
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: EVOLUTION, DEVELOPMENT, AND GENETICS OF 

OPSIN GENE EXPRESSION IN AFRICAN CICHLID 
FISHES 

  
 Kelly E. O’Quin, Doctor of Philosophy, 2011 
  
Directed By: Dr. Karen L. Carleton, Assistant Professor 

Department of Biology 
 
 
The molecular genetic mechanisms that underlie phenotypic evolution include 

mutations within protein-coding, cis-regulatory, and trans-regulatory factors.  

Although many studies have examined how these mutations individually contribute to 

phenotypic divergence and the formation of new species, none have examined how 

they may do so collectively.  In this study, I examine how these molecular genetic 

mutations collectively contribute to the evolution of color vision among African 

cichlid fishes.  I show that phenotypic divergence in cichlid color vision is achieved 

by mutations affecting the coding sequence and expression of seven opsin genes.  

After contrasting the roles of these two mechanisms, I use bioinformatic-, 

association-, and experimental genetic analyses to determine what role mutations in 

cis- and trans-regulatory DNA play in the evolution of cichlid opsin expression.  

Specifically, I demonstrate that: 



  

(1) Protein-coding mutations primarily affect cichlid opsins sensitive to the ends of 

the visible light spectrum (SWS1 [ultraviolet-sensitive] and LWS [red-sensitive]). 

(2) Changes in opsin gene expression contribute to large differences in color vision 

among closely related species.  These analyses also reveal that the expression of 

the SWS1 and SWS2B opsins have diverged among closely related cichlids in 

association with foraging preferences and ambient light intensity, suggesting 

that their expression has evolved due to natural selection.  Ancestral state 

reconstructions reveal that changes in opsin expression have evolved repeatedly 

among cichlids in Lakes Tanganyika and Malawi; further, I find that this 

repeated evolution has likely been achieved by repeated changes to cichlid 

development. 

(3) Bioinformatic analyses suggest that cichlids have diverged in multiple cis-

regulatory sequences surrounding the opsin genes, and association mapping 

identified three putative single nucleotide polymorphisms upstream of the 

SWS2A (blue), RH2B (blue-green), and LWS (red) opsins that may contribute to 

cichlid opsin expression differences in cis. 

(4) Genetic mapping in experimental crosses suggests that divergence in multiple 

trans-regulatory factors also contribute to the evolution of SWS2B (violet), 

RH2A (green), and LWS (red) opsin expression.  The contribution of these trans-

regulatory factors to the evolution of cichlid opsin expression may outweigh 

those in cis. 

These results reveal that multiple molecular genetic mechanisms can contribute to 

phenotypic evolution among closely related species. 
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Preface 

“To suppose that the eye, with all it inimitable contrivances for adjusting the focus to 

different distances, for admitting different amounts of light, and for the correction of 

spherical and chromatic aberration, could have been formed by natural selection, 

seems, I freely confess, absurd in the highest possible degree.  Yet reason tells me, 

that if numerous gradations from a perfect and complex eye to one very imperfect and 

simple, each grade being useful to its possessor, can be shown to exist; if further, the 

eyes does vary ever so slightly, and the variations be inherited, which is certainly the 

case; and if any variation or modification in the organ be ever useful to an animal 

under changing conditions of life, then the difficulty of believing that a perfect and 

complex eye could be formed by natural selection, though insuperable by our 

imagination, can hardly be considered real.  How a nerve comes sensitive to light, 

hardly concerns us more than how life itself first originated . . .” 

Charles Darwin, The Origin of Species 



 

 iii 
 

Dedication 

To my family, both genetic and otherwise: thank you for your love and support. 

Claire O’Quin 

Karen Carleton 

Jerry, Linda, Casey, and Katie O’Quin 

Michael, Dawn, and Leia Tamplain 



 

 iv 
 

Acknowledgements 

I would never have undertaken this dissertation without the encouragment of my tenth 

grade biology teacher, ‘Doc’ Nathaniel Johnson; I would never have survived the 

rigors of classwork, teaching, and research without the support and guidance of my 

advisor, Karen Carleton; and, I would never have finished this work without the 

sustaining love and patience of my wife, Claire O’Quin.  Additionally, I thank each of 

my committee members—Michael Cummings, Chuck Delwich, Eric Haag, and Tom 

Kocher—for their time, patience, and insights.  Finally, I would also like to thank the 

following individuals, institutions, and funding sources that supported the research 

contained in each chapter: 

 

Chapter 2.  This chapter was previously published in the journal PLoS Biology and I 

reprint it here in slightly modified form under the Creative Commons Attribution 2.5 

Generic License.  I would like to thank my co-authors for their patience and hard 

work on this chapter.  Together, we also thank Thomas Kocher, Reade Roberts, Pat 

Danley, Darrin Hulsey, Todd Streelman, Aimee Howe, and Richard Zatha for their 

help in collecting Lake Malawi cichlids for this study; and Mhoja Kayeba, Mohamed 

Haluna, John Mrosso, and Martine Maan for their help in collecting Lake Victoria 

cichlids.  I and the other co-authors would also like to thank the University of 

Malawi, especially Aggrey Ambali, Lawrence Malekano, and the Tanzania Fisheries 

Research Institute, especially Professor Philip Bwathondi and Egid F. Katunzi.  The 

cichlid lab group at the University of Maryland provided valuable comments on many 

earlier drafts of this chapter. 



 

 v 
 

 

Chapter 3.  This chapter was previously published in the journal Molecular Biology 

and Evolution and is reprinted here in slightly modified form under Oxford 

University Press license no. 2603780800339.  I once again thank my co-authors for 

their hard work and generous help on this chapter, and also want to thank our many 

funding sources.  While working on this chapter, I was supported by awards from the 

Guy Jordan Endowment Fund of the American Cichlid Association, the Cosmos Club 

Foundation of Washington, DC, and a Grant-In-Aid of Research from Sigma Xi, The 

Scientific Research Society.  KLC was supported by the University of Maryland and 

National Science Foundation (NSF) grant IOS-0841270.  HAH was supported by 

NSF grant IOS-021795.  We thank S. Renn, C. Shumway, A. Pollen, G. and W. 

Kazumbe, and S. Bahan for assistance in the field; the Tanzania Fisheries Research 

Institute, the Tanzania Commission on Science and Technology, and Prof. A. 

Nikundiwe (University of Dar Es Salaam) for their kind support of our research; Z. 

Nasser for help sequencing the opsin genes; and D. Soares for providing A. burtoni 

tissues for this study.  This work benefited greatly from comments by two anonymous 

reviewers. 

 

Chapter 4.  This chapter was previously published in the journal Evolution & 

Development and is reprinted here in slightly modified form under John Wiley and 

Sons license no. 2631370564407.  I thank my co-authors as well as Christopher 

Hofmann, Jane Schulte, and other members of the Carleton lab for their comments on 

earlier versions of this chapter; we also thank two anonymous reviewers for their 



 

 vi 
 

helpful comments and suggestions.  I was supported by an Ann G. Wylie dissertation 

fellowship as well as a doctoral fellowship from Drs. Wayne T. and Mary T. 

Hockmeyer (University of Maryland).  KLC was supported by the University of 

Maryland and National Science Foundation (NSF) grant IOS-0841270. 

 

Chapter 5.  This chapter has been accepted for publication, pending minor revision, 

in the journal BMC Evolutionary Biology.  I thank my co-authors—many of whom 

are undergraduate volunteers—for their hard work.  Together, we thank Takayuki 

Katagiri for making the Oreochromis niloticus BAC clone library and Bo Young Lee 

for pooling this library for PCR screening.  We also thank Frederica DiPalma for 

generating the Meteriaclima zebra library and Celeste Kidd for screening this library 

for the opsin-containing BACs.  This work was supported with grants to KLC from 

NSF (IOS-0841270), NIH (R15 EY016721-01) and the University of Maryland. KEO 

was supported by a Wayne T. and Mary T. Hockmeyer Doctoral Fellowship and an 

Ann G. Wylie Dissertation Fellowship from the University of Maryland. 

 

Chapter 6.  I once again thank my co-authors, the majority of whom are 

undergraduate volunteers (“the gene team”).  Togther, we thank Jen Ser for arranging 

the genetic cross between Aulonocara baenschi and Tramitichromis intermedius, and 

Christopher Hofmann for collecting broods and retinas.  This work was supported 

with grants to KLC from NSF (IOS-0841270), NIH (R15 EY016721-01), and the 

University of Maryland.  KEO was supported by an Ann G. Wylie Dissertation 

Fellowship from the University of Maryland. 



 

 vii 
 

Table of Contents 

Preface .......................................................................................................................... ii	
  
Dedication.................................................................................................................... iii	
  
Acknowledgements...................................................................................................... iv	
  
Table of Contents........................................................................................................ vii	
  
List of Tables ............................................................................................................... ix	
  
List of Figures ............................................................................................................. xii	
  
 
Chapter 1: The Locus of Evolution: Introduction and Overview to Dissertation......... 1	
  

Evolutionary Genetics and the “Locus of Evolution” .............................................. 1	
  
The Vertebrate Visual System .................................................................................. 6	
  
The African Cichlid System ................................................................................... 12	
  
Overview of Dissertation ........................................................................................ 16	
  
Figures .................................................................................................................... 19	
  

 
Chapter 2: The Eyes Have It: Regulatory and Structural Changes Both Underlie 
Cichlid Visual Pigment Diversity ............................................................................... 23	
  

Abstract ................................................................................................................... 24	
  
Introduction............................................................................................................. 25	
  
Materials and Methods............................................................................................ 28	
  
Results..................................................................................................................... 38	
  
Discussion............................................................................................................... 46	
  
Figures .................................................................................................................... 53	
  

 
Chapter 3: Parallel Evolution of Opsin Gene Expression in African Cichlid Fishes . 59	
  

Abstract ................................................................................................................... 60	
  
Introduction............................................................................................................. 61	
  
Materials and Methods............................................................................................ 66	
  
Results and Discussion ........................................................................................... 76	
  
Tables...................................................................................................................... 96	
  
Figures .................................................................................................................. 100	
  

 
Chapter 4: New Evidence for the Role of Heterochrony in the Repeated Evolution of 
Cichlid Opsin Expression ......................................................................................... 105	
  

Abstract ................................................................................................................. 106	
  
Introduction........................................................................................................... 107	
  
Materials and Methods.......................................................................................... 112	
  
Results................................................................................................................... 116	
  
Discussion............................................................................................................. 121	
  
Conclusions........................................................................................................... 128	
  
Tables.................................................................................................................... 130	
  
Figures .................................................................................................................. 131	
  

 



 

 viii 
 

Chapter 5: Divergence in cis-regulatory sequences surrounding the opsin gene arrays 
of African cichlid fishes............................................................................................ 134	
  

Abstract ................................................................................................................. 135	
  
Introduction........................................................................................................... 136	
  
Materials and Methods.......................................................................................... 142	
  
Results and Discussion ......................................................................................... 150	
  
Conclusions........................................................................................................... 179	
  
Tables.................................................................................................................... 181	
  
Figures .................................................................................................................. 188	
  

 
Chapter 6: Quantitative Genetic Analysis of trans-Regulatory Factors Associated 
with Opsin Gene Expression in African Cichlids ..................................................... 193	
  

Abstract ................................................................................................................. 194	
  
Introduction........................................................................................................... 195	
  
Materials and Methods.......................................................................................... 199	
  
Results................................................................................................................... 203	
  
Discussion............................................................................................................. 207	
  
Conclusions........................................................................................................... 212	
  
Tables.................................................................................................................... 214	
  
Figures .................................................................................................................. 218	
  

 
Chapter 7: The Locus of Evolution from a Cichlids’ Eye View: Summary and 
Conclusion to Dissertation........................................................................................ 220	
  

Overview of Dissertation Results ......................................................................... 221	
  
Synthesis ............................................................................................................... 223	
  
Future Directions .................................................................................................. 227	
  

 
Appendices................................................................................................................ 233	
  

Appendix 1: Supplementary Tables and Figures for Chapter 2............................ 233	
  
Appendix 2: Supplementary Tables and Figures for Chapter 3............................ 251	
  
Appendix 3: Supplementary Tables and Figures for Chapter 4............................ 266	
  
Appendix 4: Supplementary Tables and Figures for Chapter 5............................ 269	
  

Bibliography ............................................................................................................. 307	
  
 
 



 

 ix 
 

List of Tables 

Table 3-1.  Lake Tanganyika cichlid species used in Chapter 2................................. 96	
  
 
Table 3-2.  Sequence of all primers and probes used to measure cichlid opsin gene 
expression. .................................................................................................................. 98	
  
 
Table 3-3.  Results of phylogenetic ANOVA comparing opsin gene expression with 
foraging preference and post hoc comparisons of SWS1 expression between foraging 
levels. .......................................................................................................................... 99	
  
 
Table 4-1.  Statistical significance of linear and nonlinear coefficients estimated for A. 
burtoni and M. auratus predicted photoreceptor sensitivities. ................................. 130	
  
 
Table 5-1.  List of candidate transcription factors surveyed in this study. ............... 181	
  
 
Table 5-2.  Assembly statistics for O. niloticus and M. zebra opsin-containing BACs.
.................................................................................................................................. 182	
  
 
Table 5-3.  Comparison of sequence similarity and TFBS/miRNA target site 
divergence for three putative cis-regulatory regions surrounding the opsin arrays of O. 
niloticus and M. zebra............................................................................................... 183	
  
 
Table 5-4.  Conserved microRNA target sites within the 3’-UTRs of each opsin in O. 
niloticus and M. zebra............................................................................................... 185	
  
 
Table 5-5.  Polymorphism statistics for 8 candidate cis-regulatory regions in 18 Lake 
Malawi cichlid species.............................................................................................. 186	
  
 
Table 5-6.  Results of allelic associated between SNPs underlying peaks of nuclotide 
diversity and opsin expression in 18 Lake Malawi cichlid species. ......................... 187	
  
 
Table 6-1. Candidate trans-regulatory factors examined in Chapter 6..................... 214	
  
 
Table 6-2.  Primers used to amplify and genotype polymorphisms in Chapter 6..... 215	
  
 
Table 6-3.  Results of ANOVA comparing mean single- and double-cone sensitivity 
among genotypic classes at 15 candidate trans-regulatory loci. .............................. 216	
  
 
Table 6-4.  Results of ANOVA comparing mean RH2B, RH2A, and LWS opsin 
expression among genotypic classes at four candidate trans-regulatory loci........... 217	
  
 
Supplementary Table S2-1. Sample size, relative opsin gene expression, estimated 
single- (SC) and double- (DC) cone sensitivity (λmax), visual palette grouping (k = 3 



 

 x 
 

clustering), foraging and habitat preference, and clade membership of all Lake 
Victoria and Lake Malawi cichlids used in Chapter 2.............................................. 234	
  
 
Supplementary Table S2-2.  Accession numbers for all opsins used in the opsin 
sequence diversity analysis from Chapter 2. ............................................................ 238	
  
 
Supplementary Table S2-3.  Results of phylogenetic ANOVA comparing relative 
opsin expression and single and double cone sensitivity to foraging and habitat 
preference among cichlids from Lake Malawi using three phylogenetic hypotheses.
.................................................................................................................................. 240	
  
 
Supplementary Table S2-4. Location, depth, Secchi disc readings, SWS2B quantum 
catch (QC), and SWS2B relative opsin expression for Lake Victoria taxa from Chapter 
2. ............................................................................................................................... 241	
  
 
Supplementary Table S2-5.  Summary of amino acid variation in opsin genes of 
cichlids from Lakes Malawi (LM) and Victoria (LV) presented in Chapter 2......... 242	
  
 
Supplementary Table S2-6.  Substitutions between amino acids with different 
physical properties that are located within the transmembrane regions of the cichlid 
opsins. ....................................................................................................................... 243	
  
 
Supplementary Table S2-7.  Accession numbers for mtDNA sequences used to 
generate phylogenies for the comparative methods in Chapter 2. ............................ 245	
  
 
Supplementary Table S2-8.  Three distance-based validation statistics for the clusters 
of cichlid opsin expression and photoreceptor sensitivities presented in Chapter 2…....
.................................................................................................................................. 247	
  
 
Supplementary Table S3-1.  Primers used for the detection and sequencing of opsin 
and mtDNA in cichlids from Lake Tanganyika........................................................ 251	
  
 
Supplementary Table S3-2.  Unique primer and probe combinations used to measure 
opsin gene expression in cichlids from Lake Tanganyika. ....................................... 253	
  
 
Supplementary Table S3-3.  Relative opsin gene expression (% total ± s.e.), estimated 
single- (SC) and double- (DC) cone photoreceptor sensitivity (λmax), and lens 
transmittance (T50) results for 28 cichlids species from Lake Tanganyika. ............ 256	
  
 
Supplementary Table S3-4.  Protein-coding sequence variation in ospisn genes of 
cichlids from Lake Tanganyika and Oreochromis niloticus..................................... 258	
  
 
Supplementary Table S3-5.  Results of Bayesian cluster analysis (k = 3 – 5 clusters) 
of opsin gene expression from 93 cichlids species from Lakes Tanganyika (LT), 
Malawi (LM), and Victoria (LV).............................................................................. 261	
  
 



 

 xi 
 

Supplementary Table S4-1.  Relative opsin gene expression (% of total opsin 
expression) and predicted photoreceptor sensitivity (PSmax, nm) of single- (SC) and 
double- (DC) cones measured for all samples reported in Chapter 4, including 
Oreochromis niloticus............................................................................................... 266	
  
 
Supplementary Table S5-1.  GenBank accession numbers for all Lake Malawi cichlid 
sequences generated in Chapter 5. ............................................................................ 270	
  
 
Supplementary Table S5-2.  Primers used to amplify and sequence the proximal 
promter regions and 3’-UTRs of several opsins from 18 Lake Malawi cichlid species.
.................................................................................................................................. 271	
  
 
Supplementary Table S5-3.  Names, relative opsin expression results, and 
polymorphisms found with the proximal promoter and 3’-UTR of five opsins in 18 
Lake Malawi cichlid species..................................................................................... 272	
  
 
Supplementary Table S5-4.  Complete transcription factor binding site profiles for 23 
conserved non-coding elements (CNEs) in O. niloticus and M. zebra.. ................... 280	
  
 
Supplementary Table S5-5.  Complete list of microRNA target sites identified with 
the 3’-UTRs of each opsin in O. niloticus and M. zebra. ......................................... 282	
  
 
Supplementary Table S5-6.  Length and pairwise sequence divergence (Dxy) scores 
between O. niloticus and M. zebra for each coding and non-coding region examined.
.................................................................................................................................. 284	
  
 
Supplementary File 5-1.  FASTA-formatted text file of all 23 conserved non-coding 
elements (CNEs), opsin proximal promoter and 3’-UTR from Oreochromis niloticus 
and Metriaclima zebra, as well as randomly chosen O. niloticus non-opsin sequences 
from Chapter 5. ......................................................................................................... 295	
  
 



 

 xii 
 

List of Figures 

Figure 1-1.  Cartoon illustrating the different molecular genetic bases to phenotypic 
evolution. .................................................................................................................... 19	
  
 
Figure 1-2.  Overview of the vertebrate eye, photoreceptors, and opsin genes.......... 20	
  
 
Figure 1-3.  Diversity of African cichlid fishes. ......................................................... 21	
  
 
Figure 1-4.  Variation in photoreceptor sensitivity and opsin gene expression in three 
African cichlids from Lake Malawi............................................................................ 22	
  
 
Figure 2-1. Opsin gene expression from all species surveyed.................................... 53	
  
 
Figure 2-2. Gene expression profiles and single- and double-cone sensitivities form 
three clusters. .............................................................................................................. 54	
  
 
Figure 2-3. Selective pressures drive opsin expression with each lake. ..................... 55	
  
 
Figure 2-4. Visual pigment performance in Lake Victoria......................................... 56 
 
Figure 2-5. Visual pigment performance in Lake Malawi.......................................... 57 
 
Figure 2-6. The shortest- and longest-wavelength opsins have the greatest sequence 
diversity. ..................................................................................................................... 58	
  
 
Figure 3-1.  Schematic of the East African Great Lakes and the phylogenetic structure 
of their associated cichlid species flocks. ................................................................. 100	
  
 
Figure 3-2.  Opsin expression diversity in 28 cichlid species from LT.................... 101	
  
 
Figure 3-3.  Parallel evolution of opsin gene expression in 47 African cichlid fishes 
from LT, LM, and LV, as well as the rivers (R)....................................................... 103	
  
 
Figure 3-4.  Comparative analysis of opsin gene expression with foraging preference 
and lens transmittance............................................................................................... 104	
  
 
Figure 4-1.  Evolution of opsin expression in African cichlids. ............................... 131	
  
 
Figure 4-2.  Ontogenetic variation in opsin gene expression for two African cichlids, 
(A) Astatotilapia burtoni and (B) Melanochromis auratus. ..................................... 132	
  
 
Figure 4-3.  Ontogenetic variation in the predicted maximal sensitivity of single- and 
double-cone photoreceptors for (A) Astatotilapia burtoni and (B) Melanochromis 
auratus. ..................................................................................................................... 133	
  



 

 xiii 
 

 
Figure 5-1.  Pairwise comparison of sequence conservation between O. niloticus 
opsin-containing BAC regions and four fish genomes. ............................................ 188	
  
 
Figure 5-2.  Alignment of two putative opsin regulatory elements (CNE 10a and b) in 
fishes. ........................................................................................................................ 189	
  
 
Figure 5-3.  Transcription factor binding site diversity within opsin proximal 
promoters. ................................................................................................................. 190	
  
 
Figure 5-4.  Interspecific polymorphism in eight putative cis-regulatory regions from 
18 Lake Malawi cichlid species................................................................................ 191	
  
 
Figure 5-5.  Divergence among coding and non-coding regions in O. niloticus and M. 
zebra opsin-containing BAC sequences. .................................................................. 192	
  
 
Figure 6-1.  Variation in opsin gene expression in F2 hybrid intercross progeny of a 
genetic cross used to study cichlid opsin expression. ............................................... 218	
  
 
Figure 6-2.  Expression QTL for opsin gene expression linked two trans-regulatory 
factors........................................................................................................................ 219	
  
 
Supplementary Figure S2-1.  Depiction of Lake Malawi and Lake Victoria cichlid 
opsin expression in a phylogenetic context. ............................................................. 248	
  
 
Supplementary Figure S2-2.  Phylogenies used for phylogenetically-control statistical 
methods (ANOVA and independent contrasts) in Chapter 2. .................................. 249	
  
 
Supplementary Figure S2-3.  Synonymous substitution rates (DS) and nucleotide 
diversity (pi) of each opsin gene for both Lake Malawi and Lake Victoria cichlids…...
.................................................................................................................................. 250 
 
Supplementary Figure S3-1. Parallel evolution of opsin gene expression in 47 African 
cichlids fishes from Lakes Tanganyika (LT), Malawi (LM) and Victoria (LV), as well 
as the rivers (R), continued. ...................................................................................... 264	
  
 
Supplementary Figure S5-1.  Identification of opsin-containing BACs from Finger 
Printed Contigs (FPCs). ............................................................................................ 286	
  
 
Supplementary Figure S5-2.  Synteny (Pip plots) of O. niloticus opsin-containing 
BACs with the genome assemblies of five teleost species. ...................................... 289	
  
 
Supplementary Figure S5-3.  Synteny (Pip plots) of O. niloticus and M. zebra opsin-
containing BAC sequences. ...................................................................................... 292 
 



 

 xiv 
 

Supplementary Figure S5-4.  Orthology of RH2 and SWS2 opsin paralogs from five 
teleost fish genomes.................................................................................................. 293	
  
 
Supplementary Figure S5-5.  Opsin gene content of five teleost genomes. ............. 294	
  
 
 



 

 1 
 

Chapter 1: 

The Locus of Evolution: Introduction and Overview to 

Dissertation 

 

Evolutionary Genetics and the “Locus of Evolution” 

Evolutionary Genetics: Past and Present 

In the 150 years since Darwin published his seminal treatise On The Origin of 

Species (Darwin 1859), our understanding of biological evolution has advanced by 

leaps and bounds.  In The Origin, Darwin synthesized evidence from both natural and 

artificial systems to support the hypothesis that biological evolution results from 

selection among the individuals of a population undergoing the “struggle for life” on 

the basis of heritable variation in their traits (Darwin 1859).  Some 70 years later, this 

theory of evolution via natural selection was assimilated with the modern theory of 

genetics, and expanded to include other mechanisms of evolutionary change, 

including genetic drift, mutation, and migration (Fisher 1930; Dobzhansky 1937; 

Huxley 1942).  With this Modern Synthesis came a rigorous mathematical framework 

for examining evolution within populations, leading to the emergence of the field of 

evolutionary genetics (Dietrich 2006).  At its heart, this broad field aims to 

understand the evolutionary and genetic mechanisms of phenotypic and molecular 

divergence in natural populations, taking genetics “from the laboratory to the field” 

(Dietrich 2006; Fox and Wolf 2006).  Advances in the field of molecular biology 

further revolutionized evolutionary genetics, allowing biologists to examine genetic 
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variation at numerous levels of biological organization, including whole genomes 

(Lewontin 1991; Graur and Li 2000; Fox and Wolf 2006).  In the past 30 years alone, 

evolutionary geneticists have shined new light on our understanding of evolution by 

connecting divergence in specific organismal phenotypes with variation at specific 

chromosomal regions, genes, and even nucleotides (for a general overview of some of 

these traits and their underlying loci, see Stern (2006; 2007; 2008; 2008).  Now with 

the advent of affordable DNA sequencing and large repositories of genetic and 

phenotypic data, the field of evolutionary genetics is poised to address many long-

standing problems in evolutionary biology, including analysis of the molecular 

genetic mechanisms of phenotypic divergence—the “locus of evolution” (Hoekstra 

and Coyne 2007). 

The Molecular Genetic Basis of Phenotypic Evolution 

The molecular genetic mechanisms underlying functional diversification and 

phenotypic evolution can be divided into a few major categories (Figure 1-1).  First, 

mutations that arise within the protein-coding region of genes can alter the structure 

and function of these genes and their products, thereby altering organismal 

phenotypes.  For much of the last 70 years since the Modern Synthesis, this class of 

mutations has formed the basis of most genetic models of phenotypic evolution.  For 

example, two cases of vertebrate phenotypes that have evolved due to mutations 

affecting the protein-coding region of genes include (i) resistance to the drug 

Warfarin among humans (Homo sapiens) and rats (Rattus norvegicus) due to 

missense mutations within the vitamin K epoxide reductase gene VKORC1 (Rost et 

al. 2004) and (ii) cryptic melanism among beach mice (Peromyscus polionotus) due 
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to a single amino acid substitution within the melanocortin receptor gene Mc1r 

(Hoekstra et al. 2006).  In both cases, a small number of mutations in the protein-

coding region of each gene have been associated with changes in that gene’s activity 

or function, and result in phenotypic changes mirroring those seen in natural 

populations.  These and many other examples (see Table 1 in Hoekstra and Coyne 

(2007)) provide powerful evidence that evolutionary change in organismal 

phenotypes can result from mutations within the protein-coding regions of genes. 

However, as long as 40 years ago, before many links could be made between 

specific mutations and their phenotypic consequences, several biologists had posited 

that mutations affecting non-coding regulatory DNA could also drive the evolution of 

organismal phenotypes (Britten and Davidson 1971; King and Wilson 1975).  Instead 

of altering protein structure and function, mutations in non-coding DNA alter 

organismal phenotypes by changing the type, location, timing, or amount of protein 

expressed.  One of the earliest arguments for the role of these regulatory mutations in 

phenotypic evolution came from comparisons of protein sequence divergence 

between chimps (Pan troglodytes) and humans (King and Wilson 1975).  King and 

Wilson (1975) summarized early studies of protein sequence variation in these two 

species and found that they were divergent in < 1% of their protein sequences.  

Consequently, King and Wilson (1975) argued that mutations in protein-coding 

regions are insufficient to account for the vast morphological, physiological, and 

behavioral differences observed between humans and chimps.  They argued instead 

that changes in anatomy and way of life are more often the result of mutations that 

affect the expression of genes rather than the genes themselves.  Further, protein-
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coding genes comprise < 5% of the human genome (Lander et al. 2001), revealing a 

potentially large source of regulatory DNA; however, examples of specific regulatory 

mutations that alter gene expression and organismal phenotypes have been scarce, 

especially within vertebrate systems.  This dearth of examples is due in part to the 

infancy of comparative gene expression (Wray 2007) as well as the inherent difficulty 

in identifying and testing the significance of variation in such regulatory sequences 

outside of a well-understood genetic code (Chen and Stephan 2006).  But two recent 

examples of animal phenotypes that have evolved due to mutations affecting non-

coding regulatory DNA include: (i) lactase persistence in humans due to several 

mutations within a cis-regulatory region found ~ 22 kb upstream of the lactase gene 

LCT (Enattah et al. 2002; Olds and Sibley 2003; Tishkoff et al. 2007) and (ii) wing 

pigmentation in Drosophila biamripes due to mutations within a cis-regulatory 

element found ~ 1 kb upstream of the pigmentation gene yellow (Gompel et al. 2004).  

In both cases, expression of the mutated region in cell culture or in vivo within other 

Drosophila species, respectively, recapitulated the phenotype and gene activity seen 

in natural populations.  Thus, there is growing and evidence (see Table 1 in Wray 

(2007)) that mutations within non-coding regulatory DNA can also drive phenotypic 

divergence and evolution. 

Most recent studies of mutations within regulatory sequences have focused on 

mutations that occur cis (in linkage) to the genes they regulate.  The reasons for this 

are three-fold.  First, since they are found relatively close (generally 1 – 20 kb 

upstream) to the genes they regulate, cis-regulatory sequences represent a natural and 

tractable first choice in the search for regulatory mutations (Wray 2007).  Second, the 
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promoters of many genes contain multiple cis-regulatory sequences that direct gene 

expression within specific tissues and developmental stages (Carroll 2008).  The 

types of genes with such ‘modular’ promoter elements are geneally widely-expressed 

developmental regulatory genes (i.e., signaling pathway components and transcription 

factors).  The wide spatial and temporal expression of these genes means that any 

mutations within their coding sequences will potentially alter numerous phenotypes, a 

phenomenon termed mosaic pleiotropy.  However, a mutation within in any one cis-

regulatory sequence will only change gene expression in a few tissues or contexts.  

Thus, the modularity of cis-regulatory elements facilitates the fine-tuning of gene 

expression and potentially limits much of the negative pleiotropy that would result 

from protein-coding mutations (Stern 2000; Hittinger et al. 2005; Carroll 2008).  

Finally, cis-regulatory alleles on different chromosomes are transcribed 

independently, making them co-dominant.  This pattern of inheritance is in contrast to 

many protein-coding mutations, which are generally recessive (Graur and Li 2000).  

The ability to produce a distinct expression phenotype in heterozygotes makes cis-

regulatory mutations efficient targets for natural selection (Hartl and Clark 2006).   

These latter two features of cis-regulatory sequences are so appealing that many 

evolutionary developmental biologists have posited that the evolution of cis-

regulatory sequences has played a major role in the evolution of animal form (Stern 

2000; Carroll 2005; Wray 2007). 

Importantly, however, mutations that affect gene expression can also occur 

trans (out of linkage) to the genes they regulate (Jones et al. 1988; Wittkopp et al. 

2004).  For example, protein-coding mutations within transcription factors can act as 



 

 6 
 

regulatory mutations for potentially hundreds of genes (Carroll 2005, 2008), while 

mutations within non-coding RNAs (microRNAs) can change levels of gene 

expression post-transcriptionally (He and Hannon 2004; Chen and Rajewsky 2007) 

(Figure 1-1).  Other mechanisms of phenotypic evolution, such as the post-

translational modification of proteins, or epigenetic regulation of genes and 

phenotypes, are relatively poorly understood and will not be covered here (though 

this is not to imply that these mechanisms are unimportant for phenotypic evolution).  

Thus, although strong arguments and evidence exist that regulatory mutations can 

alter organismal phenotypes, many questions remain.  For example, are some 

phenotypes more likely to evolve by protein-coding mutations than regulatory 

mutations?  Do protein-coding and regulatory mutations differ in their quantitative or 

qualitative affects on phenotypic evolution?  And if regulatory mutations are an 

important force in driving phenotypic divergence, then where do these mutations 

typically occur (in cis or trans) relative to the genes they regulate? 

 

The Vertebrate Visual System 

The Utility and Structure of the Vertebrate Visual System 

Vision in vertebrates is a complex sensory process that is mediated at several 

levels of organization, from the anatomical (eye), to the molecular (opsins), to the 

neuronal (visual cortex).  This system is an excellent model with which to study the 

contributions that different molecular genetic mechanisms make to phenotypic 

evolution and adaptation since: (i) the molecular basis of vision has been studied in 

numerous vertebrate systems, including humans, for many years and is well 
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documented (Wald 1968; Nathans et al. 1986; Yokoyama and Yokoyama 1990); (ii) 

phenotypic variation in the visual system of vertebrates is observed at multiple levels 

of organization, from whole eyes to individual molecules (Yokoyama and Yokoyama 

1996; Yokoyama et al. 2008), and (iii) the visual system has the potential to 

profoundly affect organismal fitness through foraging, mate choice, and predation 

(Lythgoe 1979; Yokoyama and Yokoyama 1996). 

At its broadest level of organization, the eye mediates vision in vertebrates by 

responding to the narrow band of electromagnetic radiation found within the visible 

light spectrum (360 – 750 nm).  But as photons of light strike the eye, they must first 

pass through the cornea, aqueous humor, crystalline lens, and vitreous humor before 

they reach the true sensory center of the eye, the retina (Figure 1-2).  The retina is a 

thin sheet of light-sensitive tissue that lines the back of the eye.  It is composed of 

several layers of interconnected nerve cells and receptors and is responsible for many 

of the intial and intermediate stages of visual processing.  Given this role, it is 

perhaps unsurprising that the retina is actually an outgrowth of the brain and central 

nervous system (Dowling 1987).  During the initial stages of visual perception, 

photons of light that have passed through the eye then pass through the various nerve 

layers of the retina before finally striking the light-sensitive photoreceptor cells 

(Figure 1-2).  Once struck, however, these photoreceptor cells quickly set in motion a 

signal transduction cascade that sends an electrical impulse to the various layers of 

the retina; it is here that the intermediate phases of visual perception occurs.  

Numerous nerve cells—including horizontal-, bipolar-, amacrine-, and ganglion-

cells—filter, combine, compare, and contrast signals from different photoreceptors 
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before sending a final electrical impulse down the optic nerve and to the brain (Kolb 

2003).  Once there, the finer details of visual processing occur within the visual 

cortex.  

Vertebrate Photoreceptors and Spectral Tuning 

Although vertebrate vision may be processed at several levels, the retinal 

photoreceptors have been the chief focus of most studies of vertebrate vision, since it 

is these cells that are immediately responsible for responding to light.  Vertebrates 

exhibit great variation in the size, shape, and number of their photoreceptor cells, but 

together they broadly exhibit two photoreceptor types: (i) long, rod-shaped cells 

responsible for dim-light (scotopic) vision, and (ii) short, cone-shaped cells 

responsible for bright-light (photopic [e.g., color]) vision.  In some vertebrates, the 

cone photoreceptors are further subdivided into short, distinct single-cone cells, and 

longer, joined double-cone cells (Figure 1-2).  The light-sensitive property of the 

photoreceptors is due to a vast array of integral membrane protein-chromophore 

complexes that cover part of the photoreceptor cell: these protein-chromophore 

complexes are termed visual pigments (Wald 1968).  A visual pigment comprises a 

vitamin A1-derived chromophore (11-cis retinal) bound to an opsin protein (a seven 

transmembrane G protein-coupled receptor) (Terakita 2005) (Figure 1-2).  When 

struck by light, the chromophore isomerizes to all-trans retinal, causing the opsin to 

activate the protein transducin, setting off a signal transduction cascade that 

ultimately results in the passage of an electrical impulse to the several nerve layers of 

the retina and brain. 
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Vertebrates vary in the wavelength of light that is maximally absorbed by 

their photoreceptors and visual pigments (termed λmax); this variation in turn 

determines the colors and visual signals that different species can perceive and 

respond to (Yokoyama 2008).  Visual sensitivites can also be altered through changes 

to the ocular media (cornea, aqueous humor, crystalline lens, and vitreous humor) or 

visual pigment.  In the case of the ocular media, the transmissive properties of the 

crystalline lens and oil droplets can be used to limit or shift the available wavelengths 

of light before they reach the retina (Boettner and Wolter 1962; Siebeck and Marshall 

2001).  The transmissive properties of lenses vary among many fish species (Lythgoe 

1979; Siebeck and Marshall 2001), while the use of oil droplets is common among 

birds and reptiles (Bowmaker et al. 1997).  However alterations to the opsin protein 

and retinal chromophore can also change the λmax of visual pigment and, thus, visual 

sensitivities (Wald 1968).  In some vertebrates, replacing the vitamin A1-derived 

chromophore 11-cis retinal with the vitamin A2-derived chromophore 11-cis-3, 4 

didehydroretinal alters the λmax of the visual pigments.  11-cis-3, 4 didehydroretinal 

has one more double-bond than 11-cis retinal and, all else being equal, will cause the 

visual pigment to absorb light of longer wavelengths (Wald 1968).  Many fish species 

use chromophore shifts to tune the λmax of their visual pigments in response to longer-

wavelength light present in winter months (Lythgoe 1979).  Additionally, vertebrate 

vision can also be tuned by altering the amino acid sequence of the opsin protein, 

particularly at residues that surround the chromophore (termed the retinal binding 

pocket).  Numerous studies in a wide array of vertebrates have demonstrated that the 

λmax of vertebrate visual pigments are tuned to their local light environment by amino 
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acid substitutions in the opsin proteins, despite the fact that it is feasible to tune 

sensitivity at higher orders of organization as well (for example visual processing in 

the retina or brain) (Bowmaker 1995; Yokoyama and Yokoyama 1996; Yokoyama et 

al. 1999; Hunt et al. 2001; Terai et al. 2002; Carleton et al. 2005a; Sugawara et al. 

2005; Terai et al. 2006; Seehausen et al. 2008).  This observation suggests that the 

opsins play an important role in the evolution of vertebrate visual systems.  

Consequently, the opsins of vertebrates have become a classic example of how 

protein-coding mutations can influence sensory adaption and phenotypic evolution 

(Yokoyama 2008).   

Opsin Diversity and Fishes 

Vertebrates have four classes of opsin proteins, each generally sensitive to a 

different portion of the visible light spectrum (Yokoyama and Yokoyama 1996).  

RH1 or rhodopsin mediates scoptic (dim-light) vision and is generally sensitive to 

green light (490 – 570 nm).  RH2 or rhodopsin-like opsins help mediate photopic 

(color) vision and are also sensitive green light.  SWS or short-wavelength-sensitive 

opsins also mediate color vision but typically absorb ultraviolet to blue light (360 – 

470 nm).  Finally, MWS/LWS or middle/long-wavelength-sensitive opsins also 

contribute to photopic vision and are sensitive to green and red light (500 – 570 nm).  

Although the ancestral vertebrate lineage possessed opsins of all four classes, many 

opsins have been gained or lost independently in different vertebrate lineages 

(Yokoyama and Yokoyama 1996).  For example, most mammals have only three 

opsins: RH1, SWS, and MWS.  Since they have only two opsins used for photopic 

vision, these species are dichromats and do not possess true color vision.  However, 
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several primates, including humans, have gained an additional opsin through 

duplication and subsequent protein-coding and regulatory evolution of the MWS 

opsin.  This gain has resulted in the evolution of a fourth functional opsin (LWS) in 

primates that is sensitive to red light and which confers full trichromacy, or color 

vision (Jacobs 1996). 

Among vertebrates, aquatic taxa exhibit some of the most diverse visual 

systems—this is especially true of fishes.  The astounding visual diversity of aquatic 

vertebrates is in part due to two factors.  First, the spectral bandwidth of visible light 

available in aquatic environments varies much more dramatically than in terrestrial 

environments, since water attenuates light from the short- and long-wavelength 

regions of the VLS with increasing depth and turbidity (Levine and MacNichol Jr. 

1979; Yokoyama 2008).  Consequently, many closely-related fish species vary in the 

λmax of their photoreceptors and visual pigments in response to the depth and light 

environment of their preferred habitat.  Perhaps the clearest example of this diversity 

is seen in the RH1 and SWS opsin sequences of cottoid fishes (sculpins) from Lake 

Baikal.  Lake Baikal is the deepest freshwater lake in the world, and it is inhabited by 

several species of sculpins that are segregated by depth.  The rod and cone 

photoreceptors of surface-dwelling (littorral) species exhibit λmax that are long-

wavelength-shifted relative to deep-dwelling (abyssal) species.  These changes in λmax 

are reflected in specific amino acid replacements within the RH1 and SWS opsins, and 

parallel the change in the spectrum of visible light available at greater depths 

(Bowmaker et al. 1994; Hunt et al. 1996; Cowing et al. 2002).  Second, many fish 

lineages have acquired multiple opsin genes through several bouts of localized and 
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whole-genome duplication.  Thus, although the ancestral vertebrate lineage had four 

opsins, and most terrestrial mammals have three or four, many fish species have five 

or more genes covering each opsin class.  For example, zebrafish (Danio rerio), 

which is a model fish species, has 9 distinct opsins that collectively confer sensitivity 

to nearly the entire visible light spectrum (Chinen et al. 2003).  In this sense, the 

opsins of fishes represent an ideal system in which to study the evolution of the visual 

system in vertebrates. 

 

The African Cichlid System 

African cichlids (Perciformes: Cichlidae) comprise a group of freshwater, 

teleost fish found throughout the lakes and rivers of Africa.  Although these fishes are 

distributed throughout the African continent, the largest and best-characterized 

assemblages of cichlids are found in the East African Great Lakes and their 

surrounding rivers (Fryer and Iles 1972) (Figure 1-3).  Over 1000 cichlid species have 

evolved in these lakes within the past 10 million years (MY).  Furthermore, these 

species are incredibly diverse, exhibiting a level of phenotypic diversity that is 

unparalleled in most other families or orders of vertebrates (Kocher 2004; Sturmbauer 

2005; Seehausen 2006).  Examples of this diversity are seen in numerous phenotypes, 

including: (i) the size, shape and color of their bodies, (ii) their social, ecological and 

sexual behaviors; and (iii) several additional traits associated with ecological and 

sexual adaptation (Figure 1-3).  These two features—the large number of 

phenotypically diverse species (constituting 2 – 5% of all vertebrates on earth) and 

the short time-frame in which they arose (most within the last 1 – 2 MY alone)—
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makes African cichlids one of a few paradigmatic example of adaptive radiation 

(Fryer and Iles 1972; Greenwood 1974; Streelman and Danley 2003; Kocher 2004; 

Seehausen 2006), and their evolution “among the most celebrated events in the 

history of life” (Schluter 2000).  But perhaps more importantly, these same two 

features also make African cichlids an exciting and tractable system for evolutionary 

genetic studies. 

As noted above, the best-characterized assemblage of African cichlids is 

found in the Great Lakes of Africa, Lakes Tanganyika, Malawi, and Victoria  (Figure 

1-3).  Lake Tanganyika (LT) contains the oldest lineages of Great Lake cichlids: 

lineages within this lake are 9 – 12 MY old and consist of  ~ 250 species from at least 

50 genera and twelve distinct clades or ‘tribes’ (Fryer and Iles 1972; Brichard 1989; 

Takahashi 2003).  While some of these tribes evolved de novo within LT proper in 

the last 5 MY, others clearly arose long ago in the rivers and invaded the lake 

independently (Salzburger et al. 2002).  Cichlids from LT are phylogenetically and 

phenotypically the most diverse assemblage of East African cichlids (Huber et al. 

1997; Salzburger et al. 2002; Pollen et al. 2007).  Lake Victoria (LV) contains the 

second oldest radiation of Great Lake cichlids: the monophyletic assemblage found in 

this lake is approximately 3 MY old (Elmer et al. 2009) and consists of > 500 species.  

In contrast to the assemblage from LT, however, all LV cichlids are derived from a 

single tribe that arose within Lake Tanganyika 5 MY ago, the Haplochrominii.  

Finally, Lake Malawi (LM) contains the youngest group of Great Lakes cichlids: this 

monophyletic assemblage is 1 – 2 MY old (Koblmüller et al. 2008) and consists of > 

600 species from approximately 50 genera.  Like cichlids from LV, most LM cichlids 
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are members of the tribe Haplochromini, and the assemblages (“species flocks”) of 

these two lakes are reciprocally monophyletic (Meyer et al. 1990) (Figure 1-3).  

Additionally, the monophyletic assemblage of LM’s cichlids is itself composed of 

two reciprocally monophyletic clades, the mbuna (translated as “rockfish”) and non-

mbuna (sometimes called utaka, although some taxonomists restrict this definition to 

just two genera of non-mbuna (Konings 2007; Oliver 2009)).  However, despite the 

extremely close phylogenetic (Meyer et al. 1990; Kocher et al. 1993) and genetic 

(Loh et al. 2008) affinity of cichlids in LM, these species are phenotypically quite 

diverse.  In fact, many LM cichlids have convergently evolved numerous traits in 

common with the older and more diverse cichlids of LT (Kocher et al. 1993; Kassam 

et al. 2003).  Thus, the cichlid system is ideal for evolutionary genetic analysis, since 

sufficient time has passed for phenotypic diversity to arise among its many species, 

but not so much that the molecular and phenotypic signatures left by the evolutionary 

forces that produced this diversity have been erased by subsequent diversification and 

mutation (see Storz (2005)). 

The visual system of African cichlids is an especially good model with which 

to study the roles of protein-coding and regulatory mutations during phenotypic 

evolution.  Cichlids have eight opsin genes, seven used for photopic vision and one 

used for scotopic vision (Carleton 2009).  These opsins are SWS1 (ultraviolet-

sensitive), SWS2B (violet-sensitive), SWS2A (blue-sensitive), RH2B (blue–green-

sensitive), RH2Aα and RH2Aβ (green-sensitive), LWS (red-sensitive), and RH1 (dim-

light-sensitive) (Spady et al. 2006).  As in other vertebrates (Yokoyama and 

Yokoyama 1996), protein-coding mutations have played an important role in 
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evolution of spectral sensitivity in cichlids.  For example, among cichlids from LV, 

polymorphisms in the protein-coding sequence of the LWS opsin are adaptively 

associated with variation in the local light environment and male color, potentially 

contributing to ecological speciation in these species (Terai et al. 2006; Seehausen et 

al. 2008).  Additionally, virtually all of the cichlid opsins exhibit molecular signatures 

of adaptive protein-coding evolution (Sugawara et al. 2002; Spady et al. 2005) (but 

see Yokoyama et al. (2008)).  Typically, these protein-coding mutations are 

associated with changes in spectral sensitivity (λmax) of 1–15 nm (Yokoyama 2008). 

However, in addition to protein-coding mutations, cichlids from LM exhibit 

large, 30 – 100 nm differences the λmax of their photoreceptors that cannot be 

explained by simple protein-coding mutations within their opsins (Parry et al. 2005; 

Jordan et al. 2006) (Figure 1-4).  This scenario is reminiscent of the contrast between 

protein-coding and phenotypic divergence seen in chimps and humans (King and 

Wilson 1975).  Regulatory mutations that alter the relative expression of different 

groups of opsins have resulted in the evolution of many closely related cichlids that 

have photoreceptors sensitive to very different regions of the visible light spectrum 

(Figure 1-4).  Additionally, among LV cichlids of the genus Pundamilia, variation in 

the ratio of red:green sensitive double cones may represent an adaptation to local 

differences in the light environment (Carleton et al. 2005a).  Since these species have 

distinct red- and green-sensitive opsins like other African cichlids, this variation in 

cone sensitivity implies a variation in the ratio of LWS:RH2A expression.  Thus, 

preliminary studies suggest that regulatory mutations can also contribute to the 

evolution of visual sensitivity in African cichlids, and therefore vertebrates in general.  
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But since each of these previous studies (Carleton et al. 2005a; Parry et al. 2005; 

Jordan et al. 2006) sampled only 3 – 10 species, it is unclear to what extent this is true 

for the remainder of cichlids in LM and LV, or for African cichlids from other lakes.  

For in contrast to cichlids from LM and LV, little is known of the visual sensitivities 

of cichlids from LT, except for one lone species, Astatotilapia burtoni (Fernald 

1981). 

 

Overview of Dissertation 

Despite the initial results of Carleton et al. (2005a), Parry et al. (2005), and 

Spady et al. (2006), many intriguing questions remain regarding the evolutionary 

genetics of cichlid visual sensitivity.  If regulatory mutations can contribute to the 

evolution of visual sensitivity among African cichlids, are these mutations adaptive, 

as has been demonstrated for the many opsin protein-coding mutations?  Do 

regulatory mutations contribute to similar shifts in spectral sensitivity (1 – 15 nm) as 

other protein-coding mutations, or do these two types of mutations have distinct 

effects on phenotypic evolution?  Do regulatory mutations represent an equally 

important source of genetic variation as protein-coding mutations, are they more 

important, or vice versa?  And if regulatory mutations indeed play an important role 

in the evolution of cichlid visual sensitivity, then what and where are these mutations 

located relative to the opsins, in cis or trans?  These are the questions that this 

dissertation will attempt to address.  In summary the goals of this dissertation are to: 

(i) examine the diversity and evolutionary history of opsin gene expression among 

African cichlids from Lakes Tanganyika, Malawi, and Victoria; (ii) test hypotheses 
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concerning the evolutionary and developmental mechanisms by which opsin gene 

expression has evolved in cichlids; and (iii) elucidate the genetic factors that underlie 

variation in cichlid opsin expression.  To this end, I present five chapters of research 

that each examines one or more of these questions. 

In Chapters 2 and 3 (Hofmann et al. 2009; O'Quin et al. 2010), we examine 

levels of opsin gene expression in approximately 100 cichlid species and populations 

from Lakes Tanganyika, Malawi and Victoria.  We then estimate the impact of 

changes in gene expression on the maximal sensitivity of cichlid single- and double-

cone photoreceptors.  In order to determine whether any changes in opsin expession 

may be due to natural selection, we test whether divergence in opsin expression is 

associated with divergence in several ecological variables.  We compare and contrast 

interspecific variation in opsin expression with interspecific variation in the amino 

acid sequence of each opsin.  Finally, we also examine the evolutionary history of 

opsin expression among cichlids in these lakes.  By comparing regulatory and 

protein-coding variation in the same opsins and species, we elucidate the unique 

contributions that both molecular genetic mechanisms make to phenotypic divergence 

in cichlid visual sensitivity.  

In Chapter 4 (O'Quin et al. 2011) we test the hypothesis that the repeated 

evolution of opsin expression patterns among African cichlids in LT and LM has 

been facilitated by changes to cichlid development (heterochrony).  We examine 

opsin gene expression in developing fry of two cichlid species (one of them 

phylogenetically intermediate to cichlids from LT and LM) then compare this to 

developmental variation observed in their distant ancestor. 
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In Chapters 5 and 6 (O’Quin et al., accepted; O’Quin et al. unpublished data) 

we attempt to identify the cis- and trans-regulatory factors that underlie variation in 

cichlid opsin expression.  In Chapter 5, we examine putative cis-regulatory sequences 

surrounding the opsin arrays of cichlids with different developmental and adult opsin 

expression patterns.  We examined three types of putative cis-regulatory sequences—

conserved non-coding elements, proximal promoter regions, and 3’-UTRs—and 

compare them among two cichlid species for evidence of divergence.  Finally, we 

resequence those regions that exhibit significant divergence in an interspecific panel 

of cichlids from Lake Malawi in order to identify single nucleotide polymorphisms 

(SNPs) associated with changes in opsin expression in cis.  In Chapter 6, we examine 

genetic divergence at several candidate trans-regulatory factors within the progeny of 

an experimental cross between two Lake Malawi cichlids.  The candidate trans-

regulatory factors we examine include 15 transcription factors that have been shown 

to influence opsin expression in several fish or vertebrate model systems. 

Finally, In Chapter 7, I revisit “the locus of evolution” in light of our results 

regarding the evolution, development, and genetics of cichlid opsin expression—a 

cichlid’s eye view of the locus of evolution.  I synthesize information from this 

dissertation and other studies regarding the roles of protein-coding, cis-, and trans-

regulatory mutations and the evolution of cichlid visual sensitivity.  I suggest what 

the direction of future work should be and make a final statement on the evolutionary 

genetics of phenotypic evolution.  
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Figures 
 
Figure 1-1.  Cartoon illustrating the different molecular genetic bases to phenotypic 
evolution.  Solid black bars represent protein-coding DNA, thin black lines represent 
non-coding DNA.  Colored star-bursts represent mutations in each DNA sequence, 
respectively. 
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Abstract 

A major goal of evolutionary biology is to unravel the molecular genetic 

mechanisms that underlie functional diversification and adaptation.  We investigated 

how changes in gene regulation and coding sequence contribute to sensory 

diversification in two replicate radiations of cichlid fishes.  In the clear waters of 

Lake Malawi, differential opsin expression generates diverse visual systems, with 

sensitivities extending from the ultraviolet to the red regions of the spectrum.  These 

sensitivities fall into three distinct clusters and are correlated with foraging habits.  In 

the turbid waters of Lake Victoria, visual sensitivity is constrained to longer 

wavelengths, and opsin expression is correlated with ambient light.  In addition to 

regulatory changes, we found that the opsins coding for the shortest- and longest-

wavelength visual pigments have elevated numbers of potentially functional 

substitutions.  Thus, we present a model of sensory evolution in which both molecular 

genetic mechanisms work in concert.  Changes in gene expression generate large 

shifts in visual pigment sensitivity across the collective opsin spectral range, but 

changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- 

and long-wavelength ends of this range, where differential opsin expression can no 

longer extend visual pigment sensitivity. 



 

 25 
 

Introduction 

A very large body of literature has been dedicated to the geography, ecology, 

and genetics of adaptive diversification and speciation (Darwin 1859; Schluter 2000; 

Coyne and Orr 2004; Gavrilets 2004; Price 2007).  Yet, the proximate mechanisms 

responsible for diversification have been characterized for only a few traits in a few 

systems (Coyne and Orr 2004).  The molecular genetic mechanisms underlying 

functional diversification can be divided into two major categories.  First, changes in 

gene expression (either through cis- or trans-acting regulatory factors) can alter the 

type, location, timing, or amount of protein produced.  Alternatively, changes in gene 

coding sequence can alter protein function.  The relative contributions of these 

mechanisms have been debated since King and Wilson proposed that functional 

species differences are largely the result of differential gene expression (King and 

Wilson 1975).  Recent studies have confirmed the key role that altered gene 

expression plays in modifying body form or pattern (Shapiro et al. 2004; Löhr and 

Pick 2005; Prud'homme et al. 2006; Carroll 2008).  However, structural changes in 

proteins also contribute to phenotypic adaptation (Jessen et al. 1991; Yokoyama et al. 

1999; Hoekstra et al. 2006; Hoekstra and Coyne 2007).  Recently, sweeping claims 

regarding the importance of each mechanism have been made by proponents on both 

sides of the debate (Hoekstra and Coyne 2007; Wray 2007), whereas others have 

argued that this dichotomy is arbitrary (Oakley 2007; Stern and Orgogozo 2008).  In 

spite of this debate, few studies have examined the relative role that both mechanisms 

can play in shaping a single phenotype. 



 

 26 
 

The visual system is ideal for investigating the molecular mechanisms of 

adaptation, because there is a direct link between genotype and phenotype 

(Bowmaker 1995; Yokoyama and Yokoyama 1996).  Within the retina, spectral 

sensitivity is determined by visual pigments, which are composed of an opsin protein 

bound to a light-sensitive chromophore (Wald 1968).  This opsin–chromophore 

interaction determines the peak spectral sensitivity of each visual pigment.  Numerous 

studies have demonstrated that visual pigment sensitivities are tuned to the local light 

environment by amino acid substitutions in opsin proteins (Bowmaker 1995; 

Yokoyama and Yokoyama 1996; Yokoyama et al. 1999; Hunt et al. 2001; Terai et al. 

2002; Carleton et al. 2005a; Sugawara et al. 2005; Terai et al. 2006; Seehausen et al. 

2008).  Consequently, sensory adaptation via changes in opsin gene coding sequence 

has become a classic example of molecular adaptation.   

However, fish have numerous opsin genes that have arisen through tandem 

gene duplications.  These duplicate opsin genes have diverged to produce visual 

pigments that absorb maximally across the full spectral range, from the ultraviolet to 

the red (reviewed in Hofmann and Carleton (2009)).  Recent work in cichlids and 

other taxa has demonstrated that differential expression of these opsin genes may 

generate large changes in visual sensitivity (Carleton and Kocher 2001; Spady et al. 

2006; Carleton et al. 2008; Shand et al. 2008).  Typically, these studies have 

examined populations of one species, or of closely related species, but have not 

evaluated the relative importance, and adaptive significance, of spectral tuning via 

differential gene expression across many divergent species. 

The haplochromine cichlids of the East African rift lakes are well suited for 
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addressing this question.  They are a classic example of adaptive radiation and rapid 

speciation (Fryer and Iles 1972; Greenwood 1974; Schluter 2000; Streelman and 

Danley 2003; Kocher 2004; Seehausen 2006).  Hundreds of new species have 

evolved in Lake Malawi within the past 1–2 million years and within a mere 15,000–

120,000 years in Lake Victoria (Meyer et al. 1990; Genner et al. 2007).  These two 

haplochromine radiations provide a large number of closely related, yet ecologically 

and morphologically divergent, species.  Furthermore, these two lakes differ 

dramatically in their light environment (Carleton et al. 2006).  Lake Malawi is one of 

the deepest and clearest freshwater lakes in the world, with clarity similar to that of 

marine environments (Muntz 1976).  In contrast, Lake Victoria is relatively turbid, 

with long wavelength–shifted transmission and considerable variation in both clarity 

and transmission among geographic localities (Seehausen et al. 1997).  Studies have 

demonstrated repeatedly that selection is acting on the visual systems of cichlids in 

both lakes (Sugawara et al. 2002; Terai et al. 2002; Carleton et al. 2005a; Spady et al. 

2005; Sugawara et al. 2005; Terai et al. 2006; Seehausen et al. 2008). 

In this study, we use these two replicate cichlid radiations to (i) examine how 

changes in opsin gene expression contribute to the remarkable diversification of 

cichlid visual systems, (ii) test whether changes in opsin gene expression are 

adaptive, and (iii) compare the relative roles that differential opsin gene expression 

and changes in protein coding sequence play in the diversification of cichlid visual 

systems. 
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Materials and Methods 

Sampling and Ethics Statement 

We collected 133 fish representing 52 cichlid species from Lake Malawi and 

11 species/populations from Lake Victoria (Supplementary Table S2-1 [Appendix 

1]).  Lake Malawi species were wild-caught from the southern portion of Lake 

Malawi in 2005, either from the south side of Thumbi West Island or off Otter Point.  

Lake Victoria species were lab bred from wild-caught stocks and reared in a common 

garden laboratory environment at the Centre of Ecology, Evolution & 

Biogeochemistry of the ETH Institute for Aquatic Research in Kastanienbaum, 

Switzerland.  Tanks were illuminated using daylight fluorescent light with a 12:12 

light:dark cycle.  Water temperature was kept constant at 24–26° C.  All fish were 

raised on a mix of commercial flake food, given daily, and a blend of shrimp, peas, 

and Spirulina powder fed twice a week.  Experimental tanks were part of a large 

recirculation system.  All fish were sampled upon sexual maturity, then euthanized 

according to University of Maryland Institutional Animal Care and Use Committee 

(IACUC)-approved protocols (R-09-73). 

