE returns

EMPTY. If there is a thread in a given frequency equivalence class, WEFE returns

68

OK.

The computational complexity of this algorithm is dependent upon the num-

ber of thread-partitions resulting from world-equivalence. As stated before, this is

22|K|·tmax . Further, the cost of calculating the frequency function for each thread is

only O(tmax) as checking the satisfiability of the F and G formulas in a rule by a

world equivalence class is a trivial operation, since the satisfaction is pre-determined

when the world-equivalence classes are generated.

Proposition 11. The complexity of WEFE is

O
(
22|K|·tmax · tmax · |K|

)

when the set of world-equivalence classes for K is known.

WEFE/FELC-CONSISTENT is generally preferable for checking the consistency

of constrained programs: because it considers threads on a world-equivalence basis

rather than individually, it should generally have a shorter run time than BFECA

even taking into account the costs of constructing world-equivalence classes. We

illustrate this in the following example:

Example 2.3.12. Suppose we want to build FELC constraints for Kstock as we did

in Example 2.3.10 where tmax = 4. We note that formula(Kstock) consists of the

following:

1. scandal

2. ¬scandal

69

3. sec rumor ∧ earn incr(10%)

4. stock decr(10%)

5. stock decr(10%) ∧ cfo resigns

Although the number of world equivalence classes, based on formula(Kstock) would

be 25, which is also the number of worlds due to there only being 5 atoms referenced

in the program, we note that many of the world equivalence classes are empty. For

example, we know that there can be no world that satisfies both of the first two formu-

las, which immediately reduces our number of world equivalence classes by a factor

of two. Further, there can be no world that does not satisfy stock decr(10%) but sat-

isfies stock decr(10%) ∧ cfo resigns. Hence, the number of world equivalence classes

is 12 in this case, a significant reduction from the 32 worlds originally considered.

Therefore, WEFE only considers 124 = 20, 736 world-equivalent threads, as

opposed to BFECA, which considers 324 = 1, 048, 576 threads. Note that if the

world equivalence classes are known, this cost of WEFE may still dominate FELC-

CONSISTENT. This is a vast improvement over the 270 operations required by SLC-

CONSISTENT.

2.4 Entailment by APT-logic programs

Now that we have dealt with consistency, we can explore the issue of entail-

ment, which is defined in the usual way.

Definition 22 (Entailment). Let K be an APT-logic program, r be a rule, and af be

70

an annotated formula. We say that K entails af iff for all models I of K, I |= af ,

and that K entails r iff for all models I of K, I |= r.

Example 2.4.1 (Entailment). Recall that in Example 2.3.8 we presented the fol-

lowing APT-Program:

Kfr-ex = {scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]}

Suppose we form the following rule as a hypothesis.

rhyp = scandal
pfr→֒ ¬scandal : [1, 0.88, 0.94, 0.8, 1.0]

Does Kfr-ex entail rhyp? A quick examination of the only rule in the program and the

hypothesis tells us that except for the probability bounds, they are the same. Notice

that the rule in Kfr-ex has probability bounds [0.89, 0.93] and the probability bounds

of rhyp are a superset, [0.88, 0.94]. Therefore, we know that any interpretation in

which the sums of the probabilities of threads with a frequency ratio between [0.8, 1.0]

sum to a quantity in [0.89, 0.93], are also in [0.88, 0.94]. So, by the definitions of

satisfaction and entailment, we can say that Kfr-ex entails rhyp.

The following result shows that checking entailment of an annotated formula by an

APT-logic program is coNP-hard.

Theorem 7. Given an APT-logic program K and an annotated formula, af , deciding

if K entails af is coNP-hard in |BL| (the number of atoms).

In the next chapter, we prove a matching upper bound for the complexity of

this problem.

71

2.4.1 Linear Constraints for Entailment

We shall now provide algorithms for computing entailment based on the linear con-

straints SLC, WELC, and FELC. In all cases, the method is straightforward: we

determine the minimal and maximal probability for the annotated formula in in-

terpretations satisfying the original knowledgebase by minimizing and maximizing

the appropriate sum subject to some set of linear constraints. Due to the fact that

any annotated formula can be viewed as a constrained rule, we will not describe the

entailment of annotated formulas in this section.

Algorithm 6 Entailment of Rule r by Program K with SLC

SLC-ENT(APT-Program K)

1. If r is unconstrained, (r = F
fr
; G : [∆t, ℓ, u]), create rule r′ = F

fr
; G :

[∆t, ℓ′, u′] where ℓ′, u′ are variables.

2. If r is constrained, (r = F
fr→֒ G : [∆t, ℓ, u, α, β]) create rule r′ = F

fr→֒ G :

[∆t, ℓ′, u′, α, β] where ℓ′, u′ are variables.

3. Create set of linear constraints SLC(K ∪ {r′}).

4. Let ℓ̄′ be the minimization of ℓ′ subject to SLC(K ∪ {r′}).

5. Let ū′ be the maximization of u′ subject to SLC(K ∪ {r′}).

6. If [ℓ̄′, ū′] ⊆ [ℓ, u] return ENTAILS otherwise return NOT ENTAILS.

We can show Algorithm 6 to be correct and to take time exponential in |Bℓ|

(as expected due to Theorem 7).

72

Proposition 12 (Checking Entailment using SLC). For unconstrained rule r =

F
fr
; G : [∆t, ℓ, u] or constrained rule r = F

fr→֒ G : [∆t, ℓ, u, α, β] and program K,

SLC-ENT returns ENTAILS iff K entails r and returns NOT ENTAILS iff K does

not entail r

Proposition 13. SLC-ENT requires solving at most two linear programs. Each

linear program has 2|K|+ 1 constraints and 2|BL·|tmax variables.

We now give an example of how Algorithm 6 will run in practice.

Example 2.4.2. Consider APT-Program Kstock introduced in Figure 2.1 with tmax =

4. Suppose we want to see if Kstock entails the annotated formula query = earn decr(10%) :

[3, 0.50, 0.80].

First, we re-write the query as a rule using qfr. Hence, queryrule = TRUE
qfr→֒

earn decr(10%) : [3, 0.50, 0.80, 1, 1]. From this rule, we create query ′rule = TRUE
qfr→֒

earn decr(10%) : [3, ℓ′, u′, 1, 1].

We now consider all possible threads given Kstock∪{query ′rule} and tmax = 4. As

there are 6 atoms in the union of the program and query, we have 224 = 16, 777, 216

possible threads (|T | = 224). Hence, we set up the following linear constraints:

• For rule scandal
pfr→֒ ¬scandal : [1, 0.89, 0.93, 0.8, 1.0]

0.89 ≤∑

Thj∈T 0.8≤pfr(Thj ,scandal,¬scandal,1)≤1.0
vj

0.93 ≥∑

Thj∈T 0.8≤pfr(Thj ,scandal,¬scandal,1)≤1.0
vj

• For rule sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) : [2, 0.65, 0.97, 0.7, 1.0]

0.65 ≤∑

Thj∈T 0.7≤pfr(Thj ,sec rumor∧earn incr(10%),stock decr(10%),2)≤1.0
vj

0.97 ≥∑

Thj∈T 0.7≤pfr(Thj ,sec rumor∧earn incr(10%),stock decr(10%),2)≤1.0
vj

73

• For rule

sec rumor∧ earn incr(10%)
pfr→֒ stock decr(10%)∧ cfo resigns : [2, 0.68, 0.95, 0.7, 0.8]

0.68 ≤∑

Thj∈T 0.7≤pfr(Thj ,sec rumor∧earn incr(10%),stock decr(10%)∧cfo resigns,2)≤0.8
vj

0.95 ≥∑

Thj∈T 0.7≤pfr(Thj ,sec rumor∧earn incr(10%),stock decr(10%)∧cfo resigns,2)≤0.8
vj

• For rule query ′rule = TRUE
qfr→֒ earn decr(10%) : [3, ℓ′, u′, 1, 1]

ℓ′ ≤∑

Thj∈T 1≤qfr(Thj ,TRUE,earn decr(10%),3)≤1.0
vj

u′ ≥∑

Thj∈T 1≤qfr(Thj ,TRUE,earn decr(10%),3)≤1.0
vj

• ∑j<224

j=0 vj = 1.

As it turns out, the minimization of ℓ′ is 0 and the maximization of u′ is 1. Since

[0, 1] 6⊂ [0.5, 0.8], we can say that Kstock does not entail query.

SLC-ENT uses the SLC set of linear constraints. However, one could easily

substitute WELC or FELC for SLC in SLC-ENT. We present an algorithm for alter-

nate linear constraints, ALC-ENT, that mirrors SLC-ENT and leverages these other

constraints in the appendix.

There is a further improvement that can be made in practice: if we solve the

linear program once, and find that the minimization of ℓ′ is less than ℓ, we have

determined that the rule is not entailed by the program, and solving the linear

program again is not necessary to decide entailment.

2.5 Applications of APT Logic

APT-logic programs have many possible applications; in this section we will

74

Algorithm 7 The APT-Extract Algorithm.
APT-Extract(T , ActCond , MaxBody, ∆, SuppLB , σ,STAT-Test)

1. Rules := ∅;

2. for each combination (environment variable, value) choose 1, . . . ,MaxBody {

3. let Body be the current combination; supportBody:= 0; supportBoth:= 0;

4. for t = 1 to maxTime(T) {

5. bodyHappened := false;

6. if Body is true at time t then

7. bodyHappened := true; actHappened := false;

8. for d = 1 to ∆ {

9. if ActCond is true at time t+ d then actHappened := true;

10. break for;

11. }

12. if bodyHappened then supportBody:= supportBody + 1;

13. if bodyHappened and actHappened then supportBoth:= supportBoth + 1;

14. }

15. if supportBody <> 0 then confidence:= supportBoth / supportBody;

16. else confidence:= 0;

17. if (supportBoth > suppLB) ∧ STAT TEST (Body,ActCond) then

18. add Body
pfr
; ActCond : [∆, confidence − σ, confidence + σ] to Rules;

19. }

20. return Rules;

75

briefly describe an effort to learn conditions under which various terror groups took

various actions, in the form of APT-programs. We assume that the data is given

in the form of a table that contains two kinds of attributes: action and environ-

ment, and that each tuple represents the values of each of these attributes for a

certain time point. A good example of this kind of data is the “Minorities at Risk

Organizational Behavior” (MAROB) data set [181]. This data set has identified

around 150 parameters to monitor for about 300 groups around the world that are

either involved in terrorism or are at risk of becoming full-fledged terrorist organi-

zations. The 150 attributes describe aspects of these groups, such as whether or not

the group engaged in violent attacks, if financial or military support was received

from foreign governments, and the type of leadership the group has. It was a sim-

ple task to divide the attributes into actions that could be taken by the group (i.e.,

bombings, kidnappings, armed attacks, etc.) and environmental conditions (i.e., the

type of leadership, the kind and amount of foreign support, whether the group has a

military wing, etc.). Values for these 150 parameters are available for up to 24 years

per group, though it is less for some groups (e.g., groups that have been around

for a shorter duration). For each group, MAROB provides a table whose columns

correspond to the 150 parameters and the rows correspond to the years. There are

many social science data sets that use such data. These include the KEDS data set

from the University of Kansas that tracks country stability data (rather than terror

group data) [151] and the Political Instability Task Force (PITF) data [57].

The APT-Extract algorithm provides a basic approach to extracting APT-

76

rules 6. The inputs are: a table of historic data, a condition on an action variable

(variable name and value), a maximum size for the body, a value for ∆, a lower

bound for the support of the rule, and a real number σ ∈ [0, 1] that will determine

the width of the probability annotations for the extracted rules, and an arbitrary

statistical test (e.g., a t-test or something based on p-values in statistics) selected by

the user that measures the correlation between the values of the body of a possible

rule and the head. We use the standard measurements of support and confidence

from the literature on association rules: given table T , the support of a condition

C in T is the number of tuples for which C is true; given conditions C1 and C2,

the confidence in the fact that C1 is accompanied by C2 is the ratio of the support

of C1 ∧ C2 to the support of C1. As an example of the kind of rules that can be

extracted by this algorithm, some of the rules extracted from the data for Hezbollah

are given in Figure 2.2.

2.6 Chapter 2 Related Work

In addition to past work on probabilistic logic programming [130, 129], proba-

bilistic logic programs were studied in [84], [86], and [93, 94, 95], who showed how to

introduce various probabilistic dependencies into probabilistic LPs. [111, 112] made

major contributions to bottom up computations of probabilistic LPs.

[98] and [66] were among the first to provide a logic to integrate time and prob-

6Note that this algorithm is not a novel one, and simply performs calculations to capture

interesting relationships present in the data in order to build rules. More complex algorithms for

rule extraction are outside the scope of this dissertation.

77

ability. [78] also studied the integration of time and probability in order to facilitate

efficient planning. He was primarily interested in how the probability of facts and

events change over time. [62] developed a logic for reasoning about actions, prob-

ability and time using an interval time model. [30] developed methods to extend

possibilistic logic to handle temporal information. This logic associates, with each

formula of possibilistic logic, a set of time points describing when the formula has a

possibilistic truth value. [63] studied the semantics of reasoning about distributed

systems where uncertainty is present using a logic where a process has knowledge

about the probability of events for decision making by the process. [44, 43] devel-

oped logics of time and belief to model the behavior of distributed systems, while

[169] developed a framework that integrates beliefs, time, commitment, desires, and

multiple agents. [13] developed a language to reason about actions in a probabilistic

setting; their models use static and dynamic causal laws together with background

(unknown) variables whose values are determined by factors not in the model. Build-

ing on top of past work by [34], [36] introduce heterogeneous temporal probabilistic

agents to model agent behavior and develop a model theory and fixpoint semantics

focusing on agents built using legacy code.

Though there has been extensive work on temporal reasoning, the key differ-

ence between APT logic programs and past works in verification [96, 42, 173, 25, 56,

97] is the use of frequency functions in our work to define the frequency with which

a given formula G holds (some given time) after a given formula F holds. We show

that such a definition can be given in many different ways and, rather than commit-

ting to one such definition, we provide axioms that any frequency function should

78

satisfy. A result of our introduction of the frequency function is that the probability

an event occurs at time t is dependent on the events that occur in interval [1, t] and

interval [t, tmax].

APT-Logic distinguishes itself from other temporal logics in the following ways:

1. It provides for reasoning about probability of events within a sequence of

events and probabilistic comparison between sequences of events.

2. Future worlds can depend on more than just the current world.

3. It provides bounds on probabilities rather than just a point probability.

4. It does not make any independence assumptions.

2.6.1 Markov Decision Processes

Many temporal logics, whether probabilistic or not, make use of some sort of

state transition system as an underlying structure. A state-transition system is said

to conform to theMarkov Property if each transition probability only depends on the

current state [146]. We demonstrate that while APT-Logic Programs maintain much

of the expressiveness of most state-transition systems, they also have the ability of

expressing non-Markovian sequences of events. Specifically, the semantic structures

used in APT-Logic (worlds, threads, interpretations) can be represented by state

transition systems when the following restrictions are applied:

1. As APT-Logic only deals with finite temporal sequences, only the first tmax

states generated by an MDP will be considered.

79

2. By definition, each world represents a unique set of atoms. Therefore, a cor-

responding state transition system must have the restriction that each state

is uniquely labeled; i.e., each state in the MDP represents exactly one world.

3. Each transition in the MDP takes one unit of time.

Our notation for an MDP most resembles the reactive probabilistic labeled

transition system (RPLTS) [25, 56, 97]. Below, we will formally define an MDP

with respect to a set of actions Act , and a set of atomic propositions, BL. When

comparing MDPs to APT-Programs, we will assume that the APT-Program uses

the same set of ground atoms, and that each state in an MDP has a unique atomic

label. In this manner, we can equate MDP states with worlds in tp-interpretations.

Hence, an MDP is defined as follows:

Definition 23 (MDP). A Markov Decision Process (MDP) consists of a 4-tuple

L = (S, δ, P, lbl, s1) where:

• S is a finite set of states

• δ ⊆ S × Act × S is the transition relation

• P : δ → [0, 1] is the transition probability distribution, which satisfies:

• ∀s ∈ S, ∀a ∈ Act
∑

s′:(s,a,s′)∈δ P (s, a, s′) ∈ [0, 1]

• ∀s ∈ S, ∀a ∈ Act (∃s′(s, a, s′) ∈ δ)⇒∑

s′:(s,a,s′)∈δ P (s, a, s′) = 1

• lbl : S → 2BL is the labeling of each state that specifies the set of propositions that

are true in a state. Each state has a unique set of propositions.

80

• s1 ∈ S is the initial state.

When an MDP is employed with policy π, it means that in state si, action

π(si) is taken. An MDP that uses only a single policy is often referred to as a

Stochastic Process, or Markov Process. With the definition of an MDP and notion

of a policy, we can now state what it means for a tp-interpretation to satisfy an

MDP.

Definition 24. Let L be an MDP, π be a policy, I be a tp-interpretation, and tmax

be the maximum value of time. We say that I satisfies the pair (L, π) iff: for all

sequences of n = tmax states, seq ≡ s1 → . . .→ si → . . .→ sn, there exists a thread

Th such that:

• For every si in seq, a ∈ lbl(si) iff a ∈ Th(i)

• ∏n−1
i=1 P (si, π(si), si+1) = I(Th)

Further, we say that an interpretation I satisfies an MDP L and set of policies

POL iff there exists a policy π ∈ POL such that I |= (L, π).

We can extend the notion of entailment described earlier to MDP’s and de-

scribe entailment relationships between MDP’s and APT-Programs. Based on this

idea, we now can define a notion of equivalence between an MDP and an APT-

Program as follows.

Definition 25 (Equivalence/Entailment). An MDP L and set of policies POL is

equivalent to APT-Program K when tp-interpretation I |= (L,POL) iff I |= K.

(L,POL) is said to entail K if for all tp-interpretations I, if I |= (L,POL) then

81

I |= K. Finally, K is said to entail (L,POL) if for all tp-interpretations I, if I |= K

then I |= (L,POL).

With this notion, given an MDP and policy, we can now create an APT-Logic

Program such that the set of satisfying interpretations for the MDP and policy is

the same as the set of satisfying interpretations for the APT-Logic Program. We

use these notions of entailment and equivalence to specify the semantic relationship

between APT-Logic: if for any APT-Program there is an equivalent MDP and a set

of policies, then we will consider APT-Logic to be no more expressive than MDPs.

Soon we will see this is not the case, and that APT-Logic is in fact more expressive

than MDPs.

First however, we provide the following formula notation. F is a mapping of

states to formulas such that F (s) ≡ (
∧

a∈lbl(s) a)∧ (
∧

b/∈lbl(s) ¬b). Second, we provide

the following probability measurement of a t-length sequence starting with state s1

and ending with state st. We use the notation s→t s′ to denote the set of sequences

of t transitions from s to s′.

Definition 26 (Sequence Probability Measure). Let L be an MDP, π be a policy,

s1, st be states, and t be a positive integer. The sequence probability measure, SPM

is defined as follows:

SPML,π(st, t) =
∑

s1→t−1st

(
t−1∏

i=1

P (si, π(si), si+1)

)

So, the SPM totals the probabilities of all sequences from the initial state to

st in t− 1 transitions.

82

Next, we will present Algorithm 8 that, given an MDP and set of policies

(L,POL), creates an APT-Program K such that (L,POL) entails K. This construc-

tion is guaranteed to be correct by the following theorem.

Algorithm 8 Generate APT-Program that is entailed by a given MDP and set of

policies.

MAKE-APT(MDP L,PolicySet POL)

1. Create annotated formula F (s1) : [1, 1, 1].

2. For each state s, and each time point t, there are |POL| SPM’s, one for each

policy. Let min(SPML,π(s, t)) be the minimum such SPM.

3. For each state s, and each time point t, let max(SPML,π(s, t)) be the maxi-

mum SPM.

4. For each time point t ∈ [1, tmax], and each state si, create the following anno-

tated formula: F (si) : [t,min(SPML,π(si, t)),max(SPML,π(si, t))].

Theorem 8. If an interpretation I satisfies MDP L with set of policies L, then it

satisfies APT-Program K generated from MAKE-APT.

Clearly, if we restrict the MDP to a single policy, then we can create an APT-

Program using MAKE-APT that is equivalent to the MDP and single policy.

Corollary 1. An interpretation I satisfies MDP L with policy π, iff it satisfies

APT-Program K generated from MAKE-APT.

83

It is interesting to note, however, that although we can create an APT-Logic

Program that is entailed by a given MDP and set of policies, we cannot always create

an APT-Logic Program that entails an MDP and a set of policies. The intuition is

that, in certain circumstances we are guaranteed that an APT-Logic Program has

an infinite number of satisfying interpretations. If an MDP and set of policies are

created such that these circumstances hold, then creating an APT-Program that

entails the given MDP and set of policies is impossible. Hence, we first make the

claim of the special circumstance that guarantees an infinite number of satisfying

interpretations. The claim is that for APT-Program K, if there exists satisfying

tp-interpretations for K, I1, I2, such that for threads Th1, Th2, I1(Th1) = 1 and

I2(Th2) = 1, then there is an infinite number of satisfying interpretations for K. We

describe why this is true in the following paragraph.

Let c ∈ (0, 1) and b ∈ (c, 1). Let I3 represent an infinite number of interpreta-

tions such that I3(Th1) = b and I3(Th2) = (1− b). K is then satisfied by an infinite

number of interpretations if all possible I3 interpretations satisfy K. Suppose by

way of contradiction that some I3 does not satisfy K. We have two cases:

Case 1: There exists an unconstrained rule, r such that I3 6|= r.

Let r = F
fr
; G : [∆t, ℓ, u]. Let a1 = fr(Th1, F,G,∆t) and a2 = fr(Th2, F,G,∆t).

Let a1 ≤ a2. By the definition of satisfaction, we know that [a1, a2] ⊆ [ℓ, u]. By

the definition of satisfaction, we know that
∑

Th∈T I3(Th)fr(Th, F,G,∆t) < ℓ

or
∑

Th∈T I3(Th)fr(Th, F,G,∆t) > u as I3 6|= r. Therefore, b·a1+(1−b)·a2 < ℓ

or b · a1 +(1− b) · a2 > u. However, clearly, b · a1 +(1− b) · a2 ⊆ (a1, a2) which

84

implies b · a1 + (1− b) · a2 ⊆ [ℓ, u]. Hence, we have a contradiction.

Case 2: There exists a constrained rule, r such that I3 6|= r.

Let ri = F
fr→֒ G : [∆t, ℓ, u, α, β]. We have three cases:

Case 2.1: Th1,Th2 ∈ ATSi

Then, ℓ ≤ 1 ≤ u and the probabilities of both threads summed together

must fall in this probability bounds. As I3(Th1) + I3(Th2) = 1, I3 then

must satisfy ri, so we have a contradiction.

Case 2.2: Either Th1 ∈ ATSi or Th2 ∈ ATSi

If ℓ 6= 1, then there exists c ∈ (0, 1) such that there is an infinite number

of interpretations as per the definition of I3 such that I3 |= ri. If ℓ = 1,

then either I1 or I2 does not satisfy ri. Hence, we have a contradiction.

Case 2.3: Th1,Th2 /∈ ATSi

In this case, any interpretation that assigns probabilities only to Th1 and

Th2 satisfies ri. Therefore, I3 must satisfy ri.

Now we consider a very simple MDP with only two policies. We see that this MDP

causes the above mentioned circumstances to occur. Hence, we cannot construct an

APT-Program that entails the MDP and set of policies.

Let L be an MDP, the set of atoms, BL, be {a}, S = {s1, s2} be such that

lbl(s1) ≡ {a} and lbl(s2) ≡ ∅, Act = {x, y}, P (s1, x, s1) = 1 and P (s1, x, s2) = 0,

P (s1, y, s1) = 0, and P (s1, y, s2) = 1. We define the set of policies, POL = {π1, π2}

85

such that π1(s1) = x and π2(s1) = y. Let tmax = 2. We claim that it is impossible

to construct an APT-Program that entails (L,POL).

So, we can see why there does not exist an APT-Program that entails the

MDP described above. Assume by way of contradiction that we can create an APT-

Logic Program K such that all interpretations that satisfy (L, π1) or (L, π2) satisfy

K. As each MDP-policy tuple is satisfied by exactly one interpretation, we have

the following threads and interpretations based on the set of worlds W = {w1, w2}

where w1 ≡ lbl(s1) and w2 ≡ lbl(s2).

• Thread Th1 ≡ 〈w1, w2〉. Let I1 be an interpretation such that I1(Th1) = 1 and

sets the probability of all other threads to zero.

• Thread Th2 ≡ 〈w1, w1〉. Let I2 be an interpretation such that I2(Th2) = 1 and

sets the probability of all other threads to zero.

Hence, APT-Logic Program K must be satisfied by exactly I1 and I2. However, by

the claim above, any program satisfied by these two interpretations is also satisfied

by an infinite number of interpretations, so we have a contradiction.

So, based on the earlier definition of equivalence, while we can construct an

equivalent APT-Program for an MDP and a single policy, we cannot do so for an

MDP and set of policies. However, is the opposite true? It is: it would be trivial to

construct an MDP that entails an APT-Program, since the null MDP can accomplish

this. This highlights a difference between MDPs and APT-Logic Programs: we

cannot have rules that say this relationship holds with probability p1 or probability

p2. However, we can express ranges of probabilities.

86

While we cannot create an APT-Program that entails a given MDP and set

of policies, APT-Programs can be satisfied by tp-interpretations that cannot satisfy

any MDP. In other words, there are APT-programs and tp-interpretations that

satisfy those APT-programs where there is no MDP that is satisfied by that tp-

interpretation. Consider the set of ground atoms BL = {a} and tmax = 4 and the

below APT-Logic Program, K:

• a : [1, 1, 1]

• a
pfr
; ¬a : [1, 0.5, 0.5] (or a pfr→֒ ¬a : [1, 0.5, 0.5, 1, 1])

We included an alternate second rule to illustrate that this type of expressiveness

result is true about both constrained and unconstrained programs. Consider worlds

w1 ≡ {a} and w2 ≡ ∅. Let I be an interpretation that assigns probabilities to the

threads below:

• Th1 ≡ 〈w1, w2, w1, w2, 〉, I(Th1) = 0.5

• Th2 ≡ 〈w1, w1, w1, w1, 〉, I(Th2) = 0.5

It is trivial to show that I |= K. We claim that it is impossible to build an MDP L

with set of policies POL such that tp-interpretation I |= (L,POL).

Let S = {s1, s2} such that lbl(s1) ≡ w1 and lbl(s2) ≡ w2. Suppose by way of

contradiction that I |= (L,POL). Therefore, there exists a policy, π ∈ POL such

that I satisfies (L, π). Hence, the following must be true:

• P (s1, π(s1), s2) · P (s2, π(s2), s1) · (s1, π(s1), s2) = I1(th1) = 0.5

87

{a}

{} {a}

{a}

{} {a}

1-p

1-p

 p

p

r
{a}

{}

1-p

p r

Figure 2.9: Left: Unrolled MDP in an attempt to create an MDP that satisfies

interpretation I in the text. Notice how the sequence 〈{a}, {}, {a}, {a}〉 must be

assigned a non-zero probability. Right: A standard representation of the MDP on

the left. Notice that the MDP must allow for non-zero probability of threads that

are given a zero probability in interpretation I.

• P (s1, π(s1), s1) · P (s1, π(s1), s1) · (s1, π(s1), s1) = I1(th2) = 0.5

Refer to the left side of Figure 2.9 for a graphical representation of what follows. Let

P (s1, π(s1), s2) = p. Then, by the definition of an MDP, P (s1, π(s1), s1) = 1−p. By

the above equalities, 1−p > 0. Let P (s2, π(s2), s1) = r. Therefore, p2 ·r = 0.5. Now

consider the sequence seq ≡ s1 → s2 → s1 → s1. The probability of this sequence

must be set to zero, by the definition of I. Then, P (seq) = p · r · (1 − p) = 0.

However, we know that p · r cannot be zero and we know that 1− p > 0. Hence, we

have a contradiction.

The above discussion illustrates the differences between MDPs and APT-Logic.

One could argue that the use of policies is overly restrictive for an MDP, i.e., that

perhaps the action should be decided based on time, or a combination of time and

the current state. However, we can easily modify the above claim based on time or

88

actions based on time and current state and obtain the same result. We suspect that

it is not possible to have an MDP that replicates an APT-Logic Program without

breaking the Markov Property, or causing a massive increase in the number of states,

which also would change the assumption about the relationship between worlds and

states.

2.6.2 Comparison with Probabilistic Computation Tree Logic

(PCTL)

In this section, we show that APT-Logic rules differ significantly in mean-

ing from similar structures presented in PCTL [12, 64], a well-known probabilistic

temporal logic.

A derived operator in LTL with an intuition similar to that of our APT-Rules

was introduced by Susan Owicki and Leslie Lamport in [132]. The operator, known

as leads-to and an equivalent LTL formula are shown below (p and q are state

formulas).

(p y q) ≡ G(p⇒ F(q))

This formula intuitively says that if p is true in a state, then q must be true in the

same (or future) state. As Owicki and Lamport’s operator is based on LTL, it does

not describe the correlation between p and q with probabilities or with reference

to a specific time interval; q merely must happen sometime after (or with) p. A

probabilistic version of CTL, known as PCTL [12, 64] introduces another operator

based on a similar intuition; the authors refer to this operator as “leads-to” as well.

89

This derived operator, and the equivalent PCTL formula, are shown below (f1 and

f2 are state formulas).

f1y
≤t
≥pf2 ≡

[
G
[
(f1 ⇒ F≤t≥pf2)

]]

>1

Intuitively, this operator reads as “f2 follows f1 within t periods of time with a

probability of p or greater”. As PCTL formulas are satisfied by a Markov Process (an

MDP with a single policy), satisfaction is determined by the transition probabilities.

So, to determine if a Markov Process satisfies the above leads-to formula, we must

compute the minimum probability of all sequences that start in a state satisfying

f1 and satisfy f2 in t units of time or less. Note that this is determined by the

transition probabilities of the Markov Process; hence, whether a Markov Process

satisfies the lead-to operator depends on the interval between f1 and f2, but not

on the total length of the sequence of states. So, if we limit the number of states

being considered, using an operator such as G≤tmax

≥1 which PCTL provides to limit

consideration to only the first tmax states, the Markov Process will satisfy the formula

regardless of the value of tmax . Note that G
≤tmax

≥1 placed at the head of the PCTL has

no effect on the satisfaction of the formula as there is already a G path-quantifier

included at the beginning of the leads-to operator.

As previously described, the frequency function is often highly sensitive to tmax .

Our two primary examples of frequency functions, pfr and efr , are based on ratios

of numbers of worlds in a given thread. For example, if we create a thread Th on a

single atom a, we can see that for thread 〈{a}, {a}, {}〉, the value of pfr(Th, a,¬a, 1)

is much greater than if Th were 〈{a}, {a}, {}, {a}, {a}, {a}, {a}〉. The fact that the

90

length of the thread has an effect on the frequency function further illustrates how

APT-Logic allows for reasoning beyond the restrictions of the Markov Property.

The limited thread length forces us to consider worlds before and after a time-

point we wish to reason about. If our probabilities were fixed, based on transition

probabilities, they would not, and we would conform to the Markov Property.

Even though there are syntactic similarities, in the Appendix we provide a

short example illustrating semantic differences between APT-rules and PCTL.

2.7 Chapter Summary

Statements of the form “Formula G is/was/will be true with a probability

in the range [ℓ, u] in/within ∆t units of time after formula F became true” are

common. In this chapter, we have provided examples from four domains (stock

markets, counter-terrorism, reasoning about trains, and power grids), but many

more examples exist. Further, the counter-terrorism logic program (described in

further detail in the next chapter) are more than mere examples – they are created

using an extraction algorithm and a real-world data-set. They could be used, for

instance, to describe when the health or environmental effects of industrial pollution

may arise after a polluting event occurred, to the time taken for a medication to

produce (with some probability) some effects. In the same way, they can be used in

domains as widely divergent as industrial control systems to effects of educational

investment on improved grades or graduation rates.

In this chapter, we have provided the concept of Annotated Probabilistic Tem-

91

poral (APT) logic programs within which such statements can be expressed. APT-

logic programs consist of two kinds of rules: unconstrained and constrained rules

with an expected value style semantics and a more ordinary semantics. Both types

of rules are parameterized by the novel concept of a frequency function. Frequency

functions capture the probability thatG follows F in exactly (or within) T time units

within a thread (temporal interpretation). We show that this notion of “follows”

can intuitively mean many different things, each leading to a different meaning.

We propose an axiomatic definition of frequency functions which is rich enough to

capture these differing intuitions and then provide a formal semantics for APT-logic

programs.

We then study the problems of consistency and entailment for APT-logic pro-

grams. We show that the consistency problem is computationally intractable and

is naturally solved via linear programming. We develop three successively more

sophisticated linear programs for consistency checking and show that they lead to

smaller linear programs (though not always). We also develop a suite of complexity

results characterizing the entailment problem and provide algorithms to solve the

entailment problem.

A natural question that arises in any probabilistic logic framework is “Where

do the probabilities come from?” In order to answer this question, we develop

the (straightforward) APT-Extract algorithm that shows how APT-logic programs

can be derived from certain types of databases. We have applied APT-Extract to

extract APT-rules about several terror groups (further details on these programs are

provided in the next chapter).

92

Last, but not least, we have developed a detailed comparison between our APT-

framework and two well known frameworks: Markov decision processes [140] and

probabilistic computation tree logic [64]. We show the former can be captured within

APT-logic program framework (but not vice versa). The latter has a more complex

relationship with APT-logic programs, but cannot express intra-thread properties of

the type expressed via APT-logic programs.

We note that the algorithms of this chapter all rely on the solution to a lin-

ear program with an exponential number of variables, which is not practical for a

real-world implementation. Additionally, our complexity results of NP and coNP

hardness for consistency and entailment checking suggest that this is an intractable

problem under the assumption that P6=NP. In the next chapter, we take a more

practical approach, resorting to approximation algorithms that provide sound, but

incomplete solutions to consistency and entailment problems for APT-logic.

93

Chapter 3

Annotated Probabilistic Temporal Logic:

Approximate Algorithms

In the previous chapter, we explored reasoning about an agent’s behavior with

respect to time by introducing APT logic. This framework allows us to reason about

the probability that an agent takes a certain action at a given time based on a model

consisting of probabilistic rules. In that chapter, we showed that the consistency

and entailment in APT logic are NP and coNP hard respectively. In that chapter, we

provided several sound and complete algorithms for these problems, but due to the

complexity of the problem, these approaches are not viable for a real-world system.

In this chapter, we take a more practical approach, creating sound, but incomplete

algorithms for the consistency and entailment problems.1

1This chapter is based on [156] which was completed in cooperation with Gerardo Simari and

V.S. Subrahmanian.

94

3.1 Chapter Introduction

In the previous chapter, we have shown that there are numerous applications

where we need to make statements of the form “Formula G becomes true with

50− 60% probability 5 time units after formula F became true.” Statements of this

kind arise in a wide variety of application domains.

This chapter takes a more practical approach to the problems associated with

Annotated Probabilistic Temporal (APT) logic already present in this dissertation.

Although the previous chapter presented algorithms for consistency and entailment

problems that are sound and complete, they are not practical for general problems.

This chapter takes a more practical approach. We develop a fixpoint operator for

APT-logic that we prove to be sound. We can use this operator to correctly identify

many inconsistent APT-programs – although we cannot guarantee a program to be

consistent by this means. Additionally, this operator can infer probability ranges

for queries, but we cannot guarantee that they are the tightest possible bounds.

Most importantly, finding the fixpoint of this operator is efficient to compute. We

also show that some of the techniques can also be adopted in a sound algorithm for

non-ground APT-programs, where we only require a partial grounding.

We also implement an algorithm for the ground case and perform experi-

ments on two data sets — the well known Minorities at Risk Organization Behavior

(MAROB) data set [10] that tracks behaviors of numerous terror groups, and an-

other real-world data counter-insurgency data from the Institute for the Study of

War [72] (ISW). We used the algorithm APT-EXTRACT from the previous chapter

95

to automatically learn 23 APT-logic programs — no bias exists in these APT-logic

programs as no one manually wrote them. We then conducted experiments using

those APT-logic programs and entailment problems were solved on an average in

under 0.1 seconds per ground rule, while in the other, it took up to 1.3 seconds per

ground rule. Consistency was also checked in a reasonable amount of time. To the

best of our knowledge, ours is the first implementation of a system for reasoning

simultaneously about logic, time, and probabilities without making independence or

Markovian assumptions.

The chapter is organized as follows. Section 3.2 extends the syntax and se-

mantics of APT LPs from the last chapter to add integrity constraints (ICs) as well

as probabilistic time formulas (ptf’s) – a generalization of the “annotated formulas”

from the previous chapter (also seen in [34]). Section 3.3 shows that consistency

and entailment in APT-logic are in-NP and in-coNP, respectively, matching the

hardness results from the previous chapter (identifying these respective problems as

NP-complete and coNP-complete). Section 3.4 describes our approximate fixpoint

algorithm which is based on a sound (but not complete) fixpoint operator. The

operator works by syntactically manipulating the rules in the APT-program to it-

eratively tighten the probability bounds of the formula whose entailment is being

checked. We adapt the techniques for a consistency-checking and entailment algo-

rithms for non-ground APT-programs in Section 3.5 (note that these algorithms do

not require a full grounding of a program). In Section 3.6 we present our implemen-

tation of the fixpoint approach to solving consistency and entailment problems for

ground programs. Finally, in Section 3.7, we provide an overview of related work.

96

Before continuing, we note that applications such as those above use auto-

mated rule learning (e.g. using the APT-Extract algorithm of the previous chap-

ter) to automatically learn relationships and correlations between atoms. In partic-

ular, the existence of specific such relationships make independence and Markovian

assumptions invalid for these types of applications.

97

1. sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) : [2, 0.65, 0.97, 0.7, 1.0]

An SEC rumor and a rumor of an earnings increase leads to a stock price decrease

of 10% in 2 days with probability [0.65, 0.97].

2. sec rumor∧earn incr(10%)
pfr→֒ stock decr(10%)∧cfo resigns : [2, 0.68, 0.95, 0.7, 0.8]

An SEC rumor and a rumor of an earnings increase of 10% leads to the CFO

resigning in exactly 1 days with a probability [0.5, 0.95].

3. OCC(cfo resigns) : [0, 1]

The CFO resigns between 0 and 1 times (i.e., [lo, up] = [0, 1]).

4. BLK(sec rumor) :< 4

An SEC rumor cannot be reported more than 3 days in a row (i.e., blk = 4).

5. (¬sec rumor ∧ ¬rum incr(10%) ∧ ¬stock decr(10%) ∧ ¬cfo resigns) : 1∧

(sec rumor ∧ rum incr(10%) ∧ ¬stock decr(10%) ∧ ¬cfo resigns) : 2∧

(sec rumor ∧ ¬rum incr(10%) ∧ stock decr(10%) ∧ ¬cfo resigns) : 3∧

(sec rumor ∧ rum incr(10%) ∧ ¬stock decr(10%) ∧ cfo resigns) : 4 : [1, 1]

Based on events that have already occured, we can state things such as “at day

1 there was no SEC rumor, there is no rumor of a stock increase, the stock price

did not decrease, and the CFO did not resign.”

Figure 3.1: Kstock , a toy APT-Logic Program about stocks.

98

1. detainment distr(2) ∧ detainment relig(1)
efr
; attack relig(1):[2, 0.0906, 0.1906]

A detainment in district 2 and detainment in an area where religion 1 dominates

is followed by an attack in an area where religion 1 dominates within 2 days with

a probablilty [0.0906, 0.1906].

2. attack neigh(28) ∧ attack relig(1)
efr
; cache relig(1):[7, 0.6833, 0.7833]

An attack in neighborhood 28 and an attack in an area where religion 1 dominates

is followed by a cache being found in an area where religion 1 dominates within

7 days with a probablilty [0.6833, 0.7833].

3. cache distr(2)
efr
; detainment relig(2):[10, 0.6559, 0.7558]

Cache being found in district 2 is followed by a a detainment in an area where

religion 2 dominates within 10 days with a probablilty [0.6559, 0.7558].

4. detainment distr(2)
efr
; attack distr(7):[10, 0.1346, 0.2346]

A detainment in district 2 is followed by a an attack in district 7 within 10 days

with a probablilty [0.1346, 0.2346].

5. attack neigh(28)
efr
; detainment distr(2):[9, 0.5410, 0.6500]

An attack in neighborhood 28 is followed by a detainment in district 2 within 9

days with a probablilty [0.5410, 0.6500].

6. cache distr(5)
efr
; strike relig(1):[8, 0.2833, 0.3833]

A cache found in disrict 5 is followed by a precision strike conudcted in an area

domnated by religion 1 within 8 days with a probablilty [0.2833, 0.3833].

Figure 3.2: KISW a real-world APT-Logic Program extracted from counterinsur-

gency data.

99

1. orgst1(1)∧orgst11(2)∧domorgviolence(2)
efr
; armattack(1):[2, 0.95, 1]

Whenever education and propaganda are used as a minor strategy, coalition

building is used as a major strategy, and the group is using domestic violence

regularly by targeting security personnel (but not government non-security per-

sonnel or civilians), the group carries out armed attacks within two time periods

with probability at least 0.95.

2. orgst1(1)∧orgst11(2)∧domorgviolence(2)
efr
; dsecgov(1):[3, 0.95, 1]

This rule has the same antecedent as the previous one, but the consequent stands

for the group targeting people working for the government in security, or in non-

state armed militias.

3. violrhetrans(0)∧orgst5(0)∧drug(0) efr
; armattack(1):[2, 0.58, 0.68]

Whenever the group does not justify targeting transnational entities in pub-

lic statements, uses non-coercive methods to collect local support (as a minor

strategy), and does not engage in drug production/traficking, armed attacks are

carried out within two time periods with probability between 0.58 and 0.68.

4. orgst1(1)∧orgst11(2)∧orgst8(2) efr
; dsecgov(1):[3, 0.9500, 1]

Whenever education and propaganda are used as a minor strategy, coalition

building is used as a major strategy, and insurgencies are used as a major strategy,

the group targets people working for the government in security, or in non-state

armed militias, within 3 time periods with probability at least 0.95.

Figure 3.3: KMAROB a real-world APT-Logic Program extracted from Minorities at

Risk Organizational Behavior data.

100

3.2 Technical Background

This section extends the syntax and semantics of APT LPs from the previous

chapter to include integrity constraints, probabilistic time formulas, and non-ground

semantics for all previously introduced constructs.

3.2.1 Syntax

We assume the existence of a logical language L as specified in the previous

chapter (see page 26). We also assume the existence of a finite set F whose mem-

bers are called frequency function symbols (see the previous chapter, page 32). A

(ground) term, atom, and formula are defined as per the previous chapter.

Also as in the last chapter, we assume that all applications are interested

in reasoning about an arbitrarily large, but fixed size window of time, and that

τ = {1, . . . , tmax} denotes the entire set of time points we are interested in. tmax can

be as large as an application user wants, and the user may choose his granularity of

time according to his needs.

We now extend the syntax with the definition of a “time formula.”

Definition 27 (Time Formula). A time formula is defined as follows:

• If F is a (ground) formula and t ∈ [1, tmax] then F : t is an (ground) elementary

time formula.

• If φ, ρ are (ground) time formulas, then ¬φ, φ ∧ ρ, and φ ∨ ρ are (resp. ground)

time formulas.

101

Example 3.2.1. Consider the ground atoms in the APT-program from Figure 3.1.

The expression (¬sec rumor∧¬rum incr(10%)∧¬stock decr(10%)∧¬cfo resigns) : 1

is an elementary time formula.

Throughout, we will use Greek letters φ, ρ for time formulas and capital letters

F,G for regular formulas. We now extend a time formula to include a probability

annotation.

Definition 28. If φ is a (ground) time formula and [ℓ, u] ⊆ [0, 1], then φ : [ℓ, u] is

a (resp. ground) probabilistic time formula, or ptf for short.

Note that when considering ptf ’s of the form F : t : [ℓ, u], we will sometimes

abuse notation and write F : [t, ℓ, u].

Example 3.2.2. Item 5 in the APT-program from Figure 3.1 is a ptf.

Intuitively, φ : [ℓ, u] says time formula φ is true with a probability in [ℓ, u].2

Our next extension to the syntax of the previous chapter are integrity constraints.

Definition 29 (Integrity constraint). Suppose Ai ∈ BL and [loi, upi] ⊆ [0, tmax].

Then OCC(Ai) : [loi, upi] is called an occurrence IC. If blki ∈ [2, tmax + 1] is an

integer, then BLK(Ai) :< blki is called a block-size IC. If Ai is ground then the

occurrence (resp. block-size) IC is ground – otherwise it is non-ground.

An occurrence IC OCC(Ai) : [loi, upi] says that A must be true at least loi

times and at most upi times. Likewise, the block-size IC says that A cannot be

2Assumption: Throughout the chapter we assume, for both ptf’s and APT-rules, that the

numbers ℓ, u can be represented as rationals a/b where a and b are relatively prime integers and

the length of the binary representations of a and b is fixed.

102

consecutively true for blki or more time points. Figure 3.1 also contains an example

occurrence IC and an example block-size IC.

Example 3.2.3 (Integrity Constraints). Consider the ground atoms in the APT-

program from Figure 3.1 and tmax = 6. Suppose historical data indicates that for a

sequence of 6 days, there is never more than 1 day where the CFO resigns. Hence,

we should add the constraint OCC(cfo resigns) : [0, 1] to the program. There are

other types of integrity constraints that could be useful in this domain. For example,

a drastic stock price decrease may never occur more than a few times a quarter.

To see why block-size constraints are natural, consider the ground atom sec rumor.

Suppose there is never more than 3 days historically where an SEC rumor is reported.

This would make the constraint BLK(sec rumor) :< 4 appropriate. Other examples

of such constraints in this domain would be reports of profits, which only occur once

per quarter (i.e., we would have blk = 2 for such a case).

We have automatically extracted APT-programs from the ISW and MAROB

data sets mentioned earlier. In the case of the ISW data set, occurrence and block-

size constraints are needed because militant groups have constrained resources, i.e.,

a limited amount of personnel and munitions to carry out an attack. Hence, an

occurrence integrity constraint can limit the amount of attacks we believe they are

capable of in a given time period. Likewise, such groups often limit the amount of

consecutive attacks, as police and military often respond with heightened security.

Block-size constraints allow us to easily encode this into our formalism.

We now extend the definition of APT rules and programs from the previous

103

chapter to include non-ground versions of these syntactic elements.

Definition 30 (APT Rules and Programs). (i) Suppose F , G are (ground) formulas,

∆t is a time interval, [ℓ, u] is a probability interval, and fr ∈ F is a frequency function

symbol. Then F
fr
; G : [∆t, ℓ, u] is an (ground) APT rule.

(ii) An (ground) APT logic program is a finite set of (ground) APT rules, ptf ’s, and

integrity constraints.

(iii) Given a non-ground APT-logic program K(ng), the set of ground instances of all

rules, ptf ’s, and IC’s in K(ng) is called the grounding of K(ng).

Note: Unless specified otherwise, throughout this chapter, APT-logic programs,

rules, IC’s, and ptf’s are ground.

Example 3.2.4. Figure 3.1 shows a small APT LP dealing with the stock market,

together with an intuitive explanation of each rule.

3.2.2 Semantics

We now extend the semantics of APT LPs from the previous chapter to account

for the extended syntax and the non-ground case. The structures of worlds and

threads are defined exactly as in the previous chapter (see page 29). However, here

we define a notion of a thread satisfying a time formula or integrity constraint as

follows:

Definition 31. (i) Given thread Th and ground time formula φ, we say Th satis-

fies φ (written Th |= φ) iff:

104

1. at station(T, S1) ∧ adjEast(S1, S2)
efr
; at station(T, S2) : [4, 0.85, 1]

If train T is at station S1 and the station adjacent to it to the East is S2, T will

be at station S2 within 4 time units with a probability bounded by [0.85, 1].

2. at station(T, S1) ∧ adjWest(S1, S2)
efr
; at station(T, S2) : [2, 0.6, 0.7]

If train T is at station S1 and the station adjacent to it to the West is S2, T will

be at station S2 within 2 time units with a probability in the interval [0.6, 7].

3.
∧tmax

t=1 adjEast(stnA, stnB) : t : [1, 1],
∧tmax

t=1 adjEast(stnB, stnC) : t : [1, 1],

∧tmax
t=1 adjWest(stnB, stnA) : t : [1, 1],

∧tmax
t=1 adjWest(stnC, stnB) : t : [1, 1]

Probabilistic time formulas specifying that Station B is (always) adjacent to the

East of A, and C is adjacent to the East of B.

4. at station(train1, stnA) : 1 : [0.5, 0.5]

For a given sequence of events, train 1 will be at station A at time period 1 with

a probability of 0.50.

5. at station(train2, stnA) : 2 : [0.48, 0.52]

For a given sequence of events, train 2 will be at station A at time period 2 with

a probability bounded by [0.48, 0.52].

Figure 3.4: Ktrain , a toy APT-Logic Program modeling rail transit. Items 1-2 are

non-ground APT-Rules, the formulas in 3 are probabilistic temporal formulas, and

items 4-5 are annotated formulas. The English translation of each rule is also pro-

vided.

105

• φ ≡ F : t: Th |= φ iff Th(t) |= F

• φ ≡ ¬ρ: Th |= φ iff Th 6|= ρ

• φ ≡ ρ ∧ ρ′: Th |= φ iff Th |= ρ and Th |= ρ′

• φ ≡ ρ ∨ ρ′: Th |= φ iff Th |= ρ or Th |= ρ′

(ii) Given thread Th and ground occurrence IC OCC(Ai) : [loi, upi], we say Th sat-

isfies OCC(Ai) : [loi, upi] iff |{i | Th(i) |= Ai}| ∈ [loi, upi].

(iii) Given thread Th and block-size IC BLK(Ai) :< blki, we say Th satisfies

BLK(Ai) :< blki iff there does not exist an interval [i, i + blki − 1] such that for

all j ∈ [i, i+ blki − 1], Th(j) |= Ai.

(iv) Th satisfies a non-ground formula or IC iff it satisfies all ground instances of

it.

Given a set T of threads and a set IC of integrity constraints, we use T (IC)

to refer to the set {Th ∈ T |Th |= IC}.

We use the symbol ‘|=’ to denote entailment between two time formulas.

Definition 32. Given time formulas φ, ρ, we say: φ |= ρ iff ∀Th ∈ T s.t. Th |= φ,

it is the case that Th |= ρ.

If we view time formulas as sets of threads, we can think of φ |= ρ, as equivalent

to φ ⊆ ρ.

As in the previous chapter, a temporal probabilistic (tp) interpretation gives

us a probability distribution over all possible threads. Thus, a tp-interpretation I

assigns a probability to each thread. This reflects the probability that the world will

106

in fact evolve over time in accordance with what the thread says. We now define

what it means for a tp-interpretation to satisfy a ptf or integrity constraint.

Definition 33. (i) Given interpretation I and ptf φ : [ℓ, u], we say I satisfies

φ : [ℓ, u] (written I |= φ : [ℓ, u]) iff:

ℓ ≤
∑

Th∈T
Th|=φ

I(Th) ≤ u

(ii) Given interpretation I and occurrence IC OCC(Ai) : [loi, upi], we say I satisfies

OCC(Ai) : [loi, upi] (written I |= OCC(Ai) : [loi, upi]) iff ∀Th ∈ T s.t. Th 6|=

OCC(Ai) : [loi, upi], it is the case that I(Th) = 0.

(iii) Given interpretation I and block-size IC BLK(Ai) :< blki, we say I satisfies

BLK(Ai) :< blki (written I |= BLK(Ai) :< blki) iff ∀Th ∈ T s.t. Th 6|= BLK(Ai) :<

blki, it is the case that I(Th) = 0.

(iv) Interpretation I satisfies a non-ground formula or IC iff it satisfies all ground

instances of it.

With the above definition, we now define a special type of ptf that can be used

to specify a set of threads that start with the same worlds – the intuition is based

on the idea of a prefix in [25].

Definition 34. For n ≤ tmax, let F1, . . . , Fi, . . . , Fn be formulas s.t. each Fi is

satisfied by exactly one world. Then, the following ptf:

F1 : 1 ∧ · · · ∧ Fi : i ∧ . . . ∧ Fn : n : [1, 1]

is called a prefix.

107

Example 3.2.5. Item 5 in the APT-program from Figure 3.1 is a prefix.

Intuitively, including a prefix in an APT-program forces the first n worlds of

every thread assigned a non-zero probability to satisfy certain formulas. Further,

we can use a prefix to force the first n worlds of every thread with a non-zero

probability to be the same. For example, if we want the i’th world of thread Th to

be set to world w, we would simply use the following formula as Fi in the prefix:

(∧

a∈w a
)
∧
(∧

a/∈w ¬a
)
.

The definition of a frequency function is also exactly the same as in the previous

chapter. For the sake of simplicity, in this chapter we only use the existential

frequency function (also defined in the previous chapter). Most techniques in this

chapter can be easily extended for use with other frequency functions. Now we

extend the definition of satisifaction of APT rules to account for the non-ground

case.

Definition 35 (Satisfaction of APT rules). Let r = F
fr
; G : [∆t, ℓ, u] be an APT

rule and I be a tp-interpretation.

(i) If r is a ground rule, interpretation I satisfies r (denoted I |= r) iff

ℓ ≤
∑

Th∈T
I(Th) · fr(Th, F,G,∆t) ≤ u.

(ii) Interpretation I satisfies a non-ground rule r iff I satisfies all ground instances

of r.

Interpretation I satisfies an APT-program iff it satisfies all rules, ptf’s, and

IC’s in that program. Given an APT-program K, we will often refer to the set of

integrity constraints in K as simply IC.

108

Intuitively, the APT rule F
fr
; G : [∆t, ℓ, u] evaluates the probability that

F leads to G in ∆t time units as follows: for each thread, it finds the probability

of the thread according to I and then multiplies it by the frequency (in terms of

fraction of times) with which F is followed by G in ∆t time units according to

frequency function fr. This product is like an expected value in statistics where a

value (frequency) is multiplied by a probability (of the thread). It then sums up

these products across all threads.

3.3 Complexity

In the previous chapter, we showed that consistency and entailment in APT-

logic are NP-hard (consistency) and coNP-hard (entailment). In this section, we

prove that consistency is in the complexity class NP and entailment is in the com-

plexity class coNP. The result is somewhat surprising, because the exact algorithms

presented in the previous chapter relied on the solution to linear programs with an

exponential number of variables. For example, consider the following linear program.

Definition 36 (CONS). Given an APT-logic program, K, where IC ⊂ K is the

set of integrity constraints in K, we can create the linear constraints CONS(K) as

follows:

109

For each Thj ∈ T (IC), variable vj denotes the probability of thread Thj.

(1)
∑|T (IC)|

j=1 vj = 1

(2) ∀Fi
fri
; Gi : [∆ti, ℓi, ui] ∈ K (a) ℓi ≤

∑|T (IC)|
j=1 fri(Thj, Fi, Gi,∆ti) · vj

(b) ui ≥
∑|T (IC)|

j=1 fri(Thj, Fi, Gi,∆ti) · vj

(3) ∀φi : [ℓi, ui] ∈ K (a) ℓi ≤
∑

Thj∈T (IC)Thj |=φi

vj

(b) ui ≥
∑

Thj∈T (IC)Thj |=φi

vj

We proved in the previous chapter that there is a solution to CONS(K) iff K

is consistent and that, given ptf φ : [ℓ, u], let L be the minimization and U be the

maximization of
∑

Thj∈T (IC)Thj |=φ
vj subject to CONS(K). Then φ : [ℓ, u] is entailed

by K iff [L,U] ⊆ [ℓ, u]. See Proposoiton 3 (page 50) and Proposition 12 (page 73)

respectiely.

However, it turns out that we can be guaranteed a solution to the linear

program where only a polynomial number of the variables are set to a value other

than 0. Consider the following theorem from [24] and later used in [44] to show that

deciding the validity of a formula in the logic of [44] is NP-Complete.

Theorem 9 ([24, 44]). If a system of m linear equalities and/or inequalities has

a nonnegative solution, then it has a nonnegative solution with at most m positive

variables.

We can leverage the previous two results to guarantee the existence of an

interpretation that assigns a zero probability to all but a polynomial number of

threads, thus giving us a “small model” theorem.

110

Theorem 10. Deciding if APT-program K is consistent is NP-complete if |K| is a

polynomial in terms of |BL|.

Theorem 11. Deciding if APT-rule r is entailed by APT-program K is coNP-

complete if |K| is a polynomial in terms of |BL|.

One may wonder if APT-programs can be made more tractable if we assume

a single probability distribution over threads, that is a single tp-interpretation. Un-

fortunately, even if we assume a uniform probability distribution, this special case

is still not tractable.

Theorem 12. Given APT-program K, interpretation I, and ptf φ, determining the

maximum ℓ and minimum u such that φ : [ℓ, u] is entailed by K and is satisfied by

I is #P -hard. Furthermore, for constant ǫ > 0, approximating either the maximum

ℓ and/or minimum u within 2|BL|1−ǫ
is NP-Hard.

The above theorem is proved using an interpretation that assigns a uniform

probability across all threads. The negative approximation result follows from a

result of [145].

Although it remains an open question if the APT-entailment problem (without

the single-interpretation requirement) can be approximated within a reasonable fac-

tor, the above result is not encouraging.3 Further, Definition 36 illustrates several

challenges relating the intractability of this problem. (i) First, we need to compute

T (IC), which is a challenge because T contains 2tmax·card(BL) possible threads and

3As an aside, as the construction in the proof of Theorem 12 does not depend on multiple

time-points, this result holds for the probabilistic logic of [131] as well.

111

each must be examined to see if it satisfies IC; (ii) Second, the constraints in items

(1-2) may contain up to O
(
2tmax·card(BL)

)
variables (this bound can be tightened), so

even though linear programming is polynomial [79], the input is exponential in the

size of tmax and BL. In practice, even if we consider tmax = 10 and BL to consist of

just 100 ground atoms, we are looking at the possibility of examining 21,000 threads

to find T (IC) and writing constraints containing exponentially large numbers of

variables. In practice, we will not be able to even write these constraints. With

these intractability results in mind, we proceed to develop heuristics in the next two

sections.

3.4 A Sound but Incomplete Fixpoint-Computation

Algorithm: The Ground Case

This section presents a heuristic algorithm based on a fixpoint operator Γ

which maps APT-programs to APT-programs and iteratively tightens the probability

bounds on rules and ptf’s in the program. To find probability bounds on some time

formula φ, we simply add the ptf φ : [0, 1] to the program, iteratively apply Γ until

a fixed point is reached, and then examine the bounds on the ptf formed with φ in

the resulting program. Our approach is sound – so, if the interval [ℓ, u] is assigned

to φ, then K entails φ : [ℓ, u] (provided, of course, that K is consistent). However,

there may exist some [ℓ′, u′] ⊂ [ℓ, u] such that φ : [ℓ′, u′] is also entailed.

Our algorithm requires that K contain at least one APT-rule of the form

112

F : [ℓ, u]. This is not really a restriction in most applications where a prefix would

exist (cf. Definition 34, Page 107). The rest of the section is organized as follows.

Section 3.4.1 describes how to find bounds on a frequency function given ptf ’s.

Section 3.4.2 describes how to use frequency bounds to syntactically manipulate

rules and ptf’s in APT-programs – which in turn allow us to tighten the probability

bounds. Section 3.4.3 performs various syntactic manipulations in the Γ operator

and shows that the operator has a least fixed point. Finally, Section 3.4.4 demon-

strates how Γ can also be used to check the consistency of an APT logic program.

Again, such a consistency check is sound but not complete – Γ correctly identifies

inconsistent programs but does not guarantee consistency.

3.4.1 Bounding Frequency Function Values

In this chapter, we only use the efr frequency function. However, our tech-

niques can be easily adapted to other frequency functions such as pfr from the pre-

vious chapter. Our first definition is a function, EFR, which returns tight bounds

on efr given F,G, and ∆t.

Definition 37. Suppose F,G are formulas, ∆t is a time point, and φ is a time

formula. We define EFR(F,G,∆t, φ) = [αtight, βtight] where

αtight = inf{efr(Th, F,G,∆t) | Th ∈ T ∧ Th |= φ}.

βtight = sup{efr(Th, F,G,∆t) | Th ∈ T ∧ Th |= φ}.

The intuition in the above definition is that αtight is the least value of efr

(w.r.t. formulas F,G and time interval ∆t) for all threads satisfying φ. Likewise,

113

βtight is the greatest value of efr (w.r.t. formulas F,G and time interval ∆t) for all

threads satisfying φ. We can easily approximate [αtight, βtight] when we make certain

assumptions on φ. Consider the following special case of a ptf:

Definition 38. Suppose ETF ≡ {F1 : t1, . . . , Fn : tn} is a set of elementary time

formulas, where n ≤ tmax and for any two such formulas, Fi : ti, Fj : tj ∈ ETF ,

ti 6= tj. Then F1 : t1 ∧ . . . ∧ Fn : tn is a time conjunction.

Example 3.4.1. Item 5 in the APT-program from Figure 2.1 is a time-conjunction.

We shall refer to this time-conjunction as φstock in later examples.

We notice right away that a prefix (Definition 34, Page 107) is simply a special

case of time conjunction annotated with probability [1, 1]. One useful property of

time conjunctions that we leverage in our operator is the following.

Observation 3.4.1. If F1 : t1 ∧ . . . ∧ Fn : tn ∧ Fn+1 : t′1 ∧ . . . ∧ Fn+m : t′m and

G1 : t1 ∧ . . . ∧Gn : tn ∧Gn+1 : t
′′
1 ∧ . . . ∧Gn+k : t

′′
k are time conjunctions, then

(F1∧G1) : t1∧. . .∧(Fn∧Gn) : tn∧Fn+1 : t
′
1∧. . .∧Fn+m : t′m∧Gn+1 : t

′′
1∧. . .∧Gn+k : t

′′
k

is also a time conjunction.

We leverage the above property in the following way: if we know a bound for

EFR(F,G,∆t, φ) and EFR(F,G,∆t, φ∧ρ), we may be able to use this information

to find probability bounds on ρ. We will describe this further when we discuss

syntactic manipulation. Next, with a time conjunction in mind, we will show how

to find a tight bound on EFR. In this case, we introduce the following notation

and obtain a bound on EFR in Proposition 14.

114

Definition 39. For formulas F,G, time ∆t, and time conjunction φ, we define the

following:

• cnt(φ, F,G,∆t) = |{t ∈ [1, tmax −∆t]|∃t′ ∈ (t, t+∆t] s.t. (φ |= F : t ∧G : t′)}|

• end(φ, F,G,∆t) = |{t ∈ (tmax −∆t, tmax)|∃t′ ∈ (t, tmax] s.t. (φ |= F : t ∧G : t′)}|

• denom(φ, F,∆t) = |{t ∈ [1, tmax −∆t]|∃Th s.t. (Th |= φ) ∧ (Th |= F : t)}|

• poss(φ, F,G,∆t) = |{t ∈ [1, tmax − ∆t]|∃t′ ∈ (t, t + ∆t] s.t. ∃Th s.t. (Th |=

φ) ∧ (Th |= F : t ∧G : t′)}|

• endposs(φ, F,G,∆t) = |{t ∈ (tmax −∆t, tmax)|∃t′ ∈ (t, tmax] s.t. ∃Th s.t. (Th |=

φ) ∧ (Th |= F : t ∧G : t′)}|

The intuitions behind the components of Definition 39 are as follows. For a

given F,G,∆t, cnt is simply the number of times in the first tmax−∆t timesteps (of

all threads satisfying some ptf φ) where a world satisfying F is followed by a world

satisfying G within ∆t time units. Likewise, end performs this count for the last

∆t time units. Similarly, poss and endposs perform similar calculations, but rather

than considering all threads that satisfy φ, there must only exist a thread satisfying

φ where a world satisfying F is followed by a world satisfying G in ∆t time units.

The definition of denom captures the total number of times F is satisfied in the first

tmax − ∆t worlds (for all threads satisfying φ). Due to the boundary condition of

efr (refer to Section 3.2 for details), we use end and endposs to perform this count

in the last tmax−∆t worlds of the threads. Hence, in the below proposition, we are

115

able to show that EFR(F,G,∆t, φ) is a subset of two fractions created from the

components we defined.

Proposition 14. For formulas F,G, time ∆t, and time conjunction φ,

EFR(F,G,∆t, φ) ⊆

[
cnt(φ, F,G,∆t) + end(φ, F,G,∆t)

denom(φ, F,∆t) + end(φ, F,G,∆t)
,
poss(φ, F,G,∆t) + endposs(φ, F,G,∆t)

denom(φ, F,∆t) + endposs(φ, F,G,∆t)

]

Example 3.4.2. Consider the APT-program from Figure 2.1 that includes time

conjunction φstock (see Example 3.4.1). Consider the pre and post conditions of

rules 1-2; we shall refer to them as follows (in this and later examples):

F1 ≡ sec rumor ∧ rum incr(10%)

G1 ≡ stock decr(10%)

F2 ≡ sec rumor ∧ rum incr(10%)

G2 ≡ stock decr(10%) ∧ cfo resigns

Using Definition 39, we can determine that:

EFR(φstock, F1, G1, 2) ⊆ [0.5, 1.0]

and

EFR(φstock, F2, G2, 1) ⊆ [0.0, 0.667]

3.4.2 Theorems for Syntactic Manipulation

In the last section, we bounded the values that efr can have for a thread

given some time formula φ. This section leverages that information to obtain tighter

116

bounds on ptf’s and APT-rules. First, we introduce a simple result that allows for

syntactic manipulation of ptf’s without these bounds.

Lemma 8. Let ρ : [ℓ′, u′] be a ptf and I be an interpretation; then:

1. If I |= φ : [ℓ, u], then I |= φ ∧ ρ : [max(0, ℓ+ ℓ′ − 1),min(u, u′)]

2. If I |= φ : [ℓ, u], then I |= φ ∨ ρ : [max(ℓ, ℓ′),min(1, u+ u′)]

3. If I |= φ : [ℓ, u] and φ |= ρ then I |= ρ : [ℓ, 1]

4. If I |= φ : [ℓ, u] and ρ |= φ then I |= ρ : [0, u]

5. If I |= φ : [ℓ, u] then I |= ¬φ : [1− u, 1− ℓ]

Example 3.4.3. Suppose program Kstock entails ptf sec rumor : 6 : [0.3, 0.6]. Then,

it also entails ¬sec rumor : 6 : [0.4, 0.7].

We notice right away that syntactic manipulation sometimes identifies incon-

sistent APT-programs. For example, if φ : [0.7, 0.6] is entailed via Lemma 8, then

we know that K is not consistent. We explore this issue further in Section 3.4.4.

Next, we use the bounds on EFR to syntactically manipulate APT-rules, yielding

rules with tighter probability bounds – perhaps uncovering an inconsistent program.

Theorem 13 tightens the bound when the APT-program includes a ptf that happens

with probability 1. Its corollary tightens the lower bound given any ptf .

Theorem 13. Suppose I is an interpretation and φ is a time formula such that

I |= φ : [1, 1] and EFR(F,G,∆t, φ) ⊆ [α, β]. Then I |= F
efr
; G : [∆t, α, β].

117

Corollary 2. Suppose I is an interpretation and φ is a time formula such that

I |= φ : [ℓ, u] and EFR(F,G,∆t, φ) ⊆ [α, β]. Then I |= F
efr
; G : [∆t, α · ℓ, 1].

The above theorem and corollary are proved by showing that the lower prob-

ability bound of an APT-rule has to be at least as much as the lower bound on the

associated EFR for all threads.

Example 3.4.4. Consider the scenario from Example 3.4.2. By the result of that

example and Corollary 2, we know that Kstock must entail:

sec rumor ∧ rum incr(10%)
efr
; stock decr(10%) : [2, 0.5, 1.0] and

sec rumor ∧ rum incr(10%)
efr
; stock decr(10%) ∧ cfo resigns : [1, 0.0, 0.667]

Note that we can now find a tighter bound on rule 2, obtaining a probability bound

of [0.5, 0.667], that is substantially tighter than [0.5, 1] from the original rule using

just one syntactic manipulation.

We can use APT-rules, EFR, and Theorem 8 to further tighten the bounds

on ptf’s with the following theorem.

Theorem 14. Suppose F,G are formulas, φ, ρ are time formulas, I is an interpre-

tation, and [α1, β1], [α2, β2] are intervals such that EFR(F,G,∆t, φ) ⊆ [α1, β1] and

EFR(F,G,∆t, φ∧ρ) ⊆ [α2, β2], I |= φ : [1, 1] (see note4) and I |= F
efr
; G : [∆t, ℓ, u].

Then:

1. If β2 < β1, then I |= ρ :
[

0,min
(

ℓ−β1

β2−β1
, 1

)]

4Note that Theorem 13 requires ℓ ≤ β1 and α1 ≤ u

118

2. If α2 > α1, then I |= ρ :
[

0,min
(

u−α1

α2−α1
, 1

)]

From the above theorem, we can easily obtain the following corollary that can

be used with just one time formula (i.e., only ρ). Simply consider the case where φ

is TRUE : tmax and [α1, β1] = [0, 1].

Corollary 3. Suppose F,G are formulas, ρ is a time formula, I is an interpretation,

and [α, β] is an interval such that EFR(F,G,∆t, ρ) ⊆ [α, β] and I |= F
efr
; G :

[∆t, ℓ, u]. Then:

1. If β < 1 then I |= ρ : [0,min(ℓ−1
β−1 , 1)]

2. If α > 0 then I |= ρ : [0,min(u
α
, 1)]

Example 3.4.5. Following from Example 3.4.4, consider the time-formula stock decr(10%) :

5. Using Definition 39, we find that EFR(φstock ∧ stock decr(10%) : 5, F1, G1, 2) ⊆

[1, 1]. Previously, we saw that EFR(φstock, F1, G1, 2) ⊆ [0.5, 1]. As the lower bound

on frequency increases (by conjuncting the new time formula), that is 1 > 0.5, we

apply part 2 of Theorem 14 (and/or Corollary 3) to obtain an upper probability

bound on stock decr(10%) : 5. Hence, this formula is no more probable than 0.94.

Finally, we show that we can also use integrity constraints to aid in syntactic

manipulation. For certain ptf’s with probability 1, a given IC may cause another ptf

(or multiple ptf’s) to be entailed with a probability of 0, which can also contribute

to bounding EFR.

Proposition 15. For atom Ai and program K where BLK(Ai) :< blki ∈ K, if there

exists a ptf φ : [1, 1] ∈ K such that φ |= Ai : t−blki+1∧Ai : t−blki+2∧. . .∧Ai : t−1,

119

then K entails Ai : t : [0, 0].

Proposition 16. For atom Ai and program K where OCC(Ai) : [loi, upi] ∈ K, if

there exists a ptf φ : [1, 1] ∈ K such that there are numbers t1, . . . , tupi ∈ {1, . . . , tmax}

where φ |= Ai : t1∧. . .∧Ai : tupi then for any t /∈ {t1, . . . , tupi} K entails Ai : t : [0, 0].

Example 3.4.6. Consider Kstock from the previous examples. As this program in-

cludes OCC(cfo resigns) : [0, 1] and entails cfo resigns : 4 : [1, 1] (by the included

prefix), we can conclude that cfo resigns : 5 : [0, 0] and cfo resigns : 6 : [0, 0] are

entailed by this program.

3.4.3 The Fixpoint-Based Heuristic

We are now ready to use the results of the last section to create the Γ operator.

First, we present some preliminary definitions to tighten probability bounds for ptf’s

and rules. Note that the correctness of these bounds follows directly from the results

of the previous section. First we show how, given an APT-program, we can tighten

the lower and upper bound of a ptf.

Definition 40. Suppose K is an APT-program and φ is a time formula. We define:

l bnd(φ,K) = sup ({ 0 } ∪ { ℓ | ρ : [ℓ, u] ∈ K ∧ (ρ |= φ) }) .

120

u bnd(φ,K) is the inf of the set:

{ 1 } ∪

{ u | ρ : [ℓ, u] ∈ K ∧ (φ |= ρ) } ∪

{ min(ℓ−β1

β2−β1
, 1) | (F efr

; G : [∆t, ℓ, u], ρ : [1, 1] ∈ K ∪ {true : tmax : [1, 1]}) ∧

(EFR(F,G,∆t, ρ) ⊆ [α1, β1]) ∧

(EFR(F,G,∆t, ρ ∧ φ) ⊆ [α2, β2]) ∧ (β2 < β1) } ∪

{ min(u−α1

α2−α1
, 1) | (F efr

; G : [∆t, ℓ, u], ρ : [1, 1] ∈ K ∪ {true : tmax : [1, 1]}) ∧

(EFR(F,G,∆t, ρ) ⊆ [α1, β1]) ∧

(EFR(F,G,∆t, ρ ∧ φ) ⊆ [α2, β2]∧(α2 > α1) }

This bound on a time formula is derived from its relationship with other time

formulas (by Lemma 8) or it relationship with rules (by Theorem 14 and/or Corol-

lary 3). Below we show an example.

Example 3.4.7. Following from Example 3.4.5, consider, once again, the time-

formula stock decr(10%) : 5. For program Kstock, we know that l bnd(stock decr(10%) :

5,Kstock) = 0.0. This is due to the simple fact that there is no lower probability bound

assigned to the time formula stock decr(10%) : 5 by Kstock that is greater than 0.0.

Examining the upper bound, we consider the inf of set {1, 0.94} as 1 is the trivial

upper bound, there are no other upper probability bounds for stock decr(10%) : 5 seen

directly in Kstock and we have already used Example 3.4.5 to derive the upper bound

of 0.94 based on syntatic manipulation of rules in Kstock (which reflects the last two

121

parts of the u bnd definition). Hence, u bnd(stock decr(10%) : 5,Kstock) = 0.94.

Note that for ptf’s we do not include any manipulation that relies on the

bounds of the negated time formula in the above definitions. We handle this type

of manipulation in the definition of the operator. The following are versions of

l bnd,u bnd for rules.

Definition 41. Suppose K is an APT-program, F,G are formulas, and ∆t > 0 is

an integer.

• The quantity l bnd(F,G,∆t,K) is the sup of the following set:

{ 0 } ∪

{ ℓ |F efr
; G : [∆t, ℓ, u] ∈ K} ∪

{ α · ℓ | (φ : [ℓ, u], ρ : [1, 1] ∈ K ∪ {true : tmax : [1, 1]}) ∧

(EFR(F,G,∆t, ρ ∧ φ) ⊆ [α, β]) } ∪

{ α · (1− u) | (φ : [ℓ, u], ρ : [1, 1] ∈ K ∪ {true : tmax : [1, 1]}) ∧

(EFR(F,G,∆t, ρ ∧ ¬φ) ⊆ [α, β]) }

• The quantity u bnd(F,G,∆t,K) is the inf of the following set:

{ 1 } ∪

{ u |F efr
; G : [∆t, ℓ, u] ∈ K} ∪

{ β | (ρ : [1, 1] ∈ K) ∧ (EFR(F,G,∆t, ρ) ⊆ [α, β]) }

122

Hence, the new probability bound assigned to a rule is based on how the

bounds on the frequency function are tightened given the ptf’s present in the pro-

gram. Given a ptf, we use a bound on EFR, which allows us to leverage Theorem 13

and Corollary 2 to obtain a tighter bound on the rule. Tighter bounds on rules are

useful for two reasons: (1) subsequent applications of the fixpoint operator will in

turn use these new bounds to tighten bounds on ptf’s and (2) they can be used to

identify inconsistent program (as we discuss in Section 3.4.4).

We now define set formula(K) which intuitively means “all time formulas that

appear in K”. These are the formulas upon which Definition 40 will act, and also

through syntactic manipulation, affect other ptf’s in K. As stated earlier, we can

find bounds for any time formula ρ by adding ρ : [0, 1] to the initial APT program.

Definition 42. Given program K consisting of ptf ’s and constrained rules, formula(K)

is the following set:

{ φ |φ : [ℓ, u] ∈ K} ∪

{ F : t | (t ∈ [1, tmax]) ∧ (F
efr
; G : [∆t, ℓ, u] ∈ K) } ∪

{ G : t | (t ∈ [1, tmax]) ∧ (F
efr
; G : [∆t, ℓ, u] ∈ K) }

We now have all the pieces we need to define our operator Γ.

123

Definition 43. Given program K, Γ(K) is defined as the following set:

{ F
efr
; G : [∆t, l bnd(F,G,∆t,K),

u bnd(F,G,∆t,K)] |F efr
; G : [∆t, ℓ, u] ∈ K} ∪

{ φ : [l bnd(φ,K),u bnd(φ,K)]∩

[1− u bnd(¬φ,K), 1− l bnd(¬φ,K)] |φ ∈ formula(K) } ∪

{ Ai : t : [0, 0] | (BLK(Ai) :< blki ∈ K) ∧ (φ : [1, 1] ∈ K) ∧

(φ |= Ai : t− blki + 1 ∧ . . . ∧ Ai : t− 1)} ∪

{ Ai : t : [0, 0] | (OCC(Ai) : [loi, upi] ∈ K) ∧ (φ : [1, 1] ∈ K) ∧

(∃t1, . . . , tupi ∈ {1, . . . , tmax}) ∧

(φ |= Ai : t1 ∧ . . . ∧ Ai : tupi) ∧

(t /∈ {t1, . . . , tupi})} ∪

{ BLK(Ai) :< blki |BLK(Ai) :< blki ∈ K} ∪

{ OCC(Ai) : [loi, upi] |OCC(Ai) : [loi, upi] ∈ K}

Intuitively, Γ tightens the probability bounds on rules by leveraging proba-

bilistic time formulas using the results we proved in Theorem 13 and Corollary 2. It

tightens the probability bounds on time formulas based other time formulas, rules,

and integrity constraints. This uses the results proved in Lemma 8, Theorem 14

(and/or Corollary 3), and Propositions 15-16 respectively.

Example 3.4.8. Consider the program Kstock from the previous examples. By Def-

inition 42, we know that a ptf time-formula stock decr(10%) : 5 will be included in

Γ(Kstock). We saw in Example 3.4.7 that l bnd(stock decr(10%) : 5,Kstock) = 0.0

124

and u bnd(stock decr(10%) : 5,Kstock) = 0.94. In the same manner, we can com-

pute that l bnd(¬stock decr(10%) : 5,Kstock) = 0.0 and u bnd(¬stock decr(10%) :

5,Kstock) = 0.667 (this follows from the fact that EFR(φstock ∧ ¬stock decr(10%) :

5, F1, G1, 2) ⊆ [0.5, 0.667]). Hence, we know that the ptf stock decr(10%) : 5 :

[0.333, 0.94] is included in Γ(Kstock).

Note that Γ returns an APT-program that is satisfied by the exact same set of

interpretations as the original program; this follows directly from the results in the

previous section.

Proposition 17. Suppose I is an interpretation and K is an APT-program. Then:

I |= K iff I |= Γ(K).

We can also make the following statement about the complexity of the opera-

tor.

Proposition 18. One iteration of Γ can be performed in time complexity O(|K|2 ·

CHK) where CHK is the bound on the time it takes to check (for arbitrary time

formulas φ, ρ) if φ |= ρ is true.

One source of complexity is comparing ptf’s with other ptf’s. If a ptf is formed

with an elementary time formula, then it only needs to be compared to other ptf’s

that share the same time point – this could reduce complexity. As is usual in logic

programming, Γ can be iteratively applied as follows.

Definition 44. We define multiple applications of Γ as follows.

• Γ(K) ↑ 0 = K

125

• Γ(K) ↑ (i+ 1) = Γ(Γ(K) ↑ i)

Now, we will show that Γ has a least fixed point. First, we define a partial

ordering of APT-programs.

Definition 45 (Preorder over APT-Programs). Given K1,K2, we say K1 ⊑pre K2 if

and only if:

• ∀φ : [ℓ, u] ∈ K1, ∃φ : [ℓ′, u′] ∈ K2 s.t. [ℓ′, u′] ⊆ [ℓ, u]

• ∀F efr
; G : [∆t, ℓ, u] ∈ K1, ∃F efr

; G : [∆t, ℓ′, u′] ∈ K2 s.t. [ℓ′, u′] ⊆ [ℓ, u]

• If BLK(Ai) :< blki ∈ K1, then BLK(Ai) :< blki ∈ K2

• If OCC(Ai) : [loi, upi] ∈ K1, then OCC(Ai) : [loi, upi] ∈ K2

The intuition behind the above definition is that program K1 is below K2 if it

has less rules or ptf’s – or rules/ptf’s with tighter probability bounds. Note that if

K2 is above K1, then K1 has at least as many satisfying interpretations, and possibly

more, than K2. Let PROGBL,tmax be the set of all APT-programs given Herbrand

base BL and time tmax. It is easy to see that 〈PROGBL,tmax ,⊑pre〉 is a reflexive and

transitive, and therefore a preorder. In the following, we will say that K1 ∼ K2,

read “K1 is equivalent to K2” if and only if K1 ⊑pre K2 and K2 ⊑pre K1. The “∼”

relation is clearly an equivalence relation; we will use [K] to denote the equivalence

class corresponding to K w.r.t. this relation.

Definition 46 (Partial Ordering of APT-Programs). Given two equivalence classes

[K1], [K2] w.r.t. relation ∼, we say [K1] ⊑ [K2] if and only if K1 ⊑pre K2.

126

The “⊑” relation is clearly reflexive, antisymmetric, and transitive, and there-

fore a partial order over sets of APT-programs. Note that when we use the symbol

⊑, we will often write K1 ⊑ K2 as shorthand for [K1] ⊑ [K2]. We will also overload

the symbol PROGBL,tmax to mean “all equivalence classes of APT-programs” (for

a given tmax and BL) where appropriate. Therefore, we can now define a complete

lattice, where the top element is a set containing all inconsistent programs, and the

bottom element is set containing the empty program.

Lemma 9. Given ⊥ = {∅} and ⊤ = {K | K is inconsistent}, then the partial order

〈PROGBL,tmax ,⊑〉 defines a complete lattice.

What remains to be shown is that Γ is monotonic; if this holds, we can state

it has a least fixed point.

Lemma 10. K ⊑ Γ(K).

Lemma 11. Γ is monotonic.

By the Tarski-Knaster theorem, Γ has a least fixed point.

Theorem 15. Γ has a least fixed point.

3.4.4 Using Γ for Consistency Checking

As noted earlier, the Γ operator can be used to find “loose” entailment bounds

by simply adding an entailment time formula (φ) with probability bounds [0, 1] to

the logic program, and then examining the tightened bounds after one or more

applications of the operator. In this section, we examine how to use Γ for consistency

checking. First, we have a straightforward lemma on consistency.

127

Lemma 12. Let K be an APT-logic program that entails rule F
efr
; G : [∆t, ℓ, u] or

φ : [ℓ, u] such that one of the following is true:

• ℓ > u

• ℓ < 0 or ℓ > 1

• u < 0 or u > 1.

Under this circumstance, K is inconsistent, i.e., there is no interpretation I such

that I |= K.

The following result follows immediately.

Corollary 4. Let K be an APT-logic program whetre there exists natural number i

such that Γ(K) ↑ i entails rule F
efr
; G : [∆t, ℓ, u] or φ : [ℓ, u] such that one of the

following is true:

• ℓ > u

• ℓ < 0 or ℓ > 1

• u < 0 or u > 1.

Under this circumstance, K is inconsistent.

We note that the Γ adds time formulas whose probaiblity bounds is determined

by an intersection operation. We observe that an empty intersection of the prob-

ability bounds is equivalent to the case where ℓ > u, which allows us to apply the

above corollary to correctly state that the program is not consistent. We illustrate

this in the below example.

128

Example 3.4.9. Consider Kstock from the previous examples. By the definition of Γ,

the ptf stock decr(10%)∧cfo resigns : 5 : [0.499, 1] is in Γ(Kstock). By Example 3.4.6,

we know that cfo resigns : 5 : [0, 0] is also in Γ(Kstock). However, another application

of Γ entails cfo resigns : 5 : [0.499, 0] (equivalently, cfo resigns : 5 : ∅). As 0.499 > 0,

we know that Kstock is not consistent.

In addition to checking consistency with the Γ operator, we can check for

inconsistencies based on the block and occurence ICs via the following result.

Proposition 19. If there does not exist at least one thread that satisfies all integrity

constraints in an APT-logic program, then that program is inconsistent.

The Thread Existence Problem (ThEX) problem is that of checking ex-

istence of a thread that satisfies all block and integrity constraints. Here we show

that ThEX can be solved in constant time – this can allow us to quickly identify

certain inconsistencies in an APT-program. First, we define a partial thread.

Definition 47. A partial thread PTh is a thread such that for all 1 ≤ i ≤ tmax,

PTh(i) is a singleton set.

For any ground atom Ai with a single associated block-size and occurrence

constraint5 if more than
⌈
(blki−1)·tmax

blki

⌉

worlds must satisfy Ai in each partial thread,

then all partial threads will have a block of size blki. This allows us to derive the

following results.

5There is no loss of generality looking at just one block-size IC per ground atom as multiple

such ICs can be coalesced into one by taking the minimum; likewise, there is no loss of generality

in considering just one occurrence per ground atom as they can be merged into one by intersecting

the [lo, up] intervals for that atom.

129

Proposition 20. If loi >
⌈
(blki−1)·tmax

blki

⌉

then there does not exist a partial thread for

ground atom Ai such that the single block-size and occurrence IC associated with Ai

hold.

Proposition 21. For ground atom Ai (with associated ICs), if upi >
⌈
(blki−1)·tmax

blki

⌉

we know that the number of worlds satisfying Ai cannot be in the range
[⌈

(blki−1)·tmax

blki

⌉

, upi

]

.

The reason for this is simple: it would force the partial thread to have a

sequence of blki consecutive worlds satisfying Ai. We also notice that these checks

can be performed based solely on the values of loi, upi, blki, and tmax. Hence, we

have the following proposition.

Proposition 22. ThEX can be solved in constant time.

In the next section we extend these results for non-ground APT-programs.

3.5 Consistency and Entailment Algorithms for

Non-Ground Programs

The fixpoint procedure described via the Γ operator works in the ground case.

In this section, we study how we may avoid grounding. We start (Section 3.5.1)

with a sampling based approach for consistency checking of non-ground programs.

Section 3.5.2 defines a non-ground fixpoint operator for entailment queries. This

operator avoids grounding the entire program, but guaranteed to provide entailment

bounds for a query that are as tight as our ground operator. We remind the reader

130

that both our consistency-checking algorithm and our fixpoint operator presented

in this section are sound, but not complete.

3.5.1 Consistency Checking for Non-Ground Programs

In this section, we present a sound algorithm for consistency checking of non-

ground programs. We avoid complete grounding of the rules, while still maintaining

soundness of the algorithm through random sampling of ground instances of rules.

The larger the sample, the more potential inconsistencies can be found.

For a non-ground time formula, φng, we shall use the notation gnd(φng) to

refer to the ground formula
∧{φ | is a ground instance of φng}. We are now ready

to describe a non-ground analog to the bounds EFR described in the previous

section.

Definition 48. For non-ground formulas Fng, Gng, time ∆t, and non-ground time

formula φng, we define

1.

EFR SET (Fng, Gng,∆t, φng) = {EFR(F,G,∆t, gnd(φng))|

F,G are ground instances of Fng, Gng}

2.

EFR IN(Fng, Gng,∆t, φng) = (αin, βin)

Where ∃[αin, β
′], [α′, βin] ∈ EFR SET (Fng, Gng,∆t, φng), and 6 ∃[α∗, β′′], [α′′, β∗] ∈

EFR SET (Fng, Gng,∆t, φng) s.t. α∗ > αin and β∗ < βin

131

3.

EFR OUT (Fng, Gng,∆t, φng) = [αout, βout]

Where ∃[αout, β
′], [α′, βout] ∈ EFR SET (Fng, Gng,∆t, φng), and 6 ∃[α∗, β′′], [α′′, β∗] ∈

EFR SET (Fng, Gng,∆t, φng) s.t. [α∗, β∗] ⊃ [αout, βout]

The intuition behind Definition 48 is as follows. EFR SET is the set of all

frequency bounds for the different ground instances of Fng, Gng. EFR IN is a pair

consisting of the greatest lower bound of efr (αin) and the least upper bound of

efr (βin) of all the elements of EFR SET . (αin, βin) is a tuple, not a bound. It is

possible for αin > βin. EFR OUT represents the tight bound of efr for any ground

instance of Fng, Gng. We now prove these bounds to be tight.

Lemma 13. Suppose Fng, Gng are non-ground formulas, time ∆t > 0 is an integer,

and φng is a non-ground time formula. Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng)

and [αout, βout] = EFR OUT (Fng, Gng,∆t, φng). If Th |= φng, then:

1. for all ground instances F,G of Fng, Gng we have efr(F,G,∆t,Th) ∈ [αout, βout]

2. there exist ground instances F,G of Fng, Gng, and we have efr(F,G,∆t,Th) ≥

αin

3. there exist ground instances F,G of Fng, Gng, and we have efr(F,G,∆t,Th) ≤

βin

Note that if we were to use the techniques of Section 3.4 for entailment, we

would most likely need to find tight bounds on the elements in the tuple returned by

EFR OUT (Fng, Gng,∆t, φng) (specifically a tight lower bound on EFR – as we can

132

be sure that for all ground instances F,G of Fng, Gng that EFR(F,G,∆t, gnd(φng))

will fall within these bounds). However, there are a few difficulties with this. First,

we conjecture that to find a good bound on EFR OUT , we would most likely have

to examine all combinations of ground instances of Fng, Gng – which is most likely

equivalent to grounding out the logic program and using Γ. Second, even if we could

efficiently find tight bounds on EFR OUT , they would most likely be trivial - i.e.

[0, 1].

Conversely, consider the tuple (αin, βin) = EFR IN(Fng, Gng,∆t, φng). We

know that for all ground instances F,G of Fng, Gng such that for

[α, β] = EFR(F,G,∆t, gnd(φng))

we have αin ≥ α and βin ≤ β′. We also know that finding a lower bound on αin and

an upper bound on βin can be done by simply considering any subset of combinations

of ground instances of Fng and Gng.

Example 3.5.1. Consider Ktrain from Figure 2.3 with tmax = 4. Suppose we add

the following ptf (called φ) to the program.

at station(train1, stnA) : 1 ∧ adjEast(stnA, stnB) : 1∧

¬(at station(train1, stnA) : 2) ∧ at station(train1, stnA) : 3 : [1, 1]

Clearly, as

EFR(at station(train1, stnA)∧adjEast(stnA, stnB), at station(train1, stnA), 2, φ) = [1, 1]

we know for

(αin, βin) = EFR IN(at station(T, S1) ∧ adjWest(S1, S2), at station(T, S2), 2, φ)

133

that αin = 1 and βin ≤ 1.

Algorithm 9 Finds bounds on EFR IN

FIND-EFR-IN(Fsam,Gsam subsets of ground instances of non-ground

formulas Fng, Gng,∆t natural number , φng non-ground time formula),

returns natural numbers α−in, β
+
in

1. Compute gnd(φng)

2. Set α−in = 0 and β+
in = 1

3. For each F ∈ Fsam

(a) For each G ∈ Gsam

i. Let (α, β) = EFR(F,G,∆t, gnd(φng))

ii. α−in = max(α, α−in)

iii. β+
in = min(β, β+

in)

Algorithm 9 leverages this technique – if φng is already ground, algorithm

FIND-EFR-IN runs in time quadratic in the size of the sample of ground instances of

Fng, Gng. Clearly, this simple algorithm is guaranteed to return a lower bound on

αin and an upper bound on βin.

