

ABSTRACT

Title of Document: METHODS FOR HIGH-THROUGHPUT

COMPARATIVE GENOMICS AND
DISTRIBUTED SEQUENCE ANALYSIS

 Samuel Vincent Angiuoli, Ph.D., 2011

Directed By: Professor S.L. Salzberg, Department of

Computer Science

High-throughput sequencing has accelerated applications of genomics throughout the

world. The increased production and decentralization of sequencing has also created

bottlenecks in computational analysis. In this dissertation, I provide novel computational

methods to improve analysis throughput in three areas: whole genome multiple

alignment, pan-genome annotation, and bioinformatics workflows.

To aid in the study of populations, tools are needed that can quickly compare multiple

genome sequences, millions of nucleotides in length. I present a new multiple alignment

tool for whole genomes, named Mugsy, that implements a novel method for identifying

syntenic regions. Mugsy is computationally efficient, does not require a reference

genome, and is robust in identifying a rich complement of genetic variation including

duplications, rearrangements, and large-scale gain and loss of sequence in mixtures of

draft and completed genome data. Mugsy is evaluated on the alignment of several dozen

bacterial chromosomes on a single computer and was the fastest program evaluated for

the alignment of assembled human chromosome sequences from four individuals. A

distributed version of the algorithm is also described and provides increased processing

throughput using multiple CPUs.

Numerous individual genomes are sequenced to study diversity, evolution and classify

pan-genomes. Pan-genome annotations contain inconsistencies and errors that hinder

comparative analysis, even within a single species. I introduce a new tool, Mugsy-

Annotator, that identifies orthologs and anomalous gene structure across a pan-genome

using whole genome multiple alignments. Identified anomalies include inconsistently

located translation initiation sites and disrupted genes due to draft genome sequencing or

pseudogenes. An evaluation of pan-genomes indicates that such anomalies are common

and alternative annotations suggested by the tool can improve annotation consistency and

quality.

Finally, I describe the Cloud Virtual Resource, CloVR, a desktop application for

automated sequence analysis that improves usability and accessibility of bioinformatics

software and cloud computing resources. CloVR is installed on a personal computer as a

virtual machine and requires minimal installation, addressing challenges in deploying

bioinformatics workflows. CloVR also seamlessly accesses remote cloud computing

resources for improved processing throughput. In a case study, I demonstrate the

portability and scalability of CloVR and evaluate the costs and resources for microbial

sequence analysis.

METHODS FOR HIGH-THROUGHPUT COMPARATIVE GENOMICS AND
DISTRIBUTED SEQUENCE ANALYSIS

By

Samuel Vincent Angiuoli

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Steven Salzberg, Chair
Dr. Arthur Delcher
Professor Najib El-Sayed
Professor Mihai Pop
Professor Stephen Mount

© Copyright by
Samuel Vincent Angiuoli

2011

 ii

Foreword

A version of the content described in Chapter 4, Mugsy, was published as Angiuoli, SV

and Salzberg, SL in Bioinformatics [1]. A version of the content described in Chapter 6,

Mugsy-Annotator, was submitted for publication to BMC Bioinformatics as Angiuoli et

al. and was pending review at the time of preparing this dissertation.

 iii

Dedication

To Gilda and Vincent James Frattarelli

 iv

Acknowledgements

I thank my family who has taught me the most important lessons of life and for which I

owe the most gratitude. I am especially thankful for Emily and Samuel J. Angiuoli, who

have inspired me through their lives, the family they raised, and all their strength and

hard work. I thank my wonderful fiancé Soraia whose patience is unmatched; may we

enjoy our life together now that school is out. To my parents, I am forever grateful and

indebted to your endless and unwavering support. Dad, you’ve worked hard; it’s a good

time for you to retire, you really deserve it.

I thank my advisor, Steven Salzberg, who provided me a unique opportunity to pursue

this research and has provided invaluable mentorship throughout my career. I thank my

committee members for their support, encouragement, and guidance. I also thank

countless colleagues at the Institute for Genome Sciences, JCVI, and TIGR for their

support and feedback through the years. I’m especially thankful to Owen White for his

mentorship and support for my work and study.

 v

Table of Contents

Foreword ... ii
Dedication .. iii
Acknowledgements .. iv
Table of Contents .. v
List of Tables ... viii
List of Figures .. ix
Chapter 1 - Introduction .. 1

Advances in genome sequencing and a bioinformatics bottleneck 1
Novel methods for efficient whole genome comparison and high-throughput sequence
analysis .. 2

Algorithms for efficient comparisons of whole genomes ... 2
Algorithms for improving annotation of pan-genomes .. 3
A novel software platform for portable and automated sequence analysis 3

Dissertation organization .. 3
Chapter 2 - Background .. 4

Genome sequencing .. 4
Pan-genomics .. 4
Sequence Alignment ... 5
Genome annotation ... 6
Virtual machines ... 7
Cloud computing ... 7

Chapter 3 - Related Works .. 9
Whole genome multiple alignment ... 9
(Pan-)genome annotation and analysis ... 12
Platforms and packages for automated sequence analysis .. 13

Chapter 4 – Mugsy: Fast whole genome multiple alignment ... 16
Methodology ... 17

Pairwise alignment and identification of duplications .. 18
Determination of locally collinear blocks (LCBs) .. 20
Identification of multi-genome anchors .. 22
Identification of syntenic anchors ... 26
Evaluation of whole genome alignment tools ... 28
Data sets .. 32

Results ... 33
Alignment of multiple bacterial genomes ... 33
Alignment of multiple human genomes .. 42

Discussion ... 44
Chapter 5 - Distributed whole genome multiple alignment .. 46

Methodology ... 47
Calculation of a guide tree .. 48
Progressive alignment ... 48
Pairwise alignment .. 49

 vi

Profile-profile alignments ... 50
Results ... 52
Discussion ... 53

Chapter 6 - Rapid Comparison and Annotation of Pan-genomes 56
Methods... 58

Identification of orthologs ... 59
Identification of annotation inconsistencies .. 61
Alternative annotations ... 62
Data sets .. 63

Results ... 63
Mugsy-Annotator for finding orthologs.. 63
Missing annotations .. 67
Identifying and resolving annotation anomalies ... 68

Discussion ... 75
Chapter 7 - CloVR: A portable system for automated and distributed analysis in
bioinformatics ... 78

Implementation ... 81
Architecture overview ... 81
Components of the CloVR VM .. 83
Building the virtual machine images .. 83
Components of a CloVR automated pipeline ... 84
Data storage and transfers ... 89
Automatic resource provisioning in the cloud .. 91

Results ... 94
CloVR runs on the desktop and can utilize resources at multiple cloud providers .. 94
CloVR provides automated resource provisioning in the cloud 96
CloVR uses local disk and does not rely on network file systems 99

Discussion ... 101
Chapter 8 - Resources and costs for microbial sequence analysis evaluated using virtual
machines and cloud computing ... 108

Methods... 111
Analysis protocols ... 111
Computational resources ... 112
Spot market bid-price simulations .. 113

Results ... 115
Computational requirements of microbial genomics applications 115
Real dollar values of microbial sequence analysis applications 119
Capacity and optimization of processing pipelines .. 120
Realizing cost savings using excess capacity in the Amazon EC2 spot market 125

Discussion ... 126
Chapter 9 - Discussion and conclusions ... 131

Novel methods and software solutions for the bioinformatics bottleneck 131
Efficient multiple alignment of closely related genomes 131
A method for efficient comparison and improvement of pan-genome annotation . 132
A portable platform for automated and high-throughput sequence analysis 133

Highlighted applications ... 134

 vii

Construction of high-resolution phylogenies using whole genome multiple
alignment... 135
High-throughput pan-genome annotation using whole genome multiple alignment
... 136

Discussion ... 137
Concluding remarks .. 140

Appendices .. 141
Bibliography ... 142

 viii

List of Tables

Table 4-1. Summary of genomes compared using whole genome alignment 32
Table 4-2 Processing time to calculate whole genome multiple alignments using three

methods ... 33
Table 4-3 Precision and recall in aligned positions in a comparison of tools across 11

complete S. pneumoniae genomes .. 34
Table 4-4. Summary of the whole genome multiple alignment of 31 strains of S.

pneumoniae using three different methods ... 35
Table 4-5 Number of single nucleotide variants (SNVs) detected by Mugsy in the

multiple alignment of human chromosome 1 from four individuals 43
Table 5-1 Para-Mugsy performance ... 52
Table 8-1 Overview of CloVR analysis protocols .. 110
Table 8-2 Datasets used for CloVR protocol benchmarking .. 115
Table 8-3 Cost and runtime parameters of CloVR pipeline runs on example datasets .. 117
Table 8-4 Variations in cost and runtime parameters of different CloVR pipeline runs on

the same metagenomics WGS dataset (Infant gut). .. 122

 ix

List of Figures

Figure 4.1: The process flow and primary steps of Mugsy... 17
Figure 4.2: Generation of multi-genome anchors from the alignment graph 20
Figure 4.3: Identification of LCBs in the anchor graph .. 25
Figure 4.4: Comparison of total aligned nucleotides between Enredo and Mugsy 30
Figure 4.5: Comparison of total aligned core nucleotides between Enredo and Mugsy .. 31
Figure 4.6 - Overlap of LCBs between tools .. 36
Figure 4.7 - Length distribution of total and core LCBs... 37
Figure 4.8 - Total aligned nucleotides for varying parameters ... 39
Figure 4.9 - Nucleotides in core LCBs for varying parameters .. 40
Figure 4.10 - Number of LCBs for varying parameters .. 40
Figure 4.11 - Percent identity plots for the multiple alignment of human chromosome 1 41
Figure 5.1 – Overview of Para-Mugsy compared to the serial Mugsy algorithm for whole

genome multiple alignment ... 47
Figure 5.2 – Generation of profiles ... 50
Figure 6.1 - Identifying orthologs and comparing gene structures in a pan-genome using

whole genome multiple alignments .. 58
Figure 6.2 – Annotation anomalies identified by Mugsy-Annotator 61
Figure 6.3 – Comparison of ortholog groups between Mugsy-Annotator and OrthoMCL

... 64
Figure 6.4 – Distribution of the number of genomes in ortholog groups 67
Figure 6.5 – Consistency of annotated gene structures in several species pan-genomes . 69
Figure 6.6 – Annotation anomalies caused by single genomes .. 70
Figure 6.7 – Distance of alternative TIS from the annotated site 72
Figure 7.1 - Schematic of the automated pipelines provided in the CloVR virtual machine

... 81
Figure 7.2 - Architecture of the CloVR application ... 82
Figure 7.3 - Components of the CloVR virtual machine .. 83
Figure 7.4 - Steps of an automated pipeline in CloVR ... 85
Figure 7.5 - Example of specification files used for running pipelines 88
Figure 7.6 -Execution profile of an analysis with CloVR-Microbe 96
Figure 7.7 - Dynamically allocated cluster of CloVR VM instances running BLAST 97
Figure 7.8 - Visualization of data transfers between instances over time in a cluster of

CloVR VMs. ... 99
Figure 7.9 - Network throughput on a cluster of CloVR VMs 100
Figure 8.1 - Cost and performance of CloVR-Microbe on varying size compute clusters

... 120
Figure 8.2 – Costs and throughput of CloVR protocols. .. 124
Figure 8.3 – Predicted runtimes for varying bid prices in the Amazon spot market for

compute ... 125

 1

Chapter 1 - Introduction

Genome sequencing has widespread applications, including basic science, biosafety and

biomedical research, and is expected to become part of the service sector, e.g. in the form

of personalized health care [2,3,4]. Numerous individual genomes are sequenced to

study genetic diversity of populations in depth, as no single reference sequence can fully

describe the biology of a species [5,6,7].

Advances in genome sequencing and a bioinformatics bottleneck

The interpretation of genome sequence is reliant on computation and comparison. As a

consequence, high-throughput sequencing technologies [8,9,10], while aiding in sequence

acquisition, have also given rise to a “bioinformatics bottleneck”. Contributing to this

bottleneck, the rate of sequence acquisition is exceeding improvements in computer

performance and predictions from Moore's law [11,12]. For particular computational

methods, such as multiple sequence alignment, optimal solutions are infeasible for large

data sets [13] requiring heuristic solutions that improve computational efficiency.

In conjunction with increased throughput, the introduction of "benchtop" sequencing that

aims at integrating medium-scale, affordable sequence generation into the standard

laboratory equipment [14] is following a decentralization trend where sequence

generation is becoming available for any size laboratory all over the world [15]. This

democratization of sequencing has resulted in a larger, more diverse set of users that

require bioinformatics software for analysis [16,17]. This trend has also exposed

practical and technical challenges in sequence analysis using bioinformatics software

(software requirements) [17,18] and computational resources (hardware requirements)

 2

[12,19], contributing to analysis bottlenecks. In combination, bottlenecks in analysis

have made the feasibility and affordability of applications of genomics increasingly

dependent on bioinformatics tools and methods rather than sequence generation itself.

This dissertation describes novel computational methods and software that improve

analysis throughput for whole genome alignment and microbial sequence analysis. The

original contributions include:

Novel methods for efficient whole genome comparison and high-throughput sequence

analysis

Algorithms for efficient comparisons of whole genomes

In Chapters 3-5, a series of novel algorithms and new tools are presented for alignment

and comparisons of multiple whole genomes. In Chapter 4, we describe a new tool,

Mugsy, for the multiple alignment of whole genomes. Mugsy includes a novel algorithm

for identifying collinear regions (synteny) across multiple genomes without the need for a

reference genome [1]. Mugsy is computationally efficient for the multiple alignment of

closely related genomes that share fractions of identical or nearly identical DNA. Mugsy

is not biased towards a reference genome, is robust in handling draft genomes, and can

identify a wide range of genome-scale diversity, including rearrangements and

duplications.

In Chapter 5, we extend the work on whole genome alignment to provide a distributed

version of the algorithm, enabling faster computation and calculation of larger alignments

than can be generated on a single computer.

 3

Algorithms for improving annotation of pan-genomes

In Chapter 6, we describe a novel method for identifying orthologs and annotation

inconsistencies across a pan-genome using whole genome multiple alignment. The

method, implemented in a tool Mugsy-Annotator, is computationally efficient. We use

the tool to evaluate the quality of annotated gene structures in several species pan-

genomes and improve annotated gene structures across the bacterium Neisseria

meningitidis.

A novel software platform for portable and automated sequence analysis

In Chapter 7, we describe a novel software platform, Cloud Virtual Resource (CloVR),

for portable and automated analysis of microbial genomes. CloVR provides a single

software executable that runs on a personal computer and seamlessly accesses cloud

computing resources over the Internet for increased processing throughput. In Chapter 8,

we utilize the CloVR software to evaluate the required resources and costs for microbial

sequence analysis.

The remainder of this document is organized as follows. Background information

relevant to the dissertation is described in Chapter 2. A review of literature related to the

contributions is described in

Dissertation organization

Chapter 3- Related Works. The contributions are presented

and evaluated in Chapters 4-8. Finally, discussion, conclusions drawn, and areas for

future work are described in Chapter 9.

 4

Chapter 2 - Background

A wide-range of genome sequencing projects across the tree of life have broadened

understanding of life and evolution [20]. For microbial organisms, there are already

several thousand bacterial genomes in public databases [21], and hundreds of individual

genomes for some medically relevant species and model organisms [22,23]. The Cancer

Genome Atlas [24], 1000 Genomes Project [25] and the Personal Genome Project [26]

provide genome sequences from at least several thousand people.

Genome sequencing

The popularity of genomics applications has largely been driven by the introduction of

second generation sequencing technologies that offer increasing sequencing throughput at

a decreasing cost per nucleotide [8,9]. As third-generation sequencing platforms [10] are

now available, the cost of sequence generation is likely to decrease even further.

The availability of sequence data propels work in comparative genomics to study genome

populations and their evolution. In Chapter 5, we describe a method for comparison and

annotation of populations of genomes, so called pan-genomes. For many species,

tremendous intra-species diversity results in a pan-genome much larger than any

individual genome [7,27,28]. The pan-genome describes the genetic complement that is

accessible to an organism, comprised of a core genome that is largely conserved and an

accessory genome that is more variable [5,6,29]. Characterization of a pan-genome sheds

light on an organisms’ biology, life style and has implications for the definition of the

Pan-genomics

 5

species itself [30,31]. As hundreds of genomes are now available for some species [21],

high-throughput methods are needed for comparison and annotation of closely related

genomes.

The interpretation of this genetic information is reliant on computation for comparison.

In Chapters 4-5, we describe a novel methodology for alignment of multiple whole

genomes. Sequence alignment, particularly multiple sequence alignment, is one of the

most basic and studied problems in computational biology [32,33]. The primary

motivation for aligning biological sequences, such as DNA, is identifying characters of

the sequence that have evolved from a common ancestor. For DNA, the characters of a

sequence are nucleotides, also called base pairs, which have a standard alphabet of 4

characters {A,C,T,G}. The methods for sequence alignment are closely related to

general sequence search algorithms, such as longest common subsequence [34], and have

long since been adapted to biological sequences, propelled by the work of Needleman-

Wunsch [35] and Smith-Waterman [36]. To improve runtimes on searches of large

sequences, seed and extend heuristics are widely utilized for pairwise alignment,

including BLAST [37], MEGABLAST [38], and BLAT [39].

Sequence Alignment

Computation of an optimally scoring alignment for multiple sequences is NP-hard [40]

using simple scoring schemes [13]. As a result, a variety of heuristic algorithms have

been employed for multiple sequence alignment of collinear sequences, including those

in [41,42,43]. Progressive alignment [44] is a popular heuristic for iteratively building a

multiple alignment from the conjunction of pairwise alignments, although this method is

greedy and subject to the propogation of errors during the progression resulting in sub-

 6

optimally scoring alignments. To improve quality, iterative refinement methods that re-

align low-scoring regions are often utilized [45].

In Chapter 5, we describe a method for identifying annotation problem areas. To aid in

the whole genome analysis, an annotation process is typically performed using

computational methods that include prediction of genes and their functions [46]. Protein

coding genes in prokaryotes are frequently comprised of a single open reading frame that

begins with a translation initiation site and ends with a termination codon. Gene

prediction algorithms for prokaryotes have been shown to perform well with relatively

low error rates [47,48,49]. Limitations of gene prediction include accurate identification

of the translation initiation start (TIS) [50] sites and pseudogenes, and over-annotation in

GC-rich genomes [51]. Specialized tools have addressed these issues, such as for

improved TIS prediction [50].

Genome annotation

Some common errors in gene prediction, such as inaccurate identification of TIS, are

problematic for experimentation work, making identification and correction important.

Correctly annotated gene structures and translation initiation sites are critical for

proteomics studies, including N-terminal protein sequencing [52], and construction of

DNA and protein microarrays. Computational protein structure prediction also relies on

accurate gene structures.

The problem of annotation errors is heightened in pan-genomic studies involving many

individually annotated genomes [53]. Rare errors, including missed gene predictions, are

compounded as more genomes are added obscuring identification of core genes that are

 7

critical for a species and present in every sequenced isolate [54]. Missing genes can lead

to false biological inferences if such missed genes are critical components of metabolic

pathways.

In Chapter 7, we describe an architecture for distributed sequence analysis that relies on

virtual machines. A Virtual Machine (VM) is a piece of software that emulates an entire

operating system and can be bundled with pre-installed and pre-configured software.

Upon execution, the VM has the appearance of booting a new computer through a

process called virtualization. On a host computer, the VM runs inside a software

application called a hypervisor (also called VM player) that supports virtualization.

There are VM players [55,56] available for all major operating systems, including

Microsoft Windows, Apple Mac OS X, and Linux.

Virtual machines

A VM is portable and can be distributed over the Internet and executed anywhere in the

world, without further need for complex installations and adaptations. As a result, the

VM provides a means to eliminate complex software installations and adaptations for

portable execution, directly addressing one of the challenges involved with using

bioinformatics tools and pipelines. Most importantly, the developer of a VM has super-

user access and complete control over the operating system configuration, so there are

few limitations to installing and configuring additional software on the VM.

In Chapters 7-8, we utilize cloud computing platforms to improve processing throughput

of pre-packaged analysis pipelines. Despite performance increases of modern CPUs,

Cloud computing

 8

single desktops or even small computer clusters are limited in the volume of sequencing

data that they can analyze. Distributed computing platforms that provide many

computers for processing data in parallel are commonly used to improve analysis

throughput. Such systems, include clusters of machines on a local network [57] and grids

that connect machines over wide area networks [58].

Cloud computing is a distributed computing platform which offers on-demand leases to

computational resources over a network [59]. Cloud computing can provide access to a

variety of computing architectures, including large memory machines, while eliminating

the need to build or administer a local computer network, addressing challenges in access

and deployment of infrastructure for bioinformatics [12,60]. Cloud computing platforms

have been emerging in the commercial sector, including the Amazon Elastic Compute

Cloud (EC2) [61], and in the public sector to support research [62,63]. Amazon EC2

provides on-demand compute (priced per CPU hour) and charges additionally for

network transfers to and from the cloud (bandwidth priced per GB) and persistent data

storage (priced per GB and per month). Importantly these cloud platforms support user-

provided virtual machines, allowing for extensive customization of operation system and

software that is executed on the servers.

 9

Chapter 3 - Related Works

In Chapter 4-5, we describe a novel methodology for whole genome multiple alignment.

Whole genome alignment has become instrumental for studying genome evolution and

genetic diversity [33,64], with applications in construction of phylogenies, study of gene

families, and characterization of a pan-genomic and species specific DNA. Whole

genome alignment tools are distinguished from collinear sequence alignment tools, such

as tools of [41,42,43], in that they can align very long sequences, millions of base pairs in

length, and identify both large-scale and smaller scale variation. Large-scale mutations

include rearrangement, duplication, gain, and loss of genetic segments. Small-scale

variation includes in local substitution, insertion, and deletion of individual nucleotides.

Biological processes, such as homologous recombination [65], produce these mutations

during species evolution resulting in extensive flux of genetic elements within and

between chromosomes, even for very closely related species. Whole genome alignment

describes these variations by identifying matching nucleotides in two or more organisms

that are derived from a common ancestral sequence.

Whole genome multiple alignment

There are numerous methods to compare a single pair of whole genome sequences

[66,67]. The Nucmer and MUMmer package are fast whole genome alignment method

that utilizes a suffix tree to seed an alignment with maximal unique matches (MUMs)

[68]. The suffix tree implementation of MUMmer is especially efficient and can be both

built and searched in time and space that is linear in proportion to the input sequence

length.

 10

Beyond pairwise comparisons, there are numerous tools for the alignment for multiple of

whole genomes [69,70,71,72,73]. Alignment accuracy and assessment of quality remains

a challenge in whole genome alignment [74,75,76]. For divergent sequences, alignment

accuracy is difficult to assess and popular methods disagree, such was demonstrated by

the relatively low level of agreement between alignment of non-coding regions in

mammals [77,78]. Given the difficulties in assessing accuracy, recent development has

included methods that are statistically motivated and show improved specificity [42,69].

At shorter evolutionary distances with large fractions of identical sequences, there is less

ambiguity in alignment outcomes. Yet, despite relatively short chromosome lengths for

bacteria, typically a few million base pairs, the computational complexity of multiple

sequence alignment makes it a formidable challenge. Calculation of multiple alignments

with a simple sum of pairs scoring scheme is known to be an NP-hard problem [13],

which makes calculation of an exact solution infeasible for large inputs. All multiple

genome alignment tools rely on heuristics to achieve reasonable run times. Popular

heuristics include calculation of multi-genome anchors [69,79] followed by chaining of

syntenic anchors [69,79,80,81].

Computational complexity is only one challenge for the comparison of numerous whole

genomes. Alignment tools must handle a rich complement of genetic variation, including

mutations, rearrangements, gain and loss events, and duplications. In this dissertation,

we are interested in tools that do not require a reference genome and can readily accept

mixtures of completed and assembled draft genome data. The requirement for a single

reference genome is not always practical given sampling bias and intra-species diversity

[82]. Among current tools, Enredo-Pecan [69] and MLAGAN [71] are the only ones that

 11

both report duplications and do not require a reference genome. The Threaded Blockset

Aligner (TBA) [70] also does not require a reference genome for calculating the

alignment, but it produces many short local alignments that require ordering against a

reference genome. Progressive Mauve [73,83] utilizes maximally unique matches

(MUMs) and does not require a reference, however Mauve does not currently report

duplications. M-GCAT is a whole genome alignment tool that also utilizes MUMs and

has been shown to be computationally efficient for the alignment of closely related

genomes [84] but is biased towards a reference genome.

Graph-based methods have been widely employed for pairwise and multiple alignment of

long sequences [85,86]. The segment-based progressive alignment approach

implemented in SeqAn::T-Coffee [87] utilizes an alignment graph scored for consistency

and a progressive alignment scheme to calculate multiple alignments. In brief, an

alignment graph is composed of vertices corresponding to non-overlapping genomic

regions with edges indicating matches between regions. The alignment graph can be

built efficiently for multiple sequences from a set of pairwise alignments and is scored for

consistency. Consistency scoring has been demonstrated to perform well in resolving

problems in progressive alignment [88,89]. A multiple alignment can then be derived

from the graph using an efficient heaviest common subsequence algorithm [90]. A

noteworthy property of the alignment graph is that it is efficient for representing highly

similar sequences. Each genomic segment that aligns without gaps in all pairwise

alignments is represented as a single vertex in the graph. This property offers an

advantage for comparisons of genomes with significant sequence identity because long

gap-free regions are stored as a single vertex in the alignment graph. Since the number of

 12

vertices and edges in the alignment graph is a function of the genetic diversity of the

sequences and not the sequence lengths, this method allows for a compact representation

and fast alignment of very long and highly similar sequences. A limitation of the

SeqAn::T-Coffee tool is that it is restricted to aligning collinear sequences that are free of

rearrangements.

In Chapter 5, we describe a method for distributed whole genome multiple alignment to

enable parallel computation. There are few tools for distributed multiple alignment, none

of which are described for whole genomes. Cloud-Coffee implements a distributed

consistency-based scoring for parallel multiple alignment of collinear regions and has

been benchmarked on Amazon EC2 [91].

In Chapter 6, we describe a novel method for improving annotation across a species pan-

genome. While there are several tools for gene prediction of single genomes [47,49,92],

relatively few tools exist to deal specifically with the simultaneous annotation of large

numbers of nearly identical sequenced isolates, such as a species pan-genome. Also,

despite low error rates in gene calling, the accumulation of errors across many genomes

can cause problems for comparative analysis, such as identification of the conserved core

genome [54]. Additionally, as genomes are sequenced and annotated by diverse

scientists, annotations can vary due to choice of gene predictions algorithm or annotation

procedures [53,93,94,95]. Post-processing can be used to identify annotation anomalies,

as in GenePrimp [93].

(Pan-)genome annotation and analysis

 13

Re-annotation efforts have been used to standardize annotation across many genomes to a

single protocol [96]. This approach is particularly useful for updating out-dated

annotation with the latest available evidence. A challenge for standardization efforts is

combining automated re-annotation while preserving curated edits, which may include

corrections of gene prediction errors. This process requires integration of both manually

curated structures and ab-initio gene predictions.

