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High-throughput sequencing has accelerated applications of genomics throughout the 

world.  The increased production and decentralization of sequencing has also created 

bottlenecks in computational analysis.  In this dissertation, I provide novel computational 

methods to improve analysis throughput in three areas: whole genome multiple 

alignment, pan-genome annotation, and bioinformatics workflows. 

To aid in the study of populations, tools are needed that can quickly compare multiple 

genome sequences, millions of nucleotides in length.  I present a new multiple alignment 

tool for whole genomes, named Mugsy, that implements a novel method for identifying 

syntenic regions.  Mugsy is computationally efficient, does not require a reference 

genome, and is robust in identifying a rich complement of genetic variation including 

duplications, rearrangements, and large-scale gain and loss of sequence in mixtures of 

draft and completed genome data.  Mugsy is evaluated on the alignment of several dozen 

bacterial chromosomes on a single computer and was the fastest program evaluated for 

the alignment of assembled human chromosome sequences from four individuals.  A 



  

distributed version of the algorithm is also described and provides increased processing 

throughput using multiple CPUs. 

Numerous individual genomes are sequenced to study diversity, evolution and classify 

pan-genomes.  Pan-genome annotations contain inconsistencies and errors that hinder 

comparative analysis, even within a single species.  I introduce a new tool, Mugsy-

Annotator, that identifies orthologs and anomalous gene structure across a pan-genome 

using whole genome multiple alignments.  Identified anomalies include inconsistently 

located translation initiation sites and disrupted genes due to draft genome sequencing or 

pseudogenes.  An evaluation of pan-genomes indicates that such anomalies are common 

and alternative annotations suggested by the tool can improve annotation consistency and 

quality. 

Finally, I describe the Cloud Virtual Resource, CloVR, a desktop application for 

automated sequence analysis that improves usability and accessibility of bioinformatics 

software and cloud computing resources.  CloVR is installed on a personal computer as a 

virtual machine and requires minimal installation, addressing challenges in deploying 

bioinformatics workflows.  CloVR also seamlessly accesses remote cloud computing 

resources for improved processing throughput.  In a case study, I demonstrate the 

portability and scalability of CloVR and evaluate the costs and resources for microbial 

sequence analysis. 
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Foreword 

A version of the content described in Chapter 4, Mugsy, was published as Angiuoli, SV 

and Salzberg, SL in Bioinformatics [1].  A version of the content described in Chapter 6, 

Mugsy-Annotator, was submitted for publication to BMC Bioinformatics as Angiuoli et 

al. and was pending review at the time of preparing this dissertation. 
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Chapter 1 - Introduction 

Genome sequencing has widespread applications, including basic science, biosafety and 

biomedical research, and is expected to become part of the service sector, e.g. in the form 

of personalized health care [2,3,4].  Numerous individual genomes are sequenced to 

study genetic diversity of populations in depth, as no single reference sequence can fully 

describe the biology of a species [5,6,7].   

Advances in genome sequencing and a bioinformatics bottleneck 

The interpretation of genome sequence is reliant on computation and comparison.   As a 

consequence, high-throughput sequencing technologies [8,9,10], while aiding in sequence 

acquisition, have also given rise to a “bioinformatics bottleneck”.  Contributing to this 

bottleneck, the rate of sequence acquisition is exceeding improvements in computer 

performance and predictions from Moore's law [11,12].  For particular computational 

methods, such as multiple sequence alignment, optimal solutions are infeasible for large 

data sets [13] requiring heuristic solutions that improve computational efficiency.   

In conjunction with increased throughput, the introduction of "benchtop" sequencing that 

aims at integrating medium-scale, affordable sequence generation into the standard 

laboratory equipment [14] is following a decentralization trend where sequence 

generation is becoming available for any size laboratory all over the world [15].  This 

democratization of sequencing has resulted in a larger, more diverse set of users that 

require bioinformatics software for analysis [16,17].  This trend has also exposed 

practical and technical challenges in sequence analysis using bioinformatics software 

(software requirements) [17,18] and computational resources (hardware requirements) 
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[12,19], contributing to analysis bottlenecks.  In combination, bottlenecks in analysis 

have made the feasibility and affordability of applications of genomics increasingly 

dependent on bioinformatics tools and methods rather than sequence generation itself. 

This dissertation describes novel computational methods and software that improve 

analysis throughput for whole genome alignment and microbial sequence analysis.  The 

original contributions include: 

Novel methods for efficient whole genome comparison and high-throughput sequence 

analysis 

Algorithms for efficient comparisons of whole genomes 

In Chapters 3-5, a series of novel algorithms and new tools are presented for alignment 

and comparisons of multiple whole genomes.  In Chapter 4, we describe a new tool, 

Mugsy, for the multiple alignment of whole genomes.  Mugsy includes a novel algorithm 

for identifying collinear regions (synteny) across multiple genomes without the need for a 

reference genome [1].  Mugsy is computationally efficient for the multiple alignment of 

closely related genomes that share fractions of identical or nearly identical DNA.  Mugsy 

is not biased towards a reference genome, is robust in handling draft genomes, and can 

identify a wide range of genome-scale diversity, including rearrangements and 

duplications.   

In Chapter 5, we extend the work on whole genome alignment to provide a distributed 

version of the algorithm, enabling faster computation and calculation of larger alignments 

than can be generated on a single computer. 
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Algorithms for improving annotation of pan-genomes  

In Chapter 6, we describe a novel method for identifying orthologs and annotation 

inconsistencies across a pan-genome using whole genome multiple alignment.  The 

method, implemented in a tool Mugsy-Annotator, is computationally efficient.  We use 

the tool to evaluate the quality of annotated gene structures in several species pan-

genomes and improve annotated gene structures across the bacterium Neisseria 

meningitidis. 

A novel software platform for portable and automated sequence analysis 

In Chapter 7, we describe a novel software platform, Cloud Virtual Resource (CloVR), 

for portable and automated analysis of microbial genomes.  CloVR provides a single 

software executable that runs on a personal computer and seamlessly accesses cloud 

computing resources over the Internet for increased processing throughput.  In Chapter 8, 

we utilize the CloVR software to evaluate the required resources and costs for microbial 

sequence analysis. 

The remainder of this document is organized as follows.  Background information 

relevant to the dissertation is described in Chapter 2.  A review of literature related to the 

contributions is described in 

Dissertation organization 

Chapter 3- Related Works.  The contributions are presented 

and evaluated in Chapters 4-8.  Finally, discussion, conclusions drawn, and areas for 

future work are described in Chapter 9. 
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Chapter 2 - Background 

A wide-range of genome sequencing projects across the tree of life have broadened 

understanding of life and evolution [20].  For microbial organisms, there are already 

several thousand bacterial genomes in public databases [21], and hundreds of individual 

genomes for some medically relevant species and model organisms [22,23].  The Cancer 

Genome Atlas [24], 1000 Genomes Project [25] and the Personal Genome Project [26] 

provide genome sequences from at least several thousand people. 

Genome sequencing 

The popularity of genomics applications has largely been driven by the introduction of 

second generation sequencing technologies that offer increasing sequencing throughput at 

a decreasing cost per nucleotide [8,9].  As third-generation sequencing platforms [10] are 

now available, the cost of sequence generation is likely to decrease even further.   

The availability of sequence data propels work in comparative genomics to study genome 

populations and their evolution.  In Chapter 5, we describe a method for comparison and 

annotation of populations of genomes, so called pan-genomes.  For many species, 

tremendous intra-species diversity results in a pan-genome much larger than any 

individual genome [7,27,28].  The pan-genome describes the genetic complement that is 

accessible to an organism, comprised of a core genome that is largely conserved and an 

accessory genome that is more variable [5,6,29].  Characterization of a pan-genome sheds 

light on an organisms’ biology, life style and has implications for the definition of the 

Pan-genomics 
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species itself [30,31].  As hundreds of genomes are now available for some species [21], 

high-throughput methods are needed for comparison and annotation of closely related 

genomes.   

The interpretation of this genetic information is reliant on computation for comparison.  

In Chapters 4-5, we describe a novel methodology for alignment of multiple whole 

genomes.  Sequence alignment, particularly multiple sequence alignment, is one of the 

most basic and studied problems in computational biology [32,33].  The primary 

motivation for aligning biological sequences, such as DNA, is identifying characters of 

the sequence that have evolved from a common ancestor.  For DNA, the characters of a 

sequence are nucleotides, also called base pairs, which have a standard alphabet of 4 

characters {A,C,T,G}.  The methods for sequence alignment are closely related to 

general sequence search algorithms, such as longest common subsequence [34], and have 

long since been adapted to biological sequences, propelled by the work of Needleman-

Wunsch [35] and Smith-Waterman [36].  To improve runtimes on searches of large 

sequences, seed and extend heuristics are widely utilized for pairwise alignment, 

including BLAST [37], MEGABLAST [38], and BLAT [39]. 

Sequence Alignment 

Computation of an optimally scoring alignment for multiple sequences is NP-hard [40] 

using simple scoring schemes [13].  As a result, a variety of heuristic algorithms have 

been employed for multiple sequence alignment of collinear sequences, including those 

in [41,42,43].  Progressive alignment [44] is a popular heuristic for iteratively building a 

multiple alignment from the conjunction of pairwise alignments, although this method is 

greedy and subject to the propogation of errors during the progression resulting in sub-
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optimally scoring alignments.  To improve quality, iterative refinement methods that re-

align low-scoring regions are often utilized [45].   

In Chapter 5, we describe a method for identifying annotation problem areas.  To aid in 

the whole genome analysis, an annotation process is typically performed using 

computational methods that include prediction of genes and their functions [46].  Protein 

coding genes in prokaryotes are frequently comprised of a single open reading frame that 

begins with a translation initiation site and ends with a termination codon.  Gene 

prediction algorithms for prokaryotes have been shown to perform well with relatively 

low error rates [47,48,49].  Limitations of gene prediction include accurate identification 

of the translation initiation start (TIS) [50] sites and pseudogenes, and over-annotation in 

GC-rich genomes [51].  Specialized tools have addressed these issues, such as for 

improved TIS prediction [50]. 

Genome annotation 

Some common errors in gene prediction, such as inaccurate identification of TIS, are 

problematic for experimentation work, making identification and correction important.  

Correctly annotated gene structures and translation initiation sites are critical for 

proteomics studies, including N-terminal protein sequencing [52], and construction of 

DNA and protein microarrays.  Computational protein structure prediction also relies on 

accurate gene structures.   

The problem of annotation errors is heightened in pan-genomic studies involving many 

individually annotated genomes [53].  Rare errors, including missed gene predictions, are 

compounded as more genomes are added obscuring identification of core genes that are 
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critical for a species and present in every sequenced isolate [54].  Missing genes can lead 

to false biological inferences if such missed genes are critical components of metabolic 

pathways. 

In Chapter 7, we describe an architecture for distributed sequence analysis that relies on 

virtual machines.  A Virtual Machine (VM) is a piece of software that emulates an entire 

operating system and can be bundled with pre-installed and pre-configured software.  

Upon execution, the VM has the appearance of booting a new computer through a 

process called virtualization.  On a host computer, the VM runs inside a software 

application called a hypervisor (also called VM player) that supports virtualization.  

There are VM players [55,56] available for all major operating systems, including 

Microsoft Windows, Apple Mac OS X, and Linux.   

Virtual machines  

A VM is portable and can be distributed over the Internet and executed anywhere in the 

world, without further need for complex installations and adaptations.  As a result, the 

VM provides a means to eliminate complex software installations and adaptations for 

portable execution, directly addressing one of the challenges involved with using 

bioinformatics tools and pipelines.  Most importantly, the developer of a VM has super-

user access and complete control over the operating system configuration, so there are 

few limitations to installing and configuring additional software on the VM.   

In Chapters 7-8, we utilize cloud computing platforms to improve processing throughput 

of pre-packaged analysis pipelines.  Despite performance increases of modern CPUs, 

Cloud computing 
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single desktops or even small computer clusters are limited in the volume of sequencing 

data that they can analyze.  Distributed computing platforms that provide many 

computers for processing data in parallel are commonly used to improve analysis 

throughput.  Such systems, include clusters of machines on a local network [57] and grids 

that connect machines over wide area networks [58].   

Cloud computing is a distributed computing platform which offers on-demand leases to 

computational resources over a network [59].  Cloud computing can provide access to a 

variety of computing architectures, including large memory machines, while eliminating 

the need to build or administer a local computer network, addressing challenges in access 

and deployment of infrastructure for bioinformatics [12,60].  Cloud computing platforms 

have been emerging in the commercial sector, including the Amazon Elastic Compute 

Cloud (EC2) [61], and in the public sector to support research [62,63].  Amazon EC2 

provides on-demand compute (priced per CPU hour) and charges additionally for 

network transfers to and from the cloud (bandwidth priced per GB) and persistent data 

storage (priced per GB and per month).  Importantly these cloud platforms support user-

provided virtual machines, allowing for extensive customization of operation system and 

software that is executed on the servers.   
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Chapter 3 - Related Works 

In Chapter 4-5, we describe a novel methodology for whole genome multiple alignment.  

Whole genome alignment has become instrumental for studying genome evolution and 

genetic diversity [33,64], with applications in construction of phylogenies, study of gene 

families, and characterization of a pan-genomic and species specific DNA.  Whole 

genome alignment tools are distinguished from collinear sequence alignment tools, such 

as tools of [41,42,43], in that they can align very long sequences, millions of base pairs in 

length, and identify both large-scale and smaller scale variation.  Large-scale mutations 

include rearrangement, duplication, gain, and loss of genetic segments.  Small-scale 

variation includes in local substitution, insertion, and deletion of individual nucleotides.  

Biological processes, such as homologous recombination [65], produce these mutations 

during species evolution resulting in extensive flux of genetic elements within and 

between chromosomes, even for very closely related species.  Whole genome alignment 

describes these variations by identifying matching nucleotides in two or more organisms 

that are derived from a common ancestral sequence.   

Whole genome multiple alignment 

There are numerous methods to compare a single pair of whole genome sequences 

[66,67].  The Nucmer and MUMmer package are fast whole genome alignment method 

that utilizes a suffix tree to seed an alignment with maximal unique matches (MUMs) 

[68].  The suffix tree implementation of MUMmer is especially efficient and can be both 

built and searched in time and space that is linear in proportion to the input sequence 

length. 
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Beyond pairwise comparisons, there are numerous tools for the alignment for multiple of 

whole genomes [69,70,71,72,73].  Alignment accuracy and assessment of quality remains 

a challenge in whole genome alignment [74,75,76].  For divergent sequences, alignment 

accuracy is difficult to assess and popular methods disagree, such was demonstrated by 

the relatively low level of agreement between alignment of non-coding regions in 

mammals [77,78].  Given the difficulties in assessing accuracy, recent development has 

included methods that are statistically motivated and show improved specificity [42,69].   

At shorter evolutionary distances with large fractions of identical sequences, there is less 

ambiguity in alignment outcomes.  Yet, despite relatively short chromosome lengths for 

bacteria, typically a few million base pairs, the computational complexity of multiple 

sequence alignment makes it a formidable challenge.  Calculation of multiple alignments 

with a simple sum of pairs scoring scheme is known to be an NP-hard problem [13], 

which makes calculation of an exact solution infeasible for large inputs.  All multiple 

genome alignment tools rely on heuristics to achieve reasonable run times.  Popular 

heuristics include calculation of multi-genome anchors [69,79] followed by chaining of 

syntenic anchors [69,79,80,81]. 

Computational complexity is only one challenge for the comparison of numerous whole 

genomes.  Alignment tools must handle a rich complement of genetic variation, including 

mutations, rearrangements, gain and loss events, and duplications.  In this dissertation, 

we are interested in tools that do not require a reference genome and can readily accept 

mixtures of completed and assembled draft genome data.  The requirement for a single 

reference genome is not always practical given sampling bias and intra-species diversity 

[82].  Among current tools, Enredo-Pecan [69] and MLAGAN [71] are the only ones that 
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both report duplications and do not require a reference genome.  The Threaded Blockset 

Aligner (TBA) [70] also does not require a reference genome for calculating the 

alignment, but it produces many short local alignments that require ordering against a 

reference genome.  Progressive Mauve [73,83] utilizes maximally unique matches 

(MUMs) and does not require a reference, however Mauve does not currently report 

duplications.  M-GCAT is a whole genome alignment tool that also utilizes MUMs and 

has been shown to be computationally efficient for the alignment of closely related 

genomes [84] but is biased towards a reference genome. 

Graph-based methods have been widely employed for pairwise and multiple alignment of 

long sequences [85,86].  The segment-based progressive alignment approach 

implemented in SeqAn::T-Coffee [87] utilizes an alignment graph scored for consistency 

and a progressive alignment scheme to calculate multiple alignments.  In brief, an 

alignment graph is composed of vertices corresponding to non-overlapping genomic 

regions with edges indicating matches between regions.  The alignment graph can be 

built efficiently for multiple sequences from a set of pairwise alignments and is scored for 

consistency.  Consistency scoring has been demonstrated to perform well in resolving 

problems in progressive alignment [88,89].  A multiple alignment can then be derived 

from the graph using an efficient heaviest common subsequence algorithm [90].  A 

noteworthy property of the alignment graph is that it is efficient for representing highly 

similar sequences.  Each genomic segment that aligns without gaps in all pairwise 

alignments is represented as a single vertex in the graph.  This property offers an 

advantage for comparisons of genomes with significant sequence identity because long 

gap-free regions are stored as a single vertex in the alignment graph.  Since the number of 
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vertices and edges in the alignment graph is a function of the genetic diversity of the 

sequences and not the sequence lengths, this method allows for a compact representation 

and fast alignment of very long and highly similar sequences.  A limitation of the 

SeqAn::T-Coffee tool is that it is restricted to aligning collinear sequences that are free of 

rearrangements. 

In Chapter 5, we describe a method for distributed whole genome multiple alignment to 

enable parallel computation.  There are few tools for distributed multiple alignment, none 

of which are described for whole genomes.  Cloud-Coffee implements a distributed 

consistency-based scoring for parallel multiple alignment of collinear regions and has 

been benchmarked on Amazon EC2 [91]. 

In Chapter 6, we describe a novel method for improving annotation across a species pan-

genome.  While there are several tools for gene prediction of single genomes [47,49,92], 

relatively few tools exist to deal specifically with the simultaneous annotation of large 

numbers of nearly identical sequenced isolates, such as a species pan-genome.  Also, 

despite low error rates in gene calling, the accumulation of errors across many genomes 

can cause problems for comparative analysis, such as identification of the conserved core 

genome [54].  Additionally, as genomes are sequenced and annotated by diverse 

scientists, annotations can vary due to choice of gene predictions algorithm or annotation 

procedures [53,93,94,95].  Post-processing can be used to identify annotation anomalies, 

as in GenePrimp [93]. 

(Pan-)genome annotation and analysis 
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Re-annotation efforts have been used to standardize annotation across many genomes to a 

single protocol [96].  This approach is particularly useful for updating out-dated 

annotation with the latest available evidence.  A challenge for standardization efforts is 

combining automated re-annotation while preserving curated edits, which may include 

corrections of gene prediction errors.  This process requires integration of both manually 

curated structures and ab-initio gene predictions. 

Comparative analysis of closely related sequences forms the basis of many annotation 

approaches [97].  Reference-based approaches that map annotation onto new genomes 

using a reference [98] are particularly well-suited to annotation within a species where 

many genes are expected to be identical in each sequenced isolate.  For some species, the 

use of a single reference genome can be limiting and as a result, researchers often need to 

integrate annotations from multiple sources.  While fully automated approaches for 

comparison and annotation are of heightened interest as genome sequencing throughput 

has increased, the need for combining manual, expert curation with high-throughput 

automated approaches has been recognized [99]. 

In Chapters 7-8, we describe a novel software platform for automated sequence analysis 

pipelines.  The installation, operation, and maintenance of software tools for 

bioinformatics analysis can be cumbersome and require significant technical expertise 

leading to efforts that pre-package and bundle bioinformatics tools [17].  While, many 

bioinformatics software tools routinely used in sequence analysis are open source and 

freely available, the installation, operation, and maintenance can be cumbersome and 

require significant technical expertise [17,100].  In addition, individual tools are often 

Platforms and packages for automated sequence analysis  
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insufficient for sequence analysis and, rather, need to be integrated with others into multi-

step pipelines for thorough analysis.  To aid with this, bioinformatics workflows systems 

and workbenches, such as Galaxy [101], Ergatis [102], GenePattern [103], Taverna [104] 

provide user interfaces to simplify execution of tools and pipelines on centralized servers.  

Prior to analysis, researchers utilizing genomics approaches are faced with a multitude of 

choices of analysis protocol and best practices are often poorly documented [105].  

Complexities of analysis pipelines and lack of transparent protocol can limit 

reproducibility of computed results [18].  Use of workbenches that store pipeline 

metadata and track data provenance can improve reproducibility [101]. 

Bioinformatics service providers, such as RAST [106], MG-RAST [107], ISGA [108], 

and the IGS Annotation engine [109], have attempted to address challenges in microbial 

genome analysis by providing centralized services, where users submit sequence data to a 

web site for analysis using standardized pipelines.  In this model, the service provider 

operates the online resource, dedicating the necessary personnel and computational 

resources to support a community of users.  Bioinformatics workflow systems 

[101,102,103,104] also operate on central servers, utilizing dedicated or shared network 

based storage, and clusters of computers for improved processing throughput. 

Other efforts have bundled tools into portable software packages for installation on a 

local computer, including Mother [110] and Qiime [111] for 16S ribosomal RNA 

analysis and DIYA [112] for bacterial genome annotation pipeline. 

There is considerable enthusiasm in the bioinformatics community for use of cloud 

computing in sequence analysis [12,60,113,114].  Map-Reduce algorithms [115] using 

the cloud-ready frameworks Hadoop are available for sequence alignment and short read 
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mapping [116], SNP identification [117], RNA expression analysis [118], amongst others 

demonstrating the usability of cloud services to support large-scale sequence processing. 

In Chapter 8, we evaluate the cost and resources required for typical applications of 

microbial genomics.  Cost considerations of using the cloud have generated debate as to 

the affordability of cloud based analysis [19,119].  Case studies using cloud computing 

platforms have been published with varying results, either favoring cloud-based over 

local computing in both performance and cost for microarray-based transcriptomic 

analysis [120] or demonstrating comparable performance parameters for cloud-based and 

local computing and cost advantages of local executions for metagenomics BLAST 

analysis [121]. 
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Chapter 4 – Mugsy: Fast whole genome multiple alignment 

Multiple sequence alignment is amongst the most widely used and studied methods for 

comparative analysis, providing a rich description of evolutionary relationships between 

sequences [33].  Yet, multiple alignment of whole genomes presents significant 

challenges as genome evolution introduces large-scale genetic flux and multiple 

alignment is NP-hard [13], making exact solutions infeasible for large data sets . 