Opsin Gene Expression 

After euthanizing each fish, we dissected both retinas from their eyecups and 

immediately stored them in RNAlater (Ambion) until the time of analysis.  Retinas 

were collected from adult fish greater than 6 months of age, when any ontogenetic 

changes would be complete (Carleton et al. 2008).  These were collected during the 

late morning through the afternoon.  Although cichlid opsin gene expression does 
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show diurnal variation, expression of cone opsin genes varies slowly and in 

synchrony (Halstenberg et al. 2005).  Therefore, sampling time is not likely to impact 

the relative gene expression ratios we determined here. 

The real-time qPCR methods we use to measure cichlid opsin expression 

follow those previously optimized for cichlid opsins (Carleton and Kocher 2001; 

Spady et al. 2006).  In brief, RNA was extracted using commercially available kits 

(RNeasy, Qiagen) and reverse transcribed (Superscript III, Invitrogen).  Real-time 

PCR reactions were run using opsin-specific TaqMan primers and probes that 

spanned the exon–exon boundaries.  The recently diverged RH2Aα and RH2Aβ opsin 

genes are genetically similar and produce visual pigments that differ in absorbance by 

only 10 nm (Spady et al. 2006).  As in previous studies, we quantified them together 

(Carleton et al. 2005a; Spady et al. 2006; Carleton et al. 2008).  Reactions for all six 

opsin classes were run in parallel.  An internal standard containing a tandem array of 

segments from each opsin gene was used to calculate the reaction efficiency within 

each run.  The relative expression of each opsin as a fraction of total cone opsin 

expression was then calculated from the reaction efficiency and critical cycle number 

(Carleton and Kocher 2001; Spady et al. 2006).  Each reaction was run twice, and 

averages of both runs from all individuals of a species are reported. 

We clustered species with quantitatively similar opsin gene expression 

profiles via hierarchical clustering.  However, because multivariate methods such as 

hierarchical clustering are sensitive to factors with relatively larger values (Quinn and 

Keough 2002), we standardized the expression values of opsins expressed within 

single and double cones separately.  To do this, we divided the relative expression of 
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each opsin by the combined expression of all other opsins within the same cone type 

(SWS1, SWS2B, and SWS2A for single cones; RH2B, RH2A, and LWS for double 

cones; see below for a justification of these assignments).  This normalization 

procedure provides equal weighting to opsins expressed within single cones versus 

those expressed within double cones.  We then used the normalized opsin expression 

data to calculate Euclidean distances between species and clustered them using 

Ward’s method.  We identified the optimal number of clusters resulting from this 

analysis using the Connectivity, Dunn, and Silhouette cluster validation indexes 

(Brock et al. 2008).  Given a range of potential clusters, these indexes provide relative 

measures of support for each cluster size.  Here, we tested for the presence of two to 

ten clusters.  We implemented both hierarchical clustering and cluster validation 

statistics in the R package clValid (Brock et al. 2008). 

Calculating Single- and Double-Cone Sensitivity 

We calculated the average single- and double-cone sensitivities of all taxa in 

order to better understand how changes in gene expression might influence overall 

retinal sensitivity.  First, we assigned opsin genes to cone types.  Based on MSP data 

from 19 Malawian cichlid species (Carleton et al. 2000; Parry et al. 2005; Jordan et 

al. 2006), nine Victorian cichlid species (van der Meer and Bowmaker 1995; Carleton 

et al. 2005a), one Tanganyikan cichlid (Fernald and Liebman 1980), and the riverine 

cichlid, Oreochromis niloticus (Carleton et al. 2008), we have found that all cichlid 

single cones have a wavelength of maximum absorbance (λmax) that is less than 460 

nm, and all cichlid double cones have a λmax that is greater than 460 nm.  Based on 

the λmax of heterologously expressed opsins from O. niloticus (Spady et al. 2006) and 
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M. zebra (Parry et al. 2005), this means that the SWS1, SWS2B, and SWS2A opsin 

genes are expressed in single cones, whereas RH2B, RH2A, and LWS are expressed in 

double cones. 

To calculate average single- or double-cone sensitivities, peak spectral 

sensitivities for each opsin were weighted by the fraction of their expression in each 

cone type using the following equations: 

ƒSWS1λSWS1 + ƒSWS2BλSWS2B + ƒSWS2AλSWS2A 
λmax, S = 

ƒSWS1 +ƒSWS2B +ƒSWS2A 
 
and 
 

ƒRH2BλRH2B + ƒRH2AλRH2A + ƒLWSλLWS 
λmax, D = ƒRH2B +ƒRH2A +ƒLWS 

 
where ƒi is the relative expression of the ith opsin and λi is the λmax of the same opsin 

(Spady et al. 2006; Carleton et al. 2008).  We used previously published λmax values 

from heterologously expressed O. niloticus opsins (SWS1 = 360 nm, SWS2B = 425 

nm, SWS2A = 456 nm, RH2B = 472 nm, RH2Aα + RH2Aβ = 523 nm [mean], and 

LWS = 560 nm) (Spady et al. 2006).  O. niloticus (Nile Tilapia) is considered an 

outgroup to both the Lake Malawi and Lake Victoria cichlid radiations (Kocher et al. 

1995).  We clustered and validated the number of single- and double-cone clusters 

using the same method as for the clustering of opsin expression values (see above). 

Finally, although opsin expression and visual pigment sensitivity are tightly 

correlated (Carleton et al. 2005a; Spady et al. 2006; Carleton et al. 2008), these 

estimates of single- and double-cone sensitivity are not meant to suggest how colors 

are perceived (e.g., dichromacy vs. trichromacy).  Rather, estimating single- and 

double-cone sensitivity allowed us to plot the data in a two-dimensional space to infer 
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how changes in gene expression influence overall retinal sensitivity in a quantitative 

manner.  These single- and double-cone sensitivities were estimated based on two 

assumptions: (i) the visual pigment λmax for each gene is the same for all species; and 

(ii) the chromophore is A1 (11-cis retinal) for all species.  We have not attempted to 

estimate individual λmax values for each gene in each species for several reasons.  

First, we have not sequenced all the genes from all species.  Second, we do not know 

the effects of all the sites, which vary across each of the opsins, and so would not be 

able to predict the exact λmax.  However, based on the range of λmax values that have 

been estimated from MSP of 30 different cichlid species from Lakes Malawi and 

Victoria, the variation in λmax is relatively small: SWS1 = 371±8 nm, SWS2B = 418±5 

nm, SWS2A = 455±5 nm, RH2B = 482±5 nm, RH2A = 528±6 nm, and LWS = 565±9 

nm (see Table 2 in Carleton et al. (2009)).  Although there is larger variation in the 

SWS1 and LWS visual pigments, in agreement with our sequence diversity (see 

Results section below), this variation would have a negligible effect on the placement 

of species in their respective opsin expression clusters.  Therefore, a reasonable 

approximation is to use the same λmax for each gene in all species.  Similarly, we have 

neglected any effects of chromophore switching from A1 to A2.  Malawian cichlids 

utilize primarily A1 chromophore.  However, Victorian cichlids do show some 

evidence of A2 usage.  A complete chromophore switch causes small shifts for SWS1 

(15 nm), SWS2B (7 nm), and SWS2A (10 nm), but larger shifts for RH2B (19 nm), 

RH2A (35 nm), and LWS (60 nm) based pigments (Carleton et al. 2006).  It is more 

typical for the chromophore to be an A1/A2 mixture, which would decrease the size 

of these shifts.  The net effect of A2 expression would be to push the double-cone 
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estimates for Victorian cichlids to longer wavelengths.  This would stretch the long-

wavelength cluster, but would never cause Victorian species to shift into the shorter-

wavelength clusters.  Further studies are needed to quantify chromophore usage in 

wild-caught fish, as this could be important for actual visual sensitivities. 

Ecological Correlations within Lake Malawi 

We used the phylogenetic comparative method (Felsenstein 1985) to test the 

hypothesis that opsin gene expression and the resulting single- and double-cone 

sensitivities differ adaptively among Lake Malawi cichlids with different foraging 

modes or macrohabitat preferences.  Because of the lack of a resolved species-level 

phylogeny for this group, we used three different phylogenetic hypotheses for our 

analyses, (i) a mitochondrial gene tree reconstructed from 1,247 bp of mtDNA, (ii) a 

generic tree illustrating the purported taxonomic relationships among the genera 

sampled, and (iii) a star tree in which the mbuna and non-mbuna clades were 

collapsed into polytomies, representing their rapid radiation from a common ancestor 

(Figures S1-2).  Our mtDNA phylogeny utilized 1,247 bp of mtDNA corresponding 

to 934 bp of the protein-coding gene ND2 and 313 bp of the mitochondrial control 

region.  Previously published sequences were available for approximately half the 

taxa sampled; the remaining sequences were obtained via PCR and direct sequencing 

following standard protocols (Kocher et al. 1995; Lee et al. 1995) (Table S2-7 

[Appendix 1]).  Multiple sequence alignment for the final sequence set was 

performed using the L-INS-i strategy of the program MAFFT (Katoh et al. 2002) and 

then edited manually.  We then used MrBayes v3.1.2 (Huelsenbeck and Ronquist 

2001) to generate a phylogeny of all Lake Malawi species sampled.  We specified the 
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GTR + Γ + G model of nucleotide substitution for these analyses following likelihood 

ratio tests in the program MrModeltest v2.2 (Nylander et al. 2004).  We treated all 

model parameters as unlinked with a flat prior probability distribution.  We 

performed three independent runs of four Metropolis-Hastings Coupled Monte Carlo 

Markov chains (MCMCMC), three hot and one cold. Each chain was run for 

1,000,000 generations and trees were sampled every 1,000 generations.  Posterior 

probability values for the resulting 50% majority rule consensus tree were estimated 

after discarding the first 10% of trees as burn-in. 

We tested hypothesis that opsin gene expression varies adaptively among 

Lake Malawi using phylogenetic ANOVA implemented in the program PDSIMUL 

v2.0 (Garland Jr. et al. 1993).  Null distributions of F-statistics for ANOVA, corrected 

for phylogenetic nonindependence, were generated by simulation (n = 1,000) of 

relative opsin gene expression levels and estimated single- and double-cone λmax 

values across the three trees listed above.  These simulations followed an unbounded 

Brownian motion model of character evolution.  All statistical analyses were 

performed using the stats and PHYLOGR (Díaz-Uriarte and Garland Jr. 2007) 

packages in the program R v2.6.2. 

Spectral Measurements 

We measured the transmission properties of waters from Lakes Malawi and 

Victoria in the field.  In Lake Malawi, the water attenuation coefficient as a function 

of wavelength was determined at two locations: (i) Zimbawe Island, a rocky outcrop 

with a maximum depth of 40 m, and (ii) the southern side of Thumbi West Island, a 

sheltered bay with a maximum depth of 15 m.  A set of ten irradiance measurements 
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were taken from a series of depths (0, 1, 3, 5, 7, 10, 15, and 20 m at Zimbawe and 0, 

1, 3, 7, and 10 m at Thumbi West) using Subspec, a submersible Ocean Optics (USB 

2000) spectrometer fitted with a 100-mm fiber and a cosine correcter.  These data 

were used to determine the slope (k, attenuation coefficient) and intercept (b) of a plot 

of ln(Id/I0) versus depth (d), where I0 is the initial, full-spectrum irradiance, and Id is 

the irradiance at depth.  Transmission (T) at 2 m depth was then calculated using the 

equation T = e(k*d+b).  Relative irradiance was then calculated by multiplying T by I0. 

Victorian water measurements were taken three locations: (i) Makobe Island, 

a relatively clear location, (ii) Python Island, a turbid location, and (iii) Luanso 

Island, an extremely turbid location.  Transmission was measured at a depth of 2 m 

for all three locations, using an AvaSpec 2048 212 spectrophotometer with a 10 m 

fiber cable (100 mm) and SpectraWin 4.16 software (Avantes).  Measurements were 

taken in the shade, between 8h30 and 9h00 in the morning.  Irradiance was then 

calculated by multiplying T by I0.  The same I0 (from Zimbawe) was used for both 

Malawi and Victoria to remove any daily variation and focus only on differences in 

water properties. 

Calculating Relative Quantum Catch 

We estimated the quantum catch (Q) that a visual pigment containing each 

opsin gene would have at each location in Lake Malawi and Victoria using the 

following equation: 

Q = ∫ I(λ)TW(λ,d)R(λ)dλ 

where I(λ) is the incident solar irradiance at the surface (measured at Zimbawe Rock), 

TW (λ,d) is the light transmission of the water to a depth (d = 2 m), and R(λ) is the 
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photoreceptor absorption calculated using equations from Govardovskii et al. 

(Govardovskii et al. 2000).  Because we were interested in the relative quantum catch 

each opsin gene would produce, we normalized the quantum catch for each visual 

pigment by the sum of the quantum catches from all visual pigments (this also 

removed intensity differences across geographic regions).  Unpublished data suggest 

that ocular media are not limiting (e.g., species that express the UV-sensitive [SWS1] 

opsin have UV-transmitting lenses).  Therefore, the potential influence of ocular 

media was not included in this estimate. 

Ecological Correlations within Lake Victoria 

We tested the hypothesis that that relative quantum catch of SWS2B-based 

visual pigments vary adaptively among cichlids from Lake Victoria once again using 

the phylogenetic comparative method.  We first used Secchi disk readings (Table S2-

4 [Appendix 1]) to classify the Lake Victoria cichlid population based on whether 

they came from clear (>150 cm) or turbid locations (<150 cm).  Because we did not 

have measurements of the light environment from all locations, we used the 

attenuation coefficient from Makobe to represent clear water and from Python to 

represent turbid water.  The mean depth each taxon inhabits at the location where it 

was collected was used to calculate the transmission and relative irradiance.  We then 

calculated the relative quantum catch that an SWS2B-based visual pigment would 

have in this light environment using the equation described above. 

To test whether SWS2B expression was correlated with visual pigment 

quantum catch (Table S2-4 [Appendix 1]), we used Felsenstein’s independent 

contrasts method (Felsenstein 1985) as implemented in the PDAP v1.08 (Midford et 
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al. 2003) module of Mesquite v1.11 (Maddison and Maddison 2001).  Because of the 

rapid nature of the Victorian radiation (< 100,000 y), we used a generic phylogeny for 

this analysis.  To account for the presence of polytomies in this tree, we subtracted 

five degrees of freedom when calculating p-values for this analysis (see Figure S2-2 

[Appendix 1]). 

Opsin Sequence Diversity 

We sequenced all seven cone opsin genes plus the rod opsin from five Lake 

Victoria taxa using previously published methods (Table S2-2 [Appendix 1]).  

Genomic DNA was isolated from fin clips and amplified using opsin-specific PCR 

primers (Carleton et al. 2000; Carleton and Kocher 2001; Parry et al. 2005).  PCR 

products were gel or column purified and sequenced using PCR and internal primers.  

For all sequencing, we obtained at least 2X coverage and >95% of each gene’s coding 

sequence. 

Additional opsin sequences from previously published Lake Malawi and 

Victoria taxa were downloaded from GenBank (Table S2-2 [Appendix 1]).  Since the 

RH2Aα and RH2B gene sequences were missing for many of these taxa, we 

sequenced these genes for 18 taxa as well as any other missing or incomplete genes 

from genomic or cDNA stocks whenever possible (Table S2-2 [Appendix 1]).  

Sequences were assembled and edited using Sequencher (v4.9, Genecodes Corp.).  

Consensus sequences were then aligned, and intronic regions were removed.  

Previously published alignments between each cichlid opsin and bovine rhodopsin 

were used to identify amino acid substitutions that fell in the putative transmembrane 

and retinal binding pocket regions (Carleton et al. 2005b).  Substitutions were then 
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examined to determine whether they were between amino acids with different 

physical properties.  These properties were nonpolar hydrophobic, polar uncharged, 

polar acidic, and polar basic.  This approach was chosen because of previous work 

that suggests statistical tests of selection in opsins can be misleading (Yokoyama et 

al. 2008).  To rule out the possibility that the changes we observed were due to 

differences in the mutation rates of different opsins, we used MEGA v4.0 (Tamura et 

al. 2007) to calculate average pairwise rate of synonymous substitution (DS), and 

nucleotide diversity (pi, or π) for each opsin. 

 

Results 

Opsin Expression Profiles 

We quantified opsin gene expression in 54 wild-caught taxa from Lake 

Malawi and 11 lab-reared taxa from Lake Victoria (Tables S1-1 and S1-2).  Cichlids 

have one rod opsin gene (RH1) and six functionally and genetically distinct classes of 

cone opsin: SWS1 (ultraviolet, or UV), SWS2B (violet), SWS2A (blue), RH2B (blue- 

green), RH2A (green), and LWS (red) (Parry et al. 2005; Spady et al. 2006; Carleton 

et al. 2008).  (As in previous cichlid studies, we group expression of the functionally 

and genetically similar RH2Aα and RH2Aβ together (Carleton et al. 2005a; Spady et 

al. 2006; Carleton et al. 2008)).  Cichlid retinas are highly organized, and the shorter-

wavelength-sensitive (SWS) opsins are expressed in morphologically distinct single-

cones, whereas the longer-wavelength RH2 and LWS genes are expressed in double-

cones.  Cichlids from Lake Malawi had diverse expression profiles that collectively 

expressed all six cone opsin genes (Figure 2-1).  These expression profiles formed 
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three distinct clusters (Figure 2-2A) with support based on multiple cluster validation 

statistics (Table S2-8 [Appendix 1]).  Members of the mbuna clade predominantly 

expressed the shorter-wavelength classes of opsin genes: all species sampled 

expressed SWS1 or SWS2B opsins in their single cones, and fewer than half of these 

species (12/26) expressed the longer-wavelength LWS opsin in their double cones.  

Non-mbuna collectively expressed all three SWS opsins in their single cones, 

although the overwhelming majority of the species sampled (23/26) expressed LWS in 

their double cones (Table S2-1 [Appendix 1]).  In both lineages, we found examples 

of closely related species that expressed different subsets of opsin genes, suggesting 

that sister taxa could differ significantly in visual sensitivity (Figure S2-1 [Appendix 

1]).  Such differences occurred in 12 of the 14 genera in which we sampled multiple 

species, and included genera as diverse as Tropheops, Melanochromis, Protomelas, 

Dimidiochromis, and Rhamphochromis. 

Cichlids inhabiting Lake Victoria collectively expressed four different opsin 

classes (Figure 2-1), and their expression profiles fell within a single cluster (Figure 

2-2A).  None of the taxa that we examined expressed more than trace amounts of 

SWS1 or RH2B.  All of the Victorian species expressed SWS2A in their single cones 

and RH2A and LWS in their double cones.  Several taxa also expressed SWS2B in 

their single cones, and SWS2B expression was variable, even among conspecifics 

from different geographic localities (rocky islands).  We therefore treated each 

localized population as a distinct group in subsequent analyses (Table S2-1 

[Appendix 1]). 

To examine how changes in gene expression might shape overall retinal 
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sensitivity, we used data from reconstituted cichlid visual pigments (Spady et al. 

2006) to estimate average single- and double-cone sensitivities for each species 

(Carleton et al. 2008).  The estimated single- and double-cone sensitivities of 

Malawian taxa fell into three distinct groups sensitive to short-, middle-, and long-

wavelength regions of the visible light spectrum (Figure 2-2B).  These groups 

correspond directly to the gene expression clusters (Figure 2-2A) and were also 

supported by multiple cluster validation statistics (Table S2-8 [Appendix 1]).  

Although there was some variation in single- and double-cone sensitivities within 

Lake Victoria, all Victorian taxa fell into the long-wavelength group. 

Ecological Factors Driving Divergent Opsin Expression: Lake Malawi 

To test whether changes in gene expression were adaptive, we compared mean 

opsin expression and estimated photoreceptor sensitivity among Lake Malawi 

cichlids with different foraging and habitat preferences; however, in order to account 

for the statistical correlation between species due to their evolutionary history, we 

first generated several phylogenetic hypotheses to include in this analysis.  The 

results of our mitochondrial phylogenetic analysis are presented in a final 50% 

majority-rule consensus tree in Figure S2-2A [Appendix 1].  As in other phylogenies 

of this group, internal branch lengths are extremely short, indicating simultaneous or 

near-simultaneous divergence from a common ancestor (Moran and Kornfield 1993; 

Parker and Kornfield 1997; Albertson et al. 1999; Won et al. 2006).  Although this 

tree exhibits numerous polytomies, the resolved nodes generally have high posterior 

probability support.  We also used two additional phylogenetic hypotheses for this 

group, including one resolved at the genus-level and another resolved at the clade-
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level (Figure S2-2 [Appendix 1]). 

Using phylogenetically controlled comparative methods, we found that the 

SWS1 opsin gene was differentially expressed among Lake Malawi cichlids with 

different foraging preferences (phylogenetic ANOVA, F4,45 = 7.647, p = 0.007, Table 

S2-3 [Appendix 1]).  SWS1 expression was highest among species foraging on 

zooplankton, phytoplankton, and algae, and lowest among species foraging on fish or 

benthic invertebrates (F1,52 = 23.91, p = 0.003, Figure 2-3A).  Up-regulation of SWS1 

also resulted in estimated single-cone sensitivities that differed among these species 

(phylogenetic ANOVA, F4,45 = 9.065, p = 0.002).  Cichlids foraging on plankton and 

algae typically exhibited single-cone sensitivities peaking between 360 and 400 nm, 

such that they would be more sensitive to ultraviolet (UV) light than either piscivores 

or benthivores.  SWS1 was the only opsin significantly associated with foraging 

preferences.  We did not observe significant differences in opsin gene expression or 

single- and double-cone sensitivities among cichlids from different habitats (rock, 

sand, intermediate, pelagic, or weeds; see Table S2-3 [Appendix 1]). 

Several authors have addressed the problem of accounting for uncertainty in 

the phylogenetic relationships among taxa in comparative analyses (Grafen 1989; 

Martins and Garland Jr. 1991; Purvis and Garland Jr. 1993; Losos 1994; Garland Jr. 

and Díaz-Uriarte 1999).  Due to the rapid radiation of the Lake Malawi cichlid 

species flock, and the lack of a clear, species-level phylogeny for this group (Moran 

and Kornfield 1993; Parker and Kornfield 1997; Albertson et al. 1999; Won et al. 

2006), all polytomies were generally assumed to represent true simultaneous or near-

simultaneous speciation events (e.g., “hard” polytomies).  When the assumption of 
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hard polytomies holds, there should be no inflation in Type I error rates (Martins and 

Garland Jr. 1991).  However, in order to account for the possibility of inflated Type I 

error rates due to over estimation of the true number of degrees of freedom from 

unresolved nodes, we specified short (0.25) branch lengths for all taxa emanating 

from polytomies and long (1.0) branch lengths for all taxa emanating from a 

bifurcation in each of our analyses.  This correction effectively weights the results of 

contrasts between taxa separated by a bifurcation while reducing the influence of 

contrasts between taxa from a shared polytomy (Loh et al. 2008).  The end result is a 

more conservative analysis akin to a reduction in the degrees of freedom for each 

polytomy when calculating significance values. 

Phylogenetic studies that used very large numbers of nuclear gene markers 

have been able to resolve the Lake Malawi phylogeny with high statistical support at 

the genus level (Albertson et al. 1999; Allender et al. 2003; Kidd et al. 2006).  These 

studies consistently found support for morphologically defined genera; however, the 

true phylogenetic relationships between genera remain unknown, and no large-scale 

study of both mbuna and non-mbuna genera are currently available.  To take this into 

account, we calculated nested ANOVAs, nesting species in genus and genus in clade, 

using only Lake Malawi genera of which we had sampled at least two species.  This 

approach is highly conservative because it makes no assumptions about phylogenetic 

relationships above the genus level, and assumes that each feeding style has evolved 

just once within each genus.  Using this highly conservative approach, we found 

strong trends for associations between single cone sensitivities and feeding mode, 
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consistent with our previous analysis (nested ANOVA, F19,12 = 2.339, p = 0.068).  

Nested ANOVA was implemented in SPSS v17.0. 

Ecological Factors Driving Divergent Opsin Expression: Lake Victoria 

Although we sampled Lake Victoria taxa with a similar diversity of foraging 

preferences (e.g., planktivores, algivores, benthic foragers, and piscivores; see Table 

S2-1 [Appendix 1]), there was a complete absence of SWS1 opsin expression among 

these cichlids, and all taxa fell into a single expression cluster (Figure 2-3B).  These 

findings suggest that foraging preferences are not likely to be a major driver of opsin 

expression in the Victorian species that we sampled.  However, photic environment is 

known to influence visual sensitivities among populations and species of cichlids 

from this lake (Carleton et al. 2005a; Terai et al. 2006; Seehausen et al. 2008).  

Therefore, we examined whether variation in the light environment between sampling 

sites could explain the pattern of gene expression that we observed. 

We measured light transmission at three representative localities in Lake 

Victoria.  We found that there was considerable variation between localities, with 

transmission decreasing and shifting to longer (redder) wavelengths from the open 

water site of Makobe to the sites of Python and Luanso, which were increasingly 

farther up the inlet of the Mwanza Gulf (Figure 2-4A).  We then calculated how much 

of the available light a visual pigment composed of each opsin protein would capture 

at these different locations.  In these spectrally narrow waters, quantum catches varied 

by almost four orders of magnitude (Figure 2-4B).  SWS2A- and LWS-based visual 

pigments were predicted to have the greatest quantum catch in the single and double 

cones, respectively, whereas SWS1-based visual pigments would have virtually no 
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quantum catch (Figure 2-4B).  SWS2B-based visual pigments would capture some of 

the available light in the relatively clear waters of Makobe, but very little at the other 

two, more turbid locations. 

Finally, we used water clarity and population-specific depth preferences to 

predict the quantum catch that an SWS2B-based visual pigment would have at the site 

where each taxon was originally sampled (Tables S1-1 and S1-4).  We found that 

SWS2B opsin gene expression was positively correlated with predicted quantum catch 

(Figure 2-3B, Felsenstein’s independent contrasts: r2 = 0.456, F1,4 = 7.543, p = 

0.023), suggesting that SWS2B expression is increased in environments where it is 

predicted to capture more of the available light. 

In the spectrally broad and relatively homogenous environment of Lake 

Malawi (Figure 2-5A), the estimated quantum catches do not vary appreciably 

between the two locations that we sampled (Zimbawe Rock, a deep, open-water site, 

and Thumbi West Island, a sheltered bay).  Further, quantum catches vary by less 

than a single order of magnitude across opsin classes (Figure 2-5B).  This finding 

suggests that environmental light is not likely to be a major driver of opsin gene 

expression in the species that were sampled from Lake Malawi. 

Changes in Opsin Coding Sequences 

Several previous studies have documented the action of selection on different 

cichlid opsin genes (Sugawara et al. 2002; Terai et al. 2002; Carleton et al. 2005a; 

Spady et al. 2005; Terai et al. 2006; Seehausen et al. 2008).  To complement those 

studies, we compared coding sequence diversity across the cone and rod opsins of ten 

species from Lake Victoria and 16 species from Lake Malawi (Table S2-5 [Appendix 
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1]).  We focused on substitutions between amino acids with different chemical 

properties in the transmembrane and retinal binding pocket regions of the protein 

because changes in these regions are most likely to alter visual pigment sensitivity.  

We found that the number and nature of amino acid substitutions varied considerably 

across opsin classes (Figure 2-6B).  Among species sampled from Lake Malawi 

(Figure 2-6C), the greatest diversity of functionally critical sites was found in the 

SWS1 (UV-sensitive) opsin, which had seven variable transmembrane sites, of which 

three were in the retinal binding pocket.  Both the LWS and RH1 opsins exhibited four 

variable transmembrane sites, of which three and two, respectively, were in the retinal 

binding pocket.  Among cichlids from Lake Victoria (Figure 2-6D), the number of 

functionally important sites was highest for the LWS opsin, which had five variable 

transmembrane sites, of which three were in the retinal binding pocket.  Several of 

these substitutions were at sites that have been previously demonstrated to shift the 

spectral sensitivities of visual pigments.  For example, microspectrophotometry 

suggests that the Lake Malawi cichlids Metriaclima zebra and Psuedotropheus acei 

have SWS1 visual pigments that differ in their wavelength of maximum sensitivity 

(λmax) by ~ 10 nm, confirming the variable spectral sensitivity of the SWS1 pigments 

among Lake Malawi cichlids (see also Smith et al. (2010).  This variation in spectral 

sensitivity correlates with amino acid substitutions within the retinal binding pocket 

of the SWS1 opsin that differ in polarity.  M. zebra, whose SWS1 opsin has a λmax of 

368 nm (Carleton et al. 2008), has the combination of a serine at site 114, a threonine 

at site 160, and a threonine at site 204 (S114/T160/T204).  P. acei, whose SWS1 opsin 

has a λmax of 378 nm (Parry et al. 2005), has an alanine at site 114, an alanine at site 
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160, and an isoleucine at site 204 (A114/A160/I204).  In the LWS opsin, variation 

from an alanine to a serine at site 164 (A164S) is known to long-wavelength shift the 

λmax of the LWS opsin (Asenjo et al. 1994), and variation in the LWS sequence of 

Pundamilia pundamilia has been shown to produce a visual pigment that is shorter 

wavelength that that of P. nyerei by 3 – 15 nm (Carleton et al. 2005a; Terai et al. 

2006) (Table S2-6 [Appendix 1]).  These finding suggest that the opsin sequence 

variation we observe generates functional variation in the corresponding visual 

pigments.  Longer wavelength shifts occur in species which inhabit deeper waters 

where the light is relatively more red-shifted (Seehausen et al. 2008).  The observed 

number of functional substitutions was independent of the number of synonymous 

changes and of overall nucleotide diversity (Figure S2-3 [Appendix 1]). 

 

Discussion 

We present a comprehensive analysis of opsin gene expression in over 60 

different species of cichlids from Lakes Malawi and Victoria.  We found that changes 

in opsin expression can generate diverse sets of visual systems.  We also 

demonstrated that these changes in gene expression are adaptive and are shaped by 

foraging preferences and the local light environment.  In addition, we examined 

coding sequence variation across the full complement of opsin genes.  We found that 

diversity in functionally important regions is not distributed equally.  Instead, 

diversity is highest in the opsin genes that code for the shortest- and longest- 

wavelength visual pigments.  Although numerous studies have demonstrated the 

importance of changes in opsin coding sequence to visual adaptation in cichlids, only 
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one study addressed adaptive changes in opsin gene expression, and this was only for 

a limited number of closely related species (Carleton et al. 2005a).  Our results 

suggest a model of sensory adaptation where evolutionary changes in both expression 

and coding sequence work in concert to shape visual pigment sensitivity. 

Visual System Diversity 

We found that cichlids inhabiting the spectrally broad light environment of 

Lake Malawi had remarkable visual diversity and collectively expressed all six cone 

opsin genes.  Although opsin expression was labile and could differ among closely 

related species, some structure emerged when the two major lineages within Lake 

Malawi were compared.  Members of the mbuna or rock-dwelling clade 

predominantly expressed the shorter-wavelength classes of opsin genes in both single 

and double cones.  Non-mbuna (sand-dwelling or pelagic species) collectively 

expressed all six opsins, but the middle- and longer-wavelength classes were 

predominant.  Cichlids inhabiting the turbid waters of Lake Victoria express only four 

different classes of cone opsin.  The shortest-wavelength single- and double-cone 

opsin genes were never expressed, and the longest-wavelength genes were expressed 

ubiquitously. 

When we estimated single- and double-cone sensitivities based on patterns of 

opsin expression, we found that the species fell into three distinct short-, middle-, and 

long-wavelength clusters.  These clusters correspond well with the three ‘‘visual 

palettes’’ documented previously in these and other cichlid species using 

microspectrophotometry (MSP) (Fernald and Liebman 1980; Parry et al. 2005; Jordan 

et al. 2006; Carleton et al. 2008).  Cichlids from Lake Malawi utilized every visual 
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palette, whereas all Victorian cichlids grouped with the Malawian long-wavelength 

one.  Thus, our results suggest that regulatory changes in opsin gene expression have 

generated diverse sets of single- and double-cone sensitivities.  This extent of visual 

diversity among so many closely related species is extraordinary. 

Divergence in Opsin Expression is Adaptive 

We found evidence that changes in gene expression contributed to sensory 

adaptation, both to enhance foraging and to adapt to differences in the photic 

environment.  The SWS1 opsin gene, which encodes a UV-sensitive visual pigment, 

was differentially expressed between cichlids from different trophic groups in the 

clear waters of Lake Malawi.  Species feeding on plankton or algae typically 

exhibited single-cone sensitivities peaking at shorter wavelengths than piscivores or 

benthic foragers.  Studies of several teleost species, including two of the cichlids 

examined in this study, have demonstrated that UV sensitivity can increase the 

efficiency of foraging on zooplankton and other small organisms (Loew et al. 1993; 

Novales-Flamarique and Hawryshyn 1994; Jordan et al. 2004).  Additionally, many 

cichlids are opportunistic feeders, and several species have been observed to switch 

from foraging on algae to foraging on zooplankton or phytoplankton (McKaye and 

Marsh 1983).  We found that expression of the SWS1 opsin is highest precisely 

among cichlids foraging on these food sources (Figure 2-3A).  Given that our 

comparative results are also supported by experimental and observational data, we 

believe that the observed differences in SWS1 opsin expression are adaptive and that 

foraging may be a key driver of visual pigment diversity in Lake Malawi (Coddington 

1988; Martins 2000). 
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Ambient light appears to have a strong influence on opsin expression in the 

spectrally narrow, longer-wavelength waters of Lake Victoria.  We found that all of 

the Victorian species that we sampled exhibited similar expression profiles, with 

some variation in the expression of SWS2B.  The predominant opsin genes expressed 

among these taxa—SWS2A (blue) in single cones, and RH2A (green) and LWS (red) 

in double cones—were predicted to produce visual pigments with the greatest 

quantum catches in all three of our representative light environments.  However, our 

predictions also suggested that an SWS2B-based visual pigment (violet) would 

capture some of the available light in clear locations, but much less in turbid ones.  

SWS2B opsin gene expression varied across taxa, and this variation was positively 

correlated with predicted quantum catch.  Taken together, our findings suggest that 

ambient light is driving opsin gene expression in Lake Victoria. 

One potential limitation of our study was that the Malawian samples were 

wild-caught, whereas the Victorian samples were lab-reared in a common garden 

environment.  Although lab rearing and light manipulations have been demonstrated 

to alter levels of opsin expression, photoreceptor abundance, and photoreceptor length 

(Wagner and Kroger 2000; Fuller et al. 2004, 2005; Shand et al. 2008), several lines 

of evidence suggest there is a large genetic component to opsin expression in cichlids.  

First, all three opsin expression clusters are observed in species raised in a common 

lab environment.  In fact, the three opsin palettes of Lake Malawi were originally 

identified in lab-reared fish (Carleton and Kocher 2001; Parry et al. 2005), and all 

seven opsin genes are turned on in ontogenetic sequence in tilapia raised under 

laboratory conditions (Spady et al. 2006; Carleton et al. 2008).  Second, genetic 



 

 50 
 

crosses between cichlid species with different visual palettes found a significant 

genetic component to opsin expression (Carleton et al. 2010).  Finally, direct 

comparisons of gene expression from wild-caught and lab-reared F1 fish from the 

same populations in Lake Malawi suggest that, expression of the shortest-wavelength 

SWS1 and SWS2B opsins is maintained in the lab, although the exact levels of gene 

expression may change for some opsins in some species (Hofmann et al. 2010b).  In 

sum, we feel that the lab rearing of Victorian samples is unlikely to influence our 

overall finding that differences in gene expression are adaptive. 

Potential for Speciation 

The rapid changes in opsin gene expression that we observed among these 

closely related cichlid species are unprecedented in vertebrates.  Differential gene 

expression among these species produces large shifts in spectral sensitivities (up to 

100 nm) that could modify a species’ view of conspecifics or the natural scene, and so 

modify species behavior.  In Lake Victoria, changes in the coding sequence of the 

LWS opsin result in smaller shifts (5– 15 nm) in visual pigment sensitivity that are 

linked to differences in depth, water clarity, and male color (Carleton et al. 2005a; 

Terai et al. 2006; Seehausen et al. 2008).  As a result, the LWS opsin gene is under 

strong selection and was shown recently to play a role in speciation in cichlids from 

Lake Victoria (Seehausen et al. 2008).  Since these fine- scale changes are linked to 

speciation, it is likely that the large differences in visual pigment sensitivity generated 

through differential opsin expression could also play such a role in cichlids from both 

lakes. 
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Increased Diversity in the Longest- and Shortest- Wavelength Opsins 

Opsin genes provide a clear example of how gene duplication and divergence 

in coding sequence can generate functional diversity in an adaptive phenotype 

(Yokoyama 2002).  We found strong evidence for functional coding differences 

among species, though these were not distributed equally across the opsins.  The 

greatest number of functional coding differences were in the cone opsin genes that 

produce visual pigments at the ends of the cichlid visual range— the SWS1 (UV) and 

LWS (red) opsins—as well as in the RH1 (rod) opsin.  Since the rod opsin is the only 

opsin expressed in cichlid rods, rods cannot use the mechanism of differential gene 

expression to tune visual pigment sensitivity.  Likewise, differential gene expression 

cannot extend spectral sensitivity beyond the boundaries set by the opsin genes that 

encode the shortest- and longest-wavelength visual pigments (because there are no 

shorter- or longer-wavelength genes to turn on).  Therefore, all three of these genes 

must utilize coding sequence changes to alter visual pigment sensitivity.  This pattern 

of sequence diversity is consistent with previous evidence that selection is acting on 

these three opsin genes (Sugawara et al. 2002; Terai et al. 2002; Spady et al. 2005; 

Terai et al. 2006). 

A Model of Sensory Diversification 

In this study, we examined the different contributions that changes in gene 

expression and coding sequence make to the diversification of cichlid visual systems.  

Our results suggest a model in which both proximate mechanisms contribute to visual 

pigment diversity.  This model contains three main features: (i) Differential gene 

expression can generate large shifts in visual pigment sensitivity (30–100 nm) across 
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the combined opsin spectral range; (ii) coding sequence substitutions fine-tune visual 

pigment sensitivity (5–15 nm) around each opsin’s ancestral sensitivity; (iii) changes 

in coding sequence are more prevalent in the opsins operating at the short- and long-

wavelength ends of the visual range, where differential gene expression can no longer 

extend visual pigment sensitivity.  Therefore, although tuning in the middle portion of 

the visible-light spectrum is achieved by shifts in opsin gene expression, tuning at the 

ends of the visible light spectrum is achieved via opsin sequence evolution. 

This model suggests that changes in gene expression and changes in protein 

coding sequence work in concert to generate phenotypic diversity.  The extent to 

which our model can be applied to the visual systems of other teleosts, other sensory 

systems, or other genetic pathways remains to be seen.  However, we predict that 

phenotypes influenced by multiple paralogous genes are likely to show similar 

patterns of expression and coding sequence evolution.  We are currently examining 

the visual systems of Lake Tanganyika cichlids and damselfish.  These two radiations 

are older than those in this study by one and two orders of magnitude, respectively, 

and will provide further tests for how coding sequence and gene expression interact in 

shaping visual phenotypes.  Finally, we are performing genetic crosses to identify the 

specific loci that are responsible for the changes in gene expression that we observe.  

Understanding the timescales over which structural and regulatory changes act, and 

understanding the loci underlying regulatory changes, will provide further insights 

into when and how they work in concert to generate adaptive phenotypic change. 
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Figures 

Figure 2-1. Opsin gene expression from all species surveyed.  Triangle plots illustrate 
the relationships between opsins within the single and double cones of Lake Malawi 
and Victoria cichlids.  Bar graphs illustrate expression of the corresponding opsins 
and emphasize the qualitative differences between lakes.  No Lake Victoria taxa 
express more than trace amounts of SWS1 or RH2B (open bar), and all express high 
level of LWS (filled bar). 
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Figure 2-2. Gene expression profiles and single- and double-cone sensitivities form 
three clusters.  (A) Hierarchical clustering of species’ opsin expression profiles 
revealed three clusters: S, short wavelength; M, medium wavelength; L, long 
wavelength.  (B) Estimates of Lake Malawi single- and double-cone sensitivities 
suggest that these three clusters correspond to visual palettes sensitive to short-, 
medium-, and long-wavelength portions of the visible light spectrum.  Lake Malawi 
cichlids that are members of the mbuna clade are shown blue, non-mbuna are green, 
and Lake Victoria cichlids are red. 
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Figure 2-3. Selective pressures drive opsin expression with each lake. (A) Relative 
SWS1 (ultraviolet) expression is higher among Lake Malawi cichlids that forage on 
plankton and algae.  (B) Relative SWS2B expression is positively correlated with the 
predicted quantum catch of a SWS2B-based visual pigment from the clear and murky 
locations where Lake Victoria cichlids were sampled. 
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Figure 2-4. Visual pigment performance in Lake Victoria.  (A) Relative irradiance at 
2 m depth at three locations in Lake Victoria (Makbe Island, Python Island, and 
Luanso Island).  (B) In Lake Victoria, estimated quantum catches vary over several 
orders of magnitude, both across visual pigments and geographic locations. 
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Figure 2-5. Visual pigment performance in Lake Malawi.  (A) Relative irradiance at 
2 m depth at two locations in Lake Malawi (Thumbi West and Zimbawe Rock).  (B) 
In Lake Malawi, all visual pigments are estimated to have relatively similar, high 
quantum catches at both locations. 
 

 



  
58

 
 Fi

gu
re

 2
-6

. T
he

 sh
or

te
st

- a
nd

 lo
ng

es
t-w

av
el

en
gt

h 
op

si
ns

 h
av

e 
th

e 
gr

ea
te

st
 se

qu
en

ce
 d

iv
er

si
ty

. (
A

) N
or

m
al

iz
ed

 a
bs

or
ba

nc
e 

va
lu

es
 o

f 
al

l s
ev

en
 c

ic
hl

id
 c

on
e 

vi
su

al
 p

ig
m

en
ts

, g
en

er
at

ed
 u

si
ng

 th
e 
λ m

ax
 o

f e
ac

h 
op

si
n 

in
 O

re
oc

ho
rm

is
 n

ilo
tic

us
.  

D
ot

te
d 

lin
es

 re
pr

es
en

t o
ps

in
s 

no
t e

xp
re

ss
io

n 
in

 th
e 

La
ke

 V
ci

to
ria

 p
op

ul
at

io
ns

 sa
m

pl
ed

.  
(B

) N
um

be
r o

f a
m

in
o 

ac
id

 su
bs

tit
ut

io
ns

 in
 th

e 
tra

ns
m

em
br

an
e 

re
gi

on
s 

(b
ar

re
d)

 a
nd

 re
tin

al
 b

in
di

ng
 p

oc
ke

t (
so

lid
) o

f e
ac

h 
op

si
n 

cl
as

s f
ro

m
 a

ll 
sp

ec
ie

s s
ur

ve
ye

d.
  (

C
) N

um
be

r o
f s

ub
st

itu
tio

ns
 in

 L
ak

e 
M

al
aw

i. 
 

(D
) N

um
be

r o
f s

ub
st

itu
tio

ns
 in

 L
ak

e 
V

ic
to

ria
.  

O
nl

y 
su

bs
tit

ut
io

ns
 b

et
w

ee
n 

re
si

du
es

 w
ith

 d
iff

er
en

t c
he

m
ic

al
 p

ro
pe

rti
es

 a
re

 sh
ow

n.
 

 

 
 



 

 59 
 

Chapter 3:  

Parallel Evolution of Opsin Gene Expression in African 

Cichlid Fishes 
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Abstract 

Phenotypic evolution may occur either through alterations to the structure of 

protein-coding genes or their expression.  Evidence for which of these two 

mechanisms more commonly contribute to the evolution of a phenotype can be 

garnered from examples of parallel and convergent evolution.  The visual system of 

East African cichlid fishes is an excellent system with which to address this question.  

Cichlid fishes from Lakes Malawi (LM) and Victoria together exhibit three diverse 

palettes of coexpressed opsins and several important protein-coding mutations that 

both shift spectral sensitivity.  Here we assess both opsin expression and protein-

coding diversity among cichlids from a third rift lake, Lake Tanganyika (LT).  We 

found that Tanganyikan cichlids exhibit three palettes of coexpressed opsins that 

largely overlap the short-, middle-, and long-wavelength–sensitive palettes of LM 

cichlids.  Bayesian phenotypic clustering and ancestral state reconstructions both 

support the parallel evolution of the short- and middle-wavelength palettes among 

cichlids from LT and LM.  In each case, these transitions occurred from different 

ancestors that expressed the same long-wavelength palette.  We also identified similar 

but distinct patterns of correlated evolution between opsin expression, diet, and lens 

transmittance among cichlids from LT and LM as well.  In contrast to regulatory 

changes, we identified few functional or potentially functional mutations in the 

protein-coding sequences of three variable opsins, with the possible exception of the 

SWS1 (ultraviolet) opsin.  These results underscore the important contribution that 

gene regulation can make to rapid phenotypic evolution and adaptation. 
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Introduction 

Phenotypic evolution may occur either through alterations to the structure of 

protein-coding genes or their expression.  Mutations that alter the structure of protein-

coding genes have long been known to underlie adaptive phenotypic differences 

between populations and species (Jessen et al. 1991; Hoekstra et al. 2006; Protas et al. 

2006).  However, recent work has provided abundant new evidence that mutations 

that alter the regulation or expression of genes also contribute to adaptive phenotypic 

evolution (Wittkopp et al. 2003; Shapiro et al. 2004).  Evidence for which of these 

two mechanisms more commonly contribute to the evolution of a phenotype can be 

garnered from examples of repeated evolution either through parallelism or 

convergence (Gompel and Prud'homme 2009).  For example, the parallel loss of 

pelvic spines among adaptively radiating sticklebacks has been achieved through 

recurrent mutations in the cis-regulatory region of Pitx1 (Chan et al. 2010).  This 

observation suggests that the evolution of pelvic spine loss in sticklebacks is biased 

toward regulatory mutations.  Similar examples for protein-coding mutations also 

exist.  For example, reduced pigmentation phenotypes have evolved repeatedly 

among vertebrates.  In many cases, these convergent phenotypes arose through 

independent mutations within the protein-coding region of Mc1r (Mundy 2005; 

Gompel and Prud'homme 2009). 

The visual system of African cichlids is an excellent model with which to 

study the roles of protein-coding and regulatory mutations during phenotypic 

evolution.  Both protein-coding mutations and regulatory changes contribute to 

spectral sensitivity in these fishes (Hofmann and Carleton 2009; Hofmann et al. 2009) 
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[see Chapter 1].  Spectral sensitivity—or sensitivity to different wavelengths of 

light—is determined by the coding sequence and expression of several duplicated 

opsin genes.  These opsins are expressed within distinct photoreceptor cells in the 

retina and, when combined with a light-sensitive chromophore, confer sensitivity to 

light (Wald 1935).  Cichlids have 8 opsin genes, 7 used for bright light, or photopic, 

vision, and one used for dim-light, or scotopic, vision (Carleton 2009).  These opsins 

are SWS1 (ultraviolet [UV]), SWS2B (violet), SWS2A (blue), RH2B (blue–green), 

RH2Aα and RH2Aβ (green), LWS (red), and RH1 (dim light) (Spady et al. 2006).  

Among cichlid fishes from Lake Malawi (LM), closely related species can differ in 

their maximal short- and long-wavelength spectral sensitivity by as much as 100 nm 

(Jordan et al. 2006; Carleton 2009; Hofmann et al. 2009).  These differences are 

highly correlated with discrete changes in opsin gene expression (Carleton and 

Kocher 2001; Hofmann et al. 2009).  LM cichlids collectively coexpress three distinct 

opsin gene palettes, which generate visual pigment sets broadly sensitive to short- 

(SWS1-RH2B-RH2A), middle- (SWS2B-RH2B-RH2A), and long (SWS2A-RH2A-

LWS)-wavelength spectra.  The differential expression of these palettes is in part an 

adaptive response to divergent foraging preferences or diet (Hofmann et al. 2009).  In 

contrast, cichlids from Lake Victoria (LV) collectively express only a single-opsin 

palette, the long-wavelength set (SWS2A-RH2A-LWS).  However, these species do 

vary slightly in the expression of the SWS2B and LWS opsins.  These smaller, 

continuous changes are an adaptive response to local differences in the light 

environment (Carleton et al. 2005a; Hofmann et al. 2009). 

Opsin protein–coding mutations are also associated with the adaptive 
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evolution of spectral sensitivity in cichlids and other vertebrates (Yokoyama and 

Yokoyama 1996; Spady et al. 2005).  In some cases, these protein- coding mutations 

are even associated with population divergence and speciation.  For example, among 

cichlids from LV, polymorphisms in the protein-coding sequence of the LWS opsin 

are adaptively associated with local variation in the light environment, male color, 

and speciation (Terai et al. 2006; Seehausen et al. 2008).  Among cichlids from both 

LM and LV, the majority of functional or potentially functional opsin sequence 

polymorphisms are found in the two opsins sensitive to the ends of the visible light 

spectrum (SWS1 and LWS).  This pattern is due to the inability of changes in gene 

expression to further tune spectral sensitivity outside of the spectral range of these 

two opsins as defined by their coding sequences.  In contrast, shifts in gene 

expression predominately tune sensitivity across the middle portion of the visible 

light spectrum, where opsins of longer or shorter spectral sensitivity can be replaced 

with one another.  Therefore, coding mutations are the only way to further shift 

spectral sensitivity at the ends of the visible light spectrum (Hofmann et al. 2009).  

Despite this observation, virtually all the cichlid opsins exhibit molecular signatures 

of natural selection (Sugawara et al. 2002; Spady et al. 2005), including those 

sensitive to the middle portion of the visible light spectrum; however, it is possible 

that in some cases, these estimates are too liberal (Yokoyama et al. 2008).  

Additionally, these polymorphisms are correlated with much smaller differences in 

spectral sensitivity, typically on the order of 5–15 nm (Carleton 2009; Hofmann et al. 

2009). 

Thus, African cichlids provide a unique system with which to investigate the 
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relative contribution that opsin regulatory and protein-coding mutations make to 

phenotypic evolution.  However, cichlids from LM and LV form reciprocally 

monophyletic groups that are composed entirely of species from a single lineage, the 

Haplochromini (Salzburger et al. 2002; Koblmüller et al. 2008); see Figure 3-1).  

Cichlids from these lakes share very few opsin protein-coding polymorphisms in 

common, but at least some species share similar opsin expression profiles (SWS2A- 

RH2A-LWS) (Hofmann et al. 2009).  But, due to the sister relationship of these two 

groups, it is unclear if this similarity is due to repeated evolution or shared ancestry.  

Therefore, here we assess opsin gene expression in 28 cichlids from a third nearby 

lake, Lake Tanganyika (LT).  Cichlids from LT are both phylogenetically and 

phenotypically more diverse than cichlids from either LM or LV (Huber et al. 1997; 

Salzburger et al. 2002; Pollen et al. 2007).  LT contains cichlids from many diverse 

lineages and tribes, including many older taxa that are ancestral to the LM and LV 

cichlid species flocks (Sturmbauer 1998; Takahashi 2003) (Figure 3-1); thus, cichlids 

from LT should provide a tractable system for identifying potential examples of 

repeated evolution in opsin gene expression.  However, little is known of the spectral 

sensitivity of cichlids in LT.  Although visual acuity has been documented for four 

species from the tribe Ecotodini (Dobberfuhl et al. 2005), actual retinal sensitivities 

have been measured for only a single LT cichlid, Astatotilapia burtoni (Fernald and 

Liebman 1980).  Hence, among cichlids from LT, it is unclear whether retinal 

sensitivities are evolving primarily through opsin protein-coding mutations or 

regulatory changes.  We hypothesize that similar opsin expression palettes will be 

present among cichlids from LM and LT because both these lakes have clear, 
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spectrally broad waters (Carleton et al. 2006) and both contain cichlids with parallel 

morphological and ecological adaptations (Kocher et al. 1993; Kassam et al. 2003). 

In addition to repeated phenotypic evolution, we also assess phenotypic 

correlations between opsin expression and two factors associated with opsin 

expression divergence in cichlids, diet (Hofmann et al. 2009) and lens transmittance 

(Hofmann et al. 2010a).  Among cichlids from LM, the SWS1 (UV) opsin is up-

regulated among species that forage on zooplankton and other microorganisms 

(Hofmann et al. 2009).  This adaptation increases the ability of cichlids and other 

teleosts to find and capture zooplankton (Novales-Flamarique and Hawryshyn 1994; 

Jordan et al. 2004).  Also among cichlids in LM, lens transmittance is positively 

correlated with both relative SWS1 expression and the estimated sensitivity (λmax) of 

single cone photoreceptors (Hofmann et al. 2010a).  This correlation reveals that 

cichlids do not express opsins sensitive to wavelengths of light that their lenses 

ultimately filter before reaching the retina. 

In summary, our goals were to: (i) test the hypothesis that similar opsin gene 

expression palettes have evolved repeatedly among African cichlids in LT and LM, 

and (ii) test for the presence of similar phenotypic correlations among opsin 

expression, diet, and lens transmittance.  The repeated evolution of these opsin 

palettes would suggest that regulatory mutations have played an important role in the 

evolution of spectral sensitivity among African cichlids.  Additionally, the 

independent evolution of one or more phenotypic correlations would implicate natural 

selection as one driver of opsin expression evolution in these fishes (Schluter 2000). 
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Materials and Methods 

Sampling Tanganyikan Cichlids 

We sampled 85 individual fish representing 28 different LT cichlid species.  

Half of these samples were collected as adult fish from LT near Kigoma, Tanzania, in 

2004.  The remaining species were purchased as wild-caught adult fish from a 

commercial supplier.  Additionally, we also sampled adult fish from a laboratory 

strain of Astatotilapia burtoni.  All eyes were collected at midday from full spectrum 

light-adapted animals.  We noted the primary diet of each species following a survey 

of relevant literature sources (Taborsky et al. 1986; Yamaoka et al. 1986; Brichard 

1989; Salzburger et al. 2002; Takahashi 2003; Duftner et al. 2005; Koblmüller et al. 

2007).  A complete list of the species sampled and their dominant diet is presented in 

Table 3-1. 

Real-Time Quantitative Polymerase Chain Reaction 

We measured opsin gene expression in each cichlid via real-time quantitative 

polymerase chain reaction (RT-qPCR).  Our methods for RNA extraction and 

subsequent RT-qPCR analysis generally followed those previously used to analyze 

opsin expression in cichlids from LM and LV (Spady et al. 2006; Carleton et al. 

2008; Hofmann et al. 2009).  Binding sites for the Taqman primers and probes used 

in these previous studies were sequenced for all seven cone opsins from one 

individual of each species.  Primers used to generate these sequences are listed in 

Supplementary Table S3-1 [Appendix 2].  Many LT species had opsin sequences that 

perfectly matched the primers created previously for LM and LV cichlids.  In these 

cases, we used the primers and probes from these previous studies.  However, where 
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these sequences differed, we created new LT-specific primers and probes.  These new 

primers and probes, along with the original LM primers used, are listed in Table 3-2.  

In all, we identified 15 unique primer/ probe combinations needed to match the 

different LT species sampled (Table S3-2 [Appendix 2]; see also Table 3-1).  We 

performed all RT-qPCR reactions on a LightCycler 480 (Roche).  We normalized all 

RT-qPCR reaction efficiencies against a construct of cichlid opsins specially 

developed for the normalization of cichlid opsin RT-qPCR (Spady et al. 2006).  In 

some LT species, however, the primer/probe-binding region did not match the 

sequence of the normalization construct.  For these species, we normalized reaction 

efficiencies against known concentrations of a relevant cDNA sample or a ~120 bp 

oligomer encoding the primer- and probe-binding site.  As in previous studies (Spady 

et al. 2006; Carleton et al. 2008; Hofmann et al. 2009), our measurement of RH2A 

expression combined the genetically and functionally similar RH2Aα and RH2Aβ 

opsins.  We quantified opsin expression twice for all individuals and averaged the 

results.  We then averaged individual results to obtain one final, species-specific 

mean and variance of opsin expression. 

Predicting Maximal Retinal Sensitivity from Opsin Gene Expression 

Cichlid cone opsins are expressed within the retina in two distinct cell types: 

single-cone photoreceptors and double-cone photoreceptors (Bowmaker 1995; 

Carleton 2009).  We predicted the wavelength of maximal sensitivity (PSmax) of each 

species’ single- and double- cone photoreceptors from the results of our RT-qPCR 

analysis.  We used the results of these estimates to infer how retinal sensitivities may 

vary as a result of changes in opsin gene expression (Carleton et al. 2008; Hofmann et 
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al. 2009).  These estimates provide a useful descriptive statistic for how multivariate 

shifts in opsin expression may alter spectral sensitivity, but they are not meant to 

imply that we find fish with cones that exhibit these exact λmax values (although the 

results can be quite similar).  Following previous studies (Carleton et al. 2008; 

Hofmann et al. 2009), we used the equation: 

Σ(ƒiλi) PSmax, C = 
Σƒi 

 
to calculate the predicted maximal sensitivity (PSmax) of cichlid single- and double-

cones, where C is either the single- or the double-cone photoreceptor, ƒi is the percent 

expression of the ith opsin out of the total, and λi is the corresponding peak 

absorbance of that opsin in Oreochromis niloticus (Spady et al. 2006).  Based on 

comparison of the λmax of each cichlid opsin with the λmax of single- and double-cone 

photoreceptors from several cichlid species—both of them measured physiologically 

using microspectrophotometry (Carleton 2009)—we used the expression of the SWS1, 

SWS2B, and SWS2A opsins when estimating the PSmax of single-cones and RH2B, 

RH2A, and LWS when estimating the PSmax of double-cones.  In previous analyses, 

we refer to the descriptive statistic PSmax as ‘‘predicted single-/double-cone λmax’’ 

(Hofmann et al. 2009) [see Chapter 1] or simply ‘‘single-/double-cone λmax’’ 

(Carleton et al. 2008). 

Opsin Sequence Divergence 

Our estimation of photoreceptor PSmax assumes that all species exhibit opsin-

coding sequences that are functionally identical to those of Oreochromis niloticus.  

This assumption is generally supported by microspectrophotometry results that 



 

 69 
 

demonstrate little variation in the spectral absorption of cones from different cichlid 

species that express the same opsin palette (Jordan et al. 2006) (see also Table 1 in 

Carleton (2009)).  Additionally, several studies have generally found little variation in 

the protein-coding sequence of each opsin across several cichlid species.  These 

studies include sequences from 4 LT cichlids (Halstenberg et al. 2005; Spady et al. 

2005), 16 LM cichlids (Parry et al. 2005; Spady et al. 2005; Hofmann et al. 2009), 

and 12 LV cichlids (Carleton et al. 2005a; Hofmann et al. 2009).  Although mutations 

within opsin-coding sequences can play an important role in cichlid spectral 

adaptation (Sugawara et al. 2005; Terai et al. 2006), these shifts are generally small 

(5–15 nm).  However, in order to further test this assumption, we sequenced the three 

most variable cichlid opsins—SWS1, RH2Aβ, and LWS—in a sub set of the LT 

species sampled.  We then compared the coding regions of these opsins with those 

from O. niloticus.  The primers used to sequence these opsins are listed in Table S3-1 

[Appendix 2].  This analysis also provides an important estimate of the contribution 

that protein-coding mutations make to the evolution of spectral sensitivity in LT 

cichlids. 