Comparative analysis of closely related sequences forms the basis of many annotation

approaches [97]. Reference-based approaches that map annotation onto new genomes

using a reference [98] are particularly well-suited to annotation within a species where

many genes are expected to be identical in each sequenced isolate. For some species, the

use of a single reference genome can be limiting and as a result, researchers often need to

integrate annotations from multiple sources. While fully automated approaches for

comparison and annotation are of heightened interest as genome sequencing throughput

has increased, the need for combining manual, expert curation with high-throughput

automated approaches has been recognized [99].

In Chapters 7-8, we describe a novel software platform for automated sequence analysis

pipelines. The installation, operation, and maintenance of software tools for

bioinformatics analysis can be cumbersome and require significant technical expertise

leading to efforts that pre-package and bundle bioinformatics tools [17]. While, many

bioinformatics software tools routinely used in sequence analysis are open source and

freely available, the installation, operation, and maintenance can be cumbersome and

require significant technical expertise [17,100]. In addition, individual tools are often

Platforms and packages for automated sequence analysis

 14

insufficient for sequence analysis and, rather, need to be integrated with others into multi-

step pipelines for thorough analysis. To aid with this, bioinformatics workflows systems

and workbenches, such as Galaxy [101], Ergatis [102], GenePattern [103], Taverna [104]

provide user interfaces to simplify execution of tools and pipelines on centralized servers.

Prior to analysis, researchers utilizing genomics approaches are faced with a multitude of

choices of analysis protocol and best practices are often poorly documented [105].

Complexities of analysis pipelines and lack of transparent protocol can limit

reproducibility of computed results [18]. Use of workbenches that store pipeline

metadata and track data provenance can improve reproducibility [101].

Bioinformatics service providers, such as RAST [106], MG-RAST [107], ISGA [108],

and the IGS Annotation engine [109], have attempted to address challenges in microbial

genome analysis by providing centralized services, where users submit sequence data to a

web site for analysis using standardized pipelines. In this model, the service provider

operates the online resource, dedicating the necessary personnel and computational

resources to support a community of users. Bioinformatics workflow systems

[101,102,103,104] also operate on central servers, utilizing dedicated or shared network

based storage, and clusters of computers for improved processing throughput.

Other efforts have bundled tools into portable software packages for installation on a

local computer, including Mother [110] and Qiime [111] for 16S ribosomal RNA

analysis and DIYA [112] for bacterial genome annotation pipeline.

There is considerable enthusiasm in the bioinformatics community for use of cloud

computing in sequence analysis [12,60,113,114]. Map-Reduce algorithms [115] using

the cloud-ready frameworks Hadoop are available for sequence alignment and short read

 15

mapping [116], SNP identification [117], RNA expression analysis [118], amongst others

demonstrating the usability of cloud services to support large-scale sequence processing.

In Chapter 8, we evaluate the cost and resources required for typical applications of

microbial genomics. Cost considerations of using the cloud have generated debate as to

the affordability of cloud based analysis [19,119]. Case studies using cloud computing

platforms have been published with varying results, either favoring cloud-based over

local computing in both performance and cost for microarray-based transcriptomic

analysis [120] or demonstrating comparable performance parameters for cloud-based and

local computing and cost advantages of local executions for metagenomics BLAST

analysis [121].

 16

Chapter 4 – Mugsy: Fast whole genome multiple alignment

Multiple sequence alignment is amongst the most widely used and studied methods for

comparative analysis, providing a rich description of evolutionary relationships between

sequences [33]. Yet, multiple alignment of whole genomes presents significant

challenges as genome evolution introduces large-scale genetic flux and multiple

alignment is NP-hard [13], making exact solutions infeasible for large data sets .

In this chapter, we present a new whole genome alignment tool, named Mugsy, which

can rapidly align DNA from multiple whole genomes on a single computer. Mugsy

implements a novel algorithm for identifying locally collinear blocks (LCBs) that define

the regions from two or more genomes that are collinear, free of rearrangements, and

suitable for multiple alignment. We demonstrate the performance of Mugsy on up to 57

bacterial genomes from the same species and the alignment of chromosomes from

multiple human genomes. Mugsy accepts draft genome sequences and does not require a

reference genome for calculating the alignment or interpretation of output. Mugsy

integrates the fast whole genome pairwise aligner, Nucmer, for identifying homology,

including rearrangements and duplications, with the segment-based multiple alignment

method provided by the SeqAn C++ library. Mugsy is run as a single command line

invocation that accepts a set of multi-FASTA files, one per genome and outputs a

multiple alignment in MAF format. The Mugsy aligner is open source software and

available for download at http://mugsy.sf.net.

 17

Figure 4.1: The process flow and primary steps of Mugsy
The key steps are listed in boxes and data types that are input and output at each step are shown adjacent to

the arrows. Software used to implement parts of each step is listed on the left. The execution time of each

step from an alignment of 4 human chromosomes is provided on the right. The component timings include

parsing input and writing outputs. Tests were run on a single CPU of an Intel Xeon 5570 processor with

16GB of RAM

The Mugsy alignment tool is comprised of four primary steps (Figure 4.1):

Methodology

i. An all-against-all pairwise alignment using Nucmer, refined with delta-filter [68];

ii. Construction of an alignment graph and refinement [87] using SeqAn [122];

iii. Identification of locally collinear blocks (LCBs) in the graph using code we

developed; and

 18

iv. Calculation of a multiple alignment for each LCB using SeqAn::TCoffee [87].

Mugsy includes a Perl wrapper script that runs all the steps. The primary input consists

of one file per genome, which may contain more than one sequence for draft genomes

(i.e., a multi-FASTA file). The SeqAn library provided functions to build an alignment

graph from pairwise alignments. We made three extensions to the alignment graph

approach that enabled us to use it for whole genome alignments with rearrangements and

genome flux. First, we utilized the pairwise alignments from Nucmer to define the

segments allowing for gaps and mismatches. Second, we modified the data structure of

the alignment graph to store the orientation between matching segments so that we could

detect inversions. Lastly, we implement a novel method for calculating locally collinear

subgraphs from the input alignment graph. These subgraphs represent locally collinear

blocks (LCBs) and can correspond to inversions and regions that have been gained or lost

in a subset of genomes.

Pairwise alignment and identification of duplications

The input genomes are searched using Nucmer in an all-against-all manner using a

minimum match length of 15 nucleotides and a cluster length of 60 (-l 15, -c 60). Each

pairwise search is subsequently processed with the “delta-filter” utility to identify

matches likely to be orthologous. Delta-filter, a program included with Nucmer, limits

pairwise matches to those contained in the highest scoring chain of matches calculated

using a modified longest increasing subsequence (LIS) [123]. Each match is given a

score corresponding to the match length multiplied by the square of the pairwise

sequence identity. Pairwise matches that are present in the LIS chain for both the

reference and query sequences (delta-filter -1) are saved for use in the multiple alignment

 19

and can include inversions. This filtering is critical for excluding homology to repetitive

sequences. The output of delta-filter is converted to MAF format for subsequent

processing.

We modified the source code of delta-filter to report duplicated segments that are present

in the LIS chain of either the reference or the query genome, but not both (delta-filter –b).

The duplicated segments identified for each pairwise alignment are saved as an output

file in MAF format. The chaining algorithm in delta-filter is similar to Supermap which

has been used to identify orthologous segments in the presence of duplications [71].

Following Nucmer and delta-filter, the remaining pairwise alignments are passed to the

mugsyWGA program for multiple alignment. mugsyWGA first builds an alignment

graph using the refinement approach described in SeqAn::T-Coffee [87], with the

addition that the orientation of the alignment between segments is also saved. The

alignment graph stores all the pairwise homology information calculated by Nucmer.

Each vertex represents an ungapped genomic segment (Figure 4.2 top). Edges represent

pairwise homology statements from Nucmer that pass the orthology filtering criteria from

delta-filter as described above. The refinement procedure produces a minimal

subdivision of segments from all pairwise comparisons ensuring the segments are non-

overlapping. We modified the alignment graph to store the relative orientation of the

matches as reported by Nucmer for each edge. The alignment graph is then processed to

identify locally collinear blocks (LCBs).

 20

Figure 4.2: Generation of multi-genome anchors from the alignment graph
Three sequences are shown (SEQ1,SEQ2,SEQ3) with matching segments from the alignment graph (top).

Connected components define three multi-genome anchors (bottom). Adjacent anchors along a sequence

are connected by edges and labeled with the sequence identifier. To handle inconsistencies in the alignment

graph, connected components are built in a greedy fashion traversing the most consistent edges first and

restricting anchors to one alignment segment per genome (not shown). Multiple segments from the same

genome are allowed only if they are within a configurable distance along the sequence.

Determination of locally collinear blocks (LCBs)

A critical step in whole genome alignment is the determination of genomic regions that

are homologous, collinear, free of rearrangements, and suitable for multiple alignment.

Following the terminology of Mauve [73], we refer to these segments as locally collinear

blocks (LCBs). Chaining procedures are widely utilized to define genomic intervals that

are consistently ordered and oriented in multiple genomes and are often labeled as

syntenic [69,71,79,80,81,124,125]. In Mugsy, we implement a new graph-based chaining

 21

procedure that looks for LCBs in the alignment graph and has similarities with previous

methods for defining syntenic regions. The procedure uses heuristics to define collinear

regions that are free of rearrangements and large gaps, correspond to LCBs, and are

suitable for multiple alignment. The procedure first builds a graph, termed the anchor

graph (Figure 4.2 bottom), that enables easy identification of collinear regions by

traversing simple paths comprised of anchors with exactly two incident edges (Figure

4.3a).

Micro-rearrangements and repetitive elements limit the length of these regions by

introducing breakpoints in the graph. Our method attempts to extend these regions by a

series of merges and filtering of short LCBs (Figure 4.3b). Our construction of the

anchor graph joins anchors if any two genomes comprising the anchor are syntenic. This

does not ensure all paths in the graph correspond to LCBs because of genome gain, loss,

duplications and rearrangements. To resolve this, a cutting procedure is used to ensure

LCBs do not traverse large-scale rearrangements and indels. The cutting procedure

interprets the anchor graph as a flow network and a maximum flow, minimum cut

algorithm is used to trim edges from the graph to define LCBs (Figure 4.3c). This

procedure breaks the anchor graph at locations of reduced synteny and limits the length

of an insertion or deletion described within an LCB.

The procedure takes two input parameters, a maximum genomic distance between

adjacent anchors, G, and a minimum block length, L. The method will not identify

rearrangements, including inversions, shorter than L. G and L are set in Mugsy using –

distance and –minlength with defaults 1,000 and 30 nucleotides, respectively. The

default settings were determined empirically by varying options and comparing output to

 22

other tools on limited test data (Figure 4.8-Figure 4.10). Increasing the value of G can

help avoid fragmentation of LCBs in comparisons of divergent genomes but only had

slight effect on datasets in this paper (Figure 4.10). In alignments of 11 S. pneumoniae

genomes, the aligned core varied by 1,904 nucleotides out of ~1.59M core nucleotides

aligned for values of G between 1,000-10,000. In the same experiment, the total aligned

nucleotides varied by 141,898 out of ~63.3M nucleotides. The value of L can have a

greater impact on results with larger values excluding short regions of homology that

cannot be chained into LCBs leading to reduced sensitivity.

Identification of multi-genome anchors

The first step in determining LCBs consists of producing a set of multi-genome anchors

from the alignment graph. To simplify identification of synteny, we are interested in

defining anchors with a single location per genomic sequence. The anchors will be

subsequently chained together to define syntenic regions. The pairwise alignments used

to define segments in the anchor graph have already been filtered for orthology (using

delta-filter as described in Section 2.1) but inconsistencies between pairwise alignments

arising from repeats and duplications can produce paths in the alignment graph with

multiple segments from the same genome. As a result, connected components in the

alignment graph may contain multiple segments from a single genome. Some of these

copies may be close to each other on the genome while others are not. We identify

duplications during pairwise alignment, and so we are interested in generating multi-

genome anchors that contain only a single segment per genome.

These anchors are calculated using a greedy depth-first search of the alignment graph

ordered by consistency score, traversing the highest consistency edges first (Figure 4.2).

 23

In cases where there are inconsistencies in the anchor graph, we track the genomic extent

of each connected component and only allow multiple segments from the same genome if

they are separated by less than a configurable genomic distance, --anchorwin. The

default value for --anchorwin is 100 nucleotides. Other copies explored during the search

define new anchors or are excluded as singletons if no incident edges remain. By setting

this parameter, we are able to reduce the size of the anchor graph for further processing.

In the comparison of 31 S. pneumonia, the number of multi-genome anchors was 264,133

using –anchorwin=0 and 239,259 using –anchorwin=100. With –anchorwin=0, each

inconsistency in the alignment graph introduces a new anchor and potential breakpoint in

the anchor graph. Subsequent processing of the anchor graph attempts to merge anchors

that are syntenic, including anchor fragments produced by inconsistencies in the

alignment graph.

The relative orientations of segments that comprise an anchor are also saved during the

greedy anchor traversal. For each LCB, the edge with the highest consistency score

determines the relative match orientation for its incident genomic segments. Remaining

edges are considered in descending order of consistency score, assigning a relative

orientation based on the Nucmer alignment orientation. The resulting anchors consist of

oriented genomic segments in two or more genomes that can contain mismatches, but no

gaps, as provided by the alignment graph.

Anchors derived from this method can be very short since the refinement procedure used

to build the alignment graph will produce segments as short as a single base per

sequence, such as in the case of a single base indel. In the comparisons of closely related

genomes, segments are often much longer and the alignment graph will often have

 24

significantly fewer vertices than the total number of base pairs in the genome. The

alignment graph for ~963Mbp from 4 human sequences of chromosome 1 consisted of

1,024,728 vertices with an average length of 868bp and 1,450,084 edges. The connected

components in this graph resulted in 185,537 multi-genome anchors. By comparison, the

alignment graph for the 31-way comparison of S. pneumoniae strains, comprising

65.7Mbp in total, contained 2,717,087 vertices with an average length of 23bp and

264,133 multi-genome anchors.

 25

Figure 4.3: Identification of LCBs in the anchor graph

A set of multi-genome anchors labeled A-G are shown. Anchors adjacent along one or more sequences are

connected by an edge. (a) Simple paths with exactly one incoming and outgoing edge correspond to

collinear regions and branches correspond to syntenic breakpoints (dotted edges) resulting in three collinear

regions colored blue, orange, green. (b) Merging of adjacent regions. A short component (D,E) with a

genomic extent less than a configurable parameter L is removed from the graph. The remaining anchors

form a single collinear region colored blue. (c) Cutting of paths that violate LCBs constraints with max-

flow, min-cut. Anchors B and E are adjacent but non-syntenic separated by a genomic extent greater than

the configurable parameter G in at least one sequence. The graph forms a single connected component that

is an invalid LCB. To resolve this, the anchor graph is interpreted as a flow network. Edges are labeled

with an edge capacity indicating the number of sequences for which the incident anchors are collinear.

Source and sink vertices (grey) are added to the graph incident to vertices that violate the distance criteria.

Maximum flow, minimum cut identifies the cut (dotted edge B,C) to produce two collinear regions colored

blue and green. Max-flow, min-cut ensures the graph is cut to produce collinear regions that fulfill the

distance constraint G regardless of cycles or branches in the graph.

 26

Identification of syntenic anchors

The multi-genome anchors are used to define vertices in a new directed graph, termed the

anchor graph that is used to identify boundaries of LCBs. Edges in the anchor graph

connect adjacent anchors along a genomic sequence. To determine edges, the vertices

are first ordered along each of the member sequences. Anchors that are immediately

adjacent on at least one sequence and separated by a genomic extent less than the

configurable distance G are linked by an edge. The edges are labeled with the names of

the sequences for which the anchors are adjacent. Simple paths through this graph,

comprised of vertices with exactly two incident edges, represent runs of anchors that are

consistently ordered and syntenic in two or more genomes. Branches in the graph

produced by vertices with more than two edges represent breakpoints in synteny. The

beginning and end of an assembled contig or changes in relative orientation between

anchors also represent breakpoints. An initial set of LCBs is calculated by finding simple

paths in the anchor graph that do not cross any breakpoints using a depth-first search

(Figure 4.3a). Some of these breakpoints will arise from micro-rearrangements,

repetitive elements, or from our greedy construction of multi-genome anchors. The

remaining steps of the algorithm attempt to extend the LCBs into longer regions that span

these breakpoints by removing branches from the graph.

We merge LCBs that are connected by at least one edge in the anchor graph and do not

traverse an inversion, indicated by a change in relative orientation between sequences in

an anchor and do not introduce gaps greater than G in the projection along any member

sequence (Figure 4.3b). Next, anchors comprising short LCBs that span less than the

minimum block length, L, are removed from the graph. A new set of LCBs is calculated

 27

after adding new edges between adjacent anchors separated by less than the genomic

distance, G, on two or more genomes. This resulting graph can include branches between

anchors that are adjacent on some genomes but not others due lineage specific

rearrangements or indels. Repetitive elements can also give rise to branches and cycles

in the graph that link anchors that are not syntenic.

An additional step is used to break edges in the anchor graph so that we ensure valid

LCBs. This step models the anchor graph as a flow network and uses a maximum flow,

minimum cut algorithm [126] to find bottlenecks in the graph that are used to partition

connected components that violate criteria for LCBs. Flow networks have been

previously used in other areas of alignment, including the consistency problem in

multiple alignment [127]. To build the flow network, the LCBs are ordered on each

member sequence and checked for gaps greater than distance G or paths that join multiple

contigs from the same genome.

Sets of vertices that violate these criteria are deemed non-syntenic and added to opposing

source and sink vertices in the flow network (Figure 4.3c). We define the edge capacity

of the network as the number of sequences for which any two incident anchors are

adjacent and syntenic. We compute maximum flow, minimum cut using an

implementation of the Ford-Fulkerson algorithm [128] to identify a minimum set of cut

edges that partitions the graph ensuring the non-syntenic source and sink vertices are

disconnected. This in turn ensures the LCBs consist of anchors that fulfill the maximum

gap criteria and contain a single contig per genome in the case of draft genomes. The use

of the max-flow, min-cut provides a valid partition even if multiple cuts are required to

ensure a valid LCB due to branching in the anchor graph. This max-flow, min-cut

 28

procedure using conserved synteny as the edge capacity has the property that it will

attempt to split the LCB at bottlenecks represented by edges with reduced synteny.

The max-flow, min-cut, calculation accounted for ~12.5 minutes of 116 total minutes for

the LCB identification in 57 E. coli. For these genomes, the anchor graph was composed

of 675,780 multi-genome vertices and 1,258,603 edges.

Finally, the extent of the LCBs is determined from the coordinates of the minimum and

maximum anchor coordinates on each member sequence. The subset of vertices in the

alignment graph that overlap the extent and connected edges are passed to SeqAn::T-

Coffee to align each LCB. The LCB identification procedure can produce overlapping

LCB boundaries with the extent of the overlap determined by the distance parameter G.

To place each anchor in exactly one LCB, the LCBs are sorted by length in descending

order and anchors are removed from the anchor graph as they are aligned into LCBs.

The resulting multiple alignments are saved in MAF format for each LCB. The

construction of the alignment graph and progressive alignment algorithm using

SeqAn::TCoffee is implemented in C++ using the SeqAn library [122]. The LCB

identification procedure is written in C++ using the Boost library (http://boost.org).

Evaluation of whole genome alignment tools

To compare Mugsy to other multiple whole genome alignment tools, we downloaded

Mauve, TBA, FSA, MLAGAN, and Pecan from their project web sites. The

MLAGAN/SLAGAN and Pecan/Enredo tools do not provide scripts that automate all of

the steps required to generate whole genome alignments from a set of input FASTA files.

Also, previous analyses of mammalian genomes using these tools in [69,71] utilized a

 29

compute grid to execute the pairwise alignment step. This makes generation of whole

genome alignments from a set of genomic FASTA files cumbersome. To compare these

tools with Mugsy on a single computer, we limited our evaluation to only the collinear

alignment components, MLAGAN and Pecan, and used Mugsy to define a common set

of LCBs for evaluation. The extents of the LCBs were first calculated by Mugsy and

saved as multi-FASTA files that were passed as input to MLAGAN or Pecan. MLAGAN

and Pecan were run with default parameters. We did not attempt to execute the SLAGAN

that defines collinear regions for MLAGAN.

Mugsy LCBs were also used to define the genomic extent of the regions passed to the

multiple alignment program FSA. FSA was run using the recommended fast alignment

options –fast, -noindel2, -refinement. Mugsy includes an option to invoke the FSA

aligner on each LCB as a part of a post-processing step.

Mauve alignments were generated directly from the genomic FASTA files using

progressiveMauve 64-bit binary version 2.3.1 with default command line options [83].

The Mauve output format was converted to MAF format to compare with the outputs of

Mugsy.

TBA was run with default options using MAF formatted pairwise alignments from

Nucmer instead of BLASTZ. The Nucmer alignments were processed with delta-filter

and identical to those used as inputs for Mugsy. By using the same pairwise alignments,

we were able to focus our evaluation on the multiple alignment portion of Mugsy

compared to TBA. The runtime values generated are the shortest successful runtime of

three tests for all tools evaluated.

 30

For comparing outputs between Mugsy, Mauve, TBA, comparisons were restricted to

completed genomes to simplify projecting pairwise alignments onto a reference

coordinate system. Output files were converted to MAF format if necessary. The utility

“compare” downloaded from http://www.bx.psu.edu/miller_lab was used to calculate

precision, recall, and percentage agreement between alignment outputs.

Figure 4.4: Comparison of total aligned nucleotides between Enredo and Mugsy

Alignment anchors from 31 S. pneumoniae genomes were used as input. Enredo was run with varying

values of –max-gap between 1,000-50,000 in an attempt to recover more of the alignment. For comparison,

a single Mugsy run with –distance 1000 is displayed on the plot in blue. Other parameters to Enredo were

also evaluated but did not improve the results (Not shown).

 31

Figure 4.5: Comparison of total aligned core nucleotides between Enredo and Mugsy

Alignment anchors from 31 S. pneumoniae genomes were used as input. Enredo was run with varying

values of –max-gap between 1,000-50,000 in an attempt to recover additional alignment. For comparison, a

single Mugsy run with –distance 1000 is displayed on the plot in blue. Other parameters to Enredo were

also evaluated but did not improve the results (Not shown).

In a separate analysis, we compared the extent of LCBs calculated by Mugsy with the

segmentation produced by Enredo [69]. Enredo reports locally collinear blocks (LCBs)

from a set of externally generated anchors that occur in two or more input genomes. We

first calculated multi-genome anchors from the alignment graph of 11 completed S.

pneumoniae genomes as described in Methods. The set of multi-genome anchors was

used as input to both Enredo and Mugsy. Enredo was run with options –min-score=0, –

min-length=0 and –max-gap=3000. Additional runs were performed varying–min-length

between 0 and 100 and varying –max-gap-length between 1,000 and 50,000 (Figure 4.4,

Figure 4.5).

 32

Table 4-1. Summary of genomes compared using whole genome alignment

Organism Number of
genomes

Number of
sequences

Total bases (Mbp)

N. meningitidis 5 5 10.9
S. pneumoniae 31 1 906 65.7
E. coli 57 4 213 299.1
Human Chr I 4 4 963.2

For genomes in draft form, the total number of assembled contigs or scaffolds is provided in

column 3.

Data sets

The S. pneumoniae, E. coli and N. meningitidis genomes were downloaded from the

NCBI Entrez website [129]. The accessions and species names are provided in

(Supplemental Table S1 in [1]). The human genome sequences were downloaded from

the individual project web sites: the NCBI reference GRCh37 available from UCSC as

hg19 from http://genome.ucsc.edu, the Venter genome (JCV) from http://huref.jcvi.org

[130], the Kim Sungjin (SJK) genome from http://koreagenome.kobic.re.kr/en/ [131], and

the YanHuang project (YH) from http://yh.genomics.org.cn [132]. The SJK genome

utilized the NCBI reference to build consensus sequences as described in [131]. The de

novo assembly of YH Li et al. [133] was not available as a consensus scaffold that spans

chromosome 1. Instead, we utilized a consensus sequence for YH from Beijing

Genomics Institute that was based on the UCSC build hg18 (NCBI v36) and is available

as a single scaffold spanning chromosome 1 on the project web site

(http://yh.genomics.org.cn). We choose to align these sequences to demonstrate the

performance of Mugsy on the multiple alignment of very long sequences.

Single nucleotide variants (SNVs) were obtained from the personal variant tracks of

UCSC browser [134] and included these sources: JCV [130], YH [132], SJK [131], and

 33

dbSNP 130 [135]. The personal variant tracks provided the variant data in a common

format with coordinates on a single version of the reference genome, hg19, which was

used for multiple alignment with Mugsy. This allowed for comparison of the published

variants for each individual even though some of the published studies were generated on

consensus sequences prior to hg19.

Table 4-2 Processing time to calculate whole genome multiple alignments using three methods

 5
N. men

31
S. pneumo

57
E. coli

4
Human Chr 1

Pairwise search 3 min 44 min 435 min 1138 min
 +Mugsy 3 min 56 min 720 min 37 min
 +TBA <1 min 36 min 381 min 71 min
Mauve v2.3.1 5 min 377 min DNF (1) DNF (2)

The runtime in minutes for the pairwise search includes aligning all pairs of genome sequences with

Nucmer, post-processing with delta-filter, and converting output formats to MAF as described in Methods.

The time provided for Mugsy and TBA is the runtime for generating the multiple alignment from the

pairwise search results. The time for Mauve is the total runtime. Nucmer was run with parameters MUM

length –l 10, cluster length –c 60 and all other default options. Mugsy was run with parameters --

distance=1000 and --minlength=30. Mauve and TBA were run with default options. Tests were run on a

single CPU of an Intel Xeon 5570 processor with 16GB of RAM. DNF(1): did not finish after 2 days of

processing. DNF(2): generated an allocation error.

Alignment of multiple bacterial genomes

Results

We computed whole genome alignments using Mugsy and compared runtimes to other

popular whole genome alignment tools. The input genomes consisted of a mixture of

completed and draft sequences with most genomes represented in multiple contigs (Table

4-1). Mugsy had the second fastest runtime, requiring less than 2 hours for the alignment

of 31 Streptococcus pneumoniae genomes and ~19 hours for the alignment of 57

Escherichia coli genomes (Table 4-2). Nucmer+TBA had the fastest total runtime on this

 34

same dataset. Mugsy and TBA were the only two tools evaluated that completed the

alignment of 57 E. coli in less than two days of processing on a single CPU. The step in

Mugsy that identifies locally collinear blocks (LCBs) contributed ~15 of 56 minutes for

the S. pneumoniae multiple alignments and ~116 of 720 minutes for the E. coli multiple

alignment.