In this chapter, we present a new whole genome alignment tool, named Mugsy, which 

can rapidly align DNA from multiple whole genomes on a single computer.  Mugsy 

implements a novel algorithm for identifying locally collinear blocks (LCBs) that define 

the regions from two or more genomes that are collinear, free of rearrangements, and 

suitable for multiple alignment.  We demonstrate the performance of Mugsy on up to 57 

bacterial genomes from the same species and the alignment of chromosomes from 

multiple human genomes.  Mugsy accepts draft genome sequences and does not require a 

reference genome for calculating the alignment or interpretation of output.  Mugsy 

integrates the fast whole genome pairwise aligner, Nucmer, for identifying homology, 

including rearrangements and duplications, with the segment-based multiple alignment 

method provided by the SeqAn C++ library.  Mugsy is run as a single command line 

invocation that accepts a set of multi-FASTA files, one per genome and outputs a 

multiple alignment in MAF format.  The Mugsy aligner is open source software and 

available for download at http://mugsy.sf.net. 
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Figure 4.1: The process flow and primary steps of Mugsy 
The key steps are listed in boxes and data types that are input and output at each step are shown adjacent to 

the arrows.  Software used to implement parts of each step is listed on the left.  The execution time of each 

step from an alignment of 4 human chromosomes is provided on the right. The component timings include 

parsing input and writing outputs. Tests were run on a single CPU of an Intel Xeon 5570 processor with 

16GB of RAM 

The Mugsy alignment tool is comprised of four primary steps (Figure 4.1): 

Methodology 

i. An all-against-all pairwise alignment using Nucmer, refined with delta-filter [68]; 

ii. Construction of an alignment graph and refinement [87] using SeqAn [122];  

iii. Identification of locally collinear blocks (LCBs) in the graph using code we 

developed; and 
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iv. Calculation of a multiple alignment for each LCB using SeqAn::TCoffee [87]. 

Mugsy includes a Perl wrapper script that runs all the steps.  The primary input consists 

of one file per genome, which may contain more than one sequence for draft genomes 

(i.e., a multi-FASTA file).  The SeqAn library provided functions to build an alignment 

graph from pairwise alignments.  We made three extensions to the alignment graph 

approach that enabled us to use it for whole genome alignments with rearrangements and 

genome flux.  First, we utilized the pairwise alignments from Nucmer to define the 

segments allowing for gaps and mismatches.  Second, we modified the data structure of 

the alignment graph to store the orientation between matching segments so that we could 

detect inversions.  Lastly, we implement a novel method for calculating locally collinear 

subgraphs from the input alignment graph.  These subgraphs represent locally collinear 

blocks (LCBs) and can correspond to inversions and regions that have been gained or lost 

in a subset of genomes. 

Pairwise alignment and identification of duplications 

The input genomes are searched using Nucmer in an all-against-all manner using a 

minimum match length of 15 nucleotides and a cluster length of 60 (-l 15, -c 60).  Each 

pairwise search is subsequently processed with the “delta-filter” utility to identify 

matches likely to be orthologous.  Delta-filter, a program included with Nucmer, limits 

pairwise matches to those contained in the highest scoring chain of matches calculated 

using a modified longest increasing subsequence (LIS) [123].  Each match is given a 

score corresponding to the match length multiplied by the square of the pairwise 

sequence identity.  Pairwise matches that are present in the LIS chain for both the 

reference and query sequences (delta-filter -1) are saved for use in the multiple alignment 
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and can include inversions.  This filtering is critical for excluding homology to repetitive 

sequences.  The output of delta-filter is converted to MAF format for subsequent 

processing. 

We modified the source code of delta-filter to report duplicated segments that are present 

in the LIS chain of either the reference or the query genome, but not both (delta-filter –b).  

The duplicated segments identified for each pairwise alignment are saved as an output 

file in MAF format.  The chaining algorithm in delta-filter is similar to Supermap which 

has been used to identify orthologous segments in the presence of duplications [71]. 

Following Nucmer and delta-filter, the remaining pairwise alignments are passed to the 

mugsyWGA program for multiple alignment.  mugsyWGA first builds an alignment 

graph using the refinement approach described in SeqAn::T-Coffee [87], with the 

addition that the orientation of the alignment between segments is also saved.  The 

alignment graph stores all the pairwise homology information calculated by Nucmer.  

Each vertex represents an ungapped genomic segment (Figure 4.2 top).  Edges represent 

pairwise homology statements from Nucmer that pass the orthology filtering criteria from 

delta-filter as described above.  The refinement procedure produces a minimal 

subdivision of segments from all pairwise comparisons ensuring the segments are non-

overlapping.  We modified the alignment graph to store the relative orientation of the 

matches as reported by Nucmer for each edge.  The alignment graph is then processed to 

identify locally collinear blocks (LCBs). 
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Figure 4.2: Generation of multi-genome anchors from the alignment graph 
Three sequences are shown (SEQ1,SEQ2,SEQ3) with matching segments from the alignment graph (top). 

Connected components define three multi-genome anchors (bottom). Adjacent anchors along a sequence 

are connected by edges and labeled with the sequence identifier. To handle inconsistencies in the alignment 

graph, connected components are built in a greedy fashion traversing the most consistent edges first and 

restricting anchors to one alignment segment per genome (not shown). Multiple segments from the same 

genome are allowed only if they are within a configurable distance along the sequence.  

Determination of locally collinear blocks (LCBs) 

A critical step in whole genome alignment is the determination of genomic regions that 

are homologous, collinear, free of rearrangements, and suitable for multiple alignment.  

Following the terminology of Mauve [73], we refer to these segments as locally collinear 

blocks (LCBs).  Chaining procedures are widely utilized to define genomic intervals that 

are consistently ordered and oriented in multiple genomes and are often labeled as 

syntenic [69,71,79,80,81,124,125].  In Mugsy, we implement a new graph-based chaining 
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procedure that looks for LCBs in the alignment graph and has similarities with previous 

methods for defining syntenic regions.  The procedure uses heuristics to define collinear 

regions that are free of rearrangements and large gaps, correspond to LCBs, and are 

suitable for multiple alignment.  The procedure first builds a graph, termed the anchor 

graph (Figure 4.2 bottom), that enables easy identification of collinear regions by 

traversing simple paths comprised of anchors with exactly two incident edges (Figure 

4.3a). 

Micro-rearrangements and repetitive elements limit the length of these regions by 

introducing breakpoints in the graph.  Our method attempts to extend these regions by a 

series of merges and filtering of short LCBs (Figure 4.3b).  Our construction of the 

anchor graph joins anchors if any two genomes comprising the anchor are syntenic. This 

does not ensure all paths in the graph correspond to LCBs because of genome gain, loss, 

duplications and rearrangements.  To resolve this, a cutting procedure is used to ensure 

LCBs do not traverse large-scale rearrangements and indels.  The cutting procedure 

interprets the anchor graph as a flow network and a maximum flow, minimum cut 

algorithm is used to trim edges from the graph to define LCBs (Figure 4.3c).  This 

procedure breaks the anchor graph at locations of reduced synteny and limits the length 

of an insertion or deletion described within an LCB. 

The procedure takes two input parameters, a maximum genomic distance between 

adjacent anchors, G, and a minimum block length, L.  The method will not identify 

rearrangements, including inversions, shorter than L.  G and L are set in Mugsy using –

distance and –minlength with defaults 1,000 and 30 nucleotides, respectively.  The 

default settings were determined empirically by varying options and comparing output to 
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other tools on limited test data (Figure 4.8-Figure 4.10).  Increasing the value of G can 

help avoid fragmentation of LCBs in comparisons of divergent genomes but only had 

slight effect on datasets in this paper (Figure 4.10).  In alignments of 11 S. pneumoniae 

genomes, the aligned core varied by 1,904 nucleotides out of ~1.59M core nucleotides 

aligned for values of G between 1,000-10,000. In the same experiment, the total aligned 

nucleotides varied by 141,898 out of ~63.3M nucleotides.  The value of L can have a 

greater impact on results with larger values excluding short regions of homology that 

cannot be chained into LCBs leading to reduced sensitivity. 

Identification of multi-genome anchors 

The first step in determining LCBs consists of producing a set of multi-genome anchors 

from the alignment graph.  To simplify identification of synteny, we are interested in 

defining anchors with a single location per genomic sequence.  The anchors will be 

subsequently chained together to define syntenic regions.  The pairwise alignments used 

to define segments in the anchor graph have already been filtered for orthology (using 

delta-filter as described in Section 2.1) but inconsistencies between pairwise alignments 

arising from repeats and duplications can produce paths in the alignment graph with 

multiple segments from the same genome.  As a result, connected components in the 

alignment graph may contain multiple segments from a single genome. Some of these 

copies may be close to each other on the genome while others are not.  We identify 

duplications during pairwise alignment, and so we are interested in generating multi-

genome anchors that contain only a single segment per genome. 

These anchors are calculated using a greedy depth-first search of the alignment graph 

ordered by consistency score, traversing the highest consistency edges first (Figure 4.2).  
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In cases where there are inconsistencies in the anchor graph, we track the genomic extent 

of each connected component and only allow multiple segments from the same genome if 

they are separated by less than a configurable genomic distance, --anchorwin.  The 

default value for --anchorwin is 100 nucleotides. Other copies explored during the search 

define new anchors or are excluded as singletons if no incident edges remain.  By setting 

this parameter, we are able to reduce the size of the anchor graph for further processing. 

In the comparison of 31 S. pneumonia, the number of multi-genome anchors was 264,133 

using –anchorwin=0 and 239,259 using –anchorwin=100. With –anchorwin=0, each 

inconsistency in the alignment graph introduces a new anchor and potential breakpoint in 

the anchor graph.  Subsequent processing of the anchor graph attempts to merge anchors 

that are syntenic, including anchor fragments produced by inconsistencies in the 

alignment graph. 

The relative orientations of segments that comprise an anchor are also saved during the 

greedy anchor traversal.  For each LCB, the edge with the highest consistency score 

determines the relative match orientation for its incident genomic segments. Remaining 

edges are considered in descending order of consistency score, assigning a relative 

orientation based on the Nucmer alignment orientation.  The resulting anchors consist of 

oriented genomic segments in two or more genomes that can contain mismatches, but no 

gaps, as provided by the alignment graph. 

Anchors derived from this method can be very short since the refinement procedure used 

to build the alignment graph will produce segments as short as a single base per 

sequence, such as in the case of a single base indel.  In the comparisons of closely related 

genomes, segments are often much longer and the alignment graph will often have 
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significantly fewer vertices than the total number of base pairs in the genome.  The 

alignment graph for ~963Mbp from 4 human sequences of chromosome 1 consisted of 

1,024,728 vertices with an average length of 868bp and 1,450,084 edges.  The connected 

components in this graph resulted in 185,537 multi-genome anchors.  By comparison, the 

alignment graph for the 31-way comparison of S. pneumoniae strains, comprising 

65.7Mbp in total, contained 2,717,087 vertices with an average length of 23bp and 

264,133 multi-genome anchors. 
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Figure 4.3: Identification of LCBs in the anchor graph 

A set of multi-genome anchors labeled A-G are shown. Anchors adjacent along one or more sequences are 

connected by an edge. (a) Simple paths with exactly one incoming and outgoing edge correspond to 

collinear regions and branches correspond to syntenic breakpoints (dotted edges) resulting in three collinear 

regions colored blue, orange, green. (b) Merging of adjacent regions. A short component (D,E) with a 

genomic extent less than a configurable parameter L is removed from the graph. The remaining anchors 

form a single collinear region colored blue. (c) Cutting of paths that violate LCBs constraints with max-

flow, min-cut. Anchors B and E are adjacent but non-syntenic separated by a genomic extent greater than 

the configurable parameter G in at least one sequence. The graph forms a single connected component that 

is an invalid LCB. To resolve this, the anchor graph is interpreted as a flow network. Edges are labeled 

with an edge capacity indicating the number of sequences for which the incident anchors are collinear.  

Source and sink vertices (grey) are added to the graph incident to vertices that violate the distance criteria. 

Maximum flow, minimum cut identifies the cut (dotted edge B,C) to produce two collinear regions colored 

blue and green. Max-flow, min-cut ensures the graph is cut to produce collinear regions that fulfill the 

distance constraint G regardless of cycles or branches in the graph. 
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Identification of syntenic anchors 

The multi-genome anchors are used to define vertices in a new directed graph, termed the 

anchor graph that is used to identify boundaries of LCBs.  Edges in the anchor graph 

connect adjacent anchors along a genomic sequence.  To determine edges, the vertices 

are first ordered along each of the member sequences.  Anchors that are immediately 

adjacent on at least one sequence and separated by a genomic extent less than the 

configurable distance G are linked by an edge.  The edges are labeled with the names of 

the sequences for which the anchors are adjacent.  Simple paths through this graph, 

comprised of vertices with exactly two incident edges, represent runs of anchors that are 

consistently ordered and syntenic in two or more genomes.  Branches in the graph 

produced by vertices with more than two edges represent breakpoints in synteny.  The 

beginning and end of an assembled contig or changes in relative orientation between 

anchors also represent breakpoints.  An initial set of LCBs is calculated by finding simple 

paths in the anchor graph that do not cross any breakpoints using a depth-first search 

(Figure 4.3a).  Some of these breakpoints will arise from micro-rearrangements, 

repetitive elements, or from our greedy construction of multi-genome anchors. The 

remaining steps of the algorithm attempt to extend the LCBs into longer regions that span 

these breakpoints by removing branches from the graph. 

We merge LCBs that are connected by at least one edge in the anchor graph and do not 

traverse an inversion, indicated by a change in relative orientation between sequences in 

an anchor and do not introduce gaps greater than G in the projection along any member 

sequence (Figure 4.3b).  Next, anchors comprising short LCBs that span less than the 

minimum block length, L, are removed from the graph.  A new set of LCBs is calculated 
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after adding new edges between adjacent anchors separated by less than the genomic 

distance, G, on two or more genomes.  This resulting graph can include branches between 

anchors that are adjacent on some genomes but not others due lineage specific 

rearrangements or indels.  Repetitive elements can also give rise to branches and cycles 

in the graph that link anchors that are not syntenic. 

An additional step is used to break edges in the anchor graph so that we ensure valid 

LCBs.  This step models the anchor graph as a flow network and uses a maximum flow, 

minimum cut algorithm [126] to find bottlenecks in the graph that are used to partition 

connected components that violate criteria for LCBs.  Flow networks have been 

previously used in other areas of alignment, including the consistency problem in 

multiple alignment [127].  To build the flow network, the LCBs are ordered on each 

member sequence and checked for gaps greater than distance G or paths that join multiple 

contigs from the same genome.  

Sets of vertices that violate these criteria are deemed non-syntenic and added to opposing 

source and sink vertices in the flow network (Figure 4.3c).  We define the edge capacity 

of the network as the number of sequences for which any two incident anchors are 

adjacent and syntenic.  We compute maximum flow, minimum cut using an 

implementation of the Ford-Fulkerson algorithm [128] to identify a minimum set of cut 

edges that partitions the graph ensuring the non-syntenic source and sink vertices are 

disconnected.  This in turn ensures the LCBs consist of anchors that fulfill the maximum 

gap criteria and contain a single contig per genome in the case of draft genomes.  The use 

of the max-flow, min-cut provides a valid partition even if multiple cuts are required to 

ensure a valid LCB due to branching in the anchor graph.  This max-flow, min-cut 
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procedure using conserved synteny as the edge capacity has the property that it will 

attempt to split the LCB at bottlenecks represented by edges with reduced synteny.  

The max-flow, min-cut, calculation accounted for ~12.5 minutes of 116 total minutes for 

the LCB identification in 57 E. coli.  For these genomes, the anchor graph was composed 

of 675,780 multi-genome vertices and 1,258,603 edges. 

Finally, the extent of the LCBs is determined from the coordinates of the minimum and 

maximum anchor coordinates on each member sequence.  The subset of vertices in the 

alignment graph that overlap the extent and connected edges are passed to SeqAn::T-

Coffee to align each LCB.  The LCB identification procedure can produce overlapping 

LCB boundaries with the extent of the overlap determined by the distance parameter G.  

To place each anchor in exactly one LCB, the LCBs are sorted by length in descending 

order and anchors are removed from the anchor graph as they are aligned into LCBs.  

The resulting multiple alignments are saved in MAF format for each LCB.  The 

construction of the alignment graph and progressive alignment algorithm using 

SeqAn::TCoffee is implemented in C++ using the SeqAn library [122].  The LCB 

identification procedure is written in C++ using the Boost library (http://boost.org). 

Evaluation of whole genome alignment tools 

To compare Mugsy to other multiple whole genome alignment tools, we downloaded 

Mauve, TBA, FSA, MLAGAN, and Pecan from their project web sites.  The 

MLAGAN/SLAGAN and Pecan/Enredo tools do not provide scripts that automate all of 

the steps required to generate whole genome alignments from a set of input FASTA files.  

Also, previous analyses of mammalian genomes using these tools in [69,71] utilized a 
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compute grid to execute the pairwise alignment step.  This makes generation of whole 

genome alignments from a set of genomic FASTA files cumbersome.  To compare these 

tools with Mugsy on a single computer, we limited our evaluation to only the collinear 

alignment components, MLAGAN and Pecan, and used Mugsy to define a common set 

of LCBs for evaluation.  The extents of the LCBs were first calculated by Mugsy and 

saved as multi-FASTA files that were passed as input to MLAGAN or Pecan. MLAGAN 

and Pecan were run with default parameters. We did not attempt to execute the SLAGAN 

that defines collinear regions for MLAGAN.  

Mugsy LCBs were also used to define the genomic extent of the regions passed to the 

multiple alignment program FSA.  FSA was run using the recommended fast alignment 

options –fast, -noindel2, -refinement.  Mugsy includes an option to invoke the FSA 

aligner on each LCB as a part of a post-processing step. 

Mauve alignments were generated directly from the genomic FASTA files using 

progressiveMauve 64-bit binary version 2.3.1 with default command line options [83]. 

The Mauve output format was converted to MAF format to compare with the outputs of 

Mugsy. 

TBA was run with default options using MAF formatted pairwise alignments from 

Nucmer instead of BLASTZ. The Nucmer alignments were processed with delta-filter 

and identical to those used as inputs for Mugsy.  By using the same pairwise alignments, 

we were able to focus our evaluation on the multiple alignment portion of Mugsy 

compared to TBA. The runtime values generated are the shortest successful runtime of 

three tests for all tools evaluated. 
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For comparing outputs between Mugsy, Mauve, TBA, comparisons were restricted to 

completed genomes to simplify projecting pairwise alignments onto a reference 

coordinate system.  Output files were converted to MAF format if necessary.  The utility 

“compare” downloaded from http://www.bx.psu.edu/miller_lab was used to calculate 

precision, recall, and percentage agreement between alignment outputs. 

 
Figure 4.4: Comparison of total aligned nucleotides between Enredo and Mugsy 

Alignment anchors from 31 S. pneumoniae genomes were used as input.  Enredo was run with varying 

values of –max-gap between 1,000-50,000 in an attempt to recover more of the alignment. For comparison, 

a single Mugsy run with –distance 1000 is displayed on the plot in blue.  Other parameters to Enredo were 

also evaluated but did not improve the results (Not shown). 
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Figure 4.5: Comparison of total aligned core nucleotides between Enredo and Mugsy  

Alignment anchors from 31 S. pneumoniae genomes were used as input.  Enredo was run with varying 

values of –max-gap between 1,000-50,000 in an attempt to recover additional alignment. For comparison, a 

single Mugsy run with –distance 1000 is displayed on the plot in blue.  Other parameters to Enredo were 

also evaluated but did not improve the results (Not shown). 

In a separate analysis, we compared the extent of LCBs calculated by Mugsy with the 

segmentation produced by Enredo [69].  Enredo reports locally collinear blocks (LCBs) 

from a set of externally generated anchors that occur in two or more input genomes.  We 

first calculated multi-genome anchors from the alignment graph of 11 completed S. 

pneumoniae genomes as described in Methods.  The set of multi-genome anchors was 

used as input to both Enredo and Mugsy. Enredo was run with options –min-score=0,  –

min-length=0 and –max-gap=3000. Additional runs were performed varying–min-length 

between 0 and 100 and varying –max-gap-length between 1,000 and 50,000 (Figure 4.4, 

Figure 4.5).  
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Table 4-1. Summary of genomes compared using whole genome alignment 

Organism Number of  
genomes 

Number of 
sequences  

Total bases (Mbp) 

N. meningitidis 5 5 10.9 
S. pneumoniae 31 1 906 65.7 
E. coli 57 4 213 299.1 
Human Chr I 4 4 963.2 

For genomes in draft form, the total number of assembled contigs or scaffolds is provided in 

column 3. 

Data sets 

The S. pneumoniae, E. coli and N. meningitidis genomes were downloaded from the 

NCBI Entrez website [129].  The accessions and species names are provided in 

(Supplemental Table S1 in [1]).  The human genome sequences were downloaded from 

the individual project web sites: the NCBI reference GRCh37 available from UCSC as 

hg19 from http://genome.ucsc.edu, the Venter genome (JCV) from http://huref.jcvi.org 

[130], the Kim Sungjin (SJK) genome from http://koreagenome.kobic.re.kr/en/ [131], and 

the YanHuang project (YH) from http://yh.genomics.org.cn [132].  The SJK genome 

utilized the NCBI reference to build consensus sequences as described in [131].  The de 

novo assembly of YH Li et al. [133] was not available as a consensus scaffold that spans 

chromosome 1.  Instead, we utilized a consensus sequence for YH from Beijing 

Genomics Institute that was based on the UCSC build hg18 (NCBI v36) and is available 

as a single scaffold spanning chromosome 1 on the project web site 

(http://yh.genomics.org.cn).  We choose to align these sequences to demonstrate the 

performance of Mugsy on the multiple alignment of very long sequences.  

Single nucleotide variants (SNVs) were obtained from the personal variant tracks of 

UCSC browser [134] and included these sources: JCV [130], YH [132], SJK [131], and 
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dbSNP 130 [135].  The personal variant tracks provided the variant data in a common 

format with coordinates on a single version of the reference genome, hg19, which was 

used for multiple alignment with Mugsy.  This allowed for comparison of the published 

variants for each individual even though some of the published studies were generated on 

consensus sequences prior to hg19. 