This information can be leveraged in order to perform consistency checks sim-

ilar to those described in Section 3.4.4 without resorting to fully grounding out

Fng, Gng and considering all combinations of those ground instances. The intuition

is simple – if there is just one ground instance of a non-ground rule where ℓ > u, then

134

the program is inconsistent. The theorem and corollary below mirror Theorem 13

and Corollary 2 (Page 118) that we described in Section 3.4.2 for the ground case.

Theorem 16. Let K(ng) be a non-ground APT-program that contains the following:

Non-ground rule: Fng
efr
; Gng : [∆t, ℓ, u]

Non-ground ptf: φng : [1, 1]

and (αin, βin) = EFR IN(Fng, Gng,∆t, φng). If we are given α−in ≤ αin and β+
in ≥

βin, then, K(ng) is not consistent if either α−in > u or β+
in < ℓ.

Corollary 5. Let K(ng) be a non-ground APT-program that contains the following:

Non-ground rule: Fng
efr
; Gng : [∆t, ℓ, u]

Non-ground ptf: φng : [ℓ
′, u′]

and (αin, βin) = EFR IN(Fng, Gng,∆t, φng). If we are given α−in ≤ αin and β+
in ≥

βin, then, K(ng) is not consistent if α−in · ℓ′ > u.

Algorithm 10 is a sound (but not complete) method to quickly check for in-

consistency in the non-ground case.

Proposition 23. If the list returned by NG-INCONSIST-CHK contains any elements,

then K(ng) is not consistent.

Note that the algorithm performs only a quadratic number of comparisons.

Proposition 24. NG-INCONSIST-CHK performs O(|K(ng)|2) comparisons.6

6Note: each comparison requires generating samples of ground instances of two formulas in a

rule and running FIND-EFR-IN.

135

Algorithm 10 Checks for inconsistencies in a non-ground program

NG-INCONSIST-CHK(K(ng) non-ground program)

returns list of rules that cause inconsistencies

1. Let L be a list of rules initialized to ∅

2. For each ptf φng : [ℓ
′, u′] ∈ K(ng) where u′ = 1, do the following.

(a) For each rule Fng
efr
; Gng : [∆t, ℓ, u] ∈ K(ng), do the following.

i. Generate sample sets Fsam,Gsam of ground instances of Fng, Gng.

ii. Let (α−in, β
+
in) = FIND-EFR-IN(Fsam,Gsam,∆t, φng)

iii. If α−in · ℓ′ > u, then add Fng
efr
; Gng : [∆t, ℓ, u] ∈ K(ng) to L

iv. Elseif ℓ′ = 1 and β+
in < ℓ, then add Fng

efr
; Gng : [∆t, ℓ, u] ∈ K(ng) to

L

3. Return list L

3.5.2 Entailment for the Non-Ground Case

In this section, we introduce a non-ground operator, ΛK(ng) , that maps ground

programs to ground programs. Using the same lattice of APT-programs we used in

Section 3.4.3, we show that ΛK(ng) also has a least fixed point. Our intuition is as

follows. Suppose we want to find the tightest entailment bounds on some ptf φ; if

we compute lfp(ΛK(ng)(φ : [0, 1])), the result will be an APT-program (let us call

this program Kφ) s.t. lfp(Γ(Kφ)) will provide the same entailment bounds on φ as

if we had computed the least fixed point of Γ on the grounding of K(ng). However,

136

in most cases, Kφ will be much smaller than the grounding of K(ng).

Definition 49. For non-ground program K(ng) and ground program K (note that

formula(K) is a set of ground formulas, as defined in Definition 42), ΛK(ng) maps

ground programs to ground programs and is defined as follows. ΛK(ng)(K) =

K ∪

{F efr
; G : [∆t, ℓ, u]| F

efr
; G : [∆t, ℓ, u] is a ground instance of a rule in K(ng) s.t.

∃φ ∈ formula(K) where φ is ground and

∃t ∈ [1, tmax] s.t. φ |= F : t or φ |= G : t

or φ |= ¬F : t or φ |= ¬G : t} ∪

{ρ : [ℓ, u]| ρ : [ℓ, u] is a ground instance of a ptf in K(ng) s.t.

∃φ ∈ formula(K) where φ is ground and φ |= ρ

or φ |= ¬ρ} ∪

{BLK(A) :< blk| BLK(A) :< blk is a ground instance of a constraint in K(ng)s.t.

∃φ ∈ formula(K) where φ is ground and

∃t ∈ [1, tmax] s.t. φ |= A : t or φ |= ¬A : t} ∪

{OCC(A) : [lo, up]| OCC(A) : [lo, up] is a ground instance of a constraint in K(ng)s.t.

∃φ ∈ formula(K) where φ is ground and }

∃t ∈ [1, tmax] s.t. φ |= A : t or φ |= ¬A : t}

We will now present an example for this operator.

Example 3.5.2. Recall Ktrain from Figure 2.3 with tmax = 4. The following rules

137

comprise the set ΛKtrain
({at station(train1, stnB) : 4}):

at station(train1, stnB) : 4

at station(train1, stnA) ∧ adjEast(stnA, stnB)
efr
; at station(train1, stnB) : [4, 0.85, 1.0]

at station(train1, stnB) ∧ adjEast(stnB, stnB)
efr
; at station(train1, stnB) : [4, 0.85, 1.0]

at station(train1, stnC) ∧ adjEast(stnC, stnB)
efr
; at station(train1, stnB) : [2, 0.85, 1.0]

at station(train1, stnA) ∧ adjWest(stnA, stnB)
efr
; at station(train1, stnB) : [2, 0.6, 0.7]

at station(train1, stnB) ∧ adjWest(stnB, stnB)
efr
; at station(train1, stnB) : [2, 0.6, 0.7]

at station(train1, stnC) ∧ adjWest(stnC, stnB)
efr
; at station(train1, stnB) : [2, 0.6, 0.7]

We use the same partial ordering and lattice from Section 3.4.3, and show the

monotonicity of ΛK(ng) as follows.

Lemma 14. K ⊑ ΛK(ng)(K) wrt 〈PROGBL,tmax ,⊑〉

Lemma 15. ΛK(ng) is monotonic.

Now, we show that ΛK(ng) has a least fixed point.

Definition 50. We define multiple applications of Λ as follows.

• ΛK(ng)(K) ↑ 0 = K

• ΛK(ng)(K) ↑ (i+ 1) = ΛK(ng)(ΛK(ng)(K) ↑ i)

Theorem 17. ΛK(ng) has a least fixed point.

138

The next two results demonstrate the soundness of Λ. Given non-ground

program K(ng), let ground(K(ng)) be the grounding of this program. The lemma

below follows directly from the definition of the operator. It states that the least

fixed point of the operator is a subset of the grounding of K(ng).

Lemma 16. Given non-ground program K(ng), and ground program K, lfp(ΛK(ng)(K)) ⊆

ground(K(ng)) ∪ K.

Additionally, the following result states that, for a given entailment query, we

obtain the same result whether we use ΛK(ng) or simply ground out K(ng).

Theorem 18. Given non-ground program K(ng)

φ : [ℓ, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]}))))

iff

φ : [ℓ, u] ∈ lfp(Γ(ground(K(ng)) ∪ {φ : [0, 1]}))

3.6 Experimental Results

This section reports on experiments carried out in the ground case with our

fixpoint algorithm. We demonstrate the Γ operator on 23 different ground APT-

programs automatically extracted from two different data sets using a slight im-

provement of the APT-EXTRACT algorithm from the previous chapter. We were

able to compute fixpoints of APT-programs consisting of over 1,000 ground rules in

about 20 minutes (see the left-hand side of Figure 3.5). Note that this is the time to

139

compute the fixpoint, not to perform a deduction (i.e., via the Λ operator), which

can be done for specific entailment queries, and would be faster.

This section is organized as follows. Section 3.6.1 describes our experimental

setup, data set, and how we extracted rules, integrity constraints, and ptf’s while

Section 3.6.2 examines the runtime of the fixpoint operator.

3.6.1 Experimental Setup

All experiments were run on multiple multi-core Intel Xeon E5345 proces-

sors at 2.33GHz, 8GB of memory, running the Scientific Linux distribution of the

GNU/Linux OS, kernel version 2.6.9-55.0.2.ELsmp.7 Our implementation consists

of approximately 4,000 lines of Java code (JDK 1.6.0).

Iraq Special Groups (ISW) This data-set contains daily counterinsurgency events

from Baghdad in 2007-2008. The event data was provided by the Institute for the

Study of War (ISW) and augmented with neighborhood data from the International

Medical Corps. The historical data was represented with 187 ground atoms over

567 days – which is the time granularity we used. Using the APT-Extract algorithm

(presented in the previous chapter), we extracted 3,563 ground rules using the efr

frequency function.

We considered 13 logic programs from this dataset; each smaller program is a

subset of any of the larger ones, so we have K1 ⊆ K2 ⊆ . . . ⊆ K12 ⊆ K13. In each

program, we included a prefix consisting of 50 worlds (for more on prefixes, refer to

7We note that this implementation makes use of only one processor and one core for a single

run, though different runs were distributed across the cluster.

140

Definition 34 on Page 107). The same prefix was used for each ISW program. We set

tmax = 60 for all ISW programs. Additionally, for all ground atoms appearing in a

given program, we added the appropriate block and occurrence integrity constraints.

Later we will present our extraction algorithms for these constraints.

Minorities at Risk Organizational Behavior (MAROB) This data set con-

tains yearly attributes for a variety of political and violent groups over a period of 25

years [181]. Overall, we have extracted over 21.4 million APT-rules from this data

set. These rules were also extracted using APT-EXTRACT with the efr frequency

function.

We considered 10 APT-logic programs from this dataset, each corresponding

to a different group. As each of these logic programs is associated with actions

for a specific group, all 10 of the MAROB programs are pairwise disjoint. In each

MAROB program, we included a unique prefix of 10 worlds specific to the group

in the program. We set tmax = 13 for each MAROB program. Block-size and

occurrence constraints were also included in each program. Tables 3.1-3.2 provides

some information on these APT-programs.

While integrity constraints (as with rules) could come from an expert, we

decided to extract our ICs from the data. We have included the straightforward

algorithms OC-EXTRACT and BLOCK-EXTRACT to show how we extracted occur-

rence and block-size IC’s (respectively) for each of the 187 atoms in the data set.

Proposition 25. OC-EXTRACT runs in time O((n− tmax) · tmax).

Proposition 26. There are no historical threads such that atom ai is satisfied by

141

Algorithm 11 Extracts occurrence constraints

OC-EXTRACT(ai ground atom ,W1, . . . ,Wn historical worlds, tmax maximum time),

returns natural numbers loi, upi

1. Set upi = 0 and loi = tmax

2. For i = 1, i ≤ n− tmax + 1, loop

(a) Set cur = 0

(b) For j = i, j < i+ tmax loop

i. If Wj |= ai, then cur = cur + 1

(c) If cur < loi then set loi = cur

(d) If cur > upi then set upi = cur

3. Return loi, upi

less than loi or more than upi worlds when loi, upi are produced by OC-EXTRACT.

Proposition 27. BLOCK-EXTRACT runs in time O(n).

Proposition 28. Given blki as returned by BLOCK-EXTRACT, there is no sequence

of blki or more consecutive historical worlds that satisfy atom ai.

3.6.2 Run Time Evaluation

To evaluate performance, for each logic program, we clocked 10 trials until Γ

reached a fixpoint. In all our trials, a fixpoint was reached after only two or three

applications (see Tables 3.1-3.2). We also note that the experimental relationship

142

0

10

20

30

40

50

60

0 200 400 600

0

200

400

600

800

1000

1200

1400

0 500 1000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Ground Rules

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Ground Rules

ISW MAROB

Figure 3.5: Number of ground rules vs. run time (Left: ISW, Right: MAROB). Note

these run-times include the full computation of the fixed point of the Γ operator.

between run time and the number of rules was linear – we conducted a statistical

R2-test for this and came up with an R2 value of 0.97 for ISW programs and 0.77

for MAROB programs (refer to Figure 3.5). We must point out that the disjoint

relationship among MAROB programs may account for why the run time relation-

ship is not as linear as that for the ISW programs. This graceful degradation in

performance is most likely due to the fact that the number of rules/ptfs that can

tighten the bound of a given rule or ptf is much smaller than the set of entire rules,

which makes the running time of the inner loop very small. Hence, for practical

purposes, the O(|K|2) is a loose bound; this worst case is likely to occur only in very

rare circumstances.

We checked entailment by looking at the probability bounds of formulas in

formula(K) (see Definition 42), which is obtained by finding the fixpoint for the

Γ operator on a consistent APT-program. After our initial runs of Γ on the 23

logic programs, we found that 21 of them were inconsistent. As inconsistencies are

143

Program Gr. Rules Post. Gr. Atoms Range of ∆t tmax Time Points Γ App.

K1 92 76 [2,10] 60 567 2

K2 102 76 [2,10] 60 567 3

K3 126 76 [2,10] 60 567 3

K4 144 76 [2,10] 60 567 2

K5 169 76 [2,10] 60 567 2

K6 214 76 [2,10] 60 567 3

K7 241 76 [2,10] 60 567 3

K8 278 76 [2,10] 60 567 3

K9 360 79 [2,10] 60 567 3

K10 503 80 [2,10] 60 567 3

K11 644 80 [2,10] 60 567 3

K12 816 80 [2,10] 60 567 3

K13 1081 84 [2,10] 60 567 3

Table 3.1: APT-logic programs used in the run time evaluations. Programs K1−K13

are based on the ISW data-set.

144

Program Gr. Rules Post. Gr. Atoms Range of ∆t tmax Time Points Γ App.

KH 586 189 [2,3] 13 23 3

KJ 679 192 [3,3] 13 25 2

KA 661 162 [2,3] 13 25 2

KB 163 175 [3,3] 13 24 2

KD 539 176 [3,3] 13 25 2

KFT 482 188 [2,3] 13 22 3

KFR 310 177 [3,3] 13 25 2

KHA 458 168 [3,3] 13 13 2

KHI 330 182 [2,3] 13 25 2

KK 94 181 [1,3] 13 25 3

Table 3.2: APT-logic programs used in the run time evaluations. The programs in

this table are based on the MAROB data-set.

145

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Ground Rules

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Ground Rules

ISW MAROB

0

200

400

600

800

1000

0 200 400 600
0

10

20

30

40

50

60

0 200 400 600

Figure 3.6: Number of ground rules vs. run time for entailment checking (Left: ISW,

Right: MAROB).

found in a constructive way (refer to Section 3.4.4 on Page 127), we could eliminate

rules that caused inconsistencies (we designate the “consistent” subset of a program

with a tick mark, i.e., K′2 is K2 with inconsistency-causing rules removed). Using

these “consistent” APT-programs, we first looked to revalue the performance of

the Γ operator for entailment. Unsurprisingly, as with the run time evaluation we

performed for consistency checking, we found that the run time was related linearly

to the number of ground rules considered. We obtained R2 values of 0.95 for ISW

programs and 0.94 for MAROB programs. See Figure 3.6 for details; run times are

based on the average of 10 trials for each logic program.

As a consequence of Definition 42 (Page 123), the logic program returned by

multiple applications of Γ includes several ptf’s not in the original program. These

ptf’s were either based on formulas seen in the rules, or atoms seen in the rules where

an integrity constraint forces the associated atomic ptf to be assigned probability

0. Many of these ptf’s have probability bounds tighter than [0, 1] – some extremely

146

0

50

100

150

200

250

300

350

400

450

500

K1' K2' K3' K4' K5' K6' K7' K8' K9' K10' K11' K12' K13'

Decision ptf's

u-l < 0.1

Figure 3.7: Attributes of ptf’s entailed by the different logic programs (ISW dataset)

tight. We note, as shown in Figure 3.7, that all of our ISW logic program produce

over 300 ptfs where the difference between ℓ and u is less than 0.1 (the number

steadily increases with larger ISW programs8). We also looked at “decision ptf’s”;

these are ptf’s where either ℓ ≤ 0.5 or u ≤ 0.5 – the intuition is that the probability

mass is either above or below 0.5, allowing a user to make a decision. The Γ operator

also was successful in producing many ptf’s of this type, producing well over 400 in

over half of the logic programs we considered from the ISW dataset.

8It is important to point out that all numbers of ptf’s with tight bounds are associated with a

world outside the range of the prefix.

147

Algorithm 12 Extracts block-size constraints

BLOCK-EXTRACT(ai ground atom ,W1, . . . ,Wn historical worlds),

returns natural number blki

1. Set cur = 0

2. Set best = 0

3. For i = 1, i ≤ n, loop

(a) If Wi |= ai

i. cur = cur + 1

(b) Else

i. If cur > best then set best = cur

ii. Set cur = 0

4. If cur > best set best = cur

5. Set blki = best+ 1

6. Return blki

148

3.7 Chapter 3 Related Work

In the previous chapter, we showed that APT-Logic distinguishes itself from

other temporal logics in the following ways: (i) It supports reasoning about probabil-

ity of events over time, (ii) Future worlds can depend on more than just the current

world (i.e., it does not assume the Markov property). (iii) It provides probability

bounds instead of a point probability. (iv) No independence assumptions are made.

[34] was the first effort to provide a declarative semantics for temporal prob-

abilistic LPs. We compared this work with APT-Logic in the previous chapter. No

implementation was proposed and thus no experimental results were studied.

[124] introduce an extension to the Situation Calculus for handling actions

with uncertain effects. The semantics of their logical language is given in terms of

a “Randomly Reactive Automaton”, which allows for probabilistic effects of actions

but has no notion of the current time apart from that implied by the sequence of

actions. They examine next move determination where the results of a move are

dependent on the move chosen as well as on draws from single or from multiple

distributions.

Santos and Young [148] propose the Probabilistic Temporal Network model

(PTNs), which allows to represent temporal (and atemporal) information in com-

bination with probabilistic semantics. PTNs are suitable for representing causality

constrained by time, conditions for the occurrence of events (and at what time they

occur), and periodic and recurrent processes. This model is based on Bayesian

networks (for the probabilistic aspect) and on work by Allen [3] on temporal in-

149

terval algebra for the temporal aspect. Even though this work’s goals overlap to

some extent with those of our own, the fundamental difference lies in the initial

assumptions made. In order to build a PTN, one must have available information

regarding dependencies, prior probabilities for all random variables, temporal causal

relationships between random variables in temporal aggregates, etc. The focus of

our work is to reason about events making no independence assumptions, and only

based on limited information relating small subsets of events. The PTN framework

is, however, very useful for scenarios in which the required information is avail-

able, as is the case in probabilistic reasoning with traditional Bayesian Networks.

The key aspect that separates APT-logic from PTN’s, is the fact that APT-logic

makes no assumptions about independence. For example, consider item 1 of

Theorem 8, one of the key building blocks of our fixpoint heuristic. In this case,

if I |= φ : [p, p] and ρ : [p′, p′], then I |= φ ∧ ρ : [max(0, p + p′ − 1),min(p, p′)]. If

we had assumed independence, then I |= φ ∨ ρ : [p2, p2] – clearly a different an-

swer and not appropriate for domains where we do not wish to make assumptions

about dependence/independence (i.e., the counter-insurgency data that we used for

our experiments). This also is our motivation for the use of probability intervals –

rather than point probabilities.

3.7.1 Work in Verification and PRISM

Logics merging time and probabilities have been studied quite a bit in the area

of verification. [173] was one of the pioneers in this, followed by many including

150

probabilistic CTL [65], and others [25]. Building on this work, Kwiatkowska et. al.

developed a tool known as PRISM [91, 92] to perform this type of model checking.

PRISM has the following characteristics:

1. The user specifies amodel - a discrete-time Markov chain (DTMC), continuous-

time Markov chain (CTMC) or Markov decision processes (MDP)

2. The user also specifies a property - which is normally a CTL formula

3. PRISM returns a value (normally a probability or expected value) associated

with the property

One can view our implementation in the same light - taking an APT-program

as a model, time formula as a property, and returning entailment bounds as the

value. However, PRISM operates under some very different assumptions than APT-

logic which are appropriate for some applications but not for all.

1. Themodel specified by the user in PRISM is a stochastic process that assumes

the Markov property - that is the probability of being in the next state only

depends on the current state and action. Conversely, an APT-program does

not assume the Markov property. Further, we demonstrated translations

from stochastic processes to APT-programs in Chapter 2. Also, in that chapter,

we showed how it is easy to construct a very simple APT-program where there

is no analogous MDP (using a natural construction).

2. Based on themodel specified by the user, PRISM also makes an independence

assumption. Suppose we are in initial state S1 and consider the following

151

sequence of states, actions, and probabilities in an MDP: S1
a→p1 S2

b→p2 S3

which states that “state 1 transitions to state 2 on action a with probability p1

and state 2 transitions to state on action b with probability p2.” PRISM would

calculate the probability of such a sequence - p1 · p2 - hence it has assumed

independence between the two transitions. Likewise, consider the formulas

F (S1), F (S2), F (S3) – formulas satisfied exactly by states S1, S2, S3. Using

the natural translation described in Chapter 2, we can create an analogous

APT-program as follows:

• (F (S1) ∧ a ∧ ¬b) : 1 ∧ F (S2) : 2 : [p1, p1]

• (F (S2) ∧ b ∧ ¬a) : 2 ∧ F (S3) : 3 : [p2, p2]

By item 1 of Theorem 8, the following ptf is tightly entailed:

(F (S1) ∧ a ∧ ¬b) : 1 ∧ (F (S2) ∧ b ∧ ¬a) : 2 ∧ F (S3) : 3 : [max(0, p1 + p2 −

1),min(p1, p2)]

With APT-logic, we allow for uncertainty - all we can say about the sequence

is it has a probability in [max(0, p1 + p2 − 1),min(p1, p2)] – which is clearly

different than p1 · p2.

3. The property specified by the user in PRISM is based on PCTL [12, 65].

Although there are constructs in PCTL that appear similar to the syntax of

APT-logic, as our semantics differ substantially, the statements have different

meanings. Even if an MDP is encoded in an APT-program, a “leads-to” PCTL

operator (which has a strikingly similar intuition to an APT-rule) has a very

152

different meaning. We explored the specifics of these differences in the previous

chapter.

Basically, PRISM is best suited for situations where the underlying model can

be represented as a stochastic process. Popular applications have included software

verification and certain biology problems that can be easily represented as stochastic

processes. APT-logic is best suited for situations where there are no independence

or Markov assumptions made about the model - which is often the case when we are

working with extracted rules. We have shown APT-logic to be viable for studying the

actions of militia groups in a counter-insurgency environment. Other applications

where APT-logic is well suited include policy analysis and stock price movement.

3.8 Chapter Summary

Logical reasoning with time and probabilities is essential in any application

where the occurrence of certain conditions at time t may cause or imply that other

phenomena may occur δ units in the future. There are numerous such applications

including ones relating to how stock markets will move in the future based on current

or past conditions, medicine where the condition of a patient in the future depends

on various things true now, behavior modeling where the behavior of an individual

or group in the future may depend on his current/past situation. In addition,

most applications where we reason about the future are fraught with uncertainty.

Annotated Probabilistic Temporal Logic (APT-logic for short) was introduced in the

previous chapter as a paradigm for reasoning about sentences of the form “If formula

153

F is true at time t, then formula G will be true at time ∆t with a probability in the

range [L,U].” More importantly, APT-logic programs were introduced in a manner

that did not require independence or Markovian assumptions, many of which are

inapplicable for several applications.

To date, no implementation of probabilistic temporal logic exists that does

not make use of Markovian or independence assumptions. To our knowledge, this

chapter represnt the first attempt at any implementation of such logics. However,

due to the high complexity of such reasoning (which may also explain why imple-

mentations may not exist), practical temporal probabilistic reasoning systems may

not always be complete.

In this chapter, we developed, implemented, and evaluated a fixpoint-based

heuristic for consistency and entailment problems in APT-logic programs. This

chapter makes the following contributions:

1. We show NP-completeness of the APT-logic consistency problem, and coNP-

completeness of the APT-logic entailment problem, extending hardness results

of the previous chapter.

2. We developed a fixpoint based heuristic from the following observations:

• The presence of ptf’s with the probability of 1 in an APT-program allows

us to tightly bound values for frequency functions.

• The bound on frequency functions, in turn, allows us to tighten the bounds

of elements in an APT-program

154

• The above two characteristics can be employed in an operator that maps

APT-programs to APT-programs and has a least fixed point

3. We developed consistency and entailment algorithms for the non-ground case.

4. We implemented our fixpoint heuristic and applied it to 23 real world APT-

logic programs derived automatically from two different real world data sets.

This suite of test programs was not written by us. Our experiments show that

our fixpoint based heuristical can calculate fixpoints in time roughly linear

w.r.t. the number of ground rules

5. We also show that using our implementation, we can solve the “tight entail-

ment problem” where the goal is to find the tightest interval [ℓ, u] such that

F : [t, ℓ, u] is entailed by an APT-logic program for a given time t and formula

F .

155

Chapter 4

Geospatial Abduction

In the previous two chapter, we explored temporal aspects of an agent’s be-

havior with APT logic. The next three chapters deal with spatial aspects of an

agent’s behavior. These chapters are primarily concerned with variants of geospa-

tial abduction problems - inferring unobserved geospatial locations associated with

agent behavior. In this chapter, we formalize the idea of geopspatial abduction and

study some natural problems associated with this framework.1

4.1 Chapter Introduction

There are numerous applications where we wish to draw geospatial inferences

from observations. For example, criminologists [144, 15] have found that there

are spatial relationships between a serial killer’s house (the geospatial inference we

wish to make), and locations where the crimes were committed (the observations).

1This chapter is based on [157] and [158] which were completed in cooperation with Maria Luisa

Sapino and V.S. Subrahmanian.

156

A marine archaeologist who finds parts of a wrecked ship or its cargo at various

locations (the observations) is interested in determining where the main portion of

the wreck lies (the geospatial inference). Wildlife experts might find droppings of an

endangered species such as the Malayan sun bear (observations) and might want to

determine where the bear’s den is (the geospatial inference to be made). In all these

cases, we are trying to find a single location that best explains the observations (or

the k locations that best explain the observations). There are two common elements

in such applications.

First, there is a set O of observations of the phenomena under study. For

the sake of simplicity, we assume that these observations are points where the phe-

nomenon being studied was known to have been present. Second, there is some

domain knowledge D specifying known relationships between the geospatial loca-

tion we are trying to find and the observations. For instance, in the serial killer

application, the domain knowledge might tell us that serial killers usually select

locations for their crimes that are at least 1.2 km from their homes and at most

3 km from their homes. In the case of the sun bear, the domain knowledge might

state that the sun bear usually prefers to have a den in a cave, while in the case of

the wreck, it might be usually within a radius of 10 miles of the artifacts that have

been found.

The geospatial abduction problem (GAP for short) is the problem of finding the

most likely set of locations that is compatible with the domain knowledge D and

that best “explains” the observations in O. To see why we look for a set of loca-

tions, we note that the serial killer might be using both his home and his office as

157

launching pads for his attacks. In this case, no single location may best account for

the observations. In this chapter, we show that many natural problems associated

with geospatial abduction are NP-Complete, which cause us to resort to approxima-

tion techniques. We then show that certain geospatial abduction problems reduce

to several well-studied combinatorial problems that have viable approximation algo-

rithms. We implement some of the more viable approaches with heuristics suitable

for geospatial abduction, and test them on a real-world data-set. The organization

and main contributions of this chapter are as follows.

• Section 4.1.1 formally defines geospatial abduction problems (GAPs for short) and

Section 4.2 analyzes their complexity.

• Section 4.3 develops a “naive” algorithm for a basic geospatial abduction problem

called k-SEP and shows reductions to set-covering, dominating set, and linear-

integer programming that allow well-known algorithms for these problems to be

applied to GAPs.

• Section 4.4 describes two greedy algorithms for k-SEP and compares them to a

reduction to the set-covering problem.

• Section 4.5 describes our implementation and shows that our greedy algorithms

outperform the set-covering reduction in a real-world application on identifying

weapons caches associated with Improvised Explosive Device (IED) attacks on

US troops in Iraq. We show that even if we simplify k-SEP to only cases where

k-means classification algorithms work, our algorithms outperform those. We

also note that k-means can only be applied to geospatial abduction in certain,

158

restricted cases as a heuristic with no approximation guarantee. Such cases are

quite limited as the sociol-culutral variables encoded is a feasibility overlay cannot

be incorporated into the input of a k-means algorithm.

• Section 4.6 compares our approach with related work.

4.1.1 Geospatial Abduction Problem (GAP) Definition

Throughout this chapter, we assume the existence of a finite, 2-dimensional

M × N space S2 for some integers M,N ≥ 1 called the geospatial universe (or

just universe). Each point p ∈ S is of the form (x, y) where x, y are integers and

0 ≤ x ≤M and 0 ≤ y ≤ N . We assume that all observations we make occur within

space S. We use the space shown in Figure 4.1 throughout this chapter to illustrate

the concepts we introduce. We assume that S has an associated distance function

d which assigns a non-negative distance to any two points and satisfies the usual

distance axioms.3

Definition 51 (observation). An observation O is any finite subset of S.

Consider the geospatial universe shown in Figure 4.1. In the serial killer ap-

plication, the red dots would indicate the locations of the murders, while in the

ship-wreck example, they would indicate the locations where artifacts were found.

We wish to identify the killer’s location (or the sunken ship or the sun bear’s den).

2We use integer coordinates as most real world geospatial information systems (GIS) systems

use discrete spatial representations.
3d(x, x) = 0; d(x, y) = d(y, x); d(x, y) + d(y, z) ≥ d(x, z).

159

 0 4 8 12 16

 12

 8

 4

Figure 4.1: A space. Red dots denote observations. Yellow squares denote infeasible

locations. Green stars show one (0,3) explanation, while pink triangles show another

(0,3) explanation.

As mentioned earlier, there are many constraints that govern where such lo-

cations might be. For instance, it is unlikely that the sun-bear’s den (or the killer’s

house or office) is in the water, while the sunken ship is unlikely to be on land.

Definition 52 (feasibility predicate). A feasibility predicate feas is a function from

S to {TRUE, FALSE}.

Thus, feas(p) = TRUE means that point p is feasible and must be considered

in the search. Figure 4.1, denotes infeasible places via a yellow square. Throughout

this chapter, we assume that feas is an arbitrary, but fixed predicate.4 Further, as

feas is defined as a function over {TRUE, FALSE}, it can allow for user input based

4We also assume throughout the chapter that feas is computable in constant time. This is a

realistic assumption, as for most applications, we assume feas to be user-defined. Hence, we can

leverage a data-structure indexed with the coordinates of S to allow for constant-time computation.

160

on analytical processes currently in place. For instance, in the military, analysts

often create “MCOO” overlays where “restricted terrain” is deemed infeasible [170].

We can also easily express feasibility predicates in a Prolog-style language – we

can easily state (in the serial killer example) that point p is considered feasible if

p is within R units of distance from some observation and p is not in the water.

Likewise, in the case of the sun bear example, the same language might state that p

is considered feasible if p is within R1 units of distance from marks on trees, within

R2 units of scat, and if p has some landcover that would allow the bear to hide.

A Prolog-style language that can express such notions of feasibility is the hybrid

knowledge base paradigm [108] in which Prolog style rules can directly invoke a GIS

system.

Definition 53 ((α, β) explanation). Suppose O is a finite set of observations, E is

a finite set of points in S, and α ≥ 0, β > 0 are some real numbers. E is said to be

an (α, β) explanation of O iff:

• p ∈ E implies that feas(p) = TRUE, i.e. all points in E are feasible and

• (∀o ∈ O)(∃p ∈ E) α ≤ d(p, o) ≤ β, i.e. every observation is neither too close nor

too far from some point in E .

Thus, an (α, β) explanation is a set of points (e.g. denoting the possible

locations of the home/office of the serial killer or the possible locations of the bear’s

den). Each point must be feasible and every observation must have an analogous

point in the explanation which is neither too close nor too far.

161

Given an (α, β) explanation E , there may be an observation o ∈ O such that

there are two (or more) points p1, p2 ∈ E satisfying the conditions of the second

bullet above. If E is an explanation for O, a partnering function ℘E is a function

from O to E such that for all o ∈ O, α ≤ d(℘E(o), o) ≤ β. ℘E(o) is said to be o’s

partner according to the partnering function ℘E . We now present a simple example

of (α, β) explanations.

Example 4.1.1. Consider the observations in Figure 4.1 and suppose α = 0, β = 3.

Then the two green stars denote an (α, β) explanation, i.e. the set {(6, 6), (12, 8)} is

a (0, 3) explanation. So is the set of three pink triangles, i.e. the set {(5, 6), (10, 6),

(13, 9)} is also an (0, 3) explanation.

The basic problem that we wish to solve in this chapter is the following.

The Simple (α, β) Explanation Problem (SEP).

INPUT: Space S, a set O of observations, a feasibility predicate feas, and numbers

α ≥ 0, β > 0.

OUTPUT: “Yes” if there exists an (α, β) explanation for O — “no” otherwise.

A variant of this problem is the k-SEP problem which requires, in addition,

that E contains k elements or less, for k < |O|. Yet another variant of the problem

tries to find an explanation E that is “best” according to some cost function.

Definition 54 (cost function χ). A cost function χ is a mapping from explanations

to non-negative reals.

162

We will assume that cost functions are designed so that the smaller the value

they return, the more desirable an explanation is. Some example cost functions are

given below. The simple one below merely looks at the mean distances between

observations and their partners.

Example 4.1.2 (Mean-distance). Suppose S,O, feas, α, β are all given and suppose

E is an (α, β) explanation for O and ℘E is a partnering function. We could initially

set the cost of an explanation E (with respect to this partnering function) to be:

χ℘E
(E) =

Σo∈O d(o, ℘E(o))

|O| .

Suppose ptn(E) is the set of all partner functions for E in the above setting. Then

we can set the cost of E as:

χmean(E) = inf{χ℘E
(E) | ℘E ∈ ptn(E)}.

The above definition removes reliance on a single partnering function as there

may be several partnering functions associated with a single explanation. We illus-

trate this definition using our sun bear example.

Example 4.1.3. Wildlife experts have found droppings and other evidence of the

Malayan sun bear in a given space, S, depicted in Figure 4.2. Points {o1, o2, o3}

indicate locations of evidence of the Malayan sun bear (we shall refer to these as set

O). Points {p1, p2, . . . , p8} indicate feasible dwellings for the bear. The concentric

rings around each element of O indicate the distance α = 1.7km and β = 3.7km.

The set {p3, p6} is a valid (1.7, 3.7) explanation for the set of evidence, O. However,

we note that observation o2 can be partnered with either point. If we are looking to

163

Figure 4.2: Left: Points {o1, o2, o3} indicate locations of evidence of the Malayan

sun bear (we shall refer to these as set O). Points {p1, p2, . . . , p8} indicate feasible

dwellings for the bear. The concentric rings around each element of O indicate the

distance α = 1.7km and β = 3.7km. Right: Points {p1, p2, p3} are feasible for

crime-scenes {o1, o2}. {p1, p2} are safe-houses within a distance of [1, 2] km. from

crime scene o1 and {p2, p3} are safe-houses within a distance of [1, 2] km. from crime

scene o2.

minimize distance, we notice that d(o2, p3) = 3km and d(o2, p6) = 3.6km, hence p3

is the partner for o2 such that the distance is minimized.

We now define an “optimal” explanation as one that minimizes cost.

Definition 55. Suppose O is a finite set of observations, E is a finite set of points

in S, α ≥ 0, β > 0 are some real numbers, and χ is a cost function. E is said to be

an optimal (α, β) explanation iff E is an (α, β) explanation for O and there is no

other (α, β) explanation E ′ for O such that χ(E ′) < χ(E).

164

We present an example of optimal (α, β) explanations below.

Example 4.1.4. Consider the sun bear from Example 4.1.3 whose behavior is de-

picted in Figure 4.2 (left). While {p3, p6} is a valid solution for the k-SEP problem

(k = 2), it does not optimize mean distance. In this case the mean distance would

be 3km. However, the solution {p3, p7} provides a mean-distance of 2.8km.

Suppose we are tracking a serial killer who has struck at locations O = {o1, o2}.

The points {p1, p2, p3} are feasible locations as safe-houses for the killer (partners).

This is depicted in Figure 4.2 (right). Based on historical data, we know that serial

killers strikes are at least 1km away from a safe-house and at most 2km from the

safe house (α = 1, β = 2). Thus, for k = 2, any valid explanation of size 2 provides

an optimal solution wrt mean-distance as every feasible location for a safe-house is

within 2km of a crime scene.

We are now ready to define the cost-based explanation problem.

The Cost-based (α, β) Explanation Problem.

INPUT: Space S, a setO of observations, a feasibility predicate feas, numbers α ≥ 0,

β > 0, a cost function χ and a real number v > 0.

OUTPUT: “Yes” if there exists an (α, β) explanation E for O such that χ(E) ≤ v

— “no” otherwise.

It is easy to see that standard classification problems like k-means 5 can be

captured within our framework by simply assuming that α = 0, β > max(M,N)2

5See [4] for a survey on classification work.

165

and that all points are feasible. In contrast, standard classification algorithms cannot

take feasibility into account - and this is essential for the above types of applications.

4.2 Complexity of GAP Problems

SEP can be easily solved in PTIME. Given a set O of observations, for each

o ∈ O, let Po = {p ∈ S | feas(p) = TRUE ∧ α ≤ d(p, o) ≤ β}. If Po 6= ∅ for each

o, we return “yes”. We call this algorithm STRAIGHTFORWARD-SEP. Another

algorithm would merely find the set F of all feasible points and return “yes” iff for

every observation o, there is at least one point p ∈ F such that α ≤ d(p, o) ≤ β. In

this case, F is the explanation produced - but it is a very poor explanation. In the

serial killer example, F merely tells the police to search all feasible locations without

trying to do anything intelligent. k-SEP allows the user to constrain the size of the

explanation so that “short and sweet” explanations that are truly meaningful are

produced. The following result states that k-SEP is NP-Complete - the proof is a

reduction from Geometric Covering by Discs (GCD) [76].

Theorem 19. k-SEP is NP-Complete.

In the associated optimization problem with k-SEP, we wish to produce an

explanation of minimum cardinality. Note that minimum cardinality is a common

criterion for parsimony in abduction problems [141]. We shall refer to this problem

as MINSEP. This problem is obviously NP-hard by Theorem 19. We can adjust

STRAIGHTFORWARD-SEP to find a solution to MINSEP by finding the minimum

hitting set of the Po’s.

166

Example 4.2.1. Consider the serial killer scenario in Example 4.1.4 and Figure 4.2

(right). Crime scene (observation) o1 can be partnered with two possible safe-houses

{p1, p2} and crime scene o2 can be partnered with {p2, p3}. We immediately see that

the potential safe house located at p2 is in both sets. Therefore, p2 is an explanation

for both crime scenes. As this is the only such point, we conclude that {p2} is the

minimum-sized solution for the SEP problem. However, while it is possible for

STRAIGHTFORWARD-SEP to return this set, there are no assurances it does. As

we saw in Example 4.1.4, E = {p1, p2} is a solution to SEP, although a solution

with lower cardinality ({p2}) exists. This is why we introduce the MINSEP problem.

With the complexity of k-SEP, the following corollary tells us the complexity

class of the Cost-based Explanation problem. We show this reduction by simply

setting the cost function χ(E) = |E|.

Corollary 6. Cost-based Explanation is NP-Complete.

As described earlier, MINSEP has the feel of a set-covering problem. Although

the generalized cost-based explanation cannot be directly viewed with a similar in-

tuition (as the cost maps explanations to reals – not elements of S), there is an

important variant of the Cost-based problem that does. We introduce weighted

SEP, or WT-SEP below.

Weighted Spatial Explanation. (WT-SEP)

INPUT: A space S, a set O of observations, a feasibility predicate feas, numbers

α ≥ 0, β > 0, a weight function c : S → ℜ, and a real number v > 0.

167

OUTPUT: “Yes” if there exists an (α, β) explanation E for O such that
∑

p∈E c(p) ≤

v — “no” otherwise.

In this case, we can easily show NP-Completeness by reduction from k-SEP,

we simply set the weight for each element of S to be one, causing
∑

p∈E c(p) to equal

the cardinality of E .

Corollary 7. WT-SEP is NP-Complete.

Cost-based explanation problems presented in this section are very general.

While the complexity results hold for an arbitrary function in a general case, we

also consider specific functions as well. Below we present the total-distance min-

imization explanation problem (TD-SEP). This is a problem where we seek to

minimize the sum of distances between observations and their closest partners while

imposing a restriction on cardinality.

Total Distance Minimization Explanation Problem. (TD-SEP)

For space S, let d : S × S → ℜ be the Euclidean distance between two points in S.

INPUT: A space S, a set O of observations, a feasibility predicate feas, numbers

α ≥ 0, β > 0, positive integer k < |O|, and real number v > 0.

OUTPUT: “Yes” if there exists an (α, β) explanation E for O such that |E| = k and

∑

oi∈Ominpj∈E d(oi, pj) ≤ v — “no” otherwise.

Theorem 20. TD-SEP is NP-Complete.

The NP-hardness of the TD-SEP is based on a reduction from the k-Median

168

Problem [134]. This particular reduction (details in the appendix) also illustrates

how the k-median problem is a special case of GAPs, but k-median problems cannot

handle arbitrary feasibility predicates of the kind that occur in real-life geospatial

reasoning. The same argument applies to k-means classifiers as well.

4.3 Exact Algorithm for GAP Problems

This section presents four exact approaches to solve k-SEP and WT-SEP.

First, we provide an enumerative approach that exhaustively searches for an expla-

nation. Then, we show that the problem reduces to set-cover, dominating set, and

linear-integer programming. Existing algorithms for these problems can hence be

used directly. Throughout this section, we shall use the symbols ∆ to represent the

bound on the number of partners that can be associated with a single observation

and f to represent the bound on the number of observations supported by a single

partner. Note that both values are bounded by π(β2 − α2), however they can be

much less in practice – specifically f is normally much smaller than ∆.

4.3.1 Naive Exact Algorithm

We now show correctness of NAIVE-KSEP-EXACT. This algorithm provides

an exact solution to k-SEP but takes exponential time (in k). The algorithm first

identifies a set L of all elements of S that could be possible partners for O. Then, it

considers all subsets of L of size less than or equal to k. It does this until it identifies

one such subset as an explanation.

169

Algorithm 13 (NAIVE-KSEP-EXACT)
INPUT: Space S, a set O of observations, a feasibility predicate feas, real numbers α ≥ 0, β > 0, and natural

number k > 0

OUTPUT: Set E ⊆ S of size k (or less) that explains O

1. Let M be a matrix array of pointers to binary string {0, 1}|O|. M is of the same dimensions as S. Each

element in M is initialized to NULL. For a given p ∈ S, M [p] is the place in the array.

2. Let L be a list of pointers to binary strings. L is initialized as null.

3. For each oi ∈ O do the following

(a) Determine all points p ∈ S such that α ≤ d(o, p) ≤ β such that feas(p) = TRUE.

(b) For each of these points, p, if M [p] = NULL then initialize a new array where only bit i is set to 1.

Then add a pointer to M [p] in L.

(c) Otherwise, set bit i of the existing array to 1.

4. For any k elements of L (actually the k elements pointed to by elements of L), we shall designate

ℓ1, . . . , ℓj , . . . ℓk as the elements. We will refer to the ith bit of element ℓj as ℓj(i).

5. Exhaustively generate all possible combinations of k elements of L until one such combination is found

where ∀i ∈ [1, |O|], ∑k
j=1(ℓj(i)) > 0

6. If no such combination is found, return NO. Otherwise, return the first combination that was found.

170

Proposition 29. If there is a k-sized simple (α, β) explanation for O, then NAIVE-

KSEP-EXACT returns an explanation. Otherwise, it returns NO.

Finally, we have the complexity of the algorithm.

Proposition 30. The complexity of NAIVE-KSEP-EXACT is O(1
(k−1)!(π(β

2−α2)|O|)(k+1)).

An exact algorithm for the cost-based explanation problems follows trivially

from the NAIVE-KSEP-EXACT algorithm by adding the step of computing the value

for χ for each combination. Provided this computation takes constant time, this

does not affect the O(1
(k−1)!(π(β

2 − α2)|O|)(k+1)) run time of that algorithm.

4.3.2 An Exact Set-Cover Based Approach

We now show that k-SEP polynomially reduces to an instance of the popular

set-covering problem [80] which allows us to directly apply the well-known greedy

algorithm reviewed in [136]. SET COVER is defined as follows.

The Set-Cover Problem. (SET COVER)

INPUT: Set of elements, E and a family of subsets of E, F ≡ {S1, . . . , Smax}, and

positive integer k.

OUTPUT: “Yes” if there exists a k-sized subset of F , Fk, such that
⋃k

i=1{Si ∈

Fk} ≡ E.

Through a simple modification of NAIVE-KSEP-EXACT, we can take an in-

stance of k-SEP and produce an instance of SET COVER. We run the first four

171

steps, which only takes O(∆ · |O|) time by the proof of Proposition 30.

Theorem 21. k-SEP polynomially reduces to SET COVER.

Example 4.3.1. Consider the serial killer scenario in Example 4.1.4 and Figure 4.2

(right). Suppose we want to solve this problem as an instance of k-SEP by a reduc-

tion to set-cover. We consider the set of crime-scene locations, O ≡ {o1, o2} as the

set we wish to cover. We obtain our covers from the first four steps of NAIVE-KSEP-

EXACT. Let us call the result list L. Hence, we can view the values of the elements

in L as the following sets S1 ≡ {o1}, S2 ≡ {o1, o2}, S3 ≡ {o2}. These correspond

with points p1, p2, p3 respectively. As S2 covers O, p2 is an explanation.

The traditional approach for approximation of set-cover has a time complexity

of O(|E| · |F | · size), where size is the cardinality of the largest set in the family

F (i.e. size = maxi≤|F | |Si|). This approach obtains an approximation ratio of 1 +

ln(size) [136]. As f is the quantity of the largest number of observations supported

by a single partner, the approximation ratio for k-SEP using a greedy-scheme after a

reduction from set-cover is 1+ln(f). The NAIVE-KSEP-SC algorithm below leverages

the above reduction to solve the k-SEP problem.

Proposition 31. NAIVE-KSEP-SC has a complexity of O(∆ · f · |O|2) and an ap-

proximation ratio of 1 + ln(f).

Proposition 32. A solution E to NAIVE-KSEP-SC provides a partner to every ob-

servation in O if a partner exists – otherwise, it returns IMPOSSIBLE.

The algorithm NAIVE-KSEP-SC is a naive, straight-forward application of the

O(|E|·|F |·size) greedy approach for set-cover as presented in [136]. We note that it is

172

Algorithm 14 (NAIVE-KSEP-SC)
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0, β > 0

OUTPUT: Set E ⊆ S that explains O

1. Initialize list E to null. Let M be a matrix array of the same dimensions as S of lists of pointers initialized

to null. For a given p ∈ S, M [p] is the place in the array. Let L be a list of pointers to lists in M , L is

initialized to null.

2. Let O′ be an array of Booleans of length |O|. ∀i ∈ [1, |O|], initialize O′[i] = TRUE. For some element o ∈ O,

O′[o] is the corresponding space in the array. Let numObs = |O|

3. For each element o ∈ O, do the following.

(a) Determine all elements p ∈ S such that feas(p) = TRUE and d(o, p) ∈ [α, β]

(b) If there does not exist a p ∈ S meeting the above criteria, then terminate the program and return

IMPOSSIBLE.

(c) If M [p] = null then add a pointer to M [p] to L

(d) Add a pointer to o to the list M [p].

4. While numObs > 0 loop

(a) Initialize pointer cur ptr to null, integer cur size to 0

(b) For each ptr ∈ L, do the following:

i. Initialize integer this size to 0, let M [p] be the element of M pointed to by ptr

ii. For each obs ptr in the list M [p], do the following

A. Let i be the corresponding location in array O′ to obs ptr

B. If O′[i] = TRUE, increment this size by 1

iii. If this size > cur size, set cur size = this size and have cur ptr point to M [p]

(c) Add p to E

(d) For every obs ptr in the list pointed to by cur ptr, do the following:

i. Let i be the corresponding location in array O′ to obs ptr

ii. If O′[i], then set it to FALSE and decrement numObs by 1

(e) Add the location in space S pointed to by cur ptr to E

5. Return E

173

possible to implement a heap to reduce the time-complexity to O(∆·f ·|O|·lg(∆·|O|))

- avoiding the cost of iterating through all possible partners in the inner-loop.

In addition to the straightforward greedy algorithm for set-covering, there

are several other algorithms that provide different time complexity/approximation

ratio combinations. However, with a reduction to the set-covering problem we must

consider the result of [113] which states that set-cover cannot be approximated

within a ratio c · log(n) for any c < 0.25 (where n is the number of subsets in the

family F) unless NP ⊆ DTIME[npoly log n].

A reduction to set-covering has the advantage of being straightforward. It

also allows us to leverage the wealth of approaches developed for this well-known

problem. In the next section, we show that k-SEP reduces to the dominating set

problem as well. We then explore alternate approximation techniques based on this

reduction.

4.3.3 An Exact Dominating Set Based Approach

We show below that k-SEP also reduces to the well known dominating set

problem (DomSet) [54] allowing us to potentially leverage fast algorithms such as

the randomized-distributed approximation scheme in [75]. DomSet is defined as

follows.

Dominating Set. (DomSet)

INPUT: Graph G = (V,E) and positive integer K ≤ |V |.

174

OUTPUT: “Yes” if there is a subset V ′ ⊂ V such that |V ′| ≤ K and such that every

vertex v ∈ V − V ′ is joined to at least one member of V ′ by an edge in E.

As the dominating set problem relies on finding a certain set of nodes in a

graph, then, unsurprisingly, our reduction algorithm, Algorithm 15, takes space S,

an observation set O, feasibility predicate feas, and numbers α, β and returns graph

GO based on these arguments.

We now present an example to illustrate the relationship between a dominating

set of size k in GO and a k-sized simple (α, β) explanation for O. The following

example illustrates the relationship between a k-SEP problem and DomSet.

Example 4.3.2. Consider the serial killer scenario in Example 4.1.4, pictured in

Figure 4.2 (right). Suppose we want to solve this problem as an instance of k-SEP

by a reduction to DomSet. We want to find a 1-sized simple (α, β) explanation

(safe-house) for O (the set of crime scenes, {o1, o2}). Suppose that after running

an algorithm such as STRAIGHFORWARD-SEP, we find that {p1, p2, p3} are elements

of S that are feasible. {p1, p2} are all within a distance of α, β from o1 and {p2, p3}

are all within a distance of α, β from o2. We run KSEP-TO-DOMSET which creates

graph, GO. Refer to Figure 4.3 for the graph. We can see that {p2} is a 1-sized

dominating sets for GO, hence a 1-sized explanation for O.

We notice that the inner loop of KSEP-TO-DOMSET is bounded by O(∆)

operations and the outer loop will iterate |O| times. Thus, the complexity of KSEP-

TO-DOMSET is O(∆ · |O|).

175

Figure 4.3: Results of KSEP-TO-DOMSET based on data seen in Figure 4.2 (right).

Note that {p1, p2, p′1, p′2} form a complete graph and {p2, p3, p′′2, p′3} also form a com-

plete graph. Note that {p2} is a dominating set of size 1. Hence, {p2} is a 1-sized

simple (α, β) explanation for O, as depicted in Figure 4.2 (right).

Proposition 33. The complexity of KSEP-TO-DOMSET is O(∆ · |O|).

Example 4.3.2 should give us some intuition into why the reduction to Dom-

Set works. We provide the formal proof in the Appendix.

Theorem 22. k-SEP is polynomially reducible to DomSet.

The straightforward approximation scheme for DomSet is to view the prob-

lem as an instance of SET COVER and apply a greedy algorithm. The reduction

would view the set of vertices in GO as the elements, and the family of sets as each

vertex and its neighbors. This results in both a greater complexity and a worse

approximation ratio when compared with the reduction directly to SET COVER.

Proposition 34. Solving k-SEP by a reduction to DomSet using a straight-

forward greedy approach has time-complexity O(∆3 · f · |O|2) and an approximation

ratio bounded by O(1 + ln(2 · f ·∆)).

There are other algorithms to approximate DomSet [75, 89]. By leveraging

[75], we can obtain an improved complexity while retaining the same approximation

176

ratio as the greedy approach.

Proposition 35. Solving k-SEP by a reduction to DomSet using the distributed,

randomized algorithm presented in [75] has a time complexity O(∆ · |O|+ ln(2 ·∆ ·

|O|) · ln(2 ·∆ ·f)) with high probability and approximation ratio of O(1+ln(2 ·f ·∆)).

Hence, although a reduction to dominating set generally gives us a worse

approximation guarantee, we can (theoretically) outperform set-cover with the ran-

domized algorithm for dominating set in terms of complexity.

4.3.4 An Exact Integer Linear Programming based Approach

Given an instance of k-SEP, we show how to create a set of integer constraints

that if solved, will yield a solution to the problem.

Definition 56 (OPT-KSEP-IPC). The k-SEP integer programming constraints (OPT-

KSEP-IPC) require the following information, obtained in O(|O| · π(β2 − α2) time:

• Let L be the set of all possible partners generated in the first four steps of NAIVE-

KSEP-EXACT.

• For each p ∈ L, let str(p) be the string of |O| bits, where bit str(p)i is 1 if p is

a partner of the ith observation (this is also generated in the first four steps of

NAIVE-KSEP-EXACT).

For each pj ∈ L, let xj ∈ {0, 1}. xj = 1 iff pj is in E .

Then KSEP-IPC consists of the following:

Minimize
∑

pj∈L xj subject to

177

1. ∀oi ∈ O,
∑

pj∈L xj · str(pj)i ≥ 1

2. ∀pj ∈ L, xj ∈ {0, 1} (for the relaxed linear program: xj ≤ 1)

Proposition 36. OPT-KSEP-IPC consists of O(|O|π(β2−α2)) variables and O(|O|·

π(β2 − α2)) constraints.

Proposition 37. For a given instance of the optimization version k-SEP, if OPT-

KSEP-IPC is solved, then
⋃

pj∈Lxj=1
pj is an optimal solution to k-SEP.

Example 4.3.3. Consider the serial killer scenario in Example 4.1.4, pictured in

Figure 4.2 (right). Suppose we want to solve this problem as an instance of MINSEP.

We would set up the constraints as follows:

Minimize x1+x2+x3 subject to 1·x1+1·x2+0·x3 ≥ 1 and 0·x1+1·x2+1·x3 ≥ 1,

where x1, x2, x3 ∈ {0, 1}

Obviously, setting x1 = 0, x2 = 1, x3 = 0 provides an optimal solution. Hence, as x2

is the only non-zero variable, p2 is the explanation for the crime-scenes.

A solution to the constraints OPT-KSEP-IPC can be approximated using the

well-known “rounding” technique [68, 174] that relaxes constraints. We present an

OPT-KSEP-IPC using rounding.

Proposition 38. NAIVE-KSEP-ROUND returns an explanation for O that is within

a factor ∆ from optimal, where ∆ is the maximum number of possible partners

associated with any observation.

There are several things to note about this approach. First, it can be easily

adapted to many of the weighted variants - such as WT-SEP. Second, we note

178

that the rounding algorithm is not a randomized rounding algorithm – which often

produces a solution that satisfies all of the constraints in the linear-integer program.

The above algorithm guarantees that all of the observations will be covered (if an

explanation exists). Finally, this approach allows us to leverage numerous software

packages for solving linear and linear-integer programs.

179

Algorithm 15 (KSEP-TO-DOMSET)

INPUT: Space S, a set O of observations, a feasibility predicate feas, and real

numbers α ≥ 0, β > 0

OUTPUT: Graph GO for use in an instance of a DomSet problem

1. Let GO = (VO, EO) be a graph. Set VO = S and EO = ∅.

2. Let S be a mapping defined as S : S → VO. In words, S takes elements of the

space and returns nodes from GO as defined in the first step. This mapping does

not change during the course of the algorithm.

3. For each oi ∈ O do the following

(a) Determine all points p ∈ S that are such that α ≤ d(o, p) ≤ β. Call this set Pi

(b) For all p ∈ Pi calculate feas(p). If feas(p) = FALSE, remove p from Pi.

(c) Let Vi = {v ∈ VO|∃p ∈ Pi such that S(p) = v}.

(d) Add |Pi| new nodes to VO. Add these nodes to Vi as well.

(e) For every pair of nodes v1, v2 ∈ Vi, add edge (v1, v2) to EO.

4. Remove all v ∈ VO where there does not exist an v′ such that (v, v′) ∈ EO

5. If any Pi ≡ ∅ return IMPOSSIBLE. Otherwise return GO.

180

Algorithm 16 (NAIVE-KSEP-ROUND)

INPUT: Space S, a set O of observations, a feasibility predicate feas, and real

numbers α ≥ 0, β > 0

OUTPUT: Set E ⊆ S that explains O

1. Run the first four steps of NAIVE-KSEP-EXACT

2. Solve the relaxation of OPT-KSEP-IPC

3. For the o ∈ O with the most possible partners, let ∆ be the number of possible

partners associated with o. This can be done in line 1

4. Return all pj ∈ L where xj ≥ 1
∆

181

4.4 Greedy Heuristics for GAP Problems

4.4.1 A Linear Time Greedy Approximation Scheme

In this section, we introduce a greedy approximation scheme for the optimiza-

tion version of k-SEP that has a lower time-complexity than NAIVE-KSEP-SC but

still maintains the same approximation ratio. Our GREEDY-KSEP-OPT1 algorithm

runs in linear time w.r.t. O. The key intuition is that NAIVE-KSEP-SC iterates

through O(∆ · |O|) possible partners in line 4. Our algorithm first randomly picks

an observation and then greedily selects a partner for it. This results in the greedy

step iterating through only O(∆) partners.

Example 4.4.1. Consider the sun bear from Example 4.1.3 and Figure 4.2. After

initializing the necessary data structures in lines 1-3, GREEDY-KSEP-OPT1 iterates

through the observations in O where the associated position in O′ is TRUE. Suppose

the algorithm picks o1 first. It now accesses the list pointed to from OBS[o1]. This

gives us a set of pointers to the following elements of S: {p1, p2, p3, p4}. Following

the greedy selection outlined in line 4 of NAIVE-KSEP-SC, the algorithm iterates

through these points, visiting the list of observations associated with each one in the

matrix array M .

First, the algorithm accesses the list pointed to by M [p1]. Figure 4.4 (left)

shows the observations considered when p1 is selected. As there is only one observa-

tion in list M [p1] whose associated Boolean in O′ is TRUE, the variable cur size is

set to 1 (see line 4(b)iii of NAIVE-KSEP-SC). cur ptr is then set to M [p1].

182

Algorithm 17 (GREEDY-KSEP-OPT1)

INPUT: Space S, a set O of observations, a feasibility predicate feas, and real

numbers α ≥ 0, β > 0

OUTPUT: Set E ⊆ S that explains O

1. Run lines 1-2 of NAIVE-KSEP-SC

2. Let OBS be an array, size |O| of lists to pointers in M . For some observation o, let

OBS[o] be the corresponding list in the array.

3. Run the loop in line 3 of NAIVE-KSEP-SC but when partner p of observation o

is considered, add a pointer to M [p] in the list OBS[o]. The list L need not be

maintained.

4. While numObs > 0 loop

(a) Randomly select an element o ∈ O such that O′[o] = TRUE

(b) Run the greedy-selection loop of line 4 of NAIVE-KSEP-SC, but consider the

list OBS[o] instead of L

5. Return E

183

Figure 4.4: Left: GREEDY-KSEP-OPT1 accesses the list pointed to by M [p1] thus

considering all observations available to p1. Right: GREEDY-KSEP-OPT1 accesses

the list pointed to by M [p2] and finds it has more active observations than it found

in the list pointed to by M [p1].

Now we consider the next element, p2. Figure 4.4 (right) shows the list pointed

to by M [p2]. As M [p2] points to more observations whose associated O′ Boolean is

TRUE, we update cur size to 2 and cur ptr to M [p2].

The algorithm then iterates through p3 and p4, but finds they do not offer more

observations than p2. Hence, p2 is added to the solution set (E). The algorithm

updates the array of Booleans, O′ and sets O′[o1] and O′[o2] to FALSE (depicted by

X’s over those observations in subsequent figures). numObs is decremented by 2.

Now, we enter the second iteration of line 4. The only element for the algo-

rithm to pick at this point is o3, as only O′[o3] is TRUE. The list OBS[o3] points

to the positions {p6, p7, p8}. In Figure 4.5 we look at what happens as the algo-

rithm considers the p7. As OBS[o2] = FALSE, it only considers o3 when computing

this size.

When the algorithm finishes its consideration of all the elements pointed to

184

Figure 4.5: GREEDY-KSEP-OPT1 considers the observations available to p7. The

X’s on o1 and o2 signify that OBS[o1] and OBS[o2] are set to FALSE.

by OBS[o3], it will return the first element of that set (p6) as neither p7 nor p8

were partners to more available observations than p6 (in our implementation of this

algorithm, we use a coin-flip to break ties among partners with the same number of

observations). GREEDY-KSEP-OPT1 then adds p6 to E and terminates. The final

solution returned, {p2, p6}, is a valid (and in this case, optimal) explanation.

Proposition 39 (Complexity of GREEDY-KSEP-OPT1). GREEDY-KSEP-OPT1 has

a complexity of O(∆ · f · |O|) and an approximation ratio of 1 + ln(f).

Proposition 40. GREEDY-KSEP-OPT1 returns a |E|-sized (α, β) explanation for

O.

GREEDY-KSEP-OPT1 returns IMPOSSIBLE if there is no explanation for O.

We can bound the approximation ratio for GREEDY-KSEP-OPT1 by O(1 +

ln(f)), as it is still essentially a greedy algorithm for a covering problem. The

main difference between GREEDY-KSEP-OPT1 is the way it greedily chooses covers

(partners). This algorithm randomly picks an uncovered observation in each loop

185

and then greedily chooses a cover that covers that observation. Improving the

accuracy of this algorithm (in practice) is tied directly to the selection criteria used

to pick observations, which is random in GREEDY-KSEP-OPT1. In Section 4.4.2

we develop an algorithm that “smartly” picks observations with a dynamic ranking

scheme while maintaining a time complexity lower than the standard set-covering

approach.

4.4.2 Greedy Observation Selection

GREEDY-KSEP-OPT1 randomly selects observations although subsequent part-

ner selection was greedy. It is easy to implement an a-priori ranking of observations

based on something like the maximum number of other observations which share

a partner with it. Such a ranking could be implemented at the start of GREEDY-

KSEP-OPT1 with no effect on complexity, but the ranking would be static and may

lose its meaning after several iterations of the algorithm. We could also implement

a dynamic ranking. We present a version of GREEDY-KSEP-OPT1 that we call

GREEDY-KSEP-OPT2 that picks the observations based on dynamic ranking, runs

in time O(∆ ·f 2 · |O|+ |O| · ln(|O|)), and maintains the usual approximation ratio of

1+ ln(f) for greedy algorithms. Our key intuition was to use a Fibonacci heap [49].

With such a data structure, we can update the rankings of observations at constant

amortized cost per observation being updated. The most expensive operation is to

remove an observation from the heap - which costs an amortized O(ln(|O|)), however

as we can never remove more than |O| items from the heap, this cost is most likely

186

dominated by the cost of the rest of the algorithm, which is more expensive than

GREEDY-KSEP-OPT1 by a factor of f . Recall that f is the bound on the number

of observations supported by a single partner - and is often very small in practice.

In order to leverage the Fibonacci heap, there are some restrictions on how

the ranking can be implemented. First, the heap puts an element with the minimal

key on top, and can only decrease the key of elements - an element in the heap can

never have its key increased. Additionally, there is a need for some auxiliary data

structures as searching for an element in the heap is very expensive. Fortunately,

the k-SEP problem is amenable to these type of data structures.

We based the key (ranking) on a simple heuristic for each observation. The

key for a given observation o is the number of unique observations that share a

partner with o. As we are extracting the minimum-keyed observation, we are taking

the observation that has the “least in common” with the other observations. The

intuition of choosing an observation with “less in common” with other observations

ensures that outliers get covered with larger covers. Meanwhile, elements with a

higher rank in this scheme are covered last, which may lead to a more efficient

cover. In Section 4.5 we show experimentally that this heuristic was viable for the

data-set we considered - providing more accurate results than the reduction from

set-covering.

Example 4.4.2. The basic intuition behind GREEDY-KSEP-OPT2 is similar to

GREEDY-KSEP-OPT1 in that it iterates through the observations and greedily chooses

a partner. The main difference is that it ranks the observations instead of just ran-

187

Algorithm 18 GREEDY-KSEP-OPT2
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0, β > 0

OUTPUT: Set E ⊆ S that explains O

1. Run lines 1-3 of GREEDY-KSEP-OPT1.

2. Let key1, . . . key|O| be natural numbers associated with each observation. Initially, they are set to 0. For

some o ∈ O let keyo be the associated number.

3. Let REL OBS be an array of lists of pointers to elements of O. The size of the array is O. For element

o ∈ O, let REL OBS[o] be the corresponding space in the array.

4. For each o ∈ O, do the following:

(a) For each element p ∈ OBS[o], do the following.

i. For each element obs ptr of the list pointed to by M [p], do the following

A. If obs ptr points to an element of O not pointed to in the list REL OBS[o], then add

obs ptr to REL OBS[o] and increment keyo by 1.

5. Let OBS HEAP be a Fibonacci heap. Let QUICK LOOK be an array (size O) of pointers to elements of

the heap. For each o ∈ O, add the tuple 〈o, keyo〉 to the heap, along with a pointer to the tuple to

QUICK LOOK[o]. Note we are using keyo as the key for each element in the heap.

6. While OBS HEAP is not empty, loop

(a) Take the minimum element of OBS HEAP, let o be the associated observation with this element.

(b) Greedily select an element of OBS[o] as done in the loop at line 4 of GREEDY-KSEP-OPT1. We shall

call this element p.

(c) For every o′ ∈ O pointed to by a pointer in M [p], such that O′[o′] = TRUE, do the following.

i. Set O′[o′] = FALSE

ii. Remove the element pointed to by QUICK LOOK[o′] from OBS HEAP

iii. For every element o′′ ∈ O pointed to by an element of REL OBS[o′] where O′[o′′] = TRUE do

the following.

A. Decrease the keyo′′ by 1.

7. Return E

188

Observation keyi REL OBS[oi]

o1 2 {o1, o2}

o2 2 {o1, o2}

o3 2 {o2, o3}

Table 4.1: key values and related observations for observations in the sun bear

scenario introduced in Example 4.1.3.

domly selecting them. Consider the sun bear from Example 4.1.3 whose behavior is

depicted in Figure 4.2. In Example 4.4.1, we used GREEDY-KSEP-OPT1 to solve

the associated k-SEP problem for this situation. We shall discuss how GREEDY-

KSEP-OPT2 differs.

The first main difference is that the algorithm assigns a rank to each observation oi,

called keyi, which is also the key used in the Fibonacci heap. This is done in the

loop at line 4. It not only calculates keyi for each observation, but it also records

the elements “related” to it in the array REL OBS. Note that a “related” observation

needs only to share a partner with a given observation. Not all related observations

need to have the same partner. For the sun bear scenario, we show the keys and

related observations in Table 4.1.

As the key values are the same for all elements of O, let’s assume the algorithm

first considers o1 as in Example 4.4.1. As written, we would take the minimum ele-

ment in the Fibonacci heap (a constant time operation). We would then consider the

partners for o1 which would result in the greedy selection of p2, (just as in GREEDY-

189

Figure 4.6: Left: GREEDY-KESP-OPT2 considers all observations that can be part-

nered with p2. Notice that in this figure by each observation we show a box that

represents the key of the observation in the Fibonacci heap. Right: GREEDY-KSEP-

OPT2 removes o1 from the heap, and iterates through the elements in REL OBS[o1],

causing it to decrease the key of o2.

KSEP-OPT1 and NAIVE-KSEP-SC. Also notice we retain the array of Booleans, O′

as well as the array of lists, M to help us with these operations.).

Now the issue arises that we must update the keys for the remaining obser-

vations, as well as remove observations covered by p2. As we maintain REL OBS

and O′, the procedure quickly iterates through the elements covered by p2: o1 and o2.

Figure 4.6 shows the status of the observations at this point.

We remove o1 from the heap, and set O′[o1] to FALSE. This prevents us from

considering it in the future. We now iterate through each o′′ in the list pointed to

by REL OBS[o1] where O′[o′′] is TRUE and decrease the key of each by one. As per

table 4.1, REL OBS[o1] = {o1, o2}. As O′[o1] = FALSE we do nothing. As O′[o2] =

TRUE, we decrease the key of the associated node in the Fibonacci heap. The array

190

QUICK LOOK ensures we can access that element in constant time. Figure 4.6 (left)

graphically depicts this action.

Next, we consider the other element covered by partner p2: o2. After removing

this element from the heap and setting O′[o2] to FALSE, we can easily see that there

does not exist any o′′ ∈ REL OBS[o2] where O′[o′′] = TRUE. Hence, we can proceed to

pick a new minimum observation from the heap - which is o3 in this case. The greedy

selection proceeds (resulting in the choice of p6), followed by the update procedure

(which simply removes the node associated with o3 from the heap and sets O′[o3] =

FALSE). As there are no more elements in the heap, GREEDY-KSEP-OPT2 returns

the solution {p2, p6}.

Theorem 23 (Complexity of GREEDY-KSEP-OPT2). GREEDY-KSEP-OPT2 has a

complexity of O(∆ · f 2 · |O|+ |O| · ln(|O|)) and an approximation ratio of 1+ ln(f).

Proposition 41. GREEDY-KSEP-OPT2 returns a |E|-sized (α, β) explanation for

O.

GREEDY-KSEP-OPT2 returns IMPOSSIBLE if there is no explanation for O.

4.5 Implementation and Experiments

In this section, we show that our geospatial abduction framework and algo-

rithms are viable in solving real-world geospatial abduction problems. Using a real-

world data set consisting of counter-insurgency information from Iraq, we were able

to accurately locate insurgent weapons cache sites (partners) given previous attacks

(observations) and some additional data (used for feas and α, β). This validates our

191

primary research goal for the experiments - to show that geospatial abduction can

be used to solve problems in the real-world.

We considered the naive set-covering approach along with GREEDY-KSEP-

OPT1 and GREEDY-KSEP-OPT2, which according to our analytical results, had the

best approximation ratios and time-complexities. We implemented these algorithms

in 4000 lines of Java code, running on a Lenovo T400 ThinkPad laptop running

Vista with an Intel Core 2 Duo T9400 2.53 GHz processor and 4.0 GB of RAM.

Our SCARE (Social-Cultural Abductive Reasoning Engine) system [157] enabled us

to carry out tests on real-world data. This data includes 21 months of Improvised

Explosive Device or IED attacks in Baghdad6 (a 25x27 km region) – these constitute

our observations. It also included information on locations of caches associated with

those attacks discovered by US forces. The locations of the caches constitute the

(α, β) explanation we want to learn. We used data from the International Medical

Corps to define feasibility predicates which took the following factors into account:

(i) the ethnic makeup of neighborhoods in Baghdad - specifically, Sunni locations

were deemed infeasible for cache locations, (ii) the locations of US bases in Baghdad

were also considered infeasible and (iii) bodies of water were also deemed infeasible.

We also separately ran tests on that part of the above data focused on Sadr City

(a 7x7 km district in Baghdad) alone. On both these regions, we overlaid a grid

whose cells were 100m x 100m each — about the size of a standard US city block.

All timings were averaged over 100 runs.

We split the data into 2 parts — the first 7 months of data was used as a

6Attack and cache location data was provided by the Institute for the Study of War

192

Algorithm 19 (FIND-BOUNDS)

INPUT: Historical, time-stamped observations Oh, historical, time-stamped part-

ners, Eh, real number (distance threshold) βmax

OUTPUT: Real numbers α, β

1. Set α = 0 and β = βmax

2. Set Boolean variable flag to TRUE

3. For each o ∈ Oh, do the following:

(a) For each p ∈ Eh that occurs after o, do the following.

i. Let d be the Euclidean distance function.

ii. If flag, and d(o, p) ≤ βmax then set α = d(o, p) and β = d(o, p)

iii. If not flag, then do the following:

A. If d(o, p) < α then set α = d(o, p)

B. If d(o, p) > β and d(o, p) ≤ βmax then set β = d(o, p)

4. Return reals α, β

“training” set and the next 14 months of data was used for experimental evaluation.

We used the following simple algorithm, FIND-BOUNDS, to determine the α, β val-

ues. We set βmax to 2.5 km. We leave more advanced procedures for learning these

parameters to future work. Such parameters could also come from an expert.

Accuracy. Our primary goal in the experiments was to determine if the geospatial

abduction framework and algorithms could provide viable results in a real-world

setting. “Accuracy” in this section refers to two aspects - size of the solution, and

193

Area Algorithm Sample Mean Sample Mean

Solution Size Number of Partners

≤ 0.5 km

to actual cache

Baghdad

NAIVE-KSEP-SC 14.53 8.13

GREEDY-KSEP-OPT1 15.02 7.89

GREEDY-KSEP-OPT2 14.00 7.49

Sadr City

NAIVE-KSEP-SC 8.00 3.00

GREEDY-KSEP-OPT1 6.61 4.44

GREEDY-KSEP-OPT2 6.00 5.28

Table 4.2: k-SEP Algorithm Results - Solution Size

the distance to the nearest actual cache site. The distance to nearest cache site was

measured by taking the straight-line Euclidean distance to the nearest cache site

that was found after the first attack supported by the projected cache site. We used

the raw coordinate for the actual cache in the data set - not the position closest to

the nearest point in the 100 m resolution grid that we overlaid on the areas. The

accuracy results are summarized in Tables 4.2-4.3.

Overall, GREEDY-KSEP-OPT2 consistently found the smallest solution - of

cardinality 14 for Baghdad and 6 for Sadr City - on all 100 trials. For Baghdad, the

other two algorithms both found a solution of size 14, but both averaged a higher

solution. For Sadr City, GREEDY-KSEP-OPT1 often did find a solution of 6 caches

while NAIVE-KSEP-SC only found solutions of size 8. Additionally, in both tests, the

solution sizes for GREEDY-KSEP-OPT1 varied more than the other two algorithms.

194

Area Algorithm Sample Mean Sample Std Dev Sample Mean

Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad

NAIVE-KSEP-SC 0.79 km 0.02 0.64

GREEDY-KSEP-OPT1 0.76 km 0.07 0.60

GREEDY-KSEP-OPT2 0.72 km 0.03 0.63

Sadr City

NAIVE-KSEP-SC 0.72 km 0.03 0.46

GREEDY-KSEP-OPT1 0.45 km 0.03 0.46

GREEDY-KSEP-OPT2 0.35 km 0.03 0.47

Table 4.3: k-SEP Algorithm Results - Distances to Actual Cache Sites

Moreover, the HSD for both Baghdad and Sadr City indicated significant difference

between all pairs of algorithms wrt solution size.

Of the partners in a given solution, we also recorded the number of partners less

than 0.5 km away from an actual cache. For Baghdad, NAIVE-KSEP-SC performed

best in this regard - averaging 8.13 partners less than 0.5 km from an actual cache

site. Although this result for Baghdad is significant based on an analysis of variance

(ANOVA) and honest significant differences (HSD) (p-value of 2.3 · 10−9), we also

note that the greatest difference among averages was still less than one partner.

This same result for Sadr City, however, tells a different story. For this test, NAIVE-

KSEP-SC performed poorly with regard to the other two algorithms - only finding

3 partners meeting these criteria for each of the 100 trials. GREEDY-KSEP-OPT2

performed very well in this aspect (for Sadr City). It averaged over 5 partners less

195

than 0.5 km from an actual cache. Further, for Sadr City, all partners found by

GREEDY-KSEP-OPT2 were within 600 m of an actual cache site. The ANOVA (p-

value of 2.2 · 10−16) and HSD of partners less than 0.5 km from an actual cache for

the Sadr City trials indicate that these results are significant.

Our primary metric of accuracy was average distance to actual cache. In this

regard, GREEDY-KSEP-OPT2 performed the best. It obtained an average distance

of 0.72 km for Baghdad and 0.35 km for Sadr City. This number was 40 m less for

Baghdad and 100 m less for Sadr City when compared to GREEDY-KSEP-OPT1,

whose average distance varied widely among the trials. With regard to this metric,

NAIVE-KSEP-SC performed the worst - particularly in Sadr City, where it predicted

caches over twice as far from actual caches as GREEDY-KSEP-OPT2 (on average).

For both Baghdad and Sadr City, the simple ANOVA yielded a p-value of 2.2 ·10−16,

which suggests with a 99% probability that there is a difference among the algo-

rithms. Also, for both areas, Tukey’s HSD indicates significant difference between

each pair-wise comparison of algorithms.

Algorithm run times. Table 4.4 shows the run-times of our algorithms. In

order to validate the findings suggested by Table 4.4 statistically, we ran analysis of

variance (ANOVA) and Tukey’s Honest Significant Difference test (HSD) for pair-

wise comparisons [50]. An ANOVA for the Baghdad run-times gave a p-value of

2.2 ·10−16, which suggests with well over 99% probability that GREEDY-KSEP-OPT1

is statistically faster than GREEDY-KSEP-OPT2. The HSD for Baghdad indicates

that, with regard to run-times, all pair-wise-comparison of the three algorithms are

significantly different. For Sadr City, the ANOVA gave a p-value of 4.9 ·10−3, which

196

Area Algorithm Sample Mean Run-Time Sample Run-Time

Standard Deviation

Baghdad

NAIVE-KSEP-SC 354.75 ms 12.86

GREEDY-KSEP-OPT1 162.08 ms 40.83

GREEDY-KSEP-OPT2 201.40 ms 36.44

Sadr City

NAIVE-KSEP-SC 28.85 ms 10.52

GREEDY-KSEP-OPT1 25.44 ms 9.33

GREEDY-KSEP-OPT2 24.64 ms 8.95

Table 4.4: k-SEP Algorithm Performance Results

suggests with a 99% probability that the algorithms differ in run-times. However, the

HSD indicates, with an 82% probability, that there is no difference among GREEDY-

KSEP-OPT1 and GREEDY-KSEP-OPT2, while both differ significantly from NAIVE-

KSEP-SC.

4.5.1 A Simple Heuristic to Improve Accuracy

In our implementation of all three algorithms, “ties” in greedy selection of

partners were determined by a “coin toss.” Specifically, we are considering the case

where this size = cur size in line 4(b)iii of NAIVE-KSEP-SC in Section 4.3.2. Let

us re-phrase the situation as follows. Let O be the entire set of observations and

O′ ⊆ O be the set of observations currently not assigned a partner. Let p be the

current partner that best meets the criteria for greedy selection and p′ be the partner

197

we are considering. We define P and P ′ as subsets of O that are the observations

associated with p and p′ respectively. Hence, if |P ′ ∩ O′| > |P ∩ O′|, we pick p′.

As implemented, if |P ′ ∩ O′| = |P ∩ O′|, we flip a coin. We add a simple heuristic

that simply states that “partners that cover more observations are preferred.” We

change the criteria as follows:

• If |P ′ ∩ O′| = |P ∩ O′|, then do the following:

• If |P ′| > |P |, pick p′

• If |P | > |P ′|, pick p

• If |P | = |P ′|, flip a coin

We shall refer to this as the “tie-breaker” heuristic. The result is that the solution

set of partners covers more observations and hence provides a more “dense” solution.

We added this heuristic to our existing code for all three algorithms and ran

each one 100 times for both the Baghdad and Sadr City areas. Unsurprisingly, as

this is a constant-time operation, run-times were not affected. However, accuracy

improved in all cases. As GREEDY-KSEP-OPT2 still provided the most accurate

results, the following exposition shall focus on how the heuristics affected the solution

size and accuracy for this algorithm.

Because the tie-breaker heuristic only adjusts how two partners are chosen -

both of which can be paired with the same uncovered observations - the size of the

solution was unaffected in both the Baghdad and Sadr City trials. However, the

number of predicted cache sites less than 500 m from an actual site increased for

both the Baghdad and Sadr City tests. For Baghdad, more trials returned solutions

198

Area Tie-Breaker Sample Mean Sample Mean

Heuristic Solution Size Number of Partners

≤ 0.5 km

to actual cache

Baghdad
No 14.00 7.49

Yes 14.00 7.87

Sadr City
No 6.00 5.28

Yes 6.00 6.00

Table 4.5: The Tie-Breaker heuristic on GREEDY-KSEP-OPT2 - Solution Size

Area Tie-Breaker Sample Mean Sample Std Dev Sample Mean

Heuristic Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad
No 0.72 km 0.03 0.63

Yes 0.69 km 0.02 0.64

Sadr City
No 0.35 km 0.03 0.47

Yes 0.28 km 0.02 0.11

Table 4.6: The Tie-Breaker heuristic on GREEDY-KSEP-OPT2 - Distances to Actual

Cache Sites

199

with 8 predictions less than 500 m from an actual site than returned 7 - the opposite

being the case without the tie-breaker heuristic. For Sadr City, all elements of every

solution set returned was less than 500 m from an actual cache site. Using the well

known T-Test [50], we showed that these results are statistically significant as this

test returned a p-value of 6.2 · 10−8 for Baghdad and 2.2 · 10−16 for Sadr City.

Summary. The above experiments demonstrate statistically that GREEDY-KSEP-

OPT2 provides a viable solution - consistently producing the smaller solution sets

which were closer to actual cache sites faster than the basic set-covering approach,

at times approaching the faster, although less-accurate GREEDY-KSEP-OPT1. The

proximity of the elements of the solution set to actual cache sites is encouraging for

real-world use. The results are strong enough that two US Army units used SCARE

to aide in locating IED caches.

4.6 Chapter 4 Related Work

In this section we present related work of three different varieties. We com-

pare GAPs to other forms of abduction, facility location, k-means clustering, and

constrained clustering. As an aside, readers interested in a discussion of the SCARE

software from the perspective of military analysis or social science can refer to [157]

where the software package was introduced. However, that work does not include

any formal technical details on the framework of geospatial abduction, complexity

results, or algorithm analysis.

GAPs and other forms of Abduction. Abduction [137] has been extensively

200

studied in medicine [141, 138], fault diagnosis [26], belief revision [133], database

updates [77, 27] and AI planning [37]. Two major existing theories of abduction

include logic-based abduction [41] and set-covering abduction [19]. Though none

of the above papers deals with spatial inference, [160] presents a logical formalism

dealing with objects’ spatial occupancy, while [149] describe the construction of a

qualitative spatial reasoning system based on sensor data from a mobile robot. In

[149], sensor data are explained by hypothesizing the existence of physical objects

along with the dynamic relationships that hold between them, all with respect to a

(possibly moving) viewpoint. This approach combines both space and time. [90] de-

scribes the Spatial Semantic Hierarchy which formalizes, the spatial context in which

a robot moves. In the hierarchy, the topological level defines a map which describes

the environment as a collection of places, paths, and regions, linked by topologi-

cal relations such as connectivity, order, containment, boundary, and abstraction.

Places (i.e., zero-dimensional points), paths (i.e., one dimensional subspaces, denot-

ing for example a street in a city, possibly represented as an ordering relation on the

places they contain), and boundary regions (i.e., two-dimensional subspaces of the

robot environment) are created from experience represented as a sequence of views

and actions. They are created by abduction, positing the minimal additional set of

places, paths, and regions required to explain the sequence of observed views and

actions.

Set-covering abduction [19] assumes the existence of a function determining

the observable effects of a set of hypotheses, and is based on inverting such function.

Given a set of hypotheses H and a set of observations O, the domain knowledge

201

is represented by a function e that takes as an argument a set of hypotheses and

gives as a result the corresponding set of observations. Thus, for every subset of the

hypotheses H ′ ⊆ H, their effects are known to be e(H ′). In this case, abduction

finds a set H ′ ⊆ H such that O ⊆ e(H ′), that is, it finds a set of hypotheses H ′

whose effects e(H ′) include all observations in O. A common assumption is that the

effects of the hypotheses are independent, that is, for every H ′ ⊆ H, it holds that

e(H ′) =
⋃

h∈H′ e({h}). If this condition is met, abduction can be seen as a form of

set-covering. No spatial reasoning is done here.

Comparison with facility location. There are several important ways in which

GAPs differ from facility location problems.

• Although it is possible to specify a distance-based cost function, in a GAP prob-

lem, the distances between observations and partners are constraints (α and β in

this chapter) whereas facility location problems usually attempt to minimize the

distance between producers and consumers.

• In this chapter, GAP problems have a minimum distance between observations and

partners that must be exceeded. In many respects, this requirement makes GAP

problems more difficult than facility location and other computational geometry

problems as the set of possible partners that cover a given observation is a non-

convex ring. Further, the feasibility function (feas) adds non-uniform holes to

such a ring. [115] addresses the complexity of non-convex covering and highlights

issues with problems such as this.

202

• The feasibility predicate, feas is not part of a facility location problem. This gives

us the ability to restrict certain locations that can be partners.

• In general, the relation between observations and partners can be viewed to be a

set of constraints. In this chapter, we only used α, β,and feas. However, in the

future, we could add additional constraints. Further, as our formalism represents

space as a set of discrete points (also not typically done with facility location),

we can easily specify certain properties of these points to apply such constraints

(such as feas).

Comparsion with k-means clustering. A well-known and studied problem in

clustering location is the k-means problem [116]. This problem can be expressed as

follows:

k-means:

INPUT: Coordinates on a plane C and natural number k

OUTPUT: k disjoint sets of C, C ′1, . . . , C
′
k such that for each Ci, all the mean Eu-

clidean distance among all c ∈ Ci is minimized.

Clustering problems group points into clusters, associating each cluster with a

center. At first glance, one may think that the points are equivalent to observations

and the “centers are equivalent to partners. However, this is not so. Most versions of

the clustering problem seek only to arrange points in groups – with “centers” being

a side-effect of the algorithm. Geospatial abduction problem seeks to find partners

that support observations and places constraints on the location of the partners -

203

this is a key difference from “centers” in clustering problems. Clustering algorithms

cannot handle the generality of our feasibility predicate or the (α, β) constraints.

In addition to these obvious differences, we experimentally compared an imple-

mentation of k-means with GREEDY-KSEP-OPT2 on the Sadr City data. Even when

we ignore the obvious value of α, β and the feasibility predicate, GREEDY-KSEP-

OPT2 outperforms the SimpleKMeans solver in WEKA version 3.7.0 [180]. Note

that the exclusion of these parameters makes GREEDY-KSEP-OPT2 perform worse

than it performs with these parameters – yet, it performed better than k-means in

terms of accuracy. Our experiment was set-up as follows:

• We used the same area for the Sadr City tests, as the α value was 0 in these

tests and there were virtually no non-feasible points near the observations. This

allowed us to use WEKA’s k-means implementation “out-of-the-box” as we did

not have to implement any extra infrastructure to deal with feasibility and α = 0.

• We set k = 6, the number of partners consistently found by GREEDY-KSEP-

OPT2. Normally, we would rather have the algorithm determine this size. Note

that supplying the algorithm with a size already determined by GREEDY-KSEP-

OPT2 (and, also the smallest size of any explanation for Sadr City we found in

our trials) gives an advantage to k-means. Hence, we did not compare solution

sizes.

• We clustered the observations with k-means and considered the “center” of each

cluster the cache location for the cluster.

• We did not compare timing results, as we ran WEKA in its GUI environment.

204

We ran 500 iterations of the SimpleKMeans and worked with the average cen-

ters for the clusters as reported by WEKA. Multiple runs of the 500 iterations

yielded the same centers.

Average Distance Using WEKA, we obtained an average accuracy of 0.38 km, which

is worse than GREEDY-KSEP-OPT2 (average over 100 trials, 0.28 km).

Worst-Case Distance WEKA’s SimpleKMeans returned 2 of the 6 points with a dis-

tance of greater than 600 meters from a cache site. Without the “tie-breaking”

heuristic, GREEDY-KSEP-OPT2 never reported a prediction over 600 meters from

a cache site (all reported partners over 100 trials). With the heuristic, GREEDY-

KSEP-OPT2 never reported a prediction over 500 meters from a cache site.

Best-Case Distance The closest partners ever returned by GREEDY-KSEP-OPT2 (ei-

ther with our without the heuristic) were 200 m away from an actual cache site (on

average, the closest partner per explanation was 220 m away). WEKA’s SimpleK-

Means did return two partners less than 200 m - each only 100 m away from an

actual cache site.

These results suggest that k-means may not be the optimal method for GAP

problems. Further, it does not support feasibility and α. The results do hold some

promise for some variants of cost-based spatial explanation problems that require a

k input from one of our greedy-approaches. However, even in this case, there would

205

be modification required of the k-means algorithm to support feasibility and α.

Comparison with Constrained clustering. Constrained clustering [176] stud-

ies clustering where, in addition to the points to be clustered, there are constraints

that either force two points in the same cluster (must-link) or force two points to

be in different clusters (cannot-link). Later work on constrained clustering has fo-

cused on distance constraints between elements of C or distance constraints between

clusters [32]. Much of the work in this area is summarized in [14].

At first glance, it may appear that spatial abduction can be expressed as a

cannot-link constrained clustering problem as follows: For each o, o′ ∈ O if 6 ∃p ∈ S

s.t. d(o, p) ∈ [α, β], d(o′, p) ∈ [α, β], and feas(p), then create a cannot-link constraint

for o, o′.

However, such a mapping cannot be guaranteed to provide a correct result.

For example, take o1, o2, o3 and p12, p23, p13. Suppose o1 and o2 share just partner

p12, o2 and o3 share just partner p23 and o1, o3 share just partner p13. This is entirely

possible given the generality of feas. In such a case, all three observations could be

incorrectly grouped into a single cluster - although it is obvious there is no single

partner that supports all of them. Hence, such a mapping would not be trivial.

Further, most clustering algorithms are not seeking to constructively find centers

that are constrained. We leave the study of constrained clustering to solve GAP

problems (i.e. an adaption of the k-means algorithm) to future work. However,

it is also worth noting that solving constrained clustering problems given cannot-

link constraints is NP-complete, so the application of clustering techniques to this

206

problem does not imply a more tractable version of geospatial abduction, but rather

an alternative heuristic.

4.7 Chapter Summary

There are a wide variety of problems where we can make geo-located observa-

tions “on the ground” and where we want to infer a partner location. In this chapter,

we have presented four examples of such problems — one dealing with serial killers,

another dealing with wildlife studies, and a third (perhaps more fun) application

dealing with finding sunken ships. A fourth real world application we have looked

at is that of finding weapons caches associated with Improvised Explosive Device

(IED) attacks in Iraq where we were able to use real world, open source data. It is

clear that many other applications exist as well. For example, a bizarre (but real

world) combination of two of our examples involves frequent attacks by man-eating

leopards on children in certain parts of greater Bombay in India. This situation is

analogous to the serial killer scenario where the leopard is the serial killer. We want

to find the leopard’s favorite “hang outs”, capture it, and solve the problem.

In this chapter, we have made an attempt to formally define a class of geospatial

abduction problems (GAPs for short). We specifically made the following contribu-

tions.

• We developed formal mathematical definitions of geospatial abduction problems,

including several variants of the above problems. We conducted a detailed analysis

of the complexity of these problems.

207

• We developed exact algorithms for many of the problems, including a straight-

forward enumeration approach (NAIVE-KSEP-EXACT), by showing and leveraging

reductions to both the set-covering and dominating set problems, and by articu-

lating these geospatial abduction problems via integer linear programs.

• As the complexity of most of the problems we have studied is NP-hard, we de-

veloped two greedy approximation schemes for the k-SEP problem (other than

set-covering) and illustrated a scheme to quickly find a solution using randomized

approaches to the dominating set problem.

• We have implemented these algorithms and conducted experimental comparisons

of the reduction to set-covering and two other greedy approaches - GREEDY-

KSEP-OPT1 and GREEDY-KSEP-OPT2. Both of these algorithms outperformed

the set-covering reduction in an experiment on the Understanding War Special

Groups data set. We also implemented a “tie-breaker” heuristic that further

improved the accuracy of the algorithms.