Phylogenetic Analysis 

For our comparative analyses of opsin expression evolution, we reconstructed 

the phylogenetic relationships among the LT species sampled using three 

mitochondrial loci, ND2 (1047 bp), CYTB (401 bp), and the D-loop (364 bp).  These 

sequences were accessed through GenBank or else sequenced directly using 

previously published primers and protocols (Meyer and Wilson 1990; Taberlet et al. 

1992; Kocher et al. 1995; Lee et al. 1995).  Table 3-1 lists the accession numbers of 
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these sequences for each species, and Table S3-1 [Appendix 2] lists the primers used 

for PCR.  Sequences were concatenated and aligned in MAFFT (Katoh et al. 2002), 

and we used Modeltest v3.7 (Posada and Crandall 1998) to choose an appropriate 

model of sequence evolution for the alignment.  Phylogenetic reconstruction was 

performed using both Bayesian inference (BI) and maximum likelihood (ML) 

methods in the programs MrBayes v3.1.2 (Huelsenbeck and Ronquist 2001) and 

PAUP v4.0b10 (Swofford 2003).  For the BI analysis, the best-fit model of sequence 

evolution chosen by Modeltest (general time reversible GTR + Γ + I) was used to 

construct and run four Markov chain Monte Carlo (MCMC) sampling chains, each 

run for 1,000,000 generations with a swap frequency of once every 10 generations.  

Trees were sampled every 1,000 generations after discarding the first 10% as burn-in.  

We additionally discarded as burn-in the first 250 trees when calculating posterior 

probability values for the final 50% majority-rule consensus tree.  For the ML 

analysis, we used the heuristic tree search method with random addition of sequences 

and tree bisection and reconnection branch swapping.  In addition to the GTR + Γ + I 

model, for this analysis we also specified several additional model parameters 

estimated by Modeltest.  These parameters were base frequencies (A = 0.2862, C = 

0.3267, G = 0.1140, T = 0.2731), substitution rates (A–C = 0.7613, A–G = 11.8437, 

A–T = 1.2821, C–G = 0.6842, C–T = 6.5861, G–T = 1.000), proportion of invariable 

sites (0.4546), and the gamma distribution shape (0.9362).  We used 100 ML 

bootstrap replicates to calculate nodal support for the final 50% majority-rule 

consensus tree.  We rooted this tree with sequences from O. niloticus (AB018974, 

AF550020, and AF328847).  We used this tree in all comparative analyses of opsin 
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expression with diet and lens transmittance among LT cichlids. 

For the analyses of repeated evolution among cichlids from different East 

African rift lakes, we combined this mitochondrial tree with four published amplified 

fragment length polymorphism (AFLP) phylogenies of LM and LV cichlids 

(Albertson et al. 1999; Allender et al. 2003; Seehausen et al. 2003; Kidd et al. 2006).  

Due to the young age of the LM and LV cichlid species flocks (1.0 MY and >0.2 

MY, respectively), the interrelationships of these taxa can only be resolved with 

genome-wide scans of many AFLP or single nucleotide polymorphism genotypes; 

mitochondrial DNA is not sufficient to resolve the phylogenies of these two groups.  

However, the monophyly of the LM and LV radiations, the structure of the LT 

radiation, and the interrelationships among taxa between the three major lakes have 

all been confidently resolved using mitochondrial loci (Meyer et al. 1990; Kocher et 

al. 1993; Salzburger et al. 2002; Kocher 2004) (see also Figure 3-1).  The overall 

structure of our combined tree is consistent with the purported relationships of taxa in 

these three lakes (Salzburger et al. 2002; Koblmüller et al. 2008).  The inter- 

relationships among taxa from LM and LV reported here use only those nodes 

supported by ≥60% bootstrap support in their respective studies.  We set all branch 

lengths of this composite phylogeny to one. 

Analysis of Parallel Evolution 

To test the hypothesis that the various opsin gene expression palettes have 

evolved repeatedly among African cichlids from different rift lakes, we used two 

methods.  First, we performed multivariate Bayesian clustering (Fuentes and Casella 

2009; Gopal et al. 2009) to statistically group the 28 LT cichlids sampled here with 
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65 additional species from LM and LV (Hofmann et al. 2009), as well as the Nile 

tilapia, O. niloticus (Carleton et al. 2008).  Because the cichlid species flocks of LM 

and LV both form monophyletic groups, we do not expect them to more closely 

resemble cichlids from LT unless they have evolved similar patterns of opsin gene 

expression in parallel.  Bayesian clustering groups observations not by a distance-

based metric but by a Metropolis search algorithm that attempts to maximize the 

marginal probability of (Y⏐ωk), where Y is a matrix of response variables (e.g., opsin 

expression values for each species) and ω is the partitioning of Y into a pre-specified 

number of k clusters.  This method then tests the statistical significance of the 

resulting clusters using a Bayes factor to estimate the empirical posterior probability 

(PP) of the null hypothesis 

H0: No clusters (k = 1) versus H1: k clusters. 

In order to generate a frequentist probability value for this test, we performed 

a second search of the PP space under the null hypothesis in order to generate a null 

distribution of quantiles for these values; we then compared the final PP value with 

this distribution (Fuentes and Casella 2009).  For our analysis, we specified the 

presence of k = 3 clusters, representing the three opsin gene expression palettes so far 

observed in African cichlids (Fernald and Liebman 1980; Carleton et al. 2000; 

Carleton et al. 2005a; Parry et al. 2005; Jordan et al. 2006; Carleton et al. 2008; 

Hofmann et al. 2009).  However, we also performed this analysis with k equal to 4 

and 5 clusters as well.  We performed Bayesian clustering in the R package 

‘‘bayesclust’’ (Gopal et al. 2009).  We used 1,000,000 simulations to estimate both 

the optimal clustering of the taxa and the PP of the null hypothesis.  We used 10,000 
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simulations when generating the null distribution of PP values. 

Second, we reconstructed the ancestral state of each major cichlid tribe using 

both Bayesian and ML methods.  Using a composite phylogeny of 47 cichlids from 

all three lakes, we first estimated the posterior probability that the ancestor of each 

tribe expressed the opsin palette represented by k = 3, 4, and 5 clusters in the program 

BayesTraits (Pagel et al. 2004; Pagel and Meade 2007).  BayesTraits infers ancestral 

states using a reversible-jump (RJ) MCMC search algorithm.  For this analysis, we 

specified a reversible-jump hyperprior derived from the exponential distribution but 

seeded from a uniform (uninformative) distribution of values ranging from 0 – 30.  

We also specified a rate deviation parameter equal to one.  Together, these parameters 

produced acceptance rates of newly proposed values equal to ~24%, which is within 

the desired range for this type of analysis (Pagel and Meade 2007).  We ran the RJ-

MCMC for 20,020,000 generations, discarded the first 20,000 generations as burn-in, 

and sampled the chains every 300 generations.  All reconstructions were performed 

using the ‘‘BayesMultiState’’ module with the ‘‘AddNode’’ command. 

Finally, we also reconstructed the ancestral state of each cichlid tribe 

following a ML analysis of each opsin’s expression value in the R package APE v2.5 

(Paradis et al. 2004).  This analysis allowed us to reconstruct the ancestral state of 

each opsin individually, without forcing a discrete cluster assignment to each species’ 

palette or the reconstructed ancestral states.  However, we note that continuous 

character state reconstructions have been shown to perform poorly over adaptive 

radiations (Schluter et al. 1997). 
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For all ancestral state reconstructions, we rooted our tree of African cichlids 

from LT, LM, and LV with the tilapine cichlid O. niloticus.  Both physiological 

measurements of retinal sensitivity as well as predictions made from opsin expression 

values indicate that O. niloticus expresses the long-wavelength palette (Spady et al. 

2006; Carleton et al. 2008).  These physiological and opsin expression values are 

representative of all additional riverine outgroups for which spectral sensitivities have 

been measured, including the tilapine Sarotherodon and the distantly related 

Neotropical cichlids (Levine and MacNichol Jr. 1979; Spady et al. 2006; Carleton et 

al. 2008; Carleton 2009).  Thus, we present O. niloticus as a representative member of 

Oreochromis and other outgroups to the cichlids we include here. 

Comparative Analyses with Diet and Lens Transmittance 

We tested the hypothesis of correlated evolution among opsin expression, diet, 

and lens transmittance using the phylogenetic comparative method (Felsenstein 

1985).  For the analysis of opsin expression with diet, we used phylogenetic analysis 

of variance (ANOVA) (Garland Jr. et al. 1993) to compare the mean expression of 

each opsin among species grouped into five foraging levels (Table 3-1).  We 

implemented phylogenetic ANOVA in the programs PDSIMUL v2.0 (Garland Jr. et 

al. 1993) and PHYLOGR (Díaz-Uriarte and Garland Jr. 2007).  We performed 1,000 

simulations of each opsin variable across the LT phylogeny using a Brownian motion 

model of character evolution.  These simulations were used to generate 

phylogenetically corrected null distributions of our test statistics for phylogenetic 

ANOVA.  However, prior to performing these simulations, we first transformed 

several opsin variables to better meet the ANOVA assumptions of homogeneity of 
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variances and normality of errors.  These transformations were performed using Box–

Cox powers estimated in the R package ‘‘car’’ (Fox 2008) and are presented in Table 

3-3.  We added 1.5 as a constant to each observation in order to maintain the order of 

the means before transformation.  Additionally, for the comparison of the SWS2A 

opsin, we transformed the branch lengths of the mitochondrial tree using Grafen’s 

(1989) rho (ρ = 0.1) and excluded Neolamprologus tretocephalus as an outlier from 

this analysis.  We ultimately compared the probability values from these analyses 

with the Bonferroni-corrected significance threshold for 10 comparisons (α = 0.05/10 

comparisons = 0.005; see Table 3-3).  Finally, for each opsin, we also estimated 

Pagel’s (1999) λ via ML in the R package ‘‘geiger’’ (Harmon et al. 2009).  Pagel’s λ 

provides an important measure of association between the phylogeny and variance for 

a given trait. 

For the analysis of opsin expression with lens transmittance, we extracted 

lenses for approximately half of the species sampled.  We measured the transmission 

of these lenses using an Ocean Optics USB4000 spectrometer and a pulsed Xenon 

lamp (PX2, Ocean Optics).  Our measurements followed the previously published 

protocols of Siebeck and Marshall (Siebeck and Marshall 2001).  Transmission values 

were normalized to 1 at 600 nm and used to determine the wavelength of 50% 

transmission (T50).  Because light must first pass through the lens before reaching the 

retina, lens transmittance can limit the wavelengths of light reaching the 

photoreceptors.  This is particularly true for wavelengths at the short-wavelength end 

of the visible light spectrum (Siebeck and Marshall 2001).  Because short-wavelength 

sensitivity is mediated by the single-cone photoreceptors in cichlids (Fernald and 
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Liebman 1980; Jordan et al. 2006; Carleton 2009), we tested the hypothesis of 

correlated evolution between lens T50 and the predicted maximal sensitivity (PSmax) 

of cichlid single-cones (see equation above).  For this analysis, we used 

phylogenetically independent contrasts (PICs; (Felsenstein 1985)) implemented in the 

PDAP:PDTREE module (Midford et al. 2003) of the program Mesquite v1.12 

(Maddison and Maddison 2001).  We set all branch lengths to one and log 

transformed single-cone λmax values to meet the assumptions of the independent 

contrasts method and normality of errors. 

 

Results and Discussion 

Tanganyikan Opsin Expression Diversity 

Figure 3-2 illustrates the results of our RT-qPCR analysis for the 28 LT 

cichlids sampled.  The expression values measured for each opsin ranged from 0% to 

73% of total opsin expression (Table S3-3 [Appendix 2]).  Despite previous analyses 

that reveal small but statistically significant differences in opsin expression between 

retinas extracted while in the field and those extracted after rearing for one generation 

in a laboratory setting (Hofmann et al. 2010b), we found no discernable differences 

between the retinas of wild-caught Tanganyikan cichlids processed in the field and 

those shipped to our laboratory (data not shown).  The majority of species 

simultaneously expressed 3 or 4 of the 6 opsins measured.  Importantly, these 

expression patterns generally matched those observed among cichlids from LM and 

LV, which are SWS1-RH2B-RH2A (short-wavelength sensitive), SWS2B-RH2B-RH2A 

(middle-wavelength sensitive), and SWS2A-RH2A-LWS (long-wavelength sensitive) 
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(Hofmann et al. 2009).  However, many species also expressed appreciable amounts 

(between 5 – 18%) of a fourth opsin—typically LWS—which is also observed among 

some LM and LV species (Hofmann et al. 2009).  In general, most of the species we 

sampled expressed opsins from either the middle- or the long-wavelength palettes.  

But, in contrast to many LM cichlids that express the long-wavelength palette, LT 

cichlids with this palette generally expressed SWS2B in place of SWS2A.  Also in 

contrast to LM and LV cichlids, a few species expressed high levels of either SWS1 or 

SWS2A (Figure 3-2).  Finally, at least two species exhibited opsin expression profiles 

that had not been previously described in cichlids from LM and LV.  

Paracyprichromis nigrapinnis expressed high levels of SWS1 in conjunction with 

RH2A and LWS, and N. tretocephalus expressed high levels of SWS2A in conjunction 

with RH2B and RH2A (Figure 3-2). 

The approximate spectral sensitivity estimated for cichlids with these opsin 

expression palettes is illustrated in Figure 3-2.  The average predicted maximal 

sensitivity (PSmax) for single-cones ranged nearly 100 nm, from 366 – 453 nm.  The 

average joint double–cone PSmax for these species had a slightly narrower range, from 

487 – 552 nm (Table S3-3 [Appendix 2]).  The distribution of LT cichlids across the 

combined predicted sensitivity of these two photoreceptors reveals that LT cichlids 

likely exhibit spectral sensitivities that overlap those observed or predicted for 

cichlids from LM and LV (Figure 3-2).  Among taxa with the middle-wavelength 

palette, several LT species also exhibited opsin expression profiles that were subtly 

divergent from those previously observed.  Members of the tribe Lamprologini, 

including Julidochromis regani, Neolamprologus brichardi, N. furcifer, and 
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Chalinochromis brichardi, exhibited single-cone PSmax that were short-wavelength 

shifted relative to other species with this palette, and members of the tribe Ectodini, 

including Enantiopus melanogenys and Xenotilapia ochrogenys, exhibited double-

cone PSmax that were long-wavelength shifted (Figure 3-2).  The novel opsin 

expression palettes of P. nigrapinnis and N. tretocephalus were predicted to confer 

visual pigment sensitivities with pigment spacings that were broader and narrower, 

respectively, compared with the three more common palettes.  Once again, the results 

of our analysis of estimated photoreceptor sensitivities are not meant to imply that 

these species have photoreceptors with these exact absorbance values; rather they 

provide a useful summary statistic for estimating how multivariate changes in opsin 

gene expression may shift spectral sensitivity.  However, the results of our opsin 

expression and photoreceptor PSmax analyses both suggest that visual system diversity 

is similar among African cichlids in LT and LM but that this diversity is potentially 

greater among the more phenotypically and phylogenetically diverse LT cichlids 

(Salzburger et al. 2002). 

Opsin Sequence Diversity 

Our analysis of opsin-coding sequences supports the assumption that LT 

cichlids possess opsins with λmax similar to those of O. niloticus.  We sequenced the 

SWS1 opsin in 10 species and found that it was the most variable of the three opsins 

examined (Table S3-4 [Appendix 2]).  We identified 25 polymorphic amino acid sites 

among these taxa; however, only six of these sites occurred in regions likely to affect 

chromophore binding and, therefore, spectral sensitivity.  Of these 6 sites, 5 exhibited 

replacements that considerably alter the physical or chemical properties of the amino 
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acid substituted (A52T, A97S, I290T/S, and A298S).  However, only one substitution 

(I290T/S) was absolutely fixed between O. niloticus and the LT cichlids.  

Substitutions at the remaining sites were shared between O. niloticus and other 

species, and no substitutions were found in sites already known to influence SWS1 

absorption (Yokoyama 2008).  We then sequenced RH2Aβ in 14 species.  Here we 

found 18 polymorphic sites, but only one of which occurred in a chromophore-

binding region (Table S3-4 [Appendix 2]).  This polymorphism, F203Y, varies in 

amino acid polarity but has not yet been shown to impact spectral tuning.  However, 

it is possible that such a polarity shift could slightly impact the spectral absorption of 

the RH2Aβ opsin (Chang et al. 1995).  Finally, we sequenced LWS in 11 species and 

found 10 variable sites.  But, once again, we found only one site that occurred in a 

chromophore-binding region (Table S3-4 [Appendix 2]).  This polymorphism, 

A164S, does change the amino acid polarity and has been shown to cause a 7 nm 

increase in LWS absorbance in humans (Asenjo et al. 1994) and LV cichlids (Terai et 

al. 2006).  In summary, we found only one polymorphism in each opsin that was 

likely to produce a shift in the sensitivity of that gene relative to O. niloticus.  

Therefore, we conclude that LT cichlids have opsins with spectral sensitivities similar 

to those of O. niloticus, which justifies our use of O. niloticus opsin λmax in the 

estimation of photoreceptor sensitivities.  We emphasize that the sequence differences 

we observe would only produce small shifts (5–15 nm; (Carleton 2009; Hofmann et 

al. 2009)) in spectral sensitivity relative to the large shifts (30–100 nm) caused by 

changes in opsin gene expression.  Therefore, none of the sequence substitutions we 

observe would alter the placement of LT species into different visual palette groups. 
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Interestingly, several of the sites we identified as polymorphic in the opsins of 

LT cichlids are also polymorphic among cichlids from LM and LV (e.g., SWS1 site 

217; RH2Aβ sites 107, 151, and 218; and LWS site 264) (Table S3-4 [Appendix 2]) 

(Hofmann et al. 2009).  These mutations could indicate parallel mutations within 

opsin-coding sequences but could also be ancestral polymorphisms (Spady et al. 

2005; Terai et al. 2006).  We also found that the SWS1 opsin exhibited the largest 

number of putatively functional replacements among cichlids from LT.  Although we 

did not examine all opsins, this pattern is consistent with a specific role for protein-

coding evolution within opsins sensitive to the ends of the visible light spectrum 

(Hofmann et al. 2009).  However, only one site, SWS1-217, was variable in both these 

groups; the rest were unique to cichlids from each lake.  This observation could 

suggest that there has been convergent functional evolution of the SWS1 opsin in 

cichlids from LT and LM.  This pattern is likely not the result of the rapid 

accumulation of deleterious alleles because none of the sequences we examined were 

pseudogenes, although we acknowledge that the SWS1 opsin is not highly expressed 

among the adults of most LT species examined (Figure 3-2A).  However, lack of 

SWS1 expression among adults does not rule out its use earlier during development 

(e.g., Carleton et al. (2008)).  The small number of putatively functional substitutions 

we identify in the remaining two opsins suggests that opsin protein-coding mutations 

likely contribute very little to divergence of spectral sensitivity among LT cichlids, 

with the possible exception of the SWS1 opsin.  However, we note that even small 

shifts in spectral sensitivity can impact female choice and even speciation (Seehausen 

et al. 2008).  The much larger shifts in spectral sensitivity associated with changes in 
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opsin expression could have an even greater impact on divergence among cichlids 

from LM and LT. 

Phylogenetic Analysis  

The final 50% majority-rule consensus trees produced by our Bayesian and 

ML analyses were highly resolved and widely congruent.  In each case, the positions 

of the major tribes were identical, and the trees differed only slightly in their branch 

lengths and support for certain nodes.  Figure 3-2A illustrates the final consensus tree 

for both analyses incorporating BI-estimated branch lengths.  Despite weak support 

for five nodes, our phylogeny is highly concordant with those previously reported for 

these or closely related species (Salzburger et al. 2002; Duftner, Koblmuller, 

Sturmbauer 2005; Day, Santini, Garcia-Moreno 2007). 

Parallel Evolution of Opsin Gene Expression 

The results of our Bayesian cluster analyses using k = 3, 4, and 5 clusters 

generated clustering schemes with empirical posterior probabilities (PP) equal to 

1.07e-21, 2.35e-19, and 3.05e-16, respectively.  All clustering schemes produced PP 

values that were a statistically better fit to the observed data than the null hypothesis 

of k = 1 clusters or no differences between species (P < 0.0001 in all three cases).  

Unfortunately, the implementation of Bayesian clustering we use here cannot 

currently estimate the optimal number of k clusters, and the PP values of different 

tests cannot be compared for this purpose because each PP is unique to the model of k 

clusters specified (Fuentes and Casella 2009).  However, because previous estimates 

support k = 3 as the optimal number of opsin expression clusters among LM cichlids 
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(Hofmann et al. 2009), we were primarily concerned with the results of this analysis. 

The clustering scheme for k = 3 grouped cichlids from LT, LM, and LV into 

clusters that chiefly reflected the three opsin expression palettes previously identified 

in these fishes (Table S3-5 [Appendix 2]).  Group 1 consisted of three LT cichlids 

that express the short-wavelength opsin palette (Eretmodus cyanostictus, 

Tanganicodus irsacae, and P. nigrapinnis) as well as most members of the LM rock-

dwelling (mbuna) lineage and also some members of the LM sand-dwelling (utaka) 

lineage (Figure 3-3; Table S3-5 [Appendix 2]).  Group 2 consisted of taxa that 

express the middle-wavelength palette and included the majority of the LT cichlids 

sampled.  Species in this group include members of the tribes Neolamprologini and 

Ectodini, Benthochromis tricoti, Cyprichromis leptura, Petrochromis famula, 

Greenwoodichromis christyi, and several members of both the LM mbuna and utaka 

lineages.  Finally, group 3 consisted of seven LT cichlids that express the long-

wavelength opsin palette, including A. burtoni, Ophthalmotilapia ventralis, 

Neolamprologus tretocephalus, most members of the tribe Tropheini, many members 

of the monophyletic LM utaka lineage, and all members of the monophyletic LV 

cichlid species flock.  The results for k = 4 and 5 simply subdivided the short- and 

long-wavelength–sensitive clusters, respectively (Figure S3-1 and Table S3-5 

[Appendix 2]).  Grouping taxa into k = 4 clusters split species that express the two 

short- and middle-wavelength palettes into a third group of species that exhibit 

additional SWS2B and LWS expression.  Grouping taxa into k = 5 clusters split taxa 

that express the long-wavelength palette into two groups based on those with 

additional SWS2B expression (Table S3-3 [Appendix 2]; see also Table S1-1 
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[Appendix 1]).  Finally, we note that the clustering results of Bayesian clustering of k 

= 3 groups are very similar to the clustering scheme identified by principle 

component analysis and k-means clustering (data not shown).  Thus, our results are 

robust to the analytical method used to group individuals based on opsin gene 

expression.  In all cases, the statistically significant clustering of species from 

different, monophyletic lineages within LT, LM, and LV strongly supports the 

repeated evolution of opsin gene expression among African cichlids. 

Reconstruction of the evolutionary history of these clusters on the phylogeny 

of African cichlids also supports the repeated evolution of multiple opsin expression 

palettes.  Figure 3-3 illustrates the posterior probability that the ancestor of each 

major tribe expressed the palettes represented by k = 3 clusters following Bayesian 

ancestral state reconstruction.  With only two exceptions, this reconstruction 

overwhelmingly supports the long-wavelength palette as the ancestral state for most 

major clades, including the haplochromine tribes of LM and LV.  The two exceptions 

are the joint ancestor of the tribes Cyprichromini, Benthochromini, Perissodini, and 

Limnochromini, which likely expressed the middle-wavelength palette, and the 

ancestor of the Eretmodini, which expressed the short-wavelength palette.  This 

reconstruction therefore indicates several transitions to the short- and middle-

wavelength palettes among members of the various African cichlid lineages in LT 

and LM.  Specifically, the short-wavelength palette arose twice within LT and then 

again among members of the LM cichlid radiation; the middle-wavelength palette 

arose at least four times among cichlids from LT and at least twice among cichlids 

from LM; and, because the long-wavelength palette is ancestral to most tribes, its 
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evolution does not appear to have occurred in parallel among the cichlids from LT, 

LM, and LV.  However, this palette may have re-evolved at least once within the LM 

utaka clade (Figure 3-3).  Reconstructions of k = 4 and 5 clusters on the cichlid 

phylogeny also overwhelmingly support a long-wavelength palette (group 3 or 5, 

colored red and yellow in Figure S3-1 [Appendix 2]) as the ancestral state for most 

African cichlid tribes.  Reconstruction of k = 5 clusters suggests that the ancestors of 

each lineage gradually developed a violet- (as opposed to blue-) shifted long-

wavelength palette leading up to the LV radiation.  However, the reconstructions of 

both k = 4 and 5 clusters also indicate numerous transitions to the short- and middle-

wavelength palettes among members of the LT tribes Eretmodini, Lamprologini, 

Ectodini, as well as LM cichlids (Figure S3-1 [Appendix 2]).  Once again, these 

transitions occurred among species and lineages with different ancestors that each 

expressed the long-wavelength palette.  Hence, even though we cannot distinguish 

between the optimality of k = 3, 4, or 5 clusters, the ancestral reconstruction of each 

of these scenarios all supports the parallel evolution of the short- and middle-

wavelength palettes among cichlids from LT and LM from ancestors that expressed 

the long-wavelength palette. 

Finally, we also used continuous character state reconstructions via ML to 

infer ancestral states of each opsin’s expression pattern independently.  This 

continuous character reconstruction produced estimates of ancestral states that were 

highly uncertain.  Ninety-five percent confidence intervals for the inferred ancestral 

states overlapped for expression values at many nodes.  Among internal nodes, only 

states at the base of the clades Eretmodini, Lamprologini, and Benthochromini 
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deviated significantly from the states of their direct ancestor along the base of the tree 

(indicated by pluses and minuses in Figure S3-1 [Appendix 2]).  In contrast, many 

species (tips) had 95% confidence intervals that did deviate significantly from the 

expression values predicted for the ancestor at the base of their respective clade.  This 

pattern could be due to the inherent uncertainty in the ancestral states of nodes further 

from the tips of the phylogeny; however, we believe this pattern indicates that most 

shifts in opsin expression have occurred near the tips of the cichlid phylogeny, not at 

its base.  To account for this possible bias, we also identified shifts in opsin 

expression of greater than 10% (indicated by greater than and less than symbols in 

Figure S3-1 [Appendix 2]).  This analysis illustrates the same pattern: few large shifts 

in expression at internal nodes, except for the base of the clades Eretmodini, 

Lamprologini, Benthochromini, and Tropheiini.  Once again, most shifts in opsin 

expression of more than 10% were concentrated at the tips of the phylogeny, 

indicating that this observation is not merely the result of statistical uncertainty in the 

ancestral states of internal nodes.  Most shifts in opsin expression that were 

statistically significant (e.g., where 95% confidence intervals between an ancestor and 

descendent node did not overlap) were ≥10%.  Additionally, our analysis based on 

percent expression is necessary where multiple observations of a particular species 

are not available to generate confidence intervals, which was the case for most LM 

cichlids.  However, analyses of both confidence intervals and percentage units infer 

many parallel shifts in opsin expression.  Most shifts represent increases in expression 

of the SWS1, RH2B, and RH2A opsins among cichlids from LT and LM (Figure S3-1 

[Appendix 2]).  We also find evidence for many independent shifts to lower 
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expression levels for the SWS2A and LWS opsins.  Both observations are consistent 

with the parallel evolution of the short (SWS1-RH2B-RH2A) and middle (SWS2B-

RH2B-RH2A) palettes.  Most importantly, the results of our continuous character state 

reconstructions are highly concordant with the results of our Bayesian reconstructions 

of k = 3 opsin palettes (Figure 3-3).  By estimating the spectral sensitivity of each 

ancestor via estimated single- and double-cone PSmax, we demonstrate that most 

ancestors exhibit inferred opsin expression values consistent with the long-

wavelength palette (inset in Figure S31 [Appendix 2]).  The only nodes that deviate 

from the long-wavelength palette are nodes at the base of the clades Eretimodini and 

Benthochromini.  This observation is perfectly consistent with our reconstruction of k 

= 3 clusters (Figure 3-3).  Thus, we conclude that similar opsin expression profiles 

among cichlids from LT and LM are due to parallel evolution from ancestors that 

each expressed the long-wavelength–sensitive opsin palette. 

We refer to the repeated evolution of similar opsin expression profiles among 

cichlids from LT and LM as due to parallelism because, in each case, these transitions 

have occurred independently among taxa with different ancestors that shared the 

same ancestral state.  This pattern contrasts with the expectation due to convergence, 

where similar phenotypes evolve among unrelated taxa whose ancestors exhibited 

different ancestral states.  (We note, however, that convergence and parallelism likely 

represent to ends of a continuum of homoplasy ((Arendt and Reznick 2008))).  We 

cannot infer how the palettes evolved in parallel with our current data.  One 

hypothesis is that the presence of similar opsin expression profiles among cichlids in 

LT and LM is simply due to the sorting of ancestral polymorphism that affects adult 



 

 87 
 

variation in opsin expression.  We do not believe this is the case because the presence 

of alternate opsin expression palettes has not been reported among the adults of any 

one cichlid population or species.  This observation suggests that the ancestral groups 

likely did not exhibit this much population-level variation either.  A second 

hypothesis is that these palettes evolved independently among an ancestral group of 

haplochromine cichlids that subsequently produced a hybrid swarm (e.g., Seehausen 

(2004)).  These palettes could then have been sorted coincident with the formation of 

new species.  This hypothesis would produce the appearance of ancestral 

polymorphism; however, it would still indicate that the short- and middle-wavelength 

palettes evolved in parallel among LT and LM cichlids, only with a much earlier 

origin than our current phylogeny suggests (near the base of the LM clade instead of 

near the tips).  Both the sorting of ancestral polymorphisms and a hybrid swarm 

scenario are consistent with what has been shown for the evolution of pigmentation 

blotching in LM cichlids (Roberts, Ser, Kocher 2009) and mitochondrial loci (Moran 

and Kornfield 1993).  However, we favor a third hypothesis that the presence of 

similar opsin expression profiles among unrelated cichlids in LT and LM is the result 

of parallel heterochronic shifts in opsin expression from ancestors that expressed the 

entire complement of opsin palettes during development (e.g., Carleton et al. (2008)).  

Both the basal cichlid O. niloticus (Carleton et al. 2008) and the derived 

haplochromine cichlid A. burtoni (O'Quin et al. 2011) [see Chapter 3] express the 

short- and middle-wavelength palettes as fry and juveniles, respectively, but then 

consistently express the long-wavelength palette as adults.  We believe that the 

presence of ontogenetic variation in opsin expression among both basal and derived 
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cichlids indicates that intermediate ancestral species (e.g., nodes b–g in Figure S3-1 

[Appendix 2]) which are predicted to express the long-wavelength palette, probably 

did so following a similar developmental progression.  If this is indeed the case, the 

presence of similar short- and middle-wavelength palettes among cichlids in LT and 

LM would be due to independent, heterochronic shifts in opsin expression from these 

ancestors (Carleton et al. 2008; O'Quin et al. 2011).  However, additional sampling of 

LT cichlids with all three palettes at different ontogenetic stages will be necessary to 

conclusively test this hypothesis.  We note also that our results rely on the 

observation that basal riverine cichlids express the long-wavelength opsin palette, of 

which O. niloticus is representative.  Although this appears to be the case for all 

known African and Neotropical outgroups so far surveyed (Levine, MacNichol Jr. 

1979; Carleton et al. 2008), sampling of additional genera such as Tylochromis and 

Tilapia may strengthen this conclusion. 

Comparative Analyses with Diet and Lens Transmittance 

To determine whether diet is associated with opsin expression divergence in 

LT cichlids, we compared the mean expression of each opsin among LT species 

divided into five foraging groups (Table 3-1).  The ML estimates of Pagel’s (1999) λ 

for each opsin generally indicate a weak association with phylogeny for the SWS1 

opsin and little or no association for the remaining opsins (Table 3-3).  Despite these 

weak associations, we still use appropriate phylogenetic comparative methods for all 

comparisons.  In our overall phylogenetic ANOVA, we found no statistically 

significant association between diet and mean relative expression for any of the 

opsins examined (Table 3-3).  However, we did identify a similar trend of increased 
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SWS1 expression among zooplanktivorous cichlids in both LT and LM (Figure 3-4).  

Among cichlids from LM, diet is an important predictor of mean SWS1 expression as 

well as actual and predicted single-cone λmax (Jordan et al. 2004; Hofmann et al. 

2009).  LM cichlids that forage on zooplankton, algae, and phytoplankton on average 

exhibit higher levels of SWS1 expression than cichlids that forage on fish or benthic 

invertebrates (Hofmann et al. 2009) (Figure 3-4).  SWS1 expression increases 

sensitivity to ultraviolet (UV) light, which has been shown to increase the ability of 

teleost fish to detect and feed on zooplankton because the UV-absorbing zooplankton 

appear as dark objects against the bright UV background (Novales-Flamarique and 

Hawryshyn 1994).  Therefore, this trend motivated us to perform a post hoc 

Dunnett’s test contrasting mean SWS1 expression among LT cichlids that forage on 

zooplankton with the remaining foraging groups (Table 3-3). 

We found that mean SWS1 expression was significantly higher among 

zooplanktivorous species versus benthivores (phylogenetic t-test; t = 3.174, p = 

0.004); however, we found no difference in mean SWS1 expression between 

zooplanktivores and the remaining foraging groups.  This weak but interesting 

correlation suggests that similar associations between SWS1 expression and diet may 

have evolved independently among cichlids from both LT and LM (see results of 

ancestral character state reconstruction).  The evolution of the same phenotypic 

correlation among unrelated cichlids in LT and LM could implicate natural selection 

in the parallel evolution of opsin expression among these species (Schluter 2000), 

since this association is unlikely to evolve repeatedly by drift alone.  Future studies of 

additional zooplanktivorous cichlids in LT may bolster this conclusion. 
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In addition to diet, we also examined the correlated evolution of single-cone 

PSmax with lens transmittance.  Lens transmittance (T50) values from LT cichlids 

were continuously distributed and ranged from 348.5 – 409 nm (Table S3-4 

[Appendix 2]).  Lens T50 was positively correlated with predicted single-cone PSmax 

(PICs: r2 = 0.417, F1,11 = 6.717, p = 0.013) (Figure 3-4).  Additionally, lens 

transmittance wavelengths were always lower than predicted single-cone PSmax, 

except in the case of P. nigrapinnis.  These results indicate that cichlid lenses 

generally do not block wavelengths of light that the fish are highly sensitive to.  

Among LM cichlids, lens transmittance is also positively correlated with relative 

SWS1 expression and estimated single-cone PSmax (Hofmann et al. 2010a), although 

lens T50 values are more bimodally distributed among these species (Figure 3-4).  

Interestingly, we identified four LT cichlids with lens T50 values that are 

intermediate to the two broad groups found among LM cichlids (Figure 3-4).  These 

species are G. christyi, N. cunningtoni, O. ventralis, and P. famula.  All these species 

are from different tribes but express either the middle- or the long-wavelength palette.  

Additionally, all these species’ opsin expression palettes generally overlap those 

observed in LM cichlids, suggesting that these intermediate lens transmittance values 

are not associated with novel or unusual patterns of opsin expression (Figure 3-2; 

Table S3-3 [Appendix 2]).  Like the results of our analyses of opsin expression 

diversity and photoreceptor sensitivity, the lens T50 values we observe suggest that 

visual system diversity is greater among the phylogenetically and phenotypically 

diverse cichlids of LT.  Even so, the presence of similar, positive correlations 

between opsin expression divergence (illustrated through average single-cone PSmax) 
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and lens transmittance among cichlids from LT and LM again suggests a role for 

natural selection in the parallel evolution of these traits. 

We find that diet and lens transmittance are both associated with the evolution 

of opsin expression in cichlids from LT and LM, as they are in other groups as well 

(Munz, McFarland 1977; Lythgoe 1979; Losey et al. 2003).  However, these two 

factors alone cannot explain all the similarities and differences in opsin expression we 

observe among cichlids from these two lakes.  To illustrate this point, we identified 

three LT cichlids that are ecologically or morphologically similar to species in LM 

(Kocher et al. 1993; Kassam et al. 2003).  The first pair of species, Petrotilapia 

famula (LT) and Petrochromis nigra (LM), both graze on epilithic algae and possess 

parallel morphological adaptations for doing so (Kassam et al. 2003).  P. famula (LT) 

expresses the middle-wavelength palette, whereas P. nigra (LM) expresses the short-

wavelength palette (Hofmann et al. 2009).  These taxa also exhibit lens T50 that 

differ by ~15 nm (Hofmann et al. 2009).  Similarly, both Lobochilotes labiatus (LT) 

and Placidochromis milomo (LM) possess puffy, distended lips for sucking 

invertebrates from the surface of rocks (Kocher et al. 1993).  But we find that L. 

labiatus (LT) expresses the long-wavelength palette, whereas P. milomo (LM) 

expresses the middle-wavelength palette (Hofmann et al. 2009).  The lens T50 of 

these two species differ by >40 nm (Hofmann et al. 2009).  Only the final comparison 

between Julidochromis regani (LT) and Melanochromis auratus (LM), which both 

feed on phytoplankton and algae and both express the middle-wavelength palette, 

supports the hypothesis of ecological as well as spectral convergence.  Unfortunately, 

we do not have lens transmittance data for J. regani.   
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In addition to differences in foraging preference and opsin expression in these 

three species comparisons, we also found that LT cichlids that forage on 

phytoplankton exhibit levels of SWS1 expression on par with species that forage on 

fish and benthic invertebrates.  This pattern contrasts strongly with ecologically 

similar species from LM (Figure 3-4).  This difference is likely due to the expression 

of the long-wavelength palette among members of the LT tribe Tropheinii, which are 

phytoplanktivorous.  This and the other examples we detail above likely contributed 

to the weak conclusion of our phylogenetic ANOVA (Table 3-3).  To us, these 

observations suggest that other factors must also drive opsin expression evolution in 

African cichlids.  These factors likely include additional ecological factors such as 

depth, as well as nonadaptive factors such as random genetic drift. 

One additional ecological factor that could also explain the parallel evolution 

of similar opsin expression profiles among cichlids from LT and LM is the ambient 

light environment.  Changes in spectral sensitivity due to the attenuation of light at 

different depths are observed among cichlids from all three East African Great Lakes 

(Sugawara et al. 2005; Seehausen et al. 2008).  However, we were unable to test for 

an association between opsin expression and ambient light environment because 

detailed spectral measurements for LT are not available.  Additionally, we had limited 

information regarding the sampling depth for most species.  However, we note that 

the amount of opsin expression diversity present among cichlids from each lake 

seems to be correlated with the amount of spectral variation present in each lake.  In 

other words, both LT and LM are remarkably clear and have waters with similar 

spectral qualities (Carleton et al. 2006).  Cichlids from both these lakes exhibit a 
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diverse range of opsin expression profiles (e.g., at least three; see Figures 2-2 and S2-

1) that collectively confer sensitivity to the entire spectrum of visible light available 

(Hofmann et al. 2009).  In contrast, LV has a spectrally narrow light environment that 

is red shifted relative to LT and LM (Seehausen et al. 1997; Carleton et al. 2006).  

Opsin expression diversity in LV is very limited (Figures 2-3 and S2-1) and appears 

to be constrained to only those opsins sensitive to the long wavelengths of light 

present in the lake (Hofmann et al. 2009).  These observations suggest that ambient 

light may also influence the evolution of opsin gene expression in African cichlids; 

however, future spectral measurements of LT will be necessary to definitively test 

this hypothesis. 

 

Conclusions 

Repeated phenotypic evolution can provide valuable insights into which 

genetic mechanisms generally contribute to the evolution of phenotypic diversity.  

Like pelvic spine loss in sticklebacks (Chan et al. 2010) and wing pigmentation in 

Drosophila (Prud'homme et al. 2006), we infer that cichlids in LT and LM have 

independently evolved similar retinal sensitivities through the parallel evolution of 

opsin gene regulation (Figures 2-2 and 2-3).  Multiple ancestral state reconstructions 

support the parallel evolution of two distinct opsin expression profiles among 

unrelated cichlids from these two lakes (Figures 2-3).  In contrast, we identified few 

protein-coding mutations that were likely to shift cichlid retinal sensitivities, with the 

possible exception of the SWS1 (UV) opsin (Table S3-4 [Appendix 2]).  Although 

opsin genes provide a classic example of how mutations within the protein-coding 
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regions of genes can contribute to phenotypic evolution (Yokoyama 2002), the 

independent evolution of similar opsin expression palettes among African cichlids 

underscores the important contribution that regulatory mutations can also make 

(Britten, Davidson 1971; King, Wilson 1975; Sucena et al. 2003; Prud'homme et al. 

2006). 

Why changes in opsin expression are prominent among cichlids from LT and 

LM could be due to similar adaptations to diet and lens transmittance (Figure 3-4), 

the light environment, or all three.  Alternatively, biases in the use of one mutational 

type versus another could be due to selection (Schluter 2000) or genetic and 

developmental constraints (Schluter 1996; West-Eberhard 2003).  For example, 

regulatory mutations may have relatively higher fitness when large shifts in opsin 

expression are necessary for spectral adaptation.  In contrast, protein-coding 

mutations may be better suited for fine-tuning spectral sensitivity and necessary for 

turning spectral sensitivity at the two ends of the visible light spectrum (Hofmann et 

al. 2009).  Examples of convergence in cichlid opsin-coding sequences do exist, 

particularly in the RH1, or rod, opsin (Sugawara et al. 2005).  However, the spectral 

sensitivity of the rod opsin can only evolve through protein-coding mutations in 

cichlids because they do not have an additional RH1 opsin to express.  But in teleosts 

that do possess more than one rod opsin, large shifts in dim-light spectral sensitivity 

are generated through changes to the regulation of these genes (Yokoyama et al. 

2008). 

Exactly how the parallel evolution of opsin expression has been achieved 

among African cichlids from LT and LM is unclear.  Currently, we cannot distinguish 
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between the hypotheses of de novo mutation, sorting of ancestral polymorphism, or 

parallel heterochronic shifts in opsin expression, although we favor the latter 

hypothesis.  We have recently demonstrated that adult opsin expression has a strong 

genetic basis and is heritable (Carleton et al. 2010; Hofmann et al. 2010a).  Further, 

hybrid crosses reveal that as few as two loci may underlie these important differences, 

including both cis- and trans-acting loci (Carleton et al. 2010).  Future work will aim 

to use these hybrid crosses to further elucidate the molecular genetic basis for 

differential opsin expression in cichlids.  We will also examine diversity at important 

cis- and trans- regulatory regions to determine what contributions these two 

mechanisms make to the evolution of spectral sensitivity in cichlids.  These future 

analyses will help us distinguish between the possible scenarios that led to the parallel 

evolution of opsin gene expression among African cichlids. 
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Table 3-2.  Sequence of all primers and probes used to measure cichlid opsin gene 
expression. 
 
Opsin Primer Sequence 

UV.Cic.Forward1 5'-GGCTGTGCCTGCCCAC-3' 

UV.Tang.Forward2 5'-GGCTGCGCCTGCCCAC-3' 

UV.Tang.Ov.Forward2 5'-TGCTGCGCCTTCCCAC-3' 

UV.Cic.Reverse1 5'-AGGAGCAGCCCAGACCTTC-3' 

SWS1 

UV.Cic.Probe1 5'-TTTCTTTGGCTGGAGCAGGTACATCCC-3' 

B2.Cic.Forward1 5'-TTTGGTGCGCTAGCATGC-3' 

B2.Cic.Reverse1 5'-AAGGGACCACAGGCTTACCAT-3' 

SWS2B 

B2.Cic.Probe1 5'-AGATCGAAGGTTTCATGGTAACACTCGGTG-3' 

B1.Cic.Forward1 5'-TTTGGTGCGCTAGCATGC-3' 

B1.Tang.Reverse2 5'-CTTGCAAATCACAAGCCATC-3' 

B1.Cic.Probe1 5'-AGATCGAAGGTTTCATGGTAACACTCGGTG-3' 

B1.Tang.Probe2 5'-AGATCGAAGGTTTCATGGCAACACTCGGTG-3' 

B1.Tang.Nb.Probe2 5'-AGATCGAAGGTTTCATGGCAACACTTGGTG-3' 

B1.Tang.Nm.Probe2 5'-AGTTCGAAGGTTTCATGGCAACACTCTGTG-3' 

B1.Tang.Pm.Probe2 5'-AAATCGAAGGTTTCATGGCAACACTCGGTG-3' 

SWS2A 

B1.Tang.Xeno.Probe2 5'-AGATCGAAGGTTTCTTGGCAACACTCGGTG-3' 

G3.Cic.Forward1 5'-TGCTGCCCCCCCATTG-3' 

G3.Cic.Reverse1 5'-AGGTCCACAGGAAACCTGAA-3' 

RH2B 

G3.Cic.Probe1 5'-TGGCTGGTCAAGGTACATTCCTGAGGGA-3' 

G.Tang.Forward2 5'-TTAATGGCTACTTCATTCTTGGA-3' 

G.Cic.Reverse1 5'-CCAGGACAACAAGTGACCAGAG-3' 

G.Cic.Probe1 5'-TGGCCACACTAGGAGGTGAAGTTGC-3' 

G.Til.Probe1 5'-TGGCCACACTTGGAGGTGAAGTTGC-3' 

G.Tang.Gc.Probe2 5'-TGGCCACACTTGGAGGTGAAGTTTC-3' 

RH2A 

G.Tang.Ov.Probe2 5'-TGGCCACACTAGGAGGTCAAGTTGC-3' 

R.Cic.Forward1 5'-CTGTGCTACCTTGCTGTGTGG-3' 

R.Cic.Reverse1 5'-GCCTTCTGGGTTGACTCTGACT-3' 

R.Tang.Nb.Reverse2 5'-GCTTTCTGGGTTGACTCTGACT-3' 

R.Tang.Nt.Reverse2 5'-GCCTTTTGGGTTGACTCTGACT-3' 

R.Tang.Xb.Reverse2 5'-GCCTTCTGGGTTGACTCTGATT-3' 

LWS 

R.Cic.Probe1 5'-TGGCCATCCGTGCTGTTGCC-3' 
1 Spady et al. (2006) 
2 This study 
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Table 3-3.  Results of phylogenetic ANOVA comparing opsin gene expression with 
foraging preference and post hoc comparisons of SWS1 expression between foraging 
levels. 
 

Opsin Pagel’s  
λ 

Box-Cox 
Power df F or t value p-value 

SWS1 0.3988 -1.772 4, 23 2.587 0.099 

Zooplankton vs. Epilithic Algae - - 1, 23 1.823 0.115 

Zooplankton vs. Phytoplankton - - 1, 23 1.945 0.071 

Zooplankton vs. Fish - - 1, 23 1.462 0.129 

Zooplankton vs. Benthic Invertebrates - - 1, 23 3.174 0.004** 

SWS2B 0.1644 - 4, 23 1.465 0.337 

SWS2A <0.0001 -1.541 4, 22 0.541 0.820 

RH2B 0.1301 - 4, 23 0.959 0.557 

RH2A <0.0001 0.188 4, 23 0.209 0.952 

LWS 0.1796 0.350 4, 23 0.989 0.528 

** These tests are significant following Bonferonni-correction for 10 hypothesis tests 
(α = 0.05/10 = 0.005). 
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Figures 
 
Figure 3-1.  Schematic of the East African Great Lakes and the phylogenetic 
structure of their associated cichlid species flocks.  (A) Map of the African continent 
with the location of the three Great Lakes – LT, LM, and LV—shown in gray.  (B) 
Representative phylogeny of cichlids from each of the Great Lakes, with approximate 
dates of divergence (modified from Kocher (2004) and Koblmüller et al. (2008)).  
Map modified from the R package “maps” (Becker et al. 2010). 
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Figure 3-2.  Opsin expression diversity in 28 cichlid species from LT.  (A) 
Mitochondrial phylogeny of the species sampled.  Filled circles indicate notes with > 
80% bootstrap and posterior probability support; gray circles, nodes with > 50% 
bootstrap and posterior probability support; open circles, nodes with > posterior 
probability support only.  (B) Heat map of relative opsin gene expression.  The tribe 
to which each species belongs is shown on the left along with the visual palette 
estimated from the opsin expression profile (see text).  (C) Predicted maximal 
sensitivity (PSmax) of single- and double-cone photoreceptors estimates from the opsin 
expression results.  The distribution of photoreceptor sensitivities estimates for 
cichlids from LM and LV are indicated by gray boxes, including those expressing the 
short- (S), middle- (M), and long- (L) wavelength sensitive opsin palettes (Hofmann 
et al. 2009) [see Chapter 2]. 
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Figure 3-3.  Parallel evolution of opsin gene expression in 47 African cichlid fishes 
from LT, LM, and LV, as well as the rivers (R).  Pie charts illustrate the results of 
Bayesian ancestral state reconstruction and show the relative posterior probability that 
the ancestor expressed each of the three opsin expression palettes determined by 
clustering taxa into k = 3 clusters.  The long-wavelength (red) palette is supported as 
the ancestral state for most African cichlid lineages, including the Haplochromini 
(LM and LV).  States at the tips indicate several parallel shifts to the short- (blue) and 
middle- (green) wavelength palettes among cichlids in LT and LM from ancestors 
that each expressed the long-wavelength palette (red). 
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Figure 3-4.  Comparative analysis of opsin gene expression with foraging preference 
and lens transmittance.  (A) Mean SWS1 (ultraviolet) opsin expression is higher 
among zooplanktivorous cichlid species than benthivorous ones (means indicated 
black bars).  A similar pattern is observed among cichlids from LM (gray bars and 
boxes) [see Chapter 1].  (B) Regression of predicted maximal sensitivity (PSmax) of 
single-cone photoreceptors and lens transmittance (T50).  Dotted line indicates x = y.  
The distribution of lens T50 and single-cone PSmax among LM cichlids is indicated 
with gray boxes (LM lens transmittance data from Hofmann et al. (2009)). 
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Chapter 4:  

New Evidence for the Role of Heterochrony in the Repeated 

Evolution of Cichlid Opsin Expression 

 
Kelly E. O’Quin, Adam R. Smith, Anit Sharma, and Karen L. Carleton 

 

 

See Appendix 3 for all supplementary tables (Table S4-1) referenced in this chapter. 

 

This chapter is published as: 

O’Quin KE, Smith, AR, Sharma A, Carleton KL (2011) New evidence for the role of 

heterochrony in the repeated evolution of cichlid opsin expression. Evolution & 

Development 13: 193-203. 
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Abstract 

Lake Malawi cichlids have undergone heterochronic shifts in the expression 

of their cone opsin genes, the genes responsible for color vision.  These shifts have 

generated species with short-, middle-, and long-wavelength-sensitive cone 

photoreceptors and visual systems.  However, it is unclear when during the evolution 

of African cichlids these shifts occurred, or whether they could account for similar 

short and middle wavelength-sensitive profiles among unrelated cichlids in Lake 

Tanganyika.  To address these questions, we surveyed opsin expression in developing 

fry of two African cichlids, Astatotilapia burtoni from Lake Tanganyika and 

Melanochromis auratus from Lake Malawi.  We found that A. burtoni expresses a 

series of three different single cone opsins over the course of development, while M. 

auratus exhibits variation in the expression of only two.  Neither A. burtoni nor M. 

auratus exhibits much variation in the expression of its double cone opsins.  These 

patterns reveal that A. burtoni exhibits progressive development in the sensitivity of 

its single cone photoreceptors, but direct development in the sensitivity of its double 

cone photoreceptors.  M. auratus exhibits neotenic development in the sensitivity of 

both photoreceptor sets.  Given the intermediate phylogenetic placement of A. burtoni 

between cichlids from Lakes Tanganyika and Malawi, our results suggest that the 

ancestor of Lake Malawi’s cichlids exhibited a progressive developmental pattern of 

opsin expression.  These results indicate that the heterochronic shifts which produced 

the short and middle wavelength-sensitive profiles of Lake Malawi’s cichlids 

occurred recently, and suggest that the presence of similar profiles among Lake 

Tanganyika’s cichlids are due to parallel heterochronic shifts. 
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Introduction 

Heterochrony occurs during development when the appearance of one trait is 

changed relative to the appearance of another (McKinney and McNamara 1991; 

Gilbert 1997; West-Eberhard 2003).  This process results in the “shifting of 

characters from one part of ontogeny to another” relative to the ancestral state 

(Valentine 1977).  Two common forms of heterochrony include neoteny and direct 

development.  Neoteny is the retention of larval or juvenile traits into the adult phase.  

Direct development is the opposite, the loss of larval or juvenile traits, resulting in the 

immediate appearance of the adult form of a trait early in development (Gilbert 

1997).  Examples of heterochrony abound in the literature, and include the evolution 

of morphological (Raff 1987) and behavioral traits (Garièpy et al. 2001), as well as 

gene expression (Wray and McClay 1989).  Heterochrony is postulated to play an 

important role in phenotypic evolution, since it can generate new combinations of 

adult and larval phenotypes for selection to act upon (Gould 1977; McKinney and 

McNamara 1991; West-Eberhard 2003).  This is especially true concerning the rapid 

or repeated evolution of new phenotypes, as is common in many adaptive radiations 

(West-Eberhard 2003). 

African cichlids are a group of freshwater teleost fish that comprise the largest 

vertebrate adaptive radiation on earth (Sturmbauer 1998; Kocher 2004; Seehausen et 

al. 2008).  These fishes are found throughout the rivers and lakes of Africa, but most 

species are concentrated within the three East African Great Lakes: Lakes 

Tanganyika (LT), Malawi (LM), and Victoria (LV).  Cichlids from these lakes exhibit 

unparalleled diversity in many morphological, behavioral, and physiological 
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phenotypes; among others, these traits include impressive variation in the expression 

of seven cone opsin genes, the genes responsible for color vision (Carleton, Kocher 

2001; Carleton et al. 2005; Parry et al. 2005; Hofmann et al. 2009; O'Quin et al. 

2010).  Variation in cichlid opsin expression has resulted in the evolution of many 

closely related cichlids that have photoreceptors sensitive to very different regions of 

the visible light spectrum (Parry et al. 2005; Jordan et al. 2006).  Additionally, these 

patterns of opsin expression have evolved in parallel among unrelated cichlids from 

Lakes Tanganyika and Malawi (O'Quin et al. 2010) in response to important 

environmental and behavioral factors like foraging preference and the ambient light 

environment (Seehausen et al. 2008; Hofmann et al. 2009; O'Quin et al. 2010) [see 

Chapters 1 and 2].  This observation suggests that opsin expression diversity is the 

result of rapid, adaptive evolution in cichlids.  A depiction of the broad phylogenetic 

relationships among cichlids from Lakes Tanganyika, Malawi, and Victoria is 

presented in Figure 4-1A. 

Among the haplochromine cichlids of LM and LV, variation in adult opsin 

expression appears to be the result of heterochronic shifts from the developmental 

patterns of opsin expression observed in their distant ancestor, the Nile tilapia 

(Oreochromis niloticus) (Carleton et al. 2008).  O. niloticus fry exhibit a progressive 

developmental pattern of opsin expression: larvae begin development by expressing a 

short-wavelength-sensitive set of opsins (SWS1-RH2B-RH2A), switch to a medium-

wavelength-sensitive set as fry (SWS2B-RH2B-RH2A), and end development by 

expressing a long wavelength-sensitive set that is also observed in adults (SWS2A-

RH2A-LWS) (Carleton et al. 2008).  This progressive developmental pattern of opsin 



 

 109 
 

expression results in photoreceptors that change their maximal sensitivity throughout 

ontogeny, from short-, to middle-, to long-wavelengths of light (Figure 4-1B).  These 

same larval, juvenile, and adult opsin sets/photoreceptor sensitivities are observed 

among numerous adult cichlids from LM and LV, though following either neotenic or 

direct developmental patterns, not the progressive pattern observed in O. niloticus 

(Carleton et al. 2008) (Figure 4-1A and B).  However, previous studies have only 

examined developmental variation among species that express either the short- or 

long-wavelength opsin sets as adults, not those with the middle-wavelength set.  The 

patterns of developmental opsin expression so far observed in African cichlids are 

summarized in Figure 4-1B. 

Unrelated adult cichlids from LT and LM exhibit very similar patterns of 

opsin expression that have evolved in parallel (O'Quin et al. 2010).  O’Quin et al.  

(2010) found that the use of the short- (SWS1-RH2B-RH2A) and middle- (SWS2B-

RH2B-RH2A) wavelength-sensitive opsin sets evolved in parallel among LT and LM 

cichlids from ancestors predicted to express the long-wavelength (SWS2A-RH2A-

LWS) opsin set as adults (Figure 4-1A) [see also Figure 2-3 following Chapter 2 

(O'Quin et al. 2010)].  This observation led the authors to hypothesize that the parallel 

evolution of the short- (SWS1-RH2B-RH2A) and middle- (SWS2B-RH2B-RH2A) 

wavelength opsin sets could be due to parallel heterochronic shifts from ancestors that 

each expressed the long-wavelength opsin set as adults, but the short- and middle-

wavelength sets as fry.  However, since no larvae or fry were available for any of the 

Tanganyikan species used by O’Quin et al. (2010), this hypothesis was left untested.  

Thus, the goal of our present study is to address the following question: what was the 
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likely developmental pattern of opsin expression found in the ancestor of LM 

cichlids? If the ancestor of LM cichlids exhibited the direct or neotenic 

developmental patterns observed in other LM cichlids, this result would suggest that 

the heterochronic shifts that gave rise to the evolution of the various adult opsin 

expression patterns found in LM cichlids occurred long ago, after the initial split of 

this lineage from O. niloticus.  However, if this ancestor exhibited progressive 

development similar to that observed in O. niloticus, this result would suggest that the 

heterochronic shifts occurred more recently.  This latter result would also suggest that 

the short- and middle- wavelength opsin sets of adult LT and LM cichlids could be 

due to similar and independent heterochronic shifts in opsin expression.  To address 

these questions, we surveyed opsin expression in developing fry of the haplochromine 

cichlid Astatotilapia burtoni.  A. burtoni is a basal member of the haplochromine 

cichlid lineage, the lineage to which all LM and LV cichlids belong.  However, A. 

burtoni is found primarily in Lake Tanganyika and its surrounding rivers, and it is 

phylogenetically intermediate between cichlids from LT and LM (Salzburger et al. 

2002; Koblmüller et al. 2008) (Figure 4-1A).  Some studies have also placed A. 

burtoni in a polytomy with cichlids from LM and LV, and others even suggest that A. 

burtoni is ancestral to these species (Takahashi et al. 2001; Seehausen et al. 2003).  

Additionally, A. burtoni is considered to be similar to the hypothetical ancestor of all 

haplochromine cichlids, including those in LM and LV, since it is a generalized 

omnivore that is found in both rivers and lakes (Fryer and Iles 1972).  Thus, given its 

intermediate phylogenetic position between cichlids from LT and LM, as well as its 

presumed similarity to the ancestor of all haplochromine cichlids, A. burtoni is an 
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excellent species with which to determine the probable ancestral developmental opsin 

profile of LM cichlids. 

Fortunately, due to many years of research by Fernald and colleagues, A. 

burtoni is also a model system for the study of behavior (Grosenick et al. 2007), 

phenotypic plasticity (Renn et al. 2008), and vision (Fernald, Liebman 1980; 

Hagedorn, Fernald 1992).  Hence, much is known about the visual system of A. 

burtoni.  Previous work has established that: (i) during development, the retina of A. 

burtoni is dominated by cone photoreceptors (Hagedorn et al. 1998) but is structurally 

complete by ~ 7 days post fertilization (dpf) (Hagedorn and Fernald 1992); (ii) the 

photoreceptors of adult A. burtoni are maximally sensitive to 455, 523, and 562 nm 

wavelengths of light (Fernald and Liebman 1980), corresponding to the expression of 

the long wavelength opsin set (SWS2A/B-RH2A-LWS) (O'Quin et al. 2010); (iii) A. 

burtoni rhodopsin expression and photoreceptor cell growth exhibit diurnal and 

circadian rhythms (Korenbrot, Fernald 1989; Chiu, Mack, Fernald 1995); and (iv) the 

spectral sensitivity of A. burtoni’s photoreceptors are matched to the wavelengths of 

light present in the ponds and rivers surrounding LT (Fernald and Hirata 1977). 