Table 4-2 Processing time to calculate whole genome multiple alignments using three methods 

  5  
N. men  

31  
S. pneumo 

57  
E. coli 

4  
Human Chr 1 

Pairwise search  3 min 44 min 435 min 1138 min 
  +Mugsy 3 min 56 min 720 min 37 min 
  +TBA <1 min 36 min 381 min 71 min 
Mauve v2.3.1 5 min 377 min DNF (1) DNF (2) 

The runtime in minutes for the pairwise search includes aligning all pairs of genome sequences with 

Nucmer, post-processing with delta-filter, and converting output formats to MAF as described in Methods.  

The time provided for Mugsy and TBA is the runtime for generating the multiple alignment from the 

pairwise search results.  The time for Mauve is the total runtime.  Nucmer was run with parameters MUM 

length –l 10, cluster length –c 60 and all other default options. Mugsy was run with parameters --

distance=1000 and --minlength=30. Mauve and TBA were run with default options. Tests were run on a 

single CPU of an Intel Xeon 5570 processor with 16GB of RAM. DNF(1): did not finish after 2 days of 

processing. DNF(2): generated an allocation error. 

Alignment of multiple bacterial genomes 

Results 

We computed whole genome alignments using Mugsy and compared runtimes to other 

popular whole genome alignment tools.  The input genomes consisted of a mixture of 

completed and draft sequences with most genomes represented in multiple contigs (Table 

4-1).  Mugsy had the second fastest runtime, requiring less than 2 hours for the alignment 

of 31 Streptococcus pneumoniae genomes and ~19 hours for the alignment of 57 

Escherichia coli genomes (Table 4-2).  Nucmer+TBA had the fastest total runtime on this 
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same dataset.  Mugsy and TBA were the only two tools evaluated that completed the 

alignment of 57 E. coli in less than two days of processing on a single CPU.  The step in 

Mugsy that identifies locally collinear blocks (LCBs) contributed ~15 of 56 minutes for 

the S. pneumoniae multiple alignments and ~116 of 720 minutes for the E. coli multiple 

alignment.  

We ran additional comparisons of runtimes with MLAGAN[71] and Pecan [69] whole 

genome multiple alignment tools and the collinear alignment tool FSA[42].  For this 

comparison, a single set of LCBs was first calculated by Mugsy to define genomic 

extents for multiple alignment by MLAGAN, Pecan, and FSA.  Of these three tools, only 

FSA completed the alignment of all LCBs in the 57 E. coli genomes in less than two days 

of processing on a single CPU.  FSA is a fast method for aligning long sequences [42] but 

it is restricted to aligning collinear segments that are free of rearrangements.  The runtime 

of FSA was slightly faster (896 minutes) than the combined runtime of Nucmer and 

Mugsy (1155 minutes). 

Table 4-3 Precision and recall in aligned positions in a comparison of tools across 11 complete S. 
pneumoniae genomes 

 Mugsy as truth Mauve as truth TBA as truth 
Mugsy  0.97,0.99 (0.96) 0.99,0.99 (0.98) 
Mauve 0.99,0.97 (0.95)  0.98,0.97 (0.95) 
TBA 0.99,0.99 (0.98) 0.97,0.98 (0.96)  

 
The precision and recall for each row was calculated using the output of the tool listed in the column as a 

hypothetical true alignment. The percentage agreement is provided in parenthesis calculated as the fraction 

of aligned positions that are identical in the projection of all pairwise alignments inferred from the multiple 

alignment. 

 

The alignment positions calculated by Mugsy show agreement with those reported by 

Mauve and TBA.  We evaluated the agreement using a projection of pairwise alignments 

using one of the reported outputs as a hypothetical true alignment in a comparison of 11 
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complete genomes in the S. pneumoniae data set.  Mugsy alignments scored a precision 

and recall of 0.99, 0.99 and 0.97, 0.99 using TBA and Mauve respectively as truth in this 

comparison (Table 4-3). 

Table 4-4. Summary of the whole genome multiple alignment of 31 strains of S. pneumoniae using 
three different methods 

 Number of 
LCBs 

Length core (bp) Core LCB N50 
(bp) 

Nucleotides 
aligned 

Mugsy 2 394 1 590 820 2 044 63 294 709 
Mauve v2.31 1 366 1 568 715 2 759 62 714 295 
Nucmer+TBA 27 075 1 475 575 705 64 698 581 

Each method reports a series of alignments that correspond to locally collinear blocks (LCBs).  The length 

of the aligned core is the total number of alignment columns that contain all input genomes and no gap 

characters.  Half of the aligned core is contained in LCBs spanning genomic regions longer than the core 

LCB N50 length. The total number of aligned nucleotides is obtained by counting bases aligned to at least 

one other genome in the multiple alignment.   

 

Mugsy aligned slightly more nucleotides than Mauve in almost double the number of 

LCBs for the full S. pneumoniae dataset (Table 4-1).  Mugsy also identified a slightly 

longer core alignment.  The aligned core is comprised of alignment columns that contain 

all input genomes and no gaps.  The combination of Nucmer+TBA aligned more total 

nucleotides but a shorter and more fragmented core (Table 4-4, core N50). 
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Figure 4.6 - Overlap of LCBs between tools 

The number of LCBs is reported in a comparison of 11 complete S. pneumoniae genomes that are either 

partially or fully contained in LCBs in each of Mugsy , Mauve, TBA, and Enredo as a reference. Mugsy 

was run with –minlength=30, --distance 1000. Mauve and TBA were run with defaults. Enredo was run 

with options –min-score=0, –min-length=0, and –max-gap-length=3000. 

 

The length and number of aligned regions was the primary difference in output between 

Mugsy, Mauve, and TBA in our evaluations.  Mauve produced LCBs with the longest 

average length (Table 4-4, Figure 4.6) but did not complete the alignment of the largest 

data sets used in this evaluation in the allotted time.  In the comparison of 11 completed 

S. pneumoniae genomes, Mugsy LCBs either shared boundaries or partially overlapped 

all of the Mauve LCBs (Figure 4.6) 

Mugsy reported longer alignments than TBA on average (Table 4-4, Figure 4.7). Mugsy 

LCBs contained all but one of the shorter TBA blocks in a comparison of 11 completed 

S. pneumoniae genomes. 76% of all TBA blocks (2128 of 2791) were fully contained 

within longer Mugsy LCBs (Figure 4.6).  By comparison, 25% of Mugsy LCBs (20 of 
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77) shared identical boundaries or were spanned by longer blocks in TBA. Slightly fewer 

TBA blocks were contained in Mauve than Mugsy, 2078 versus 2128. 

 
Figure 4.7 - Length distribution of total and core LCBs  

Calculated by Mugsy, Mauve, and TBA in the alignment of 31 S. pneumoniae genomes 

The differences in LCB composition and boundaries are also indicated by the lengths of 

the contained gaps (indicating an insertion or deletion event) reported by each tool. The 

longest gap lengths present in a LCB for Mugsy, Mauve and TBA were 31,130 bp, 

34,910 bp, and 177 bp respectively in the comparison of 31 S. pneumonia genomes.  
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To further evaluate our method,  we compared the LCB identification step in Mugsy with 

Enredo, another graph based method that has been demonstrated on comparisons of 

mammalian genomes [69]. Mugsy calculated a longer aligned core and incorporated more 

anchors into LCBs than Enredo using a set of anchors from 11 completed S. pneumoniae 

genomes.  Mugsy calculated a total of 425 LCBs comprising 22,913,396 aligned 

nucleotides (98.6% of input) compared to 30,710 LCBs from Enredo comprising 

22,451,622 aligned nucleotides (95.4%) (Figure 4.4).  The Mugsy core LCBs consisted of 

1,741,704 nucleotides versus 1,229,583 nucleotides with Enredo (Figure 4.5). The Mugsy 

LCBs were also longer than Enredo on average, with 79% (24,401 of 30,710) of Enredo 

LCBs sharing identical boundaries or fully contained within longer Mugsy LCBs (Figure 

4.6). By comparison, 20% (88 of 425) of Mugsy LCBs shared boundaries or were fully 

contained in longer LCBs reported by Enredo.  Increasing the distance parameter in 

Enredo did not improve results (Figure 4.4).  The relatively short and fragmented regions 

reported by Enredo may be due to the composition of the multi-genome anchors used in 

our comparison.  As described in Methods, the multi-genome anchors vary in length and 

can be subdivided during the segment refinement procedure to as short as a single base.  

Enredo has been previously reported to work well on longer anchors (>50bp in [69]). 
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Figure 4.8 - Total aligned nucleotides for varying parameters 

As calculated by Mugsy for values of G (-distance) and L (-minlength) in an alignment of 31 S. 

pneumoniae genomes. The algorithm loses sensitivity for increasing values of -minlength as short regions 

of homology are excluded from consideration. Sensitivity initially increases with values of –distance and 

then decreases slightly. –minlength=30, -distance=1000 are the defaults for Mugsy and were used for the 

evaluations in paper. 
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Figure 4.9 - Nucleotides in core LCBs for varying parameters 

As calculated by Mugsy for values of G (–distance) and L (--minlength) in an alignment of 31 S. 

pneumoniae genomes. 

 

 
Figure 4.10 - Number of LCBs for varying parameters 

As calculated by Mugsy for values of G (–distance) and L (--minlength) in an alignment of 31 S. 

pneumoniae genomes. 
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Mugsy includes a step for building longer syntenic regions, LCBs, from shorter multi-

genome anchors.  The longer aligned regions simplify some downstream analysis, such as 

the identification of orthologous genes and mapping of annotations, thereby minimizing 

the need for a reference genome.  Longer alignments also aid the inspection of genomic 

regions that have been gained or lost and span multiple genes without requiring a 

reference genome. Increasing the value of the –distance parameters in Mugsy produces 

longer LCBs, although with slight loss of sensitivity (Figure 4.8).  Our greedy method for 

building multi-genome anchors can introduce branches in the anchor graph in cases 

where there are inconsistencies in combining pairwise alignment.  Our LCB identification 

algorithm aims to reduce this fragmentation but remains an area that can be improved. 

Contig boundaries will also cause fragmentation in Mugsy LCBs. As a result, introducing 

draft genomes will automatically increase the number of LCBs. 

 

Figure 4.11 - Percent identity plots for the multiple alignment of human chromosome 1 
Mugsy generated alignment for four individuals.  The plots were obtained from the alignment viewer, 

GMAJ, using hg19 as reference for the display (top coordinates).  A percent identity plot is displayed in 

subsequent rows for each of the three other genomes SJK, YH, JCV.  The alignments span 99.9% of the 

nucleotides on chromosome 1 of the NCBI reference hg19, excluding the centromere, which is shown as a 

gap in the middle of the figure.  The percent identity in each row ranges from 50 to 100 from the bottom to 

top of each row 
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Alignment of multiple human genomes 

To evaluate the performance of Mugsy on larger sequences, we aligned multiple 

individual chromosomes from human genomes.  We identified four human genomes for 

which consensus sequences are available for each chromosome: the NCBI reference 

human genome build GRCh37 (hg19 at the UCSC genome browser) [136], a western 

European individual (JCV) [130], a Korean individual (SJK) [131], and a Han Chinese 

individual (YH).  Mugsy was able to align all four copies of chromosome 1 in less than 

one day using a single CPU (Table 4-1).  Mugsy computed the multiple alignments in 

less than one hour (37 minutes) after completing the pairwise searches with Nucmer.  The 

contribution of the LCB identification step in Mugsy was ~7 minutes. By comparison, 

TBA ran in 71 minutes using the same pairwise alignments as input.  Realignment of all 

the LCBs from Mugsy with the FSA aligner ran in 358 minutes.  Three other whole 

genome alignment tools evaluated (MLAGAN, Pecan, and Mauve) failed to complete an 

alignment of the four human chromosomes in less than two days of processing time.  The 

length of the chromosomes (>219Mbp each) and amount of repetitive DNA in the human 

genome makes whole genome alignment especially challenging.  The genomes were not 

masked for repetitive elements.  

Mugsy calculated 526 locally collinear blocks (LCB) on chromosome 1 with the longest 

LCB spanning 5.97 Mbp on all four individuals.  The LCBs covered 224,975,484 of 

225,280,621 (99.86%) nucleotides in the NCBI reference sequence, hg19.  The alignment 

viewer GMAJ was used to generate pairwise percent identity plots projected from the 

Mugsy multiple alignment (Figure 4.11).  The plots show variation in JCV, SJK, and YH 

versus the reference sequence, hg19.  The sequences for YH and SJK both utilized the 
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NCBI reference in building the consensus sequences, and therefore this comparison may 

under-represent the variation in these genomes.  The percent identity plots indicate this 

possible artifact, showing relatively low variation in the comparison of YH and SJK 

versus hg19. 

Table 4-5 Number of single nucleotide variants (SNVs) detected by Mugsy in the multiple alignment 
of human chromosome 1 from four individuals 

Individual 
genomes 

Mugsy 
SNVs  
 

SNVs at 
UCSC  

Recall from UCSC Precision from UCSC or dbSNP 

JCV 216 201 108 767 104 684 (90%) 194 616 (90%) 
SJK 135 070 113 708 112 032 (98%) 128 473 (95%) 
YH 114 871 104 590 103 106 (98%) 113 641 (99%) 

Mugsy alignments were performed on consensus sequences of human chromosome 1 as provided by each 

source. SNVs were obtained from alignment columns where the consensus nucleotide in JCV, SJK, or YH 

differed from the nucleotide in hg19. An additional filter was applied to screen out alignment columns that 

contained gaps within 5 positions on either side.  Published SNVs for JCV, SJK, or YH were obtained from 

UCSC personal variant tracks, restricted to homozygous variants where annotated. Recall (column 4) is the 

number of Mugsy variants that match UCSC divided by the total number of UCSC variants.  Precision 

measures the number of Mugsy variants that match either UCSC or dbSNP variants divided by the total 

number of variants reported by Mugsy. 

 

The whole genome multiple alignments produced by Mugsy were parsed to extract 

variants, including mutations, insertions, and deletions.  Single nucleotide variants 

(SNVs) were extracted from ungapped alignment columns with more than one allele and 

compared to published variations in the personal variant tracks of the UCSC genome 

browser.  Many of the SNVs calculated by Mugsy are also reported at the UCSC browser 

or dbSNP (Table 4-5).  Mugsy calculates variation on assembled consensus sequence and 

does not consider the composition or quality of the underlying sequencing reads that 

contributed to the assembly.  We restricted the comparison to variants annotated as 

homozygous for the individual using the UCSC browser.  Additional variation identified 
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by Mugsy may be due to differences in detection methods or assembly artifacts in the 

consensus. 

Mugsy implements a new procedure that identifies locally collinear blocks (LCBs). The 

graph utilized for the LCB identification and segment-based multiple alignment is 

compact for highly conserved sequences allowing for efficient computation.  This makes 

Mugsy especially well suited to classification of species pan-genomes and other intra-

species comparisons where there is a high degree of sequence conservation.  Alignment 

of many large, highly conserved sequences, such as human chromosomes, is likely to 

become increasingly popular as improvements in sequencing and assembly technologies 

allow for de-novo assembly of human genomes, including assembly of haplotypes. 

Discussion 

Our work relies heavily on two open source software packages, the suffix tree-based 

pairwise aligner Nucmer [68] and the segment-based alignment approach of 

SeqAn::TCoffee [87].  We utilized Nucmer to quickly build a library of pairwise 

homology across all input genomes.  Our work extends methods in SeqAn::TCoffee to 

accommodate whole genome multiple alignment with rearrangements and duplications. 

Mugsy relies on a number of parameters including minimum MUM length in Nucmer 

and the LCB chaining parameters.  Careful choice of parameters is likely to be important 

for alignments at longer evolutionary distances.  Automatically determining parameters 

or providing user guidance on parameter choice is an area that needs improvement. 

Also, for more divergent genomes, the performance advantages of the segment-based 

alignment approach decrease as the length of the conserved segments shorten and the size 
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of the alignment graph grows.  The alignment of 57 E. coli strains required slightly more 

than 12 GB of RAM to build and process the alignment graph.  The larger memory 

requirement of Mugsy on more divergent genomes is a limitation of the tool and an area 

that we may be able to improve at the expense of longer runtimes. 
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Chapter 5 - Distributed whole genome multiple alignment 

The increase of sequencing data has allowed for in-depth sequencing of populations, 

generating hundreds of genomes for some species [23].  Interpretations of this data 

require comparisons using methods such as whole genome alignment.  Extensive runtime 

or memory consumption limit the number of genomes that can be readily aligned 

simultaneously with whole genome alignment tools.  Current implementations are 

designed to perform work in serial using only one CPU, requiring a day or more to align 

more than a few dozen bacterial chromosome [1,83]. 

In this Chapter, we describe preliminary results of new algorithm and tool, Para-Mugsy, 

for parallel and distributed whole genome multiple alignment.  We demonstrate Para-

Mugsy on 145 E. coli genomes (725Mbp) completing an alignment in ~38 hours using 8 

CPUs on an Amazon EC2 virtual machine instance.  Para-Mugsy is also space efficient 

requiring less than 16 GB RAM for the 145-way alignment.  An examination of a subset 

of the output indicates the alignment is of comparable quality as generated by other tools.  
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Figure 5.1 – Overview of Para-Mugsy compared to the serial Mugsy algorithm for whole genome 
multiple alignment 

 

The method is based on progressive multiple alignment [44] using many of the same 

codes from Mugsy [1] with the addition that pairwise sequence alignments and profile-

profile alignments are computed in parallel while traversing a phylogenetic guide tree 

(

Methodology 

Figure 5.1).   

Para-Mugsy reads a set of genomes in FASTA format and produces multiple alignments 

in Multiple Alignment Format (MAF file).  Para-Mugsy executes on a CloVR virtual 

machine (Chapter 7) and all processing jobs are submitted to a GridEngine queue for 

scheduling over multiple CPUs.  A description of each of the steps of the algorithm 

follows. 
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 Calculation of a guide tree 

To enable the progressive alignment, a rooted phylogenetic tree is estimated from the 

input sequences using Muscle [45].  Muscle (–treeonly) calculates the number of shared 

k-mers between sequences to build a distance matrix for a UMPGA tree building 

procedure [137].  Leaves in this guide tree correspond to genomes, which may be 

represented by multiple sequences, in case of draft genomes.    

Progressive alignment 

The phylogenetic guide tree is then used by Para-Mugsy to determine the order in which 

sequences and intermediate alignments represented by profiles are calculated and 

combined.  The algorithm vists nodes of the tree from leaves to root, visiting children 

before parents.  At each non-leaf node, two sets of alignments are computed  

i) Pairwise sequence alignments.  The alignment between all pairs of 

descendent genomes and their sequences using Nucmer [68].   

ii) Profile-profile alignments.  Alignments are computed using MugsyWGA  

producing locally collinear blocks (LCBs) . A profile representation of each 

LCB is saved at the tree node. 

Independent subtrees are visited in parallel allowing for concurrent computation of 

alignments across multiple CPUs (Figure 5.1).  A perfectly balanced guide tree provides 

for maximum speedup, although no effort is currently made to ensure the guide tree is 

balanced.  Such an optimization is left as future work. 
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Pairwise alignment 

Para-Mugsy uses Nucmer [68] for pairwise alignments between genomes.  A total of 

N*(N−1) pairwise comparisons for a set of N genomes is performed.  Each pair of 

genome comparisons can be computed independently and in parallel.  Draft genomes 

with multiple contigs are represented in multi-FASTA files and aligned to other genomes 

at once.  

Pairwise alignments are needed during progressive alignment for descendent sequences.  

Rather than pre-compute all of the pairwise similarities, alignments are calculated during 

progressive alignment for pairs of descendent genomes.  This allows for concurrent 

calculation of pairwise sequence alignment and independent profile-profile alignments 

across a cluster.  A future possible optimization can short-circuit some of the later 

pairwise alignments during the guide tree progression by considering the composition of 

these intermediate alignments.  Pairwise alignments between descendent sequences 

within a subtree are computed once and saved for subsequent access during tree traversal.   
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Figure 5.2 – Generation of profiles 

A profile sequence is the combination of all of these sequences where gaps are filled in a consensus 

character or an “N” the matching nucleotide in the other sequence.  Any mismatches are represented with 

an “N” character.  All of the profile sequences are put in a multi-FASTA file.   

 

Profile-profile alignments 

Pairwise alignments are combined into locally collinear blocks (LCBs) and multiple 

alignments using Mugsy.  A profile representation of each LCB is generated and assigned 

to the internal node (LCB profiles in Figure 5.2).  These profiles are used as an input 

sequences for subsequent invocations of Mugsy along the guide tree.  LCB profiles are 

aligned to each other during progressive alignment to build new LCBs at each internal 

node of the tree using Mugsy.  Each invocation of Mugsy requires two inputs:  
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1) FASTA sequences of the input genomes.  For profile-profile alignments, these 

inputs are LCB profile sequences.   

2) Library of pairwise homology matches between sequences.   

A mapping between the profile sequence positions and underlying pairwise alignments 

on the constituent sequences allows for construction of a pairwise library between any 

two profiles.  This mapping is stored on disk as a list of interval pairs between each 

profile segment and a contiguous range on the original sequences.   

Since profiles are sequence strings, this strategy allows for use of the original Mugsy 

executables described in Chapter 4 without modification for profile-profile alignments.  

No comparison of the actual profile strings is required.  Rather, pairwise alignments 

generated by Nucmer on the original sequences are transformed to the corresponding 

coordinates on the profile sequences (Transform in Figure 5.1).  This allows use of 

profile sequence in place of multiple sequences throughout the algorithm while 

representing all available homology information. 

Because profiles represent multiple sequences, redundant matches are expected in the 

pairwise alignment library for profile-profile alignments.  Mugsy utilizes a segment graph 

for determining locally collinear blocks (LCBs) that can be aligned.  This segment graph 

is built from a set of pairwise alignments using the combination and refinement 

procedure such that each segment is non-overlapping and all pairwise matching 

information is preserved [87].   

The calculations of intermediate alignments are independent for siblings in the guide tree 

and can be aligned in parallel (Figure 5.1).  To avoid construction of numerous, relatively 
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small intermediate alignments and profiles in very deep trees, intermediate alignments are 

not calculated for internal nodes until a threshold of the sum of the descendent sequence 

lengths is reached.  The default threshold is 20MB equaling roughly 5-10 bacterial 

chromosomes.  An initial set of profile LCBs are calculated for these genomes and are 

then combined in pairwise fashion during tree traversal. 

Progressive alignment of profiles is continued along the guide tree until the root of the 

tree is reached at which point the profiles represent LCBs across all input genomes.  A 

translation step converts these final set of profiles into a multiple alignment on the 

original sequences.  The result is a single file in MAF format that contains multiple 

alignments for each LCB.   