We ran additional comparisons of runtimes with MLAGAN[71] and Pecan [69] whole

genome multiple alignment tools and the collinear alignment tool FSA[42]. For this

comparison, a single set of LCBs was first calculated by Mugsy to define genomic

extents for multiple alignment by MLAGAN, Pecan, and FSA. Of these three tools, only

FSA completed the alignment of all LCBs in the 57 E. coli genomes in less than two days

of processing on a single CPU. FSA is a fast method for aligning long sequences [42] but

it is restricted to aligning collinear segments that are free of rearrangements. The runtime

of FSA was slightly faster (896 minutes) than the combined runtime of Nucmer and

Mugsy (1155 minutes).

Table 4-3 Precision and recall in aligned positions in a comparison of tools across 11 complete S.
pneumoniae genomes

 Mugsy as truth Mauve as truth TBA as truth
Mugsy 0.97,0.99 (0.96) 0.99,0.99 (0.98)
Mauve 0.99,0.97 (0.95) 0.98,0.97 (0.95)
TBA 0.99,0.99 (0.98) 0.97,0.98 (0.96)

The precision and recall for each row was calculated using the output of the tool listed in the column as a

hypothetical true alignment. The percentage agreement is provided in parenthesis calculated as the fraction

of aligned positions that are identical in the projection of all pairwise alignments inferred from the multiple

alignment.

The alignment positions calculated by Mugsy show agreement with those reported by

Mauve and TBA. We evaluated the agreement using a projection of pairwise alignments

using one of the reported outputs as a hypothetical true alignment in a comparison of 11

 35

complete genomes in the S. pneumoniae data set. Mugsy alignments scored a precision

and recall of 0.99, 0.99 and 0.97, 0.99 using TBA and Mauve respectively as truth in this

comparison (Table 4-3).

Table 4-4. Summary of the whole genome multiple alignment of 31 strains of S. pneumoniae using
three different methods

 Number of
LCBs

Length core (bp) Core LCB N50
(bp)

Nucleotides
aligned

Mugsy 2 394 1 590 820 2 044 63 294 709
Mauve v2.31 1 366 1 568 715 2 759 62 714 295
Nucmer+TBA 27 075 1 475 575 705 64 698 581

Each method reports a series of alignments that correspond to locally collinear blocks (LCBs). The length

of the aligned core is the total number of alignment columns that contain all input genomes and no gap

characters. Half of the aligned core is contained in LCBs spanning genomic regions longer than the core

LCB N50 length. The total number of aligned nucleotides is obtained by counting bases aligned to at least

one other genome in the multiple alignment.

Mugsy aligned slightly more nucleotides than Mauve in almost double the number of

LCBs for the full S. pneumoniae dataset (Table 4-1). Mugsy also identified a slightly

longer core alignment. The aligned core is comprised of alignment columns that contain

all input genomes and no gaps. The combination of Nucmer+TBA aligned more total

nucleotides but a shorter and more fragmented core (Table 4-4, core N50).

 36

Figure 4.6 - Overlap of LCBs between tools

The number of LCBs is reported in a comparison of 11 complete S. pneumoniae genomes that are either

partially or fully contained in LCBs in each of Mugsy , Mauve, TBA, and Enredo as a reference. Mugsy

was run with –minlength=30, --distance 1000. Mauve and TBA were run with defaults. Enredo was run

with options –min-score=0, –min-length=0, and –max-gap-length=3000.

The length and number of aligned regions was the primary difference in output between

Mugsy, Mauve, and TBA in our evaluations. Mauve produced LCBs with the longest

average length (Table 4-4, Figure 4.6) but did not complete the alignment of the largest

data sets used in this evaluation in the allotted time. In the comparison of 11 completed

S. pneumoniae genomes, Mugsy LCBs either shared boundaries or partially overlapped

all of the Mauve LCBs (Figure 4.6)

Mugsy reported longer alignments than TBA on average (Table 4-4, Figure 4.7). Mugsy

LCBs contained all but one of the shorter TBA blocks in a comparison of 11 completed

S. pneumoniae genomes. 76% of all TBA blocks (2128 of 2791) were fully contained

within longer Mugsy LCBs (Figure 4.6). By comparison, 25% of Mugsy LCBs (20 of

 37

77) shared identical boundaries or were spanned by longer blocks in TBA. Slightly fewer

TBA blocks were contained in Mauve than Mugsy, 2078 versus 2128.

Figure 4.7 - Length distribution of total and core LCBs

Calculated by Mugsy, Mauve, and TBA in the alignment of 31 S. pneumoniae genomes

The differences in LCB composition and boundaries are also indicated by the lengths of

the contained gaps (indicating an insertion or deletion event) reported by each tool. The

longest gap lengths present in a LCB for Mugsy, Mauve and TBA were 31,130 bp,

34,910 bp, and 177 bp respectively in the comparison of 31 S. pneumonia genomes.

 38

To further evaluate our method, we compared the LCB identification step in Mugsy with

Enredo, another graph based method that has been demonstrated on comparisons of

mammalian genomes [69]. Mugsy calculated a longer aligned core and incorporated more

anchors into LCBs than Enredo using a set of anchors from 11 completed S. pneumoniae

genomes. Mugsy calculated a total of 425 LCBs comprising 22,913,396 aligned

nucleotides (98.6% of input) compared to 30,710 LCBs from Enredo comprising

22,451,622 aligned nucleotides (95.4%) (Figure 4.4). The Mugsy core LCBs consisted of

1,741,704 nucleotides versus 1,229,583 nucleotides with Enredo (Figure 4.5). The Mugsy

LCBs were also longer than Enredo on average, with 79% (24,401 of 30,710) of Enredo

LCBs sharing identical boundaries or fully contained within longer Mugsy LCBs (Figure

4.6). By comparison, 20% (88 of 425) of Mugsy LCBs shared boundaries or were fully

contained in longer LCBs reported by Enredo. Increasing the distance parameter in

Enredo did not improve results (Figure 4.4). The relatively short and fragmented regions

reported by Enredo may be due to the composition of the multi-genome anchors used in

our comparison. As described in Methods, the multi-genome anchors vary in length and

can be subdivided during the segment refinement procedure to as short as a single base.

Enredo has been previously reported to work well on longer anchors (>50bp in [69]).

 39

Figure 4.8 - Total aligned nucleotides for varying parameters

As calculated by Mugsy for values of G (-distance) and L (-minlength) in an alignment of 31 S.

pneumoniae genomes. The algorithm loses sensitivity for increasing values of -minlength as short regions

of homology are excluded from consideration. Sensitivity initially increases with values of –distance and

then decreases slightly. –minlength=30, -distance=1000 are the defaults for Mugsy and were used for the

evaluations in paper.

 40

Figure 4.9 - Nucleotides in core LCBs for varying parameters

As calculated by Mugsy for values of G (–distance) and L (--minlength) in an alignment of 31 S.

pneumoniae genomes.

Figure 4.10 - Number of LCBs for varying parameters

As calculated by Mugsy for values of G (–distance) and L (--minlength) in an alignment of 31 S.

pneumoniae genomes.

 41

Mugsy includes a step for building longer syntenic regions, LCBs, from shorter multi-

genome anchors. The longer aligned regions simplify some downstream analysis, such as

the identification of orthologous genes and mapping of annotations, thereby minimizing

the need for a reference genome. Longer alignments also aid the inspection of genomic

regions that have been gained or lost and span multiple genes without requiring a

reference genome. Increasing the value of the –distance parameters in Mugsy produces

longer LCBs, although with slight loss of sensitivity (Figure 4.8). Our greedy method for

building multi-genome anchors can introduce branches in the anchor graph in cases

where there are inconsistencies in combining pairwise alignment. Our LCB identification

algorithm aims to reduce this fragmentation but remains an area that can be improved.

Contig boundaries will also cause fragmentation in Mugsy LCBs. As a result, introducing

draft genomes will automatically increase the number of LCBs.

Figure 4.11 - Percent identity plots for the multiple alignment of human chromosome 1
Mugsy generated alignment for four individuals. The plots were obtained from the alignment viewer,

GMAJ, using hg19 as reference for the display (top coordinates). A percent identity plot is displayed in

subsequent rows for each of the three other genomes SJK, YH, JCV. The alignments span 99.9% of the

nucleotides on chromosome 1 of the NCBI reference hg19, excluding the centromere, which is shown as a

gap in the middle of the figure. The percent identity in each row ranges from 50 to 100 from the bottom to

top of each row

 42

Alignment of multiple human genomes

To evaluate the performance of Mugsy on larger sequences, we aligned multiple

individual chromosomes from human genomes. We identified four human genomes for

which consensus sequences are available for each chromosome: the NCBI reference

human genome build GRCh37 (hg19 at the UCSC genome browser) [136], a western

European individual (JCV) [130], a Korean individual (SJK) [131], and a Han Chinese

individual (YH). Mugsy was able to align all four copies of chromosome 1 in less than

one day using a single CPU (Table 4-1). Mugsy computed the multiple alignments in

less than one hour (37 minutes) after completing the pairwise searches with Nucmer. The

contribution of the LCB identification step in Mugsy was ~7 minutes. By comparison,

TBA ran in 71 minutes using the same pairwise alignments as input. Realignment of all

the LCBs from Mugsy with the FSA aligner ran in 358 minutes. Three other whole

genome alignment tools evaluated (MLAGAN, Pecan, and Mauve) failed to complete an

alignment of the four human chromosomes in less than two days of processing time. The

length of the chromosomes (>219Mbp each) and amount of repetitive DNA in the human

genome makes whole genome alignment especially challenging. The genomes were not

masked for repetitive elements.

Mugsy calculated 526 locally collinear blocks (LCB) on chromosome 1 with the longest

LCB spanning 5.97 Mbp on all four individuals. The LCBs covered 224,975,484 of

225,280,621 (99.86%) nucleotides in the NCBI reference sequence, hg19. The alignment

viewer GMAJ was used to generate pairwise percent identity plots projected from the

Mugsy multiple alignment (Figure 4.11). The plots show variation in JCV, SJK, and YH

versus the reference sequence, hg19. The sequences for YH and SJK both utilized the

 43

NCBI reference in building the consensus sequences, and therefore this comparison may

under-represent the variation in these genomes. The percent identity plots indicate this

possible artifact, showing relatively low variation in the comparison of YH and SJK

versus hg19.

Table 4-5 Number of single nucleotide variants (SNVs) detected by Mugsy in the multiple alignment
of human chromosome 1 from four individuals

Individual
genomes

Mugsy
SNVs

SNVs at
UCSC

Recall from UCSC Precision from UCSC or dbSNP

JCV 216 201 108 767 104 684 (90%) 194 616 (90%)
SJK 135 070 113 708 112 032 (98%) 128 473 (95%)
YH 114 871 104 590 103 106 (98%) 113 641 (99%)

Mugsy alignments were performed on consensus sequences of human chromosome 1 as provided by each

source. SNVs were obtained from alignment columns where the consensus nucleotide in JCV, SJK, or YH

differed from the nucleotide in hg19. An additional filter was applied to screen out alignment columns that

contained gaps within 5 positions on either side. Published SNVs for JCV, SJK, or YH were obtained from

UCSC personal variant tracks, restricted to homozygous variants where annotated. Recall (column 4) is the

number of Mugsy variants that match UCSC divided by the total number of UCSC variants. Precision

measures the number of Mugsy variants that match either UCSC or dbSNP variants divided by the total

number of variants reported by Mugsy.

The whole genome multiple alignments produced by Mugsy were parsed to extract

variants, including mutations, insertions, and deletions. Single nucleotide variants

(SNVs) were extracted from ungapped alignment columns with more than one allele and

compared to published variations in the personal variant tracks of the UCSC genome

browser. Many of the SNVs calculated by Mugsy are also reported at the UCSC browser

or dbSNP (Table 4-5). Mugsy calculates variation on assembled consensus sequence and

does not consider the composition or quality of the underlying sequencing reads that

contributed to the assembly. We restricted the comparison to variants annotated as

homozygous for the individual using the UCSC browser. Additional variation identified

 44

by Mugsy may be due to differences in detection methods or assembly artifacts in the

consensus.

Mugsy implements a new procedure that identifies locally collinear blocks (LCBs). The

graph utilized for the LCB identification and segment-based multiple alignment is

compact for highly conserved sequences allowing for efficient computation. This makes

Mugsy especially well suited to classification of species pan-genomes and other intra-

species comparisons where there is a high degree of sequence conservation. Alignment

of many large, highly conserved sequences, such as human chromosomes, is likely to

become increasingly popular as improvements in sequencing and assembly technologies

allow for de-novo assembly of human genomes, including assembly of haplotypes.

Discussion

Our work relies heavily on two open source software packages, the suffix tree-based

pairwise aligner Nucmer [68] and the segment-based alignment approach of

SeqAn::TCoffee [87]. We utilized Nucmer to quickly build a library of pairwise

homology across all input genomes. Our work extends methods in SeqAn::TCoffee to

accommodate whole genome multiple alignment with rearrangements and duplications.

Mugsy relies on a number of parameters including minimum MUM length in Nucmer

and the LCB chaining parameters. Careful choice of parameters is likely to be important

for alignments at longer evolutionary distances. Automatically determining parameters

or providing user guidance on parameter choice is an area that needs improvement.

Also, for more divergent genomes, the performance advantages of the segment-based

alignment approach decrease as the length of the conserved segments shorten and the size

 45

of the alignment graph grows. The alignment of 57 E. coli strains required slightly more

than 12 GB of RAM to build and process the alignment graph. The larger memory

requirement of Mugsy on more divergent genomes is a limitation of the tool and an area

that we may be able to improve at the expense of longer runtimes.

 46

Chapter 5 - Distributed whole genome multiple alignment

The increase of sequencing data has allowed for in-depth sequencing of populations,

generating hundreds of genomes for some species [23]. Interpretations of this data

require comparisons using methods such as whole genome alignment. Extensive runtime

or memory consumption limit the number of genomes that can be readily aligned

simultaneously with whole genome alignment tools. Current implementations are

designed to perform work in serial using only one CPU, requiring a day or more to align

more than a few dozen bacterial chromosome [1,83].

In this Chapter, we describe preliminary results of new algorithm and tool, Para-Mugsy,

for parallel and distributed whole genome multiple alignment. We demonstrate Para-

Mugsy on 145 E. coli genomes (725Mbp) completing an alignment in ~38 hours using 8

CPUs on an Amazon EC2 virtual machine instance. Para-Mugsy is also space efficient

requiring less than 16 GB RAM for the 145-way alignment. An examination of a subset

of the output indicates the alignment is of comparable quality as generated by other tools.

 47

Figure 5.1 – Overview of Para-Mugsy compared to the serial Mugsy algorithm for whole genome
multiple alignment

The method is based on progressive multiple alignment [44] using many of the same

codes from Mugsy [1] with the addition that pairwise sequence alignments and profile-

profile alignments are computed in parallel while traversing a phylogenetic guide tree

(

Methodology

Figure 5.1).

Para-Mugsy reads a set of genomes in FASTA format and produces multiple alignments

in Multiple Alignment Format (MAF file). Para-Mugsy executes on a CloVR virtual

machine (Chapter 7) and all processing jobs are submitted to a GridEngine queue for

scheduling over multiple CPUs. A description of each of the steps of the algorithm

follows.

 48

 Calculation of a guide tree

To enable the progressive alignment, a rooted phylogenetic tree is estimated from the

input sequences using Muscle [45]. Muscle (–treeonly) calculates the number of shared

k-mers between sequences to build a distance matrix for a UMPGA tree building

procedure [137]. Leaves in this guide tree correspond to genomes, which may be

represented by multiple sequences, in case of draft genomes.

Progressive alignment

The phylogenetic guide tree is then used by Para-Mugsy to determine the order in which

sequences and intermediate alignments represented by profiles are calculated and

combined. The algorithm vists nodes of the tree from leaves to root, visiting children

before parents. At each non-leaf node, two sets of alignments are computed

i) Pairwise sequence alignments. The alignment between all pairs of

descendent genomes and their sequences using Nucmer [68].

ii) Profile-profile alignments. Alignments are computed using MugsyWGA

producing locally collinear blocks (LCBs) . A profile representation of each

LCB is saved at the tree node.

Independent subtrees are visited in parallel allowing for concurrent computation of

alignments across multiple CPUs (Figure 5.1). A perfectly balanced guide tree provides

for maximum speedup, although no effort is currently made to ensure the guide tree is

balanced. Such an optimization is left as future work.

 49

Pairwise alignment

Para-Mugsy uses Nucmer [68] for pairwise alignments between genomes. A total of

N*(N−1) pairwise comparisons for a set of N genomes is performed. Each pair of

genome comparisons can be computed independently and in parallel. Draft genomes

with multiple contigs are represented in multi-FASTA files and aligned to other genomes

at once.

Pairwise alignments are needed during progressive alignment for descendent sequences.

Rather than pre-compute all of the pairwise similarities, alignments are calculated during

progressive alignment for pairs of descendent genomes. This allows for concurrent

calculation of pairwise sequence alignment and independent profile-profile alignments

across a cluster. A future possible optimization can short-circuit some of the later

pairwise alignments during the guide tree progression by considering the composition of

these intermediate alignments. Pairwise alignments between descendent sequences

within a subtree are computed once and saved for subsequent access during tree traversal.

 50

Figure 5.2 – Generation of profiles

A profile sequence is the combination of all of these sequences where gaps are filled in a consensus

character or an “N” the matching nucleotide in the other sequence. Any mismatches are represented with

an “N” character. All of the profile sequences are put in a multi-FASTA file.

Profile-profile alignments

Pairwise alignments are combined into locally collinear blocks (LCBs) and multiple

alignments using Mugsy. A profile representation of each LCB is generated and assigned

to the internal node (LCB profiles in Figure 5.2). These profiles are used as an input

sequences for subsequent invocations of Mugsy along the guide tree. LCB profiles are

aligned to each other during progressive alignment to build new LCBs at each internal

node of the tree using Mugsy. Each invocation of Mugsy requires two inputs:

 51

1) FASTA sequences of the input genomes. For profile-profile alignments, these

inputs are LCB profile sequences.

2) Library of pairwise homology matches between sequences.

A mapping between the profile sequence positions and underlying pairwise alignments

on the constituent sequences allows for construction of a pairwise library between any

two profiles. This mapping is stored on disk as a list of interval pairs between each

profile segment and a contiguous range on the original sequences.

Since profiles are sequence strings, this strategy allows for use of the original Mugsy

executables described in Chapter 4 without modification for profile-profile alignments.

No comparison of the actual profile strings is required. Rather, pairwise alignments

generated by Nucmer on the original sequences are transformed to the corresponding

coordinates on the profile sequences (Transform in Figure 5.1). This allows use of

profile sequence in place of multiple sequences throughout the algorithm while

representing all available homology information.

Because profiles represent multiple sequences, redundant matches are expected in the

pairwise alignment library for profile-profile alignments. Mugsy utilizes a segment graph

for determining locally collinear blocks (LCBs) that can be aligned. This segment graph

is built from a set of pairwise alignments using the combination and refinement

procedure such that each segment is non-overlapping and all pairwise matching

information is preserved [87].

The calculations of intermediate alignments are independent for siblings in the guide tree

and can be aligned in parallel (Figure 5.1). To avoid construction of numerous, relatively

 52

small intermediate alignments and profiles in very deep trees, intermediate alignments are

not calculated for internal nodes until a threshold of the sum of the descendent sequence

lengths is reached. The default threshold is 20MB equaling roughly 5-10 bacterial

chromosomes. An initial set of profile LCBs are calculated for these genomes and are

then combined in pairwise fashion during tree traversal.

Progressive alignment of profiles is continued along the guide tree until the root of the

tree is reached at which point the profiles represent LCBs across all input genomes. A

translation step converts these final set of profiles into a multiple alignment on the

original sequences. The result is a single file in MAF format that contains multiple

alignments for each LCB.

Table 5-1 Para-Mugsy performance
 CPUs Runtime

(min)
Max
RAM

No.
LCBs

Total aln
(bp)

Core aln
(bp)

Original
Mugsy
57 E. coli

1 1,155 ~12GB 11,881 289,057,323
(97%)

2,946,752

Para-Mugsy
57 E. coli

8 482 1.4GB 12,409 261,012,599
(87%)

2,938,034

Para-Mugsy
145 E. coli

8 2,282 6.0GB 24,944 627,955,536
(84%)

2,441,541

The genomes are 57 genomes of Escherichia coli are from Supplemental Table 1 in [1]. The dataset of 145

genomes adds 89 unpublished draft genomes.

We generated whole genome multiple alignments of up to 145 E. coli genomes using

Para-Mugsy. The 145-way alignments were generated in ~38 hours using 8 CPUs and no

more than 6GB of RAM of a c1.2xlarge virtual machine instance at Amazon EC2.

Comparable tools that run on a single CPU are unable to complete an alignment of a

subset of 57 genomes in less than 23 hours of processing and 8GB RAM [1,83].

Results

 53

To assess quality, we compared a 57-way alignment produced by Mugsy with that

calculated by Para-Mugsy (Table 5-1). Para-Mugsy calculated the aligned core that

includes all input genomes calculated comprising 2,938,034 nucleotides compared to

2,946,752 nucleotides calculated by original Mugsy algorithm. The number of aligned

core nucleotides calculated by Para-Mugsy decreased to 2,441,541 in the 145-way

comparison. In non-core regions, Para-Mugsy demonstrates decreased sensitivity

compared to the original Mugsy algorithm; 87% of all input nucleotides covered in Para-

Mugsy versus 97% in Mugsy. The 145-way alignment covered 84% of the total base

input pairs.

To further assess quality, ten E. coli genomes were selected and aligned with both the

original Mugsy algorithm and the distributed Para-Mugsy tool. Using Mugsy as the

hypothetical truth, Para-Mugsy displayed a specificity of 97.7 and a sensitivity of 99.2 on

this dataset.

With the increasing availability of multi-core computers and cloud computing, distributed

computing solutions are readily available to improve processing throughput. By using

distributed computation, Para-Mugsy increases the number of genomes that are feasible

for whole genome comparison. Para-Mugsy enabled alignment of 145 E. coli genomes.

An alignment of 57 E. coli genomes with the original serial Mugsy algorithm requires

almost one day to compute on single CPU and at least twice as long (> 2 days) with

Mauve.

Discussion

 54

In addition to computational time, memory consumption is a limiting factor in whole

genome multiple alignment as large memory requirements can exclude computation

entirely. Memory is also relatively expensive currently compared to other component

costs of a computer. The peak memory consumption of Para-Mugsy is significantly less

than peak memory consumption of Mugsy on the same input data (~1.4GB vs. 12GB for

a 57-way alignment of E. coli).

The graph based alignment strategy utilized by Mugsy is inefficient in comparisons of

diverse sequences. A key data structure utilized in Mugsy and Seqan::TCoffee is an

alignment graph, which stores a vertex for each ungapped aligned segment of a genome.

The number of vertices the alignment graph is a function of both the number of genomes

and number of gaps in the pairwise alignments, while the number edges is proportional to

the square of the number of vertices. As a result, the size of the graph grows quickly,

requiring large amounts of RAM, in comparisons of many genomes that are very diverse;

many gaps, and genomes lead to many vertices in the graph.

Para-Mugsy utilizes profile sequences to represent intermediate alignments of each LCB

calculated along the guide tree. The use of profiles by Para-Mugsy avoids this exploding

memory requirement by reducing the number of genomes under comparison since the

profile-profile alignment only appears as two genomes in the segment graph, regardless

of how many genomes are represented by the profile. This reduction in memory comes at

the expense of additional computation, as alignments are recomputed during guide tree

traversal. This increased computation is compensated for by use of multiple CPUs.

The current implementation of the algorithm performs at reduced sensitivity for non-core

regions that are conserved in subsets of inputs. Para-Mugsy also produces more LCBs

 55

and a more fragmented view of genome conservation than either Mauve or Mugsy. This

fragmentation is due to the use of profiles, which appear to the algorithm as separate

sequences during the progressive alignment. As a result, LCBs calculated at each

intermediate step can only be combined with existing boundaries or split further, but are

never extended. Additional work is needed to address this limitation, such as additional

chaining steps during the progression that merge collinear profile sequences. The use of

a guide tree helps alleviate the data fragmentation since the most similar sequences are

combined first so that LCBs start in the progression with the longest spans. The work of

Para-Mugsy enables computation of a multiple alignment of the conserved genetic core

across more genomes than is currently feasible using other methods.

 56

Chapter 6 - Rapid Comparison and Annotation of Pan-genomes

Sequencing of whole genomes from populations (pan-genomes) is becoming

commonplace to study functional capabilities of a species [5,6,29] and identify targeted

therapeutics [138,139]. To aid with analysis of populations of genomes, efficient

methods are needed for comparison and annotation of genes across a pan-genome.

Exploration of cellular functions and metabolic pathways is often reliant on comparison

of genes and gene families between and within species to those that a share a common

ancestry with well-studied and experimentally verified homologs. As the number of

sequenced genomes within a single species continues to grow, tools are needed for

efficiently identifying genes that share a common ancestry allowing for rapid

interrogation and annotation of genes across a population.

To accommodate high-throughput genome sequencing, exclusively automated methods

are used for gene prediction and functional annotations [99]. The resulting genome

annotations can contain inconsistencies and errors that hinder comparative analysis even

within a single species [54].

In this Chapter, we introduce a novel method that 1) identifies orthologs, i.e.genes

descended from the same ancestral sequence, and 2) evaluates annotation quality across a

pan-genome using whole genome multiple alignment. The methodology, implemented as

the tool Mugsy-Annotator, uses conserved genomic position, i.e. synteny, to aid in

identifying orthologs. This provides the foundation for comparing gene structures to

identify annotation anomalies, including inconsistently annotated translation initiation

sites (TIS), missing annotations, and disrupted genes due to sequencing and assembly

 57

errors, or pseudogenes, including frameshifted genes. Finally, Mugsy-Annotator

identifies alternative annotations that resolve anomalies and improve annotation

consistency.

We evaluated the tool on annotations across a number of bacterial pan-genomes

demonstrating that annotation anomalies are common, especially at translation initiation

sites. We also utilized the tool for improving annotations on a set of twenty genomes of

the environmentally prevalent and occasionally pathogenic bacterium Neisseria

meningitidis [140]. The tool is freely available at http://mugsy.sf.net.

http://mugsy.sf.net/�

 58

Figure 6.1 - Identifying orthologs and comparing gene structures in a pan-genome using whole
genome multiple alignments

The input is provided as a set of genomic sequences (FASTA format) and gene annotations (GFF3 format).

Whole genome multiple alignments (top left) are first calculated using Mugsy (Angiuoli and Salzberg

2011). Mugsy-Annotator then builds groups of orthologous gene structures that are conserved in sequence

and genomic context according to the alignment. The alignment also indicates the location of each

predicted translation initiation start and stop across the genomes, allowing for identification of annotation

anomalies or missing annotations.