• We have also developed approximation schemes using relaxations of the linear-

integer program for k-SEP and the cost-based variant WT-SEP.

There are many interesting directions for future work. For example, spatial

abduction in dimensions greater than two might be explored. A probabilistic vari-

ant might replace the feasibility predicate with a probability distribution function,

or express the relationship between observations and partners as a PDF based on

distance rather than rely on α, β. Also, the use of randomization in the approxima-

208

tion algorithms may improve results for both the greedy and linear programming

approaches presented in this chapter.

One aspect to explore in future work is the relationship between observations

and partners. k-SEP and its cost based variants only rely on α, β. However, many

applications may have other constraints. Perhaps there is a direction associated with

each observation (as in identifying where an artillery round originated from), which

would limit the locations of the partner. Another possibility is to add geographic

constraints. Perhaps the observation cannot have a partner across a body of water,

or beyond the edge of a cliff.

Another important question is: where do we look for partners if they are

placed they are placed by an adversary? We can think of scenarios, such as in

counterinsurgency, where an enemy obtains a copy of our software and wants to

plan his cache sites in a place where an agent would be unlikely to search for them.

We study this particular problem in Chapter 6. Another natural question is: what

if we want to abduce regions rather than point locations for partners? There are

many real-world applications where a user may wish to find an area to search rather

than a point - in fields varying from paleontology to intelligence. We describe this

extension to the geospatial abduction framework in chapter 5.

209

Chapter 5

Abducing Regions

In the previous chapter, we studied a variety of geospatial problems where

the space is represented as a plane that used discrete integer coordinates. In this

chapter, we modify the framework to use a continuous space instead. Additionally,

rather than abducing points, we assume the space is divided into a set of regions,

and we wish to abduce a set of regions that explains the agent’s behavior.1

5.1 Chapter Introduction

In this chapter, we introduce a variant GAPs called region-based geospatial

abduction problems (RGAPs). In RGAPs, we are given a map, a setO of observations,

and a set of subregions of the map (this could include all subregions of the map in

the worst case or can be defined by some logical condition). We want to find a set

of regions that best “explain” the observations and includes, for each observation,

at least one partner.

1This chapter is based on [153] which was completed in cooperation with V.S. Subrahmanian.

210

In this chapter, we make several contributions. In Section 5.2 we introduce

multiple possible formal definitions of RGAPs - including cases where the regions are

determined by a given radius from each observation, regions are non-convex, and

when regions are of irregular shape due to terrain restrictions. We then perform

a detailed complexity analysis in Section 5.3, proving that most of these problems

are NP-complete. This leads us to use approximation techniques in Section 5.4.

We also describe some practical implementation issues. Section 5.5 describes our

implementation and includes an experimental evaluation on a real-world data-set

consisting of IED attacks in Baghdad, Iraq and related weapons cache sites. In

our evaluation, regions outputted by the algorithm contained, on average, 1.7 cache

sites, with an average cache density of over 8 caches per square kilometer – signifi-

cantly higher than the city-wide average of 0.4. Further, the algorithm ran quickly,

performing computation in just over 2 seconds on commodity desktop hardware.

Finally, we survey related work in Section 5.6.

5.2 Technical Preliminaries

To address the problem of region-based geospatial abduction, we introduce a

framework that resembles that of Chapter 4 - but differs in several important aspects.

These include the use of a continuous space and multiple types of explanations. In

Chapter 6, we return to the original framework of Chapter 4.

We assume the existence of a real-valued M ×N space S whose elements are

pairs of real numbers from the set [0,M] × [0, N]. An observation is any member

211

of S. We use O to denote an arbitrary, but fixed, finite set of observations. We

assume there are real numbers α ≤ β such that for each observation o , there exists

a partner po (to be found) whose distance from o is in the interval [α, β].2 Without

loss of generality, we also assume that all elements of O are over β distance away

from the edge of S. Example 5.2.1 presents a neighborhood as a space and locations

of illegal drug sales as observations.

Example 5.2.1 (Illegal Drug Sales). A criminal gang is selling illegal drugs. Con-

sider the space S depicted in Figure 5.1. Drug dealers were arrested by police at

points O ≡ {o1, . . . , o13}. Historical data suggests that safe houses are located within

5km of such transactions (i.e. α = 0 and β = 5km). Note that in Figure 5.1, cir-

cles of radius 5km are drawn around the observation points. Police are interested

in locating such safe-houses.

Throughout this chapter, we assume the notion of a distance function d on S

satisfying the usual properties of such distance functions.3 We now define a region

and how they relate to the set of observations. Our intuition is simple - a region

explains an observation if that region contains a partner point for that observation.

Definition 57 (Region / Super-Explanation / Sub-Explanation). A region r is a

subset of S such that for any two points (x, y), (x′, y′) ∈ r, there is sequence a of

line segments from (x, y) to (x′, y′) s.t. no line segment lies outside r.

2Chapter 4 describes methods to learn α, β automatically from historical data.
3d(x, x) = 0; d(x, y) = d(y, x); d(x, y) + d(y, z) ≥ d(x, z).

212

1. A region r super-explains point o in S iff there exists a point p ∈ r such

that d(o, p) ∈ [α, β].

2. A region r sub-explains some point o in S iff (∀p ∈ r) d(o, p) ∈ [α, β].

First, note that regions can have any shape and may overlap. Throughout this

chapter, we assume that checking if some point o is sub-(super-) explained by region

r can be performed in constant (i.e. O(1)) time. This is a reasonable assumption for

most regular shaped regions like circles, ellipses and polygons. The following result

follows immediately from Definition 57.

Observation 5.2.1. If region r 6= ∅ sub-explains point o, then r super-explains

point o.

We would like to explain observations by finding regions containing a partner.

In some applications, the user may be able to easily search the entire region – hence

a super-explaining region would suffice. In other applications, we may want to be

sure that any point within the region can be a partner as not to waste resources -

so only a sub-explanation would make sense in such a case. Often, these situations

may depend on the size of the regions. We shall discuss the issue of restricting

region size later in this section. For now, we shall consider regions any shape or

size. Example 5.2.2 shows regions that super- or sub-explain various observations.

Example 5.2.2. Consider the scenario from Example 5.2.1 and the regions

R = {ra, rb, rc, rd, re, rf , rg} shown in Figure 5.1. Suppose these regions correspond

with “support zones” for the drug sales – i.e. places that may contain a safe-house.

213

o1

o2

o3

o4 o5

o6

o7

o8

o13

o10

o11

o12

o9

ra

rb

rc

rd

re

rf

rg

Figure 5.1: Locations of illegal drug sales and suspected support zones

{ra, rb, rc, rd, re, rf , rg}. The β distance for each observation is shown with a dashed

circle.

214

Consider region ra. As it totally lies within the α, β distance of o1, it sub- and super-

explains this observation. Conversely, region rd super-explains both o6 and o7 but

sub-explains neither.

This chapter studies following decision problems.

Sub-(Super-)Region Explanation Problem (Sub/Sup-REP)

INPUT: Given a space S, distance interval [α, β], set O of observations, set R of

regions, and natural number k ∈ [1, |O|].

OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and for each o ∈ O, there is an r ∈ R s.t. r

sub-(super-) explains o.

The fact that a set R of regions is part of the input is not an assumption, but

a feature. A user might set R to be all the regions associated with S; alternatively,

he might use a logical condition to define regions, taking into account, the terrain

and/or known aspects of the population living in the area of interest. For instance,

when trying to identify regions containing IED caches in Baghdad used for attacks

by Shi’ite groups, regions were defined to be places that were not predominantly

Sunni and that did not contain US bases or bodies of water. Other kinds of logical

conditions may be used when dealing with burglaries or drug trafficking. Thus, the

set R of regions allows an analyst to specify any knowledge he has, and allows the

system to benefit from that knowledge. If no such knowledge is available, R can be

taken to be the set of all regions associated with S. R can also be used to restrict

215

the size of the region (e.g. only considering regions whose area is less than 5 sq.

km.).

There are two different associated optimization problems associated with both

Sub-REP and Sup-REP. The first deals with finding a subset of regions of minimal

cardinality that explains all observations.

Sub-(Super-)Region Explanation Problem-Minimum Cardinality (Sub/Sup-

REP-MC)

INPUT: Given a space, S, distance interval [α, β], set of observations O, and set of

regions R.

OUTPUT: Set R′ ⊆ R of minimum cardinality, where for each o ∈ O, there is an

r ∈ R s.t. r sub-(super-) explains o.

Our second optimization problem fixes the number of regions returned in the

solution, but maximizes the number of observations that are explained.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-

REP-ME)

INPUT: Given a space S, distance interval [α, β], set O of observations, set R of

regions, and natural number k ∈ [1, |O|].

OUTPUT: Set R′ ⊆ R, where |R′| ≤ k s.t. the number of o ∈ O where there is an

r ∈ R s.t. r sub-(super-) explains o is maximized.

216

Consider the following Example.

Example 5.2.3. Consider the scenario from Example 5.2.2. Consider an instance

of Sup-REP with k = 7. The set {ra, rb, rc, rd, re, rf , rg} is a solution to this problem.

Now consider Sup-REP-MC with k = 6, the set {ra, rc, rd, re, rf , rg} is a solution to

this problem. Finally, consider Sup-REP-ME with k = 2. The set {rc, rd} is a

solution to this problem.

We now consider a special case of these problems that arises when the set R

of regions is created by a partition of the space based on the set of observations (O)

and concentric circles of radii α and β drawn around each o ∈ O. We can associate

regions in such a case with subsets of O. For a given subset O′, we say that there

is an associated set of induced regions (denoted RO′), defined as follows:

RO′ = {{x| ∀o ∈ O′, d(x, o) ∈ [α, β]∧

∀o′ /∈ O′, d(x, o′) /∈ [α, β]} }

We note that for a given subset of observations, it is possible to have a set of

induce regions, RO′ that has more than one element. For example, consider set

R∅ = {r1, r12} in Figure 5.2. For a given set of observations O, we will use the

notation RO do denote the set of all induce regions. Formally:

RO =
⋃

O′∈2O
RO′ 6≡∅

RO′

We illustrate the idea of induce regions in the following example.

217

r
31 r

33

r
20

r
21

r
22

r
23

r
24

r
25 r26

r
27

r
1 r

2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

r
12

r
13

r
14

r
15

r
16

r
17

r
18

r
19

r
28

r
29

r
30 r

32

o
1

o
2

o
3

o
4 o

5

o
6

o
7

o
8

o
13

o
10 o

11

o
12

o
9

r
1

r
1

Figure 5.2: Space S and the regions in set RO.

Example 5.2.4. In order to identify locations of drug safe-houses, police create 33

induced regions in S by drawing 5km radius circles around all observations (see

Figure 5.2), the set of which is denoted RO = {r1, . . . , r33}.

For the special case where RO is the set of regions, we have the following result.

Lemma 17. Suppose O is a set of observation and RO is the induced region. A

region r ∈ RO sub-explains an observation o ∈ O iff it super-explains o.

By this result, for the special case of induced regions, we only need one deci-

sion problem.

Induced Region Explanation Problem (I-REP)

INPUT: Given a space, S, distance interval [α, β], set O of observations, and natural

218

number k ∈ [1, |O|].

OUTPUT: Set R′ ⊆ RO, where |R′| ≤ k and for each o ∈ O, there is an r ∈ R s.t.

r sub-explains o.

As mentioned earlier, the sizes of regions can be regulated by our choice of R.

However, we may also explicitly require that all regions must be less than a certain

area. Consider the following variant of Sup-REP.

Area-Constrained Super-Region Explanation Problem (AC-Sup-REP)

INPUT: Given a space, S, distance interval [α, β], set O of observations, set R of

regions, area A, and natural number k ∈ [1, |O|].

OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and each r ∈ R′ has an area ≤ A and for

each o ∈ O, there is an r ∈ R s.t. r super-explains o.

The following proposition tells us that AC-Sup-REP is at least as hard as

I-REP, yet no harder than Sup-REP (an analogous result can easily be shown for

an area-constrained version of Sub-REP). We note that essentially, we eliminate the

regions whose area is above area A, which gives us an instance of Sup-REP. To go

the other direction, we directly encode I-REP into an instance of AC-Sup-REP and

have A be larger than the area of any region.

Theorem 24. I-REP is polynomially reducible to AC-Sup-REP.

AC-Sup-REP is polynomially reducible to Sup-REP.

219

In our final observation of this section, we note that the set RO can be used as

a “starting point” in determining regions. For instance, supplemental information

on area that may be restricted from being partnered with an observation may also

be considered and reduce the area of (or eliminate altogether) some regions in the

set. Consider the following example.

Example 5.2.5. Consider the scenario from Example 5.2.4. The police may elim-

inate a river running through the area and certain other ares from their search.

These “restricted areas” are depicted in Figure 5.3. Note that several regions from

Figure 5.2 are either eliminated or have decreased in size. However, by eliminating

these areas, the police have also pruned some possibilities from their search. For

example, regions r9, r13 were totally eliminated from consideration.

220

r
33

r
20

r
21

r
22

r
23
r

24
r

25 r26

r
27

r
1 r

2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

r
12 r

13

1212

r
14

r
15

r
16

r
17

r
18

r
19

r
28

r
29

r
30

r
31

r
32

o
1

o
2

o
3

o
4 o

5

o
6

o
7

o
8

o
13

o
10

o
11

o
12

o
9

r
1

r
1

Figure 5.3: A set of regions in S created based on the distance β = 5km as well as

restricted areas (shown in black).

5.3 Complexity

In this section, we show that Sub-REP, Sup-REP, and I-REP are NP-Complete

and that the associated optimization problems are NP-Hard. We also show that

the optimization problems Sub-REP-MC, Sup-REP-MC, and I-REP-MC cannot be

approximated by a fully polynomial-time approximation scheme (FPTAS) unless

P = NP . We also note that the complexity of the area-constrained versions of

these problems follows directly from the results of this section by the reduction of

Theorem 24 (page 219).

We first prove that I-REP is NP-complete, which then allows us to correctly

identify the complexity classes of the other problems by leveraging Lemma 17. First,

221

we introduce the problem “circle covering” (CC) that was proven to be NP-complete

in [125].

Circle Covering (CC)

INPUT: A space S ′, set P of points, real number β′, natural number k′.

OUTPUT: “Yes” if there is a set of points, Q in S ′ such that all points in P are

covered by discs centered on points in Q of radius β′ where |Q| ≤ k′ – “no” otherwise.

The theorem below establishes that I-REP is NP-complete.

Theorem 25. I-REP is NP-Complete.

Proof Sketch. Clearly, a solution to I-REP can be verified in PTIME. To show

NP-hardness, we show that CC ≤p I-REP by the following transformation: S = S ′,

O = P , β = β′, α = 0, and k = k′. (⇐) Given a solution to the instance of I-REP,

we can simply pick a point in each returned region, and center a circle on it of radius

β′ - which will be a solution to CC. Likewise, (⇒) given a solution to CC, we can

be assured that each point in the solution is enclosed by exactly one region from the

set RO, which would ensure a solution to I-REP. �

Further, as the optimization version of circle covering is known to have no

FPTAS unless P = NP [70], by the nature of the construction in Theorem 25, we

can be assured of the same result for I-REP-MC.

Corollary 8. I-REP-MC cannot be approximated by a fully polynomial-time ap-

222

proximation scheme (FPTAS) unless P = NP .

So, from the above Theorem and Corollary and Lemma 17, we get the following

results:

Corollary 9. 1. Sub-REP and Sup-REP are NP-Complete.

2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and

I-REP-ME are NP-Hard.

3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unless P =

NP .

5.4 Algorithms

In this section we devise algorithms to address the optimization problems

associated with Sup-REP, Sub-REP, and I-REP. First, we show that these opti-

mization problems reduce to either instances of set-cover (for Sub/Sup-REP-MC)

or max-k-cover (for Sub/Sup-REP-ME). These problems are well-studied and there

are algorithms that provide exact and approximate solutions. We then provide a

new greedy-algorithm for Sub/Sup-REP-MC that also provides an approximation

guarantee. This is followed by a discussion of approximation for I-REP-ME for the

case where α = 0. Finally, we discuss some practical issues dealing with implemen-

tation.

223

5.4.1 Exact and Approximate Solutions by Reduction

In this section we show that the -MC problems can reduce to set-cover and

that the -ME problem can reduce to max-k-cover. First, we introduce the two prob-

lems in question. First, we present set-cover [136].

Set-Cover

INPUT: Set of elements S, family of subsets of S, H = H1, . . . , Hm.

OUTPUT: Subset H′ ⊆ H of minimum cardinality s.t.
⋃

Hi∈H′ Hi ⊇ S.

Next, we present max-k-cover [46], which is often regarded as the dual of

set-cover:

Max-k-Cover

INPUT: Set of elements S, family of subsets of S, H = H1, . . . , Hm, natural number

k ≤ |S|.

OUTPUT: Subset H′ ⊆ H s.t. |H′| ≤ k where |⋃Hi∈H′ Hi ∩ S| is maximized.

The key to showing that Sub/Sup-REP optimization problems can reduce to

one of these problems is to determine the family of subsets. We accomplish this as

follows: for each region r ∈ R, we find the subset of O that can be partnered with

r. We shall refer to this set as Or. This gives us the following algorithm for the

optimization problems (we simply omit the k parameter for the -MC problems that

reduce to Set-Cover):

224

REDUCE-TO-COVERING(O set of observations, R set of regions, k natural number)

returns instance of covering problem 〈S,H, k〉

1. For each r ∈ R, find Or (i.e. o is in Or iff r sub/super-explains o)

2. Return 〈O,
⋃

r∈R{Or}, k〉

Proposition 42. REDUCE-TO-COVERING requires O(|O| · |R|) time.

The following theorem shows that REDUCE-TO-COVERING correctly reduces

a Sub/Sup-REP optimization problem to set-cover or max-k-cover as appropriate.

Theorem 26. Sub/Sup-REP-MC polynomially reduces to Set-Cover and Sub/Sup-

REP-ME polynomially reduces to Max-k-Cover.

This result allows us to leverage any exact approach to the above optimization

problems to obtain a solution to an optimization problem associated with Sub/Sup-

REP. A straightforward algorithm for any of the optimization problems would run

in time exponential in |O| or k and consider every |O| or k sized subset of
⋃

r∈R{Or}.

Clearly this is not practical for real-world applications. Fortunately, there are several

well-known approximation techniques for both these problems. First, we address the

Sub/Sup-REP-ME problems, which reduce to Max-k-Cover. As the Max-k-Cover

problem reduces to the maximization of a submodular function over a uniform ma-

troid, we can leverage the greedy approximation algorithm of [127] to our problem.

We do so below.

Suppose ‘f ’ denotes the maximum number of observations that can be part-

nered with a given region.

225

GREEDY-REP-ME(O set of observations, R set of regions, k natural number)

returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)

2. Let O′ = O, set R′ = ∅

3. While k 6= 0 loop

(a) Let the element Or be the member of O s.t. |Or ∩ O′| is maximized.

R′ = R′ ∪ r

O′ = O′ − (Or ∩ O′)

k −−

4. Return R′

Proposition 43. GREEDY-REP-ME runs in O(k ·|R|·f) time and returns a solution

such that the number of observations in O that have a partner region in R′ is within

a factor
(

e
e−1

)
of optimal.

Example 5.4.1. Consider Example 5.2.2 (page 213), where the set of regions is

R = {ra, rb, rc, rd, re, rf , rg}. Suppose the police want to run GREEDY-REP-ME to

solve an instance of Sup-REP-ME associated with this situation with k = 3. Initially

set O′ = {o1, . . . , o13}. On the first iteration of the outer loop, it identifies set Orc =

{o2, o3, o4, o9} where the cardinality of Orc ∩O′ is maximum. Hence, it picks region

rc. The set O′ = {o1, o5, . . . , o8, o10, . . . o13}. On the second iteration, it identifies

Ore = {o5, o13}, which intersected with O′ provides a maximum cardinality, causing

re to be picked. Set O′ is now {o1, o6, . . . , o8, o10, . . . , o12}. On the last iteration,

226

it identifies Org = {o11, o12}, again the maximum cardinality when intersected with

O′. The element is picked and the solution is rc, re, rg, and the observations super-

explained are {o2, o3, o4, o5, o9, o11, o12, o13}.

Likewise, we can leverage the greedy algorithm for set-cover [136] applied to

Sub/Sup-REP-MC.

GREEDY-REP-MC(O set of observations, R set of regions,) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)

2. Let O′ = O, set R′ = ∅

3. While not O′ ≡ ∅ loop

(a) Let the element Or be the member of O s.t. |Or ∩ O′| is maximized.

R′ = R′ ∪ r

O′ = O′ − (Or ∩ O′)

4. Return R′

Proposition 44. GREEDY-REP-MC runs in O(|O| · |R| · f) time and returns a

solution whose cardinality is within a factor of 1 + ln(f) of optimal.

Example 5.4.2. Consider the scenario from Example 5.4.1. To explain all points,

the police can create an instance of Sup-REP-MC and use GREEDY-REP-MC. The

algorithm proceeds just as GREEDY-REP-ME in the first three steps (as in Ex-

ample 5.4.1, but will continue on until all observations are super-explained. So,

GREEDY-REP-MC proceeds for three more iterations, selecting rf (Orf = {o8, o10}),

227

rd (Ord = {o6, o7}), and finally ra (Ora = {o1}). The solution returned is:

{rc, re, rg, rf , rd, ra}

We now focus on speeding up the set-cover reduction via the GREEDY-REP-

MC2 algorithm below.

In the rest of this section, we use ‘∆’ to denote the maximum number of

different regions that can be partnered with a given observation.

Proposition 45. GREEDY-REP-MC2 runs in O(∆ · f 2 · |O|+ |O| · ln(|O|) time and

returns a solution whose cardinality is within a factor of 1 + ln(f) of optimal.

Although GREEDY-REP-MC2 considers regions in a different order than GREEDY-

REP-MC, it maintains the same approximation ratio. This is because the region (in

set GRPo) that is partnered with the greatest number of uncovered observations

is selected at each iteration, allowing us to maintain the approximation guarantee.

There are two selections at each step: the selection of the observation (in which

we use a minimal key value based on related observations) and a greedy selection

in the inner loop. Any selection of observations can be used at each step and the

approximation guarantee is still maintained. This allows for a variety of different

heuristics. Further, the use of a data structure such as a Fibonacci Heap allows us

to actually obtain a better time complexity than GREEDY-REP-MC.

Example 5.4.3. Consider the situation in Example 5.2.4 where the police are con-

sidering regions RO = {r1, . . . , r33} that are induced by the set of observations and

wish to solve I-REP-MC using GREEDY-REP-MC. On the first iteration of the loop

228

GREEDY-REP-MC2(O set of observations, R set of regions,) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)

2. For each observation o ∈ O, let GRPo = {Or ∈ O|o ∈ Or}

3. For each observation o ∈ O, let RELo = {o′ ∈ O|o′ ∈ ⋃

Or∈GRPo
Or} and let

keyo = |RELo|

4. Let O′ = O, set R′ = ∅

5. While not O′ ≡ ∅ loop

(a) Let o be the element of O where keyo is minimal.

(b) Let the element Or be the member of GRPo s.t. |Or ∩ O′| is maximized.

(c) If there are more than one set Or that meet the criteria of line 5b, pick the set

w. the greatest cardinality.

(d) R′ = R′ ∪ r

(e) For each o′ ∈ Or ∩ O′, do the following:

i. O′ = O′ − o′

ii. For each o′′ ∈ O′ ∩RELo′ , keyo′′ −−

6. Return R′

229

at line 5, the algorithm picks o8, as keyo8 = 1. The only possible region to pick is

r19, which can only be partnered with o8. There are no observations related to o8

other than itself, so it proceeds to the next iteration. It then selects o6 as keyo6 = 2

because RELo6 = {o6, o7}. It then greedily picks r17 which sub-explains both o6, o7.

As all observations related to o6 are now sub-explained, the algorithm proceeds with

the next iteration. The observation with the lowest key value is o5 as keyo5 = 3 and

RELo5 = {o4, o5, o13}. It then greedily picks region r21 which sub-explains o5, o13.

The algorithm then reduces the key value associated with o4 from 4 to 3 and decre-

ments the keys associated with o10, o11, o12 (the un-explained observations related to

o13) also from 4 to 3. In the next iteration, the algorithm picks o9 as keyo9 = 3.

It greedily picks r12 which sub-explains o9, o2. It then decreases keyo4 to 2 and also

decreases the keys associated with o1 and o3. At the next iteration, it picks o1 as

keyo1 = 2. It greedily selects r4, which sub-explains o1, o3 and decreases the keyo4 to

1 which causes o4 to be selected next, followed by a greedy selection of r11 – no keys

are updated at this iteration. In the final iteration, it selects o10 as keyo10 = 3. It

greedily selects r25, which sub-explains all un-explained observations. The algorithm

terminates and returns {r11, r12, r17, r19, r21, r25}.

5.4.2 Approximation for a Special Case

In Section 5.3, we showed that circle covering is polynomially reducible to I-

REP-MC. Let us consider a special (but natural) case of I-REP-MC where α = 0, i.e.

there is no minimum distance between an observation and a parter point that caused

230

it. We shall call this special case I-REP-MCZ. There is a great similarity between

this problem and circle-covering. It is trivial to modify our earlier complexity proof

to obtain the following result.

Corollary 10. I-REP-MCZ is polynomially reducible to CC.

Further, we can adopt any algorithm that provides a constructive result for CC

to provide a result for I-REP-MCZ in polynomial time with the following algorithm.

Given some point p, it identifies the set Or associated with the region that encloses

that point.

FIND-REGION(S space,O observation set, β real , p point) returns set Or

1. Set Or = ∅

2. For each o ∈ O, if d(p, o) ≤ β then Or = Or ∪ {o}

3. Return Or.

Proposition 46. The algorithm, FIND-REGION runs O(|O|) time, and region r

(associated with the returned set Or) contains p.

By pre-processing the regions, we can compute Or a-priori and simply pick a

region r associated with the output for FIND-REGION. While there may be more

than one such region, any one can be selected as, by definition, they would support

the same observations.

Example 5.4.4. Paleontologists working in a 30× 26km area represented by space

S have located scattered fossils of prehistoric vegetation at O = {o1, o2, o3, o4}. Pre-

231

vious experience has led the paleontologists to believe that a fossil site will be within

3km of the scattered fossils. In Figure 5.4, the observations are labeled and circles

with radius of 3 km are drawn (shown with solid lines). Induced regions r1, . . . , r6 are

also labeled. As the paleontologists have no additional information, and α = 0, they

can model their problem as an instance of I-REP-MCZ with k = 3. They can solve

this problem by reducing it to an instance of circle-covering. The circle-covering al-

gorithm returns three points - p1, p2, p3 (marked with an ‘x’ in Figure 5.4). Note that

each point in the solution to circle-covering falls in exactly one region (when using

induced regions). The algorithm FIND-REGION returns the set {o1, o2} for point p1,

which corresponds with region r2. It returns set {o3} for p2, corresponding with r6

and returns set {o4} for p3, corresponding with r5. Hence, the algorithm returns

regions r2, r6, r5, which explains all observations.

Any algorithm that provides a constructive result for CC can provide a con-

structive result for I-REP-MCZ. Because of this one-to-one mapping between the

problems, we can also be assured that we maintain an approximation ratio of any

approximation technique.

Corollary 11. An a−approximation algorithm for CC is an a-approximation for I-

REP-MCZ.

This is useful as we can now use approximation algorithms for CC on I-REP-

MCZ. Perhaps the most popular approximation algorithms for CC are based on the

“shifting strategy” [70]. To leverage this strategy, we would divide the space, S,

into strips of width 2 · β. The algorithm considers groups of ℓ consecutive strips – ℓ

232

o
1

o
2

o
3

o
4

x

x

x

r
1

r
2

r
3

r
4

r
5

r
6

Figure 5.4: Given the instance of I-REP-MCZ for Example 5.4.4 as input for circle-

covering, a circle-covering algorithm returns points p1, p2, p3 (points are denoted

with an “x”, dashed circles are the area of 3km from the point).

is called the “shifting parameter.” A local algorithm A is applied to each group of

strips. The union of all solutions is a feasible solution to the problem. The algorithm

then shifts all strips by 2 · β and repeats the process, saving the feasible solution.

This can be done a total of ℓ− 1 times, and the algorithm simply picks the feasible

solution with minimal cardinality. In [70], the following lemma is proved (we state

it in terms of I-REP-MCZ – which is done by an application of Corollary 11):

Lemma 18 (Shifting Lemma [70]). Let aS(A) be the approximation factor of the

shifting strategy applied with local algorithm A and aA be the approximation factor

for the local algorithm. Then:

aS(A) = aA ·
(

1 +
1

ℓ

)

.

Further, the shifting strategy can actually be applied twice, solving the local

233

algorithm in squares of size 2 · β · ℓ× 2 · β · ℓ. This gives the following result:

aS(S(A)) = aA ·
(

1 +
1

ℓ

)2

.

A good survey of results based on the shifting strategy can be found in [48],

which also provides a linear-time algorithm (this result is later generalized by [52]

for multiple dimensions). The following result leverages this for I-REP-MCZ by

Corollary 11 (and is proved in [52]).

Proposition 47. I-REP-MCZ can be solved with an approximation ratio of x ·
(
1 + 1

ℓ

)2
in O(Kℓ,ρ · |O|) time. Where p is the maximum number of points in a finite

lattice over a square of side length 2 · β · ℓ s.t. each observation in such a square

lies directly on a point in the lattice and x ∈ {3, 4, 5, 6} (and is determined by β, see

[48] for details) and Kℓ,ρ is defined as follows.

Kℓ,ρ = ℓ2 ·
⌈ℓ·
√
2⌉2−1
∑

i=1

(
p

i

)

· i

An alternative to the shifting strategy leverages techniques used for the re-

lated problem of geometric dominating set. In [104], the authors present a 1 + ǫ

approximation that runs in O(|O|O(1
ǫ2
·lg2(1

ǫ
))) time.

5.4.3 Practical Considerations for Implementation

We now describe some practical implementation issues. Our primary aim is

to find a set of regions that resembles the set of induced regions, RO. There are

several reasons for doing this. One reason is to implement a fast heuristic to deal

with I-REP optimization problems, specifically when α 6= 0. Another, is that such

234

a set of induced regions in the space may be a starting point for creating a set of

regions that may include other data, such as that shown in Example 5.2.5.

As most GIS systems view space as a set of discrete points, we discretized the

space using the REGION-GEN algorithm below. The parameter g is the spacing of

a square grid that overlays the space.

Proposition 48. REGION-GEN has a time complexity Θ(|O| · π·β2

g2
).

Example 5.4.5. Consider the scenario from Example 5.4.4. Suppose the paleon-

tologists now want to generate regions using REGION-GEN instead of using induced

regions. The algorithm REGION-GEN overlays a grid on the space in consideration.

Using an array representing the space, it records the observations that can be ex-

plained by each grid point (Figure 5.5, top). As it does this, any grid point that can

explain an observation is stored in list L. The algorithm then iterates through list L,

creating entries in a hash table for each subset of observations, enclosing all points

that explain the same observation with a minimally-enclosing rectangle. Figure 5.5

(bottom) shows the resulting regions r1, . . . , r6.

One advantage to using REGION-GEN is that we already have the observations

that a region super-explains stored – simply consider the bit-string used to index the

region in the hash table. Another thing that can be done, for use in an algorithm

such as GREEDY-MC2, where the regions are organized by what observation they

support, can also be easily done during the running of this algorithm at an additional

cost of f (the number of observations that can be partnered with a given region) -

by updating an auxiliary data structure at line 6a.

235

o
1

o
2

o
3

o
4

 3

 1 3 3 3 3 3

 1 1 1 1 1 3 3 3 3 3

 1 1 1 1 1 3 3 3 3

 1 1 1 1 1 3 3 3 3 3

 1 1 1 1 1 3 3 3 3 3

 1 1 12 1 1 4 3

 2 12 12 12 24 4 4 4 4

 2 2 2 2 24 4 4 4 4

 2 2 2 24 24 4 4

 2 2 2 2 24 4 4 4 4

 2 2 2 2 24 4 4 4 4

 2 4

o
1

o
2

o
3

o
4

r
1

r
2

r
3

r
4

r
5

r
6

Figure 5.5: REGION-GEN applied to the paleontology example (Example 5.4.4).

First, it identifies observations associated with grid points (top). It then creates

minimally-enclosing rectangles around points that support the same observations

(bottom).

236

REGION-GEN(S space,O observation set, α, β, g reals returns set R

1. Overlay a grid of spacing g on space S. With each grid point, p, associate set

Op = ∅. This can easily be represented with an array.

2. Initialize list L of pointers to grid-points.

3. For each o ∈ O, identity all grid points within distance [α, β]. For each point

p meeting this criteria, if Op = ∅, add p to L. Also, set Op = Op ∪ {o}

4. For some subset O′ ⊂ O, let str(O′) be a bit string of length |O| where every

position corresponding to an element of O′ is 1 and all other positions are 0.

5. Let T be a hash table of size ⌈|O|· π·β2

g2
⌉ regions indexed by bit-strings of length

|O|

6. For each p ∈ L, do the following:

(a) If T [str(Op)] = null then initialize this entry to be a rectangle that en-

closes point p.

(b) Else, expand the region at location T [str(Op)] to be the minimum-

enclosing rectangle that encloses p and region T [str(Op)].

7. Return all entries in T that are not null.

5.5 Experimental Results

We implemented REGION-GEN and GREEDY-MC2 in approximately 3000 lines

of Java code and conducted several experiments on a Windows-based computer with

237

an Intel x86 processor. Our goal was to show that solving the optimization problem

Sup-REP-MC would provide useful results in a real-world scenario. We looked

at counter-insurgency data from [72] that included data on improvised-explosive

device attacks in Baghdad and cache sites where insurgents stored weapons. Under

the assumption that the attacks required support of a cache site a certain distance

away, could we use attack data to locate cache sites using an instance of Sup-

REP-MC solved with GREEDY-MC2 using regions created with REGION-GEN? In

our framework, the observations were attacks associated with a cache (which was

a partner). The goal was to find relatively small regions that contained partners

(caches). We evaluated our approach based on the following criteria:

1. Do the algorithms run in a reasonable amount of time?

2. Does GREEDY-MC2 return regions of a relatively small size?

3. Do the regions returned by GREEDY-MC2 usually contain a partner (cache)?

4. Is the partner (cache) density within regions returned by GREEDY-MC2 sig-

nificantly greater than the partner density of the space?

5. How does the spacing between grid points affect the runtime and accuracy of

the algorithms?

Overall, the experiments indicate that REGION-GEN and GREEDY-MC2 sat-

isfactorily meet the requirements above. For example, for our trials considering

locating regions with weapons cache sites (partners) in Baghdad given recent IED

238

attacks (observations), with a grid spacing g = 100m, the combined (mean) run-

time on a Windows-based laptop was just over 2 seconds. The algorithm produced

(mean) 15.54 regions with an average area of 1.838km2. Each region, on average,

enclosed 1.739 cache sites. If it did not contain a cache site, it was (on average) 275m

away from one. The density of caches within returned regions was 8.09caches/km2

- significantly higher than the overall density for Baghdad of 0.488caches/km2.

The rest of this section is organized as follows. Section 5.5.1 describes the

data set we used for our tests and experimental set-up. Issue 1 is addressed in Sec-

tion 5.5.2. We shall discuss the area (issue 2) of the regions returned in Section 5.5.3

and follow this with a discussion of issue 3 in Section 5.5.4. We shall discuss issue 4

in Section 5.5.5. Throughout all the sections, we shall describe results for a variety

of different grid-spacings, hence addressing issue 5.

5.5.1 Experimental Set-Up

We used theMap of Special Groups Activity in Iraq available from the Institute

for the Study of War [72]. The map plots over 1000 insurgent activities attributed

to what are termed as “Special Groups” - groups with access to certain advanced

weaponry. This data set contains events for 21 months between February 2007 and

November 2008. The activity types include the following categories.

1. Attacks with probable links to Special Groups

2. Discoveries of caches containing weapons associated with Special Groups

3. Detainments of suspected Special Groups criminals

239

4. Precision strikes against Special Groups personnel

We use this data for two geographic areas: the Baghdad urban area and the Sadr

City district. In our experiment, we will view the attacks by the special groups (item

1) as observations and attempt to determine the minimum set of cache sites (item

2), which we shall view as partners. Hence, a region returned by GREEDY-MC2

encloses a partner iff a cache falls within the region.

For distance constraints, we used a simple algorithm to learn the parameter

β (α was set to zero). This was done using the first 7 months of attack data (1
3
of

the available months) and 14 months of cache data. We used the following simple

algorithm, FIND-BETA, to determine these values. Note we set βmax to 2.5 km.

We ran the experiments on a Lenovo T400 ThinkPad laptop with a 2.53 GHz

Intel Core 2 Duo T9400 processor and 4GB of RAM. The computer was running

Windows Vista 64-bit Business edition with Service Pack 1 installed.

As the relationship between attacks and cache sites may differ varied on ter-

rain, we ran tests with two different geographic areas. First, we considered the

entire Baghdad urban area. Then, we considered just the Sadr City district. We

ran FIND-BETA with a βmax of 2.5 km on both areas prior to testing the algorithms.

There were 73 observations (attacks) for Baghdad and 40 for Sadr City. Table 5.1

shows the exact locations and dimensions of the areas considered.

We conducted two types of tests: tests focusing on GREEDY-MC2 and tests

focusing on REGION-GEN.

240

Algorithm 20 Determines β value from historical data

FIND-BETA(Oh historical, time-stamped observations,

Eh historical, time-stamped partners, βmax real)

1. Set β = βmax

2. Set Boolean variable flag to TRUE

3. For each o ∈ Oh, do the following:

(a) For each p ∈ Eh that occurs after o, do the following.

i. Let d be the Euclidean distance function.

ii. If flag, and d(o, p) ≤ βmax then set β = d(o, p)

iii. If not flag, then do the following:

A. If d(o, p) > β and d(o, p) ≤ βmax then set β = d(o, p)

4. Return real β

Area Lower-Left Lower-Left E-W N-S

Latitude Longitude Distance Distance

Baghdad 33.200◦ N 44.250◦ E 27 km 25 km

Sadr City 33.345◦ N 44.423◦ E 7 km 7 km

Table 5.1: Locations and dimensions of areas considered

241

For the tests of GREEDY-MC2, we used multiple setting for the grid spacing.

We tested grid grid spacings at every 10 meter interval in the range of [70, 1000]

meters - giving a total of 93 different values for g. Due to the fact that REGION-GEN

produces a deterministic result, we ran that algorithm only once per grid setting.

However, we ran 100 trials of GREEDY-MC2 per each parameter g. This was done

for both Baghdad and Sadr City - giving a total of 18, 600 experiments.

To study the effects of grid-spacing on the run-time of REGION-GEN, we also

ran 25 trials for each grid spacing setting for both geographic areas - giving a total of

4, 650 experiments. To compare the algorithms running with different settings for g

in a statistically valid manner, we used ANOVA [50] to determine if the differences

among grid spacings are statistically significant. For some test results, we conducted

linear regression analysis.

5.5.2 Running Time

Overall, the run-times provided by the algorithms were quite reasonable. For

example, for the Baghdad trials, 73 attacks were considered for an area of 675m2.

With a grid spacing g = 100m, REGION-GEN ran in 2340ms and GREEDY-MC2

took less than 30ms.

For GREEDY-MC2, we found that run-time generally decreased as g increased.

For Baghdad, the average run times ranged over [1.39, 34.47]ms. For Sadr City, these

times ranged over [0.15, 4.97]ms. ANOVAs for both Baghdad and Sadr City run-

242

times gave p-values of 2.2 ·10−16, which suggests with well over 99% probability that

the algorithm run with different grid settings will result in different run-times. We

also recorded the number of regions considered in each experiment (resulting from

the output of REGION-GEN). Like run-times, we found that the number of regions

considered also decreased as the grid spacing increased. For Baghdad, the number

of considered regions ranged over [88, 1011]. For Sadr City, this number ranged over

[25, 356]. ANOVAs for both Baghdad and Sadr City number of considered regions

gave p-values of 2.2 · 10−16, which suggests with well over 99% probability that the

algorithm run with different grid settings will result in different numbers of consid-

ered regions. Note that this is unsurprising as REGION-GEN run deterministically.

We noticed that, generally, only grid spacings that were near the same value would

lead to the same number of considered regions.

The most striking aspect of the run-time/number of regions considered results

for GREEDY-MC2 is that these two quantities seem closely related (see Figure 5.6).

This most likely results from the fact that the number of regions that can be as-

sociated with a given observation (∆) increases as the number of regions increases.

This coincides with our analysis of GREEDY-MC2 (see Proposition 45).

We also studied the average run-times for REGION-GEN for the various differ-

ent settings for g. For Baghdad, the average run times ranged over [16.84, 9184.72]ms.

For Sadr City, these times ranged over [0.64, 308.92]ms. ANOVAs for both Baghdad

and Sadr City run-times gave p-values of 2.2 · 10−16, which suggests with well over

99% probability that the algorithm run with different grid settings will result in

243

SADR CITY BAGHDAD

Grid Spacing (m)
T

im
e

 i
n

 m
s

/
1

0
0

s
o

f
R

e
g

io
n

s

0

1

2

3

4

5

6

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

Solid Line = Runtime

Dotted Line = Number of Regions

0

5

10

15

20

25

30

35

40

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

Figure 5.6: The run-time of GREEDY-MC2 in ms compared with the number of

regions considered.

different run-times. Our analysis of REGION-GEN (See Proposition 48) states that

the algorithm runs in time O(1
g2
). We found striking similarities with this analysis

and the experimental results (see Figure 5.7).

5.5.3 Area of Returned Regions

In this section, we examine how well the REGION-GEN/GREEDY-MC2 suite of

algorithms address the issue of returning regions that are generally small. Although

not inherently part of the algorithm, our intuition is that the Sup-REP-MC opti-

mization problem will generally return small regions based on the set R produced

by REGION-GEN. The reason for this is that we would expect that smaller regions

generally support more observations (note that this is not always true, even for in-

duced regions, but our conjecture is that it is often the case for induced regions or

the output of REGION-GEN).

244

SADR CITY BAGHDAD

Grid Spacing (m)
T

im
e

 i
n

 m
s

Solid Line = Runtime

Dotted Line = Analytical Results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

0

50

100

150

200

250

300

350

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

Figure 5.7: A comparison between analytical (O(1
g2
)) and experimental results for

the run-time of REGION-GEN compared with grid spacing (g).

To define “small” we look at the area of a circle of radius β as a basis for

comparison. As different grid settings led to different values for β, we looked at

the smallest areas. For a given trial, we looked at the average area of the returned

regions.

For Baghdad, the average areas ranged over [0.611, 2.985]km2. For Sadr City,

these times ranged over (0.01, 0.576]km2. ANOVAs for both Baghdad and Sadr City

run-times gave p-values of 2.2 · 10−16, which suggests with a 99% probability that

the algorithm run with different grid settings will result in different average areas.

Plotting the areas compared with the established “minimum area” described earlier

in this section clearly shows that REGION-GEN/GREEDY-MC2 produce solutions

with an average area that is about half of this value - refer to Figure 5.8.

Overall, there seemed to be little relation between grid spacing and average

area of the returned set of regions - based on grid spacings in [70, 1000]m. As

245

0

1

2

3

4

5

6

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

SADR CITY BAGHDAD

Grid Spacing (m)
A

v
g

 A
re

a
 p

e
r

R
e

g
io

n
 (

k
m

2
)

maximum
maximum

Figure 5.8: Average areas for solutions provided by REGION-GEN/GREEDY-MC2

for Baghdad and Sadr City.

an example, we provided screen-shots of GREEDY-MC2 for g = 100 and g = 1000

(Figure 5.9). Anecdotally, we noticed that larger grid spacing led to more “pinpoint”

regions - regions encompassing only one point in the grid (and viewed as having an

area of 0). This is most likely due to the fact that overlaps in the circles around

observations points would overlap on fewer grid points for larger values of g. Another

factor is that different settings for g led to some variation of the value β - which

also affects accuracy (note for our analysis we considered only the smallest values

of β as an upper bound for the area - see Figure 5.8.

5.5.4 Regions that Contain Caches

In this section we discuss the issue of ensuring that most of the returned regions

enclose at least one partner (cache in the case of our experiments). One measure

of this aspect is to look at the average number of caches enclosed per region in a

given result. We found, that for Baghdad, we generally enclosed more than 1 cache

246

+

+

+

+ +

+

+

+

+

+

g= 100 m

g= 1000 m

Figure 5.9: Results from two runs of GREEDY-MC2 - g = 100m (top), g = 1000m

(bottom). Pinpoint-regions are denoted with plus-signs. Notice that the average

areas of the results are comparable.

247

SADR CITY BAGHDAD

Grid Spacing (m)
A

v
g

 C
a

ch
e

s
E

n
cl

o
se

d

P
e

r
R

e
g

io
n

0

0.5

1

1.5

2

2.5

3

3.5

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

Figure 5.10: Average caches enclosed per region for Baghdad and Sadr City for

various grid-spacing settings.

per region in a given result - this number was in the range [0.764, 3.25]. The results

for Sadr City were considerably lower - in the range [0, 0.322]. ANOVAs for both

Baghdad and Sadr City gave p-values of 2.2 · 10−16, which suggests with a 99%

probability that the algorithm run with different grid settings will result in different

average number of enclosed caches. However, we did not observe an obvious trend

in the data (see Figure 5.10).

As an alternative metric - we look at the number of regions in provided by

GREEDY-MC2 that contain at least one region. Figure 5.12 shows the number of

regions returned in the output. For Baghdad, generally less than half the regions

in the output will enclose a cache - the number of enclosing regions was in [1, 8],

while the total number of regions was in [10.49, 22]. This result, along with the

average number of caches enclosed by a region - may indicate that while sometimes

GREEDY-MC2 may find regions that enclose many caches, there are often regions

248

C C
C C

C

C
C C C

C

C C

C C C
C
C C

C
C

C
C C
C C

C C C
C

C
C
C

C

C

C C

C C

C

C C C
C

C C
C
C C

C

C

C

C C
C

C

C

C C
C C

C
C

C C

C
C
C

C C

C

C C
C
C C C

C
C

C
C C
C C

C C

C C

C
C

C

C

C
C

C
C C

C C

C

C

C
C C C

C C
C

C C

C

C
C C C

C
C

C

C

C
C

C C C

C

C
C C

C
C

C
C

C C
C

C
C C
C

C

C
C

C C

C

C

C

C
C C

C
C C C

C C

C C
C

C C C
C C C

C

C
C

C
C

C
C

C

C

C C C

+

C

C
C C

C

C

C

CCCC

CC

CC

C

C C
C
CC

CCC

C
C

C
C

C
C

C

+

+

A

B

C

D

E

F

G

H

I

J

Figure 5.11: The output of GREEDY-MC2 for Baghdad with g = 100m compared

with the locations of actual cache sites (denoted with a “C”). Notice that regions

A-E do not contain any cache sites while regions G-I all contain numerous cache

sites.

that enclose no caches as well. This may indicate that for Baghdad, some attacks-

cache relationships conform to our model and others do not - perhaps there is another

discriminating attribute about the attacks not present in the data that may account

for this phenomenon. For example, perhaps some attacks were preformed by some

group that had a capability to store weapons in a cache located further outside the

city, or perhaps some groups had the capability to conduct attacks using cache sites

that were never found. We illustrate this phenomenon with an example output in

Figure 5.11. Note that in the figure, regions A-E do not contain any cache sites

while regions G-I all contain numerous cache sites.

For Sadr City, the number of caches that contain one region was significantly

249

SADR CITY BAGHDAD

Grid Spacing (m)
N

u
m

b
e

r
o

f
R

e
g

io
n

s
Solid Line = Avg. number of regions enclosing at least one cache

Dotted Line = Average total regions

0

2

4

6

8

10

12

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

0

5

10

15

20

25

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

Figure 5.12: Regions in the output that enclose at least one partner (cache) and

total number of regions returned for Baghdad and Sadr City.

lower - in the range [0, 2], while the total number of returned regions was in [3, 9.8].

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2·10−16, which suggests

with well over 99% probability that the algorithm run with different grid settings

will result in different number of caches that enclose a region.

We believe that the low numbers for caches enclosed by regions for Sadr City

were directly related to the smaller areas of regions. However, the mean of the aver-

age area of a returned set of regions was 0 for 49 of the 94 different grid settings (for

Sadr City). This means that for the majority of grid settings, the solution consisted

only of “pinpoint” regions (see Section 5.5.3 for a description of “pinpoint” regions).

Obviously, it is unlikely for a pinpoint region to contain a cache site merely due

to its infinitesimally small area. To better account for this issue - we develop another

metric - distance to nearest cache. If a region contains a cache, the value for this met-

ric is 0. Otherwise, it is the distance to the closest cache outside of the region. For

250

SADR CITY BAGHDAD

Grid Spacing (m) D
is

ta
n

ce
 t

o
 N

e
a

re
st

 C
a

ch
e

 O
u

ts
id

e
 R

e
g

io
n

Solid Line = Avg. Distance

Dotted Line = Linear Regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

Figure 5.13: Distance to nearest cache vs. grid spacing.

Baghdad, we obtained distances in [0.246, 0.712]km, for Sadr City, [0.080, 0.712]km.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2·10−16, which suggests

with well over 99% probability that the algorithm run with different grid settings

will result in different distances to the nearest cache. Using linear regression, we

observed that this distance increases as grid spacing increases. For Baghdad, we ob-

tained R2 = 0.2396 and R2 = 0.2688 for Sadr City. See Figure 5.13 for experimental

results and the results of the liner regression analysis.

5.5.5 Partner Density

T consider the density of partners in the regions, we compare the number of en-

closed partners to the overall partner density of the area in question. For Baghdad,

there were 303 caches in an area 27× 24km - giving a density of 0.488caches/km2.

For Sadr City, there were 64 caches in an area 7 × 7km - giving a density of

1.306caches/km2. In our experiments, we looked at the cache density for each out-

put. For Baghdad, the density was significantly higher - in [0.831, 34.9]cache/km2.

251

SADR CITY BAGHDAD

Grid Spacing (m)
C

a
ch

e
s

p
e

r
k

m
2

Dotted line = Linear regression

Dashed Line = Overall cache density

Solid Line = Cache density in returned regions

0

5

10

15

20

25

30

35

40

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

0

5

10

15

20

25

30

35

7
0

1
5

0

2
3

0

3
1

0

3
9

0

4
7

0

5
5

0

6
3

0

7
1

0

7
9

0

8
7

0

9
5

0

Figure 5.14: Cache density of outputs produced by GREEDY-MC2 for Baghdad and

Sadr City compared with overall cache density and linear-regression analysis.

If we consider g ∈ [70, 200], the density is in [7.19, 32.9]cache/km2. For g = 100,

the density was 8.09caches/km2. Most likely due to the issue of “pinpoint” regions

described in Section 5.5.3, the results for Sadr City, were often lower than the overall

density (in [0, 31.3]cache/km2). For g = 100, the density was 2.08caches/km2. We

illustrate these results compared with overall cache density in Figure 5.14.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16, which

suggests with well over 99% probability that the algorithm run with different grid

settings will result in different cache densities. Using linear regression, we observed

that this cache density decreases as grid spacing increases. For Baghdad, we ob-

tained R2 = 0.1614 and R2 = 0.1395 for Sadr City. See Figure 5.14 for experimental

results and the results of the liner regression analysis.

Although partner density is a useful metric, it does not tell us anything about

partners that lie close to a region - although still outside. For example, consider

Figure 5.11. Although region A does not enclose any caches, there is a cache just

252

C

C

C
C

C

C

C

C

C
C
C

C

C

F

Figure 5.15: Close-up of region F from Figure 5.11. While region F contains 1

cache, there are 4 other caches < 250m from the boundary of that region. The

area-quadrupling metric helps us account for such scenarios.

outside - region B is similar. Also consider the cluster of caches south of region E

and north of region J - in this situation it appears as though GREEDY-MC2 mis-

positioned a region. We include a close-up of region F in Figure 5.15, which encloses

a cache, but there are also 4 other caches at a distance of 250m or less.

In order to account for such phenomena, we created an area-quadrupling metric

- that is we uniformly double the sides of each region in the output. Then, we

calculated the density of the output with area-quadrupled regions. For Baghdad,

this density was in [0.842, 30.3]caches/km2. For Sadr City, this density was in

[0, 12.3]caches/km2. These results are depicted in Figure 5.16.

As the regions for Sadr City were often smaller than those in Baghdad, we

found that the cache density for area-quadrupled regions was often higher for Sadr

City (i.e. a region in Sadr City would have nearby cache sites). An example is

253

SADR CITY BAGHDAD

Grid Spacing (m)
C

a
ch

e
s

p
e

r
k

m
2

Solid Line = Cache density in quadruple-size regions

Dotted Line = Linear regression

0

5

10

15

20

25

30

35

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

0

2

4

6

8

10

7
0

1
4

0

2
1

0

2
8

0

3
5

0

4
2

0

4
9

0

5
6

0

6
3

0

7
0

0

7
7

0

8
4

0

9
1

0

9
8

0

Figure 5.16: Area quadrupled cache density of output produced by GREEDY-MC2

with linear-regression analysis.

shown in Figure 5.15.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16, which

suggests with well over 99% probability that the algorithm run with different grid

settings will result in different cache densities for area-quadrupled regions. We also

conducted linear regression analysis, and like the normal partner density, we found

that cache density decreases as grid spacing increases. However, this liner analysis

was more closely correlated with the data than the analysis for non-area quadrupled

density. For Baghdad, we obtained R2 = 0.3171 (for non-area quadrupled, we

obtained R2 = 0.1614) and R2 = 0.3983 (for non-area quadrupled, we obtained

R2 = 0.1395) for Sadr City. See Figure 5.16 for experimental results and the results

of the liner regression analysis.

254

5.6 Chapter 5 Related Work

Facility location [164] may also appear similar to this work. However, facility

location problems normally seek to locate a facility at an infinitesimal point with

respect to some minimality criteria - not identify a region. Further, in a facility lo-

cation problem, distance is often sought to be minimized - so a “closer” facility may

be more optimal. In our formulation, we restrict distance with α, β, but a more op-

timal region is not necessarily closer to its associated observation. Rather, a region

is often more optimal provided if it supports multiple partners. This may, in fact,

make regions further from their observations. Another problem, which influences

some facility location work, is the k-means problem [116]. This type of “cluster-

ing” technique looks to group points together and possibly locate a “center.” While

there is an implicit grouping of observations by the algorithms of this paper, we

are attempting to find regions that explain them rather than simply group them.

Moreover, Chapter 4 shows experimentally that the methods for solving GAPs sig-

nificantly outperform simply applying k-means algorithms. This fact illustrates that

the problem of this paper (and other work in geospatial abduction) is fundamentally

different from work in clustering. Perhaps some of the closest work to our problem

is in the study of the circle-covering problem [125, 70, 58, 16]. The problem of

this paper is more general than circle-covering although special case of the region-

explanation problem does reduce to circle-covering, as described in Section 5.4.2

(page 230).

255

5.7 Chapter Summary

In this chapter we explored a variant of “geospatial abduction” (which was in-

troduced in chapter 4) called region-based geospatial abduction problems where the

user wishes to identify a set of regions that best explain a given set of observations.

This has several important applications including criminology [144], marketing [55],

natural science [143], and the military [170]. We explored properties and the com-

plexity of several variants of this problem, including variants where the space is

induced by a distance from the observations, as well as when the regions are ir-

regular shapes (including non-convex). As most of the problems were NP-hard, we

illustrated a variety of approximation techniques, often with guarantees, to address

these problems. We also implemented some of our algorithms and evaluated with

a real-world counterinsurgency [72] data-set to find weapons cache sites based on

attack data in Baghdad, Iraq and produced regions that had an average density of

over 8 caches per square kilometer, significantly higher than the city wide density

of 0.4.

There are many interesting open questions relating to this type of abduction

problem. Future work may include studies of the counting version of the problem,

where we may consider all possible solutions to a given region explanation problem

according to a probability distribution and determine the “most probable” regions.

Another aspect to consider would be time – perhaps in some applications the loca-

tions of the partners are in a certain region only at a certain time.

256

Chapter 6

Adversarial Geospatial Abduction

Given an instance of a geospatial abduction problem from Chapter 4, where

do we look for partners if an adversary is aware of the algorithms we are using? We

study this situation, along with a complementary problem in this chapter.1

6.1 Chapter Introduction

Geospatial abduction problems (GAPs) were introduced in Chapter 4 to find

a set of locations that “best explain” a given set of locations of observations. We

call these inferred sets of locations “explanations”. There we described many such

applications of GAPs.

Chapter 4 defined geospatial abduction problems (GAPs) and studied a ver-

sion of the problem where the adversary (the “bad guy” or the entity that wishes

to evade detection) does not reason about the agent (the “good guy” or the entity

1This chapter is based on [154] completed in cooperation with John Dickerson and V.S. Sub-

rahmanian.

257

that wants to detect the adversary). Despite this significant omission, they were

able to accurately predict the locations of weapons caches in real-world data about

IED attacks in Baghdad. In this chapter, we introduce adversarial geospatial ab-

duction problems where both the agent and the adversary reason about each other.

Specifically, we:

1. Axiomatically define reward functions to be any functions that satisfy certain

basic axioms about the similarity between an explanation chosen by the ad-

versary (e.g. where the serial killer lives and works or where the insurgents put

their IED caches) and define notions of expected detriment (to the adversary)

and expected benefit (to the agent).

2. Formally define the optimal adversary strategy (OAS) that minimizes chances

of detection of the adversary’s chosen explanation and the maximal counter-

adversary strategy (MCA) that maximizes the probability that the agent will

detect the adversary’s chosen explanation.

3. Provide a detailed set of results on the computational complexity of these

problems, the counting complexity of these problems, and the possibility of

approximation algorithms with approximation guarantees for both OAS and

MCA.

4. Develop mixed integer linear programming algorithms (MILPs) for OAS and

two algorithms, MCA-LS and MCA-GREEDY-MONO, to solve MCA with cer-

tain approximation guarantees. MCA-LS has no assumptions, while MCA-

GREEDY-MONO assumes monotonicity.

258

5. Develop a prototype of our MILP algorithms to solve the OAS problem, using

our techniques for variable reduction on top of a integer linear program solver.

We demonstrate the ability to achieve near-optimal solutions as well as a

correct reduction of variables by 99.6% using a real-world data set.

6. Develop a prototype implementation that shows that both MCA-LS and MCA-

GREEDY-MONO are highly accurate and have very reasonable time frames.

Though MCA-GREEDY-MONO is slightly faster than MCA-LS, we found that

on every single run, MCA-LS found the exact optimal benefit even though its

theoretical lower bound approximation ratio is only 1/3. As MCA-LS does not

require any additional assumptions and as its running time is only slightly

slower than that of MCA-GREEDY-MONO, we believe this algorithms has a

slight advantage.

The main contributions of the chapter are as follows. Section 6.2 first reviews

the GAP framework of Chapter 4. Section 6.3 extends GAPs to the adversarial case

using axiomatically defined reward function (Section 6.2). Section 6.4 complexity

results and several exact algorithms using MILPs for the OAS problem. Section 6.5

provides complexity results and develops exact and approximate methods MCA

—including an approximation technique that provides the best possible guarantee

unless P=NP. We then briefly describe our prototype implementation and describe

a detailed experimental analysis of our algorithms. Finally, related work is then

described in Section 6.7.

259

6.2 Overview of GAPs

We utilize the same definitions of a space, observations, feasibility, partners,

and explanations as we did in Chapter 4. We note in that chapter we often sought

to find an explanation of minimal cardinality, a common parsimony requirement.

Alternatively, another requirement that can be imposed on an explanation is irre-

dundancy.

Definition 58. An explanation E is irredundant iff no strict subset of E is an

explanation.

Intuitively, if we can remove any element from an explanation – and this action

causes it to cease to be a valid explanation – we say the explanation is irredundant.

Example 6.2.1. Figure 6.1 shows a map of a drug plantation depicted in a 18 ×

14 grid. The distance between grid squares is 100 meters. Observation set O =

{o1, o2, o3, o4, o5} represents the center of mass of the poppy fields. Based on an

informant or from historical data, drug enforcement officials know that there is a

drug laboratory located 150−320 meters from the center mass of each field (i.e. in a

geospatial abduction problem, we can set [α, β] = [150, 320]). Further, based on the

terrain, the drug enforcement officials are able to discount certain areas (shown in

black on Figure 6.1, a feasibility predicate can easily be set up accordingly). Based on

Figure 6.1, the set {p40, p46} is an irredundant explanation. The sets {p42, p45, p48}

and {p40, p45} are also irredundant explanations.

In Chapter 4, we showed the problem of finding an explanation of size k

to be NP-Complete based on a reduction from the known NP-Complete problem

260

o
1

o
2

o
3

o
4

o
5

 33 34 35

44 45 46 47 48 49 50

52 56

 37 38 40 41 42 43

 57

Figure 6.1: Map of poppy fields for Example 6.2.1. For each labeled point pi, the

“p” is omitted for readibility.

Geometric Covering by Discs (GCD) seen in [76]. As with most decision problems,

we define the associated counting problem, #GCD, as the number of “yes” answers to

the GCD decision problem. The result below, which is new, shows that #GCD is #P-

complete and, moreover, that there is no fully-polynomial random approximation

scheme for #GCD unless NP equals the complexity class RP .2

Lemma 19. #GCD is #P-complete and has no FPRAS unless NP=RP.

We can leverage the above result to derive a complexity result for the counting

version of k-SEP.

2RP is the class of decision problems for which there is a randomized polynomial algorithm

that, for any instance of the problem, returns “false” with probability 1 when the correct answer

to the problem instance is false, and returns “true” with probability (1− ǫ) for a small ǫ > 0 when

the correct answer to the problem instance is “true.”

261

Theorem 27. The counting version of k-SEP is #P-Complete and has no FPRAS

unless NP=RP.

6.3 Geospatial Abduction as a Two-Player Game

Throughout this chapter, we view geospatial abduction as a two-player game

where an agent attempts to find an “explanation” for a set of observations caused

by the adversary who wants to hide the explanation from the agent.

Each agent chooses a strategy which is merely a subset of S. Though “strategy”

and “observation” are defined identically, we use separate terms to indicate our

intended use. In the IED example, the adversary’s strategy is a set of points where

to place his cache, while the agent’s strategy is a set of points that he thinks hold

the weapons caches. Throughout this chapter, we use Egt (resp. C) to denote the

strategy of the adversary (resp. agent).

Given a pair (Egt, C) of adversary-agent strategies, a reward function measures

how similar the two sets are. The more similar, the better it is for the agent. As

reward functions can be defined in many ways, we choose an axiomatic approach so

that our framework applies to many different reward functions including ones that

people may invent in the future.

Definition 59 (Reward Function). A reward function is any function rf : 2S×2S →

[0, 1] that for any k-explanation Egt 6≡ ∅ and set C ⊆ S, the function satisfies:

1. If C = Egt, then rf(Egt, C) = 1

262

2. For C, C ′ then

rf(Egt, C ∪ C ′) ≤ rf(Egt, C) + rf(Egt, C ′)− rf(Egt, C ∩ C ′).

We now define the payoffs for the agent and adversary.

Observation 6.3.1. Given adversary strategy Egt, agent strategy C, and reward

function rf, the payoff for the agent is rf(Egt, C) and the payoff for the adversary is

−rf(Egt, C).

It is easy to see that for any reward function and pair (Egt, C), the correspond-

ing game is a zero-sum game [102]. Our complexity analysis assumes all reward

functions are polynomially computable. All the specific reward functions we pro-

pose in this chapter satisfy this condition.

The basic intuition behind the reward function is that the more the strategy

of the agent resembles that of the adversary, the closer the reward is to 1. Axiom 1

says that if the agent’s strategy is the same set as adversary’s, then the reward is

1. Axiom 2 says that adding a point to C cannot increase the reward to the agent

if that point is already in C, i.e. double-counting of rewards is forbidden.

The following theorem tells us that every reward function is submodular, i.e.

the marginal benefit of adding additional points to the agent’s strategy decreases as

the cardinality of the strategy increases.

Proposition 49 (Submodularity of Reward Functions). Every reward function is

submodular, i.e. If C ⊆ C ′, and point p ∈ S s.t. p /∈ C and p /∈ C ′, then rf(Egt, C ∪

{p})− rf(Egt, C) ≥ rf(Egt, C ′ ∪ {p})− rf(Egt, C ′).

263

Some readers may wonder why rf(Egt, ∅) = 0 is not an axiom. While this is

true of many reward functions, there are reward functions where we may wish to

penalize the agent for “bad” predictions. Consider the following reward function.

Definition 60 (Penalizing Reward Function). Given a distance dist, we define the

penalizing reward function, prf(dist)(Egt, C), as follows:

1

2
+
|{p ∈ Egt|∃p′ ∈ C s.t. d(p, p′) ≤ dist}|

2 · |Egt|
− |{p ∈ C| 6 ∃p

′ ∈ Egt s.t. d(p, p′) ≤ dist}|
2 · |S|

Proposition 50. prf is a valid reward function.

Example 6.3.1. Consider Example 6.2.1 and the explanation Egt ≡ {p40, p46} (re-

sembling actual locations of the drug labs), the set C ≡ {p38, p41, p44, p56} (repre-

senting areas that the drug enforcement officials wish to search), distance dist =

100 meters.There is only one point in Egt that is within 100 meters of a point

in C (point p40) and 3 points in C more than 100 meters from any point in Egt

(points p38, p44, p56). These relationships are shown visually in Figure 6.2. Hence,

prf(dist)(Egt, C) = 0.5 + 0.25− 0.011 = 0.739.

prf penalizes the agent if he poorly selects points in S. The agent starts with

a reward of 0.5. The reward increases if he finds points close to elements of Egt —

otherwise it decreases.

A reward function is zero-starting if rf(Egt, ∅) = 0, i.e. the agent gets no

reward if he infers nothing.

Definition 61. A reward function, rf, is monotonic if (i) it is zero-starting and

(ii) if C ⊆ C ′ then rf(Egt, C) ≤ rf(Egt, C ′).

264

o
1

o
2

o
3

o
4

o
5

 33 34 35

44 45 46 47 48 49 50

52 56

 37 38 40 41 42 43

 57

45 46 47

52

 48 49

 40 41 37 38 40 41 42 43

Figure 6.2: Dashed circles encompass all feasible points within 100 meters from

explanation {p40, p45}.

We now define several example monotonic reward functions.

The intuition behind the cutoff reward function crf is simple: for a given

distance dist (the “cut-off” distance), if for every p ∈ Egt, there exists p′ ∈ C such

that d(p, p′) ≤ dist, then p′ is considered “close to” p.

Definition 62 (Cutoff Reward Function). Reward function based on a cut-off dis-

tance, dist.

crf(dist)(Egt, C) :=
card({p ∈ Egt|∃p′ ∈ C s.t. d(p, p′) ≤ dist})

card(Egt)

The following proposition shows that the cutoff reward function is a valid,

monotonic reward function.

Proposition 51. crf is a valid, monotonic reward function.

265

Example 6.3.2. Consider Example 6.3.1. Here, crf(dist)(Egt, C) returns 0.5 as one

element of Egt is within 100 meters of an element in C.

By allowing a more general notion of “closeness” between points p ∈ Egt and

p′ ∈ E , we are able to define another reward function, the falloff reward function,

frf. This function provides the most reward if p = p′ but, unlike the somewhat

binary crf, gently lowers this reward to a minimal zero as distances d(p, p′) grow.

Definition 63 (Falloff Reward Function). Reward function with value based on

minimal distances between points.

frf(Egt, C) :=

0 if C = ∅
∑

p∈Egt
1

|Egt|+minp′∈C(d(p,p
′)2)

otherwise

with d(p, p′) :=
√

(px − p′x)
2 + (py − p′y)

2. In this case, the agent’s reward is in-

versely proportional to the square of the distance between points, as the search area

required grows proportionally to the square of this distance.

Proposition 52. frf is a valid, monotonic reward function.

In practice, an agent may assign different weights to points in S based on

the perceived importance of their partner observations in O. The “weighted reward

function” wrf gives greater reward for being “closer” to points in Egt that have high

weight than those with lower weights.

Definition 64 (Weighted Reward Function). Given weight function W : S → R
+,

and a cut-off distance dist we define the weighted reward function to be:

wrf(W,dist)(Egt, C) :=
∑

{p∈Egt|∃p′∈C s.t. d(p,p′)≤dist}W (p)
∑

p′∈Egt W (p′)

266

Proposition 53. wrf is a valid, monotonic reward function.

It is easy to see that the weighted reward function is a generalization of the

cutoff reward function where all weights are 1.

6.3.1 Incorporating Mixed Strategies

In this section, we introduce pdfs over strategies (or “mixed strategies” [102])

and introduce the notion of “expected reward.” We first present explanation/strategy

functions which return an explanation (resp. strategy) of a certain size for a given

set of observations.

Definition 65 (Explanation/Strategy Function). An explanation (resp. strategy)

function is any function ex fcn : 2S × N → 2S (resp. sf : 2S ×N → 2S) that, given

a set O ⊆ S and k ∈ N, returns a set E ⊆ S such that E is a k-sized explanation of

O (resp. E is a k-sized subset of S). Let EF be the set of all explanation functions.

Example 6.3.3. Following from Example 6.2.1, we shall define two functions ex fcn1, ex fcn2,

which for set O (defined in Example 6.2.1 and k ≤ 3, give the following sets:

ex fcn1(O, 3) = {p42, p45, p48}

ex fcn2(O, 3) = {p40, p46}

These sets may correspond to explanations from various sources. Perhaps they cor-

respond to the answer of an algorithm that drug-enforcement officials use to solve

GAPs. Conversely, they could also be the result of a planning session by the drug

cartel to determine optimal locations for the drug labs.

267

In theory, the set of all explanation functions can be infinitely large; however,

it makes no sense to look for explanations containing more points than S — so we

assume explanation functions are only invoked with k ≤ (M + 1)× (N + 1).

A strategy function is appropriate for an agent who wants to select points re-

sembling what the adversary selected, but is not required to produce an explanation.

Our results typically do not depend on whether an explanation or strategy function

is used (when they do, we point it out). Therefore, for simplicity, we use “explana-

tion function” throughout the chapter. In our complexity results, we assume that

explanation/strategy functions are computable in constant time.

Both the agent and the adversary do not know the explanation function (where

is the adversary going to put his weapons caches? where will US forces search for

them?) in advance. Thus, they use a pdf over explanation functions to estimate

their opponent’s behavior, yielding a “mixed” strategy.

Definition 66 (Explanation Function Distribution). Given a space S, real numbers

α, β, feasibility predicate feas, and an associated set of explanation functions EF, an

explanation function distribution is a finitary3 probability distribution exfd : EF →

[0, 1] with
∑

ex fcn∈EF exfd(ex fcn) = 1. Let EFD be a set of explanation function

distributions.

We use |exfd| to denote the cardinality of the set EF associated with exfd.

Example 6.3.4. Following from Example 6.3.3, we shall define the explanation

function distribution exfddrug that assigns a uniform probability to explanation func-

3That is, exfd assigns non-zero probabilities to only finitely many explanation functions.

268

tions in the set ex fcn1, ex fcn2 (i.e. exfddrug(ex fcn1) = 0.5).

We now define an “expected reward” that takes into account these mixed

strategies specified by explanation function distributions.

Definition 67 (Expected Reward). Given a reward function rf, and explanation

function distributions exfdadv, exfdag, the expected reward is the function EXR(rf) :

EFD × EFD → [0, 1]. For some explanations function distributions exfdadv, exfdag,

we define EXR(rf)(exfdadv, exfdag) as follows:

∑

ex fcnadv∈EFadv

exfdadv(ex fcnadv) ·
∑

ex fcnag∈EFag

exfdag(ex fcnag) · rf(ex fcnadv, ex fcnag)

However, in this chapter, we will generally not deal with expected reward

directly, but two special cases - expected adversarial detriment and expected agent

benefit - in which the adversary’s and agent’s strategies are not mixed respectively.

We explore these two special cases in the next two sections.

6.4 Selecting a Strategy for the Adversary

In this section, we look at how an adversary would select points (set Egt) in the

space he would use to cause observations O. For instance, in the IED example, the

adversary needs to select Egt and O so that Egt is an explanation for O. We assume

the adversary has a probabilistic model of the agent’s behavior (an explanation

function distribution) and that he wants to eventually find an explanation (e.g. to

put his weapons caches at). Hence, though he can use expected reward to measure

how close the agent will be to his explanation, only the agent’s strategy is mixed.

269

His actions are concrete. Hence, we introduce a special case of expected reward –

expected adversarial detriment.

Definition 68 (Expected Adversarial Detriment). Given any reward function rf,

and explanation function distribution exfd, the expected adversarial detriment is the

function EXR(rf) : EFD× 2S → [0, 1] defined as follows:

EXR(rf)(exfd, Egt) =
∑

ex fcn∈EF
rf(Egt, ex fcn(O, k)) · exfd(ex fcn)

Intuitively, the expected adversarial detriment is the fraction of partner loca-

tions the agent may uncover. Consider the following example.

Example 6.4.1. Following from the previous examples, suppose the drug cartel

is planning three drug labs. Suppose they have information that drug-enforcement

agents will look for drug labs using exfddrug (Example 6.3.4). One suggestion the

adversary may consider is to put the labs at locations p41, p52 (see Figure 6.1). Note

that this explanation is optimal wrt cardinality. With dist = 100 meters, they wish

to compute EXR(crf)(exfddrug, {p41, p52}). We first need to find the reward associated

with each explanation function (see Example 6.3.3):

crf(dist)({p41, p52}, ex fcn1(O, 3)) = 1

crf(dist)({p41, p52}, ex fcn2(O, 3)) = 0.5

Thus, EXR(crf)(exfddrug, {p41, p52}) = 0.5 · 1+0.5 · 0.5 = 0.75. Hence, this is probably

not the best location for the cartel to position the labs wrt crf and exfd – the expected

adversarial detriment of the drug-enforcement agents is large.

270

The expected adversarial detriment is a quantity that the adversary would

seek to minimize — this now defined as an optimal adversarial strategy below.

Definition 69 (Optimal Adversarial Strategy). Given a set of observations O,

natural number k, reward function rf, and explanation function distribution exfd,

an optimal adversarial strategy is a k-sized explanation Egt for O such that

EXR(rf)(exfd, Egt) is minimized.

6.4.1 The Complexity of Finding an Optimal Adversarial

Strategy

In this section, we formally define the optimal adversary strategy (OAS) prob-

lem and study its complexity.

OAS Problem

INPUT: Space S, feasibility predicate, feas, real numbers α, β, set of observations,

O, natural number k, reward function rf, and explanation function distribution

exfd.

OUTPUT: The optimal adversarial strategy, Egt.

We show that the known NP-hard problem Geometric Covering by Discs (see

Section 6.2) is polynomially reducible to OAS - this establishes NP-hardness.

Theorem 28. OAS is NP-hard.

The proof of the above theorem yields two insights. First, OAS is NP-hard

271

even if the reward function is monotonic (or anti-monotonic). Second, OAS remains

NP-hard even if the cardinality of EF is small - in the construction we only have one

explanation function. Thus, we cannot simply pick an “optimal” function from EF.

To show an upper bound, we define OAS-DEC to be the decision problem associated

with OAS. If the reward function is computable in polynomial time, OAS-DEC is

in NP.

OAS-DEC

INPUT: Space S, feasibility predicate, feas, real numbers α, β, set of observations,

O, natural number k, reward function rf, explanation function distribution exfd,

and number R ∈ [0, 1].

OUTPUT: “Yes” if there exists an adversarial strategy, Egt such that EXR(rf)(exfd, Egt) ≤

R – “no” otherwise.

Theorem 29. If the reward function is computable in PTIME, then OAS-DEC is

NP-complete.

Suppose we have an NP oracle that can return an optimal adversarial strategy

- lets call it Egt. Quite obviously, this is the best response of the adversary to the

mixed strategy of the agent. Now, how does the agent respond to such a strategy?

If we were to assume that such a solution were unique, then the agent would simply

have to find an strategy C such that rf(Egt, C) is maximized. This would be a special

case of the problem we discuss in Section 6.5. However, this is not necessarily the

case. A natural way to address this problem is to create a uniform probability

272

distribution over all optimal adversarial strategies and optimize the expected reward

– again a special case of what is to be discussed in Section 6.5. However, obtaining

the set of explanations is not an easy task. Even if we had an easy way to exactly

compute an optimal adversarial strategy, finding all such strategies is an even more

challenging problem. In fact, it is at least as hard as the counting version of GCD

– which we already have shown to be #P-hard and difficult to approximate. Let us

consider the following theorem.

Theorem 30. Finding the set of all adversarial optimal strategies that provide a

“yes” answer to OAS-DEC is #P-hard.

6.4.2 Pre-Processing and Naive Approach

In this section, we present several algorithms to solve OAS. We first present a

simple routine for pre-processing followed by a naive enumeration-based algorithm.

We use ∆ to denote the maximum number of partners per observation and f

to denote the maximum number of observations supported by a single partner. In

general, ∆ is bounded by π(β2 − α2), but may be lower depending on the feasible

points in S. Likewise, f is bounded by min(|O|,∆) but may be much smaller de-

pending on the sparseness of the observations.

Pre-Processing Procedure. Given a space S, a feasibility predicate feas, real

numbers α, β ∈ [0, 1], and a set O of observations, we create two lists (similar to a

standard invertex index) as follows.

273

 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

1 2 3

22 23 24 25 26 27 28 29

37 38 39 40 41 42 43

44 45 46 47 48 49 50 51

52 53 54 55 56

 57 58 59 60

 61 62 63

 64 65 66

 67

o
1

o
2

o
3

o
4

o
5

30 31 32 33 34 35 36

Figure 6.3: Set L of all possible partners for our drug laboratory location example.

• Matrix M . M is an array of size S. For each point p ∈ S, M [p] is a list of

pointers to observations. M [p] contains pointers to each observation o such that

feas(p) is true and such that d(o, p) ∈ [α, β].

• List L. List L contains a pointer to position M [p] in the array M iff there exists

an observation o ∈ O such that feas(p) is true and such that d(o, p) ∈ [α, β]..

It is easy to see that we can compute M and L in O(|O| · ∆) time. The example

below shows how M,L apply to our running drug example.

Example 6.4.2. Consider our running example concerning the location of drug

laboratories that started with Example 6.2.1. The set L consists of {p1, . . . , p67}.

The matrix M returns lists of observations that can be associated with each point.

For example, M(p40) = {o3, o4, o5} and M(p46) = {o1, o2}.

Naive Approach. After pre-processing, a straight-forward exact solution to OAS

274

would be to enumerate all subsets of L that have a cardinality less than or equal to

k. Let us call this set L∗. Next, we eliminate all elements of L∗. that are not valid

explanations. Finally, for each element of L∗, we compute the expected adversarial

detriment - and return the element of L∗ for which this value is the least. Clearly,

this approach is impractical as the cardinality of L∗ can be very large. Further, this

approach does not take advantage of the specific reward functions. We now present

mixed integer linear programs (MILPs) for wrf and frf and later look at ways to

reduce the complexity of solving these MILPs.

6.4.3 Mixed Integer Linear Programs for OAS under wrf, crf, frf

We present mixed integer linear programs (MILPs) to solve OAS exactly for

some specific reward functions. First, we consider the reward function wrf. Later,

in Section 6.4.4, we show how to improve efficiency by correctly reducing the number

of variables in such MILPs. Note that these constraints can also be used for crf as

wrf generalizes crf.

Definition 70 (wrf MILP). We associate an integer-valued variable Xi with each

pi ∈ L.

Minimize:

∑

ex fcnj∈EF

(

exfd(ex fcnj) ·
∑

pi∈L

(

Xi · (
wi · ci,j

∑

pi∈L wi ·Xi

)

))

subject to:

1. Xi ∈ {0, 1}

2. Constraint
∑

pi∈L Xi ≤ k

275

3. For each oj ∈ O, add constraint

∑

pi∈Ld(oj ,pi)∈[α,β]
Xi ≥ 1

4. For each pi ∈ L and ex fcnj ∈ EF, let constant ci,j = 1 iff ∃p′ ∈ ex fcn(O, k)

s.t. d(p′, pi) ≤ dist and 0 otherwise.

Example 6.4.3. Continuing from Examples 6.4.1 (page 270) and 6.4.2, suppose

the drug cartel wishes to produce an adversarial strategy Egt using wrf. Consider

the case where we use crf, k ≤ 3, and dist = 100 meters as before (see Exam-

ple 6.4.1). Clearly, there are 67 variables in these constraints, as this is the cardi-

nality of set L (as per Example 6.4.2). The constants ci,1 are 1 for elements in the

set {p35, p40, p41, p42, p43, p44, p45, p46, p49, p49, p50, p52, p56} (and 0 for all others). The

constants ci,2 are 1 for elements in the set {p33, p37, p40, p41, p45, p46, p47, p48} (and 0

for all others).

We can create a MILP for frf as follows.

Definition 71 (frf MILP). Minimize:

∑

ex fcnj∈EF

(

exfd(ex fcnj) ·
∑

pi∈L

(

Xi · (
1

ci,j +
∑

pi∈L Xi

)

))

subject to:

1. Xi ∈ {0, 1}

2. Constraint
∑

pi∈L Xi ≤ k

3. For each oj ∈ O, add constraint

∑

pi∈Ld(oj ,pi)∈[α,β]
Xi ≥ 1

276

4. For each pi ∈ L and ex fcnj ∈ EF, let constant ci,j = minp′∈ex fcn(O,k)(d(pi, p
′)2).

The following theorem tells us that solving the above MILPs correctly yields

a solution for the OAS problem under both wrf or frf.

Proposition 54. Suppose S is a space, O is an observation set, [α, β] ⊆ [0, 1] and

suppose the wrf and frf MILPs are defined as above.

1. Suppose Egt ≡ {p1, . . . , pn} is a solution to OAS with wrf(resp. frf). Consider

the assignment that assigns 1 to each X1, . . . , Xn corresponding to the pi’s and

0 otherwise. This assignment is an optimal solution to the MILP.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to

set Egt, then Egt is a solution to OAS with wrf(resp. frf).

Setting up either set of constraints can be performed in polynomial time –

where computing the ci,j constants is the dominant operation.

Proposition 55. Setting up the wrf/frf Constraints can be accomplished in O(|EF|·

k · |O| ·∆) time (provided the weight function W can be computed in constant time).

The number of variables for either set of constraints is related to the size of L

- which depends on the number of observations, spacing of S, and α, β.

Proposition 56. The wrf/frf Constraints have O(|O| · ∆) variables and 1 + |O|

constraints.

The MILPs for wrf and frf appear non-linear as the objective function is frac-

tional. However, as the denominator is non-zero and strictly positive, the Charnes-

277

Cooper transformation [22] allows us to quickly (in the order of number of con-

straints multiplied by the number of variables) transform the constraints into a

purely integer-linear form. Many linear and integer-linear program solvers include

this transformation in their implementation.

Proposition 57. The wrf/frf constraints can be transformed into a purely linear-

integer form in O(|O|2 ·∆) time.

We note that a linear relaxation of any of the above three constraints can yield

a lower bound on the objective function in O(|L|3.5) time.

Proposition 58. Given the constraints of Definition 70 or Definition 71, if we

consider the linear program formed by setting all Xi variables to be in [0, 1], then the

value returned by the objective function will be a lower bound on the value returned

by the objective function for the mixed integer-linear constraints, and this value can

be obtained in O(|O|3.5 ·∆3.5) time.

Likewise, if we solve the mixed integer linear program with a reduced number

of variables, we are guaranteed that the solution will cause the objective function

to be an upper bound for the original set of constraints.

Proposition 59. Consider the MILPs in Definition 70 and Definition 71. Suppose

L′ ⊂ L and every variable Xi associated with some pi ∈ L′ is set to 0. The resulting

solution is an upper bound on the objective function for the constraints solved on the

full set of variables.

278

6.4.4 Correctly Reducing the Number of Variables for crf

As the complexity of solving MILPs is closely related to the number of variables

in the MILP, the goal of this section is to reduce the number of variables in the MILP

associated above with the crf reward function. In this section, we show that if we

can find a certain type of explanation called a δ-core optimal explanation, then we

can “build-up” an optimal adversarial strategy in polynomial time. It also turns out

that finding these special explanations can be accomplished using a MILP which

will often have significantly less variables than the MILP’s of the last section. First,

we consider the wrf constraints applied to crf which is a special case of wrf. The

objective function for this caseis:

∑

ex fcnj∈EF

(

exfd(ex fcnj) ·
∑

pi∈L

(

Xi · (
ci,j

∑

pi∈L Xi

)

))

where for each pi ∈ L and ex fcnj ∈ EF, ci,j = 1 iff ∃p′ ∈ ex fcn(O, k) s.t. d(p′, pi) ≤

dist and 0 otherwise. If we re-arrange the objective function, we see that with each

Xi - variable associated with point pi ∈ L, there is an associated constant - consti:

consti =
∑

ex fcnj∈EF
exfd(ex fcnj) · ci,j.

This lets us re-write the objective function as:

∑

pi∈L Xi · consti
∑

pi∈L Xi

.

Example 6.4.4. Continuing from Example 6.4.3, consti = 0.5 for the following ele-

ments: {p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56}; consti = 1 for these elements:

{p40, p41, p45, p46, p48}, and 0 for all others.

279

In many covering problem where we wish to find a cover of minimal cardinality,

we could reduce the number of variables in the integer program by considering

equivalent covers as duplicate variables. However, for OAS, this technique can not

be easily applied. The reason for this is because an optimal adversarial explanation

is not necessarily irredundant (see Definition 58, page 260). Consider the following.

Suppose, we wish to find an optimal adversarial strategy of size k. Let P be a

irredundant cover of size k − 1. Suppose there is some element p′ ∈ P that covers

only one observation - o′. Hence, there is no p ∈ P − {p′} that covers o′ by the

definition of an irredundant cover. Suppose there is also some p′′ /∈ P that also

covers o′. Now, let m =
∑

pi∈P−p′ consti. Let the const′ be the value associated

with both p′ and p′′. Consider the scenario where const′ < m
k−2 . Suppose by way

of contradiction, that the optimal irredundant cover is also the optimal adversarial

strategy. Then, by the definition of an optimal adversarial strategy we know that

the set P is more optimal than P ∪{p′′}. This would mean that m+const′

k−1 < m+2·const′
k

.

This leads us to infer thatm < const′·(k−2), which clearly contradicts const′ < m
k−2 .

It is clear that a solution to OAS need not be irredundant.

However, we do leverage the idea of an irredundant cover in a different exact

approach in this section which may provide a speedup over the exact algorithms

of the previous section. The main intuition is that each OAS solution contains an

irredundant cover, and if we find such a cover, we can build an optimal adversarial

strategy in polynomial time. First, we define a core explanation.

Definition 72 (Core Explanation). Given an observation set O and set L of possible

280

partners, an explanation Ecore is a core explanation iff:

1. There are no two elements p, p′ ∈ Ecore such that ∀o ∈ O s.t. o, p are partners,

then o, p′ are also partners.

2. For any pi ∈ Ecore, there does not exist pj ∈ L such that:

• ∀o ∈ O s.t. o, pi are partners, then o, pj are also partners.

• constj < consti

We now show that any optimal adversarial strategy contains a subset that is

a core explanation.

Theorem 31. If Egt is an optimal adversarial strategy, there exists a core explana-

tion Ecore ⊆ Egt.

Example 6.4.5. Continuing from Example 6.4.4, consider the set Egt ≡ {p34, p38, p57}

(which would correspond to drug lab locations as planned by the cartel). Later, we

show that this is an optimal adversarial strategy (the expected adversarial detriment

associated with Egt is 0). Consider the subset p34, p38. As p34 explains observations

o3, o4, o5 and p38 explains observations o1, o2, this set is also an explanation. Obvi-

ously, it is of minimal cardinality. Hence, the set {p34, p38} is a core explanation

of Egt.

Suppose we have an oracle that, for a given k, O, and exfd returns a core

explanation Ecore that is guaranteed to be a subset of the optimal adversarial strategy

associated with k, O, and exfd. The following theorem says we can find the optimal

281

Algorithm 21 BUILD-STRAT

INPUT: Partner list L, core explanation Ecore, natural number k

OUTPUT: Optimal adversarial strategy Egt

1. If |Ecore| = k, return Ecore

2. Set Egt = Ecore. Let k′ = |Ecore|

3. Sort the set L−Ecore by consti. Let L
′ = {p1, . . . , pk−k′} be the k−k′ elements

of this set with the lowest values for cosnti

4. For each pi ∈ L′ let Pi be the set {p1, . . . , pi}

5. For each Pi let Si =
∑

j≤i constj

6. Let ans = minpi∈L′({k′·EXR(rf)(exfd,Ecore)+Si

k′+i
})

7. Let Pans be the Pi associated with ans

8. If const1 ≥ EXR(rf)(exfd, Ecore), return Ecore, else return Ecore ∪ Pans

adversarial strategy in polynomial time. The key intuition is that we need not

concern ourselves with covering the observations as Ecore is an explanation. The

algorithm BUILD-STRAT follows from this theorem.

Theorem 32. If there is an oracle that for any given k, O, and exfd returns a core

explanation Ecore that is guaranteed to be a subset of the optimal adversarial strategy

associated with k, O, and exfd, then we can find an optimal adversarial strategy in

O(∆ · |O| · log(∆ · |O|) + (k − |Ecore|)2) time.

282

We now introduce the notion of δ-core optimal. Intuitively, this is a core ex-

planation of cardinality exactly δ that is optimal wrt expected adversarial detriment

compared to all other core explanations of that cardinality.

Definition 73. Given exfd, a core explanation, Ecore, is δ-core optimal iff:

• |Ecore| = δ

• There does not exist another core explanation, E ′core of cardinality exactly δ, such

that EXR(rew(O,δ))(exfd, E ′core) < EXR(rew(O,δ))(exfd, Ecore)

From this, we obtain the following lemma that tells us that an OAS must

contain a core explanation that is δ-core optimal.

Lemma 20. Given an optimal adversarial strategy, Egt, if core explanation Ecore, of

size δ, is a subset of Egt, then Ecore is δ-core optimal.

We now present a set of linear constraints to find a δ-core optimal explana-

tion. Of course we can easily adopt the constraints of the previous section, but this

would offer us no improvement in performance. We therefore create an MILP that

should have a significantly smaller number of variables in most cases. First, given a

set of possible partners L, we define set L∗ - the reduced partner set - which often

will have a cardinality much smaller than L. Later, we use this set in a new set of

constraints to find a δ-core optimal explanation. We define L∗ below.

Definition 74 (Reduced Partner Set). Given observations O, and set of possible

283

partners L, we define reduced partner set L∗∗ as follows:

L∗∗ ≡ {pi ∈ L| 6 ∃pj ∈ L s.t. (constj < consti) ∧ (∀o ∈ O s.t. o, pi are partners,

o, pj are also partners)}

We define L∗ as follows:

L∗ ≡ {pi ∈ L∗∗| 6 ∃pj ∈ L∗∗ s.t. (constj = consti) ∧ (∀o ∈ O s.t. o, pi are partners,

o, pj are also partners)}

Lemma 21. 1. If explanation E is δ-core optimal, then E ⊆ L∗∗.

2. If for some natural number δ, there exists an explation of size δ, then there

exists a δ-core optimal explanation E s.t. E ⊆ L∗.

Example 6.4.6. Let us continue from Example 6.4.5. Based on pre-processing and

the computation of consti, we can easily produce the data of Table 6.1 in polynomial

time. Based on this, we obtain a reduced partner set L∗ ≡ {p34, p38, p57}.