Table 5-1 Para-Mugsy performance  
 CPUs Runtime 

(min) 
Max 
RAM 

No. 
LCBs 

Total aln 
(bp) 

Core aln 
(bp) 

Original 
Mugsy  
57 E. coli 

1 1,155 ~12GB 11,881 289,057,323 
(97%) 

2,946,752 

Para-Mugsy  
57 E. coli 

8 482 1.4GB 12,409 261,012,599 
(87%) 

2,938,034 

Para-Mugsy 
145 E. coli 

8 2,282 6.0GB 24,944 627,955,536 
(84%) 

2,441,541 
 

The genomes are 57 genomes of Escherichia coli are from Supplemental Table 1 in [1].  The dataset of 145 

genomes adds 89 unpublished draft genomes.  

We generated whole genome multiple alignments of up to 145 E. coli genomes using 

Para-Mugsy. The 145-way alignments were generated in ~38 hours using 8 CPUs and no 

more than 6GB of RAM of a c1.2xlarge virtual machine instance at Amazon EC2.  

Comparable tools that run on a single CPU are unable to complete an alignment of a 

subset of 57 genomes in less than 23 hours of processing and 8GB RAM [1,83]. 

Results 
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To assess quality, we compared a 57-way alignment produced by Mugsy with that 

calculated by Para-Mugsy (Table 5-1).  Para-Mugsy calculated the aligned core that 

includes all input genomes calculated comprising 2,938,034 nucleotides compared to 

2,946,752 nucleotides calculated by original Mugsy algorithm.  The number of aligned 

core nucleotides calculated by Para-Mugsy decreased to 2,441,541 in the 145-way 

comparison. In non-core regions, Para-Mugsy demonstrates decreased sensitivity 

compared to the original Mugsy algorithm; 87% of all input nucleotides covered in Para-

Mugsy versus 97% in Mugsy.  The 145-way alignment covered 84% of the total base 

input pairs.    

To further assess quality, ten E. coli genomes were selected and aligned with both the 

original Mugsy algorithm and the distributed Para-Mugsy tool.  Using Mugsy as the 

hypothetical truth, Para-Mugsy displayed a specificity of 97.7 and a sensitivity of 99.2 on 

this dataset.   

With the increasing availability of multi-core computers and cloud computing, distributed 

computing solutions are readily available to improve processing throughput.  By using 

distributed computation, Para-Mugsy increases the number of genomes that are feasible 

for whole genome comparison.  Para-Mugsy enabled alignment of 145 E. coli genomes.  

An alignment of 57 E. coli genomes with the original serial Mugsy algorithm requires 

almost one day to compute on single CPU and at least twice as long (> 2 days) with 

Mauve.   

Discussion 
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In addition to computational time, memory consumption is a limiting factor in whole 

genome multiple alignment as large memory requirements can exclude computation 

entirely.  Memory is also relatively expensive currently compared to other component 

costs of a computer.  The peak memory consumption of Para-Mugsy is significantly less 

than peak memory consumption of Mugsy on the same input data (~1.4GB vs. 12GB for 

a 57-way alignment of E. coli).   

The graph based alignment strategy utilized by Mugsy is inefficient in comparisons of 

diverse sequences.  A key data structure utilized in Mugsy and Seqan::TCoffee is an 

alignment graph, which stores a vertex for each ungapped aligned segment of a genome.  

The number of vertices the alignment graph is a function of both the number of genomes 

and number of gaps in the pairwise alignments, while the number edges is proportional to 

the square of the number of vertices.  As a result, the size of the graph grows quickly, 

requiring large amounts of RAM, in comparisons of many genomes that are very diverse; 

many gaps, and genomes lead to many vertices in the graph.   

Para-Mugsy utilizes profile sequences to represent intermediate alignments of each LCB 

calculated along the guide tree.  The use of profiles by Para-Mugsy avoids this exploding 

memory requirement by reducing the number of genomes under comparison since the 

profile-profile alignment only appears as two genomes in the segment graph, regardless 

of how many genomes are represented by the profile.  This reduction in memory comes at 

the expense of additional computation, as alignments are recomputed during guide tree 

traversal.  This increased computation is compensated for by use of multiple CPUs. 

The current implementation of the algorithm performs at reduced sensitivity for non-core 

regions that are conserved in subsets of inputs.  Para-Mugsy also produces more LCBs 
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and a more fragmented view of genome conservation than either Mauve or Mugsy.  This 

fragmentation is due to the use of profiles, which appear to the algorithm as separate 

sequences during the progressive alignment.  As a result, LCBs calculated at each 

intermediate step can only be combined with existing boundaries or split further, but are 

never extended.  Additional work is needed to address this limitation, such as additional 

chaining steps during the progression that merge collinear profile sequences.  The use of 

a guide tree helps alleviate the data fragmentation since the most similar sequences are 

combined first so that LCBs start in the progression with the longest spans.  The work of 

Para-Mugsy enables computation of a multiple alignment of the conserved genetic core 

across more genomes than is currently feasible using other methods.   
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Chapter 6 - Rapid Comparison and Annotation of Pan-genomes 

Sequencing of whole genomes from populations (pan-genomes) is becoming 

commonplace to study functional capabilities of a species [5,6,29] and identify targeted 

therapeutics [138,139].  To aid with analysis of populations of genomes, efficient 

methods are needed for comparison and annotation of genes across a pan-genome.  

Exploration of cellular functions and metabolic pathways is often reliant on comparison 

of genes and gene families between and within species to those that a share a common 

ancestry with well-studied and experimentally verified homologs.  As the number of 

sequenced genomes within a single species continues to grow, tools are needed for 

efficiently identifying genes that share a common ancestry allowing for rapid 

interrogation and annotation of genes across a population.   

To accommodate high-throughput genome sequencing, exclusively automated methods 

are used for gene prediction and functional annotations [99].  The resulting genome 

annotations can contain inconsistencies and errors that hinder comparative analysis even 

within a single species [54]. 

In this Chapter, we introduce a novel method that 1) identifies orthologs, i.e.genes 

descended from the same ancestral sequence, and 2) evaluates annotation quality across a 

pan-genome using whole genome multiple alignment.  The methodology, implemented as 

the tool Mugsy-Annotator, uses conserved genomic position, i.e. synteny, to aid in 

identifying orthologs.  This provides the foundation for comparing gene structures to 

identify annotation anomalies, including inconsistently annotated translation initiation 

sites (TIS), missing annotations, and disrupted genes due to sequencing and assembly 
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errors, or pseudogenes, including frameshifted genes.  Finally, Mugsy-Annotator 

identifies alternative annotations that resolve anomalies and improve annotation 

consistency.   

We evaluated the tool on annotations across a number of bacterial pan-genomes 

demonstrating that annotation anomalies are common, especially at translation initiation 

sites.  We also utilized the tool for improving annotations on a set of twenty genomes of 

the environmentally prevalent and occasionally pathogenic bacterium Neisseria 

meningitidis [140].  The tool is freely available at http://mugsy.sf.net. 
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Figure 6.1 - Identifying orthologs and comparing gene structures in a pan-genome using whole 
genome multiple alignments 

The input is provided as a set of genomic sequences (FASTA format) and gene annotations (GFF3 format). 

Whole genome multiple alignments (top left) are first calculated using Mugsy (Angiuoli and Salzberg 

2011). Mugsy-Annotator then builds groups of orthologous gene structures that are conserved in sequence 

and genomic context according to the alignment. The alignment also indicates the location of each 

predicted translation initiation start and stop across the genomes, allowing for identification of annotation 

anomalies or missing annotations.  

The method consists of three primary steps, (1) aligning multiple whole genomes, (2) 

mapping orthologs among the genomes, and (3) identifying annotation anomalies (Figure 

6.1).  Two types of input files are required: genome sequences in FASTA format, and 

annotated gene structures in Genbank or GFF3 format.  It is expected that a gene 

Methods 
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prediction algorithm has been run on all input genomes.  For step 1, we generate 

reference-independent whole genome multiple alignments using Mugsy [1].  The 

alignments generated by Mugsy are restricted to a single region per genome and used by 

Mugsy-Annotator to define orthologous relationships between sequences.  Mugsy outputs 

alignments in Multiple Alignment Format (MAF) that are passed to Mugsy-Annotator 

along with the genome annotations needed to complete steps 2 and 3.  The genomic 

coordinates and alignment string of each aligned interval are extracted from the MAF 

files and stored in an interval tree [141] to provide fast querying of genomic intervals.  

The start and end coordinates of each gene are also extracted as intervals from the 

annotation files and stored in the interval tree.  The interval tree is then queried by 

Mugsy-Annotator to build groups of orthologs and identify anomalies in gene boundaries.  

Although we utilize Mugsy for whole genome multiple alignment, Mugsy-Annotator 

accepts MAF files as input and other whole genome alignments tools can be used instead 

of Mugsy as long as the input is properly formatted.  

Identification of orthologs  

Sets of orthologs are determined by retrieving genes whose intervals are aligned via 

whole genome alignment (WGA).  First, the input genes are sorted on length.  The 

longest gene remaining in the input set, termed the query gene, is removed from the input 

and used to define a new ortholog group.  Genes from other species that align to the 

query gene in the WGA are added to the ortholog group and removed from the input set.  

This ensures genes are placed in exactly one group.  A configurable coverage cutoff can 

limit consideration to alignments that span a minimum percentage of the query gene and 

other matching genes. In this study, we set these length cutoffs to 50%.  The procedure 
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continues in a greedy fashion using the longest remaining gene to seed new groups (or 

clusters) until no genes are remaining.  Query genes with no overlapping genes above the 

cutoffs are reported as singleton groups.  Using this method, the query gene in each 

ortholog group is at least as long as any other gene in the cluster and may span multiple 

adjacent genes in other genomes.  This allows our method to identify apparent 

fragmented genes within a single region. 

To generate OrthoMCL clusters for comparison [142], we performed an all-against-all 

BLAST searches of conceptual translations of the gene predictions.  BLAST alignments 

with e-value < 10-5 were used as input to OrthoMCL v1.4 to predict groups of orthologs.  
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Figure 6.2 – Annotation anomalies identified by Mugsy-Annotator 
Four classes of anomalies are shown (a-d).  On the right, examples of aligned genes are drawn with the 

boxed region indicating the location of the anomaly.  On the left, a multiple alignment is depicted across 

the highlighted region with sequence identity indicated by dots.  In (c), a gap indicated by a dash introduces 

a shift in reading frame that results in use of a termination codon that is inconsistent with the annotations in 

the other genomes.  Translation initiation sites are marked as “start” and termination codons are marked as 

“stop” with an arrow indicating the direction of translation. 

Identification of annotation inconsistencies 

Mugsy-Annotator produces a report of the annotation consistency for each ortholog set.  

To classify annotation consistency for each ortholog set, we examine the location of the 

annotated start and stop codons for each gene in the multiple alignment.  If all annotated 

start and stop codons are in the same location, the ortholog set is consistently annotated 
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and we identify no inconsistencies.  Otherwise, we classify the ortholog set into one or 

more classes: inconsistent starts, inconsistent stops, and multiple gene fragments.  If the 

stop codon locations are the same for all annotated genes but the translation initiation 

sites (TIS) differ, we classify the set as inconsistent starts (Figure 6.2a).  If the start codon 

locations are the same for all genes but the stop codons locations differ, we classify the 

set as inconsistent stops (Figure 6.2b).  If both start and end locations differ for some 

members of the group, we classify the group as a combination class.  This class will 

include genes that overlap in the alignment but in different reading frames or strands.  

Aligned gene sets with multiple annotated genes in the same genome are classified as 

multiple gene fragments (Figure 6.2c). 

Alternative annotations 

Mugsy-Annotator suggests edits that can resolve anomalies and improve the consistency 

of each aligned gene set.  To determine the possible edits, start and stop codons pairs 

from each aligned set are checked against the WGA to determine if the aligned positions 

correspond to ORFs with a valid translation start and stop site (NCBI translation table 11) 

in each of the other aligned genomes.  In cases where the region already contains gene 

predictions, only alternatives that are greater than a specified percentage (50% by default) 

of the annotated length are considered. 

The procedure will also identify aligned gene sets with multiple gene fragments that can 

be merged into a single spanning gene by introducing a point mutation or frameshift into 

the annotation.  If the aligned regions contain gaps, Mugsy-Annotator attempts to 

introduce a frameshift to create a valid ORF joining the start and stop codon pair.  Start 

and stop codon pairs are then displayed ordered by the number of valid ORFs and their 
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length, although this sort order is configurable. This procedure will also identify possible 

missing genes in regions of the genome that are aligned to other annotated genes (Figure 

6.2d).  To be considered a missing annotation, there must be no overlapping gene 

predictions in the aligned interval. 

Data sets 

The Nmen dataset of 20 genomes was the same as used in [140].   Two versions of the 

annotation were available, Nmen verA and Nmen verB. Nmen verA contained 13 

genomes that had been annotated using one of two automated pipelines prior to any 

manual review.  Unless noted, the annotation anomalies identified in this study used the 

Nmen verB annotations, which had undergone limited manual review.  The remaining 

species pan-genomes used in this study were downloaded from the Refseq database 

[129].  MUMi [82] distance measurements were calculated for each pair of sequences 

with a named species.  

Mugsy-Annotator for finding orthologs 

Results 

Mugsy-Annotator uses whole genome alignment (WGA) calculated by Mugsy [1] to 

identify conserved genes in a set of genomes (Figure 4.1).  In cases where the alignment 

represents orthologous regions, these aligned genes correspond to orthologs; i.e., genes 

descended from the same ancestral sequence.  WGA aids in distinguishing orthologs 

from paralogs by identifying regions that are syntenic and conserved in both sequence 

and chromosomal position.  By aligning genomic DNA, WGA can also identify 

erroneous gene predictions in a reading frame that produce a nonsense translation and 
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escapes detection by similarity methods that rely on conceptual translations, such as 

BLASTP.  On the other hand, by relying on DNA alignment, Mugsy-Annotator might 

miss sequence conservation between genes that is only detectable at the protein level. 

 

Figure 6.3 – Comparison of ortholog groups between Mugsy-Annotator and OrthoMCL 
The intersection between Mugsy-Annotator and OrthoMCL reports the number of genes reported in 

ortholog groups by both methods. The remainder for Mugsy-Annotator and OrthoMCL reports the number 

of genes classified in ortholog groups by one of the methods only.   

 

As a case study to evaluate WGA for ortholog identification, we compared the groups of 

orthologs reported by Mugsy-Annotator and OrthoMCL for 20 Neisseria meningitidis 

(Nmen) genomes [140].  OrthoMCL performs a clustering of Reciprocal Best BLAST 

(RBB) matches between conceptual translations of genes to identify orthologs.  In Nmen, 

Mugsy-Annotator identified 2,440 ortholog groups compared to 2,320 reported by 

OrthoMCL.  The Mugsy-Annotator groups include nearly all the genes included in RBB 

matches used by OrthoMCL (38,905 of 39,593 total, 98%).   

Both methods reported genes missing from groups reported by the other method, totaling 

239 and 669 genes reported by Mugsy-Annotator and OrthoMCL exclusively (Figure 

6.3).  Many of the genes reported exclusively by one method appear to be paralogs based 

on intra-genome BLAST matches (40% and 66% reported exclusively by Mugsy-



 

 65 
 

Annotator and OrthoMCL methods respectively) or have functional names that indicate 

transposases (33% and 23% for WGA and RBB respectively) or hypothetical proteins 

(34% and 31% for Mugsy-Annotator and OrthoMCL respectively).    

Clustering of RBB matches can collapse orthologs and paralogs into a single group.  

Identifying orthologs separately is needed for phylogenetic analysis of gene families that 

rely on orthologs , comparison of upstream regulatory regions, and examination of 

segmental duplications, where each duplicated copy has a distinct genomic context.  As 

described in Methods, our tool, by utilizing WGA, incorporates genome context and 

synteny in determining matches and builds groups that are restricted to a single gene copy 

per genome, thus avoiding the grouping of orthologs and paralogs together.  In the case 

of segmental duplications, Mugsy-Annotator will report separate groups for each copy.  

In the Nmen comparison, OrthoMCL reports 310 groups with multiple genes per genome 

that align to each other via BLAST, indicating paralogs in a single group.  Mugsy-

Annotator will sometimes report groups with more than one gene per genome (Figure 

6.2c, “Fragmentation”), but rather than paralogs, these groups represent fragmented genes 

due to draft genome sequencing (gaps or sequencing errors) or potential pseudogenes.  

For genes grouped exclusively by Mugsy-Annotator, 23 have no reported intra-species 

BLAST matches to other genes in Nmen, and include annotations that appear to be in an 

incorrect open reading frame (Table S2).  Although we found this class of anomaly to be 

rare in our evaluation, Mugsy-Annotator, by using WGA, is able to identify orthologs to 

such regions that lack BLAST matches within the dataset and may have a nonsense 

conceptual translation.  An additional 68 genes (28%) reported exclusively by Mugsy-



 

 66 
 

Annotator are adjacent to contig boundaries and may be truncated gene predictions that 

escape detection by BLAST. 

Our WGA method is computationally efficient and has a significant runtime performance 

advantage over BLAST.  The comparison of 20 Nmen genomes runs on a single CPU in 

~4 h (~2 h for WGA with Mugsy and ~2 h for comparing annotations with Mugsy-

Annotator).  By comparison, the exhaustive all-against-all BLAST of predicted proteins 

needed for OrthoMCL consumed ~32 CPU hours and was run on a compute cluster to 

obtain a faster runtime.  In addition, BLAST-based methods that rely on searches of 

conceptual translation may require additional search of the genomic DNA, such as with 

BLASTx, to confirm gene presence and avoid mis-prediction of paralogs as orthologs. 
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Figure 6.4 – Distribution of the number of genomes in ortholog groups 

The number of genomes per orthologs are provided for all orthology groups (top), consistently annotated 

groups only (middle), and exclusively groups with annotation inconsistencies (bottom) as identified by 

Mugsy-Annoator for 20 Nmen genomes.. 

Missing annotations 

Mugsy-Annotator can be used to identify missing annotations and putative genes by 

looking for regions of the alignment with a prediction in some genomes but not others 

(Figure 6.2d, “Missing annotation”).  These missing annotations can arise from use of 
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varying gene prediction tools and uncertainty in gene calling procedures, especially for 

short genes [143].  In our study of 20 Nmen strains, a majority of the aligned gene sets 

contain one annotated region from each of the genomes (Figure 6.4) and missing gene 

predictions were rare, totaling only 50 genes missing in alignments containing 18 or more 

genomes (Table S3).  

Mugsy-Annotator identifies missing annotations if DNA corresponding to a putative gene 

is an open reading frame that is conserved across genomes.  However, it does not provide 

additional evidence to determine if a gene prediction is missing in some genomes (false 

negative) or there is an overcall in the other aligned genomes (false positive).  Our 

methodology relies on sequence conservation between the input genomes, which by itself 

is insufficient to distinguish between these due to the short phylogenetic distance and 

high similarity of the genomes.  Examination of additional evidence (eg. HMM or 

BLAST searches) or experimental validation is required to differentiate between these 

cases.  

Identifying and resolving annotation anomalies 

To aid in re-annotation efforts, Mugsy-Annotator identifies likely annotation problem 

areas and suggests alternative genes based on the whole genome multiple alignment.  To 

find such problem areas, Mugsy-Annotator first examines each of the aligned gene sets 

for inconsistencies in annotated gene boundaries amongst members of the set (Figure 

6.2).  The reported anomalies include inconsistently located TIS, disrupted genes, or 

alternative open reading frames.  Mugsy-Annotator then generates a report for each 

aligned gene set that describes the inconsistency and possible resolutions.  A HTML 
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report of the annotations overlaid on the whole genome multiple alignment is also 

provided.   

 

 
Figure 6.5 – Consistency of annotated gene structures in several species pan-genomes 

Each row provides the fraction of aligned gene sets in each class of anomaly and groups with no identified 

inconsistencies (blue) as identified by Mugsy-Annotator.  The number of genomes compared and their 

average MUMi similarity (Deloger et al. 2009) distance is also provided, ranging from zero for most 

similar to 1, least similar.  The bottom three rows describe three versions of annotations from the case study 

of Neisseria meningitidis (Nmen). The last version (Nmen verC) demonstrates improvements in consistency 

using alternative annotations suggested by Mugsy-Annotator. 

 

To demonstrate the tool, we ran Mugsy-Annotator on nine bacterial species, all of which 

have multiple strains with complete genomes available (Figure 6.5).  The output indicates 

many inconsistencies in annotated gene structures, with inconsistent TIS locations as the 

most commonly identified anomaly.  While the inconsistencies may indicate errors in the 

annotated gene structures in one or more of the genomes, the results are not surprising as 
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the sequencing coverage, date of annotation, and annotation protocols vary.  The 

presence of annotation errors in public repositories has been widely recognized 

[144,145,146] leading to a number of re-annotation efforts for genomes in a single 

species [147,148]. 

 
Figure 6.6 – Annotation anomalies caused by single genomes 

Number of instances where an annotated translation initiation site in a single genome in Nmen verB did not 

match any of the remaining annotated gene structures the aligned ortholog groups.  
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As a case study, we evaluated the Mugsy-Annotator report for the dataset of 20 Nmen 

genomes.  Inconsistent TIS are the most commonly detected anomaly in Nmen with 30% 

of aligned gene sets containing more than one annotated TIS.  Due to lack of precision in 

TIS prediction, we expect the number of TIS inconsistencies to increase as the number of 

genomes increases, especially since our method marks a group as inconsistent even if the 

annotation error is limited to a single genome.  To see how overall consistency is affected 

by any single genome, Mugsy-Annotator reports the number of times a single genome is 

inconsistent in comparison to the set.  An examination of the Nmen genomes shows that 

certain subsets of genomes have better internal consistency.  In 27% of groups with TIS 

inconsistencies, an alternative annotation in a single genome will resolve the 

inconsistencies for the group (Figure 6.6).  Although some of the Nmen genomes 

contributed to more annotation inconsistencies than others, all of the genomes contributed 

to inconsistencies in at least one group.   
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Figure 6.7 – Distance of alternative TIS from the annotated site 

Distance between the annotated translation initiation site and the most consistent translation initiation site 

reported by Mugsy-Annotator. 