Despite the use of A. burtoni as a model system for the study of vision for 

over 30 years, it is still unknown whether A. burtoni exhibits ontogenetic variation in 

opsin expression.  Therefore, we sampled developing A. burtoni fry to determine 

whether or not this species exhibits developmental variation in the expression of its 

opsins.  We also sampled developing fry of the LM cichlid Melanochromis auratus.  

Adults of M. auratus express the middle-wavelength-sensitive opsin set (SWS2B-

RH2B-RH2A), which was not surveyed in a previous developmental series of Lake 
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Malawi cichlids (Carleton et al. 2008).  Therefore, it is unclear whether this species 

and those like it exhibit heterochronic developmental shifts in opsin expression as do 

other LM cichlids.  We hypothesize that A. burtoni will exhibit progressive 

developmental variation in opsin expression like the riverine cichlid O. niloticus, and 

that M. auratus will exhibit neotenic developmental variation like other Lake Malawi 

cichlids.  The results of this study will add important developmental information to 

the impressive list already available for A. burtoni, and they should also address what 

role heterochrony has played in the parallel evolution of adult opsin expression in 

African cichlids. 

 

Materials and Methods 

Sampling 

We examined developmental variation in opsin expression among a lab-reared 

strain of Astatotilapia burtoni and a recently wild-caught strain of Melanochromis 

auratus.  A. burtoni adults were provided by Daphne Soares (University of Maryland, 

College Park), while M. auratus adults were collected in 2008 from Lake Malawi 

National Park, Cape Maclear, Malawi (14°01’27.09”S, 34°49’27.03”E).  We then 

mated each species in our lab to generate lab-reared broods for developmental 

sampling.  Although we have recently reported that lab-rearing can slightly affect 

patterns of opsin expression relative to wild-caught individuals (Hofmann et al. 

2009), this does not appear to prevent developmental changes in opsin expression 

from occurring (Carleton et al. 2008).  For each species, we sampled fry starting at 

~10 days post fertilization (dpf), since previous results indicate that the retina is fully 
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formed by this time (Hagedorn and Fernald 1992).  We then continued sampling 

every 1 – 2 weeks until the broods were ~ 72 dpf, when the adult opsin set is nearly 

fixed (Carleton et al. 2008).  This sampling scheme corresponds to the late larval to 

middle juvenile developmental stages (Fujimura and Okada 2007, 2008).  We 

sampled fish at approximately the same time each day to avoid any variation due to 

diurnal changes in opsin expression (Korenbrot and Fernald 1989).  For the A. burtoni 

broods, we collected six fish for each sampling period.  However, for the first two 

sampling periods (14 and 28 dpf), we collected 9 fish; we then combined these fish 

into three replicates of three fish in order to generate enough RNA for expression 

analysis.  For the M. auratus broods, we collected two fish for each sampling period, 

including the first two periods.  At each sampling period, we euthanized the fish with 

tricaine methanesulfonate (MS-222, Argent, Redmond, WA), dissected both retinas, 

and stored them in RNA-later (Qiagen®, Valencia, CA) until the time of expression 

analysis. 

Opsin Expression Analysis 

We measured the relative expression of the opsin genes following our 

previously published protocols (Spady et al. 2006; Carleton et al. 2008; Hofmann et 

al. 2009; O'Quin et al. 2010).  Briefly, we extracted RNA from the dissected retinas 

of each fish using QIAshredder®
 and RNeasy Mini®

 kits (Qiagen, Valencia, CA) 

following the manufacturers protocols.  For each sample, we then reverse transcribed 

0.5 µg total RNA to cDNA with Superscript III (Invitrogen, Carlsbad, CA).  We 

quantified opsin expression via real time quantitative PCR (RT-qPCR) using species- 

and opsin-specific Taqman®
 primers and probes (Spady et al. 2006; Carleton et al. 
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2008; Hofmann et al. 2009; O'Quin et al. 2010).  Finally, we normalized the 

expression of each opsin to either a construct of oligos encoding each opsin’s primer 

and probe sequences (Spady et al. 2006), or else a dilution series with known 

concentrations of a single opsin’s primer and probe sequence (O'Quin et al. 2010).  

As in our previous studies, we quantified the expression of the genetically and 

functionally similar RH2Aα and RH2Aβ opsins jointly.  For each opsin, we recorded 

expression as percent of total opsin expression; thus, for each sample total opsin 

expression sums to 100%.  Following the quantification of relative opsin expression, 

we used the results to predict the wavelength of maximum sensitivity for each 

species’ single and double cone photoreceptors.  Cichlid opsins are expressed within 

two distinct photoreceptor cell types, single cones and double cones (Fernald 1981; 

Carleton 2009).  These predictions assume that the short-wavelength-sensitive opsins 

(SWS1, SWS2B, and SWS2A) are expressed in single cones, while the middle- and 

long-wavelength-sensitive opsins (RH2B, RH2A, and LWS) are expressed in double 

cones.  These assumptions are supported by microspectrophotometry of single and 

double cone photoreceptors (Fernald 1981; Parry et al. 2005; Jordan et al. 2006; 

Spady et al. 2006; Carleton 2009), and have been confirmed using in situs (B Dalton, 

TW Cronin, KL Carleton, unpublished data).  Therefore, following our previous 

studies (Carleton et al. 2008; Hofmann et al. 2009; O'Quin et al. 2010) we predict the 

maximal sensitivity of single and double cone photoreceptors using the formula: 

Σ(ƒiλi) PSmax, C = 
Σƒi 

 

where fi is the percent expression in of the ith opsin in either single- or double-cones 
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(C), and λi is the wavelength of maximum absorbance (λmax) of the ith opsin in O. 

niloticus (Spady et al. 2006). 

We perform two estimates of predicted sensitivity, one for the single-cones 

photoreceptors (based on SWS1, SWS2B, and SWS2A expression), and another 

double-cone photoreceptors (based on RH2B, RH2A, and LWS expression).  There are 

two benefits to using these predictions.  First, these estimates provide a useful 

summary statistic that describes multivariate changes in groups of opsins that exhibit 

evolutionarily and developmentally correlated patterns of expression (Carleton et al. 

2008; Hofmann et al. 2009; O'Quin et al. 2010).  Second, these predictions provide a 

more biologically relevant variable for analysis, since ultimately our goal is to 

determine how changes in opsin expression affect overall retinal sensitivity.  Carleton 

et al. (2008) reported a very tight relationship between percent opsin expression and 

photoreceptor absorbance in O. niloticus, and Carleton (2009) summarizes this for 

several Lake Malawi cichlids as well. 

Statistical Analyses 

We used a combination of linear and nonlinear regression to determine 

whether significant changes in opsin expression/predicted photoreceptor sensitivity 

occur during A. burtoni and M. auratus development.  We interpreted statistically 

significant change in developmental opsin expression as indicative of the progressive 

developmental pattern of O. niloticus, and insignificant or small change in opsin 

expression as indicative of the neotenic and direct developmental patterns of Lake 

Malawi cichlids.  We performed all analyses using the lm() and nls() functions in the 

basic “stats” package of the R statistical computing software v2.10.1 (R Development 
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Core Team 2009).  Depending on the distribution of the resulting data, we generally 

fit one of four possible regression models to the data: (i) a linear regression model of 

the form y = β0 + β1(age) + ε, where β0 is the intercept, β1 is the linear coefficient, and 

ε is the residual error; (ii) a polynomial or curvilinear regression model of the form y 

= β0 + β1(age) + β2(age2) + ε, where β2 is the quadratic coefficient; (iii) a two-

parameter exponential regression model of the form y = α * (dpf^β) + ε, where α is 

the intercept and β is the rate at which y changes from its initial value between 

0<age<∞; and (iv) a three-parameter exponential regression model of the form y = α 

+ β * exp(-γ * age), where α is the asymptote at age = ∞, β is the range of the 

response between 0<age<∞, and γ is the rate at which y changes from its initial value 

between 0<age<∞ (Ratkowsky 1990; Quinn and Keough 2002). 

 

Results 

Astatotilapia burtoni 

We collected 30 A. burtoni individuals across five different developmental 

ages, ranging from ~ 14 – 70 days post fertilization (dpf).  We observed considerable 

variation in the expression of most opsins during ontogenesis in A. burtoni, 

particularly among opsins expressed in the single cones (SWS1, SWS2B, and SWS2A) 

(Figure 4-2A).  As in O. niloticus (Carleton et al. 2008) the short-wavelength-

sensitive (SWS) opsins of A. burtoni exhibit a nonlinear and progressive pattern of 

expression over developmental time.  In both species, SWS1 (ultraviolet) opsin is the 

predominant SWS opsin expressed among larval fry <20 dpf.  SWS1 expression drops 

exponentially during this larval period, while in the same period SWS2B expression 
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increases.  After 20 dpf, around the onset of the juvenile stage, SWS2B is the main 

opsin expressed in single cones.  SWS2B expression peaks early, around 30 dpf, then 

also begins to drop, though more slowly than SWS1 expression.  As SWS2B 

expression drops, SWS2A expression slowly increases.  By ~ 70 dpf, SWS2A seems to 

become the dominant SWS opsin expressed in single cones.  Among opsins expressed 

in double cones (RH2B, RH2A, and LWS), both RH2A and LWS are expressed highly 

throughout development, though both exhibit slight curvilinear patterns of increased 

expression over time (Figure 4-2A).  RH2B is not expressed at any time during 

ontogenesis, nor is it expressed in the adult.  This pattern of double cone opsin 

expression differs from that observed in O. niloticus, where RH2B is the dominant 

opsin expressed in larval fish (those <20 dpf), after which LWS expression rapidly 

climbs to high expression during the juvenile stage and remains on throughout the 

rest of development and adulthood.  Also dissimilar is the slight increase in RH2A 

expression observed for A. burtoni, whereas in O. niloticus RH2A expression begins 

at 20% relative expression and then decreases slowly until adulthood (Carleton et al. 

2008). 

We note that Figure 4-2 illustrates changes in opsin expression with lines 

fitted using either linear or nonlinear regression, depending on the distribution of the 

data.  These curves are only meant to highlight the trends in opsin expression and are 

not used for hypothesis testing, which we perform on predicted photoreceptor 

sensitivities below.  We note also that although our analysis of development ends at 

~70 dpf (middle juvenile stage), for comparison we include final relative expression 

values for adult A. burtoni from O’Quin et al. (2010).  In general, the final values at ~ 
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70 dpf closely match those in the adult, but in a few cases suggest that opsin 

expression may continue to increase (for example, SWS2A) or decrease (for example, 

RH2A and LWS).  Despite this limitation, it is clear that, between 10 and 70 dpf, the 

opsins of A. burtoni exhibit considerable change in expression (Figure 4-2A). 

Melanochromis auratus 

We collected 22 M. auratus individuals between 10 and 72 dpf.  In contrast to 

O. niloticus and A. burtoni, we observed considerable ontogenetic change in opsin 

expression for only three opsins, SWS1, SWS2B, and RH2B; the remaining opsins 

exhibited slight linear increases in expression, or no apparent increase at all (Figure 4-

2B).  Among opsins expressed in single cone photoreceptors, SWS1 was the 

predominant opsin expressed until ~ 14 dpf; however, like A. burtoni, SWS1 

expression dropped exponentially during this period.  At the same time, SWS2B 

expression rapidly increased.  After ~ 14 dpf, SWSB was the SWS opsin with the 

highest expression in single cones.  SWS2B was then the predominant SWS opsin 

expressed in M. auratus throughout the juvenile period.  SWS2A was never expressed 

in developing or adult M. auratus (Hofmann et al. 2009; Hofmann et al. 2010b).  For 

opsins expressed in the double cones, RH2A expression was the highest of all opsins 

throughout development, and even increased slightly into adulthood (Figure 4-2B).  

In contrast, RH2B expression was low prior to ~12 dpf but increased exponentially to 

20% and remained at this level for the rest of development.  Finally, this species also 

expressed the LWS opsin, which remained constant throughout development.  The 

smaller shifts in opsin expression we observe for M. auratus are consistent with the 

patterns of developmental change seen in other haplochromine cichlids from lakes 
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Malawi and Victoria (Carleton et al. 2008). 

Predicted Photoreceptor Sensitivity 

The predicted single cone sensitivities of both A. burtoni and M. auratus 

varied nonlinearly with age in developing fry.  In A. burtoni, singe cone PSmax 

increased from approximately 380 to 425 nm over the course of development (Figure 

4-3A).  We found that a two-parameter exponential regression model fit the 

distribution of observed values well; the estimated coefficients for this model and 

their associated significance values are listed in Table 4-1.  Importantly, the 

parameter β, which here describes the rate of change in single cone PSmax between dpf 

= 0 and dpf = ∞, is significantly different from zero (β = 0.068, t = 5.664, p < 0.001; 

see Table 4-1).  This result indicates that significant change in single cone PSmax 

occurs over A. burtoni development.  However, we note also that variation in the 

single cone PSmax for A. burtoni was generally large, and we excluded one outlier at ~ 

60 dpf from this analysis (this outlier is still shown in Figure 4A).  For M. auratus, 

single cone PSmax increased exponentially from 390 to 418 nm between 10 and 20 dpf 

(larval development), but then remained at 418 nm for the remainder of development 

(juvenile period) and into adulthood.  We fitted a three-parameter exponential curve 

to these data and once again found that the rate of change parameter was significantly 

different from zero (γ = 0.157, t = 5.661, p < 0.001).  We excluded one outlier at ~ 40 

dpf from this analysis.  In Figure 4-3 we include the single cone PSmax of O. niloticus 

(Carleton et al. 2008) for comparison with A. burtoni and M. auratus.  The results 

show that in O. niloticus, single cone PSmax increases steadily between 10 and 70 dpf, 

paralleling closely the increase observed in A. burtoni.  The single cone PSmax of M. 
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auratus, however, levels out quickly relative to these other two species.  Thus, A. 

burtoni exhibits progressive development of single cone sensitivity, while M. auratus 

exhibits progressive development up to 20 dpf, but neotenic development thereafter 

(Figure 4-3A). 

The double cone PSmax of A. burtoni and M. auratus exhibited much less 

variation than the PSmax of single cone photoreceptors (Figure 4-3B).  For A. burtoni, 

the PSmax of double cones ranged from 544 to 550 nm, and decreased slightly over 

time.  However, despite the small magnitude of this change, we still observed a 

significant curvilinear relationship between double cone PSmax and age in A. burtoni 

(Figure 4-3B; Table 4-1).  The double cone PSmax of M. auratus also varied little; 

values ranged from 511 to 523 nm.  In contrast to A. burtoni, however, we found no 

significant relationship between double cone PSmax and age in M. auratus, linear or 

otherwise (β1 = -0.019, t = 0.628, p = 0.538; Table 4-1).  We excluded one 

observation at ~ 40 dpf as an outlier from the analysis of M. auratus double cone 

PSmax.  Comparison of A. burtoni and M. auratus double cone PSmax to those of O. 

niloticus clearly illustrates neoteny in the double cone sensitivity of M. auratus and 

direct development in A. burtoni (Figure 4-3B). 

Finally, we note that all models produced errors that were approximately 

normally distributed with equal variances.  We used the Bonferroni-corrected 

significance threshold for 10 comparisons (α = 0.05/10 = 0.005) when determining 

the significance of the various coefficients in our models (see Table 4-1).  All opsin 

expression results and predicted photoreceptor sensitivities reported for A. burtoni, M. 
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auratus, and O. niloticus are available as supplemental information in Appendix 3 

(Table S4-1 [Appendix 3]). 

 

Discussion 

Developmental Variation in Cichlid Opsin Expression and Photoreceptor Sensitivity 

We found that the Lake Tanganyika (LT) haplochromine cichlid Astatotilapia 

burtoni exhibits significant nonlinear variation in the expression of several cone opsin 

genes during the course of its development (Figure 4-2A).  A. burtoni exhibits 

progressive development of single cone opsin expression (SWS1, SWS2B, and 

SWS2A) in a manner paralleling that seen in O. niloticus (Carleton et al. 2008).  

However, the expression of double cone opsins in developing A. burtoni fry largely 

follow a pattern of direct development, in contrast to the progressive developmental 

pattern seen in O. niloticus.  This difference is due to a lack of RH2B expression at 

any developmental stage in A. burtoni.  Thus, it is possible that RH2B has become a 

pseudogene in this species.  O’Quin et al. (2010) generated species- and opsin-

specific primers and probes for each opsin, including RH2B, so it is unlikely that this 

result is due to error in the quantification of opsin expression.  Also, little change is 

seen in the expression of the other two double cone opsins, RH2A and LWS, 

suggesting that the RH2B opsin truly is not expressed at any age in this species 

(Figure 4-2A).  Together, the observed variation in single and double opsin 

expression is expected to produce single and double cone sensitivities that also vary 

significantly with developmental age (Figure 4-3A), although this variation is much 

greater for single cone sensitivities.  The resulting estimates of maximal 
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photoreceptor sensitivity suggest that the maximal sensitivity of single cone 

photoreceptors in A. burtoni changes in a progressive manner, similar to that observed 

in O. niloticus (Figure 4-3).  In contrast, the wavelengths of light that double cones 

are maximally sensitive to do not appear to change in this species. 

We observed similar patterns of developmental variation for the Lake Malawi 

(LM) haplochromine Melanochromis auratus, but with much smaller changes.  We 

primarily observed significant nonlinear change in the expression of single cone 

opsins for M. auratus (Figure 4-2B).  M. auratus exhibits progressive developmental 

expression of the two shortest-wavelength-sensitive SWS opsins, SWS1 and SWS2B.  

The SWS2A opsin is never expressed in this species as it is in A. burtoni and O. 

niloticus.  Additionally, the observed changes occur quickly, settling on SWS2B 

expression by ~14 dpf, prior to the onset of the juvenile period.  In contrast to single 

cone opsins, we found that double cone opsin expression exhibits little change in this 

species, resulting in predicted double cone sensitivities that remain static across 

development.  These patterns produce predicted single cone sensitivities that change 

progressively early in development, but stop short of the full progressive pattern seen 

in A. burtoni and O. niloticus.  This pattern is similar to, though a little more 

pronounced than, that observed for other neotenic LM species (Carleton et al. 2008).  

Predicted maximal double cone sensitivities do not change in this species and are 

clearly neotenic with respect to the pattern observed in O. niloticus (Figure 4-3B). 

The single and double cone photoreceptor cells of cichlids are arranged in a 

highly ordered mosaic within the retina (Fernald and Liebman 1980).  In A. burtoni, 

four pairs of long and medium wavelength-sensitive double cones surround one short 
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wavelength-sensitive single cone; this pattern is then repeated throughout the retina.  

Fernald (Fernald 1981) reported that the double cones of A. burtoni exhibit an 

alternating symmetry, with one of the double cones maximally sensitive to middle-

wavelength light and the other to long-wavelength light.  This pattern suggests that 

the green and red sensitive opsins (RH2A and LWS) should be expressed equally in 

the retina of A. burtoni, but our results indicate that this is not the case.  We find that 

LWS expression is always greater than RH2A expression across all developmental 

stages in A. burtoni.  This observation suggests that not all pairs of double cones 

demonstrate alternating symmetry in A. burtoni, and that some might express either 

LWS or RH2A exclusively.  An excess of LWS expression would suggest identical 

LWS/LWS cone pairs in addition to the alternating LWS/RH2A pairs.  Indeed, 

LWS/LWS double cone pairs have been observed in cichlids from Lake Victoria 

(Carleton et al. 2005) and O. niloticus (Carleton et al. 2008)B Daleton, TW Cronin, 

KL Carleton, unpublished data).  Additionally, the number of identical and alternating 

double cone cells varies across the retina in several fish species, including cichlids 

(Levine et al. 1979).  This variation is likely related to differences in the spectral 

distribution of up- and down-welling light, as well as the spectral requirements of 

specific visual tasks.  The analysis we report here summed opsin expression across 

the entire retina, and therefore cannot determine what patterns of double cone opsin 

expression are present in A. burtoni.  In the future we plan to use in situ hybridization 

to examine topographical variation in opsin expression across the retina of developing 

and adult cichlids. 

Finally, we note that our use of opsin expression to predict photoreceptor 
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sensitivity reflects our assumption that the changes in opsin expression we observe 

are translated into similar changes at the cone level—that is to say, opsin expression 

fluctuates qualitatively within the photoreceptors of developing cichlids.  Several 

previous studies have examined retinal morphology in developing cichlids (van der 

Meer, Anker 1986; Hagedorn, Fernald 1992; van der Meer 1995; Braekevelt, Smith, 

Smith 1998; Hagedorn et al. 1998) and found no large gain or loss of cone cells 

during development or growth.  Additionally, cichlids do not possess accessory 

corner cones for the expression of SWS opsins, as do many salmonid fishes (Fernald, 

Liebman 1980; Fernald 1981; Allison et al. 2003).  These observations suggest that 

the changes in opsin expression we observe must occur within the photoreceptors 

already present in the retina.  The results of Carleton et al. (2008), who measured both 

opsin expression and photoreceptor sensitivity in developing O. niloticus fry, confirm 

this hypothesis.  These authors found that developmental changes in opsin gene 

expression were accompanied by corresponding changes in photoreceptor sensitivity.  

Thus, we believe the patterns of developmental photoreceptor sensitivity we predict 

for A. burtoni and M. auratus are likely to be reflected in any physiological 

measurements.  Future work may confirm this assumption in a larger panel of African 

cichlid species, including those from Lake Tanganyika. 

The Evolution of Adult Opsin Expression Diversity through Heterochrony 

A. burtoni, M. auratus, and other haplochromine cichlids clearly exhibit 

heterochronic shifts in opsin expression and predicted photoreceptor sensitivity 

relative to O. niloticus.  But when did these shifts occur?  Our analysis of 

developmental variation in opsin expression for the LT haplochromine Astatotilapia 
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burtoni reveals that this species also exhibits a progressive developmental pattern of 

single cone opsin expression.  This result supports the hypothesis that the 

heterochronic shifts observed in LM and LV cichlids occurred after their split from 

other basal haplochromines.  This pattern of evolution is summarized in Figure 4-1C.  

Since both O. niloticus and A. burtoni exhibit progressive development of single cone 

sensitivity and express the long-wavelength opsin set as adults, we infer that other 

phylogenetically intermediate species that are also predicted to express the long 

wavelength opsin set [e.g., those ancestral nodes between O. niloticus and A. burtoni 

in Figure 4-1A) [see also Figure 2-3 following Chapter 2] did so following a similar 

developmental progression.  It is unclear if this is also the case for double cone 

sensitivities, although we believe it is.  Since haplochromine cichlids from LM 

exhibit functional RH2B expression, loss of expression of this gene is probably 

specific to the LV/A. burtoni lineage, and therefore is not indicative of the ancestral 

haplochromine. 

Taken together, our results suggest that the heterochronic shifts in 

developmental opsin expression observed in LM and LV cichlids likely occurred 

within the last 5 MY, after the split of these species from the basal haplochromine 

cichlid lineage (Koblmüller et al. 2008).  Therefore, the presence of similar short- and 

middle-wavelength-sensitive opsin sets among adult LM and LT cichlids could be 

due to parallel heterochronic shifts in developmental opsin expression.  However, 

developmental sampling of LT cichlids with the short-, middle-, and long-wavelength 

opsin sets will be necessary to confirm this hypothesis.  In particular, the LT lineage 

Tropheini is sister to the haplochromine lineage (Salzburger et al. 2002), and the 
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majority of these species express the long wavelength opsin set as adults (O'Quin et 

al. 2010).  Our results suggest that these species should exhibit progressive 

development of single and double cone photoreceptor sensitivities.  If this hypothesis 

is correct, then the inference that most ancestral species also exhibited progressive 

development will be bolstered.  Similarly, sampling of the basal haplochromine 

Astatotilapia calliptera, which is found along the marshy shores of LM, could also 

bolster our conclusion.  Such analyses would provide additional evidence that the 

parallel evolution of adult opsin expression among LM and LT cichlids is the result of 

parallel heterochronic shifts in opsin expression. 

Foraging, Vision, and Heterochrony in African Cichlids 

In addition to changes in opsin expression, many cichlids and other teleosts 

undergo changes in foraging preference over the course of development (Fryer 1959; 

Fryer, Iles 1972; Wanink, Joordens 2007; Zengeye, Marshall 2007).  In many teleost 

fishes, fry typically feed on zooplankton and phytoplankton, juveniles feed on algae 

and macroinvertebrates, and adults finally settle on larger invertebrates and other fish 

or their eggs (Fryer and Iles 1972).  Fryer (Fryer 1959) even speculated that cichlids 

that forage in shoals for zooplankton exhibit paedomorphic or neotenic foraging 

behaviors.  Although we do not have specific information on the larval and juvenile 

diets of A. burtoni, M. auratus, or O. niloticus, we do know that these species differ in 

their predominant diet as adults.  Adult M. auratus primarily feed on algae and 

plankton while adult A. burtoni and O. niloticus are both omnivorous, but frequently 

feed on fish or benthic invertebrates (Brichard 1978; Ribbink et al. 1983). 

In African cichlids, divergent opsin expression profiles and photoreceptor 
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sensitivities represent an adaptation to divergent foraging preferences (Munz, 

McFarland 1977; Jordan et al. 2004; Hofmann et al. 2009; O'Quin et al. 2010) [see 

Chapters 1 and 2].  In both LM and LT cichlids, SWS1 (ultraviolet [UV]) opsin 

expression and UV single cone photoreceptor sensitivity is significantly associated 

with planktivory (Jordan et al. 2004; Hofmann et al. 2009; O'Quin et al. 2010).  UV 

sensitivity presumably helps these and other species detect UV-absorbing 

zooplankton against the bright down-welling light (Novales-Flamarique and 

Hawryshyn 1994).  Here, we show that ultraviolet sensitivity is likely to be highest in 

the earliest, or larval, stages of development in A. burtoni and M. auratus, a pattern 

that is also observed in O. niloticus (Figures 3-2 and 3-3) (Carleton et al. 2008).  In 

contrast, LM and LT cichlids that forage on fish and benthic invertebrates express 

very little SWS1 opsin, and typically exhibit the long wavelength opsin set (SWS2A-

RH2A-LWS) (Munz, McFarland 1977; Carleton et al. 2008; Hofmann et al. 2009; 

O'Quin et al. 2010).  This is the same opsin set found in adult O. niloticus and A. 

burtoni, both which feed on fish and benthic invertebrates (Carleton et al. 2008).  

Thus, not only is there an evolutionary correlation between adult opsin expression 

and foraging preference in cichlids, but there is a developmental correlation between 

these two traits as well.  We postulate that heterochronic shifts in both age-specific 

patterns of opsin expression and trophic preference are responsible for maintaining 

the correlated evolution of these two traits in cichlid adults.  Heterochrony may 

therefore provide a developmental basis for evolutionary change in many trophic 

specializations in cichlids, while maintaining necessary foraging-specific adaptations 

of the visual system.  It is even possible that the correlated evolution of these two 
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traits in adults is due to a single heterochronic mechanism that simultaneously affects 

both traits. 

 

Conclusions 

Heterochrony is evolutionary change in the developmental timing of 

expression for a trait (Valentine 1977; West-Eberhard 2003), which is postulated to 

play an important role in phenotypic evolution.  Here we further investigated 

evidence for heterochrony in the visual system of African cichlid fishes, one of the 

most phenotypically diverse families of fish on earth (Kocher 2004).  We found that 

the haplochromine cichlid Astatotilapia burtoni undergoes considerable 

developmental change in the expression of several opsins associated with single-cone 

or short-wavelength photoreceptor sensitivity.  Additionally, the reduced variation 

found in the Lake Malawi cichlid Melanochromis auratus confirms that LM cichlids 

generally exhibit heterochronic developmental shifts in opsin expression and 

photoreceptor sensitivity (Figure 4-3).  Given the relatively basal position of A. 

burtoni to the African cichlids of Lakes Malawi and Victoria, our results suggest that 

the heterochronic shifts which gave rise to the short- and middle-wavelength-sensitive 

opsin sets in these latter species occurred recently, after the split of these lineages 

from A. burtoni (Figure 4-1).  Therefore, the presence of similar short- and middle-

wavelength-sensitive opsin sets among African cichlids in Lake Tanganyika may be 

due to parallel heterochronic shifts in these species (O'Quin et al. 2010), although 

further work is needed to conclusively demonstrate this.  Our results provide many 

new insights into the visual system of A. burtoni, suggest an important role for 
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heterochrony in the evolution of divergent foraging and visual adaptations in cichlids, 

and raise many new questions and hypotheses for future study. 
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Figures 

Figure 4-1.  Evolution of opsin expression in African cichlids.  (A) Phylogeny 
representing the broad relationship of African cichlids in Lakes Tanganyika (LT), 
Malawi (LM), and Victoria (LV), with special emphasis on Oreochromis niloticus 
and Astatotilapia burtoni.  Colored dots represent the adult opsin expression profiles 
found among cichlids in each lake, or else inferred for ancestral lineages [see also 
Figure 2.3].  These profiles are short- (blue-green), middle- (green), and long- (red) 
wavelength sensitive (WS).  We denote with an asterisk (*) the node that represents 
the universal ancestor of all haplocomine cichlids.  (B) Prior to our current study, 
these are the known patterns of developmental photoreceptor sensitivity for LM 
cichlids and O. niloticus (Carleton et al. 2008).  Ages shown are larval (L), juvenile 
(J), and adult (A).  The purpose of the present study is to determine the 
developmental patterns of photoreceptor sensitive for those groups marked by a 
question mark (?).  (C) After our current study, these are the inferred patterns of 
developmental photoreceptor sensitivity in African cichlids from LT, LM, and LV. 
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Figure 4-2.  Ontogenetic variation in opsin gene expression for two African cichlids, 
(A) Astatotilapia burtoni and (B) Melanochromis auratus.  Fish were sampled 
between approximately 10 and 70 dpf.  Onset of the juvenile stage is denoted with a 
vertical dashed line; onset of the adult stage is denoted with a vertical solid line.  A. 
burtoni adult opsin expression profile from O’Quin et al. (2010), M. auratus from 
Hofmann et al. (2009) [see Chapters 1 and 2].  The wavelength of maximum 
absorbance (λmax) for each opsin is shown beneath its name; each λmax value was 
determined previously based on the opsin sequences of O. niloticus (Spady et al. 
2006).   
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Figure 4-3.  Ontogenetic variation in the predicted maximal sensitivity of single- and 
double-cone photoreceptors for (A) Astatotilapia burtoni and (B) Melanochromis 
auratus.  The sensitivity of single- and double-cone photoreceptors observed for O. 
niloticus during the same developmental period is indicated with a thick dashed line 
(Carleton et al. 2008).  The predicted maximal sensitivity of A. burtoni single-cone 
photoreceptors changes dramatically over the course of development and largely 
parallels the progressive developmental pattern observed in O. niloticus.  The 
predicted maximal sensitivity of M. auratus single cones changes less, suggesting a 
slightly neotenic developmental pattern.  For both A. burtoni and M. auratus, the 
predicted maximal sensitivity of their double-cone photoreceptors changes very little, 
indicating direct and neotenic development, respectively.  Linear and nonlinear 
formulas used to construct regression lines are presented in Table 4.1. 
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Abstract 

Divergence within cis-regulatory sequences may contribute to the adaptive 

evolution of gene expression, but functional alleles in these regions are difficult to 

identify without abundant genomic resources.  Among African cichlid fishes, the 

differential expression of seven opsin genes has produced adaptive differences in 

visual sensitivity.  The loci that control opsin expression in cichlids are unknown, but 

quantitative genetic analysis suggests that cis-regulatory alleles may contribute to this 

variation.  Here, we sequence BACs containing the opsin genes of two African 

cichlids, Oreochromis niloticus and Metriaclima zebra.  We use phylogenetic 

footprinting and shadowing to examine divergence in conserved non-coding 

elements, promoter sequences, and 3’-UTRs surrounding each opsin in search of cis-

regulatory sequences that may influence cichlid opsin expression.  We identified 23 

conserved non-coding elements surrounding the opsins of cichlids and other teleosts, 

including two homologous to a known opsin enhancer and a retinal microRNA.  Most 

conserved elements contained computationally-predicted binding sites that 

correspond to transcription factors that function in vertebrate opsin expression, but O. 

niloticus and M. zebra were significantly divergent in only four of these elements.  

Similarly, we found a large number of relevant transcription factor binding sites 

within each opsins’ proximal promoter, and identified five opsins that were 

considerably divergent in both expression and the number of transcription factor 

binding sites shared between our two focal species.  We also found several conserved 

and non-conserved microRNA target sites within the 3’-UTR of each opsin in 

cichlids, including two that differ significantly between O. niloticus and M. zebra.  
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Finally, we examined interspecific divergence in the proximal promoters of five 

opsins in 18 phenotypically diverse cichlids from Lake Malawi.  We found that the 

promoters examined were highly conserved with some evidence of CRX transcription 

factor binding site turnover, and we found three SNPs with weak association to 

cichlid opsin expression.  This study is the first to systematically search the opsins of 

cichlids for putative cis-regulatory sequences.  We found that many putative 

regulatory regions are highly conserved across a large number of phenotypically 

diverse species, but we did identify 9 divergent sequences that stand out as candidates 

for future functional analysis in cichlids. 

 

Introduction 

Adaptive phenotypic evolution may result either from protein-coding 

mutations that modify the structure and function of genes, or from regulatory 

mutations that alter the timing, location, or amount that genes are expressed (Carroll 

2005; Hoekstra and Coyne 2007; Wray 2007).  Although examples of protein-coding 

mutations that contribute to phenotypic evolution are well known (Jessen et al. 1991; 

Yokoyama et al. 1999; Hoekstra et al. 2006), examples of regulatory mutations that 

also affect phenotypic adaption are less well-known, but no less important (Tishkoff 

et al. 2007; Jeong et al. 2008; Chan et al. 2010).  One class of these mutations, cis-

regulatory mutations, are found in close proximity to the genes they regulate and 

function by altering the binding of transcription factors necessary for gene expression.  

Cis-regulatory mutations exhibit several features that make them ideally suited for 

adaptive phenotypic evolution, including codominance (Lemos et al. 2008) and 
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modularity (Jeong et al. 2008).  These features make cis-regulatory mutations 

efficient targets for natural selection (Hartl and Clark 2006) and limit the negative 

consequences of pleiotropy that presumably affect trans-regulatory and protein- 

coding mutations.  Finally, since cis-regulatory mutations may underlie many of the 

adaptive and disease phenotypes found in nature, identifying these alleles remains an 

important goal of evolutionary genetics.  However, indentifying cis-regulatory 

mutations can be challenging without abundant functional genomic resources, since 

the transcription factor binding sites (TFBS) they affect are small, lack strict 

conservation, and are found in under-annotated regions of the genome (Hoekstra and 

Coyne 2007; Wray 2007). 

The location of cis-regulatory sequences can be near-to or far-from the genes 

they regulate.  Promoter sequences found directly upstream of genes can harbor cis- 

regulatory alleles (Yuh et al. 1998; Berman et al. 2002), as can enhancer or repressor 

elements located many kilobases away (Tuan et al. 1989; Ebert et al. 1995).  Cis-

regulatory sequences can even reside within the untranslated regions (UTRs) of 

genes, where they alter the binding of microRNAs that regulate gene expression 

following transcription (Kloc et al. 2000; Chen and Rajewsky 2006).  But where ever 

their location, one method commonly used to identify cis-regulatory sequences is 

phylogenetic footprinting (Gumucio et al. 1996).  Phylogenetic footprinting compares 

DNA surrounding some gene(s) of interest among numerous divergent taxa in hopes 

of identifying non-coding regions that are highly conserved.  By the very nature of 

their conservation, these conserved non- coding elements (CNEs) stand out as 

candidate regulatory sequences, since conservation is often used to indicate function.  
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Once candidate regulatory sequences have been identified, the method used to 

identify putative cis-regulatory alleles within them is differential phylogenetic 

footprinting, or phylogenetic shadowing (Gumucio et al. 1996; Boffelli et al. 2003).  

Phylogenetic shadowing compares putative regulatory sequences among closely 

related taxa in hopes of identifying sequence polymorphisms correlated with 

divergent expression of the target gene(s).  Following their application, functional 

genomic analyses are necessary to validate the function of any candidate sequences or 

alleles identified by the phylogenetic footprinting and shadowing methods; but even 

by themselves, both methods can provide valuable insights into the location of 

potential cis-regulatory sequences and the transcription factors that bind them. 

The goal of this study is to identify candidate cis-regulatory sequences that 

control opsin gene expression in African cichlid fishes.  Opsins are a group of G 

protein-coupled receptors that confer sensitivity to light and mediate color vision 

(Wald 1968).  African cichlids comprise a diverse clade of freshwater, teleost fish 

found throughout the lakes and rivers of Africa, including the three African Great 

Lakes, Lakes Tanganyika, Malawi, and Victoria (Kocher 2004; Seehausen 2006).  

Cichlids from Lakes Tanganyika and Malawi exhibit dramatic variation in their 

sensitivity to colored light (Carleton et al. 2006; Jordan et al. 2006; Carleton 2009).  

Species from these lakes exhibit retinal sensitivities that are maximally sensitive to 

short, middle, or long-wavelength spectra; in some cases, closely related species can 

differ in their maximal retinal sensitivity by over 100 nm (Jordan et al. 2006; 

Hofmann et al. 2009; O'Quin et al. 2010).  This striking variation makes the cichlid 

visual system the most diverse vertebrate visual system on earth.  Most variation in 
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cichlid color sensitivity is due to changes in the regulation of their cone opsin genes 

(Hofmann et al. 2009; O'Quin et al. 2010).  Cichlids have seven cone opsin genes 

used for color vision; these opsins are SWS1 (ultraviolet-sensitive), SWS2B (violet-

sensitive), SWS2A (blue-sensitive), RH2B (blue-green-sensitive), RH2Aα and RH2Aβ 

(green-sensitive), and LWS (red-sensitive) (Spady et al. 2006).  Among different 

cichlid species, these opsins are alternatively co-expressed in three predominant 

groups, or palettes, to produce the three common visual pigment sets; these palettes 

are SWS1-RH2B-RH2A (short wavelength-sensitive), SWS2B-RH2B- RH2A (middle 

wavelength-sensitive), and SWS2A-RH2A-LWS (long wavelength- sensitive) 

(Hofmann et al. 2009).  Cichlids exhibit several correlations between the expression 

of their opsins and important ecological variables, including foraging preference and 

ambient light intensity (Hofmann et al. 2009; O'Quin et al. 2010).  These correlations 

suggest that opsin gene expression varies adaptively in cichlids, especially since some 

expression-ecology correlations have evolved independently among cichlids in 

different lakes (O'Quin et al. 2010).  A recent quantitative genetic analysis of opsin 

expression in two Lake Malawi cichlids found a quantitative trait locus (QTL) located 

near the opsin genes (Carleton et al. 2010).  The proximity of this QTL to the opsins 

suggests that mutations within one or more cis-regulatory sequences may contribute 

to variation in cichlid opsin expression.  But like many non-model systems, few 

genomic resources are currently available for cichlids, making it difficult to identify 

potential cis-regulatory alleles and test their association with opsin gene expression. 

Here, we sequence and analyze bacterial artificial chromosome (BAC) clones 

containing the opsin genes of two African cichlid species, Oreochromis niloticus 
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(Katagiri et al. 2001) and Metriaclima zebra (Di Palma et al. 2007).  These clones 

provide the genomic resources necessary to identify putative cis-regulatory sequences 

surrounding the opsins genes.  Oreochromis niloticus (the Nile tilapia) is a riverine 

cichlid that expresses the long wavelength-sensitive opsin palette as adults but also 

expresses the other palettes as fry and juveniles (Carleton et al. 2008).  O. niloticus is 

an outgroup to the diverse haplochromine cichlids endemic to Lakes Tanganyika, 

Malawi, and Victoria.  Metriaclima zebra (the ‘classic’ Zebra cichlid) is one such 

haplochromine cichlid found in Lake Malawi.  M. zebra expresses the short 

wavelength-sensitive opsin palette as an adult and during all developmental stages 

(Carleton et al. 2008).  Both species last shared a common ancestor ~ 18 MYA, 

whereas M. zebra diverged from other phenotypically diverse Lake Malawi cichlids 

less than 2 MYA (Genner et al. 2007).  After sequencing the opsin-containing BAC 

clones from these species, we then performed phylogenetic footprinting to identify 

putative cis-regulatory sequences within ~ 30 kb windows of non-coding sequences 

surrounding the opsins.  We searched the resulting conserved non-coding elements 

(CNEs) for binding sites of 12 transcription factors important for vertebrate opsin 

expression (Browman and Hawryshyn 1994a; Browman and Hawryshyn 1994b; Ng 

et al. 2001; Dann et al. 2004; Peng et al. 2005; Roberts et al. 2005; Applebury et al. 

2007; Takechi et al. 2008) (Table 5-1).  Among others, these transcription factors 

include cone-rod homeobox protein (CRX) (Takechi et al. 2008), thyroid hormone 

receptor (THR) (Ng et al. 2001), and retinoic acid receptor (Browman and 

Hawryshyn 1994a).  We repeat the search of TFBS in the nearby proximal promoter 

of each opsin as well.  Finally, we also perform an analogous search for microRNA 
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target sites within the 3’-UTR of each opsin, since miRNAs can also influence gene 

expression (Arora et al. 2007; Xu et al. 2007; Conte et al. 2010) and many UTR 

sequences exhibit significant divergence among cichlids (Loh et al. 2010).  After 

performing these phylogenetic footprinting steps, we next perform phylogenetic 

shadowing by comparing the proportion of shared and divergent TFBS and 

microRNA target sites between O. niloticus and M. zebra.  In each region we 

compare the number of divergent TFBS/ miRNA target sites with the number 

expected given the over-all sequence divergence of intronic sequences (a measure of 

neutral evolutionary divergence (Keightley and Gaffney 2003; Halligan et al. 2004).  

These comparisons are used to identify putative cis-regulatory sequences that have 

undergone significant evolutionary divergence between our two focal species.  

Finally, we repeat our phylogenetic shadowing analysis of proximal promoters and 

3’- UTRs using a panel of 18 phenotypically diverse cichlids from Lake Malawi.  

This final analysis allows us to determine whether the trends we identify for O. 

niloticus and M. zebra are generally applicable to the more closely related cichlids of 

Lake Malawi. 

We find that many non-coding regions are highly conserved between O. 

niloticus and M. zebra, as well as among the closely related cichlids of Lake Malawi.  

However, we find at least two CNEs, five proximal promoters, and two 3’-UTRs that 

exhibit significant divergence in the number and type of TFBS and microRNA targets 

identified in O. niloticus and M. zebra.  We also identify at least three alleles that are 

weakly associated with SWS2A, RH2B, and LWS expression – three opsins that are 

strongly differentially expression among cichlid species.  These results suggests that 
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cis-regulatory sequences may contribute to opsin expression differences among 

African cichlids, and provide numerous candidates for future functional studies. 

 

Materials and Methods 

Sequencing and Assembly of Opsin-Containing BAC clones 

We isolated clones containing the opsin genes from BAC libraries of two 

African cichlids, Oreochromis niloticus (Katagiri et al. 2001) and Metriaclima zebra 

(Di Palma et al. 2007).  For O. niloticus, we used PCR to screen pooled clones from 

the T3 and T4 libraries (Katagiri et al. 2001).  Primers used for these screens were: 

SWS1 (F: TACCTGCAGGCTGCCTTTAT; R: CTCGCATGGAGGCTAAGAAC), 

RH2A (F: GCAGACCCGATCTTCTTCAA; R: AGCAGACGTGATTGTGATGG), 

LWS (F: TCCTGTGCTACCTTGCTGTG; R: ACAACGACCATCCTGGAGAC).  

We first chose 10 super-pools, each covering 10% of the entire 35,000 pooled clones, 

and screened them for opsin-positive plates.  We then screened row and column pools 

from the plates with positive results to identify the exact clones containing the opsins.  

Fingerprinted contigs (FPCs) corresponding to the positive clones were identified and 

all clones in the contig were PCR tested for the opsins (Figure S5-1 [Appendix 4]).  

Contig geometries were confirmed by end sequencing the BACs, designing primers, 

and PCR testing.  Based on the resulting alignments, one clone for each opsin array 

was selected for sequencing. 

DNA from the selected clones was prepared using the Qiagen® MaxiPrep 

Plasmid Purification kit following the manufacturer’s protocols.  The O. niloticus 

clones were sent to the Joint Genome Institute (JGI) for sequencing.  Shotgun 
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libraries were prepared and 4 x 384-well plates were sequenced using ABI technology 

in both forward and reverse directions.  The resulting reads were base-called and 

assembled with phred (Ewing et al. 1998) and phrap (Green 1994).  Additional reads 

for the SWS1-containing clone were generated using 454 Life Sciences technology 

(Margulies et al. 2005).  We performed two different sequencing runs for this clone, 

assembled them into contigs, and combined them with the JGI ABI reads in 

Sequencher v4.9 (Gene Codes Corporation, Inc.).  This resulted in several large but 

non-overlapping contigs.  To finish joining these contigs we used BLAST (Altschul 

et al. 1990) and Pipmaker (Schwartz et al. 2000) to identify and align the largest 

contigs to orthologous genomic regions from the genomes of other teleost fish (for an 

example see Figure S5-2 [Appendix 4]).  Based on these alignments we designed 

PCR primers to sequence across the gaps to join the contigs. 

For M. zebra we screened high-density BAC array filters using filter 

hybridization (Di Palma et al. 2007).  This utilized PCR probes generated from M. 

zebra retinal cDNAs that were labeled using the ECL Nucleic Acid Labelling and 

Detection Kit (Amersham Biosciences).  We obtained three clones from these arrays 

and confirmed that they contained the opsins via PCR as detailed above.  DNA for 

these clones was prepared using the Qiagen® MaxiPrep kit following the 

manufactures protocols.  BAC clones were sized by pulsed field gel electrophoresis 

following digestion with NotI.  We then sent the purified, sized samples to 454 Life 

Sciences (Branford, CT) for sequencing.  We performed two sequencing runs on the 

SWS1 and LWS-containing clones, but only one for the clone containing RH2A.  Due 

to the size of the 454 reads the resulting sequences formed more, but smaller contigs 
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relative to O. niloticus.  To finish joining these contigs we aligned the largest (> 5 kb) 

contigs to the finished O. niloticus BAC sequences in Sequencher v4.9 and once 

again designed PCR primers to sequence across the gaps.  We annotated the BAC 

sequences for both O. niloticus and M. zebra using BLAST (Altschul et al. 1990). 

Finally, we performed a global alignment of each BAC from O. niloticus and 

M. zebra in the program wgVISTA (Couronne et al. 2003) (see Figure S5-3 for a Pip 

plot of each opsin-containing BAC from these two species).  We measured sequence 

similarity and divergence across each BAC using the phylip program dnadist, 

implemented in the Mobyle online bioinformatics server (Néron et al. 2009).  When 

measuring pairwise sequence divergence (Dxy), we used the Jukes-Cantor nucleotide 

model to correct for multiple hits.  We repeated these measurements for each of the 

CNEs, promoter regions, and 3’-UTRs.  We compared Dxy among each of these 

regions and the entire BAC sequences using t-tests implemented in the statistical 

software package R v2.10.0 (R Development Core Team 2009).  Prior to performing 

all tests, we transformed the Dxy scores by log10 in order to meet the assumption of 

normality of errors. 

Phylogenetic Analyses 

We generated phylogenies of the teleost RH2 and SWS2 opsins in order to 

identify orthologous opsins among the focal fish genomes examined.  We accessed all 

relevant opsin sequences from the genome assemblies of four fish genomes (see 

Methods for conserved non-coding elements below) via BLAT.  We aligned both 

opsin data sets using the E-INS-i strategy of the multiple alignment program MAFFT 

v6.0 (Katoh and Toh 2008) and then chose an appropriate model of nucleotide 
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substitution via the program jModelTest v0.1.1 (Posada 2008).  This model was 

TIM3ef+G for both the RH2 and SWS2 alignments.  We then used this model and the 

corresponding parameters estimated by jModelTest to generate Neighbor-Joining 

trees for the opsins with Maximum Likelihood-corrected distances.  For the 

RH2/SWS2 datasets, these parameters included the nucleotide substitution rate matrix 

(A-C: 0.601/0.617; A-G: 1.470/1.734; A-T: 1.00/1.00; C-G: 0.601/0.617; C-T: 

2.729/2.877; G-T: 0.599/0.155) and the shape of the gamma distribution 

(0.507/0.577).  We measured the nodal support of these trees with 1000 bootstrap 

replicates.  We rooted both trees using the LWS-1 opsin of zebrafish. 

Identification and Analysis of Conserved Non-coding Elements (CNEs) 

We used phylogenetic footprinting (Gumucio et al. 1996) to identify putative 

cis-regulatory elements by searching for conserved non-coding elements (CNEs) 

surrounding the opsin gene arrays.  To do this, we identified 100 – 300 kb regions of 

orthology between the O. niloticus BAC sequences and the genome assemblies of 

four teleosts fishes using BLAT and the UCSC genome browser.  These additional 

genomes were stickleback (Gasterosteus aculeatus, Broad Institute v1.0, February 

2006), medaka (Oryzias latipes, National Institute of Genetics and the University of 

Tokyo v1.0, October 2005), pufferfish (Tetraodon nigroviridis, Geoscope and Broad 

Institute v7, February 2004), and zebrafish (Danio rerio, Trust Sanger Institute zv8, 

December 2008).  We then determined the gene locations of known opsin genes and 

examined synteny across these regions via DOT plots generated in the program 

PipMaker (Schwartz et al. 2000) (for an example, see Figure S5-2 [Appendix 4]).  

Regions of high synteny surrounding the opsins were then identified using 
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MultiPipMaker (Schwartz et al. 2003) (Figure 5-1).  We defined a CNE as any region 

≥ 50 bp long that was conserved between O. niloticus and at least one other teleost 

species (O. latipes, G. aculeatus, and T. nigroviridis).  In each case, we attempted to 

analyze as many CNE as possible, but acknowledge that some small regions may 

have been missed. 

Profiling Transcription Factor Binding Sites (TFBS) 

We identified binding sites within each CNE as well as the proximal 

promoters located approximately 1 kb upstream of the opsin’s translation start sites 

(TSS) using the Transcription Element Search System, TESS v6.0 (Schug 2008).  We 

limited our search to high quality matches by accepting only those hits that met three 

criteria: (i) a log-likelihood (La) score ≥ 9.0, (ii) a ratio of the actual log-likelihood 

score to the maximum possible log-likelihood (Lq) score ≥ 80%, and (iii) a probability 

value for the log-likelihood score (Lpv) < 0.05.  Although TESS can potentially 

identify binding sites for many different transcription factors, we were primarily 

interested in those factors that have been shown to influence opsin expression in fish 

and other vertebrates (Table 5-1).  Following the automated search in TESS, we 

manually searched the lists for duplicate sites at each position, and removed them 

prior to further analysis. 

Additionally, we also analyzed the number of shared and unique transcription 

factor binding sites found in each CNE and opsin proximal promoter from O. 

niloticus and M. zebra.  We counted the total number of orthologous binding sites in 

both species, as well as those that were found in only one species or the other.  These 

observed numbers of shared and divergent sites were compared to the expected 
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numbers suggested by the global sequence similarity of the O. niloticus and M. zebra 

BACs (92% versus 8%, see Results and Disscussion).  We tested the independence 

between these observed and expected proportions using Binomial exact tests (Sokal 

and Rohlf 1995) implemented in the R statistical software package.  To control the 

Type I error rate for each region examined, we calculated Bonferroni-corrected p-

values for all test in R. 

Finally, we also compared the average number of binding sites for each 

transcription factor between the proximal promoters of the O. niloticus opsins and 

seven randomly chosen, non-opsin genes from a draft assembly of the O. niloticus 

genome (available at www.BouillaBase.org; accessed October 2010).  These genes 

were ACTG1, AMPD3, DHCR7, ENSGAC000000020282, IGFALS, KCNJ9, and 

REEP1.  Proximal promoters from these randomly chosen sequences were identified 

based on comparison of the O. niloticus genes with orthologus regions from the 

stickleback genome.  Comparison of the average number of binding sites across all 

opsins and transcription factors was performed using a Wilcoxon paired signed-rank 

test computed in R. 

Comparison of Opsin Expression and TFBS profiles in Oreochromis niloticus 

We evaluated the correlation between the transcription factor binding sites in 

the proximal promoter of each opsin and the expression of each opsin among 

developing O. niloticus fry using Mantel’s test of two distance matrices.  We 

generated Euclidean distance matrices of the total number of binding sites for 12 

transcription factors within the proximal promoter region of each opsin as well as the 

percent of total opsin expression from developing O. niloticus fry, reported in 
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Carleton et al. (Carleton et al. 2008).  We calculated Mantel’s test using the 

‘mantel.randtest’ function from the R package ade4 (Chessel et al. 2004).  

Approximate p-values were calculated following 500 randomizations of each matrix.  

We also expanded this analysis to the entire proximal promoter region after 

calculating a sequence similarity matrix for the entire proximal promoter using the 

phylip program dnadist. 

Profiling of microRNA target sites 

We searched the 3’-UTRs of each opsin for binding sites matching the target 

seed of known microRNAs (miRNA) via the SeedMatch algorithm previously 

developed to identify microRNA targets in cichlid UTRs (Loh et al. 2010).  This 

algorithm is similar to the TargetScanS algorithm used in other studies (Lewis et al. 

2005).  Briefly, non-redundant fish miRNA targets were obtained from miRBase 

(www.mirbase.org (Griffiths-Jones et al. 2007); accessed June 2010) and 

supplemented with several miRNA target sequences identified in cichlids (Loh et al. 

2010).  We searched each opsin 3’-UTR—defined as the ~ 500 bp region between the 

transcription end site and the polyadenylation site (AATAAA)—for sequences 

matching the seeds of miRNAs from this non-redundant library.  In order to account 

for the high rate of false-positive generated by simply searching for matching seed 

sites, we aligned the 3’-UTR of the cichlid opsins with those from G. aculeatus, O. 

latipes, T. nigrovirdis, the Japanese pufferfish (Tetrapdon rubripes), and D. rerio in 

order to identify sites that were conserved across multiple fish species.  For this 

purpose we defined the first 1 kb of sequence downstream of these latter species’ 

opsins as the 3’-UTR and aligned these to the cichlid sequences with MLagan 
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(Brudno et al. 2003).  To account for errors in the alignment of orthologous 3’-UTRs, 

we counted as conserved the same miRNA target seed found within 50 bp of each 

other across species.  For cichlid opsins that lacked orthologs in the other species, we 

used the nearest paralog (see Figure S5-4 [Appendix 4]). 

Phylogenetic Shadowing of Opsin Promoter and 3’-UTR Sequences in Lake Malawi 

Cichlids 

If the conserved non-coding sequences we identify do in fact represent 

functional cis-regulatory regions, then mutations in these sequences should be 

associated with altered opsin expression.  We tested this hypothesis for the proximal 

promoters of five opsins, CNE 10, and two opsin 3’-UTRs.  Using 18 phenotypically 

divergent Lake Malawi cichlid species, we sequenced approximately 1 kb of DNA 

upstream of the translation start site for 5 opsins, 0.9 kb around CNE 10, and 

approximately 0.5 kb downsream of SWS2B and LWS.  We generated primers for 

these regions based on the O. niloticus and M. zebra BAC assemblies.  The taxa 

sampled are listed in Table S5-1 [Appendix 4] along with their GenBank accession 

numbers; the primers used to generate these sequences are listed in Table S5-2 

[Appendix 4].  We measured opsin expression for each individual following the 

protocols reported previously in Spady et al. (Spady et al. 2006) and Hofmann et al. 

(Hofmann et al. 2009). 

Following sequencing, we estimated polymorphism statistics for the resulting 

sequences, and also performed a sliding-window analysis of nucleotide diversity (π), 

in the program DnaSP v5 (Librado and Rozas 2009).  For the sliding-window 

analysis, we ignored all gaps and specified a window length of 50 and a step size of 
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10.  Finally, we calculated the statistical association between polymorphisms found in 

CRX binding sites and peaks of nucleotide diversity among the sampled taxa using 

linear regression in the program gPLINK v1.07 (Purcell et al. 2007).  For each test, 

we estimated the association of each locus with the expression of its downstream 

opsin, using membership in one of two major phylogenetic clades (mbuna and utaka; 

see Table S5-3 [Appendix 4]) as a covariable. 

 

Results and Discussion 

BAC Sequencing and Analysis 

BAC Identification, Sequencing, and Assembly 

Within the cichlid genome, the opsins are found in three separate tandem 

arrays.  SWS1 is found alone on cichlid linkage group (LG) 17; SWS2A, SWS2B, and 

LWS are found together in a tandem array on LG 5 (Lee et al. 2005); and RH2B, 

RH2Aα, and RH2Aβ are found in a second tandem array on LG 5 approximately 30 

cM from the SWS2-LWS array (KL Carleton, unpublished data).  We identified opsin- 

containing clones for O. niloticus by PCR screening its BAC library using primers for 

one opsin in each array.  These clones were then shotgun sequenced using ABI 

Sanger sequencing technology (Table 5-2) and assembled in Sequencher v4.9 (Gene 

Codes Corporation, Inc.).  The average read length for these sequences was ~700 bp.  

The final assembly of the LWS-containing clone generated a single contig of 171.8 

kb, and assembly of the RH2-containing clone produced a final contig of 185.2 kb.  

Assembly of the SWS1-containing clone based on ABI-generated reads was poor, and 

we were able to assemble only 50% of the available reads.  Additional 454 reads of 
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this clone were able to join all reads into a contig of 172.5 kb.  The final assemblies 

of each clone joined > 84% of reads into a single contig that was within 10 – 40 kb of 

the estimated clone size (Table 5-2).  All assemblies successfully covered the opsin-

containing regions in O. niloticus. 

For M. zebra we used filter hybridization to screen its BAC library and 

identify three clones containing the opsin arrays (Di Palma et al. 2007).  These clones 

were then sequenced using 454 technology (Margulies et al. 2005).  The average read 

length produced by this method was ~ 110 bp.  Assembly of the LWS-containing 

clone produced a contig approximately 107.7 kb in length and covered the entire 

length of the LWS, SWS2A, and SWS2B opsin-containing region.  Assembly of the 

RH2-containing clone produced two contigs of 29.39 and 48.02 kb.  The alignment of 

these two contigs with O. niloticus suggests that their ends are approximately 500 bp 

apart, but several attempts to join these contigs using PCR failed.  The gap between 

by these contigs is located between the RH2Aα and RH2Aβ opsins.  These two genes 

are oriented away from each other and therefore share a common upstream promoter 

region (Figure 5-1).  This gap may be the result of an inversion in M. zebra relative to 

O. niloticus, although the rest of the M. zebra sequences exhibited strong synteny 

with the O. niloticus sequences (Figure S5-3 [Appendix 4]).  In all, we successfully 

covered 7.03 and 2.7 kb upstream of each RH2A gene, but we cannot be certain the 

entire promoter region of these two opsins was sequenced or assembled.  Assembly of 

the SWS1-containing clone produced a contig of 77.65 kb.  Except for the RH2Aα and 

RH2Aβ opsins, each assembly produced contigs very near in size to the estimated 

clone size (Table 5-2) and successfully covered the three opsin-containing regions in 
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M. zebra. 