We now present the δ-core constraints. Notice that the cardinality requirement

in these constraints is “=” and not “≤”. This is because Lemma 20 ensures us

of a core-explanation that is δ-core optimal, meaning that the core explanation

must have cardinality exactly δ. This also allows us to eliminate variables from the

denominator of the objective function, as the denominator must equal δ as well.

Definition 75 (δ-core MILP). Given parameter δ, and reduced partner set L∗, we

define the δ-core constraints by first associating a variable Xi with each pi ∈ L∗.

Then: Minimize:

1

δ

∑

pi∈L∗

Xi · consti

284

Supported Observations consti = 0 consti = 0.5 consti = 1

o1 p4 − p6, p12 − p16, p22 − p23, p30 − p31 p44

o1, o2 p38 p37, p52 p45, p46

o2 p64, p67 p47

o2, o3 p57

o3 p17 − p19, p24 − p26, p32, p39, p58 − p59

o3, o4 p27 − p28 p33

o4 p1 − p3, p7 − p11, p20 − p21, p29, p51 p50

o3, o4, o5 p34, p53 − p54 p49 p40 − p41

o5 p36, p60 − p66 p35

o4, o5 p42 − p43

o3, o5 p55 p56 p48

Table 6.1: The set L partitioned by consti and supported observations.

285

subject to:

1. Xi ∈ {0, 1}

2. Constraint
∑

pi∈L Xi = δ

3. For each oj ∈ O, add constraint

∑

pi∈L∗
d(oj ,pi)∈[α,β]

Xi ≥ 1

Example 6.4.7. Using set L∗ from Example 6.4.6, we can create δ-core constraints

as follows:

Minimize

1

δ
(X34 · const34 +X38 · const38 +X57 · const57)

subject to:

1. X34, X38, X57 ∈ {0, 1}

2. X34 +X38 +X57 = δ

3. X38 ≥ 1 (for observation o1)

4. X38 +X57 ≥ 1 (for observation o2)

5. X34 +X57 ≥ 1 (for observation o3)

6. X34 ≥ 1 (for observations o4, o5)

In the worst case, the set L∗ ≡ L. Hence, we can assert that:

Proposition 60. The δ-core constraints require O(∆ · |O|) variables and 1 + |O|

constraints.

286

Proposition 61. Given δ-core constraints:

1. Given set δ-core optimal explanation Ecore ≡ {p1, . . . , pn}, if variables

X1, . . . , Xn - corresponding with elements in Egt are set to 1 - and the rest

of the variables are set to 0, the objective function of the constraints will be

minimized.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to

set Ecore, then Ecore is a δ-core optimal solution.

We now have all the pieces required to leverage core-explanation and reduced

partner sets to find an optimal adversarial strategy. By Theorem 6.4.5, we know

that any optimal adversarial strategy must have a core explanation. Further, by

Lemma 20, such a core explanation is δ-core optimal. Using a (usually) much

smaller mixed-integer-linear program, we can find such an explanation. We can

then find the optimal adversarial strategy in polynomial time using BUILD STRAT.

Though we do not know what δ is, we know it must be in the range [1, k]. Further,

using a relaxation of the OPT-KSEP-IPC constraints for solving geospatial abduction

problems (as presented in [158], we can easily obtain a lower bound tighter than 1 on

δ. Hence, if we solve k such (most likely, small) mixed-integer-linear programs, we

are guaranteed that at least one of them must be a core explanation for an optimal

adversarial strategy. We note that these k MILP’s can be solved in parallel (and the

following k instances of BUILD-STRAT can also be run in parallel as well). An easy

comparison of the results of the parallel processes would be accomplished at the

end. As L∗ is likely to be significantly smaller than L, this could yield a significant

287

reduction in complexity. Further, various relaxations of this technique can be used

- i.e. only using one value of δ.

Example 6.4.8. Continuing from Example 6.4.7 where the cartel members are at-

tempting to find an OAS to best position drug laboratories, suppose they used the

relaxation of OPT-KSEP-IPC (from [158]) to obtain a lower bound on the cardinality

of an explanation and found it to be 2. With k = 3, they would solve two MILP’s

of the form of Example 6.4.7 - one with δ = 2 and one with δ = 3. The solution to

the first MILP would set X34 and X38 both to 1 while the second MILP would set

X34, X38, and X57 all to 1. As the expected adversarial detriment for both solutions

is 0, they are both optimal and running BUILD-STRAT is not necessary. Either

{p34, p38} or {p34, p38, p57} can be returned as an OAS.

6.5 Finding a Counter-Adversary Strategy

Now that we have examined ways in which the adversary can create a strategy

based on probabilistic knowledge of the agent, we consider how the agent can devise

an “optimal” strategy to counter the adversary. As before, we use a special case of

expected reward (Definition 6.3.1 from Section 67.

Definition 76 (Expected Agent Benefit). Given a reward function rf, and ex-

planation function distribution exfd, the expected agent benefit is the function

EXB(rf) : 2S × EFD→ [0, 1] defined as follows:

EXB(rf)(C, exfd) =
∑

ex fcn∈EF
rf(ex fcn(O, k), C) · exfd(ex fcn)

288

Example 6.5.1. Following from Examples 6.2.1 and 6.3.4, suppose drug-enforcement

agents have information that the cartel is placing drug labs according to exfddrug.

(such information could come from multiple runs of the GREEDY-KSEP-OPT2 algo-

rithm of [158]). The drug-enforcement agents wish to consider the set C ≡ {p41, p52}.

First, they must calculate the reward associated with each explanation function (note

that k = 3, dist = 100 and rf = crf).

crf(dist)(ex fcn1(O, 3), {p41, p52}) = 0.67

crf(dist)(ex fcn2(O, 3), {p41, p52}) = 0.5

(as an aside, we would like to point out the asymmetry in crf - compare these com-

putations with the results of Example 6.4.1). Hence, EXB(crf)({p41, p52}, exfddrug) =

0.634.

We now define a maximal counter-adversary strategy. This is the agent’s best

response to the mixed strategy of an adversary.

Definition 77 (Maximal Counter-Adversary Strategy (MCA)). Given a reward

function rf and explanation function distribution exfd, a maximal counter-adversary

strategy, C, is a subset of S such that EXB(rf)(C, exfd) is maximized.

Note that MCA does not include a cardinality constraint. This is because we

do not require reward functions to be monotonic. In the monotonic case, we can

trivially return all feasible points in S and be assured of a solution that maximizes

the expected agent benefit. Therefore, for the monotonic case, we include an extra

parameter B ∈ {1, . . . , |S|} (for “budget”) which will serve as a cardinality require-

ment for C. This cardinality requirement for C is necessarily the same as for Egt

289

as the agent and adversary may have different sets of resources. Also, we do not

require that C be an explanation. We discuss the special case where the solution to

the MCA problem is required to be an explanation in the appendix.

6.5.1 The Complexity of Finding a Maximal Counter-Adversary

Strategy

We now formally define the problem of finding a maximal counter-adversary

strategy.

MCA Problem

INPUT: Space S, feasibility predicate, feas, real numbers α, β, set of observations,

O, natural numbers k,B, reward function rf, and explanation function distribution

exfd.

OUTPUT: The maximal counter-adversary strategy, C.

MCA is NP-hard via a reduction of the GCD problem.

Theorem 33. MCA is NP-hard.

The proof of the above result shows that MCA is NP-hard even if the reward

function is monotonic. Later, in Section 6.5.3, we also show that MCA can encode

the NP-hard MAX-K-COVER problem [46] as well (which provides an alternate

proof for NP-hardness of MCA). We now present the decision problem associated

with MCA and show that it is NP-complete under reasonable conditions.

290

MCA-DEC

INPUT: Space S, feasibility predicate, feas, real numbers α, β, set of observations,

O, natural numbers k,B, reward function rf, explanation function distribution exfd,

and number R ∈ [0, 1].

OUTPUT: The counter-adversary strategy, C such that EXB(rf)(C, exfd) ≥ R.

Theorem 34. MCA-DEC is NP-complete, provided the reward function can be

evaluated in PTIME.

Not only is MCA-DEC NP-hard, under the same assumptions as above,

the counting version of the problem is #P-complete and moreover, it has no fully

polynomial random approximation scheme.

Theorem 35. Counting the number of strategies that provide a “yes” answer to

MCA-DEC is #P-complete and has no FPRAS unless NP==RP.

Theorem 35 tells us that MCA may not have a unique solution. Therefore,

setting up a mixed-strategy of all MCA’s to determine the “best response” to the

MCA of an agent by an adversary would be an intractable problem. This mirrors

our result of the previous section (Theorem 30, page 273).

291

6.5.2 MCA in the General Case: Exact and Approximate

Algorithms

We now describe exact and approximate algorithms for finding a maximal

counter-adversary strategy in the general case. Note that throughout this section

(as well as in Section 6.5.3), we assume that the same pre-processing for OAS is

used (cf. Section 6.4.2). We will use the symbol L to refer to the set of all possible

partners.

An Exact Algorithm For MCA. A naive, exact, and straightforward approach

to the MCA problem would simply consider all subsets of L and pick the one which

maximizes the expected agent benefit. Obviously, this approach has a complexity

O(
∑|S|

i=0

(|L|
i

)
) and is not practical. This is unsurprising as we showed this to be an

NP-complete problem.

Approximation in the General Case. Despite the impractical time complexity

associated with an exact approach, it is possible to approximate MCA with guaran-

tees – even in the general case. This is due to the fact that when exfd is fixed, the

expected agent benefit is submodular.

Theorem 36. For a fixed O, kexfd, the expected agent benefit, EXB(rf)(C, exfd) has

the following properties:

1. EXB(rf)(C, exfd) ∈ [0, 1]

292

2. For C ⊆ C ′ and some point p ∈ S where p /∈ C ′, the following is true:

EXB(rf)(C∪{p}, exfd)−EXB(rf)(C, exfd) ≥ EXB(rf)(C ′∪{p}, exfd)−EXB(rf)(C ′, exfd)

(i.e. expected agent benefit is sub-modular for MCA)

It follows immediately that MCA reduces to the maximization of a submodular

function. We now present the MCA-LS algorithm that leverages this submodularity.

The following two propositions leverage Theorem 36 and Theorem 3.4 of [47].

Proposition 62. MCA-LS has time complexity of O(1
ǫ
· |L|3 ·F (exfd) · lg(|L|) where

F (exfd) is the time complexity to compute EXB(rf)(C, exfd) for some set C ⊆ L.

Proposition 63. MCA-LS is an (1
3
− ǫ
|L|)-approximation algorithm for MCA.

Example 6.5.2. Let us consider our running example where drug-enforcement

agents are attempting to locate illegal drug laboratories in the area depicted in Fig-

ure 6.1. The agents have information that there are k or less drug laboratories that

support the poppy fields (set of observations O) and that they are positioned accord-

ing to exfddrug (see Example 6.3.4, page 268). The agents wish to find a maximal

counter-adversarial strategy using the prf reward function (see page 60). They de-

cide to use MCA-LS to find such a strategy with ǫ = 0.1. Initially (at line 3), the

algorithm selects point p48 (renumbering as p1, note that in this example we shall use

pi and inci numbering based on Example 6.2.1 rather than what the algorithm uses).

Hence, inc40 = 0.208 and cur val = 0.708. As the elements are sorted, the next point

to be considered in the loop at line 4 is p40 which has an incremental increase of 0, so

it is not picked. It then proceeds to point p41 - which gives an incremental increase

293

Algorithm 22 (MCA-LS)
INPUT: Reward function rf, set O of observations, explanation function distribution exfd, possible partner set L,

real number ǫ > 0

OUTPUT: Set C ⊂ S

1. Set C∗ = L, for each pi ∈ C∗ let inci = EXB(rf)({p}, exfd)− EXB(rf)(∅, exfd).

2. Sort the pi’s in C∗ from greatest to least by inci (i.e. p1 is the element with the greatest inci).

3. C = {p1}, C∗ = C∗ − {p1}, cur val = inc1 + EXB(rf)(∅, exfd), flag1 = true, i = 2

4. While flag1

(a) new val = cur val + inci

(b) If new val > (1 + ǫ
|L|2

) · cur val then

i. If EXB(rf)(C ∪ {pi}, exfd) > (1 + ǫ
|L|2

) · EXB(rf)(C, exfd) then:

C = C ∪ {pi}, C∗ = C∗ − {pi}, cur val = EXB(rf)(C ∪ {pi}, exfd)

(c) If new val ≤ (1 + ǫ
|L|2

) · cur val or if pi is the last element then

i. j = 1, flag2 = true, number each pj ∈ C

ii. While flag2

A. If EXB(rf)(C − {pj}, exfd) > (1 + ǫ
|L|2

) · EXB(rf)(C, exfd) then:

C = C − {pj}, cur val = EXB(rf)(C − {pj}, exfd)

For each pi ∈ C∗ let inci = EXB(rf)(C ∪ {pi}, exfd)− EXB(rf)(C, exfd).

Sort the pi’s in C∗ from greatest to least by inci

i = 0, flag2 = false

B. Else,

If pj was the last element of C then set flag1, f lag2 = false

Otherwise, j ++

(d) i++

5. If EXB(rf)(L− C, exfd) > EXB(rf)(C, exfd) then set C = L− C

6. Return C

294

of 0.084 and is added to C so cur val = 0.792. Point p45 is considered next, which

gives an incremental increase of 0.208 and is picked, so now cur val = 1.0. The

algorithm then considers point p46, which does not afford any incremental increase.

After considering points p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56 - and finds the

all give a negative incremental increase (and thus, are not picked), the algorithm

finds that the old incremental increase of the next element, p1, would cause the “if”

statement at line 4c to be true, thus proceeding to the inner loop inside that “if”

statement (line 4(c)iiA). This loop considers if the removal of any picked elements

- p48, p41, p45 causes the expected agent benefit to increase. However, in this example,

if any of the elements are removed, the expected agent benefit decreases. Hence, the

boolean flag1 is set to false and the algorithm exits the outer loop. The algorithm

then returns the set C ≡ {p48, p41, p45} which is optimal.

6.5.3 Finding a Maximal Counter-Adversary Strategy, the

Monotonic Case

In the previous section we showed that a 1
3
approximate solution to MCA

can be found in polynomial time even without any monotonicity restriction. In this

section, we show that under the additional assumptions of monotonicity of reward

functions, we can obtain a better 63% approximation ratio with a faster algorithm.

Here, we also have the additional cardinality requirement of B for the set C (as

described in Section 6.5). We first show that expected agent benefit is monotonic

when the reward function is.

295

Corollary 12. For a fixed O, kexfd, if the reward function is monotonic, then the

expected agent benefit, EXB(rf)(C, exfd) is also monotonic.

Thus, when we have a monotonic reward function, the MCA problem reduces

to the maximization of a monotonic, normalized4 submodular function w.r.t. a

uniform matroid5 – this is a direct consequence of Theorem 36 and Corollary 12.

Therefore, we can leverage the result of [127], to develop the MCA-GREEDY-MONO

algorithm below. We improve performance by including “lazy evaluation” using the

intuition is that the incremental increase caused by some point p at iteration i of

the algorithm is greater than or equal to the increase caused by that point at a

later iteration. As with MCA-LS, we also sort elements by the incremental increase,

which may allow the algorithm to exit the inner-loop earlier. In most non-trivial

instances of MCA, this additional sorting operation will not affect the complexity

of the algorithm (i.e. under the assumption that the time to compute EXB(rf) is

greater than lg(|L|), we make this same assumption in MCA-LS as well).

Proposition 64. The complexity of MCA-GREEDY-MONO is O(B · |L| · F (exfd))

where F (exfd) is the time complexity to compute EXB(rf)(C, exfd) for some set C ⊆ L

of size B. In the first iteration of the algorithm,

Corollary 13. MCA-GREEDY-MONO is an (e
e−1)-approximation algorithm for MCA

(when the reward function is monotonic).

In addition to the fact that MCA-GREEDY-MONO is an (e
e−1)-approximation

4As we include zero-starting in our definition of monotonic.
5In our case, the uniform matroid consists of all subsets of L of size B or less.

296

Algorithm 23 (MCA-GREEDY-MONO)

INPUT: Monotonic reward function rf, set O of observations, real number B > 0,

explanation function distribution exfd, possible partner set L, real number ǫ > 0

OUTPUT: Set C ⊂ S

1. Initialize C = ∅ and C∗ = L

2. For each pi ∈ C∗, set inci = 0

3. Set last val = EXB(rf)(C, exfd)

4. While |C| ≤ B

(a) pbest = null, cur inc = 0

(b) For each pi ∈ C∗, do the following

i. If inci < cur inc, break loop and goto line 4c.

ii. Let inci = EXB(rf)(C ∪ {p}, exfd)− last val

iii. If inci ≥ cur inc then cur inc = inci and pbest = p

(c) C = C ∪ {pbest}, C∗ = C∗ − {pbest}

(d) Sort C∗ in descending order by inci.

(e) Set last val = EXB(rf)(C, exfd)

5. Return C

297

algorithm for MCA, it also provides the best possible approximation ratio unless

P = NP . This is done by a reduction of MAX-K-COVER [46].

Theorem 37. MCA-GREEDY-MONO provides the best approximation ratio for MCA

(when the reward function is monotonic) unless P = NP .

The following example illustrates how MCA-GREEDY-MONO works.

Example 6.5.3. Consider the situation from Example 6.5.2, where the drug-enforcement

agents are attempting to locate illegal drug labs. Suppose they want to locate the labs,

but use the crf reward function, which is monotonic and zero-starting. They use

the cardinality requirement B = 3 in MCA-GREEDY-MONO. After the first iteration

of the loop at line 4, the algorithm selects point p48 as it affords an incremental

increase of 0.417. On the second iteration, it selects point p46, as it also affords

an incremental increase of 0.417, so last val = 0.834. Once p46 is considered, the

next point considered is p33, which had a previous incremental increase (calculated

in the first iteration) of 0.25, so the algorithm can correctly exit the loop to select

the final element. On the last iteration of the outer loop, the algorithm selects point

p35, which gives an incremental increase of 0.166. Now the algorithm has a set of

cardinality 3, so it exits the outer loop and returns the set C = {p48, p46, p35}, which

provides an expected agent benefit of 1, which is optimal. Note that this would not be

an optimal solution for the scenario in Example 6.5.2 which uses prf as p35 would

incur a penalty (which it does not when using crf as in this example).

298

6.6 Implementation and Experiments

In this section, we describe prototype implementations and experiments for

solving the OAS and MCA problems. For OAS, we create a MILP for the crf case

and reduce the number of variables with the techniques we presented in Section 6.4.

For MCA, we implement both the MCA-LS and MCA-GREEDY-MONO.

We carried out all experiments for MCA on an Intel Core2 Q6600 processor

running at 2.4GHz with 8GB of memory available, using code written in Java 1.6; all

runs were performed in Windows 7 Ultimate 64-bit using a 64-bit JVM, and made

use of a single core. We also used functionality from the previously-implemented

SCARE software from Chapter 4 to calculate, for example, the set of all possible

partners L.

Our experiments are based on 21 months of real-world Improvised Explosive

Device (IED) attacks in Baghdad6, see Chapter 4. The IED attacks in this 25× 27

km region constitute our observations. The data also includes locations of caches

associated with those attacks discovered by US forces. These constitute partner

locations. We used data from the International Medical Corps to define feasibility

predicates based on ethnic makeup, location of US bases, and geographic features.

We overlaid a grid of 100m × 100m cells—about the size of a standard US city

block. We split the data into two parts; the first 7 months of data were used as a

“training” set to learn the [α, β] parameters and the next 14 months of data were

used for the observations. We created an explanation function distribution based

6Attack and cache location data provided by the Institute for the Study of War.

299

on multiple runs of GREEDY-KSEP-OPT2 algorithm described in Chapter 4.

We also made use of classes and methods from our previously-implemented

SCARE software from Chapter 4 to provide features such as pre-processing (see the

discussion in Section 6.4.2, page 273). We carried out all experiments for OAS on

an Intel Core2 Q6600 processor running at 2.4GHz with 8GB of memory available,

using Java 1.6; all runs were performed in Windows 7 Ultimate 64-bit using a 64-bit

JVM, and made use of a single core.

6.6.1 OAS Implementation

We now present experimental results for the version of OAS, with the crf

reward function, based on the constraints in Definition 70 and variable-reduction

techniques of Section 6.4.4. First, we discuss promising real-world results for the

calculation of the reduced partner set L∗, described in Definition 72. Then, we

show that an optimal adversarial strategy can be computed quite tractably using

the methods discussed in Section 6.4.4. Our implementation was written on top of

the QSopt7 MILP solver and used 900 lines of Java code.

Reduced Partner Set. As discussed in Section 6.4.2, producing an optimal adver-

sarial strategy for any reward function relies heavily on efficiently solving a (provably

worst-case intractable) integer linear program. The number of integer variables in

these programs is based solely on the size of the partner set L; as such, the ability

to experimentally solve OAS relies heavily on the size of this set.

7http://www2.isye.gatech.edu/ wcook/qsopt/index.html

300

Our real-world data created a partner set L with cardinality 22,692. We then

applied the method from Definition 72 to reduce this original set L to a smaller

subset of possible partners L∗, while retaining the optimality of the final solution.

This simple procedure, while dependent on the explanation function distribution

exfd as well as the cutoff distance for crf, always returned a reduced partner set L∗

with cardinality between 64 and 81. This represents around a 99.6% decrease in the

number of variables required in the subsequent integer linear programs!

Figure 6.4 provides more detailed accuracy and timing results for this reduc-

tion. Most importantly, regardless of parameters chosen, our real-world data is

reduced by orders of magnitude across the board. We see a slight increase in the

size of the reduced set L∗ as the size of the explanation function distribution exfd

increases. This can be traced back to the strict inequality in Definition 74. As

we increase the number of nontrivial explanation functions in exfd, the number of

nonzero constants consti increases. This results in a higher number of candidates

for the intermediary set L∗∗. We see a similar result as we increase the penalizing

cutoff distance. Again, this is a factor of the strict inequality in Definition 74 in

conjunction with a higher fraction of nonzero consti constants.

Interestingly, Figure 6.4 shows a slight decrease in the runtime of the reduction

as we increase the penalizing cutoff distance. Initially, this seems counterintuitive;

with more nontrivial constants consti , the construction of the intermediary set L∗∗

requires more work. However, this extra work pays off during the computation of

the final reduced set L∗. In our experiments, the reduction from L to L∗∗ took less

time than the final reduction from L∗∗ to L∗. This is due to frequent short circuiting

301

0

10

20

30

40

50

60

70

80

90

100 200 300 400 500

|
L*

|

Cutoff Distance

OAS Partner Set Reduction: Size vs. Distance

|efd| = {10,15,20,...,200}

10

15

20

25

50

100

200

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s)

Cutoff Distance

OAS Partner Set Reduction: Time vs. Distance

|efd| = {10,15,20,...,200}

10

15

20

25

50

100

200

Figure 6.4: The size of the reduced partner set L∗ (left) and the time required to

compute this reduction (right). Regardless of parameters chosen, we see a 99.6%

decrease in possible partners—as well as integer variables in our linear program—in

under 3 minutes.

in the computation of the right-hand side of the conjunction during L∗∗ creation. As

we increase the penalizing cutoff distance, the size of L∗∗ actually decreases, resulted

in a decrease in the longer computation of L∗. As seen above, this decrease in L∗∗

did not correspond to a decrease in the size of L∗.

302

Optimal Adversarial Strategy. Using the set L∗, we now present results to find

an optimal adversarial strategy using δ-core optimal explanations. This is done

by minimizing the MILP of Section 6.4.4, then feeding this solution into BUILD-

STRAT. Since we do not know the value of δ in advance, we must perform this

combined operation multiple times, choosing the best—lowest expected detriment—

adversarial strategy as optimal.

A note on the lower bound for δ: as shown by Chapter 4, finding a minimum-

cardinality explanation is NP-hard. Because of this, it is computationally difficult to

find a tight lower bound for δ. However, this lower bound can be estimated empiri-

cally. For instance, for our set of real-world data from Baghdad, an explanation of

cardinality below 14 has never been returned—even across tens of thousands of runs

of GREEDY-KSEP-OPT2. Building on this strong empirical evidence, the minimum

δ used in our experiments is 14.

Figure 6.5 shows both timing and expected detriment results as the size of the

explanation function |exfd| and maximum strategy cardinality k are varied. Note

that a lower expected detriment is better for the adversary, with zero representing no

probability of partner discovery by the reasoning agent. As the adversary is allowed

larger and larger strategies, its expected detriment smoothly decreases toward zero.

Intuitively, as the number of nontrivially-weighted explanation functions in exfd

increases, the expected detriment increases as well. This is a side effect of a larger

|exfd| allowing the reasoning agent to cover a larger swath of partner locations.

Recall that, as the maximum k increases, we must solve linear programs for

303

0

0.005

0.01

0.015

0.02

0.025

14 20 26 32 38 44 50

E
x

p
e

ct
e

d
 D

e
tr

im
e

n
t

Maximum Size k

OAS: Expected Detriment vs. Size k

|efd| = {10,20,50,100,200}

10

20

50

100

200

0

100

200

300

400

500

600

700

14 20 26 32 38 44 50

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Maximum Size k

OAS: Time vs. Size k

|efd| = {10,20,50,100,200}

10

20

50

100

200

Figure 6.5: Expected detriment of the optimal adversarial strategy (left, lower is

better) and the runtime of the integer linear program required to produce this

strategy in milliseconds (right). Note the smooth decrease toward zero detriment as

k increases, corresponding with a near-linear increase in total runtime.

each δ ∈ {klow , k}. This is mirrored in the timing results in Figure 6.5, which assumes

klow = 14. As k increases, we see a near linear increase in the total runtime of the set

of integer programs. Due to the reduced set L∗, we are able to solve dozens of integer

programs in less than 800ms; were we to use the unreduced partner set L, this would

304

be intractable. Note that the runtime graph includes that of BUILD-STRAT which

always ran in under sixteen milliseconds.

6.6.2 MCA Implementation

First, we briefly discuss an implementation of the naive MCA algorithm dis-

cussed in section 6.5.2. Next, we provide promising results for theMCA-LS algorithm

using the prf reward function. Finally, we give results for theMCA-GREEDY-MONO

using the monotonic crf reward function, and qualitatively compare and constrast

the results from both algorithms.

MCA-Naive. The naive, exact solution to MCA—considering all subsets of L

with cardinality kC or more and picking the one which maximizes the expected

agent benefit—is inherently intractable. This approach has a complexity O(
(|L|
kC

)
),

and is made worse by the large magnitude of the set L. In our experimental setup,

we typically saw |L| > 20, 000; as such, for even the trivially small kC = 3, we

must enumerate and rank over a trillion subsets. For any realistic value of kC, this

approach is simply unusable. Luckily, we will see that both MCA-LS and MCA-

GREEDY-MONO provide highly tractable and accurate alternatives.

MCA-LS. In sharp contrast to the naive algorithm described above, the MCA-LS

algorithm provides (lower-)bounded approximate results in a tractable manner. In-

terestingly, even though MCA-LS is an approximation algorithm, in our experiments

on real-world data from Baghdad using the prf reward function, the algorithm re-

305

turned strategies with an expected benefit of 1.0 on every run. Put simply, on

our practical test data, MCA-LS always completely maximized the expected ben-

efit. This significantly outperforms the lower-bound approximation ratio of 1/3.

We would also like to point out that this is the first implementation (to the best

of our knowledge) of the non-monotonic submodular maximization approximation

algorithm of [47].

Since the expected benefit was maximal for every strategy C returned, we

move to analyzing the particular structure of these strategies. Figure 6.6 shows a

relationship between the size |C|, the cutoff distance dist, and the cardinality of the

expectation function distribution |exfd|. Recall that prf penalizes any strategy that

does not completely cover its input set of observations; as such, intuitively, we see

that MCA-LS returns larger strategies as the penalizing cutoff distance decreases. If

the algorithm can cover all possible partners across all expectation functions, it will

not receive any penalty. Still, even when dist is 100m, the algorithm returns C only

roughly twice the size as minimum-sized explanation found by GREEDY-KSEP-OPT2

(which, based on the analysis of Chapter 4, is very close to the minimum possible

explanation). As the cutoff dist increases, the algorithm returns strategies with

sizes converging, generally, to a baseline—the smallest-sized explanation found by

the algorithm of Chapter 4, |E|. This is an intuitive soft lower bound; given enough

leeway from a large distance dist, a single point will cover all expected partners.

This is not a strict lower bound in that, given two extremely close observations with

similar expected partners, a single point may sufficiently cover both.

In Figure 6.7, we see results comparing overall computation time to both the

306

0

5

10

15

20

25

30

35

100 150 200 250 300 350 400 450 500

S
tr

a
te

g
y

 S
iz

e

Distance (Penalty Cutoff)

MCA-LS: Strategy Size vs. Distance

min|e| = 14, |efd| = {5,10,...,40}

5

10

15

20

25

30

35

40

|e|

0

5

10

15

20

25

30

100 150 200 250 300 350 400 450 500

S
tr

a
te

g
y

 S
iz

e

Distance (Penalty Cutoff)

MCA-LS: Average Strategy Size vs. Distance

min|e| = 14, |efd| averaged across {5,10,...,40}

Figure 6.6: The average size of the strategy recommended by MCA-LS decreases as

the distance cutoff increases. For these experiments, the minimum cardinality for a

given explanation E considered is exfd was 14, which gives us a natural lower bound

on the expected size of a strategy. Note the convergence to this bound at cutoff

distances at and above 300 meters.

distance dist and the cardinality of exfd. For more strict (i.e., smaller) values of

dist, the algorithm—which, under prf, is penalized for all uncovered observations

across exfd—must spend more time forming a strategy C that minimizes penaliza-

307

0

20000

40000

60000

80000

100000

120000

140000

100 150 200 250 300 350 400 450 500

T
im

e
 (

m
s)

Distance (Penalty Cutoff)

MCA-LS: Time vs. Distance

min|e| = 14, |efd| = {5,10,...,40}

5

10

15

20

25

30

35

40

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

100 150 200 250 300 350 400 450 500

A
v

e
ra

g
e

 T
im

e
 (

m
s)

Distance (Penalty Cutoff)

MCA-LS: Average Time vs. Distance

min|e|= 14, |efd| averaged across {5,10,...,40}

Figure 6.7: The runtime of MCA-LS decreases as the penalizing cutoff distance is

relaxed. Note the relation to Figure 6.6; intuitively, larger recommended strategies

tend to take longer to compute.

tion. Similarly, as the distance constraint is loosened, the algorithm completes more

quickly. Finally, an increase in |exfd| results in higher computational cost; as ex-

plained in Proposition 62, this is due to an increase in F (exfd), the time complexity

of computing EXB(rf)(C, exfd). Comparing these results to Figure 6.6, we see that

the runtime of MCA-LS is correlated to the size of the returned strategy C.

308

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

E
x

p
e

ct
e

d
 B

e
n

e
fi

t

Budget

MCA-Greedy-Mono: EXB vs. Budget

|efd| = 10, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

E
x

p
e

ct
e

d
 B

e
n

e
fi

t

Budget

MCA-Greedy-Mono: EXB vs. Budget

|efd| = 100, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

Figure 6.8: Expected benefit of the strategy returned by MCA-GREEDY-MONO

as the budget increases, with |exfd| = 10 (left) and |exfd| = 100 (right). Note the

decrease in expected benefit due to the increase in |exfd|. Similarly, note the increase

in expected benefit given a larger cutoff distance.

MCA-GREEDY-MONO. As discussed in Section 6.5.3, MCA-GREEDY-MONO

provides tighter approximation bounds thanMCA-LS at the cost of a more restrictive

(monotonic) reward function. For these experiments, we used the monotonic rf =

309

crf. Recall that a trivial solution to MCA given a monotonic reward function is

C = L; as such, MCA-GREEDY-MONO uses a budget B to limit the maximum size

|C| ≪ |L|. We varied this parameter B ∈ {1, . . . , 28}.

Figure 6.8 shows the expected benefit EXB(rf)(C, exfd) increase as the maximum

allowed |C| increases. In general, the expected benefit of C increases as the distance

constraint dist is relaxed. However, note the points with B ∈ {3, . . . , 9}; we see

that dist ≤ 100 performs better than dist > 100. We believe this is an artifact of

our real-world data. Finally, as |exfd| increases, the expected benefit of C converges

more slowly to 1.0. This is intuitive, as a wider spread of possible partner positions

will, in general, require a larger |C| to provide coverage.

Figure 6.9 shows that the runtime of MCA-GREEDY-MONO increases as pre-

dicted by Proposition 62. In detail, as we linearly increase budget B, we also linearly

increase the runtime of our F (exfd) = EXB(rf)(C, exfd). In turn, the overall runtime

O(B · |L| · F (exfd)) increases quadratically in B, for our specific reward function.

Finally, note the increase in runtime as we increase |exfd| = 10 to |exfd| = 100. The-

oretically, this increases F (exfd) linearly; in fact, we see almost exactly a ten-fold

increase in runtime given a ten-fold increase in |exfd|.

310

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

T
im

e
 (

m
s)

Budget

MCA-Greedy-Mono: Time vs. Budget

|efd| = 10, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

T
im

e
 (

m
s)

Budget

MCA-Greedy-Mono: Time vs. Budget

|efd| = 100, Distances = {50, 100, ..., 500}

50

100

150

200

250

300

350

400

450

500

Figure 6.9: Runtime of MCA-GREEDY-MONO as the budget increases, with |exfd| =

10 (left) and |exfd| = 100 (right). Note the increase in runtime due to the extra

determinism of a larger exfd.

6.7 Chapter 6 Related Work

A similar motivation to this chapter exists in the field of (multi-)agent security,

where the central idea is to protect a set of targets from adversaries. These games

are typically modeled on top of graphs, with agents and adversaries competing

to protect or penetrate a set of targets. [135] represents the adversary’s behavior

311

through a probability distribution over states, indicating the probability of that

state being targeted; no real graph structure is considered, much less a geospatial

model. [1] and [2] consider an environment with more hidden information, and

attempt to detect adversarial penetrations across the routes (represented as paths

on a graph) of patrolling agents. [139] solves Stackelberg (leader-follower) games

under the assumption of bounded reasoning rationality, again on a graph network.

[35] explores protecting dynamic targets from rational adversaries on real-world road

networks.

6.8 Chapter Summary

Geospatial abduction was introduced in Chapter 4 and used to infer a set of

partner locations from a set of observations, given a feasibility predicate and an

interval [α, β] ⊆ [0, 1]. Chapter 4 developed exact and approximate algorithms for

GAPs. In particular, no adversary was assumed to exist there. In this chapter, we

study the case of geospatial abduction where there is an explicit adversary who is

interested in ensuring that the agent does not detect the partner locations. This

is the case with real world serial killers and insurgents who launch IED attacks.We

develop a game-theoretic framework for reasoning about the best strategy that an

adversary might adopt (based on the minimizing the adversary’s detriment) and the

best strategy that the agent could adopt to counter the adversary’s strategy.

We consider the adversarial geospatial abduction problem to be a two player

game—an agent (“good” guy) and an adversary (“bad” guy). The adversary is

312

attempting to cause certain observable events to occur (e.g. murders or IED attacks)

but make it hard to detect the associated set of partner locations (e.g. location of

the serial killers home/office, or the locations of weapons caches supporting the

IED attacks). We use an axiomatically-defined “reward function” to determine how

similar two explanations are to each other. We study the problems of finding the

best response for an agent and adversary to a mixed strategy (based on a probability

distribution over explanations) of the opponent. We formalize these problems as

the “optimal adversarial strategy” (OAS) and maximal counter-adversary strategy

(MCA) problem. We show both OAS and MCA to be NP-hard and provide exact

and approximate methods for solving them. When reasoning about the best possible

strategy for the adversary, we present a mixed integer programming based algorithm

and show that the MILP in question can be greatly reduced through the elimination

of many variables using the concept of a δ-core explanation. Our experiments are

carried out on real world data about IED attacks over a period of 21 months in

Baghdad.

When reasoning about the best possible strategy for the adversary, we present

two algorithms. The MCA-LS algorithm is very general and leverages submodu-

larity of reward functions. The MCA-GREEDY-MONO algorithm assumes the re-

ward function is monotonic. Both MCA-LS and MCA-GREEDY-MONO are highly

accurate and have very reasonable time frames. Though MCA-GREEDY-MONO is

slightly faster than MCA-LS, we found that on every single run, MCA-LS found the

exact optimal benefit even though its theoretical lower bound approximation ratio

is only 1/3—a truly remarkable performance. As MCA-LS does not require any

313

additional assumptions and as its running time is only slightly slower than that of

MCA-GREEDY-MONO, we believe this algorithms has a slight advantage.

314

Chapter 7

Geospatial Optimization

The next two chapters deal with optimal selection of agent actions. Here the

agent has the as set of actions that modify attributes of a geospatial region and

he wishes to select a limited number of such actions (with respect to some budget)

in a manner that either achieves some goal (goal-based geospatial optimization)

and/or maximizes a benefit function (benefit-maximizing geospatial optimization).

Additionally, there are certain combinations of actions that cannot be performed

together. In this chapter, we study the complexity of geospatial optimization prob-

lems and present algorithm for solving such problems - either exactly or within a

certain factor of optimal.1

7.1 Chapter Introduction

There are numerous applications which require the ability to take certain ac-

tions (e.g. distribute money, medicines, people etc.) over a geographic region. For

1This chapter is based research that was completed in cooperation with V.S. Subrahmanian.

315

 0 2 4 6 8 10 12 14 16

0

2

4

6

 8

 1
0

1
2

 1
4

2

1

2

High-cost area (hi_cost) Group 1 (grp1) Influential center for group 1 (hq1)

Non-populated area (non_pop) Group 2 (grp2) Influential center for group 2 (hq2)
1

Figure 7.1: Locations in a district - contingency groups and unpopulated areas.

instance, a disaster relief organization must allocate people and supplies in a region

after a disaster. A public health organization needs to allocate limited vaccine stocks

to people across the region. A government needs to allocate funds for education or

unemployment training across a region.

Figure 7.1 shows a 2-dimensional map of a region. A political candidate can

only make so many campaign stops and public appeals. We assume that a map M

is discrete (this is a common assumption in most GIS systems) and has coordinates

drawn from [0, . . . ,M] × [0, . . . N] where the bottom left corner of the map is the

point (0, 0). The candidate wants to identify the best places to campaign or make

public appeals to maximize his exposure. Additionally, the map shows un-populated

areas, areas where campaigning costs are high, and areas dominated by one of two

316

constituent groups. All of these factors may affect the set of locations the candidate

selects to optimize his exposure.

In this chapter, we introduce geographic optimization problems or GOPs that

capture and solve problems such as those mentioned above. The organization and

contribution of the chapter is as follows. Section 7.2 formally defines GOPs - specifi-

cally we introduce goal-based and benefit-maximizing GOPs (GBGOP and BMGOP

respectively). Section 7.3 shows that both GBGOP and BMGOP are NP-hard (with

the associated decision problems in the complexity class NP). Additionally, we prove

non-trivial theoretical limits on approximation: if GBGOP were to be approximated

within the logarithm of the input then NP would have a slightly super-polynomial

oracle. BMGOP cannot be approximated within a guaranteed factor greater than

0.63 unless P=NP. Section 7.4 presents integer programs to solve both GBGOP and

BMGOP using an IP solver like CPLEX. In Section 7.5, we show how to correctly

reduce the number of variables in the integer constraints for GBGOP. We then de-

velop the BMGOP-Compute algorithm in Section 7.6 that can quickly approximate

a BMGOP in polynomial time and provides an approximation guarantee.

7.2 GOPs Formalized

Throughout this chapter, we assume that M = [0, . . . ,M] × [0, . . . , N] is an

arbitrary, but fixed “map”. We define a logical language L whose constant symbols

are members ofM and that has an infinite set Lvar of variable symbols disjoint from

M. L has a set G = {g1, . . . , gn} of unary predicate symbols. As usual, a term is

317

either a constant symbol or variable symbol. If t is a term, then gi(t) is an atom. If

t is a constant, then gi(t) is ground. Intuitively, if p ∈M, then gi(p) says that point

p has property gi. We use BL to denote the set of all ground atoms. Well-formed

formulas (wffs) are defined in the usual way. (i) Every atom is a wff. (ii) If F,G are

wffs, then so are F ∧ G,F ∨ G,¬F are all wffs.

Example 7.2.1. Consider the map Mcpgn in Figure 7.1 with the predicates of G

including the following:

{hi cost, non pop, grp1, grp2, hq1, hq2}

The predicate exposure not depicted in the figure corresponds to a candidate re-

ceiving exposure in a certain area. hi cost((1, 9)), hq1((4, 3)), non pop((8, 1)), and

grp2((5, 8)) are all examples of ground atoms.

A state is any subset of BL. We use S to denote the set of all states. Satis-

faction of formulas is defined in the obvious way. State s satisfies a ground atom A,

denoted s |= A, iff A ∈ s. s |= F ∨ G iff s |= F or s |= G. s |= F ∧ G iff s |= F

and s |= G. s |= ¬F iff s does not satisfy F .

Example 7.2.2. The shading shown in Figure 7.1 defines a state. For example,

hi cost((1, 9)) ∈ scpgn while exposure((1, 9)) /∈ scpgn.

An action maps points to sets of ground atoms.

Definition 78 (Action). An action is a mapping a : M → 2BL. We use A to

denote the set of actions. An action-point pair is any member of A×M.

318

An action-point pair (a, p) is executed if action a takes place at point p. Thus,

one can think of (a, p) as saying that action a occurs at point p. The result of

executing a set SOL of action-point pairs in state s0 is denoted appl(SOL, s0) and

is the set (s0 ∪ {a(p) | (a, p) ∈ SOL}).

Example 7.2.3. Continuing with example 7.2.2, our candidate has actions Acpgn =

{nor, appeal1, appeal2} where nor refers to a normal campaign stop and appeal1, appeal2

refer to public appeals to constituent groups 1 and 2 respectively. The actions map

to ground atoms as follows.

nor(p) = {exposure(p′)| ¬non pop(p′) ∧ d(p, p′) ≤ 1}

appeali(p) = {exposure(p′)| hqi(p) ∧ grpi(p
′)}

The first action says that when a normal campign stop is made at point p and

p′ is a populated place one distance unit or less from p, then the candidate has

exposure at place p′ as well. The second action says that if the candidate makes an

appeal (action) at point p and p is the headquarters of interest group grpi, then the

candidate has obtained exposure in all places associated with interest group grpi.

Definition 79 (Cost Function). A cost function, C : A×M→ [0, 1].

Throughout this chapter, we assume the cost function is arbitrary but fixed and

can be computed in constant time. We also assume that ifA×M = {(a1, p1), . . . , (am, pm)},

then ci is used to denote C(ai, pi).

Example 7.2.4. The cost function for our example is C(s)
cpgn and is defined (based

on some state s) as follows: C(s)
cpgn(a, p) = 1 if hi cost(p) ∈ s and 0.5 otherwise.

319

We also assume the existence of a set of integrity constraints IC that specify

that certain actions cannot be jointly taken if some conditions hold w.r.t. the state

— such constraints were defined before by [40].

Definition 80 (Integrity Constraint). If Φ is a set of action-point pairs and χ is a

wff, then Φ ←֓ χ is an integrity constraint.

When Φ ←֓ χ is ground (this is where χ is ground), this says that if χ is true,

then only one action-point pair in Φ may be executed. Formally, suppose s is a

state and Φ′ is a set of action-point pairs and Φ ←֓ χ is ground. (s,Φ′) |= Φ ←֓ χ

iff either s 6|= χ or s |= χ and |Φ ∩ Φ′| ≤ 1. (s,Φ′) satisfies an integrity constraint

iff it satisfies all ground instances of it. (s,Φ′) |= IC where IC is a set of integrity

constraints iff (s,Φ′) satisfies every constraint in that set. Given a state s and set

IC of integrity constraints, we use ICs to denote the set of all ground instances of

integrity constraints in IC where the associated wff χ is satisfied by s2.

Example 7.2.5. Continuing Example 7.2.4, let ICcpgn be:

{{appeal1((4, 3)), appeal2((10, 7))} ←֓ TRUE}

This constraint says that an appeal can be made to either group 1 or group 2 at

their center of influence, but not both — for instance, these two groups may have

opposing views.

We now introduce the goal-based geospatial optimization problem (GBGOP).

This problem takes as input a mapM, initial state s0, set of actions A, cost function
2Formally, ICs = {(Φ ←֓ χ) ∈ IC|s |= χ}

320

C, integrity constraints IC, positive real number c, and disjoint sets Θin,Θout ⊆ BL.

Intuitively, c restricts the total cost and Θin (resp. Θout) is a set of atoms that must

be true (resp. false) after the actions are applied. Our optimality criteria for a

GBGOP is to minimize the cardinality of the action-point pairs. A GBGOP can be

viewed as an abductive inference problem (i.e. find a set of actions that lead to the

current state) - where minimal cardinality is a common parsimony requirement.

Definition 81 (GBGOP Solution, Optimal Solution). A solution to a GBGOP

(M, s0,A,C, IC, c,Θin,Θout) is a set SOL ⊆ A×M such that: (i) Σ(ai,pi)∈SOLci ≤ c,

(ii) (s0, SOL) |= IC, and (iii) appl(s0, SOL) |= ∧

Ai∈Θin
Ai ∧

∧

Aj∈Θout
¬Aj.

A solution SOL is optimal iff there is no other solution SOL′ such that

|SOL′| ≤ |SOL|.

Our next type of problem is a benefit-maximizing geospatial optimization prob-

lem (BMGOP) that also considers a benefit function, defined as follows.

Definition 82 (Benefit Function). The benefit function, B : BL → ℜ+ maps

atoms to positive real numbers.

Example 7.2.6. In our running example, we use the benefit function Bcpgn where

Bcpgn(A) = 1 if A has the form exposure() and 0 otherwise.

As with cost, we assume the benefit function to be arbitrary but fixed and

computable in constant time. We also assume that if BL = {A1, . . . , An}, then

B(Ai) is denoted bi. A BMGOP takes as input,M, s0, A, C, IC, and c - all defined

the same as for a GBGOP. Additionally it takes benefit function B and natural

321

number k. Here k is a bound on the number of actions the agent can take as we

attempt to maximize benefit as an optimality criteria.

Definition 83 (BMGOP Solution, Optimal Solution). A solution to a BMGOP

(M, s0,B,A,C, IC, k, c) is a set SOL ⊆ A ×M such that: (i) |SOL| ≤ k and (ii)

Σ(ai,pi)∈SOLci ≤ c, and (iii) (s0, SOL) |= IC.

A solution SOL is optimal iff there is no other solution SOL′ such that:

∑

Ai∈appl(SOL,s0)

bi <
∑

Ai∈appl(SOL′,s0)

bi

7.3 Complexity Results

Here, we provide complexity results for GBGOPs and BMGOPs. First, we

establish both as being at least NP-hard.

Theorem 38. Given GBGOP (M, s0,A,C, IC, c,Θin,

Θout), finding an optimal solution SOL ⊆ A ×M is NP-hard. This result holds

even if for each a ∈ A, p ∈ M, it is the case that ∀g′(p′) ∈ a(p), p′ = p - i.e. each

action only affects the point is is applied to.

Proof Sketch. We embed the known NP-hard problem of SET-COVER [46] which

takes as input a set of n elements, S and a family of m subsets of S, H ≡

{H1, . . . , Hm}, and outputs H′ ⊆ H s.t. the union of the subsets covers all elements

in S and H′ is of minimal cardinality. We encode this problem into a GBGOP as

follows: we set G = {g1, . . . , gn} - each predicate in G corresponds to an element

in S, the map, M consists of a single point, p, the actions A = {a1, . . . , am} s..t

322

each action aiA corresponds to an element in H and each is defined as follows:

ai(p) =
⋃

xj∈Hi
{gj(p)}. The cost function C returns 1 for each action-point pair,

Θin =
⋃

gi∈G{gi(p)}, Θout = ∅, and finally, we set s0 = ∅, IC = ∅, c = n. 2

Theorem 39. Given BMGOP (M, s0,B,A,C, IC, k, c), finding an optimal solution

SOL ⊆ A is NP-hard. This result holds even if for each a ∈ A, p ∈ M, it is the

case that ∀g′(p′) ∈ a(p), p′ = p - i.e. each action only affects the point is is applied

to).

Proof Sketch. The problem MAX-K-COVER [46] is considered the dual of SET-

COVER and accepts the same input as that problem, with an additional natural K.

It outputs K subsets that covers a maximal amount of elements in S. The encoding

reflects that of Theorem 38 except now we assign a benefit of 1 for each ground

atom and set k = K. 2

One may think that one can solve GOPs efficiently in practice by using fully

polynomial time approximation schemes (FPTAS). However, by the nature of our

constructions used in the NP-hardness results, this is not possible for either type of

GOP under accepted theoretical assumptions.

Theorem 40. If for some ǫ > 0, there is a PTIME algorithm to approximate

GBGOP within (1− ǫ) · ln(|A×M|), then NP ⊂ TIME(|A×M|O(lg lg |A×M|)) (NP

has a slightly super-polynomial algorithm).

Proof Sketch. Follows from Theorem 38 and [46, Theorem 4.4]. 2

Theorem 41. Finding an optimal solution to BMGOP cannot be approximated in

323

PTIME within a ratio of e−1
e

+ ǫ (approx. 0.63) for some ǫ > 0 (where e is the

inverse of the natural log) unless P=NP, even when IC = ∅.

Proof Sketch. Follows from Theorem 39 and [46, Theorem 5.3]. 2

Next, under some reasonable assumptions, the decision problems for GB-

GOP/BMGOP are in-NP.

Theorem 42. Given GBGOP (M, s0,A,C, IC, c,Θin,

Θout), if the cost function and all actions a ∈ A can be polynomially computed, then

determining if there is a solution SOL for the instance of the GBGOP s.t. for some

real number k, |SOL| ≤ k is in-NP.

Theorem 43. Given BMGOP (M, s0,B,A,C, IC, k, c), if the cost function, benefit

function, and all actions a ∈ A can be polynomially computed, then determining if

there is a solution SOL for the instance of the BMGOP s.t. for some real number

val,
∑

Ai∈appl(SOL,s0)
bi ≥ val is in-NP.

As stated earlier, a GBGOP may also be viewed as an abductive inference

problem. Even though finding a solution (not necessarily optimal) to a GBGOP

can trivially be conducted in PTIME3, counting the number of solutions is #P-

complete. This counting problem is difficult to approximate.

Theorem 44. Counting the number of solutions to a GBGOP (under the assump-

tions of Theorem 42) is #P-complete.

Proof Sketch. The MONSAT problem takes a set C of n clauses of K disjuncted

literals (no negation) over set L of atoms (size m) and outputs “yes” iff there is a

3Return the set {(ai, pi) ∈ A×M|ai(pi) ∩Θout = ∅}

324

subset of L that satisfies all clauses in C. This problem has an obvious resemblance

to SET-COVER (with no cardinality criteria) and we embed it into a GBGOP

in a way similar to the construction of Theorem 38. The key here is to have the

predicates correspond to clauses and actions correspond to lierals - each ai is defined

as follows: ai(p) = {gj(p)|{ℓi} |= φj}, where ℓi is the corresponding literal and gj is

the predicate that corresponds to clause φj. The reduction is parsimonious, and as

#MONSAT is #P-hard, the hardness result follows. The membership in #P follows

from Theorem 42. 2

Theorem 45. For ǫ > 0, approximating the number of solutions to a GBGOP

within a factor of 2|A×M|1−e
is NP-hard.

Proof Sketch. Follows from Theorem 44 and Theorem 3.2 of [145]. 2

7.4 Integer Programs for Solving GOPs

In this section, we present an integer programming (IP) algorithms for both

GBGOP and BMGOP which provide exact solutions. Given a GBGOP, the IP

associates an integer-valued variable Xi with each action-point pair (ai, pi) ∈ A×M

where ai(pi) ∩ Θout = ∅. Intuitively, Xi = 1 denotes that action ai is performed at

point pi.

Definition 84 (GBGOP-IP). Let set R = {(ai, pi) ∈ A ×M|ai(pi) ∩ Θout = ∅}.

325

For each action-point pair (ai, pi) ∈ R, create variable Xi ∈ {0, 1}.

min

|R|
∑

i=1

Xi (7.1)

s.t.
∑

aj(pj)|Ai∈aj(pj)
Xj ≥ 1 ∀Ai ∈ Θin − s0 (7.2)

∑

(ai,pi)∈R
ci ·Xi ≤ c (7.3)

∑

(ai,pi)∈Φ
Xi ≤ 1 ∀(Φ ←֓ χ) ∈ ICs0 (7.4)

The objective function minimizes the total number of action-point pairs. Con-

straint (7.2) ensures that every ground atom in Θin (that does not appear in the

initial state) is caused by at least one of the selected action-point pairs. Con-

straint (7.3) enforces the constraint on cost. Constraint (7.4) ensures that the

integrity constraints are satisfied. Next we present our integer constraints for a

BMGOP where the IP associates an integer-valued variable Xi with each action-

point pair (ai, pi) ∈ A ×M, and an integer-valued variable Yj with each ground

atom Aj ∈ BL−s0. The intuition for the Xi variables is the same as in GBGOP-IP.

Definition 85 (BMGOP-IP). For each action-point pair (ai, pi) ∈ A ×M, create

variable Xi ∈ {0, 1}. For each Ai ∈ BL − s0 create variable Yi ∈ {0, 1}.

max
∑

Ai∈s0
bi +

|BL|−|s0|∑

i=1

bi · Yi (7.5)

s.t.
∑

aj(pj)|Ai∈aj(pj)
Xj ≥ Yi ∀Ai ∈ BL − s0 (7.6)

∑

(ai,pi)∈A×M
Xi ≤ k (7.7)

∑

(ai,pi)∈A×M
ci ·Xi ≤ c (7.8)

∑

(ai,pi)∈Φ
Xi ≤ 1 ∀(Φ ←֓ χ) ∈ ICso (7.9)

326

In the above IP, the objective function looks at each ground atom and sums

the associated benefit if the associated Yi variable is 1 - meaning that atom Ai is

true after the actions are applied. Constraint (7.6) effectively sets a Yi variable

to 1 if an action that causes Ai to be true occurs. Constraint (7.7) enforces the

cardinality requirement. Constraints 7.8-7.9 mirror constraints 7.3-7.4 of GBGOP-

IP. The result below shows that a solution σ to the above IPs4, when restricted to

the Xi variables, provides an immediate solution to the GOP.

Proposition 65. Suppose Γ is a GBGOP (resp. BMGOP) and IP (Γ) is its corre-

sponding integer program (GBGOP-IP, resp. BMGOP-IP). Then:

1. If SOL is a solution to Γ, then there is a solution σ of IP (Γ) such that

σ ⊇ {Xi = 1 | (ai, pi) ∈ SOL}.

2. If σ is a solution to IP (Γ), then there is a solution SOL to Γ such that

{Xi = 1 | (ai, pi) ∈ SOL} ⊆ σ.

We note that for GBGOP-IP, the number of variables is fairly large –O(|{(ai, pi) ∈

A ×M|ai(pi) ∩ Θout = ∅}|) variables and O(|Θin − s0| + |ICs0 | + 1) constraints.

BMGOP-IP has even more variables - (though not exponential) - O(|M|·(|A|+|G|))

variables and O(|M| · |G|+ |ICs0 |+ 2) constraints.

4A solution to GBGOP-IP or BMGOP-IP is an assignment of values to variables that optimizes

the objective function. Thus, a solution can be described as a set of equations assigning values to

the variables Xi, Yj .

327

7.5 Correct Variable Reduction for GBGOP-IP

The set of integer constraints for GBGOP has O(|R|) variables where R ⊆

A ×M. We show how to correctly reduce the number of variables by considering

only a subset of R - thereby providing a smaller integer program. Our intuition

is that an optimal solution SOL is an irredundant cover of Θin meaning there is

no subset SOL′ ⊂ SOL that is also a solution. Hence, we can discard certain

elements of R that cannot possibly be in an optimal solution. First, for a given

GBGOP Γ = (M, s0,A,C, IC, c,Θin,Θout), we introduce QΓ
(a,p) = {Φ|(Φ ←֓ χ) ∈

ICs0∧(a, p) ∈ Φ} and the set of ground atoms each action-point pair affects AffΓ
(a,p) =

ai(pi) ∩ (Θin − (Θin ∩ s0)). We can now define a reduced action-point set.

Definition 86 (Reduced Action-Point Set). Given GBGOP

Γ = (M, s0,A,C, IC, c,Θin,Θout)

and set R = {(ai, pi) ∈ A×M|ai(pi)∩Θout = ∅}, we define reduced action-point

set R∗ = {(ai, pi) ∈ R| 6 ∃(aj, pj) ∈ R s.t.

(cj ≤ ci) ∧ (QΓ
(aj ,pj)

⊆ QΓ
(ai,pi)

) ∧ (AffΓ
(ai,pi)

⊆ AffΓ
(aj ,pj)

)}

Example 7.5.1. Consider the campaign scenario last discussed in Example 7.2.5.

Suppose the candidate wants to optimize the following GBGOP:

Γ = (Mcpgn, scpgn,Acpgn,C
(scpgn)
cpgn , ICcpgn, 4,Θ

cpgn
in , ∅)

where each A ∈ Θcpgn
in has the form exposure(p) where p is a point in one of the

two dashed rectangles in Figure 7.1. Note that as map Mcpgn contains 187 points,

328

|A| = 3, and Θout = ∅, the cardinality of R is 561. By contrast, the set R∗ consists

of only 7 elements, 1.2% of the size of R. Here we have

R∗ = {(nor, (5, 4)), (nor, (5, 3)), (nor, (5, 2)), (nor, (10, 8)),

(nor, (10, 7)), (nor, (10.6)), (appeal1, (4, 3))}

Intuitively, all elements in R∗ are preferable for membership in an optimal

solution over R− R∗ as they cost less, result in the same changes to the state, and

occur in the same or fewer integrity constraints. Set R∗ can be found in quadratic

time with a naive algorithm - an operation that is likely dominated by solving or

approximating GBGOP-IP. The next lemma says that R∗ must contain an optimal

solution.any optimal solution to a GBGOP. This can then be used to correctly

reduce the number of variables in GBGOP-IP.

Lemma 22. Given GBGOP Γ = (M, s0,A,C, IC, c,Θin,Θout), for any optimal

solution SOL ⊆ R, there is an optimal solution SOL′ ⊆ R∗.

Proof Sketch. We show this by proving that for any set W = SOL∩ (R−R∗), there

is some set W ′ ⊆ R∗ − (R∗ ∩ SOL) s.t. (SOL−W) ∪W ′ is also a solution.

Proposition 66. Suppose Γ is a GBGOP and IP (Γ) is its corresponding integer

program. We can create such a program with a variable for every element of R∗

(instead of R) and Proposition 65 still holds true.

329

7.6 The BMGOP-Compute Algorithm

While BMGOP-IP can solve a BMGOP exactly, doing so is computationally

intractable. We now present an approximation algorithm that runs in PTIME but

provides a lower approximation ratio than proved in Theorem 41. First, we show

that a BMGOP reduces to an instance of submodular maximization problem5 with

respect to packing constraints. We then leverage some known methods [11] to solve

such problems and develop a fast, deterministic algorithm to approximate BMGOP

with an approximation bounds. Given BMGOP Γ = (M, s0,B,A,C, IC, k, c), con-

sider the objective function in BMGOP-IP. We can write that function as a mapping

from action-point pairs to reals. We denote this function (specific for BMGOP Γ)

as fΓ : 2A×M → ℜ+, where fΓ(S) =
∑

Ai∈appl(S,s0) bi, which has certain properties.

Proposition 67. For BMGOP Γ, function fΓ is: (i) submodular, (ii) monotonic,

i.e. Z1 ⊆ Z2 → fΓ(Z1) ≤ fΓ(Z2) and (iii) under the condition ∀Ai ∈ BL, bi = 0, we

have fΓ(∅) = 0.6

Proof Sketch. Consider S ⊆ S ′ ⊆ A ×M and (a, p) /∈ S ′. We must show fΓ(S ∪

{(a, p)}) − fΓ(S) ≥ fΓ(S
′ ∪ {(a, p)}) − fΓ(S

′). Suppose, BWOC fΓ(S ∪ {(a, p)}) −

fΓ(S) < fΓ(S
′ ∪ {(a, p)}) − fΓ(S

′). Then we have
∑

Ai∈appl(S∪{(a,p)},s0)−appl(S,s0) bi <

∑

Ai∈appl(S′∪{(a,p)},s0)−appl(S′,s0)
bi. However, by the definition of appl, we have appl(S∪

5Suppose Z is a set. A function f : 2Z → R is said to be submodular iff for all Z1, Z2 such that

Z1 ⊆ Z2 and all z /∈ Z2, it is the case that f(Z1 ∪ {z}) − f(Z1) ≥ f(Z2 ∪ {z}) − f(Z2), i.e. the

incremental value of adding z to the smaller set Z1 exceeds the incremental value of adding it to

the larger set Z2. Here, R denotes the reals.
6Henceforth, we will assume this condition to be true.

330

{(a, p)}, s0)−appl(S, s0) ⊇ appl(S ′∪{(a, p)}, s0)−appl(S ′, s0), which is a contradiction.2

As our objective function is submodular, and constraints 7.7-7.9 are linear

packing constraints, any instance of a BMGOP can be viewed as maximization of

a submodular function wrt linear packing constraints and hence, methods to solve

such problems can be used here. The BMGOP-Compute algorithm leverages this

idea and illustrated in Example 7.6.1.

Example 7.6.1. Following Example 7.2.5. Suppose the candidate wants to optimize

BMGOP: (Mcpgn, scpgn,Bcpgn,Acpgn,C
(scpgn)
cpgn , ICcpgn, 3, 2). In this case, we will set

δ = 0.001. He wishes to find a set of 3 action-point pairs to optimize his exposure.

BMGOP-Compute sets λ = 22.14, w′ = 0.33, w′′ = 0.50, and w1 = 0.50 in lines 1

and 2. In the first iteration of the loop at line 3, it finds the action-point pair that

minimizes the quantity at line 3 is (appeal1, (4, 3)) - which has the associated value

0.073. Note, other action-point pairs with low values are (appeal2, (10, 7)) with 0.083

and (nor, (15, 6)) also with 0.083. It then adds (appeal1, (4, 3)) to SOL and updates

w′ = 0.93, w′′ = 1.09, and w1 = 2.35. On the next iteration, the BMGOP-Compute

picks (nor, (15, 6)), which now has a value of 0.164. During this iteration, the value

of (appeal2, (10, 7)) has increased substantially - to 0.294, so it is not selected. At

the end of the iteration, w′ is updated to 2.611 and w′′ is updated to 2.364. As

(nor, (15, 6)) does not impact the lone integrity constraint, the value w1 remains

at 2.354. In the third iteration, BMGOP-Compute selects (nor, (15, 9)) which has a

value of 0.421. Again, the value of (appeal2, (10, 7)) has increased - but this time only

331

BMGOP-Compute

INPUT: BMGOP (M, s0,B,A,C, IC, k, c)

OUTPUT: SOL ⊆ A×M

1. Set SOL = ∅, δ to be an infinitesimal,

and set λ = e2−δ · (2 + |ICs0 |).

2. Set w′ = 1/k and w′′ = 1/c. For each (Φi ←֓ χi) ∈ ICs0 , set wi = 1/(2− δ).

3. While k · w′ + c · w′′ + (2− δ) ·∑iwi ≤ λ and SOL 6= A×M

(a) Let (aj , pj) ∈ A×M− SOL have minimal

w′+w′′·cj+
∑

i|(aj,pj)∈Φi
wi

(
∑

Ai∈appl(SOL∪{(aj,pj)},s0)
bi)−(

∑

Ai∈appl(SOL,s0)
bi)

(b) SOL = SOL ∪ {(aj , pj)}

(c) Set w′ = w′ · λ1/k, w′′ = w′′ · λcj/c and for each integrity constraint i s.t.

(aj , pj) ∈ Φi, set

wi = wi · λ1/(2−δ)

4. If SOL is not a valid solution then

(a) If
∑

Ai∈appl(SOL−{(aj ,pj)},s0) bi ≥
∑

Ai∈appl({(aj ,pj)},s0) bi,

then SOL = SOL− {(aj , pj)}

(b) Else SOL = {(aj , pj)}

5. Return SOL

332

to 0.472. BMGOP-Compute re-calculates w′ = 7.331, w′′ = 5.128 and w1 remains at

2.354. On the last iteration, BMGOP-Compute picks (appeal2, (10, 7)) as it has the

lowest value – 0.942. After this fourth iteration, it updates w′ = 20.589, w′′ = 11.124,

and w1 = 11.0861 - which now total to 42.799 – exceeding λ (22.14) – causing

BMGOP-Compute to exit the outer loop. Now SOL has 4 elements, exceeding the

cardinality constraint (as well as the integrity constraint). The checks done in line 4

remove (appeal2, (10, 7)) from SOL - making the result feasible. BMGOP-Compute

returns {(appeal1, (4, 3)), (nor, (15, 6),(nor, (15, 9))} which causes the benefit to be

45.

Proposition 68. Suppose Γ is a BMGOP and SOL is the set returned by BMGOP-

Compute. Then SOL is a solution to Γ.7

Proposition 69. BMGOP-Compute runs in O(k · |M| · |A| · |ICs0 |) time. Proof

Sketch. Clearly, the outer loop can iterate no more than k times. The inner loop

iterates for each element of A×M - hence requiring time O(|M| · |A|). The calcu-

lation at line 3a requires O(|ICs0 |) time. 2

The following important theorem states that BMGOP-Compute provides an

approximation guarantee. Because of Theorem 41 and as BMGOP-Compute is poly-

nomial, we know that this approximation guarantee cannot be as good as e−1
e

+ ǫ.

The result leverages Theorem 1.1 of [11] together with the above theorems. By

this result, the approximation factor of BMGOP-Compute depends on |ICs0 |. We

7Here, SOL is not necessarily an optimal solution.

333

0.15

0.35

0.55

0.75

1 4 7 10 13 16 19A
p

p
ro

x
im

a
ti

o
n

 F
a

ct
o

r
Number of Integrity Constraints

BMGOP-Compute

Best unless P=NP

Figure 7.2: |ICs0 | vs. approximation ratio.

illustrate this relationship, in Figure 7.2. For our target applications, we envision

|ICs0 | ≤ 20.

Theorem 46. Under the assumption that k, c ≥ 2 − δ, BMGOP-Compute provides

a solution within a factor of 1
(2+|ICs0 |)1/(2−δ) (where δ is an infinitesimal) of optimal.

Proof Sketch. BMGOP-Compute follows from Algorithm 1 of [11] which optimizes a

submodular function subject to m packing constraints within 1
m1/W where W is the

minimum width of the packing constraints - defined as the minimum of the size of

the constraint divided by the cost of an element. For constraint 7.7, the W = k. For

constraint 7.8, theW ≥ c. We can replace constraint 7.9 with:
∑

(ai,pi)∈Φj
Xi ≤ 2−δ

∀(Φj ←֓ χj) ∈ ICso which maintains correctness as two variables to set to 1 and

exceeds 2−δ. The new constraint has width 2−δ, which, is the minimum. We then

apply Theorem 1.1 of [11]. 2

334

7.7 Chapter 7 Related Work

Though spatial reasoning has been studied extensively in AI [7, 142, 103],

many of the paradigms that have emerged for such reasoning are qualitative in

nature. Such qualitative spatial reasoning efforts include the influential region con-

nection calculus for qualitative reasoning about space. There has also been work

on quantitative methods for reasoning about space [74] which contains articles on

spatial reasoning in the presence of uncertainty using both logical and fuzzy meth-

ods. Spatial reasoning with quantitative information has been studied extensively

in image processing [179, 163].

However, unlike this vast body of work, this chapter focuses on a different

problem. Suppose we are dealing with a map M, a cost function C, a set A of

possible actions, a bound on the cost c, and a bound on the number of actions

we can take, what set of actions should be taken so as to optimize a given objec-

tive function. Two versions of this problem are studied in this chapter - GBGOP

and BMGOP which differ in what they optimize. Both problems are proved to

be NP-hard (NP-complete under realistic assumptions) and we further prove that

the number of solutions to GBGOP is #P-complete. We also find limits on ap-

proximating an optimal solution to BMGOP and GBGOP (in PTIME) under ac-

cepted theoretical assumptions. We develop integer programming formulations of

both problems and then present a way of simplifying the IP for GBGOP. We further

present the BMGOP-Compute algorithm for BMGOP and show that it is polynomial

and has a guaranteed approximation ratio (though not high enough to contract the

335

NP-hardness result).

7.8 Chapter Summary

In this chapter, we introduced “geospatial optimization problems” or GOPs

that aide the user in taking certain actions over a geographic region. We showed

these problems to be NP-hard and provided integer constraints. For the goal-based

variant, we correctly reduce the number of variables. For the benefit-maximizing

variant, we provide an approximation algorithm. In future work, we look to imple-

ment this framework and explore methods to achieve further scalability. In many

applications, there also exists an underlying diffusion process (i.e. epidemiology).

This is not accounted for with geospatial optimization. In the next chapter, we look

at optimal selection of actions with respect to a diffusion process.

336

Chapter 8

Social Network Optimization Problems

While we look to optimize certain geospatial properties in the previous chap-

ter, we note that for some real-world applications, such as many epidemiological

situations, there is an underlying diffusion process that also affect geospatial propri-

eties. Given such a diffusion process and a network, we seek to find vertices of that

network that optimize an aggregate and satisfy certain logical conditions. Here, we

formalize the study of this type of agent behavior with the study of social network

optimization problems (SNOPs).1 Note that in this chapter, the acronym “GAPs”

does not refer to the geospatial abduction problems of the past three chapters but

rather the generalized annotated programs of [86].

1This chapter is based on [159] and [152], completed in cooperation with Maria Luisa Sapino,

Matthias Broecheler and V.S. Subrahmanian.

337

8.1 Chapter Introduction

There is a rapid proliferation of different types of graph data in the world to-

day. These include social network data (FaceBook, Flickr, YouTube, etc.), cell phone

network data [126] collected by virtually all cell phone vendors, email network data

(such as those derived from the Enron corpus2), as well as information on disease

networks [45, 5]. There has been years of work on analyzing how various proper-

ties of nodes in such networks “diffuse” through the network - different techniques

have been invented in different academic disciplines including economics [73, 150],

infectious diseases [45], sociology [61] and computer science [81].

Past work on diffusion has several limitations. First, they largely assume that

a social network is nothing but a set of vertices and edges [178, 29, 147]. In contrast,

our notion of SNOPs allows a richer model where edges and vertices can both be

labeled with properties. For instance, a political campaigner hoping to spread a

positive message about a campaign needs to use demographics (e.g. sex, age group,

educational level, group affiliations, etc.) for targeting a political message — a “one

size fits all” message will not work. Second, past work on diffusion has no notion

of “strength” associated with edges. It may well be the case, in many applications,

that the degree of contact between two vertices (e.g. number of minutes person A

spends on the cell phone with person B) is a proxy for the strength of the relationship

between A and B, which in turn may have an impact of whether A can influence B

or not. Third, these past frameworks [73, 150, 45, 61] usually reason about a single

2http://www.cs.cmu.edu/˜enron/

338

diffusion model, rather than develop a framework for reasoning about a whole class

of diffusion models.

In this chapter, we first argue that a class of the well-known Generalized Anno-

tated Program (GAP) paradigm [86, 85, 168] and their variants [175, 88, 107, 109,

31] including Linear GAPs (introduced here) form a convenient method to express

many diffusion models. Next, unlike most existing work in social networks which

focus on learning diffusion models, we focus on reasoning with previously learned

diffusion models (expressed via GAPs). In particular, we consider the problem of

optimal decision making in social networks which have associated diffusion models

expressible as Linear GAPs, though many of the results in the chapter apply to

arbitrary GAPs as well. Here are two examples.

• (Q1) Cell phone plans. A cell phone company is promoting a new cell phone

plan - as a promotion, it is giving away k free plans to existing customers.3 Which

set of k people should they pick so as to maximize the expected number of plan

adoptees predicted by a cell phone plan adoption diffusion model they have learned

from their past promotions?

• (Q2) Medication distribution plan. A government combating a disease

spread by physical contact has limited stocks of free medication to give away.

Based on a diffusion model of how the disease spreads (e.g. kids might be more

susceptible than adults, those previously inoculated against the disease are safe,

3Our SNOP framework allows us to add additional constraints — for instance, that plans can

only be given to customers satisfying certain conditions, e.g. not be employees of the cell phone

company.

339

etc.), they want to find a set of k people who (jointly) maximally spread the

disease (so that they can provide immediate treatment to these k people in an

attempt to halt the disease’s spread).4

Both the above problems are instances of a class of queries that we call SNOP

queries. They differ from queries studied in the past in quantitative (both proba-

bilistic and annotated) logic programming in two fundamental ways: (i) They are

specialized to operate on graph data where the graph’s vertices and edges are la-

beled with properties and where the edges can have associated weights, (ii) They

optimize complex objective functions that can be specified by the user. Neither of

these has been studied before by any kind of quantitative logic programming frame-

work, though work on optimizing objective functions in the context of different

types of semantics (minimal model and stable model semantics) has been studied

before [99]. And of course, constraint logic programming [8] has also extensively

studied optimization issues as well in logic programming - however, here, optimiza-

tion and constraint solving is embedded in the constraint logic program, whereas in

our case, they are part of the query over an annotated logic program.

This chapter is organized as follows. In Section 8.2, we provide an overview

of GAPs (past work), define a social network, and explain how GAPs can repre-

sent some types of diffusion in SNs. Section 8.3 formally defines different types of

4Again, our SNOP framework allows us to add additional constraints — for instance, that

medication can only be given to people satisfying certain conditions, e.g. be over a certain age,

or be within a certain age range and not have any conditions that are contra-indicators for the

medication in question.

340

social network optimization problems and provides results on their computational

complexity and other properties. Section 8.4 shows how our framework can repre-

sent several existing diffusion models for social networks including economics and

epidemiology. In Section 8.5 we present the exact SNOP-Mon algorithm to answer

SNOP queries under certain assumptions of monotonicity. We then develop a greedy

algorithm GREEDY-SNOP and show that under certain conditions, it is guaranteed

to be an (e
e−1) approximation algorithm for SNOP queries — this is the best possible

approximation guarantee. Last, but not least, we describe our prototype implemen-

tation and experiments in Section 8.7. Specifically, we tested our GREEDY-SNOP

algorithm on a real-world social network data set consisting of over 7000 nodes and

over 103,000 edges from Wikipedia logs. We show that we solve social network opti-

mization problems over real data sets in acceptable times. We emphasize that much

additional work is required on further enhancing scalability and that research on

social network optimization problems is at its very infancy. Finally, in Section 8.8,

we review related work.

8.2 Technical Preliminaries

In this section, we first formalize social networks, then briefly review gener-

alized annotated logic programs (GAPs) [86] and then describe how GAPs can be

used to represent concepts related to diffusion in SNs.

341

8.2.1 Social Networks Formalized

Throughout this chapter, we assume the existence of two arbitrary but fixed

disjoint sets VP,EP of vertex and edge predicate symbols respectively. Each vertex

predicate symbol has arity 1 and each edge predicate symbol has arity 2.

Definition 87. A social network (S) is a 5-tuple (V,E, ℓvert, ℓedge, w) where:

1. V is a set whose elements are called vertices.

2. E ⊆ V× V is a multi-set whose elements are called edges.

3. ℓvert : V→ 2VP is a function, called vertex labeling function.

4. ℓedge : E→ EP is a function, called edge labeling function. 5

5. w : E× EP→ [0, 1] is a function, called weight function.

We now present a brief example of an SN that will be used throughout this

chapter.

Example 8.2.1. Let us return to the cell phone example (query (Q1)). Fig-

ure 8.1 shows a toy SN the cell phone company might use. Here, we might have

VP = {male, female, adopters, temp adopter, non adptr} denoting the sex and past

adoption behavior of each vertex; EP might be the set {phone, email, IM} denoting

the types of interactions between vertices. w(v1, v2, ep) denotes the percentage of

communications of type ep ∈ EP initiated by v1 that were with v2 (measured either

5Each edge e ∈ E is labeled by exactly one predicate symbol from EP. However, there can be

multiple edges between two vertices labeled with different predicate symbols.

342

Figure 8.1: Example cellular network.

w.r.t. time or bytes). The function ℓvert is shown in figure 8.1 by the shape (denoting

past adoption status) and shading (male/female). The type of edges (bold for phone,

dashed for email, dotted for IM) is used to depict ℓedge.

It is important to note that our definition of social networks is much broader

than that used by several researchers [5, 45, 73, 81] who often do not consider either

ℓedge or ℓvert or edge weights through the function w — it is well-known in marketing

that intrinsic properties of vertices (customers, patients) and the nature and strength

of the relationships (edges) is critical for decision making in those fields.

Note. We assume that SNs satisfy various integrity constraints. In Example 8.2.1,

it is clear that ℓvert(V) should include at most one of male, female and at most one

of adopters, temp adopter,non adptr. We assume the existence of some integrity

constraints to ensure this kind of semantic integrity – they can be written in any

343

reasonable syntax to express ICs – in the rest of this chapter, we assume that social

networks have associated ICs and that they satisfy them. In our example, we will

assume ICs ensuring that a vertex can be marked with at most one of male/female

and at most one of adopters, temp adopter, non adptr.

8.2.2 Generalized Annotated Programs: A Recap

We now recapitulate the definition of generalized annotated logic programs

from [86]. We assume the existence of a set AVar of variable symbols ranging over

the unit real interval [0, 1] and a set F of function symbols each of which has an

associated arity. We start by defining annotations.

Definition 88 (annotation term). (i) Any member of [0, 1] ∪AVar is an annotation.

(ii) If f is an n-ary function symbol over [0, 1] and t1, . . . , tn are annotations, then

f(t1, . . . , tn) is an annotation.

For instance, 0.5, 1, 3 and X are all annotation terms. If +, ∗, / are all binary

function symbols, then (X+1)∗0.5
3

is an annotation term.

We define a separate logical language whose constants are members of V and

whose predicate symbols consist of VP ∪ EP. We also assume the existence of

a set V of variable symbols ranging over the constants (vertices). No function

symbols are present. Terms and atoms are defined in the usual way (cf. [106]). If

A = p(t1, . . . , tn) is an atom and p ∈ VP (resp. p ∈ EP), then A is called a vertex

(resp. edge) atom. We will use AV and AE to denote the sets of all ground vertex

and edge atoms, respectively and A = AV ∪AE. We note that |AV| = |VP| · |V| and

344

|AE| = |EP| · |E|.

Definition 89 (annotated atom/GAP-rule/GAP). If A is an atom and µ is an

annotation, then A : µ is an annotated atom. If A0 : µ0, A1 : µ1, . . . , An : µn are

annotated atoms, then

A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn

is called a GAP rule. When n = 0, the above GAP-rule is called a fact. A GAP-rule

is ground iff there are no occurrences of variables from either AVar or V in it. A

generalized annotated program Π is a finite set of GAP rules.

Every social network SN = (V,E, ℓvert, ℓedge, w) can be represented by the

GAP ΠSN = {q(v) : 1 ← | v ∈ V ∧ q ∈ ℓvert(v)} ∪ {ep(V1, V2) : w(V1, V2, ep) ←

| (V1, V2) ∈ E ∧ ℓedge(V1, V2) = ep}.

Definition 90 (embedded social network). A social network SN is said to be em-

bedded in a GAP Π iff ΠSN ⊆ Π.

It is clear that all social networks can be represented as GAPs. When we

augment ΠSN with other rules — such as rules describing how certain properties

diffuse through the social network, we get a GAP Π ⊇ ΠSN that captures both the

structure of the SN and the diffusion principles. Here is a small example of such a

GAP.

Example 8.2.2. The GAP Πcell might consist of ΠSN using the social network of

Figure 8.1 plus the GAP-rules:

345

1. will adopt(V) : 0.8×X + 0.2← adopter(V) : 1 ∧ male(V) : 1∧

IM(V, V ′) : 0.3 ∧ female(V ′) : 1 ∧ will adopt(V ′) : X.

2. will adopt(V) : 0.9×X + 0.1← adopter(V) : 1 ∧ male(V) : 1∧

IM(V, V ′) : 0.3 ∧ male(V ′) : 1 ∧ will adopt(V ′) : X.

3. will adopt(V) : 1 ← temp adopter(V) : 1 ∧ male(V) : 1 ∧ email(V ′, V) : 1∧

female(V ′) : 1 ∧ will adopt(V ′) : 1.

Rule (1) says that if V is a male adopter and V ′ is female and the weight of

V ’s instant messages to V ′ is 0.3 or more, and we previously thought that V would

be an adopter with confidence X, then we can infer that V will adopt the new plan

with confidence 0.8×X + 0.2. The other rules may be similarly read.

Suppose S is a social network and Π ⊇ ΠS is a GAP. In this case, we call the

rules in Π−ΠS diffusion rules. We use Ad−hd to refer to the set of ground atoms in

the heads of all diffusion rules of some fixed Π. Note that for the models presented

in this chapter, Ad−hd ⊆ AV, meaning edge weights do not change as a result of the

diffusion process. However, for the general case, it is possible for edge weights to

change as a result of the diffusion process.

GAPs have a formal semantics that can be immediately used. An interpreta-

tion I is any mapping from the set of all grounds atoms to [0, 1]. The set I of all

interpretations can be partially ordered via the ordering: I1 � I2 iff for all ground

atoms A, I1(A) ≤ I2(A). I forms a complete lattice under the � ordering.

Definition 91 (satisfaction/entailment). An interpretation I satisfies a ground an-

notated atom A : µ, denoted I |= A : µ, iff I(A) ≥ µ. I satisfies the ground

346

GAP-rule AA0 ← AA1 ∧ . . . ∧ AAn (denoted I |= AA0 ← AA1 ∧ . . . ∧ AAn) iff

either (i) I satisfies AA0 or (ii) there exists an 1 ≤ i ≤ n such that I does not

satisfy AAi. I satisfies a non-ground atom (rule) iff I satisfies all ground instances

of it. GAP Π entails AA, denoted Π |= AA, iff every interpretation I that satisfies

all rules in Π also satisfies AA.

As shown by [86], we can associate a fixpoint operator with any GAP Π that

maps interpretations to interpretations.

Definition 92. Suppose Π is any GAP and I an interpretation. The mapping TΠ

that maps interpretations to interpretations is defined as TΠ(I)(A) = sup{µ | A :

µ ← AA1 ∧ . . . ∧ AAn is a ground instance of a rule in Π and for all 1 ≤ i ≤ n,

I |= AAi}.

[86] show that TΠ is monotonic and has a least fixpoint lfp(TΠ). Moreover,

they show that Π entails A : µ iff µ ≤ lfp(TΠ)(A) and hence lfp(TΠ) precisely

captures the ground atomic logical consequences of Π. They also define the iteration

of TΠ as follows TΠ ↑ 0 is the interpretation that assigns 0 to all ground atoms.

TΠ ↑ (i + 1) = TΠ(TΠ ↑ i). This can be extended in the obvious way to limit

ordinals.

Thus, we see that any social network S can be represented as a GAP ΠS .

We will show (in Section 8.4) that many existing diffusion models for a variety

of phenomena can be expressed as a GAP Π ⊇ ΠS by adding some GAP-rules

describing the diffusion process to ΠS .

347

8.3 Social Network Optimization (SNOP) Queries

8.3.1 Basic SNOP Queries

In this section, we develop a formal syntax and semantics for optimization in

social networks, taking advantage of the above embedding of SNs into GAPs. In

particular, we formally define SNOP-queries, examples of which have been infor-

mally introduced earlier as (Q1) and (Q2). We see from queries (Q1),(Q2) that a

SNOP-query looks for a set V′ of vertices and has the following components: (i) an

objective function expressed via an aggregate operator, (ii) an integer k ≥ 0, (iii)

a set of conditions that each vertex in V′ must satisfy, and (iv) a goal atom g(V)

where g is a vertex predicate and V is a variable.

Aggregates. It is clear that in order to express queries like (Q1),(Q2), we need

aggregate operators which are mappings agg : FM([0, 1]) → R
+ (R+ is the set of

non-negative reals) where FM(X) denotes the set of all finite multisets that are

subsets of X. Relational DB aggregates like SUM,COUNT,AVG,MIN,MAX are all

aggregate operators which can take a finite multiset of reals as input and return a

single positive real.

Vertex condition. A vertex condition V C is a conjunction of annotated vertex

atoms containing exactly one variable.

Thus, in our example, male(V) : 1 ∧ adopter(V) : 1 is a conjunctive vertex

condition, but male(V) : 1 ∧ email(V, V ′) : 1 is not. We are now ready to define a

SNOP-query.

348

Definition 93 (SNOP-query). A SNOP-query is a 4-tuple (agg, V C, k, g(V)) where

agg is an aggregate, V C is a vertex condition, k ≥ 0 is an integer, and g(V) is a

goal atom.

If we return to our cell phone example, we can set agg = SUM, k = 3 (for

example), V C = true and the goal to be adopter(V). Here, the goal is to find

a set ANS of vertices v such that ANS’s cardinality is 3 or less and such that

SUM{lfp(TΠ)(adopter(v)) | v ∈ ANS} is maximized. Here, the SUM is applied to

a multiset rather than a set. Note that the diffusion model’s impact is captured in

this example via the lfp(TΠ)(adopter(v)) expression which, intuitively, tells us the

confidence (according to the diffusion model) that vertex v will be an adopter. If we

return to an extended version of our cell phone example and we want to ensure that

the vertices in ANS are not employees of the company (let’s call this company C),

then we merely can set V C = not employee(V) : 1.6 This query now asks us to find

a set ANS of three or less vertices — none of which is an employee of the company

C — such that the sum Σv∈ANS{lfp(TΠ)(adopter(v)) | v ∈ ANS} is maximized.

Our framework also allows the vertex condition V C to have annotations other

than 1. So in our cell phone example, the company could explicitly exclude anyone

whose “opinion” toward the company is negative. If opinion is quantified on a contin-

uous [0, 1] scale (such automated systems do exist [166]), then the vertex condition

6In this chapter, we do not consider non-monotonic negation and choose merely to represent

not employee as a predicate symbol. The extension of GAPs to non-monotonic negation has been

studied [31] — future work can extend non-monotonic negation to the case of the type of social

network optimization problems studied in this chapter.

349

might be restated as V C = not employee(V) : 1 ∧ negative opinion(V) C : 0.7

which says that the company wants to exclude anyone whose negativity about the

company exceeds 0.7 according to an opinion scoring engine such as [166].

Definition 94 (pre-answer/value). Suppose an SN S = (V,E, ℓvert, ℓedge, w) is em-

bedded in a GAP Π. A pre-answer to the SNOP query Q = (agg, V C, k, g(V))

w.r.t. Π is any set V′ ⊆ V such that: (i) |V′| ≤ k, (ii) for all vertices v′ ∈ V′,

lfp(T{Π∪{g(v′):1← | v′∈V′}) |= V C[V/v′]. We use pre ans(Q) to denote the set of all

pre-answers to query Q.

The value, value(V′), of a pre-answer V′ is agg({lfp(TΠ∪{g(v′):1← | v′∈V′})(g(V))|V ∈

V}) — here, the aggregate is applied to a multi-set rather than a set. We also note

that we can define value as a mapping from interpretations to reals based on a SNOP

query. We say value(I) = agg({I(g(v)) | v ∈ V}).

If we return to our cell phone example, V′ is the set of vertices to which the

company is considering giving free plans. (value(V′)) is computed as follows.

1. Find the least fixpoint of TΠ′
cell

where Π′cell is Πcell expanded with annotated

atoms of the form adopter(V ′) : 1 for each vertex V ′ ∈ V′.

2. For each vertex V ∈ V (the entire set of vertices, not just V′ now), we now

find the confidence assigned by the least fixpoint.

3. Summing up these confidences gives us a measure of the expected number of

plan adoptees.

Definition 95 (answer). Suppose an SN S = (V,E, ℓvert, ℓedge, w) is embedded in

350

a GAP Π and Q = (agg, V C, k, g(V)) is a SNOP-query. A pre-answer V′ is an

answer to the SNOP-query Q iff the SNOP-query has no other pre-answer V′′ such

that value(V′′) > value(V′).7

The answer set, ans(Q), to the SNOP-query Q = (agg, V C, k, g(V)) w.r.t. Π

is the set of all answers to Q.

Example 8.3.1. Consider the GAP Πcell with the social network from Figure 8.1

embedded and the SNOP-query Qcell = (SUM, true, 3, will adopt). The sets V′1 =

{v15, v19, v6} and V′2 = {v15, v18, v6} are both pre-answers. In the case of V′1, two

applications of the TΠ operator yields a fixpoint where the vertex atoms formed

with will adopt in set {v15, v19, v6, v12, v18, v7, v10} are annotated with 1. For V2,

only one application of TΠ is required to reach a fixpoint, and the correspond-

ing set of vertices (where the vertex atom formed with will adopt is annotated

with 1) is {v15, v6, v12, v18, v7, v10}. As these are the only vertex atoms formed with

will adopt that have a non-zero annotation after reaching the fixed point, we know

that value(V′1) = 7 and value(V′2) = 6. As value(V′1) > value(V′2), V
′
1 is an answer

to this SNOP-query.

8.3.2 Special Cases of SNOP Queries

In this section, we examine several special cases of SNOP queries that still

allow us to represent a wide variety of diffusion models. Table 8.1 illustrates the

special cases discussed in this section while Table 8.2 illustrates the various proper-

7Throughout this chapter, we only treat maximization problems - there is no loss of generality

in this because minimizing an objective function f is the same as maximizing −f .

351

Type Special Case Reference

Special cases of Π Linear GAP Definition 96

Special cases of agg
Monotonicity Definition 97

Positive linear Definition 98

Special cases of value
Zero-starting Definition 100

A-priori V C Definition 101

Table 8.1: Special cases of SNOP queries

ties.

Special Cases of the GAP. First, we present a class of GAPs called linear GAPs.

Intuitively, a linear GAP is a GAP where the annotations in the rule head are linear

functions and the annotations in the body are variables is the atom is a vertex atom

and constant otherwise. It is important to note that a wide variety of diffusion

models can be represented with GAPs that meet the requirements of this special

case. We define it formally below.

Definition 96 (Linear GAP). A GAP-rule r of the form

H0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn

is said to be linear iff there exist constants c0, . . . , ci, . . . , cn where ∀i, ci ∈ [0, 1] and

each ground instance rθ of r has the form

H0 : c0 + c1 ·X1θ + ...+ cn ·Xnθ ← A1 : X1θ ∧ . . . ∧ An : Xnθ

352

and Σn
i=1ci ∈ [0, 1].

A GAP is linear iff each rule in it is linear.

Note that the linear GAP allows for a wide variety of models to be expressed.

For example, suppose we have a diffusion model in which the edge atoms do not

appear in any rule head (except the facts that embed the SN). In this case, edge

weights can be treated as constants. Hence, we can allow rules where the annotation

of a vertex atom is multiplied or divided by an edge weight (as they behave as

constants) - provided the sum of all constants is in the interval [0, 1]. Section 8.4

will show that several well-known network diffusion models can be embedded into

our framework. Diffusion Models 8.4.2 and 8.4.4 are linear GAPs while Diffusion

Models 8.4.1 and 8.4.3 are not.

Special Aggregates. We define two types of aggregates — monotonic aggregates

and positive linear aggregates.

To define monotonicity, we first define a partial ordering ⊑ on multi-sets of

numbers as follows. X1 ⊑ X2 iff there exists an injective mapping β : X1 → X2

such that (∀x1 ∈ X1)x1 ≤ β(x1).