 

Mugsy-Annotator suggests alternative gene structures that improve annotation 

consistency.  In Nmen core gene groups containing all genomes, 55% (400/725) of 

groups with inconsistent TIS can be resolved by an alternative annotation that is 

conserved across all the aligned genomes.  In 50% of these cases, the alternative start site 

is upstream of the existing annotation, resulting in longer annotations.  In the remaining 

cases, the most consistent TIS location results in a shorter gene in at least one genome.  A 

majority of the alternative TIS locations are in the same coding frame and within 42 bp of 

the annotated TIS (Figure 6.7), indicating that annotation protocols have chosen 

inconsistently between sites that are nearby along the genome.  Adjusting the TIS can 
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result in an overlap with an adjacent gene.  To help avoid mis-annotation of overlapping 

genes [149], Mugsy-Annotator flags edits that would result in an overlap with an adjacent 

gene.  In alternative annotations of Nmen groups, 15% (63/400) introduce overlap with 

adjacent annotations indicating further evaluation is needed to determine the correct 

annotation.   

When a single gene in one genome is aligned to multiple genes in other genomes, Mugsy-

Annotator calls this an anomaly (Figure 6.2c, “Fragmentation”).  These apparent gene 

fragments can arise from sequencing and assembly errors; from interesting novel gene 

fusions; or from pseudogenes, in which frameshifts or in-frame stop codons can split an 

open reading frame into multiple gene-like fragments.  In our case study of Nmen, draft 

genome sequencing appears to contribute to a vast majority of occurrences of this 

anomaly (Table S4), although the tool has also aided in the identification of several novel 

gene fusions that are not fixed in the population.  To aid in classifying this anomaly 

further, Mugsy-Annotator reports whether or not frameshifts can extend the interrupted 

gene fragments to match a longer annotated gene.  Amongst the aligned gene sets 

containing all 20 Nmen genomes, Mugsy-Annotator found 48 cases where a single 

previously un-annotated frameshift would resolve the anomaly and result in a 

consistently annotated set (Table S5).  In many other cases, some of the genes can be 

extended with a frameshift but other anomalies remain in the group.  Additional review 

would be needed to further classify these anomalies. 

In the Nmen study, Mugsy-Annotator suggests alternative annotations that can improve 

consistency in up to 57% of ortholog groups.  Although the alternatives improve 

consistency, in most cases an examination of additional evidence is required to ensure 
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that edits improve quality.  In this case study, the variability of the annotation is partly 

due to the multitude of sources and sequencing strategies.  The Nmen genomes are in 

varying stages of completeness genomes include 9 draft and 11 complete genomes and 

the annotation evaluated came from a total of 5 laboratories using varying gene 

prediction protocols and levels of manual curation.  To better accommodate draft 

genomes, the gene prediction procedure used in some of the Nmen genomes allows for 

partial open reading frames that terminate or initiate outside of a contig boundary.  

Mugsy-Annotator flags anomalies that are caused by these partial genes adjacent to 

contig boundaries.  In Nmen, such cases contributed to ~9% of start and stop site 

inconsistencies and at least 67% of all of the multiple gene fragment anomalies (Table 

S4).  Annotation anomalies due to draft genome assemblies will continue to be an issue in 

multi-genome analysis as current generation sequencing technologies have prompted an 

explosion in the number of draft genomes.   

To demonstrate annotation improvements using Mugsy-Annotator, we scored annotation 

consistency in three versions of annotation for Nmen.  An initial version of the Nmen 

annotation (Nmen verA), contained predominantly automated annotation in 13 newly 

sequenced genomes and curated annotation for 7 complete genomes.  Nmen verA and 

showed a large number of inconsistencies, encompassing 72% of orthology groups 

(Figure 6.5).  As part of the study in [140], limited manual curation was performed and 

resulted in annotation of frameshifts and removal of many short, unsupported 

hypothetical gene predictions and resulted in the annotations in  Nmen verB.  Although 

this manual effort was aided by the Mugsy-Annotator report, the curation effort was not 

meant to be exhaustive and not all reported inconsistencies were examined during the 
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review.  Subsequent to this manual effort, Mugsy-Annotator was run again and generated 

a new set of alternative annotations (Nmen verC) suggesting additional improvements 

were possible.  This resulted in consistent annotations in 59% of groups in Nmen verC, 

which was an increase from 28% in Nmen verA The improvement in annotation 

consistency between versions highlights the need for re-annotation and manual review 

subsequent to automated annotation.   

With numerous individual genomes for many bacterial species, there is an increasing 

need for tools that compare the genomes.  Mugsy-Annotator by using whole genome 

multiple alignment can be used to efficiently identify orthologs and annotation problem 

areas in a bacterial pan-genome. 

Discussion 

Mugsy-Annotator implements method that is independent of a reference genome.  For 

draft genome projects, Mugsy-Annotator identifies anomalies that are due to draft 

genome sequencing, such as inconsistently located translation initiation sites and 

disrupted genes.  For re-annotation efforts, Mugsy-Annotator can be used to direct 

curators to likely errors and highlight alternative gene structures that are consistent across 

a population, enabling re-annotation across many genomes simultaneously, rather than 

one genome at a time.  Mugsy-Annotator is currently limited to comparisons of genes 

that do not contain spliced gene structures. 

 

As our comparisons within a species demonstrated more variation between annotations 

than is actually present in the genome, researchers should be careful when relying on 
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gene structures for downstream applications.  Mugsy-Annotator looks for inconsistencies 

in gene structures to identify likely errors but it is also possible that consistency results 

from the propagation of error, especially since it is common to use reference genomes 

when annotating new genomes.  In some cases, the annotated gene structures may be 

consistent but incorrect and Mugsy-Annotator will not identify any anomaly.  On the 

other hand, due to the short evolutionary distance between the genomes under evaluation 

in our case study, inharmonious gene boundaries in orthologs are expected to indicate an 

improper gene boundary assignment in at least one genome.   

One area of future work is extending Mugsy-Annotator to build a fully automated pan-

genome annotation system.  Such a system would utilize the comparative genomics data 

for identifying genes and gene structures, regulatory elements, and prediction and 

assignment of gene functions, consistently across a species or higher-level clade.  One 

option for an implementation of this would include integration of sequence conservation 

into an existing de-novo gene finder with whole genome alignment providing additional 

evidence supporting the annotation, especially if a well-chosen out-group sequence is 

provided.  Comparative gene finders have been used extensively in eukaryotic annotation 

[150,151].  Similarly, a mapping approach for mapping between two genomes [98,152], 

could be extended across multiple genomes and used to augment existing gene 

predictions and transfer names and functional annotations across the new genomes.  

Since gene prediction runs quickly on bacteria (usually minutes), we expect the speed of 

such an approach would be limited by the time required to calculate a whole genome 

multiple alignment. 
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Importantly, additional evidence besides the whole genome alignment will often be 

needed to determine the correctness of the annotations including, but not limited to, gene 

boundaries of more distantly related orthologs, third position compositional bias, 

predicted ribosomal binding sites, and predicted signal peptides.  As such, our tool stops 

short of determining the correctness of any gene calls, as this is best left to follow-up 

analysis or experimentation in the laboratory.  Yet, our tool is ideally suited to direct the 

annotation curator towards the regions in most need of attention, and where Mugsy-

Annotator suggestions will greatly facilitate rapid improvement of annotation 

consistency.  Such tools are urgently needed in light of the explosion of genomes 

currently happening as researchers are sequencing hundreds of genomes for many 

individual species. 
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Chapter 7 - CloVR: A portable system for automated and 

distributed analysis in bioinformatics 

High-throughput sequencing technologies have decentralized sequence acquisition, 

increasing the number of users performing sequence analysis all over the world.  

Technical challenges in use of bioinformatics software [17,18] and difficulties in 

utilization of available computational resources [12,19] impedes analysis, interpretation 

and full exploration of sequence data.  In the following two chapters, we introduce a 

software package called Cloud Virtual Resource (CloVR) for automated and portable 

sequence analysis.  CloVR is free open source software available at http://clovr.org. 

In building the CloVR software, we relied on two enabling technologies, virtual machines 

(VM) and cloud computing platforms [60], to address software and hardware 

requirements for bioinformatics analysis.  The CloVR software is a single virtual 

machine (CloVR VM) containing pre-configured and automated sequence analysis 

pipelines, suitable for easy installation on a personal computer and with cloud support for 

increased analysis throughput.  In this chapter, the technical architecture of the CloVR 

VM is described and evaluated.  Then in Chapter 8, we present a case study that evaluates 

the costs and required resources of microbial sequence analysis using protocols bundled 

in CloVR.  

While, cloud computing platforms provide computing resources for anyone to access and 

use over the Internet on-demand, utilization of bioinformatics tools and pipelines on such 

distributed systems requires technical expertise to achieve robust operation and intended 

performance gains [12].  Also despite emergence of tools and methods designed for 
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cloud-ready frameworks, there is greater availability of bioinformatics tools, analysis 

pipelines, and standardized methods that are designed for distributed computation on 

static compute clusters [101,102].  Challenges in data storage and transfer over the 

network add to the complexity of using cloud computing systems [119]. 

In building the CloVR VM, we have addressed the following technical challenges in 

using the cloud:  

i) Elasticity and ease-of-use, clouds can be difficult to adopt and use requiring 

operating system configuration and monitoring; many existing tools and 

pipelines are not designed for dynamic environments and require re-

implementation to utilize cloud-ready frameworks such as Hadoop;  

ii) Limited network bandwidth, Internet data transfers and relatively slow peer-

to-peer networking bandwidth in some cloud configurations can incur 

performance and scalability problems; and  

iii) Portability, reliance on proprietary cloud features, including special storage 

systems can hinder pipeline portability; also, virtual machines, while portable 

and able to encapsulate complex software pipelines, are themselves difficult to 

build, configure, and maintain across cloud platforms.   

The architecture of CloVR addresses these challenges by  

i) simplifying use of cloud computing platforms by automatically provisioning 

resources during pipeline execution;  

ii) using local disk for storage and avoiding reliance on network file systems;  
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iii) providing a portable machine image that executes on both a personal 

computer and multiple cloud computing platforms;  

In this chapter, we describe the technical architecture of CloVR and evaluate some of the 

features, particularly portability, scalability, use of local storage, and automated access of 

cloud resources. 
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Figure 7.1 - Schematic of the automated pipelines provided in the CloVR virtual machine 

The CloVR virtual machine includes pre-packaged automated pipelines for analyzing raw sequence data on 

both a local computer and cloud computing platform. 

Architecture overview 

Implementation 

CloVR is a virtual machine (VM) that executes on a desktop (or laptop) computer, 

providing the ability to run analysis pipelines on local resources (Figure 7.1).  CloVR is 

invoked using one of two supported VM players, VMware [55] and VirtualBox [56]; at 

least one of which is freely available on all major desktop platforms: Windows, 

Unix/Linux, and Mac OS.  On a local computer, CloVR utilizes local disk storage and 

compute resources, as supported by the VM player, including multi-core CPUs if 

available.  To access data stored on the local computer, users can copy files into a “shared 

folder” that is accessible on both the VM and the local desktop.  Once inside the shared 



 

 82 
 

folder, CloVR can read this data for processing.  Similarly, CloVR writes output data to 

this shared folder, making pipelines outputs available on the desktop.  This shared folder 

feature is supported by both popular desktop virtual machines players, VMware and 

VirtualBox.  

 
Figure 7.2 - Architecture of the CloVR application 

CloVR provides a virtual machine (VM) that is run on user’s local desktop or laptop computer.  The user 

interacts with the local VM via a command line or web interface to execute pipelines. Optionally, clusters 

of additional VM instances are provisioned on supported cloud platforms for increased throughput.  Each 

cluster has a master VM instance that provides services for GridEngine [153] and Hadoop [154].  Input 

data and output data is transferred between the local VM and a master VM instance in the cloud over the 

Internet.  

 

Optionally, the CloVR VM can be configured to automatically access a cloud computing 

provider for additional resources.  Supported clouds include the commercial Amazon 
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Elastic Compute Cloud [61] and the academic platforms DIAG [63] and Magellan [62].  

In utilizing the cloud, multiple copies of the CloVR VM execute concurrently and 

interact as a cluster for parallel processing of data (Figure 7.2). 

 
Figure 7.3 - Components of the CloVR virtual machine 

The CloVR virtual machine includes pre-installed and pre-configured software dependencies (blue) on an 

Ubuntu operating system. Key software that is bundled with the VM is shown. The (*) indicates software 

that was developed as part of the CloVR project 

 

Components of the CloVR VM  

To address technical challenges associated with software installations and pipeline 

configurations, the CloVR VM comes bundled with all required software pre-installed 

and pre-configured, (Figure 7.3).  The bundled software includes a base operating system 

(Ubuntu 10.04 [155] + BioLinux [17]), job schedulers (Grid Engine [153], Hadoop 

[154]), and a workflow system (Ergatis [102]).  In addition, numerous open source 

bioinformatics tools are pre-installed and bundled into automated pipelines for pre-

defined analysis protocols (Table 8-1).   

Building the virtual machine images  

An automated build and configuration process is used to generate the virtual machine 

images in formats compatible with both virtual machine players and cloud computing 
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platforms.  A specially configured VM (CloVR buildbox, http://clovr.org/developers/) 

running the Hudson continuous integration server [156] is used to schedule and automate 

the builds.  The build starts with a skeleton Ubuntu 10.04 disk image [157].  During the 

build process, a series of recipes are applied to the skeleton image to install all the 

necessary software, resulting in a fully installed disk image.  Finally, this disk image is 

converted into formats for VMWare (.vmdk files) and VirtualBox (.vdi files).  The raw 

disk image is also uploaded to Amazon EC2 as an AMI and DIAG as a Xen compatible 

image for Nimbus [158]. 

Components of a CloVR automated pipeline 

The CloVR VM (version 0.6) currently includes four pre-packaged and automated 

analysis protocols (Figure 7.1): (i) a simple parallelized BLAST [159] search protocol 

(CloVR-Search ver 1.0 [160]); (ii) a comparative 16S rRNA sequence analysis pipeline 

(CloVR-16S ver 1.0 [161]); (iii) a comparative metagenomic sequence analysis pipeline 

(CloVR-Metagenomics ver 1.0 [162]); and (iv) a single microbial genome assembly and 

annotation pipeline (CloVR-Microbe ver 1.0 [163]).  For each protocol, a limited set of 

configuration options and pre-defined input files are supported, such as SFF, FASTA, 

and FASTQ.  Output files are generated in standardized formats, such as FASTA and 

Genbank flat files.  
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Figure 7.4 - Steps of an automated pipeline in CloVR 
 

Each CloVR protocol is implemented as two discrete pipelines: 1) a worker pipeline and 

2) a wrapper pipeline.  CloVR uses the Ergatis workflow engine [102] to describe and 

execute each of these pipelines.  The worker pipeline implements and performs the 

particular analysis protocol, while the wrapper pipeline manages automated use of the 

cloud from the desktop using the local VM client (Figure 7.4).  Each wrapper pipeline is 

composed of seven primary phases: (1) pre-processing, including quality and integrity 

checks of input data; (2) starting a remote cluster for distributed processing; (3) data 

upload to the cloud; (4) execution of the worker pipeline; (5) monitoring of the worker 

pipeline; (6) data download from the cloud and (7) post-processing.  Steps (2), (3), (6) are 

only executed when utilizing a remote cloud platform.   

To implement each of these steps in the wrapper pipeline, we built a set of utilities and a 

web services API in a software package called Vappio (http://vappio.sf.net).  Vappio is 
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built on top of the Amazon EC2 API [164] for managing images, instances, and 

authentication key pairs.  Vappio provides functions for managing (i) clusters, (ii) 

datasets, and (iii) protocols and pipelines.  A summary of the Vappio functions and web 

services follow: 

(i) Clusters.  On the cloud, clusters of CloVR VM instances are configured for parallel 

processing.  CloVR utilizes these clusters as temporary resources during pipeline 

processing, provisioning a new cluster for each pipeline, and terminating the cluster upon 

pipeline completion.  Each clusters runs an instance of both Grid Engine [153] and 

Hadoop [154] for job scheduling.  Clusters are composed of a single master node and one 

or more worker nodes  (Figure 7.2).  The first VM that is started in a cluster is designated 

as the master node.  Subsequent VMs are designated as worker nodes and automatically 

registered with the master node and added to the cluster upon boot of the image.  The 

user-data environment on the cloud platforms is used to configure each node type and 

associate master and worker instances during image boot.  Worker nodes are configured 

in Grid Engine queues for receiving a number of work units based on the number of 

CPUs that are available on the instance.  The client CloVR VM running on the user’s 

desktop is also considered a cluster, named ‘local’ that is both a master and worker type.   

To manage the cluster on the cloud, Vappio provides web services to dynamically start 

(vp-add-cluster), resize (vp-add-instances) and terminate (vp-terminate-cluster) clusters 

of VM instances.  These web services in turn utilize EC2 API calls [164], including ec2-

run-instances, ec2-terminate-instances, and ec2-describe-instances.  In addition to 

executing the EC2 API calls, the Vappio web services manage the configuration of Grid 
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Engine and Hadoop on each instance as the instance is started and added to the cluster, or 

terminated and removed from the cluster.  

In order to access the cloud, user account and authentication information is required and 

provided by the cloud provider.  To simplify access to the cloud during pipeline 

execution and without jeopardizing security, Vappio provides a unique identifier, called a 

credential name, for each cloud account.  During an initial configuration, the credential 

name is configured and associated with the cloud account and authentication keys using 

the Vappio web service, vp-add-credentials.  This credential name is then used to refer to 

the account during subsequent Vappio web service calls during pipeline execution.   

All communication and data transfer between a user’s desktop and the cloud is managed 

by the client CloVR VM running on a local computer.  The local client VM 

communicates with the master CloVR VM on the cloud to transfer data, invoke worker 

pipelines, and monitor pipeline state (Figure 7.4).  To provide security and help ensure 

data privacy, each remote cluster of CloVR VMs uses a unique authentication key.  This 

key is used to enable secure data transfer between instances with Secure Shell (SSH) both 

within the cloud and over the Internet and between the local client VM and master cloud 

CloVR VMs. 

(ii) Datasets. In Vappio, datasets are described as lists of files or Uniform Resource 

Locators (URLs) that are accessible by a cluster or the local client CloVR VM. User 

provided sequence data, reference data, and outputs generated by the CloVR analysis 

pipelines are all managed as datasets.  Datasets are moved between a local desktop and 

disk storage on the remote cluster as needed for processing (Figure 7.4, Steps 3 and 6).  

Vappio provides utilities for 1) registering new data sets with the cluster (vp-add-
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dataset), 2) transferring datasets between clusters (vp-transfer-dataset), and 3) describing 

information about a data set (vp-describe-dataset). 

 

Figure 7.5 - Example of specification files used for running pipelines 

(iii) Protocols. Pre-defined analysis protocols are invoked for data analysis using a single 

configuration file (Figure 7.4, Step 4).  Vappio provides utilities for configuration and 

invocation of analysis protocols with the services vp-describe-protocol and vp-run-

pipeline.  An example of the specification file for CloVR-Microbe454 produced by vp-

describe-protocol is shown in Figure 7.5.  The specification file includes references to 

input data sets, configurable analysis parameters, and, optionally, references to cloud 
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account credentials for accessing the cloud.  Protocols are executed with vp-run-pipeline, 

which accepts the specification file as input.  Once executed, we refer to the running 

instance of the protocol as a pipeline.  The status of pipelines is monitored with the 

service vp-describe-pipeline. 

To ensure transparency of the CloVR-supported analysis, each CloVR protocol is 

described by two documents: (1) An abstract workflow XML file that is used by the 

Ergatis workflow engine to execute the protocol and (2) a human readable standard 

operating procedure (SOP) document that describes the protocol in detail.  The abstract 

workflow XML is an exact description of the executions used to perform the analysis.  

The SOPs describe each step of the pipeline, including software tools, software versions, 

and parameters used.  The protocol SOPs are published online with references stored on 

the VM and in pipeline configuration files, allowing for association between an analysis 

result and protocol description. 

To ensure reproducibility of individual analysis results, CloVR uses the following 

additional principles: 1) All pipelines are executed using the Ergatis workflow system 

that tracks process flow and exact parameters invoked at each step in an XML file.  2) As 

part of the CloVR software installation process, versioning is applied to each analysis 

protocol, reference data set, and to the CloVR VM image itself.  All results generated 

during CloVR pipeline runs have references to these versions. 

Data storage and transfers 

Local disk storage on the personal computer is used to store all input data and results 

generated during an analysis.  Input data is copied to the cloud if needed.  To improve 
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network transfer performance, CloVR uses high performance Secure Shell (HPN-SSH) 

[165] to transfer files.  Rsync [166] is also used in conjunction with HPN-SSH to avoid 

redundant data transfers.  Since all network transfers between a local desktop and the 

cloud are managed by CloVR VMs, data transfer with these tools is automatic, invisible 

to the user and does not require further software installations or configurations by the 

user.   

The pipelines in CloVR are configured to avoid unnecessary data transfers for both local 

and cloud-based execution modes.  For example, several of the supported protocols rely 

on publically available reference data sets that are either permanently hosted in the cloud 

or at an Internet accessible URL.  When executing CloVR pipelines in the cloud, 

pipelines will utilize reference datasets hosted on the cloud whenever possible.  For local 

execution, the reference datasets must first be downloaded to the local VM over the 

Internet.  CloVR ensures such local transfers happen only once, the first time the data is 

accessed, and the reference data is then saved locally for subsequent access.  

For data storage on the cloud, CloVR utilizes local disks and does not require any access 

to a shared file system, such as a NFS server.  Instead, all intermediate results or 

temporary files are stored on the local ephemeral disk storage provided to each VM 

instance.  Under this model, worker nodes must receive copies of input data from the 

cluster master node before beginning work.  This is implemented using the job prolog 

feature of Grid Engine to copy input data prior to job execution.  Similarly, output data is 

copied back to the master node using the job epilog feature of Grid Engine.  To provide 

robustness and scalability, all data transfers to and from the head node are also scheduled 

as jobs in Grid Engine queues named staging.q and harvesting.q.  The number of slots in 
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these queues allow for control over how many simultaneous transfers a master node will 

process.  HPN-SSH and rsync are used to perform the transfer between instances in the 

cloud.  

In some cases, pipelines use reference data sets or intermediate outputs that need to be 

accessed on every instance in a cluster.  A single directory (the staging directory, eg. 

/mnt/staging/) is used to mirror such data to all instances in the cluster.  Rather than rely 

exclusively on the master node to provide the mirror, worker nodes can share copies of 

the staging directory in a peer-to-peer fashion to provide additional bandwidth and 

improve throughput.  Upon receiving a complete copy of the staging directory, worker 

nodes are added to a Grid Engine queue (named stagingsub.q) indicating that they can 

mirror copies to peers.  Grid Engine queues are also used to limit the number of transfers 

between each worker node. 