The method consists of three primary steps, (1) aligning multiple whole genomes, (2)

mapping orthologs among the genomes, and (3) identifying annotation anomalies (Figure

6.1). Two types of input files are required: genome sequences in FASTA format, and

annotated gene structures in Genbank or GFF3 format. It is expected that a gene

Methods

 59

prediction algorithm has been run on all input genomes. For step 1, we generate

reference-independent whole genome multiple alignments using Mugsy [1]. The

alignments generated by Mugsy are restricted to a single region per genome and used by

Mugsy-Annotator to define orthologous relationships between sequences. Mugsy outputs

alignments in Multiple Alignment Format (MAF) that are passed to Mugsy-Annotator

along with the genome annotations needed to complete steps 2 and 3. The genomic

coordinates and alignment string of each aligned interval are extracted from the MAF

files and stored in an interval tree [141] to provide fast querying of genomic intervals.

The start and end coordinates of each gene are also extracted as intervals from the

annotation files and stored in the interval tree. The interval tree is then queried by

Mugsy-Annotator to build groups of orthologs and identify anomalies in gene boundaries.

Although we utilize Mugsy for whole genome multiple alignment, Mugsy-Annotator

accepts MAF files as input and other whole genome alignments tools can be used instead

of Mugsy as long as the input is properly formatted.

Identification of orthologs

Sets of orthologs are determined by retrieving genes whose intervals are aligned via

whole genome alignment (WGA). First, the input genes are sorted on length. The

longest gene remaining in the input set, termed the query gene, is removed from the input

and used to define a new ortholog group. Genes from other species that align to the

query gene in the WGA are added to the ortholog group and removed from the input set.

This ensures genes are placed in exactly one group. A configurable coverage cutoff can

limit consideration to alignments that span a minimum percentage of the query gene and

other matching genes. In this study, we set these length cutoffs to 50%. The procedure

 60

continues in a greedy fashion using the longest remaining gene to seed new groups (or

clusters) until no genes are remaining. Query genes with no overlapping genes above the

cutoffs are reported as singleton groups. Using this method, the query gene in each

ortholog group is at least as long as any other gene in the cluster and may span multiple

adjacent genes in other genomes. This allows our method to identify apparent

fragmented genes within a single region.

To generate OrthoMCL clusters for comparison [142], we performed an all-against-all

BLAST searches of conceptual translations of the gene predictions. BLAST alignments

with e-value < 10-5 were used as input to OrthoMCL v1.4 to predict groups of orthologs.

 61

Figure 6.2 – Annotation anomalies identified by Mugsy-Annotator
Four classes of anomalies are shown (a-d). On the right, examples of aligned genes are drawn with the

boxed region indicating the location of the anomaly. On the left, a multiple alignment is depicted across

the highlighted region with sequence identity indicated by dots. In (c), a gap indicated by a dash introduces

a shift in reading frame that results in use of a termination codon that is inconsistent with the annotations in

the other genomes. Translation initiation sites are marked as “start” and termination codons are marked as

“stop” with an arrow indicating the direction of translation.

Identification of annotation inconsistencies

Mugsy-Annotator produces a report of the annotation consistency for each ortholog set.

To classify annotation consistency for each ortholog set, we examine the location of the

annotated start and stop codons for each gene in the multiple alignment. If all annotated

start and stop codons are in the same location, the ortholog set is consistently annotated

 62

and we identify no inconsistencies. Otherwise, we classify the ortholog set into one or

more classes: inconsistent starts, inconsistent stops, and multiple gene fragments. If the

stop codon locations are the same for all annotated genes but the translation initiation

sites (TIS) differ, we classify the set as inconsistent starts (Figure 6.2a). If the start codon

locations are the same for all genes but the stop codons locations differ, we classify the

set as inconsistent stops (Figure 6.2b). If both start and end locations differ for some

members of the group, we classify the group as a combination class. This class will

include genes that overlap in the alignment but in different reading frames or strands.

Aligned gene sets with multiple annotated genes in the same genome are classified as

multiple gene fragments (Figure 6.2c).

Alternative annotations

Mugsy-Annotator suggests edits that can resolve anomalies and improve the consistency

of each aligned gene set. To determine the possible edits, start and stop codons pairs

from each aligned set are checked against the WGA to determine if the aligned positions

correspond to ORFs with a valid translation start and stop site (NCBI translation table 11)

in each of the other aligned genomes. In cases where the region already contains gene

predictions, only alternatives that are greater than a specified percentage (50% by default)

of the annotated length are considered.

The procedure will also identify aligned gene sets with multiple gene fragments that can

be merged into a single spanning gene by introducing a point mutation or frameshift into

the annotation. If the aligned regions contain gaps, Mugsy-Annotator attempts to

introduce a frameshift to create a valid ORF joining the start and stop codon pair. Start

and stop codon pairs are then displayed ordered by the number of valid ORFs and their

 63

length, although this sort order is configurable. This procedure will also identify possible

missing genes in regions of the genome that are aligned to other annotated genes (Figure

6.2d). To be considered a missing annotation, there must be no overlapping gene

predictions in the aligned interval.

Data sets

The Nmen dataset of 20 genomes was the same as used in [140]. Two versions of the

annotation were available, Nmen verA and Nmen verB. Nmen verA contained 13

genomes that had been annotated using one of two automated pipelines prior to any

manual review. Unless noted, the annotation anomalies identified in this study used the

Nmen verB annotations, which had undergone limited manual review. The remaining

species pan-genomes used in this study were downloaded from the Refseq database

[129]. MUMi [82] distance measurements were calculated for each pair of sequences

with a named species.

Mugsy-Annotator for finding orthologs

Results

Mugsy-Annotator uses whole genome alignment (WGA) calculated by Mugsy [1] to

identify conserved genes in a set of genomes (Figure 4.1). In cases where the alignment

represents orthologous regions, these aligned genes correspond to orthologs; i.e., genes

descended from the same ancestral sequence. WGA aids in distinguishing orthologs

from paralogs by identifying regions that are syntenic and conserved in both sequence

and chromosomal position. By aligning genomic DNA, WGA can also identify

erroneous gene predictions in a reading frame that produce a nonsense translation and

 64

escapes detection by similarity methods that rely on conceptual translations, such as

BLASTP. On the other hand, by relying on DNA alignment, Mugsy-Annotator might

miss sequence conservation between genes that is only detectable at the protein level.

Figure 6.3 – Comparison of ortholog groups between Mugsy-Annotator and OrthoMCL
The intersection between Mugsy-Annotator and OrthoMCL reports the number of genes reported in

ortholog groups by both methods. The remainder for Mugsy-Annotator and OrthoMCL reports the number

of genes classified in ortholog groups by one of the methods only.

As a case study to evaluate WGA for ortholog identification, we compared the groups of

orthologs reported by Mugsy-Annotator and OrthoMCL for 20 Neisseria meningitidis

(Nmen) genomes [140]. OrthoMCL performs a clustering of Reciprocal Best BLAST

(RBB) matches between conceptual translations of genes to identify orthologs. In Nmen,

Mugsy-Annotator identified 2,440 ortholog groups compared to 2,320 reported by

OrthoMCL. The Mugsy-Annotator groups include nearly all the genes included in RBB

matches used by OrthoMCL (38,905 of 39,593 total, 98%).

Both methods reported genes missing from groups reported by the other method, totaling

239 and 669 genes reported by Mugsy-Annotator and OrthoMCL exclusively (Figure

6.3). Many of the genes reported exclusively by one method appear to be paralogs based

on intra-genome BLAST matches (40% and 66% reported exclusively by Mugsy-

 65

Annotator and OrthoMCL methods respectively) or have functional names that indicate

transposases (33% and 23% for WGA and RBB respectively) or hypothetical proteins

(34% and 31% for Mugsy-Annotator and OrthoMCL respectively).

Clustering of RBB matches can collapse orthologs and paralogs into a single group.

Identifying orthologs separately is needed for phylogenetic analysis of gene families that

rely on orthologs , comparison of upstream regulatory regions, and examination of

segmental duplications, where each duplicated copy has a distinct genomic context. As

described in Methods, our tool, by utilizing WGA, incorporates genome context and

synteny in determining matches and builds groups that are restricted to a single gene copy

per genome, thus avoiding the grouping of orthologs and paralogs together. In the case

of segmental duplications, Mugsy-Annotator will report separate groups for each copy.

In the Nmen comparison, OrthoMCL reports 310 groups with multiple genes per genome

that align to each other via BLAST, indicating paralogs in a single group. Mugsy-

Annotator will sometimes report groups with more than one gene per genome (Figure

6.2c, “Fragmentation”), but rather than paralogs, these groups represent fragmented genes

due to draft genome sequencing (gaps or sequencing errors) or potential pseudogenes.

For genes grouped exclusively by Mugsy-Annotator, 23 have no reported intra-species

BLAST matches to other genes in Nmen, and include annotations that appear to be in an

incorrect open reading frame (Table S2). Although we found this class of anomaly to be

rare in our evaluation, Mugsy-Annotator, by using WGA, is able to identify orthologs to

such regions that lack BLAST matches within the dataset and may have a nonsense

conceptual translation. An additional 68 genes (28%) reported exclusively by Mugsy-

 66

Annotator are adjacent to contig boundaries and may be truncated gene predictions that

escape detection by BLAST.

Our WGA method is computationally efficient and has a significant runtime performance

advantage over BLAST. The comparison of 20 Nmen genomes runs on a single CPU in

~4 h (~2 h for WGA with Mugsy and ~2 h for comparing annotations with Mugsy-

Annotator). By comparison, the exhaustive all-against-all BLAST of predicted proteins

needed for OrthoMCL consumed ~32 CPU hours and was run on a compute cluster to

obtain a faster runtime. In addition, BLAST-based methods that rely on searches of

conceptual translation may require additional search of the genomic DNA, such as with

BLASTx, to confirm gene presence and avoid mis-prediction of paralogs as orthologs.

 67

Figure 6.4 – Distribution of the number of genomes in ortholog groups

The number of genomes per orthologs are provided for all orthology groups (top), consistently annotated

groups only (middle), and exclusively groups with annotation inconsistencies (bottom) as identified by

Mugsy-Annoator for 20 Nmen genomes..

Missing annotations

Mugsy-Annotator can be used to identify missing annotations and putative genes by

looking for regions of the alignment with a prediction in some genomes but not others

(Figure 6.2d, “Missing annotation”). These missing annotations can arise from use of

 68

varying gene prediction tools and uncertainty in gene calling procedures, especially for

short genes [143]. In our study of 20 Nmen strains, a majority of the aligned gene sets

contain one annotated region from each of the genomes (Figure 6.4) and missing gene

predictions were rare, totaling only 50 genes missing in alignments containing 18 or more

genomes (Table S3).

Mugsy-Annotator identifies missing annotations if DNA corresponding to a putative gene

is an open reading frame that is conserved across genomes. However, it does not provide

additional evidence to determine if a gene prediction is missing in some genomes (false

negative) or there is an overcall in the other aligned genomes (false positive). Our

methodology relies on sequence conservation between the input genomes, which by itself

is insufficient to distinguish between these due to the short phylogenetic distance and

high similarity of the genomes. Examination of additional evidence (eg. HMM or

BLAST searches) or experimental validation is required to differentiate between these

cases.

Identifying and resolving annotation anomalies

To aid in re-annotation efforts, Mugsy-Annotator identifies likely annotation problem

areas and suggests alternative genes based on the whole genome multiple alignment. To

find such problem areas, Mugsy-Annotator first examines each of the aligned gene sets

for inconsistencies in annotated gene boundaries amongst members of the set (Figure

6.2). The reported anomalies include inconsistently located TIS, disrupted genes, or

alternative open reading frames. Mugsy-Annotator then generates a report for each

aligned gene set that describes the inconsistency and possible resolutions. A HTML

 69

report of the annotations overlaid on the whole genome multiple alignment is also

provided.

Figure 6.5 – Consistency of annotated gene structures in several species pan-genomes

Each row provides the fraction of aligned gene sets in each class of anomaly and groups with no identified

inconsistencies (blue) as identified by Mugsy-Annotator. The number of genomes compared and their

average MUMi similarity (Deloger et al. 2009) distance is also provided, ranging from zero for most

similar to 1, least similar. The bottom three rows describe three versions of annotations from the case study

of Neisseria meningitidis (Nmen). The last version (Nmen verC) demonstrates improvements in consistency

using alternative annotations suggested by Mugsy-Annotator.

To demonstrate the tool, we ran Mugsy-Annotator on nine bacterial species, all of which

have multiple strains with complete genomes available (Figure 6.5). The output indicates

many inconsistencies in annotated gene structures, with inconsistent TIS locations as the

most commonly identified anomaly. While the inconsistencies may indicate errors in the

annotated gene structures in one or more of the genomes, the results are not surprising as

 70

the sequencing coverage, date of annotation, and annotation protocols vary. The

presence of annotation errors in public repositories has been widely recognized

[144,145,146] leading to a number of re-annotation efforts for genomes in a single

species [147,148].

Figure 6.6 – Annotation anomalies caused by single genomes

Number of instances where an annotated translation initiation site in a single genome in Nmen verB did not

match any of the remaining annotated gene structures the aligned ortholog groups.

 71

As a case study, we evaluated the Mugsy-Annotator report for the dataset of 20 Nmen

genomes. Inconsistent TIS are the most commonly detected anomaly in Nmen with 30%

of aligned gene sets containing more than one annotated TIS. Due to lack of precision in

TIS prediction, we expect the number of TIS inconsistencies to increase as the number of

genomes increases, especially since our method marks a group as inconsistent even if the

annotation error is limited to a single genome. To see how overall consistency is affected

by any single genome, Mugsy-Annotator reports the number of times a single genome is

inconsistent in comparison to the set. An examination of the Nmen genomes shows that

certain subsets of genomes have better internal consistency. In 27% of groups with TIS

inconsistencies, an alternative annotation in a single genome will resolve the

inconsistencies for the group (Figure 6.6). Although some of the Nmen genomes

contributed to more annotation inconsistencies than others, all of the genomes contributed

to inconsistencies in at least one group.

 72

Figure 6.7 – Distance of alternative TIS from the annotated site

Distance between the annotated translation initiation site and the most consistent translation initiation site

reported by Mugsy-Annotator.

Mugsy-Annotator suggests alternative gene structures that improve annotation

consistency. In Nmen core gene groups containing all genomes, 55% (400/725) of

groups with inconsistent TIS can be resolved by an alternative annotation that is

conserved across all the aligned genomes. In 50% of these cases, the alternative start site

is upstream of the existing annotation, resulting in longer annotations. In the remaining

cases, the most consistent TIS location results in a shorter gene in at least one genome. A

majority of the alternative TIS locations are in the same coding frame and within 42 bp of

the annotated TIS (Figure 6.7), indicating that annotation protocols have chosen

inconsistently between sites that are nearby along the genome. Adjusting the TIS can

 73

result in an overlap with an adjacent gene. To help avoid mis-annotation of overlapping

genes [149], Mugsy-Annotator flags edits that would result in an overlap with an adjacent

gene. In alternative annotations of Nmen groups, 15% (63/400) introduce overlap with

adjacent annotations indicating further evaluation is needed to determine the correct

annotation.

When a single gene in one genome is aligned to multiple genes in other genomes, Mugsy-

Annotator calls this an anomaly (Figure 6.2c, “Fragmentation”). These apparent gene

fragments can arise from sequencing and assembly errors; from interesting novel gene

fusions; or from pseudogenes, in which frameshifts or in-frame stop codons can split an

open reading frame into multiple gene-like fragments. In our case study of Nmen, draft

genome sequencing appears to contribute to a vast majority of occurrences of this

anomaly (Table S4), although the tool has also aided in the identification of several novel

gene fusions that are not fixed in the population. To aid in classifying this anomaly

further, Mugsy-Annotator reports whether or not frameshifts can extend the interrupted

gene fragments to match a longer annotated gene. Amongst the aligned gene sets

containing all 20 Nmen genomes, Mugsy-Annotator found 48 cases where a single

previously un-annotated frameshift would resolve the anomaly and result in a

consistently annotated set (Table S5). In many other cases, some of the genes can be

extended with a frameshift but other anomalies remain in the group. Additional review

would be needed to further classify these anomalies.

In the Nmen study, Mugsy-Annotator suggests alternative annotations that can improve

consistency in up to 57% of ortholog groups. Although the alternatives improve

consistency, in most cases an examination of additional evidence is required to ensure

 74

that edits improve quality. In this case study, the variability of the annotation is partly

due to the multitude of sources and sequencing strategies. The Nmen genomes are in

varying stages of completeness genomes include 9 draft and 11 complete genomes and

the annotation evaluated came from a total of 5 laboratories using varying gene

prediction protocols and levels of manual curation. To better accommodate draft

genomes, the gene prediction procedure used in some of the Nmen genomes allows for

partial open reading frames that terminate or initiate outside of a contig boundary.

Mugsy-Annotator flags anomalies that are caused by these partial genes adjacent to

contig boundaries. In Nmen, such cases contributed to ~9% of start and stop site

inconsistencies and at least 67% of all of the multiple gene fragment anomalies (Table

S4). Annotation anomalies due to draft genome assemblies will continue to be an issue in

multi-genome analysis as current generation sequencing technologies have prompted an

explosion in the number of draft genomes.

To demonstrate annotation improvements using Mugsy-Annotator, we scored annotation

consistency in three versions of annotation for Nmen. An initial version of the Nmen

annotation (Nmen verA), contained predominantly automated annotation in 13 newly

sequenced genomes and curated annotation for 7 complete genomes. Nmen verA and

showed a large number of inconsistencies, encompassing 72% of orthology groups

(Figure 6.5). As part of the study in [140], limited manual curation was performed and

resulted in annotation of frameshifts and removal of many short, unsupported

hypothetical gene predictions and resulted in the annotations in Nmen verB. Although

this manual effort was aided by the Mugsy-Annotator report, the curation effort was not

meant to be exhaustive and not all reported inconsistencies were examined during the

 75

review. Subsequent to this manual effort, Mugsy-Annotator was run again and generated

a new set of alternative annotations (Nmen verC) suggesting additional improvements

were possible. This resulted in consistent annotations in 59% of groups in Nmen verC,

which was an increase from 28% in Nmen verA The improvement in annotation

consistency between versions highlights the need for re-annotation and manual review

subsequent to automated annotation.

With numerous individual genomes for many bacterial species, there is an increasing

need for tools that compare the genomes. Mugsy-Annotator by using whole genome

multiple alignment can be used to efficiently identify orthologs and annotation problem

areas in a bacterial pan-genome.

Discussion

Mugsy-Annotator implements method that is independent of a reference genome. For

draft genome projects, Mugsy-Annotator identifies anomalies that are due to draft

genome sequencing, such as inconsistently located translation initiation sites and

disrupted genes. For re-annotation efforts, Mugsy-Annotator can be used to direct

curators to likely errors and highlight alternative gene structures that are consistent across

a population, enabling re-annotation across many genomes simultaneously, rather than

one genome at a time. Mugsy-Annotator is currently limited to comparisons of genes

that do not contain spliced gene structures.

As our comparisons within a species demonstrated more variation between annotations

than is actually present in the genome, researchers should be careful when relying on

 76

gene structures for downstream applications. Mugsy-Annotator looks for inconsistencies

in gene structures to identify likely errors but it is also possible that consistency results

from the propagation of error, especially since it is common to use reference genomes

when annotating new genomes. In some cases, the annotated gene structures may be

consistent but incorrect and Mugsy-Annotator will not identify any anomaly. On the

other hand, due to the short evolutionary distance between the genomes under evaluation

in our case study, inharmonious gene boundaries in orthologs are expected to indicate an

improper gene boundary assignment in at least one genome.

One area of future work is extending Mugsy-Annotator to build a fully automated pan-

genome annotation system. Such a system would utilize the comparative genomics data

for identifying genes and gene structures, regulatory elements, and prediction and

assignment of gene functions, consistently across a species or higher-level clade. One

option for an implementation of this would include integration of sequence conservation

into an existing de-novo gene finder with whole genome alignment providing additional

evidence supporting the annotation, especially if a well-chosen out-group sequence is

provided. Comparative gene finders have been used extensively in eukaryotic annotation

[150,151]. Similarly, a mapping approach for mapping between two genomes [98,152],

could be extended across multiple genomes and used to augment existing gene

predictions and transfer names and functional annotations across the new genomes.

Since gene prediction runs quickly on bacteria (usually minutes), we expect the speed of

such an approach would be limited by the time required to calculate a whole genome

multiple alignment.

 77

Importantly, additional evidence besides the whole genome alignment will often be

needed to determine the correctness of the annotations including, but not limited to, gene

boundaries of more distantly related orthologs, third position compositional bias,

predicted ribosomal binding sites, and predicted signal peptides. As such, our tool stops

short of determining the correctness of any gene calls, as this is best left to follow-up

analysis or experimentation in the laboratory. Yet, our tool is ideally suited to direct the

annotation curator towards the regions in most need of attention, and where Mugsy-

Annotator suggestions will greatly facilitate rapid improvement of annotation

consistency. Such tools are urgently needed in light of the explosion of genomes

currently happening as researchers are sequencing hundreds of genomes for many

individual species.

 78

Chapter 7 - CloVR: A portable system for automated and

distributed analysis in bioinformatics

High-throughput sequencing technologies have decentralized sequence acquisition,

increasing the number of users performing sequence analysis all over the world.

Technical challenges in use of bioinformatics software [17,18] and difficulties in

utilization of available computational resources [12,19] impedes analysis, interpretation

and full exploration of sequence data. In the following two chapters, we introduce a

software package called Cloud Virtual Resource (CloVR) for automated and portable

sequence analysis. CloVR is free open source software available at http://clovr.org.

In building the CloVR software, we relied on two enabling technologies, virtual machines

(VM) and cloud computing platforms [60], to address software and hardware

requirements for bioinformatics analysis. The CloVR software is a single virtual

machine (CloVR VM) containing pre-configured and automated sequence analysis

pipelines, suitable for easy installation on a personal computer and with cloud support for

increased analysis throughput. In this chapter, the technical architecture of the CloVR

VM is described and evaluated. Then in Chapter 8, we present a case study that evaluates

the costs and required resources of microbial sequence analysis using protocols bundled

in CloVR.

While, cloud computing platforms provide computing resources for anyone to access and

use over the Internet on-demand, utilization of bioinformatics tools and pipelines on such

distributed systems requires technical expertise to achieve robust operation and intended

performance gains [12]. Also despite emergence of tools and methods designed for

 79

cloud-ready frameworks, there is greater availability of bioinformatics tools, analysis

pipelines, and standardized methods that are designed for distributed computation on

static compute clusters [101,102]. Challenges in data storage and transfer over the

network add to the complexity of using cloud computing systems [119].

In building the CloVR VM, we have addressed the following technical challenges in

using the cloud:

i) Elasticity and ease-of-use, clouds can be difficult to adopt and use requiring

operating system configuration and monitoring; many existing tools and

pipelines are not designed for dynamic environments and require re-

implementation to utilize cloud-ready frameworks such as Hadoop;

ii) Limited network bandwidth, Internet data transfers and relatively slow peer-

to-peer networking bandwidth in some cloud configurations can incur

performance and scalability problems; and

iii) Portability, reliance on proprietary cloud features, including special storage

systems can hinder pipeline portability; also, virtual machines, while portable

and able to encapsulate complex software pipelines, are themselves difficult to

build, configure, and maintain across cloud platforms.

The architecture of CloVR addresses these challenges by

i) simplifying use of cloud computing platforms by automatically provisioning

resources during pipeline execution;

ii) using local disk for storage and avoiding reliance on network file systems;

 80

iii) providing a portable machine image that executes on both a personal

computer and multiple cloud computing platforms;

In this chapter, we describe the technical architecture of CloVR and evaluate some of the

features, particularly portability, scalability, use of local storage, and automated access of

cloud resources.

 81

Figure 7.1 - Schematic of the automated pipelines provided in the CloVR virtual machine

The CloVR virtual machine includes pre-packaged automated pipelines for analyzing raw sequence data on

both a local computer and cloud computing platform.

Architecture overview

Implementation

CloVR is a virtual machine (VM) that executes on a desktop (or laptop) computer,

providing the ability to run analysis pipelines on local resources (Figure 7.1). CloVR is

invoked using one of two supported VM players, VMware [55] and VirtualBox [56]; at

least one of which is freely available on all major desktop platforms: Windows,

Unix/Linux, and Mac OS. On a local computer, CloVR utilizes local disk storage and

compute resources, as supported by the VM player, including multi-core CPUs if

available. To access data stored on the local computer, users can copy files into a “shared

folder” that is accessible on both the VM and the local desktop. Once inside the shared

 82

folder, CloVR can read this data for processing. Similarly, CloVR writes output data to

this shared folder, making pipelines outputs available on the desktop. This shared folder

feature is supported by both popular desktop virtual machines players, VMware and

VirtualBox.

Figure 7.2 - Architecture of the CloVR application

CloVR provides a virtual machine (VM) that is run on user’s local desktop or laptop computer. The user

interacts with the local VM via a command line or web interface to execute pipelines. Optionally, clusters

of additional VM instances are provisioned on supported cloud platforms for increased throughput. Each

cluster has a master VM instance that provides services for GridEngine [153] and Hadoop [154]. Input

data and output data is transferred between the local VM and a master VM instance in the cloud over the

Internet.

Optionally, the CloVR VM can be configured to automatically access a cloud computing

provider for additional resources. Supported clouds include the commercial Amazon

 83

Elastic Compute Cloud [61] and the academic platforms DIAG [63] and Magellan [62].

In utilizing the cloud, multiple copies of the CloVR VM execute concurrently and

interact as a cluster for parallel processing of data (Figure 7.2).

Figure 7.3 - Components of the CloVR virtual machine

The CloVR virtual machine includes pre-installed and pre-configured software dependencies (blue) on an

Ubuntu operating system. Key software that is bundled with the VM is shown. The (*) indicates software

that was developed as part of the CloVR project

Components of the CloVR VM

To address technical challenges associated with software installations and pipeline

configurations, the CloVR VM comes bundled with all required software pre-installed

and pre-configured, (Figure 7.3). The bundled software includes a base operating system

(Ubuntu 10.04 [155] + BioLinux [17]), job schedulers (Grid Engine [153], Hadoop

[154]), and a workflow system (Ergatis [102]). In addition, numerous open source

bioinformatics tools are pre-installed and bundled into automated pipelines for pre-

defined analysis protocols (Table 8-1).

Building the virtual machine images

An automated build and configuration process is used to generate the virtual machine

images in formats compatible with both virtual machine players and cloud computing

 84

platforms. A specially configured VM (CloVR buildbox, http://clovr.org/developers/)

running the Hudson continuous integration server [156] is used to schedule and automate

the builds. The build starts with a skeleton Ubuntu 10.04 disk image [157]. During the

build process, a series of recipes are applied to the skeleton image to install all the

necessary software, resulting in a fully installed disk image. Finally, this disk image is

converted into formats for VMWare (.vmdk files) and VirtualBox (.vdi files). The raw

disk image is also uploaded to Amazon EC2 as an AMI and DIAG as a Xen compatible

image for Nimbus [158].