We aligned each BAC assembly from O. niloticus and M. zebra and found 

them to be highly similar.  The average pairwise Jukes-Cantor-corrected sequence 

divergence (Dxy) across each BAC assembly was 8.4% (± 3.1% s.e.).  This rate of 

sequence divergence is consistent with comparisons of other genes between these 

species, and it is one of the first large-scale estimates of sequence divergence between 

O. niloticus and M. zebra.  We then further subdivided each BAC assembly into opsin 

protein-coding (CDS) and intronic (INT) sequences.  For our two focal species, the 

mean Dxy across all opsin CDS was 3.8% (± 0.3%), while the divergence across all 

INT was 9.5% (± 1.9%).  (We excluded both the first intron as well as the first and 

last six bases of each intron since these regions may contain regulatory sequences and 

splice sites that are more highly conserved than other intronic regions (Keightley and 

Gaffney 2003)).  Comparison of the average Dxy across all regions shows that the 

mean divergence of the functionally important opsin CDS is significantly lower than 

Dxy across either the BACs or INT sequences (t-tests: CDS vs.  BAC, t8, 0.05 = 2.60, p = 

0.032; CDS vs.  INT, t27, 0.05 = 2.17, p = 0.039), but that Dxy between BAC and INT 

sequences do not differ (t23, 0.05 = 0.08, p = 0.935).  These results suggest that pairwise 

sequence divergence across all BAC sequences should provide a good estimate of 

neutral evolutionary divergence.  These estimates also provide an important null 

hypothesis for our subsequent analyses using phylogenetic shadowing: in general, we 

expect O. niloticus and M. zebra to share (e.g, exhibit orthology in) ~ 92% of their 

TFBS and miRNA targets, and be divergent in ~ 8%.  Divergence in greater than 8% 
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of the TFBS and miRNA target sites identified may indicate significant cis-regulatory 

evolution in the regions examined. 

BAC Annotation and the Opsin Repertoire of Teleost Fishes 

In order to perform phylogenetic footprinting across the opsin arrays of 

cichlids, we first investigated the synteny of each opsin array relative to several 

teleost fish species using PipMaker (Schwartz et al. 2000) and MultiPipMaker 

(Schwartz et al. 2000).  We found considerable synteny in the opsin-containing 

regions among O. niloticus (tilapia), Gasterosteus aculeatus (stickleback), Oryzias 

latipes (medaka), Tetraodon nigroviridis (tetraodon), and Danio rerio (zebrafish) 

(Figure 5-1; Figure S5-2 [Appendix 4]).  The clearest example of this synteny was the 

SWS2-LWS opsin array.  This array is flanked by the genes HCFC1 and GNL3L and is 

essentially co-linear in all five fish genomes (Figure 5-1; Figure S5-2 [Appendix 4]).  

We found evidence for a localized duplication of the SWS2 opsins in O.  latipes and 

O. niloticus, since both these species have two adjacent SWS2 opsin genes.  Closely 

related Poeciliid fishes also possess adjacent SWS2 paralogs (Watson et al. 2010), 

suggesting that this duplication event probably occurred at least 153 - 113 MYA at 

the base of the Acanthopterygii (Carleton and Kocher 2001; Steinke et al. 2006). 

In contrast to the SWS2-LWS array, we observed considerable variation in 

opsin gene content for the RH2 opsins.  O. niloticus and M. zebra possess three RH2 

genes while D. rerio has four (Chinen et al. 2003; Hofmann and Carleton 2009), G. 

aculeatus has two, and T. nigrovirdis has one functional RH2 opsin and one RH2 

pseudogene (Neafsey and Hartl 2005).  We therefore used phylogenetic analyses to 

investigate the orthology of the RH2 and SWS2 genes among these fishes and found 
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that most RH2 duplications are species-specific (Yokoyama and Tada 2010) (Figure 

S5-4 [Appendix 4]).  Thus, synteny in the region containing the RH2 opsin array was 

lower than in the SWS2-LWS array, but was still largely co-linear between O. 

niloticus, G. aculeatus, and T. nigroviridis (Figure S5-2 [Appendix 4]).  The genes 

SLCA613-like and SYNPR flank the RH2 opsins in these fishes (Figure S5-5). 

Synteny in the region surrounding the SWS1 opsin was also difficult to assess 

due to species-specific deletions and poor sequence assembly.  The T. nigrovirdis 

genome assembly lacks the SWS1 opsin altogether, and this region is poorly-

assembled in the G. aculeatus and O. latipes genomes.  SWS1 is found within an 

unordered chromosome or ultracontig in both species, but appears to be flanked by 

the genes TNPO3 and SOCS2 (Figure S5-5).  For G. aculeatus, we found a small 92 

kb region containing the SWS1 opsin that was collinear with the O. niloticus BAC 

sequence, but which contained one large inversion.  For O. latipes, we found an even 

smaller 60 kb region that was syntenic for only 11 kb surrounding the SWS1 opsin.  

Synteny with D. rerio was also generally low (Figure S5-2 [Appendix 4]).  Therefore, 

despite the lack of duplicates of the SWS1 opsin, this region is generally poorly 

assembled in the existing annotations of several teleost genomes, complicating direct 

comparisons of synteny in this region. 

A diagram of the opsin arrays for all five species examined is shown in Figure 

S5-5 [Appendix 4].  Despite several instances of gene duplication and local sequence 

divergence, these differences at most represent small perturbations within larger 

regions of high conservation and synteny. 
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Analysis of Conserved Non-coding Elements (CNEs) 

Phylogenetic Footprinting of CNEs 

We used MultiPipMaker (Schwartz et al. 2003) to highlight non-coding 

elements surrounding each opsin gene array from O. niloticus to D. rerio, 

representing nearly 300 MY of fish evolution (Steinke et al. 2006).  The resulting 

plots illustrate at least 23 conserved non-coding elements (CNEs) surrounding the 

opsins arrays of O. niloticus and the other species examined (red bars in Figure 5-1).  

We also found six regions of putatively high conservation that are largely composed 

of repetitive sequence, including one potential LTR transposon (green bars in Figure 

5-1), which we did not analyze further.  The conservation of these CNEs over several 

million years of fish evolution suggests that they contain functionally important 

regulatory modules necessary for gene expression. 

At least one CNE we identified through phylogenetic footprinting is 

orthologous to other vertebrate cis-regulatory sequences.  CNE 10 (highlighted in 

Figure 5-1 and located between the SWS2B and LWS opsins) consists of two non- 

contiguous regions of high conservation in pufferfish, stickleback, medaka, 

swordtails, and cichlids (Watson et al. 2010) (Figure 5-1).  Each region is ~ 100 bp 

long, and they are separated by ~ 440 bp in O. niloticus.  The first region, CNE 10a, 

was also identified following a comparative analysis of opsin-containing BACs from 

swordtails (Xiphophorus helleri) (Watson et al. 2010).  Through BLAST and mirbase 

(Griffiths-Jones et al. 2007), we found that CNE 10a is most similar to zebrafish 

microRNA dre-miR-726 (score 173.3, e-value = 0.006), and the same genomic region 

from zebrafish is identical to this microRNA (Figure 5-2).  Dre-miR-726 is expressed 
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in the retina of larval and adult zebrafish (Kloosterman et al. 2006).  Since many 

microRNAs are transcribed along with the genes they regulate, the proximity of this 

microRNA to the SWS2 and LWS opsins suggests that mir-726 could play a role in 

opsin regulation.  The ~ 90 bp CNE encoding mir-726 is conserved in numerous other 

taxa as well, including additional fishes, frogs, and lizards (GenomeWiki 2009; 

Watson et al. 2010). 

The second highly conserved region, CNS 10b, is positionally and structurally 

orthologous to the mammalian LWS locus control region (LWS-LCR; Figure 5-2) 

(Wakefield et al. 2008; GenomeWiki 2009; Watson et al. 2010).  This enhancer is 

located ~ 3.8 kb upstream of the LWS opsin in O. niloticus and other vertebrates, 

including humans.  The LWS-LCR is hypothesized to enhance LWS expression in 

eutherian mammals by looping and binding to the LWS proximal promoter (Wang et 

al. 1992; Smallwood et al. 2002; Wakefield et al. 2008).  Wang et al. (Wang et al. 

1992) demonstrated that the human ortholog of this sequence can function as an 

enhancer of both LWS and MWS (SWS2) opsin expression in mice, and Wakefield et 

al. (Wakefield et al. 2008) hypothesized that it could function as a bidirectional 

enhancer of both LWS and SWS2 expression in numerous other species as well.  

Earlier surveys of cis-regulatory sequence surrounding the opsins of zebrafish 

(Takechi et al. 2008) did not find an LCR homolog between the SWS2 and LWS 

genes; however, a recent analysis of the LWS opsin array in green swordtails (Watson 

et al. 2010) suggest that a homologous LWS-LCR sequence is present in D. rerio and 

other teleosts, including cichlids.  Although we cannot conclude that the LWS-LCR 

homolog we identify actually regulates opsin expression in fishes, the identification 
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of this functionally important region from mammals is encouraging.  Our results 

demonstrate the effectiveness of the phylogenetic footprinting method we use for 

identifying functional cis-regulatory sequences necessary for vertebrate opsin 

expression.  It is possible that the remainder of these CNEs also encode cis-regulatory 

sequences necessary for the correct spatial and developmental expression of the 

opsins in cichlids. 

We note that our present study focuses on small regions of high conservation 

within an ~ 30 kb window of non-coding sequence surrounding the opsin arrays, but 

that cis-regulatory sequences may often reside tens or hundreds of kilobases from the 

genes they regulate.  However, two recent analyses of general transcription factor 

binding sites found that functional binding sites generally cluster in regions 1 kb 

around the proximal promoter of each gene (Mann and Carroll 2002; Birney et al. 

2007; Rozowsky et al. 2009).  This observation suggests that a focused study of 

conserved elements within or near the opsins is a reasonable strategy for this initial 

study.  A FASTA file of all CNE sequences from O. niloticus and M. zebra is 

provided in Supplementary File 4-1 [Appendix 4]. 

TFBS Profiling and Phylogenetic Shadowing of CNEs 

We compared the 23 CNEs identified between O. niloticus and M. zebra and 

found many to be highly conserved; however, we could find no identifiable orthologs 

between O. niloticus and M. zebra for CNEs 9 or 22.  CNE 22 is found between the 

two RH2A opsins and is likely included in the missing/unassembled region of the M. 

zebra RH2-BAC (see above).  For the remaining orthologous CNEs, the average 

pairwise sequence divergence between O. niloticus and M. zebra was 4.7% (± 0.6%), 
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which is significantly less than the mean Dxy of introns (9.5%, t-test: t41, 0.05 = 2.74, p = 

0.009).  This result suggests that the conserved non-coding regions identified among 

O. niloticus and other fishes have remained conserved among African cichlids as 

well. 

We used the Transcription Element Search System (Schug 2008) to 

computationally search all orthologous CNEs for binding sites corresponding to 

twelve transcription factors that have been associated with opsin expression in fishes 

and other vertebrates.  These twelve transcription factors have been shown to 

influence opsin expression in many fish and vertebrate system (Schule et al. 1991; 

Salbert et al. 1993; Browman and Hawryshyn 1994a; Browman and Hawryshyn 

1994b; Dann et al. 2004; Peng et al. 2005; Applebury et al. 2007; Takechi et al. 

2008), and a complete list of these transcription factors and their associated opsins is 

presented in Table 5-1.  We found computationally-predicted binding sites for these 

functionally important transcription factors in nearly all (22 of 23) CNEs surveyed 

(Table 5-3; see also Table S5-4 [Appendix 4] for detailed counts of all TFBSs).  Only 

CNE 13 lacked binding sites for the any of the twelve transcription factors in either 

species examined.  Within the remaining sequences we found binding sites for all 

twelve transcription factors except PNR and RXRγ.  After relaxing our matching 

criteria, we still failed to find binding sites for these two transcription factors (data 

not shown).  In both O. niloticus and M. zebra, binding sites for AP-1 and CRX were 

extremely abundant, although binding sites for each of three retinoic acid receptors 

(RARs) and THRβ were also common (Table S5-4 [Appendix 4]).  The CNEs with 

the highest density of transcription factor binding sites (defined as the total number of 
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binding sites divided by total length surveyed – generally 9 TFBS or more; see Table 

S5-4 [Appendix 4]) include CNEs 2, 5, 6, 16, 22, and 23 for O. niloticus, and 2, 3, 5, 

14, 16, and 23 for M. zebra.  Due to their potential enrichment for functional TFBS 

relative to other CNEs, we believe these seven CNEs represent the most likely 

candidates for functional cis-regulators of opsin expression in fishes. 

Consistent with the high similarity of their sequences, the results of our TFBS 

search varied very little between O. niloticus and M. zebra.  We used exact binomial 

tests to compare the proportion of shared and divergent TFBS observed between O. 

niloticus and M. zebra to the theoretical ratio of 92:8% (see above).  Treating each 

TFBS independently, we counted each non-orthologous TFBS as a success, each 

orthologus TFBS as a failure, then tested the hypothesis that the true probability of 

success (proportion of divergent TFBS, Pdiv) was 8%.  We found that only 2 of 20 

CNEs differed significantly from this null expectation (Table 5-3).  These are CNEs 3 

and 6 (exact binomial tests: CNE 3, estimated proportion of divergence, Pdiv = 42.9%, 

p = 3.24e-4; CNE 6, Pdiv = 77.8%, p = 1.31e-5).  These results did not change when we 

used the mean similarity of introns from each CNE’s nearest down-stream opsin as a 

null hypothesis, except that CNE 7 also showed significant TFBS divergence (Pdiv = 

100.0%, p = 0.018).  CNE 3 is located downstream of the SWS1 opsin and CNEs 6 

and 7 are located upstream of the SWS2A opsin.  For CNE 3, M. zebra has more than 

double the number of TFBS than O. niloticus, including additional RARβ and RARγ 

binding sites.  For CNE 6, O. niloticus has 8 TFBS while M. zebra has only one; and 

for CNE 7, M. zebra has two while O. niloticus has none.  These results are consistent 

with what one might expect based on the expression of these opsins, since SWS1 is 
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highly expressed in M. zebra but not O. niloticus, and the opposite is true for SWS2A.  

Thus, we show that O. niloticus and M. zebra have diverged significantly in the 

identity of their TFBS profiles for three putative cis- regulatory elements, and differ 

in the presence/absence of two more.  These results offer the intriguing possibility 

that at least some of the differences in opsin expression observed between O. niloticus 

and M. zebra could be due to divergence in the TFBS profiles of CNEs surrounding 

their opsins. 

We acknowledge that our use of the overall proportion of divergent TFBS 

(Pdiv) to detect CNEs that have undergone significant cis-regulatory divergence 

ignores many nuances in TFBS divergence, such as the overall number and kind of 

TFBS present in each CNE and species.  But because of the small number of TFBS 

found within each CNE (the average number of TFBS found in each CNE is < 6), it is 

difficult to perform robust tests of divergence in individual TFBS.  Therefore, we 

have summed all TFBS into orthologous (shared) and non-orthologous (divergent) 

groups in order to measure TFBS divergence between O. niloticus and M. zebra.  

However, even within these broad categories, we have only enough power that CNEs 

with Pdiv > 40% stand out as statistical outliers.  In the future we aim to perform more 

nuanced, sequenced-based tests of cis-regulatory divergence in cichlids, but only after 

functional CNEs controlling opsin expression are identified.  We present these tests 

for cis-regulatory divergence as a first step in that process. 

Analysis of Proximal Promoter Regions 

Phylogenetic Footprinting of Opsin Proximal Promoters 



 

 161 
 

The MultiPip plots shown in Figure 5-1 reveal 23 CNEs upstream of the 

opsins, but also show several regions of high conservation within the 5’ proximal 

promoter of multiple opsins as well.  In particular, SWS2A, SWS2B, and LWS all 

exhibit regions of strong conservation in the first 1 kb of sequence upstream of their 

translation start site (TSS).  For the LWS opsin, this region of conservation spans 

nearly the entire proximal promoter (~ 0.7 kb) and multiple fish species, including G. 

aculeatus, O. latipes, and T. nigroviridis (Fig.  4-1B).  RH2Aα and RH2Aβ also 

exhibit some small regions of high conservation just upstream of their TSSs, which 

probably reflect the 5’-UTR region.  RH2B also contains some conserved regions, 

though these are largely composed of repetitive sequences (Fig.  4-1C).  It is 

intriguing that many of the opsins exhibit strong conservation of elements within 1 kb 

of their TSS, which we use to define the proximal promoter, because the true 

promoter regions for these genes are unknown in cichlids.  But important cis-

regulatory sequences have been identified in close proximity to the opsin genes in 

other fish species.  In particular, several CRX transcription factor binding sites found 

within 500 bp of the SWS2 opsin that regulate the expression of this gene in D. rerio 

(Takechi, Seno, Kawamura 2008).  Therefore, the conservation we observe upstream 

of the SWS2A, SWS2B, and LWS opsins may indicate the presence of additional cis-

regulatory sequences with the proximal promoters of these genes as well. 

TFBS Profiling and Phylogenetic Shadowing of Opsin Proximal Promoters 

The distribution and number of transcription factor binding sites found within 

the proximal promoter sequences of each opsin was similar for those found in the 

CNEs.  Within each opsin’s proximal promoter region, AP-1 and CRX binding sites 
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were nearly ubiquitous (Figure 5-3).  Binding sites for NFκB, RARα, RARβ, RXRβ 

and THRβ were also common, and we once again found no binding sites for PNR and 

RXRγ.  The absence of binding sites for PNR and RXRγ in both the CNEs and 

promoters may rule-out these factors as candidate trans-regulators of cichlid opsin 

expression; however the lack of these factors could also be due to biases in the way 

TESS identifies binding sites.  Interestingly, we found several CRX binding sites 

directly upstream of the SWS2A and SWS2B opsins (Figure 5-3).  These binding sites 

could potentially function as regulators of blue opsin expression in cichlids as they do 

in zebrafish (Takechi et al. 2008). 

Pairwise sequence divergence in the proximal promoter regions was greater 

than for the other regions examined.  The average Dxy of the proximal promoters was 

10.2% (± 3.2%), which differed significantly from the mean of CNEs (4.7%, t-test: 

t26, 0.05 = 2.20, p = 0.037), but not the introns (9.5%, t-test: t27, 0.05 = 0.14, p = 0.89).  

This result suggests that the opsin promoter regions of cichlids may exhibit greater 

divergence in putative cis-regulatory sequences than the CNEs.  Indeed, we found 

that O. niloticus and M. zebra exhibited significant divergence in their TFBS profiles 

for five of the seven opsin proximal promoters (Figure 5-3).  Following correction for 

multiple hypothesis testing, O. niloticus and M. zebra exhibited significant 

differences in their TFBS profiles for the SWS1, SWS2A, RH2B, RH2Aα and RH2Aβ 

opsins (Figure 5-3; see also Table 5-3).  O. niloticus and M. zebra differ dramatically 

in their adult expression of all of these opsins (Carleton et al. 2008), suggesting that 

their divergent transcription factor profiles could explain these differences.  A quick 

comparison of which TFBS differ between O. niloticus and M. zebra does not reveal 
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any extreme differences, other than a slight over-representation of CRX sites in O. 

niloticus (17 vs. 7), and of THRα in M. zebra (4 vs. 0) (Figure 5-3). 

Using phylogenetic shadowing, we identified five cichlid opsins with 

promoter sequences that exhibit significant divergence in their binding site profiles 

for 12 transcription factors.  We note, however, that by focusing on only these few 

TFBS, we potentially miss many interesting patterns of divergence in transcription 

factors that have not already been associated with vertebrate opsin expression.  A 

comprehensive search of all TFBS identified by TESS could potentially pick up these 

missed patterns of divergence, but such a search would be extremely cumbersome 

and subject to many false positives (Wasserman and Sandelin 2004).  Because of their 

small size, TFBS motifs are likely to appear throughout the genome frequently by 

chance, and it is difficult to determine which are likely to be functional based on 

sequence matches alone.  Therefore, we opted to focus on genes that are obvious 

candidates for analysis.  We performed an additional analysis to determine the 

relevance of these twelve candidates factors by comparing the number of TFBS of 

each factor found within the opsin proximal promoters and the proximal promoters of 

seven randomly chosen, non-opsin genes.  We hypothesized that if these candidates 

are relevant to the control of opsin expression in cichlids (and thus to our analysis of 

cis-regulatory sequence divergence), then we would find a significantly greater 

number of TFBS for each factor upstream of the opsin genes compared to the non-

opsin genes.  Indeed, we found that the opsins contain a greater number of binding 

sites for eight out of ten factors compared to the non-opsin genes (Wilcoxon paired 

signed-rank test: V = 50, p = 0.0124; Figure 5-3H).  The non-opsin promoters 
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contained higher mean numbers of TFBSs for AP-1 and THRβ only.  This result 

suggests that the proximal promoters of the opsins are significantly enriched for the 

binding sites of transcription factors that influence vertebrate opsin expression.  This 

enrichment also suggests that polymorphisms in these regions could conceivably lead 

to functional differences in transcription factor binding and opsin expression.  A 

FASTA file of all opsin and non-opsin promoter sequences from O. niloticus and M. 

zebra is available in the supplementary File S4-1 [Appendix 4]. 

Finally, the opsins of cichlids are co-expressed together in three main groups, 

or palettes.  These palettes generate visual pigment sets sensitive to short, middle, and 

long-wavelength spectra (Carleton et al. 2006; Hofmann et al. 2009; O'Quin et al. 

2010).  Therefore, as a final tangential analysis, we used the number and identity of 

predicted TFBS found upstream of each opsin to test the hypothesis that patterns of 

co-expression between functionally linked opsins are due to the presence of shared 

transcription factor binding sites in their promoters (Pennacchio and Rubin 2001).  To 

test this hypothesis, we compared the opsin expression profiles of developing O. 

niloticus fry (Carleton et al. 2008) with the transcription factor binding site profiles 

from the proximal promoters of these same opsins.  We chose developing O. niloticus 

fry because O. niloticus express all seven opsins over the course of development from 

0 – 300 days post fertilization (Carleton et al. 2008).  This developmental variation 

corresponds to the expression of each of the three opsin expression palettes observed 

among adult Lake Malawi cichlids (Carleton et al. 2008; O'Quin et al. 2011).  We 

generated two matrices of Euclidean distances among the opsins based on their 

patterns of co-expression and the total number of TFBS identified for each candidate 



 

 165 
 

transcription factor.  We found no significant correlation between these expression 

and transcription factor binding site dissimilarity matrices (Mantel test: r = -0.115, p 

= 0.623).  When we expanded the comparison to sequence similarity across the 

proximal promoter, the correlation did not improve but was actually reduced (Mantel 

test: r = -0.036, p = 0.621).  Therefore, we conclude that the composite transcription 

factor binding site profiles and sequence similarity scores we record do not predict 

which opsins are co-expressed together in developing O. niloticus fry.  It is possible 

that other transcription factors are responsible for the patterns of opsin co-expression 

observed in cichlid species. 

The search parameters we have chosen aim to identify TFBS with high 

confidence while still accounting for the observation that many transcription factors 

exhibit degenerate binding of DNA motifs (Letovsky and Dynan 1989; Stormo 2000), 

and can bind these motifs in an orientation-independent manner (Baker et al. 1996; 

Latchman 2004).  We are currently performing a quantitative genetic analysis of 

many markers located across the genome in order to identify other loci and 

transcription factors that may be associated with cichlid opsin expression.  But even 

our preliminary analyses reveal that the divergent binding of transcription factors to 

several opsin promoters, particularly of CRX and THRα, could contribute to the 

differences in opsin expression observed among O. niloticus and M. zebra. 

Analysis of Opsin 3’ Untranslated Regions (3’-UTRs) 

Phylogenetic Footprinting of Opsin 3’-UTRs 
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In addition to mutations within conserved non-coding elements and 5’ 

promoter regions, polymorphisms within 3’-UTRs can also act as cis-regulatory 

alleles (Kloc et al. 2000; Chen and Rajewsky 2006).  These polymorphisms affect 

gene expression by altering the binding of microRNAs (miRNAs) in a manner 

analogous to how mutations with TFBS can alter gene expression, except that 

miRNAs inhibit gene expression instead of promote it and this inhibition occurs post-

transcriptionally. 

Our phylogenetic footprinting analysis reveals that every opsin exhibits some 

conservation of the 50 – 100 bp region found directly downstream of the opsin coding 

sequences (Figure 5-1).  Generally, this conservation is strongest between O. 

niloticus, O. latipes, and G. aculeatus, reflecting the close phylogenetic relationships 

of these species.  For RH2Aα, the 3’ conserved region extends nearly 700 bp pass the 

end of the coding region.  Initially, these results suggest that the opsin 3’-UTRs of 

cichlids will be highly conserved, reflecting the strong evolutionary constraint on 

UTR sequence and function seen in both flies and humans (Andolfatto 2005; Chen 

and Rajewsky 2006).  However, many miRNAs are transcribed along with the genes 

they target, and our identification of miR-726 just upstream of the LWS opsin (see 

Figures 5-1 and 5-2) suggest that miRNAs could play an important role in regulating 

vertebrate opsin expression.  Additionally, a recent survey of polymorphisms 

affecting microRNA target sites in cichlids suggests that these regions may in fact be 

under divergent selection in some species (Loh et al. 2010).  Therefore, it is plausible 

that polymorphisms in microRNA target sequences could alter microRNA binding, 

and hence opsin expression, in African cichlids. 
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MicroRNA Target Site Profiling and Phylogenetic Shadowing of 3’-UTRs 

We searched the 3’-UTRs of each opsin in O. niloticus and M. zebra for target 

sites corresponding to known fish microRNAs (Griffiths-Jones et al. 2007).  In all, we 

identified 84 predicted target sites matching 30 known miRNAs from cichlids and D.  

rerio (Table S5-5 [Appendix 4]).  Focusing on only those target sites that were 

conserved between African cichlids and other fish species, we found at least one 

conserved miRNA target site down-stream of each opsin (Table 5-4).  Many of these 

conserved sites are expressed within the retina of vertebrates and play a role in retinal 

development (Wienholds et al. 2005; Ryan et al. 2006; Arora et al. 2007; Xu et al. 

2007).  For example, dre-miR-217, dre-miR-181a, and dre-miR-23b are integral to 

the development and maintenance of the vertebrate retina (Guerin et al. 2006; Li et al. 

2007; Kato et al. 2009), while dre-miR-96 and dre- miR-182a are sensory organ-

specific (Xu et al. 2007).  Only one conserved site that was found in cichlids and 

other fishes differed between O. niloticus and M. zebra.  A target site for dre-miR-

722, found downstream of the LWS opsin in O. niloticus and the pufferfish (Takifugu 

rubripes), is missing in the orthologous 3’-UTR from M. zebra due to a single 

nucleotide polymorphism (SNP).  However, the two conserved target sites for dre-

miR-722 and dre-miR-728 are both found within the 3’-UTRs of several Lake 

Victorian cichlids (data not shown).  Like O. niloticus, Lake Victoria’s cichlids 

express the long wavelength opsin palette as adults (Terai et al. 2006), possibly 

indicating that these factors play a role in LWS expression.  Additionally, the target 

sites we found within the RH2Aα and RH2Aβ UTRs were identical, consistent with 

the short amount of time that has passed since these opsins were duplicated in cichlids 
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approximately 27 MYA (Parry et al. 2005; Yokoyama and Tada 2010).  Therefore, if 

we interpret evolutionary conservation as an indication of functionality, we believe 

the conserved sites listed in Table 5-4 represent those miRNA target sites that are 

most likely to influence opsin expression in African cichlids. 

Like the CNEs identified earlier, all 3’-UTR sequences generally exhibited 

high similarity between O. niloticus and M zebra.  The average pairwise divergence 

(Dxy) for O. niloticus and M. zebra 3’UTRs was 5.2% (± 1% s.e.).  This small level of 

divergence is very similar to the level observed for opsin coding sequences, though it 

did not differ from the average Dxy of introns (9.5%, t-test: t27, 0.05 = 1.33, p = 0.196).  

Consequently, the results of our miRNA target search were once again very similar 

for O. niloticus and M. zebra, especially for those sites conserved in other fishes as 

well (Table S5-5 [Appendix 4]).  However, we also identified numerous sites that 

were not conserved between cichlids and other fishes, or between O. niloticus and M. 

zebra.  In particular, the UTRs downstream of the RH2B and SWS2B opsins exhibited 

significant divergence in their number of orthologus and shared miRNA target sites 

(exact binomial tests: RH2B, estimated Pdiv = 50.0%, p = 0.015; SWS2B, estimated Pdiv 

= 66.67%, p = 0.001; see Table 5-3).  These results did not change when we altered 

the null hypothesis to reflect the divergence of each opsin’s intronic sequences (data 

not shown).  For RH2B, we identified six distinct miRNA target sites, only two of 

which were shared between O. niloticus and M. zebra (dre-miR-135 and dre-miR-

190); M. zebra then exhibited four additional target sites for miRs 101, 144, 196, and 

2184 that O. niloticus lacked.  For SWS2B, the two species exhibited orthologous 

target sites for miR-217, but M. zebra had additional targets for miRs 194 and 23, 
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while O. niloticus had additional sites for miRs 92 and 137.  Thus, we not only 

identified conserved and perhaps core miRNA target sites within the 3’-UTRs of the 

opsins in cichlids, but we also identified divergent miRNA target profiles between O. 

niloticus and M. zebra for the RH2B and SWS2B opsins.  RH2B is strongly 

differentially expressed in these two species, while SWS2B is only expressed in some 

adults of O. niloticus (Lisney et al. 2010).  Finally, it is interesting to note that many 

of the conserved and non-conserved miRNA target sites we identify correspond to 

microRNAs associated with retinal development (for example, dre-miRs 23, 92, 722, 

and 194) (Calissano et al. 2007; Xu et al. 2007; Decembrini et al. 2009).  

Additionally, miR-129 is also associated with retinoblastoma in humans (Zhao et al. 

2009).  Given that O. niloticus and M. zebra differ dramatically in their 

developmental patterns of opsin gene expression, it is interesting to speculate that 

these miRNAs could contribute to the developmental differences in opsin expression 

observed between these and other African cichlid species (Carleton et al. 2008; 

O'Quin et al. 2011). 

Whether conserved on not, we note that most miRNA target sites we 

identified correspond to miRNAs that are also expressed in the vertebrate retina 

(Table S5-5 [Appendix 4]).  Of sites corresponding to 30 different microRNAs, 22 

(73%) correspond to microRNAs expressed within the retinas of fish, mammals, or 

amphibians (Table S5-5 [Appendix 4]).  Notably, however, we did not find any 

microRNA target sites that correspond to miR-726, the microRNA found upstream of 

the LWS opsin and encoded by CNE 10a (see Figure 5-2).  Additionally, miRNAs 

may regulate gene expression by binding both to sequences within nascent mRNAs or 
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to their 3’-UTR.  Here we have focused on target binding sites within the 3’-UTR of 

the cichlid opsins, but miRNA cleavage of messenger RNAs by binding to sites 

within core mRNA sequences has been demonstrated in both humans and plants 

(Hutvagner and Zamore 2002; Llave et al. 2002).  It is still not clear which 

mechanism of miRNA regulation is more common, although a review by Bartel 

(Bartel 2004) suggested that translational repression by binding to UTR sequences is 

more predominant.  Finally, we note also that the cellular machinery cannot 

distinguish between functional and non-functional miRNA target sites based on their 

evolutionary conservation in other species, as we do here (Bartel 2004).  However, 

given that scans for miRNA target sites can have a high rate of false positives, 

evolutionary conservation is currently the best way to avoid high error rates and to 

infer functionality.  The fact that we identified a high percentage of target sites that 

correspond to miRNAs found within the vertebrate eye suggests that many of these 

sites are not false-positives; therefore, it is plausible that they may actually function to 

regulate opsin expression in cichlids.  In the future we will determine whether these 

and other miRNAs are actually expressed in the retinas of African cichlids.  If so, 

then heterologous reporter assays could be used to verify what role interspecific 

differences in miRNA target sites may play in the evolution of cichlid opsin 

expression (Lewis et al. 2003; Stark et al. 2003).  The sequences of all O. niloticus 

and M. zebra opsin 3’-UTRs are available in Supplementary File S4-1 [Appendix 4]. 

Phylogenetic Shadowing Among the Cichlids of Lake Malawi 

Two goals of this study have been to (i) identify potential cis-regulatory 

sequences surrounding the opsin gene arrays of African cichlids, and (ii) identify 
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those putative regulatory sequences that may be undergoing divergent evolution 

among African cichlids with different patterns of opsin gene expression.  For both of 

these goals we have relied on the BAC clones of Oreochromis niloticus and 

Metriaclima zebra—two species that have BAC clones available, but that also differ 

dramatically in their evolutionary age (~ 18 MY (Genner et al. 2007)) and adult and 

developmental patterns of opsin expression (Carleton et al. 2008).  As a final goal, we 

wanted to determine whether the candidate cis-regulatory sites we identify also vary 

among a more closely related (~ 2 MY (Genner et al. 2007)) panel of cichlids from 

Lake Malawi.  Although much more closely related to M. zebra than O. niloticus, 

adults of many Lake Malawi cichlid species exhibit the same opsin expression 

patterns as adult and juvenile Oreochromis niloticus (Carleton et al. 2006; Carleton 

2009; Hofmann et al. 2009).  Therefore, we re-sequenced some of the most promising 

candidate regions in a panel of 18 Lake Malawi cichlid species (Tables 5-5 and S5-3 

[Appendix 4]).  This panel included six species for each of the three adult opsin 

expression palettes observed among Lake Malawi’s cichlids.  The regions we re-

sequenced included the proximal promoter regions upstream of five opsins (SWS1, 

SWS2A, SWS2B, RH2B, and LWS; highlighted in blue in Figure 5-1), CNE 10, and the 

3’-UTR of the SWS2B and LWS opsins.  After sequencing, we examined these regions 

for levels of polymorphism and performed a test of association for cis-regulatory 

alleles.  Our panel of cichlids included 18 species that have been previously sampled 

from Lake Malawi; therefore, we knew a priori whether each species expressed the 

short, middle, or long wavelength-sensitive opsin palette.  As a first step to this 

analysis, however, we confirmed these gene expression groups by measuring the 
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expression of each opsin in all individuals via RT-qPCR (Table S5-3 [Appendix 4]).  

Our opsin expression results were highly concordant with previous measurements 

(Hofmann et al. 2009). 

We were able to sequence most of each proximal promoter in our panel of 18 

Lake Malawi cichlids.  We successfully sequenced the entire 1 kb region upstream of 

both the SWS1 and SWS2A opsins.  Additionally, we sequenced 956 bp upstream of 

LWS, 951 bp upstream of RH2B, but only 694 bp upstream of SWS2B.  For the 

SWS2A proximal promoters we were only able to sequence 17 individuals.  Finally, 

we sequenced ~ 450 bp downstream of the SWS2B and LWS opsins in 14 and 13 

individuals, respectively.  As expected given the young age of Lake Malawi cichlids, 

all putative promoter and 3’UTR sequences were highly conserved in the taxa 

sampled.  In general, we identified fewer than 15 single nucleotide polymorphisms 

(SNPs) and insertion/deletions (indels) per region examined (Table 5-5).  In each 

case, most SNPs were present as singletons or found in only one individual.  Other 

diversity statistics—including the total number of segregating sites (S), total number 

of singletons (s), number of haplotypes (H), nucleotide diversity (π), sequence 

conservation (C), and Tajima’s D (TD)—also indicate overall low levels of 

polymorphism, despite our use of alternate species and genera as sampling units (see 

Table S5-3 [Appendix 4] for a list of all polymorphisms found among the 18 species 

sampled).  Nevertheless, following a sliding window analysis of nucleotide diversity 

(π) and minor allele frequency (MAF), we were able to identify several peaks of 

relatively high π and MAF within each region examined (Figure 5-4).  These peaks 

correspond to SNPs and indels segregating at high frequency within the species and 
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genera sampled, and therefore represent potential cis-regulatory alleles. 

Several peaks of relatively high nucleotide diversity and MAF correspond to 

predicted TFBS.  One peak located ~ 220 bp upstream of the SWS2A translation start 

site (TSS) contains one SNP and one 8 bp indel that both disrupt putative CRX 

binding sites.  The 8 bp indel located at SWS2A -217 completely eliminates the CRX 

binding site in several taxa (Table S5-3 [Appendix 4]).  We identified at least three 

other polymorphisms upstream of SWS1 and RH2B that also disrupt CRX binding 

sites—all three present in only one individual—but no SNPs or indels interrupting the 

binding sites of the other candidate transcription factors (Table 5-5).  Additionally, 

one peak of nucleotide diversity within CNE 10 corresponds to a SNP within the 

sequence of mir-726; however, this mutation does not occur within the mature 

miRNA.  Finally, we found only three polymorphisms total within the 3’-UTRs of 

SWS2B and LWS (Figure 5-4; Table S5-3 [Appendix 4]).  None of these three SNPs 

interrupted predicted miRNA target sites, in contrast to the polymorphism that 

segregates within the LWS 3-’UTR of O. niloticus and M. zebra.  However, since 

mutations within transcription factor binding sites have been shown to alter gene 

expression (Kasowski et al. 2010), our results suggest that polymorphisms within the 

SWS2A promoter could contribute to the differential patterns of opsin gene expression 

observed among Lake Malawi cichlids. 

To test this hypothesis, we performed allelic association tests between these 

and other SNPs underlying peaks of nucleotide diversity and high MAF (see Figure 

5-4) with the expression of their nearest downstream opsin (Table 5-6).  Three 

polymorphisms (SWS2A-217, RH2B-161, CNE10 570) exhibited significant or 
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marginally non-significant associations with the expression of their downstream 

opsins; however only RH2B-161 is significant following Bonferroni-correction for 

multiple hypothesis tests (Bonferroni cut-off: α = 0.05/11 = 0.0045; RH2B-161: t = 

3.447, p = 0.0036; see Table 5-6).  Despite this limitation, we believe these 

preliminary results are intriguing since all three polymorphisms occur on the same 

linkage group believed to contain a cis-regulatory element that modulates cichlid 

opsin expression (LG 5), and all three are associated with opsins whose expression is 

significantly associated with this factor in the hybrid cross (Carleton et al. 2010).  

Additionally, SWS2A-217 obliterates a CRX binding site in numerous cichlids, and 

polymorphisms affecting CRX binding sites have been shown to modulate SWS2 

opsin expression in zebrafish (Takechi et al. 2008).  CNE 10-570 is also found very 

near the LWS LCR and could also act to affect LCR binding.  It is therefore possible 

that all three alleles acts as, or are linked to, cis-regulatory elements that modulate 

opsin expression in cichlids.  In summary, we found some evidence of binding site 

turnover of CRX binding sites within the 5’ promoters of Lake Malawi cichlids, but 

no evidence of turnover in other candidates TFBS or miRNA target sites.  

Additionally, we also identified three putative cis-regulatory alleles that modulate 

SWS2A, RH2B, and LWS opsin expression.  Although preliminary, these results offer 

intriguing candidates for additional functional and association analyses in a larger 

sample of species and individuals. 

We acknowledge that the sample sizes we use for phylogenetic shadowing 

among Lake Malawi’s cichlids are small and at best provide a weak test for cis- 

regulatory alleles associated with opsin expression.  Additionally, we use cross 
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species and genera comparisons for an analysis that is generally based around 

individuals and populations.  However, Lake Malawi cichlids are extremely similar at 

the genetic level and share many ancestral polymorphisms (Loh et al. 2008).  For this 

reason, genetic analyses across cichlid species and genera are analogous to within-

species polymorphism studies in other vertebrates, including chimps and humans 

(Loh et al. 2008; Loh et al. 2010).  Additionally, recent work in cichlids has 

successfully used cross-species comparisons to fine-map cis-regulatory alleles 

underlying pigmentation differences, so long as these differences have a common 

origin among the different species sampled (Roberts et al. 2009).  It is hard to predict 

which traits will have a common origin among African cichlids, as previous work 

(Allender et al. 2003) suggested that the pigmentation trait mapped in Roberts et al. 

(2009) had evolved several times.  Our recent work reconstructing the evolution of 

opsin regulatory changes in cichlids revealed that the three opsin expression palettes 

have evolved repeatedly among cichlids in Lakes Tanganyika and Malawi (O'Quin et 

al. 2010), but it is still unclear whether or not the three palettes have a common origin 

among Lake Malawi’s cichlids.  But despite our small sample size, we have identified 

several promising polymorphisms located directly upstream of the opsins that are 

intriguing candidates for additional analyses.  The multiple cichlid genome 

assemblies and transcriptome analyses that are forthcoming from the Broad Institute 

will soon allow us to explore regulatory regions farther afield from those studied here 

in a much larger panel of cichlid individuals and species. 

The Search For Cis-regulatory Sequences 

Cis-regulatory sequences may reside many kilobases away from the genes 
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they regulate, as in the case of enhancer or repressor elements; or they may be found 

very near their genetic targets, as in the case of promoter elements and UTRs.  So, 

given this diversity, is it possible to predict which non-coding regions are most likely 

to contain functional cis-regulatory alleles? If we accept estimates of pairwise 

sequence divergence (Dxy) as indicative of those regions most likely to contain 

functional opsin regulatory alleles, then our estimates of Dxy between O. niloticus and 

M. zebra suggest that the proximal promoter regions are most likely to contain cis-

regulatory alleles that alter opsin expression (Figure 5-5A; see also Table S5-6 

[Appendix 4] for a list of Dxy values for every region examined).  The proximal 

promoters exhibit the highest levels of pairwise sequence divergence of all coding 

and non-coding regions examined, and also contain more sequences with divergent 

TFBS profiles (Figure 5-3; Table 5-3), and putative regulatory alleles (Table 5-6).  

However, this conclusion is undoubtedly influenced by what could be a naive choice 

of promoter sequences (the true functional opsin promoter regions have not yet been 

identified in cichlids and may be more highly conserved), increased length of the 

promoter sequence relative to other regions analyzed (we analyzed 1 kb for each 

promoter versus ~ 400 bp for each CNE and UTR), and the increased power to detect 

significant divergence from null expectations afforded by the large number of TFBS 

found within the proximal promoters (we found ~ 22 TFBS within each promoter 

versus ~ 6 TFBS/microRNA target sites within each CNE and UTR). 

If the overall proportion of divergent TFBS/microRNA target sites (Pdiv) is 

used to identify those non-coding regions most likely to contain functional cis- 

regulatory alleles, the proximal promoter regions still exhibit the highest proportion 
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of divergent regulatory regions, although the advantage is only slight.  Only about 

55% of TFBS are shared between O. niloticus and M. zebra promoters, while 45% are 

divergent (Figure 5-5B).  In contrast, the CNEs and 3’-UTRs exhibit lower (and very 

similar) proportions of shared versus divergent TFBS/microRNA target sites (~ 67% 

shared and ~ 33% divergent; Figure 5-5B).  In this case, it is difficult to confidently 

conclude that 5’ promoter regions are more likely to contain functional alleles that 

regulate opsin expression, although the data are suggestive.  When both pairwise 

divergence and the proportion divergent TFBS/microRNA target sites are taken into 

account, we find that regions that exhibit statistically significant divergence are not 

necessarily those regions that exhibit greater pairwise sequence divergence (Figure 5-

5C).  In fact, the regions with the highest Pdiv also exhibit some of the lowest Dxy 

values.  This result suggest that the increased number of statistically divergent 

promoter regions we observe is not a function of sequence divergence, but rather 

increased statistical power afforded by the greater length of the sequences surveyed 

and the greater number of TFBS found. 

Additionally, our results show that the majority of the non-coding regions 

examined exhibit Pdiv values near 37%, with a median of 30% (Figure 5-5C).  This 

observation suggests that the 8% divergence criterion we used as null model for 

evolutionary divergence is likely too low and also suggests that our power for many 

regions was lacking due to the small number of TFBS or microRNA target sites 

identified (see above).  But even when a more liberal null divergence value of 30% is 

used, our results largely remain consistent: CNEs 3 and 6 (located near SWS1 and 

SWS2A), the proximal promoters for RH2B and SWS1, and the 3’-UTR for SWS2B 
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still exhibit significant divergence in their number of TFBS and microRNA target 

sites shared between O. niloticus and M. zebra (p < 0.05 for all comparisons). 

Finally, we note that many putative regulatory regions identified in our opsin- 

containing BACS are highly conserved among many phenotypically diverse cichlid 

species from Lake Malawi, as well as between the ~ 18 MY divergent Oreochromis 

niloticus and Metriaclima zebra.  This conservation suggests that trans-acting factors 

may also play an important role in generating evolutionary changes in cichlid opsin 

expression.  For example, in both yeast and humans, interspecific differences in gene 

expression are primarily the result of trans-regulatory factors ((Morley et al. 2004; 

Sung et al. 2009).  And although cis-regulatory alleles contribute more to interspecific 

differences in gene expression among several Drosophila species, trans-acting alleles 

generally contribute to these differences as well (Wittkopp et al. 2004).  Coding 

mutations within trans-acting transcription factors can act in a modular fashion, 

thereby mitigating negative pleiotropic effects (Hsia and McGinnis 2003), and these 

mutations may still affect gene expression even when the sites they bind remain 

conserved (Levine and Tjian 2003), as many of the TFBS we examine are.  Also, in 

addition to the putative cis-regulatory factors associated with SWS2B, SWS2A, and 

RH2B opsin expression in cichlids, Carleton et al. (Carleton et al. 2010) also 

identified one trans-acting locus in the same cross, as well as another trans-acting 

locus in a separate cross.  These two loci, located on cichlid linkage groups (LG) 4 

and 13, do not occur in linkage with the cichlid opsins and explain a higher portion of 

the variance in opsin expression than the single cis-associated factor on LG 5 

(Carleton et al. 2010).  Whether these sites represent transcription factors, 
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microRNAs, or other trans-acting binding sites is unknown, but several good 

candidate genes are located in these regions.  Future work will aim to map and 

characterize these putative trans-regulatory regions in a variety of cichlid taxa. 

 

Conclusions 

Mutations within cis-regulatory regions are intriguing candidates for the 

adaptive evolution of gene expression (Wray 2007).  Here we generated and surveyed 

non-coding sequences surrounding the opsin gene arrays of two African cichlids, 

Oreochromis niloticus and Metriaclima zebra.  This study is the first to 

systematically survey the cichlid opsins for putative cis-regulatory sequences, and our 

results suggest that these regions could potentially contribute to variation in cichlid 

opsin expression.  The results of our study reveal: (i) the presence of at least four 

conserved non-coding elements located up- and downstream of the opsins that may 

function as regulators of opsin expression, including a retinal microRNA and one 

known opsin enhancer (LWS-LCR), (ii) significant divergence and enrichment of 

transcription factor binding sites within the proximal promoter of several opsins, 

including many that are differentially expressed among African cichlids, (iii) 

numerous target sites for retinal and sensory organ-specific microRNAs within the 3’-

UTR of each opsin, including two UTRs that are significantly divergent in these 

target sites, and (iv) several putative cis-regulatory alleles located within the 

promoters of the RH2B, SWS2A and LWS opsins.  Future work will aim to further 

characterize these candidate cis-regulatory sequences, as well as to identify candidate 

trans-acting alleles.  Given that spectral sensitivity and opsin expression in 
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vertebrates can be influenced by coding mutations (Spady et al. 2005; Terai et al. 

2006; Hofmann et al. 2009), trans- regulatory mutations (Carleton et al. 2010), cis-

regulatory mutations (Takechi et al. 2008), and possibly microRNAs as well, cichlids 

may represent an ideal system in which to examine how these various molecular 

mechanisms interact to influence the evolution of visual system diversity in 

vertebrates. 
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Tables 

Table 5-1.  List of candidate transcription factors surveyed in this study. 
 

Transcription Factor Symbol OMIM1 # TESS2 # 
(mice) 

Opsin(s) 
affected Ref(s)3 

Activator Protein 1 AP-1 165160 T00032 SWS1 a 

Con-rod homeobox-protein CRX/OTX 602225 T03461 SWS2 b 

Nuclear Factor kappa B NFκB 164011 T00588 SWS1 a 

Photoreceptor-specific nuclear receptor PNR 604485 T037234 SWS c 

Retinoic Acid Receptor α RARα 180240 T01327 SWS1 d 

Retinoic Acid Receptor β RARβ 180220 T01328 SWS1 d 

Retinoic Acid Receptor γ RARγ 180190 T01329 SWS1 d 

Retinoid X Receptor α RXRα 180245 T01331 - - 

Retinoid X Receptor β RXRβ 180246 T01332 - - 

Retinoid X Receptor γ RXRγ 180247 T01333 SWS e 

Thyroid Hormone Receptor α THRα 190120 T01173 SWS1 f 

Thyroid Hormone Receptor β THRβ 190160 T008514 SWS1, RH2 f, g 
1 Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim) 
2 Transcription Element Search System (http://www.cbil.upenn.edu/cgi-bin/tess/tess) 
3 Reference key:  

a: Dann et al. (2004)  
b: Takechi et al. (2008) 
c: Peng et al. (2005) 
d: Browman and Hawryshyn (1994a) 
e: Roberts et al. (2005) 
f: Browman and Hawryshyn (1994b) 
g: Ng et al. (2001)  

4 TESS # for human sequences 
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Table 5-2.  Assembly statistics for O. niloticus and M. zebra opsin-containing BACs. 
 

Species Opsin Array Clone ID 
Estimated 

clone 
size (bp)1 

Sequencing 
method 

Contig 
size (bp) 

Reads  
assembled 

(%) 

GenBank 
acc. no. 

O. niloticus SWS1 T4057DH09 210,000 ABI, 454 171,942 100 JF262087 

 SWS2-LWS T4075AE05 184,000 ABI 171,766 85.1 JF262088 

 RH2A-RH2B T4024BG04 200,000 ABI 185,168 84.2 JF262086 

M. zebra SWS1 Mz042C6 87,000 454 77,652 - JF262085 

 SWS2-LWS Mz045P9 96,000 454 107,685 - JF262084 

 RH2A-RH2B Mz088M22 133,000 454 
48,023, 

29,393 
- JF262089 

1 Clone size estimated based on Pulsed Field Gel Electrophoresis 
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Table 5-3.  Comparison of sequence similarity and TFBS/miRNA target site 
divergence for three putative cis-regulatory regions surrounding the opsin arrays of O. 
niloticus and M. zebra. 
 

Identity Dxy
1 Length Length TFBS TFBS Est. 

Region 
(%) (%) On (bp) Mz (bp) Divt. Shrd Pdiv

2 (%) 
 p-value3 

1 96.84 3.23 158 158 0 2 0.0 > 0.05 

2 96.06 4.05 330 331 5 9 35.7 > 0.05 

3 96.16 3.94 815 760 9 6 60.0 0.00001 

4 83.46 14.87 132 127 1 1 50.0 > 0.05 

5 96.22 3.88 240 239 2 6 25.0 > 0.05 

6 94.74 4.53 349 359 7 1 87.5 3.1e-6 

7 98.31 1.70 240 241 2 0 100.0 > 0.05 

8 96.14 3.97 207 207 1 0 100.0 > 0.05 

9 - - 300 - - - - - 

10 97.16 2.89 882 885 1 8 11.1 > 0.05 
11 88.46 4.86 779 799 3 9 25.0 > 0.05 
12 93.93 6.33 313 313 1 3 25.0 > 0.05 
13 97.64 2.40 127 127 0 0 - - 

14 95.97 4.14 124 124 1 1 50.0 > 0.05 
15 95.53 4.61 246 249 1 3 25.0 > 0.05 
16 97.66 2.37 214 214 1 9 10.0 > 0.05 
17 88.97 4.71 999 1404 1 9 10.0 > 0.05 
18 95.32 4.84 428 428 3 6 33.3 > 0.05 
19 91.21 9.35 182 191 0 2 0.0 > 0.05 
20 96.14 3.96 311 313 2 3 40.0 > 0.05 
21 93.25 7.07 1087 976 5 13 27.8 > 0.05 
22 - - 69 - - - - - 

CNE4 

23 98.88 1.13 358 38 1 13 7.1 > 0.05 
LWS 97.56 2.48 1000 1000 1 16 5.9 > 0.05 
RH2Aα 94.80 5.38 1000 1000 10 11 47.6 0.00001 

RH2Aβ 91.77 8.60 1000 1000 14 19 42.4 5.8e-7 

RH2B 61.35 9.40 1000 1000 14 7 66.7 2.1e-10 

SWS1 71.49 26.37 1000 1000 15 10 60.0 3.7e-10 

SWS2A 97.19 2.87 1000 1000 10 12 45.5 0.00002 

Proximal 

Promoter5 

SWS2B 81.96 16.31 1000 1000 4 10 28.6 > 0.05 
 

Continued 
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Identity Dxy

1 Length Length TFBS TFBS Est. 
Region 

(%) (%) On (bp) Mz (bp) Divt. Shrd Pdiv
2 (%) 

 p-value3 

3’-UTR6 LWS 93.39 6.92 189 189 1 4 20.0 > 0.05 
 RH2Aα 94.04 6.21 438 442 4 9 30.8 > 0.05 
 RH2Aβ 93.26 7.06 465 460 4 11 26.7 > 0.05 
 RH2B 93.15 7.18 310 319 4 4 50.0 0.01542 

 SWS1 96.74 3.33 217 242 1 3 25.0 > 0.05 

 SWS2A 95.90 4.21 124 137 0 1 0.0 > 0.05 
1 Pairwise sequence divergence between O. niloticus and M. zebra, corrected for 

multiple hits. 
2 Actual proportion of divergent TFBSs observed for O. niloticus and M. zebra. 
3 Bonferroni-corrected p-values for the Binomial Exact Test. 
4 See Table S5-4 [Appendix 4] for individual counts of each TFBS identified for the 

CNEs. 
5 See Figure 5-3 for individual counts of each TFBS indentified for the proximal 

promoters. 
6 See Table 5-5 for individual counts of each microRNA target site identified for the 

3’-UTRs. 
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Table 5-4.  Conserved microRNA target sites within the 3’-UTRs of each opsin in O. 
niloticus and M. zebra. 
 

Opsin miRNA Target Conserved1 Function and expression Ref(s)2 

SWS1 miR-725 TGACTGAG GA Expressed in fins  a 

SWS2B miR-217 ATGCAGTA GA Alters PTEN exp.; found in eye  b, c 

SWS2A miR-181a AGAATGTA DR T-cell regulation; found in eye  b, d 

RH2B miR-23b TATGTGAA TR Ganglion apoptosis; found in eye  e, f 

RH2Aα/β miR-96 TTGCCAAA OL 
Sensory organ specific; found in 

eye  
g, h 

  miR-182a TTGCCAAA OL 
Sensory organ specific; found in 

eye  
g, h 

LWS miR-728 TTTAGTAA GA,TN,TR Unknown; found in eye a 

  miR-722* GCAAAAAA TR Unknown; found in eye a 
1 Other fish species in which this target site is also found: GA: G. aculeatus 

(stickleback); DR: D. rerio (zebrafish); TR: T. rubripes (tetraodon); TN: T. 
nigroviridis (pufferfish); OL: O. latipes (medaka). 

2 References: 
a: Kloosterman et al. (2006) 
b: Wienholds et al. (2005) 
c: Kato et al. (2009) 
d: Li et al. (2007) 
e: Guerin et al. (2006) 
f: Hackler et al. (2010) 
g: Xu et al. (2007) 
h: Karali et al. (2007) 

3 This site present in O. niloticus only 
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Table 5-5.  Polymorphism statistics for 8 candidate cis-regulatory regions in 18 Lake 
Malawi cichlid species. 
 
Opsin Length 

(bp) S1 s2 H3 π4 C5 TD
6 CRX7 

SWS1 1000 16 5 17 0.0020 0.983 -1.4424 1 

SWS2B 694 2 1 3 0.0006 0.997 0.3137 0 

SWS2A 1000 7 1 6 0.0010 0.992 -1.1518 2 

RH2B 950 17 3 15 0.0022 0.982 -1.1050 2 

LWS 956 12 2 11 0.0012 0.987 -1.2394 0 

CNE 10 882 12 1 10 0.0021 0.986 -0.2311 0 

SWS2B UTR 442 2 1 3 0.0010 0.995 -0.2183 NA 

LWS UTR8 436 1 0 2 0.0003 0.998 -0.7139 NA 
1 Total number of segregating sites 
2 Total number of segregating sites that are singletons 
3 Total number of haplotypes 
4 Nucleotide diversity 
5 Sequence conservation 
6 Tajima’s D 
7 Total number of segregating sites that interrupt predicted CRX binding sites 
8 Statistics presented for in/del polymorphism 



 

 187 
 

Table 5-6.  Results of allelic associated between SNPs underlying peaks of nuclotide 
diversity and opsin expression in 18 Lake Malawi cichlid species. 
 