Definition 97 (Monotonic Aggregate). The aggregate agg is monotonic (resp.

anti-monotonic) iff whenever X1 ⊑ X2, it is the case that agg(X1) ≤ agg(X2)

(resp. agg(X2) ≤ agg(X1)).

Definition 98 (Positive-Linear Aggregate). The aggregate agg, applied to the fi-

nite multiset FM(X) is positive linear iff it is of the form agg(FM(X)) = c0 +

Σxi∈FM(X)cixi where (for n = |FM(X)|) c1, . . . , cn ≥ 0. Note that c0 can be positive,

353

negative, or 0.

Proposition 70. If agg is positive-linear, then it is monotonic.

It is important to note that in our definition of positive-linear, we only require

that the coefficients associated with the elements of the multi-set be positive - we al-

low for an additive constant to be negative. One obvious example of a positive-linear

aggregate is SUM. Any positive, weighted sum will also meet these requirements –

an example is the fixed-subset average function given below.

Definition 99 (Fixed-Subset Average). For set X of reals, given a fixed subset

Xsubset ⊆ X, the fixed-subset average is the quantity:

average(Xsubset) =
1

card(Xsubset)

∑

x∈Xsubset

(x)

Special cases of the query. We now describe two special cases of the query. In one

case, we consider zero-starting value functions, while in a second case, we consider

a-priori vertex conditions V C. Intuitively, zero-starting means that value(∅) = 0.

However, there are several ways in which this criteria may be met - for example, we

can simply adjust the aggregate by subtracting a constant (which, for positive-linear

aggregates, would still allow an aggregate to meet our definition of positive-linear).

An a-priori V C is one where lfp(TΠ) satisfies V C iff V C was satisfied already by

TΠ ↑ 1. Intuitively, an a-prior V C is like a “fact” in classical logic programming

and where the application of the fixpoint operator makes no change to what was

true originally. We present formal definitions below.

Definition 100 (Zero-starting). A SNOP-query is zero-starting (w.r.t. a given

social network S and a GAP Π ⊇ ΠS) iff value(∅) = 0.

354

Note that the function value() is uniquely defined by a social network, a SNOP-

query, and a diffusion model Π and hence the above definition is well defined. The

result below states that as long as we consider positive linear aggregates, we can

always modify a non zero-starting aggregate to one that is.

Proposition 71. If a SNOP-query is not zero-starting w.r.t. a social network S

and a GAP Π ⊇ ΠS , and the aggregate is positive-linear, it can be expressed as

a zero-starting SNOP-query in linear time while still maintaining a positive-linear

aggregate.

Definition 101 (A-Priori V C). In an a-priori V C SNOP-query, for set V′ ⊆ V,

we modify the definition of value(V′) (Definition 94, part ii) as follows:

For all vertices v′ ∈ V′, g(v′) : 1 ∧∧

pred∈ℓvert(v′) pred(v
′) : 1 |= V C[V/v′].

Note that both examples (Q1),(Q2) we gave in the Introduction have a-priori

VCs. If, in the cell phone example, we require that the free cell phones are given

to non-employees, then this is an a-priori V C because being an employee is not

determined by the diffusion process, but by whether a vertex in the social network

had the associated non-employee property. Likewise, in the case of an a-priori V C in

the medical example saying that an individual below 5 should not get the medicine,

this boils down to a static labeling of each node’s age (below 5 or not) which is not

affected by the diffusion process.

Example 8.3.2. Consider a painting company attempting to conduct a viral mar-

keting strategy. Consider the simple social network depicted in Figure 8.2. White

vertices represent individuals with whom the paint company has had prior business.

355

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17 18

19

Figure 8.2: Social Network for the painting company.

Suppose the represent this with a predicate prior and vertex atoms formed with some

white vertex v and prior are annotated with 1 (i.e. prior(v) : 1) while the rest are

annotated with 0. Based on local telemarketing legislation, the paint company can

only contact individuals with which it had a prior business relationship. As the paint

company intends to market to a set of high-payoff vertices in a short period of time,

it is unreasonable to expect the number vertices where where a prior vertex atom is

annotated with 1 to increase. Hence, they create a logic program such that the vertex

condition V C(V) = prior(V) : 1 is a-priori.

8.3.3 Properties of SNOPs

In this section, we will prove several usful properties of SNOP queries that use

various combinations of the assumptions presented in the previous section. Later,

356

Propoerty Assumptions

Monotonicity of value (Lemma 23) Monotonicity

Multiset {V′ ⊆ V|V′ is a pre-answer} is a uniform matroid A-priori V C

(Lemma 24)

Submodularity (Theorem 47)

Linear GAP

Positive linear agg

A-priori V C

Table 8.2: Properties that can be proven given certain assumptions

we will leverage some of these properties in our algorithms. Table 8.2 summarizes

the different properties that we prove in this section (as well as what assumptions we

make to prove these properties). Table 8.3 shows how these properties are leveraged

in the algorithms that we will present later in the chapter.

The first property we show is that the value function is monotonic. This follows

directly from the monotonicity of the aggregate - hence we present the following easy

Algorithm Property

Exact algorithm with pruning (Section 8.5.2) Monotonicity of value

Approx. Ratio on Greedy Algorithm (Section 8.5.3)
Submodularity

Zero-starting

Table 8.3: How the various properties are leveraged in the Algorithms

357

lemma.

Lemma 23. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS), if agg is monotonic (Definition 97), then value (defined as per Q and Π)

is monotonic.

Next, we show that the multiset of pre-answers is a uniform matroid in the

special case of an a-priori V C.

Lemma 24. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS), if V C is applied a-priori (as per Definition 101), the set of pre-answers

(to query Q) is a uniform matroid.

An important property in social networks is submodularity. Intuitively,if X is

a set, then a function f : 2X → R is submodular iff whenever X1 ⊆ X2 and x /∈ X2,

f(X1 ∪ {x})− f(X1) ≥ f(X2 ∪ {x})− f(X2). The following result states that the

value() function associated with a linear GAP with an a-priori vertex condition V C

and a positive linear aggregate function is guaranteed to be submodular.

Theorem 47. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS) if the following criteria are met:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear,

then value (defined as per Q and Π) is sub-modular.

In other words, for Vcond ≡ {v′|v′ ∈ V and (g(v′) : 1 ∧∧

pred∈ℓvert(v′) pred(v
′) : 1 |=

358

V C[V/v′])} and sets V1 ⊆ V2 ⊆ Vcond and v ∈ Vcond, v /∈ V1 ∪ V2, the following

holds:

value(V1 ∪ {v})− value(V1) ≥ value(V2 ∪ {v})− value(V2)

Proof Sketch: Consider a linear polynomial with a variable for each vertex in the

set of vertices that meet the a-priori V C, where setting the variable to 1 corresponds

to the vertex being picked and setting it to 0 indicates otherwise. For any subset of

vertices meeting the a-priori V C, there is an associated polynomial of this form such

that when the variables corresponding to the vertices are set to 1 (and the rest set to

0), the answer is equal to the corresponding value for that set. For a sets V1,V2 and

vertex v (as per the statement), we show that submodualirty holds by manipulating

such polynomials.

Example 8.3.3. We now show an example of a SNOP-query that is not sub-

modular when a non-linear GAP is considered. Figure 8.3 shows a social network.

This social network has one edge predicate, e, and all edges are weighted with 1.

Nodes in the network are either susceptible to the disease (circles) or carriers (di-

amonds) - the associated predicates are suc and car respectively. Additionally, we

have the predicates inf, exp denoting vertices that have been infected by or exposed

to the disease.

Let Πdisease be the embedding of this network plus the following diffusion rules.

exp(V) : 1← inf(V) : 1

exp(V) : 1← e(V ′, V) : 1 ∧ inf(V ′) : 1 ∧ suc(V) : 1

359

v
1

v
2 v

3

v
4

v
5

v
7

v
6

Figure 8.3: Social network corresponding with Example 8.5.1 concerning disease

spread.

inf(V) : ⌊
∑

i Ii∑

i Ei

⌋ ← exp(V) : 1 ∧
∧

Vi|(Vi,V)∈E
(edge(Vi, V) : Ei ∧ inf(Vi) : Ii)

Intuitively, the second rule says that a vertex becomes exposed if that vertex

is susceptible and it has at least one incoming neighbor that is infected. The third

rule states that a vertex becomes infected if it is exposed and all its neighbors are

infected. Suppose, for illustrative purposes, that inf(v5), inf(v7) are annotated with

1.

Consider the function value based on the SNOP query (Πdisease, SUM, true, 2, inf(V)).

Obviously, as the GAP is not linear, it does not meet the requirements of Theo-

rem 47 to prove submodularity. We can actually show through counterexample, that

this SNOP query is not submodular. Consider the following:

value({v1, v5})− value({v1}) = 1

and

value({v1, v7, v5})− value({v1, v7}) = 5

This shows a clear violation of submodularity.

360

8.3.4 The Complexity of SNOP Queries

We now study the complexity of answering a SNOP query. First, we show

that SNOP-query answering is NP-hard by a reduction from max k-cover [46]. We

show that the problem is NP-hard even when many of the special cases hold.

Theorem 48. Finding an answer to SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN

S and GAP Π ⊇ ΠS) is NP-hard (even if Π is a linear GAP, V C = ∅, agg = SUM

and value is zero-starting).

Proof Sketch: The known NP-hard problem of MAX-K-COVER [46] is defined as

follows.

INPUT: Set of elements, S and a family of subsets of S, H ≡ {H1, . . . , Hmax}, and

positive integer K.

OUTPUT: Less than or equal to K subsets from H such that the union of the subsets

covers a maximal number of elements in S.

We show that MAX-K-COVER can be embedded into a social network and that the

corresponding SNOP-query gives an optimal answer to MAX-K-COVER. The em-

bedding is done by creating a social network resembling a bipartite graph, where ver-

tices represent either the elements or the subsets from the input of MAX-K-COVER.

For every vertex pair representing a set and an element of that set, there is an edge

from the set vertex to the element vertex. A single vertex and edge predicate are

used - vertex and edge. A single non-ground diffusion rule is added to the GAP:

vertex(V) : X ← vertex(V ′) : X ∧ edge(V ′, V) : 1. The aggregate is simply the

sum of the annotations associated with the vertex atoms. We show that the picked

361

vertices that maximize the aggregate correspond with picked subsets that maximize

output of the problem. Also, as we do not use V C, the GAP is linear, and the

aggregate is positive-linear, we know that the value function is submodular.

Under some reasonable conditions, the problem of answering SNOP-queries is

also in NP.

Theorem 49. Finding an answer to a decision problem associated with SNOP query

Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS) where agg and the functions

in F are polynomially computable is in-NP.

Most common aggregate functions like SUM, AVERAGE, Weighted average,

MIN, MAX, COUNT are all polynomially computable. Moreover, the assumption

that the functions in F are polynomially computable is also reasonable.

Later in this chapter, we shall address the problem of answering a SNOP-query

using an approximation algorithm. We re-state the definition of approximation

below (see [54]).

Definition 102 (Approximation). For a given instance I of a maximization problem

with optimal solution OPT (I), an α-approximation algorithm A is an algorithm such

that for any instance I

OPT (I) ≤ α · A(I)

Based on the above definition, we shall say that V′ is an 1
α
-approximation to a

SNOP query if value(V′opt) ≤ α · value(V′) (where Vopt is the answer to the SNOP

query). Likewise, the algorithm that produces V′ in this case is an α-approximation

362

algorithm. We note that due to the nature of the reduction from MAX-K-COVER

that we used to prove NP-hardness, we can now show that unless P = NP, there is

no PTIME-approximation of the SNOP-query answering problem that can guarantee

that the approximate answer is better than 0.63 of the optimal value. This gives us

an idea of the limits of approximation possible for a SNOP-query with a polynomial-

time algorithm. Later, we will develop a greedy algorithm that precisely matches

this approximation ratio.

Theorem 50. Answering a SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and

GAP Π ⊇ ΠS), cannot be approximated in PTIME within a ratio of e−1
e
+ǫ for some

ǫ > 0 (where e is the inverse of the natural log) unless P = NP – even if Π is a

linear GAP, V C = ∅, agg = SUM and value is zero-starting.

(That is, there is no polynomial-time algorithm that can approximate value

within a factor of about 0.63 under standard assumptions.)

8.3.5 Counting Complexity of SNOP-Queries

In this section, we ask the question: how many answers are there to a SNOP-

query (agg, V C, k, g(V))? In the case of the cell phone example, this corresponds

to asking “How many sets ANS of people are there in the the network such that

ANS has k or fewer people and ANS optimizes the aggregate, subject to the vertex

condition V C?” If there are m such sets ANS1, . . . , ANSm, this means the cell

phone company can give the free cell phone plan to eithe all members of ANS1

or to all members of ANS2, and so forth. The “counting complexity” problem of

363

determining m is is #P -complete.

Theorem 51. Counting the number of answers to SNOP query Q = (agg, V C, k, g(V))

(w.r.t. SN S and GAP Π ⊇ ΠS) is #P-complete.

8.3.6 The SNOP-ALL Problem

Though the cell phone company may not want to give free calling plans to

all possible members of ANS1, . . . , ANSm, in the case of the epidemiology example

where a government wants to check the spread of a disease, the government may

reason as follows. It has only k units of medicine to hand out now, and hence it

needs to choose to give those medicines to all members of exactly one of the ANSi’s.

However, the government wants to know how many people are in all of the ANSi’s

so as to determine how to plan for the future (e.g. placing future orders).

Although the counting version of the query is #P -hard, finding the union

of all answers to a SNOP query is no harder than a SNOP query (w.r.t. PTIME

reductions). We shall refer to this problem as SNOP-ALL - and it reduces both to

and from a regular SNOP query in PTIME.

We first prove NP-hardness, showing by showing we can answer a SNOP query

in PTIME with an oracle to SNOP-ALL.

Theorem 52. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS), finding
⋃

V ′
ans∈ans(Q) V

′
ans is NP-hard.

Proof Sketch: We show NP-hardness by the embedding of a SNOP-query in a

SNOP-ALL query via the following informal algorithm (FIND-SET) that takes an

364

instance of SNOP-ALL (Q) and some vertex set V ∗, |V ∗| ≤ k.

1. If |V ∗| = k, return V ∗

2. Else, solve SNOP-ALL(V ∗), returning set V ′′.

(a) If V ′′ − V ∗ ≡ ∅, return V ∗

(b) Else, pick v ∈ V ′′ − V ∗ and return FIND-SET(Q, V ∗ ∪ v)

The theorem below shows that SNOP-ALL can be answered in PTIME with

an oracle to a SNOP-query.

Theorem 53. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS), finding
⋃

V ′
ans∈ans(Q) V

′
ans reduces to |V |+ 1 SNOP-queries.

Proof Sketch: Using an oracle that correctly answers SNOP-queries, we can an-

swer a SNOP-ALL query by setting up |V | SNOP-queries as follows:

• Let kall be the k value for the SNOP-ALL query and for each SNOP-query i, let

ki be the k for that query. For each query i, set ki = kall − 1.

• Number each element of vi ∈ V such that g(vi) and V C(vi) are true. For the ith

SNOP-query, let vi be the corresponding element of V

• Let Πi refer to the GAP associated with the ith SNOP-query and Πall be the

program for SNOP-ALL. For each program Πi, add fact g(vi) : 1

• For each SNOP-query i, the remainder of the input is the same as for SNOP-ALL.

After the construction, do the following:

365

1. We shall refer to a SNOP-query that has the same input as SNOP-ALL as the

“primary query.” Let V ′ans
(pri) be an answer to this query and value(V ′ans

(pri))

be the associated value.

2. For each SNOP-query i, let V ′ans
(i) be an answer and value(V ′ans

(i)) be the

associated value.

3. Let V ′′, the solution to SNOP-ALL be initialized as ∅.

4. For each SNOP-query i, if value(V ′ans
(i)) = value(V ′ans

(pri)), then add vertex vi

to V ′′.

8.4 Applying SNOPs to Real Diffusion Problems

In this section, we show how SNOPs can be applied to real-word diffusion

problems. We look at three categories of diffusion models – tipping models (Sec-

tion 8.4.1), where a given vertex adopts a behavior based on the ratio of how many

of its neighbors previously adopted the behavior, cascading models (Section 8.4.2),

where a property passes from vertex to vertex solely based on the strength of the

relationship between the vertices, and homophilic models (Section 8.4.3), where

vertices with similar properties tend to adopt the same behavior – irrespective (or

in addition to) of network relationships. None of these approaches solves SNOP-

queries — they merely specify diffusion models rather than performing the kinds of

optimizations that we perform in SNOP-queries.

366

8.4.1 Tipping Diffusion Models

Tipping models [150, 61] have been studied extensively in economics and so-

ciology to understand diffusion phenomena. In tipping models, a vertex changes a

property based on the cumulative effect of its neighbors. In this section, we present

the tipping model of Jackon-Yariv [73], which generalizes many existing tipping

models.

The Jackson-Yariv Diffusion Model [73]. In this framework, the social network

is just a directed graph G′ = (V′,E′) consisting of a set of agents (e.g. people). Each

agent has a default behavior (A) and a new behavior (B). Suppose di denotes the

degree of a vertex vi. [73] use a function γ : {0, . . . , |V| − 1} → [0, 1] to describe

how the number of neighbors of v affects the benefits to v for adopting behavior

B. For instance, γ(3) specifies the benefits (in adopting behavior B) that accrue to

an arbitrary vertex v ∈ V′ that has three neighbors. Let πi denote the fraction of

neighbors of vi that have adopted behavior B. Let constants bi and ρi be the benefit

and cost respectively for vertex vi to adopt behavior B, respectively. [73] state that

node vi switches to behavior B iff bi
ρi
· γ(di) · πi ≥ 1.

Returning to our cell-phone example, one could potentially use this model to

describe the spread of the new plan. In this case, behavior A would be adherence to

the current plan the user subscribes to, while B would be the use of the new plan.

The associated SNOP-query would find a set of nodes which, if given a free plan,

would jointly maximize the expected number of adoptees of the plan. Cost and

367

benefit could be computed from factors such as income, time invested in switching

plans, etc. Below is a straight-forward embedding of this model into our framework.

Diffusion Model 8.4.1 (Jackson-Yariv model). Given a Jackson-Yariv model con-

sisting of G′ = (V′,E′) and g, we can set up an SN (V′,E′′, ℓvert, ℓedge, w) as follows.

We define E′′ = {(x, y), (y, x) | (x, y) ∈ E′}. We have a single edge predicate symbol

edge and ℓedge assigns 1 to all edges in E′′. Our associated GAP ΠJY now consists

of ΠSN plus the single rule:

B(Vi) : ⌊
bi
ρi
· γ(

∑

j

Ej) ·
∑

j Xj
∑

j Ej

⌋ ←
∧

Vj |(Vj ,Vi)∈E′′

(edge(Vj, Vi) : Ej ∧B(Vj) : Xj)

It is easy to see that this rule (when applied in conjunction with ΠSN for

a social network SN) precisely encodes the Jackson-Yariv semantics. Note that

Πdisease from Example 8.3.3 on page 359 is a special case of this model.

We notice right away that the above GAP is not linear. However, the good

news is the non-linearity is only due to the floor function. If we eliminate the

floor-function, we can represent a variant of this model where the annotation would

represent an “expected likelihood” that an agent adopts behavior B. This new em-

bedding of the Jackson-Yariv models is a linear GAP under the following conditions

(forall Vi).

|{Vj |(Vj , Vi) ∈ E′′}| · bi
ρi
· γ(

∑

Vq |(Vq ,Vi)∈E′′

w(Vq, Vi, edge)) ·
1

∑

Vq |(Vq ,Vi)∈E′′ w(Vq, Vi, edge)
≤ 1

bi
ρi
· γ(

∑

Vq |(Vq ,Vi)∈E′′

w(Vq, Vi, edge)) ·
1

∑

Vq |(Vq ,Vi)∈E′′ w(Vq, Vi, edge)
∈ [0, 1]

As the Jackson-Yariv model does not cause edge weights to change, they can be

treated as constants upon grounding (hence, annotations of edge atoms can be

368

multiplied or divided by the annotations of vertex atoms in the heads of the diffusion

rules). This allows us to easily create a linear version of the Jackson-Yariv model

below.

Diffusion Model 8.4.2 (Linear Jackson-Yariv model).

B(Vi) :
bi
ρi
· γ(

∑

j

Ej) ·
∑

j Xj
∑

j Ej

←
∧

Vj |(Vj ,Vi)∈E′′

(edge(Vj, Vi) : Ej ∧B(Vj) : Xj)

If we consider the above model in terms of Definition 96 (Linear GAPs), for

each ground diffusion rule, the annotated atom in the head, formed with B(Vi) is

annotated with a linear expression of the form

c0 + c1 ·X1 + . . .+ c|{Vj |(Vj ,Vi)∈E′′}| ·X|{Vj |(Vj ,Vi)∈E′′}|

Here, c0 = 0, and for all j > 0,

cj =
bi
ρi
· γ(

∑

Vq |(Vq ,Vi)∈E′′

w(Vq, Vi, edge)) ·
1

∑

Vq |(Vq ,Vi)∈E′′ w(Vq, Vi, edge)

where each j is an index of an incoming vertex to Vi. Note that we can directly

use edge weights from the original social network (as expressed by the function w)

because the Ej annotations are for edge atoms and do not change in the diffusion

process (as edge weights do not appear in the heads of any diffusion rules in the

model). Clearly, under our stated assumption, linearity holds.

Example 8.4.1. Figure 8.4 illustrates a social network of individuals who share

photographs. Edges are directional formed with a predicate share and weighted 1.

Vertex predicates include {buys camera, pro}. If the vertex is shaded, the vertex

atom formed with pro is annotated with 1. All other vertex atoms are annotated

with zero.

369

v
1

v
6

v
3

v
2

v
5 v

7

v
10

v
8

v
9

v
4

Figure 8.4: Social network of individuals sharing photographs. Shaded vertices are

professional photographers. All edges are directional share edges.

A vendor wishes to sell a camera and wants to see how the popularity of the

camera will spread in the network. He wants to use a Jackson-Yariv style diffusion

model. Consider the social network embedded into a logic program, Π along with

following Jackon-Yariv style tipping diffusion rule:

buys camera(V) : ⌊
∑

j Xj · Ej
∑

j Ej

⌋ ←
∧

Vj |(Vj ,V)∈E
(shares(Vj, V) : Ej∧buys camera(Vj) : Xj)

We will call the logic program with the above diffusion rule Πsfwfd. Alternatively,

we could have a linear version of it as follows (again, linearity follows by the fact

that we can treat the edge weights as constants upon grounding):

buys camera(V) :

∑

j Xj · Ej
∑

j Ej

←
∧

Vj |(Vj ,V)∈E
(shares(Vj, V) : Ej∧buys camera(Vj) : Xj)

We will call the logic program formed with that diffusion rule (no floor function)

Πlin. In this case, the grounded diffusion rules have a head formed with the atom

370

buys camera(V) annotated with the linear expression

co + c1 ·X1 + . . .+ c|{Vj |(Vj ,V)∈E′′}| ·X|{Vj |(Vj ,V)∈E}|

Here, c0 = 0 and for all j > 0 we have,

cj =
w(Vj, V, shares)

∑

Vq |(Vq ,V)∈E w(Vq, V, edge)

where each j is an index of an incoming vertex to V . Clearly, each cj ∈ [0, 1]

and the sum of all these constants is 1, which gives us linearity in accordance with

Definition 96. Table 8.4 shows the least fixed point for the two different GAPs

(original JY model and the linear version) that arise when we assign vertex atom

buys camera(v2) an annotation of 1 — it also shows as well as the sum of the

annotations.

8.4.2 Cascading Diffusion Models

In a cascading model, a vertex obtains a property from one of its neighbors,

typically based on the strength of its relationship with the neighbor. These mod-

els were introduced in the epidemiology literature in the early 20th century, but

gained increased notice with the seminal work of [5]. Recently, cascading diffusion

models have been applied to other domains as well. For example, [20] (diffusion

of photos in Flickr) and [167] (diffusion of bookmarks in FaceBook) both look at

diffusion process in social networks as “social cascades” of this type. In this section,

we present an encoding of the popular SIR model of disease spread in our framework.

371

Vertex Atom Annotation Assigned by Annotation Assigned by

lfp(TΠsfwd∪{buys camera(v2):1←}) lfp(TΠlin∪{buys camera(v2):1←})

buys camera(v1) 0.0 0.5

buys camera(v2) 1.0 1.0

buys camera(v3) 1.0 1.0

buys camera(v4) 0.0 0.0

buys camera(v5) 0.0 0.0

buys camera(v6) 0.0 0.0

buys camera(v7) 0.0 0.25

buys camera(v8) 0.0 0.5

buys camera(v9) 0.0 0.5

buys camera(v10) 0.0 0.5

SUM 2 4.25

Table 8.4: Comparison between straightforward and linear Jackson-Yariv Models

372

The SIR Model of Disease Spread. The SIR (susceptible, infectious, removed)

model of disease spread [5] is a classic disease model which labels each vertex in a

graph G = (V,E) (of humans) with susceptible if it has not had the disease but can

receive it from one of its neighbors, infectious if it has caught the disease and trec

units of time have not expired, and removed where the vertex can no longer catch

or transmit the disease. The SIR model assumes that a vertex v that is infected can

transmit the disease to any of its neighbors v′ with a probability pv,v′ for trec units

of time. We would like to “find a set of k vertices that would maximize the expected

number of vertices that become infected”. These are obviously good candidates to

treat with appropriate medications.

Diffusion Model 8.4.3 (SIR model). Let S = (V,E, ℓvert, ℓedge, w) be an SN where

each edge is labeled with the predicate symbol e and w(v, v′, e) = pv,v′ . We use

the predicate inf to designate the initially infected vertices. In order to create a

GAP ΠSIR capturing the SIR model of disease spread, we first define trec predicate

symbols rec1, . . . , rectrec where reci(v) intuitively means that node v was infected i

days ago. Hence, rectrec(v) means that v is “removed.” We embed S into GAP

ΠSIR by adding the following diffusion rules. If trec > 1, we add a non-ground rule

for each i = {2, . . . , trec} - starting with trec:

reci(V) : R ← reci−1(V) : R

rec1(V) : R ← inf(V) : R

inf(V) : (1−R) · PV ′,V · (PV ′ −R′) ← rectrec(V) : R ∧ e(V ′, V) : PV ′,V ∧

inf(V ′) : PV ′ ∧ rectrec(V
′) : R′.

373

The first rule says that if a vertex is in its (i − 1)’th day of recovery with

certainty R in the j’th iteration of the TΠSIR
operator, then the vertex is i days into

recovery (with the same certainty) in the j+1’th iteration of the operator. Likewise,

the second rule intuitively encodes the fact that if a vertex became infected with

certainty R in the j’th iteration of the TΠSIR
operator, then the vertex is one day

into recovery in the j + 1’th iteration of the operator with the same certainty. The

last rule says that if a vertex V ′ was infected with probability PV ′ and there is an

edge from V ′ to V in the social network (weighted with probability PV ′,V), and the

vertex V ′ has recovered with certainty R′, given the probability 1−R that V is not

already recovered, (and hence, cannot be re-infected), then the certainty that the

vertex V gets infected is (1 − R) · PV ′,V · (PV ′ − R′). Here, PV ′ − R′ is one way of

measuring the certainty that V ′ has recovered (difference of the probability that it

was infected and the probability it has recovered) and PV ′,V is the probability of

infecting the neighbor.

To see how this GAP works, we execute a few iterations of the TΠSIR
operator

and show the fixpoint that it reaches on the small graph shown in Figure 8.5. In

this graph, the initial infected vertices are those shown as a shaded circle. The

transmission probabilities weight the edges in the graph.

The SNOP-query (SUM, true, k, inf) can be used to compute the expected

number of infected vertices in the least fixpoint of TΠ. This query says “find the k

vertices in the social network which, if infected, would cause the maximal number

of vertices to become infected in the future.” However, the above set of rules can

be easily used to express other things. For instance, an epidemiologist may not be

374

0.2

0.1 0.05

0.3 0.4 0.3

0.2

0.1 c i

d

h g

b a

f

Shaded vertices are infected.

Edges are bi-directional,

 trec =2

inf(a):1, inf(c):1, inf(d):1

rec1(a):1, rec1(c):1, rec1(d):1, inf(b):0.2, inf(d):0.3,

inf(f):0.3, inf(g):0.05, inf(i):0.1

rec2(a):1, rec2(c):1, rec2(d):1, rec1(b):0.2,

rec1(d):0.3, rec1(f):0.3, rec1(g):0.05, rec1(i):0.1

inf(g):0.08

rec2(b):0.2, rec2(d):0.3, rec2(f):0.3, rec2(g):0.05,

rec2(i):0.1, rec1(g):0.08

rec2(g):0.08

1

2

3

4

5

Figure 8.5: Left: Sample network for disease spread. Right: annotated atoms

entailed after each application of TΠSIR
(maximum, non-zero annotations only).

satisfied with only one set of k vertices that can cause the disease to spread to the

maximum extent - as there may be another, disjoint set of k vertices that could

cause the same effect. The epidemiologist may want to find all members of the pop-

ulation, that if in a group of size k could spread the disease to a maximum extent.

This can be answered using a SNOP-ALL query, described in Section 8.3.

The SIS Model of Disease Spread. The SIS (Susceptible-Infectious-Susceptible)

model [67] is a variant of the SIR model. In SIS, an an individual becomes suscep-

tible to disease after recovering (as opposed to SIR, where an individual acquires

permanent immunity). SIS can be easily represented by a modification to the con-

struction given above.

Diffusion Model 8.4.4 (SIS model). Take Diffusion Model 8.4.3 and change the

third rule to

inf(V) : PV ′,V · (PV ′ −R′) ← e(V ′, V) : PV ′,V ∧ inf(V ′) : PV ′ ∧ rectrec(V
′) : R′.

375

Here, we do not consider the probability that vertex V is immune – hence this

probability of recovery does not change the probability of becoming infected.

Diffusion in the Flickr Photo Sharing Network. The Flickr social network is

designed for sharing of digital photographs. Users create a list of “favorite” photos

that can be viewed by other users on the network. In [20], the authors studied how

photographs spread to the favorite lists of different users using a variant of the SIS

model. The key difference is that they do not consider a node “recovered” – i.e. once

a photo was placed on a favorite list, it was relatively permanent (the study was

conducted over about 100 days). They also found that photos lower on a favorite

list (as the result of a user marking a large number of photos as “favorite”) for a

given user could still spread through the network. Hence, we present a GAP that

captures the intuition of how Flickr photos spread according to [20].

Diffusion Model 8.4.5 (Flickr Photo Diffusion).

photoi(V) : consti ·Xi ← connected to(V ′, V) : 1 ∧ photoi(V
′) : Xi

In Diffusion Model 8.4.5, the annotation of the vertex atom photoi(V) is the

likelihood that vertex V has marked photo i as one of its favorites. The predicate

connected to is the sole edge label representing that there is a connection from vertex

V ′ to V (users select other users on this network). Additionally, the value consti is

a number in [0, 1] that determines the likelihood that a given photo spreads in the

network. As the edge weights do not change in this model, upon grounding, we can

eliminate the annotated atom connected to(V ′, V) : 1 from the body (as for each

376

vertex V , we would only need to ground out a diffusion rule for each incoming edge

to V). Therefore, as consti ∈ [0, 1], linearity follows. We note that for all of these

models, the annotation functions reflect one interpretation of the likelihood that a

vertex is infected or recovered – others are possible in our framework.

8.4.3 Homophilic Diffusion Models

Recently, [9] studied the spread of mobile application use on a global instant-

messaging network of over 27 million vertices. They found that network-based

diffusion could overestimate the spread of a mobile application and, for this scenario,

over 50% of the adopted use of the applications was due to homophily - vertices

with similar properties adopting similar applications.

This result should not be surprising – the basic idea behind web-search ad-

vertising is that two users with a similar property (search term) will be interested

in the same advertised item. In fact, [20] explicitly pre-processed their Flickr data

set with a heuristic to eliminate properties attained to vertices that could not be

accounted for with a diffusion process. We can easily represent homophilic diffusion

in a GAP with the following type of diffusion rule:

Diffusion Model 8.4.6 (Homophilic Diffusion of a Product).

buys product(V) : 0.5×X ← property(V) : 1 ∧ exposed to product(V) : X

In Diffusion Model 8.4.6, if a vertex is exposed to product (i.e. through mass

advertising) and has a certain property, then the person associated with the vertex

purchases the product with a likelihood of 0.5. For this rule, there are no network

377

effects. Note that if the predicate property does not appear in any other rule heads,

then the GAP is linear.

[177], the authors propose a “big seed” marketing approach that combines

both homophilic and network effects. They outline a strategy of advertising to a

large group of individuals who are likely to spread the advertisement further through

network effects. We now describe a GAP that captures the ideas underlying big seed

marketing. Suppose we have a set of attribute labels AL ⊆ VP. These attributes

may be certain demographic characteristics - anything from education level to race

to level of physical fitness. Suppose we want to advertise to k groups with one

of these attributes to maximize an aggregate with respect to a goal predicate g.

Consider the following construction.

Diffusion Model 8.4.7 (Big Seed Marketing). The GAP includes an embedding of

the social network, as well as the network diffusion model of the user’s choice, and

the following additions.

1. Add vertex label attrib to VP.

2. For each attribute label lbl ∈ AL, add vertex vlbl to V. Set ℓvert(vlbl) = {attrib}.

3. For each attribute label lbl ∈ AL, let eff lbl be a constant in [0, 1]. This corre-

sponds to the confidence that, if advertised to, a vertex v with label lbl obtains

an annotation of 1 on g(v).

4. This construction uses an a-priori V C = attrib(V) : 1.

5. Subtract k from the aggregate – this discounts the vertices created in part 2.

378

6. For each lbl ∈ AL, add the following non-ground rule:

g(V) : eff lbl ×X ← lbl(V) : 1 ∧ g(vlbl) : X

Note that in the above diffusion model, the vlbl vertices correspond to adver-

tisements directed toward different vertex properties. The V C condition forces the

query to only return vlbl vertices. The diffusion rule, added per label, ensures that

the mass advertisement is received and that the vertex acts accordingly (hence the

efflbl constants). Also, it is important to note that this construction is linear if no

vertex atom formed with a predicate in AL appears in the head of a diffusion rule.

We close this section with a note that while all diffusion models mentioned here

have been developed by others and have been shown above to be representable via

GAPs, none of these papers has developed algorithms to solve SNOP-queries. We

emphasize that not only do we give algorithms to answer SNOP-queries in the next

section, our algorithms take any arbitrary diffusion model that can be expressed

as a GAP, and an objective function as input. In addition, our notion of a social

network is much more general than that of many of these extant approaches.

8.5 Algorithms

In this section we study how to solve SNOP problems algorithmically.

379

8.5.1 Naive Algorithm

The naive algorithm for solving the SNOPS query (agg, V C, k, g(V)) is to first

find all pre-answers to the query. Then compute the value for each pre-answer and

find the best. This is obviously an extremely expensive algorithm that is unlikely

to terminate in a reasonable amount of time.

An execution strategy that first finds all vertices in a social network S that

satisfy the vertex condition and then somehow restricts interest to those vertices in

the above computation (where S is embedded in a GAP Π) would not be correct for

two reasons. First, lfp(TΠ) assigns a truth value to each ground vertex atom A that

might be different from what is initially assigned within the social network. Second,

when we add a new ground vertex atom A to Π (e.g. in our cell phone example,

when we consider the possibility of assigning a free calling plan to a vertex v), it

might be the case that vertices that previously did not satisfy the vertex condition

V C do so after the addition of A to Π.

8.5.2 A Non-Ground Algorithm in the Monotonic Case

There are three major problems with the Naive algorithm. The first problem

is that the aggregate function is very general and has no properties that we can

take advantage of. Hence, we can show that the entire search space might need

to be explored if an arbitrary aggregate function is used. The second problem is

that it works on the “ground” instantiation of Π. The third problem is that the

TΠ operator maps all ground atoms to the [0, 1] interval and there can be a very

380

large number of ground atoms to consider. For instance, if we have a very small

social network with just 1000 vertices and a rule with 3 variables in it, that rule has

109 possible ground instances - an enormous number. Likewise, if there is a ternary

predicate symbol in the language of Π, then there are 109 ground atoms to consider.

All these problems are further aggravated by the fact that fixpoints might have to be

computed several times.

In this section, we provide an algorithm to compute answers to a SNOP-

query under the assumption that our aggregate function is monotonic and under

the assumption8 that all rules in a GAP have the form A : f(X1, . . . , Xn) ← B1 :

X1,∧ · · · , Bn : Xn.

In this case, we define a non-ground interpretation and a non-ground fixpoint

operator SΠ. This leverages existing work on non-ground logic programming initially

pioneered by [114] and later adapted to different logic programming extensions by

[59, 39, 165]. We start by defining a non-ground interpretation.

Definition 103. A non-ground interpretation is a partial mapping NG : A → [0, 1].

Every non-ground interpretation NG represents an interpretation grd(NG) defined

as follows: grd(NG)(A) = max{NG(A′) |A is a ground instance of A′}. When there

is no atom A′ which has A as a ground instance and for which NG(A′) is defined,

8This latter assumption does not cause any loss of generality for all practical purposes if we also

make the reasonable assumption that any constant annotations in a rule body can be translated into

constraints. So if Bi : 0.5 occurs in the body of a rule, it can be replaced by Bi : Vi ∧ Vi ≥ 0.5. [86]

show that allowing such constraints involving annotated constraints can be easily accommodated

by a simple extension to the semantics of GAPs.

381

then we set grd(NG)(A) = 0.

Thus, in a language with just three constants a, b, c and one predicate symbol

p, the non-ground interpretation that maps p(X, a) to 0.5 and everything else to 0

corresponds to the interpretation that assigns 0.5 to p(a, a), p(b, a) and p(c, a) and 0

to every other ground atom. Non-ground interpretations are succinct representations

of ordinary interpretations - they only keep track of assignments to non-ground

atoms (not necessarily all ground atoms) and they do not need to worry about

atoms assigned 0. In the worst case, the number of non-ground atoms that NG

keeps track of is no worse than a ground interpretation. We now define a fixpoint

operator that maps non-ground interpretations to non-ground interpretations.

Definition 104 (operator SΠ). The operator SΠ associated with a GAP Π maps

a non-ground interpretation NG to the non-ground interpretation SΠ(NG) where

SΠ(NG)(A) = max{f(X1, . . . , Xn) | A : f(µ1, . . . , µn) ← B1 : µ1 ∧ . . . ∧ Bn : µn

is a rule in Π such that for all 1 ≤ i ≤ n, there exists an atom B′i such that

(B1, . . . , Bn) and (B′1, . . . , B
′
n) are simultaneously unifiable via a most general unifier

θ and (i) if µi is a constant, then NG(Biθ) ≥ µi, and (ii) if µi is a variable,

then NG(Biθ) = Xi}. (In this definition, without loss of generality, we assume

the variables occurring in rules in Π are mutually standardized apart and are also

different from those in NG).

The fixpoint operator SΠ delays grounding to the maximal extent possible by

(i) only looking at the rules in Π directly rather than ground instances of rules in Π

(which is what TΠ does), and (ii) by trying to assign values to non-ground atoms

382

rather than ground instances - unless there is no other way around it. The following

example shows how SΠ works.

Example 8.5.1. Some specific diffusion models focus on certain features in a graph

that encourage the diffusion process. For example, [105] describes a diffusion pro-

cess that is augmented by the presence of “funnels” in the graph. In this example,

concerning disease spread, we take advantage of such features computationally by

leveraging the operator SΠ.

Consider Example 8.3.3 from page 359 where we present a social network and

some diffusion rules for disease spread embedded in program Πdisease.

Let us apply SΠdisease
till we reach a fixed point. With the first application,

we entail annotated atoms {exp(v4) : 1, exp(v5) : 1, exp(v6) : 1, exp(v7) : 1, }. With

the next application, {inf(v4) : 1, inf(v6) : 1} are entailed. Then, with the next

application, the non-ground annotated atom exp(V) : 1 is entailed. With the final

application of the operator, the non-ground annotated atom inf(V) : 1 is entailed.

Consider the ordering � defined as follows on non-ground interpretations:

NG1 � NG2 iff grd(NG1) ≤ grd(NG2). In this case, it it easy to see that:

Proposition 72. Suppose Π is any GAP. Then:

1. SΠ is monotonic.

2. SΠ has a least fixpoint lfp(SΠ) and lfp(TΠ) = grd(lfp(SΠ)). That is, lfp(SΠ)

is a non-ground representation of the (ground) least fixpoint operator TΠ.

In short, SΠ is a version of TΠ that tries to work in a non-ground manner as

much as possible. We now present the SNOP-Mon algorithm to compute answers to a

383

Figure 8.6: Search tree for Example 8.5.2.

SNOP-query (agg, V C, k, g(V)) when agg is monotonic. The SNOP-Mon algorithm

uses the following notation: value(NG) is the same as value(grd(NG)) and NG

satisfies a formula iff grd(NG) satisfies it.

The following example shows how the SNOP-Mon algorithm works.

Example 8.5.2. Consider the program Πdisease from Example 8.5.1. Suppose, we

want to answer a SNOP query (Πdisease, SUM, true, 2, inf(V)). The search-tree in

Figure 8.6 illustrates how SNOP-Mon searches for an optimal solution to the query.

In the figure, we labeled each node with the set of vertices and a real number. The ver-

tices correspond to the vertex atoms (annotated with 1) formed with inf added to GAP

in step 4(c)i. The real number corresponds to the value resulting from this addition.

Underlined nodes in the search tree represent potential solutions where bestV al and

bestSOL are updated. Notice, that, for example, the set {v4, v1} is never considered.

This is because inf(v1) is entailed anytime a candidate solution includes v4. The op-

timal solution is found to be {v7, v5}. In this example, the algorithm considers solu-

tions in the following order: {}, {v4}, {v4, v7}, {v4, v5}, {v4, v6}, {v7}, {v7, v5}, {v7, v1},

{v7, v2}, {v7, v3}, {v5}, {v5, v6}, {v5, v1}, {v5, v2}, {v5, v3}, {v6}, {v6, v1}, {v6, v2},

384

SNOP-Mon(Π, agg, V C, k, g(V))

1. The variable Curr is a tuple consisting of a GAP and natural number. We initialize

Curr.Prog = Π; Curr.Count = 0.

2. Todo is a set of tuples described in step 1. We initialize Todo ≡ {Curr}

3. Initialize the real number bestV al = 0 and GAP bestSOL = NIL

4. while Todo 6≡ ∅ do

(a) Cand = first member of Todo; Todo = Todo− {Cand}

(b) if value(lfp(SCand.Prog)) ≥ bestV al ∧ lfp(SCand.Prog) |= V C then

i. bestV al = value(lfp(SCand.Prog); bestSOL = Cand

(c) if Cand.Count < k then

i. For each ground atom g(V)θ, s.t. 6 ∃OtherCand ∈ Todo where

OtherCand.Prog ⊇ Cand.Prog,

|OtherCand.Prog| ≤ |Cand.Prog|+ 1,

and lfp(SOtherCand.Prog) |= g(V)θ : 1, do the following:

A. Create new tuple NewCand.

Set NewCand.Prog = Cand.Prog ∪ {g(V)θ : 1←}.

Set New.Count = Cand.Count+ 1)

B. Insert NewCand into Todo

ii. Sort the elements of Element ∈ Todo in descending order of

value(Element.Prog), where the first element, Top ∈ Todo, has the

greatest such value (i.e. there does not exist another element Top′ s.t.

value(Top′.P rog) > value(Top.Prog))

5. if bestSOL 6= NIL then return (bestSOL.Prog −Π) else return NIL.

385

{v6, v3}, {v1}, {v2}, {v3}.

The following result states that the SNOP-Mon algorithm is correct.

Theorem 54. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS), if agg is monotonic then:

• There is an answer to the SNOP-query Q w.r.t. the GAP Π iff SNOP-

Mon(Π, agg, V C, k, g(V)) does not return NIL.

• If SNOP-Mon(Π, agg, V C, k, g(V)) returns any result other than NIL, then

that result is an answer to the SNOP-query Q w.r.t. the GAP Π.

8.5.3 Approximation Algorithms: GREEDY-SNOP

Even though SNOP-Mon offers advantages such as pruning of the search tree

and leverages non-ground operations to increase efficiency over the naive algorithm,

it is still intractable in the worst case. Regretfully, Theorem 48 precludes an exact

solution in PTIME and Theorem 50 precludes a PTIME α-approximation algorithm

where α < e
e−1 . Both of these results hold for the restricted case of linear-GAPs

and positive linear aggregate functions.

The good news is that we were able to show that (i) for linear-GAPs and

positive-linear aggregates, the value function is submodular (Theorem 47). (ii) Un-

der these conditions, we can reduce the problem to the maximization of a submod-

ular function over a uniform matroid (the uniformity of the matroid is proved in

Lemma 24 when V C is applied a-priori). (iii) We can leverage the work of [127] that

admits a greedy e
e−1 approximation algorithm. In this section, we develop a greedy

386

algorithm for SNOP-queries that leverages the above three results.

The GREEDY-SNOP algorithm shown below assumes a linear GAP, a positive-

linear aggregate, and a zero-starting value function. The algorithm provides e
e−1

approximation to the SNOP-query problem. As this matches the upper bound of

Theorem 50, we cannot do better in terms of an approximation guarantee.

GREEDY-SNOP(Π, agg, V C, k, g(V)) returns SOL ⊆ V

1. Initialize SOL = ∅ and REM = {v ∈ V|
(

g(v) : 1 ∧∧

pred∈ℓvert(v) pred(v) : 1
)

|=

V C[V/v]}

2. While |SOL| < k and REM 6= ∅

(a) vbest = null, val = value(SOL), inc(alg) = 0

(b) For each v ∈ REM, do the following

i. Let inc
(alg)
new = value(SOL ∪ {v})− val

ii. If inc
(alg)
new ≥ inc(alg) then inc(alg) = inc

(alg)
new and vbest = v

(c) SOL = SOL ∪ {vbest}, REM = REM− {vbest}

3. Return SOL

We now analyze the time complexity of GREEDY-SNOP.

Proposition 73. Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and

GAP Π ⊇ ΠS), the complexity of GREEDY-SNOP is O(k · |V| ·F (|V|)) where F (|V|)

is the time complexity to compute value(V ′) for some set V ′ ⊆ V of size k.

We note that most likely, the most expensive operation is the computation of

387

value at line 2(b)i. One obvious way to address this issue is by using a non-ground

version of the fixed-point. We address this issue later.

Theorem 55. If SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS) meets the following criteria:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear

• value is zero-starting.

Then GREEDY-SNOP is an (e
e−1)-approximation algorithm for the query.

Example 8.5.3. Consider Example 8.4.1 and program Πlin from page 369. Con-

sider the SNOP-query where agg = SUM, V C(V) = pro(V), k = 2, and g(V) =

buys camera(V). On the first iteration of GREEDY-SNOP, the algorithm computes

the value for all vertices in the set REMAINING which are v1, v2, v3, v5, v7, v9, v10.

The resulting annotations of the fixed points and aggregates are shown in Table 8.5.

As value(∅) = 0, the incremental increase afforded by v2 is 4.25 – and clearly

the greatest of all the vertices considered. GREEDY-SNOP adds v2 to SOL, removes

it from REM and proceeds to the next iteration. Table 8.6 shows the incremental

increases for the second iteration. As v5 provides the greatest increase, it is picked,

and the resulting solution is {v2, v5}.

388

Vertex Atom v1 v2 v3 v5 v7 v9 v10

buys camera(v1) 1.0 0.5 0.0 0.5 0.0 0.0 0.0

buys camera(v2) 0.0 1.0 0.0 0.0 0.0 0.0 0.0

buys camera(v3) 0.0 1.0 1.0 0.0 0.0 0.0 0.0

buys camera(v4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

buys camera(v5) 0.0 0.0 0.0 1.0 0.0 0.0 0.0

buys camera(v6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

buys camera(v7) 0.0 0.25 0.25 0.0 1.0 0.0 0.0

buys camera(v8) 0.0 0.5 0.5 0.0 0.0 0.0 0.0

buys camera(v9) 0.33 0.5 0.33 0.17 0.0 1.0 0.33

buys camera(v10) 0.0 0.5 0.5 0.0 0.0 0.0 1.0

SUM 1.33 4.25 2.58 1.67 1.0 1.0 1.33

Table 8.5: First iteration of the greedy algorithm.

389

Vertex Incremental Increase Incremental Increase

on First Iteration on Second Iteration

v1 1.33 0.67

v2 4.25 NA

v3 2.58 0.0

v5 1.67 1.67

v7 1.0 0.75

v9 1.0 0.5

v10 1.33 0.67

Table 8.6: Incremental Increases for Both Iterations of GREEDY-SNOP.

390

8.6 Scaling GREEDY-SNOP

This section is dedicated to providing improvements to GREEDY-SNOP in

order to increase speed and/or enhance scalability. In this section, we will present

an approach that does not necessarily select the same vertices as GREEDY-SNOP

called GREEDY-SNOP2. We shall use the term “the greedy algorithm” to describe

one of the two algorithms - noting when it makes a difference.

Most of the notation in this section will specify an iteration of the greedy

algorithm (i.e. for GREEDY-SNOP, this would refer to an iterations of the outer

loop at line 2). Our first piece of notation will be SOLi which specifies the solution

after i iterations of the greedy algorithm. So, for GREEDY-SNOP, SOL0 ≡ ∅ and

SOLi refers to SOL after i executions of line 2c. Likewise, we shall define REMi as

the set of vertices (satisfying some a-priori V C) not picked at the end of iteration i.

The next piece of notation is for the GAP itself, Π. We define Πi as Π ∪
⋃

v∈SOLi
{g(v) : 1 ←}. This allows us to define I

(alg)
i = lfp(SΠi

) which is an in-

terpretation that corresponds to the fixed point at each iteration.9 We will also

specify Ii(v) = lfp(SΠi−1∪{g(v):1←}) which is an interpretation at each iteration if

the greedy algorithm picks some vertex v written. We define Ii(v) only for i > 0.

We will also define a special mapping that tells us the increase in annotation if

vertex v is selected by the greedy algorithm at iteration i. We will often treat

this mapping as an interpretation and define it for each ground atom A. Formally,

9We can substitute the S operator for the T operator if we wished to, but throughout this

section, we shall assume the use of the S operator as it would most likely yield an improvement in

performance.

391

INCi(v)(A) = Ii(v)(A) − I
(alg)
i−1 (A). Unless specified otherwise, we will only be con-

cerned about ground atoms formed with the goal predicate (g(V)). Hence, we can

most likely reduce storage requirements for Ii(v) and INCi(v) in practice. For linear

GAPs, we have the following proposition concerning the increase in annotation.

Proposition 74. For all ground atoms A and vertices v, INCi−1(v)(A) ≥ INCi(v)(A).

Now we will show that by saving Ii(v) at each iteration, we can potentially

increase the speed at which subsequent fixed points are calculated. First, we consider

the GAP formed from some GAP Π at its least fixed point.

Definition 105. PROG(Π) = Π∪{A : µ|A : µ is a non-ground annotated atom in lfp(SΠ)}

From this, we have the following two lemmas.

Lemma 25. For all programs Π and any atom A, lfp(SPROG(Π))(A) = lfp(SΠ)(A)

Lemma 26. If Π3 ≡ Π1 ∪ Π2, then for any atom A,

lfp(SΠ3)(A) = lfp(SPROG(Π1)∪PROG(Π2))(A)

This leads us to the following proposition.

Proposition 75. If Π3 ≡ Π1 ∪ Π2, then for any atom A,

lfp(SΠ3)(A) = lfp(SPROG(PROG(Π1)∪PROG(Π2)))(A)

So, suppose GREEDY-SNOP is on iteration i− 1 and considers some vertex v

which it does not select. As it calculated the fixed-point, we can save Ii−1(v) and

easily create PROG(Πi−2 ∪ {g(v) : 1 ←}) using this information. At the end of

392

iteration i − 1 we can also have PROG(Πi−1) easily stored as well. Now suppose

vertex v is being considered again on iteration i. Rather than computing the fixed

point of SΠi−1∪{g(v):1←} in the straight-forward manner, we can use Proposition 75

and compute the least fixed point of SPROG(Πi−1)∪PROG(Πi−2∪{g(v):1←}), which will

likely converge faster. We will use the notation PROGi(v) to refer to the program

PROG(Πi−1 ∪ {g(v) : 1←}).

Example 8.6.1. Consider Example 8.5.3. Consider what happens when GREEDY-

SNOP computes value when considering vertex v3 on the second iteration. A quick

look at Table 8.5 reveals that, as vertex atom buys camera(v3) is annotated with 1

after the first iteration when v2 was considered. This means that the annotations

assigned when v3 is added after v2 will remain the same (hence, there was no in-

cremental increase when v2 was added in the second iteration). By calculating the

fixed point using SPROG(Π1)∪PROG(Π0∪{g(v3):1←}) will cause S to converge after a single

iteration in this case – as the maximum annotations are already assigned by rules

in program PROG(Π1).

With the I
(alg)
i defined, we can specify value at each iteration:

vali = agg({I(alg)i (g(V))|V ∈ V})

Next, we specify a notation to refer to how much the value has increased after i

iterations of the greedy algorithm – the incremental increase – or inc
(alg)
i (defined for

i > 0). Formally, inc
(alg)
i = vali − vali−1. Note that we use the superscript (alg) to

signify that this corresponds with the incremental increase based on the vertex (or

vertices) selected by the greedy algorithm at iteration i. The optimal incremental

393

increase – inc
(opt)
i – refers to the incremental increase if the greedy algorithm selects

a single vertex that causes the greatest possible incremental increase to value. Note

that GREEDY-SNOP always picks a vertex at each iteration such that inc
(alg)
i =

inc
(opt)
i . Consider the following proposition.

Proposition 76. inc
(opt)
i ≤ inc

(opt)
i−1 .

We will now define the incremental increase if the algorithm selects a specific

vertex v at iteration i - written inci(v). So, if the greedy algorithm selects vertex v,

then inc
(alg)
i = inci(v). Formally, inci(v) = value(SOLi−1 ∪ {v}) − vali−1. As with

Ii(v), inci(v) is only defined for i > 0. Also based on the definition of submodularity,

we have the following corollary to Proposition 76.

Corollary 14. inci(v) ≤ inci−1(v).

Corollary 14 allows for a possible speed-up. For example, consider GREEDY-

SNOP on some iteration i. Suppose, while considering vertex v1, it computes

inc
(opt)
i (v1). Now, it proceeds to the next vertex, v2. If, on some previous itera-

tion j ≤ i, we saved inc
(opt)
j (v2) and this value is less than or equal to inc

(opt)
i (v1),

then we need not consider v2 as the incremental increase it can provide cannot pos-

sibly be greater than v1. Such a technique is also leveraged in [101] on a different

problem that reduces to the maximization of a submodular function over a uniform

matroid. In that work, this type of improvement led to an increase in speed by a

factor of 700.

However, the storage of the last incremental increase for a given vertex may

still need to be re-calculated after several iterations. One way to avoid this is to

394

obtain an upper bound on inci(v). We can do this with the special interpretation

INCi(v) that we already defined. Consider the following observation for positive-

linear aggregates.

Fact 1. inci(v) = agg({INCi(v)(g(v
′))|v′ ∈ V})

Based on Observation 1 and Proposition 74, we can use the following result to

obtain an upper bound for inci(v).

Proposition 77. For j ≤ i, we have:

inci(v) ≤ agg
(

{min
(

1, INCj(v)(g(v
′)) + I

(alg)
i−1 (g(v′))

)

− I
(alg)
i−1 ((g(v′)))|v′ ∈ V}

)

We shall refer to the quantity

agg
(

{min
(

1, INCj(v)(g(v
′)) + I

(alg)
i−1 (g(v′))

)

− I
(alg)
i−1 ((g(v′)))|v′ ∈ V}

)

where the j is the annotation increase for vertex v was stored, as inc
(up)
i (v). Consider

the following example.

Example 8.6.2. Consider Example 8.5.3. Suppose, at the start of the second it-

eration, the algorithm computes an inc
(up)
2 (v) for all v ∈ REM1. It would simply

use the fixed point computations of the first iteration to create INC1(v) for each (see

Table 8.5). In Table 8.7, we show values assigned by I
(alg)
1 (interpretation after the

first iteration) and INC1(v5) (incremental increase for each vertex atom from v5).

Using the information in Table 8.7, we can easily compute inc
(up)
2 (v5) to be

1.67. In this case, this is a very tight upper bound, matching the actual incremental

increase as depicted in Table 8.6.

395

Vertex Atom I
(alg)
1 INC1(v5)

buys camera(v1) 0.5 0.5

buys camera(v2) 1.0 0.0

buys camera(v3) 1.0 0.0

buys camera(v4) 0.0 0.0

buys camera(v5) 0.0 1.0

buys camera(v6) 0.0 0.0

buys camera(v7) 0.25 0.0

buys camera(v8) 0.5 0.0

buys camera(v9) 0.5 0.17

buys camera(v10) 0.5 0.0

Table 8.7: Calculating inc
(up)
2 (v5).

396

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
v

e
ra

ll
 A

p
p

ro
x

im
a

ti
o

n

Approximation of Increment

Figure 8.7: Effect on overall approximation given an incremental approximation

factor.

We can also use upper bounds on inci(v) to obtain an upper bound on inc
(opt)
i

for a given iteration. We present the following observation.

Fact 2. inc
(opt)
i ≤ min

(

inc
(opt)
i−1 ,maxv∈REMi−1

(inc
(up)
i (v))

)

We shall refer to the quantity min
(

inc
(opt)
i−1 ,maxv∈REMi−1

(inc
(up)
i (v))

)

as inc(opt,up).

We can use this information to select vertices that cause an incremental increase

within ǫ of optimal. Consider the following result of [60] (Theorem 1).

Theorem 56. Consider the greedy algorithm of [127]. If at each step of the greedy

algorithm, the incremental improvement is approximated within a factor of ǫ, then

the greedy algorithm is an eǫ

eǫ−1 approximation algorithm (i.e. obtains a solution

within eǫ−1
eǫ

of optimal).

We plot the relationship between the approximation of the incremental im-

provement vs. overall approximation in Figure 8.7.

397

So, suppose the user specifies an additional parameter ǫ in the input of the

greedy algorithm that corresponds to the ǫ in Theorem 56. One way to leverage this

approximation is to compute the aggregate after each application of the S operator

and halt computation once the aggregate is within ǫ · inc(opt,up). We introduce

new notation for each vertex v that takes this partial fixed point computation into

account – PROG
(ǫ)
i (v), inc

(ǫ)
i (v), and INC

(ǫ)
i (v), which correspond with the previously

described PROGi(v), inci(v), and INCi(v) respectively. The algorithm APPROX-

VALUE computes these items for the current iteration.

Theorem 56 can be leveraged in another way that allows for the selection of

multiple vertices in a single iteration of the greedy algorithm. First, we define the

notion of vertex spread which intuitively refers to all other vertices that increase

their annotation when vertex v is added at iteration i. For vertex v at iteration i,

with parameter ǫ, we define spread
(ǫ)
i (v) = {v′ ∈ V|INC(ǫ)

i (v)(g(v′)) > 0}. Using this

information, for a set of vertices, V′, we can now specify a spread-graph.

Definition 106 (Spread Graph). For a given iteration, i, set of vertices V′, and

parameter ǫ, we define the spread-graph GS
(ǫ)
i (V′) = (Vspread, Espread) as a graph

where:

1. For each vp ∈ V′, there is a corresponding node v′p ∈ Vspread and no other nodes

in Vspread.

2. There is an undirected edge (v′p, v
′
q) ∈ Espread iff for corresponding vertices

vp, vq ∈ V′, spread(ǫ)i (vp) ∩ spread
(ǫ)
i (vq) 6≡ ∅

Returning to the notion of selecting vertices that where inci(v) or inc
(ǫ)
i (v)

398

APPROX-VALUE(v,PROG
(ǫ)
j (v),PROG(Πi−1), agg, inc

(opt,up), vali−1, I
(alg)
i−1 , ǫ) (j < i)

returns real number inc
(ǫ)
i (v), function INC

(ǫ)
i (v), program PROG

(ǫ)
i (v), and Boolean

flag.

1. inc
(ǫ)
i (v) = 0, INC

(ǫ)
i (v) and Itemp assign all atoms 0, Πtemp = PROG

(ǫ)
j (v) ∪ Πi−1,

flag = false.

2. While inc
(ǫ)
i (v) < ǫ · inc(opt,up) and ¬flag

(a) Iprev = Itemp

(b) Let Itemp be SΠtemp applied to Itemp.

(c) flag = (Iprev == Itemp)

(d) inc
(ǫ)
i (v) = agg({Itemp(g(V))|V ∈ V})− vali−1

3. For all A ∈ A, set INC(ǫ)
i (v)(A) = max(0, Itemp(A)− I

(alg)
i−1 (A))

4. Set PROG
(ǫ)
i (v) = PROG(Πi−1) ∪ {A : Itemp(A)← |A ∈ A}

5. Return inc
(ǫ)
i (v), INC

(ǫ)
i (v), PROG

(ǫ)
i (v), flag.

399

are greater than or equal to ǫ · inc(opt,up), let us define a set cand(ǫ)i = {v ∈

REMi−1|inc(ǫ)i (v) ≥ ǫ · inc(opt,up)}. Let cand(ǫ)i
′
be a subset of cand(ǫ)i. We have

the following theorem.

Theorem 57. If the nodes in GS
(ǫ)
i (cand(ǫ)i) corresponding with elements of cand(ǫ)i

′

are an independent set of GS
(ǫ)
i (cand(ǫ)i), then the greedy algorithm can select all

vertices in cand(ǫ)i
′
and still obtain a solution within eǫ−1

eǫ
of optimal.

So, Theorem 57 allows the greedy algorithm to select more than one vertex

during a given iteration. Further, as the value of ǫ increases, the cardinality of an

independent set of GS
(ǫ)
i (cand(ǫ)i) should also increase, meaning that the user can

use ǫ as a way to trade accuracy for performance.

Although the problem of finding a maximal independent set is NP-hard, several

polynomial approximation algorithms have been studied [69]. Where n is the number

of vertices, a simple greedy approach illustrated in [69] runs in O(n2) time and

ensures finding an independent set of at least n
δ+1

where δ is the average degree of the

graph. Note that for our application n = |cand(ǫ)i|, and we expect |cand(ǫ)i| << |V|.

We present this algorithm, GREEDY-INDEP-SET, below.

There are several modifications that can be made to GREEDY-INDEP-SET. For

example, we can leverage the Fibonacci heap of [49] to obtain a O(n lg n) run time.

Another easy modification to GREEDY-INDEP-SET that may provide better approx-

imations in practice would be to select vertices that not only have a low degree, but

also where the incremental increase is greater. In Example 8.6.3, we describe such

a heuristic. Additionally, in [69], the authors also present a more advanced approx-

400

GREEDY-INDEP-SET(G = (V,E)) returns V ′ ⊂ V

1. V ′ = ∅

2. While V 6≡ ∅ do the following.

(a) Let v be the vertex in V with the smallest degree. Add v to set V ′. Remove

v and all its neighbors (and adjacent edges) from G

3. Return V ′

imation algorithm that provides an indecent set within 2
δ+1

of optimal. However,

it is important to note that we need not solve this problem exactly, and we do not

want this to become a dominating operation in the overall algorithm.

So far, we have illustrated a variety of ways to scale GREEDY-SNOP and still

provide an approximation guarantee. We combine the techniques we have described

thus far in GREEDY-SNOP2, illustrated in the following example.

Example 8.6.3. Consider Example 8.4.1 and program Πlin from page 369. Con-

sider the SNOP-query where agg = SUM, V C(V) = pro(V), k = 3, and g(V) =

buys camera(V) along with the parameter ǫ = 0.4. On the first iteration of GREEDY-

SNOP2, the algorithm computes the value for all vertices in the set REMAINING

which are v1, v2, v3, v5, v7, v9, v10. Note that due to step 3 of GREEDY-SNOP2, the

algorithm computes the complete fixed point, just as it did in Example 8.5.3 when we

used GREEDY-SNOP. Refer to Table 8.5 on page 389 for the resulting interpretations.

As inc(opt,up) is 4.25 for the first iteration, the set cand(ǫ) for this iteration includes

all vertices where the incremental increase is greater than or equal to 0.4 ·4.25 = 1.7.

401

GREEDY-SNOP2(Π, agg, V C, k, g(V), ǫ) returns SOL ⊂ V

1. Initialize SOL = ∅ and REM = {v ∈ V|g(v) : 1 ∧∧

pred∈ℓvert(v)
pred(v) : 1 |= V C[V/v]}

2. Compute PROG(ǫ)(Π0) and I
(alg)
0 .

3. For each v ∈ REM, compute PROG
(ǫ)
0 (v), and INC1(v).

4. While |SOL| ≤ k and REM 6= ∅

(a) Set vbest = null, cand(ǫ) = ∅, inc(alg) = 0, val = value(SOL)

(b) For each v ∈ REM, calculate inc(up)(v) as per Proposition 77 using the last saved

INCj(v) that was calculated

(c) Calculate inc(opt,up) as per Observation 2.

(d) Sort the elements of REM from greatest to least by inc(up)(v)

(e) For each v ∈ REM where inc(up)(v) > min(inc
(alg)
best , ǫ · inc(opt,up)), do the following

i. 〈inc(ǫ)(v), INC(ǫ)(v),PROG(ǫ)(v), f lag〉 =

APPROX-VALUE(v,PROG(ǫ)(v),PROG(Π), agg, inc(opt,up), val, I(alg), ǫ)

ii. If inc(ǫ)(v) ≥ inc(alg) then inc(alg) = inc(ǫ)(v) and vbest = v

iii. If ¬flag then add v to cand(ǫ)

iv. If flag then set INC(v) = INC(ǫ)(v)

(f) If cand(ǫ) ≡ ∅ then SOL = SOL ∪ {vbest}, REM = REM− {vbest}

(g) Else do the following:

i. Create GS(ǫ)(cand(ǫ))

ii. Let cand(ǫ)
′

be the subset of REM corresponding with the nodes of an indepen-

dent set in GS(ǫ)(cand(ǫ))

iii. SOL = SOL ∪ cand(ǫ)
′

, REM = REM− cand(ǫ)
′

5. Return SOL

402

v
1

v
3

v
2

v
5

v
7

v
10

 ITERATION 1 ITERATION 2

Figure 8.8: Left: spread graph after iteration 1. Right: spread graph after iteration

2.

Hence, cand(ǫ) = {v2, v3}. In Figure 8.8, we show the spread graph created with this

set. As the singletons v2, v3 are both independent sets, the algorithm can pick either.

Although we do not specify a “tie-breaker” in GREEDY-SNOP2, a reasonable heuris-

tic would be to select the vertex with the greatest incremental increase, which would

be v2, so we add v2 to SOL.

In the second iteration, we calculate the upper bound using the special inter-

pretation INCi(v) for each vertex v. In Example 8.6.2 on page 395, we show how

to do this for vertex v5 and this is found to be 1.67. This also happens to be the

greatest upper bound for any vertex in REM. Therefore, after computing the fixed

points, we select all vertices whose incremental increase is greater than or equal to

0.4 ·1.67 = 0.67. So, for this iteration cand(ǫ) = {v1, v5, v7, v10}. The spread graph is

also shown in Figure 8.8. Using the heuristic we described for the first iteration, the

algorithm would select {v5, v7} and add them to SOL. Hence the algorithm returns

{v2, v5, v7}. Note that the algorithm was able to totally avoid a third iteration, even

though it was required to (and does) return a set of three vertices.

Proposition 78. The complexity of GREEDY-SNOP2 is O(k · |V| · F (|V|)) where

403

F (|V|) is the time complexity to compute value(V ′) for some set V ′ ⊆ V of size k.

Proposition 79. Given a SNOP-query meeting the following criteria:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear

• value is zero-starting

Then GREEDY-SNOP2 is an eǫ

eǫ−1-approximation algorithm for the query.

Now we will show a way to possibly further improve scalability while preserving

the approximation guarantee of Proposition 79. Our intuition is to use a spread-

graph on all vertices in REM0 to partition the problem, and then run the greedy

algorithm on each sub-problem. Consider the following definition:

Definition 107 (Disjoint Node Set). Given an un-directed, un-weighted graph G =

(V,E), we say sets V1, V2 ⊆ V are disjoint node sets iff

1. There is no edge from any node in V1 to a node in V2

2. (or equivalently) Any set of two nodes where one is picked from V1 and one is

picked from V2 is an independent set of G

We provide a simple algorithm for finding disjoint node sets in Appendix G.2.15

(page 609). Now we present GREEDY-SNOP-DIV that uses disjoint node set to parti-

tion the problem and still maintain the approximation guarantee of Proposition 79.

404

GREEDY-SNOP-DIV(Π, agg, V C, k, g(V), ǫ) returns SOL ⊂ V

1. Initialize SOL = ∅ and REM0 = {v ∈ V|g(v) : 1 ∧ ∧

pred∈ℓvert(v) pred(v) : 1 |=

V C[V/v]}

2. For each v ∈ REM0, calculate set spread
(ǫ)
1 (v)

3. Create graph GS
(ǫ)
1 (REM0) = (Vspread, Espread).

4. Let DNS1, . . . , DNSn be the disjoint node sets of Vspread

5. Create predicates set1, . . . , setn. For all v ∈ V set the weight seti(v) to 1 iff the

corresponding node in Vspread is in DNSi and 0 otherwise.

6. Create n new SNOP queries where for query i, the input is Π, agg, V C(V) ∧

seti(V),min(k, |DNSi|), g(V), ǫ.

7. Let SOL(1), . . . , SOL(n) be the solutions to each SNOP query as returned by

GREEDY-SNOP or GREEDY-SNOP2. Let SOLall be the union of all these sets.

With each vertex v ∈ SOLall, let inc(v) be the incremental increase caused by that

vertex in its SNOP-query.

8. Sort SOLall by inc(v) from greatest to least

9. Return the top k elements of SOLall.

405

In the below example, we use the disjoint node sets of GS
(ǫ)
0 (REM0) to partition

the problem.

Example 8.6.4. Consider Example 8.3.2 on page 355. Recall, that in this problem,

20 vertices, v1, . . . , v20 meet an a-priori V C and thus comprise the set REM0 (see

Figure 8.2). Suppose, for each vi ∈ REM0, we find the set spread
(ǫ)
1 (vi) and the

results are shown by the shaded ovals in Figure 8.6.4.

Using Figure 8.9(top), we can easily see the intersection of two sets of ver-

tices corresponding with vertex spreads. For example, there are 4 vertices in the set

spread
(ǫ)
1 (v18)∩spread(ǫ)1 (v20), while there are 8 vertices in spread

(ǫ)
1 (v1)∩spread(ǫ)1 (v2).

Based on these intersections, we can obtain the spread graph GS
(ǫ)
1 (REM0) – shown

in Figure 8.9(bottom).

Based on the spread graph of Figure 8.9(bottom), there are 5 disjoint node sets

- this is how GREEDY-SNOP-DIV will partition the problem:

DNS1 = { v1, v2, v3, v4, v5 }

DNS2 = { v6, v7, v8, v9, v10 }

DNS3 = { v11, v12, v13, v14, v15 }

DNS4 = { v16, v17 }

DNS5 = { v18, v19, v20 }

So, GREEDY-SNOP-DIV would then create predicates set1, set2, set3, set4, set5

for each of the disjoint node sets above. The vertex atoms formed with these pred-

icates are assigned 1 iff the vertex is in the corresponding disjoint node set. For

406

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17 18

19

1

2

3

4

5

1111

1414

1212

1313

1515

6

10

7

1010

8

9

1616

1919 2020

18181717

16

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17 18

19

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16 17

18

19

Figure 8.9: Top: Social Network for the painting company with vertex spread shown

as shaded ovals. Bottom: Spread graph GS
(ǫ)
1 (REM0) for the painting company

example.

407

example, set1(v1) and set4(v16) are annotated with 1 while set4(v1) and set1(v16) are

annotated with 0.

Recall that the original V C was prior(V) (see Example 8.3.2). We now create

5 new SNOP queries with the following a-priori vertex conditions (i.e. V Ci is the

vertex condition for query i).

Query 1: V C1 = prior(V) : 1 ∧ set1(V) : 1

Query 2: V C2 = prior(V) : 1 ∧ set2(V) : 1

Query 3: V C3 = prior(V) : 1 ∧ set3(V) : 1

Query 4: V C4 = prior(V) : 1 ∧ set4(V) : 1

Query 5: V C5 = prior(V) : 1 ∧ set5(V) : 1

The algorithm would then take the results of the 5 queries obtained from runs

of GREEDY-SNOP2 and order the union of all solutions by the incremental increase.

GREEDY-SNOP-DIV would then return the top k vertices.

Proposition 80. Given a SNOP-query meeting the following criteria:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear

• value is zero-starting

Then GREEDY-SNOP-DIV is an eǫ

eǫ−1-approximation algorithm for the query.

408

We notice that GREEDY-SNOP-DIV allows us to partiiton the problem in way

where for each of the n disjoint node sets can be handled by an instance of GREEDY-

SNOP2 on a different machine. Further, we can maintain a “master process” where

each of the n instances of GREEDY-SNOP2 can report their latest vertices added

to the solution and the corresponding incremental increase. This can allow the

master process to terminate the instances of GREEDY-SNOP2 early (i.e. once the

incremental increase of a vertex picked by an instance of GREEDY-SNOP2 is to low

to be added to the final solution).

8.7 Implementation and Experiments

We have implemented the GREEDY-SNOP algorithm in 660 lines of Java code

by re-using and extending the diffusion modeling Java library of [17] (approx 35K

lines of code). Our implementation uses multiple threads in the inner loop of the

GREEDY-SNOP algorithm to increase efficiency. All experiments were executed

on the same machine with a dedicated 4-core 2.4GHz processor and 22GB of main

memory. Times were measured to millisecond precision and are reported in seconds.

8.7.1 Experimental Setting

Data set. In order to evaluate GREEDY-SNOP, we used a real world dataset based

on a social network of Wikipedia administrators and authors. Wikipedia is an online

encyclopedia collaboratively edited by many contributors from all over the world.

Selected contributors are given privileged administrative access rights to help main-

409

tain and control the collection of articles with additional technical features. A vote

by existing administrators and ordinary authors determines whether an individual is

granted administrative privileges. These votes are publicly recorded. [100] crawled

2794 elections from the inception of Wikipedia until January 2008. The votes casted

in these elections give rise to a social network among Wikipedia administrators and

authors by representing a vote of user i for user j as a directed edge from node i to

j. In total, the dataset contains 103, 663 votes (edges) connecting more than 7000

Wikipedia users (vertices). Hence, the network is large and densely connected.

SNOP-Query. In our experiments, we consider the hypothetical problem of finding

the most influential administrators in the Wikipedia social network described above.

We treat votes as a proxy for the inverse of influence. In other words, if user i

voted for user j, we assume user j (intentionally through lobbying or unintentionally

through the force of his contributions to Wikipedia) influenced user i to vote for

him. All edges are assigned a weight of 1. Our SNOP-queries are designed as per

the following definition.

Definition 108 (Wikipedia SNOP-Query). Given some natural number k > 1, a

Wikipedia SNOP query, WQ(k) is specified as follows:

• agg = SUM – the intuition is that the aggregate provides us an expected number

of vertices that are influenced.

• V C = true – we do not use a vertex condition in our experiments

• k as specified by the input

410

• goal(V) = influenced(V)

Diffusion Models Used. We represented the diffusion process with two different

models: one tipping and one cascading.

• Cascading diffusion model. We used the Flickr Diffusion Model (Diffusion

Model 8.4.5 on page 376) described in Section 8.4.2. In this model, a constant

parameter α represents the “strength” or “likelihood” of influence. The larger the

parameter α the higher the influence of a user on those who voted for her.

• Tipping diffusion model. [21] shows that there is a relationship between the

likelihood of a vertex marking a photo as a favorite and the percentage of their

neighbors that also marked that photo as a favorite. This implies a tipping-

model (as in Section 8.4.1). We apply the Jackson-Yariv mode (i.e. Diffusion

Model 8.4.2) with B equated to influence. The predicate e corresponds to vote.

For each vertex Vj ∈ V, we set the benefit to cost ratio (
bj
cj
) to 1. Finally, the

function γ defined in the Jackson Yariv model is the constant-valued function (for

all values of x):

γ(x) = α.

This says that irrespective of the number of neighbors that a vertex has, the

benefit to adopting strategy B (i.e. influence) is α. Therefore, the resulting

diffusion rule for the linear Jackson-Yariv model is:

influence(V) : α ·
∑

j Xj
∑

j Ej

←
∧

Vj |(Vj ,V)∈E
(vote(Vj, V) : Ej ∧ influence(Vj) : Xj)

411

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

!'!#" !'$" !'$#" !'%" !'%#" !'&" !'&#" !'(" !'(#" !'#"

!
"#

$
%"
&
%'
$
(
%

)%*+,-$%

.-&/#$'%012%3"4$2$&5%)%*+,-$'%

)*+,*-./0"1.23+.4/"

5.66./0"1.23+.4/"

Figure 8.10: Runtimes of GREEDY-SNOP for different values of α and k = 5 in both

diffusion models

For both models, we derive a unique logic program for each setting of the

parameter α. The parameter α depends on the application and can be learned from

ground truth data. In our experiments, we varied α to avoid introducing bias.

8.7.2 Experimental Results

Run-time of GREEDY-SNOP with varying α and different diffusion mod-

els. Figure 8.10 shows the total runtime of GREEDY-SNOP in seconds to find the

set of k = 5 most influential users in the Wikipedia voting network for different

values of the strength of influence parameter α. We varied α from 0.05 (very low

level of influence) to 0.5 (very high level of influence) for both the cascading and

tipping diffusion model. We observe that higher values of α lead to higher runtimes

as expected since the scope of influence of any individual in the network is larger.

Furthermore, we observe that the runtimes for the tipping diffusion model increase

412

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!"

(!!!!"

)!!!!"

'" #!" #'" $!" $'"

!
"#

$
%"
&
%'
$
(%

)*#+$,%-.%(-#/*0$1%"&1"2"1*34'%

!"#$%0-%5&1%6&1"2"1*34'%

*+,-+./01"2/34,/50"

6/77/01"2/34,/50"

Figure 8.11: Runtimes of GREEDY-SNOP for different values of k and α = 0.2 in

both diffusion models

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

$" %" &" '" #" (")" *" +" $!"$$"$%"$&"$'"$#"$("$)"$*"$+"%!"%$"%%"%&"%'"%#"

!
"#

$
%"
&
%'
$
(%

)&*$+%,-%)&*"."*/01%

!"#$%2$3%)&*"."*/01%

,-./-0123"4156.172"

8199123"4156.172"

Figure 8.12: Time per iteration of GREEDY-SNOP for α = 0.2 in both diffusion

models

413

more slowly with α compared to the cascading model.

Run-time of GREEDY-SNOP with varying k. For the next set of experiments,

we keep the strength of influence fixed to α = 0.2 and varied k which governs the

size of the set of influencers. Figure 8.11 reports the runtime of GREEDY-SNOP for

the query WQ(k) with k = 5, 10, 15, 20, 25. For the cascading model, the runtime

is approximately linear in k a curve-fitting analysis using Excel showed a slight su-

perlinear trend (even though the figure itself looks linear at first sight). Figure 8.12

shows the time taken to execute each of the 25 iterations of the outer loop for the

query WQ(25) with α = 0.2. Note that each subsequent iteration is more expensive

than the previous one since the size of the logic programs to consider increases with

the addition of each ground atom influence(Vi). However, we also implemented the

practical improvement of “lazy evaluation” of the submodular function as described

in [101]. This improvement, which maintains correctness of the algorithms, stores

previous improvements in total score and prunes the greedy search for the highest

scoring vertex as discussed. We found that this technique also reduced the runtime

of subsequent iterations.

Our experimental results show that we can answer SNOP queries on large

social networks. For example, computing the set of five most influential Wikipedia

users in the voting network required approximately 2 hours averaged over the dif-

ferent values of α in the tipping diffusion model.

414

8.8 Chapter 8 Related Work

There has been extensive work in reasoning about diffusion in social networks.

However, to our knowledge, there is no work on the relationship between logic

programming and social networks. Moreover, there is no general framework to

solve social network optimization problems that can take a broad class of diffusion

models as input. We believe this work represents the first deterministic framework

for representing generalized diffusion models that allows for different properties and

weights on vertices and edges. Previously, the authors presented the framework of

SNOPs in [159]. However, this brief technical communication did not include either

our exact or approximate algorithms, an implementation, experiments, the SNOP-

ALL problem, many of the complexity results, or many of the constructions seen in

this chapter (such as the homophilic diffusion models and big-seed marketing).

8.8.1 Related Work in Logic Programming

We first compare our work with annotated logic programming [86, 85, 168]

and its many extensions and variants [175, 88, 107, 109, 31, 82, 110]. There has

been much work on annotated logic programming and we have built on the syntax

and semantics of annotated LP. However, we are not aware of any work on solving

optimization queries (queries that seek to optimize an aggregate function) w.r.t.

annotated logic programming.

There are a few papers on solving optimization problems in logic program-

ming. The best of these is constraint logic programming [172] which can embed

415

numerical computations within a logic program. However, CLP does not try to find

solutions to optimization problems involving semantics structures of the program

itself. Important examples of constraint logic programming include [51, 117] where

annotated LP is used for temporal reasoning, [99] assumes the existence of a cost

function on models. They present an analysis of the complexity and algorithms to

compute an optimal (w.r.t. the cost function) model of a disjunctive logic program

in 3 cases: when all models of the disjunctive logic program are considered, when

only minimal models of the disjunctive logic program is considered, and when stable

models of the disjunctive logic program are considered. In contrast, in this chap-

ter, there are two differences. First, we are considering GAPs. Second, we are not

looking for models of a GAP that optimize an objective function - rather, we are

trying to find models of a GAP together with some additional information (namely

some vertices in the social network for which a goal atom g(v) : 1 is added to the

GAP) which is constrained (at most k additional atoms) so that the resulting least

fixpoint has an optimal value w.r.t. an arbitrary value function. In this regard, it

has some connections with abduction in logic programs[41], but there is no work on

abduction in annotated logic programs that we are aware of or work that optimizes

an arbitrary objective function.

Our chapter builds on many techniques in logic programming. It builds upon

non-ground fixpoint computation algorithms proposed by [114] and later extended

for stable models semantics [59, 39], and extends these non-ground fixpoint algo-

rithms to GAPs and hen applies the result to define the SNOP-Mon algorithm to

find answers to SNOP-queries which, to the best of our knowledge, have not been

416

considered before.

8.8.2 Work in Social Networks

[81] is one of the classic works in this area where a generalized diffusion frame-

work for social networks is proposed. This work presents two basic diffusion models

– the linear threshold and independent cascade models. Both models utilize random

variables to specify how the diffusion propagates. These models roughly resemble

non-deterministic versions of the tipping and cascading models presented in Sec-

tion 8.4 of this chapter. Neither model allows for a straightforward representation

of multiple vertex or edge labels as this work does. Additionally, unlike this chapter,

where we use a fixed-point operator to calculate how the diffusion process unfolds,

the diffusion models of [81] utilize random variables to define the diffusion process

and compute the expected number of vertices that have a given property. The au-

thors of [81] only approximate this expected value and leave the exact computation

of it as an open question. Further, they provide no evidence that their approxima-

tion has theoretical guarantees.

The more recent work of [23] showed this computation to be #P-hard by a

reduction from S-T connectivity, which has no known approximation algorithm.

This suggests that a reasonable approximation of the diffusion process of [81] may

not be possible. This contrasts sharply with the fixed-point operator of [86], which

can be solved in PTIME under reasonable assumptions (which are present in this

chapter). [81] focus on the problem of finding the “most influential nodes” in the

417

graph – which is similar in intuition to a SNOP query. However, this problem only

looks to maximize the the expected number of vertices with a given property, not

a complex aggregate as a SNOP query does. Further, the approximation guarantee

presented for the “most influential node” problem is contingent on an approximation

of the expected number of vertices with a certain property, which is not shown (and,

as stated earlier, was shown by [23] to be a #P-hard problem).

In short, the frameworks of [23] and [81] cannot handle arbitrary aggregates

nor vertex conditions nor edge and vertex predicates nor edge weights as we do.

Nor can they define an objective function using a mix of the aggregate and the g(−)

predicate specified in the definition of a SNOP-query.

8.9 Chapter Summary

Social networks are proliferating rapidly and have led to a wave of research on

diffusion of phenomena in social networks. In this chapter, we introduce the class

of Social Network Optimization Problems (SNOPs for short) which try to find a set

of vertices (where each vertex specifies some user specified vertex condition) that

have cardinality k or less (for a user-specified k > 0) and that optimize an objective

function specified by the user in accordance with a diffusion model represented

via the well-known Generalized Annotated Program (GAP) framework. We have

used specific examples of SNOP-queries drawn from product adoption (cell phone

example) and epidemiology.

The major contributions of this chapter include the following:

418

• We showed that the complexity of answering SNOP-queries as NP-Complete and

identified the complexity classes associated with related problems (under various

restrictions). We showed that the complexity of counting the number of solutions

to SNOP-queries is #P-complete.

• We proved important results showing that there is no polynomial-time algorithm

that computes an α-approximation to a SNOP-query when α ≥ e
e−1 .

• We described how various well-known classes of diffusion models (cascading, tip-

ping, homophilic) from economics, product adoption and marketing, and epidemi-

ology can be embedded into GAPs.

• We presented an exact-algorithm for solving SNOP-queries under the assumption

of a monotonic aggregate function.

• We proved that SNOP-queries are guaranteed to be submodular when the GAP

representing the diffusion model is linear and the aggregate is positive-linear. We

were able to leverage this result to develop the GREEDY-SNOP algorithm that

runs in polynomial-time and that achieves the best possible approximation ratio

of e
e−1 for solving SNOPs.

• We develop the first implementation for solving SNOP-queries and showed it

could scale to a social network with over 7000 vertices and over 103,000 edges.

Our experiments also show that SNOP-queries over tipping models can generally

be solved more quickly than SNOP-queries over cascading models.

Much work remains to be done and this chapter merely represents a first step

419

towards the solution of SNOP-queries. Clearly, we would like to scale SNOP-queries

further for social networks consisting of millions of vertices and billions of edges.

This will require some major advances and represents a big challenge.

420

Chapter 9

Future Work

There are many interesting questions that remain to be studied regarding

spatio-temporal aspects of an agent’s behavior. In this section, we briefly outline

some important open questions relating to the work presented in this dissertation.

First, let us discuss extensions to reasoning about time using APT logic. Based

on the framework presented in Chapter 2, we devised a fixpoint operator in Chap-

ter 3 that provides sound, but incomplete solutions to consistency and entailment

problems. Given a propositional formula F at time t (together forming a time for-

mula F : t) and an APT program K, our operator was able to produce a probability

bound [ℓ, u] such that K entails F : t : [ℓ, u]. As our operator is only sound, we

do not guarantee that the bounds [ℓ, u] are the tightest possible. Further, even if

we could obtain the tightest probability bounds possible, there is no guarantee on

how close ℓ is to u. Hence, if we obtain the probability bounds [0.4, 0.7], what can

we say about the likelihood of F occurring at time t? The work of [18] considers a

novel approach for dealing with the problem of the action-probabilistic programs of

421

[83]1. Using random walks over the space of solutions to the query, they were able

to produce a histogram of the the semantic structures for the query formula. As it

is easy to compute the probability associated with each semantic structure, the au-

thors of that paper were able to create a histogram of number of semantic structures

with a given probability. Therefore, if a query returned a bounds of [0.4, 0.7], they

may also know that 80% of the semantic structures had a probability in the range

[0.67, 0.7], for example. A key issue encountered in [18] was the dimensionality of

the space, which was exponenetial in the number of ground atoms. With APT logic,

the problem is greatly increased, as the number of dimensions would be exponential

in the product of number of ground atoms and time points. Most likely, heuristic

methods for dimensionality reduction (perhaps by leveraging the FELC or WELC

constraints of Chapter 2) would have to be employed in such work.

As far as the geospatial abduction problems of Chapters 4-6, an important

direction would be to consider the case where the observations were caused by

more than one agent. For example, in our experiments described in Chapter 4-

5, we considered attacks and caches from Iranian-sponsored militants in Iraq. We

implicitly assumed that these groups conducting attacks would operate in a similar

manner and would share areas used for caches. As the results of our experiments

were generally encouraging, this was most likely a valid assumption. However,

suppose we have a set of attacks that could come from a variety of groups, which

may not all operate in a similar manner and may not cooperate with each other.

In such a case, it may not be appropriate to apply the algorithms of those chapters

1Time is not considered in [83] or [18].

422

as-is. There are two approaches to this variant: (1) cluster the attacks beforehand

and solve an GAP for each cluster or (2) extend GAPs to a probabilistic and/or

multi-agent case. Both raise interesting technical and practical issues.

Our work on optimally selecting agent actions in Chapters 7-8 looked at picking

a set of agenst action with respect to some structure that maximizes an aggregate

function. For the geospatial optimization problems of Chapter 7, although we were

able to devise a polynomial-time approximation algorithm, it still has a runtime

linearly proportional to the size of the map. For a large map, or a map of fine

granularity, this may not be practical. Therefore, an obvious direction in future

work is to devise a method to scale algorithms for answering geospatial optimization

queries. For queries where we considered a diffusion process (the SNOP queries of

Chapter 8), we did provide some methods to increase scalability. However, there

is another issue with SNOPs. Although we could show embeddings for a wide

variety of diffusion processes, these diffusion processes were monotonic in nature.

For example, the confidence that vertex v has some property increases with each

application of the fixpoint operator. This monotonic nature is what allowed us to

leverage the generalized annotated programs of [86]. However, there are diffusion

process such as voter models in physics [162] and evolutionary graph theory in

biology [105] that are not monotonic in nature - hence the confidence vertex v has

some property may increase or decrease at each time step. Computing the outcome

of such process is difficult - in [105], the authors show evolutionary graph problems

to be NP-hard. Currently, most work in this area relies on simulation. Hence,

the first challenge with non-monotonic diffusion is to develop an efficient algorithm

423

to determine the outcome of the diffusion process. One way to do this would be

to introduce negation into the logic program. However, in this case we will most

likely lose some computational properties that allow us to approximate SNOPs.

Another is to adopt the “competitive” diffusion framework of [17]. However, it is

unclear if voter model and/or evolutionary graph problems can be embedded into

this framework. The second challenge is to answer a SNOP-query with respect

to these problems. This most likely will add an additional layer of complexity.

There are other aspects of SNOPs that can be explored as well. We note that our

framework can be used to solve problems where “homophilic” [9] or non-network

effects – even at the same time as network diffusion. Although the algorithms of

this dissertation can be applied to these problems in a straight-forward manner, it

remains an open question to create a tailored, efficient approach to these type of

problems. Such an approach would aide greatly in “big-seed” marketing [177] that

combines both viral-marketing along with mass-marketing.

Hence, although this paper explored many aspects of spatio-temporal reason-

ing about agent behavior, there are still some interesting open questions that should

be explored.

424

Chapter 10

Conclusion

In this dissertation, we examined several aspects of reasoning regarding spatio-

temporal agent behavior. These included determining the probability that an agent

takes a given action at a certain time, abducing geospatial phenomenon, and opti-

mizing the selection of an agents actions.

To determine the probability of an agent taking a given action at a given time,

we have introduced a new framework for temporal-probabilistic reasoning called

Annotated Probabilistic Temporal (APT) Logic. This logic-programming based ap-

proach allows one to create and/or automatically learn models of agent behavior

based on past actions and determine the probability of some action at a certain time

by performing an entailment query. Notably, unlike other formalisms for reasoning

about time and probability together, APT-logic does not make Markov or indepen-

dence assumptions. Despite not making these assumptions, we have designed and

implemented an approximation technique based on a sound, but incomplete fixpoint

operator (we resort to approximation techniques as we show answering such a query

425

is NP-complete). Although incomplete, in our experiments, the implementation of

this operator was shown to find tight bounds on entailment formualae. The calcula-

tion runs in approximately linear time in the size of the model, which is a significant

improvement over exact methods for solving these queries which require solving a

linear program with an exponential number of variables.