Components of a CloVR automated pipeline

The CloVR VM (version 0.6) currently includes four pre-packaged and automated

analysis protocols (Figure 7.1): (i) a simple parallelized BLAST [159] search protocol

(CloVR-Search ver 1.0 [160]); (ii) a comparative 16S rRNA sequence analysis pipeline

(CloVR-16S ver 1.0 [161]); (iii) a comparative metagenomic sequence analysis pipeline

(CloVR-Metagenomics ver 1.0 [162]); and (iv) a single microbial genome assembly and

annotation pipeline (CloVR-Microbe ver 1.0 [163]). For each protocol, a limited set of

configuration options and pre-defined input files are supported, such as SFF, FASTA,

and FASTQ. Output files are generated in standardized formats, such as FASTA and

Genbank flat files.

 85

Figure 7.4 - Steps of an automated pipeline in CloVR

Each CloVR protocol is implemented as two discrete pipelines: 1) a worker pipeline and

2) a wrapper pipeline. CloVR uses the Ergatis workflow engine [102] to describe and

execute each of these pipelines. The worker pipeline implements and performs the

particular analysis protocol, while the wrapper pipeline manages automated use of the

cloud from the desktop using the local VM client (Figure 7.4). Each wrapper pipeline is

composed of seven primary phases: (1) pre-processing, including quality and integrity

checks of input data; (2) starting a remote cluster for distributed processing; (3) data

upload to the cloud; (4) execution of the worker pipeline; (5) monitoring of the worker

pipeline; (6) data download from the cloud and (7) post-processing. Steps (2), (3), (6) are

only executed when utilizing a remote cloud platform.

To implement each of these steps in the wrapper pipeline, we built a set of utilities and a

web services API in a software package called Vappio (http://vappio.sf.net). Vappio is

 86

built on top of the Amazon EC2 API [164] for managing images, instances, and

authentication key pairs. Vappio provides functions for managing (i) clusters, (ii)

datasets, and (iii) protocols and pipelines. A summary of the Vappio functions and web

services follow:

(i) Clusters. On the cloud, clusters of CloVR VM instances are configured for parallel

processing. CloVR utilizes these clusters as temporary resources during pipeline

processing, provisioning a new cluster for each pipeline, and terminating the cluster upon

pipeline completion. Each clusters runs an instance of both Grid Engine [153] and

Hadoop [154] for job scheduling. Clusters are composed of a single master node and one

or more worker nodes (Figure 7.2). The first VM that is started in a cluster is designated

as the master node. Subsequent VMs are designated as worker nodes and automatically

registered with the master node and added to the cluster upon boot of the image. The

user-data environment on the cloud platforms is used to configure each node type and

associate master and worker instances during image boot. Worker nodes are configured

in Grid Engine queues for receiving a number of work units based on the number of

CPUs that are available on the instance. The client CloVR VM running on the user’s

desktop is also considered a cluster, named ‘local’ that is both a master and worker type.

To manage the cluster on the cloud, Vappio provides web services to dynamically start

(vp-add-cluster), resize (vp-add-instances) and terminate (vp-terminate-cluster) clusters

of VM instances. These web services in turn utilize EC2 API calls [164], including ec2-

run-instances, ec2-terminate-instances, and ec2-describe-instances. In addition to

executing the EC2 API calls, the Vappio web services manage the configuration of Grid

 87

Engine and Hadoop on each instance as the instance is started and added to the cluster, or

terminated and removed from the cluster.

In order to access the cloud, user account and authentication information is required and

provided by the cloud provider. To simplify access to the cloud during pipeline

execution and without jeopardizing security, Vappio provides a unique identifier, called a

credential name, for each cloud account. During an initial configuration, the credential

name is configured and associated with the cloud account and authentication keys using

the Vappio web service, vp-add-credentials. This credential name is then used to refer to

the account during subsequent Vappio web service calls during pipeline execution.

All communication and data transfer between a user’s desktop and the cloud is managed

by the client CloVR VM running on a local computer. The local client VM

communicates with the master CloVR VM on the cloud to transfer data, invoke worker

pipelines, and monitor pipeline state (Figure 7.4). To provide security and help ensure

data privacy, each remote cluster of CloVR VMs uses a unique authentication key. This

key is used to enable secure data transfer between instances with Secure Shell (SSH) both

within the cloud and over the Internet and between the local client VM and master cloud

CloVR VMs.

(ii) Datasets. In Vappio, datasets are described as lists of files or Uniform Resource

Locators (URLs) that are accessible by a cluster or the local client CloVR VM. User

provided sequence data, reference data, and outputs generated by the CloVR analysis

pipelines are all managed as datasets. Datasets are moved between a local desktop and

disk storage on the remote cluster as needed for processing (Figure 7.4, Steps 3 and 6).

Vappio provides utilities for 1) registering new data sets with the cluster (vp-add-

 88

dataset), 2) transferring datasets between clusters (vp-transfer-dataset), and 3) describing

information about a data set (vp-describe-dataset).

Figure 7.5 - Example of specification files used for running pipelines

(iii) Protocols. Pre-defined analysis protocols are invoked for data analysis using a single

configuration file (Figure 7.4, Step 4). Vappio provides utilities for configuration and

invocation of analysis protocols with the services vp-describe-protocol and vp-run-

pipeline. An example of the specification file for CloVR-Microbe454 produced by vp-

describe-protocol is shown in Figure 7.5. The specification file includes references to

input data sets, configurable analysis parameters, and, optionally, references to cloud

 89

account credentials for accessing the cloud. Protocols are executed with vp-run-pipeline,

which accepts the specification file as input. Once executed, we refer to the running

instance of the protocol as a pipeline. The status of pipelines is monitored with the

service vp-describe-pipeline.

To ensure transparency of the CloVR-supported analysis, each CloVR protocol is

described by two documents: (1) An abstract workflow XML file that is used by the

Ergatis workflow engine to execute the protocol and (2) a human readable standard

operating procedure (SOP) document that describes the protocol in detail. The abstract

workflow XML is an exact description of the executions used to perform the analysis.

The SOPs describe each step of the pipeline, including software tools, software versions,

and parameters used. The protocol SOPs are published online with references stored on

the VM and in pipeline configuration files, allowing for association between an analysis

result and protocol description.

To ensure reproducibility of individual analysis results, CloVR uses the following

additional principles: 1) All pipelines are executed using the Ergatis workflow system

that tracks process flow and exact parameters invoked at each step in an XML file. 2) As

part of the CloVR software installation process, versioning is applied to each analysis

protocol, reference data set, and to the CloVR VM image itself. All results generated

during CloVR pipeline runs have references to these versions.

Data storage and transfers

Local disk storage on the personal computer is used to store all input data and results

generated during an analysis. Input data is copied to the cloud if needed. To improve

 90

network transfer performance, CloVR uses high performance Secure Shell (HPN-SSH)

[165] to transfer files. Rsync [166] is also used in conjunction with HPN-SSH to avoid

redundant data transfers. Since all network transfers between a local desktop and the

cloud are managed by CloVR VMs, data transfer with these tools is automatic, invisible

to the user and does not require further software installations or configurations by the

user.

The pipelines in CloVR are configured to avoid unnecessary data transfers for both local

and cloud-based execution modes. For example, several of the supported protocols rely

on publically available reference data sets that are either permanently hosted in the cloud

or at an Internet accessible URL. When executing CloVR pipelines in the cloud,

pipelines will utilize reference datasets hosted on the cloud whenever possible. For local

execution, the reference datasets must first be downloaded to the local VM over the

Internet. CloVR ensures such local transfers happen only once, the first time the data is

accessed, and the reference data is then saved locally for subsequent access.

For data storage on the cloud, CloVR utilizes local disks and does not require any access

to a shared file system, such as a NFS server. Instead, all intermediate results or

temporary files are stored on the local ephemeral disk storage provided to each VM

instance. Under this model, worker nodes must receive copies of input data from the

cluster master node before beginning work. This is implemented using the job prolog

feature of Grid Engine to copy input data prior to job execution. Similarly, output data is

copied back to the master node using the job epilog feature of Grid Engine. To provide

robustness and scalability, all data transfers to and from the head node are also scheduled

as jobs in Grid Engine queues named staging.q and harvesting.q. The number of slots in

 91

these queues allow for control over how many simultaneous transfers a master node will

process. HPN-SSH and rsync are used to perform the transfer between instances in the

cloud.

In some cases, pipelines use reference data sets or intermediate outputs that need to be

accessed on every instance in a cluster. A single directory (the staging directory, eg.

/mnt/staging/) is used to mirror such data to all instances in the cluster. Rather than rely

exclusively on the master node to provide the mirror, worker nodes can share copies of

the staging directory in a peer-to-peer fashion to provide additional bandwidth and

improve throughput. Upon receiving a complete copy of the staging directory, worker

nodes are added to a Grid Engine queue (named stagingsub.q) indicating that they can

mirror copies to peers. Grid Engine queues are also used to limit the number of transfers

between each worker node.

Upon pipeline completion, final outputs are transferred from the master node instance

outside the cloud to the local VM. After output has been transferred back to the local

CloVR VM, the cluster and all associated local storage is no longer needed and instances

are terminated.

Automatic resource provisioning in the cloud

Cloud resources are automatically provisioned during execution of CloVR pipelines. To

accomplish this, steps are added to the pipelines allocate additional cloud resources if

necessary. Pipelines that are configured to run exclusively on the personal computer skip

these resource allocation steps. To determine the number of compute instances needed

for these protocols, custom scripts consider one or more of these factors: 1) hard-coded

 92

assumptions about expected resource utilization and 2) instance limits from the cloud

provider or user 3) estimation of runtime from input data.

To support genome assembly of Illumina data using Velvet, CloVR pipelines are hard-

coded to start a single high memory instance type (m2.xlarge) on Amazon EC2 prior to

running assembly that provides 17.1GB of RAM, which in our testing is sufficient for

assembly of single bacterial genomes.

For three of the pre-packaged protocols in CloVR (Microbe, Metagenomics, and Search),

BLAST searches are the primary processing bottleneck. An estimation of total BLAST

runtime can serve as a good approximation to predict the overall pipeline runtime. A

default minimum of 5 c1.xlarge instances providing a total of 40 CPUs is started to

support BLAST steps in these pipelines. For the CloVR-Search and CloVR-

Metagenomics protocols, a prediction of total CPU runtime is estimated based on the

input data using Cunningham [167] to determine how many instances to start prior to

search.

For a particular search database, BLAST runtimes can vary depending on the length and

composition of query sequences. Cunningham, which was implemented as part of the

CloVR project, rapidly estimates BLAST runtime by comparing kmer profiles (k=3 for

protein, k=11 for DNA including reverse complemented sequence) for a reference

database and the input query sequence. The number of matching kmers between the

query subsample and the reference database are saved. The kmer profile of the reference

database is pre-calculated and saved so that only the kmer profile of the query sequence

needs to be calculated during pipeline execution. Then, a different linear model for

BLASTN, BLASTP, and BLASTX, is built in the common form:

 93

 where the runtime T depends on the number of shared seed pairs M, and the average

query sequence length L. Calibration runs of each BLASTN, BLASTP, and BLASTX

using randomly selected shotgun metagenomic datasets lised in {White, 2011 #527} on

c1.xlarge Amazon EC2 machine types are used to obtain parameters and . Default

BLAST parameters were used with the exception of ‘-b 1 -e 1e- 5 -F F’.

Also impacting runtimes is number and size of partitions that are used for parallel

processing. In CloVR, BLAST searches are run in parallel by dividing the input query

multi-FASTA files into partitions and executing a search of each partition concurrently

against the reference database. Over-partitioning of the data in which jobs finish in a

very short in duration can lead to inefficient use of resources and increased runtimes,

since there is overhead in scheduling and invocation of each job. Provided a runtime

estimate, the partition size P for each BLAST query is obtained by

where Nq is the total number of query sequences, T is the estimated CPU runtime from

Cunningham or some other estimation procedure, and R is a configurable parameter for

the preferred execution time for a single data partition (default: 2 hours). The support for

runtime estimates is provided as a configurable module that reads the pipeline

configuration and produces an estimate. This allows for custom modules for runtime

prediction in the future using some other logic.

The cloud provider may impose a limit on the maximum number of instances that can be

started by a user (eg. Amazon EC2 imposes a default of 20 instances per account, which

 94

can be raised on request). CloVR also has an instance limit option in each pipeline

specification file. CloVR prevents attempts to start more than this number of instances

for a particular pipeline.

We evaluated four features of the CloVR architecture: portability across computing

platforms, support for elastic provisioning of resources, scalability of clusters of

instances, and use of local data storage on the cloud.

Results

Table 1 – Portability of the CloVR VM

 Local PC

(Intel Xeon 5130)

Max No CPUs : 4

DIAG

(medium instance)

Max No. instances: 5

Max. No CPUs : 20

Amazon EC2

(c1.xlarge instance)

Max No. instances:
18

Max No. CPUs: 80

 Runtime Runtime Runtime

Assembly 29 min 25 min 28 min

Annotation 2 days 6 hrs 26 min 9 hrs 30 min 7 hrs 2 min

Total 2 days 7 hr 5 min 9 hrs 55 min 7 hrs 30 min

CloVR runs on the desktop and can utilize resources at multiple cloud providers

To demonstrate the portability of CloVR, we executed a single analysis protocol (CloVR-

Microbe) analysis on a personal computer and two cloud computing platforms (Table 2).

The input data was comprised of 250,000 454 FLX Titanium sequencing reads of the

bacterium Acinetobacter baylyi totaling ~89Mbp is and expected to cover the ~3.5Mbp

genome at 25-fold coverage. Identical output, comprised of 38 contigs (N50=262Kbp)

 95

and 3417 predicted protein coding genes was obtained on all three platforms. For local

analysis, a 4-CPU VM with 8GB of RAM was used. When using the cloud platforms,

the local client VM can be executed in as little as 2GB of RAM. The DIAG and EC2

platforms allowed for execution of steps of the protocol in parallel offering 4-CPUs per

“medium” instance type on DIAG (8GB RAM) and 8-CPUs per “c1.xlarge” instance type

on EC2 (7.5GB RAM).

Our evaluation of the CloVR-Microbe protocol demonstrates the ability to run a genome

assembly and annotation protocol both locally on the cloud for increased throughput. A

single configuration setting is changed to invoke the pipeline on either the personal

computer or the supported clouds.

 96

Figure 7.6 -Execution profile of an analysis with CloVR-Microbe
The example shows the number of CPUs and their workload that are part of an Amazon EC2 cluster that is

used to run CloVR-Microbe. The BLAST and HMMER searches are amenable to parallelization and are

executed across a cluster of CPUs, while genome assembly processing is run on a single CPU.

CloVR provides automated resource provisioning in the cloud

Elasticity, i.e. dynamic provisioning of resources, is a primary feature of the cloud and

allows for the addition of computational resources on-demand. An example of this

dynamic capability is provided for the microbial genome assembly and annotation steps

of the CloVR-Microbe pipeline (Figure 6). In this example, the CloVR-Microbe protocol

was used to perform whole genome assembly and annotation on 500,000 sequencing

reads from the 454 Titanium FLX platform. The local VM client first starts a remote

(master) VM instance on the cloud. The input sequencing reads (676 MB compressed

 97

SFF file) were copied to this instance and genome assembly is completed on a single

c1.xlarge VM instance, using no more than two virtual CPUs. Then, prior to genome

annotation, 15 additional CloVR VM instances were allocated to improve processing

throughput. A configurable parameter limits the number of instances that are added. Idle

instances are subsequently terminated automatically upon job completion on an hourly

timer. Importantly, this provisioning and termination of resources is automatic and does

not require the user to interact with the remote cluster on the cloud.

This protocol was migrated to the CloVR VM from a pipeline used in the online service

IGS Annotation Engine [109], and was not optimized for performance on a cluster.

Many steps of later steps in this protocol are amenable to parallel computation but have

not been implemented to run across a cluster, currently requiring hours to run on a few

CPUs. Improved support for parallel computation and other optimizations are left as

future work.

Figure 7.7 - Dynamically allocated cluster of CloVR VM instances running BLAST
A cluster of CloVR VMs is deployed on-the-fly and scaled to 160 c1.xlarge Amazon EC2 instance types

(totaling 1280 virtualized CPUs).

 98

To assess the scalability of the CloVR architecture, we executed BLASTX searches using

CloVR-Search on clusters composed of up to 160 c1.xlarge instances, comprising 1280

CPUs of a random sample of ~100M nucleotides from a oral microbiome sample

sequenced with a 454 Titanium FLX machine (unpublished) against NCBI non-redundant

protein database (Figure 7.7). This BLASTX search ran at a throughput of ~36.9Mbp per

instance hour for a c1.xlarge Amazon EC2 instance type, at an estimated cost of ~$108

per hour for 160 instances. A subset of the data was used for the evaluation; the

estimated runtime for the complete sample of 561Mbp is ~15 hours (19,940 c1.xlarge

CPU hours) at a total cost of ~$1641.

 99

Figure 7.8 - Visualization of data transfers between instances over time in a cluster of CloVR VMs.

Each arc represents the lifetime of a CloVR VM instance with the time labeled relative to bootup of the

instance. The red arc is a master node CloVR VM and grey arcs are worker VM instances. Data transfers

between master and worker instances are shown as grey lines. Transfers between worker instances are

shown as blue lines.

CloVR uses local disk and does not rely on network file systems

Bioinformatics tools typically operate on files and expect a file system for reading and

writing data. Bottlenecks in reading or writing data on a shared, network-based file

system, such as NFS [168], can cause performance problems during processing,

especially when many concurrent processes are executing against the shared resource.

 100

CloVR does not rely on network file systems for processing and, instead, uses local disk

to avoid introducing data transfer bottlenecks during computation. To achieve this, input

files must be transferred to compute hosts (worker instances in Figure 7.2). These file

transfers between master and worker node types are made prior to computation for inputs

and subsequent to job completions for outputs. A depiction of these data transfers during

a run of CloVR-Microbe is shown in (Figure 7.8). Some of the data transfers are required

to support parallel execution of BLAST, where the input query FASTA files is split into

fixed size partitions and each partition is searched independently and in parallel. In

CloVR, the input FASTA data and output BLAST report for each partition is copied

between the master VM and a worker VM before and after processing.

Figure 7.9 - Network throughput on a cluster of CloVR VMs

The aggregate network throughput as measured by Ganglia [169] during a peer-to-peer data transfer on a

cluster of 160 c1.xlarge instances on Amazon EC2.

 101

Reference data sets and some intermediate outputs need to be accessed by all VM

instances in a cluster. To improve distribution of these data sets, a peer-to-peer data

transfer scheme is used for sharing intermediate results and reference data sets (blue lines

in Figure 7.8). To evaluate the performance of these data transfers, we tested the

throughput for providing 3.1GB of compressed reference data for BLAST to 100

c1.xlarge VM instances (Figure 7.9). During this execution, instances came online in a

staggered fashion and received copies of the reference data upon boot of the instance.

Aggregate throughput exceeded 1.1 GB/second. By comparison, network transfer

speeds between a pair of c1.xlarge instance type on Amazon EC2 network were found to

be typically fall below ~40MB/second.

CloVR reduces bottlenecks in sequence analysis by using two related technologies:

virtual machines and cloud computing. By using virtualization technology, CloVR

simplifies deployment of complex bioinformatics workflows by providing a single

executable (the virtual machine) that can execute on a personal computer. In addition, by

supporting Amazon EC2 and other cloud computing platforms, CloVR provides access to

large distributed computing resources, providing a potential alternative to building and

maintaining in-house infrastructure for computational analysis.

Discussion

CloVR is implemented as a software-as-a-service solution for sequence analysis,

although, in contrast with Internet based services, CloVR runs directly on a personal

computer rather than a central server. Web accessible workflow systems, such as Galaxy

[101] or Taverna [104], provide a centralized analysis resource for a lab or community

 102

that is accessible over the network and typically executes on dedicated resources where

users upload data for centralized processing. This centralization of services is in contrast

to the current decentralization in genome sequence generation. CloVR provides an

alternative decentralized model, where each user runs an instance of the CloVR VM on

their personal computer that is independent from others in a multi-user environment. By

running on the desktop, CloVR can utilize local compute and storage resources and avoid

transfer of user generated sequencing data over the Internet in some cases. The CloVR

architecture also avoiding contention for centralized web servers for processing, while

still supporting the shared cloud computing resource for increased throughput.

As the number of computing cores available in a personal computer is expected to

increase in the coming years, the desktop support in CloVR provides an opportunity to

utilize substantial computing power on a local machine; potentially avoiding need of the

cloud entirely.

CloVR does not provide all of the features of a genomic workbench, in particular it does

not provide a web interface for running and configuring individual analysis tools. While

genomic workbench systems have focused on making individual tools easy to run and

integrate into pipelines, many projects rely on static, standardized analysis pipelines. In

contrast to genomic workbenches that provide extensive choices of tools, CloVR

provides pre-defined standard pipelines that integrate tools for particular analysis

objectives so that no configuration or expertise with individual tools is required. This

level of automated processing is particularly useful for users that find choice of

bioinformatics tools overwhelming and instead seek recommendations for best practices.

While our work has focused on providing automated pre-defined pipelines, by providing

 103

a VM, all the bioinformatics tools included in CloVR can be run from a command line

terminal within the VM. This mode of access may also be of interest for experienced

users. While, at the time of this study, CloVR does not provide a web interface, work on

a web-based user interface is in progress. Similar to a local interaction with the VM, the

web interface will run locally as a service on the VM, running on a user’s desktop.

CloVR provides utilities for building private clusters of VM instances on-demand. A few

other systems, Nimbus one-click clusters [170], Galaxy CloudMan [171] and StarCluster

[172], are also designed to deploy clusters of instances in the cloud. In contrast to these

systems, CloVR users are not expected to start, manage, or resize clusters of VM

instances in the cloud. Instead, pipelines include steps to provision these resources

automatically. This ability enables cost savings in the case of commercial clouds, by

allocating resources only as they are needed ("just-in-time").

To help ensure compatibility with multiple cloud providers, CloVR avoids reliance on

proprietary features of individual cloud providers, instead utilizing only three EC2 API

calls during pipeline execution (ec2-run-instances, ec2-terminate-instances, and ec2-

describe-instances). Such core functions of the EC2 API are supported by all the clouds

evaluated and are becoming a standard in middleware that provides cloud services.

CloVR is ready to support an emerging cloud computing platform that provides this

baseline interface.

The architecture of CloVR, which utilizes utilize Grid Engine [153] for job scheduling

and uses local disks for storage, allows for migration of tools and pipelines to the cloud

without reimplementation. All of the analysis protocols provided on the CloVR VM

were migrated from a non-cloud version that previously executed on a static local

 104

compute cluster. This approach is in contrast to cloud-ready frameworks like Hadoop,

which are designed algorithms that follow MapReduce [115], often requiring new

methods or reimplementation of existing tools to utilize the framework. As more tools

are becoming available utilizing MapReduce [116,117,118], Hadoop is included on the

VM for future integrations of new tools that take advantage of this framework.

Compute clusters often rely on centralized, shared storage systems or file servers to

simplify access to data for users and pipelines. As part of the design to be both portable

and scalable on cloud computing networks, CloVR does not rely on a shared, network file

system, such as NFS, for storage. Instead, CloVR relies on local storage on either the

users’ desktop to store pipeline input and output, or temporary disk storage available the

cloud VM instances during pipeline execution. Other distributed storage systems, such as

Amazon S3 [173] or HDFS [174] require use of specialized utilities to read and write

data. Rather than retool software to use these systems, all tools integrated into CloVR

pipelines operate on files and local file systems without any required modification of the

included analysis tools. Also, by using local disk for storage rather than the network,

CloVR can be expected to run on commodity cloud systems with relatively slow

networking and without reliance on the specialized storage features of cloud providers,

such as Amazon Elastic Block Storage [175].

The CloVR architecture saves all pipeline inputs and output on the personal computer,

enabling additional control on maintaining data privacy. In contrast, online

bioinformatics resources require the user to relinquish some control over data, since

sequences and metadata are uploaded and saved on a remote server for processing.

Although CloVR transfers data to cloud servers for processing, CloVR uses the cloud as

 105

a temporary resource for processing and does not require that either inputs or results are

stored on the cloud.

With the increasing volume of next-generation sequencing data, data transfer over the

Internet can be an impediment for utilizing the cloud. In CloVR, the transfer of user

inputs and sequence data to and from the cloud occurs over the Internet and can be slow.

To address this bottleneck, CloVR currently utilizes HPN-SSH [165] for all data

transfers. In addition, the CloVR VM includes the GridFTP fast file transfer protocol

[176]. We may be able to utilize this protocol or others in the future to provide further

speedup. Since all data transfers occur between local and remote CloVR VM as part of

pipeline execution, use of new data transfer protocols can be implemented without user

installation or configuration of either a server daemon or client utility.

A strategy for moving analysis to data, rather than transferring data over the network, has

been raised as a potential solution to dealing with data transfer bottlenecks [19]. The

portability of the VM provides such flexibility. The CloVR VM is 1.4GB compressed

and can be easily transferred to computational resources that are co-located with large

data sets. The CloVR VM already supports a similar model in the utilization of reference

databases, such Uniref100 [177], which we hosted at the cloud to support the CloVR-

Microbe genome annotation protocol.

CloVR promotes transparency of methods, by providing published and accessioned

protocols for each pipeline, and enables reproducible research, by executing all pipelines

in VM environment. For complex pipelines, reproducibility becomes increasingly

difficult and virtualization and clouds have been recognized as ideal platforms to promote

pipeline reproducibility [114]. CloVR realizes this potential by executing all steps on a

 106

portable VM that encapsulates the entire runtime environment, included versioned

protocols and analysis results.

The CloVR pipelines are composed of multiple steps, only some of which are

computationally demanding or support parallelization on multiple CPUs. To match

pipeline needs with available resources, each CloVR pipeline includes steps to

automatically provision cloud resources as needed. One strategy for efficient allocation

of resources is to estimate runtimes for steps that execute in parallel so only as many

resources are provisioned as can be used. As an example, CloVR-Search and CloVR-

Metagenomics currently use a utility that we’ve built, named Cunningham [167], to

estimate the runtime of BLAST during pipeline execution. This strategy is only meant to

provide a rough estimate to avoid starting to many instances for small searches or too few

instances for larger searches. In addition, a rough estimate of runtime can help avoid

over-partitioning of the input query sequence data resulting in very short search time for

each data partition, introducing overhead that degrades overall performance. Our use of

Cunningham is meant to be illustrative and by making runtime estimates and cluster

provisioning discrete steps in the pipeline, we can incorporate other runtime prediction

methods in the future. While not all pipelines will consume a predictable amount of

resources, the ability to predict runtimes can also be used to provide an a priori estimation

to the user of how much an analysis will cost or whether a particular analysis is even

feasible. We plan to explore providing such estimates as future work and anticipate this

will be of much interest to users of the software.