Polymorphism 
distance from TSS Type MAF1 HWE2 r2 t-value P-value 

SWS1 -54 C➞T 0.222 N -0.279 -0.911 > 0.05 

SWS2B -208 C➞T 0.441 N -0.001 -0.064 > 0.05 

SWS2B -55 1 bp indel 0.471 N 0.175 0.711 > 0.05 

SWS2A -224* C➞T 0.222 N 0.127 1.037 > 0.05 

SWS2A -217* 8 bp indel 0.194 N 0.392 1.841 0.087 

RH2B -308 C➞G 0.167 N -0.245 -0.893 > 0.05 

RH2B -161 C➞T 0.111 Y 0.263 3.447 0.004 

LWS -208 C➞T 0.167 N 0.355 1.002 > 0.05 

CNE-10 183 A➞T 0.222 N 0.055 -0.673 > 0.05 

CNE-10 570 C➞T 0.417 N 0.608 2.237 0.041 

SWS2B-UTR 197 A➞C 0.250 N 0.070 0.430 > 0.05 

* These polymorphisms interrupt CRX transcription factor binding sites 
1 Minor allele frequency 
2 Hardy Weinberg Equilibrium 
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Figures 
 
Figure 5-1.  Pairwise comparison of sequence conservation between O. niloticus 
opsin-containing BAC regions and four fish genomes.  (A) SWS1 opsin-containing 
region.  (B) SWS2-LWS opsin-containing region.  (C) RH2 opsin-containing region.  
Top line represents O. niloticus BAC sequence.  Conserved non-coding elements 
(CNEs) are numbered and highlighted in red; repetitive sequences are highlighted in 
green; promoter sequences later examined for interspecific polymorphism are 
highlighted in blue. 
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Figure 5-3.  Transcription factor binding site diversity within opsin proximal promoters.  
(A – G) Distribution of ten transcription factor binding sites (TFBS) in the proximal 
promoters of each opsin in O. niloticus and M. zebra.  TFBS labeled in blue are present in 
O. niloticus only, those in red are present in M. zebra only, and those in black are found 
in both species.  Sites labeled simply RAR correspond to all three retinoic acid paralogs.  
The orientation of factors above or below the central reference line has no special 
meaning, although O. niloticus-only sites are generally above the line, and M. zebra-only 
sites are below it.  (H) Comparison of the average number of binding sites for each 
transcription factor in the proximal promoters of the opsins and seven randomly-selected, 
non-opsin genes in O. niloticus.  On average, the opsins contain significantly greater 
numbers of binding sites for these transcription factors compared to the non-opsin genes. 
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Figure 5-4.  Interspecific polymorphism in eight putative cis-regulatory regions from 18 
Lake Malawi cichlid species.  (A – H) Minor allele frequency (MAF; in red) and 
nuclotide diversity (π; in black) calculated in a sliding window across the proximal 
promoter regions of five opsins (A – E), CNE 10 (F), and two opsin 3’-UTRs (G – H) 
using 18 Lake Malawi cichlid species.  Numbers above peaks of MAF and π denote the 
position of SNPs analyzed for allelic-associated with opsin expression (see Table 5-6); 
asterisks (*) denote polymorphisms that interrupt CRX transcription factor binding sites. 
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Figure 5-5.  Divergence among coding and non-coding regions in O. niloticus and M. 
zebra opsin-containing BAC sequences.  (A) Pairwise sequence divergence (Dxy) 
between O. niloticus and M. zebra for different coding and non-coding regions of the 
opsin-containing BACs.  Average Jukes-Cantor-corrected Dxy is higher among 5’ 
proximal promoter regions for each opsin.  (B) Venn diagram of proportion of shared and 
divergent TFBS and microRNA target sites among non-coding regions examined in this 
study.  Opsin promoter regions exhibit slightly elevated proportions of divergent sites 
compared to either CNEs or 3’-UTRs.  (C) Comparison of proportion divergent 
TFBS/miRNA target sites (Pdiv)) and pairwise sequence divergence (Dxy).  Non-coding 
sequences with elevated Pdiv do not necessarily exhibit increased Dxy, even among 
proximal promoter regions.  Filled points are those sequences with Pdiv values that differ 
significantly from 8% (see Table 5-3). 
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Chapter 6:  

Quantitative Genetic Analysis of trans-Regulatory Factors 

Associated with Opsin Gene Expression in African Cichlids 

 
Kelly E. O’Quin, Zil Patel, Nadia Kahn*, Zan Naseer*, Jane Schulte*, Helena Wang*, 

Karen L. Carleton 
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Abstract 

Recently, several studies have highlighted the prominent role that regulatory 

mutations can play in phenotypic evolution.  However, this body of work has focused 

primarily on cis-regulatory factors, since these mutations do not suffer from mosaic 

pleiotropy, which presumably affects mutations within trans-regulatory transcription 

factors.  Here, we examine what role divergence in 15 candidate trans-regulatory factors 

may play in phenotypic divergence among rapidly radiating African cichlids.  Using a 

hybrid cross of two Lake Malawi cichlid species that differ in the expression of multiple 

cone opsin genes—the genes responsible for color vision—we show that trans-regulatory 

divergence can play a significant role in phenotypic evolution.  Specifically, we find that 

genotypic variation linked to the transcription factors RORβ and RARγ-2 is statistically 

associated with variation in the expression of the SWS2A, RH2A, and LWS opsins.  

Mutations in RORβ have previously been associated with SWS2A opsin expression in 

other systems, but mutations with RARγ-2 have not (although mutations within paralogs 

of this gene have).  Additional work is necessary to confirm that these two transcription 

factors actually contain mutations causative for variation in cichlid opsin expression; 

however, we posit that the association of RARγ-2 with opsin expression is evidence that 

gene duplication can provide a solution to the problem of mosaic pleiotropy for 

transcription factors.  In summary, we find that trans-regulatory divergence can play an 

important role in phenotypic evolution among African cichlids, and likely contributes to 

phenotypic divergence in other systems as well. 
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Introduction 

Phenotypic evolution can occur through mutations that alter the structure and 

function of protein-coding genes, or through regulatory mutations that alter their 

expression (Carroll 2005; Hoekstra and Coyne 2007; Wray 2007; Carroll 2008).  The 

advent of comparative genomics has led to an explosion of studies that address regulatory 

evolution and the role that these mutations may play in phenotypic divergence.  For 

several reasons, this field has largely focused on the study of cis-regulatory mutations 

(Wray 2007; Carroll 2008).  Cis-regulatory mutations are found in non-coding DNA, 

often in tight linkage and close proximity to the genes they regulate, and function by 

interrupting the binding sites of transcription factors necessary for gene expression (Wray 

2007).  In contrast, the importance of regulatory mutations within transcription factors 

has been de-emphasized since many of the factors so far studied (e.g., Hox genes) are 

expressed in many tissues and developmental stages.  The broad expression of such genes 

means that any mutations within them will potentially affect numerous aspects of 

organismal morphology and physiology, a phenomenon termed “mosaic pleiotropy” 

(Stern and Tokunaga 1968; Carroll 2008).  The consequences for organismal fitness due 

to mutations in mosaically pleiotropic genes can be dire.  But cis-regulatory mutations 

limit the negative consequences of mosaic pleiotropy by altering the expression and 

function of genes in only a small number of tissues and contexts (Stern 2006; Wray 2007; 

Carroll 2008).  Combined with the observation that cis-regulatory mutations are also 

typically co-dominant, making them an efficient target for natural selection, some authors 

have argued that cis-regulatory mutations are perhaps the most important class of 

mutation for generating change in animal form (Britten and Davidson 1971; Carroll 
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2005).  Other authors, however, argue that this conclusion is premature, noting that 

regulatory mutations within transcription factors can also be modular (Hoekstra and 

Coyne 2007; Oakley 2007).  Regardless, the contribution that trans-regulatory mutations 

can make to phenotypic evolution remains poorly understood and potentially under 

appreciated. 

Here we examine what role several transcription factors play in the evolution of 

opsin gene regulation among African cichlid fishes.  African cichlids are a group of 

freshwater teleost fish found throughout the lakes and rivers of Africa (Fryer and Iles 

1972).  Within the last 10 million years, cichlids in three African Great Lakes—Lakes 

Tanganyika, Malawi, and Victoria—have undergone a dramatic adaptive radiation in 

behavior, color, and form (Kocher 2004; Sturmbauer 2005; Seehausen 2006).  But in 

addition to variation in traits such as body and jaw shape (Albertson et al. 2003), male 

pigmentation (Allender et al. 2003), and breeding behavior (Kuwamura 1986), African 

cichlids also exhibit dramatic variation in their color vision (Carleton et al. 2006; Jordan 

et al. 2006; Carleton 2009; Hofmann et al. 2009).  This drastic variation in color 

sensitivity is largely mediated by variation in the expression of seven cone opsin genes, 

the genes responsible for absorbing and responding to light.   

Cichlids have seven opsin genes used for color vision, each sensitive to a different 

wavelength or color of light (Spady et al. 2006).  These cichlid opsins are: SWS1 

(ultraviolet), SWS2B (violet), SWS2B (blue), RH2B (blue-green), RH2Aα and RH2Aβ 

(green), and LWS (red) (Carleton and Kocher 2001; Spady et al. 2006; Hofmann et al. 

2009; O'Quin et al. 2010).  Additionally, cichlids also have an eighth opsin, RH1, used 

for dim-light (non-color) vision.   The opsins are expressed within the photoreceptors 
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cells of the retina.  Cichlids have two types of photoreceptors used for color vision.  The 

SWS1, SWS2B, and SWS2A opsins are expressed in single-cone photoreceptor cells, while 

RH2B, RH2A, and LWS opsins are expressed in double-cone photoreceptor cells (Fernald 

and Liebman 1980; Fernald 1981; Jordan et al. 2006; Carleton 2009).  A recent 

preliminary survey of quantitative trait loci (QTL) controlling opsin expression in 

cichlids revealed at least one potentially cis-acting QTL linked to the opsin genes SWS2A, 

SWS2B, and LWS on cichlid linkage group (LG) 5, and one trans-acting QTL on LG 13 

(Carleton et al. 2010).  A follow-up study of putative cis-regulatory sequences 

surrounding the opsins identified multiple divergent sequences and three putative cis-

regulatory alleles near the RH2, SWS2A, and LWS opsins  (both on LG 5) [see Chapter 5].  

Here, we perform a reverse QTL analysis (see Mackay and Langley (1990)) in which we 

expand these earlier studies by asking whether genetic variation linked to several 

candidate transcription factors is associated with additional trans-acting QTL for cichlid 

opsin expression. 

Opsin expression in vertebrates is under considerable trans-regulatory control 

mediated by complex gene regulatory networks (Swaroop et al. 2010).  Of the four 

vertebrate opsin classes (SWS, RH2, LWS, and RH1), trans-regulatory factors have been 

shown to control all of them, though cis-regulatory factors also play a role (Wang et al. 

1992; Tsujimura et al. 2007; Takechi et al. 2008; Tsujimura et al. 2010).  The most 

comprehensive example is the mouse system, where researchers have demonstrated that 

RH1 expression is influenced by the transcription factors CRX, NRL, RORβ, and NR2E3 

(Furukawa et al. 1997; Mears et al. 2001; Peng et al. 2005; Jia et al. 2009); SWS 

expression is influenced by RORβ, CRX, RXRγ, and RORα (Roberts et al. 2005; 
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Srinivas et al. 2006; Fujieda et al. 2009); and RH2/LWS expression is influenced by 

RORα and THRβ (Ng et al. 2001; Fujieda et al. 2009) (see also Swaroop et al. (2010) for 

an overview of transcription regulation of mouse opsins).  In some cases, the same or 

paralogous factors are also known to influence opsin expression in other systems, 

including humans and zebrafish (Milam et al. 2002; Takechi et al. 2008).  Finally many 

of these genes, as well as their paralogs, are also known to influence more general aspects 

of vertebrate eye development and patterning (Kastner et al. 1994; Tini et al. 1995; Hyatt 

and Dowling 1997).  Thus, these genes and their paralogs serve as good candidates for 

the trans-regulatory control of opsin expression in cichlids. 

To investigate what role these and other transcription factors (see Table 6-1) may 

play in the trans-regulation of cichlid opsin expression, we genotyped genetic markers at 

or near each gene in a genetic cross of two cichlids with alternate patterns of opsin gene 

expression (Carleton et al. 2010).  Aulonocara baenschi is a small, sand-dwelling cichlid 

from Lake Malawi that is maximally sensitive to violet and green light.  A. baenschi 

predominantly expresses the SWS2B, RH2B, and RH2A opsins (Hofmann et al. 2009; 

Carleton et al. 2010).  Tramitichromis intermedius is also a small, sand-dwelling cichlid 

from Lake Malawi, but it is maximally sensitive to blue, green, and red light.  T. 

intermedius predominantly expresses the SWS2A, RH2A, and LWS opsins (Parry et al. 

2005; Hofmann et al. 2009; Carleton et al. 2010).  We used the F2 intercross progeny of 

this cross to test whether genotypic variation linked to each individual transcription factor 

is associated with phenotypic variation in the expression of the seven cichlid opsin genes.  

Although the results of this analysis cannot definitively determine whether genetic 

variation in each transcription factor contributes to variation in cichlid opsin expression, 
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they should shed additional light on what role trans-regulatory QTL play in the 

phenotypic divergence of closely related species. 

 

Materials and Methods 

Sampling 

We sampled 160 F2 progeny from a hybrid intercross of two African cichlids that 

express alternate opsin expression palettes.  Aulonocara baenschi expressed the middle-

wavelength-senesitive opsin set (SWS2B, RH2B, and RH2A) while Tramitichromis 

intermedius expresses the long-wavelength-sensitive opsin set (SWS2A, RH2A, and LWS). 

A preliminary study of opsin expression among 50 F2 from this cross was previously used 

to determine whether cis- or trans- acting loci contribute to cichlid opsin expression 

(Carleton et al. 2010).  The 160 F2 progeny chosen for this study were sampled across 

four F0 families. 

Opsin Gene Expression and Estimated Photoreceptor Sensitivity 

We measured opsin gene expression in all 160 F2 intercross progeny via RT-

qPCR following previously published protocols (Spady et al. 2006) [see also Chapters 2 – 

3].  Following RT-qPCR, we used the final expression results to estimate the wavelength 

of maximum absorbance for the single- and double-cone photoreceptors of each 

individual using the formula: 

Σ(ƒiλi) PSmax, C = 
Σƒi 
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where fi is the percent expression of the ith opsin in either single- or double-cones (C), and 

λi is the wavelength of maximum absorbance (λmax) of the ith opsin in O. niloticus (Spady 

et al. 2006) [see also Chapters 3 – 4].  We use these estimated photoreceptor sensitivities 

as a data reduction step, since together they summarize multivariate changes in the 

expression of six opsins into just two variables. 

Marker Selection and Genotyping 

To test for association between genetic variation at each candidate gene and 

estimated single- and double-cone sensitivities, we identified and genotyped a 

combination of simple sequence repeats (SSRs) and single nucleotide polymorphisms 

(SNPs) within or near each candidate gene.  We started by locating these genes in 

stickleback (Gasterosteus aculeatus) using the UCSC Genome Browser (Broad/gasAcu1 

assembly, Feb. 2006; http://genome.ucsc.edu/cgi-bin/hgGateway?db=gasAcu1/) to 

identify the location of each candidate gene in the stickleback genome (Table 6-1).  We 

then used these stickleback coordinates to search for any cichlid sequence from the same 

region using an assembly of cichlid (Nile tilapia, Oreochromis niloticus) sequences 

mapped to the stickleback genome (Soler et al. 2010) [see also 

http://www.bouillabase.org; site accessed June 2010].  We chose assembled cichlid 

sequences (nodes) that either contained the candidate gene or, if none were available, that 

were adjacent to the candidate gene in the stickleback assembly.  In this latter case, we 

only chose nodes that were located within ≤ 600 kb of the candidate gene.  This distance 

ensures that any recombination between the marker and candidate gene would be very 

unlikely (1 cM ≈ 750 kb in cichlids (Lee et al. 2005)), so long as synteny in the region is 

conserved.  Once we identified a cichlid node for a particular candidate gene, we then 
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searched it for SSR or SNP markers. 

To identify SSR markers, we searched each cichlid node for SSRs using the 

program Perfect Microsatellite Repeat Finder 

(http://sgdp.iop.kcl.ac.uk/nikammar/repeatfinder.html).  We then created PCR primers to 

amplify a 100 – 400 bp region surrounding the SSR in the program Primer3Plus 

(Untergasser et al. 2007).  We performed all SSR PCR reactions in 20 µl volumes (14.4 

µl dH2O, 2.0 µl 10X Reaction Buffer, 1.6 µl dNTP mix, 0.4 µl each Forward and Reverse 

primers, 0.2 µl Promega GoTaqTM DNA Polymerase, and 1.0 µl template DNA).  All 

forward primers were fluorescently labeled with 5-HEX or 6-FAM.  We initially 

performed PCR of the SSR on the F0 individuals only and genotyped the reactions using 

an ABI 3730 genetic analyzer and GeneMapper® software (Applied Biosystems).  If a 

polymorphism was found in the F0 individuals, we then moved on to the F2 intercross 

progeny. 

To identify SNP markers, we again used Primer3Plus to design PCR amplification 

and sequencing primers to resequence a small portion of the candidate gene (usually one 

or more introns).  We performed all SNP PCR reaction in 25 µl volumes (19 µl dH2O, 2.5 

µl 10X Reaction Buffer, 0.5 µl dNTP mix, 1.0 µl each Forward and Reverse primers, 0.5 

µl DyNAzymeTM II DNA polymerase, and 0.5 µl template DNA).  Following PCR, we 

gel-extracted the PCR product from a 1% agarose gel and cleaned the reaction using a 

QiaQuick Gel-Purification kit (Qiagen).  We then performed separate sequencing 

reactions for each forward and reverse primer using a BigDye® v3.1 Cycle Sequencing 

kit.  We performed all sequencing reactions in 10 µl volumes (2.5 µl dH20, 1.5 µl 5X 

sequencing buffer, 1.0 µl primer, 1.0 µl BigDye®, and 4.0 µl template DNA).  Following 
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cycle sequencing, we cleaned each reaction via sodium acetate/EDTA/ethanol 

precipitation.  We sequenced and genotyped these reactions using an ABI 3730 genetic 

analyzer and Sequencher® software (GeneCodes, Ann Arbor, MI).  Table 6-2 lists all 

primers used to amplify and genotype the SNP and SSR polymorphims used in this study. 

Statistical Analysis of Quantitative Trait Loci 

We searched for the presence of trans-acting QTL at each candidate gene using 

analysis of variance (ANOVA).  This method provides a simple test of association 

between the phenotypic variation in the expression of each opsin and genetic variation at 

the genetic markers linked to each candidate gene (Lynch and Walsh 1998).  We initially 

performed two ANOVAs for each polymorphism, one for both estimated single- and 

double-cone sensitivity.  If any one test was moderately significant (P < 0.15), we then 

repeated the analysis on the individual opsin genes expressed in that photoreceptor type 

(single-cone: SWS2B, SWS2A; double-cone: RH2B, RH2A, LWS).  Following all 

hypothesis testing, we used a Bonferroni-corrected threshold to determine the statistical 

significance of the final results.  For markers that were significantly associated with opsin 

expression following this correction, we estimated the dominance coefficient, k, of the 

alleles at each marker using the single-locus estimation equation outlined in Lynch and 

Walsh (1998, pp. 61-63). 

Additionally, for each transcription factor we started our statistical analysis by 

selectively genotyping 32 F2 that recapitulate the F0 phenotypes.  If a marker exhibited 

moderate association in this initial panel (p < 0.15), we then genotyped it in the 

remaining 128 F2.  For this reason, the number of individuals used across markers may 

vary considerably.  Also, we note that nearly all the candidate genes chosen for this study 
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map to different cichlid linkage groups than the QTL previously identified (LGs 5 and 

13; Carleton et al. (2010)), except RARγ-2 and VSX (Table 6-1).  VSX is located 

between two markers associated with opsin expression on LG 13, and RARγ-2 is located 

between two tandem arrays of opsins on LG 5.  One marker located near the SWS2-LWS 

opsin array on LG 5 has previously exhibited association with SWS2B, SWS2A, and 

RH2B opsin expression (Carleton et al. 2010). 

 

 

Results 

Quantitative Variation in Opsin Expression Among F2 Hybrids 

We found that opsin expression varied considerably among the F2 individuals 

sampled, except for the SWS1 opsin, which was not highly expressed in either the F2 or F0 

(Figure 6-1).  Of the remaining five opsins, the greatest variation was seen in the 

expression of the three double-cone opsins, RH2B, RH2A, and LWS.  Variation in RH2A 

and LWS expression varied continuously among the F2 progeny, while variation in 

SWS2B, SWS2A, and RH2B expression was generally skewed towards many observations 

with little or no expression (Figure 6-1).  Predicted single- and double-cone sensitivities 

estimated from these values were continuous and relatively normally distributed among 

the F2 individuals (Figure 6-1).  Interestingly, in many cases the single- and double-cone 

sensitivities we estimated for the F2 fall well outside of any values estimated for > 60 

wild-caught cichlid species from Lake Malawi (Hofmann et al. 2009) [see Chapter 2] 

(Figure 6-1C inset). 
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Genotypic Variation at Candidate Gene Marker Loci 

We genotyped SSR and SNP polymorphisms for 15 candidate genes in our F2 

intercross hybrids (Table 6-1); in total, we scored genotypes from > 1,300 genotyping 

reactions.  Polymorphisms at most markers were not differentially fixed between the F0 

individuals used.  Many loci were heterozygous in one or both species, resulting in loci 

that were not fully informative.  Where possible, we used the genotypes of the parents to 

attribute one allele to each species (Aulonocara or Tramitichromis).  If an allele was 

present in both parents, we labeled any offspring with that allele as missing data, since 

we could not determine whether it was homo- or heterozygous for the parental genotypes.  

Sorting the alleles of parents in this way reduced some of our statistical power to detect 

QTL at each marker when the locus was not fully informative (see degrees of freedom in 

Table 6-3), but was necessary to infer the directional effect of each species’ alleles on 

opsin expression. 

QTL Analysis at Candidate Gene Marker Loci 

Analysis of variance (ANOVA) of estimated single- and double-cone sensitivities 

among the genotypic classes at each marker revealed five candidates linked to potential 

quantitative trait loci (QTL) (Table 6-3).  One SSR marker located near RORβ was 

moderately associated with estimated single-cone sensitivity (F2, 32 = 2.467, p = 0.101).  

In contrast, four markers exhibited moderate association with estimated double-cone 

sensitivity.  These markers include SSRs near NCOA1, RARβ-2, RARγ-1, and RARγ-2 

(all p < 0.15) (Table 6-3).  Although no single marker achieved association with 

estimated single- or double-cone sensitivity at p < 0.05, we chose to use these five 

moderately-associated markers as candidates in an additional ANOVA with each of the 
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six opsins expressed in single- and double-cone photoreceptors.   

For the lone marker associated with estimated single-cone sensitivity, we 

compared mean opsin expression among genotypes for the SWS2B and SWS2A opsins 

only, since SWS1 was not highly expressed in the F2 progeny.  Prior to this analysis, we 

transformed the opsin expression values by raising SWS2B to the 1.308th power and 

SWS2A to the 0.45th power.  These transformations, estimated in the R package ‘car’ (Fox 

2008), help meet the ANOVA assumptions of normality and homogeneity of variances.  

After performing these transformations, we found that mean SWS2A expression differed 

significantly among the genotypic classes at the RORβ locus (F2, 32 = 3.949, p = 0.029), 

but mean SWS2B expression did not (F2, 32 = 2.582, p = 0.091).  Genotypic variation at 

the RORβ marker explained 19.8% of the variation in SWS2A expression, revealing the 

presence of a QTL of moderate affect in the area of this marker.  Alleles derived from 

Tramitichromis were associated with higher levels of SWS2A expression (Figure 6-2), 

consistent with observations from the adults of these species (Hofmann et al. 2009).  The 

single-locus estimate of the dominance coefficient, k, for these genotypes revealed that 

the Tramitichromis-derived alleles are slightly dominant (k = 0.327; see Figure 6-2); 

however, we note that the phenotypic midpoint we observe for AT individuals at this 

locus is not significantly different from that estimated for complete additivity (data not 

shown). 

For the four markers associated with estimated double-cone sensitivity, we 

compared mean opsin expression among genotypes for all three double-cone opsins 

(RH2B, RH2A, and LWS).  Prior to analysis, we transformed RH2B expression by raising 

it to the -7.643rd power, as estimated in the ‘car’ package; we did not transform RH2A or 
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LWS expression.  Once again, this transformation ensured that all ANOVA assumptions 

regarding the distribution of errors were met.  We found that mean opsin expression 

varied among the genotypes of only one marker, RARγ-2 (Table 6-4).  Genotypes at the 

marker located near RARγ-2 differed significantly in both mean RH2A (F2, 150 = 6.57, p = 

0.002) and LWS (F2, 150 = 5.794, p = 0.004) expression.  No candidate gene marker was 

significantly associated with RH2B expression (Table 6-4).  Genotypic variation at 

RARγ-2 explained 8.1% and 7.2% of the variation in RH2A and LWS opsin expression, 

respectively, revealing the presence of a minor-effect QTL in the region of this marker.  

Alleles derived from Tramitichromis contributed to an increase in RH2B expression, 

along with a nearly equal decrease in LWS expression (Figure 6-2).  This pattern is 

opposite to the direction observed in the parental species, where T. intermedius exhibits 

greater LWS expression than A. baenschi.  The single-locus estimate of k revealed that the 

Aulonocara-derived alleles were dominant in both cases (k = 0.364 and 0.684, 

respecitively; see figure 6-2), and that the phenotypic midpoints observed for AT 

individuals at both loci were significantly different from the midpoints estimated for 

complete additivity (data not shown).  The similarity of the RH2A and LWS results could 

be due to a genetic and developmental correlation between these two opsins as observed 

in other cichlids (Carleton et al. 2008; O'Quin et al. 2011) [see also Chapter 4], or 

possibly due to the use of a common regulatory switch to simultaneously enhance the 

expression of one opsin (RH2A) while repressing the other (LWS). 
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Discussion 

Trans-acting QTL and the genetic basis of cichlid opsin expression 

We tested 15 candidate trans-acting loci for linkage to opsin expression in 

African cichlids and found at least two trans-acting QTL.  One QTL is associated with 

SWS2A expression and is linked to the nuclear hormone receptor RORβ.  A second QTL 

is associated with both RH2A and LWS expression and is linked to the nuclear hormone 

receptor RARγ-2.  These two genes likely reside on cichlid linkage groups (LG) 12 and 5 

respectively (Table 6-1).  A previous survey of opsin expression in this cross identified 

two QTL linked to opsin expression, one trans-acting locus on LG 13, and one putative 

cis-acting locus on LG 5 near the SWS2-LWS opsin array (Carleton et al. 2010). 

Interestingly, a candidate homeobox gene (VSX) found within the QTL on LG 13 did not 

exhibit association with opsin expression in this study (Table 6-3), possibly because of an 

inversion in this region relative to stickleback (Carleton et al. 2010).  Taken together, our 

current and previous studies reveal that the genetic basis of cichlid opsin expression is 

oligogenic and may be dominated by trans-acting QTL. 

Both RORβ and RARγ-2 are involved in retinoic acid reception and signaling.  

Retinoic acid is an important signaling hormone in vertebrates and is known to affect 

numerous developmental and adult phenotypes (Lammer et al. 1985; Durston et al. 1989; 

Papalopulu et al. 1991); additionally, retinoic acid has also been shown to regulate the 

expression of > 500 genes (Balmer and Blomhoff 2002).  The nuclear hormone receptors 

RORβ and RARγ-2 both contain ligand- and DNA-binding domains that allow them to 

bind promoter elements in response to retinoic acid signaling (Evans 1988).   

Importantly, one of these candidate genes, RORβ, has been directly associated 
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with vertebrate opsin expression in previous studies.  RORβ activates SWS expression in 

mice in combination with the cone-rod homeobox gene, CRX (Srinivas et al. 2006).  In 

our study, genotypic variation linked to RORβ is associated with greater SWSA 

expression among the F2 with Tramitichromis-derived alleles (Figure 6-2).  

Unfortunately, our previous survey of transcription factor binding sites in the opsin 

promoters of cichlids did not survey the RORβ gene [Chapter 5].  However, this previous 

study did survey other transcription factors, including thyroid hormone beta (THRβ) and 

CRX, and found two and five binding sites for these two factors upstream of the SWS2A 

opsin in another Lake Malawi cichlid, Metriaclima zebra [see Chapter 5, Figure F-X].  

Srinivas et al. (2006) demonstrated that RORβ binds the response element 5’-AGGTCA-

3’, which is also a core motif of the thyroid hormone response element (Umesono et al. 

1991).  Thus, it is reasonable to conclude that the THRβ binding sites previously found 

upstream of the cichlid SWS2A opsin also serve as RORβ binding sites.  Therefore, it is 

plausible that RORβ could regulate SWS2 opsin expression in cichlids.   

In contrast, RARγ-2 has not previously been associated with opsin expression in 

vertebrates, though its close paralogs THRβ and RXRγ have (Roberts et al. 2005).  In 

mice, THRβ and RXRγ suppress SWS opsin expression and promote MWS (RH2/LWS) 

opsin expression (Roberts et al. 2005; Swaroop et al. 2010).  Fitting with this pattern, we 

find that genotypic variation linked to RARγ-2 is associated with RH2 and LWS 

expression (Table 6-4; Figure 6-2).  Additionally, our previous analysis of transcription 

factor binding sites upstream of the cichlid opsins found two RARγ binding sites 

upstream of the RH2Aβ opsin and one upstream of the LWS opsin.  Thus, it is again 

plausible that RARγ-2 could regulate opsin expression in cichlids.  Although RARγ-2 has 
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not itself been associated with opsin expression in vertebrates, we note that considerable 

functional redundancy exists among the various RAR, THR, and RXR gene families and 

their paralogs.  These transcription factors often work synergistically as heterodimers to 

mediate gene expression in response to retinoic acid signaling (Kastner et al. 1994; Chiba 

et al. 1997), and both the RARs and RXRs respond to the ligand all-trans retinal (Repa et 

al. 1993). 

Mosaic Pleiotropy, Gene Duplication, and Cichlid Vision 

Retinoic acid is an important modulator of vertebrate morphogenesis, affecting 

development of limbs, the central nervous system, and gene expression (Lammer et al. 

1985; Durston et al. 1989; Papalopulu et al. 1991); additionally, retinoic acid and is also 

known to influence photoreceptor development and opsin expression (Dräger and 

McCaffery 1997; Hyatt and Dowling 1997).  Given the important developmental role for 

retinoic acid and its receptors, it is perhaps unsurprising that the various RAR and RXR 

genes exhibit mosaic pleiotropy.  Mice mutant for multiple RAR or RXR deletions 

exhibit severe developmental defects in many different tissues and systems, including the 

eye, skull, lungs, and urogenital tract (Lohnes et al. 1994; Luo et al. 1996).  But 

significantly, mutations in individual RAR or RXR genes often do not produce these 

results, revealing some level of functional redundancy in these genes (Li et al. 1993; 

Lufkin et al. 1993; Kastner et al. 1994; Cammas et al. 2010).  We feel this observation is 

significant because one argument often used to support a prominent role for cis-

regulatory mutations in phenotypic evolution is that, through modularity, they are able to 

limit the negative consequences of mosaic pleiotropy (Stern 2006; Carroll 2008).  In 

contrast, these same authors argue that mutations within widely-expressed transcription 
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factors will uniformly change the function of that gene in many developmental stages and 

tissues, while also possibly altering the expression of hundreds of genes (Carroll 2008).  

Therefore, mutations in such mosaically pleiotorpic genes are expected to have 

substantial negative consequences for organismal fitness.  One mechanism around this 

problem, however, is gene duplication (Hoekstra and Coyne 2007).  Through duplication, 

paralogous genes are free to evolve novel functions as long as functionally redundant 

copies still exist in the genome (Ohno 1970; Lynch and Conery 2000).  Therefore, if 

genotypic variation within RARγ-2 does in fact contribute to phenotypic variation in 

cichlid opsin expression, then this observation would support the model of phenotypic 

divergence through the duplication of core developmental genes.  Further, we note that 

the RARs can form multiple isoforms (Giguère et al. 1990; Kastner et al. 1990; Leroy et 

al. 1991; Giguère et al. 1994).  In addition to gene duplication, alternative splicing 

provides yet another mechanism whereby the negative consequences of mosaic 

pleiotropy are reduced for functionally conserved proteins (Hoekstra and Coyne 2007). 

Future Analyses of Cichlid Opsin Expression with RADseq 

However, additional work remains before the divergence of cichlid opsin 

expression can be confidently attributed to the evolution of transcription factor paralogs.  

In particular, RARγ-2 may reside on the same linkage group as two of the opsin gene 

arrays and one previously identified opsin expression QTL.  In the medaka genome 

assembly (Oryzias latipes: NIG/UT MEDAKA1/oryLat2 Oct. 25, accessed March 2011), 

RARγ-2 is located nearly equidistant between the two opsin arrays (RH2B-RH2A and 

SWS2A-SWS2B-LWS), suggesting that the same may be true for cichlids and LG 5.  But 

this same region is poorly assembled in the stickleback genome, and the RARγ-2 gene is 
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placed on an unordered contig.  Thus, the position of RARγ-2 in the cichlid genome is 

currently uncertain.  The construction of a larger genetic map of these genes and 

additional markers should solve this problem, and will help determine whether the QTL 

linked to RARγ-2 is unique from the QTL previously detected on LG 5.   

Additionally, since many of the markers used in this study are merely SSRs found 

within close genetic proximity to the candidate genes of interest, it is not certain that 

genetic variation actually exists in many of the genes analyzed, including RORβ and 

RARγ-2.  Therefore, if these genes do harbor causative alleles for cichlid opsin 

expression, it will be necessary to sequence these in search of nonsynonymous or 

regulatory mutations that may alter their function in a diverse array of cichlids.  

Alternatively, these candidates may merely reside in linkage to the true causative alleles 

which reside within or upstream of other genes.  Thus, a larger-scale analysis of genome-

wide polymorphisms will be necessary to determine whether these candidate transcription 

factors truly form peaks of association with cichlid opsin expression.  Finally, some 

additional paralogs of the candidate transcription factors chosen here remain to be tested.  

Specifically, we left untested the genes PNR-2, RXRα, RXRβ-1 and 2, RORα, VSX-2, 

and CRX-2 (where the number following each gene denotes a duplicated copy, not an 

isoform).  Thus, additional QTL for cichlid opsin expression may exist at these and other 

loci, but remain to found. 

Fortunately, much of this follow-up work is currently underway.  We are 

sequencing restriction site associated DNA markers (RADseq, see Biard et al. (2008)) in 

all 160 F2 intercross progeny used in this study.  When complete, we expect to genotype 

over 25,000 ~100 bp fragments of the cichlid genome, yielding ~2,500 polymorphic 
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SNPs.  The linkage map produced from these markers will be useful for determining the 

position of RARγ-2 relative to the opsin genes, and the resulting QTL analysis will 

determine how broad are the peaks of association surrounding each transcription factor.  

Broader surveys of these markers in all 160 progeny may also increase our statistical 

power to detect an association between these candidates and the other markers analyzed. 

 

Conclusions 

Phenotypic variation may evolve through multiple molecular genetic mechanisms, 

including mutations to protein-coding genes, cis-regulatory sequences, and trans-

regulatory factors (Hoekstra and Coyne 2007; Wray 2007; Carroll 2008).  Although most 

work on regulatory mutations have focus on cis-regulatory alleles, our analysis of opsin 

expression in a hybrid cross of African cichlids suggest that trans-regulatory divergence 

is also an important source of genetic variation contributing to phenotypic divergence.  In 

particular, in combination with a previous study (Carleton et al. 2010), we find evidence 

that at least two trans-regulatory factors underlie opsin gene expression differences in 

two cichlid species.  In this study, we find evidence that links the transcription factors 

RORβ and RARγ-2 to trans-regulatory variation in cichlid opsin expression.  This 

observation suggests that retinoic acid signaling may be an important factor in 

determining cichlid opsin expression.  Further, the observation that RARγ-2 may be 

linked to to opsin expression offers preliminary but intriguing evidence that mosaic 

pleiotropy in trans-regulatory factors may be overcome through gene duplication.  

However, additional work remains before this assertion can be confidently made in the 

current study.  But given that past and present work has shown that cichlid photoreceptor 
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sensitivity and opsin expression may be altered by mutations within protein-coding genes 

(Spady et al. 2005; Hofmann et al. 2009; Smith and Carleton 2010), cis-regulatory alleles 

(Carleton et al. 2010) [see also Chapter 5], and also trans-regulatory factors (Carleton et 

al. 2010) [and this Chapter], we believe that the cichlid system may be ideal for 

dissecting the distinct and shared contributions that these different mutational 

mechanisms make to phenotypic evolution. 
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Tables 

Table 6-1. Candidate trans-regulatory factors examined in Chapter 6. 
 
Candidate Symbol Opsin Exp1 ENSGACG ID2 Cichlid LG 

Cone-rod homeobox gene CRX RH1, SWS 00000005793 14 

Nuclear receptor coactivator 1 NCOA1 - 00000006727 15 

Photoreceptor-specific nuclear receptor PNR-1 RH1 00000017060 1 

Retinoic acid receptor alpha RARα - 00000005297 4 

Retinoic acid receptor beta 1 RARβ-1 - 00000007999 22 

Retinoic acid receptor beta 2 RARβ-2 - 00000012955 11 

Retinoic acid receptor gamma 1 RARγ-1 - 00000009372 20 

Retinoic acid receptor gamma 2 RARγ-2 - 00000000612 5 

RAR-related orphan receptor alpha RORα SWS, RH2, LWS 00000010672 7 

RAR-related orphan receptor beta RORβ SWS2, RH1 00000011556 12 

Retinoid X receptor gamma RXRγ SWS 00000011685 23 

Thyroid hormone receptor alpha 1 THRα-1 - 00000003766 8 

Thyroid hormone receptor alpha 2 THRα-2 - 00000006540 4 

Thyroid hormone receptor beta THRβ RH2, LWS 00000007996 22 

Visual system homeobox gene 1 VSX1 - 00000012138 13 
1 These transcription factors have been shown to regulate the expression of opsin genes in 

various systems, including mice and zebrafish (see Introduction for references) 
2 ID of the stickleback gene in the Ensemble genome browser 
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Table 6-2.  Primers used to amplify and genotype polymorphisms in this study. 
 
Gene Type Forward Primer (5’—3’) Reverse Primer (5’—3’) 

CRX SSR TAGCTTAGCAGGGGAGAGCA CTGGTGGACAAGATGAGCAG 

NCOA1 SSR GCAGCAGAAGCCATGTAGGT CAACAGGAAACCAACTTTACCAG 

PNR-1 SSR AACACGCAAATCAAGTTCC TGCCCTTTTTGAACGTTTTT 

RARα SSR TCATTGCTCTGGATCACACC TGCGTGACTGGAATGAAGAG 

RARβ-1 SSR GGCTGATGGCCGATATTAAA TCCCCAGCAACTTTCTTGTT 

RARβ-2 SSR GGAGTCCCAAAACCAGATCA CGCCTGGATTTTCATTGTTT 

RARγ-1 SSR GAGCCCTGGGTGTTTTAACTT GAAGGCCAGCATTTTCTTGA 

RARγ-2 SSR GAAGAAGCAACCCACAGAGC ATCCCTAAACCTCCCACACC 

RORα SSR GTTGTCCCTGCAAGCTCCTAT TTGTCACCAGGCACATCATT 

RORβ SSR TCCATAGAAACACGCACTAACA TGCAGAGGTTGAAGTGACAAA 

RXRγ SSR GAGCCCAAATTGTGAGGAAA TCCAGAACCAAAGAGCCAAA 

THRα-1 SSR GCGCGGAATTCGACGATTCA- 

GAAGAACCTCCA 

GCGCGCAAGCTTCTGAGCAT- 

TGGTGTGACGAT 

THRα-2 SSR GGCTGAGCACTGTTGCATAA ACACAGACGAACAGCGTGAT 

THRβ IN/DEL CCGCATCTGTTGTTTTTTCAT ATGAAGAACCCGTGTCAAGC 

VSX1 SNP GCGGAGTTGAGGATGGACT AGCTGGAGGAGCTGGAGAA 
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Table 6-3.  Results of ANOVA comparing mean single- and double-cone sensitivity 
among genotypic classes at 15 candidate trans-regulatory loci. 
 

Single cone Sensitivity Double-cone Sensitivity 
Candidate df 

F-value P-value F-value P-value 

CRX 2, 23 0.225 0.802 0.342 0.714 

NCOA1 1, 148 0.865 0.354 2.822 0.085** 

PNR-1 2, 28 1.397 0.264 0.884 0.424 

RARα 2, 61 1.378 0.260 1.482 0.235 

RARβ-1 2, 107 0.670 0.514 1.467 0.235 

RARβ-2 2, 102 1.051 0.353 2.096 0.128** 

RARγ-1 2, 143 0.469 0.627 1.952 0.146** 

RARγ-2 2, 150 0.153 0.858 2.060 0.131** 

RORα 2, 16 1.538 0.245 0.670 0.525 

RORβ 2, 32 2.467 0.101** 1.559 0.226 

RXRγ 2, 112 0.229 0.796 1.896 0.155 

THRα-1 2, 63 0.522 0.596 1.515 0.228 

THRα-2 2, 145 0.465 0.629 0.266 0.767 

THRβ 2, 65 1.082 0.345 0.967 0.386 

VSX1 2, 55 0.417 0661 0.010 0.990 

** These results are moderately significant at p < 0.15; we followed these results with 
ANOVA comparing the mean expression of individual opsins (see Results and Table 
6-4). 
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Table 6-4.  Results of ANOVA comparing mean RH2B, RH2A, and LWS opsin 
expression among genotypic classes at four candidate trans-regulatory loci. 
 

RH2B RH2A LWS 
Candidate df 

F-value P-value F-value P-value F-value P-value 

NCOA1 1, 148 0.339 0.561 0.015 0.902 1.544 0.216 

RARβ-2 2, 102 0.419 0.659 0.733 0.483 1.883 0.157 

RARγ-1 2, 143 0.439 0.651 0.051 0.950 1.213 0.300 

RARγ-2 2, 150 0.400 0.671 6.57 0.002** 5.794 0.004** 

** These results are significant at the Bonferroni-corrected significance threshold of 
0.0042 (α = 0.05/12).   
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Chapter 7: 

The Locus of Evolution from a Cichlids’ Eye View: 

Summary and Conclusion to Dissertation 

 
One goal of evolutionary genetics is to elucidate the specific molecular 

genetic mechanisms that contribute to the evolution of phenotypes and the divergence 

of new species.  These mechanisms include mutations within protein-coding genes as 

well as mutations within both cis- and trans-regulatory sequences (see Figure 1-1) 

[Chapter 1].  Although numerous studies have individually linked each of these 

molecular mechanisms to the evolution of specific traits (e.g., Rost et al. (2004), 

Hoekstra et al. (2006), Tishkoff et al. (2007), Gompel et al. (2004), Jones et al. 

(1988), Yvert et al. (2003)), none have examined how these factors collectively 

influence the evolution of a single trait.  Such a comparison would reveal how these 

molecular genetic mechanisms may or may not differ in their contribution to 

phenotypic evolution.  This has been the overarching goal of my dissertation.  In this 

final chapter, I summarize the main conclusions from this dissertation and synthesize 

them into one final result, while also exploring the potential for future work.  The 

results of this dissertation reveal that the molecular genetic basis of phenotypic 

evolution can be complex, involving mutations in protein-coding, cis-regulatory, and 

trans-regulatory DNA; and that mutations in these different types of DNA may make 

distinct contributions to phenotypic evolution.  Future work will need to functionally 

validate the role of the putative regulatory polymorphisms identified here, and expand 

them to more detailed analyses within pairs of cichlid populations and species. 
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Overview of Dissertation Results 

Chapters 2 – 4 (Hofmann et al. 2009; O'Quin et al. 2010; O'Quin et al. 2011) 

of this dissertation examined the diversity and evolutionary significance of opsin 

expression and sequence changes among nearly 100 cichlid species from Lakes 

Tanganyika, Malawi, and Victoria.  In Chapters 2 and 3 (Hofmann et al. 2009; 

O'Quin et al. 2010), we found that evolutionary changes in opsin expression affected 

every single opsin gene among cichlids in Lakes Tanganyika and Malawi.  These 

changes contributed to large (30 – 100 nm) predicted shifts in retinal sensitivity 

(Figures 2-2 and 3-2) [Chapters 2 and 3].  We also found that expression of the SWS1 

opsin was correlated with divergence in foraging preferences among cichlids in these 

two lakes (Figures 2-3 and 3-4) [Chapters 2 and 3].  In combination with evidence 

from cichlids and other teleost fish that SWS1 expression can increase foraging 

success on zooplankton, these results suggests that at least some evolutionary changes 

in cichlid opsin expression are due to natural selection.  Ancestral character state 

reconstruction revealed that the many similarities in opsin expression observed 

among cichlids in Lakes Tanganyika and Malawi have evolved independently (Figure 

3-3) [Chapter 3], and in Chapter 4 (O'Quin et al. 2011) we show that this independent 

evolution likely involved repeated changes to cichlid development (Figure 4-1) 

[Chapter 4].  In contrast, evolutionary changes in opsin expression among cichlids 

from Lake Victoria primarily affected the SWS2B (violet-sensitive) opsin only (Figure 

2-2) [Chapter 2].  However, these changes were also correlated with the ecology 

(ambient light intensity), once again suggesting that some opsin expression patterns 
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have evolved due to natural selection (Figure 2-3) [Chapter 2].  Finally, when we 

compared evolutionary changes in the regulation and protein-coding sequence of each 

opsin, we found that regulatory changes generally affect all opsins, while mutations 

within protein-coding sequences primarily affect opsins sensitive to the extremes of 

the visible light spectrum (SWS1 [ultraviolet] and LWS [red]) (Figure 2-6; Table S3-4) 

[Chapter 2; Appendix 3]. Collectively, these results confirm the important role that 

regulatory divergence can play in the evolution of visual sensitivity among African 

cichlids—a point that was previously underappreciated (Carleton 2009; Hofmann and 

Carleton 2009). 

In Chapters 5 and 6, we examined the genetic factors responsible for 

evolutionary changes in cichlid opsin expression.  In Chapter 5, we performed a 

bioinformatic analysis of non-coding DNA surrounding the opsin genes of African 

cichlids in order to indentify putative cis-regulatory mutations that contribute to the 

evolution of opsin expression.  We found that two cichlid species, Metriaclima zebra 

and Oreochromis niloticus, had diverged considerably in the identity and number of 

transcription factor and microRNA binding sites at two non-coding elements, five 

promoter sequences, and two 3’ untranslated regions (Table 5-3) [Chapter 5].  We 

then resequenced several of these divergent sequences in a panel of 18 cichlids from 

Lake Malawi that differ in opsin gene expression.  This association mapping panel 

revealed three single nucleotide polymorphisms upstream of the SWS2A, RH2B, and 

LWS opsins that were moderately correlated with divergence in cichlid opsin 

expression (Table 5-6) [Chapter 5].  Combined with the results of a previous 

quantitative genetic analysis of opsin expression in cichlids (Carleton et al. 2010), 
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these results reveal that cis-regulatory mutations likely contribute to variation in the 

expression of multiple cichlid opsins.  In Chapter 6, we used an experimental cross of 

two Lake Malawi cichlids that differ in their patterns of opsin expression to determine 

what role mutations linked to fifteen transcription factors play in the trans-regulatory 

control of the opsins.  We found that genetic variation linked to the transcription 

factors ROR! and RAR"-2 was significantly correlated with variation in the 

expression of the SWS2A, RH2B, and LWS opsins (Figure 6-2) [Chapter 6].  

Combined once again with the results of a previous quantitative genetic analysis of 

opsin expression in these species (Carleton et al. 2010), these results reveal that 

mutations in at least two trans-regulatory factors also contribute to variation in cichlid 

opsin expression.  

 

Synthesis 

Taken together with previous studies, the results of my dissertation reveal that 

mutations in protein-coding, cis-, and trans-regulatory DNA all contribute to the 

evolution of color vision in cichlids.  Evidence for each mechanism, as well as the 

opsins they affect, is summarized in Table 7-1.  Below, I examine the identity and 

effect of specific protein-coding, cis-, and trans-regulatory mutations, and their 

overall impact on cichlid vision. 

Protein-coding mutation 

Protein-coding mutations predominately alter sensitivity of the SWS1 and 

LWS opsins in cichlids.  Individual mutations in the retinal binding pocket of these 
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absorbance (λmax) of these opins (Yokoyama 2008), collectively shifting cichlid 

visual sensitivities by ~ 15 nm (Carleton et al. 2006; Jordan et al. 2006; Carleton 

2009).  One possible explanation for the relatively limited scope of protein-coding 

mutations in cichlids is that cichlids have no additional opsin paralogs sensitive to 

ultraviolet and red light.  For this reason, regulatory mutations affecting these two 

opsins cannot alter sensitivity to these regions by replacing the SWS1 or LWS opsins 

with opsins sensitive to shorter or longer wavelengths.  Therefore, mutation to the 

SWS1 and LWS opsins themselves is the only path left open to generate evolutionary 

change in ultraviolet and red sensitivity.  Regulatory mutations that would increase 

the relative expression of the existing SWS1 or LWS opsins could increase overall 

sensitivity to ultraviolet and red light, but would not make the organism sensitive to 

shorter or longer wavelength light (e.g., < 360 nm or > 561 nm).  Such a change could 

only be achieved by mutations to the opsins themselves or by replacing the 

chromophore 11-cis retinal with 11-cis-3, 4 didehydroretinal.  Among cichlids in 

Lake Victoria, several mutations within the LWS opsin protein have been 

demonstrated to increase sensitivity to longer wavelength red light (Terai et al. 2002; 

Terai et al. 2006; Seehausen et al. 2008) (see Table S2-6). 

Cis-regulatory mutation 

Mutations in cis-regulatory sequences contribute to variation in the expression 

of opsins sensitive to the middle portion of the visible light spectrum: SWS2B (violet), 

SWS2A (blue), RH2B (blue-green), and possibly LWS (red) as well (Table 7-1).  Cis-

regulatory mutations should affect the expression of only one or a few tightly linked 

opsins; therefore, the magnitude of such changes in cichlids is possibly limited to 
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incremental changes in the relative sensitivity to specific wavelengths of violet 

through green light (400 – 530 nm).  In general, cis-regulatory mutations should only 

alter the expression or one or a few opsins.  For this reason, mutations in cis-

regulatory sequences are most likely responsible for the adaptive evolution of 

SWS2B/SWS2A (Hofmann et al. 2009) [Chapter 2] and RH2A/LWS (Carleton et al. 

2005a) opsin expression found in cichlids from Lake Victoria, and possibly also the 

adaptive evolution of SWS1 opsin expression found in cichlids from Lake Malawi and 

Tanganyika (Hofmann et al. 2009; O'Quin et al. 2010) [Chapters 2 and 3].  If 

mutations in cis are responsible for these changes, then the best candidates for the 

genetic control of these opsins are found within those divergent non-coding regions 

and putative cis-regulatory polymorphisms we identified in Chapter 5.  For 

SWS2B/SWS2A expression, these candidates include the two divergent conserved 

non-coding elements (CNEs 6 and 7) and one insertion-deletion polymorphism 

(SWS2A-217) found upstream of the SWS2A opsin, as well as the divergent 3’-UTR 

region found downstream of the SWS2B opsin (Tables 5-3 and 5-6) [Chapter 5].  For 

RH2A/LWS expression, the polymorphism found upstream of the LWS locus control 

region (CNE10-570) in Chapter 5 is also an excellent candidate (Figure 5-4; Table 5-

3).  Finally, for SWS1 expression, the divergent promoter region and conserved non-

coding element (CNE 3) we identify surrounding the SWS1 opsin are also good 

candidates (Table 5-3; Figure 5-3) [Chapter 5]. 

Trans-regulatory mutation 

Finally, trans-regulatory mutations are associated with divergence in the 

expression of every opsin in cichlids except RH2B (Table 7-1).  Specifically, one 
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trans-regulatory factor on cichlid linkage group (LG) 13 is associated with 

divergence in SWS2B and SWS2A expression in the same hybrid cross used in 

Chapter 6, and SWS1 and SWS2B expression in another cross (Carleton et al. 2010).  

A second trans-regulatory factor on LG 4 is associated with divergence in RH2A and 

LWS opsin expression in this latter cross as well (Carleton et al. 2010).  In Chapter 6, 

we identify a third trans-regulatory factor on cichlid LG 12 that is associated with 

divergence in SWS2A expression.  A fourth potential trans-regulatory factor on LG 5 

is associated with divergence in RH2A and LWS opsin expression.  However, the 

position of this last trans-regulatory factor between two arrays of cichlid opsins 

means that we cannot yet determine whether its signal is part of a distinct trans-

regulatory QTL or the existing cis-regulatory QTL previously identified on LG 5.   

Since trans-regulatory factors are presumably diffusible transcription factors 

or non-coding RNAs that can regulate the expression of multiple genes, it is 

unsurprising that all putative trans-regulatory factors we identify are associated with 

the expression of multiple unlinked opsins.  Within these genetic crosses, we also find 

that the individual trans-regulatory factors each explain a larger portion of the 

variance in opsin expression than the individual cis-regulatory factors or the potential 

trans-regulatory factors on LG 5.  The trans-regulatory factors on LG 4, 12, and 13 

each explain 16 – 33% of the variation in expression of the SWS1, SWS2B, SWS2A, 

RH2A, and LWS opsins (Carleton et al. 2010) [Chapter 6].  In contrast, the 

quantitative trait loci on LG 5 each explain 7 – 13% of the variation in the expression 

of the SWS2B, SWS2A, RH2B, RH2A, and LWS opsins.  This difference in the 

variance of opsin expression explained by trans- (LG 4, 12, and 13) and putative cis- 
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(LG 5) regulatory factors is statistically significant (t-test for unequal variances: t7.774 

= 4.469, p = 0.002) (Figure 7-1).  This differences is perhaps biologically significant 

as well, since it suggest that trans-regulatory factors contribute more to the 

divergence in cichlid opsin expression than cis-regulatory factors, an observation that 

is contrary to the prevailing view that cis-regulatory mutations will explain much of 

the phenotypic diversity in animal form and other phenotypes. 

 

Future Directions 

Although this dissertation has shed light on the evolutionary and genetic basis 

of visual system and opsin expression divergence among African cichlids, much work 

remains to be done.  Most importantly, perhaps, we should validate the candidate 

regulatory regions identified in Chapters 5 and 6 through additional fine-mapping and 

functional analyses in transgenic cichlids or cell lines.  Pinpointing the specific 

mutations responsible for regulatory changes in cichlid opsin expression will allow us 

to address multiple unresolved questions regarding the evolutionary genetics of this 

trait. 

First, for example, one could examine the causative loci for molecular 

signatures of natural selection.  This analysis would reveal whether variation in the 

expression of opsins other than SWS1, SWS2B, and LWS may be due to natural 

selection.  It is unclear whether changes in the expression of all opsins will be 

adaptive, since many opsins exhibit expression patterns that are developmentally 

(Carleton et al. 2008; O'Quin et al. 2011) and genetically (Carleton et al. 2010) 

correlated.  These correlations could indicate that evolutionary changes in some 
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opsins are simply a passive result of their genetic and developmental correlation with 

SWS1, SWS2B, or LWS expression. 

Second, one could also genotype the causative loci in additional genetic 

crosses or cichlid lineages.  These analyses would reveal whether the repeated 

evolution of cichlid opsin expression is governed by the same loci in different cichlid 

species.  Some recent analyses of parallel evolution have revealed that unique 

mutations often underlie similar phenotypic changes, even when these mutations 

affect the same gene (Prud'homme et al. 2006).  However, it is unclear whether this 

will be the case for cichlid opsin expression.  A recent genetic analysis of 

pigmentation evolution in Lake Malawi’s cichlids revealed that a single hyplotype at 

the Pax7 locus contributes to pigmentation differences in numerous cichlid genera, 

and that this haplotype arose only once (Roberts et al. 2009); therefore, it is unclear 

whether the same will be true for the loci that control opsin gene expression.  One 

could also genotype each causative locus in pairs of cichlid populations, species, and 

genera.  This analysis would reveal whether protein-coding, cis-regulatory, or trans-

regulatory mutations contribute to the earliest stages of visual system divergence in 

cichlids.  Carroll (2008) proposed that cis-regulatory mutations should contribute to 

the earliest stages of regulatory divergence; however, other authors have found that 

cis-regulatory mutations are often accompanied by mutations in trans-, possibly due 

to compensatory evolution (Wittkopp et al. 2004).  An analysis of cichlid species 

pairs at different levels of evolutionary and phenotypic divergence could provide a 

definitive test of whether one mutation type or the other—or perhaps all three—

govern the earliest stages of phenotypic evolution and speciation. 
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Third, in order to further dissect how all three molecular genetic mutations 

contribute to the evolution of a single phenotype, future work would do well to focus 

on the protein-coding and regulatory evolution of the LWS opsin.  The results of this 

dissertation and other studies reveal that sensitivity to red light can be tuned by 

adaptive protein-coding (Terai et al. 2006) [Chapter 1] and regulatory changes in 

cichlids (Carleton et al. 2005a), including mutations both in cis and trans to LWS 

(Carleton et al. 2010) [Chapters 5 and 6] (Table 7-1).  A focused study of this opsin 

would provide an unparalleled system in which to address the evolutionary genetics 

of mutation and adaptation.  For example, to determine how cis- and trans-regulatory 

mutations individually contribute to variation in LWS expression and double-cone 

photoreceptor sensitivity, one could cross two cichlid populations or species that vary 

in LWS expression.  It is possible to estimate the relative impact that these two 

regulatory mutations make to phenotypic divergence in LWS opsin expression and 

double-cone λmax by then comparing the relative expression of the LWS opsin and the 

λmax of long-wavelength-sensitive photoreceptors with the allele-specific expression 

of candidate regulatory alleles in the F0 and F1 (see Wittkopp et al. 2004).  After 

dissecting the contribution that cis- and trans-regulatory mutations make to 

phenotypic divergence, heterologous expression essays can be used to measure what 

impact any LWS protein-coding mutations also segregating between these species 

have on double cone λmax.  These exciting functional analyses would allow us to 

quantify the contribution that different coding and regulatory mutations make to the 

evolution of a single phenotype. 
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Conclusion 

If one goal of evolutionary genetics is to identify the “locus of evolution” (Hoekstra 

and Coyne 2007), then it is clear that this goal must now be expanded to include 

multiple “loci of evolution”.  Analysis of the evolution, development, and genetics of 

opsin expression in cichlids reveals that adaptive phenotypic evolution can be 

governed by multiple loci.  And even for this relatively oligogenic trait, we find that 

these loci can include mutations of different types—protein-coding, cis-regulatory, 

and trans-regulatory.  Future work in evolutionary genetics should aim to identify 

multiple loci underling complex traits, and elucidate the contributions that each 

makes to phenotypic divergence.   
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Tables 

Table 7-1.  Summary of molecular genetic factors that contribute to visual sensitivity 
evolution among African cichlid fishes.   
 
Mutation SWS11 SWS2B SWS2A RH2B RH2A LWS 

Protein-coding 
 

[2, 3, 7] 
- - - - 

 
[2, 8] 

Cis-regulatory2 - 
 
[1] 

 
[1, 5] 

 
[1, 5] 

- 
 
[5] 

Trans-regulatory 
 
[1]  

(LG 13) 

 
[1]  

(LG 13) 

 
[1, 6]  

(LGs 12,13) 

- 
 

[1, 6] 
(LGs 4, 5) 

 
[1, 6] 

(LGs 4, 5) 

Adaptive Exp. 
 

[2, 3] 
 
[2] 

- - - 
 
[4] 

1 Summary Key:  
1: Carleton et al. (Carleton et al. 2010) 
2: Chapter 2 (Hofmann et al. 2009) 
3: Chapter 3 (O'Quin et al. 2010) 
4: Carleton et al. (Carleton et al. 2005a) 
5: Chapter 5 
6: Chapter 6 
7: Smith and Carleton (2010) 
8: Seehausen et al. (2008) 

2 All putative cis-regulatory mutations identified include QTL on LG5, as well as all 
polymorphisms upstream of the SWS2A, RH2B, and LWS opsins (also on LG5) 
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Figures 

Figure 7-1.  Putative trans-regulatory factors explain more variation in cichlid opsin 
expression than putative cis-regulatory factors.  The coefficient of determination (R2) 
for QTL on linkage groups 4, 5, and 13 are recorded from Carleton et al. (2010); 
others on linkage groups 12 and 5 are from Chapter 6. 
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Appendices 
 

Appendix 1:  

Supplemental Tables and Figures from Chapter 2 
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Supplementary Table S2-3.  Results of phylogenetic ANOVA comparing relative 
opsin expression and single and double cone sensitivity to foraging and habitat 
preference among cichlids from Lake Malawi using three phylogenetic hypotheses. 
 