To reason about the spatial aspects of an agent’s behavior, we looked at ob-

served manifestations of the behavior (called “observations”) that must have been

caused by some other, unobserved, geospatial phenomenon (called “partners”).

Finding a set of partners corresponding to the observations is an instance of a

problem known as “geospatial abduction.” In this dissertation, we have created a

framework for this scenario and explored the problem of finding a set of partners

given a set of observations and constraints on the relationship between the two. Un-

fortunately, as we show many such problems to be NP-complete, we again resorted

to approximation techniques. In addition to showing reductions from well-known

problems, we created a novel greedy algorithm, that while maintaining an approxi-

mation guarantee, allows for the use of additional heuristics. We implemented this

algorithm in a software package called “SCARE” and showed that it significantly

out-performed naive techniques for locating weapons caches associated with attack

sites using a counter-insurgency data-set. We then explored a variant of a geospatial

abduction problem that requires the solution to return regions rather than pin-point

locations. Again, as this problem was NP-complete, we had to resort to approxi-

mation techniques. We note that a special case of this problem actually reduces to

circle-covering, for which there are known approximation techniques. We also in-

426

troduced an approximation technique for a more general case, implemented it, and

showed it to provide viable results on real-world data.

As a geospatial abduction problem, like many other abduction problems, can

have multiple solutions, a natural question is “how does one solve such problems

when the adversary has knowledge of your algorithm?” We explore this situation

where the adversary has a probability distribution of the solutions to a geospatial

abduction problem and can position his partners ahead of time in a manner to avoid

discovery by the agent. This problem, again, is NP-complete. However, we show it

can reduce to a mixed linear-integer program that can be made more tractable by

significantly reducing the number of variables and using parallelization. We show

the viability of this approach by implementing this algorithm using a linear-integer

program solver. A natural complement to this problem that we explored is how an

agent should select partners given a probability distribution of how the adversary

selected locations. We show that this problem reduces to the maximization of a

submodular function over a uniform matroid and can be solved using several well-

known approximation techniques. We also presented an implementation.

We then studied optimal selection of agent actions. The first problem of this

type was a “geospatial optimization” problem. Here the agent has a set of actions

that modify attributes of a geospatial region and he wishes to select a limited num-

ber of such actions (with respect to some budget) in a manner that either satisfies

some goal (goal-based geospatial optimization) and/or maximizes a benefit function

(benefit-maximizing geospatial optimization). Additionally, there are certain com-

binations of actions that cannot be performed together. We proved that both goal-

427

based and benefit-maximizing geospatial optimization problems are NP-complete

under reasonable assumptions and proved theoretical limits on their approximation.

We then develop algorithms for solving such problems - either exactly or within a

certain factor of optimal.

We also look at optimally selecting agent actions in the presence of a diffusion

process under the structure of a social network. To address this topic, we presented

an annotated-program based framework for studying social network optimization

problems - that is given a social network (a weighted, directed graph with vertex

and edge labels), and a diffusion process, can we identify the vertices of the network

that cause a given phenomenon to spread to the maximum extent possible. This

generalized framework allows great flexibility is expressing several well-known dif-

fusion models in the areas of marketing, information spread, and disease. We show

queries relating to this problem to be strongly NP-complete as it can encode the

max-k-cover problem. However, we also show that if the annotated program repre-

senting the diffusion process is “linear” then the value oracle associated with this

query is submodular - which allows us to leverage a greedy approach that provides

the best approximation guarantee for such a query unless P=NP. Using a variety

of techniques, we show that this algorithm can be scaled to large networks and we

provide an implementation as well.

428

Appendix A

Appendix for Chapter 2

A.1 Additional Results

A.1.1 Frequency Equivalence under the PCD Restriction

While obtaining a noticeable speedup for constrained programs using FELC, we

were still required to conduct an operation exponential in the product of atoms and

time points. In this subsubsection we leverage the PCD restrictions from Definition

3.5 to ensure that there are no empty frequency-equivalence classes. First, we present

some notation to describe sets of threads associated with each rule. Then, we

show how the PCD restrictions allow us to leverage FELC without preprocessing.

Finally, as the PCD requirements do not permit annotated formulas, we present

some methods to allow for annotated formulas as well.

Our key intuition is noticing that the result of Lemma 3.6 uses the axioms to

ensure that we can create threads where the frequency function for each rule equals

0 or 1. Then, we use the one-tailed restriction that PCD’s provide us in order to

429

ensure that β = 1 (it is not hard to prove a similar theorem where α is set to 0).

With this one-tailed restriction, threads with a frequency function of 0 are outside

of [α, β] and threads with a frequency of 1 will be inside this range.

To help us in our discussion of how FELC can leverage PCD programs, we

present some notation used in describing classes of frequency equivalent threads;

associated thread subsets allow us to formalize the notion of a frequency-equivalent

class of threads. We provide the definition below.

Definition 109 (Associated Thread Subsets (ATS)). For a given constrained rule,

ri = F
fr→֒ G : [∆t, ℓ, u, α, β], the Associated Thread Subsets (ATS) are the subsets

of the set of threads considered in the satisfaction of ri:

• ATSi is the set of threads {Th ∈ T | α ≤ fr(Th, F,G,∆t) ≤ β}.

• ATSi is the set of threads {Th ∈ T | Th /∈ ATSi}.

Intuitively, a thread is in a rule’s associated thread subset (ATS) if its frequency

function with respect to that particular rule falls within that rule’s [α, β] frequency

function bounds. Threads not meeting this criteria are said to be in the complement

associated thread subset (ATS) for that rule.

Normally, in this subsubsection, we refer to a given frequency equivalence class

as cls where s ∈ [0, 1]m - where m is the number of rules in the APT-program. With

this notation, the ATS of every rule (ri) where si = 1 is intersected with the ATS of

every rule where si = 0. Formally,

cls =

{
⋂

si=1

ATSi

}

∩
{

⋂

si=0

ATSi

}

430

One can easily see that a frequency equivalence class is empty if the intersub-

subsection of any two subsets described above are empty. Consider the following

example.

Example A.1.1. Consider the discussion on the two rules from Kstock in Example

3.11.

Let r2 = sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) : [2, 0.65, 0.97, 0.7, 1.0] and

r3 = sec rumor∧earn incr(10%)
pfr→֒ stock decr(10%)∧cfo resigns : [2, 0.68, 0.95, 0.7, 0.8].

Recall that in Example 3.11 we determined that for any given thread, it was not pos-

sible for the pfr associated with r3 to exceed the pfr associated with r2. Therefore,

as β2 = 1, we can conclude that ATS2 ∩ ATS3 ≡ ∅.

We can now examine how to utilize the PCD restriction to ensure that all

frequency equivalence classes are non-empty. First, using the one-tailed restriction

described earlier, consider rule ri = Fi
fri→֒ Gi : [∆ti, ℓi, ui, αi, 1] (where αi > 0).

For thread Th, if fri(Th, Fi, Gi,∆ti) = 1 then Th ∈ ATS. If fri(Th, Fi, Gi,∆ti) = 0

then Th ∈ ATS. However, we then must add most of the other PCD restrictions to

ensure that the thread construction of the 0 and 1 threads can occur for each rule.

In fact, the only PCD restriction not needed is the sixth restriction that sets u = 1

for all rules.

Two of the PCD restrictions are particularly limiting. One requires that for

each rule pre-condition there exists a unique world that only satisfies that pre-

condition. The second is similar: there exists a unique world that does not satisfy

any rule’s pre or post-conditions. It may, however, be possible to specify such

431

restrictions as part of a procedure to obtain such rules. Regardless, once one has

an APT-logic program satisfying the PCD restrictions, one can be guaranteed the

below property, which we will shortly see to be useful.

Theorem 58. Suppose APT-Logic program, K =
⋃m

i=1 {ri} where ri = Fi
fri→֒ Gi :

[∆ti, ℓi, ui, αi, βi] meets PCD restrictions 1-6 of Definition 3.5. Then, for all binary

numbers s ∈ [0, 1]m, frequency equivalence classes cls = {
⋂

si=1 ATSi}∩{
⋂

si=0 ATSi}

contains at least one thread.

Before investigating the utility of the above theorem, we notice that restric-

tion 4 creates an issue if we decide to include annotated formulas. Recall that, by

Theorem 2.20, to create a constrained rule that is equivalent to an annotated for-

mula, we must set the pre-condition to TRUE. Additionally, PCD programs do not

allow qfr. Clearly, this causes the above Theorem to be not applicable under that

circumstance. However, we can provide a similar set of restrictions that will allow

annotated formulas. The intuition for the proof is simple, we simply extend tmax to

be as long as the maximum t value in any of the annotated formulas in question,

and add some restrictions about the existence of satisfying worlds which resemble

those of the last theorem extended to annotated formulas.

Corollary 15. For a constrained APT-Logic program, K =
⋃m

i=1 {ri} where ri =

Fi
fri→֒ Gi : [∆ti, ℓi, ui, αi, βi] and set of annotated formulas, FACTS =

⋃k
j=1 afj

where afj = Qj : [t
′
j, ℓ

′
j, u

′
j] with the following restrictions,

1. K meets PCD restrictions 1-4 of Definition 3.5

2. tmax ≥ maxj(t
′
j) + |K| ·maxi(∆ti)

432

3. ∃ world w∅ such that ∀i ∈ [0,m] w∅ 6|= Fi, w∅ 6|= Gi, and ∀j ∈ [0, k] w∅ 6|= Qj

4. ∀j ∈ [0, k], there exists world qwj such that qwj |= Qj and ∀i ∈ [0,m] qwj 6|=

Fi.

5. No two annotated formulas in FACTS are at the same timepoint.

Then for all s ∈ [0, 1]m+k, frequency equivalence classes cls =
{⋂

si=1 ATSi

}
∩

{⋂

si=0 ATSi

}
contains at least one thread.

Again, we have a potentially problematic restriction in that we do not allow

multiple annotated formulas in the same time point (restriction 5). We can relax this

restriction with the following corollary to determine if a given frequency equivalence

class exists or not. Essentially, the non-emptiness of a frequency equivalence class

that contains intersubsubsections of ATS or ATS sets for annotated formulas is

determined by the existence of worlds satisfied by the non-annotated portion of the

annotated formulas that share the same time point.

Corollary 16. Assume we have the following:

• Constrained APT-Logic program, K =
⋃m

i=1 {ri} where ri = Fi
fri→֒ Gi : [∆ti, ℓi, ui, αi, βi]

• Set of annotated formulas, FACTS =
⋃k

j=1 afj where afj = Qj : [tj, ℓj, uj]

• ∀j ∈ [1, k], we define ATS
(q)
j and ATS

(q)

j to be the ATS and ATS for rule r =

TRUE
qfr→֒ Qj : [t, ℓj, uj, 1, 1] created from annotated formula afj ∈ FACTS using

qfr

• Restrictions 1-5 from Corollary 15

433

Then, for all subsets of SAMETIME ⊆ FACTS, where for all af1, af2 ∈ SAMETIME,

t1 = t2; for all strings s2 ∈ [0, 1]|SAMETIME| all frequency equivalence classes, cl that

intersect {⋂s2i=1 ATS
(q)
i } ∩ {

⋂

s2i=0 ATS
(q)

i } are non-empty iff:

∃ world wp such that for all afi ∈ SAMETIME where s2i = 1, wp |= Qi and for

all afj ∈ SAMETIME where s2j = 0, wp 6|= Qj.

Theorem 58, and Corollaries 15 and 16 provide restrictions that force all

frequency-equivalence classes to be non-empty. This allows us to leverage FELC

without any type of pre-processing algorithm, which we have shown to be expen-

sive. As stated earlier, PCD restrictions could be specified by a tool used to learn

the rules from a given data-set.

A.1.2 The ALC-ENT Algorithm for Entailment

We present an algorithm for alternate linear constraints, ALC-ENT, that com-

putes entailment using linear constraints other than SLC.

Proposition 81. If K entails r, then ALC-ENT returns ENTAILS. If K does not

entail r, then ALC-ENT returns NOT ENTAILS.

In the worst case, to solve ALC-ENT requires constructing the linear constraints

once and solving the linear program twice.

Example A.1.2. Recall that in Example A.1.1 we presented rules

r2 = sec rumor ∧ earn incr(10%)
pfr→֒ stock decr(10%) : [2, 0.65, 0.97, 0.7, 1.0] and

r3 = sec rumor∧earn incr(10%)
pfr→֒ stock decr(10%)∧cfo resigns : [2, 0.68, 0.95, 0.7, 0.8].

434

Algorithm 24 Alt. Linear Constraints for Entailment of Rule r by Program K
ALC-ENT(APT-Program K)

1. Create the set of alternate linear constraints for WELC(K∪ r) or FELC(K∪ r).

2. If r is unconstrained, (r = F
fr
; G : [∆t, ℓ, u]), create rule r′ = F

fr
; G :

[∆t, ℓ′, u′] where ℓ′, u′ are variables. Note that unconstrained entailment can

only be checked if the constraints used are WELC in this algorithm.

3. If r is constrained, (r = F
fr→֒ G : [∆t, ℓ, u, α, β]) create rule r′ = F

fr→֒ G :

[∆t, ℓ′, u′, α, β] where ℓ′, u′ are variables.

4. Create set of linear constraints WELC(K ∪ {r′}) or FELC(K ∪ {r′}).

5. Let ℓ̄′ be the minimization of ℓ′ subject to the linear constraints.

6. Let ū′ be the maximization of u′ subject to the linear constraints.

7. If [ℓ̄′, ū′] ⊆ [ℓ, u] return ENTAILS otherwise return NOT ENTAILS.

Let Kent-ex = {r2}. Suppose we want to determine if Kent-ex entails r3 using ALC-

ENT, employing the FELC constraints. We create rule r′3 = sec rumor∧earn incr(10%)
pfr→֒

stock decr(10%)∧ cfo resigns : [2, ℓ′, u′, 0.7, 0.8]. Based on Example A.1.1, we know

there are 3 frequency equivalence classes for Kent-ex∪{r′3} as ATS2∩ATS3 ≡ ∅. Hence,

we have 3 variables, v̄00, v̄01, v̄11. Therefore, we set up the following constraints:

• For rule r2: 0.65 ≤ v̄01 + v̄11 ≤ 0.97

• For rule r′3: ℓ
′ ≤ v̄11 ≤ u′

435

• v̄00 + v̄01 + v̄11 = 1

As it turns out, the minimization of ℓ′ is 0 and the maximization of u′ is 0.97. Since

[0, 0.97] 6⊂ [0.68, 0.95], we can say that Kent-ex does not entail r3.

A.1.3 An Example Comparing PCTL to APT-rules

In this appendix, we provide a small example of a Markov Process which for

some tmax can be expressed as an APT-program. We then show that there is a “lead-

to” PCTL formula that is satisfied by the Markov Process and also show an APT-rule

that is similar, though not entailed by K, to the corresponding APT-program.

Given ground atoms BL, consider a Markov Process, M defined as follows:

• Set of states S = {S1, S2, S3}, where each si has a unique label based on ground

atoms in BL

• Transition probability P defined as follows:

P (S1, S2) = 0.3,

P (S1, S3) = 0.7,

P (S2, S1) = 0.2,

P (S2, S3) = 0.8,

P (S3, S1) = 0.1,

P (S3, S2) = 0.9,

and 0 for all other transitions.

• Initial state S3

436

We will define formulas F (S1), F (S2), F (S3) to be propositional formulas

satisfied by exactly S1, S2, S3 respectively. For tmax = 5, let APT program K be the

APT-program corresponding to M constructed using MAKE-APT (Algorithm 7).

Let us consider the following PCTL formula:

G≤tmax

≥1 F (S1)y
≤2
≥0.75F (S1)

This formula intuitively says: “for all sequences starting at time 1 and ending at

time tmax (i.e., the first tmax states), the probability that formula F (S1) is followed

by itself in less than 2 time units is greater than 0.75.”

So, let us consider all sequences of states that start in S1 and end in S1 of

length 3 or less (obviously, S1 |= F (S1)).

• 〈S1, S2, S1〉

• 〈S1, S3, S1〉

By the multiplication of transition probabilities, the first sequence has a prob-

ability of 0.06 and the second has a probability of 0.07 – hence, as they sum to 0.13,

we see that the PCTL formula is not satisfied by M .

M 6|= G≤tmax

≥1 F (S1)y
≤2
≥0.75F (S1)

So, now let us consider an “analogous” APT-rule:

F (S1)
efr
; F (S1) : [2, 0.75, 1]

By the results of Section 6.1, we know there must be exactly one satisfying interpre-

tation for K – as there is exactly one interpretation associated with M ; lets call this

437

interpretation I. Consider the following list of sequences of states, which correspond

to threads assigned a non-zero probability by I. Below we list the sequences, the

probability, and the frequency – that is for the associated thread, Th, the value

efr(F (S1), F (S1), 2,Th).

438

Sequence Probability Frequency

S3, S1, S2, S1, S2 0.0018 1

S3, S1, S2, S1, S3 0.0042 1

S3, S1, S2, S3, S1 0.0024 0

S3, S1, S2, S3, S2 0.0216 0

S3, S1, S3, S1, S2 0.0021 1

S3, S1, S3, S1, S3 0.0049 1

S3, S1, S3, S2, S1 0.0126 0

S3, S1, S3, S2, S3 0.0504 0

S3, S2, S1, S2, S1 0.0108 1

S3, S2, S1, S2, S3 0.0432 0

S3, S2, S1, S3, S1 0.0126 1

S3, S2, S1, S3, S2 0.1134 0

S3, S2, S3, S1, S2 0.0216 1

S3, S2, S3, S1, S3 0.0504 1

S3, S2, S3, S2, S1 0.1296 1

S3, S2, S3, S2, S3 0.5184 1

We note that the probability mass associated with the APT-rule sums to

0.7564; hence, the APT-rule is entailed by the program and satisfied by I, while

the PCTL formula is not.

439

It is also important to notice other differences. As we can create APT-programs

that do not have corresponding MDP’s, there is a corresponding expressiveness in

the APT-rules that cannot be replicated with PCTL. Conversely, APT-logic does not

handle infinite temporal sequences; problems with this requirement may be better

suited for PCTL.

A.2 Proofs

A.2.1 Proof of Lemmas 2.12 and 2.14

pfr satisfies Axioms FF1-FF4 (2.12).

efr satisfies Axioms FF1-FF4 (2.14).

Proof. .

Axioms FF1,FF2,FF3 follow directly from the definitions of pfr and efr .

Axiom FF4: We construct Th0 such that pfr(Th0, F,G,∆t) = 0 as follows (one

can verify that the same Th0 causes efr(Th0, F,G,∆t) = 0). Either F ∧ ¬G has

a solution or it does not. Proceeding by cases. When F ∧ ¬G has a solution, let

Th0(i) |= F ∧ ¬G for all i. Notice that in this case, pfr(Th0, F,G,∆t) = 0. When

F ∧ ¬G has no solution, then let w0 |= F (possible since F is not a contradiction)

and w1 |= ¬G (possible since G is not a tautology), and set Th0(0) = w0, Th0(i >

0) = w1. Note that w1 does not satisfy F (otherwise F ∧¬G would have a solution),

and that therefore pfr(Th0, F,G,∆t) = 0. In all cases pfr(Th0, F,G,∆t) = 0.

We now construct Th1 such that pfr(Th1, F,G,∆t) = 1 as follows (one can

440

again verify that the same Th1 causes efr(Th1, F,G,∆t) = 1). When F is not a

tautology, there is a world w that does not satisfy F . Assign Th1(i) = w for all i.

Note that pfr(Th1, F,G,∆t) = 1. When F is a tautology then we know G is not a

contradiction. Thus there is w that satisfies G. Assign Th1(i) = w, and note that

pfr(Th1, F,G,∆t) = 1.

A.2.2 Proof of pfr Property 5

Below we prove pfr property 5.

Proof. CASE 1: a+ b ≤ 1

As pfr(Th, F1, F2 ∧ F3,∆t) ≥ 0 by the definition of pfr , this is trivial.

CASE 2: a+ b > 1

Let W1,W2,W3,W2,3 be sets of worlds that satisfy F1, F2, F3, F2 ∧ F3 respectively.

As a+ b > 1, then we know that W2 ∩W3 6= ∅. Let W ∗ be this set.

As all w∗ ∈ W ∗ satisfy F2 and F3, then W ∗ ⊆ W2,3.

Let F ∗ be a formula that ∀w∗ ∈ W ∗, w∗ |= F ∗.

Hence, pfr(Th, F1, F
∗,∆t) ≥ a+ b− 1.

As W ∗ ⊆ W2,3, the statement follows.

A.2.3 Proof of Proposition 2.15

Part (1): Let Th be a thread, F and G be formulas, and ∆t1 and ∆t2 be two tem-

poral intervals. If ∆t1 ≤ ∆t2, we have that pfr(Th, F,G,∆t1) ≤ efr(Th, F,G,∆t2).

Proof. CLAIM 1: pfr(Th, F,G,∆t1) ≤ efr(Th, F,G,∆t2) for efn(Th, F,G,∆t2, tmax−

441

∆t2, tmax) = 0.

(1) By the definition of efn, we have: |{t : Th(t) |= F ∧ Th(t+∆t1) |= G}| ≤ |{t :

Th(t) |= F ∧ ∃t′ ∈ [t, t+∆t2] s.t. Th(t
′) |= G}|

(2) Hence, |{t : Th(t) |= F ∧ Th(t+∆t1) |= G}| ≤ efn(Th, F,G,∆t2, 0, tmax). The

claim follows.

CLAIM 2: pfr(Th, F,G,∆t1) ≤ efr(Th, F,G,∆t2)

(1) Let x = efn(Th, F,G,∆t2, tmax −∆t2, tmax) > 0

(2) Let a
b
= pfr(Th, F,G,∆t1)

(3) Let c
d
= efr(Th, F,G,∆t2)

(4) By claim 1, we have a
b
≤ c−x

d−x .

(5) By the definition of pfr and efr , we know that d− x = b, therefore ab ≤ bc− bx.

(6) By the definition of pfr , we know that a ≤ b, therefore a(b + x) ≤ bc which

is equivalent to ad ≤ bc. (7) Hence, ad ≤ bc which gives us pfr(Th, F,G,∆t1) ≤

efr(Th, F,G,∆t2).

Part 2: Let Th be a thread, F and G be formulas, and ∆t be a temporal interval.

The following inequality always holds:

efr(Th, F,G,∆t) ≤
∆t∑

i=1

pfr(Th, F,G, i)

CLAIM 1: If efr(Th, F,G,∆t)− efr(Th, F,G,∆t− 1) = efr(Th, F,G,∆t) then

efn(Th, F,G,∆t, tmax −∆t, tmax) = 0

(Claim 1). Suppose, ∃efn(Th, F,G,∆t, tmax − ∆t, tmax) 6= 0 then, as there can be

442

no two worlds in Th that satisfy F and G with exactly ∆t time periods between,

efr(Th, F,G,∆t − 1) 6= 0 as the two such worlds would satisfy F and G within

≤ ∆t− 1 time intervals.

Therefore, we have a contradiction as efr(Th, F,G,∆t)− efr(Th, F,G,∆t− 1) =

efr(Th, F,G,∆t) forces efr(Th, F,G,∆t− 1) = 0.

CLAIM 2: efr(Th, F,G,∆t) ≤ efr(Th, F,G,∆t− 1) + pfr(Th, F,G,∆t)

Intuition: If we consider an efr with ∆t and subtract the same efr with ∆t − 1,

we are essentially only considering G at exactly ∆t, hence the pfr for ∆t. Claim 1

allows us to ignore the effect of efn in for the worlds between tmax −∆t, tmax .

(Claim 2). By the definition of efr , we know efr(Th, F,G,∆t) ≥ efr(Th, F,G,∆t−

1).

Therefore, 0 ≤ efr(Th, F,G,∆t)− efr(Th, F,G,∆t− 1) ≤ efr(Th, F,G,∆t).

By claim 1, if efr(Th, F,G,∆t)− efr(Th, F,G,∆t− 1) is maximized (hence

efr(Th, F,G,∆t)−efr(Th, F,G,∆t−1) = efr(Th, F,G,∆t)) then efn(Th, F,G,∆t, tmax−

∆t, tmax) = 0. Therefore, by the definitions of pfr and efr we have efr(Th, F,G,∆t)−

efr(Th, F,G,∆t−1) ≤ pfr(Th, F,G,∆t). Therefore, we know if efr(Th, F,G,∆t)−

efr(Th, F,G,∆t− 1) ≤ pfr(Th, F,G,∆t). The claim follows.

(Proposition 2). By induction on ∆t.

443

BASE CASE: By the definition of pfr and efr we have efr(Th, F,G, 1) = pfr(Th, F,G, 1).

INDUCTIVE HYPOTHESIS: Assume efr(Th, F,G,∆t−1) ≤∑∆t−1
i=1 pfr(Th, F,G, i)

is true.

INDUCTIVE STEP: By the inductive hypothesis. efr(Th, F,G,∆t−1) ≤∑∆t−1
i=1 pfr(Th, F,G, i).

We add pfr(Th, F,G,∆t) to both sides. efr(Th, F,G,∆t− 1)+ pfr(Th, F,G,∆t) ≤
∑∆t

i=1 pfr(Th, F,G, i). By claim 2, we have efr(Th, F,G,∆t) ≤∑∆t
i=1 pfr(Th, F,G, i).

We can now apply the inductive hypothesis and are finished.

A.2.4 Proof of Proposition 2.17

Part (1): Let I be a temporal interpretation, F and G be formulas, and ∆t

be a temporal interval. If I |= ⋃∆t
i=1{F

pfr
; G : [i, ℓi, ui]} then I |= F

efr
; G :

[∆t,max(ℓi),min(
∑∆t

i=1 ui, 1)]

Proof. By Proposition 2.15, we have the following: max(
∑

Th∈T I(Th)·pfr(Th, F,G, i)) ≤
∑

Th∈T I(Th)·efr(Th, F,G,∆t). By Proposition 2, we have the following:
∑

Th∈T I(Th)·

efr(Th, F,G,∆t) ≤∑

Th∈T I(Th) ·min(
∑∆t

i=1 pfr(Th, F,G, i))

The statement immediately follows.

Part (2): If I |= F
fr→֒ G : [∆t, ℓp, up, a, b] then ∀aℓ, bℓ, au, bu such that aℓ ≤ a ≤ au

and bℓ ≤ b ≤ bu we have I |= F
fr→֒ G : [∆t, ℓp, 1, aℓ, bu] and I |= F

fr→֒ G :

[∆t, 0, up, au, bℓ].

Proof. PART 1: I |= F
fr→֒ G : [∆t, ℓ, u, a, b] then I |= F

fr→֒ G : [∆t, ℓ, 1, aℓ, bu]

We know that {Th : a ≤ fr(Th, F,G,∆t) ≤ b} ⊆ {Th : aℓ ≤ fr(Th, F,G,∆t) ≤ bu}

444

Hence, if ℓ1 ≤
∑

Th∈T ,aℓ≤fr(Th,F,G,∆t)≤bu
I(Th) ≤ u1 then ℓ ≤ ℓ1 and u1 ≤ 1. The

statement follows.

PART 2: I |= F
fr→֒ G : [∆t, ℓ, u, a, b] then I |= F

fr→֒ G : [∆t, 0, u, au, bℓ]

We know that {Th : au ≤ fr(Th, F,G,∆t) ≤ bℓ} ⊆ {Th : a ≤ fr(Th, F,G,∆t) ≤ b}

Hence, if ℓ2 ≤
∑

Th∈T ,au≤fr(Th,F,G,∆t)≤bℓ
I(Th) ≤ u2 then 0 ≤ ℓ2 and u2 ≤ u. The

statement follows.

A.2.5 Proof of Lemma 2.19

The qfr satisfies Axioms FF1-FF4.

Proof. qfr satisfies axioms FF1-FF3 by definition. Axiom FF4 is satisfied with

the following thread constructions: Create thread, Th1 such that Th1(1) |= F

and Th1(∆t) |= G. By the definition of qfr , qfr(Th1, F,G,∆t) = 1. Create

thread, Th0 such that Th0(1) 6|= F and Th0(∆t) 6|= G. By the definition of qfr ,

qfr(Th0, F,G,∆t) = 0.

A.2.6 Proof of Theorem 2.20

Part (1): Let q = Q : [t, ℓ, u] be an annotated formula, r = TRUE
qfr→֒ Q : [t, ℓ, u, 1, 1]

be a constrained rule, and I be a tp-interpretation. Then, I |= q iff I |= r.

Proof. By the definition of qfr , ∀Th i such that qfr(Th i,TRUE, Q, t) = 1, Th i(t) |=

445

Q. Hence, the set of threads where ℓ ≤ qfr(Th i,TRUE, Q, t) ≤ u equivalent to the

set of threads where Th i(t) |= Q. By the definitions of satisfaction for annotated

formulae and constrained rules, the statement follows.

Part (2): Let q = Q : [t, ℓ, u] be an annotated formula, r = TRUE
qfr
; Q : [t, ℓ, u] be

a unconstrained rule, and I be a tp-interpretation. Then, I |= q iff I |= r.

Proof. By the definition of qfr , qfr(Th,TRUE, Q, t) = 0 iff Th(t) 6|= Q

and qfr(Th,TRUE, Q, t) = 1 iff Th(t) |= Q.

Hence, for all interpretations,
∑

Th∈T ,Th(t)|=Q I(Th) =
∑

Th∈T I(Th)qfr(Th,TRUE, Q, t).

By the definitions of satisfaction for annotated formulae and constrained rules, the

statement follows.

A.2.7 Proof of Lemma 3.1

Consider the APT-Program consisting of {r} where r = F
fr
; G : [∆t, ℓ, u].

1. If G is a tautology, then {r} is consistent iff u = 1.

2. If F is a tautology and G is a contradiction, then {r} is consistent iff ℓ = 0.

3. If F is a contradiction, then {r} is consistent iff u = 1.

4. If F is not a contradiction, G is not a tautology, and either F is not a tautology

or G is not a contradiction then {r} is consistent.

Proof. The items follow directly from Axioms FF1-FF4 respectively.

446

1. Suppose G is a tautology.

By FF1, fr(Th, F,G,∆t) is 1 for all Th, ∆t and F . Thus
∑

Th∈T I(Th)fr(Th, F,G,∆t) =

∑

Th∈T I(Th) = 1. Therefore {r} is consistent iff u = 1.

2. Suppose F is a tautology and G is a contradiction.

By FF2, fr(Th, F,G,∆t) is 0 for all Th, and ∆t. Thus
∑

Th∈T I(Th)fr(Th, F,G,∆t) =

0. Therefore r is consistent iff ℓ = 0.

3. Suppose F is a contradiction.

By FF3, fr(Th, F,G,∆t) is 1 for all Th, ∆t andG. Thus
∑

Th∈T I(Th)fr(Th, F,G,∆t) =

∑

Th∈T I(Th) = 1. Therefore {r} is consistent iff u = 1.

4. Suppose F is not a contradiction, G is not a tautology, and either F is not a

tautology or G is not a contradiction

By FF4, we have Th0 and Th1 such that fr(Th0, F,G,∆t) = 0 and fr(Th1, F,G,∆t) =

1. Let I be the interpretation assigning probability ℓ to Th1 and probability

1− ℓ to interpretation Th0. I fr-satisfies r, thus {r} is consistent.

A.2.8 Proof of Theorem 3.2

Deciding the consistency of an APT-logic program containing a single uncon-

strained APT-rule is NP-Complete.

Proof. In NP: Lemma 3.1 covers all possible cases where a single unconstrained

rule r = F
fr
; G : [∆t, ℓ, u] may be consistent. In each case, there is a different

447

witness:

1. If ℓ = 0 and u = 1 then no witness is needed (such rules are always consistent).

2. If ℓ = 0 and u < 1 then we need two worlds w0 and w1 as a witness. w0 does

not satisfy G and proves G is not a tautology (keeping part one of Lemma 3.1

from applying). w1 satisfies F and proves F is not a contradiction. (keeping

part three of Lemma 3.1 from applying). Note that either part two or part

four of the lemma apply (depending on if F is a contradiction and G is a

tautology or not), and in either case {r} is consistent.

3. If ℓ > 0 and u = 1 we need a world, w, which does not satisfy F or does

satisfy G (keeping part two of Lemma 3.1 from applying). Note that with

these assumptions, exactly one of the other parts of the lemma applies and in

all cases {r} is consistent.

4. In all other cases we have that ℓ > 0 and u < 1. Here we need three worlds as

the witness, w0 which does not satisfy G, w1 which satisfies F , and w3 which

either does not satisfy F or satisfies G. When such worlds do not exist, one

of the other cases applies and enforces that {r} is not consistent – thus such

worlds always exist when {r} is consistent. The worlds allow the application

of part four of Lemma 3.1 to prove consistency.

NP-hard: By reduction from SAT. Take SAT formula F , and create annotated

rule r = F
fr
; FALSE : [1, 0, 0]. c is consistent iff F has a satisfying assignment.

(⇒) Suppose {r} is consistent and F has no satisfying assignment. Thus F is a

448

contradiction and by part three of lemma 3.1, u must be 1 in order for {r} to be

consistent. But u is not 1 (it is 0), so there is a contradiction and F has a satisfying

assignment.

(⇐) Suppose F has a satisfying assignment. Then either F is a tautology, which

gives that {r} is consistent by part two of lemma 3.1; or not, in which case part

three of lemma 3.1 implies {r} is consistent.

A.2.9 Proof of Lemma 3.3

Let K = {r = F
fr→֒ G : [∆t, ℓ, u, α, β]} be a constrained APT-Program con-

sisting of a single rule. K is consistent iff at least one of the following conditions

hold.

• u = 1 and there exists Th in such that α ≤ fr(Th in, F,G,∆t) ≤ β.

• ℓ = 0 and there exists Thout such that α > fr(Thout, F,G,∆t) or β < fr(Thout, F,G,∆t).

• There exists both Th in and Thout as described above.

Proof. (1) Let Th in be a thread such that α ≤ fr(Th in, F,G,∆t)β. Let Thout be a

thread such that α > fr(Thout, F,G,∆t) or β < fr(Thout, F,G,∆t).

(2) By the axioms FF1-FF4 and the pigeon-hole principle, there must exist at least

one of thin, Thout.

We have three cases: CASE 1: thin, Thout both exist.

Consider interpretation I such that I(Th in) = 1. By the definition of satisfaction,

I |= r. Therefore {r} is consistent.

449

CASE 2: Only thin exists.

Then, for all threads, Th, α ≤ fr(Th, F,G,∆t) ≤ β. So, for any satisfying inter-

pretation, the sum of all threads Th where α ≤ fr(Th, F,G,∆t) ≤ β is 1. Hence, u

must equal 1, or I is not a satisfying interpretation.

CASE 3: Only thout exists.

Then, for all threads, Th, α > fr(Th, F,G,∆t) or β < fr(Th, F,G,∆t). So, for any

satisfying interpretation, the sum of all threads Th where α ≤ fr(Th, F,G,∆t) ≤ β

is 0. Hence, ℓ must equal 0, or I is not a satisfying interpretation.

The statement follows directly from the above cases.

A.2.10 Proof of Theorem 3.4

Deciding the consistency of an APT-logic program containing a single con-

strained APT-rule is NP-Complete.

Proof. In NP: Lemma 3.3 covers all cases where a single constrained rule r = F
fr→֒

G : [∆t, ℓ, u, α, β] may be consistent. In each case, there is a different witness:

• There exists Th in such that α ≤ fr(Th in, F,G,∆t)β and u = 1. Here Th in is the

witness.

• There exists Thout such that α > fr(Thout, F,G,∆t) or β < fr(Thout, F,G,∆t)

and ℓ = 1. Here Thout is the witness.

• There exists both Th in and Thout as described above. Here, the witnesses are

Th in and Thout.

450

NP-hard: By reduction from SAT. Take SAT formula F , and create anno-

tated rule r = F
fr→֒ FALSE : [1, 1, 1, 0, 0]. r is consistent iff F has a satisfying

assignment.

(⇒) Suppose {r} is consistent and F has no satisfying assignment. Thus F is a

contradiction. Thus, by FF3, for all Th, fr(Th, F, FALSE,∆t) = 1. This is outside

of the range [α, β] for the rule. Hence, Th in, as described in Lemma 3.3 cannot

possibly exist. Although Thout does exist, as ℓ 6= 0, {r} is not consistent by Lemma

3.3. Therefore, we have a contradiction and F must have a satisfying assignment.

(⇐) Suppose F has a satisfying assignment. If F is not a tautology, then we can

apply FF4 and create Th0 such that fr(Th0, F, FALSE, 1) = 0. If F is a tautology,

then all threads are Th0 as described earlier. As 0 ∈ [α, β] and u = 1, then by

Lemma 3.3, we know that {r} is consistent.

A.2.11 Proof of Lemma 3.6

If an APT-Program, K = {r1, . . . , ri, . . . , rn}, is PCD, then for any disjoint

partition of rules, K1, K2, there exists a thread Th such that for all rules r1 ∈ K1,

fr1(Th, F1, G1,∆t1) = 1 and for all rules r2 ∈ K2, fr2(Th, F2, G2,∆t2) = 0.

Proof. We will use the worlds wi and w∅ specified in the definition of PCD. Let

max(∆t) be the maximum ∆t of any rule in K. For each rule ri in K2, we set world

Th(max(∆ti) · (i − 1)) = wi. Set all other worlds in Th to w∅. Note that by the

axioms, for all rules r1 ∈ K1, fr1(Th, F1, G1,∆t1) = 1 and for all rules r2 ∈ K2,

fr2(Th, F2, G2,∆t2) = 0.

451

A.2.12 Proof of Theorem 3.7

For a mixed PCD APT-Program K = {r1, . . . , ri, . . . , rn}, if for all ri, ℓi ≤
|K| − 1

|K| then K is consistent.

Proof. (1) For every rule ri ∈ K, let thread Th i such fri(Th i, Fi, Gi,∆ti) = 0 and

∀j 6= i, frj(Th ,Fj, Gj,∆tj) = 1. These threads exists by Lemma 3.6.

(2) Let thread Th∅ is a thread where every world is w∅. This thread exists by Lemma

3.6.

(3) Let max(ℓi) be the maximum lower probability bound of all rules in K.

(4) We create interpretation I as follows: ∀Th i, I(thi) =
1

|K| − 1
· max(ℓi) and

I(Th∅) = 1−∑|K|
i=1 I(thi). For any other thread, Th, I(Th) = 0.

CLAIM 1:
∑

Th∈T = 1

(5) By (4), the only threads that must have a non-zero probability by I are

Th1, . . .Th i, . . . ,Th |K|.

(6) By (4),
∑|K|

i=1 I(Th) = |K| ·
1

|K| − 1
·max(ℓi).

(7) Then, by the requirement on ℓi in the theorem statement,
∑|K|

i=1 I(Th) ≤ |K| ·
1

|K| − 1
· |K| − 1

|K| .

(8) Hence,
∑|K|

i=1 I(Th) ≤ 1.

(9) By (8) and (4), the claim follows.

CLAIM 2: Interpretation I satisfies all unconstrained rules in K

(10) We will consider ri ∈ K. As ui = 1, we have to show only that ℓi ≤

452

∑

Th∈T I(Th)fri(Th, F
(i), G(i),∆t(i)).

(11) Based on (1-2),
∑|K|

j=1 I(thj)− I(thi) ≤
∑

Th∈T I(Th)fri(Th, F
(i), G(i),∆t(i)).

(12) Hence, by (4), (|K|−1)·(1

|K| − 1
·max(ℓi)) ≤

∑

Th∈T I(Th)fri(Th, F
(i), G(i),∆t(i)).

(13) By (3), for all rules, ri ∈ K, ℓi ≤
∑

Th∈T I(Th)fri(Th, F
(i), G(i),∆t(i))

(14) Therefore, by (13) and the definition of satisfaction, all unconstrained rules in

K are satisfied by I.

CLAIM 3: Interpretation I satisfies all unconstrained rules in K

We have two cases:

CASE 1: α = 0

Then,
∑

Th∈T 0≤fr(Th,F,G,∆t)≤1 I(Th) = 1 and as u = 1, I satisfies constrained

rule r

CASE 2: α 6= 0

Notice that for all threads, Th that I assigns a non-zero probability to, that

fr(Th, F,G,∆t) is either zero or one. Hence, for all rules,
∑

Th∈T I(Th)fr(Th, F,G,∆t) =

∑

Th∈T α≤fr(Th,F,G,∆t)≤1 I(Th) = 1. By the first claim, we know that for all rules

ℓi ≤
∑

Th∈T I(Th)fr(Th, F,G,∆t), therefore, by the definition of satisfaction, and

that fact that βi = 1 for all constrained rules, we know that I satisfies all constrained

rules.

453

A.2.13 Proof of Proposition 3.9

For mixed APT-Logic Program K, K is consistent iff SLC(K) has a solution.

Proof. (⇒): Let I be an interpretation satisfying K. For each thread, Thj, set

variable vj = I(Thj). Based on the definitions of interpretation and satisfac-

tion, we know that for the first m lines of the linear program provide a valid so-

lution (i.e. substituting I(Thj) for vj for a given unconstrained rule gives ℓi ≤
∑n

j=1 fr(Thj, Fi, Gi,∆ti) · I(Thj) ≤ ui which is the definition of satisfaction, substi-

tuting I(Thj) for vj for a given constrained rule gives

ℓi ≤
∑

Thj∈T α≤fr(Thj ,Fi,Gi,∆ti)≤β
I(Thj) ≤ ui which is also definition of satisfaction).

Based on the definition of an interpretation, we know that
∑n

j=1 I(Thj) = 1, which

is equivalent to the last line of the linear program.

(⇐): Let v1, . . . , vn be a solution to the linear program. Let I be an interpretation

where I(Thj) = vj. Based on the definitions of satisfaction, interpretation, and the

lines of the linear program, I is a valid interpretation for K.

A.2.14 Proof of Lemma 3.13

For APT-logic programK, and≡K-partitioning P1, · · · , Pm of T , for all threads

Th,Th ′ ∈ Pi, all F,G ∈ formula(K), and all ∆t

• qfr(Th, F,G,∆t) = qfr(Th ′, F,G,∆t)

• efr(Th, F,G,∆t) = efr(Th ′, F,G,∆t)

• qfr(Th, F,G,∆t) = qfr(Th ′, F,G,∆t)

454

Proof. In both pfr and efr, the numerator and denominator depend only on the

worlds in the threads satisfied by F and G. Since F and G are in formula(K), we

know that at all time points Th and Th ′ either both satisfy F or both do not satisfy

F (and likewise for G). Therefore exactly the same time points will be counted in

the numerator and denominator of pfr and efr for both Th and Th ′, so the values

qfr(Th, F,G,∆t) and qfr(Th ′, F,G,∆t) will be equivalent (and likewise for efr).

For qfr , we notice that other than circumstances where the value of qfr reflects

the axioms, this frequency function returns 1 if F is satisfied at Th(1) and G is

satisfied at Th(∆t). As F and G are also in formula(K), we know that worlds

Th(1) and Th(∆t) either satisfy or do not satisfy F and G respectively. Therefore,

qfr(Th, F,G,∆t) = qfr(Th ′, F,G,∆t).

A.2.15 Proof of Proposition 3.15

For any APT-program K, WELC(K) is solvable iff K is consistent.

Proof. ⇒ Suppose WELC(K) is solvable to show that K is consistent. Define in-

terpretation I as follows: For each partition Pi, pick one Th ∈ Pi and set

I(Th) = v̂label(Pi). For all other Th, set I(Th) = 0. Because of conditions 4

and 5,
∑

Th I(Th) = 1. Because of the first constraints for constrained rules,

unconstrained rules, and annotated formula, I satisfies K.

⇐ Suppose K is consistent. Let I be a satisfying interpretation. Assign a solu-

tion to WELC(K) as follows: For each Pi and lbl where lbl = label(Pi), v̂lbl =

455

∑

Th∈Pi
I(Th), and for any lbl where there is no Pi s.t. label(Pi) = lbl, v̂lbl = 0.

Since I is consistent, this variable assignment will satisfy conditions relating to

constrained rules, unconstrained rules, and annotated formula. The other con-

straints are clearly met.

A.2.16 Proof of Theorem 3.17

For APT-Logic Program, K, determining the existence of an equivalence class

is NP-Complete.

Proof. NP-Hard: Let F be a sat formula. Create program K consisting of an-

notated formula F : [1, 1, 1] and let tmax = 1. There is equivalence class Pi such

that label(Pi) = 1 iff there is a satisfying assignment for F . ⇒: Suppose there is

an equivalence class Pi, then for Th ∈ Pi, Th(1) |= F and Th(1) is a satisfying

assignment for F . ⇐: Suppose there is a satisfying assignment w for F , then the

thread Th where Th(1) has label 1.

In NP: The existence of equivalence class Pi such that label(Pi) = lbl can be

guaranteed by a thread Th such that label(Th) = lbl. This thread is the witness.

A.2.17 Proof of Proposition 3.19

For any constrained APT-logic program K, ∼K is reflexive, symmetric, and

transitive.

Proof. Straightforward.

456

A.2.18 Proof of Theorem 3.21

For constrained APT-Logic Program K, K is consistent iff there is a solution

to FELC(K).

Proof. (⇒): Let I be an interpretation satisfying K. Create an assignment θ where

for each E ∈ T [∼K fr], assign v̄str(E)θ =
∑

Th∈E I(Th). That this assignment θ

satisfies constraint 1 follows from the fact that
∑

Th∈T I(Th) = 1 by simple algebra:

1 =
∑

Th∈T
I(Th) =

∑

E∈T [∼Kfr]

∑

Th∈E
I(Th) =

∑

E∈T [∼Kfr]

v̄str(E)

That this assignment θ satisfies constraint 2 follows directly form the definition

of θ (v̄str(E)θ is zero when E is empty).

That this assignment θ satisfies constraint 3 follows from the fact that for all

i,

ℓi ≤
∑

Th∈T ,αi≤fr(Th,Fi,Gi,∆ti)≤βi

I(Th) ≤ ui

. Consider that due to the definition of str(E):

∑

Th∈T ,αi≤fr(Th,Fi,Gi,∆ti)≤βi

I(Th) =
∑

E∈T [∼Kfr],str(E)i=1

∑

Th∈E
I(Th) =

∑

E∈T [∼Kfr],str(E)i=1

v̄str(E)θ.

By direct substitution, we now have that θ satisfies the last, and final, constraint.

(⇐): Let θ be a solution to FELC(K). Construct an interpretation I where for

each E ∈ T [∼K fr], we pick one Th ∈ E and assign I(Th) = v̄str(E) and all other

I(Th) are set to 0 (due to constraint 2, this construction is well-defined). That

∑

Th∈T I(Th) = 1 follows from constraint 1. That I |= K follows from constraint 3

algebraically similar to the above.

457

A.2.19 Proof of Proposition 3.23

If a given equivalence class is empty, BFECA returns EMPTY. If there is a

thread in a given equivalence class, BFECA returns OK.

Proof. CLAIM 1: If a given equivalence class is empty, BFECA returns EMPTY.

Suppose by way of contradiction, that for a class, cls reported EMPTY by BFECA

actually contains thread Th. The class cls is defined as follows:

cls =

{
⋂

si=1

ATSi

}

∩
{

⋂

si=0

ATSi

}

Then, for all ATSi such that si = 1, Th ∈ ATSi and all ATSi such that si = 0,

Th ∈ ATSi. If such a thread existed, it would have been found in steps 1-3 of

BFECA, hence a contradiction.

CLAIM 2: If there is a thread in a given equivalence class, BFECA returns

OK.

Suppose by way of contradiction, that for a class, cls reported OK by BFECA actually

does not contain a thread. The class cls is defined as follows:

cls =

{
⋂

si=1

ATSi

}

∩
{

⋂

si=0

ATSi

}

Hence, there does not exist a thread, Th such that for all ATSi such that si = 1,

Th ∈ ATSi and all ATSi such that si = 0, Th ∈ ATSi. However, by steps 1-3 of of

BFECA, at least one such thread was identified. Hence a contradiction.

The statement follows directly from claims 1-2.

458

A.2.20 Proof of Theorem 58

Suppose APT-Logic program, K =
⋃m

i=1 {ri} where ri = Fi
fri→֒ Gi : [∆ti, ℓi, ui, αi, βi]

meets PCD restrictions 1-6 of Definition 3.5. Then, for all binary numbers s ∈

[0, 1]m, frequency equivalence classes cls = {
⋂

si=1 ATSi} ∩ {
⋂

si=0 ATSi} contains at

least one thread.

Proof. CLAIM: There exists at least one thread in any cls

Follows directly from lemma 3.6. Note that PCD restriction 7 is not used in this

lemma. By the definition of the associated thread subsets, class cls contains at least

one thread.

The statement of the theorem follows from the above claim.

A.2.21 Proof of Corollary 15

For a constrained APT-Logic program, K =
⋃m

i=1 {ri} where ri = Fi
fri→֒ Gi :

[∆ti, ℓi, ui, αi, βi] and set of annotated formulas, FACTS =
⋃k

j=1 afj where afj =

Qj : [tj, ℓj, uj] with the following restrictions,

1. K meets PCD restrictions 1-4 of Definition 3.5

2. tmax ≥ max(t) + |K| ·max(∆ti)

3. ∃ world w∅ such that ∀i ∈ [0,m] and ∀j ∈ [0, k] w∅ 6|= Fi, w∅ 6|= Gi, and

w∅ 6|= Qj

459

4. ∀j ∈ [0, k], there exists world qwj such that qwj |= Qj and ∀i ∈ [0,m] qwj 6|=

Fi.

5. No two annotated formulas in FACTS are at the same timepoint.

Then for all s ∈ [0, 1]m+k, frequency equivalence classes cls = {⋂si=1 ATSi} ∩

{⋂si=0 ATSi} contains at least one thread.

Proof. ∀j ∈ [1, k], we define ATS
(q)
j and ATS

(q)

j to be the ATS and ATS for rule

r = TRUE
qfr→֒ Qj : [t, ℓj, uj, 1, 1] created from annotated formula afj using qfr .

CLAIM: There exists at least one thread in any cls

For the string s ∈ [0, 1]m+k, let the first m digits correspond with the m constrained

rules and the last k digits correspond with the k annotated formulae.

Create a thread, Th where for any rule, ri if si = 0, set world Th(max(tj) +

max(∆ti) · (i− 1)) = wi.

For any formulae, afj where sj = 1, set the world Th(t) = qwj. Set all other worlds

in Th to w∅. Note that by the axioms, ∀i, fri(Th, Fi, Gi,∆ti) = 0 and ∀j 6= i,

frj(Th, Fj, Gj,∆tj) = 1. Further, for all annotated formulae where qwj is at time tj,

there the thread is in ATS
(q)
j . For all annotated formula qwj where w∅ is at Th(t),

the thread is in ATS
(q)

j .

By the definition of the associated thread subsets, class cls contains at least one

thread.

460

A.2.22 Proof of Corollary 16

Let:

• Constrained APT-Logic program, K =
⋃m

i=1 {ri} where ri = Fi
fri→֒ Gi : [∆ti, ℓi, ui, αi, βi]

• Set of annotated formulas, FACTS =
⋃k

j=1 afj where afj = Qj : [tj, ℓj, uj]

• ∀j ∈ [1, k], we define ATS
(q)
j and ATS

(q)

j to be the ATS and ATS for rule r =

TRUE
qfr→֒ Qj : [t, ℓj, uj, 1, 1] created from annotated formula afj using qfr

• Restrictions 1-5 from Corollary 15

Then, for all subsets of SAMETIME ⊆ FACTS, where for all af1, af2 ∈ SAMETIME,

t1 = t2; for all strings s2 ∈ [0, 1]|SAMETIME| all frequency equivalence classes, cl that

intersect {⋂s2i=1 ATS
(q)
i } ∩ {

⋂

s2i=0 ATS
(q)

i } are non-empty iff:

∃ world wp such that for all afi ∈ SAMETIME where s2i = 1, wp |= Qi and for

all afj ∈ SAMETIME where s2j = 0, wp 6|= Qj.

Proof. (⇐) By the definition of associated thread subsets, we can create a thread

Th where the world at time t is wp. Hence, for all afi ∈ SAMETIME where

s2i = 1, qfr(Th,TRUE, Qi, ti) = 1 and for all afj ∈ SAMETIME where s2j =

0, qfr(Th,TRUE, Qi, ti) = 0. As per Corollary 15, all other annotated formu-

lae with different values for t and constrained rules, this thread will have the

appropriate value for the corresponding frequency function. Hence, for all sub-

sets of SAMETIME ⊆ FACTS, where for all aF, aG ∈ SAMETIME, t1 =

t2 for all strings s2 ∈ [0, 1]|SAMETIME| all equivalence classes, cl that intersect

461

{⋂s2i=1 ATS
(q)
i } ∩ {

⋂

s2i=0 ATS
(q)

i } are not empty.

(⇒) Suppose by way of contradiction, we can have a thread in the equivalence

class cl that intersects {⋂s2i=1 ATS
(q)
i } ∩ {

⋂

s2i=0 ATS
(q)

i } and there does not exists

a world wp such that for all afi ∈ SAMETIME where s2i = 1, wp |= Qi and for

all afj ∈ SAMETIME where s2j = 0, wp 6|= Qj. Hence, a thread in such a class

must have one of the following characteristics in the below three cases:

CASE 1: There exists world, w′p where there exists afi ∈ SAMETIME where

s2i = 1, w′p 6|= Qi and for all afj ∈ SAMETIME where s2j = 0, w′p 6|= Qj and for

thread Th1, Th1(ti) = w′p.

Thread Th1 cannot possibly be in cl as qfr(Th1,TRUE, Qi, ti) = 0 - it would have

to be 1 to be in cl by the definition of associated thread subsets.

CASE 2: There exists world, w′p such that for all afi ∈ SAMETIME where

s2i = 1, w′p |= Qi and there exists afj ∈ SAMETIME where s2j = 0, w′p |= Qj

and for thread Th2, Th2(ti) = w′p.

Thread Th2 cannot possibly be in cl as qfr(Th2,TRUE, Qj, tj) = 1 - it would have

to be 0 to be in cl by the definition of associated thread subsets.

CASE 3: There exists world, w′p where there exists afi ∈ SAMETIME where

s2i = 1, w′p 6|= Qi and there exists afj ∈ SAMETIME where s2j = 0, w′p |= Qj

462

and for thread Th3, Th3(ti) = w′p.

Thread Th2 cannot possibly be in cl for reasons described in cases 1-2.

Hence, we have a contradiction and there cannot exist a thread in class cl.

The statement follows.

A.2.23 Proof of Proposition 3.25

If a given frequency equivalence class is empty, WEFE returns EMPTY. If

there is a thread in a given frequency equivalence class, WEFE returns OK.

Proof. CLAIM 1: If a given frequency equivalence class is empty, WEFE returns

EMPTY.

Suppose by way of contradiction, that for a class, cls reported EMPTY by BFECA

actually contains thread Th. The class cls is defined as follows:

cls =

{
⋂

si=1

ATSi

}

∩
{

⋂

si=0

ATSi

}

By Lemma 3.13, a world-equivalence based thread partition has the same fre-

quency function as all threads in that partition. Hence, by the definition of the

set PCLASSs in steps 4-5 of WEFE, there must be a partition in set PCLASSs

corresponding to a thread in class cls. However, that set is empty and we have a

contradiction.

CLAIM 2: If there is a thread in a given frequency equivalence class, WFE

returns OK.

Suppose by way of contradiction, that for a class, cls reported OK by BFECA actually

463

does not contain a thread. The class cls is defined as follows:

cls =

{
⋂

si=1

ATSi

}

∩
{

⋂

si=0

ATSi

}

Hence, there does not exist a thread, Th such that for all ATSi such that si = 1,

Th ∈ ATSi and all ATSi such that si = 0, Th ∈ ATSi. Therefore, by Lemma 3.13

and steps 4-5 of WEFE, PCLASSi must be empty. However, by the result of WEFE

it is not, so we have a contradiction.

The statement follows directly from claims 1-2.

A.2.24 Proof of Theorem 4.2

Given an APT-logic program K and an annotated formula, af , deciding if K

entails af is coNP-Hard.

Proof. Intuition: The proof of the above result is by a reduction from SAT.

Let K∅ = ∅ be an APT-logic program. Take SAT formula F and create an annotated

formula af = ¬F : [1, 1, 1]. We say that K∅ entails af iff F is not satisfiable.

(⇒) Suppose BWOC, F is not satisfiable and K∅ does not entail af . Then, there

exists an interpretation I s.t. I |= K∅ and I 6|= af . As F is not satisfiable, we

know that for all worlds w ∈ 2BL , w 6|= F . Hence, for any valid interpretation,

∑

Th|Th(1)|=¬F I(Th) = 1. By the definition of satisfaction, interpretation I |= af –

which is a contradiction.

(⇐) Suppose BWOC, F is satisfiable and K∅ does entails af . By the definition of K∅,

∀I, ∑Th∈T I(th) = 1. Based on the definition of entailment, ∀I, ∑Th∈T :th(1)|=¬F = 1.

464

Therefore, ∀th → th(1) |= ¬F and ∀th → th(1) 6|= F hence, F is not satisfiable - a

contradiction.

A.2.25 Proof of Proposition 4.3

For unconstrained rule r = F
fr
; G : [∆t, ℓ, u] or constrained rule r = F

fr→֒

G : [∆t, ℓ, u, α, β] and program K, SLC-ENT return ENTAILS iff K entails r and

returns NOT ENTAILS iff K does not entail r

Proof. To show this, we show that K entails r iff [ℓ̄′, ū′] ⊆ [ℓ, u].

CLAIM 1: If K entails r then [ℓ̄′, ū′] ⊆ [ℓ, u].

Suppose, BWOC, that [ℓ̄′, ū′] 6⊆ [ℓ, u]. Then either ℓ̄′ or ū′ is not in [ℓ, u]. However,

clearly there is a solution to the linear program that assigns a constraint associated

with r a set of variables that sums to either ℓ̄′ or ū′. Hence, there is an interpretation

that would assign the non-probabilistic portion of the rule r one of those numbers

as a probability. Such an interpretation would not satisfy r, which would be a con-

tradiction.

CLAIM 2: If [ℓ̄′, ū′] ⊆ [ℓ, u] then K entails r.

Suppose, BWOC, that K does not entail r. Then, there must be some interpreta-

tion that satisfies the program but not r. However, by the solution of the linear

program, any probability a satisfying interpretation assigns r would fall in [ℓ̄′, ū′] –

a contradiction.

465

A.2.26 Proof of Proposition 81

If K entails r, then ALC-ENT returns ENTAILS. If K does not entail r, then

ALC-ENT returns NOT ENTAILS.

Proof. CLAIM 1: If K entails r, then ALC-ENT returns ENTAILS.

Suppose, by way of contradiction, that there exists interpretation I that satisfies

program K but does not satisfy rule r. If r is constrained, then
∑

Th∈T I(Th) ·

fr(Th, F,G,∆t) is either less than ℓ or greater than u. If r is constrained, then

∑

Th∈T ,α≤fr(Th,F,G,∆t)≤β is either less than ℓ or greater than u. However, by Theorem

3.15 for WELC and Theorem 3.21 for FELC, such an interpretation cannot exist as

[ℓ̄, ū] ⊆ [ℓ, u] when ALC-ENT returns ENTAILS. Therefore, we have a contradiction

and the statement of the claim follows.

CLAIM 2: If K does not entail r, then ALC-ENT returns NOT ENTAILS.

Suppose, by way of contradiction, that all interpretations that satisfy program K

also r. However, as there is a solution to either WELC or FELC such that either ℓ̄ < ℓ

or ū > u, then we know by Theorem 3.15 forWELC and Theorem 3.21 for FELC, that

there is an interpretation that assigns the quantity
∑

Th∈T I(Th)·fr(Th, F,G,∆t) (or

∑

Th∈T ,α≤fr(Th,F,G,∆t)≤β I(Th) if r is constrained) a value either less than ℓ or greater

than u. Therefore, by the definition of satisfaction, there exists an interpretation

that satisfies K and does not satisfy r. Hence, we have a contradiction and the

statement of the claim follows.

466

A.2.27 Proof of Theorem 6.5

Theorem 59. If an interpretation I satisfies MDP L with set of policies L, then it

satisfies APT-Program K generated from MAKE-APT.

Proof. Suppose, by way of contradiction, that there exists an interpretation I that

satisfies (L, POL) that does not satisfy K. Therefore, I must not satisfy one of the

annotated formulas in K. As s1 is the initial state, obviously all I satisfying the

Markov Process satisfy F (s1) : [1, 1, 1]. Therefore, for some state s and time point

t, I 6|= F (si) : [t,min(SPML,π(st, t)),max(SPML,π(st, t))]. Then, by the definition

of satisfaction,
∑

Th(t)|=F (si)
I(Th) > min(SPML,π(si, t)) or

∑

Th(t)|=F (si)
I(Th) >

max(SPML,π(si, t)). However, we notice that s1 →t−1 si is the set of all prefixes

for all sequences that include state si after t − 1 time points. Hence, the sum of

probabilities for all sequences in s1 →t−1 si is equal to the sum of all probabilities of

all sequences that include si after t − 1 time points. Therefore,
∑

Th(t)|=F (si)
I(Th)

must fall within the bounds [min(SPML,π(si, t)),max(SPML,π(si, t))], which is a

contradiction. The claim follows.

A.2.28 Proof of Corollary 6.6

Corollary 17. An interpretation I satisfies MDP L with policy π, iff it satisfies

APT-Program K generated from MAKE-APT.

Proof. (⇒): Follows directly from Theorem 6.5.

(⇐): By the definition of satisfaction of an MDP and single policy, there exists only

one I such that I |= (L, π). We claim that there is exactly one interpretation for

467

the constructed APT-Program, K, and then use the pigeon hole principle to show

that it is the same interpretation that satisfies (L, π). We prove this by induction

on tmax .

Base case: If tmax = 1, then the only rule in K is F (s1) : [1, 1, 1] is necessary (all

other annotated formulas have a t greater than tmax . As F (s1) is satisfied by exactly

one world, and the probability bounds are both 1, and there is only one time-point,

there can be only one possible interpretation.

Inductive hypothesis: Assume that K has only one interpretation for tmax − 1.

Inductive step: As K has only one interpretation for tmax − 1, only the annotated

formulas where t ≤ tmax − 1 are included. Let I be the interpretation that satisfies

K for tmax − 1. Let T be the set of threads for tmax − 1.

We add all possible annotated formulas where t = tmax . Let us say that there

are n such annotated formulas. We note that the regular formula in each annotated

formulas is satisfied by exactly one world, and all of the formulas are satisfied by a

different world. Let W be this set of worlds. Therefore, the new set of threads can

have one of n possible worlds at time point tmax . Let T
′ be the new set of threads.

Therefore, for each Th ∈ T , there are n number of threads in T ′.

For w ∈ W , let p(w) be the probability of w being the world at time tmax . As

all annotated formulas in K have ℓ = u, then there is only one possible value for

p(w). Note that as the ℓ value for all annotated formulas where t = tmax is 1, then

∑

w∈W p(w) = 1. Suppose by way of contradiction that there is a thread Th ′ ∈ T ′

that can be assigned more than one probability. However, there can be only one

probability for the first tmax − 1 worlds of Th ′. We shall call this initial sequence

468

of worlds thread Th. This is interpretation I (we know this is the only possible

interpretation for the first tmax − 1 worlds of Th ′ by the inductive hypothesis). We

know the probability of a given w at time tmax is p(w). Hence, the only probability

for the thread Th ′ is I(Th) · p(w). Further, as the sum of the probabilities for all

threads in T equal to 1 (based on I), and as
∑

w∈W p(w) = 1, then the sum of the

probabilities for all threads in T ′ is 1. So, we have a contradiction, and exactly one

interpretation for K.

Therefore, as both K and (L, π) have exactly one satisfying interpretation,

then we know by the pigeon-hole principle and Theorem 6.5 that if I |= K then

I |= (L, π).

469

Appendix B

Appendix for Chapter 3

B.1 Complexity Proofs (Section 3.3)

B.1.1 Small-Model Lemma for APT-Logic

The following lemmas are not part of the main text, but are needed to prove

some of the theorems.

Let us define the “size” of a rational number a
b
(where a, b are relatively prime)

as the number of bits it takes to represent a and b. As stated earlier, for both the

probaiblity bound of rules, as well as the values returned by frequency functions,

we assume that this is a fixed quantity. In [44], the authors provide another result

we can leverage to ensure that there is a solution to a linear program where the

solution can be represented with a polynomial number of bits.

Lemma 27. If a system of r linear inequalities and/or equalities with integer co-

efficients of length at most l has a nonnegetive solution, then it has a nonnege-

tive solution with at most r entries positive, and where the size of each solution is

470

O(r · l + r · log(l)). (Lemma 2.7 in [44]).

Lemma 28. APT-program K is consistent iff it has an interpretation that only

assigns non-zero probabilities to at most 2·|K|+1 threads and the probability assigned

to each thread can be represented with O(|K|·size+ |K|· log(size)) bits (where size is

the maximum number of bits required to represent the result of a freuqency function

of probability bounds of a rule).

Proof. By Proposition 3.9 of [155], an APT-program is consistent iff there is a solu-

tion to the SLC constraints. By Remark 3.10 of [155], there are 2 · |K|+1 constraints

in SLC. Hence, by Theorem 9, if there is a solution to the SLC constraints, then there

exists a solution where only 2 · |K| + 1 are given positive values. The second part

of the satement follows directly from Lemma 27. The statement of the theorem

follows.

B.1.2 Proof of Theorem 10

Deciding if APT-program K is consistent is NP-Complete if |K| is a polynomial

in terms of |BL|.

Proof. NP-Hardness by Theorem 3.4 of [155]. By Lemma 28, every consistent APT-

program must be associated with a set T ′ of threads, where |T ′| ≤ 2·|K|+1 and that

there exists an interpretation I ′ which only assigns non-zero probabilities to threads

in T ′ and satisfies K. Hence, we use T ′ as a witness. We can check the witness

in polynomial time by setting up SLC constraints using only threads in T ′ rather

than T . By the statement, such a linear program will have a polynomial number of

471

variables. Hence, K is consistent iff there is a solution to this linear program (which

can be checked in PTIME). The statement follows.

B.1.3 Proof of Theorem 11

Deciding if APT-rule r is entailed by APT-program K is coNP-Complete if |K|

is a polynomial in terms of |BL|.

Proof. coNP-hardness by Theorem 4.2 of [155]. Let [ℓ, u] be the probability bounds

associated with r. Let num ∈ [0, 1] be a real number that is outside of [ℓ, u]. Create

new rule r′ that is the same as r except the probability bounds are [num, num].

Create APT-program K′ = K ∪ {r′}. Note that if K′ is consistent, then r is not

entailed. Hence, we can check the consistency of K′ using a witness T ′ as described

in Theorem 10 as well as num. Note that this check can still be performed in

PTIME. The statement follows.

B.1.4 Proof of Theorem 12

Given APT-program K, interpretation I, and ptf φ, determining the maximum

ℓ and minimum u such that φ : [ℓ, u] is entailed by K and is satisfied by I is #P -

hard. Further, for constant ǫ > 0, approximating either the maximum ℓ and/or

minimum u within 2|BL|1−ǫ
is NP-Hard.

For ease of readability, we divide the above theorem into three leammas. The

statement of the theorem follows directly from Lemmas 29 and 30. Throughout the

proof, we shall define the problem APT-OPT-ENT as follows:

472

APT-OPT-ENT

INPUT: APT-program K, interpretation I, and ptf φ

OUTPUT: maximum ℓ and minimum u such that φ : [ℓ, u] is entailed by K and is

satisfied by I.

Lemma 29. APT-OPT-ENT is #P -hard.

Proof. Intuition Given an instance of #SAT (known to be #P-complete), we can

an instance of APT-ENT-OPT and such that #SAT ≤p APT-ENT-OPT.

Definition of #SAT:

INPUT: Set of atoms BL, formula f .

OUTPUT: Number of worlds in 2BL that satisfy f .

CONSTRUCTION:

1. Set F to be f .

2. Set t = 1.

3. For each a ∈ BL, add a : [1, 0.5, 0.5] to K.

4. Set tmax = 1.

5. We will consider BL (the set of atoms from the input of #SAT) as the set of

atoms used for the

6. input of APT-ENT-OPT.

473

7. Set IC ≡ ∅.

8. Interpretation Iuniform sets each thread in T a probability of 1
|T |

For this construction, we shall denote the set of all threads formed with

tmax = 1 on set of atoms BL as T .

As step 3 is the only step of the construction that cannot be done in constant time,

but requires O(|BL|) time, so the construction is polynomial.

CLAIM 1: Interpretation Iuniform satisfies K.

Each thread in T consists of only one world. For some atom a ∈ BL, half of all

possible worlds satisfy a. Hence, as Iuniform is a uniform probability distribution

among threads, the sum of probabilities for all threads that satisfy a in the first

(and only) time point is 0.5. By the construction of K in step 3 in the construction,

the claim follows.

CLAIM 2: For any annotated formula F : [t, ℓ, u] that is entailed by K and satisfied

by Iuniform, ℓ must equal u.

As K is satisfied by exactly one interpretation, Iuniform, the sum of probabilities for

all threads that satisfy F at time t is bounded above and below by the same number.

CLAIM 3: If f is satisfied by exactly m worlds, then f : [1, m
2|BL| ,

m
2|BL|] is entailed

by K.

Let W1, . . . ,Wm be the worlds that satisfy f . Let Th1, . . . ,Thm be all the threads

474

in T where Th i ≡ Wi (Wi is the ith world that satisfies f). As we have only one

time point, and our threads are created using BL, we know that the following holds:

m∑

i=1

Iuniform(Th i) =
m

2|BL|

This is equivalent to the following:

∑

Th∈T
Th(1)|=f

Iuniform(Th)

Hence, by claims 1-2 and the definition of satisfaction, the claim follows.

CLAIM 4: If f : [1, m
2|BL| ,

m
2|BL|] is entailed by K, then f is satisfied by exactly m

worlds.

By claims 1-3 and the definition of satisfaction, there are exactly m threads that

satisfy f in the first time point. As there is only one time point per threads, there

are also m worlds that satisfy f . Since BL is the set of atoms for both the instance

of #SAT and APT-ENT-OPT, the statement follows.

The proof of the theorem follows directly from claims 3-4.

Lemma 30. For constant ǫ > 0, approximating APT-ENT-OPT (i.e. approxi-

mating outputs ℓ and/or u) within 2|BL|1−ǫ
is NP-Hard.

Proof. Suppose, by way of contradiction, that approximating a solution within

2|BL|1−ǫ
is easier than NP-Hard. Then, using the construction from the proof of

Theorem 29, we could approximate #SAT within 2|BL|1−ǫ
. However, by [145] (The-

orem 3.2), approximating #2MONCNF, a more restricted version of #SAT, within

2|BL|1−ǫ
is NP-hard. The statement follows.

475

B.2 Supplementary Information for Section 3.4

B.2.1 Proof of Proposition 3.4.1

If F1 : t1 ∧ . . . ∧ Fn : tn ∧ Fn+1 : t′1 ∧ . . . ∧ Fn+m : t′m and G1 : t1 ∧ . . . ∧ Gn :

tn ∧Gn+1 : t
′′
1 ∧ . . . ∧Gn+m : t′′m are time conjunctions, then

(F1∧G1) : t1∧. . .∧(Fn∧Gn) : tn∧Fn+1 : t
′
1∧. . .∧Fn+m : t′m∧Gn+1 : t

′′
1∧. . .∧Gn+m : t′′m

is also a time conjunction.

Proof. Straightforward from the definitions of satisfaction and time conjunction.

B.2.2 Proof of Proposition 14

For formulas F,G, time ∆t, and time conjunction φ,

EFR(F,G,∆t, φ) ⊆

[
cnt(φ, F,G,∆t) + end(φ, F,G,∆t)

denom(φ, F,G,∆t) + end(φ, F,G,∆t)
,

poss(φ, F,G,∆t) + endposs(φ, F,G,∆t)

denom(φ, F,G,∆t) + endposs(φ, F,G,∆t)

]

Proof. Straightforward from definitions.

B.2.3 Proof of Theorem 8

1. If I |= φ : [ℓ, u] and ρ : [ℓ′, u′], then I |= φ ∧ ρ : [max(0, ℓ+ ℓ′ − 1),min(u, u′)]

2. If I |= φ : [ℓ, u] and ρ : [ℓ′, u′], then I |= φ ∨ ρ : [max(ℓ, ℓ),min(1, u+ u′)]

3. If I |= φ : [ℓ, u] and φ⇒ ρ then I |= ρ : [ℓ, 1]

4. If I |= φ : [ℓ, u] and ρ⇒ φ then I |= ρ : [0, u]

476

5. If I |= φ : [ℓ, u] then I |= ¬φ : [1− u, 1− ℓ]

Proof. Adapted from Theorem 1 of [128] and Definition 32, except case 5:

Suppose, BWOC, I |= φ : [ℓ, u] and I 6|= ¬φ : [1 − u, 1 − ℓ]. By the definition of

satisfaction:

ℓ ≤
∑

Th∈T
Th|=φ

I(Th) ≤ u

By the definitoin of negation, we know that:

∑

Th∈T
Th|=¬φ

I(Th) = 1−
∑

Th∈T
Th|=φ

I(Th)

Hence,

ℓ ≤
∑

Th∈T
Th|=¬φ

I(Th) ≤ u

Which, by the definition of satisfaction, gives a contradiction.

B.2.4 Proof of Theorem 13

If interpretation I |= φ : [1, 1] where EFR(F,G,∆t, φ) ⊆ [α, β], I |= F
efr
; G :

[∆t, α, β].

Proof. CLAIM 1: If interpreataion I satisfies φ : [ℓ, u] and EFR(F,G,∆t, φ) ⊆

[α, β], then I |= F
efr→֒ G : [∆t, ℓ, 1, α, β].

Suppose, BWOC, there exists interpreation I s.t. I |= φ : [ℓ, u] and I 6|= F
efr→֒ G :

[∆t, ℓ, 1, α, β]. By the definition of satisfaction, we know that:

ℓ ≤
∑

Th∈T
Th|=φ

I(Th) ≤ u

477

As EFR(F,G,∆t, φ) ⊆ [α, β], we know that:

∑

Th∈T
Th|=φ

I(Th) ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th)

Hence,

ℓ ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th) ≤ 1

So, by the definition of satisfaction, I |= F
efr→֒ G : [∆t, ℓ, 1, α, β] – a contradiction.

CLAIM 1.1: If I |= φ[1, 1], then I |= F
efr→֒ G : [∆t, 1, 1, α, β] (directly from claim

1).

CLAIM 2: If interpretation I satisfies F
efr→֒ G : [∆t, ℓ, u, α, β], then I |= F

efr
;

G : [∆t, α · ℓ, 1]. Suppose, BWOC, there exists interpreation I s.t. I |= F
efr→֒ G :

[∆t, ℓ, u, α, β] and I 6|= F
efr
; G : [∆t, α · ℓ, 1]. By the definition of satisfaction,

ℓ ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th) ≤ u

We multiply through by α:

α · ℓ ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

α · I(Th)

It follows that:

α · ℓ ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

α · I(Th) +
∑

Th∈T
efr(Th,F,G,∆t)/∈[α,β]

efr(Th, F,G,∆t) · I(Th)

and

∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

α · I(Th) ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

efr(Th, F,G,∆t) · I(Th)

478

Hence, it follows that:

α · ℓ ≤
∑

Th∈T
efr(Th, F,G,∆t) · I(Th) ≤ 1

So, by the definition of satisfaction, I |= F
efr
; G : [∆t, α · ℓ, 1] – which is a contra-

diction. CLAIM 2.1: If I |= φ[1, 1], then I |= F
efr
; G : [∆t, α, 1]. (follows directly

from claims 1.1 and 2).

CLAIM 3: If interpretation I satisfies F
efr→֒ G : [∆t, 1, 1, α, β], then I |= F

efr
; G :

[∆t, 0, β]. Suppose, BWOC, I |=efr→֒ G : [∆t, 1, 1, α, β] and I 6|= F
efr
; G : [∆t, 0, β].

By the definiton of satisfaction:

∑

Th∈T
efr(Th,F,G,∆t)∈[α,β]

I(Th) =
∑

Th∈T
I(Th) = 1

Hence,

∑

Th∈T
β · I(Th) = β

We know that:

0 ≤
∑

Th∈T
efr(Th, F,G,∆t) · I(Th) ≤

∑

Th∈T
β · I(Th)

Which leads to:

0 ≤
∑

Th∈T
efr(Th, F,G,∆t) · I(Th) ≤ β

Which, by the definition of satisfaction, gives us a contradiction.

PROOF OF THEOREM: Follows directly from claims 2.1 and 3.

479

B.2.5 Proof of Corollary 2

If interpretation I |= φ : [ℓ, u] where EFR(F,G,∆t, φ) ⊆ [α, β], I |= F
efr
; G :

[∆t, α · ℓ, 1].

Proof. Follows directly from the first two claims of Theorem 13.

B.2.6 Proof of Theorem 14

Given time formulas φ, ρ s.t. EFR(F,G,∆t, φ) ⊆ [α1, β1] and EFR(F,G,∆t, φ∧

ρ) ⊆ [α2, β2] and interpretation I that satisfies φ : [1, 1] (see note1) and F
efr
; G :

[∆t, ℓ, u]:

1. If β2 < β1, then I |= ρ : [0,min(ℓ−β1

β2−β1
, 1)]

2. If α2 > α1, then I |= ρ : [0,min(u−α1

α2−α1
, 1)]

Proof. CLAIM 1: Given time formulas φ, ρ s.t. EFR(F,G,∆t, φ) ⊆ [α1, β1] and

EFR(F,G,∆t, φ ∧ ρ) ⊆ [α2, β2] (where β2 < β1) and interpretation I that satisfies

φ : [1, 1] and F
efr
; G : [∆t, ℓ, u] (ℓ ≤ β1), I |= ρ : [0,min(ℓ−β1

β2−β1
, 1)].

Assume, BWOC, I 6|= ρ : [0, ℓ−β1

β2−β1
]. By the definition of satisfaction, we know

that:

ℓ ≤
∑

Th∈T
efr(Th, F,G,∆t) · I(Th)

As I |= φ : [1, 1] and EFR(F,G,∆t, φ) ⊆ [α1, β1], we have:

ℓ ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

efr(Th, F,G,∆t) · I(Th)

1Note that Theorem 13 requires ℓ ≤ β1 and α1 ≤ u

480

We note that all threads either satisfy ρ or not. Hence, we have:

∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th) +
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th 6|=ρ

I(Th) = 1

Therefore:

ℓ ≤
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

β2 · I(Th) +
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th 6|=ρ

β1 · I(Th)

and:

ℓ ≤ β2 ·
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th) + β1 · (1−
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th))

ℓ− β1 ≤ β2 ·
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th)− β1 ·
∑

Th∈T
efr(Th,F,G,∆t)∈[α1,β1]

Th|=ρ

I(Th))

Notice that ℓ− β1 ≤ 0 as ℓ ≤ β1 by the statement. Also, we know that β2 < β1, the

quantity β2 − β1 is negative. We have the following:

ℓ− β1

β2 − β1

≥
∑

Th∈T
Th|=ρ

I(Th)

By the definition of satisfaction, this gives us a contradiction.

CLAIM 2: Given time formulas φ, ρ s.t. EFR(F,G,∆t, φ) ⊆ [α1, β1] and

EFR(F,G,∆t, φ ∧ ρ) ⊆ [α2, β2] (α2 > α1) and interpretation I that satisfies

φ : [1, 1] and F
efr
; G : [∆t, ℓ, u] (α1 ≤ u or inconsistent), I |= ρ : [0,min(u−α1

α2−α1
, 1)].

481

Assume, BWOC, I 6|= ρ : [0, u−α1

α2−α1
]. By the definition of satisfaction, we know that:

∑

Th∈T
efr(Th, F,G,∆t) · I(Th) ≤ u

Hence, as all threads either satisfy ρ or not, and as I |= φ : [1, 1], we know that all

threads must also have a α1 lower bound for the frequency function, and that the

threads satisfying ρ must have α2 as a lower bound. So, we have the following:

∑

Th∈T
Th|=ρ

α2 · I(Th) +
∑

Th∈T
Th 6|=ρ

α1 · I(Th) ≤ u

As we know the sum of all theads must be 1, we have the following:

α2 ·
∑

Th∈T
Th|=ρ

I(Th) + α1 · (1−
∑

Th∈T
Th|=ρ

I(Th)) ≤ u

(α2 − α1) ·
∑

Th∈T
Th|=ρ

I(Th) ≤ u− α1

As, by the statement, we know the quantities α2 − α1 and u − α1 are positive, we

have the following:

∑

Th∈T
Th|=ρ

I(Th) ≤ u− α1

α2 − α1

Which, by the definition of satisfaction, gives us a contradiction.

Proof of theorem: Follows directly from claims 1-2.

B.2.7 Proof of Proposition 15

If for atoms Ai and program K, if BLK(Ai) :< blki ∈ K and if there exists a

ptf φ : [1, 1] ∈ K such that φ⇒ Ai : t− blki + 1 ∧ Ai : t− blki + 2 ∧ . . . ∧ Ai : t− 1

then K entails A : t : [0, 0].

482

Proof. Suppose, BWOC, there exists interpretation I s.t. I |= K and I 6|= A :

t : [0, 0]. As I |= K, we know I |= BLK(Ai) :< blki. Hence, for all therads s.t.

I(Th) 6= 0, there does not exist a series of blki or more consecutive worlds in Th

satisfying atom Ai. We note that as I |= φ : [1, 1], then I |= Ai : t− blki + 1 ∧ Ai :

t − blki + 2 ∧ . . . ∧ Ai : t − 1 : [1, 1] by the statement. Hence, there is a sequence

of blki − 1 consecutive worlds satisfying Ai in every thread assigned a non-zero

probability by I. So, by the definition of satisfaction, we have a contradiction.

B.2.8 Proof of Proposition 16

If for atoms Ai and program K, if OCC(Ai) : [loi, upi] ∈ K and if there exists

a ptf φ : [1, 1] ∈ K such that there are numbers t1, . . . , tupi ∈ {1, . . . , tmax} where

φ⇒ Ai : t1 ∧ . . . ∧ Ai : tupi then for any t /∈ {t1, . . . , tupi} K entails A : t : [0, 0].

Proof. Suppose, BWOC, there exists interpretation I s.t. I |= K and I 6|= A : t :

[0, 0]. As I |= K, we know I |= OCC(Ai) : [loi, upi]. Hence, for all therads s.t.

I(Th) 6= 0, there does not exist more than upi worlds in Th satisfying atom Ai.

We note that as I |= φ : [1, 1], then I |= Ai : t1 ∧ . . . ∧ Ai : tupi : [1, 1] by the

statement. Hence, there are upi worlds satisfying Ai in every thread assigned a non-

zero probability by I. So, by the definition of satisfaction, we have a contradiction.

B.2.9 Proof of Proposition 17

Given APT-program K, the following are true:

483

• ∀I s.t. I |= K, I |= Γ(K)

• ∀I s.t. I |= Γ(K), I |= K

Proof. Follows directly from Theorems 13-14 and Corollary 2.

B.2.10 Proof of Proposition 18

One iteration of Γ can be performed in time complexity O(|K|2 ·CHK) where

CHK is the bound on the time it takes to check (for arbitrary time formulas φ, ρ if

φ |= ρ is true.

Proof. To compare a given element of K with every other element (not conjuncts of

elements) - we obviously need O(|K| ·CHK) time. As we do this for every element

in K, the statement follows.

B.2.11 Proof of Lemma 9

Given ⊥ ≡ {} and ⊤ ≡ inconsistent, then 〈PROGBL,tmax ,⊑〉 is a complete

lattice.

Proof. Wemust show that for any subset PROG′ of PROGBL,tmax , that inf(PROG′)

and sup(PROG′) exist in PROGBL,tmax . We show this for PROGBL,tmax as a set

of APT-programs, and the result obviously extends for PROGBL,tmax as a set of

equivalence classes of APT-programs.

CLAIM 1: For a set PROG′ of APT-programs, inf(PROG′) exists and is in

PROGBL,tmax .

484

Let PROG′ = {K1, . . . ,Ki, . . . ,Kn}. We create K′ ≡ inf(PROG′) as follows. Con-

sider all φ such that φ : [ℓi, ui] appears in each Ki. Add φ : [min(ℓi),max(ui)] to K′.

Next, consider all F,G,∆t s.t. F
efr
; G : [∆t, ℓi, ui] appears in all Ki. Add F,G,∆t

s.t. F
efr
; G : [∆t,min(ℓi),max(ui)] to K′. Clearly, for each element in K′, there

is an element in every Ki with the same or tighter probability bounds. It is also

obvious tha K′ ∈ PROGBL,tmax . Assume that there is a K′′ (not equivalent to K′)

that is below each Ki but above K′. Then, for all elements in K′, there must be a

corresponding element (with tighter probability bounds) in K′′ s.t. the probability

bounds is looser than any Ki. However, by the construction, this is clearly not

possible unless K′ ≡ K′′, so we have a contradiction.

CLAIM 2: For a set PROG′ of APT-programs, sup(PROG′) exists and is in

PROGBL,tmax .

Let PROG′ = {K1, . . . ,Ki, . . . ,Kn}. Let K′ = ⋃

i{Ki}. Clearly, by the defini-

tion of ⊑, this is a least upper bound of PROG′. We must show that K′ is in

PROGBL,tmax . We have two cases. (1) If K′ is inconsistent, then it is equivalent to

⊤ and in PROGBL,tmax . (2) If K′ is consistent, then it is also in PROGBL,tmax .

B.2.12 Proof of Lemma 10

K ⊑ Γ(K).

Proof. Follows directly from the definition of Γ - all rules and ptf’s in K are in Γ(K)

with equivalent or tighter probability bounds. All IC’s in K remain in Γ(K).

485

B.2.13 Proof of Lemma 11

Γ is monotonic.

Proof. Given K1 ⊑ K2, we must show Γ(K1) ⊑ Γ(K2). Suppose, BWOC, there

exists φ : [ℓ, u] ∈ Γ(K1) (see note 2) s.t. there does not exist φ : [ℓ′, u′] ∈ Γ(K2)

where [ℓ′, u′] ⊆ [ℓ, u]. Therefore, there must exist a set of ptf’s and/or rules (call

this set K′1) in K1 s.t. for each element in K′1, there does not exist a an element in

K2 s.t. the probability bounds are tighter. However, as K1 ⊑ K2, this cannot be

possible, and we have a contradiction.

B.2.14 Proof of Theorem 15

Γ has a least fixed point.

Proof. Follows directly from Lemma 10 and Lemma 11.

B.2.15 Proof of Lemma 12

If APT-logic program K entails rule F
efr
; G : [∆t, ℓ, u] or φ : [ℓ, u] such that

one of the following is true:

• ℓ > u

• ℓ < 0 or ℓ > 1

• u < 0 or u > 1

2Resp. F
efr
; G : [∆t, ℓ, u] ∈ Γ(K1), we note that the proof can easily be mirrored for rules, we

only show with ptfs here.

486

Then K is inconsistent - i.e. there exists no interpretation I such that I |= K.

Proof. Following directly from the definitions of satisfaciton and entailment, if K

entails such a rule or ptf, there can be no satisfying interpreation.

B.2.16 Proof of Theorem 4

For APT-logic program K, if there exists natural number i such that Γ(K) ↑ i

that contains rule F
efr
; G : [∆t, ℓ, u] or φ : [ℓ, u] such that one of the following is

true:

• ℓ > u

• ℓ < 0 or ℓ > 1

• u < 0 or u > 1

Then K is inconsistent.

Proof. We know by Propositions 17 that any number of applications of Γ result in

an APT-program entailed by K. Therefore, all of the elemenets of that program

must be entailed by K. By Lemma 12, the statement follows.

B.2.17 Proof of Proposition 19

If there does not exist at least one thread that satisfies all integrity constraints

in an APT-logic program, then that program is inconsistent.

Proof. For an APT-logic program to be consistent, then there must exist a satisfying

interpretation such that the sum of the probabilities assigned to all threads is 1.

487

However, if there is no thread that satisfies all integrity constraints, then the sum of

the probabilities of all threads in a satisfying interpretation is 0 – a contradiction.

B.2.18 Proof of Proposition 20

If loi >
⌈
(blki−1)·tmax

blki

⌉

then there does not exist a partial thread for ground

atom Ai such that the single block-size and occurrence IC associated with Ai hold.

Follows directly from the following Proposition:

Proposition 82. For atom ai, block size blki and tmax, if more than
⌈
(blki−1)·tmax

blki

⌉

worlds must be true, then all partial threads will have a block of size blki.

Proof. CLAIM 1: If we require less than (or equal)
⌈
(blki−1)·tmax

blki

⌉

worlds to satisfy

the atom, there exists at least one partial thread that does not contain a block.

Simply consider blki − 2 sub-sequences of blki − 1 worlds, and one sub-sequence of

≤ blki−1 worlds satisfying atom ai - each separated by a world that does not satisfy

ai. Obviously, this partial thread does not contain a block.

CLAIM 2: If we require more than
⌈
(blki−1)·tmax

blki

⌉

worlds to satisfy the atom, there

can be no sequence of two consecutive worlds that do not satisfy ai, or there exists

a block.

This follows from the pigeon hole principle - if two consecutive worlds satisfy ¬ai,

then there must exists a sequence of at least blki worlds that satisfy ai.

PROOF OF PROPOSITION: Suppose we have a partial thread with
⌈
(blki−1)·tmax

blki

⌉

488

worlds satisfying the atom, and require one additional world to satisfy ai. By claim

2, this world must be between two sub-sequences, as there are no more than two

non-satisfying worlds, hence the statement of the proposition follows.

B.2.19 Proof of Propositon 21

For ground atom Ai with (with associated ICs), if upi >
⌈
(blki−1)·tmax

blki

⌉

we know

that for numbers of worlds satisfying Ai cannot be in the range
[⌈

(blki−1)·tmax

blki

⌉

, upi

]

.

Proof. As, in this case, upi >
⌈
(blki−1)·tmax

blki

⌉

, lowering the value of upi will not cause

an inconsistency unless Proposition 20 applies. We note that by Proposition 82, we

cannot have threads with more than this amount of worlds satisfying ai.

B.2.20 Proof of Proposition 22

ThEX can be solved in O(1).

Proof. As the check in Proposition 20 can be performed in O(1) time, the statement

follows.

B.3 Proofs for Section 3.5

B.3.1 Proof of Lemma 13

Given non-ground formulas Fng, Gng, time ∆t, and non-ground time formula

φng. Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng) and

[αout, βout] = EFR OUT (Fng, Gng,∆t, φng). Then the following holds true:

489

1. If Th |= φng, then for all ground instances F,G of Fng, Gng we have

efr(F,G,∆t,Th) ∈ [αout, βout]

2. If Th |= φng, then there exists ground instances F,G of Fng, Gng we have

efr(F,G,∆t,Th) ≥ αin

3. If Th |= φng, then there exists ground instances F,G of Fng, Gng we have

efr(F,G,∆t,Th) ≤ βin

Proof. CLAIM 1: Part 1 is true..

Suppose, BWOC, there is some thread, Th |= φng s.t. there are ground instances

F,G of Fng, Gng s.t. efr(F,G,∆t,Th) /∈ [αout, βout]. This directly contradicts Defi-

nition 48.

CLAIM 2: Part 2 is true.

This directly contradicts Definition 48.