Upon pipeline completion, final outputs are transferred from the master node instance 

outside the cloud to the local VM.  After output has been transferred back to the local 

CloVR VM, the cluster and all associated local storage is no longer needed and instances 

are terminated. 

Automatic resource provisioning in the cloud 

Cloud resources are automatically provisioned during execution of CloVR pipelines.  To 

accomplish this, steps are added to the pipelines allocate additional cloud resources if 

necessary.  Pipelines that are configured to run exclusively on the personal computer skip 

these resource allocation steps.  To determine the number of compute instances needed 

for these protocols, custom scripts consider one or more of these factors: 1) hard-coded 
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assumptions about expected resource utilization and 2) instance limits from the cloud 

provider or user 3) estimation of runtime from input data.   

To support genome assembly of Illumina data using Velvet, CloVR pipelines are hard-

coded to start a single high memory instance type (m2.xlarge) on Amazon EC2 prior to 

running assembly that provides 17.1GB of RAM, which in our testing is sufficient for 

assembly of single bacterial genomes. 

For three of the pre-packaged protocols in CloVR (Microbe, Metagenomics, and Search), 

BLAST searches are the primary processing bottleneck.  An estimation of total BLAST 

runtime can serve as a good approximation to predict the overall pipeline runtime.  A 

default minimum of 5 c1.xlarge instances providing a total of 40 CPUs is started to 

support BLAST steps in these pipelines.  For the CloVR-Search and CloVR-

Metagenomics protocols, a prediction of total CPU runtime is estimated based on the 

input data using Cunningham [167] to determine how many instances to start prior to 

search. 

For a particular search database, BLAST runtimes can vary depending on the length and 

composition of query sequences.  Cunningham, which was implemented as part of the 

CloVR project, rapidly estimates BLAST runtime by comparing kmer profiles (k=3 for 

protein, k=11 for DNA including reverse complemented sequence) for a reference 

database and the input query sequence.  The number of matching kmers between the 

query subsample and the reference database are saved.  The kmer profile of the reference 

database is pre-calculated and saved so that only the kmer profile of the query sequence 

needs to be calculated during pipeline execution.  Then, a different linear model for 

BLASTN, BLASTP, and BLASTX, is built in the common form:  
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 where the runtime T depends on the number of shared seed pairs M, and the average 

query sequence length L.  Calibration runs of each BLASTN, BLASTP, and BLASTX 

using randomly selected shotgun metagenomic datasets lised in {White, 2011 #527} on 

c1.xlarge Amazon EC2 machine types are used to obtain parameters  and .  Default 

BLAST parameters were used with the exception of ‘-b 1 -e 1e- 5 -F F’.  

Also impacting runtimes is number and size of partitions that are used for parallel 

processing.  In CloVR, BLAST searches are run in parallel by dividing the input query 

multi-FASTA files into partitions and executing a search of each partition concurrently 

against the reference database.  Over-partitioning of the data in which jobs finish in a 

very short in duration can lead to inefficient use of resources and increased runtimes, 

since there is overhead in scheduling and invocation of each job.  Provided a runtime 

estimate, the partition size P for each BLAST query is obtained by  

 

where Nq is the total number of query sequences, T is the estimated CPU runtime from 

Cunningham or some other estimation procedure, and R is a configurable parameter for 

the preferred execution time for a single data partition (default: 2 hours).  The support for 

runtime estimates is provided as a configurable module that reads the pipeline 

configuration and produces an estimate.  This allows for custom modules for runtime 

prediction in the future using some other logic. 

The cloud provider may impose a limit on the maximum number of instances that can be 

started by a user (eg. Amazon EC2 imposes a default of 20 instances per account, which 
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can be raised on request).  CloVR also has an instance limit option in each pipeline 

specification file.  CloVR prevents attempts to start more than this number of instances 

for a particular pipeline.  

We evaluated four features of the CloVR architecture: portability across computing 

platforms, support for elastic provisioning of resources, scalability of clusters of 

instances, and use of local data storage on the cloud. 

Results 

Table 1 – Portability of the CloVR VM 

 Local PC 

(Intel Xeon 5130) 

Max No CPUs : 4 

DIAG 

(medium instance) 

Max No. instances: 5 

Max. No CPUs : 20 

Amazon EC2 

(c1.xlarge instance) 

Max No. instances: 
18 

Max No. CPUs: 80 

 Runtime Runtime  Runtime 

Assembly 29 min 25 min 28 min 

Annotation 2 days 6 hrs 26 min 9 hrs 30 min 7 hrs 2 min 

Total 2 days 7 hr 5 min 9 hrs 55 min 7 hrs 30 min 

 

CloVR runs on the desktop and can utilize resources at multiple cloud providers 

To demonstrate the portability of CloVR, we executed a single analysis protocol (CloVR-

Microbe) analysis on a personal computer and two cloud computing platforms (Table 2).   

The input data was comprised of 250,000 454 FLX Titanium sequencing reads of the 

bacterium Acinetobacter baylyi totaling ~89Mbp is and expected to cover the ~3.5Mbp 

genome at 25-fold coverage.  Identical output, comprised of 38 contigs (N50=262Kbp) 
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and 3417 predicted protein coding genes was obtained on all three platforms.  For local 

analysis, a 4-CPU VM with 8GB of RAM was used.  When using the cloud platforms, 

the local client VM can be executed in as little as 2GB of RAM.  The DIAG and EC2 

platforms allowed for execution of steps of the protocol in parallel offering 4-CPUs per 

“medium” instance type on DIAG (8GB RAM) and 8-CPUs per “c1.xlarge” instance type 

on EC2 (7.5GB RAM).    

Our evaluation of the CloVR-Microbe protocol demonstrates the ability to run a genome 

assembly and annotation protocol both locally on the cloud for increased throughput.  A 

single configuration setting is changed to invoke the pipeline on either the personal 

computer or the supported clouds.    
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Figure 7.6 -Execution profile of an analysis with CloVR-Microbe 
The example shows the number of CPUs and their workload that are part of an Amazon EC2 cluster that is 

used to run CloVR-Microbe. The BLAST and HMMER searches are amenable to parallelization and are 

executed across a cluster of CPUs, while genome assembly processing is run on a single CPU.   

CloVR provides automated resource provisioning in the cloud 

Elasticity, i.e. dynamic provisioning of resources, is a primary feature of the cloud and 

allows for the addition of computational resources on-demand. An example of this 

dynamic capability is provided for the microbial genome assembly and annotation steps 

of the CloVR-Microbe pipeline (Figure 6).  In this example, the CloVR-Microbe protocol 

was used to perform whole genome assembly and annotation on 500,000 sequencing 

reads from the 454 Titanium FLX platform.  The local VM client first starts a remote 

(master) VM instance on the cloud.  The input sequencing reads (676 MB compressed 
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SFF file) were copied to this instance and genome assembly is completed on a single 

c1.xlarge VM instance, using no more than two virtual CPUs. Then, prior to genome 

annotation, 15 additional CloVR VM instances were allocated to improve processing 

throughput.  A configurable parameter limits the number of instances that are added.  Idle 

instances are subsequently terminated automatically upon job completion on an hourly 

timer.  Importantly, this provisioning and termination of resources is automatic and does 

not require the user to interact with the remote cluster on the cloud.   

This protocol was migrated to the CloVR VM from a pipeline used in the online service 

IGS Annotation Engine [109], and was not optimized for performance on a cluster.  

Many steps of later steps in this protocol are amenable to parallel computation but have 

not been implemented to run across a cluster, currently requiring hours to run on a few 

CPUs.  Improved support for parallel computation and other optimizations are left as 

future work.  

 

Figure 7.7 - Dynamically allocated cluster of CloVR VM instances running BLAST 
A cluster of CloVR VMs is deployed on-the-fly and scaled to 160 c1.xlarge Amazon EC2 instance types 

(totaling 1280 virtualized CPUs). 
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To assess the scalability of the CloVR architecture, we executed BLASTX searches using 

CloVR-Search on clusters composed of up to 160 c1.xlarge instances, comprising 1280 

CPUs of a random sample of ~100M nucleotides from a oral microbiome sample 

sequenced with a 454 Titanium FLX machine (unpublished) against NCBI non-redundant 

protein database (Figure 7.7).  This BLASTX search ran at a throughput of ~36.9Mbp per 

instance hour for a c1.xlarge Amazon EC2 instance type, at an estimated cost of ~$108 

per hour for 160 instances.  A subset of the data was used for the evaluation; the 

estimated runtime for the complete sample of 561Mbp is ~15 hours (19,940 c1.xlarge 

CPU hours) at a total cost of ~$1641.  
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Figure 7.8 - Visualization of data transfers between instances over time in a cluster of CloVR VMs. 

Each arc represents the lifetime of a CloVR VM instance with the time labeled relative to bootup of the 

instance.  The red arc is a master node CloVR VM and grey arcs are worker VM instances.  Data transfers 

between master and worker instances are shown as grey lines.  Transfers between worker instances are 

shown as blue lines. 

CloVR uses local disk and does not rely on network file systems  

Bioinformatics tools typically operate on files and expect a file system for reading and 

writing data.  Bottlenecks in reading or writing data on a shared, network-based file 

system, such as NFS [168], can cause performance problems during processing, 

especially when many concurrent processes are executing against the shared resource.  
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CloVR does not rely on network file systems for processing and, instead, uses local disk 

to avoid introducing data transfer bottlenecks during computation.  To achieve this, input 

files must be transferred to compute hosts (worker instances in Figure 7.2).  These file 

transfers between master and worker node types are made prior to computation for inputs 

and subsequent to job completions for outputs.  A depiction of these data transfers during 

a run of CloVR-Microbe is shown in (Figure 7.8).  Some of the data transfers are required 

to support parallel execution of BLAST, where the input query FASTA files is split into 

fixed size partitions and each partition is searched independently and in parallel.  In 

CloVR, the input FASTA data and output BLAST report for each partition is copied 

between the master VM and a worker VM before and after processing.  

 
Figure 7.9 - Network throughput on a cluster of CloVR VMs 

The aggregate network throughput as measured by Ganglia [169] during a peer-to-peer data transfer on a 

cluster of 160 c1.xlarge instances on Amazon EC2. 
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Reference data sets and some intermediate outputs need to be accessed by all VM 

instances in a cluster.  To improve distribution of these data sets, a peer-to-peer data 

transfer scheme is used for sharing intermediate results and reference data sets (blue lines 

in Figure 7.8).  To evaluate the performance of these data transfers, we tested the 

throughput for providing 3.1GB of compressed reference data for BLAST to 100 

c1.xlarge VM instances (Figure 7.9).  During this execution, instances came online in a 

staggered fashion and received copies of the reference data upon boot of the instance.  

Aggregate throughput exceeded 1.1 GB/second.   By comparison, network transfer 

speeds between a pair of c1.xlarge instance type on Amazon EC2 network were found to 

be typically fall below ~40MB/second. 

CloVR reduces bottlenecks in sequence analysis by using two related technologies: 

virtual machines and cloud computing.  By using virtualization technology, CloVR 

simplifies deployment of complex bioinformatics workflows by providing a single 

executable (the virtual machine) that can execute on a personal computer.  In addition, by 

supporting Amazon EC2 and other cloud computing platforms, CloVR provides access to 

large distributed computing resources, providing a potential alternative to building and 

maintaining in-house infrastructure for computational analysis.   

Discussion 

CloVR is implemented as a software-as-a-service solution for sequence analysis, 

although, in contrast with Internet based services, CloVR runs directly on a personal 

computer rather than a central server.  Web accessible workflow systems, such as Galaxy 

[101] or Taverna [104], provide a centralized analysis resource for a lab or community 
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that is accessible over the network and typically executes on dedicated resources where 

users upload data for centralized processing.  This centralization of services is in contrast 

to the current decentralization in genome sequence generation.  CloVR provides an 

alternative decentralized model, where each user runs an instance of the CloVR VM on 

their personal computer that is independent from others in a multi-user environment.  By 

running on the desktop, CloVR can utilize local compute and storage resources and avoid 

transfer of user generated sequencing data over the Internet in some cases.  The CloVR 

architecture also avoiding contention for centralized web servers for processing, while 

still supporting the shared cloud computing resource for increased throughput.   

As the number of computing cores available in a personal computer is expected to 

increase in the coming years, the desktop support in CloVR provides an opportunity to 

utilize substantial computing power on a local machine; potentially avoiding need of the 

cloud entirely. 

CloVR does not provide all of the features of a genomic workbench, in particular it does 

not provide a web interface for running and configuring individual analysis tools.  While 

genomic workbench systems have focused on making individual tools easy to run and 

integrate into pipelines, many projects rely on static, standardized analysis pipelines.  In 

contrast to genomic workbenches that provide extensive choices of tools, CloVR 

provides pre-defined standard pipelines that integrate tools for particular analysis 

objectives so that no configuration or expertise with individual tools is required.   This 

level of automated processing is particularly useful for users that find choice of 

bioinformatics tools overwhelming and instead seek recommendations for best practices.  

While our work has focused on providing automated pre-defined pipelines, by providing 
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a VM, all the bioinformatics tools included in CloVR can be run from a command line 

terminal within the VM.  This mode of access may also be of interest for experienced 

users. While, at the time of this study, CloVR does not provide a web interface, work on 

a web-based user interface is in progress. Similar to a local interaction with the VM, the 

web interface will run locally as a service on the VM, running on a user’s desktop. 

CloVR provides utilities for building private clusters of VM instances on-demand.  A few 

other systems, Nimbus one-click clusters [170], Galaxy CloudMan [171] and StarCluster 

[172], are also designed to deploy clusters of instances in the cloud.  In contrast to these 

systems, CloVR users are not expected to start, manage, or resize clusters of VM 

instances in the cloud.  Instead, pipelines include steps to provision these resources 

automatically.  This ability enables cost savings in the case of commercial clouds, by 

allocating resources only as they are needed ("just-in-time"). 

To help ensure compatibility with multiple cloud providers, CloVR avoids reliance on 

proprietary features of individual cloud providers, instead utilizing only three EC2 API 

calls during pipeline execution (ec2-run-instances, ec2-terminate-instances, and ec2-

describe-instances).  Such core functions of the EC2 API are supported by all the clouds 

evaluated and are becoming a standard in middleware that provides cloud services.  

CloVR is ready to support an emerging cloud computing platform that provides this 

baseline interface. 

The architecture of CloVR, which utilizes utilize Grid Engine [153] for job scheduling 

and uses local disks for storage, allows for migration of tools and pipelines to the cloud 

without reimplementation.  All of the analysis protocols provided on the CloVR VM 

were migrated from a non-cloud version that previously executed on a static local 
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compute cluster.  This approach is in contrast to cloud-ready frameworks like Hadoop, 

which are designed algorithms that follow MapReduce [115], often requiring new 

methods or reimplementation of existing tools to utilize the framework.  As more tools 

are becoming available utilizing MapReduce [116,117,118], Hadoop is included on the 

VM for future integrations of new tools that take advantage of this framework. 

Compute clusters often rely on centralized, shared storage systems or file servers to 

simplify access to data for users and pipelines.  As part of the design to be both portable 

and scalable on cloud computing networks, CloVR does not rely on a shared, network file 

system, such as NFS, for storage.  Instead, CloVR relies on local storage on either the 

users’ desktop to store pipeline input and output, or temporary disk storage available the 

cloud VM instances during pipeline execution.  Other distributed storage systems, such as 

Amazon S3 [173] or HDFS [174] require use of specialized utilities to read and write 

data.  Rather than retool software to use these systems, all tools integrated into CloVR 

pipelines operate on files and local file systems without any required modification of the 

included analysis tools.  Also, by using local disk for storage rather than the network, 

CloVR can be expected to run on commodity cloud systems with relatively slow 

networking and without reliance on the specialized storage features of cloud providers, 

such as Amazon Elastic Block Storage [175]. 

The CloVR architecture saves all pipeline inputs and output on the personal computer, 

enabling additional control on maintaining data privacy.  In contrast, online 

bioinformatics resources require the user to relinquish some control over data, since 

sequences and metadata are uploaded and saved on a remote server for processing.  

Although CloVR transfers data to cloud servers for processing, CloVR uses the cloud as 
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a temporary resource for processing and does not require that either inputs or results are 

stored on the cloud. 

With the increasing volume of next-generation sequencing data, data transfer over the 

Internet can be an impediment for utilizing the cloud.  In CloVR, the transfer of user 

inputs and sequence data to and from the cloud occurs over the Internet and can be slow.  

To address this bottleneck, CloVR currently utilizes HPN-SSH [165] for all data 

transfers.  In addition, the CloVR VM includes the GridFTP fast file transfer protocol 

[176].  We may be able to utilize this protocol or others in the future to provide further 

speedup.  Since all data transfers occur between local and remote CloVR VM as part of 

pipeline execution, use of new data transfer protocols can be implemented without user 

installation or configuration of either a server daemon or client utility. 

A strategy for moving analysis to data, rather than transferring data over the network, has 

been raised as a potential solution to dealing with data transfer bottlenecks [19].  The 

portability of the VM provides such flexibility.  The CloVR VM is 1.4GB compressed 

and can be easily transferred to computational resources that are co-located with large 

data sets.  The CloVR VM already supports a similar model in the utilization of reference 

databases, such Uniref100 [177], which we hosted at the cloud to support the CloVR-

Microbe genome annotation protocol. 

CloVR promotes transparency of methods, by providing published and accessioned 

protocols for each pipeline, and enables reproducible research, by executing all pipelines 

in VM environment. For complex pipelines, reproducibility becomes increasingly 

difficult and virtualization and clouds have been recognized as ideal platforms to promote 

pipeline reproducibility [114].  CloVR realizes this potential by executing all steps on a 
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portable VM that encapsulates the entire runtime environment, included versioned 

protocols and analysis results. 

The CloVR pipelines are composed of multiple steps, only some of which are 

computationally demanding or support parallelization on multiple CPUs.  To match 

pipeline needs with available resources, each CloVR pipeline includes steps to 

automatically provision cloud resources as needed.  One strategy for efficient allocation 

of resources is to estimate runtimes for steps that execute in parallel so only as many 

resources are provisioned as can be used.  As an example, CloVR-Search and CloVR-

Metagenomics currently use a utility that we’ve built, named Cunningham [167], to 

estimate the runtime of BLAST during pipeline execution.  This strategy is only meant to 

provide a rough estimate to avoid starting to many instances for small searches or too few 

instances for larger searches.  In addition, a rough estimate of runtime can help avoid 

over-partitioning of the input query sequence data resulting in very short search time for 

each data partition, introducing overhead that degrades overall performance.  Our use of 

Cunningham is meant to be illustrative and by making runtime estimates and cluster 

provisioning discrete steps in the pipeline, we can incorporate other runtime prediction 

methods in the future.  While not all pipelines will consume a predictable amount of 

resources, the ability to predict runtimes can also be used to provide an a priori estimation 

to the user of how much an analysis will cost or whether a particular analysis is even 

feasible.  We plan to explore providing such estimates as future work and anticipate this 

will be of much interest to users of the software. 

While current protocols in CloVR focus on applications in microbial genomics, the 

platform is generic and useful for other genomics applications.  Ongoing and future work 
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will implement analysis pipelines for viral and eukaryotic genomics and transcriptomic 

projects.  Also, while the whole genome and metagenomics protocols largely rely on 

BLAST for identifying sequence similarities, future work can add protocols that utilize 

more efficient tools and methods allowing for processing larger datasets.  To enable 

further comparisons across protocols, more work is needed especially in standardization 

of analysis outcomes and data formats [94,178].  Analysis competitions and bake-offs are 

a good driver for these developments [179]. 

The CloVR VM can serve as a platform for the integration of additional or alternative 

tools and pipelines developed by other members of the research community. The recipe 

driven build process used in CloVR to build a single VM image for both the desktop and 

cloud computing platforms can also be used to build other custom VMs.  A first step in 

this direction has been made by the use of the CloVR to create a VM for the QIIME 

package [180]. 
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Chapter 8 - Resources and costs for microbial sequence analysis 

evaluated using virtual machines and cloud computing 

Costs are commonly evaluated for sequencing technologies and continue to decrease 

[181], while costs for computational analysis have proven more elusive to quantify [120].  

The availability of cloud computing platforms with transparent pricing has enabled 

attaching real dollar costs to bioinformatics workflows.  Such costs provide both a 

measure of analysis efficiency and have practical value for project planning and 

budgeting.  There is some debate of the economical feasibility of using commercial cloud 

computing platforms [19,119].  The evaluation of cost is complicated by poorly defined 

analysis tasks and difficulties in comparing analysis protocols across computational 

platforms.  For example, researchers producing sequence data are confronted with the 

following questions:  

(i) What are the available methods for sequence analysis in order to generate 

publishable results in standards-conforming formats?  

(ii) What are the computational requirements for analysis?  

(iii) Given a particular application, does it make sense to use Platform as a Service 

(IaaS) models, such as the Amazon EC2 cloud, or to invest in a local grid 

network? 

(iv) What are the real dollar costs of analysis?  

In this Chapter, we address these questions and provide cost and resource benchmarks for 

microbial sequence analysis using the CloVR platform (Chapter 7).  These benchmarks 
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are of interest to researchers, service providers, and funding agencies that invest in 

microbial genomics projects. 
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Table 8-1 Overview of CloVR analysis protocols 

Protocol Process Tool Input Output 

CloVR-Search 
[160] Database search BLAST [37]  nt or pep 

FASTA BLAST output 

CloVR-
Microbe [163] 

Assembly Celera assembler [182] 
Velvet [183] 

Raw 
sequence 
data (sff, 

nt.FASTA, 
nt.FASTQ) 

nt.FASTA, BNK 

Gene prediction Glimmer3 [48]  pep.FASTA 

tRNA prediction tRNA-scan [184]  GBK, SQN 
rRNA prediction RNAmmer [185]  GBK, SQN 

Functional 
annotation 

BLASTX (+Extend Repraze 
[186]) against 

UniRef100 [177], COG 
[187] db 

 
HMMER [188] search 

against Pfam [189], 
TIGRfam [190] 

 

 Annotated GBK, 
SQN 

CloVR-16S 
[161] 

Quality checking Mothur [110] 
Qiime [111] nt.FASTA nt.FASTA 

Taxonomic 
classification RDP classifier [191]  raw output, 

summary reports 
Multiple sequence 

alignment 
Mothur 

Qiime (PyNAST)  nt.FASTA 
alignments 

OTU clustering Mothur (distance matrix) 
Qiime (uclust [192])  OTU list/table 

α-diversity 
analysis 

Mothur (collectors, 
rarefactions, estimators)  

summary 
reports/ diversity 

curves 
β-diversity/ 
comparative 

analysis 

Metastats [193],  custom R 
scripts, Qiime  summary 

reports/figures 

CloVR-
Metagenomics 

[162] 

Clustering and 
artificial replicate 

removal 
UCLUST nt.FASTA nt.FASTA 

Functional 
classification 

BLASTX against 
COG db  raw output, 

summary reports 
Taxonomic 

classification 
BLASTN against 
RefSeq db [129]  raw output, 

summary reports 

Comparative 
analysis Metastats, custom R scripts  summary 

reports/figures 

Abbreviations: nt, nucleotide; pep, peptide; BNK, Bank format; GBK, GenBank.; db, database; SQN, 

Sequin; Key bioinformatics tools utilized in each protocol are listed. For input, only the required inputs 

from the user for each analysis track are listed. For outputs, only the data saved from each step is listed.  
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Analysis protocols 

Methods 

In this study, we utilize a commercial cloud computing platform (Amazon EC2) and 

CloVR (Chapter 8) as a model for addressing questions of resource requirements and 

costs for microbial genomics applications utilizing high-throughput sequencing 

platforms.  CloVR supports analysis for a broad variety of small to large-scale genomics 

applications.  Four analysis protocols for microbial genome analysis (Table 8-1) were 

utilized in the study:  

(i) a simple parallelized BLAST [159] search protocol (CloVR-Search 1.0 [160]);  

(ii)  a single microbial genome assembly and annotation pipeline (CloVR-

Microbe 1.0 [163]).   