Habitat  Foraging Tree Opsin/Cone F4, 45 p-value  F4, 45 p-value 
Mitochondrial SWS1 2.229 0.456  7.647 0.007** 

 SWS2B 0.332 0.977  1.234 0.598 

 SWS2A 1.468 0.656  1.957 0.367 

 RH2B 4.294 0.066  3.323 0.141 

 RH2A 3.127 0.214  0.755 0.810 

 LWS 4.345 0.061  1.147 0.636 

 Single Cone 2.179 0.493  9.065 0.002** 

 Double Cone 4.084 0.085  2.067 0.363 

Genera-level SWS1 2.229 0.344  7.647 0.034 

 SWS2B 0.332 0.951  1.234 0.761 

 SWS2A 1.468 0.513  1.957 0.583 

 RH2B 4.294 0.064  3.323 0.310 

 RH2A 3.127 0.162  0.755 0.882 

 LWS 4.345 0.056  1.147 0.789 

 Single Cone 2.179 0.343  9.065 0.012** 

 Double Cone 4.084 0.077  2.067 0.531 

Star-level SWS1 2.229 0.497  7.647 0.037 

 SWS2B 0.332 0.976  1.234 0.760 

 SWS2A 1.468 0.713  1.957 0.566 

 RH2B 4.294 0.109  3.323 0.364 

 RH2A 3.127 0.305  0.755 0.875 

 LWS 4.345 0.099  1.147 0.763 

 Single Cone 2.179 0.506  9.065 0.010** 

 Double Cone 4.084 0.104  2.067 0.569 

P-values following by ** are significant following Bonferroni correction for 8 
hypothesis tests at an experiment-wise error rate of 10% (α = 0.10/8 = 0.0125) 
(Quinn and Keough 2002). 
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Supplementary S2-4. Location, depth, Secchi disc readings, SWS2B quantum catch 
(QC), and SWS2B relative opsin expression for Lake Victoria taxa from Chapter 2. 
 
Species Location Depth 

(m) 
Secchi 
(cm) 

SWS2B QC 
(%) 

SWS2B exp 
(%) 

Paralabidochromis chiloties (1) Ruti 10 233 0.99 3.43 

Paralabidochromis chilotes (2) Makobe 2 225 4.29 2.48 

Pundamilia sp. “read head” Zue 2 150 4.29 23.29 

Neochromis omnicaeruleas Ruti 4 223 1.38 26.75 

Pundamilia azurea Ruti 12 223 0.05 2.04 

Lipochromis melanopterus Makobe 1 225 7.58 37.59 

Pundamilia nyerei (1) Python 4 98 0.04 2.25 

Pundamilia nyerei (2) Makobe 6 225 0.49 18.39 

Pundamilia nyerei (3) Senga 6 200 0.49 20.34 

Pundamilia pundamilia (1) Senga 2 200 4.29 22.79 

Pundamilia pundamilia (2) Kissenda 2 78 0.37 2.42 
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Supplementary Table S2-5.  Summary of amino acid variation in opsin genes of 
cichlids from Lakes Malawi (LM) and Victoria (LV) presented in Chapter 2. 
 
Segregating Sites SWS1 SWS2B SWS2A RH2B RH2Aα RH2Aβ LWS RH1 
Across all positions 26 16 15 16 22 32 24 22 

Indels affecting codons1 - - +1 - - - -1 - 

Across all codons2 21 9 6* 10 10 22 15* 15 

Non-synonymous (NS) 9 2 2 3 1 3 9 7 

Across all TMR3 16 5 3 7 6 16 12 13 

NS within TMR 7 1 1 1 1 3 8 7 

Across all RBP4 5 3 1 2 1 3 5 3 

NS within RBP 3 1 0 1 0 0 5 3 

Unique to LV  3 1 1 1 1 0 6 9 

Fixed between LM and LV 1 0 1 1 1 0 1 1 
1 + and – indicate addition or loss of whole codons due to insertion/deletions 
2 Amino Acids 
3 Transmembrane region 
5 Retinal binding pocket 
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Supplementary Table S2-7.  Accession numbers for mtDNA sequences used to 
generate phylogenies for the comparative methods in Chapter 2. 
 
Species ND2 D-loop 
Aristochromis christyi EF585282 EF647535 

Aulonocara baenschi GQ422572 GQ422532 

Aulonocara sp. GQ422580 GQ422533 

Aulonocara sp. “blue fin” GQ422566 GQ422531 

Copadichromis eucinostomus EF585268 GQ422530 

Copadichromis jacksoni GQ422593 EF647580 

Ctenopharynx pictus GQ422587 GQ422547 

Cyathochromis obliquidens GQ422579 U90759 

Cynotilapia afra EF585264 AY911740 

Cyrtocara moorii AY930089 U01105 

Dimidiochromis compressiceps EF585267 EF647532 

Dimidiochromis kiwinge AF305322 AJ291408 

Genyochromis mento AF305297 U90779 

Hemitilapia oxyrhynchus EF585277 GQ422534 

Labeotropheus fuelleborini EF585259 U90774 

Labeotropheus trewavasae GQ422577 GQ422535 

Labidochromis gigas EF585276 GQ422538 

Labidochromis sp. “blue bar” GQ422573 GQ422537 

Lethrinops aurita GQ422586 GQ422539 

Maravichromis mola EF585274 GQ422540 

Melanochromis auratus AY930069 U01107 

Melanochromis sp. “black-white johannii” GQ422574 U01942 

Melanochromis vermivorus EF585270 GQ422541 

Melanochromis parallelus GQ422592 U01953 

Metriaclima aurora GQ422569 GQ422542 

Metriaclima callainos GQ422570 AF2136204 

Metriaclima livingstonii GQ422582 GQ422543 

Metriaclima sp. GQ422581 GQ422544 

Metriaclima zebra DQ093114 AY930025 

Nimbochromis linni EF585279 AY913941 

Nimbochromis polystigma EF585262 AJ291407 

Otopharynx heterodon EF585278 GQ422546 

Petrotilapia nigra GQ422567 GQ422548 

Placidochromis johnstoni EF585269 GQ422549 

 
Continued 
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Supplementary Table S2-7 (continued). 
 
Species ND2 D-loop 
Placidochromis milomo GQ422590 GQ422550 

Protomelas annectens GQ422575 AJ291414 

Protomelas fenestratus AF305301 GQ422551 

Protomelas similis GQ422585 GQ422552 

Protomelas spilonotus EF585253 GQ422553 

Protomelas taeniolatus AF305302 EF647546 

Pseudotropheus heteropictus GQ422584 GQ422554 

Pseudotropheus microstoma EF585258 GQ422555 

Rhamphochromis esox AF305252 AF298913 

Rhamphochromis sp. GQ422591 GQ422556 

Stigmatochromis woodi AF213626 GQ422557 

Taeniolatus praeorbitalis GQ422576 GQ422558 

Tramitichromis brevis AF305320 GQ422559 

Trematocranus placodon EF585261 GQ422560 

Troheops gracillior EF585260 GQ422562 

Tropheops sp. “broad mouth” GQ422589 GQ422561 

Tropheops sp. “orange chest” GQ422583 GQ422563 

Tropheops sp. “red cheek” GQ422568 GQ422564 

Tyrannochromis macrostoma EF585257 EF647537 

Tyrannochromis maculicpes GQ422571 GQ422565 
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Supplementary Table S2-8.  Three distance-based validation statistics for the 
clusters of cichlid opsin expression and photoreceptor sensitivities presented in 
Chapter 2. 
 

Cluster size Variables Index 
2 3 4 5 6 7 8 9 10 

Connectivity 2.698** 3.270 7.174 13.794 26.208 33.822 42.737 44.785 51.397 

Dunn 0.196 0.311** 0.242 0.309 0.128 0.128 0.128 0.152 0.184 

Opsins 

Silhouette 0.460 0.576** 0.566 0.511 0.443 0.413 0.384 0.392 0.407 

Connectivity 0.590** 0.590** 7.193 15.540 24.122 29.604 35.075 39.434 42.214 

Dunn 0.242 0.449** 0.153 0.199 0.116 0.140 0.140 0.140 0.184 

Photoreceptor 

Sensitivities 

Silhouette 0.572 0.674** 0.620 0.558 0.486 0.496 0.509 0.515 0.542 

** These values denote the optimal number of clusters indicated by each statistic. 
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Supplementary Figure S2-1.  Depiction of Lake Malawi and Lake Victoria cichlid 
opsin expression in a phylogenetic context.  
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Supplementary Figure S2-2.  Phylogenies used for phylogenetically-control 
statistical methods (ANOVA and independent contrasts) in Chapter 2.  (A - C) 
Phylogenetic trees for Lake Malawi cichlids.  (A) Tree inferred from mitochondrial 
DNA, (B) tree based on taxonomic (genera-level) relationships, (C) tree based on 
rock-/sand-dwelling clade membership.  (D) Phylogenetic tree for Lake Victoria 
cichlids based on taxonomic (genera-level) relationships. 
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Supplementary Figure S2-3.  Synonymous substitution rates (DS) and nucleotide 
diversity (pi) of each opsin gene for both Lake Malawi and Lake Victoria cichlids. 
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Appendix 2: 

Supplementary Tables and Figures for Chapter 3 

Supplementary Table S3-1.  Primers used for the detection and sequencing of opsin 
and mtDNA in cichlids from Lake Tanganyika. 
 
Opsin Primer  Sequence 
SWS1 F1a1 5'-GCGCGGAATTCAAAGAGCTCAGGGTCACAATG-3' 

 R41 5'-GCGCGCAAGCTTGCTCAGTCAACGCCCTCTTA-3' 

 F21 5'-GCGCGGAATTCGTGACCGCCTGGTCTTTG-3' 

 R1a1 5'-GCGCGCAAGCTTCCCATGAACCAGGTGAAGG-3' 

 R21 5'-GCGCGCAAGCTTAGCAGCTGGGAGTAGCAGAA-3' 

SWS2B F3bb1 5'-GCGCGGAATTCTAGATTTTGATCGCAAACTCCAT -3' 

  R2b1 5'-CCAAACAGAGGTGGAAGTGC-3' 

  F2b1 5'-GCTTGTGGTCTCTTGCTGTGG-3' 

  R1bb1 5'-GCGCGCAAGCTTCGGTTATTCACAACCCAGATG-3' 

  F3c1 5'-TGCATGCAAGATTGAAGGAT-3' 

  F1b1 5'-GATTATGGTGCTGGGCTTTC -3' 

  R4b1 5'-CAGTATGCGAGCTGTCCAAA-3' 

  R31 5'-GCTTTCAGCATGAACAGCAG-3' 

SWS2A F1T2 5'-TACGGAGCTGCCAGAAGACT-3' 

 R3T2 5'-GCAGAAGCAGAACAGGAACA-3' 

 F2T2 5'-CCGCTCGGTAACTTTGTTTT-3' 

 R5T2 5'-GCTCTCCTCCTCACCTCCTC-3' 

RH2B F1T2 5'-CTTGGGATGGAGGACTTGAG-3' 

  R1T2 5'-AGCTTTTTATTAATTCAAGCTTTGG-3' 

  F3T2 5'-AAAACCATCAGGATGCACA-3' 

  R3T2 5'-TGTCTTTTATTTTAGGCGTTTCA-3' 

  F41 5'-TGCATCCCAACAGCAGGAC-3' 

  R41 5'-CAGGAAGGAGTATGGCTGGA-3' 

RH2Aα G2F1a1 5'-ACGCAGACTCAACTAAACAGC-3' 

 R1a1 5'-GCGCGCAAGCTTGGACCATCCAAAGAGTGGAG-3' 

 F21 5'-GCGCGGAATTCGGTCACTTGTTGTCCTGGCT-3' 

 G2R41 5'-GGAAGCAATCATCAATGTCCA-3' 

 R31 5'-GCGCGCAAGCTTAGCACGTAGATAACAGGGTTGT-3' 

 
Continued 



 

 252 
 

Supplementary Table S3-1 (continued). 
 
Opsin Primer  Sequence 
RH2Aβg G1F1a1 5'-GCGCGGAATTCGGGATATTCCATCAGCTGAAAC-3' 

  G1R41 5'-GCGCGCAAGCTTGCTTCTTAAATCCATTTGGCA-3' 

  TDK-E6 5'-CCTGAAGTAGGAACCAGATG-3' 

LWS F0a1 5'-GCGCGGAATTCGGCTAACAGCTCAGGACCTC-3' 

 R01 5'-GCGCGCAAGCTTGCCCTCAAAGATACACATTGG-3' 

 F0b1 5'-AAACTGTTTTCGACCAGTGT-3' 

 R0a1 5'-CGAGACCGTTGGTGAAGACT-3' 

 F1a1 5'-GCGCGGAATTCTTTGAGGGTCCCAATTACCA-3' 

 R21 5'-GCGCGCAAGCTTTCCACACAGCAAGGTAGCAC-3' 

 F31 5'-GCGCGGAATTCACTGGCCTCATGGACTGAAG-3' 

 R5T2 5'-ATATTTATGCGGGAGCCACA-3' 

ND2 Met3 5'-CATACCCCAACATGTTGGT-3' 

  Trp3 5'-GAGATTTTCACTCCCGCTTA-3' 

  ND2.2A3 5'-CTGACAAAAACTTGCCTT-3' 

CYTB L147254 5'-CGAAGCTTGATATGAAAAACCATCGTTG-3 ' 

 H155735 5'-AATAGGAAGTATCATTCGGGTTT-3 ' 

D-Loop TDK-A6 5'-TTCCACCTCTAACTCCCAAAGCTAG-3' 
1 Parry et al. (2005) 
2 This study 
3 Kocher et al. (1995) 
4 Meyer et al. (1990) 
5 Taberlet et al. (1992) 
6 Lee et al. (1995) 
7 Sequencing of this opsin also used the primers R1a, F2, and R3 from RH2Aα. 
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Supplementary Table S3-5.  Results of Bayesian cluster analysis (k = 3 – 5 clusters) 
of opsin gene expression from 93 cichlids species from Lakes Tanganyika (LT), 
Malawi (LM), and Victoria (LV). 
 
Species Lake k = 3 k = 4 k = 5 Visual Palette 
Labidochromis gigas LM 1 1 4 Middle1 

Taeniolethrinops praeorbitalis LM 1 1 4 Middle1 

Otopharynx heterodon LM 1 4 4 Middle1 

Copadichromis eucinostomus LM 1 1 1 Short1 

Copadichromis jacksoni LM 1 1 4 Short1 

Cyanotilapia afra LM 1 1 1 Short1, 2 

Dimidiochromis kwinge LM 1 1 4 Short1 

Genyochromis mento LM 1 1 1 Short1 

Hemitilapia oxyrhynchus LM 1 1 4 Short1 

Labeotropheus fuelleborni LM 1 1 1 Short1, 7 

Labeotropheus trewavasae LM 1 1 1 Short1 

Melanochromis B&W johannii LM 1 1 1 Short1 

Metriaclima aurora LM 1 1 1 Short1 

Metriaclima callainos LM 1 1 1 Short1 

Metriaclima livingstoni LM 1 1 1 Short1, 2 

Metriaclima sp LM 1 1 1 Short1 

Metriaclima zebra LM 1 1 1 Short1, 3, 7 

Nimbochromis polystigma LM 1 1 1 Short1 

Petrotilapia nigra LM 1 1 1 Short1 

Pseudotropheus heteropictus LM 1 1 1 Short1 

Pseudotropheus microstoma LM 1 1 1 Short1 

Tropheops gracilior LM 1 1 1 Short1 

Tropheops sp. 'broadmouth' LM 1 1 1 Short1 

Tropheops sp. 'orangechest' LM 1 1 4 Short1 

Tropheops sp. 'redcheek' LM 1 1 1 Short1 

Cyathochromis oliquidens LM 1 4 4 Short1 

Lethrinops aurita LM 1 4 4 Short1 

Paracyprichormis nigrapinnis LT 1 4 4 ?8 

Eretmodus cyanostictus LT 1 4 4 Short8 

Tanganicodus irascae LT 1 4 4 Short8 

Rhamphochromis sp. LM 2 2 2 Long1 

Aristochromis christyi LM 2 2 2 Middle1 

Aulonocara hansbaenschi LM 2 2 2 Middle1 

Aulonocara sp LM 2 2 2 Middle1 

Ctenopharynx pictus LM 2 2 2 Middle1 

 
Continued 
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Supplementary Table S3-5 (continued). 
 
Species Lake k = 3 k = 4 k = 5 Visual Palette 
Labidochroomis sp. 'bluebar' LM 2 2 2 Middle1 

Maravichromis mola LM 2 2 2 Middle1 

Melanochromis auratus LM 2 2 2 Middle1, 2 

Melanochromis parallelus LM 2 2 2 Middle1 

Melanochromis vermivorous LM 2 2 2 Middle1, 4 

Nimbochromis linni LM 2 2 2 Middle1 

Placidochromis milomo LM 2 2 2 Middle1 

Protomelas taeniolatus LM 2 2 2 Middle1, 2 

Stigmatochromis woodi LM 2 2 2 Middle1 

Aulonocara sp. 'bluefin' LM 2 4 2 Middle1 

Protomelas annectens LM 2 4 2 Middle1 

Protomelas spinolotus LM 2 4 4 Middle1 

Tyrannochromis macrostoma LM 2 4 4 Middle1, 2 

Benthochromis tricoti LT 2 2 2 Middle8 

Chalinochromis brichardi LT 2 2 2 Middle8 

Cyprichromis leptosoma LT 2 2 2 Middle8 

Greenwoodichromis christyi LT 2 2 2 Middle8 

Julidochromis regani LT 2 2 2 Middle8 

Neolamprologus brichardi LT 2 2 2 Middle8 

Neolamprologus cunningtoni LT 2 2 2 Middle8 

Neolamprologus furcifer LT 2 2 2 Middle8 

Perissodus microlepis LT 2 2 2 Middle8 

Petrochromis famula LT 2 2 2 Middle8 

Xenotilapia flavipinnis LT 2 2 2 Middle8 

Xenotilapia spiloptera LT 2 2 2 Middle8 

Asprotilapia leptura LT 2 4 2 Middle8 

Enantiopus melanogenys LT 2 4 2 Middle8 

Neolamprologus mondabu LT 2 4 3 Middle8 

Xenotilapia bathyphila LT 2 4 2 Middle8 

Xenotilapia boulengeri LT 2 4 3 Middle8 

Xenotilapia ochrogenys LT 2 4 3 Middle8 

Cyrotocara moorii LM 3 3 5 Long1 

Dimidiochromis compressiceps LM 3 3 5 Long1, 2, 7 

Placidochromis johnstoni LM 3 3 5 Long1 

Protomelas fenestratus LM 3 3 5 Long1 

Protomelas similis LM 3 3 5 Long1 

 
 

Continued 
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Supplementary Table S3-5 (continued). 
 
Species Lake k = 3 k = 4 k = 5 Visual Palette 
Tramitochromis brevis LM 3 3 5 Long1 

Trematocranus placodon LM 3 3 5 Long1 

Tyrannochromis maculiceps LM 3 3 5 Long1 

Rhamphochromis esox LM 3 3 5 Middle1 

Neolamprologus tretocephalus LT 3 3 3 ?8 

Astatotilapia burtoni LT 3 3 5 Long5, 8 

Lobochilotes labiatus LT 3 3 5 Long8 

Ophthalmoliapia ventralis LT 3 3 3 Long8 

Simochromis diagramma LT 3 3 5 Long8 

Tropehus moorii LT 3 3 5 Long8 

Tropheus sp. mpimbwe LT 3 3 3 Long8 

Lipochromis melanopterus LV 3 3 3 Long1 

Neochromis omnicaeruleas LV 3 3 3 Long1 

Paralabidochromis chilotes LV 3 3 3 Long1 

Pundamilia azurea LV 3 3 3 Long1 

Pundamilia nyerei 'Makobe' LV 3 3 3 Long1, 6 

Pundamilia nyerei 'Python' LV 3 3 3 Long1, 6 

Pundamilia nyerei 'Senga' LV 3 3 3 Long1, 6 

Pundamilia pundamilia 'Kissenda' LV 3 3 5 Long1 

Pundamilia pundamilia 'Senga' LV 3 3 3 Long1 

Pundamilia sp. 'redhead' LV 3 3 3 Long1 

Oreochromis niloticus R 3 3 5 Long7 
1 Hofmann et al. (2009) 
2 Jordan et al. (2006) 
3 Carleton et al. (2000) 
4 Parry et al. (2005) 
5 Fernald and Liebman (1980) 
6 Carleton et al. (2005) 
7 Carleton et al. (2008) 
8 This Study 
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Supplementary Figure S3-1. Parallel evolution of opsin gene expression in 47 
African cichlids fishes from Lakes Tanganyika (LT), Malawi (LM) and Victoria 
(LV), as well as the rivers (R), continued.  (A) Pie charts illustrate the results of 
Bayesian ancestral state reconstruction and show the relative posterior probability that 
the ancestor expressed each of three opsin expression palettes determined by 
clustering taxa into k = 3, 4, and 5 clusters. In each case, a long wavelength-like opsin 
palette (red or yellow) is inferred to be the ancestral state for most African cichlid 
lineages, including the Haplochromini (LM and LV). States at the tips indicate 
several parallel shifts to the short (blue and light-blue) and middle (green) wavelength 
palettes among cichlids in LT and LM from ancestors that each expressed the long 
wavelength palette.  (B) Heat maps illustrate the results of Maximum Likelihood 
continuous character state reconstruction of each opsin’s expression profile 
individually across the cichlid phylogeny. Color indicates which opsin is being 
reconstructed while intensity indicates the amount of expression (white indicates little 
or no expression and a deep color indicates high expression) for that opsin. Pluses and 
minuses indicate expression values that are significantly greater or smaller than the 
previous ancestor, except for at the tips of the phylogeny, where each taxa is 
compared to the nearest reconstructed ancestral state at the base of each clade. Inset) 
Single and double cone PSmax  estimated from the reconstructed opsin expression 
profiles of each ancestral node lettered a - n. Like the Bayesian ancestral state 
reconstructions, the results of this analysis indicate that the ancestors of most cichlid 
lineages express opsins consistent with the long wavelength palette (SWS2A-RH2A-
LWS , red inset box), followed by numerous parallel shifts in opsin expression among 
cichlids in each lake. 
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Appendix 3: 

Supplementary Tables for Chapter 4 

Supplementary Table S4-1.  Relative opsin gene expression (% of total opsin 
expression) and predicted photoreceptor sensitivity (PSmax, nm) of single- (SC) and 
double- (DC) cones measured for all samples reported in Chapter 4, including 
Oreochromis niloticus. 
 

Species dpf SWS1 SWS2B SWS2A RH2B RH2A LWS SC 
PSmax 

DC 
PSmax 

Astatotilapia 14 7.39 11.56 0.00 0.01 25.01 56.03 398.45 549.26 

burtoni 14 22.24 7.74 0.00 0.01 22.41 47.60 376.26 548.82 

 14 19.12 8.29 0.00 0.01 21.00 51.58 379.05 549.99 

 28 2.68 19.12 1.87 0.01 27.57 48.75 418.49 547.26 

 28 14.42 12.92 0.17 0.01 25.43 47.04 390.20 547.65 

 28 12.14 12.75 0.14 0.03 26.65 48.29 392.64 547.46 

 42 1.19 6.49 4.14 0.00 37.19 50.99 428.24 544.97 

 42 1.23 7.51 5.50 0.01 35.37 50.39 430.31 545.32 

 42 2.11 3.88 1.67 0.01 41.81 50.53 412.84 543.79 

 42 4.91 10.36 0.75 0.01 34.18 49.79 405.25 545.53 

 42 0.96 6.23 5.27 0.00 41.09 46.44 432.09 543.16 

 42 2.74 9.56 1.80 0.00 35.99 49.91 414.98 545.08 

 56 1.08 2.40 6.04 0.00 41.34 49.14 436.80 543.63 

 56 1.34 3.35 2.34 0.00 38.85 54.11 421.94 545.12 

 56 0.10 0.60 0.00 4.42 15.38 79.50 414.19 551.15 

 56 1.38 5.04 3.52 0.01 41.52 48.53 425.94 543.48 

 56 1.24 5.42 43.96 0.00 19.97 29.41 450.12 545.63 

 56 2.96 11.67 0.00 0.00 33.02 52.35 410.25 546.30 

 70 0.96 1.19 4.71 0.01 39.23 53.90 436.82 544.99 

 70 1.01 2.01 3.10 0.01 36.76 57.11 429.28 546.11 

 70 1.10 1.69 2.01 0.01 41.11 54.08 422.35 544.58 

 70 0.02 2.83 0.00 0.00 40.67 56.47 422.65 545.09 

 70 0.02 1.43 0.00 0.01 44.59 53.95 422.14 543.80 

 70 0.17 3.68 0.00 0.00 39.11 57.03 420.18 545.54 

 Adt1 0.69 9.27 12.20 0.26 31.30 46.20 439.21 545.41 

Melanochromis 10 15.87 22.04 0.17 14.36 36.19 11.37 396.90 518.15 

auratus 10 22.59 20.79 0.29 17.91 27.47 10.96 390.63 514.18 

Continued 
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Supplementary Table S4-1 (continued). 
 

Species dpf SWS1 SWS2B SWS2A RH2B RH2A LWS SC 
PSmax 

DC 
PSmax 

Melanochromis 15 10.15 25.24 0.05 22.11 33.16 9.29 405.00 511.00 

auratus 15 10.54 21.64 0.06 22.16 37.23 8.36 402.48 511.00 

 21 2.69 28.76 0.18 21.42 32.81 14.14 417.83 514.89 

 21 3.34 28.67 0.22 16.96 35.42 15.39 416.70 518.86 

 26 1.99 31.16 0.31 23.65 15.23 27.65 419.55 520.66 

 26 2.47 26.75 0.30 21.86 25.78 22.84 418.06 519.50 

 31 2.01 31.00 0.44 18.64 36.72 11.19 419.65 515.10 

 31 2.27 34.00 0.47 21.20 31.20 10.86 419.52 512.44 

 37 14.82 18.99 6.23 9.70 33.47 16.80 404.82 525.40 

 37 8.34 21.40 5.46 18.41 30.16 16.23 413.18 518.03 

 44 1.15 25.15 0.32 21.17 39.92 12.28 420.68 514.65 

 44 1.72 24.89 0.29 24.03 33.35 15.72 419.34 514.41 

 50 1.98 23.13 0.07 21.23 41.11 12.49 418.13 514.87 

 50 1.67 22.28 0.19 19.75 41.93 14.19 418.91 516.83 

 58 2.00 23.58 0.33 20.04 39.26 14.79 418.57 516.79 

 58 2.58 24.74 0.33 20.32 36.83 15.19 417.53 516.65 

 65 2.84 27.09 0.06 23.29 32.56 14.16 417.10 513.72 

 65 2.71 26.63 0.21 24.87 33.49 12.09 417.45 511.52 

 72 0.55 23.37 0.65 20.94 41.69 12.80 422.45 515.29 

 72 1.66 22.83 0.55 23.89 38.63 12.43 419.54 513.05 

 Adt2 0.60 21.80 0.10 33.70 39.40 4.40 421.47 502.98 

Oreochromis 7 0.35 0.01 0.00 0.24 0.10 0.30 362.42 521.07 

niloticus3 9 0.30 0.02 0.00 0.27 0.16 0.25 364.27 516.15 

 12 0.29 0.03 0.00 0.30 0.15 0.23 365.50 512.54 

 14 0.36 0.02 0.00 0.23 0.21 0.17 364.11 514.17 

 16 0.20 0.05 0.00 0.19 0.17 0.39 373.61 529.01 

 18 0.29 0.05 0.00 0.30 0.17 0.19 369.65 510.96 

 20 0.27 0.04 0.00 0.28 0.25 0.16 368.92 511.24 

 22 0.23 0.04 0.00 0.30 0.24 0.21 368.83 512.74 

 24 0.15 0.09 0.00 0.22 0.27 0.28 384.27 522.06 

 26 0.27 0.02 0.00 0.25 0.18 0.28 365.24 519.96 

 28 0.20 0.04 0.00 0.30 0.23 0.23 371.06 513.82 

 31 0.18 0.07 0.00 0.21 0.23 0.31 378.71 524.08 

 33 0.11 0.09 0.00 0.20 0.30 0.30 389.83 524.34 

 36 0.03 0.18 0.02 0.05 0.20 0.52 418.36 544.76 

Continued 
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Supplementary Table 4-1 (continued). 
 

Species dpf SWS1 SWS2B SWS2A RH2B RH2A LWS SC 
PSmax 

DC 
PSmax 

Oreochromis 43 0.06 0.09 0.01 0.14 0.17 0.52 403.59 537.31 

niloticus3 45 0.06 0.13 0.00 0.17 0.22 0.43 405.72 532.10 

 62 0.01 0.12 0.05 0.00 0.12 0.69 429.95 553.92 

 64 0.01 0.12 0.07 0.00 0.11 0.69 433.58 554.75 

 114 0.00 0.07 0.07 0.00 0.16 0.69 438.14 552.76 

 116 0.00 0.05 0.09 0.00 0.20 0.66 441.99 551.26 

 156 0.00 0.04 0.11 0.00 0.12 0.72 447.81 554.53 

 196 0.00 0.04 0.10 0.00 0.11 0.75 447.52 555.35 

 224 0.01 0.01 0.06 0.00 0.05 0.86 443.70 557.79 

 Adt 0.00 0.00 0.08 0.00 0.09 0.83 453.59 556.39 
1 A. burtoni adult opsin expression from O’Quin et al. (2010) 
2 M. auratus adult opsin expression from Hofmann et al. (2009) 
3 O. niloticus developmental and adult opsin expression from Carleton et al. (2008) 
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Supplementary Table S5-2.  Primers used to amplify and sequence the proximal 
promter regions and 3’-UTRs of several opsins from 18 Lake Malawi cichlid species. 
 
Opsin Primer Sequence (5’ — 3’) 
SWS1 Beg_F AATGGGCAACAGAAGTGGAG 

 Beg_R CCATGTGGTCAGTGGATGAG 

 Mid_F TACCTCGCTTCTCACCCACT 

 Mid_R CTCGCATGGAGGCTAAGAAC 

 F1 AAAGAGCTCAGGGTCACAATG 

 R1 CCCATGAACCAGGTGAAGG 

SWS2B Mid_F GCCTAGAGCGGTGTTCACT 

 Mid_R GATGAGACCGGAGCTTCTTG 

 F3bb TAGATTTTGATCGCAAACTCCAT 

 R2b CCAAACAGAGGTGGAAGTGC 

SWS2A Beg_F ACCTGCTTCGAGTGGAAATG 

 Beg_R TCTGGGAACAAACACAAGCA 

 Mid_F GCAACAAAGACGCTCCCTTA 

 Mid_R AAGTGGTCCTGTGGAACCAG 

 F3 GCGCGATACCTAATTTGAGC 

 R2 GAACAGTGGAGGAGCTGAGG 

RH2B All_F TGACTCACAATCAGAGATTTACCAG 

 All_R AGGACCCAAGGCGAAATAGC 

 F1a CAGTACTCCAAGGAGCTTAGCAG 

 R1aa CCACAATGTATCTCTCAACAGC 

LWS Beg_F TCAGGCTTTCCCATAACCAA 

 Beg_R TGTCAAATCCAGACACTTTGC 

 Mid_F CGGATCTCCACTTCTCCACT 

 Mid_R TGAATCCAGCTCTAGCAAGTCA 

 F0a GGCTAACAGCTCAGGACCTC 

 End_R ACGAGACCGTTGGTGAAGAC 

CNE 10a+b F GGCAAAGATGGAGCTGGT 

 R ACACCAGGAAAAGGATGGAC 

SWS2B 3'UTR F CGGAGGTGACGATGAAGAGT 

 R TCGGGCTTCCTATAATAACTGC 

LWS 3'UTR F GCTCTTTGGCAAACAAGTGG 

 R TCAAGTGCTTTTGGCAGTGT 
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Supplementary Table S5-5.  Complete list of microRNA target sites identified with 
the 3’-UTRs of each opsin in O. niloticus and M. zebra. 
 
microRNA Opsin Species Target Seq. Conserved1 Expression2 Ref(s) 
cic-miR-1306 RH2Aβ Both TGAGGTGA - - - 

cic-miR-182a RH2Aα Both TTGCCAAA OL E_M a 

cic-miR-182a RH2Aβ Both TTGCCAAA OL E_M a 

cic-miR-219 RH2Aα Both TACAATCA - - - 

cic-miR-9 SWS1 Both ACCAAAGT - E_M a 

cic-miR-96 RH2Aα Both TTGCCAAA OL E_M a 

cic-miR-96 RH2Aβ Both TTGCCAAA OL E_M a 

dre-miR-101 RH2Aβ Both ATACTGTA - E_F b 

dre-miR-101 RH2B Mz TTACTGTA - E_F b 

dre-miR-133 RH2Aα Both GGACCAAA - E_M c 

dre-miR-133 RH2Aβ On GGACCAAA - E_M c 

dre-miR-135 RH2B Both CAGCCATA - E_M c 

dre-miR-137 RH2Aα On TGCAATAA - E_M c 

dre-miR-137 SWS2B On TGCAATAA - E_M c 

dre-miR-139 SWS1 Both CCTGTAGA - E_M a 

dre-miR-144 RH2Aβ Both ATACTGTA - E_M c 

dre-miR-144 RH2B Mz TTACTGTA - E_M c 

dre-miR-181 RH2Aα Both TGAATGTA - E_M d 

dre-miR-181 RH2Aβ Both TGAATGTG - E_M d 

dre-miR-181 SWS2A Both AGAATGTA DR E_F d 

dre-miR-190 RH2B Both ACATATCT - E_F b 

dre-miR-194 SWS2B Mz TTGTTACA - E_M a 

dre-miR-196 RH2B Mz ACTACCTA - E_M c 

dre-miR-214 RH2Aα Both CCTGCTGA - E_A e 

dre-miR-214 RH2Aβ Both ACTGCTGA - E_A e 

dre-miR-214 RH2Aβ On TCTGCTGA - E_A e 

dre-miR-217 SWS2B Both ATGCAGTA GA E_F f 

dre-miR-2184 RH2Aβ Both ATACTGTA - - - 

dre-miR-2184 RH2B Mz TTACTGTA - - - 

dre-miR-2189 RH2Aα Both TACAATCA - - - 

dre-miR-2193 LWS Both TACACATA - - - 

dre-miR-23 RH2A-a Both AATGTGAC - E_M c 

dre-miR-23 RH2Aβ Both AATGTGAC - E_M c 

dre-miR-23 RH2Aβ On TATGTGAA - E_M c 

 
Continued 
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Supplementary Table S5-5 (continued). 
 
microRNA Opsin Species Target Seq. Conserved1 Expression2 Ref(s) 
dre-miR-23 RH2B Both TATGTGAA TR E_M c 

dre-miR-23 SWS2B Mz AATGTGAC - E_M c 

dre-miR-27 RH2Aα Both TCTGTGAA - E_F b 

dre-miR-455b LWS Both ACACATAA - E_F b 

dre-miR-461 RH2B Both CTTCCTGA - - - 

dre-miR-722 LWS On GCAAAAAA TR E_A b 

dre-miR-722 RH2Aβ Mz ACAAAAAA - E_A f 

dre-miR-722 SWS1 On GCAAAAAT - E_A f 

dre-miR-725 SWS1 Both TGACTGAG GA F_F b 

dre-miR-727 RH2Aα Both ACCTCAAA - F_F b 

dre-miR-727 RH2Aβ Both TCCTCAAA - F_F b 

dre-miR-728 LWS Both TTTAGTAA GA 

TN,TR 

E_F b 

dre-miR-737 LWS Both TTTTGATT - E_F b 

dre-miR-92 RH2Aα On ATGCAATA - E_F b 

dre-miR-92 RH2Aβ Both GTGCAATC - E_F b 

dre-miR-92 SWS2B On ATGCAATA - E_F b 
1 Conserved Key:  

OL: O. latipes (medaka) 
GA: G. aculeatus (stickleback) 
TN: T. nigroviridis (tetraodon) 
TR: T. rubripes (pufferfish) 
DR: D. rerio (zebrafish) 

2 Expression Key:  
E_A: Eye (Amphibian) 
E_F: Eye (Fish) 
E_M: Eye (Mammal) 
F_F: Fin (Fish) 

3 Reference Key: 
a: Xu et al. (2007) 
b: Kloosterman et al. (2006) 
c: Arora et al. (2007) 
d: Ryan et al. (2006) 
e: Decembrini et al. (2009) 
f: Wienholds et al. (2005) 
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Supplementary Table S5-6.  Length and pairwise sequence divergence (Dxy) scores 
between O. niloticus and M. zebra for each coding and non-coding region examined. 
 

Identity Dxy Length 
Region (%) (%) On (bp) Mz (bp) 
CNE_1 96.84 3.23 158 158 

CNE_2 96.06 4.05 330 331 

CNE_3 96.16 3.94 815 760 

CNE_4 83.46 14.87 132 127 

CNE_5 96.22 3.88 240 239 

CNE_6 94.74 4.53 349 359 

CNE_7 98.31 1.70 240 241 

CNE_8 96.14 3.97 207 207 

CNE_9 - - 300 - 

CNE_10 97.16 2.89 882 885 

CNE_11 88.46 4.86 779 799 

CNE_12 93.93 6.33 313 313 

CNE_13 97.64 2.40 127 127 

CNE_14 95.97 4.14 124 124 

CNE_15 95.53 4.61 246 249 

CNE_16 97.66 2.37 214 214 

CNE_17 88.97 4.71 999 1404 

CNE_18 95.32 4.84 428 428 

CNE_19 91.21 9.35 182 191 

CNE_20 96.14 3.96 311 313 

CNE_21 93.25 7.07 1087 976 

CNE_22 - - 69 - 

CNE_23 98.88 1.13 358 38 

PXPRM_LWS 97.56 2.48 1000 1000 

PXPRM_RH2Aα 94.80 5.38 1000 1000 

PXPRM_RH2Aβ 91.77 8.60 1000 1000 

PXPRM_RH2B 61.35 9.40 1000 1000 

PXPRM_SWS1 71.49 26.37 1000 1000 

PXPRM_SWS2A 97.19 2.87 1000 1000 

PXPRM_SWS2B 81.96 16.31 1000 1000 

3UTR_LWS 93.39 6.92 189 189 

3UTR_RH2Aα 94.04 6.21 438 442 

3UTR_RH2Aβ 93.26 7.06 465 460 

3UTR_RH2B 93.15 7.18 310 319 

 
Continued 



 

 285 
 

Supplementary Table S5-4 (continued). 
 

Identity Dxy Length 
Region (%) (%) On (bp) Mz (bp) 
3UTR_SWS1 96.74 3.33 217 242 

3UTR_SWS2A 98.37 1.64 123 123 

3UTR_SWS2B 95.90 4.21 124 137 

BAC_RH2 93.97 6.29 185168 48023 + 29393 

BAC_SWS-LWS 95.66 4.47 171766 107685 

BAC_SWS1 86.75 14.58 171942 77652 

CDS_SWS1 94.54 5.67 1007 1007 

CDS_SWS2A 97.73 2.31 1056 1056 

CDS_SWS2B 96.69 3.39 1056 1056 

CDS_RH2B 96.60 3.48 1059 1059 

CDS_RH2Aα NA 4.49 1055 1056 

CDS_RH2Aβ NA 3.78 1059 1066 

CDS_LWS 96.37 3.72 1074 1074 

INT-2_SWS1 89.23 12.76 60 60 

INT-3_SWS1 98.63 1.48 137 145 

INT-4_SWS1 95.83 3.80 108 108 

INT-2_SWS2A 97.92 2.40 85 85 

INT-3_SWS2A 96.96 3.22 255 255 

INT-4_SWS2A 95.31 4.90 535 544 

INT-2_SWS2B 87.80 15.75 113 113 

INT-3_SWS2B 94.65 5.85 179 187 

INT-4_SWS2B 92.46 8.08 540 542 

INT-2_LWS 91.67 9.60 111 123 

INT-3_LWS 88.17 13.31 84 83 

INT-4_LWS 90.00 10.93 79 79 

INT-5_LWS 94.38 6.79 77 77 

INT-2_RH2B 84.20 17.74 1525 1405 

INT-3_RH2B 87.34 14.68 239 253 

INT-4_RH2B 92.99 7.31 201 234 

INT-2_RH2Aβ 94.40 2.83 185 181 

INT-3_RH2Aβ 93.08 4.44 119 116 

INT-4_RH2Aβ 89.23 8.71 75 73 

INT-2_RH2Aα 98.63 4.06 152 152 

INT-3_RH2Aα 69.81 43.45 94 109 

INT-4_RH2Aα 95.83 8.71 75 73 
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Supplementary Figure S5-1.  Identification of opsin-containing BACs from Finger 
Printed Contigs (FPCs). 
 

 
Continued 
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Supplementary Figure S5-1 (continued). 
 

 
Continued 
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Supplementary Figure S5-1 (continued). 
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Supplementary Figure S5-2.  Synteny (Pip plots) of O. niloticus opsin-containing 
BACs with the genome assemblies of five teleost species. 
 

 
Continued 
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Supplementary Figure S5-2 (continued). 
 

 
Continued 
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Supplementary Figure S5-2 (continued). 
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 Supplementary Figure S5-3.  Synteny (Pip plots) of O. niloticus and M. zebra 
opsin-containing BAC sequences. 
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Supplementary Figure S5-4.  Orthology of RH2 and SWS2 opsin paralogs from five 
teleost fish genomes.  (A) RH2 phylogeny.  (B) SWS2 phylogeny.  In both cases, 
broken lines indicate branches leading from the outgroup that were shortened to fit 
each tree into the figure; these do not represent missing or incomplete branch length 
information. 
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Supplementary File 5-1.  FASTA-formatted text file of all 23 conserved non-coding 
elements (CNEs), opsin proximal promoter and 3’-UTR from Oreochromis niloticus 
and Metriaclima zebra, as well as randomly chosen O. niloticus non-opsin sequences 
from Chapter 5. 
 
>Oreochromis_niloticus_CNE.1 
TCTAATCTGACTGTATGACGATGTTTTGAGGATTTGGAGGATTGAGGAGGATCACCTGGTCAGGTAAATCTGAAATATCCGGATTA
CATAGGAAGTCGAACACACGGAAAAACAAAAGACTCTTATTGGATTTAGATCCGTCAGCCACCTGCTGCTGC 
 
>Metriaclima_zebra_CNE.1 
TCTAATCTGACTGTGTGACGATGTTTTAAGGATTTGGAGGATTGAGGAGGATCACCTGGTCAGGTAAATCTGAAATATCCGGATTA
CATCGGAAGTTGAGCACACGGAAAAACAAAAGACTCTTATTGGATTTAGATCCGTCAGCCACCTGCTGCTGC 
 
>Oreochromis_niloticus_CNE.2 
ACCTCACCGATATACTCCTTCAGGTCGATAAACCCGTCTCCATTCTTGTCGATGTCTTCGATCGTTTCCTGTGACAAAAAAAGAAA
GTTAAATATTTGAAACAAAACAGTGGGTCACATGACGCCCCAACATCAGTCTCACCTGCACCACGACGTCCTTCATGTACTCGTGT
TCTTCAGGATGAAGAAAAGCGGTAAATTCTTGTTTGTCTGCGATGAGGTCTCCGTTCCTGTCTGCGACCCGGAACCTCCGCTCGTC
CCTCAACATCATGTGGGTGTAGTTGTACTCTGATTCCTTCGGCGGGTCATCTGGAGCCAAGCAATGAGAGAC 
 
>Metriaclima_zebra_CNE.2 
ACCTCACCGATATACTCCTTCAGGTCGATAAACCCGTCTCCATTCTTGTCGATGTCTTCGATCGTTTCCTGTGAACAAAAAAAGAA
AGTTAAATATTTGAAACGAAACAGTGGGTCACATGACCCCACGACATCAGTCTCACCTGCACCACGACGTCCTTCATGTACTCGTG
TTCTTCAGGATGAAGAAAAGCGGTAAACTCCTGTTTGTCTGCGATGAGGTCTCCATTCCTGTCTGCGACCCGGAACCTCCGCTCGT
CCCTCGACATCATGTAGGTGTAGTTGTACTCTGGTTCCTTTGGAGGGTCATCTGGAACCAAGCAATGAGAGAC 
 
>Oreochromis_niloticus_CNE.3 
ACCCAGATAACTGCCGTATGTCACGTTCTTGTACTCTTCCCAGCTGATGCGGCCGTCGCCATTCAAGTCGAAGTCTTTCCACTGAT
GCTCCACGCTGCCAGAGATGTGCTTCCTCTGAGCGTTTTTGATCCAGGCCTTCAGCTCCTCCTCAGAGACGAAACCATCGCGGTTA
GTGTCAATTTTATCCACGATGATGCTGCAGAGACACGAATTACCAGAGCACAAAGCCAAAAACAACATCTTAATGAGAGGCAACAA
AAATAAAGACTGGACTTGAGAAATATCAAACCTAACTGTACCCAAACTGAGCTCACAGGTCCAGGAAATACACTGGACTTTATTTT
AACTGTATTGAGTTTTCTGTGAACACAGCCGAGCTGAGTATGTGAGTTGAAAATGTAAAGTTTCTCCTGCGTCTGCAGCAGCTGGA
GGTGGAGACGACCAGTGAGGACGTCTATTTCCTCACGGTCAGGATGACGCAGCTACAGGAAGTGATTATCTGAATTTTTCATTATG
CTCTGTGGACCCTGTCCCTGCACAGCCACAGTCTGCTCGGGCTGTACTTCAACGTGGAAAGCCGAGGCCGGCCTGCTTCTCTTCAT
CACTCAGAAAAACTAGACAAAGCTTCAGATGACCAGAACTCACCCGAGTCTGCGTTGGCTCTCCTCTGGAGTAAGTTGCTCGAAGG
TTTTGGCCTCCTCTTGTCCCAAAAACGCTTCGTGGTCGTAGTCGAAGTTTTTCTGGTCATCATGCTCAAGCGCGCTCAGAGGCTCC
TCATGATGGACCCGACTTTTCCTCTCTGTGGGCTTACTGCT 
 
>Metriaclima_zebra_CNE.3 
ACCCAGATAACTGCCGTATGTCACGTTCCTGTACTCGTCCCAGCTGATGCGGCCGTCGCCGTTCAAGTCGAAGTCTTTCCACTGAT
GCTCCACGCTGTCATAGATGTGCTTCCTCTGAGCATTTCTGATCCAGGCCTTCAGCTCCTCCTCAGAGACGAAACCATCGCGGTTA
GTGTCAATTTTATCCACGATGATGCTGCAGAGACACGAATTACCAGAGCGCAAAGCCAAAAACAACATCTTTATGAGAGGCAACAA
AAATAAAGACTAGACTTGAGAAATATCTAACCTAACTGAACCCAAACTGAGCTCACAGGTCCAGGAAATACACTGGACTTTATTTT
AATTGTATTGAGTTTTCTGTGAACACAGCTGAGCTGAGTATGTGAGTTGAAATTGTAAAGTTTCTCCTGCGTCTGCAGCAGCTGGA
GGTGGAGACGATTCGACCAGTGAGGACGTCTATTTCCTCACGGTCAGCATGACACAGCTACAGGAAGTGATTGTCTGAATTTCTCA
TTATGCCCGAGGCCGGCCTGCTTCTCTTCATCACTCAGAAAAACCAGGCGAAGCTTCAGATGACCTGAACTCACCCGAGTCTGCGT
TGGCTCTCCTCTGGAGGAAGTTGCTCAAAGGTTTTGGCCTCCTCTTGACCCAAAAATGCTTCGTGGTCGTAGTCGAAGTTTTTCTG
GTCGTCATGCTCAAGGGCGCTCAGAGGCTCCTCATGATGGACCCGACTTTTCCTCTCTGTGGGCTTACTGCT 
 
>Oreochromis_niloticus_CNE.4 
TGTGACACACATACAGAGACACACACACACATACGCACGCACGCAATTCCACACCCCACACACAGAAACAAAGTTCACGTTTTAAG
CTTTAAATTCCTCTTTGAATATTTTCACTCACAGTCAGCTTCTCTC 
 
>Metriaclima_zebra_CNE.4 
CCTGACACACACTGTGACACACATACAAAGACACAGACATACGCACGCGCACGCACACAGAAACAAAGTTTACGTTTTAAGCTTTA
AATTCCTCTTTGAATATTTTCACTCACAGTCAGCTTCTCTC 
 
>Oreochromis_niloticus_CNE.5 
TGTCCATGTTTCTCATACATGTGCTCACCTGGATGAGTACAGCAGACTGTGCAAGGTCAGTGGTGCTCAGATGCCAGTAATTGTTT
ACACTCATTAAGAGTCTTAGATAATGGCAGGAGAGCTGATCTTTCAAACCCTAAAGAGATCATGATGTCACTCAAGTGACATGGAT
CAAGGATTATAACAGCGGGATTTTGAGAAGGGATTTTTCTTCCTCCCACCACTGCAGCAGGCTGTCTG 
 
>Metriaclima_zebra_CNE.5 
TGTCCATGTTTCTCATACATGTGCTCACCTGGATGAGTACAGCAGACTGAGAAAGGTCAGTGGTGCTCAGATGCCAGTAATTGTTT
ACACTCATTAAGAGTCTTAGATAATGGCAGGAGAGCTGAGCTTTCAAACCCTAAAGAGATCATGATGCCACTCAAGTGACACGGAT
CAAGGATTTTGAGCGGGATTTTGAGAAGGGATTTTTTTTCCCTCCCACCACTACAGCAGGCTGTCTG 

Continued 



 

 296 
 

 

Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_CNE.6 
CTGGACAGATCACTAATCTGTTGCAGGGCTAACACAGAGAGACAGACAACCATTTACCTCACTTCATGTTATTGTCCCAAGTAAAG
AATCTATGGTAAATAATTCTGGACCTCTCATATGCTAAATTTCGAGAGGATGGATTGGTGGGTTTGCATGGTAGTCTGAAGCTGGA
TGGCATGCCACCTGGTGGAGACTGATATTATTTCTTTATTGCTGGCAGAAACTCATTACAATGGCATTGCCCAAAATAAAATGCCT
AATAAGGAAATGACGGCAGTCTAGGGAGCCATTTCAAAGTAGGATACTTCTTTTTATGTTCTCAATGCTTTTATTATTTAGGGGTC
AAAAC 
 
>Metriaclima_zebra_CNE.6 
CTGGACAGATCACTAATGTGTTGCAGGGCAAACACAGAGAGACAGACAACCATTTACCTCACTTCATGTTATTGTCCCAAGTAAAG
AATCTAGGGGTAGAAGACATCTACGGCAAATAATTCTGGACCTCTCATACGCTAAATTTCGAGAGGATGAATTGGTGGGTTTGTAT
GGTAGTCTGAAGCTGGATGGCATGCCACCTGGTGGAGACTGATATTATTTCTTTATTGCTGGCAGAAGCTCATTACAATGGCATTG
CCCCAAATAAAATGCCTCATAAGGAAATGACAGCAGTCTAGGGAGCAAAGTAGTACTTTTTTTTTATGTTCTCAATGCTTTTATTA
TTTAAGGTCCAAAAC 
 
>Oreochromis_niloticus_CNE.7 
TGTCATATATGTAAAGTATTTACAGTATTAAAACAATTATATATTTCTGAAATCGAGCTGAATTTGTGAATAGTCTTTTGTTATAG
TGTTTCTATGTGGAAAAAAAATCGTCATTCACAGTTACAGGTTTGACCTGTAAGTCCACAGTCTATATTTGTAATTTTGTTGATAT
TTAATATATTTAAATTCCTGGAGAATCAATAGGAAAACACTGTTAAATTACACTGTTTTTTGTTGTTG 
 
>Metriaclima_zebra_CNE.7 
TGTCATATATGTACAGTATTTACAGCATTAAAACAATTATATATTTCTGAAATCGAGCTGAATTTGTGAATAGTCTTTCTTTTATA
GTGTTTCTATGTGGGAAAAAAATCGTCATTCACAGTTACAGGTTTGACYTGTAAGTCCACAGTCTATATTTGTAATTTTGTTGATA
TTTAATATATTTAAATTCCTGGAGARTYAATAGGAAAACACTGTTAAATTACACWGTTTTTTGTTGTTG 
 
>Oreochromis_niloticus_CNE.8 
CACCCTGAAGCCCAACAACAAGGTGACCAGGATGGTGGTGATCTTTGTGCTGGGCTTCCTGACATGATACATCCCGGCTTCGCTTT
TGTACTTGTGAACAACCACCGTCAGTCTTTTGATTTGAGATTAGCTTCTATGGTGTCTGTCTTTTCCAAGATCCCCTGCAGTCTTT
AACCTAGTTGTCTATGTTGTCCTTGATAAACAGGT 
 
>Metriaclima_zebra_CNE.8 
CACCCTGAAGCCCAACAACAAGGTGACCAGGATGGTGTTGATCTTTGTGCTGGGCTTCCTGACATGATACATCCCAGCTTTGCTTT
TGTACTTGTGAACAACCACCATCAGTCTTTTGATTTGAGATTTGCTTCTATAGTGTCTGTCTTTTCCAAGATCCCCTGCAGTCTTT
AACCTAGTTGTCCATGTTGTCCTTGATAAACAGAT 
 
>Oreochromis_niloticus_CNE.9 
ACTGATTTATTTATTTATTTAAATAAAATGCATGACTATAGATCAAAGCTAAAAAAAAAAAAAAAGAAGCTAAAGCTAAATATATT
TTAATGTAAAGTGAGATGTTTTAGTGTTTTATTGTTACTTTTGCTAAAGCAATAGTTCTAAAACACTCCACCAGCACTCGTCATTT
CCAGCTAACTGTAAATATTTACATGTAGATGAAAACTACAGAAAGGAAGTGTGCAGCAAAATGTAAGCCACTTGTGTGACAGTGAT
GAACAGACAGTGCTGTTCTTTGTGATTTCAAAGACCCTAACT 
 
>Metriaclima_zebra_CNE.9 
NNNNN 
 
>Oreochromis_niloticus_CNE.10 
GCAGTCATTTCCTGTCACTGCAAGTTAATGACTGGAAATTACCTAAGACAGCGAATGAATAAACCAGACCTCTTAGTGACTATGGT
TATGGAGATACCAGTCGATAGTCGGGAGCAGATCTGAGTTCTGCTAGTAGTGAACTTTTGACAAACACGAATAGTTCAGAACTAGC
GGAATTCCAGACCTACCCTCGAAACATCACGCCATCACGTGGAAAAAGCAGCCAGAGTAAAACAAAACCAAAAAGCCCTTTACCTA
GCATCATCTCTACCTCCCAGGTGATATGTAGATTTACATTAAGAGATAGATCCCTAGTTAACTTCACATTTTAGAAATGTCTTTGT
TTAACCCACTGTTGCTTCCTAATCTAAGGTGGAAAATTTTAGCAAGTGCTAGCATGAAGAGAGACACAGTTGGAAATACAAAAGTG
GAAAAATATAAAGAAAATTTATAACTCCCTCCAGTTTTAGGGTCCATCCTTTTCCTGGTGTAAAGTCCTTGTCCGAGGAAGGGTTC
TTATCAAATCTGCATGTCTGCTACCTCGTGCAAGAAGTGGACTCAACAAAAGTGCAGAGTTAGGGATTAAGGTAAACCACTACAGC
AGCTTTGAGGACCCTCAGCTTTCCCCTGAAATGAACCGTTGTTCCGGAGAGATTAAAGTGTTACGGAGCGAGCATGCCAAAAGTAA
TTACTCTGTGTTAATCTGTTTTGTGGAGGAACCTGAGTTGTCCGTATAATCTGCTTTGGCCTGCTTGGAGATGAGAAACCTTTGCT
CACTTTTCACTGTGTCAAATAGGTTAGACATTCACGGCTAAGACAGGAGAAGGTGGTGCAACACAGCTGCAGTCCTTGCAACGTCT
TCAGCTAGGAACACTGGTGCAG 
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>Metriaclima_zebra_CNE.10 
GCAGTCATTTCCTGTCACTGCAAGTTAATGACTGGAAATTACCTAAGACAGTGAATGAATAAACCAGACCTCTTAGTGACTATGGT
CATGGAGATACCAGTCGATAGTCGGGAGCAGATCTGAGTTCTGCTAGTAGTGAACTTTTGACAAACACGAATAGTTCAGAACTAGC
GGAATTCCAGACCTACCCTCGAAACATCTCGCTGTGACGTGGGAAAAACAGCCAGAGTAAAACAAAACCAAAAAGCCCTTTACCTA
GCATCATCTCTACCTCTCAGGTGATATGTAAATTTACATTAAGAGATAGATCCCTACTTAACTTCACATTTTAGAAATGTCTTTGT
TTAACCCACTGTTGCTTCCTAATCTAAGGTGGAAAATTTTAGCAAGTGCTAACATGAAGAGAGACACAGTTGGAAATACAAAAGTA
GAAAAATATAAAGAAAATTTACAACTCCCTCCAGTTTTGGGGTCCATCCTTTTCCTGGTGTAAAGTCCTTGTCCGAGGAAGGGTTC
TTATCAAATCTGCATGTCTGCTACCTGTGCAAGAAGTGGACTCAACAAAACTGCAGAGTTAGGGATTAAGGTAAACCACTACAGCA
GCTTTGAGGACCCTTAGCTTTTCCCCTCGAAATAGAACTGCTGTTCCGGAGAGATTAAAGTGTTTACGGAGCGAGCATGCCAAAAG
TAATTACTCTGTGTTAATCTGTTTTGTGGAGGAACCTGAGTTGTCCGTATAATCTGCTTTGGCCTGCTTGGAGATGAGAAATCTTC
GCTCACTTTTCACTGTGTCAAATAGGTTAGACATTCACGGCTAAGACAGGAGAAGGTGGTGCAACACAGCTGCTGTCCTTGCAACG
TCCTCAGCTAGGAACACTGGTGCAG 

 
>Oreochromis_niloticus_CNE.11 
TTATAGCAGTGAGCTAGTGTCAGATTTCCTTCTTACACACTCATGTAAAGTTAAATGTTTGCGTGACTATGGCTGAAAAAGTTTAT
AAGTTTATATATAAGTTAACATCTTTAGAGCCATCCAGGAGCCTTTCACCTCCTCCTGTCCTACATGGAGTTTTTAACTAATGTTG
GCCTGTGAGGCGAGTGGACTTGAGGAGTGCACTGATACACCAGATTAAACCATTATGCCAGCTTTGGTAAATCTCACCCCTTCCCT
CAAGCGAACTGTCAATCCGGAGAGATTAAAAGGTTCCAGAGTAAACTTGCCAGACGTGAAGGGTTACGGAGTAAACAGGTCAGACA
TCAGAGGCCAACCTAAGGCGTTCCACTAATCTGATTTGTGAGGACATGAGAAATTGTCACCTTTATTATCAGAGGCACTCACACTA
CCAGCACATCAAGAAACAGCTACAAGAGCAACAGTGTCCTCTGATGCCTTGGGTAAAATCTGAACATGCTAAAACAAATACAAATG
TAGCATTCAACATGTTATACTATATTAAACACCTGATGCAAAGTCTGGCACAGGACTGTACCCTTTAATGCTACAGATGTTGGGAG
AATACAATTTAACTCACATTAATCTGAACCAGAGGTTCCCAAAGTGTGGGGCCCGCCCCCTAGGGGGGGCGCAGAGCAATTGCAGA
GGGGGCACAGTATGAAAAGAAAAAAGAAAAGAAAAGAATGCTTGGACACTGCTAGCATAATGGACAGGTTTTTGACGGGGCAGTGG
ACACT 
 