CLAIM 3: Part 3 is true.

This directly contradicts Definition 48.

B.3.2 Proof of Theorem 16

Given non-ground APT-program K(ng) that contains the following:

Non-ground rule: Fng
efr
; Gng : [∆t, ℓ, u]

Non-ground ptf: φng : [1, 1]

Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng). If we are given α−in ≤ αin and β+
in ≥

βin, then, K(ng) is not consistent if one (or both) of the following is true:

490

1. α−in > u

2. β+
in < ℓ

Proof. CLAIM 1: If α−in > u, then K(ng) is not consistent.

Suppose, BWOC that α−in > u and K(ng) is consistent. Then, by Lemma 13 there

exists ground instances F,G of Fng, Gng s.t. EFR(F,G,∆t, gnd(φng)) ⊆ [α−in, 1].

Therefore, by Theorem 13, K(ng) entails F
efr
; G : [∆t, α−in, 1]. However, as K(ng)

includes Fng
efr
; Gng : [∆t, ℓ, u], then K(ng) also entails F

efr
; G : [∆t, ℓ, u]. As

[α−in, 1] ∩ [ℓ, u] = ∅, we know that K(ng) cannot be consistent (by Lemma 12) – a

contradiction.

CLAIM 2: If β+
in < ℓ, then K(ng) is not consistent.

Suppose, BWOC, that β+
in < ℓ and K(ng) is consistent. Then, by Lemma 13 there

exists ground instances F,G of Fng, Gng s.t. EFR(F,G,∆t, gnd(φng)) ⊆ [0, β+
in].

Therefore, by Theorem 13, K(ng) entails F
efr
; G : [∆t, 0, β+

in]. However, as K(ng)

includes Fng
efr
; Gng : [∆t, ℓ, u], then K(ng) also entails F

efr
; G : [∆t, ℓ, u]. As

[0, β+
in] ∩ [ℓ, u] = ∅, we know that K(ng) cannot be consistent (by Lemma 12) – a

contradiction.

491

B.3.3 Proof of Corollary 5

Given non-ground APT-program K(ng) that contains the following:

Non-ground rule: Fng
efr
; Gng : [∆t, ℓ, u]

Non-ground ptf: φng : [ℓ
′, u′]

Let (αin, βin) = EFR IN(Fng, Gng,∆t, φng). If we are given α−in ≤ αin and β+
in ≥

βin, then, K(ng) is not consistent if α−in · ℓ′ > u.

Proof. Suppose, BWOC, α−in · ℓ′ > u and K(ng) is consistent. Then, by Lemma 13

there exists ground instances F,G of Fng, Gng s.t. EFR(F,G,∆t, gnd(φng)) ⊆

[α−in, 1]. Therefore, by Corollary 2, K(ng) entails F
efr
; G : [∆t, α−in · ℓ′, 1]. However,

as K(ng) includes Fng
efr
; Gng : [∆t, ℓ, u], then K(ng) also entails F

efr
; G : [∆t, ℓ, u].

As [α−in · ℓ′, 1] ∩ [ℓ, u] = ∅, we know that K(ng) cannot be consistent (by Lemma 12)

– a contradiction.

B.3.4 Proof of Proposition 23

If the list returned by NG-INCONSIST-CHK contains any elements, then K(ng)

is not consistent.

Proof. Follows directly from Theorem 16 and Corollary 5.

B.3.5 Proof of Proposition 24

NG-INCONSIST-CHK performs O(|K(ng)|2) comparisons.

492

Proof. The algorithm consists of two nested loops. The outer loop considers all ptf’s

in the program – requiring O(|K(ng)|) time, while the inner loop considers all rules

in the program – also requiring O(|K(ng)|) time. The statement follows.

B.3.6 Proof of Lemma 14

K ⊆ ΛK(ng)(K) wrt 〈PROGBL,tmax ,⊑〉

Proof. Follows directly from Definition 49.

B.3.7 Proof of Lemma 15

ΛK(ng) is monotonic.

Proof. Given K1 ⊑ K2 (both ground), we must show ΛK(ng)(K1) ⊑ ΛK(ng)(K2).

Suppose, BWOC, there is an element (rule, ptf, or IC) of ΛK(ng)(K1) that either has

a tighter probability bound than a corresponding element in ΛK(ng)(K2) or not in

ΛK(ng)(K2). However, this is a contradiction as all elements in K1 are in K2 – or

in K2 with a tighter probability bound. Therefore, such an element would be in

ΛK(ng)(K2) – a contradiction.

B.3.8 Proof of Theorem 17

ΛK(ng) has a least fixed point.

Proof. Follows directly from Lemma 14 and Lemma 15.

493

B.3.9 Proof of Lemma 16

Given non-ground program K(ng), and ground program K, lfp(ΛK(ng)(K)) ⊆

ground(K(ng)) ∪ K.

Proof. Suppose, BWOC, that lfp(ΛK(ng)(K)) 6⊆ ground(K(ng)) ∪ K. Then, there

must exist a ground rule, ptf, or IC in element in lfp(ΛK(ng)(K)) that is not in

ground(K(ng)) ∪ K. However, all elements in lfp(ΛK(ng)(K)) are either elements of

K or ground instances of elements in K(ng) – hence a contradiction.

B.3.10 Proof of Theorem 18

Definition 110 (Tightening). For APT-rule F
efr
; G : [∆t, ℓ, u] or ptf φ : [ℓ, u], for

any [ℓ′, u′] ⊆ [ℓ, u],

1. F
efr
; G : [∆t, ℓ′, u′] is a tightening of F

efr
; G : [∆t, ℓ, u]

2. φ : [ℓ, u] is a tightening of φ : [ℓ′, u′]

Definition 111 (Update). Given ground APT-program K, ground rule r = F
efr
;

G : [∆t, ℓ1, u1], and ground ptf p = φ : [ℓ2, u2], any tightening to the bounds of r or

p causes by an application of the operator Γ is an update.

Definition 112 (Update Widget). Given ground APT-program K, ground rule r =

F
efr
; G : [∆t, ℓ1, u1], and ground ptf p = φ : [ℓ2, u2], ground atomic time formula

A : t, we define the following update widgets.

1. Let the ground rule r′ = F
efr
; G : [∆t, ℓ′, u′] be a tightening of r where

ℓ′ = l bnd(F,G,∆t,K) or u′ = u bnd(F,G,∆t,K). Then an update widget

494

consists of a graph of a vertex vr′ for r′ (called a top vertex) and set V of

vertices - one vertex for each ground rule and ptf in K that led to the tightening

(as per Definition 41) (called bottom vertices) and directed edges from all

elements in V to vr′.

2. Let the ground ptf p′ = φ : [ℓ′, u′] be a tightening of φ : [ℓ2, u2] where ℓ′ ∈

{l bnd(φ,K), 1 − u bnd(¬φ,K)} or u′ ∈ {u bnd(φ,K), 1 − l bnd(¬φ,K)}.

Then an update widget consists of a graph of a vertex vp′ for p′ (called

a top vertex) and set V of vertices - one vertex for each ground rule and ptf

in K that led to the tightening (as per Definition 41) (called bottom vertices)

and directed edges from all elements in V to vp′.

3. If K entails A : t : [0, 0] due to the presence of ptf ’s and IC’s (as per Propo-

sitions 15-16), then Then an update widget consists of a graph of a vertex

vA:t:[0,0] for A : t : [0, 0] (called a top vertex) and set V of vertices - one for

each IC and ptf in K that led to the entailment of A : t : [0, 0] (called bottom

vertices) and directed edges from all elements in V to vr′.

Definition 113 (Deduction Tree). A series of update widgets with the top vertices of

all but one widgets are the bottom vertices for another widget is called a deduction

tree. A vertex that is not a bottom vertex for any widget in the tree is a root and

a vertex that is not top vertex for any widget in the tree is a leaf. For a given

deduction tree, T , let leaf(T) be the set of ptf ’s or rules corresponding with leaf

nodes in the tree.

495

Definition 114 (Corresponding Deduction Tree). Given ground APT-program K,

for ground ptf p = φ : [ℓ2, u2], s.t. p ∈ lfp(Γ(K)), then the corresponding deduc-

tion tree is a deduction tree, rooted in a node representing p s.t. for each update

performed by Γ, there is a corresponding update widget in the tree. For program K

and ptf p, let TK,p be the corresponding deduction tree.

Lemma 31. If φ : [ℓ, u] ∈ lfp(Γ(K ∪ {φ : [0, 1]}) then there exists φ : [ℓ′, u′] ∈

lfp(Γ(leaf(TK,φ:[ℓ,u]) ∪ {φ : [0, 1]}) s.t. [ℓ′, u′] ⊆ [ℓ, u].

Proof. Suppose, BWOC, that [ℓ′, u′] 6⊆ [ℓ, u]. Then, there must exist an update

performed by Γ that uses some ptf or rule other ∈ K s.t. other /∈ leaf(TK,φ:[ℓ,u]).

However, by the Definition 114 this is not possible as TK,φ:[ℓ,u] accounts for all updates

performed by Γ.

Theorem 18

Given non-ground program K(ng)

φ : [ℓ, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]}))))

iff

φ : [ℓ, u] ∈ lfp(Γ(ground(K(ng)) ∪ {φ : [0, 1]}))

Proof. CLAIM 1: If φ : [ℓ, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]})))) then for some

[ℓ′, u′] ⊆ [ℓ, u], φ : [ℓ′, u′] ∈ lfp(Γ(ground(K(ng)) ∪ {φ : [0, 1]})).

By Lemma 16, we know that lfp(ΛK(ng)({φ : [0, 1]})) ⊆ ground(K(ng)) ∪ {φ : [0, 1]},

so the claim follows.

496

CLAIM 2: If φ : [ℓ, u] ∈ lfp(Γ(ground(K(ng)) ∪ {φ : [0, 1]})) then for some [ℓ′, u′] ⊆

[ℓ, u], φ : [ℓ, u] ∈ lfp(Γ(lfp(ΛK(ng)({φ : [0, 1]})))).

By Definition 49 and Definition 114, leaf(TK,φ:[ℓ,u]) ∪ {φ : [0, 1]} ⊆ lfp(ΛK(ng)({φ :

[0, 1]})). Hence, we can apply Lemma 31 and the claim follows.

The statement of the theorem follows directly from claims 1-2.

B.4 Supplemental Information for Section 3.6

B.4.1 Proof of Proposition 25

OC-EXTRACT runs in time O((n− tmax) · tmax).

Proof. This follows directly from the two for loops in the algorithm - the first iter-

ating (n− tmax) time and a nested loop iterating tmax times.

B.4.2 Proof of Proposition 26

There are no historical threads such that atom ai is satisfied by less than loi

or more than upi worlds when loi, upi are produced by OC-EXTRACT.

Proof. Suppose, by way of contradiction, that there exists a historical thread that

does not meet the constraints. As we examine all possible historical threads in OC-

EXTRACT and take the minimum and maximum number of times ai is satisfied over

all these threads, we have a contradiction.

497

B.4.3 Proof of Proposition 27

BLOCK-EXTRACT runs in time O(n).

Proof. Follows directly from the for loop in the algorithm - which iterates n times.

B.4.4 Proof of Proposition 28

Given blki as returned by BLOCK-EXTRACT, there is no sequence of blki or

more consecutive historical worlds that satisfy atom ai.

Proof. Suppose there is a sequence of at least blki or more. However, the algorithm

maintains the variable best which is the greatest number of consecutive time points

in the historical data where ai is true – this is a contradiction.

498

Appendix C

Appendix for Chapter 4

C.1 Proofs

C.1.1 Proof of Theorem 19

k-SEP is NP-Complete.

Proof. Geometric Covering by Discs. (GCD)

INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integers

b > 0 and k < |P |.

OUTPUT: “Yes” if there exist k discs of diameter b centered on points in P such

that there is a disc covering each point in P — “no” otherwise.

CLAIM 1: k-SEP is in the complexity class NP.

Suppose a non-deterministic algorithm can guess a set E that is a k-sized simple

(α, β) explanation for O. We can check the feasibility of every element in E in

O(|E|) time and compare every element of E to every element of O in O(|O|2) time.

Hence, k-SEP is in the complexity class NP as we can check the solution in poly-

499

Algorithm 25 (GCD-TO-KSEP)

INPUT: Instance of GCD 〈S, P, b, k〉

OUTPUT: Instance of k-SEP 〈S,O, feas, α, β, k′〉

1. Set S to be a set of lattice points in the Euclidean plane that include all points

in P

2. Set O = P

3. Let feas(x) = TRUE iff x ∈ P

4. Set α = 0

5. Set β = b/2

6. Set k′ = k

500

nomial time.

CLAIM 2: k-SEP is NP-Hard.

We use the polynomial algorithm GCD-TO-KSEP to take an instance of GCD and

create an instance of k-SEP.

CLAIM 2.1: If there is a k′-sized simple (α, β) explanation for O, then there are k

discs, each centered on a point in P of diameter b that cover all points in P .

Let E be the k′-sized simple (α, β) explanation for O. Suppose by way of contra-

diction, that there are not k discs, each centered on a point in P of diameter b

that cover all points in P . As k′ = k, and all elements of E must be in P by the

definition of feas, let us consider the k discs of diameter b centered on each ele-

ment of E . So, for these discs to not cover all elements of P , there must exist an

element of P , that is not covered by a disc. As P ≡ O, then there must exist an

element of O outside of one of the discs. Note that all elements of O are within

a distance β of an element of E by the definition of a k′-sized simple (α, β) expla-

nation (as α = 0). As β = b/2, each element of O falls inside a disc of diameter

b centered on an element of E , thus falling within a disc and we have a contradiction.

CLAIM 2.2: If there are k discs, each centered on a point in P of diameter b that

cover all points in P then there is a k′-sized simple (α, β) explanation for O.

Let set E be the set of points that are centers of the k discs. We note that E ⊆ P .

Assume by way of contradiction, that there is no k′-sized simple (α, β) explanation

501

for O. Let us consider if E is a k′-sized simple (α, β) explanation for O. As k = k′,

α = 0, and all points of E are feasible, there must be some o ∈ O such that ∀e ∈ E,

d(e, o) > β. As O ≡ P , we know that all points in O fall in a disc centered on a

point in E, hence each o ∈ O must be a distance of b/2 or less from a point in E.

As β = b/2, we have a contradiction.

C.1.2 Proof of Corollary 6

Cost-based Explanation is NP-Complete.

Proof. CLAIM 1: Cost-based Explanation is in the complexity class NP.

This follows directly from Theorem 19, instead of checking the size of E , we only

need to apply the function χ to the E produced by the non-deterministic algorithm

to ensure that χ(E) ≤ v.

CLAIM 2: Cost-based Explanation is NP-Hard.

We show k-SEP≤p CBE. Given an instance of k-SEP, we transform it into an

instance of CBE in polynomial time where χ(E) = |E| and v = k.

CLAIM 2.1: If there is a set E such that χ(E) ≤ v then |E| ≤ k.

Straightforward.

CLAIM 2.2: If there is a set E of size k or less then χ(E) ≤ v

Straightforward.

502

C.1.3 Proof of Corollary 7

WT-SEP is NP-Complete.

Proof. Membership in the complexity class NP follows directly from Theorem 19,

instead of checking the size of E , we check if
∑

p∈E c(p) ≤ v. We also note that

the construction for cost-based explanation in Theorem 19 is also an instance of

WT-SEP, hence NP-hardness follows immediately.

C.1.4 Proof of Theroem 20

TD-SEP is NP-Complete.

Proof. CLAIM 1: TD-SEP is in the complexity class NP.

Given a set E , we can easily determine in polynomial time that it meets the stan-

dards of the output specified in the problem statement.

CLAIM 2: TD-SEP is NP-hard.

Consider Euclidean k-Median Problem, as presented and shown to be NP-Complete

in [134], defined as follows:

INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integer

k′ < |P |, real number v′ > 0.

OUTPUT: “Yes” if there is a set of points, S ⊆ P such that |S| = k′ and

∑

xi∈X minsj∈S d(xi, sj) ≤ v′ — “no” otherwise.

503

Given an instance of the Euclidean k-Median Problem, we create an instance

of TD-SEP as follows:

• Set S to be a set of lattice points in the Euclidean plane that include all points

in P

• Set O = P

• Let feas(x) = TRUE iff x ∈ P

• Set α = 0

• Set β greater than the diagonal of S ′

• Set k = k′

• Set v = v′

CLAIM 2.1: If there is E , a k-sized explanation for O such that

∑

oi∈Ominpj∈E d(oi, pj) ≤ v, then there is a set S ⊆ P such that |S| = k′ and

∑

xi∈P minsj∈S d(xi, sj) ≤ v′.

Because of how we set feas and O, E ⊆ P . As α and β do not affect E , the only real

restrictions on E is that its cardinality is k and that
∑

oi∈Ominpj∈E d(oi, pj) ≤ v.

Because of how we set k and v, we can see that E meets all the conditions to be a

solution to the Euclidean k-Median problem, hence the claim follows.

CLAIM 2.2: If there is set S ⊆ P such that |S| = k′ and
∑

xi∈P minsj∈S d(xi, sj) ≤ v′,

then there is set E , a k-sized explanation forO such that
∑

oi∈Ominpj∈E d(oi, pj) ≤ v.

504

In the construction, the arguments α, β and feas allow any element of a solution to

the k-Median problem to be a partner for any observation in O. By how we set k

and v, we can easily see that S is a valid solution to TD-SEP. The claim follows.

The statement of the theorem follows directly from claims 1-2.

C.1.5 Proof of Proposition 29

If there is a k-sized simple (α, β) explanation for O, then NAIVE-KSEP-EXACT

returns an explanation. Otherwise, it returns NO.

Proof. CLAIM 1: If there is a k-sized simple (α, β) explanation for O, then NAIVE-

KSEP-EXACT returns an explantion.

Suppose, by way of contradiction, that there is a k-sized simple (α, β) explanation

for O and NAIVE-KSEP-EXACT returns NO. Then there does not exist k bit strings

such that for all oi,
∑k

j=1(ℓj(i)) ≥ 1. As each bit string is associated with a point

in S, then by the construction of the bit strings, there are not k points in S such

that each point is feasible and falls no closer than α and no further than β distance

away from each point in O. This is a contradiction.

CLAIM 2: If there is no k-sized simple (α, β) explanation for O, then NAIVE-KSEP-

EXACT returns NO.

Suppose, by way of contradiction, that there is no k-sized simple (α, β) explanation

for O and NAIVE-KSEP-EXACT returns an explanation. Then there must exist k

505

bit strings such that
∨k

j=1(ℓj(i)) = 1. As each bit string is associated with a point

in S, then by the construction of the bit strings, there must exist k points in S such

that each point is feasible and falls no closer than α and no further than β distance

away from each point in O. This is a contradiction.

C.1.6 Proof of Proposition 30

The complexity of NAIVE-KSEP-EXACT is O(1
(k−1)!(π(β

2 − α2)|O|)(k+1)).

Proof. Note that as all pointers in M are initially null, thus there is no need to

iterate through every element in M - rather lists in M can only be initialized as

needed. Hence, the cost to set-up M in O(1) and not the size of the matrix.

As each o ∈ O has, at most π(β2 − α2) partners, the total complexity of the inner

loop is π(β2 − α2)|O|.

As we have, at most, π(β2 − α2)|O| elements in L (recall that L is the subset of

S that can be partnered with elements in O), then there are
(
π(β2−α2)|O|

k

)
iterations

taking place in step 5. Each iteration costs k · |O| as we must compare the |O| bits

of each k bit string. So,
(
π(β2 − α2)|O|

k

)

· k · |O|

=
(π(β2 − α2)|O|) · (π(β2 − α2)|O| − 1) · . . . · (π(β2 − α2)|O| − (k − 1))

k!
· k · |O|

< O(
1

(k − 1)!
(π(β2 − α2)|O|)(k+1))

As this term dominates the complexity of the inner loop, the statement follows.

506

C.1.7 Proof of Theorem 21

k-SEP≤p SET COVER

Proof. We employ the first four steps of NAIVE-KSEP-EXACT. We view the bit-

strings in list L as subsets of O where if the ith bit of the string is 1, oi of O is in

the set.

CLAIM 1: If there are k subsets of L that cover O, then there is a k-sized simple

(α, β) explanation for O.

Suppose, by way of contradiction, that there are k subsets of L that cover O and

there is no k-sized simple (α, β) explanation for O. Then, by Proposition 29, for

every combination of k bit strings, there is some bit i such that
∨k

j=1(ℓj(i)) = 1

does not hold. Hence, by the reduction, a set cover with k sets from L would be

impossible. This is a contradiction.

CLAIM 2: If there there is a k-sized simple (α, β) explanation for O, then there are

k subsets of L that cover O.

Suppose, by way of contradiction, there is a k-sized simple (α, β) explanation for

O and there are not k subsets of L that cover O. Then, for any combination of

k subsets of L, there is at least one element of O not included. Hence, for any

bit-string representation of an element in L, for some bit i,
∨k

j=1(ℓj(i)) = 1 does

not hold. However, by Proposition 29, this must hold or there is no k-sized simple

(α, β) explanation for O. This is a contradiction.

507

C.1.8 Proof of Proposition 31

NAIVE-KSEP-SC has a complexity of O(∆ · f · |O|2) and an approximation

ratio of 1 + ln(f).

Proof. CLAIM 1: NAIVE-KSEP-SC has a complexity of O(∆ · f · |O|2).

The loop at line 3, which reduces the problem to set-covering, takes O(∆ · |O|) time.

The loop at line 4 iterates, at most, |O| times.

The first nested loop at line 4b iterates, at most, ∆ · |O| times.

The second nested loop at line 4(b)ii iterates, at most, f times.

The updating procedure at line 4d, which is still inside the loop at line 4, iterates,

at most, f times.

Hence, by the above statements, the total complexity of NAIVE-KSEP-SC is O(|O| ·

(∆ · |O| · f + f) + ∆ · |O|), hence the statement follows.

CLAIM 2: NAIVE-KSEP-SC has an approximation ratio of 1 + ln(f).

Viewing list L as a family of subsets, each subset is the set of observations associated

with a potential partner, hence the size of the subsets is bounded by f . The ap-

proximation ratio follows directly from the analysis of the set-covering problem.

C.1.9 Proof of Proposition 32

A solution E to NAIVE-KSEP-SC provides a partner to every observation in O

if a partner exists.

Proof. Follows directly from Theorem 21.

508

C.1.10 Proof of Proposition 33

The complexity of KSEP-TO-DOMSET is O(∆ · |O|).

Proof. Notice that the number of points in S considered for each o ∈ O examined

in the inner loop is bounded by O(∆). As the outer loop is bounded by the size of

O, the complexity of KSEP-TO-DOMSET is O(|O|).

C.1.11 Proof of Theorem 22

k-SEP≤p DomSet.

Proof. We can run KSEP-TO-DOMSET that creates graph GO = (VO, EO) based on

the set of observations. We show that GO has a dominating set of size k iff there is

a k-sized simple (α, β) explanation for O.

CLAIM 1: If GO has a dominating set of size k or less, then there is a k-sized (or

less) simple (α, β) explanation for O.

Suppose, by way of contradiction, that GO has a dominating set of size k and there

is not a k-sized simple (α, β) explanation for O. Then, there has to be at least one

element oi ∈ O such that there is no feasible p ∈ S where α ≤ d(oi, p) ≤ β. Consider

the nodes Vi from the inner loop of KSEP-TO-DOMSET that are associated with oi.

Note that these nodes form a complete subgraph. As each node in Vi is associated

with oi, no node in Vi can be in the dominating set of GO (if one were, then we

would have a contradiction). However, note that half of the nodes in Vi only have

edges to other nodes in Vi, so there must be an element of Vi in the dominating set.

509

This is a contradiction.

CLAIM 2: If there is a k-sized simple (α, β) explanation for O, then GO has a

dominating set of size k or less.

Suppose, by way of contradiction, that there is a k-sized simple (α, β) explanation

for O, and GO has does not have a dominating set of size k or less. Let E be a

k-sized simple (α, β) explanation for O. Let this also be a subset of the nodes in

GO. By the KSEP-TO-DOMSET, in each set of nodes Vi, there must be at least

one element of E . As each set of vertices Vi is a complete graph, then we have a

dominating set of size k. Hence, a contradiction.

C.1.12 Proof of Proposition 34

Solving k-SEP by a reduction to DomSet utilizing a straight-forward greedy

approach has time-complexity O(∆3 · f · |O|2) and an approximation ratio bounded

by O(1 + ln(2 · f ·∆)).

Proof. This is done by a well-known reduction of an instance of DomSet into an

instance of SET COVER. In the reduction, each node is an element, and the subsets

are formed by each node and its neighbors. The Table C.1 shows the quantities:

Hence, the total time complexity of the algorithm is O(8 · ∆3 · f · |O|2) and

the complexity part of the statement follows. As the maximum number of elements

per subset, the approximation ratio O(1 + ln(2 · f · ∆)) follows by the well-known

analysis of the greedy set-covering algorithm.

510

Item Quantity

Number of elements to be covered 2 ·∆ · |O|

(number of nodes in GO)

Number of subsets 2 ·∆ · |O|

(number of nodes in GO)

Number of elements per subset 2 ·∆ · f

(Maximum degree of nodes in GO

determined by the produce of partners per observation

and observations per partner

Table C.1: Quantities for the Greedy-Approach in the DomSet reduction.

C.1.13 Proof of Proposition 35

Solving k-SEP by a reduction to DomSet utilizing the distributed, random-

ized algorithm presented in [75] has a time complexity O(∆ · |O| + ln(2 ·∆ · |O|) ·

ln(2 ·∆ · f)) with high probability and approximation ratio of O(1 + ln(2 · f ·∆)).

Proof. By Proposition 33, the complexity of KSEP-TO-DOMSET is O(∆·|O|)). The

graph GO has O(2 ·∆ · |O|) nodes, and the maximum degree of each node is bounded

2 ·∆ ·f as per Proposition 34. As the algorithm in [75] has a complexity of O(lg(n) ·

lg(d)) (with high probability) where n is the number of nodes and d is the maximum

degree, the complexity of this approach requires O(∆·|O|+ln(2·∆·|O|)·ln(2·∆·f))

with high probability (the statement follows).

511

As the approach in [75] is greedy, it maintains the O(1 + ln(2 · f ·∆)) (Propo-

sition 34) (the approximation ratio in this case being a factor of the optimal in

expectation).

C.1.14 Proof of Proposition 36

OPT-KSEP-IPC consists of O(|O|π(β2−α2)) variables and 1+ |O| constraints.

Proof. Follows directly from Definition 56.

C.1.15 Proof of Proposition 37

For a given instance of the optimization version k-SEP, if OPT-KSEP-IPC is

solved, then
⋃

pj∈Lxj=1
pj is an optimal solution to k-SEP.

Proof. Suppose, by way of contradiction, that
⋃

pj∈Lxj=1
pj is not an optimal solution

to k-SEP. By the constraint, ∀oi ∈ O,
∑

pj∈L xj · str(pj)i ≥ 0, we are ensured that

for each observation, there is a partner pj such that xj = 1. Further, if we associate

xj with the selected parter pj for any solution E to k-SEP, then this constraint must

hold. Hence,
⋃

pj∈Lxj=1
pj is a valid explanation. Therefore, the optimal solution to

the instance of k-SEP, we shall call EOPT , must be smaller than
⋃

pj∈Lxj=1
pj. As the

minimization of
∑

pj∈L xj ensures that the cardinality of
⋃

pj∈Lxj=1
pj is minimized.

Therefore, |EOPT | cannot be smaller than |⋃pj∈Lxj=1
pj|, as the constraint ∀oi ∈ O,

∑

pj∈L xj · str(pj)i ≥ 0 holds for any solution to k-SEP. This is a contradiction.

512

C.1.16 Proof of Proposition 38

NAIVE-KSEP-ROUND returns an explanation for O that is within a factor f

of optimal, where f is the maximum number of possible partners associated with

any observation.

Proof. [68] shows that the solution to the relaxation of the integer program repre-

sentation of set-cover approximates the optimal solution within a factor of f , which

is the greatest number of sets an element can be found in. For k-SEP, this would

be the greatest number of partners for any given observation, which is bounded by

O(π(β2−α2)), but may be much lower in practice. As OPT-KSEP-IPC employs this

technique, the statement follows directly.

C.1.17 Proof of Proposition 39

GREEDY-KSEP-OPT1 has a complexity of O(∆ ·f · |O|) and an approximation

ratio of 1 + ln(f).

Proof. CLAIM 1: GREEDY-KSEP-OPT1 has a complexity of O(∆ · f · |O|).

This follows the same analysis of NAIVE-KSEP-SC in Proposition 31, except that

line 4 iterates only ∆ times rather than ∆ · |O| times. Hence, the total complexity

is O(|O| · (∆ · f + f) + ∆ · |O|) and the statement follows.

CLAIM 2: GREEDY-KSEP-OPT1 has an approximation ratio of 1 + ln(f).

The proof of this claim resembles the approximation proof of the standard greedy

algorithm for set-cover (i.e. see [28] page 1036).

513

Let p1, . . . , pi, . . . , pn be the elements of E , the solution to GREEDY-KSEP-

OPT1, numbered by the order in which they were selected. For each iteration, let

set COVi be the subset of observations that are partnered for the first time with

point pi. Note that each element of O is in exactly one COVi. For each oj ∈ O, we

define costj to be 1
|COVi| where oj ∈ COVi.

CLAIM 2.1:
∑

pi∈E∗
∑

oj∈Opi,oj are partners
costj ≥ |E|

By the definition of costj, exactly one unit of cost is assigned every time a point is

picked for the solution E . Hence,

COST (E) = |E| =
∑

oj∈O
costj

The statement of the claim follows.

CLAIM 2.2: For some point p ∈ L,
∑

oj∈Op,oj are partners
costj ≤ 1 + ln(f).

Let P be the subset of O that can be partners with p. At each iteration i of the

algorithm, let uncovi be the number of elements in P that do not have a partner.

Let last be the smallest number such that uncovlast = 0. Let EP = {pi ∈ E|(i ≤

last) ∧ (COVi ∩ P 6≡ ∅)}. From here on, we shall renumber each element in EP

as p1, . . . , p|EP | by the order they are picked in the algorithm (i.e. if an element is

picked that cannot partner with anything in P , we ignore it and continue numbering

with the next available number, we will use this new numbering for COVi and the

iterations of the algorithm as well, but do not re-define the set based on the new

514

numbering).

We note that for each iteration i, the number of items in P that are partnered

is equal to uncovi−1 − uncovi. Hence,

∑

oj∈O
p,oj are partners

costj =
last∑

i=1

uncovi−1 − uncovi
|COVi|

At each iteration of the algorithm, let PCOVi be the subset of observations that are

covered for the first time if point p is picked instead of point pi. We note, that for

all iterations in 1, . . . , last, the point p is considered by the algorithm as one of its

options for greedy selection. Therefore, as p is not chosen, we know that |COVi| ≥

|PCOVi|. Also, by the definition of ucovi, we know that |PCOVi| = ucovi−1. This

gives us:

∑

oj∈O
p,oj are partners

costj ≤
last∑

i=1

uncovi−1 − uncovi
ucovi−1

Using the algebraic manipulations of [28] (page 1037), we get the following:

∑

oj∈O
p,oj are partners

costj ≤ H|P |

Where Hj is the jth harmonic number. By definition of the symbol f (maximum

number of observations supported by a single partner), we obtain the statement of

the claim.

(Proof of claim 2): Combining claims 1-2, we get |E| ≤ ∑

pi∈E∗(1 + ln(f)), which

gives us the claim.

515

C.1.18 Proof of Proposition 40

GREEDY-KSEP-OPT1 returns a |E|-sized (α, β) explanation for O.

GREEDY-KSEP-OPT1 returns IMPOSSIBLE if there is no explanation for O.

Proof. Suppose by way of contradiction that there exists and element o ∈ O such

that there is no in E . We note that set O′ contains all elements of O and the only

way for an element to be removed from O′ is if a partner for that element is added

to E . Hence, if the program returns a set E , we are guaranteed that each o ∈ O has

a partner in E .

Suppose by way of contradiction that GREEDY-KSEP-OPT1 returns IMPOS-

SIBLE and there exists a set E that is a valid (α, β) explanation for O. Then, for

every element of O, there exists a valid partner. However, this contradicts line 3b of

NAIVE-KSEP-SC (called by line 4b of GREEDY-KSEP-OPT1) which causes the pro-

gram to return IMPOSSIBLE only if an element of O is found without any possible

partner.

C.1.19 Proof of Theorem 23

GREEDY-KSEP-OPT2 has a complexity of O(∆ · f 2 · |O| + |O| · ln(|O|)) and

an approximation ratio of 1 + ln(f).

Proof. CLAIM 1: GREEDY-KSEP-OPT2 has a complexity of O(∆ · f 2 · |O| + |O| ·

ln(|O|)).

Line 1 takes O(∆ · |O|) time.

516

The loop starting at line 4 iterates |O| times.

The nested loop at line 4a iterates ∆ times.

The second nested loop at line 4(a)i iterates f times. The inner body of this loop

can be accomplished in constant time.

In line 5, initializing the Fibonacci heap takes constant time, as does inserting ele-

ments, hence this line takes only O(|O|) time.

The loop at line 6 iterates, at most, |O| times.

Viewing the minimum of a Fibonacci heap, as in line 6a can be done in constant

time.

As per the analysis of GREEDY-KSEP-OPT1, line 6b takes ∆ · f iterations. The

updating procedure starts with line 6c which iterates f times.

The removal of an elements in line 6(c)ii from a Fibonacci heap costs O(ln(|O)

amortized time. However, we perform this operation no more than |O| times, hence

we can add |O| · ln(|O|)) to the complexity.

Note that the size of a list pointed to by REL OBS[o′] is bounded by ∆ · f - f ob-

servations associated with each of ∆ partners - hence line 6(c)iii iterates, at most,

∆ · f times.

We note that decreasing the key of an item in the Fibonacci heap (in line 6(c)iii)

takes constant time (amortized).

Therefore, by the above statements, the complexity of GREEDY-KSEP-OPT2 is

O(|O| · (∆ ·f +∆ ·f 2)+ |O| · ln(|O|)+∆ ·f · |O|+∆ · |O|) and the statement follows.

CLAIM 2: GREEDY-KSEP-OPT2 has an approximation ratio of 1 + ln(f).

Follows directly from Proposition 39.

517

C.1.20 Proof of Proposition 41

GREEDY-KSEP-OPT2 returns a |E|-sized (α, β) explanation for O.

GREEDY-KSEP-OPT2 returns a IMPOSSIBLE if there is no explanation for O.

Proof. Mirrors that of Proposition 40.

518

Appendix D

Appendix for Chapter 5

D.1 Proofs

D.1.1 Proof of Lemma 17

Given observations O and the set of regions RO, then a region r ∈ RO sub-

explains an observation o ∈ O iff is super-explain o.

Proof. CLAIM 1: Any point in a region r ∈ RO is either within distance [α, β] or

outside the distance [α, β] from each o ∈ O.

As RO is created by drawing circles of radii α, β around each observation, the state-

ment follows by the definition of RO.

CLAIM 2: (⇐) There is no r ∈ RO that super-explains some o ∈ O but does not

sub-explain the observation.

Suppose, BWOC, there is some r ∈ RO that super-explains some o ∈ O but does

not sub-explain it. Then, there must be at least one point in r that can be partnered

519

with O and at least one point in r that cannot be partnered with o. However, by

claim 1, this is not possible, hence a contradiction.

CLAIM 3: (⇒) There is no r ∈ RO that sub-explains some o ∈ O but does not

super-explain the observation.

Follows directly from Observation 5.2.1.

D.1.2 Proof of Theorem 24

I-REP ≤p AC-Sup-REP.

AC-Sup-REP ≤p Sup-REP.

Proof. CLAIM 1: I-REP ≤p AC-Sup-REP.

Set up an instance of AC-Sup-REP with the input for I-REP plus the parameter

A = π · (β2 − α2). For direction ⇐, note that a solution to this instance of I-REP

is also a solution to AC-Sup-REP, as any region that sub-explain an observation

also super-explains it for the set of region RO (Lemma 17) and the fact that, by

definition, all regions in the set RO must have an area less than A. For direction⇒,

we know that only regions that can be partnered with observations are considered

by the area restriction, and by Lemma 17, the all regions in the solution are also

super-explanations for their corresponding observation.

CLAIM 2: AC-Sup-REP ≤p Sup-REP.

Consider the setR from AC-Sup-REP and let setR′ = {r ∈ R| the area of r is less than or equal to

Set up an instance of Sup-REP where the set of regions is R′ and the rest is the

520

input from AC-Sup-REP. or direction⇐, it is obvious that any solution to AC-Sup-

REP is also a solution to Sup-REP, as R − R′ are all regions that cannot possibly

be in the solution to the instance of AC-Sup-REP. Going the other direction (⇒),

we observe that by the definition of R′, all regions in the result of the instance of

Sup-REP meet all the requirements of the AC-Sup-REP problem.

D.1.3 Proof of Theorem 25

I-REP is NP-Complete.

Proof. CLAIM 1: I-REP is in-NP.

Given a set of regions, R′ ⊆ RO we can easily check in polynomial time that for each

o ∈ O there is an r ∈ R that is a partner for o. Simply check if each r falls within

the distance [α, β] for a given o ∈ O. The operation will take time O(|O| · |R′|) -

which is polynomial.

CLAIM 2: I-REP is strongly NP-hard.

We show that for an instance of the known strongly NP-complete problem, circle

covering (CC), CC ≤p I −REP by the following transformation.

• Set S = S ′

• Set O = P

• Set β = β′

• Set α = 0

521

• Set k = k′

This transformation obviously takes polynomial time. We prove correctness with

the following two sub-claims.

CLAIM 2.1: If there is a k-sized solution R′ for I-REP, then there is a corresponding

k′-sized solution for CC.

Consider some r ∈ R′. Let O′ be the subset of O (also of P) such that all points in

O′ are partnered with r. By definition, all points enclosed by r are of distance β or

less away from each point in O′. Hence, we can pick some point enclosed by r and

we have the center of a circle that covers all elements in O′. The statement follows.

CLAIM 2.2: If there is a k′-sized solution Q for CC, then there is a corresponding

k-sized set solution for I-REP.

Consider some point q ∈ Q. Let P ′ be the subset of P (also of O) such that all

points in P ′ are of distance β′ from q. As p is within β of an element of O, it is in

some region of the set RO. Hence, the region that contains p is a partner region for

all elements of P ′. The statement follows.

D.1.4 Proof of Corollary 8

I-REP-MC cannot be approximated by a fully polynomial-time approximation

scheme (FPTAS) unless P == NP .

Proof. Follows directly from [125] and Theorem 25.

522

D.1.5 Proof of Corollary 9

1. Sub-REP and Sup-REP are NP-Complete.

2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and

I-REP-ME are NP-Hard.

3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unless

P == NP .

Proof. All follow directly from Lemma 17, Theorem 25, and Corollary 8.

D.1.6 Proof of Theorem 26

Sub/Sup-REP-MC ≤p Set-Cover

Sub/Sup-REP-ME ≤p Max-k-Cover

Proof. CLAIM 1: Sub/Sup-REP-MC ≤p Set-Cover

Consider the instance of set-cover 〈O,
⋃

r∈R{Or}〉 obtained from

REDUCE-TO-COVERING(O, R).

Let H′ be a solution to this instance of set-cover. (⇐) If R′ is a solution to the

instance of Sub/Sup-REP-MC, then the set
⋃

r∈R′{Or} is a solution to set-cover.

Obviously, it must cover all elements of O and a smaller solution to set-cover would

indicate a smallerR′ – a contradiction. (⇒) Given setH′, letR′′ ≡ {r ∈ R|Or ∈ H′}.

Obviously, R′′ provides a partner for all observations in O. Further, a smaller solu-

tion to Sub/Sup-REP-MC would indicate a smaller H′ is possible – also a contra-

diction.

523

CLAIM 2: Sub/Sup-REP-ME ≤p Max-k-Cover

Consider the instance of max-k-cover 〈O,
⋃

r∈R{Or}, k〉 obtained from REDUCE-TO-

COVERING(O, R, k). Let H′ be a solution to this instance of max-k-cover. (⇐) If

R′ is a solution to the instance of Sub/Sup-REP-ME, then the set
⋃

r∈R′{Or} is a

solution to max-k-cover. Obviously, both have the same cardinality requirement.

Further, if there is a solution to max-k-cover that covers more elements in O, this

would imply a set of regions that can be partnered with more observations in O

- which would be a contradiction. (⇒) Given set H′, let R′′ ≡ {r ∈ R|Or ∈

H′}. Obviously, R′′ meets the cardinality requirement of k. Further, a solution to

Sub/Sup-REP-ME that allows more observations in O to be partnered with a region

would indicate a more optimal solution to max-k-cover – a contradiction.

D.1.7 Proof of Proposition 42

REDUCE-TO-COVERING requires O(|O| · |R|) time.

Proof. Follows directly from Line 1.

D.1.8 Proof of Proposition 43

GREEDY-REP-ME requires O(k · |R| · f) time and returns a solution whose

where the number of observations in O that have a partner region in R′ is within a

factor
(

e
e−1

)
of optimal.

Proof. The complexity proof mirrors that of Proposition 44 while the approximation

524

guarantee follows directly from the results of [127].

D.1.9 Proof of Proposition 44

GREEDY-REP-ME requires O(|O| · |R| · f) time and returns a solution whose

cardinality is within a factor of 1 + ln(f) of optimal.

Proof. The outer loop of the algorithm iterates no more than |O| times, while the

inner loop iterates no more than |R| times. The time to compare the number of

elements in a set Or is O(f).

The approximation factor of 1 + ln(f) follows directly from [136].

D.1.10 Proof of Proposition 45

GREEDY-REP-MC2 runs in O(∆ · f 2 · |O| + |O| · ln(|O|) time and returns a

solution whose cardinality is within a factor of 1 + ln(f) of optimal.

Proof. CLAIM 1: GREEDY-REP-MC2 runs in O(∆ · f 2 · |O|+ |O| · ln(|O|) time.

The pre-processing in lines 1-4 can be accomplished in O(∆ + ∆ · f) as the size of

each GRPo is bound by ∆ and the size of each RELo is bound by ∆ · f .

The outer loop of the algorithm iterates O times. In each loop, the selection

of the minimal element (line 5a) can be accomplished in constant time by use of a

Fibonacci heap [49] (i.e. storing observations in O′ organized by the value keyo).

The next lines of the inner loop (lines 5b-5c) can be accomplished in O(∆) time.

525

The next line, line 5d requires O(ln(|O|) time per observation using a Fibonacci

heap, as observations partnered with . However, we can be assured that, during

the entire run of the algorithm, this operation is only performed |O| times (hence,

we add an |O| · ln(|O|)). The final loop at line 5e occurs after the inner loop and

iterates, at most f times. At each iteration, it considers, at most f · ∆ elements.

Hence, the overall complexity is:

O(|O| ·
(
∆+ f 2 ·∆

)
+ |O| · ln(|O|))

The statement of the claim follows.

CLAIM 2: GREEDY-REP-MC2 returns a solution whose cardinality is within a fac-

tor of 1 + ln(f) of optimal.

The proof of this claim resembles the approximation proof of the standard greedy

algorithm for set-cover (i.e. see [28] page 1036).

Let r1, . . . , ri, . . . , rn be the elements of R′, the solution to GREEDY-REP-MC2,

numbered by the order in which they were selected. For each iteration (of the outer

loop), let set COVi be the subset of observations that are partnered for the first

time with region ri. Note that each element of O is in exactly one COVi. For each

oj ∈ O, we define costj to be 1
|COVi| where oj ∈ COVi. Let R

∗ be an optimal solution

to the instance of Sub/Sup-REP-MC.

CLAIM 2.1:
∑

ri∈R∗

∑

oj∈Ori
costj ≥ |R|

526

By the definition of costj, exactly one unit of cost is assigned every time a region is

picked for the solution R. Hence,

COST (R) = |R| =
∑

oj∈O
costj

The statement of the claim follows.

CLAIM 2.2: For some region r ∈ R,
∑

oj∈Or
costj ≤ 1 + ln(f).

Let P be the subset of O that can be partners with p. At each iteration i of the

algorithm, let uncovi be the number elements in P that do not have a partner.

Let last be the smallest number such that uncovlast = 0. Let RP = {ri ∈ R|(i ≤

last) ∧ (COVi ∩ P 6≡ ∅)}. From here on, we shall renumber each element in RP

as r1, . . . , r|RP | by the order they are picked in the algorithm (i.e. if an element is

picked that cannot partner with anything in P , we ignore it and continue numbering

with the next available number, we will COVi and the iterations of the algorithm

as well, but do not re-define the set based on the new numbering).

We note that for each iteration i, the number of items in P that are partnered is

equal to uncovi−1 − uncovi. Hence,

∑

oj∈Or

costj =
last∑

i=1

uncovi−1 − uncovi
|COVi|

At each iteration of the algorithm, let PCOVi be the subset of observations that are

covered for the first time if region p is picked instead of region ri. We note, that for

all iterations in 1, . . . , last, the region p is considered by the algorithm as one of its

options for greedy selection. Therefore, as p is not chosen, we know that |COVi| ≤

527

|PCOVi|. Also, by the definition of ucovi, we know that |PCOVi| = ucovi−1. This

gives us:

∑

oj∈Or

costj ≤
last∑

i=1

uncovi−1 − uncovi
ucovi−1

Using the algebraic manipulations of [28] (page 1037), we get the following:

∑

oj∈Or

costj ≤ H|P |

Where Hj is the jth harmonic number. By definition of the symbol f (maximum

number of observations supported by a single partner), we obtain the statement of

the claim.

(Proof of Claim 2): Combining claims 1-2, we get |R| ≤ ∑

ri∈R∗(1 + ln(f)), which

gives us the statement.

D.1.11 Proof of Proposition 10

I-REP-MC-Z ≤p CC

Proof. Follows directly from Theorem 25.

D.1.12 Proof of Proposition 46

The algorithm, FIND-REGION runs O(|O|) time, and region r (associated with

the returned set Or) encloses p.

528

Proof. PART 1: FIND-REGION consists of a single loop that iterates |O| times.

PART 2: Suppose, the region enclosing point p has a different label. Then, there is

either a bit in label that is incorrectly set to 1 or 0. As only observations which are

≤ from β have the associated bit position set to 1, then all 1 bits are correct. As

we exhaustively consider all observations, the 0 bits are correct. Hence, we have a

contradiction.

D.1.13 Proof of Proposition 11

An α-approximation algorithm for CC is an α-approximation for KREP.

Proof. Follows directly from Theorem 25.

D.1.14 Proof of Proposition 48

REGION-GEN has a time complexity Θ(|O| · f · π·β2

g2
).

Proof. For any given observation, the number of points in the grid that can be in

a partnered region is π·β2−α2

g2
. Hence, the first loop of the algorithm and the size of

L are both bounded by |O| · π·β2

g2
. We note that the lookup and insert operations

for the hash table T do not affect the average-case complexity - we assume these

operations take constant time based on [28], hence the statement follows.

529

Appendix E

Appendix for Chapter 6

E.1 MCA where the Solution is an Explanation

In Section 6.5 we study the MCA problem, but do not require the solution

to be an explanation. In fact, it may often not be an explanation. Consider the

following example.

Example E.1.1. Suppose that the drug-enforcement agents from Example 6.5.1

consider the set C ≡ {p45, p48, p50}. Note that p45 can be partnered with observations

o1, o2, p48 can be partnered with observations o3, o5 and p50 can be partnered with

observation o5. Hence, there is no element in C that can be partnered with o4 – which

means it is not an explanation. However, let us compute the expected agent benefit.

Computing the reward (wrt crf) for each explanation function from Example 6.3.3,

we get the following:

crf(dist)(ex fcn1(O, 3), {p45, p48, p50}) = 1

crf(dist)(ex fcn2(O, 3), {p45, p48, p50}) = 1

530

Hence, the expected agent benefit in this case must be 1 – which is optimal (expected

agent benefit must be in the range [0, 1]). Therefore, we have shown that we can

have an optimal solution to MCA that is not an explanation in our example.

We can also construct an instance of the MCA problem where there is no

optimal solution that is also explaining. Stepping away from our running example

for a moment consider the following case of a geospatial abduction problem. Consider

observations o1, o2. Let p1, p2, p3, p4, p5, p6 be the only feasible points, the first two

being only partnered with o1 and the rest being only partnered with o2. Consider an

adversary who will pick one of the following explanations as a strategy with uniform

probability:

• {p1, p3}

• {p1, p4}

• {p2, p5}

• {p2, p6}

Let us consider the reward function crf with dist = 0 and B = 2. Therefore, the

maximal counter-adversary strategy would be the set {p1, p2} - this would give an

expected agent benefit of 0.5. However, this set is not an explanation - observations

o2 is not covered. If we require the counter-adversary strategy to be an explanation,

the set {p1, p3} would be optimal. However, the expected agent benefit would only be

0.375 in this case.

531

Hence, we shall also consider a the special case of a maximal counter-adversary

strategy that is also an explanation.

Definition 115 (Maximal Explaining Counter-Adversary Strategy). Given a set of

observations, O, reward function rf and explanation function distribution exfd (of

explanation for O), a maximal explaining counter-adversary strategy, C, an

explanation for O such that EXB(rf)(C, exfd) is maximized.

Again, for the case in which the reward function is monotonic, we shall include

an cardinality requirement B for the set C.

We formalize the optimization problem associated with finding a maximal ex-

plaining counter-adversary strategy.

MCA-Exp

INPUT: Space S, feasibility predicate, feas, real numbers α, β, set of observations,

O, natural numbers k,B, reward function rf, and explanation function distribution

exfd.

OUTPUT: The maximal explaining counter-adversary strategy, C.

The below corollary shows us that MCA-Exp is NP-hard.

Corollary 18. MCA-Exp is NP-hard.

We note that the proof of the above corollary follows directly from the result

of Theorem 33. The associated problem is in the complexity class NP – this follows

532

trivially from the membership results for the problem of finding an explanation and

the MCA problem.

An Exact Algorithm For MCA-Exp. A naive, exact, and straightforward ap-

proach to the MCA-Exp problem would simply consider all subsets of L pf car-

dinality ≤ kC and pick the one which maximizes the expected agent benefit and is

an explanation. This is the same as the naive approach we presented for MCA.

Obviously, this approach has a complexity O(
(|L|
kC

)
) - and is not practical. This is

unsurprising as we showed this to be an NP-complete problem.

The following theorem shows that this problem reduces to the maximization

of a submodular function over a uniform matroid - which can imply a practical

algorithm to address this problem.

Theorem 60. MCA-Exp reduces in polynomial time to the maximization of a

submodular function wrt a uniform matroid.

Proof Sketch. Given an instance of MCA-Exp as follows:

Space S, feasibility predicate, feas, real numbers α, β, set of observations, O, natural

numbers k, kC, reward function rf, and explanation function distribution exfd, we

construct an instance of the maximization of a submodular function as follows (L is

the set of all possible partners).

1. Let M be a uniform matroid consisting of all subsets of L of cardinality ≤ kC

2. Let function fsubmod : 2
L → ℜ be defined as follows:

fsubmod(C) = EXB(rf)(C, exfd)+2·|{o ∈ O|∃p ∈ C s.t. (d(o, p) ∈ [α, β])∧(feas(p))}|

533

In the remainder of the proof proceeds as follows. First, we show that fsubmod(C)

is submodular. Then, we prove that if there is a solution to MCA-Exp then the

submodular maximization problem returns a value greater than or equal to 2 · |O|.

Then we show that if the submodular maximization problem returns a value greater

than or equal to 2 · |O| then there is a solution to MCA-Exp. Finally, we complete

the proof by showing that if MCA-Exp returns a value b, then the submodular max-

imization problem returns a value b+2 · |O| and that if the maximization of fsubmod

returns value b, then MCA-Exp returns a value b− 2 · |O|. �

Although, due to the construction of Theorem 60 an 1
α
approximation of fsubmod

does not necessarily yield an 1
α
approximation of MCA-Exp, we still can apply the

local search or greedy algorithms as a heuristic by simply replacing calls to the

function EXB(rf) with calls to fsubmod.

E.2 Proofs

E.2.1 Proof of Lemma 19

#GCD is #P-complete and there is no FPRAS for #GCD unless NP == RP.

Proof. CLAIM 1: #GCD is in #P.

Clearly, as the total number of “yes” answers is bounded by 2K , this problem is in

the complexity class #P.

CLAIM 2: #GCD is #P-hard.

534

We have to show a parsimonious or weakly parsimonious reduction from a known

#P -complete problem. In [71], the authors show that the counting version of the

dominating set problem (#DOMSET) is #P-complete based on a weakly parsimo-

nious reduciton from the counting version of vertex cover. It is important to note

that the consruction used in this proof uses a graph with a maximum degree of three.

This shows that the counting version of the dominating set problem on a graph with

a maximum degree of three is also #P-hard as well. In [123], the authors show a

parsimonious reduction from the dominating set problem (with maximum degree of

three) to GCD. Hence, as the reduction is parsimonuous, and the associated counting

probelm is #P -hard, then the statement of the claim follows.

CLAIM 3: There is no FPRAS for #GCD unless NP == RP.

By Leamm 19 and [71], conisder the following chain of polynomial-time parsimonious

or weakly parsimonious reductions:

#SAT → #3CNFSAT → #Pl3CNFSAT

#Pl3CNFSAT → #Pl1Ex3SAT → #Pl1Ex3MonoSAT

#Pl1Ex3MonoSAT → #PlV C → #Pl3DS → #GCD

Hence, as all of the reductions are PTIME, parsimonious or weakly parsimonious,

and planarity preserving (for planar problems), by the results of [38], the statement

follows.

535

E.2.2 Proof of Theorem 27

The counting version of k-SEP is #P-Complete and has no FPRAS unless

NP=RP.

Proof. Follows directly from the fact that the number of solutions is bounded by 2k

(memebrship) and hardness follows directly from the parsimonious reduction shown

in [158] and Lemma 19.

E.2.3 Proof of Proposition 49

If a reward function meets axioms 1 and 2, then then the incremental increase

obtained by adding a new element decreases on a superset. Formally:

If C ⊆ C ′, and point p ∈ S s.t. p /∈ C and p /∈ C ′, then rf(Egt, C ∪ {p})− rf(Egt, C) ≥

rf(Egt, C ′ ∪ {p})− rf(Egt, C ′).

Proof. Suppose, BWOC, for C ⊆ C ′, and point p ∈ S s.t. p /∈ C and p /∈ C ′, then

rf(Egt, C ∪ {p})− rf(Egt, C) < rf(Egt, C ′ ∪ {p})− rf(Egt, C ′)

We know that C ′ ∪ {p} ≡ C ′ ∪ (C ∪ {p}). Hence:

rf(Egt, C ∪ {p})− rf(Egt, C) < rf(Egt, C ′ ∪ (C ∪ {p}))− rf(Egt, C ′)

Also, we know that C ≡ (C ∪ {p}) ∩ C ′, so we get:

rf(Egt, C ∪ {p})− rf(Egt, (C ∪ {p}) ∩ C ′) < rf(Egt, C ′ ∪ (C ∪ {p}))− rf(Egt, C ′)

Which leads to:

rf(Egt, C ′) + rf(Egt, C ∪ {p})− rf(Egt, (C ∪ {p}) ∩ C ′) < rf(Egt, C ′ ∪ (C ∪ {p}))

536

Which is a clear violation of Axiom 2, hence we have a contradiction.

E.2.4 Proof of Proposition 50

prf is a valid reward function.

Proof. In this proof, we define pt1(Egt, C), pt2(Egt, C) as follows:

pt1(Egt, C) =
|{p ∈ Egt|∃p′ ∈ C s.t. d(p, p′) ≤ dist}|

2 · |Egt|

pt2(Egt, C) =
|{p ∈ C| 6 ∃p′ ∈ Egt s.t. d(p, p′) ≤ dist}|

2 · |S|

Hence, prf(dist)(Egt, C) = 0.5 + pt1(Egt, C) − pt2(Egt, C). As we know the maxi-

mum value of both pt1(Egt, C), pt2(Egt, C) is 0.5, we know that prf is in [0, 1]. As

pt1(Egt, Egt) = 0.5 and pt2(Egt, Egt) = 0, then Axiom 1 is also satisfied. Con-

sider crf (Definition 62). Later, in Proposition 51, we show that this function

is submodular, meeting Axiom 2. By Definitions 62, we can easily show that

pt1(Egt, C) = 0.5 · crf(dist)(Egt, C). As pt1(Egt, C) is a positive linear combination

of submodular functions, it is also submodular. Now consider pt2(Egt, C). Any ele-

ment added to any set C has the same effect – it either lowers the value by 1
2·|S| or

does not affect it – hence it is trivially submodular. Therefore, it follows that prf

is submodular as it is a positive-linear combination of submodular functions.

E.2.5 Proof of Proposition 51

crf is a valid, monotonic reward function.

537

Proof. CLAIM 1: crf satisfies reward Axiom 1.

Clearly, if C ≡ Egt, then the numerator is |Egt|, which equals the denominator.

CLAIM 2: crf satisfies reward function Axiom 2.

Suppose, BWOC, there exists explanations C, C ′ s.t. C ∪ C ′ is an explanation

and crf(dist)(Egt, C ∪ C ′) > crf(dist)(Egt, C) + rf(Egt, C ′) − rf(Egt, C ∩ C ′). Therefore,

card({p ∈ Egt|∃p′ ∈ C ∪ C ′ s.t. d(p, p′) ≤ dist}) is greater than card({p ∈ Egt|∃p′ ∈

C s.t. d(p, p′) ≤ dist}) + card({p ∈ Egt|∃p′ ∈ C ′ s.t. d(p, p′) ≤ dist}) − card({p ∈

Egt|∃p′ ∈ C ∩ C ′ s.t. d(p, p′) ≤ dist}). We have a contradiction; indeed, by basic set

theory we see that both sides of this strict inequality are actually equal.

CLAIM 3: crf is zero-starting.

Clearly, if C ≡ ∅, the numerator must be 0, the statement follows.

CLAIM 4: crf is monotonic.

Suppose, BWOC, there exists C ⊆ C ′ s.t. rf(Egt, C) > rf(Egt, C ′). Then card({p ∈

Egt|∃p′ ∈ C s.t. d(p, p′) ≤ dist}) > card({p ∈ Egt|∃p′ ∈ C ′ s.t. d(p, p′) ≤ dist}).

Clearly, this is not possible as C ⊆ C ′ and we have a contradiction.

E.2.6 Proof of Proposition 52

frf is a valid, monotonic reward function.

Proof. CLAIM 1: frf satisfies all reward function axioms (i.e., is valid).

538

Bounds We must show rf(Egt, C) ∈ [0, 1]. For each point p ∈ Egt, let lCp =

minp′∈C d(p, p′)2. By the definition of the distance function d, we know 0 ≤ lCp <

∞. Now let function f(lCp) =
1

|Egt|+minp′∈C d(p,p′)2
= 1

|Egt|+lCp
. Since 0 ≤ lCp < ∞,

we see 0 < f(lCp) ≤ 1
|Egt| . Clearly, the summation over |Egt| points p ∈ Egt yields

an answer in
(

0, |Egt| · 1
|Egt|

]

= (0, 1] ⊂ [0, 1].

Axiom 1 If C ≡ Egt, for each p ∈ Egt, there exists p′ ∈ C s.t. d(p, p′) = 0. Hence,

by the definition of frf, frf(Egt, C) = 1 in this case.

Axiom 2 We must show that our version of the triangle inequality holds, that is

rf(Egt, C ∪C ′) ≤ rf(Egt, C)+rf(Egt, C ′)−rf(Egt, C ∩C ′). From above, rf(Egt, C ∪

C ′) = ∑

p∈Egt f(l
C∪C′
p). For each point p ∈ Egt, let p∗ = argminp′∈C∪C′d(p, p

′)2.

Without loss of generality, assume p∗ ∈ C, then lCp = lC∪C
′

p thus f(lCp) = f(lC∪C
′

p).

Since p∗ ∈ C, we have p∗ ∈ C ∩ C ′ or p∗ ∈ C ∩ C̄ ′.

If p∗ ∈ C ∩ C ′: Then f(lC∩C
′

p) = f(lCp). However, since p∗ ∈ C ′ we have, as

above, f(lC
′

p) = f(lCp) = f(lC∪C
′

p). Thus

∑

p∈Egt

[

f(lCp) + f(lC
′

p)− f(lC∩C
′

p)
]

(E.1)

=
∑

p∈Egt

[

f(lC∪C
′

p) + f(lC∪C
′

p)− f(lC∪C
′

p)
]

(E.2)

=
∑

p∈Egt
f(lC∪C

′

p) (E.3)

So rf(Egt, C ∪ C ′) = rf(Egt, C) + rf(Egt, C ′)− rf(Egt, C ∩ C ′) for this case.

If p∗ ∈ C ∩ C̄ ′: Then, from above, we are still guaranteed that f(lCp) = f(lC∪C
′

p),

thus rf(Egt, C ∪ C ′) = rf(Egt, C). This reduces our problem to showing

539

rf(Egt, C ′)− rf(Egt, C ∩C ′) ≥ 0. However, rf is monotonic (shown below);

since C ∩ C ′ ⊆ C ′, then rf(Egt, C ∩ C ′) ≤ rf(Egt, C ′) and our claim holds.

A similar proof holds for the case p∗ ∈ C ′.

CLAIM 2: frf is monotonic and zero-starting. The property of zero-starting follows

directly from the definition of frf.

By way of contradiction, assume there is some C ⊂ C ′ s.t. rf(Egt, C) >

rf(Egt, C ′). Then, as above,
∑

p∈Egt f(l
C
p) >

∑

p∈Egt f(l
C′
p). However, since C ⊂ C ′, we

have lCp ≥ lC
′

p for each p ∈ Egt. Similarly, f(lCp) ≤ f(lC
′

p) and thus
∑

p∈Egt f(l
C
p) ≤

∑

p∈Egt f(l
C′
p), which is our contradiction.

E.2.7 Proof of Proposition 53

wrf is a valid, monotonic reward function.

Proof. CLAIM 1: wrf satisfies all reward function axioms (i.e., is valid).

Domain We must show wrf(W,dist)(Egt, C) ∈ [0, 1]. As (C ∩ Egt) ⊆ Egt and W only

returns positive values, this function can only return values in [0, 1].

Axiom 1 If C ≡ Egt, then for each p ∈ Egt, there exists p′ ∈ C s.t. d(p, p′) = 0.

This causes the numerator to equal
∑

p∈CW (p). As C ≡ Egt, the is equivalent

to the denominator, so wrf(Egt, C) = 1 in this case.

Axiom 2 We must show the inequality wrf(W,dist)(Egt, C∪C ′) ≤ wrf(W,dist)(Egt, C)+

wrf(W,dist)(Egt, C ′) − wrf(W,dist)(Egt, C ∩ C ′). This proof is similar to the proof

of Axiom 2 in Proposition 51.

540

CLAIM 2: wrf is monotonic and zero-starting.

The property of zero-starting if shown by when C ≡ ∅, the numerator must be 0,

hence, wrf(Egt, ∅) = 0. By way of contradiction, assume there is some C ⊂ C ′ s.t.

wrf(W,dist)(Egt, C) > wrf(W,dist)(Egt, C ′). Then
∑

{p∈Egt|∃p′∈C s.t. d(p,p′)≤dist}W (p)
∑

p′∈Egt W (p′)
>

∑

{p∈Egt|∃p′∈C′ s.t. d(p,p′)≤dist}W (p)
∑

p′∈Egt W (p′)

Since C ⊂ C ′, we have

∑

{p∈Egt|∃p′∈C s.t. d(p,p′)≤dist}W (p)
∑

p′∈Egt W (p′)
>

∑

{p∈Egt|∃p′∈C s.t. d(p,p′)≤dist}W (p)
∑

p′∈Egt W (p′)
+

∑

{p∈E ′gt|∃p′∈(C′∩C) s.t. d(p,p′)≤dist}W (p)
∑

p′∈Egt W (p′)

Where E ′gt ≡ {p ∈ Egt| 6 ∃p′ ∈ C s.t. d(p, p′) ≤ dist}. Hence,

0 > wrf(W,dist)(E ′gt, C ′ ∩ C)

Which violates the first axiom, which was shown to apply to wrf(W,dist) by Claim

1—a contradiction.

E.2.8 Proof of Theorem 28

OAS is NP-hard.

Proof. CONSTRUCTION: Given an input 〈P, b,K〉 of GCD, we create an instance

of OAS in PTIME as follows:

• Set S to be a grid large enough that all points in P are also points in S.

• feas(p) = TRUE iff p ∈ P

541

• α = 0, β = b, O ≡ P , k = |P |

• Let rf(E1, E2) = 1 if E1 ⊆ E2, and |E1|
|S| otherwise.

This satisfies reward axiom 1 as E1 ⊆ S, axiom 2 by definition, and the satisfiaction

of axiom 3, along with montoniticity (wrt the second argument) can easily be

shown by the fact that explanations that are not supersets of E1 (lets callthem

E2, E3) that rf(E1, E2) = rf(E1, E3).

• Let ex fcn(O, num) that returns set O when num = |O| and is otherwise unde-

fined. Let exfd(ex fcn) = 1 and 0 otherwise.

CLAIM 1: If Egt as returned by OAS has a cardinality of ≤ K, then the answer to

GCD is “yes”.

Suppose, BWOC, that card(Egt) ≤ K and GCD answers “no.” This is an obvious

contradiction as Egt is a subset of P (by how feasibility was defined) where all ele-

ments of P are within a radius of b and Egt also meets the cardinlality requirement

of GCD.

CLAIM 2: If the answer to GCD is “yes” then Egt as returned by OAS has a

cardinality of less than or equal to K.

Suppose, BWOC, GCD returns “yes” but Egt returned by OAS has a cardinaity

greater than K. By the result of GCD, there exists a set P ′ of cardinality K s.t.

each point in P (hence O) is of a distance ≤ β from a point in P ′. This, along with

the definitoin of feasibility, make P ′ a valid K-explanation for O. We note that

ex fcn(P, |P |) = P and that exfd assigns this reward function a probability of one.

542

Hence, the expected adversarial detriment for any explanation E ′gt is rf(E ′gt, P). As

P ′ is an explanation of cardinality less than Egt, it follows that rf(P ′, P) < rf(Egt, P)

– which is a contradiction.

E.2.9 Proof of Theorem 29

If the reward function is computable in PTIME, then OAS-DEC is NP-

complete.

Proof. NP-harndness follows from Theorem 28. To show NP-completeness, a witness

simply consists of Egt. We note that, as the reward function is computable in PTIME,

finding the expected adversarial detriment for Egt and comparing it to R can also

be accomplished in PTIME.

E.2.10 Proof of Theorem 30

Finding the set of all adversarial optimal strategies that provide a “yes” answer

to OAS-DEC is #P-hard.

Proof. Let us assume that we know one optimal adversarial strategy and can com-

pute the expected adversarial detriment from such a set – let us call this value D.

Given an instance of GCD, we can create an instance of OAS-DEC as in Theo-

rem 28, where we set R = D. Suppose we have an algorithm that produces all

adversarial strategies. If we iterate through all strategies in this set, and count

all strategies with a cardinality ≤ K (the K from the instance of GCD), we have

543

counted all solutions to GCD – thereby solving the counting version of GCD, a #P-

hard problem that is difficult to approximate by Lemma 19.

E.2.11 Proof of Proposition 55

Setting up the wrf/frf Constraints can be accomplished in O(|EF| ·k · |O| ·∆)

time (provided the weight function W can be computed in constant time).

Proof. First, we must run POSS-PART - which reuqires O(|O| ·∆) operations. This

results in a list of size O(|O| · ∆). For each explanation function, ex fcn, we must

compare every element in L with each element of ex fcn(O) - which would require

O(k·|O|·∆) time. As there are |EF| explanation functions, the statement follows.

E.2.12 Proof of Proposition 56

The wrf, frf Constraints have O(|O| ·∆) variables and 1 + |O| constraints.

Proof. As list L is of size O(|O| · ∆), and there is one variable for every element

of L - there are O(|O| ·∆) variables. As there is a constraint for each observation,

plus a constraint to ensure the cardinality requirement (k) is met, there are 1 + |O|

constraints.

E.2.13 Proof of Proposition 54

Given wrf or frf Constraints:

1. Given set Egt ≡ {p1, . . . , pn} as a solution to OAS with wrf(frf), if variables

X1, . . . , Xn - corresponding with elements in Egt are set to 1 - and the rest

544

of the variables are set to 0, the objective function of the constraints will be

minimized.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to

set Egt, then Egt is a solution to OAS with wrf(frf).

Proof. PART 1: Suppose BWOC, that there is a set of variables X ′
1, . . . , X

′
m that

is a solution to the constraints s.t. the value of the objective function is less than

if variables X1, . . . , Xn were used. Then, there are points p′1, . . . , p
′
m in set L that

correspond with the Xi’s s.t. they cover all observations and that the expected

adversarial detriment is minimized. Clearly, this is a contradiction.

PART 2: Suppose BWOC, that there is a set of points E ′gt s.t. the expected adver-

sarial detriment is less than Egt. Clearly, Egt is a valid explanation that minimizes

the expected adversarial detriment by the definiton of the constraints - hence a

contradiction.

E.2.14 Proof of Proposition 57

The wrf/frf constraints can be transformed into a purely linear-integer form

in O(|O|2 ·∆) time.

Proof. Obviously, in both sets of constraints, the denominator of the objective func-

tion is strictly positive and non-zero. Hence, we can directly apply the Charnes-

Cooper transformation [22] to obtain a purely integer-linear form. This transforma-

tion requires O(number of variables×number of constraints). Hence, the O(|O|2 ·∆)

time complexity of the operation follows immediately from Proposition 56.

545

E.2.15 Proof of Proposition 58

Given the constraints of Definition 70 or Definition 71, if we consider the linear

program formed by setting all Xi variables to be in [0, 1], then the value returned by

the objective function will be a lower bound on the value returned by the objective

function for the mixed integer-linear constraints, and this value can be obtained in

O(|O|3.5 ·∆3.5) time.

Proof. CLAIM 1: The linear relaxation of Definition 70 or Definition 71 provides a

lower bound on the objective function value for the full integer-linear constraints.

As an optimal value returned by the integer-linear constraints would also be a solu-

tion, optimal wrt minimality, for the linear relaxation, the statement follows.

CLAIM 2: The lower bound can be obtained in O(|L|3.5) time.

As there is a variable for each element of L, the size of L is O(|O| ·∆), and the claim

follows immediately from the result of [79].

E.2.16 Proof of Porposition 59

Solving Definition 70 or Definition 71, where for some subset L′ ⊂ L, every

variable Xi associated with some pi ∈ L′ is set to 0, the resulting solution will be

an upper bound on the objective function for the constraints solved on the full set

of variables.

Proof. Suppose, BWOC, that the solution for the objective function on the reduced

MILP would be less than the actual MILP. Let X1, . . . , Xn be the variables set to

1 for the reduced MILP in this scenario. We note, that setting the same variables

546

to the full MILP would also be a solution, and could not possibly be less than a

minimal solution – hence a contradiction.

E.2.17 Proof of Theorem 31

If Egt is an optimal adversarial strategy, there exists a core explanation Ecore ⊆

Egt.

Proof. CLAIM 1: For any explanation E , there is an explanation E ′ ⊆ E s.t. there

are no two elements p, p′ ∈ E ′ such that ∀o ∈ O s.t. o, p are partners, then o, p′ are

also partners.

Consider E . If it does not already have the quality of claim 1, then by a simple

induction, we can remove elements until the resulting set does.

CLAIM 2: If Egt is an optimal adversarial stratgey, there is a no pj ∈ L − Egt s.t.

there exists pi ∈ Egt where constj < consti and ∀o ∈ O s.t. o, pi are partners, then

o, pj are also partners.

Suppose, BWOC, there is a pj ∈ L − Egt s.t. there exists pi ∈ Egt where constj <

consti and ∀o ∈ O s.t. o, pi are partners, then o, pj are also partners.. Consider the

set (Egt−{pi}∪pj. This set is still an explanation and EXR(rf)(exfd, (Egt−{pi}∪pj) <

EXR(rf)(exfd, Egt) – which would be a contradiction as Egt is an optimal adversarial

stratgey.

CLAIM 3: There is an explanation E ⊆ Egt s.t. condition 2 of Definition 72 holds.

Consider the set E ≡ {pi ∈ Egt| 6 ∃pj ∈ Egt s.t. (constj < consti) ∧

(∀o ∈ O s.t. o, pi are partners, then o, pj are also partners)}. Note that any obser-

547

vation coverd by a point in Egt − E is covered by a point in E – hence E is an

explanation. Further, by the definitoin of E and claim 2, this set meets condition 2

of Definition 72.

CLAIM 4: Set E from claim 3 is a core explanation.

By claim 3, E is a valid explanation and meets condition 2 of Definition 72. As it is

a valid explanation, by claim 1, it also meets condition 1 of Definition 72.

E.2.18 Proof of Theorem 32

If an oracle that for a given k, O, and exfd returns a core eplanation Ecore that

is guaranteed to be a subset of the optimal adversarial strategy associated with k,

O, and exfd, then we can find an optimal adversarial strategy in O(∆ · |O| · log(∆ ·

|O|) + (k − |Ecore|)2) time.

Proof. CLAIM 1: For explanation E and point pi ∈ L − E , EXR(rf)(exfd, E) >

EXR(rf)(exfd, E ∪ {pi}) iff consti < EXR(rf)(exfd, E).

If: Suppose consti < EXR(rf)(exfd, E). Let EXR(rf)(exfd, E) = a
b
. Hence, EXR(rf)(exfd, E∪

{pi}) = a+consti
b+1

. Suppose, BWOC, EXR(rf)(exfd, E) ≤ EXR(rf)(exfd, E ∪ {pi}). Then,

a
b
≤ a+consti

b+1
. This give us a · b+a ≤ a · b+ consti · b, which give us EXR(rf)(exfd, E) ≤

consti – a contradiction.

Only-if: Suppose EXR(rf)(exfd, E) > EXR(rf)(exfd, E∪{pi}). Let EXR(rf)(exfd, E) = a
b
.

Hence, a
b
> a+consti

b+1
- which proves the claim.

CLAIM 2: For explanation E and points pi, pj ∈ L−E where consti < constj., then

EXR(rf)(exfd, E ∪ {pi}) > EXR(rf)(exfd, E ∪ {pj}).

548

Straightforward algebera similiar to claim 1.

CLAIM 3: Algorithm BUILD-STRAT returns an optimal adversarial strategy.

We know that Ecore must be in the optimal adversarial strategy. Hence, we suppose

BWOC, that for the remaining elements, that ther eis a better set of elements - car-

dinality between 0 and k − |Ecore| s.t. the expected adversarial detriment is lower.

However, this contradicts claims 1-2.

CLAIM 4: Algorithm BUILD-STRAT runs in time O(∆ · |O| · log(∆ · |O|) + (k −

|Ecore|)2).

Sorting the set L− Ecore can be accomplished in O(∆ · |O| · log(∆ · |O|)) time. The

remainder can be accomplished in O((k − |Ecore|)2) time.

E.2.19 Proof of Lemma 20

Given an optimal adversarial strategy, Egt, if core explanation Ecore, of size δ,

is a subset of Egt, then Ecore is δ-core optimal.

Proof. Suppose BWOC, that Ecore was not δ-core optimal. Then, given a δ-core

optimal explanation E ′core, we could conclude that EXR(rf)(exfd, (Egt−Ecore)∪E ′core) <

EXR(rf)(exfd, (Egt) - which cannot be true as Egt is an optimal adversarial strategy –

hence a contradiction.

E.2.20 Proof of Lemma 21

1. If explanation E is δ-core optimal, then E ⊆ L∗∗.

549

2. If for some natural number δ, there exists an explation of size δ, then there

exists a δ-core optimal explanation E s.t. E ⊆ L∗.

Proof. Proof of Part 1:

Suppose, BWOC, exists explanation E s.t. for some δ, E is δ-core optimal and

E 6⊆ L∗∗. Then, there exists some pi ∈ E ∩ (L−L∗∗). By the definition of L∗∗, there

exists a pj ∈ L∗∗ s.t. constj < consti and ∀o ∈ O s.t. o, pi are partners, then o, pj

are also partners. Hence, the set (E − {pi}) ∪ {pj} is also an explanation of size δ

and has a lower expected detriment. From the definition of δ-core optimal, this is a

contradiction.

Proof of Part 2:

Suppose, BWOC, for some δ s.t. there is an explanation of this size, there does not

exist a δ-core optimal explanation E s.t. E ⊆ L∗. By the proof of part 1, we know

that an δ-core optimal explanation must be within L∗∗. Further, by the definition

of L∗, for any point pi ∈ L∗∗ − L∗, there exists point pj ∈ L∗ s.t. constj = consti

and ∀o ∈ O s.t. o, pi are partners, o, pj are also partners. Hence, for some δ-core

explanation that is not a subset of L∗, any pi ∈ E ∩ (L∗∗ − L∗) can be replace

with some pj ∈ L∗ - and the resulting set is still an explanation, optimal, and of

cardinality δ - a contradiction.

E.2.21 Proof of Proposition 60

The δ-core cosntraints require O(∆ · |O|) variables and 1 + |O| constraints.

550

Proof. Mirrors propositon 54.

E.2.22 Proof of Proposition 61

Given δ-core cosntraints:

1. Given set δ-core optimal explanation Ecore ≡ {p1, . . . , pn}, if variablesX1, . . . , Xn

- corresponding with elements in Egt are set to 1 - and the rest of the variables

are set to 0, the objective function of the constraints will be minimized.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to

set Ecore, then Ecore is a δ-core optimal soluton.

Proof. From Lemma 21, we know that for any δ s.t. there exists and explanation of

that size, there is a δ-core explanation E that is a subset of L∗. Hence, the rest of

the proof mirrors the proof of Proposition 54

E.2.23 Proof of Theorem 33

MCA is NP-hard.

Proof. Consider an instance of GCD consisting of set of points P , integer b, and

integer K. We construct an instance of MCA as follows:

CONSTRUCTION:

• Set S to be a grid large enough that all points in P are also points in S. We will

use M,N to denote the length and width of S.

• feas(p) = TRUE iff p ∈ P

551

• α = 0, and β =
√
M2 +N2, O ≡ P , k = K, and B = K

• Let rf(E1, E2) be crf where dist = b.

• Let functions ex fcn1, . . . , ex fcn|P | be explanation functions - each ex fcni corre-

sponding to a unique pi ∈ P . Let ex fcni(O, num) = {pi} for all num > 0.

Note that each pi is an explanation for the set P as it is of cardinality ≤ k,

is feasible, and is guarantted to be with [α, β] from all other points in P as

[α, β] = [0,
√
M2 +N2]

• Let exfd(ex fcni) =
1
|P | for all i.

CLAIM 1: crf(dist)({pi}, C) = 1 iff there exists p′ ∈ C s.t. a disc of radius b (note

b = dist) centered on p′ covers pi. crf
(dist)({pi}, C) = 0 iff there does not exist p′ ∈ C

s.t. a disc of radius b centered on p′ covers pi.

Follows directly from the definition of crf.

CLAIM 2: If the expected agent benefit is 1, then for all i, crf(dist)({pi}, C) = 1.

Suppose, BWOC, that the expected agent benefit is 1 and there exists some pi s.t.

crf(dist)({pi}, C) 6= 1. Then, for a singleton set, crf(dist)({pi}, C) = 0. Hence, for

the ex fcni associated with pi, crf
(dist)(ex fcni(O), C) = 0. So, by the definition of

expected agent benefit, it is not possible for the expected agent benefit to be 1 – a

contradiction.

CLAIM 3: If MCA returns an optimal counter-adversary strategy with an expected

expected agent benefit of 1, then GCD must also return “yes.”

552

Suppose, BWOC, MCA returns a stratgey with an expected agent benefit of 1 and

the corresponding of GCD returns “no.” Then there does not exist a K-sized cover

for the points in P . However, the set C is of cardinlaity K and by claims 1-2 covers

all points in P . Hence, a contradiction.

CLAIM 4: If GCD return ”yes” then MCA must return an optima counter-adversary

strategy with an expected agent benefit of 1.

Suppose, BWOC GCD returns “yes” and MCA reutrns returnsa an optimal strategy

with an expected agent benefit < 1. However, by the answer to GCD, there must

exist P ′ ⊆ P of cardinality k that is within distance b of all points in P . Hence, for

all i, crf(dist)({pi}, C) = 1 (as b = dist). So, the expected agent benefit must also

be 1. Hence, a contradiction.

Proof of theorem: Follows directly from claims 3-4.

E.2.24 Alternate Proof of Theorem 33

MCA is NP-hard (shown in the case where the reward function is not mono-

tonic and the agent has no budget).

Proof. Consider an instance of GCD consisting of set of points P , integer b, and

integer K. We construct an instance of MCA as follows:

CONSTRUCTION: The construction is the same for the first proof of Theorem 33

in Section E.2.23 (the encoding of GCD) except the reward function is krfdistk (Egt, C)

553

defined as follows

1

2
+
|{p ∈ Egt|∃p′ ∈ C s.t. d(p, p′) ≤ b}|

2 · |Egt|
if |C| ≤ k

1

2
+
|{p ∈ Egt|∃p′ ∈ C s.t. d(p, p′) ≤ b}|

2 · |Egt|
− |C| − k

2 · |S| otherwise

CLAIM 1: Given some k ≥ |A|, the function krf is a valid reward function.

Clearly, krfbk(A,A) = 1. To show submodularity (the second axiom), we must show

the following for C ⊆ C ′ and p /∈ C ′:

krfbk(A, C ∪ {p})− krfbk(A, C) ≥ krfbk(A, C ′ ∪ {p})− krfbk(A, C ′) (E.4)

There are six possible cases:

1. |C ′ ∪ {p}| ≤ k: submodularity follows from the submodularity of crf

2. |C ′ ∪ {p}| > k, |C ′| ≤ k, |C ∪ {p}| ≤ k: in this case, the left-hand side of

inequality E.4 is positive and the right-hand side is negative, submodularity

immediately follows

3. |C ′ ∪ {p}| > k, |C ′| > k, |C ∪ {p}| ≤ k: in this case, the left-hand side of

inequality E.4 is positive and the right-hand side is negative, submodularity

immediately follows

4. |C ′ ∪ {p}| > k, |C ′| ≤ k, |C ∪ {p}| > k, |C| ≤ k: this is the case where C ≡ C ′,

both sides of inequality E.4 are equal

554

5. |C ′ ∪ {p}| > k, |C ′| > k, |C ∪ {p}| > k, |C| ≤ k: the right-hand side of in-

equality E.4 either increases or decreases by, at most, the amount the left side

decreases by - the left hand side always decreases

6. |C ′ ∪ {p}| > k, |C ′| ≤ k, |C ∪ {p}| > k, |C| > k: the right-hand side of in-

equality E.4 either increases or decreases by, at most, the amount the left side

decreases by - the left hand side always decreases

PROOF OF THEOREM: Mirrors the proof in Section E.2.23, as this reward func-

tion is maximized (returns a value of 1) for the mixed adversarial strategy in the

construction iff each point is within distance b of some point in the agent’s strategy,

and the agents strategy is of cardinality ≤ k (anything of a greater cardinality would

give a reward less than 1). Therefore, we can follow the remainder of that proof and

obtain the same result.

E.2.25 Proof of Theorem 34

MCA-DEC is NP-complete, provided the reward function can be evaluated

in PTIME.

Proof. CLAIM 1: Membership in NP.

Given an explanation, C, we can evaluate it reward and if it is an explanation in

PTIME.

CLAIM 2: MCA-DEC is NP-hard.

Follows directly from Theorem 33

555

E.2.26 Proof of Theorem 35

Counting the number of strategies that provide a “yes” answer toMCA-DEC

is #P-complete and has no FPRAS unless NP==RP.

Proof. Theorem 33 shows a parsimonious reduction from GCD to MCA. Hence, we

can simply apply Lemma 19 and the statement follows.

E.2.27 Proof of Theoerm 36

For a fixed O, k, exfd, the expected agent benefit, EXB(rf)(C, exfd) has the fol-

lowing properties:

1. EXB(rf)(C, exfd) ∈ [0, 1]

2. For C ⊆ C ′ and some point p ∈ S where p /∈ C ∪ C ′, the following is true:

EXB(rf)(C∪{p}, exfd)−EXB(rf)(C, exfd) ≥ EXB(rf)(C ′∪{p}, exfd)−EXB(rf)(C ′, exfd)

(i.e. expected agent benefit is sub-modular for MCA)

Proof. Part 1 follow directly from the definition of a reward function and expected

agent benefit.

For part 2, for some set C and fixed exfd, we have:

EXB(rf)(C, exfd) =
∑

ex fcn∈EF
rf(C, ex fcn(O, k)) · exfd(ex fcn)

Which is a positive, linear combination of submodular functions – hence EXB(rf)

must also be submodualr.

556

E.2.28 Proof of Proposition 62

MCA-LS has time complexity of O(1
ǫ
· |L|3 · F (exfd) · lg(|L|) where F (exfd) is

the time complexity to compute EXB(rf)(C, exfd) for some set C ⊆ L.

Proof. We note that one iteration of the algorithm requires O(|L| · F (exfd) + |L| ·

lg(|L|)) time. We shall assume that O(|L| · F (exfd) dominates O(|L| · lg(|L|)). By

Theorem 3.4 of [47], the number of iterations of the algorithm is bounded by O(1
ǫ
·

|L|2 · lg(|L|) where F (exfd), hence the statement follows.

E.2.29 Proof of Proposition 63

MCA-LS is an (1
3
− ǫ
|L|)-approximation algorithm for MCA.

Proof. By Theorem 36, we can be assured that when the “if” statement at line 4c

is TRUE, then there are no further elements in C∗ that will afford an incremental

increase of > (1 + ǫ
|L|2) · EXB

(rf)(C, exfd), even if the last element is not yet reached.

Hence, we can apply Theorem 3.4 of [47] and the statement follows.

E.2.30 Proof of Corollary 12

For a fixed O, k, exfd, if the reward function is montonic, then the expected

agent benefit, EXB(rf)(C, exfd) is also montonic and zero-starting.

Proof. The zero-starting aspect of expected agent benefit follows directly from the

definitions of zero-starting and expected agent benefit.

557

Consider the definition of EXB(rf):

EXB(rf)(C ∪ {p}, exfd)− EXB(rf)(C, exfd) ≥ EXB(rf)(C ′ ∪ {p}, exfd)− EXB(rf)(C ′, exfd)

As rf is montonic by the statement, and exfd is fixed, EXB(rf) is a positive linear

combination of montonic functions, so the statement follows.

E.2.31 Proof of Proposition 64

The complexity of MCA-GREEDY-MONO is O(B · |L| ·F (exfd)) where F (exfd)

is the time complexity to compute EXB(rf)(C, exfd) for some set C ⊆ L of size B.

Proof. The outer loop at line 4 iterates B times, the inner loop at line 4b iterates

O(|L|) times, and at each inner loop, at line 4(b)ii, the function EXB(rf)(C, exfd)

is computed with costs F (exfd). There is an additional O(|L| · lg(|L|)) sorting

operation after the inner loop which, under most non-trivial cases, is dominated by

the O(|L| · F (exfd)) cost of the loop. The statement follows.

E.2.32 Proof of Corollary 13

MCA-GREEDY-MONO is an (e
e−1)-approximation algorithm for MCA (when

the reward function is montonic).

First, we define incremental increase:

Definition 116. For a given pi ∈ L at some iteration j of the outer loop of GREEDY-

MONO (the loop starting at line 4), the incremental increase, inc
(j)
i , is defined as

follows:

inc
(j)
i = EXB(rf)(C(j−1) ∪ {pi}, Egt)− EXB(rf)(C(j−1), Egt)

558

Where C(j−1) is the set of points in L selected by the algorithm after iteration j − 1.

Proof. CLAIM 1: For any given iteration j of GREEDY-MONO and any pi ∈ L,

inc
(j)
i ≥ inc

(j+1)
i

By Definition 116, the statement of the proposition is equivalent to the following:

EXB(rf)(C(j−1)∪{pi}, Egt)−EXB(rf)(C(j−1), Egt) ≥ EXB(rf)(C(j)∪{pi}, Egt)−EXB(rf)(C(j), Egt)

Obviously, as C(j−1) ⊆ C(j), this has to be true by the submodularity of EXB(rf), as

proved in Theorem 36.

(Proof of Proposition): By claim 1, we can be assured that any point not considered

by the inner loop will not have a greater incremental increase than some point

already considered in that loop. Hence, our algorithm provides the same result as

the greedy algorithm of [127]. We know that the results of [127] state that a greedy

algorithm for a non-decreasing, submodularity function F s.t. F (∅) = 0 is a e
e−1

approximation algorithm for the associated maximization problem. Theroem 36

and Corollary 12 show that these properties hold for finding a maximal counter-

adversary startegy when the reward function is montonic. Hence, by [127], the

statement follows.

E.2.33 Proof of Theoerem 37

MCA-GREEDY-MONO provides the best approximation ratio for MCA (when

the reward function is monotonic) unless P == NP .

Proof. The MAX-K-COVER [46] is defined as follows.

559

INPUT: Set of elements, S and a family of subsets of S, H ≡ {H1, . . . , Hmax}, and

positive integer K.

OUTPUT: ≤ K subsets from H s.t. the union of the subsets covers a maximal

number of elements in S.

In [46], the author proves that for any α < e
e−1 , there is no α-approximation algo-

rithm for MAX-K-COVER unless P == NP . We show that an instance of MAX-

K-COVER can be embedded into an instance of MCA where the reward function

is monotonic and zero-starting in PTIME. By showing this, we can leverage the

result of [46] and Corollary 13 to prove the statement. We shall define the reward

function srf(Egt, C) = 1 iff |Egt ∩ C| ≥ 1 and srf(Egt, C) = 0 otherwise. Clearly,

this reward function meets all the axioms, is zero-starting, and monotonic. We cre-

ate a space S s.t. the number of points in S is greater than or equal to |H|. For

each subset in H, we create an observation at some point in the space. We shall

call this set OH and say that oH is the element of OH that corresponds with set

H ∈ H. We set feas(p) = true iff p ∈ OH. We set α = 0, β to be equal to the

diagonal of the space, and k = |OH|. Hence, any non-empty subset of OH is a

valid explanation for O. For each x ∈ S, we define explanation function ex fcnx s.t.

ex fcnx(OH, k) = {oH ∈ OH|x ∈ H}. We define the explanation function distribu-

tion exfd to be a uniform distribution over all ex fcnx explanation functions. We set

the budget B = K. Clearly, this construction can be accomplished in PTIME. We

note that any solution to this instance of MCA must be subset of OH, for if it is

not, we can get rid of the extra elements and have no change to the expected agent

benefit. Hence, each p ∈ C will correspond to an element of H, so we shall use the

560

notation pH to denote a point in the solution that corresponds with some H ∈ H

(as each o ∈ OH corresponds with some H ∈ H).

CLAIM 1: Given a solution C to MCA, the set {H ∈ H|pH ∈ C} is a solution to

MAX-K-COVER.

Clearly, this solution meets the cardinality constraint, as there is exactly one ele-

ment in OH for each element of H and C is a subset of OH. Suppose, BWOC, there

is some other subset of H that covers more elements in S. Let H′ be this solution

to MAX-K-COVER and C ′ be the subset of OH that corresponds with it. We note

that for some x ∈ S in C ′, srf(ex fcnx(OH, k), C ′) = 1 iff there is some H ∈ H′

s.t. x ∈ H and srf(ex fcnx(OH, k), C ′) = 0 otherwise. Hence, the expected agent

benefit is the fraction of elements in S covered by H′. If H′ is the optimal solution

to MAX-K-COVER, then C ′ must provide a greater expected agent benefit than C,

which is clearly a contradiction.