(iii)  a 16S rRNA sequence analysis pipeline (CloVR-16S 1.0 [161]); 

(iv)  a metagenomic sequence analysis pipeline (CloVR-Metagenomics 1.0 [162]); 

These protocols were intentionally derived from existing methods for microbial sequence 

analysis, including the IGS Annotation Engine [109] for the protocol CloVR-Microbe, 

Mothur [110] and Qiime [111] for CloVR-16S, and BLAST  for CloVR-Metagenomics.  

The reference for each CloVR pipeline provides a schematic diagram as well as a detailed 

document describing the standard operating procedure (SOP). 

The 16S rRNA protocol allows for intra- and inter-group comparative analysis, and is 

based on methods from Mothur [110], Qiime [111], the RDP Bayesian classifier [194], 

and Metastats [193]. CloVR-16S calculates the number of non-redundant sequences 

within the total data set and uses a threshold of 50,000 above which the computationally 
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expensive distance matrix calculation, which is part of the Mothur component of the 

pipeline, is not performed.  The metagenomics protocol performs clustering of redundant 

sequences, a BLAST-based taxonomic and functional assignment against the NCBI 

microbial genome Reference Sequence collection (RefSeq) [195] and clusters of 

orthologous genes (COGs) [187] databases, respectively, and further allows for 

comparative analysis between subjects of interest.  We also include an alternative 

metagenomics protocol that calls full and partial ORFs on shotgun fragments using 

Metagene [196], followed by functional annotation of predicted peptides using BLASTP 

against the NCBI COG database.  The single microbial genome analysis protocol is based 

on the IGS Annotation Engine [109], with the addition that sequence assembly is 

performed using Celera Assembler [197] for 454 and Sanger platforms and Velvet [183] 

for Illumina platforms.  This protocol performs a comprehensive annotation including 

gene prediction with Glimmer3 [48], ribosomal RNA (rRNA) gene identification with 

RNAmmer [185], transfer RNA (tRNA) genes identification with tRNAscan-SE [184], 

and two types of homology searches using BLASTX against UniRef100 and HMMER 

[198] against Pfam [199] and TIGRFAM [200].  

Computational resources 

All analyses were performed using the CloVR version beta-0.5 (build clovr-standard-

2011-12-04-22-00-04).  The local computer used for evaluation was a 64-bit quad core 

(Intel Xeon E5520 2.27 GHz CPU) with 6 gigabytes of RAM. For local execution, 

CloVR was run using VMware Player v. 2.0.5 build-109488 [55] configured to use a 

single CPU core and 2012 MB of memory.  Amazon EC2 provides numerous instance 

types with varying CPU speeds, available RAM and storage [61].  Previous work in [121] 
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showed the choice of c1.xlarge to be most cost efficient amongst the choices for 

applications such as BLAST.  The c1.xlarge instances provide 8 virtual CPU cores, 8GB 

RAM per instance, and 400GB of local temporary disk storage.  In this study, each 

pipeline was run on a separate cluster of instances within the cloud consisting of one 

master node and zero or more worker nodes.  All worker node instances utilized c1.xlarge 

instances, which at the time of preparing this manuscript were priced at $0.68 per CPU 

hour (CPU hr).  All master nodes utilized c1.xlarge instances except for Illumina 

assembly with CloVR-Microbe. Assembly of Illumina sequence data required nodes with 

RAM in excess of the c1.xlarge instance capacity.  For single-end Illumina runs, a 

m2.2xlarge instance ($1.00/CPU hr) was used providing 17.1GB RAM, while for the 

paired-end Illumina run an m2.xlarge master node ($0.50/CPU hr) was used providing 

34.2GB RAM. Associated pipeline costs on Amazon EC2 were calculated using cluster 

performance charts, visualized with the Ganglia tool (http://ganglia.sourceforge.net/), 

which describe the number of instances utilized in each cluster over time. Pipeline 

runtimes were obtained from the Ergatis workflow system.  

Spot market bid-price simulations 

To simulate runtime distributions within the Amazon EC2 spot market, we first collected 

corresponding hourly spot prices for the c1.xlarge instance type from October 20, 2010 to 

January 24, 2011.  Assuming a hypothetical pipeline CPU hour requirement of 120 hours 

a range of bid prices ($0.27/CPU hr to $0.80/CPU hr), we simulated the actual (wall-

clock) runtime of a pipeline from random starting points in the collected spot market 

price data.  Given a bid price β and a CPU hr requirement γ, 500 random starting points 

were picked between 10-20-2010 to 01-24-2011, and the runtime was calculated 
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assuming no processes were running whenever the spot price was above the bid price β.  

For example, if the bid price was constantly greater than or equal to the spot price for a 

particular pipeline, then the actual runtime would be γ, because the requested price was 

always met.  Alternatively, if the bid price fell below the spot price for a single hour, then 

no work was done in that hour and the total actual runtime would be γ+1.  In these 

simulations, if a simulated pipeline extended beyond 01-24-2011, it immediately 

continued from the beginning of the time-series. Runtime distributions were visualized in 

R (http://www.r-project.org/). 

  

http://www.r-project.org/�
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Table 8-2 Datasets used for CloVR protocol benchmarking 
Dataset Data 

type 
Sequencing 

platform 
Library 

type1 
Total 
reads 

Units2 Avg. read 
length [bp] 

Size 
[MB] 

Sam
ples 

a) CloVR-
Search 

        

Infant gut WGS WGS 454 Titanium SE 595816 0.6 
plates 

244 145.3 12 

Metahit 500K WGS Illumina GAII - 500000
3 

1/80 
channels 

75 37.5 1 

b) CloVR-16S         
Humanized mice Ampli

con 
454 FLX SE 530030 1.1 

plates 
232 122.5 215 

Infant gut 16S Ampli
con 

454 FLX SE 399127 0.8 
plates 

179 95.1 63 

Human vagina Ampli
con 

454 FLX SE 901264 1.8 
plates 

223 200.6 392 

c) CloVR-
Metagenomics 

        

Obese twins WGS 454 FLX SE 999990 2 plates 219 218.9 18 
Infant gut WGS WGS 454 Titanium SE 595816 0.6 

plates 
244 145.3 12 

Nine biomes WGS 454 FLX SE 578537
1 

11.6 
plates 

109 631.2 45 

d) CloVR-
Microbe 

        

Escherichia coli 
250K 

WGS 454 Titanium PE (3 
kbp) 

250000
3 

0.25 
plates 

279 69.7 1 

Escherichia coli 
500K 

WGS 454 Titanium PE (8 
kbp 

500000
3 

0.5 
plates 

367 183.9 1 

Escherichia coli 
8M SE 

WGS Illumina GAII SE  800000
03 

0.2 
channels 

36 288 1 

Escherichia coli 
8M PE 

WGS Illumina GAII PE (3 
kbp) 

800000
03 

0.2 
channels 

49 392 1 

Acinetobacter 
baylyi 250K 

WGS 454 Titanium PE (8 
kbp) 

250000
3 

0.25 
plates 

338 84.7 1 

1 Abbreviations: bp, basepairs; SE, single-end; PE, paired-end (in parentheses: insert size); WGS, whole-genome 
shotgun 
2  References for unit sizes: Roche/454 GS FLX, 500K reads per plate (two half plates); Roche/454 GS FLX Titanium, 
1M reads per plate (two half plates); Illumina GAII, 40M reads per channel (eight channels per flowcell). 
3 Trimmed datasets. 

Computational requirements of microbial genomics applications 

Results 

Representative datasets from two next-generation sequencing platforms, the Roche/454 

GS (FLX and FLX Titanium) and Illumina GAIIx (Table 8-2), were processed with 

several pipelines (CloVR-16S, -Microbe, -Metagenomics, and -Search) to determine 

processing requirements for typical microbial genome projects (Table 8-2).  The datasets 

evaluated include typical outputs of single or multiple sequencing reactions of the 
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Roche/454 and Illumina platforms or fractions thereof (unpublished sequence data from 

the Institute for Genome Sciences), as well as published data from sequencing projects 

that received wide recognition in the microbial genomics field 

[201,202,203,204,205,206,207]. 

CloVR-16S was always run on a single-CPU, on both a local desktop and one CPU of a 

c1.xlarge Amazon EC2 instance, and finished in less than 14 hours (see Supplementary 

Table S1 for a comparison of local and EC2-based CloVR-16S runs). Processed datasets 

included up to ~900K Roche/454 GS FLX reads from ~400 samples as well as up to 

~40K Sanger reads from ~120 samples. The 530K humanized mouse gut sequences from 

215 different samples [206], for example, which contain a total of 14,363 operational 

taxonomic units (OTUs), were processed in about the same time as the 901K human 

vaginal sequences from 392 samples [205], which only contain 4,967 OTUs. 
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Table 8-3 Cost and runtime parameters of CloVR pipeline runs on example datasets 
Dataset Uploa

d time 
Pipeline 
runtime 

Down-
load 
time 

Total 
cost1 

M
ax.  
V

Ms
2 

M
ax. 
CP
Us 

QC 

a) CloVR-Search, 
BLASTN against 
RefSeq 

 

 

    RefSeq 
matches 

  

Infant gut WGS 3 min 1 hr 26 
min 

20 min $11 8 64 34.3    

Metahit 500K 11 min 10 hr 42 
min 

17 min $151 20 16
0 

3.2 %   

b) CloVR-16S       OTUs   
Humanized mice 42 min 1 hr 30 

min 
12 min $3 1 8 14363   

Infant gut 16S 3 min 42 min 10 min $1 1 8 3447   
Human vagina 1 hr 17 

min 
1 hr 51 

min 
14 min $3 1 8 4967   

c) CloVR-
Metagenomics3 

      nr reads RefSeq 
matches 

CO
G 

mat
ches 

Obese twins 8 min 2 hr 25 
min 

24 min $30 20 16
0 

93.6% 33.3 % 29.6 
% 

Infant gut WGS 7 min 2 hr 17 
min 

29 min $24 15 12
0 

98.2% 35.2 %4 33.5 
% 

Nine biomes 15 min 5 hr 35 
min 

39 min $56 20 16
0 

89.9% 9.3 % 5.6 
% 

d) CloVR-Microbe       Scaffold/ 
Contigs 

N50 CD
S5 

Escherichia coli 250K 24 min 16 hr 21 
min 

52 min $55 14 11
2 

8 / 414 25 kbp 631
3 

Escherichia coli 500K 20 min 20 hr 23 
min 

50 min $60 15 12
0 

37 / 141 183 kbp 582
7 

Escherichia coli 8M SE 12 min 15 hr 44 
min 

37 min $62 15 12
0 

553 / 553 17 kbp 480
3 

Escherichia coli 8M PE 16 min 15 hr 2 
min 

44 min $44 15 12
0 

481 / 481 18 kbp 446
4 

Acinetobacter baylyi 
250K 

20 min 9 hr 46 
min 

37 min $39 15 12
0 

4 / 38 262 kbp 341
7 

1 Rounded to the next full dollar. 
2 VM instances are linked together as a cluster for parallel processing on the cloud. The number of 

instances in a cluster can change during pipeline execution.  The maximum utilized is reported 
3 CDS, coding sequences 

 

CloVR-Microbe and CloVR-Metagenomics analyses of all datasets were performed 

exclusively on Amazon EC2 where all runs finished in under 24 hours (Table 8-3). 

Dataset sizes for CloVR-Metagenomics ranged from ~600K reads (454 FLX Titanium), 

corresponding to 1.2 full sequencing plates, to 5.8M reads (454 FLX), corresponding to 
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11.6 full sequencing plates, all of which were processed in less than six hours on Amazon 

EC2. Additional time due to upload of input and download of output was consistently 

less than one hour. Input data sizes for CloVR-Microbe were representative of typical 

microbial genome project work loads and included sequence read numbers corresponding 

to a quarter (250K) or a half (500K) plate of 454 FLX Titanium as well a 1/5 (8M reads) 

of an Illumina GAIIx lane (single read and paired-end read libraries). Pipeline outputs 

were found to be in agreement with results from previously analysis on these projects in 

terms of number of detected OTUs, relative OTU compositions, principal coordinate 

analysis plots of OTU assignments (CloVR-16S), number of functionally and assigned 

reads (CloVR-Metagenomics) and number and lengths of contigs, number and functional 

annotation of genes (CloVR-Microbe). Cluster sizes on Amazon EC2 were configured 

automatically based on the pipeline requirements as estimated using input data sizes.  The 

estimates for our evaluation ranged from 14 to 20 machine instances, comprising up to 

160 virtual CPUs (Table 8-3).  

BLASTN searches of metagenomic WGS sequence data against the NCBI RefSeq 

collection were performed on Amazon EC2 using CloVR-Search. Using the multi-CPU 

support of Amazon EC2, ~600K reads of 454 FLX Titanium, corresponding to 0.6 full 

plates could be processed in less than two hours (64 CPUs maximum usage). In 

comparison, the BLASTN search of a similar number (500K) of shorter (75bp) Illumina 

GAIIx reads against RefSeq, which produced about the same percentage of matches 

(3.2% vs 3.4%) took about 10 times longer to complete (~11 hours), using 2.5 times the 

amount of CPUs (160 CPUs maximum usage). For the Illumina GAIIx platform, 500K 
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reads correspond to only 1/6 of the average sequencing output of a single channel (eight 

lanes per flow cell). 

Real dollar values of microbial sequence analysis applications  

Real dollar costs were calculated for all microbial sequence analyses performed with the 

CloVR pipelines (Table 8-3), in order to provide guidelines for costs associated with 

microbial genomics projects. The costs include overhead introduced by the CloVR VM to 

make use of the cloud environment, including time for data upload and download and to 

prepare input and output data.  Table 8-3 also provides example network transfer times 

for upload to and download from the cloud, although such times can vary substantially 

based on the network environment. Several large datasets that are used as reference data 

for the CloVR pipelines, e.g. 3.4GB of compressed reference data for CloVR-Microbe 

comprising the UniRef100 protein database, were hosted permanently on the Amazon 

Simple Storage Service [173], which provides data storage inside the cloud network and 

reduced the need for data transfer over the Internet when executing in the cloud. During 

the pipeline execution, the free ephemeral instance storage was used as temporary storage 

and all output data was compressed and downloaded to the local desktop upon pipeline 

completion. All CloVR VMs on the cloud are shut down automatically upon pipeline 

completion, in order to avoid charges for idle instances and persisting storage at Amazon 

EC2.  

Based on the CloVR runs on EC2, the cost of all 16S rRNA community analyses was less 

than $10. For the sequence data generated with the short amplicon 454 sequencing 

protocol, costs ranged from less than $1 to $2.72. Since all pipelines finished in less than 

two hours, the costs associated with Amazon EC2 charges for instances being active 
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during upload and download times constitute a significant fraction of the total cost (Table 

8-3), but are nominally small at < 1 c1.xlarge instance hour ($0.68).  

All CloVR-Metagenomics and CloVR-Microbe runs were completed at costs of less than 

$100. Sequence analyses with the CloVR-Metagenomics pipeline had an associated cost 

of between ~$23 and ~$56; CloVR-Microbe runs had costs of between ~$39 and ~$62. 

 
Figure 8.1 - Cost and performance of CloVR-Microbe on varying size compute clusters 
A) Steps of the CloVR-Microbe pipeline can be executed in parallel to improve performance as shown by 

plotting pipeline runtimes (blue) and associated costs (red) against the number of CPUs used to perform the 

analysis on Amazon EC2. B) Using this data, the theoretical maximum throughput per year (blue) as well 

as associated costs (red) of analysis using CloVR-Microbe can be extrapolated. As an example, the output 

of a single 454 FLX Titanium machine, run every other day with two single microbial genomes per 

sequencing plate (365 total runs), can be processed on EC2 using 60 CPUs (or eight c1.xlarge instances) for 

less than $25,000, as indicated by the dashed line.   

 

Capacity and optimization of processing pipelines 

The multi-CPU capabilities of the cloud allow for decreased runtime for pipelines 

involving analysis steps than can be parallelized, e.g. the BLASTX sequence 

comparisons of the CloVR-Microbe pipeline.  At the same time, partitioning of data into 
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multiple parallel processes using the CloVR VM architecture, involves additional 

copying of reference data, increases the amount of data transfer between machines and 

incurs additional processing overhead.  Also, implementation of the protocol may prevent 

full utilization of a cluster or limit the partitioning of data for parallel processing.  To 

determine differences in the CloVR-Microbe runtimes and associated costs depending on 

the number of CPUs used, the same dataset of 500K 454 FLX Titanium reads, 

corresponding to one full plate of 8kbp paired-end sequences, was run with different 

cluster sizes on Amazon EC2 (Figure 8.1, Supplementary Table). Based on this example, 

the lowest runtimes and costs achieved fell between 72 CPUs (23 hours, $58) and 120 

CPUs (20 hours, $60). These numbers represent a runtime and cost improvement of up to 

36 hours and $16 compared to the run with the smallest cluster size (16 CPUs: 56 hours, 

$74). A further increase of the cluster size to 172 CPUs did not result in a runtime 

improvement but resulted in increased cost ($82) due to under-utilized instances. A local 

run on a single-CPU machine was canceled after 14 days. 
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Table 8-4 Variations in cost and runtime parameters of different CloVR pipeline runs on the same 
metagenomics WGS dataset (Infant gut). 
Protocol Uploa

d time 
Pipeline 
runtime 

Down-
load 
time 

Total 
cost1 

M
ax.  
V
M
s2 

M
ax. 
C
P
Us 

QC   

       Contigs N50 C
D
S 

CloVR-Microbe 20 min 23 hr 45 
min 

1 hr 23 
min 

$48 8 64 2056 2524 79
83 

       RefSeq 
matches 

COG 
matche

s 

 

CloVR-Metagenomics, 
BLASTX 

7 min 2 hr 17 
min 

29 min $24 15 12
0 

35.2 % 33.5 %  

       RefSeq 
matches 

COG 
matche

s 

 

CloVR-Metagenomics, 
Metagene/ BLASTP 

7 min 2 hr 19 
min 

21 min $31 15 12
0 

35.2 % 28.7%  

       RefSeq 
matches 

  

CloVR-Search, 
BLASTN (RefSeq) 

3 min 1 hr 26 
min 

20 min $10.8
8 

8 64 34.3 %   

1 Rounded to the next full dollar. 
2 VM instances are linked together as a cluster for parallel processing on the cloud. The number of 

instances in a cluster can change during pipeline execution. The maximum utilized is reported. 

 

Three different analysis protocols (CloVR-Microbe, CloVR-Metagenomics and CloVR-

Search) were evaluated for their impact on runtime and cost for metagenomics WGS 

analysis (Table 8-4). All analyses were run on the same Infant Gut Microbiome WGS 

input dataset [203], corresponding to 0.6 full plates of single-end 454 FLX Titanium 

sequences. CloVR-Microbe pipeline was included to provide genome assembly of 

metagenomics data in the comparison. We note that the Glimmer gene finding tool [48], 

which is part of the CloVR-Microbe protocol, was optimized for large contiguous 

assembled sequence data and is known to perform less optimally on short sequence 

fragments that contain a large number of truncated coding sequences [196]. Two 

variations were used of the CloVR-Metagenomics protocol: i) The BLASTX protocol 
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searches each nucleotide sequence read against the COG database [187] by translating all 

six frames into protein sequences, whereas ii) the Metagene/BLASTP protocol first runs 

a gene prediction with Metagene [196], before translating the identified genes into 

protein sequences and running a BLASTP search. A BLASTN comparison of each read 

against NCBI's RefSeq database performed with CloVR-Search was used as the most 

basic analysis protocol. 

Compared to the CloVR-Microbe protocol, both CloVR-Metagenomics protocols 

executed about ten times faster (~2.5 hours compared to 24 hours) at about 50% of the 

cost ($23 / $31 compared to $48) (Table 8-4). Although the BLASTX-based and 

Metagene-based CloVR-Metagenomics protocols finished in about the same time, the 

BLASTX search against the COG database identified more matches (33% compared to 

29%) and the total cost of the pipeline run was lower. The BLASTN search against 

RefSeq alone finished in about 1.5 hours for $11. 
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Figure 8.2 – Costs and throughput of CloVR protocols. 

Costs for single CloVR-16S (blue), CloVR-Metagenomics (red) and CloVR-Microbe (black) runs of 

comparable datasets (~500K 454 FLX or FLX Titanium reads) on Amazon EC2 were extrapolated to 

calculate the number of runs that are obtainable for a given dollar value. The dashed line represent the 

average annual cost to set up and maintain a local cluster of 240 CPUs for a three years from Dudley et al. 

[120]. 

To estimate the amount of sequence analysis that is affordable for a given dollar value, 

the number of analysis runs using three different protocols (CloVR-16S, CloVR-

Metagenomics and CloVR-Microbe) was plotted against the corresponding cost, using 

results from Table 8-3 (Figure 8.2). These costs were compared to the $130K estimated 

as average annual cost to set up and maintain a local cluster of 240 CPUs for three years 

as described in [120]. Using these estimates, 19,117 runs of CloVR-16S; 5,623 runs of 

CloVR-Metagenomics; and 2,172 runs of CloVR-Microbe can be processed each year on 

Amazon EC2, before the costs of a local cluster are more economical. For single whole-

genome microbial analysis, with a theoretical annual output of 730 datasets per 454 FLX 

Titanium sequencer (one full plate per day, two single-genome datasets per plate), up to 
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three sequencing machines can be supported using Amazon EC2 at current prices using 

our benchmark protocols before the estimated cost of a local cluster is reached. 