While current protocols in CloVR focus on applications in microbial genomics, the

platform is generic and useful for other genomics applications. Ongoing and future work

 107

will implement analysis pipelines for viral and eukaryotic genomics and transcriptomic

projects. Also, while the whole genome and metagenomics protocols largely rely on

BLAST for identifying sequence similarities, future work can add protocols that utilize

more efficient tools and methods allowing for processing larger datasets. To enable

further comparisons across protocols, more work is needed especially in standardization

of analysis outcomes and data formats [94,178]. Analysis competitions and bake-offs are

a good driver for these developments [179].

The CloVR VM can serve as a platform for the integration of additional or alternative

tools and pipelines developed by other members of the research community. The recipe

driven build process used in CloVR to build a single VM image for both the desktop and

cloud computing platforms can also be used to build other custom VMs. A first step in

this direction has been made by the use of the CloVR to create a VM for the QIIME

package [180].

 108

Chapter 8 - Resources and costs for microbial sequence analysis

evaluated using virtual machines and cloud computing

Costs are commonly evaluated for sequencing technologies and continue to decrease

[181], while costs for computational analysis have proven more elusive to quantify [120].

The availability of cloud computing platforms with transparent pricing has enabled

attaching real dollar costs to bioinformatics workflows. Such costs provide both a

measure of analysis efficiency and have practical value for project planning and

budgeting. There is some debate of the economical feasibility of using commercial cloud

computing platforms [19,119]. The evaluation of cost is complicated by poorly defined

analysis tasks and difficulties in comparing analysis protocols across computational

platforms. For example, researchers producing sequence data are confronted with the

following questions:

(i) What are the available methods for sequence analysis in order to generate

publishable results in standards-conforming formats?

(ii) What are the computational requirements for analysis?

(iii) Given a particular application, does it make sense to use Platform as a Service

(IaaS) models, such as the Amazon EC2 cloud, or to invest in a local grid

network?

(iv) What are the real dollar costs of analysis?

In this Chapter, we address these questions and provide cost and resource benchmarks for

microbial sequence analysis using the CloVR platform (Chapter 7). These benchmarks

 109

are of interest to researchers, service providers, and funding agencies that invest in

microbial genomics projects.

 110

Table 8-1 Overview of CloVR analysis protocols

Protocol Process Tool Input Output

CloVR-Search
[160] Database search BLAST [37] nt or pep

FASTA BLAST output

CloVR-
Microbe [163]

Assembly Celera assembler [182]
Velvet [183]

Raw
sequence
data (sff,

nt.FASTA,
nt.FASTQ)

nt.FASTA, BNK

Gene prediction Glimmer3 [48] pep.FASTA

tRNA prediction tRNA-scan [184] GBK, SQN
rRNA prediction RNAmmer [185] GBK, SQN

Functional
annotation

BLASTX (+Extend Repraze
[186]) against

UniRef100 [177], COG
[187] db

HMMER [188] search

against Pfam [189],
TIGRfam [190]

 Annotated GBK,
SQN

CloVR-16S
[161]

Quality checking Mothur [110]
Qiime [111] nt.FASTA nt.FASTA

Taxonomic
classification RDP classifier [191] raw output,

summary reports
Multiple sequence

alignment
Mothur

Qiime (PyNAST) nt.FASTA
alignments

OTU clustering Mothur (distance matrix)
Qiime (uclust [192]) OTU list/table

α-diversity
analysis

Mothur (collectors,
rarefactions, estimators)

summary
reports/ diversity

curves
β-diversity/
comparative

analysis

Metastats [193], custom R
scripts, Qiime summary

reports/figures

CloVR-
Metagenomics

[162]

Clustering and
artificial replicate

removal
UCLUST nt.FASTA nt.FASTA

Functional
classification

BLASTX against
COG db raw output,

summary reports
Taxonomic

classification
BLASTN against
RefSeq db [129] raw output,

summary reports

Comparative
analysis Metastats, custom R scripts summary

reports/figures

Abbreviations: nt, nucleotide; pep, peptide; BNK, Bank format; GBK, GenBank.; db, database; SQN,

Sequin; Key bioinformatics tools utilized in each protocol are listed. For input, only the required inputs

from the user for each analysis track are listed. For outputs, only the data saved from each step is listed.

 111

Analysis protocols

Methods

In this study, we utilize a commercial cloud computing platform (Amazon EC2) and

CloVR (Chapter 8) as a model for addressing questions of resource requirements and

costs for microbial genomics applications utilizing high-throughput sequencing

platforms. CloVR supports analysis for a broad variety of small to large-scale genomics

applications. Four analysis protocols for microbial genome analysis (Table 8-1) were

utilized in the study:

(i) a simple parallelized BLAST [159] search protocol (CloVR-Search 1.0 [160]);

(ii) a single microbial genome assembly and annotation pipeline (CloVR-

Microbe 1.0 [163]).

(iii) a 16S rRNA sequence analysis pipeline (CloVR-16S 1.0 [161]);

(iv) a metagenomic sequence analysis pipeline (CloVR-Metagenomics 1.0 [162]);

These protocols were intentionally derived from existing methods for microbial sequence

analysis, including the IGS Annotation Engine [109] for the protocol CloVR-Microbe,

Mothur [110] and Qiime [111] for CloVR-16S, and BLAST for CloVR-Metagenomics.

The reference for each CloVR pipeline provides a schematic diagram as well as a detailed

document describing the standard operating procedure (SOP).

The 16S rRNA protocol allows for intra- and inter-group comparative analysis, and is

based on methods from Mothur [110], Qiime [111], the RDP Bayesian classifier [194],

and Metastats [193]. CloVR-16S calculates the number of non-redundant sequences

within the total data set and uses a threshold of 50,000 above which the computationally

 112

expensive distance matrix calculation, which is part of the Mothur component of the

pipeline, is not performed. The metagenomics protocol performs clustering of redundant

sequences, a BLAST-based taxonomic and functional assignment against the NCBI

microbial genome Reference Sequence collection (RefSeq) [195] and clusters of

orthologous genes (COGs) [187] databases, respectively, and further allows for

comparative analysis between subjects of interest. We also include an alternative

metagenomics protocol that calls full and partial ORFs on shotgun fragments using

Metagene [196], followed by functional annotation of predicted peptides using BLASTP

against the NCBI COG database. The single microbial genome analysis protocol is based

on the IGS Annotation Engine [109], with the addition that sequence assembly is

performed using Celera Assembler [197] for 454 and Sanger platforms and Velvet [183]

for Illumina platforms. This protocol performs a comprehensive annotation including

gene prediction with Glimmer3 [48], ribosomal RNA (rRNA) gene identification with

RNAmmer [185], transfer RNA (tRNA) genes identification with tRNAscan-SE [184],

and two types of homology searches using BLASTX against UniRef100 and HMMER

[198] against Pfam [199] and TIGRFAM [200].

Computational resources

All analyses were performed using the CloVR version beta-0.5 (build clovr-standard-

2011-12-04-22-00-04). The local computer used for evaluation was a 64-bit quad core

(Intel Xeon E5520 2.27 GHz CPU) with 6 gigabytes of RAM. For local execution,

CloVR was run using VMware Player v. 2.0.5 build-109488 [55] configured to use a

single CPU core and 2012 MB of memory. Amazon EC2 provides numerous instance

types with varying CPU speeds, available RAM and storage [61]. Previous work in [121]

 113

showed the choice of c1.xlarge to be most cost efficient amongst the choices for

applications such as BLAST. The c1.xlarge instances provide 8 virtual CPU cores, 8GB

RAM per instance, and 400GB of local temporary disk storage. In this study, each

pipeline was run on a separate cluster of instances within the cloud consisting of one

master node and zero or more worker nodes. All worker node instances utilized c1.xlarge

instances, which at the time of preparing this manuscript were priced at $0.68 per CPU

hour (CPU hr). All master nodes utilized c1.xlarge instances except for Illumina

assembly with CloVR-Microbe. Assembly of Illumina sequence data required nodes with

RAM in excess of the c1.xlarge instance capacity. For single-end Illumina runs, a

m2.2xlarge instance ($1.00/CPU hr) was used providing 17.1GB RAM, while for the

paired-end Illumina run an m2.xlarge master node ($0.50/CPU hr) was used providing

34.2GB RAM. Associated pipeline costs on Amazon EC2 were calculated using cluster

performance charts, visualized with the Ganglia tool (http://ganglia.sourceforge.net/),

which describe the number of instances utilized in each cluster over time. Pipeline

runtimes were obtained from the Ergatis workflow system.

Spot market bid-price simulations

To simulate runtime distributions within the Amazon EC2 spot market, we first collected

corresponding hourly spot prices for the c1.xlarge instance type from October 20, 2010 to

January 24, 2011. Assuming a hypothetical pipeline CPU hour requirement of 120 hours

a range of bid prices ($0.27/CPU hr to $0.80/CPU hr), we simulated the actual (wall-

clock) runtime of a pipeline from random starting points in the collected spot market

price data. Given a bid price β and a CPU hr requirement γ, 500 random starting points

were picked between 10-20-2010 to 01-24-2011, and the runtime was calculated

 114

assuming no processes were running whenever the spot price was above the bid price β.

For example, if the bid price was constantly greater than or equal to the spot price for a

particular pipeline, then the actual runtime would be γ, because the requested price was

always met. Alternatively, if the bid price fell below the spot price for a single hour, then

no work was done in that hour and the total actual runtime would be γ+1. In these

simulations, if a simulated pipeline extended beyond 01-24-2011, it immediately

continued from the beginning of the time-series. Runtime distributions were visualized in

R (http://www.r-project.org/).

http://www.r-project.org/�

 115

Table 8-2 Datasets used for CloVR protocol benchmarking
Dataset Data

type
Sequencing

platform
Library

type1
Total
reads

Units2 Avg. read
length [bp]

Size
[MB]

Sam
ples

a) CloVR-
Search

Infant gut WGS WGS 454 Titanium SE 595816 0.6
plates

244 145.3 12

Metahit 500K WGS Illumina GAII - 500000
3

1/80
channels

75 37.5 1

b) CloVR-16S
Humanized mice Ampli

con
454 FLX SE 530030 1.1

plates
232 122.5 215

Infant gut 16S Ampli
con

454 FLX SE 399127 0.8
plates

179 95.1 63

Human vagina Ampli
con

454 FLX SE 901264 1.8
plates

223 200.6 392

c) CloVR-
Metagenomics

Obese twins WGS 454 FLX SE 999990 2 plates 219 218.9 18
Infant gut WGS WGS 454 Titanium SE 595816 0.6

plates
244 145.3 12

Nine biomes WGS 454 FLX SE 578537
1

11.6
plates

109 631.2 45

d) CloVR-
Microbe

Escherichia coli
250K

WGS 454 Titanium PE (3
kbp)

250000
3

0.25
plates

279 69.7 1

Escherichia coli
500K

WGS 454 Titanium PE (8
kbp

500000
3

0.5
plates

367 183.9 1

Escherichia coli
8M SE

WGS Illumina GAII SE 800000
03

0.2
channels

36 288 1

Escherichia coli
8M PE

WGS Illumina GAII PE (3
kbp)

800000
03

0.2
channels

49 392 1

Acinetobacter
baylyi 250K

WGS 454 Titanium PE (8
kbp)

250000
3

0.25
plates

338 84.7 1

1 Abbreviations: bp, basepairs; SE, single-end; PE, paired-end (in parentheses: insert size); WGS, whole-genome
shotgun
2 References for unit sizes: Roche/454 GS FLX, 500K reads per plate (two half plates); Roche/454 GS FLX Titanium,
1M reads per plate (two half plates); Illumina GAII, 40M reads per channel (eight channels per flowcell).
3 Trimmed datasets.

Computational requirements of microbial genomics applications

Results

Representative datasets from two next-generation sequencing platforms, the Roche/454

GS (FLX and FLX Titanium) and Illumina GAIIx (Table 8-2), were processed with

several pipelines (CloVR-16S, -Microbe, -Metagenomics, and -Search) to determine

processing requirements for typical microbial genome projects (Table 8-2). The datasets

evaluated include typical outputs of single or multiple sequencing reactions of the

 116

Roche/454 and Illumina platforms or fractions thereof (unpublished sequence data from

the Institute for Genome Sciences), as well as published data from sequencing projects

that received wide recognition in the microbial genomics field

[201,202,203,204,205,206,207].

CloVR-16S was always run on a single-CPU, on both a local desktop and one CPU of a

c1.xlarge Amazon EC2 instance, and finished in less than 14 hours (see Supplementary

Table S1 for a comparison of local and EC2-based CloVR-16S runs). Processed datasets

included up to ~900K Roche/454 GS FLX reads from ~400 samples as well as up to

~40K Sanger reads from ~120 samples. The 530K humanized mouse gut sequences from

215 different samples [206], for example, which contain a total of 14,363 operational

taxonomic units (OTUs), were processed in about the same time as the 901K human

vaginal sequences from 392 samples [205], which only contain 4,967 OTUs.

 117

Table 8-3 Cost and runtime parameters of CloVR pipeline runs on example datasets
Dataset Uploa

d time
Pipeline
runtime

Down-
load
time

Total
cost1

M
ax.
V

Ms
2

M
ax.
CP
Us

QC

a) CloVR-Search,
BLASTN against
RefSeq

 RefSeq
matches

Infant gut WGS 3 min 1 hr 26
min

20 min $11 8 64 34.3

Metahit 500K 11 min 10 hr 42
min

17 min $151 20 16
0

3.2 %

b) CloVR-16S OTUs
Humanized mice 42 min 1 hr 30

min
12 min $3 1 8 14363

Infant gut 16S 3 min 42 min 10 min $1 1 8 3447
Human vagina 1 hr 17

min
1 hr 51

min
14 min $3 1 8 4967

c) CloVR-
Metagenomics3

 nr reads RefSeq
matches

CO
G

mat
ches

Obese twins 8 min 2 hr 25
min

24 min $30 20 16
0

93.6% 33.3 % 29.6
%

Infant gut WGS 7 min 2 hr 17
min

29 min $24 15 12
0

98.2% 35.2 %4 33.5
%

Nine biomes 15 min 5 hr 35
min

39 min $56 20 16
0

89.9% 9.3 % 5.6
%

d) CloVR-Microbe Scaffold/
Contigs

N50 CD
S5

Escherichia coli 250K 24 min 16 hr 21
min

52 min $55 14 11
2

8 / 414 25 kbp 631
3

Escherichia coli 500K 20 min 20 hr 23
min

50 min $60 15 12
0

37 / 141 183 kbp 582
7

Escherichia coli 8M SE 12 min 15 hr 44
min

37 min $62 15 12
0

553 / 553 17 kbp 480
3

Escherichia coli 8M PE 16 min 15 hr 2
min

44 min $44 15 12
0

481 / 481 18 kbp 446
4

Acinetobacter baylyi
250K

20 min 9 hr 46
min

37 min $39 15 12
0

4 / 38 262 kbp 341
7

1 Rounded to the next full dollar.
2 VM instances are linked together as a cluster for parallel processing on the cloud. The number of

instances in a cluster can change during pipeline execution. The maximum utilized is reported
3 CDS, coding sequences

CloVR-Microbe and CloVR-Metagenomics analyses of all datasets were performed

exclusively on Amazon EC2 where all runs finished in under 24 hours (Table 8-3).

Dataset sizes for CloVR-Metagenomics ranged from ~600K reads (454 FLX Titanium),

corresponding to 1.2 full sequencing plates, to 5.8M reads (454 FLX), corresponding to

 118

11.6 full sequencing plates, all of which were processed in less than six hours on Amazon

EC2. Additional time due to upload of input and download of output was consistently

less than one hour. Input data sizes for CloVR-Microbe were representative of typical

microbial genome project work loads and included sequence read numbers corresponding

to a quarter (250K) or a half (500K) plate of 454 FLX Titanium as well a 1/5 (8M reads)

of an Illumina GAIIx lane (single read and paired-end read libraries). Pipeline outputs

were found to be in agreement with results from previously analysis on these projects in

terms of number of detected OTUs, relative OTU compositions, principal coordinate

analysis plots of OTU assignments (CloVR-16S), number of functionally and assigned

reads (CloVR-Metagenomics) and number and lengths of contigs, number and functional

annotation of genes (CloVR-Microbe). Cluster sizes on Amazon EC2 were configured

automatically based on the pipeline requirements as estimated using input data sizes. The

estimates for our evaluation ranged from 14 to 20 machine instances, comprising up to

160 virtual CPUs (Table 8-3).

BLASTN searches of metagenomic WGS sequence data against the NCBI RefSeq

collection were performed on Amazon EC2 using CloVR-Search. Using the multi-CPU

support of Amazon EC2, ~600K reads of 454 FLX Titanium, corresponding to 0.6 full

plates could be processed in less than two hours (64 CPUs maximum usage). In

comparison, the BLASTN search of a similar number (500K) of shorter (75bp) Illumina

GAIIx reads against RefSeq, which produced about the same percentage of matches

(3.2% vs 3.4%) took about 10 times longer to complete (~11 hours), using 2.5 times the

amount of CPUs (160 CPUs maximum usage). For the Illumina GAIIx platform, 500K

 119

reads correspond to only 1/6 of the average sequencing output of a single channel (eight

lanes per flow cell).

Real dollar values of microbial sequence analysis applications

Real dollar costs were calculated for all microbial sequence analyses performed with the

CloVR pipelines (Table 8-3), in order to provide guidelines for costs associated with

microbial genomics projects. The costs include overhead introduced by the CloVR VM to

make use of the cloud environment, including time for data upload and download and to

prepare input and output data. Table 8-3 also provides example network transfer times

for upload to and download from the cloud, although such times can vary substantially

based on the network environment. Several large datasets that are used as reference data

for the CloVR pipelines, e.g. 3.4GB of compressed reference data for CloVR-Microbe

comprising the UniRef100 protein database, were hosted permanently on the Amazon

Simple Storage Service [173], which provides data storage inside the cloud network and

reduced the need for data transfer over the Internet when executing in the cloud. During

the pipeline execution, the free ephemeral instance storage was used as temporary storage

and all output data was compressed and downloaded to the local desktop upon pipeline

completion. All CloVR VMs on the cloud are shut down automatically upon pipeline

completion, in order to avoid charges for idle instances and persisting storage at Amazon

EC2.

Based on the CloVR runs on EC2, the cost of all 16S rRNA community analyses was less

than $10. For the sequence data generated with the short amplicon 454 sequencing

protocol, costs ranged from less than $1 to $2.72. Since all pipelines finished in less than

two hours, the costs associated with Amazon EC2 charges for instances being active

 120

during upload and download times constitute a significant fraction of the total cost (Table

8-3), but are nominally small at < 1 c1.xlarge instance hour ($0.68).

All CloVR-Metagenomics and CloVR-Microbe runs were completed at costs of less than

$100. Sequence analyses with the CloVR-Metagenomics pipeline had an associated cost

of between ~$23 and ~$56; CloVR-Microbe runs had costs of between ~$39 and ~$62.

Figure 8.1 - Cost and performance of CloVR-Microbe on varying size compute clusters
A) Steps of the CloVR-Microbe pipeline can be executed in parallel to improve performance as shown by

plotting pipeline runtimes (blue) and associated costs (red) against the number of CPUs used to perform the

analysis on Amazon EC2. B) Using this data, the theoretical maximum throughput per year (blue) as well

as associated costs (red) of analysis using CloVR-Microbe can be extrapolated. As an example, the output

of a single 454 FLX Titanium machine, run every other day with two single microbial genomes per

sequencing plate (365 total runs), can be processed on EC2 using 60 CPUs (or eight c1.xlarge instances) for

less than $25,000, as indicated by the dashed line.

Capacity and optimization of processing pipelines

The multi-CPU capabilities of the cloud allow for decreased runtime for pipelines

involving analysis steps than can be parallelized, e.g. the BLASTX sequence

comparisons of the CloVR-Microbe pipeline. At the same time, partitioning of data into

 121

multiple parallel processes using the CloVR VM architecture, involves additional

copying of reference data, increases the amount of data transfer between machines and

incurs additional processing overhead. Also, implementation of the protocol may prevent

full utilization of a cluster or limit the partitioning of data for parallel processing. To

determine differences in the CloVR-Microbe runtimes and associated costs depending on

the number of CPUs used, the same dataset of 500K 454 FLX Titanium reads,

corresponding to one full plate of 8kbp paired-end sequences, was run with different

cluster sizes on Amazon EC2 (Figure 8.1, Supplementary Table). Based on this example,

the lowest runtimes and costs achieved fell between 72 CPUs (23 hours, $58) and 120

CPUs (20 hours, $60). These numbers represent a runtime and cost improvement of up to

36 hours and $16 compared to the run with the smallest cluster size (16 CPUs: 56 hours,

$74). A further increase of the cluster size to 172 CPUs did not result in a runtime

improvement but resulted in increased cost ($82) due to under-utilized instances. A local

run on a single-CPU machine was canceled after 14 days.

 122

Table 8-4 Variations in cost and runtime parameters of different CloVR pipeline runs on the same
metagenomics WGS dataset (Infant gut).
Protocol Uploa

d time
Pipeline
runtime

Down-
load
time

Total
cost1

M
ax.
V
M
s2

M
ax.
C
P
Us

QC

 Contigs N50 C
D
S

CloVR-Microbe 20 min 23 hr 45
min

1 hr 23
min

$48 8 64 2056 2524 79
83

 RefSeq
matches

COG
matche

s

CloVR-Metagenomics,
BLASTX

7 min 2 hr 17
min

29 min $24 15 12
0

35.2 % 33.5 %

 RefSeq
matches

COG
matche

s

CloVR-Metagenomics,
Metagene/ BLASTP

7 min 2 hr 19
min

21 min $31 15 12
0

35.2 % 28.7%

 RefSeq
matches

CloVR-Search,
BLASTN (RefSeq)

3 min 1 hr 26
min

20 min $10.8
8

8 64 34.3 %

1 Rounded to the next full dollar.
2 VM instances are linked together as a cluster for parallel processing on the cloud. The number of

instances in a cluster can change during pipeline execution. The maximum utilized is reported.

Three different analysis protocols (CloVR-Microbe, CloVR-Metagenomics and CloVR-

Search) were evaluated for their impact on runtime and cost for metagenomics WGS

analysis (Table 8-4). All analyses were run on the same Infant Gut Microbiome WGS

input dataset [203], corresponding to 0.6 full plates of single-end 454 FLX Titanium

sequences. CloVR-Microbe pipeline was included to provide genome assembly of

metagenomics data in the comparison. We note that the Glimmer gene finding tool [48],

which is part of the CloVR-Microbe protocol, was optimized for large contiguous

assembled sequence data and is known to perform less optimally on short sequence

fragments that contain a large number of truncated coding sequences [196]. Two

variations were used of the CloVR-Metagenomics protocol: i) The BLASTX protocol

 123

searches each nucleotide sequence read against the COG database [187] by translating all

six frames into protein sequences, whereas ii) the Metagene/BLASTP protocol first runs

a gene prediction with Metagene [196], before translating the identified genes into

protein sequences and running a BLASTP search. A BLASTN comparison of each read

against NCBI's RefSeq database performed with CloVR-Search was used as the most

basic analysis protocol.

Compared to the CloVR-Microbe protocol, both CloVR-Metagenomics protocols

executed about ten times faster (~2.5 hours compared to 24 hours) at about 50% of the

cost ($23 / $31 compared to $48) (Table 8-4). Although the BLASTX-based and

Metagene-based CloVR-Metagenomics protocols finished in about the same time, the

BLASTX search against the COG database identified more matches (33% compared to

29%) and the total cost of the pipeline run was lower. The BLASTN search against

RefSeq alone finished in about 1.5 hours for $11.

 124

Figure 8.2 – Costs and throughput of CloVR protocols.

Costs for single CloVR-16S (blue), CloVR-Metagenomics (red) and CloVR-Microbe (black) runs of

comparable datasets (~500K 454 FLX or FLX Titanium reads) on Amazon EC2 were extrapolated to

calculate the number of runs that are obtainable for a given dollar value. The dashed line represent the

average annual cost to set up and maintain a local cluster of 240 CPUs for a three years from Dudley et al.

[120].

To estimate the amount of sequence analysis that is affordable for a given dollar value,

the number of analysis runs using three different protocols (CloVR-16S, CloVR-

Metagenomics and CloVR-Microbe) was plotted against the corresponding cost, using

results from Table 8-3 (Figure 8.2). These costs were compared to the $130K estimated

as average annual cost to set up and maintain a local cluster of 240 CPUs for three years

as described in [120]. Using these estimates, 19,117 runs of CloVR-16S; 5,623 runs of

CloVR-Metagenomics; and 2,172 runs of CloVR-Microbe can be processed each year on

Amazon EC2, before the costs of a local cluster are more economical. For single whole-

genome microbial analysis, with a theoretical annual output of 730 datasets per 454 FLX

Titanium sequencer (one full plate per day, two single-genome datasets per plate), up to

 125

three sequencing machines can be supported using Amazon EC2 at current prices using

our benchmark protocols before the estimated cost of a local cluster is reached.

Figure 8.3 – Predicted runtimes for varying bid prices in the Amazon spot market for compute

An analysis requiring 120 CPU hours was used an example to estimate the expected completion time for

different bid prices

Realizing cost savings using excess capacity in the Amazon EC2 spot market

The Amazon EC2 spot market allows customers to place bids on unused cloud resources

and utilize instances for as long as the bid exceeds the current spot price

(http://aws.amazon.com/ec2/spot-instances/). During periods of weak demand, the spot

market provides the ability to utilize excess resources at a discounted price. Over the

period of the past year, the spot market price for the c1.xlarge instance averaged $0.26

compared to an on-demand price of $0.68. This variable pricing is well-suited to

processing needs that are not time critical since analysis will only proceed when the

provided bid price is above the current market price for the resource. This market model

also provides the ability to predict the expected completion time of a pipeline for a

particular bid price using historical pricing data. The expected completion times were

estimated for bids of $0.27 to $0.80 using a hypothetical analysis requiring 120 c1.xlarge

instance hours (960 c1.xlarge CPU hours) for completion (Figure 8.3). The expected

 126

completion time was predicted for each bid price using the recorded pricing data for the

past month. Based on this model, at a bid price of $0.68 the analysis was expected to

execute in ~120 hours, while never taking longer than ~145 hours. By comparison, a

$0.27 bid will not be fulfilled during times of peak demand when the market price rises

above the bid, but during other times the user can realize a savings of 40%. A bid of

$0.27 is estimated to take on ~185 hours on average, 50% slower on average than using

the full on-demand price, but may complete in as little as ~155 hours (29% slower) or as

many as ~225 hours (87% slower). These estimated runtimes are meant to be illustrative

for bids on a single instance in the spot market. Since actual pipelines can run in parallel

across multiple instances, the actual runtimes can be reduced compared to what is shown.

CloVR provides the ability to use the spot market for allocating instances during pipeline

execution. Bid prices are set in a configuration file.