CLAIM 2: Given a solution H′ to MAX-K-COVER, the set {oH ∈ OH|H ∈ H′} is

a solution to MCA.

Again, that the solution meets the cardinality requirement is trivial (mirrors that

part of claim 1). Suppose, BWOC, there is some set C that provides a greater

maximum benefit than {oH ∈ OH|H ∈ H′}. Let H′′ ≡ {H ∈ H|pH ∈ C}. As with

claim 1, the expected agent benefit for C is equal to the fraction of elements in S

covered by H′′, which is a contradiction as H′ is an optimal solution to MAX-K-

COVER.

561

E.2.34 Proof of Corollary 18

MCA-Exp is NP-hard.

Proof. Consider the construction in Theorem 33. As any non-empty subset of P -

which are all the feasible points in the space - is an explanation - then solution to

MCA is also a solution to MCA-Exp.

E.2.35 Proof of Theorem 60

MCA-Exp reduces in polynomial time to the maximization of a submodular

function wrt a uniform matroid.

Proof. Given an instance of MCA-Exp as follows:

Space S, feasibility predicate, feas, real numbers α, β, set of observations, O, natural

numbers k,B, reward function rf, and explanation function distribution exfd.

Let L be the set of all possible partners. Consider the following construction.

1. Let M be a uniform matroid consisting of all subsets of L of cardilnality ≤ B

2. Let function fsubmod : 2
L → ℜ be defined as follows:

fsubmod(C) = EXB(rf)(C, exfd)+2·|{o ∈ O|∃p ∈ C s.t. (d(o, p) ∈ [α, β])∧(feas(p))}|

CLAIM 1: fsubmod(C) is submodular.

As EXB(rf)(C, exfd), all we will show that 2 · |{o ∈ O|∃p ∈ C s.t. (d(o, p) ∈ [α, β]) ∧

(feas(p))}| is submodular, as a positive linear combination of submoudlar functions

is also submodular. Suppose, BWOC that it is not submodular, hence, for some

562

C ⊂ C ′ and p′′ /∈ C ′, we have the following:

2 · |{o ∈ O|∃p ∈ C ∪ {p′′} s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| −

2 · |{o ∈ O|∃p ∈ C s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| <

2 · |{o ∈ O|∃p ∈ C ′ ∪ {p′} s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| −

2 · |{o ∈ O|∃p ∈ C ′ s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}|

We can re-write this as follows:

2 · |{o ∈ O|o and p′′ are partners and 6 ∃p′′′ ∈ C that can also be a partner for o}| <

2 · |{o ∈ O|o and p′′ are partners and 6 ∃p′′′ ∈ C ′ that can also be a partner for o}|

Clearly, as C ⊆ C ′, this cannot hold - hence we have a contradiction.

CLAIM 2: If there is a solution to MCA-Exp then the submodular maximization

problem returns a value greater than or equal to 2 · |O|.

Suppose, BWOC, there is a solution to MCA-Exp, and the submodular max-

imization problem returns a value less than 2 · |O|. However, any solution to C to

MCA-Exp, we know the following:

2 · |{o ∈ O|∃p ∈ C s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| = 2 · |O|

hence, a contradiction.

CLAIM 3: If the submodular maximization problem returns a value greater than or

equal to 2 · |O| then there is a solution to MCA-Exp.

Suppose, BWOC, claim 3 is false. However, we know that

EXB(rf)(C, exfd) ≤ 1

563

Hence, the only way for the submodular maximization problem returns a value

greater than or equal to 2 · |O| is if the vertices chosen to produce such a value is

an explanation – hence a contradiction.

CLAIM 4: If MCA-Exp returns a value b, then the submodular maximization

problem returns a value b+ 2 · |O|.

By claim 2, we know for solution C to MCA-Exp, for some C ′ set of elements that

maximizes fsubmod that:

2 · |{o ∈ O|∃p ∈ C ′ s.t. (d(o, p) ∈ [α, β]) ∧ (feas(p))}| = 2 · |O|

Hence, any set that maximizes fsubmod is an explantion that maximizes the quantity

EXB(rf)(C, exfd) - which, by definition, is also a set that can be a solution to MCA-

Exp.

CLAIM 5: If the maximization of fsubmod returns value b, then MCA-Exp returns

a value b− 2 · |O|.

Consider set C ′ that maximizes fsubmod. By claim 3, this is an explantion that max-

imizes EXB(rf)(C, exfd). Hence, by the definition of MCA-Exp, it will also give a

solution to MCA-Exp and by the definition of fsubmod, returns a value b− 2 · |O|.

Proof of theorem: follows directly from claims 2-5.

564

Appendix F

Appendix for Chapter 7

F.1 Proofs

F.1.1 Proof of Theorem 38

Given GBGOP (M, s0,A,C, IC, c,Θin,Θout), finding an optimal solution SOL ⊆

A×M is NP-hard. This result holds even if for each a ∈ A, p ∈ M, it is the case

that ∀g′(p′) ∈ a(p), p′ = p - i.e. each action only affects the point is is applied to).

Proof. The known NP-hard problem of SET-COVER [46] is defined as follows.

INPUT: Set of n elements, S and a family of m subsets of S, H ≡ {H1, . . . , Hm}.

OUTPUT: H′ ⊆ H of minimal cardinality s.t.
⋃

H∈H′ H ≡ S.

Given an instance of SET-COVER, we embed it in a GBGOP as follows:

• G = {g1, . . . , gn} - each predicate in G corresponds to an element in S

• M consists of a single point, p

• A = {a1, . . . , am} - each action in A corresponds to an element in H. Each ai is

565

defined as follows: ai(p) =
⋃

xj∈Hi
{gj(p)}

• C returns 1 for all aciton-point pairs.

• s0 = ∅, IC = ∅, c = m

• Θin =
⋃

gi∈G{gi(p)}

• Θout = ∅

Clearly, this construction can be performed in PTIME. The corecetness of the

embeding follows directly from claims 1-2 below.

CLAIM 1: If H′ ⊆ H is an optimal solution to SET-COVER, then
⋃

Hi∈H′{(ai, p)}

is an optimal solution to the GBGOP.

First, we show that
⋃

Hi∈H′{(ai, p)} is a solution to the GBGOP. As c is the cardi-

nality of A ×M and IC = ∅, the first two requirement is trivially met. To meet

the third requirement, we observe that appl(∅,⋃Hi∈H′{(ai, p)} =
⋃

Hi∈H′ ai(p) and

by the construction
⋃

Hi∈H′ ai(p) =
⋃

gi∈G{gi(p)} = Θin. Now we show that the

solution is optimal. Let SOL =
⋃

Hi∈H′{(ai, p)}. Suppose, BWOC, there is some

solution SOL′ ⊆ A ×M s.t. |SOL′| < |SOL|. Hence, there is some H′′ where

SOL′ =
⋃

Hi∈H′′{(ai, p)}. Hence, |H′′| < |H′|. By the construction, H′′ also covers

all elements of S - which implies H′′ is more optimal than H′ - a contradiction.

CLAIM 2: If SOL is an optimal solution to the BMGOP, then {Hi|(ai, p) ∈ SOL}

is an optimal solution to SET-COVER.

Clearly, by the construction, {Hi|(ai, p) ∈ SOL} covers all elements in S. Let H′

566

be this set. Suppose, BWOC, that there is some set H′′ ⊆ H where |H′′| < |H′ and

H′′ covers all the elements in S. Then, we can construct SOL′ =
⋃

Hi∈H′′{(ai, p)}.

By the first claim, this must also be a solution to GBGOP. Further, it must have a

smaller cardinality than SOL - a contradiction. 2

F.1.2 Proof of Theorem 39

Given BMGOP (M, s0,B,A,C, IC, k, c), finding an optimal solution SOL ⊆

A is NP-hard.

Proof. The known NP-hard problem of MAX-K-COVER [46] is defined as follows.

INPUT: Set of n elements, S and a family of m subsets of S, H ≡ {H1, . . . , Hm},

and positive integer K.

OUTPUT: ≤ K subsets from H s.t. the union of the subsets covers a maximal

number of elements in S.

Given an instance of MAX-K-COVER, we embed it in a BMGOP as follows:

• G = {g1, . . . , gn} - each predicate in G corresponds to an element in S

• M consists of a single point, p

• B is a |BL|-sized vector of 1’s

• A = {a1, . . . , am} - each action in A corresponds to an element in H. Each ai is

defined as follows: ai(p) =
⋃

xj∈Hi
{gj(p)}

• C is a |A ×M|-sized vector of 1’s

• s0 = ∅, IC = ∅, k = K, c = K

567

Clearly, this construction can be performed in PTIME. The corecetness of the

embeding follows directly from claims 1-2 below.

CLAIM 1: IfH′ ⊆ H is an optimal solution to MAX-K-COVER, then
⋃

Hi∈H′{(ai, p)}

is an optimal solution to the BMGOP.

Suppose, BWOC, there is some solution SOL′ ⊆ A s.t.
∑

Ai∈appl(
⋃

Hi∈H′{(ai,p)},s0) bi <

∑

Ai∈appl(SOL′,s0)
bi. As there is only one point inM (point p), then each action-point

pair in SOL′ must have unique action - let A′ be these actions. By the construction,

each action in A′ is associated with a subset in H - let H∗ be this set of subsets.

Clearly, by the cost vector in the construction, |H∗| ≤ k, or else SOL′ is not a solu-

tion to the BMGOP. We also know that appl(SOL′, s0) = (∅∪{a(p)|(a, p) ∈ SOL′})

- again, as there is only one point in M, appl(SOL′, s0) can be associated with a

subset of G - let us call this G ′. Further, by the construction, G ′ is associated with

a subset of S, which we shall denote S ′. By the construction, S ′ is the union of

all subsets in H∗. And, by how we defined B, |S ′| is greater than the number of

elements covered by the optimal solution - which is a contradiction.

CLAIM 2: If SOL is an optimal solution to the BMGOP, then {Hi|(ai, p) ∈ SOL}

is an optimal solution to MAX-K-COVER.

Suppose, BWOC, that there setH′ ⊆ H s.t. |H′| ≤ k and |⋃Hj∈H′ Hj| > |
⋃

Hi|(ai,p)∈SOL Hi|.

Let A′ be the subset of actions associated with H′ and SOL′ = {(ai, p)|ai ∈ A′}.

By the cost vector, we know that |SOL′| ≤ k which means SOL′ is a valid solu-

tion. By the construciton, and the fact there is only one point inM, we know that

appl(SOL′, s0) = |⋃Hi∈H′ Hi|, which must be larger than appl(SOL, s0) - hence a

contradiction. 2

568

F.1.3 Proof of Theorem 40

If for some ǫ > 0, there is a PTIME algorithm to approximate GBGOP within

(1− ǫ) · ln(|A ×M|), then NP ⊂ TIME(|A ×M|O(lg lg |A×M|)) (NP has a slightly

super-polynomial algorithm).

Proof. Suppose, by way of contradiction, that for some ǫ > 0, there is a PTIME algo-

rithm to approximate GBGOP within (1− ǫ) · ln(|A×M|) and NP 6⊂ TIME(|A×

M|O(lg lg |A×M|)). By Theorem 38, the same algorithm could approximate SET-

COVER withihn (1 − ǫ) · ln(|H|) and we would have NP 6⊂ TIME(|H|O(lg lg |H|)).

Howevewr, if we could obtain such an approximation factor for SET-COVER, The-

orem 4.4 of [46] tells us that NP ⊂ TIME(|H|O(lg lg |H|)) - a contradiction. 2

F.1.4 Proof of Theorem 41

Given BMGOP (M, s0,B,A,C, IC, k, c), finding an optimal solution SOL of

action-point pairs cannot be approximated in PTIME within a ratio of e−1
e

+ ǫ for

some ǫ > 0 (where e is the inverse of the natural log) unless P=NP, even when

IC = ∅. (There is no polynomial-time algorithm that can approximate an optimal

solution within a factor of about 0.63 unless P=NP.)

Proof. Suppose, by way of contradiction, that an algorithm existed for finding a

solution to a BMGOP within 1− 1/e+ ǫ of optimal for some ǫ > 0. Then we could

569

use the construction of Theorem 39 to obtain an approximate solution to MAX-

K-COVER within a factor of 1− 1/e+ ǫ for some ǫ > 0. By Theorem 5.3 of [46],

this would imply P==NP, which contradicts the statement of the theorem. 2

F.1.5 Proof of Theorem 42

Given GBGOP (M, s0,A,C, IC, c,Θin,

Θout), if the cost function and all actions a ∈ A can be polynomially computed,

then determining if there is a solution SOL for the instance of the GBGOP s.t. for

some real number k, |SOL| ≤ k is in-NP.

Proof. As all calculations of actions, and cost can be performed in PTIME, and

checking if a given solution satisfies the integrity constraints can also be performed

in PTIME, the verification of a solution is also achievable in PTIME, which gives

us membership in the complexity class NP. 2

F.1.6 Proof of Theorem 43

Given BMGOP (M, s0,B,A,C, IC, k, c), if the cost function, benefit function,

and all actions a ∈ A can be polynomially computed, then determining if there

is a solution SOL for the instance of the BMGOP s.t. for some real number val,

∑

Ai∈appl(SOL,s0)
bi ≥ val is in-NP.

Proof. As all calculations of actions, cost, and benefit can be performed in PTIME,

and checking if a given solution satisfies the integrity constraints can also be per-

570

formed in PTIME, the verification of a solution is also achievable in PTIME, which

gives us membership in the complexity class NP. 2

F.1.7 Proof of Theorem 44

Counting the number of solutions to a GBGOP (under the assumptions of

Theorem 42) is #P-complete.

Proof. CLAIM 1: There is a 1-1 encoding of MONSAT into a GBGOP.

The MONSAT problem is defined as per [145] below. INPUT: Set of m clauses

C, each with K disjuncted literals, no literals are negations, L is the set of atoms,

|L| = n.

OUTPUT: “Yes” iff there is a subset of L such that if the atoms in the subset are

true, all of the clauses in C are satisfied.

We use the following encoding.

• G = {g1, . . . , gm} - each predicate in G corresponds to an clause in C (predicate

gj corresponds with clause φj)

• M consists of a single point, p

• A = {a1, . . . , an} - each action in A corresponds to an element in L (action ai

corresponds with lieteral ℓi) . Each ai is defined as follows: ai(p) = {gj(p)|{ℓi} |=

φj

• C returns 1 for all aciton-point pairs.

571

• s0 = ∅, IC = ∅, c = n

• Θin =
⋃

gi∈G{gi(p)}

• Θout = ∅

Clearly, the above construction can be accomplished in PTIME.

CLAIM 1.1 If SOL ⊆ A ×M is a solution to GBGOP, then there exists L′ ⊆ L

that is a solution to MONSAT where |SOL| = |L′|.

Consider the set of literals L′ = {ℓi|(ai, p) ∈ SOL}. Clearly, |L′| = |SOL|. Suppose,

BWOC, there is a clause φi ∈ C s.t. there is no ℓ ∈ L′ where {ℓ} |= φ. Clearly, the

element gi(p) is in Θin, so there must be some action-point-pair (aj, p) in SOL s.t.

gi(p) ∈ aj(p) (otherwise, SOL is not a solution). This implies there is some ℓj ∈ L′

that corresponds with aj and, by the construction {ℓj |= φ - a contradiction.

CLAIM 1.2 If L′ ⊆ L is a solution to MONSAT then there exists SOL ⊆ A ×M

that is a solution to GBGOP where |SOL| = |L′|.

Consider the set SOL = {(ai, p)|ℓi ∈ L′}. Clearly |L′| = |SOL|. As c = n and

IC = ∅, the first two requirements of SOL to be a solution are trivially met. The

set appl(∅, {(ai, p)|ℓi ∈ L′}) = ⋃

ℓj∈L′ gj(p). Hence, as L′ has a literal that satisfies

each clause, and by the construction, we know the third requirement of being a

solution is met.

CLAIM 2: Counting the solutions to a GBGOP is #P -hard.

Using the construction of claim 1, we can embedd the counting version of MONSAT

(number of solutions) into the counting version of a GBGOP (number of solutions).

As there is a 1-1 correspondance, the reduction is parsimonious. Hence, using the

572

construction of claim 1, if we find that there are N solutions to the GBGOP, the

corresponding instance of MONSAT also has exactly N solutions.

CLAIM 3: Counting the solutions to a GBGOP is in the complexity class #P .

We use the two requirements for membership in-#P.

(i) Witnesses must be verifiable in PTIME (shown in Theorem 42).

(ii) The number of solutions to GBGOP x∆ - where x is depends on the input and ∆

is a constant. We know that the number of solutions is bounded by
∑|A×M|

i=0

(|A×M|
i

)

which is less than γ · |A ×M||A×M| for some constant γ. 2

F.1.8 Proof of Theorem 45

For some ǫ > 0, approximating the number of solutions to a GBGOP within

a factor of 2|A×M|1−e
is NP-hard.

Proof. Suppose, BWOC, there is some ǫ > 0 s.t. there is a PTIME algorithm

to approximate the number of solutions to a GBGOP with cardinality ≤ k within

a factor of 2|A×M|1−e
. Hence, the same algorithm could be used to approximate

counting the solution to MONSAT (using the construction of Theorem 44 within a

factor of 2n
1−e

. However, this contradicts Theorem 3.2 of [145]. 2

F.1.9 Proof of Lemma 22

Given GBGOP Γ = (M, s0,A,C, IC, c,Θin,Θout), for any optimnal solution

SOL ⊆ R, there is an optimal solution SOL′ ⊆ R∗.

573

Proof. We show this by proving that for any set W = SOL ∩ (R − R∗), there is

some set W ′ ⊆ R∗ − (R∗ ∩ SOL) s.t. (SOL −W) ∪W ′ is also a solution. Hence,

|(SOL − W) ∪ W ′| = |SOL|. By Definition 86, for any (ai, pi) ∈ R − R∗, there

is some (aj, pj) ∈ R∗ s.t. cj ≤ ci, (aj, pj) appears in the same or fewer integrity

constraints, and ai(pi)− (s0 ∩ ai(pi)) ⊆ aj(pj). Hence, for any (ai, pi) ∈ W , there is

a corresponding element in W ′ that we can use to replace (ai, pi) without increasing

cost, violating any integrity constraints, or not covering an element of Θin. 2

F.1.10 Proof of Proposition 66

Suppose Γ = (M, s0,A,C, IC, c,Θin,Θout) is a GBGOP and IP (Γ) is its cor-

responding integer program. We can create such a program with a variable for every

element of R∗ (instead of R) and the statement of Proposition 65 still holds true.

Proof. Follows directly from Lemma 22 and Proposition 65. 2

574

Appendix G

Appendix for Chapter 8

G.1 Proofs for Section 8.3

G.1.1 Proof of Proposition 70

If agg is positive-linear, then it is montonic.

Proof. Follows directly from Definitions 97-98.

G.1.2 Proof of Proposition 71

If a SNOP-query is not zero-starting w.r.t. a social network S and a GAP

Π ⊇ ΠS , and the aggregate is positive-linear, it can be expressed as a zero-starting

SNOP-query in linear time while still maintaining a positive-linear aggregate.

Proof. CONSTRUCTION: Let C = value(∅).

Create a new SNOP query with aggregate agg′(X) = agg(X)− C.

575

We shall use the notation value′ to refer to the value function for the above

construction.

CLAIM For any set V′, value(V′) = value(V′) + C.

Follows directly from the construction.

G.1.3 Proof of Lemma 23

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS), if

agg is monotonic (Definition 97), then value (defined as per Q and Π) is montonic.

Proof. By the definition of T, the annotation of any vertex atom montonically

increases as we add more facts of the form g(V)← to the logic program. Hence, by

the monotonicity of agg, the statement follows.

G.1.4 Proof of Lemma 24

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS),

if V C is applied a-priori (as per Definition 101), the set of pre-answers (to query Q)

is a uniform matroid.

Proof. Let Vcond be the set of veritces in V s.t. for each v ∈ Vcond, g(v) : 1 ∧
∧

pred∈ℓvert(v) pred(v) : 1 |= V C[V/v].

CLAIM 1: For an a-priori V C SNOP query, any subset of Vcond of cardinality ≤ k

is a pre-answer.

Suppose, BWOC, some subset of V′ ⊆ Vcond of cardinality ≤ k is not a pre-answer.

576

Obvouisly, all such subsets meet the cardinality requirement. Then, there must exist

some v′ ∈ V′ s.t. g(v′) : 1∧∧pred∈ℓvert(v′) pred(v
′) : 1 6|= V C[V/v′]. By Definition 101,

this is a contradiction.

CLAIM 2: There is no subset V′ ⊆ V where V′ ∩ (V − Vcond) 6≡ ∅ that is a pre-

answer.

Clearly, this would have an element that would not satisfy the a-priori V C, and

hence, not be a pre-answer.

Proof of lemma: Any subset of size ≤ k of Vcond is a uniform matroid by definition.

Also, from claims 1-2, we know that this family of sets also corresponds exactly with

the set of pre-answers. Hence, the statement of the lemma follows.

G.1.5 Proof of Theorem 47

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS)

if the following criteria are met:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear,

then value (defined as per Q and Π) is sub-modular.

In other words, for Vcond ≡ {v′|v′ ∈ V and (g(v′) : 1 ∧ ∧

pred∈ℓvert(v′) pred(v
′) : 1 |=

577

V C[V/v′])} and sets V1 ⊆ V2 ⊆ Vcond and v ∈ Vcond, v /∈ V1 ∪ V2, the following

holds:

value(V1 ∪ {v})− value(V1) ≥ value(V2 ∪ {v})− value(V2)

Proof. CLAIM 1: For some V′, if Ai : µi ∈ T{Π∪{g(v′):1← | v′∈V′} s.t. there is no

µ′i > µi where Ai : µ
′
i ∈ T{Π∪{g(v′):1← | v′∈V′} then, there exists a polynomial of the

following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then

fi(X1, . . . , X|V|) = µi.

(Proof of claim 1): Consider all of the rules in {Π ∪ {g(v′) : 1 ←. If Ai : µi ∈

T{Π∪{g(v′):1← | v′∈V′}, then there must exist a rule that causes the annotation of Ai

to equal µi. As the annotation in all rules is a linear function, we can easily re-write

it in the above form, based on the presence of annotated atoms in the body formed

with the goal predicate.

CLAIM 2: For some V′, if Ai : µi ∈ T{Π∪{g(v′):1← | v′∈V′} ↑ j, s.t. there is no µ′i > µi

where Ai : µ
′
i ∈ T{Π ∪ {g(v′) : 1← | v′ ∈ V′} ↑ j then, there exists a polynomial

of the following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then

fi(X1, . . . , X|V|) = µi.

578

(Proof of claim 2): We will show that if the statement of the claim is true for the

j − 1 application of T, then it is true for application j. The proof of the claim

relies on this subclaim along with claim 1. If the claim holds for application j − 1,

then for each annotated atom A′i : µ
′
i, there is an associated polynomial as per the

statement. Consider the rule that fires in the jth application of the operator that

causes rule Ai to be annotated with µi. We can re-write this as a polynomial of the

above form, simply by substituting the polynomial for each annotation associated

with A′i from the previous iteration. As all of the polynomials are being substituted

into variable positions of a polynomial, the result is still a polynomial, which can

easily be re-arranged to resemble that of the claim.

CLAIM 3: For some V′, if Ai : µi ∈ lfp(T{Π∪{g(v′):1← | v′∈V′}), s.t. there is no µ′i > µi

where Ai : µ
′
i ∈ lfp(T{Π ∪ {g(v′) : 1← | v′ ∈ V′}) then, there exists a polynomial

of the following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then

fi(X1, . . . , X|V|) = µi.

(Proof of claim 3): Follows directly from claims 1-2.

CLAIM 4: For some Vi ⊆ V, there exists a polynomial of the following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then

579

fi(X1, . . . , X|V|) = value(Vi).

(Proof of claim 4): Consider all atoms formed with predicate goal in the lfp where

the annotation is maximum. By claim 3, each is associated with a polynomial. A

positive linear combination of all these polynomials is a polynomial of the form in

this claim, and is equivalent to value.

CLAIM 5: value(V1 ∪ {v})− value(V1) ≥ value(V2 ∪ {v})− value(V2).

(Proof of claim 5): By the definition of value, as V C is applied a-priori, we know

that value is defined on all subsets of Vcond.

We define the following polynomial functions, which are associated with value for the

various subsets of V in claim 5 (with some re-arrangement, Greek letters resemble

constants, X variables can be either 0 or 1 - signifying if the associated subscript is

includes in the associated set).

1. f1(XV1 , X{v}, XV2−V1) = α1 ·XV1 + β1 ·X{v} + γ1 ·XV2−V1 + λ1

value(V1 ∪ {v}) = f1(1, 1, 0) = α1 + β1 + λ1

2. f2(XV1 , X{v}, XV2−V1) = α2 ·XV1 + β2 ·X{v} + γ2 ·XV2−V1 + λ2

value(V1) = f2(1, 0, 0) = α2 + λ2

3. f3(XV1 , X{v}, XV2−V1) = α3 ·XV1 + β3 ·X{v} + γ3 ·XV2−V1 + λ3

value(V2 ∪ {v}) = f3(1, 1, 1) = α3 + β3 + γ3 + λ3

4. f4(XV1 , X{v}, XV2−V1) = α4 ·XV1 + β4 ·X{v} + γ4 ·XV2−V1 + λ4

value(V2) = f4(1, 0, 1) = α4 + γ4 + λ4

580

CLAIM 5.1: α4 + γ4 + λ4 ≥ α2 + γ3 + λ2

(Proof of claim 5.1): We note that the constants in the fi’s defined earlier all cor-

respond directly with constants seen in rules. Hence, as f4(1, 0, 1) corresponds with

the maximum possible value for value(V2), there can be no constants other than

α4, γ4, λ4 that sum to a value greater than value(V2). The statement of claim 5.1

immediately follows.

CLAIM 5.2: α1 + β1 + λ1 ≥ α3 + β3 + λ3

(Proof of claim 5.2): Mirrors claim 5.1, (in this case, value(V1 ∪ {v}) is the maxi-

mum possible value of f1(1, 1, 0)).

(Completion of claim 5 / theorem): Suppose, BWOC, claim 5 is not true. Then, it

must be the case that

value(V1 ∪ {v})− value(V1) < value(V2 ∪ {v})− value(V2)

This would imply:

α1 + β1 + λ1 + α4 + γ4 + λ4 < α3 + β3 + γ3 + λ3 + α2 + λ2

By claim 5.2, we have the following:

α4 + γ4 + λ4 < γ3 + α2 + λ2

Which contradicts claim 5.1. The statement of the theorem follows.

581

G.1.6 Proof of Theorem 48

Finding an answer to SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and

GAP Π ⊇ ΠS) is NP-hard (even if Π is a linear GAP, V C = ∅, agg = SUM and

value is zero-starting).

Proof. The known NP-hard problem of max k-cover [46] as follows.

MAX K-COVER

INPUT: Set of elements, S and a family of subsets of S, H ≡ {H1, . . . , Hmax}, and

positive integer K.

OUTPUT: ≤ K subsets from H s.t. the union of the subsets covers a maximal

number of elements in S.

We shall make the following assumptions of MAX-K-COVER

1. |H| > K

2. There is no H ∈ H s.t. H ≡ ∅

CONSTRUCTION: Given MAX K-COVER input S,H, K we create a SNOP-

query as follows.

1. Set up social network S as follows:

(a) EP ≡ {edge}

(b) VP ≡ {vertex}

(c) For every element ofH, and every element of S, we create an element of V .

We shall denote subsets of V , VS and VH as the vertices corresponding

582

with S and H respectively. For some s ∈ S, vs is the corresponding

vertex. For some H ∈ H, vH is the corresponding vertex. Note that set

V ≡ VS ∪ VH

(d) For each H ∈ H, if s ∈ H draw add edge (vH , vs) to set E

(e) For each v ∈ V , ℓvert(v) = vertex

(f) For each (v, v′) ∈ E, ℓedge(v, v
′) = edge

(g) For each (v, v′) ∈ E, w(v, v′) = 1

2. Set up program Π as follows:

(a) Embed S into Π.

(b) Add diffusion rule vertex(V) : X ← vertex(V ′) : X ∧ edge(V ′, V) : 1 to

Π

3. Set up SNOP-query Q as follows:

(a) agg = SUM

(b) V C = true

(c) k = K (the K from SET COVER)

(d) g = vertex

Additionally, we will use the following notation:

1. V ′ is a pre-answer to the constructed query

2. value(V ′) is the value of the constructed query for pre-answer V ′

583

3. V ′ans is an answer to the constructed query

CLAIM 1: The construction can be performed in PTIME.

Straightforward.

CALIM 2: Program Π is a linear GAP.

Follows directly form Definition 96.

CLAIM 3: An answer V ′ans to the SNOP query cannot contain a vertex in vs ∈ VS

and a vertex in vH ∈ VH s.t. s ∈ H.

BWOC, an optimal solution could have an element vs as described in the claim. By

assumption 1, there are more than K elements in VH and all of them have an edge

to some element of VS by assumption 2. It is obvious that vs will be annotated with

a 1 in the fixed point, and that no elements of VH − V ′ans will be annotated with 1

in the fixed point. Hence, we can pick any element of VH − V ′ans and value will be

at least one greater than the “optimal” solution – hence a contradiction.

CLAIM 4: If an answer V ′ans∩VS 6≡ ∅, then we can construct an alternative optimal

solution such that V ′ans ∩ VS ≡ ∅.

As no element in V ′ans ∩ VS 6≡ ∅ has an outgoing neighbor, and by assumption 1,

we can be assured that |V ′ans − VH| > |V ′ans ∩ VS|, we can replace the elements of

V ′ans ∩ VS in V ′ans with elements from V ′ans − VH and still be ensured of an optimal

solution.

584

CLAIM 5: Given a set H′ ⊆ H that ensures an optimal solution to MAX-K-

COVER, we can construct an optimal V ′ans to the SNOP query.

CASE 1 (claim 5): |H′| = K.

Let OPT be the number of elements of S covered in the optimal solution of MAX-

K-COVER. For each H ∈ H′, we pick the corresponding element of VH. Obviously,

value(V ′ans) = OPT +K. Suppose, we could pick a different element of V and get

a solution with a higher value. As no element of S has an outgoing edge, replacing

one of the elements from the constructed set with one of these will not ensure a

greater solution. If we could pick an element from VH − V ′ans, then this would ob-

viously imply a solution to MAX-K-COVER s.t. more than OPT elements of S

are covered – clearly this is a contradiction as H′ is an optimal cover.

CASE 2 (claim 5): |H′| < K.

Create H′′ with all of the elements of H′ and K − |H′| elements of H−H′. Clearly,

this is also an optimal solution to MAX-K-COVER (as cardinality is not opti-

mized, just needs to be below K). We can now apply case 1 of this claim.

CLAIM 6: Given V ′ans, we can constructively create a subset of H that, if picked,

ensures an optimal solution to MAX-K-COVER.

CASE 1 (claim 6): V ′ans ⊆ VH

585

Simply pick each H associated with each vH ∈ V ′ans. Let OPT ′ = value(V ′ans) note

that OPT ′ = K + SPREAD where SPREAD corresponds with the number of

1-annotated elements of VS in the fixed point. If there is a different subset of H that

can be picked, (i.e. a more optimal solution to MAX-K-COVER), then we can

create a solution to the SNOP query where some SPREAD′ > SPREAD elements

of VS become annotated with 1 in the fixed point. Clearly, this would imply a more

optimal solution to the SNOP query – a contradiction.

CASE 2 (claim 6): VS − V ′ans 6≡ ∅

From this solution, we can use claim 4 to create an optimal solution s.t. case 1

applies.

The proof of the theorem follows directly from claims 5-6.

G.1.7 Proof of Theorem 49

Finding an answer to a decision problem associated with SNOP query Q =

(agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS) where agg and the functions in

F are polynomially computable is in-NP.

Proof. We utilize the following decision problem:

Definition 117 (SNOP-DEC). An instance of the decision problem related to a

SNOP-query accepts the input for the query plus real number target. The decision

problem returns “yes” iff there exists pre-answer V ′ s.t. value(V ′) ≥ target and

586

“no” otherwise.

CLAIM 1: SNOP-DEC is NP-hard.

We do this by a reduction from SET COVER.

CONSTRUCTION: Given instance S,H, K of SET COVER, we create K instances

of SNOP-DEC, each identified with index i ∈ [1, K], that each use the same con-

struction used to show the NP-hardness of a SNOP query with the following two

exceptions:

• Set k in SNOP-DEC to i

• Set target in SNOP-DEC to i+ |S|

CLAIM 1.1: The construction can be performed in PTIME.

Straightforward. CLAIM 1.2: If there is a solution to the set cover problem, at least

one of the constructed instances of SNOP-DEC will return “yes.”

Suppose, that there is a solution to the set-cover problem, that causes the selection

of m elements of H (where m ≤ K). By the construction, there exists an instance of

SNOP-DEC such that target = m+ |S| and k = m. We simply pick the k vertices

in VH corresponding with the covers, and by the construction, after running Π, all

of the vertices in VS will have an annotation to the vertex atoms formed by marked

of 1. Hence, the aggregate will be m + |S| - which is greater than target, so that

instance of SNOP-DEC returns “yes.”

CLAIM 1.3: If there is no solution to the set cover problem, all of the instances of

SNOP-DEC will return “no.”

587

Suppose there is no solution to SET COVER and one of the constructed instances

of SNOP-DEC returns “yes.” Then, for some i ∈ [1, K], there are i vertices that

can be picked to change the annotation of the vertex vertex atoms to ensure that

the aggregate is greater than or equal to i + |S|. As, at most, only i vertex atoms

can be picked, and only atoms in VS can change annotation due to Π, all i vertices

associated with the vertex atoms must be in VH to ensure that we have the most

possible vertex atoms formed with vertex that have a non-zero annotation. How-

ever, in order for all of the vertices in VS to have the annotations of the associated

vertex vertex atom increase to 1, there must be at least one incoming edge to each

element of VS from one of the i atoms from VH. By how S is constructed, this would

imply a set-cover of size i, which would be a contradiction.

PROOF OF CLAIM 1: Follows directly from claims 1.1-1.3.

CLAIM 2: SNOP-DEC is in-NP (with the conditions in the statement).

Suppose, we are given a set V ′. We can easily verify this solution in PTIME as

follows: (i) verify V ′ is a valid pre-answer can easily be done in PTIME by checking

that |V ′| ≤ k and that ∀v′ ∈ V ′, V C(v′) is true. (ii) by the assumptions about agg

and the functions in F , we can compute value(V ′) in PTIME as well. the statement

follows.

588

G.1.8 Proof of Theorem 50

Answering a SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP

Π ⊇ ΠS), cannot be approximated in PTIME within a ratio of e−1
e

+ ǫ for some

ǫ > 0 (where e is the inverse of the natural log) unless P==NP – even if Π is a

linear GAP, V C = ∅, agg = SUM and value is zero-starting.

(That is, there is no polynomial-time algorithm that can approximate value

within a factor of about 0.63 under standard assumptions.)

Proof. Suppose, BWOC, there is an α-approximation algorithm for an SNOP query.

Hence, we can approximate value returned by SNOP within a factor of 1− 1/e+ ǫ

for some ǫ > 0. Using the MAX-K-COVER reduction in Theorem 48, for SNOP

answer V ′ans, the cardinality of the covered elements of S in MAX-K-COVER is

value(V ′ans)−K. Hence, this approximation algorithm would provide a solution to

MAX-K-COVER within a factor of 1 − 1/e + ǫ for some ǫ > 0. By Theorem

5.3 of [46], this would imply P==NP, which contradicts the statement of the

theorem.

G.1.9 Proof of Theorem 51

Counting the number of answers to SNOP queryQ = (agg, V C, k, g(V)) (w.r.t.

SN S and GAP Π ⊇ ΠS) is #P-complete.

Follows directly from Lemmas 32 and 33.

589

Lemma 32. The counting version of the SNOP query answering problem (we shall

call it #SNOP) is #P-hard.

Proof. We now define the known #P-Complete problem, MONSAT [145] and a vari-

ant of it used in this proof:

Counting K-Monotone CNF Sat. (#MONSAT)

INPUT: Set of clauses C, each with K disjuncted literals, no literals are negations,

L is the set of atoms.

OUTPUT: Number of subsets of L such that if the atoms in the subset are true, all

of the clauses in C are satisfied.

Counting K-Monotone CNF Sat. - Exact (#MONSAT-EQ)

INPUT: Set of clauses C, each with K disjuncted literals, no literals are negations,

L is the set of atoms and natural number m.

OUTPUT: Number of subsets of L - each with cardinality of exactly m - such that

if the atoms in the subset are true, all of the clauses in C are satisfied.

We now define the following problem used in the proof:

#SNOP-EQ

INPUT: Same as SNOP-DEC.

OUTPUT: Number of pre-answers V ′ that would causes a “yes” answer to SNOP-

DEC and |V ′| = k.

590

CLAIM 1: #MONSAT≤p#MONSAT-EQ and #MONSAT-EQ is #P-hard Consider

the following construction (CONSTRUCTION 1):

Let L be the set of atoms associated with #MONSAT. Create |L| instances of

#MONSAT-EQ - each with a cardinality constraint (m) in [1, |L|], and the remainder

of the input the same as #MONSAT.

(Proof of claim 1): The sum of the solution to the |L| instances of #MONSAT-EQ

is equal to the solution to #MONSAT.

Every possible satisfying assignment counted as a solution to #MONSAT has a

unique cardinality associated with it, which is in [1, |L|]. The claim follows trivially

from this fact and construction 1 (which can be performed in PTIME).

CLAIM 2: #MONSAT-EQ≤p#SNOP-EQ and #SNOP-EQ is #P-hard

Consider the following construction (CONSTRUCTION 2):

Given #MONSAT-EQ input (C,K,L,m), we create an instance of #SNOP-EQ as

follows.

1. Set up social network S as follows:

(a) EP ≡ {edge}

(b) VP ≡ {vertex}

(c) For every element of C, and every element of L, we create an element of V .

We shall denote subsets of V , VC and VL as the vertices corresponding

with C and L respectively. For some a ∈ C, va is the corresponding

vertex. For some b ∈ L, vb is the corresponding vertex.

591

(d) For each a ∈ C, if b is in clause C, add edge (vb, va) to set E

(e) For each v ∈ V , ℓvert(v) = vertex

(f) For each (v, v′) ∈ E, ℓedge(v, v
′) = edge

(g) For each (v, v′) ∈ E, w(v, v′) = 1

2. Set up program Π as follows:

(a) Embed S into Π

(b) For each v ∈ V , add fact vertex(v) : 0 to Π

(c) Add diffusion rule vertex(v) : 1← vertex(v′) : 1 ∧ edge(v′, v) : 1 to Π

3. Set up SNOP-query Q as follows:

(a) agg = SUM

(b) V C = ∅

(c) k = m (the m from #MONSAT-EQ)

(d) g = vertex

(e) target = |C|+ k

CLAIM 2.1: Construction 2 can be performed in PTIME.

Straightforward.

CLAIM 2.2: If there is a solution to given an instance of MONSAT-EQ, then given

construction 2 as input, SNOP-EQ will return “yes”. For each a ∈ L in the solu-

tion to MONSAT-EQ, change the annotation of vertex(va) to 1 in Πfacts. There are

592

m = k such vertices. By the construction, this will cause the |C| vertices of VC to

increase their annotation - resulting in an aggregate of |C| + k, causing SNOP-EQ

to return “yes”.

CLAIM 2.3: If, given construction 2 as input, SNOP-EQ returns “yes”, then a so-

lution to given an instance of MONSAT-EQ such that k is the cardinality of the

solution.

We note that selecting any vertex in V ′ not in VL will result in an value(V ′) < |C|+k,

as fewer than |C| nodes will have their annotation increase after running Π. The

only way to achieve an value(V ′) = |C| + k is if there exists a set of k vertices in

VL such that there is an outgoing edge from at least one of the picked vertices to

each node in VC . This is only possible if there exists a solution to the MONSAT-EQ

problem.

CLAIM 2.4: There is a 1-1 correspondence between solution to MONSAT-EQ and

SNOP-EQ using construction 2.

As each literal in a MONSAT-EQ solution corresponds to exactly one vertex in a

SNOP-EQ, and by claims 2.2-2.3, the claim follows.

PROOF OF CLAIM 2: Follows directly from claims 2.1-2.4.

CLAIM 3: #SNOP-EQ≤p#SNOP, #SNOP is #P-hard

Consider the following construction (CONSTRUCTION 3):

593

Let k be the cardinality constraint associated with #SNOP-EQ. Create two in-

stances of #SNOP, one with a cardinality constraint of k and one with the constraint

of k − 1, and the remainder of the input is the same as #SNOP-EQ.

PROOF OF CLAIM 3: First, note that construction 3 can be performed in PTIME.

We show that the solution to #SNOP with cardinality constraint k − 1 subtracted

from the solution to #SNOP with cardinality constraint k is the solution to #SNOP-

EQ. As the solution to #SNOP with cardinality constraint k − 1 is the number of

all V ′’s that are a solution with cardinality of k − 1 or less, and the solution to

#SNOP with cardinality constraint k is the number of all V ′’s that are a solution

with cardinality of k or less, the difference is the number of all V ′’s with a cardinality

of exactly k.

PROOF OF LEMMA: Follows directly from claims 3.

Lemma 33. If the aggregate function agg is polynomially computable and functions

in F are polynomially computable, then #SNOP is in-#P.

Proof. We use the two requirements for membership in-#P as presented in [87].

(i) Witnesses must be verifiable in PTIME (shown in the NP-Completness of a

SNOP-query).

(ii) The number of solutions to #SNOP is bounded by x′k
′
- where k′ is a constant.

We know that the number of solutions is bounded by
∑

i≤k
(|V |

i

)
which is less than

c · |V |k for some constant c.

594

G.1.10 Proof of Theorem 52

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS),

finding
⋃

V ′
ans∈ans(Q) V

′
ans is NP-hard.

Proof. We shall refer to the problem of finding
⋃

V ′
ans∈ans(Q) V

′
ans as SNOP-ALL. We

show that SNOP-ALL is ≤p solving a SNOP-query.

Given set an instance of SNOP-ALL and vertex set V ∗, |V ∗| ≤ k let SNOP-

ALL(V ∗) be the modification of of the instance of SNOP-ALL where the value k is

reduced by |V ∗| and for each v∗j ∈ V ∗, the fact g(vi) : 1 is added to Π.

Consider the following informal algorithm (FIND-SET) that takes an instance

of SNOP-ALL (Q) and some vertex set V ∗, |V ∗| ≤ k.

1. If |V ∗| = k, return V ∗

2. Else, solve SNOP-ALL(V ∗), returning set V ′′.

(a) If V ′′ − V ∗ ≡ ∅, return V ∗

(b) Else, pick v ∈ V ′′ − V ∗ and return FIND-SET(Q, V ∗ ∪ v)

Note, that the above algorithm can only iterate k times.

CLAIM 1: The V ∗ returned by FIND-SET is a valid solution to the SNOP-query

(with the same input for Q).

First, we number the elements in V ∗ as v1, . . . , vsize - where v1 is picked as the first

element in the solution and vertex vi is added at the ith recursive call of FIND-SET.

We know that size ≤ k

BASE CASE: There is a set of vertices of size ≤ size that is a solution to the

595

SNOP-query s.t. vertex v1 is in that set - follows directly from the definition of

SNOP-ALL.

INDUCTIVE HYPOTHESIS: For some k′ ≤ size, we assume that for vertices

v1, . . . , vk′−1 there is some set of vertices of size ≤ k that is a solution to the SNOP-

query s.t. vertices v1, . . . , vk′−1 are in that set.

INDUCTIVE STEP: For some k′ ≤ size, consider vertices v1, . . . , vk′ . By the in-

ductive hypothesis, vertices v1, . . . , vk′−1 are in a ≤ k-sized solution. By the con-

struction, and the definition of SNOP-ALL, we know that vertex vk′ must also be

in that set as well.

CLAIM 2: Given some V ′ as a solution to the SNOP-query, the algorithm FIND-SET

can be run in such a way to return that set.

Number each vertex in V ′ as v1, . . . , vsize. By the definition of SNOP-ALL, upon

the i’th call to FIND-SET, we are guaranteed that the vertices vi, . . . , vsize will be

in set V ′′. Simply pick vertex vi follow the algorithm to the next recursive call, the

claim immediately follows.

PROOF OF PROPOSITION: Note the construction can be accomplished in PTIME.

The proposition follows directly from claims 1-2.

G.1.11 Proof of Theorem 53

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS),

finding
⋃

V ′
ans∈ans(Q) V

′
ans reduces to |V |+ 1 SNOP-queries.

596

Proof. We set up |V | SNOP-queries as follows:

• Let kall be the k value for the SNOP-ALL query and and for each SNOP-query i,

let ki be the k for that query. For each query i, set ki = kall − 1.

• Number each element of vi ∈ V such that g(vi) and V C(vi) are true. For the ith

SNOP-query, let vi be the corresponding element of V

• Let Πi refer to the GAP associated with the ith SNOP-query and Πall be the

program for SNOP-ALL. For each program Πi, add fact g(vi) : 1

• For each SNOP-query i, the remainder of the input is the same as for SNOP-ALL.

After the construction, do the following:

1. We shall refer to a SNOP-query that has the same input as SNOP-ALL as the

“primary query.” Let V ′ans
(pri) be an answer to this query and value(V ′ans

(pri))

be the associated value.

2. For each SNOP-query i, let V ′ans
(i) be an answer and value(V ′ans

(i)) be the

associated value.

3. Let V ′′, the solution to SNOP-ALL be initialized as ∅.

4. For each SNOP-query i, if value(V ′ans
(i)) = value(V ′ans

(pri)), then add vertex vi

to V ′′.

CLAIM 1: If for the ith SNOP-query, if value(V ′ans
(i)) = value(V ′ans

(pri)), then vi

must be in the solution to SNOP-ALL.

597

Suppose, by way of contradiction, that for the ith query, value(V ′ans
(i)) = value(V ′ans

(pri)),

but vi is not in the solution to SNOP-ALL. Then, there is no V ′ of size ≤ k s.t.

vi ∈ V ′ and V ′ is an answer to a the primary SNOP-query. However, this is a con-

tradiction, as given vi and the vertices returned by the ith query, we are guaranteed

this to be a valid answer to the primary query.

CLAIM 2: For each vi in a solution to SNOP-ALL, the ith SNOP query returns a

value s.t. value(V ′ans
(i)) = value(V ′ans

(pri)).

Suppose, by way of contradiction, that there is some vi in the solution to SNOP-

ALL s.t. the ith query returns a value that is not equal to the value returned by

the primary. However, by the definition of SNOP-ALL, this is not possible, hence a

contradiction.

PROOF OF PROPOSITION: Note the construction can be accomplished in PTIME.

The proposition follows directly from claims 1-2.

G.2 Proofs for Section 8.5

G.2.1 Proof of Proposition 72

Suppose Π is any GAP. Then:

1. SΠ is monotonic.

2. SΠ has a least fixpoint lfp(SΠ) and lfp(TΠ) = grd(lfp(SΠ)).

That is, lfp(SΠ) is a non-ground representation of the (ground) least fixpoint

operator TΠ.

598

Proof. Part 1 follows directly from the definition – for a given atom A and interpre-

tation I, S(I)(A) ≥ I(A).

Part 2 follows directly from the definitions of S and T.

G.2.2 Proof of Theorem 54

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS),

if agg is monotonic then:

• There is an answer to the SNOP-query Q w.r.t. the GAP Π iff SNOP-

Mon(Π, agg, V C, k, g(V)) does not return NIL.

• If SNOP-Mon(Π, agg, V C, k, g(V)) returns any result other than NIL, then

that result is an answer to the SNOP-query Q w.r.t. the GAP Π.

Proof. Part 1 (⇐): Suppose there is an answer to the query and SNOP-Mon returns

NIL. Then there is some set of vertices, sol of cardinality ≤ k, s.t. Π∪⋃

v∈sol g(v) :

1 |= V C. However, such a set would obviously have been added as a tuple into Todo

at step 2 or step 4(c)iB. Hence, a contradiction.

Part 1 (⇒): Suppose there is no answer to the query and SNOP-Mon returns NIL.

Then, there is no set of vertices, sol of cardinality ≤ k, s.t. Π∪⋃v∈sol g(v) : 1 |= V C.

SNOP-Mon performs such a check at line 4b. Hence, a contradiction.

Part 2: Suppose, BWOC, there exists a set of vertices that is a solution, sol, of

cardinality ≤ k, s.t.
⋃

v∈sol g(v) : 1 is not what is returned by SNOP-Mon and

value(Π∪⋃v∈sol g(v) : 1 is greater than bestV al. We note that SNOP-Mon considers

599

most sets of vertices of cardinality ≤ k. Further, the monotonicity of agg and

line 4(c)i tell us that the only solutions not considered are ones guaranteed to have

a value less than bestV al – hence, a contradiction.

G.2.3 Proof of Proposition 73

Given SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS),

the complexity of GREEDY-SNOP is O(k · |V| · F (|V|)) where F (|V|) is the time

complexity to compute value(V ′) for some set V ′ ⊆ V of size k.

Proof. The outer loop at line 2 iterates k times, the inner loop at line 2b iterates

O(|V|) times, and at each inner loop, at line 2(b)i, the function value is computed

with costs F (|V|). The statement follows.

G.2.4 Proof of Theorem 55

If SNOP query Q = (agg, V C, k, g(V)) (w.r.t. SN S and GAP Π ⊇ ΠS) meets

the following criteria:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear

• value is zero-starting.

Then GREEDY-SNOP is an (e
e−1)-approximation algorithm for the query.

600

Proof. The results of [127] state that a greedy algorithm for a non-decreasing, sub-

modularity function F s.t. F (∅) = 0 is a e
e−1 approximation algorithm for the

associated maximization problem. In Section 8.3, we show that a query meeting the

criteria of the statement satisfies the requirements. The statement follows.

G.2.5 Proof of Proposition 74

For all ground atoms A and vertices v, INCi−1(v)(A) ≥ INCi(v)(A).

Proof. Consider the following values: Ii−1(v)(A), I
(alg)
i−2 (A), Ii(v)(A), I

(alg)
i−1 (A). These

correspond with the following sets of vertices, respectively: SOLi−2∪{v}, SOLi−2, SOLi−2∪

{v}∪(SOLi−1−SOLi−2), SOLi−2∪(SOLi−1−SOLi−2). Hence, by claim 3 of Theo-

rem 47, we can associate the values Ii−1(v)(A), I
(alg)
i−2 (A), Ii(v)(A), I

(alg)
i−1 (A) with lin-

ear functions with three variables corresponding to the sets SOLi−2, {v}, (SOLi−1−

SOLi−2). If the variables corresponding to the set of vertices are set to 1 and the rest

zero, then the function corresponds to the value assigned to A by that interpretation.

Consider the following four functions:

f1(X1, X2, X3) = a1 ·X1 + b1 ·X2 + c1 ·X3 + d1

f2(X1, X2, X3) = a2 ·X1 + b2 ·X2 + c2 ·X3 + d2

f3(X1, X2, X3) = a3 ·X1 + b3 ·X2 + c3 ·X3 + d3

f4(X1, X2, X3) = a4 ·X1 + b4 ·X2 + c4 ·X3 + d4

601

Where X1, X2, X3 correspond to SOLi−2, {v}, (SOLi−1 − SOLi−2) respectively.

f1(1, 1, 0) = Ii−1(v)(A) = a1 + b1 + d1

f2(1, 0, 0) = I
(alg)
i−2 (A) = a2 + d2

f3(1, 1, 1) = Ii(v)(A) = a3 + b3 + c3 + d3

f4(1, 0, 1) = I
(alg)
i−1 (A) = a4 + c4 + d4

Note 1: We note, using the same techniques as claims as 5.1-5.2 of Theorem 47,

that there is no i1, i2, i3 not equal to 1 where ai1 + bi2 + di3 > a1 + b1 + d1 and no

i1, i2, i3 not equal to 4 where ai1 + ci2 + di3 > a4 + c4 + d4.

So, suppose, BWOC, the statement of the proposition does not hold. Then,

we have:

a1 + b1 + d1 − a2 − d2 < a3 + b3 + c3 + d3 − a4 − c4 − d4

a1 + b1 + d1 + a4 + c4 + d4 < a3 + b3 + c3 + d3 + a2 + d2

And by Note 1,

a1 + b1 + d1 > b3 + a2 + d2

Which, subtracting from both sides, gives us:

a4 + c4 + d4 < a3 + c3 + d3

Which contradicts Note 1. The statement of the proposition follows.

602

G.2.6 Proof of Lemma 25

For all programs Π and any atom A,

lfp(SPROG(Π))(A) = lfp(SΠ)(A)

Proof. Follows directly from Definition 105.

G.2.7 Proof of Lemma 26

If Π3 ≡ Π1 ∪ Π2, then for any atom A,

lfp(SΠ3)(A) = lfp(SPROG(Π1)∪PROG(Π2))(A)

Proof. CLAIM 1: lfp(SΠ3)(A) ≥ lfp(SPROG(Π1)∪PROG(Π2))(A)

By the monotonicity of S, we know that for all A, lfp(SΠ3)(A) ≥ lfp(SΠ1)(A) and

lfp(SΠ3)(A) ≥ lfp(SΠ2)(A). Further, as Π1,Π2 ⊆ Π3, it follows that

PROG(Π1), PROG(Π2) ⊆ PROG(Π3), meaning that PROG(Π1) ∪ PROG(Π2) ⊆

PROG(Π3).

By the monotonicity of S, it follows that for any atomA, lfp(SΠ3)(A) ≥ lfp(SPROG(Π1)∪PROG(Π2))(A

CLAIM 2: lfp(SΠ3)(A) ≤ lfp(SPROG(Π1)∪PROG(Π2))(A)

Going the other direction, by Definition 105, Π1 ⊆ PROG(Π1) and Π2 ⊆ PROG(Π2).

Therefore, for all A, lfp(SΠ1∪Π2)(A) ≤ lfp(SPROG(Π1)∪PROG(Π2))(A), which means

that lfp(SΠ3)(A) ≤ lfp(SPROG(Π1)∪PROG(Π2))(A).

The statement of the lemma follows directly from claims 1-2.

603

G.2.8 Proof of Proposition 75

If Π3 ≡ Π1 ∪ Π2, then for any atom A,

lfp(SΠ3)(A) = lfp(SPROG(PROG(Π1)∪PROG(Π2)))(A)

Proof. By Lemma 25,

lfp(SPROG(PROG(Π1)∪PROG(Π2)))(A) = lfp(SPROG(Π1)∪PROG(Π2))(A)

By Lemma 26, the statement of the proposition follows.

G.2.9 Proof of Proposition 76

inc
(opt)
i ≤ inc

(opt)
i−1 .

Proof. This proposition is equivalent to the statement for all V′ ⊆ V and all v, v′ /∈

V′, then

value(V′ ∪ {v, v′})− value(V′ ∪ {v′}) ≤ value(V′ ∪ {v})− value(V′)

Where v is the vertex added by the greedy algorithm at iteration i− 1 and v′ is the

vertex added by the greedy algorithm at iteration i. Obviously, as V′ ∪ {v} ⊇ V′,

this is a special case of submoduarity, which is proved for this special case of queries

in Theorem 47.

G.2.10 Proof of Corollary 14

inci(v) ≤ inci−1(v).

604

Proof. This proposition is equivalent to the statement for all V′ ⊆ V and all v, v′ /∈

V′, then

value(V′ ∪ {v, v′})− value(V′ ∪ {v′}) ≤ value(V′ ∪ {v})− value(V′)

Where v′ is the vertex added at iteration i−1. The statement of the corollary holds

as a result of Proposition 76.

G.2.11 Proof of Proposition 77

For j ≤ i,

inci(v) ≤ agg
(

{min
(

1, INCj(v)(g(v
′)) + I

(alg)
i−1 (g(v′))

)

− I
(alg)
i−1 ((g(v′)))|v′ ∈ V}

)

Proof. Follows directly from Observation 1 and Proposition 74.

G.2.12 Proof of Theorem 57

If the nodes in GS
(ǫ)
i (cand(ǫ)i) corresponding with elements of cand(ǫ)i

′
are an

independent set of GS
(ǫ)
i (cand(ǫ)i), then the greedy algorithm can select all vertices

in cand(ǫ)i
′
and still obtain a solution within eǫ−1

eǫ
of optimal.

Proof. By the definition of an independent set and vertex spread, for any v, v′ ∈

cand(ǫ)i
′
, we know that spread

(ǫ)
i (v) ∩ spread

(ǫ)
i (v′) ≡ ∅ as there is no edge between

them in the spread-graph. Hence, if v is selected on iteration i, we know we can

select v′ on iteration i+1 as inc
(ǫ)
i+1(v

′) ≥ inc
(ǫ)
i (v′) as spread(ǫ)i (v)∩ spread(ǫ)i (v′) ≡ ∅.

We also know, on iteration i+ 1, the set cand(ǫ)i
′ − {v, v′} is an independent set of

the spread graph of cand(ǫ)i+1, so we can select every other element of cand(ǫ)i
′
as

well.

605

G.2.13 Proof of Proposition 78

The complexity of GREEDY-SNOP2 is O(k · |V| · F (|V|)) where F (|V|) is the

time complexity to compute value(V ′) for some set V ′ ⊆ V of size k.

Proof. There are two main operations that incur a cost additional to GREEDY-SNOP

(see Proposition 73, however they are both dominated by other operations.

1. At each iteration of the loop at line 4, inc(up)(v) is computed for each vertex,

giving an upper bound of the incremental increase for the iteration. There are

O(|V|) of these operations and each operations costs less than the computation

of the fixed point, so they are dominated by line 4e.

2. After the completion of the inner loop at line 4e, the algorithm may create

a spread graph and find an independent set. Under the assumption that

GREEDY-INDEP-SET or a similar algorithm is used, this operation is also

dominated by the inner loop at line 4e.

G.2.14 Proof of Proposition 79

Given a SNOP-query meeting the following criteria:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear

606

• value is zero-starting

Then GREEDY-SNOP2 is an eǫ

eǫ−1 -approximation algorithm for the query.

Proof. Below we note the main differences between GEEDY-SNOP and GREEDY-

SNOP2 as show how they still allow the approximation guarantee of the statement:

1. The least fixed point is computed using saved logic programs that capture

previously computed annotations. By Proposition 75, this has no effect on the

approximation ratio.

2. Ignoring vertices whose associated upper bound on the incremental increase

is below this quantity for vertices already considered does not affect approxi-

mation ratio by Corollary 14. Further, this upper bound on the incremental

increase associated with a vertex is correct as per Proposition 77.

3. Picking a vertex whose associated incremental increase is within ǫ of optimal

give the approximation ratio of the statement by Theorem 56 and the upper

bound used to specify this is correct by Observation 2

4. Selecting multiple vertices that comprise an independent set of the spread

graph of all vertices whose incremental increase is within ǫ of optimal allows

for the approximation guarantee of the statement by Theorem 57.

607

RETURN-SET(G = (V,E), V ′ ⊆ V, v ∈ V) returns V ′′ ⊂ V

1. V ′′ = V ′ ∪ {v}

2. For all v′ ∈ V s.t. (v, v′) ∈ E:

(a) If v′ /∈ V ′, do the following:

i. Set V ∗ = RETURN-SET(G, v′, V ′′)

ii. V ′′ = V ′′ ∪ V ∗

3. Return V ′′

FIND-ALL-DNS-SETS(G = (V,E)) returns V1, . . . , Vn ⊆ V

1. n = 0, Vrem = V

2. While Vrem 6≡ ∅

(a) n++, Vn = ∅

(b) Pick a vertex v ∈ Vrem.

(c) Vn = RETURN-SET(G, ∅, v)

(d) Vrem = Vrem − Vn

3. Return V1, . . . , Vn

608

G.2.15 Algorithm for Finding Disjoint Node Sets

G.2.16 Proof of Proposition 80

Given a SNOP-query meeting the following criteria:

• Π is a linear GAP

• V C is applied a-priori

• agg is positive linear

• value is zero-starting

Then GREEDY-SNOP-DIV is an eǫ

eǫ−1 -approximation algorithm for the query.

Proof. We prove the statement by showing that for any instance of GREEDY-

SNOP-DIV, the solution returned is the same as that returned by an instance of

GREEDY-SNOP2 – thus assuring the approximation guarantee. In this proof we

shall use GREEDY-SNOP2i to refer to an instance of GREEDY-SNOP2 that con-

siders vertices only in some DNSi, as called by GREEDY-SNOP-DIV. We shall use

GREEDY-SNOP2all to refer to an instance of GREEDY-SNOP2 on the same input as

GREEDY-SNOP-DIV.

CLAIM 1: If the first vertex (vertex v) picked by GREEDY-SNOP2i is also picked

by GREEDY-SNOP2all, then the incremental increase for that vertex is the same for

both algorithms.

We note that vertex v is independent from any vertex v′ /∈ DNSi, so by the proof

609

of Theorem 57, the statement of the claim follows.

CLAIM 2: If vertex vj is picked by GREEDY-SNOP2i at some iteration j, then it

is picked by GREEDY-SNOP2all only if GREEDY-SNOP2all picks all other vertices

selected by GREEDY-SNOP2i before iteration j.

We show this by induction on j.

BASE CASE: j = 2

Consider v1, v2. Note that on the first iteration of GREEDY-SNOP2i, the algorithm

found that the incremental increase of v1 is more “optimal” than v2. Hence, by

claim 1, this vertex would also be picked by GREEDY-SNOP2all.

INDUCTIVE HYPOTHESIS:

If GREEDY-SNOP2all picks vj, it also selects vertices v1, . . . , vj−2 picked by GREEDY-SNOP2i

on iterations 1, . . . , j − 2.

INDUCTIVE STEP:

If GREEDY-SNOP2all, then by the inductive hypothesis, it selects v1, . . . , vj−2. Sup-

pose, BWOC, it picks vertex vj before vj−1. However, as GREEDY-SNOP2i picks

vertex vj−1 first, we know it is “more optimal” than vj on GREEDY-SNOP2i. As

the only vertices that picked GREEDY-SNOP2all which are not independent were the

same ones picked by GREEDY-SNOP2i, we know that GREEDY-SNOP2all will also

find vj−1 “more optimal” than vj – hence a contradiction.

CLAIM 3: Any vertex picked by GREEDY-SNOP2all contributes the same incremen-

tal increase as if it were picked by GREEDY-SNOP2i.

610

Follows from the fact that vertices in each instance are independent from each other

as well as claims 1-2.

Proof of Proposition: Follows directly from claims 1-3.

611

Bibliography

[1] N. Agmon, S. Kraus, and G.A. Kaminka. Multi-robot perimeter patrol in
adversarial settings. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA-2008), pages 2339–2345, 2008.

[2] N. Agmon, S. Kraus, G.A. Kaminka, and V. Sadov. Adversarial uncertainty
in multi-robot patrol. In Proc. 21st Int. Joint Conf. on Artificial Intelligence
(IJCAI-2009), pages 1811–1817, 2009.

[3] James F. Allen and George Ferguson. Actions and events in interval temporal
logic. J. of Logic and Computation, 4:531–579, 1994.

[4] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2 edition,
2010.

[5] Roy M. Anderson and Robert M. May. Population biology of infectious dis-
eases: Part i. Nature, 280(5721):361, 1979.

[6] T. Antal, S. Redner, and V. Sood. Evolutionary dynamics on degree-
heterogeneous graphs. Physical Review Letters, 96(18):188104, 2006.

[7] Shyamanta M. Hazarika Anthony G. Cohn. Qualitative spatial representation
and reasoning: An overview. volume 46, pages 1–29, 2001.

[8] K. Apt. Principles of constraint programming. Cambridge University Press,
2003.

[9] Sinan Aral, Lev Muchnik, and Arun Sundararajan. Distinguishing influence-
based contagion from homophily-driven diffusion in dynamic networks. Pro-
ceedings of the National Academy of Sciences, 106(51):21544–21549, December
2009.

[10] V Asal, J Carter, and J Wilkenfeld. Ethnopolitical violence and terrorism in
the middle east. In J Hewitt, J Wilkenfeld, and T Gurr, editors, Peace and
Conflict 2008. Paradigm, 2008.

[11] Yossi Azar and Iftah Gamzu. Efficient submodular function maximiza-
tion under linear packing constraints. (submitted, preprint avaialbe from
http://www.cs.tau.ac.il/ iftgam/papers/SubmodularPacking.pdf), 2010.

612

[12] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Al-
berto L. Sangiovanni-vincentelli. It usually works: The temporal logic of
stochastic systems. pages 155–165. Springer, 1995.

[13] C. Baral, N. Tran, and L. Tuan. Reasoning about actions in a probabilistic
setting. In Proc. AAAI 2002, pages 507–512, 2002.

[14] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained Clustering: Ad-
vances in Algorithms, Theory, and Applications. Chapman & Hall/CRC, 2008.

[15] Paul Brantingham and Patricia Brantingham. Crime Pattern Theory. In
Richard Wortley and Lorraine Mazerolle, editors, Enviromental Criminology
and Crime Analysis, pages 78–93. 2008.

[16] Herv Brnnimann and Michael T. Goodrich. Almost optimal set covers in finite
vc-dimension. Discrete Comput. Geom, 14:293–302, 1995.

[17] Matthias Broecheler, Paulo Shakarian, and V.S. Subrahmanian. A scalable
framework for modeling competitive diffusion in social networks. Social Com-
puting / IEEE International Conference on Privacy, Security, Risk and Trust,
0:295–302, 2010.

[18] Matthias Broecheler, Gerardo I. Simari, and V. S. Subrahmanian. Using his-
tograms to better answer queries to probabilistic logic programs. In ICLP
’09: Proceedings of the 25th International Conference on Logic Programming,
pages 40–54, Berlin, Heidelberg, 2009. Springer-Verlag.

[19] Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Josephson.
The Computational Complexity of Abduction, 1991.

[20] Meeyoung Cha, Alan Mislove, Ben Adams, and Krishna P. Gummadi. Char-
acterizing social cascades in flickr. In WOSP ’08: Proceedings of the first
workshop on Online social networks, pages 13–18, New York, NY, USA, 2008.
ACM.

[21] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A Measurement-
driven Analysis of Information Propagation in the Flickr Social Network.
In In Proceedings of the 18th International World Wide Web Conference
(WWW’09), Madrid, Spain, April 2009.

[22] A. Charnes and W. Cooper. Programming with linear fractional functionals.
Naval Research Logistics Quarterly, 9(3):163–297, 1962.

[23] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’10, pages 1029–1038, New York, NY, USA, 2010. ACM.

[24] Vaek Chvatal. Linear Programming. W.H.Freeman, New York, 1983.

613

[25] R. Cleaveland, P. Iyer, and M. Narasimha. Probabilistic Temporal Logics
via the Modal Mu-Calculus. Theoretical Computer Science, 342(2-3):316–350,
2005.

[26] Luca Console, Luigi Portinale, and Daniele Theseider Dupré. Focussing Ab-
ductive Diagnosis. AI Commun., 4(2), 1991.

[27] Luca Console, Maria Luisa Sapino, and Daniele Theseider Dupré. The Role
of Abduction in Database View Updating. Journal of Intelligent Information
Systems, 4(3):261, 1995.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

[29] Robin Cowan and Nicolas Jonard. Network structure and the diffusion of
knowledge. Journal of Economic Dynamics and Control, 28(8):1557 – 1575,
2004.

[30] J. Lang D. Dubois and H. Prade. Timed possibilistic logic. Fundamenta
Informaticae, XV:211–234, 1991.

[31] C. Damasio, L. Pereira, and T. Swift. Coherent well-founded annotated logic
programs. In Proc. Intl. Conf. on Logic Programming and Non-Monotonic
Reasoning, pages 262–276. Springer Lecture Notes in Computer Science Vol.
1730, 1999.

[32] Ian Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues
and the k-means algorithm. In SDM, 2005.

[33] Munmun De Choudhury, Hari Sundaram, Ajita John, and Dorée Duncan Selig-
mann. Can blog communication dynamics be correlated with stock market
activity? In HT ’08: Proceedings of the nineteenth ACM conference on Hy-
pertext and hypermedia, pages 55–60, New York, NY, USA, 2008. ACM.

[34] Alex Dekhtyar, Michael I. Dekhtyar, and V. S. Subrahmanian. Temporal
probabilistic logic programs. In ICLP 1999, pages 109–123, Cambridge, MA,
USA, 1999. The MIT Press.

[35] J.P. Dickerson, G.I. Simari, V.S. Subrahmanian, and Sarit Kraus. A Graph-
Theoretic Approach to Protect Static and Moving Targets from Adversaries.
In Proc. 9th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS-2010), pages 299–306, 2010.

[36] Jürgen Dix, Sarit Kraus, and V. S. Subrahmanian. Heterogeneous temporal
probabilistic agents. ACM TOCL, 7(1):151–198, 2006.

[37] Silvio do Lago Pereira and Leliane Nunes de Barros. Planning with abduction:
A logical framework to explore extensions to classical planning. In Lecture
Notes in Computer Science Advances in Artificial Intelligence SBIA, 2004.

614

[38] Martin Dyer, Leslie A Goldberg, Catherine Greenhill, and Mark Jerrum. On
the relative complexity of approximate counting problems. Technical report,
Coventry, UK, UK, 2000.

[39] T. Eiter, J. Lu, and V.S. Subrahmanian. Computing non-ground representa-
tions of stable models. In Proc. Intl. Conf. on Logic Programming and Non-
Monotonic Reasoning, pages 198–217. Springer Lecture Notes in Computer
Science Vol. 1265, 1997.

[40] T Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous Active Agents, I:
Semantics. Artificial Intelligence Journal, 108(1-2):179–255, 1999.

[41] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction.
J. ACM, 42(1):3–42, 1995.

[42] E. A Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited:
on branching versus linear time. Technical report, Austin, TX, USA, 1984.

[43] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and prob-
ability. Journal of the ACM, 41:340–367, 1994.

[44] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning
about probabilities. Information and Computation, 87:78–128, 1990.

[45] H. Cruz F.C. Coelho, C. Codeco. Epigrass: A tool to study disease spread in
complex networks. Source Code for Biology and Medicin, 3(3), 2008.

[46] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

[47] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrak. Maximizing non-monotone
submodular functions. In FOCS ’07: Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science, pages 461–471, Washington,
DC, USA, 2007. IEEE Computer Society.

[48] Massimo Franceschetti, Matthew Cook, and Jehoshua Bruck. A geometric
theorem for network design. IEEE Transactions on Computers, 53(4):483–
489, 2004.

[49] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. J. ACM, 34(3):596–615, July
1987.

[50] David Freedman, Roger Purves, and Robert Pisani. Statistics. W.W. Norton
and Co., 4 edition, 2007.

[51] Thom Frühwirth. Annotated constraint logic programming applied to tempo-
ral reasoning. In PLILP: Programming Language Implementation and Logic
Programming, Madrid, 1994. Springer.

615

[52] Bin Fu, Zhixiang Chen, and Mahdi Abdelguerfi. An almost linear time 2.8334-
approximation algorithm for the disc covering problem. In AAIM ’07: Proceed-
ings of the 3rd international conference on Algorithmic Aspects in Information
and Management, pages 317–326, Berlin, Heidelberg, 2007. Springer-Verlag.

[53] I. Fujiwara, Y. Hirose, and M. Shintani. Can News be a Major Source of
Fluctuation: A Bayesian DGSE Approach, volume Discussion Paper Nr. 2008-
E-16. Institute for Monetary and Economic Studies, Bank of Japan, 2008.

[54] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[55] Els Gijsbrechts, Katia Campo, and Tom Goossens. The impact of store flyers
on store traffic and store sales: a geo-marketing approach. Journal of Retailing,
79(1):1 – 16, 2003.

[56] Rob J. Van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive,
generative, and stratified models of probabilistic processes. Information and
Computation, 121:130–141, 1995.

[57] Jack A. Goldstone, Robert Bates, Ted Robert Gurr, Michael Lustik, Monty G.
Marshall, Jay Ulfelder, and Mark Woodward. A global forecasting model of
political instability. In Proc. Annual Meeting of the American Political Science
Association, 2005.

[58] Teofilo F. Gonzalez. Covering a set of points in multidimensional space. Inf.
Process. Lett., 40(4):181–188, 1991.

[59] Georg Gottlob, Sherry Marcus, Anil Nerode, Gernot Salzer, and V. S. Subrah-
manian. A non-ground realization of the stable and well-founded semantics.
Theor. Comput. Sci., 166(1-2):221–262, 1996.

[60] P.R. Goundan and A.S. Schultz. Revisiting the greedy approach to submod-
ular set function maximization. Technical report, Massachusetts Institute of
Technology, 2007.

[61] Mark Granovetter. Threshold models of collective behavior. The American
Journal of Sociology, 83(6):1420–1443, 1978.

[62] P. Haddawy. Representing plans under uncertainty: A logic of time, chance
and action. PhD Thesis, Univ. of Illinois, 1991.

[63] J. Halpern and M. Tuttle. Knowledge, probability, and adversaries. In IBM
Thomas J. Watson Research Center Tech Report, 1992.

[64] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6:512–535, 1994.

616

[65] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6:102–111, 1994.

[66] S. Hart and M. Sharir. Probabilistic propositional temporal logic. Information
and Control, 70:97–155, 1986.

[67] Herbert W. Hethcote. Qualitative analyses of communicable disease models.
Mathematical Biosciences, 28(3-4):335 – 356, 1976.

[68] Dorit S. Hochbaum. Approximation Algorithms for the Set Covering and
Vertex Cover Problems. SIAM Journal on Computing, 11(3):555–556, 1982.

[69] Dorit S. Hochbaum. Approximation Algorithms for NP-Complete Problems.
PWS Publishing Co., 1997.

[70] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering
and packing problems in image processing and vlsi. J. ACM, 32:130–136, 1985.

[71] Harry B. Hunt, III, Madhav V. Marathe, Venkatesh Radhakrishnan, and
Richard E. Stearns. The complexity of planar counting problems. SIAM
J. Comput., 27(4):1142–1167, 1998.

[72] ISW. Map of Special Groups Activity in Iraq, Institute for the Study of War.
2008.

[73] M. Jackson and L. Yariv. Diffusion on social networks. In Economie Publique,
volume 16, pages 69–82, 2005.

[74] Robert Jeansoulin, Odile Papini, Henri Prade, and Steven Schockaert. In
Robert Jeansoulin, Odile Papini, Henri Prade, and Steven Schockaert, editors,
Methods for Handling Imperfect Spatial Information, volume 256 of Studies in
Fuzziness and Soft Computing. Springer Berlin / Heidelberg, 2010.

[75] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed
algorithm for constructing small dominating sets. Distrib. Comput., 15(4):193–
205, 2002.

[76] D.S. Johnson. The np-completeness column: An ongoing guide. Journal of
Algorithms, 3(2):182–195, 1982.

[77] A. C. Kakas and P. Mancarella. Database updates through abduction. In
VLDB90, 1990.

[78] K. Kanazawa. A logic and time nets for probabilistic inference. In Proc. AAAI
1991, 1991.

[79] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

617

[80] Richard Karp. Reducibility Among Combinatorial Problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, page
85103. 1972.

[81] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 137–146, New York, NY, USA, 2003. ACM.

[82] Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilistic
logic programming with the power of maximum entropy. Artif. Intell., 157(1-
2):139–202, 2004.

[83] Samir Khuller, Maria Vanina Martinez, Dana Nau, Gerardo I. Simari, Amy
Sliva, and Venkatramanan Siva Subrahmanian. Action probabilistic logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 51(2–4):295–331,
2007.

[84] W. Kiessling, H. Thone, and U. Guntzer. Database support for problematic
knowledge. In Proceedings of EDBT 1992, Springer LNCS Volume 580, pages
421–436, 1992.

[85] Michael Kifer and Eliezer L. Lozinskii. A logic for reasoning with inconsistency.
Journal of Automated Reasoning, 9(2):179–215, 1992.

[86] Michael Kifer and V.S. Subrahmanian. Theory of generalized annotated logic
programming and its applications. J. Log. Program., 12(3&4):335–367, 1992.

[87] Dexter Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New
York, 1991.

[88] Stanislav Krajci, Rastislav Lencses, and Peter Vojts. A comparison of fuzzy
and annotated logic programming. Fuzzy Sets and Systems, 144(1):173 – 192,
2004.

[89] Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating
set approximation. In In Proc. of the 22 nd ACM Symposium on the Principles
of Distributed Computing (PODC, pages 25–32, 2003.

[90] Benjamin Kuipers. A hierarchy of qualitative representations for space. In
Working papers of the Tenth International Workshop on Qualitative Reasoning
about Physical Systems, 1996.

[91] M. Kwiatkowska, G. Norman, and D. Parker. Verifying randomized dis-
tributed algorithms with PRISM. In Proc. Workshop on Advances in Ver-
ification (Wave’2000), July 2000.

618

[92] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: probabilis-
tic model checking for performance and reliability analysis. SIGMETRICS
Perform. Eval. Rev., 36(4):40–45, 2009.

[93] Laks V.S. Lakshmanan and F. Sadri. Modeling uncertainty in deductive
databases. In Proceedings of DEXA 1994, pages 724–733. Springer LNCS
Vol. 856, 1994.

[94] Laks V.S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In
Proceedings of the Intl. Logic Programming Symposium (ILPS). MIT Press,
1994.

[95] Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to
deductive databases with uncertainty. IEEE Transactions on Knowledge and
Data Engineering, 1997.

[96] Leslie Lamport. “sometime” is sometimes “not never”: on the temporal logic
of programs. In POPL 1980, pages 174–185, New York, NY, USA, 1980. ACM.

[97] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1–28, 1991.

[98] D. Lehmann and S. Shelah. Reasoning about time and chance. Information
and Control, 53:165–198, 1982.

[99] Nicola Leone, Francesco Scarcello, and V.S. Subrahmanian. Optimal models
of disjunctive logic programs: Semantics, complexity, and computation. IEEE
Transactions on Knowledge and Data Engineering, 16:487–503, 2004.

[100] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive
and negative links in online social networks. In Proceedings of the 19th in-
ternational conference on World wide web, WWW ’10, pages 641–650, New
York, NY, USA, 2010. ACM.

[101] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. Cost-effective outbreak detection in net-
works. In KDD ’07: Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 420–429, New York,
NY, USA, 2007. ACM.

[102] Kevin Leyton-Brown and Yoav Shoham. Essentials of Game Theory: A Con-
cise, Multidisciplinary Introduction. Morgan and Claypool Publishers, 2008.

[103] S. Li and M. Ying. Region connection calculus: Its models and composition
table. Artif. Intell., 145:121 – 146, 2003.

[104] Chen Liao and Shiyan Hu. Polynomial time approximation schemes for mini-
mum disk cover problems. Journal of Combinatorial Optimization.

619

[105] Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolutionary dy-
namics on graphs. Nature, 433(7023):312–316, 2005.

[106] J. W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-
Verlag, 1987.

[107] J. Lu. Logic programs with signs and annotations. Journal of Logic and
Computation, 6(6):755–778, 1996.

[108] James J. Lu, Anil Nerode, and V.S. Subrahmanian. Hybrid knowledge bases.
IEEE Transactions on Knowledge and Data Engineering, 8(5):773–785, 1996.

[109] J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas and annotated
logics. In Multiple-Valued Logic, 1993., Proceedings of The Twenty-Third In-
ternational Symposium on, pages 48–53, May 1993.

[110] Thomas Lukasiewicz. Probabilistic logic programming. In ECAI, pages 388–
392, 1998.

[111] Thomas Lukasiewicz. Many-valued disjunctive logic programs with probabilis-
tic semantics. In In Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning, volume 1730 of LNAI, pages
277–289. Springer, 1999.

[112] Thomas Lukasiewicz, Thomas Lukasiewicz, Gabriele Kern-isberner, and
Gabriele Kern-isberner. Probabilistic logic programming under maximum en-
tropy. In In Proc. ECSQARU-99, LNCS 1638, pages 279–292. Springer, 1999.

[113] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating
minimization problems. J. ACM, 41(5):960–981, 1994.

[114] A. Martelli M. Falaschi, G. Levi and C. Palamidessi. A new declarative se-
mantics for logic languages. In Proc. 5th Internat. Conf. Symp. on Logic
Programming, page 9931005, 1988.

[115] Wolfgang Maass. On the complexity of nonconvex covering. SIAM J. Comput.,
15(2):453–467, 1986.

[116] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press, 1967.

[117] Paolo Mancarella, Alessandra Raffaetà, and Franco Turini. Temporal anno-
tated constraint logic programming with multiple theories. In DEXA ’99:
Proceedings of the 10th International Workshop on Database & Expert Sys-
tems Applications, 1999.

620

[118] A. Mannes, M. Michaell, A. Pate, A. Sliva, V.S. Subrahmanian, and J. Wilken-
feld. Stochastic Opponent Modelling Agents: A Case Study with Hezbollah.
In Proc. 2008 First Intl. Workshop on Social Computing, Behavioral Modeling
and Prediction. Springer Verlag, April 1-2, 2008.

[119] Aaron Mannes, Amy Sliva, V.S. Subrahmanian, and Jonathan Wilkenfeld.
Stochastic Opponent Modeling Agents: A Case Study with Hamas. In Proc.
2008 Intl. Conf. on Computational Cultural Dynamics, pages 49–54. AAAI
Press, Sep. 2008.

[120] V. Martinez, G.I. Simari, A. Sliva, and Venkatramanan Siva Subrahmanian.
The SOMA Terror Organization Portal (STOP): Social Network and Analytic
Tools for the Real-Time Analysis of Terror Groups. In Huan Liu and John
Salerno, editors, Proceedings of the First International Workshop on Social
Computing, Behavioral Modeling and Prediction, 2008.

[121] V. Martinez, G.I. Simari, A. Sliva, and V.S. Subrahmanian. CONVEX:
Similarity-Based Algorithms for Forecasting Group Behavior. IEEE Intel-
ligent Systems, 23(4):51–57, 2008.

[122] V. Martinez, G.I. Simari, A. Sliva, and V.S. Subrahmanian. CAPE: Automati-
cally Predicting Changes in Terror Group Behavior. to appear in Mathematical
Methods in Counterterrorism (ed. N. Memon), 2009.

[123] S. Masuyama, T. Ibaraki, and T. Hasegawa. The computational complexity of
the m-center problems on the plane. Trans. IECE of Japan, E84:57–64, 1981.

[124] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas, and C. Sernadas. Probabilistic
situation calculus. AMAI, 32:393–431(39), 2001.

[125] Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common
geometric location problems. SIAM Journal of Computing, 13(1):182–196,
1984.

[126] A. Pentland N. Eagle and D. Lazer. Mobile phone data for inferring social
network structure. In Proc. 2008 Intl. Conference on Social and Behavioral
Computing, pages 79–88. Springer Verlag, 2008.

[127] G. L. Nemhauser, L. A. Wolsey, and M.L. Fisher. An analysis of approxima-
tions for maximizing submodular set functionsi. Mathematical Programming,
14(1):265–294, 1978.

[128] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic programming.
Information and Computation, 101(2):150–201, 1992.

[129] Raymond T. Ng and Venkatramanan Siva Subrahmanian. A semantical
framework for supporting subjective and conditional probabilities in deduc-
tive databases. In Koichi Furukawa, editor, Proceedings of ICLP ’91, pages
565–580. The MIT Press, 1991.

621

[130] Raymond T. Ng and Venkatramanan Siva Subrahmanian. Probabilistic logic
programming. Information and Computation, 101(2):150–201, 1992.

[131] Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

[132] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[133] Maurice Pagnucco. The Role of Abductive Reasoning within the Process of Be-
lief Revision. PhD thesis, Basser Department of Computer Science, University
of Sydney, Australia, 1996.

[134] Christos H. Papadimitriou. Worst-Case and Probabilistic Analysis of a Geo-
metric Location Problem. SIAM J. Comput., 10(3):542–557, 1981.

[135] P. Paruchuri, M. Tambe, F. Ordóñez, and S. Kraus. Security in multiagent
systems by policy randomization. In Proc. 5th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS-2006), 2006.

[136] Vangelis T. Paschos. A survey of approximately optimal solutions to some
covering and packing problems. ACM Comput. Surv., 29(2):171–209, 1997.

[137] Charles S. Peirce. Philosophical writings of Peirce, selected and edited with an
introd. by Justus Buchler. Dover Publications New York,, 1955.

[138] Yun Peng and James A. Reggia. Plausibility of Diagnostic Hypotheses. In
Proceedings, 5th National Conference on AI (AAAI-86), pages 140–145, 1986.

[139] J. Pita, M. Jain, F. Ordóñez, M. Tambe, S. Kraus, and R. Magori-Cohen.
Effective solutions for real-world stackelberg games: When agents must deal
with human uncertainties. In Proc. 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS-2009), pages 369–376, 2009.

[140] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[141] James A. Reggia and Yun Peng. Abductive inference models for diagnostic
problem-solving. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[142] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A
maximal tractable fragment of the region connection calculus. Artif. Intell.,
108:69 – 123, 1999.

[143] Thomas Hewitt Rich, Mildred Adams Fenton, and Carroll Lane Fenton. The
fossil book: a record of prehistoric life. Dover Publications, 2 edition, 1996.

[144] D. Kim Rossmo and Sacha Rombouts. Geographic Profiling. In Richard Wort-
ley and Lorraine Mazerolle, editors, Enviromental Criminology and Crime
Analysis, pages 136–149. 2008.

622

[145] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82:273–302, 1996.

[146] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[147] Jan Rychtář and Brian Stadler. Evolutionary dynamics on small-world net-
works. International Journal of Computational and Mathematical Sciences,
2(1), 2008.

[148] Eugene Santos and Joel D. Young. Probabilistic temporal networks: A uni-
fied framework for reasoning with time and uncertainty. Inter. Journal of
Approximate Reasoning, 20, 1999.

[149] Paulo Santos and Murray Shanahan. Hypothesising object relations from
image transitions. In Proc. ECAI02, 2002.

[150] Thomas C. Schelling. Micromotives and Macrobehavior. W.W. Norton and
Co., 1978.

[151] P. Schrodt and D.J. Gerner. Cluster analysis as an early warning technique for
the middle east. Preventive Measures: Building Risk Assessment and Crisis
Early Warning Systems (eds. John L. Davies and Ted Robert Gurr), 1998.

[152] P. Shakarian, M. Broecheler, and V.S. Subrahmanian. Using generalized an-
notated programs to solve social network optimization problems. (submitted),
2011.

[153] P. Shakarian and V.S. Subrahmanian. Region-based Geospatial Abduction
with Counter-IED Applications. In U. Kock Wiil, editor, Counterterrorism
and Open Source Intelligence (to appear). Springer, 2010.

[154] Paulo Shakarian, John Dickerson, and V.S. Subrahmanian. Adversarial geosp-
taial abudction. (submitted), 2011.

[155] Paulo Shakarian, Austin Parker, Gerardo Simari, and V.S. Subramanian. An-
notated probabilstic temporal logic. ACM Transactions on Computational
Logic, 12(2), 2011.

[156] Paulo Shakarian, Gerardo Simari, and V.S. Subramanian. Annotated proba-
bilistic temporal logic: Approximate fixpoint implementation. ACM Transac-
tions on Computational Logic (accepted), 2011.

[157] Paulo Shakarian, V.S. Subrahmanian, and Maria Luisa Sapino. SCARE: A
Case Study with Baghdad. In Proceedings of the Third International Confer-
ence on Computational Cultural Dynamics. AAAI, 2009.

[158] Paulo Shakarian, V.S. Subrahmanian, and Maria Luisa Sapino. GAPs:
Geospatial Abduction Problems. ACM Transaction on Intelligent Systems
and Technology (accepted), 2010.

623

[159] Paulo Shakarian, V.S. Subrahmanian, and Maria Luisa Sapino. Using gen-
eralized annotated programs to solve social network optimization problems.
In Manuel Hermenegildo and Torsten Schaub, editors, Technical Communica-
tions of the 26th International Conference on Logic Programming, volume 7
of Leibniz International Proceedings in Informatics (LIPIcs), pages 182–191,
Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[160] M. Shanahan. Noise and the common sense informatic situation. In Proc.
AAAI96, page 1098, 1996.

[161] David B. Shmoys, Eva Tardos, and Karen Aardal. Approximation algorithms
for facility location problems (extended abstract). In In Proceedings of the
29th Annual ACM Symposium on Theory of Computing, pages 265–274, 1998.

[162] V. Sood, Tibor Antal, and S. Redner. Voter models on heterogeneous net-
works. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
77(4):041121, 2008.

[163] R.K. Srihari. Automatic indexing and content-based retrieval of captioned
images. Computer, 28(9):49 –56, September 1995.

[164] John F. Stollsteimer. A Working Model for Plant Numbers and Locations.
45(3):631–645, Aug. 1963.

[165] Bogdan Stroe and V. S. Subrahmanian. First order heterogeneous agent com-
putations. In AAMAS ’03: Proceedings of the second international joint con-
ference on Autonomous agents and multiagent systems, pages 217–224, New
York, NY, USA, 2003. ACM.

[166] V. S. Subrahmanian and Diego Reforgiato Recupero. AVA: Adjective-Verb-
Adverb Combinations for Sentiment Analysis. IEEE Intelligent Systems,
23(4):43, 2008.

[167] Eric Sun, Itamar Rosenn, Cameron Marlow, and Thomas Lento. Gesundheit!
modeling contagion through facebook news feed. In Proceedings of the Third
International Conference on Weblogs and Social Media, San Jose, CA, May
2009. AAAI Press, AAAI Press.

[168] K. Thirunarayan and M. Kifer. A theory of nonmonotonic inheritance based
on annotated logic. Artificial Intelligence, 60(1):23–50, 1993.

[169] S. Rebecca Thomas. The placa agent programming language. In ECAI-94:
Proceedings of the workshop on agent theories, architectures, and languages on
Intelligent agents, pages 355–370, New York, NY, USA, 1995. Springer-Verlag
New York, Inc.

[170] US Army. Intelligence Preparation of the Battlefiled (US Army Field Manual),
FM 34-130 edition, 1994.

624

[171] US Army. Counterinsurgency (US Army Field Manual), FM 3-24 edition,
2006.

[172] Pascal Van Hentenryck. Constraint logic programming. The Knowledge En-
gineering Review, 6(03):151–194, 2009.

[173] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite state
programs. Symp. on Foundations of Comp. Sci., 0:327–338, 1985.

[174] Vijay V. Vazirani. Approximation Algorithms. Springer, March 2004.

[175] J. Venneksn, S. Verbaeten, and M. Bruynooghe. Logic programs with anno-
tated disjunctions. In Proc. Intl. Conf. on Logic Programming, pages 431–445.
Springer Lecture Notes in Computer Science Vol. 3132, 2004.

[176] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained
k-means clustering with background knowledge. In ICML ’01: Proceedings of
the Eighteenth International Conference on Machine Learning, pages 577–584,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[177] D.J. Watts and J. Peretti. Viral marketing for the real world. Harvard Business
Review, May 2007.

[178] Duncan J. Watts. Networks, dynamics, and the small-world phenomenon. The
American Journal of Sociology, 105(2):493–527, 1999.

[179] Y. Weiss and E.H. Adelson. A unified mixture framework for motion segmen-
tation: incorporating spatial coherence and estimating the number of models.
In Computer Vision and Pattern Recognition, 1996. Proceedings CVPR ’96,
1996 IEEE Computer Society Conference on, pages 321 –326, June 1996.

[180] WEKA. WEKA 3 Data Mining, http://www.cs.waikato.ac.nz/ml/weka/.
2009.

[181] Jonathan Wilkenfeld, Victor Asal, Carter Johnson, Amy Pate, and Mary
Michael. The use of violence by ethnopolitical organizations in the middle
east. Technical report, National Consortium for the Study of Terrorism and
Responses to Terrorism, February 2007.

625