 
Figure 8.3 – Predicted runtimes for varying bid prices in the Amazon spot market for compute 

An analysis requiring 120 CPU hours was used an example to estimate the expected completion time for 

different bid prices 

Realizing cost savings using excess capacity in the Amazon EC2 spot market  

The Amazon EC2 spot market allows customers to place bids on unused cloud resources 

and utilize instances for as long as the bid exceeds the current spot price 

(http://aws.amazon.com/ec2/spot-instances/). During periods of weak demand, the spot 

market provides the ability to utilize excess resources at a discounted price. Over the 

period of the past year, the spot market price for the c1.xlarge instance averaged $0.26 

compared to an on-demand price of $0.68. This variable pricing is well-suited to 

processing needs that are not time critical since analysis will only proceed when the 

provided bid price is above the current market price for the resource.  This market model 

also provides the ability to predict the expected completion time of a pipeline for a 

particular bid price using historical pricing data. The expected completion times were 

estimated for bids of $0.27 to $0.80 using a hypothetical analysis requiring 120 c1.xlarge 

instance hours (960 c1.xlarge CPU hours) for completion (Figure 8.3).  The expected 
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completion time was predicted for each bid price using the recorded pricing data for the 

past month.  Based on this model, at a bid price of $0.68 the analysis was expected to 

execute in ~120 hours, while never taking longer than ~145 hours.  By comparison, a 

$0.27 bid will not be fulfilled during times of peak demand when the market price rises 

above the bid, but during other times the user can realize a savings of 40%.  A bid of 

$0.27 is estimated to take on ~185 hours on average, 50% slower on average than using 

the full on-demand price, but may complete in as little as ~155 hours (29% slower) or as 

many as ~225 hours (87% slower).  These estimated runtimes are meant to be illustrative 

for bids on a single instance in the spot market.  Since actual pipelines can run in parallel 

across multiple instances, the actual runtimes can be reduced compared to what is shown.  

CloVR provides the ability to use the spot market for allocating instances during pipeline 

execution.  Bid prices are set in a configuration file. 

In this study, we explore the costs and resources required for microbial sequence analysis 

using pre-packaged protocols in CloVR (Chapter 7).  The automated pipelines in CloVR 

were selected with the intention of packaging existing community-supported analysis 

protocols.  The protocol, CloVR-Microbe, combines a a sequence assembly step with 

functional annotation from the IGS Annotation Engine [109].  With the support of a large 

local grid cluster, the IGS Annotation Engine was designed to be thorough for genome 

annotation but not optimized for speed or efficient CPU usage, and many alternative 

genome annotation protocols exist, e.g. RAST [106], DIYA [112].  To our knowledge, 

CloVR-Microbe represents the first automated pipeline that combines sequence assembly 

and annotation in a single automated pipeline. 

Discussion 
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The CloVR-16S pipeline was designed to combine components of several widely used 

16S rRNA sequence analysis protocols, without making the entire workflow 

computationally too complex to process even large sequence datasets (>200 samples, 

>500K sequences).  The current implementation of CloVR-16S supports a distance 

matrix-based operational taxonomic unit (OTU) assignment and α-diversity analysis with 

Mothur [110], direct taxonomic classifications of sequence reads with the RDP classifier 

tool [194] and microbial community analysis with the QIIME tool, which has a strong 

focus on phylogenetic distance-based β-diversity analysis [111].  A critical component of 

CloVR-16S in its current implementation is the threshold of 50,000 non-redundant 

sequences above which the Mothur component with its computationally expensive 

distance matrix calculation is not performed. 

Metagenomics projects are usually designed to generate the most sequence data per 

invested dollar and, thus, often involve large-scale next-generation sequencing data.  Due 

to the resulting dataset sizes, metagenomics analysis protocols therefore often rely on the 

direct classification of individual sequence reads by BLAST (e.g. MG-RAST [208]), 

instead of involving sequence assembly steps, which are even more computationally 

demanding and impractical for metagenomes.  Similarly, the CloVR-Metagenomics 

pipeline was designed to examine and compare taxonomic and functional microbial 

community compositions within and between metagenomic samples using two BLAST 

searches against a bacterial genome database (BLASTN against NCBI's RefSeq) and 

against a functionally annotated protein database (BLASTP against NCBI's COG).  The 

CloVR-Search pipeline was designed to provide support for large-scale BLAST 

comparisons using multiple computers offered by the cloud.  As an alternative baseline 
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metagenomics read classification, a direct BLASTN comparison of each sequence read 

against the NCBI RefSeq nucleotide database with CloVR-Search was shown to provide 

further runtime improvements compared to CloVR-Metagenomics pipeline although 

without producing the visual and statistical evaluations of the results that are generated 

by the CloVR-Metagenomics pipeline. 

We decided to use the popular Amazon EC2 cloud as a model for evaluating analysis 

costs.  Importantly for budgeting, the costs at Amazon EC2 are transparent and directly 

obtainable for any workload, allowing for attaching real dollar costs to computational 

analyses.  Our results show that bioinformatics support for microbial genomics can be 

provided at a competitive price, provided analysis protocols are chosen carefully.  In 

addition, as many analysis needs are not time-critical and can wait for off peak hours, so 

a bidding market for compute, such as the Amazon EC2 Spot Market, provides an 

intriguing model for further cost savings.  Since these costs depend substantially on the 

choice of analysis protocol, the results in this study can also be used as benchmarks for 

comparing costs and resources of other analysis protocols. 

The Amazon EC2 cloud can also serve as a model to evaluate the computational 

infrastructure needed to perform common microbial genomics applications.  Our 

evaluation of the CloVR protocols shows that typical workloads of small to midsize 

sequencing facilities are most economically processed either locally, on a single desktop 

machine (CloVR-16S), or online using the Amazon EC2 cloud (CloVR-Metagenomics, -

Microbe, -Search).  The computational resources deployed on EC2 for the evaluation 

were modest, utilizing no more than 20 virtual machine instances, eight CPUs per 

instance and 160 CPUs at a maximum.  As multi-core CPUs are increasingly becoming 
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accessible on the desktop computer market, the ability to process larger data on desktops 

is likely to increase in the future. 

While there has been tremendous interest in using clouds, there has also been concern 

over potentially high costs of clouds for big data applications [119], exceeding millions 

of dollars for searches of terabytes of short sequencing reads [121].  Yet, these high 

dollar values also demonstrate that a particular methodology is computationally 

demanding [12,19].  A large, inefficient computation is likely to be expensive to run on 

any computing resource, whether locally built or remotely hosted.  As the largest 

commercial computing provider, Amazon EC2, realizes economies of scale enabling low 

capital and operating costs [209], which are likely to be difficult to match in smaller 

settings.  Despite attempts at estimating comparable local cluster costs [120], modeling 

infrastructure costs in a small-scale research setting is fraught with problems as it is easy 

to miss certain operating costs while highlighting capital costs, precisely because 

continued operation of the resource usually does not rely on an accurate modeling of cost.  

Adding to the difficulty is that capital and operating costs are often shared between 

institutional and outside funding sources and these contributions are always itemized.  

Private clusters will prove more economical only in environments that can ensure high 

utilization rates. 

This case study and the architecture described in Chapter 7 demonstrates the power of 

packaging pipelines into a single, portable automated framework.  With the CloVR 

virtual machine, we can easily compare the performance or costs of protocols between 

platforms.  CloVR is specifically designed to avoid vender-lockin and can immediately 

utilize new emerging cloud computing platforms, including those free for researchers 
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[62,63,158].  This portability provides users the flexibility to move their analysis to the 

resource where it is best suited based on the costs, reliability, availability, or size of the 

computing resource. 
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Chapter 9 - Discussion and conclusions 

High-throughput sequencing has introduced analysis bottlenecks with many contributing 

factors, including computational complexity of methods, poor automation or usability of 

analysis software, and under-utilization of computational resources.  The contributions of 

this dissertation improve analysis throughput by addressing specific components of this 

bioinformatics bottleneck.  Mugsy, Para-Mugsy, Mugsy-Annotator improve 

computational efficiency for whole genome alignment and annotation and CloVR 

improves accessibility and throughput of analysis pipelines by supporting both multi-core 

personal computers and cloud computing resources for automated processing.   

In this concluding chapter, I summarize and discuss each of the contributions of this 

dissertation, highlight recent applications of the work, and note areas for future 

development. 

Efficient multiple alignment of closely related genomes 

Novel methods and software solutions for the bioinformatics bottleneck 

In Chapter 4, we describe Mugsy, a new tool and novel methodology for efficient, 

reference-independent multiple genome alignment.  The primary advantage of Mugsy 

over similar tools is speed.  Mugsy was the fastest tool evaluated for the alignment of 

four assembled human chromosomes, completing in less than one hour provided a library 

of pairwise alignments.  Mugsy was one of only two tools that completed either 

alignments of four human chromosomes or 57 E. coli genomes in less than two days of 

processing time on a single CPU.   
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Importantly, Mugsy can align mixtures of complete and draft genomes making this tool 

particularly well-suited for use with high-throughput sequencing technologies, including 

454 [8] and Illumina [9], where a majority of newly sequenced genomes are draft 

genomes represented by multiple contigs after assembly.  Mugsy can identify sequence 

conservation and variation in any subset of input genomes. 

As desktop computers are now commonly available with multiple CPUs, parallel 

processing using multiple CPUs enables faster runtimes and increases analysis 

throughput.  In Chapter 5, we describe Para-Mugsy for distributed whole genome 

multiple alignment.  This work enables faster, larger scale comparisons than what is 

currently feasible with other whole genome alignment tools. 

A method for efficient comparison and improvement of pan-genome annotation 

In Chapter 6, we introduced a new tool, Mugsy-Annotator, that implements a novel 

algorithm for identifying orthologs and evaluating annotation quality in a pan-genome.  

Mugsy-Annotator is computationally efficient compared to BLAST-based approaches for 

classification of orthologs.  Also, by using whole genome alignment, Mugsy-Annotator 

incorporates synteny and genome context as additional evidence of orthology.  Our 

method for identifying orthologs is also robust to certain types of annotation errors, such 

as missing annotations or incorrect reading frames.  Since our method relies on accurate 

DNA alignment, it is most useful for closely related genomes that share a high percentage 

of identical DNA, such as isolates from the same or closely related species. 

Structural inconsistencies, especially at translation initiation sites, are prevalent in 

publically available gene predictions, even for intra-species comparisons between nearly 



 

 133 
 

identical sequences.  Our case study of Neisseria meningiditis indicates that a majority of 

the identified differences between annotations are a consequence of bioinformatics 

methods rather than true biological differences, especially in regions with poor 

sequencing coverage.  Our results add to previous studies, which have noted errors in 

intra-species genome annotations [53,95] and caution against simple comparisons of 

genome annotations without exhaustive follow-up analysis [54,144].  Mugsy-Annotator 

provides an efficient tool for such an exhaustive comparative analysis of gene structures.   

As genome sequencing throughput has increased, expert curation of genomes is no longer 

practical and has been replaced almost exclusively by high throughput, automated 

annotation methods.  Yet existing automated methods do not match the accuracy of 

manual review by experts [99].  Mugsy-Annotator enables a semi-automated solution to 

this problem by highlighting likely annotation problem areas for focused review by 

human curators.  Importantly, Mugsy-Annotator analyzes a pan-genome, allowing for re-

annotation efforts to apply across a set of genomes simultaneously, rather than one 

genome at a time, significantly increasing analysis throughput.   

A portable platform for automated and high-throughput sequence analysis 

By providing a portable virtual machine, CloVR provides fully automated pipelines that 

are designed to alleviate the user from installation and configuration of bioinformatics 

tools or cloud computing client software.  Automated systems not only save the time of 

the operators, they aid in reproducibly of results, which is a cornerstone of science but is 

notably lacking in genome analysis [18].  CloVR enables push-button reproducibility of 

results. 
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By avoiding network bottlenecks during processing, CloVR is also highly scalable 

supporting distributed computation on cloud computing platforms without any special 

storage or hardware requirements.  The portability of CloVR enables comparison of 

analysis protocols within and across computing platforms.  The ability to directly 

compare protocols on the basis of resource requirements, runtimes, and costs is of 

tremendous value for researchers utilizing genomics data.   

We found that for whole genome sequencing of microbes, commercial cloud computing 

providers are a cost effective analysis platform, provided reasonable analysis protocols, 

such as those provided by CloVR.  A processing throughput of ~2100 single bacterial 

genomes per year using the assembly and annotation protocol (CloVR-Microbe) is 

needed before use of a dedicated local compute cluster is more economical.  A single 

execution of this assembly and annotation takes days to execute on a local computer with 

four processing cores.  As next-generation sequencing has created smaller sequencing 

operations, many applications of sequencing will be relatively low throughput, 

occasionally generating data for a particular study.  CloVR is perfectly suited for such 

applications, simplifying sequence analysis and making seemless use of cloud computing 

platforms to improve processing runtimes.   

The contributions of this dissertation have wide applications in biological research, 

especially studies on the process of evolution and in the biomedical research domain in 

understanding the genetic basis of disease and pathogenesis.  In Chapters 3-5, three novel 

algorithms (Mugsy, Para-Mugsy, and Mugsy-Annotator) are demonstrated to improve 

computational efficiency for whole genome comparison, allowing for more comparisons 

Highlighted applications  
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at higher throughput.  In this section, we highlight two published studies that utilized 

these contributions and illustrate downstream applications and demonstrate impact. 

Construction of high-resolution phylogenies using whole genome multiple alignment  

Multiple locus sequence typing (MLST) utilizes 7-10 genes for alignment and typing 

species phylogenies in bacteria [210,211].  Yet, the use of so few sequences limits the 

resolution of such studies and ignores the whole genome data that is readily available 

with high-throughput sequencing.  In [212], Mugsy was used to generate a high-

resolution species tree providing new insights into the relatedness of pathotypes for the 

clinically relevant and enterotoxigenic isolates of Escherichia coli.  Mugsy allowed for 

calculation of a conserved genetic core across the species using whole genome multiple 

alignment.  This technique, which used whole genome multiple alignment in combination 

with automated alignment trimming [213] and efficient phylogenetic tree construction 

[214], provides a gene-independent view of species structure and evolution between 

closely related organisms. 

As whole genome data for bacteria can be readily obtained with high-throughput 

sequencing methods, the ability to efficiently compare whole genome data provides a 

relatively fast platform for construction of high-resolution phylogenies.  As sequence 

costs have also decreased, a typing approach based on genome alignment may soon rival 

the time and effort spent on PCR amplification and Sanger sequencing of 7 to 10 MLST 

gene fragments, which currently provides the standard for such phylogenetic studies.  Our 

work on Mugsy enabled this high-resolution study and demonstrates a general framework 

for high-throughput, high-resolution strain identification and diagnostics. 
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High-throughput pan-genome annotation using whole genome multiple alignment 

Genome annotation is critical for attaching biological meaning to genetic elements.  

While manual curation efforts were historically dedicated to annotation of single 

genomes, such an approach is no longer feasible as hundreds of new genomes are being 

generated for some species.   Yet, fully automated annotation solutions can not currently 

produce the consistent quality of data that is generated by expert manual review.  

Alternative approaches are needed that incorporate all available pan-genomic data for a 

species while enabling expert review without loss of annotation quality. 

In one such approach, Mugsy-Annotator, in conjunction with a comparative visualization 

tool Sybil [215], was used in to re-annotate isolates of the pathogenic bacterium Neisseria 

meningitidis (Nmen) as part of the study published as Budroni et al [140].  Nmen is 

prevalent in human populations [216], occasionally causing very severe meningococcal 

meningitis and septicemia.  While possible virulence factors have been identified or 

proposed [217,218,219], the limited number of sequenced isolates had previously 

prevented a population study at the whole-genome.  To enable a population-wide study, 

Mugsy-Annotator was used as part of the analysis and annotation of 15 previously 

unpublished and 5 publicly available Nmen genomes isolated from five continents.  The 

identified ortholog families were used to revise and standardize the annotation across all 

the genomes, improving annotation consistency prior to examination of gene families.  

This re-annotation effort was critical to ensuring that the composition of gene families 

could be queried and searched for isolate and clade specific gene families.  The study 

determined restriction modification systems are unique to distinct phylogenetic clades, 

resulting in a differential barrier to genetic transfer and accounting for the observed 
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structuring of the population of Nmen genotypes.  The contribution of Mugsy-Annotator 

accelerated this effort. 

As biologists continue to explore the rich genetic diversity of the biosphere, thousands of 

individual genomes will soon be available for some species and the ability to read genetic 

information is outpacing the speed at which we can analyze the data for meaningful 

relationships.  In such an environment, the need to efficiently compare sequences is 

fundamental.  In addition, comparative analysis needs to be performed in the context of 

populations, to avoid bias in selection of reference genomes.  The contributions of Mugsy 

and Mugsy-Annotator accelerate comparative genomics studies by providing efficient 

methods for comparisons of pan-genomic data.   

Discussion  

While current generation technologies boast of hundreds of gigabytes of data [60], much 

of this data is an artifact of the sequencing technology (massively redundant short reads) 

rather than representative of the physical specimen.  It is hard to imagine these massively 

redundant sequencing technologies will prove efficient in the future. Rather, the ability to 

sequence individual DNA molecules [10] may provide a more complete view the 

sequence at decreased data volume per study, reducing the need for extensive pre-

processing prior to analysis.  After all, the genome of a bacterium is merely 2-5 

megabytes on average and the human genome is ~3 gigabtyes per DNA molecule.  

The ability to read whole DNA molecules will foster comparisons of multiple, nearly 

identical DNA molecules, with widespread applications for personalized genomics, 

including comparing DNA in families [220], phased chromosomes [221], somatic and 
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germ lines or diseased tissues, such as cancers [222].  The methodologies used in Mugsy 

are perfectly suited to perform these comparisons on a whole genome level.  By avoiding 

selection bias of a reference genome, Mugsy can multiply align populations of genomes 

and is well suited for the detection of rare variants, which have been considered as a 

possible major contributor to common diseases [223].    

Cloud computing delivers on the promise of resources on-demand.  But, a major 

impediment to use this remote resource is data transfer over a wide area network.  As the 

Internet will likely remain slow and crowded, and specialty high-speed nationwide 

networks [224] available only to select institutions and applications, the data transfer 

problem is likely to remain in the forefront for genomics applications, especially now that 

sequence generation is decentralized.  Next generation sequencing technologies that 

generate lower data volumes but otherwise more accurate and complete data will make it 

easier to distribute over computer networks for analysis and dissemination.  Reference 

based compression allows for representing this data in even fewer bytes [225]. To aid 

with large data studies, Amazon EC2 currently offers the ability to send and receive hard 

drives of data (multiple terabytes in size) by the mail, although reliance on such schemes 

will impede rather than increase access to cloud computing resource.  To achieve best 

possible throughput, CloVR utilizes open source transfer utilities designed for 

maximizing throughput on slow networks. 

At the same time, in an environment where entire populations are sequenced, reference 

databases will continue to grow large, especially if expansive meta-data is captured [178].  

Such reference sequence data are well-suited for co-location with computing resources 
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avoiding network transfers [114].  CloVR as a portable VM is perfectly suited to an 

environment where analysis tools are brought to large data sets for computation.   

Multi-core personal computers are readily available with the number of processing units 

expected to increase.  The architecture of CloVR allows for utilization of both local 

computer and remote cloud resources directly from a users’ desktop.  We believe this is a 

preferred architecture for high-throughput sequence analysis and consistent with the 

decentralization trend of genome sequencing.  The CloVR architecture can avoid network 

data transfers entirely and ensure data privacy by utilizing local computer resources, 

while maintaining support for large-scale analysis on distributed computing resources 

when necessary.  The key to success of this architecture is automation.  As cloud 

computing resources are low-level systems, automation is critical for improving analysis 

throughput and avoiding technical hurdles and troubleshooting that slows research 

projects and hinders discoveries.  CloVR eliminates technical challenges in using the 

cloud, providing a highly automated system for high-throughput research. 

To enable full use of larger data sets and exploration of populations of genomes, 

continued development of efficient algorithms and use of distributed computing resources 

are needed.  The multiple alignment of several hundreds or more relatively small 

bacterial genomes remains a computational challenge and may limit the use of the 

growing amounts of whole genome data by biologists.  Often, the only practical 

alternative is mapping data to a pre-defined reference genome.  Distributed computing 

solutions are needed and Para-Mugsy provides an advance in this direction but more 

work is needed to improve the robustness of the software on even larger data sets.  As 
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Para-Mugsy is implemented to run on the CloVR virtual machine, future work is ready to 

take advantage of local multi-core desktop computers and cloud computing platforms. 

Biological insights and practical applications of genomics data are driven by the ability to 

compare sequences.  The computational demands for these comparisons continue to grow 

as sequence databases increase in size and sequencing technologies improve resolution.  

As advancements in computer processing speeds are insufficient to address analysis 

bottlenecks, continued development of efficient algorithms and increased utilization of 

distributed computing solutions are needed for sequence analysis.  The contributions in 

this dissertation address current bottlenecks, by improving efficiency and throughput in 

comparisons of populations of genomes (Mugsy, Para-Mugsy, Mugsy-Annotator) and 

providing an automated and portable platform for distributed computation (CloVR), 

simplifying sequence analysis for a growing pool of genomics users.  The ability to 

quickly assimilate genetic information across populations stands to accelerate research 

and clinical applications of genomics. 

Concluding remarks 
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Appendices 

In addition to the contributions in this dissertation, the author also participated in a 

number of comparative genomics studies during the period of study, providing 

bioinformatics support and co-authoring findings, including 

[140,212,226,227,228,229,230,231,232,233,234,235,236,237].  Selected co-authored 

works with primary contributions from the dissertation author are referenced below. 

i) Ergatis: a web interface and scalable software system for bioinformatics 

workflows [102]. 

Author contribution: Formulated the idea, implemented the initial software, 

and led subsequent development efforts. 

ii) Sybil: methods and software for multiple genome comparison and 

visualization [215]. 

Author contribution: Formulated the idea, implemented the initial software, 

and led subsequent development efforts. 

iii) Toward an online repository of Standard Operating Procedures (SOPs) for 

(meta)-genomic annotation [94].   

Author contribution: First author of the paper.  This effort contributed to the 

launch of an open source journal for genomic standards; Standards in 

Genomic Sciences [238,239], which is now indexed by Pubmed.  The 

dissertation author currently serves as a section editor.  
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