In this study, we explore the costs and resources required for microbial sequence analysis

using pre-packaged protocols in CloVR (Chapter 7). The automated pipelines in CloVR

were selected with the intention of packaging existing community-supported analysis

protocols. The protocol, CloVR-Microbe, combines a a sequence assembly step with

functional annotation from the IGS Annotation Engine [109]. With the support of a large

local grid cluster, the IGS Annotation Engine was designed to be thorough for genome

annotation but not optimized for speed or efficient CPU usage, and many alternative

genome annotation protocols exist, e.g. RAST [106], DIYA [112]. To our knowledge,

CloVR-Microbe represents the first automated pipeline that combines sequence assembly

and annotation in a single automated pipeline.

Discussion

 127

The CloVR-16S pipeline was designed to combine components of several widely used

16S rRNA sequence analysis protocols, without making the entire workflow

computationally too complex to process even large sequence datasets (>200 samples,

>500K sequences). The current implementation of CloVR-16S supports a distance

matrix-based operational taxonomic unit (OTU) assignment and α-diversity analysis with

Mothur [110], direct taxonomic classifications of sequence reads with the RDP classifier

tool [194] and microbial community analysis with the QIIME tool, which has a strong

focus on phylogenetic distance-based β-diversity analysis [111]. A critical component of

CloVR-16S in its current implementation is the threshold of 50,000 non-redundant

sequences above which the Mothur component with its computationally expensive

distance matrix calculation is not performed.

Metagenomics projects are usually designed to generate the most sequence data per

invested dollar and, thus, often involve large-scale next-generation sequencing data. Due

to the resulting dataset sizes, metagenomics analysis protocols therefore often rely on the

direct classification of individual sequence reads by BLAST (e.g. MG-RAST [208]),

instead of involving sequence assembly steps, which are even more computationally

demanding and impractical for metagenomes. Similarly, the CloVR-Metagenomics

pipeline was designed to examine and compare taxonomic and functional microbial

community compositions within and between metagenomic samples using two BLAST

searches against a bacterial genome database (BLASTN against NCBI's RefSeq) and

against a functionally annotated protein database (BLASTP against NCBI's COG). The

CloVR-Search pipeline was designed to provide support for large-scale BLAST

comparisons using multiple computers offered by the cloud. As an alternative baseline

 128

metagenomics read classification, a direct BLASTN comparison of each sequence read

against the NCBI RefSeq nucleotide database with CloVR-Search was shown to provide

further runtime improvements compared to CloVR-Metagenomics pipeline although

without producing the visual and statistical evaluations of the results that are generated

by the CloVR-Metagenomics pipeline.

We decided to use the popular Amazon EC2 cloud as a model for evaluating analysis

costs. Importantly for budgeting, the costs at Amazon EC2 are transparent and directly

obtainable for any workload, allowing for attaching real dollar costs to computational

analyses. Our results show that bioinformatics support for microbial genomics can be

provided at a competitive price, provided analysis protocols are chosen carefully. In

addition, as many analysis needs are not time-critical and can wait for off peak hours, so

a bidding market for compute, such as the Amazon EC2 Spot Market, provides an

intriguing model for further cost savings. Since these costs depend substantially on the

choice of analysis protocol, the results in this study can also be used as benchmarks for

comparing costs and resources of other analysis protocols.

The Amazon EC2 cloud can also serve as a model to evaluate the computational

infrastructure needed to perform common microbial genomics applications. Our

evaluation of the CloVR protocols shows that typical workloads of small to midsize

sequencing facilities are most economically processed either locally, on a single desktop

machine (CloVR-16S), or online using the Amazon EC2 cloud (CloVR-Metagenomics, -

Microbe, -Search). The computational resources deployed on EC2 for the evaluation

were modest, utilizing no more than 20 virtual machine instances, eight CPUs per

instance and 160 CPUs at a maximum. As multi-core CPUs are increasingly becoming

 129

accessible on the desktop computer market, the ability to process larger data on desktops

is likely to increase in the future.

While there has been tremendous interest in using clouds, there has also been concern

over potentially high costs of clouds for big data applications [119], exceeding millions

of dollars for searches of terabytes of short sequencing reads [121]. Yet, these high

dollar values also demonstrate that a particular methodology is computationally

demanding [12,19]. A large, inefficient computation is likely to be expensive to run on

any computing resource, whether locally built or remotely hosted. As the largest

commercial computing provider, Amazon EC2, realizes economies of scale enabling low

capital and operating costs [209], which are likely to be difficult to match in smaller

settings. Despite attempts at estimating comparable local cluster costs [120], modeling

infrastructure costs in a small-scale research setting is fraught with problems as it is easy

to miss certain operating costs while highlighting capital costs, precisely because

continued operation of the resource usually does not rely on an accurate modeling of cost.

Adding to the difficulty is that capital and operating costs are often shared between

institutional and outside funding sources and these contributions are always itemized.

Private clusters will prove more economical only in environments that can ensure high

utilization rates.

This case study and the architecture described in Chapter 7 demonstrates the power of

packaging pipelines into a single, portable automated framework. With the CloVR

virtual machine, we can easily compare the performance or costs of protocols between

platforms. CloVR is specifically designed to avoid vender-lockin and can immediately

utilize new emerging cloud computing platforms, including those free for researchers

 130

[62,63,158]. This portability provides users the flexibility to move their analysis to the

resource where it is best suited based on the costs, reliability, availability, or size of the

computing resource.

 131

Chapter 9 - Discussion and conclusions

High-throughput sequencing has introduced analysis bottlenecks with many contributing

factors, including computational complexity of methods, poor automation or usability of

analysis software, and under-utilization of computational resources. The contributions of

this dissertation improve analysis throughput by addressing specific components of this

bioinformatics bottleneck. Mugsy, Para-Mugsy, Mugsy-Annotator improve

computational efficiency for whole genome alignment and annotation and CloVR

improves accessibility and throughput of analysis pipelines by supporting both multi-core

personal computers and cloud computing resources for automated processing.

In this concluding chapter, I summarize and discuss each of the contributions of this

dissertation, highlight recent applications of the work, and note areas for future

development.

Efficient multiple alignment of closely related genomes

Novel methods and software solutions for the bioinformatics bottleneck

In Chapter 4, we describe Mugsy, a new tool and novel methodology for efficient,

reference-independent multiple genome alignment. The primary advantage of Mugsy

over similar tools is speed. Mugsy was the fastest tool evaluated for the alignment of

four assembled human chromosomes, completing in less than one hour provided a library

of pairwise alignments. Mugsy was one of only two tools that completed either

alignments of four human chromosomes or 57 E. coli genomes in less than two days of

processing time on a single CPU.

 132

Importantly, Mugsy can align mixtures of complete and draft genomes making this tool

particularly well-suited for use with high-throughput sequencing technologies, including

454 [8] and Illumina [9], where a majority of newly sequenced genomes are draft

genomes represented by multiple contigs after assembly. Mugsy can identify sequence

conservation and variation in any subset of input genomes.

As desktop computers are now commonly available with multiple CPUs, parallel

processing using multiple CPUs enables faster runtimes and increases analysis

throughput. In Chapter 5, we describe Para-Mugsy for distributed whole genome

multiple alignment. This work enables faster, larger scale comparisons than what is

currently feasible with other whole genome alignment tools.

A method for efficient comparison and improvement of pan-genome annotation

In Chapter 6, we introduced a new tool, Mugsy-Annotator, that implements a novel

algorithm for identifying orthologs and evaluating annotation quality in a pan-genome.

Mugsy-Annotator is computationally efficient compared to BLAST-based approaches for

classification of orthologs. Also, by using whole genome alignment, Mugsy-Annotator

incorporates synteny and genome context as additional evidence of orthology. Our

method for identifying orthologs is also robust to certain types of annotation errors, such

as missing annotations or incorrect reading frames. Since our method relies on accurate

DNA alignment, it is most useful for closely related genomes that share a high percentage

of identical DNA, such as isolates from the same or closely related species.

Structural inconsistencies, especially at translation initiation sites, are prevalent in

publically available gene predictions, even for intra-species comparisons between nearly

 133

identical sequences. Our case study of Neisseria meningiditis indicates that a majority of

the identified differences between annotations are a consequence of bioinformatics

methods rather than true biological differences, especially in regions with poor

sequencing coverage. Our results add to previous studies, which have noted errors in

intra-species genome annotations [53,95] and caution against simple comparisons of

genome annotations without exhaustive follow-up analysis [54,144]. Mugsy-Annotator

provides an efficient tool for such an exhaustive comparative analysis of gene structures.

As genome sequencing throughput has increased, expert curation of genomes is no longer

practical and has been replaced almost exclusively by high throughput, automated

annotation methods. Yet existing automated methods do not match the accuracy of

manual review by experts [99]. Mugsy-Annotator enables a semi-automated solution to

this problem by highlighting likely annotation problem areas for focused review by

human curators. Importantly, Mugsy-Annotator analyzes a pan-genome, allowing for re-

annotation efforts to apply across a set of genomes simultaneously, rather than one

genome at a time, significantly increasing analysis throughput.

A portable platform for automated and high-throughput sequence analysis

By providing a portable virtual machine, CloVR provides fully automated pipelines that

are designed to alleviate the user from installation and configuration of bioinformatics

tools or cloud computing client software. Automated systems not only save the time of

the operators, they aid in reproducibly of results, which is a cornerstone of science but is

notably lacking in genome analysis [18]. CloVR enables push-button reproducibility of

results.

 134

By avoiding network bottlenecks during processing, CloVR is also highly scalable

supporting distributed computation on cloud computing platforms without any special

storage or hardware requirements. The portability of CloVR enables comparison of

analysis protocols within and across computing platforms. The ability to directly

compare protocols on the basis of resource requirements, runtimes, and costs is of

tremendous value for researchers utilizing genomics data.

We found that for whole genome sequencing of microbes, commercial cloud computing

providers are a cost effective analysis platform, provided reasonable analysis protocols,

such as those provided by CloVR. A processing throughput of ~2100 single bacterial

genomes per year using the assembly and annotation protocol (CloVR-Microbe) is

needed before use of a dedicated local compute cluster is more economical. A single

execution of this assembly and annotation takes days to execute on a local computer with

four processing cores. As next-generation sequencing has created smaller sequencing

operations, many applications of sequencing will be relatively low throughput,

occasionally generating data for a particular study. CloVR is perfectly suited for such

applications, simplifying sequence analysis and making seemless use of cloud computing

platforms to improve processing runtimes.

The contributions of this dissertation have wide applications in biological research,

especially studies on the process of evolution and in the biomedical research domain in

understanding the genetic basis of disease and pathogenesis. In Chapters 3-5, three novel

algorithms (Mugsy, Para-Mugsy, and Mugsy-Annotator) are demonstrated to improve

computational efficiency for whole genome comparison, allowing for more comparisons

Highlighted applications

 135

at higher throughput. In this section, we highlight two published studies that utilized

these contributions and illustrate downstream applications and demonstrate impact.

Construction of high-resolution phylogenies using whole genome multiple alignment

Multiple locus sequence typing (MLST) utilizes 7-10 genes for alignment and typing

species phylogenies in bacteria [210,211]. Yet, the use of so few sequences limits the

resolution of such studies and ignores the whole genome data that is readily available

with high-throughput sequencing. In [212], Mugsy was used to generate a high-

resolution species tree providing new insights into the relatedness of pathotypes for the

clinically relevant and enterotoxigenic isolates of Escherichia coli. Mugsy allowed for

calculation of a conserved genetic core across the species using whole genome multiple

alignment. This technique, which used whole genome multiple alignment in combination

with automated alignment trimming [213] and efficient phylogenetic tree construction

[214], provides a gene-independent view of species structure and evolution between

closely related organisms.

As whole genome data for bacteria can be readily obtained with high-throughput

sequencing methods, the ability to efficiently compare whole genome data provides a

relatively fast platform for construction of high-resolution phylogenies. As sequence

costs have also decreased, a typing approach based on genome alignment may soon rival

the time and effort spent on PCR amplification and Sanger sequencing of 7 to 10 MLST

gene fragments, which currently provides the standard for such phylogenetic studies. Our

work on Mugsy enabled this high-resolution study and demonstrates a general framework

for high-throughput, high-resolution strain identification and diagnostics.

 136

High-throughput pan-genome annotation using whole genome multiple alignment

Genome annotation is critical for attaching biological meaning to genetic elements.

While manual curation efforts were historically dedicated to annotation of single

genomes, such an approach is no longer feasible as hundreds of new genomes are being

generated for some species. Yet, fully automated annotation solutions can not currently

produce the consistent quality of data that is generated by expert manual review.

Alternative approaches are needed that incorporate all available pan-genomic data for a

species while enabling expert review without loss of annotation quality.

In one such approach, Mugsy-Annotator, in conjunction with a comparative visualization

tool Sybil [215], was used in to re-annotate isolates of the pathogenic bacterium Neisseria

meningitidis (Nmen) as part of the study published as Budroni et al [140]. Nmen is

prevalent in human populations [216], occasionally causing very severe meningococcal

meningitis and septicemia. While possible virulence factors have been identified or

proposed [217,218,219], the limited number of sequenced isolates had previously

prevented a population study at the whole-genome. To enable a population-wide study,

Mugsy-Annotator was used as part of the analysis and annotation of 15 previously

unpublished and 5 publicly available Nmen genomes isolated from five continents. The

identified ortholog families were used to revise and standardize the annotation across all

the genomes, improving annotation consistency prior to examination of gene families.

This re-annotation effort was critical to ensuring that the composition of gene families

could be queried and searched for isolate and clade specific gene families. The study

determined restriction modification systems are unique to distinct phylogenetic clades,

resulting in a differential barrier to genetic transfer and accounting for the observed

 137

structuring of the population of Nmen genotypes. The contribution of Mugsy-Annotator

accelerated this effort.

As biologists continue to explore the rich genetic diversity of the biosphere, thousands of

individual genomes will soon be available for some species and the ability to read genetic

information is outpacing the speed at which we can analyze the data for meaningful

relationships. In such an environment, the need to efficiently compare sequences is

fundamental. In addition, comparative analysis needs to be performed in the context of

populations, to avoid bias in selection of reference genomes. The contributions of Mugsy

and Mugsy-Annotator accelerate comparative genomics studies by providing efficient

methods for comparisons of pan-genomic data.

Discussion

While current generation technologies boast of hundreds of gigabytes of data [60], much

of this data is an artifact of the sequencing technology (massively redundant short reads)

rather than representative of the physical specimen. It is hard to imagine these massively

redundant sequencing technologies will prove efficient in the future. Rather, the ability to

sequence individual DNA molecules [10] may provide a more complete view the

sequence at decreased data volume per study, reducing the need for extensive pre-

processing prior to analysis. After all, the genome of a bacterium is merely 2-5

megabytes on average and the human genome is ~3 gigabtyes per DNA molecule.

The ability to read whole DNA molecules will foster comparisons of multiple, nearly

identical DNA molecules, with widespread applications for personalized genomics,

including comparing DNA in families [220], phased chromosomes [221], somatic and

 138

germ lines or diseased tissues, such as cancers [222]. The methodologies used in Mugsy

are perfectly suited to perform these comparisons on a whole genome level. By avoiding

selection bias of a reference genome, Mugsy can multiply align populations of genomes

and is well suited for the detection of rare variants, which have been considered as a

possible major contributor to common diseases [223].

Cloud computing delivers on the promise of resources on-demand. But, a major

impediment to use this remote resource is data transfer over a wide area network. As the

Internet will likely remain slow and crowded, and specialty high-speed nationwide

networks [224] available only to select institutions and applications, the data transfer

problem is likely to remain in the forefront for genomics applications, especially now that

sequence generation is decentralized. Next generation sequencing technologies that

generate lower data volumes but otherwise more accurate and complete data will make it

easier to distribute over computer networks for analysis and dissemination. Reference

based compression allows for representing this data in even fewer bytes [225]. To aid

with large data studies, Amazon EC2 currently offers the ability to send and receive hard

drives of data (multiple terabytes in size) by the mail, although reliance on such schemes

will impede rather than increase access to cloud computing resource. To achieve best

possible throughput, CloVR utilizes open source transfer utilities designed for

maximizing throughput on slow networks.

At the same time, in an environment where entire populations are sequenced, reference

databases will continue to grow large, especially if expansive meta-data is captured [178].

Such reference sequence data are well-suited for co-location with computing resources

 139

avoiding network transfers [114]. CloVR as a portable VM is perfectly suited to an

environment where analysis tools are brought to large data sets for computation.

Multi-core personal computers are readily available with the number of processing units

expected to increase. The architecture of CloVR allows for utilization of both local

computer and remote cloud resources directly from a users’ desktop. We believe this is a

preferred architecture for high-throughput sequence analysis and consistent with the

decentralization trend of genome sequencing. The CloVR architecture can avoid network

data transfers entirely and ensure data privacy by utilizing local computer resources,

while maintaining support for large-scale analysis on distributed computing resources

when necessary. The key to success of this architecture is automation. As cloud

computing resources are low-level systems, automation is critical for improving analysis

throughput and avoiding technical hurdles and troubleshooting that slows research

projects and hinders discoveries. CloVR eliminates technical challenges in using the

cloud, providing a highly automated system for high-throughput research.

To enable full use of larger data sets and exploration of populations of genomes,

continued development of efficient algorithms and use of distributed computing resources

are needed. The multiple alignment of several hundreds or more relatively small

bacterial genomes remains a computational challenge and may limit the use of the

growing amounts of whole genome data by biologists. Often, the only practical

alternative is mapping data to a pre-defined reference genome. Distributed computing

solutions are needed and Para-Mugsy provides an advance in this direction but more

work is needed to improve the robustness of the software on even larger data sets. As

 140

Para-Mugsy is implemented to run on the CloVR virtual machine, future work is ready to

take advantage of local multi-core desktop computers and cloud computing platforms.

Biological insights and practical applications of genomics data are driven by the ability to

compare sequences. The computational demands for these comparisons continue to grow

as sequence databases increase in size and sequencing technologies improve resolution.

As advancements in computer processing speeds are insufficient to address analysis

bottlenecks, continued development of efficient algorithms and increased utilization of

distributed computing solutions are needed for sequence analysis. The contributions in

this dissertation address current bottlenecks, by improving efficiency and throughput in

comparisons of populations of genomes (Mugsy, Para-Mugsy, Mugsy-Annotator) and

providing an automated and portable platform for distributed computation (CloVR),

simplifying sequence analysis for a growing pool of genomics users. The ability to

quickly assimilate genetic information across populations stands to accelerate research

and clinical applications of genomics.

Concluding remarks

 141

Appendices

In addition to the contributions in this dissertation, the author also participated in a

number of comparative genomics studies during the period of study, providing

bioinformatics support and co-authoring findings, including

[140,212,226,227,228,229,230,231,232,233,234,235,236,237]. Selected co-authored

works with primary contributions from the dissertation author are referenced below.

i) Ergatis: a web interface and scalable software system for bioinformatics

workflows [102].

Author contribution: Formulated the idea, implemented the initial software,

and led subsequent development efforts.

ii) Sybil: methods and software for multiple genome comparison and

visualization [215].

Author contribution: Formulated the idea, implemented the initial software,

and led subsequent development efforts.

iii) Toward an online repository of Standard Operating Procedures (SOPs) for

(meta)-genomic annotation [94].

Author contribution: First author of the paper. This effort contributed to the

launch of an open source journal for genomic standards; Standards in

Genomic Sciences [238,239], which is now indexed by Pubmed. The

dissertation author currently serves as a section editor.

 142

Bibliography

1. Angiuoli SV, Salzberg SL (2011) Mugsy: fast multiple alignment of closely related

whole genomes. Bioinformatics 27: 334-342.

2. Bailey RC (2010) Grand challenge commentary: Informative diagnostics for

personalized medicine. Nat Chem Biol 6: 857-859.

3. Green ED, Guyer MS (2011) Charting a course for genomic medicine from base pairs

to bedside. Nature 470: 204-213.

4. Guttmacher AE, McGuire AL, Ponder B, Stefansson K (2010) Personalized genomic

information: preparing for the future of genetic medicine. Nat Rev Genet 11: 161-

165.

5. Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial

pan-genome. Curr Opin Microbiol 11: 472-477.

6. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-

genome. Curr Opin Genet Dev 15: 589-594.

7. Li R, Li Y, Zheng H, Luo R, Zhu H, et al. (2010) Building the sequence map of the

human pan-genome. Nat Biotechnol 28: 57-63.

8. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome

sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-

380.

9. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing

technologies: methods and goals. Nat Rev Genet 5: 335-344.

10. Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. (2009) Real-time DNA sequencing from

single polymerase molecules. Science 323: 133-138.

 143

11. DNA Sequencing Costs: Data from the NHGRI Large-Scale Genome Sequencing

Program Available at: Available at: www.genome.gov/sequencingcosts. Accessed

March 10,2011.

12. Schatz MC, Langmead B, Salzberg SL (2010) Cloud computing and the DNA data

race. Nat Biotechnol 28: 691-693.

13. Elias I (2006) Settling the intractability of multiple alignment. J Comput Biol 13:

1323-1339.

14. Rusk N (2011) Torrents of sequence. Nature Methods 8: 44.

15. Next Generation Genomics: World Map of High-throughput Sequencers. Available

at: http://pathogenomics.bham.ac.uk/hts/

16. Merali Z (2010) Computational science: ...Error. Nature 467: 775-777.

17. Field D, Tiwari B, Booth T, Houten S, Swan D, et al. (2006) Open software for

biologists: from famine to feast. Nat Biotechnol 24: 801-803.

18. Mesirov JP (2010) Computer science. Accessible reproducible research. Science 327:

415-416.

19. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational

solutions to large-scale data management and analysis. Nat Rev Genet 11: 647-

657.

20. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, et al. (2009) A phylogeny-

driven genomic encyclopaedia of Bacteria and Archaea. Nature 462: 1056-1060.

21. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2011) GenBank.

Nucleic Acids Res 39: D32-37.

22. GEBA. Available at: http://www.jgi.doe.gov/programs/GEBA/

http://www.genome.gov/sequencingcosts�
http://pathogenomics.bham.ac.uk/hts/�
http://www.jgi.doe.gov/programs/GEBA/�

 144

23. Liolios K, Mavormatis K, Tavernarakis N, Kyrpides N (2008) The Genomes On Line

Database (GOLD) in 2007: status of genomic and metagenomic projects and their

associated metadata. Nucleic Acids Research 36: D475-479.

24. Collins FaB, A.D. (March 2007) Mapping the Cancer Genome. Scientific American.

25. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, et al. (2010) A map

of human genome variation from population-scale sequencing. Nature 467: 1061-

1073.

26. Duncan DE (June 7, 2010) On a Mission to Sequence the Genomes of 100,000

People. New York Times.

27. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005) Genome

analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications

for the microbial "pan-genome". Proc Natl Acad Sci U S A 102: 13950-13955.

28. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, et al. (2008) The

pangenome structure of Escherichia coli: comparative genomic analysis of E. coli

commensal and pathogenic isolates. J Bacteriol 190: 6881-6893.

29. Mira A, Martin-Cuadrado AB, D'Auria G, Rodriguez-Valera F (2010) The bacterial

pan-genome:a new paradigm in microbiology. Int Microbiol 13: 45-57.

30. Read TD, Ussery DW (2006) Opening the pan-genomics box - Editorial overview.

Current Opinion in Microbiology 9: 496-498.

31. Medini D, Serruto D, Parkhill J, Relman DA, Donati C, et al. (2008) Microbiology in

the post-genomic era. Nat Rev Microbiol 6: 419-430.

32. Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol

16: 368-373.

 145

33. Batzoglou S (2005) The many faces of sequence alignment. Brief Bioinform 6: 6-22.

34. Maier D (1978) The Complexity of Some Problems on Subsequences and

Supersequences. Journal of Association for Computing Machinery 25: 322-336.

35. Needleman SB, Wunsch CD (1970) A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443-453.

36. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J

Mol Biol 147: 195-197.

37. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucleic Acids Res 25: 3389-3402.

38. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning

DNA sequences. J Comput Biol 7: 203-214.

39. Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12: 656-664.

40. Garey MRJ, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-

Completeness. New York: W. H. Freeman.

41. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and

high throughput. Nucleic Acids Res 32: 1792-1797.

42. Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, et al. (2009) Fast statistical

alignment. PLoS Comput Biol 5: e1000392.

43. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673-4680.

 146

44. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. J Mol Evol 25: 351-360.

45. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced

time and space complexity. BMC Bioinformatics 5: 113.

46. Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2: 493-

503.

47. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, et al. (2010) Prodigal:

prokaryotic gene recognition and translation initiation site identification. BMC

Bioinformatics 11: 119.

48. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes

and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679.

49. Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene

finding. Nucleic Acids Res 26: 1107-1115.

50. Hu GQ, Zheng X, Zhu HQ, She ZS (2009) Prediction of translation initiation site for

microbial genomes with TriTISA. Bioinformatics 25: 123-125.

51. Nielsen P, Krogh A (2005) Large-scale prokaryotic gene prediction and comparison

to genome annotation. Bioinformatics 21: 4322-4329.

52. Steen H, Mann M (2004) The ABC's (and XYZ's) of peptide sequencing. Nat Rev

Mol Cell Biol 5: 699-711.

53. Overbeek R, Bartels D, Vonstein V, Meyer F (2007) Annotation of bacterial and

archaeal genomes: improving accuracy and consistency. Chem Rev 107: 3431-

3447.

 147

54. Poptsova MS, Gogarten JP (2010) Using comparative genome analysis to identify

problems in annotated microbial genomes. Microbiology 156: 1909-1917.

55. VMware. Available at: http://www.vmware.com/

56. VirtualBox. Available at: http://www.virtualbox.org/

57. Litzkow MaL, M and Mutka, M. {C}ondor - A Hunter of Idle Workstations; 1988.

58. Foster IaK, C (1996) Globus: A Metacomputing Infrastructure Toolkit International

Journal of Supercomputer Applications

59. NIST Cloud Computing Definition. Available at:

http://csrc.nist.gov/groups/SNS/cloud-computing/

60. Stein LD (2010) The case for cloud computing in genome informatics. Genome Biol

11: 207.

61. Amazon Elastic Compute Cloud. Available at: http://aws.amazon.com/ec2/

62. Magellan: Argonne's DOE Cloud Computing. Available at:

http://magellan.alcf.anl.gov/

63. Data Intensive Academic Grid. Available at: http://diagcomputing.org/

64. Dewey CN, Pachter L (2006) Evolution at the nucleotide level: the problem of

multiple whole-genome alignment. Hum Mol Genet 15 Spec No 1: R51-56.

65. Didelot X, Lawson D, Darling A, Falush D (2010) Inference of homologous

recombination in bacteria using whole-genome sequences. Genetics 186: 1435-

1449.

66. Bray N, Dubchak I, Pachter L (2003) AVID: A global alignment program. Genome

Res 13: 97-102.

http://www.vmware.com/�
http://www.virtualbox.org/�
http://csrc.nist.gov/groups/SNS/cloud-computing/�
http://aws.amazon.com/ec2/�
http://magellan.alcf.anl.gov/�
http://diagcomputing.org/�

 148

67. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, et al. (2003) Human-mouse

alignments with BLASTZ. Genome Res 13: 103-107.

68. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and

open software for comparing large genomes. Genome Biol 5: R12.

69. Paten B, Herrero J, Beal K, Fitzgerald S, Birney E (2008) Enredo and Pecan:

genome-wide mammalian consistency-based multiple alignment with paralogs.

Genome Res 18: 1814-1828.

70. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, et al. (2004) Aligning

multiple genomic sequences with the threaded blockset aligner. Genome Res 14:

708-715.

71. Dubchak I, Poliakov A, Kislyuk A, Brudno M (2009) Multiple whole-genome

alignments without a reference organism. Genome Res 19: 682-689.

72. Hohl M, Kurtz S, Ohlebusch E (2002) Efficient multiple genome alignment.

Bioinformatics 18 Suppl 1: S312-320.

73. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of

conserved genomic sequence with rearrangements. Genome Res 14: 1394-1403.

74. Kumar S, Filipski A (2007) Multiple sequence alignment: in pursuit of homologous

DNA positions. Genome Res 17: 127-135.

75. Lunter G (2007) Probabilistic whole-genome alignments reveal high indel rates in the

human and mouse genomes. Bioinformatics 23: i289-296.

76. Prakash A, Tompa M (2007) Measuring the accuracy of genome-size multiple

alignments. Genome Biol 8: R124.

 149

77. Margulies EH, Cooper GM, Asimenos G, Thomas DJ, Dewey CN, et al. (2007)

Analyses of deep mammalian sequence alignments and constraint predictions for

1% of the human genome. Genome Res 17: 760-774.

78. Chen X, Tompa M (2010) Comparative assessment of methods for aligning multiple

genome sequences. Nat Biotechnol 28: 567-572.

79. Dewey CN (2007) Aligning multiple whole genomes with Mercator and MAVID.

Methods Mol Biol 395: 221-236.

80. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D (2003) Evolution's cauldron:

duplication, deletion, and rearrangement in the mouse and human genomes. Proc

Natl Acad Sci U S A 100: 11484-11489.

81. Pham SK, Pevzner PA (2010) DRIMM-Synteny: decomposing genomes into

evolutionary conserved segments. Bioinformatics 26: 2509-2516.

82. Deloger M, El Karoui M, Petit MA (2009) A genomic distance based on MUM

indicates discontinuity between most bacterial species and genera. J Bacteriol

191: 91-99.

83. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment

with gene gain, loss and rearrangement. PLoS ONE 5: e11147.

84. Treangen TJ, Messeguer X (2006) M-GCAT: interactively and efficiently

constructing large-scale multiple genome comparison frameworks in closely

related species. BMC Bioinformatics 7: 433.

85. Raphael B, Zhi D, Tang H, Pevzner P (2004) A novel method for multiple alignment

of sequences with repeated and shuffled elements. Genome Res 14: 2336-2346.

 150

86. Zhang Y, Waterman MS (2005) An Eulerian path approach to local multiple

alignment for DNA sequences. Proc Natl Acad Sci U S A 102: 1285-1290.

87. Rausch T, Emde AK, Weese D, Doring A, Notredame C, et al. (2008) Segment-based

multiple sequence alignment. Bioinformatics 24: i187-192.

88. Paten B, Herrero J, Beal K, Birney E (2009) Sequence progressive alignment, a

framework for practical large-scale probabilistic consistency alignment.

Bioinformatics 25: 295-301.

89. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and

accurate multiple sequence alignment. J Mol Biol 302: 205-217.

90. Jacobson G, Vo K-P (1992) Heaviest Increasing/Common Subsequence Problems.

Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching:

Springer-Verlag. pp. 52-66.

91. Di Tommaso P, Orobitg M, Guirado F, Cores F, Espinosa T, et al. (2010) Cloud-

Coffee: implementation of a parallel consistency-based multiple alignment

algorithm in the T-Coffee package and its benchmarking on the Amazon Elastic-

Cloud. Bioinformatics 26: 1903-1904.

92. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial

gene identification with GLIMMER. Nucleic Acids Res 27: 4636-4641.

93. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, et al. (2010)

GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes.

Nat Methods 7: 455-457.

 151

94. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, et al. (2008) Toward an

online repository of Standard Operating Procedures (SOPs) for (meta)genomic

annotation. OMICS 12: 137-141.

95. Bakke P, Carney N, Deloache W, Gearing M, Ingvorsen K, et al. (2009) Evaluation

of three automated genome annotations for Halorhabdus utahensis. PLoS ONE 4:

e6291.

96. Siezen RJ, van Hijum SA (2010) Genome (re-)annotation and open-source annotation

pipelines. Microb Biotechnol 3: 362-369.

97. Medigue C, Moszer I (2007) Annotation, comparison and databases for hundreds of

bacterial genomes. Res Microbiol 158: 724-736.

98. Otto TD, Dillon GP, Degrave WS, Berriman M (2011) RATT: Rapid Annotation

Transfer Tool. Nucleic Acids Res.

99. Petty NK (2010) Genome annotation: man versus machine. Nat Rev Microbiol 8:

762.

100. Schatz MC (2010) The missing graphical user interface for genomics. Genome Biol

11: 128.

101. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the

life sciences. Genome Biol 11: R86.

102. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM, et al. (2010) Ergatis: a web

interface and scalable software system for bioinformatics workflows.

Bioinformatics 26: 1488-1492.

 152

103. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, et al. (2006) GenePattern 2.0. Nat

Genet 38: 500-501.

104. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, et al. (2006) Taverna: a

tool for building and running workflows of services. Nucleic Acids Res 34:

W729-732.

105. Angiuoli S, Cochrane G, Field D, Garrity GM, Gussman A, et al. (2008) Towards a

online repository of Standard Operating Procedures (SOPs) for (meta)genomic

annotation. OMICS: A journal of integrative biology (in press).

106. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server:

rapid annotations using subsystems technology. BMC Genomics 9: 75.

107. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, et al. (2008) The

metagenomics RAST server - a public resource for the automatic phylogenetic

and functional analysis of metagenomes. BMC Bioinformatics 9: 386.

108. Hemmerich C, Buechlein A, Podicheti R, Revanna KV, Dong Q (2010) An Ergatis-

based prokaryotic genome annotation web server. Bioinformatics 26: 1122-1124.

109. Annotation Engine. Available at: http://ae.igs.umaryland.edu

110. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing

mothur: open-source, platform-independent, community-supported software for

describing and comparing microbial communities. Appl Environ Microbiol 75:

7537-7541.

111. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010)

QIIME allows analysis of high-throughput community sequencing data. Nat

Methods 7: 335-336.

http://ae.igs.umaryland.edu/�

 153

112. Stewart AC, Osborne B, Read TD (2009) DIYA: a bacterial annotation pipeline for

any genomics lab. Bioinformatics 25: 962-963.

113. Bateman A, Wood M (2009) Cloud computing. Bioinformatics 25: 1475.

114. Dudley JT, Butte AJ (2010) In silico research in the era of cloud computing. Nat

Biotechnol 28: 1181-1185.

115. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large

clusters. Commun ACM 51: 107-113.

116. Schatz MC (2009) CloudBurst: highly sensitive read mapping with MapReduce.

Bioinformatics 25: 1363-1369.

117. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Searching for SNPs

with cloud computing. Genome Biol 10: R134.

118. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential

expression analysis with Myrna. Genome Biol 11: R83.

119. Trelles O, Prins P, Snir M, Jansen RC (2011) Big data, but are we ready? Nat Rev

Genet 12: 224.

120. Dudley JT, Pouliot Y, Chen R, Morgan AA, Butte AJ (2010) Translational

bioinformatics in the cloud: an affordable alternative. Genome Med 2: 51.

121. Wilkening J, Wilke A, Desai N, Meyer DF (2009) Using Clouds for Metagenomics:

A Case Study. IEEE Cluster 2009. New Orleans, LA: IEEE.

122. Doring A, Weese D, Rausch T, Reinert K (2008) SeqAn an efficient, generic C++

library for sequence analysis. BMC Bioinformatics 9: 11.

123. Gusfield D (1997) Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology: New York: Cambridge University Press.

 154

124. Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution:

lessons from human and mouse genomes. Genome Res 13: 37-45.

125. Bourque G, Pevzner PA, Tesler G (2004) Reconstructing the genomic architecture

of ancestral mammals: lessons from human, mouse, and rat genomes. Genome

Res 14: 507-516.

126. Ford FR, Fulkerson DR (1956) Maximal flow through a network. Canadian Journal

of Mathematics 8: 399-404.

127. Corel E, Pitschi F, Morgenstern B (2010) A min-cut algorithm for the consistency

problem in multiple sequence alignment. Bioinformatics 26: 1015-1021.

128. Edmonds J, Karp RM (1972) Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems. J ACM 19: 248-264.

129. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2008) Database

resources of the National Center for Biotechnology Information. Nucleic Acids

Res 36: D13-21.

130. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome

sequence of an individual human. PLoS Biol 5: e254.

131. Ahn SM, Kim TH, Lee S, Kim D, Ghang H, et al. (2009) The first Korean genome

sequence and analysis: full genome sequencing for a socio-ethnic group. Genome

Res 19: 1622-1629.

132. Wang J, Wang W, Li R, Li Y, Tian G, et al. (2008) The diploid genome sequence of

an Asian individual. Nature 456: 60-65.

 155

133. Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2010) De novo assembly of human

genomes with massively parallel short read sequencing. Genome Res 20: 265-

272.

134. Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, et al. ENCODE

whole-genome data in the UCSC Genome Browser. Nucleic Acids Res 38: D620-

625.

135. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, et al. (2001) dbSNP: the

NCBI database of genetic variation. Nucleic Acids Res 29: 308-311.

136. IHGSC (2001) Initial sequencing and analysis of the human genome. Nature 409:

860-921.

137. Murtagh F (1984) Complexities of Hierarchic Clustering Algorithms: the state of the

art. Computational Statistics Quarterly 1: 101-113.

138. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, et al. (2005)

Identification of a universal Group B streptococcus vaccine by multiple genome

screen. Science 309: 148-150.

139. Rappuoli R, Covacci A (2003) Reverse vaccinology and genomics. Science 302:

602.

140. Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D, et al. (2011) Neisseria

meningitidis is structured in clades associated with restriction modification

systems that modulate homologous recombination. Proc Natl Acad Sci U S A.

141. Samet H (2006) Foundations of Multidimensional and Metric Data Structures:

Morgan Kaufmann.

 156

142. Li L, Stoeckert CJ, Jr., Roos DS (2003) OrthoMCL: identification of ortholog

groups for eukaryotic genomes. Genome Res 13: 2178-2189.

143. Warren AS, Archuleta J, Feng WC, Setubal JC (2010) Missing genes in the

annotation of prokaryotic genomes. BMC Bioinformatics 11: 131.

144. Brenner SE (1999) Errors in genome annotation. Trends Genet 15: 132-133.

145. van den Berg BH, McCarthy FM, Lamont SJ, Burgess SC (2010) Re-annotation is

an essential step in systems biology modeling of functional genomics data. PLoS

ONE 5: e10642.

146. Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17:

429-431.

147. Rusniok C, Vallenet D, Floquet S, Ewles H, Mouze-Soulama C, et al. (2009)

NeMeSys: a biological resource for narrowing the gap between sequence and

function in the human pathogen Neisseria meningitidis. Genome Biol 10: R110.

148. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised

genome dynamics in the Escherichia coli species results in highly diverse

adaptive paths. PLoS Genet 5: e1000344.

149. Palleja A, Harrington ED, Bork P (2008) Large gene overlaps in prokaryotic

genomes: result of functional constraints or mispredictions? BMC Genomics 9:

335.

150. Meyer IM, Durbin R (2002) Comparative ab initio prediction of gene structures

using pair HMMs. Bioinformatics 18: 1309-1318.

151. Meyer IM, Durbin R (2004) Gene structure conservation aids similarity based gene

prediction. Nucleic Acids Res 32: 776-783.

 157

152. Chatterji S, Pachter L (2006) Reference based annotation with GeneMapper.

Genome Biol 7: R29.

153. GridEngine. Available at: http://gridengine.org

154. Apache Hadoop. Available at: http://hadoop.apache.org/

155. Ubuntu. Available at: http://www.ubuntu.com/

156. Hudson Continuous Integration. Available at: http://hudson-ci.org/

157. EC2 and Ubuntu Available at: http://alestic.com/

158. Science Clouds - Nimbus Open Source IaaS Cloud Computing Software. Available

at: http://scienceclouds.org/

159. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403-410.

160. CloVR-Search SOP v1.0. Available at: http://clovr.org/methods/clovr-search/

161. White J, Arze, Cesar, Matalka, Malcolm, Team, The CloVR, Angiuoli, Samuel, and

Fricke, W. Florian. CloVR-16S: Phylogenetic microbial community composition

analysis based on 16S ribosomal RNA amplicon sequencing – standard operating

procedure, version1.0. Available from Nature Precedings

<http://dx.doi.org/10.1038/npre.2011.5888.1> (2011)

162. White J, Arze, Cesar, Matalka, Malcolm, Team, The CloVR, Angiuoli, Samuel, and

Fricke, W. Florian. CloVR-Metagenomics: Functional and taxonomic microbial

community characterization from metagenomic whole-genome shotgun (WGS)

sequences – standard operating procedure, version 1.0. Available from Nature

Preceding <http://dx.doi.org/10.1038/npre.2011.5886.1> (2011)

http://gridengine.org/�
http://hadoop.apache.org/�
http://www.ubuntu.com/�
http://hudson-ci.org/�
http://alestic.com/�
http://scienceclouds.org/�
http://clovr.org/methods/clovr-search/�
http://dx.doi.org/10.1038/npre.2011.5888.1�
http://dx.doi.org/10.1038/npre.2011.5886.1�

 158

163. Galens K, White, James, Arze, Cesar, Matalka, Malcolm, Gwinn Giglio, Michelle,

Team, The CloVR, Angiuoli, Samuel, and Fricke, W. Florian. CloVR-Microbe:

Assembly, gene finding and functional annotation of raw sequence data from

single microbial genome projects – standard operating procedure, version 1.0.

Available from Nature Preceding <http://dx.doi.org/10.1038/npre.2011.5887.1>

(2011)

164. Amazon Elastic Compute Cloud API Reference Available at:

http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/

165. Rapier C, Bennett B (2008) High speed bulk data transfer using the SSH protocol.

Proceedings of the 15th ACM Mardi Gras conference: From lightweight mash-

ups to lambda grids: Understanding the spectrum of distributed computing

requirements, applications, tools, infrastructures, interoperability, and the

incremental adoption of key capabilities. Baton Rouge, Louisiana: ACM. pp. 1-7.

166. Tridgell A (1999) Efficient Algorithms for Sorting and Synchronization: The

Australian National University.

167. White J, Matalka, Malcolm, Fricke, W. Florian, and Angiuoli, Samuel.

Cunningham: a BLAST Runtime Estimator. Available from Nature Precedings

<http://dx.doi.org/10.1038/npre.2011.5593.1> (2011)

168. Sandberg R, Goldberg D. , Kleiman S, Walsh D. , Lyon B. (1985) Design and

Implementation or the Sun Network Filesystem.

169. Ganglia Monitoring System. Available at: http://ganglia.sourceforge.net/

http://dx.doi.org/10.1038/npre.2011.5887.1�
http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/�
http://dx.doi.org/10.1038/npre.2011.5593.1�
http://ganglia.sourceforge.net/�

 159

170. Keahey K, Freeman T (2008) Contextualization: Providing One-Click Virtual

Clusters. Proceedings of the 2008 Fourth IEEE International Conference on

eScience: IEEE Computer Society. pp. 301-308.

171. Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, et al. (2010) Galaxy

CloudMan: delivering cloud compute clusters. BMC Bioinformatics 11 Suppl 12:

S4.

172. STARDEV: Cluster. Available at: http://web.mit.edu/stardev/cluster/

173. Amazon Simple Storage Service. Available at: http://aws.amazon.com/s3/

174. Hadoop Distributed File System. Available at: http://hadoop.apache.org/hdfs/

175. Amazon Elastic Block Store. Available at: http://aws.amazon.com/ebs/

176. Allcock W (2003) GridFTP: Protocol Extensions to FTP for the Grid.

177. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef:

comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:

1282-1288.

178. Field D, Garrity G, Gray T, Morrison N, Selengut J, et al. (2008) The minimum

information about a genome sequence (MIGS) specification. Nat Biotechnol 26:

541-547.

179. Callaway E (2010) Mutation-prediction software rewarded. Nature.

180. QIIME Virtual Box. Available at:

http://qiime.sourceforge.net/install/virtual_box.html

181. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:

1135-1145.

http://web.mit.edu/stardev/cluster/�
http://aws.amazon.com/s3/�
http://hadoop.apache.org/hdfs/�
http://aws.amazon.com/ebs/�
http://qiime.sourceforge.net/install/virtual_box.html�

 160

182. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, et al. (2008) Aggressive

assembly of pyrosequencing reads with mates. Bioinformatics 24: 2818-2824.

183. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 18: 821-829.

184. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of

transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955-964.

185. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, et al. (2007)

RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic

Acids Res 35: 3100-3108.

186. BLAST-Extend-Repraze. Available at: http://ber.sourceforge.net/

187. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The

COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:

41.

188. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755-763.

189. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, et al. (2004) The Pfam protein

families database. Nucleic Acids Res 32: D138-141.

190. Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, et al. (2007)

TIGRFAMs and Genome Properties: tools for the assignment of molecular

function and biological process in prokaryotic genomes. Nucleic Acids Res 35:

D260-264.

191. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database

Project: improved alignments and new tools for rRNA analysis. Nucleic Acids

Res 37: D141-145.

http://ber.sourceforge.net/�

 161

192. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 26: 2460-2461.

193. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting

differentially abundant features in clinical metagenomic samples. PLoS Comput

Biol 5: e1000352.

194. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid

assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ

Microbiol 73: 5261-5267.

195. Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI Reference Sequences:

current status, policy and new initiatives. Nucleic Acids Res 37: D32-36.

196. Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from

environmental genome shotgun sequences. Nucleic Acids Res 34: 5623-5630.

197. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. (2000) The

genome sequence of Drosophila melanogaster. Science 287: 2185-2195.

198. Eddy SR (2009) A new generation of homology search tools based on probabilistic

inference. Genome Inform 23: 205-211.

199. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The Pfam protein

families database. Nucleic Acids Res 38: D211-222.

200. Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein

families. Nucleic Acids Res 31: 371-373.

201. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, et al. (2008) Functional

metagenomic profiling of nine biomes. Nature 452: 629-632.

 162

202. Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, et al. (2010)

Longitudinal shift in diabetic wound microbiota correlates with prolonged skin

defense response. Proc Natl Acad Sci U S A 107: 14799-14804.

203. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, et al. (2010) Microbes

and Health Sackler Colloquium: Succession of microbial consortia in the

developing infant gut microbiome. Proc Natl Acad Sci U S A.

204. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut

microbial gene catalogue established by metagenomic sequencing. Nature 464:

59-65.

205. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, et al. (2010) Microbes and

Health Sackler Colloquium: Vaginal microbiome of reproductive-age women.

Proc Natl Acad Sci U S A.

206. Turnbaugh P, Ridaura V, Faith J, Rey FE, Knight R, et al. (2009) The Effect of Diet

on the Human Gut Microbiome: A Metagenomic Analysis in Humanized

Gnotobiotic Mice. Sci Transl Med 1: 6ra14.

207. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A

core gut microbiome in obese and lean twins. Nature 457: 480-484.

208. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the

metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes.

Cold Spring Harb Protoc 2010: pdb prot5368.

209. Markoff JH, S. (14 June 2006) Hiding in plain sight, Google seeks more power.

New York Times.

 163

210. Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS (2000) Parallel

evolution of virulence in pathogenic Escherichia coli. Nature 406: 64-67.

211. Wirth T, Falush D, Lan R, Colles F, Mensa P, et al. (2006) Sex and virulence in

Escherichia coli: an evolutionary perspective. Mol Microbiol 60: 1136-1151.

212. Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP, et al. (2011) A

comparative genomic analysis of diverse clonal types of enterotoxigenic

Escherichia coli reveals pathovar-specific conservation. Infect Immun 79: 950-

960.

213. Talavera G, Castresana J (2007) Improvement of phylogenies after removing

divergent and ambiguously aligned blocks from protein sequence alignments. Syst

Biol 56: 564-577.

214. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum

evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641-

1650.

215. Crabtree J, Angiuoli SV, Wortman JR, White OR (2007) Sybil: methods and

software for multiple genome comparison and visualization. Methods Mol Biol

408: 93-108.

216. Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis,

meningococcaemia, and Neisseria meningitidis. Lancet 369: 2196-2210.

217. Snyder LA, Saunders NJ (2006) The majority of genes in the pathogenic Neisseria

species are present in non-pathogenic Neisseria lactamica, including those

designated as 'virulence genes'. BMC Genomics 7: 128.

 164

218. Bille E, Ure R, Gray SJ, Kaczmarski EB, McCarthy ND, et al. (2008) Association of

a bacteriophage with meningococcal disease in young adults. PLoS ONE 3:

e3885.

219. Dunning Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, et al. (2006)

Comparative genomics of Neisseria meningitidis: core genome, islands of

horizontal transfer and pathogen-specific genes. Microbiology 152: 3733-3749.

220. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, et al. (2010) Analysis of

genetic inheritance in a family quartet by whole-genome sequencing. Science

328: 636-639.

221. Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ (2011) The importance of

phase information for human genomics. Nat Rev Genet 12: 215-223.

222. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, et al. (2010) Development of

personalized tumor biomarkers using massively parallel sequencing. Sci Transl

Med 2: 20ra14.

223. Shields R (2011) Common disease: are causative alleles common or rare? PLoS Biol

9: e1001009.

224. Internet2. Available at: http://www.internet2.edu

225. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E (2011) Efficient storage of

high throughput sequencing data using reference-based compression. Genome

Res.

226. Tsolis RM, Seshadri R, Santos RL, Sangari FJ, Lobo JM, et al. (2009) Genome

degradation in Brucella ovis corresponds with narrowing of its host range and

tissue tropism. PLoS ONE 4: e5519.

http://www.internet2.edu/�

 165

227. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, et al. (2008) Genomic

islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet

4: e1000046.

228. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, et al. (2008) Comparative

genomics of the neglected human malaria parasite Plasmodium vivax. Nature

455: 757-763.

229. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, et al. (2010) Structure and

dynamics of the pan-genome of Streptococcus pneumoniae and closely related

species. Genome Biol 11: R107.

230. Heinicke S, Livstone MS, Lu C, Oughtred R, Kang F, et al. (2007) The Princeton

Protein Orthology Database (P-POD): a comparative genomics analysis tool for

biologists. PLoS ONE 2: e766.

231. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al. (2007) Draft genome of the

filarial nematode parasite Brugia malayi. Science 317: 1756-1760.

232. Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, et al. (2006) Comparative

genomics of emerging human ehrlichiosis agents. PLoS Genet 2: e21.

233. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbon MH, et al. (2006) Global

phylogeny of Mycobacterium tuberculosis based on single nucleotide

polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic

accuracy of other DNA fingerprinting systems, and recommendations for a

minimal standard SNP set. J Bacteriol 188: 759-772.

234. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, et al. (2005) Insights on

evolution of virulence and resistance from the complete genome analysis of an

 166

early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing

methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187: 2426-

2438.

235. Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, et al. (2005) Genome

sequence of Theileria parva, a bovine pathogen that transforms lymphocytes.

Science 309: 134-137.

236. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. (2005)

Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404-

409.

237. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005) Genome

analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications

for the microbial "pan-genome". Proc Natl Acad Sci U S A 102: 13950-13955.

238. Garrity GM, Field D, Kyrpides N, Hirschman L, Sansone SA, et al. (2008) Toward a

standards-compliant genomic and metagenomic publication record. OMICS 12:

157-160.

239. Standards in Genomic Sciences. Available at: http://standardsingenomics.org

http://standardsingenomics.org/�

	Samuel Vincent Angiuoli, Ph.D., 2011
	Foreword
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 - Introduction
	Advances in genome sequencing and a bioinformatics bottleneck
	Novel methods for efficient whole genome comparison and high-throughput sequence analysis
	Algorithms for efficient comparisons of whole genomes
	Algorithms for improving annotation of pan-genomes
	A novel software platform for portable and automated sequence analysis

	Dissertation organization

	Chapter 2 - Background
	Genome sequencing
	Pan-genomics
	Sequence Alignment
	Genome annotation
	Virtual machines
	Cloud computing

	Chapter 3 - Related Works
	Whole genome multiple alignment
	(Pan-)genome annotation and analysis
	Platforms and packages for automated sequence analysis

	Chapter 4 – Mugsy: Fast whole genome multiple alignment
	Methodology
	Pairwise alignment and identification of duplications
	Determination of locally collinear blocks (LCBs)
	Identification of multi-genome anchors
	Identification of syntenic anchors
	Evaluation of whole genome alignment tools
	Data sets

	Results
	Alignment of multiple bacterial genomes
	Alignment of multiple human genomes

	Discussion

	Chapter 5 - Distributed whole genome multiple alignment
	Methodology
	 Calculation of a guide tree
	Progressive alignment
	Pairwise alignment
	Profile-profile alignments

	Results
	Discussion

	Chapter 6 - Rapid Comparison and Annotation of Pan-genomes
	Methods
	Identification of orthologs
	Identification of annotation inconsistencies
	Alternative annotations
	Data sets

	Results
	Mugsy-Annotator for finding orthologs
	Missing annotations
	Identifying and resolving annotation anomalies

	Discussion

	Chapter 7 - CloVR: A portable system for automated and distributed analysis in bioinformatics
	Implementation
	Architecture overview
	Components of the CloVR VM
	Building the virtual machine images
	Components of a CloVR automated pipeline
	Data storage and transfers
	Automatic resource provisioning in the cloud

	Results
	CloVR runs on the desktop and can utilize resources at multiple cloud providers
	CloVR provides automated resource provisioning in the cloud
	CloVR uses local disk and does not rely on network file systems

	Discussion

	Chapter 8 - Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing
	Methods
	Analysis protocols
	Computational resources
	Spot market bid-price simulations

	Results
	Computational requirements of microbial genomics applications
	Real dollar values of microbial sequence analysis applications
	Capacity and optimization of processing pipelines
	Realizing cost savings using excess capacity in the Amazon EC2 spot market

	Discussion

	Chapter 9 - Discussion and conclusions
	Novel methods and software solutions for the bioinformatics bottleneck
	Efficient multiple alignment of closely related genomes
	A method for efficient comparison and improvement of pan-genome annotation
	A portable platform for automated and high-throughput sequence analysis

	Highlighted applications
	Construction of high-resolution phylogenies using whole genome multiple alignment
	High-throughput pan-genome annotation using whole genome multiple alignment

	Discussion
	Concluding remarks

	Appendices
	Bibliography