>Metriaclima_zebra_CNE.11 
GTATAGCAGTGAGCTAGTGTCAGATTTCCTTCTTACACGCCCATGTAAAGTTAAACATTTGCGTGACTATGCCTGAAAAAGTTTAT
ACCAAGAAAAAAAAAAAGGTTTTTCAATATCTGTCAATTACACGTGCACACAAATCTGATAAAAATAAATACTAGATGTGACATTA
AGATGAAGCTATTCACAAGAGAGTAATATTTGGTACACAGATGCAGAACAAAATCACATTTTGCTCACCTAGTTAAGGAAGTTCAC
ACTAACAGCTTGTCTACATTCACATTAAAAACAAAAAGTGGAAAAGTTAACATCTTTAGAGTCATCCAGGAGCCTTTCACCTCCTC
CTCTCCTACATGGAGTTCTTAACTAATGTTGACCTGTGAGGCAAGTGGACTTGAGGAGTGCACTGATTAAACCATTATGCCAGCTT
TGGTAAATCTCACCCTTTCCCTCAAGCGAACTGTCAATCCGGAGAGATTAAAAGGTTCCAGAGCAAACTTGCCAGACGTGAAGGGT
TACGGAGTAAACAGGTCAGACATCAGATGCCAACGTGAGGCGTTCCTGCTAATCTGATTTGTGAGGATGTGAGAAATTGTCACCTT
CATTATCACGGCACTCACACTACCAGAACATCAAGAAACAGCTGCAAGAGCAACAGTGTCCTCTGATGCCTTGGGTAAAATCTGAA
CATGCTAAAACAAATACAAATGTGGCATTTAACATGTTATACTATATTAAACACCTGATCCAAAGTCTGGCACAGGACTGTACCCT
TTAATGCTACAGATGTTGGGAGAAT 
 
>Oreochromis_niloticus_CNE.12 
GCTTTTATTTCGACATTTAACCGGATGTTGTTGTTGACGTCATCGTGTGCGCATGTCCACCTCTTTGGGATGCCGTACACGTGAAG
TCTGAGAAGAGCAAGGCCAGGGTGAAGTTATGTCCAAAGCTAGTAGGTATCCATCGGTTTTTAGTTGAAACTATTGACTCACTTAA
TACGTGACATGACATTTAAACGTCTTCGTTTTGTATTTTTTGCATTTAACAGAACAGAAACGAGCCAAACGACTCGGCTTCAGTGG
GAAGTTTAAGGTGAGTACTACAAGGCTAATGTTATCTGTCGCTAACTTATAATGC 
 
>Metriaclima_zebra_CNE.12 
GCTTTTATTTCGACATTTAACCGGATGTTGTTGTTGACGTCATCGTGTGCGCATGTCCACCTCTTTGGGAAGCAGTACACGTGAAG
TCTGAGAAGAGCAAGGCTAGGGTGAAGTTATGTCTAAAGCTAGTAGGTATCCATCAGTTTATAGCTGAAAGTATTGACTCACTGAA
TGCGTGAAATGACATTTAAACGTCTTCGTTTTGTATTTTTTGCATTTAACAGAACAGAAACGAGCCAAACGACTCGGGTTCAGTGC
GAAGTTTAAGGTGAGTGCTACAAAGCTAATGTTATCTGTCGCTAACTTTTAGCCC 
 
>Oreochromis_niloticus_CNE.13 
TTCATTAGCTTAAGGACCTTCAGGAGAAGCAGAAATTGTCTAGAGAACGAGAGCTTATGAAGAGGAGAAATTTGCAAACCTTCCAG
AATGACATCCTTCAGCGACAAAGGGAGTTTGAGCAGAGGGT 
 
>Metriaclima_zebra_CNE.13 
TACATTAGCTTCAGGACCTTCAGGAGAAGCAGAAATTGTCTCGAGAACGAGAGCTTATGAAGAGGAGAAATTTGCAAACCTTCCAG
AATGACATCCTTCAGCGACAAAGGGAGTTTGAGCAGAGGGT 
 
>Oreochromis_niloticus_CNE.14 
TCACCAAATGTGCAAGTGTTCGGATTGTATGAAGCTTGACTACCTGGAAGAAACCCATACAGGCATGTGGAGAACAGGTAAACTCC
AACCGATTTGGTTCAAACCCAGAACCTTCTTGCTGCGA 
 
>Metriaclima_zebra_CNE.14 
TCACCAAATGTGCAAGTGTTCGGATTGTATGAAGCTTGACTACCTGGAAGAAACCCATACAGGCACGTGGAGAACAGGCCAAATCC
AGCCGATTTGGTTCAAACCCAGAACCTTCTTGCTGCGA 
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>Oreochromis_niloticus_CNE.15 
TTTGTGCAATATATCTAAAATTAGAAACATCCTGTCTTGCAGTGATGCCAAAACCTAGTTCATTCATTCATTACTTCTAGGCTGGA
CAATTGCAATTCATTAGTATCAGTTTTTTTCTGAAAGTTCCCTAGAAATCATCCTGTTAATCAAAAATACTATAACGAGTACTAAC
ATGGGGAAGAAGGAGAGATCATATTTCTTCAACACTGACTTCTCTTCATTGGCTCCCTGTTAAACCCAGAATTG 
 
>Metriaclima_zebra_CNE.15 
TTTGTGCAATATATCTAAAATTAAGAAACATCCTGTCTTGCAGTGATGCCAAAACCTAGTTCATTCATTCATTACTTCTAGGCTGG
ACAATTGTAATTCTTTAGTATCTGTTTTTTTCTGAAAGTTCCCTGGAAATCATCCTATTAGTACAAAAAATACTATAACAAGTACT
AACATGGGGAAGAAGGAGAGATCATTTTTCTTCAACACTGGCATCTCTTCATTGGCTCCCTGTTAAACCCAGAATTG 
 
>Oreochromis_niloticus_CNE.16 
TATTAGGGATTCGTCTTCAATATTTAATGAGGTAATGGACTTTTGACACACTAATGAACTAATGAAGTAAGCTTACTTTTCTCATC
AAAGACTGGACCCTCTTGTAAAGGGATTACCTCAGGTGCTCCCAAACTTTGTTCATTACACTGACTCCAGCCTGTAATCTAGTTAA
TTCAATTGGTATTAAGGTTCACATAGTGCAAAGGAGTCAAAA 
 
>Metriaclima_zebra_CNE.16 
TATTAGGGATTGGTCTTCAATATTTAATGAGGTAATGGACTTTTGACACACTAATTAACTAATGAAGTAAGCTCACTTTTCTCATC
AAAGACTGGACCCTCTTGTAAAGGGATTACCTCATGTGCTCCCAAACTTTGTTCATTACACTGACTCCAGCCTGTAATCTAGTTAA
TTCAACTGGTATTAAGGTTCACATAGTGCAAAGGAGTCAAAA 
 
>Oreochromis_niloticus_CNE.17 
TTTCTTTCCTGATAAAAGGAAGTTTTTCCTTCCCACTGTCTCAAAGTGCTTGCTCATAGGGGATTGTTTGATTGTCGGTAATTTCC
CAGAATGCTGCAAGGATCGTTGCTATAGTTGAACTGGTTATTGCGGTAAATACACATTATTATAATTTAAATGAGGTAAAAGTGCA
AAATATAGTTGGACTACTTCACTGTGTGTGAGATACTGTGATAAATAAGTAATAAGAGCTGTACATTTATGTCAGTTTTCAGGTAA
ATATAAACCATGAGTATTTACATTCCCTATCATATACAGCGCCCGCATTGTTTCCCCCCGCAATGCAGGAACTCAATATTTCACAA
CTAACTTTTTTTTTTTTTTTTTTTTCTGGAAAAACTGTCACTTTTCTTATTGTATATGCTGGTAAAGGTACATTCAAAGATTTGCC
CTCTGGAGGGCGCTCCAGATCTGTATTTAAACCTTGCTGCTTCAACATTTGTGTGTTTAACTGCAGTGATGGATCTGAATGGTCCT
CAGCAGTGCTTTATAGCCACATTCATATAGCTCTGCATCTATTCTGTGTTTCACTTTTTATCTCGCTACATAAATAATGATAATAT
TGCATCCACAAAAATCCAATATAGTAGGCAACAGGCCTGCATACAGCACATGCATAGAAAATATGCACGACACAGGTTTGTAAACA
TGCCTAAAGTCTTCTACTTCTGTCCTTACCTCATTTTTAAAAAACGTTTTAACCCCCCAAAATGACACTTTTCCATTGTGCTGCAA
ATGAATCTGAAATAAAACAATGATAGATTCAATATCAGTTCATCTTCAGTTGGCAATCCTATCATTGCCATAATGCTGTTAACCAA
CCATACATGATCATGAAATTACACTGTTAATTATTTGGTGTGCACACTGCTGACCACCAGATGGCGCTTCAACCGCAAATGTAAAC
AACCCACACTAAAGGTGAAAGCATATGTGCAGTAGGTTCCCACAGAAGACATA 
 
>Metriaclima_zebra_CNE.17 
TTTCTTTCCTGATAAAAGGAAGTTTTTCCTTCCCACTGTCTCAAAGTGCTTGCTCATAGGGGATTGTTTGATTGTTGGTAATTTCC
CAGAATGATGCAGGGACCGTTGCTATAATTTAACTGGTTATTGCTGTAAATACACATTATTATAATTTAAATGAGGTAATAGCGCA
AAATATAGTTGGGCTACTTCACTGTGTGTGAGATACTGTGATAAATAAGTAATAAGAGCTGTACATTTATGGCAGTTTTCAGGTAA
ATATAAACCTTGAGTATTTACATTCCCCATCATATACAGCACCCGCGTTGTTTCCCCCCCACAATGCTGGAACTCAATATTTCACA
AATAACTTTTATTTTTTCCCTTTTTCTGGAAAAACAGTGTCACTTTTCTTATTGTATATACTGGTAGAGGTACATTTAAAGATTTG
CCCTCTGGAGGGCGCTCCAGATCTGTATTTAAACCTTGCTGCTTCAACATTTGTGTGTTTAACTGCAGTGATAGATCTGAATGGTC
TCAGCAGAGCTTTGTAGCCACATTGATATAGCTCTGCATCTATTCTGTGTTTCTACTTTTTATCTCGCTACATAAATAATGATAAT
ATTGCATCCACAAAAGTCCAATATAATAGGCAACAGGCCTTCATACAGCACATGCTTAGAAAATATGCACCACACAGGTTTGTAAA
CATGCCTAAAGTCTTCTACTTCTGTCCTTCCCTCATTTTAAAAATAGTTTTAACTCCCCAAAATGACACTTTTCCATTGCTGCAAA
TGAATTTGAAATAAAACAATGATAGATTCAATATCAGTTCATCTTCAGCTGGCAATCCTATCATTGCCATAATGCTGTTAACCAAC
CATACATGTATTTTGTACGTGCTTTGTCTCTAGGGGCCACCGTACTGAGCATGAAATAACACTGTTAATTATTTGTAATTATTTAT
ATTTATATTTATATTTCTTCATACATTCTTATATAGTTCTATATTGTGTATTGTGTATTTTGTTGTACAGTTATTTTATTTTCAAC
TTTAATTTATATATTTTATCTTATTCTTCCCAGTTAAATTTACCCTTCATTCTAATTTGTGTTGTACAGTTATTTCATTTTTAACC
TTAATTTATATTTTATTCCTTCCTAGTTAAATTTACCCTTTTTAATTTTTCATATTTATTTCCTATCTTATTCATAGCCTTTCCTT
TTTTGTTTTCTTTAGGTCACGAGCAGTTGTCCAAGCATTTCACTACATATCGTACTGTGTATGACTGTGTACGTGACAAATAAAAT
TTGAATTTGAATTTGAATTTGGTGTGCACACTGCTGACCACCAGGTGGCGCAAATGTAAACAACCCACACTAAAGGTGAAACCATA
TGTGCAGTAGGTTCCCACAGAAGACGTA 
 
>Oreochromis_niloticus_CNE.18 
TGATGTTTCAGACCAGTGGAGCTTGTGTTCGACTGTGGTAATCACTTTTGAAGACTTTGTGAATTGAAGGAGACAGGTGTCACCTC
TAACATCCACCCTGTCTCACAGACAACCTACTCAACATCTCTGAATTACGTACAAGGTGTGAATCCAATTTGTAGGGATTGAGGAT
TAGAAAGGGACAAACCCCTCCGGTTTAACAGCTTGGTGACAATTTTTGGAAGCTAAGCGGATAAACACAAGCTCCTTGGTCTGGAA
ATCCCACTAGAGGAATTGGCATACTTATGAAAACTGGGTGACAGATGGTTTCCTGTTTATCTATCCAGAGCATCCTCATAACTTTT
AATATTGTTTCATGTAGTATCAACAGTTAAAGAAACGTGATTTGCTTGGGTGAGGATTATTATTGTGTTACTTGAAATTTAGTC 
 
>Metriaclima_zebra_CNE.18 
TGCCCTGAGAAACCAGTGGAGCTTGTATTTGACTGTGGTAATCACTTTTGAAGACTTTGTGAATTGAAGGAGACAGGTGTCACCTC
TAACATCCACCCTGACTCACAGGCAACCTACTCAACATCACTGAATTACGTACAAGGTGTGAATCCAATTTGTAGGGATTGAGGAT
TAGAAAGGGACAAACCCCTCCGGTTTAACAGCTTGGTGACAATTTTTGGTACGCTAAGCGGATAAACACAAGCTCCTTGGTCTGGA
ATCCCACTAGAGGAATTGGCATACTTATGAAAACTGGGTGACAGATGGTTTCCTGTTTTTCTATCCAGAGCATCCCCATAACTTTT
AATATTGTTTCATCTAGTATGAACAGTTAAAGAAACATGATTTGCTTGGGTGAGGTTTATTATTGTGCTACTTGAAATTTAGTC 
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>Oreochromis_niloticus_CNE.19 
AAGCACCTTGAGGCAACTGTTATGATTTTGAGCTATATAAATAAAACTGAATTGAATTGAATTGCACCATCATGCTGCCAAATGTG
TCACTAGGGCATGTGAAAAGGCCCTTTCCACTGTGACATTGGAAGTGCTTTTCCTTCCAGTGACAGAAAAAGGTGTTTTGCTGATG
GGTTTAATGT 
 
>Metriaclima_zebra_CNE.19 
AAGCACCTTGAGGCAACTGTTGTGATTTCGAGCTATATAAATGAAACAGAATTGAATTGAATTGCACCATCATGCTGCCAAATGTG
TCACTAGGGCATGTGAAAAGGCCCTTTCCATTTTGACACTGGTTTCCTCAGCAATGCTTGTTCTTCCAGTGACAGAAAAGGTAGTT
CTGCTGATGGGTTTAGTGT 
 
>Oreochromis_niloticus_CNE.20 
TTCTGTTTTGTGGGCAGAAAGTGAAGTCTTACCCATCACATTGTCGACCATCAGCATGCACTTACCCGAATAAAAAAAATCAGAAA
GAAAGAAAAAGAAAGGCAAGTAATACATAAACCAGCCTGCTTGTTCATCAGCAAACAGATAACAGGACTGTGCACTGTTAACCTCT
AAAGGTGATGATGGCACCGAAGGGAGATTCAATGCAGTGAAAGTGGCATATGGTGTCCAAAGTACTAGACGCACATCATGACGCAC
ACACATCTCACTTCCCTAACAGTCTTCTGGCTGTAATCCTGTTACTGGGCTGC 
 
>Metriaclima_zebra_CNE.20 
TTCTGTTTTGTGGGCAGAAAGTGAAGTCTTACCCATCACCTTGTCGACCACCAACATGCACTTACCCAAATAAAAAACAATCGGCT
CAGAAAGAAAAAGAAAGACAAATAATACATAAACCAACCTGCTTGTTCATCAGCACACAGATAACAGGACTGTGCACTGTTAACCT
CTAAAGGTGATGATGGCACCGAAGGGAGATTCAATGCAGTGAAAGTGGCATATGGTATCCAAAGTACTAGACGCACATCATGACGC
ACACACATCTCACTTCCCTAACAGTCTTCTGGCTGTAATCCTGTTACTGGGCTGC 
 
>Oreochromis_niloticus_CNE.21 
AAATGTGGTTATTGTAGTTATTATAGGGTATTTGCCAAATGCATAATGACTGTGTTATTAATTAAACCAGAACTAACAAAACTAAC
TTGAAAATTATGGATTTAAAATGAAAAGCTTTGGGCTTTCTGTCTTTGTCATACCAATTTTAATTTGACATGTTTTGTTTAGAGTT
ACTAGCATTCATGTAATTACTATAGTTTTATTTATTTATTTATTTTTTTGTTAAATTCATTCTTGGGACGAACTAGGATTTGGGAA
AAAAGTTTTTTTTGCATTTTTCCATCAGTGTCCAGTCTTTTTAATTTTCTCAAATTATCTGGAAATTTCAAAAATGTAGCACAATT
AAAAATTTTAAATACAAAATTCCTAATGAGGATATATGGGATTTGTTTAAGTTCATGTAGTGGTGAACATTTACTCTCTCTACAGC
AGCAGGACTTGTCTACTTTGCAAAGATCAGTGGAATATTGTCTATGTACATTTAAATTACTTGGTTTCTTAAAAATTCAAAACTGG
AAACTGGCTGCAGTGATTTAATAAACAGAAGAAGTTTTAACATATCAAGTAAGAGTAATCAAAAGTAAAAGTACTCCTTATACATA
ACAGCTCATGTCAGAATTATATATTTTCTGCACTACATTGATGACGGAATAATAAAAGTAAAAAAGGATAAGTATAGAAAAATGTA
TTTACTTTATGTTCTATAAGTATATAATGTAGGCAGCTTGTGAAATTACTTGCAATGTATAAACATAGTACAACAGTTTTTATGCT
TTGATTGTTTATTATTATAGTAAAAGTTTATTATTCCATAGAATAGAATTTGAATGCAAATAAATCTATTATTATTACTTTATCTT
AGAAAATATATGACTATATGACATTTTCACACATTTAAAATACATTCAATTAAAAATGTTAATAATGTGTTAATAAAGTCCAATAT
ATGTTAGATATGTTGTGTGGTTCATTTTCTTCCTTTTTGCAGAGTTTTAACAGGAGTGTCAAGGAGCTACTTCAATGCTGGAAACA
CCCTGCACTCTAAAAGAACATTTTCTTGATTAAGACACTGCTCTATTCCAACCAG 
 
>Metriaclima_zebra_CNE.21 
CAATGTGGTTATGTAGTTATTATAGGGTATTTGCCAAATGCATATCTACTGTGTTATTAATTAAACCAGAACTGACCAAACTAACT
TGAAATTATGGATTTAAAATAGAAAAGCTCTGAGCTTTTTGTCTTTGCCATACCAATTTTAATTGTACATGTTTTGTTTAGAGCTA
TTAGCATTCATGTAACTAGTATAGTTTTTGTTTTTTTATTTATTTAATTTTGTTTGTTAAATTCATTCTTGGGATGAATTGGGATT
TAGGGGAAAAAAATTTACATCAGTGTCCAGCCTTTTAAATTTTCTCAAATTATCTGGAAATTTAAAAAATAGCACAATTAAGATTT
TTTAATACAAAATTCCTAATGAGGATATATGGGATTTGTTTAAGTTCATGTAGTGGTGAACATTTACTCTCTCTACAGCAGCAGGA
CTTGCCTACTTTTAACGTATCAAGTAAGAGTAATCAAAAGTAAAAGTACTCCTTATACACAACAGCTCATGTCAGAATTATATATT
TTCTGTACCACATTGGTGATGGAATAATAAAAGTAAAAAAGGACAAGTATAGAAAAATGTATTTACTTTATGTTCTATAAGTATAT
AATGTAGGCAGCTTGTCAACTTACTTGGAATGTAGAAACATAGTACACCAGTTTTTATGCTTTGATTGTTTATTATTATAATAAAA
GTTTATTCTCCTGTAGAATAGAATTTGAATGCAAATAAATATATTTTTATTAGTTTATCTTAGAAAATATATGAATAAATTTTCAA
ACATTTAGCCTAAATAAATTCAATCAAAAATGTTAATAATGTGTTAATAAAGTTCAATACATGTTAGATATGTTGTGTGGTTCATT
TTCTTTCCTTTTTGCAGAGTTTTAACAAGAGCGTCAAGGAGCTACTTCAATGCTGGAAACACCCTACACTCCAAAACAACATTTTC
TTGATTAAGACACTGCTCTATTCCAACCAG 
 
>Oreochromis_niloticus_CNE.22 
ACATTTAACCTTGAGACAGACAGGTGACCAGTTCAGGATGCGCCTTGCCTTTTCCTTTATGACGGGAAT 
 
>Metriaclima_zebra_CNE.22 
NNNNN 
 
>Oreochromis_niloticus_CNE.23 
AACCAACATTAAGTGCTACATGCCAGTATGACATCTTACGCAGGGGATTAATTACATTTAAATGTAGCCTTTCCTCCATACAAGAT
GGGCCATCTATCTCATGATGTAGCCTTTTATTTCCTGCTGATGACCTGACCCTAATTGGCATGCTGTGGGTACATTCACTGCAATT
TTCTTCAAAGAGCCTCCTCTGGACACCTGCATGTGCTCAGTCTCTTTGTCAGGGGGCTGGCAGAGGCGAGCATCACCCCTCTTTGT
TCTAATTGCTTTAATCAGATAGCGGACTGCATACAGAGGCCTTAATAACAAACTTGGGGATGCGCTGACTGTAACTCAAAGCTAAT
GTTCACTTTGAGGA 
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Supplementary File 5-1 (continued) 
 
>Metriaclima_zebra_CNE.23 
AACCAACATTAAGTGCTACATGCCAGTATGACATCTTACGAAGGGGATTAATTACATTTAAATGTAGCCTTTCCTCCATACAAGAT
GGGCCATCTATCTCATGATGTAGCCTTTTATTTCCTGCTGATGACCTGACCCTAATTGGCATGCTGTGGGTACATTCACTGCAATT
TTCTTCAAAGAGCCTCCTCTGGACACCTGCATGTGCTCAGTCTCTTTGTCAGGGGGCCGGCAGAGGCGAGCATCACCCCTCTTTGT
TCTAATTGCTTTAATCAGATAGCGGACTGCATACAGAGGCCTTAATAATAAACTTGGGGATGCTCTGACTGTAACTCAAAGCTAAT
GTTCACTTTGAGGA 
 
>Oreochromis_niloticus_SWS2A_PROMOTER 
TTATAAACTGCTGCTGACTGGCTGGGCATATGATAGCTGTATTTTGTTAATATTCACATACACACCAAATTGCTTAGGTTATGCAA
TTTTGTTTTTCCTGTATGAAATAGTCTATAACGTTTTTGCCCATTAAAATGATATAAAGTAAAAAAAATAAGAAAGTGTTGAGCAA
GCTAGTTTAATAATTCTATTTCCCTCCACTAACTTTCTTCCTCTTAAGTATGCTTATGCACATCCTCCTCTGTATCGGATCGTTGG
GACGACAACGAGCAAATTCTGCGATTAACCCGCCAGCTTAAATCGTACCACAGAGTGTTACCATAAAACCTTCAATCTTGCATGCT
AGTGCAACAAAGACGCTCCCTTAAGCTCAGTGAAGGCAGCAAAATGCCAAGGAGGTAACACAAAGCTTGAGTTAAATCCCCATGCA
AAATAGGGTGTAATCCACTTAACAAGAGATTATCAAATATAATGTGATTGGAAACCAGATTAGCAGGTGAAGACCGGCAGGGAACT
TCCTTAGGAAAGAGGGATTAACCTCTTTAACCAAGTTTGGATGCCAAAAGCATATCGAGGTTTGCACAGATTTTTGGAAGTCCAAA
TATGCTTGTGTTTGTTCCCAGATTCAAATACTTGTTAATTCAGATATCTGCCAAATAACCAAATCTCAGAATTTAGCATCACAGCA
CACAACACAGAACTGGAAACCACAGAAGCATTAACACCAATTAATAAAATGAAAAGCTATGAAGTCAATTAAATTAGTCAATTAAT
TACTTAGTCAATTAAATAATCAATTAACCACTTTATAGCGATCAGTGTCATGAAACCCTTTATAAACGTCAATACGACGCACACAG
CCAATAAAGACAAGAGACGATAGAATTCCTAACCGCACAGCGTTCATGTCTGCTCCTTAAATTTATTCTTTGGCAGAGCGTGTGAG
ATACCTAATTTGAGCCGTAAGATCAGCAGGAGTACGTAGTTCGAAATAAGCAAA 
 
>Metriaclima_zebra_SWS2A_PROMOTER 
TTTTTTATAAACTGCTGCTGACTGGCTGCATATCATAGCTGTATTTTGTTAATATTCACATACACACCAAATTGCTGAGGTTGTGC
AATTTTGTTTTTCCTGTATGAAATAGTCTACAACTTTTTTGCCCATTAAAATGAAATAAAGTTAGAAATAAGAAAGTGTTGAGCAA
GCTAGTTTAATAGTTCTATTTTCCTCCACTAACTTTCTTCCTCTTAAGTATGCTTATGCACATCCTCCTCTGTATCGGATCGTTGG
GACGACAATGAGCAAATTCTGCGATTAACCCGCCAGCTTAAATCGTACCACAGAGTGTTACCATAAAACCTTCAATCTTGCATGCT
AGTGCAACAAAGACGCTCCCTTAAGCTCAGTAAAGGCAGCAAAATGCCAAGAAGGTAACACAAAGCTTGAGTTAAATCCCCATGCA
AAATAGGGTGTAATCCACTTAACAAGAGATTATCAAATATAATGTGATTGGAAACCAGATTAGCAGGTGAAGACCGGCAGGGAACT
TCCTTAGGAAAGAGGGATTAACCTCTTTAACCAAGTTTGGATGCCAAAAACATATCTAGGTTTGCACAGATTTTTGGAAGTCCAAA
TATGCTTGTGTTTGTTCCCAGATTCAAATACTTGTTAGTTCAGATATCTGTCAAATAACCAAATCTCAGAATTTAGCATCACAGCA
CGCAACACAGAACTGGAAACCACAGAAGCATCAACACCAGTTAATAAAATGAAAAGCTATGAAGGCAATTAAATTAGTCAATTAAT
TACGTAGTCAATTAAATAATCAATTAACCACTTTATAGCGATCAGTGTCATGAAACCCTTTATAAACGTCAATACGACGCACACAG
CCAATAAAGACAAGAGACGATAGAATTCCTAACCGCACAGCGTTCATGTCTGCTCCTTAAATTTATTATTTGGCAGAGCCTGCGCG
ATACCTAATTTGAGCCGTAACATCAGCAGGAGTACGTTGTTCGAAATAAGCAAA 
 
>Oreochromis_niloticus_SWS2B_PROMOTER 
GAATTACCAGATTTTTTTTTTTTTTTTTTTACCTGATTTTTGTTTCTGGGAAAAATGAGATCCACATATTAATTTTAAATTTTAAT
AGAACAGTGGCAGTATAATGTCCTCATAAGTGGATATCAGGCCTCTGTAGATCAAAATTTGATATTTTGGTCTAGACCACCCAAAA
TGTGATGTCCATATGTGGACACCAGGTCCTAGGAGGTTAACATTTTGCCTAGAGCAGTGTTCACTGCAGTGGAGGTTTATATAAAC
TATGCTCTCTGAAGTGGTGACATAATTAAGAGGTCACAGAGGAATGTGATATCCTCGGCAGGGGAAGCAATTTGATCTTAAAGGTT
TGATAATGTTGCCAGTCAATAGAGGGAAGACCCCCAAAAAAGAGACCATGACTCATTCAAAGGACCTCTAACCACCAAATATAAAG
TAGATCTGATGAGTAGTTAGCAAGATAAGGGATGAAGAGACAGAAAACTTTTTTTTCTCTTTAATCCGACCACTTTTTCCAGAAGA
CTGACTACTCCTTCTTGGTGAAAAATAATTGTGCCAGAAAAAAAGATAAATCAACACAACCTGGAGTACTGAGGGTGAGATGCATG
CACTGACCTCTTGGAAGTCCCTGTAGATCAGATTATATGGTTCAAAAACACACTGCCCTTACACTAGGATGTAATGGGATGATCCT
TGCCAAGTCTGGTAATGCGATAGTAATCTGTGTATTAGCTATTGGGTAGGGTATGTTGTTATCGGAATGCAAGGAAAGCTTTAAAT
CCTGTCCTTTAGCCAATTATGTTGAGCCTTAGCAATCATCAAAGTTCCTATAAATGCCGCCGTTAATTCCGCTTCACACAGACGAG
CATCTCAGATATAAGACGGAAGGAAACATGAAATCTCTGAGTACTATTTAAAATTAGATGCAGCTTATTTGAAGTCTTTTAAAGTG
TTTTTATTTAATATCTTTAGATATCGATTTTGATCGCAAACACCATCTAAGAAA 
 
>Metriaclima_zebra_SWS2B_PROMOTER 
ATGCAAACTGCCAAAATGGAGTTTACAGGCAGAAAATAAAATATATACAATACACAGACTGGTGATCTGTCCCTATTGTAGTTGGG
ACAGACTCCAGTCACCACCTTCCTGCTTCCAGTGCTGGGGGGAGGGGGGTCTGCTTGTTCTGGAACAAACAAAAATAACATCCACA
TAAACACCAAAATCCAATGGTTCAAGAAAGTTTCTGGCAAGATTATCAGTGTTACAGACTTCACCTGTCAGTGGTTTAACATTTTG
CCTAGAGCGGTGTTCACTGCAGTGGAAGTTTATATAAACTATGCTGTCTGAAGTGGTGACATAATTAAGAGGTCACAGAGGAATGT
GATATCCTCGGCAGGGGAAGAAATTTGATCTTAAAGGTTTGATAATGTTGCCAATCAATAGAGGGAAGACCCCCAAAAAGAGACCA
ATGACTCATTCAAAGGACCTGTAACCACCAACTGTAAAGTAGATCTGATGAGTAGTTAGCAAGATAAGGGATGAAGAGACAGATAG
AAAAACCTTTTCCATAAGTCTGATTACTCCTTCTTGGTGAAAAATAATTGTGCCAGAAAAAAGGAGTACTGAGGGTGAGATGCATG
CACTGACCTCTTGGAAGTCCCTGTAGATCAGATTATATGGTTCACAAACACACTGCCCTTACACTAGGATGTAATGAGATGATCCT
TGCCAAGTCTGGTAATGCGATAGTAATCTGTGTATTAGCTATTGGGTAGGGTATGTTGTTATCGGAATGCAAGGAAAGCTTTAAAT
CCTGTCCTTTAGCCAATTATGTTGAGCCTCAGCAATCATCAAAGTTCCTATAAATGCCGCTGTTAACTCTGCTTCAGACAGACGAG
CATCTCAGATATAAGACGGAGGGAAAAATGAAATCTCTGAGTACTATTTGAAATTAGATGCAGTTTATTTGAAGTCTTTTAAACTG
TTTTTTTTTTTATATTTTAGATATAGATTTTGATCGCAAACTCCATCTAAGAAA 
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Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_LWS_PROMOTER 
ACTCTCACGCAGTCTTGTACCATAAAATTACTGCCAGCTTTTCAATTATCAGGCTTTCCCATAACCAAATGAAGTCTTCAATAGCC
ACCCTCACAGATCCATCATGAAGTGACTCATCTTGAATGAGCTAGTTCTAAATTTTATCATTTAATTTGTTTATTGTTTAAGTTAC
TTATTAGCCTAAAGACAGTCAATCAAACAACCAGTTTCATGAGGCTTGCTCATAATGCTCATGAGTACAAAAAGCATTCCTCCCTT
TGCTTGCCACTTGCCATAAGGGCTATGACGTGTGTTGCAGGGTCAAAGGACTGTCAAAGAATCCGATGAACCCTCTTTCCGGAGGG
ATTAAAAGTGTCTTACTTCCCTCACAGGTCAACAACTGAAACCTGCACTATTATAGGACCGCGGATCTCCACCTCCACTAAAGCTG
CTTTGCTATGCAAATCAGGGCTGACACATATACCTGTTAGGATCACAGTAGCATAAATATTAAATATTGCAAAGTGTCTGGATTTG
ACACCTCTCTGTATTCAAAAGTATAAAAAGTAAACATTTTCTTTTTAGGTTAAATGGTGATTTGAGAGATATATGCACTTTTATGT
TTCTACTTTTCATTTATACACGGCTATAGACCATTTGAGCCACTAGAGAACTCAGTGTGGAAAAGGACACAAAACTGGCATTTGTT
GGTCAAAGATCTTGAAACTAATCCTTATCTGAAGTCAGTAGACGGAAATCCACTTTCAAACAAGATTATTCTAGCATTTTGTCTTA
ACCTCATTAGTTGATTGTTTTAATTACAGTTCAGGGTTATTGCTTTGCCACTTTGCTGCGCTGCCAATAGGCACACCACAGCTATA
ATTTGATTGTGACCTAATCCAATCAAAGGTTTGTGAAGCATAGGTATAAAAGCAAAAGTCAGATCTGTAGCACCAAGCAGCCAAGG
AGGTAGCAAGTGACAAGAAAGGCTAACAGCTCAGGACCTCCTTCTAAGAAMAGA 
 
>Metriaclima_zebra_LWS_PROMOTER 
TACCATAAAATTACTACCAGCTTTTCAATTATCAGGCTTTCCCATAACCAAATGAAGTCTTCAATAGCCACCCTCACAGATCCATC
ATGAAGTGACTCATCTTGAATGAGCTAGTTCTAAATTTTATCATTTAATTTGTTTATTGTTTAAGTTACTTATTAGCCTAAAGACA
ATCATTCAAACAACCAGTTTCATGAGGCTTGCTCATAATGCTCATAAGTACAAAAAGTGTTCCTCCCTTTGCTTGCCACTTGCCAT
AAGGGCTATGACGTGTGTTGCAGGGTCAAAGGACTGTCAAAGAATCCGATGAACCCTCTATCCGGAGGGATTAAATGTGTCTTACA
TCCCTCACAGGTCAACAACTGAAACCTGCACTATTATAGGACCGCGGATCTCCACTTCTCCACTAAAGCTGCTCTGAGAGTGCTAT
GCAAATCAGGGCTGACACATATACCTGTTAGGATCACAGTAGCATAAATATTAAATATTGCAAAGTGTCTGGATTTGACACCTCTC
TGTATTCAAAAGTATAAGAAAGTAAACATTTTCTTTATAGGTTTAATGGTGATTTGAGAGATATATGCACTTTTATGTTTCTACTT
TTCATTTCTACATGGTTATAAACCAAATGAGCCACTAGAGAACTCAGTGTGGAAAAATTAGGACACAAAACTGGCATTTATTTGTT
GGTCAAAGATCTTGAAACTAATCCTTATCTGAAGTCAGTGGACGGAAATCCACTTTCAAACAAGATTATTCTAGCATTTTGTCTTA
ACCTCATTAGTTGATTGTTTTAATTACAGTTCAGGGTTATTGCTTTGCCACTGTGCTGCACTGCCAATAGGCACATCACAGCTATA
ATTTGATTGTGACCTAATCCAATCATGGGTTTGTGAAGCATAGGTATAAAAGCAAAAGTCAGATCTGTAGCACCAAGCAGCCAAGG
AGGTAGCAAGTGACAAGAAAGGCTAACAGCTCAGGACCTCCTTCTAAGAACAGA 
 
>Oreochromis_niloticus_SWS1_PROMOTER 
GGTCCAAAATGCCGCAGCACGTCTTTTCACCGGCACTAGAAGGTATTATTCCATCACCCCTGTTCTAGCCAACTTACACTGGCTTG
ATATCAAATATCAAATCAATTTAAAAATCTTATTGTTTACGTATAAAATCCTGACATTCGCGCATCAGATTCTATTCAATCTTTTA
AATCTAAAAACGTACTTGTTTAACCTGGTTTTTAAGGCTAATTAGTGTGGTTTTTATCTGGATCTGCATTTATATTATGTAATTAT
TTTATATCTGTAATTTATATTTTATATTGTGATTTTATCTGTATCATGGTTTTACTGGAAAGCACTTTGATGCACTTTGGTCTTTA
AATGTTCTATACAAATAAATTTGGTATGATATGATATGATATGAAGTGTACCCCGCCTGTCACCCACCGACCCGCCCACAACCCTC
AGCTGGTTGGATGGATGCTGATGTTTCTAGTTATTATGTGTAACCAAACTTAAATAGTACAAATAAATCATTTAGCATAACTAAAG
TTTGAATTTCATGTTATTAGCTGTTAATATGATTGCTGTTTTATGTTTAGATCACTAATAATTTAGTTAGTGAAATCAATCATTAA
ATTAAGTCTGTTTGGTAACATCAACTGACCACAGGGTTCCAGGTTCAATTCCTCCGAGTTAAAGGGCTAATTCCATAGCCATTTAC
TAAAACAATAAATAAATAAATAAATAAAACAAGTCAGAGTTTTATAAAAACAATGTATAGGTGAAAGAAATGAAGACGTGCATGCA
ACCACGATCACTTTTAAAGCAGGAAGTATGTTTTGAGTTTTCTGAAGTGAACTCGGGTGGATCCGTGTGTTCAAAGAGAAAACCTT
CTGTAAGCAGATTAAGGAGTCAGAAGTTCTTAATCCTGAAAGTTTAGAAAAATCCCAGCAGCATAATCTTTGCTGTAAGTGGTTTA
TGAGCGTATATAAGAGGCTGACACAGCGGCAGCAGCAGAGAGCTCAGGGTCACA 
 
>Metriaclima_zebra_SWS1_PROMOTER 
CTTCCTCACGCTGAACCCCTTTAACCGTTTCAGTGGTCGTGAGTCTTCTAATCTGACTGTGTGACGATGTTTTAAGGATTTGGAGG
ATTGAGGAGGATCACCTGGTCAGGTAAATCTGAAATATCCGGATTACATCGGAAGTTGAGCACACGGAAAAACAAAAGACTCTTAT
TGGATTTAGATCCGTCAGCCACCTGCTGCTGCTCTTCATCATCAGGCGTCTTCATCGCCCTGCAGTGGGCCTGACAACAGCTTGTG
TTTATTACACTAAAAACTTTATAAACCCATCACAAACCATATCACACAGCAGGGACTTACCTCTTCATCTGTAAGAAGGATTTTTA
GAGTTGGCAGCAGAGCAACAGTCAGCTCTGTTGCCTCACTAAAAGAGATCTTTGTTTGAATCTGTGACCTGTCCAAGTGTACCTCG
CTTCTCACCCACTGACCTCTCCACAACAGTGAGCTGGTTGGCGGGATGCTAATGTTTCTAGTTATTACGTGTAACCAAACTTAAAG
AGTACAGATAAATCATTTAGCATAATTAAAGTTTTACTGTCATGTTATTGGCTGTTAATATGATTGCTGTTGTAAGTATGTGTTGA
TCACTAACAATTTAATTAATTAAATCAATCATTAAATTAAGTTTGTTTGGAAAAAGAGGGAAAACTCATCCACTGACCACATGGTT
CTAGGTTCAATTCCTTGGAGTTAAAGGGCTAATCCCAGAGCCATTTACCAAAATAATAAATAAATATTTAAATAAGACGTGCATGC
GACTGCGGTCACCTTTAAAGCACAAAGTTTTTTTTTGAGCAGTGAGGTGAACTCGGGTGGATCTGTGTGTTCACAGAGAAAACCTT
CTGTAAGCAGATTAAGGAGTCAGAAGTTCTTAATCCTGAAAGTTTAGAAAAATCCCAGCAGCATAATCTTTGCTGTAAGTGGTTTA
CGAGCGTATATAAGAGGCTGACACAGCGGCAGCGGCAAAGAGCTCAGGGTCACA 
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Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_RH2B_PROMOTER 
TTCTTTTTGTACAAAAAAAGTTTAAAAATTACTTTGTATTTGCTTTCTGATGACCAGTGAGTGCATTATGAAAGAAGGTGGAAAAG
GAAGCAACTAGACTAGGGCAGACTAATGGGACTAATCAACATGGCACTGTGACGTGTGGGCGTACCCATTCTATTTCCAATTTCAG
GACACAGGCACAAGTTCAGCATTGGTAAATCACTGAGGTTTGTGGGTCACTGTATCAAAACACCGCCTGATATAGTGTTTCAAAAA
GTGCTGATGACTTGAAAAGGAGTTGTGAAAAACATATTTTATAAATAAACTGCAAATATCACCTGCCAAGGTTTGCAACACTCTTG
TGTGTGGACCAGGTTGAGTCTGCCCACTAAGAAATTGTGTGGAAAAACTTTGTGGACACGAACTTGGAAATTTTATATAAATGTCA
CTTACTGCTAAACTCCCACATTGGAGTTGCACTCCAATTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCT
TTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCCATCATTTATTTAAAATATATAAACTC
CTGAAGTCTGAAGCTTGGCCTATGCTAAAGTTGTGACAGAAATTTGAGATCGCCAAGAAATTCTGTCTTGTTTATGAAAGCAATGG
TCTACGAGTAAAACGCTCCCAGTTTAAATGGGAGAATAACAGGTAAAAGCCTACTCTCAATGACCTAGTGACCATCATTTGGTAAC
AGTCATGGTTTTAATTACTAAATGCTTCCTAAGAAAATGTGGAGAAAAAAAAGGATCACCAAGTAACAAGTGATTATACTCAGAGA
TTATGGGCTGAATTCTCAGATCCTCTTAGCTCATCTTCATCATCCCCTGGGGGCTATATAACTGTGGCTGCTCAGTGGTGTTTAAG
AAGTTAGAAAGCAGACTCTACTGCATTAACAGTACTCCAAGGAGCTTAGCAGAG 
 
>Metriaclima_zebra_RH2B_PROMOTER 
GACTCACAATCAGAGATTTACCAGACTTATCATACCCAAAACTATATAATTACACAAATTAAAATCACTTGTTTTTTCACTAACAC
TTTACAATACAGCCCATGACTAAGCTCAATGAGGAGAGGACTGTAAGGGTTTCAAGTCCTGTGGTGTTAATGGGAATGTGTCCCGT
GAAAAGAAAGAAAGAAGAATGCACAAAGCATCTATTTATAGCATTTACAGTATGTTGGCATTGTTGGCCTTTTACAGCATGTCCTT
TTTTCTTCTTCTGGTCTTTTTGTAGTGGAAAAGGAAGTGAAAGACTAGGGCAGACTAATGGGACTAATCAACACGGCGCTGCGACG
TGTGGGCGTATCCATTCTATTTCCAATTTCAGGACACAGGCACAAGTTCAGCGATGATAAATCACTGAGGTTTGTGGGTCTCTGTA
TCAAAACACCACCTGATATAGCGGTGCAAAAAGTGCTGGTGACTTGAAAAACAGTTTATTTTTAGTTTTGTTTCATTTTATAAATA
AACTGCAAATATCACCTGCCAAGGTTTGCGACACTCTTGCATGTGGACAGGGTTGAGTCTGCCCACTAAGAAATTGTGTGGAAACC
TTTGTGAACACGAAGTCTGAAGCTTGGCCTATGCTAAAGTTGTGACAGAAATTTGAGACCGCCAAGAATTTCTGTCTTGTTTATGA
AACCCAATGGTCTATGAGTAAAACGCTCCCAGTTTAAATGGATGAATAACAGGTAAAAGCCTACTCTCAATGACCTAGTGACCATC
ATTTGGTAAAAGTCATTGGTTTTATTTACTAAATGCTTCCTAAGAAAATGTGGAGGAAATAGGATCGCCAAGTAACAAGTGATTAT
ACTCAGAGATTATGGGCTGAATTCTCAGATCCTCTTAGCCCATCTTCATCATCCCCTTGGGGCTATATAACTGTGGCTGCTCAGAC
TCTGCTGCATTAACAGTGCTCCAAGAAGCTTAGCTGGACAACTGATCAGCAGAG 
 
>Oreochromis_niloticus_RH2A-alpha_PROMOTER 
CTTTGCTAGTCAGCTGTTTAGTTGAGTCTGCGTAAAGAGTCTACTTGTGTGGATGGTGACGAGGTTTCAAGTTACACCCTGCGATT
TTTATACCTCTCCACTAAACCTGTCAAACAGCCAAAATGGGATTAGAGGATTGTGAGGTAGTGCAAAAGCTAAGAGGTCACTAATT
AATCTTAACACCGGATAGACAGGACAGGGTCCAAACTAATTTGCTCCACTTTCCAAGTCCGGAGGAATTCTCCTAATCCTTACTCG
AGAAAGGGAATTACCTTCCCTCAGCTTTTAAAGTCTGATGAGACATTAATCATGAGCAAACACACAAATCATACCTGAAATATGAG
AACTGTCTGTGTATATAAGAACAAGTGTATTGATTGTAGAGTGTTAAATATATTATCTACAGCAGATAATGTTTAGTGATAGTGTG
CTTTACATAGTCTGTGTCTTTTAATGTGAGCTATGTATGTGTTGAAACAAGTGTTTTACCTGCTTCATCTGCCTTCTTCTAATCCA
ATTCACTGTGGGTGCTTTCTTTCCTAGAGTGCTTAACTACCCTACATTAAATTTCTTATGTTTTAATTATTTCAGACCAGACCTAC
AGTCAAGCATTTTTCACCCTAACAGTCTGTCTCCATATGGAGGAACTTTGGGTGTCATTATCCTGATCGGATTAACCTCAGTATCT
CACCTGTGGTAGCCTAGCTGTGATGTGGTAAAAGCTTACTGTCACAGGTCGGAAAGAAAATGTCCGGTAAAGACTTAGCCAATTTG
TGGTCTTCTTTAAGCTACTGCAACACTATCAGTGGCCAAGAACATCTAATATCAGTTATCCTTCTGTTTATTTGACAGATAGAAGT
GATAGATGATGATTGGGCTACATGATGGAGAAACCACATCATTTCTCTGTTACCTGTGATTAATTCAGATCAACTTGCTTGTGATG
TTCTGTTTAGTCCCAGTTATGTGATTTGATATGATAATAAATTTAGTTTCTTTT 
 
>Metriaclima_zebra_RH2A-alpha_PROMOTER 
CTTTGCTAGTCAGCTGTTTAGTTGTGTCTGTGTAAAAAGTCTACTTGTGTGGATGGTGACGATGTYTCAAGTTACACCCTGTGATT
TTTATACCTCTCCACTAACCCTGTCAAACAGCCAAAATGGGATTAGCGGGTTGTGAGGTAGTGCAGAAGCTAAGAGGTCACTAATT
AATCTTAACACCGGATAGACAGGACAGGGTCCAAACTAATTTGCTCCCCTTTCCAAGTCCGGAGGAATTCTCTTAATCCTTACTCA
AGAAAGGGAATTACGTTCCCTCAGCTTTTAAAGTCTGAAGAGAAGTTAATCATGAGAAAACACACAAATCATACCTGAAATATGAG
AAATGTCTGTGTATATAAAAACAATAACGTGTACTGATTTTAGAGTGTTAAATATATTAACTACAGCAGATAATGTTTAGTGATAG
TGTGCTTTACACAGTCTGTGTCTTTTAATGTGAGCTATGTATGTGTTGAAATGTATGTGTTGCCTTCTTCTAATCCAATTCACTGT
GGGTGCTTTCTTTCCTACAGTGCTTAACTACCCTACATTAAAAATTTTATGTGTTTATTAATTCAGACAAGACCTACAGTCAAGCT
TTTTTTACCCTCACAGTCTGTCTCCATATGGAGGAACTTTGGGTGTCATTATCCTGATTGGATTAACCTCAGTATCTCACCTGTGG
TAGCTGTGGTGTGGTAAAAGCTTACTGTCACAGGTCGGAAAGAAAATGTCCGGTAAAGACTTAGCCAATTTGTTGTCTTCTTTAAG
CTACTGCAACACTATCAGTGGCAAAGAACAGCTAATATCAGTTATCCTTCTGTTTATTTGACAGATAGAAAGGATAGATTATGATT
GGGCTACATGATGGAGAAACCACGTCATTTCTCTGTTACCTGTGATTAATTCAGATCAACTTGCTTGTGATGCTCTGTTTACTCCC
AGTTAAATGTGATTTGATATGATAATAAATAAATTTACTTTCTTTTATTATTTT 
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Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_RH2A-beta_PROMOTER 
GTCTATTCTAAGCTGTTAACTGTTGGCGTGAGTTCACATGTTCATGGTCAAATGTTAAACGTCTCTTTGAGGCGTTAATGAGGCAT
TGGACTAGTTGGCTGAATCAGCTACTGTAACACCTACTGGAATAACAAAAATATAGCAATTAGTTCTTCAGTTGTGTTGTTTTGTT
TTATGACGTTTTGAATACAGTCAGTTTTTTTTTCCTTATCTTTGTGTTTGACCCCACCACGCTGATGGGGTACTGAACACGCCACA
TGTTTTAAAGTAAATAAAAGATAAATCACTATATCAACAGTCTTGCTTTACCACGGATCATTGTAAATAGTCATTGGTATTCATAT
TTTTAATGGTCACAATTTCCTTAATCAGTTTGGTTCCTTTTGATCATTTGATAAACTGTTTTTTAAAACTATTTTTATGCATATCA
GTTCATTTTTCTGTCTCTTAATTGCAAAAACTTCGTTCAAATGCTCCAAATCACATATTTTAATACAATAGGTTTAGGATTGTGAT
GAGGTTATGGTTACTTTCGTTCTGAGGTTTCATTTTTAAATACTCCAACCATAACACTTATTTATTTATTTATTTTACTTTAAACT
GAACTTTTAAACCTATTTGAAACATTTTTTGTACTACACTGAGAACTTAAGCAATGACAACGAAAAGCAAAGAAAAATATTGTTTT
CCTATAAGAAAGGGGTGTGTAGTGTAAAGCAGCATTTTCTGCAAAATTAGGAAATTTATCTCAAGAGGCCAAGATATTTGACCCTG
AGGTCATTGTCCCTCTTTGCTTTTTAAAGTCAATTATCAGTCAGACTTGATCTGTTCACTTCCTCACAATCCTCTTGTAATCTAAT
TTTGCTAATTTGAGGATAACCCTGAGCAGGTATAAAACACCAAGGCAGCCATAAACTACCTGTGTGTGGTTGGTTTACACCTCTCT
AACACTACTGGGATATTCCATCAGCTGAAACTCAAGCAAACTAGACAACAGAAG 
 
>Metriaclima_zebra_RH2A-beta_PROMOTER 
TTAACTGCTGGCGTGAGTTCACATATTCATGGTCAAATGTTAAACGTCTCTTTGAGGCGTTAATTAGGCATTGGACTAGTTGGCTG
AATCACCTACTGTAACACCTACTGAAATAACAAAACTATAGCAATTAGGTCTTCAGTTGTGTTGTTTTGAATACACTCTAGTTTTT
TCCTAATCTTTGTGTTTGACCCCACCACGCTGATGGGGTACTGAACACGCAACATGTATTGAAACAAATAAGAGATACATCGCTAC
ATCAACAGTCTTGCTTTACCATGAATAATTGTCATAGGTATTCATATATTTAATAGTCACAATTTCCTTAATCACTTCAGTTCCTT
TTAGTTTACTTTGATAAAGTTCCTTTGATAAACTAGTTTAAACAAATGATACAAAAGTTTAAAAACACTTCATTTTTCTATCTCCT
AATTGCAAAGACTTGGGAGAAATTCTTTCAAATGCTCCAAATCACATATTTTAATACAATAGTTTTAGGATTGTGTTAAGGTTATG
GTTACTTCCTTTCTGAGGTTTCTATTTTTAAATACTCCAACCATAAAACCTATTTACTTATTTATTTTACTTTAAACAGAATTTCT
AAAACTATTTGAAACAATGTTTGTACTATACTGTGAATTTAAGCAATGACAACCAAAAGACAAAAGAAAAATATCATTTCCTACAT
TATAAGAAGGGGTGTGTAATGTAAAGCATCATTTTCTGCAAAATGAGGAAATTTATATGTCAAGAGGCCAAGATGTTTGACCCTAA
GGTCATTGTCCCTCTTTGTCTTTTTAAAGTCAATTATCAGTCAGACTTGATCTGTTCACTTCCTCACAATCCTCTTGTAATCTAAT
TTTGCTAATTTGAGGATAACCCTGAGCAGGTATAAAACACCAAGGCAGCCATAAACTACCTGTGTGTGGTTGGTTTACACCTTTCT
AACACTACTGGGATATTCCATCAGCTGAAACTCAAGCAAACTAGACAACAGAAG 
 
>Oreochromis_niloticus_SWS1_3'UTR 
TGCTCACACCAAAGTGACACTGAGGACTTTTAAAAGGGCGTGACTGAGCTGAAGAGGACGAATGTTTCCTGTATACTCATCGTTAC
ATGTAAATACAGTTTATACGTACACACGATCAGCTGATATCTATGTTCCTGTAGAACATACGTGTTTAGATAAAAGGCAAAAATAA
ACATTAAAAACAATGAAGTGTCTTTCTTTAGACTTTCTGAATAAA 
 
>Metriaclima_zebra_SWS1_3'UTR 
TGCTCACACCAAAGTGACACAAAGAACTTTTAAGAGGGCGTGACTGAGCTGAAGAGGACCTTCACAGGTCCGAGTTTGGAGGACGA
ATGTTTCCTGTATTCTCATCGTTATGTAAATAAAGTTTATACGTACACACGATCAGCTGATATCTATGTTCCTGTAGAACATACGT
GTTTAGATAAAAGGACAAAAATAAACATTAAAAACAGTGAAGTGTCTTTCTTTAGACTTTCTGAATAAA 
 
>Oreochromis_niloticus_LWS_3'UTR 
ATATTCACGTTCTCCATTTTGGGAAAAAAAAGAGAAATATTTTGATTTGTACAGTAAATATTTATTGTTTCCCTTTTCTTTTCTTT
TTTTTTAGTAAATATAGCTTTCTCTGGCAAATGAAAAAGCAAAAAAATACACATAAAGCAAATGAATCATTATATTAATTGTCTTT
TTTCAAATGTAAATAAA 
 
>Metriaclima_zebra_LWS_3'UTR 
ATATCCATGTTCTCCATTTTGGGAAAAAAAAGATAAATGTTTTGATTTGTACAGTAAATATTTATTGTTTCCTTTTTTCTTTCTTT
TTTTTTAGTAAATATAGCTTTCTCTGGCAAATAAAAAAGAAAAAAAATACACATAAAGCAAATGAATCATTATATTACTTGTCTTT
TTTCAAATGTAAATAAA 
 
>Oreochromis_niloticus_RH2B_3'UTR 
AAATAATACCTACATATCTCCAGCCATACTCCTTCCTGACTTTTCCCTCATTCTGAATGACTGTCTTGACATGGACATGAGAAAAT
GGATACAAGCTAATTTTCATCATTCGTTATTATTGTATGTGAAAACTTGACTCTAAATTTATTTTTGAAATGTTTGGATGGTGGTG
GGATAAAAATCCCCTTTGTATATTTGTGACATAAAGAGGTTTTCGAATATGTTAGCCTCTGTCATGATATTCTGTAAATATTTTAT
AAACAAAAAGCCTAGGAATAATATATTAAATGCATGGATGAAAAGATTTATT 
 
>Metriaclima_zebra_RH2B_3'UTR 
NNNAAATACTACCTACATATCTCCAGCCATACTCCTTCCTGACTTTTCTCTCATTCCGAATGACTGTCTTGACATGGGCATGAGAA
AATGGATACAAGTTCTATTTTTATCTGCAGGTATTTTACTGTAATTGTTCCTTACTATTGTATGTGAAAACTTGACTCTTTAAGTT
TTTTTTTTTTTTGTATGGGATAAGAATCCCCATTGTATATTTGTGACATAAAGAGGTTTTCGTAGCTTCTGTCATGATATTCTGTT
TATATTTTATAAACAAAAGCCTAGGAATAATATATTAAATGCATGCATGAAAAGATTTATT 
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Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_RH2Aalpha_3'UTR 
TCATGATGGCATCTTCAGATCTATGGACATTGATGATTGCTTCCAGATTTTAAAACATCCCATTAGAGAAAGTTTTTGCCAAATGG
ATTTAAGAAGCGGACTCTGGACCAAAAACACAAAGGAATTCTATGTTATCTGTGAATTAACAGAAAGTCAAATGCATTTTCTGTTG
GGGTGATCTTGTACAGCAATTGTGTGTCTGTGTGCATGTGAGACCATTTGAGAGAGTGAATATGAGTGAACTTGTAAACTAAAAAC
ACCTCAAACCGTAAACCTGCTGAAATGTGACACTTGTACCTGATGAATGTACAATCACATGTTAATTGTTTTCATGCAATAACTTG
GGGGAGCATATATTTCACTGGTCTACCAGTGGTGTTATTTTTATGCATTATATGAAAAAGAAAAAAAAATATAGGACTGAGTAGAT
AAAATAAA 
 
 
>Metriaclima_zebra_RH2Aalpha_3'UTR 
NNTCCTGATGGCATCTTCAGATCTATGGACATTGATGATTGCTTCCAGATTTTAGAACATCCCATTAGAATCATTTTGCCAAATGG
ATTTAACAAATGGAGTCTGGACCAAAAACACTAAGGAATTCTATGTTATCTGTGAACTAACAGAAAGGCAAATGCATTTTCTGTTG
GGATGATGTTGTACAGCAATTGTGTGTCTGTGTGCATGTGAGCGCATTTGAGAGAGTGAATATGAGTGAACTTGTAAATAGAAAAC
ACCTCAAACTGTAAACCTGCTGAAATGTGACACTTGTACCTGATGAATGTACAATCACATGTTGATTGTTTTCATGCAATTACTTG
GGGGAGCATATATTTCACTGGTCTACCAGTGGTGTTTATTTTTATGCATTATATGAAAAGGAAAAAAAAAATAATAGGACTGAGTA
AATATAATAAAT 
 
>Oreochromis_niloticus_RH2Abeta_3'UTR 
NNNNNNNNNNNTGGCATCTTCAGATCTATGGACATTGATGATTGCTTCCAGATTTTAAAACATCCCATTAGAGAAAGTTTTTGCCA
AATGGATTTAAGAAGCGGACTCTGGACCAAAAACACGAAGGAATTCTATGTTATATGTGAACTAACAAGAAATGCATTTTCTGCTG
AGGTGATCTTGTACAGCAATTGTGCGTATGTGTGCATGTGAGCGCATTTGAGTGAGTGAGTCAATGTGTAGGAACTCAGATCCTCA
AAATGTCAAAAGAAAAACTGTAAAACTGCTGAAATGTGACACTTTTACCTGATGAATGTGCAATCACATGCTGATTGTTTTCATGT
AATTTTATGGTTGGGGATGTGTGTGTGGGGGGAGGGGGGCATACTGTATACTTAACTGGTCTACCAGTGGTGTTATTTTTATGTAT
AAAAAAAGAAAATATAGGTTTGAGTAGAAAATAAA 

 
>Metriaclima_zebra_RH2Abeta_3'UTR 
TCCTGATGGCATCTTCAGATATAAGGACACTGATGATCGCTCGCAAATTTTCAAAATTCCCATTAGAGAAATCTTTTGCCAAATGG
ATTTAAGAAGCGGACTTTGGACAAAAACAACTAAGGAATTCTATCTTATCTTATCTCTGAACTAAACAAAAAAATAGCATTTTCTG
TTGAGGTGATCTTGTACAGCAGTTGTGCGTCTGTGTGCATGTGAGAGCATTTGAGTGAGTGAGTCGATGTGTAGGAACTCAGATCC
TCAAAATGTCAAAAGAAAAACTAGTAAAACTGCTGAAATGTGACACTTTTACCTGATGAATGTGCAATCACATGCTGATTGTTTTC
ATGTAATTTTATGGTTGGGGATGTGTGTGGGGGGCATACTGTATACTTAACTGGTCTACCAGTGGTGTTATTTTTATGTATAAAAA
AATAAAATATAGACTTGAGTAGAAAATAAA 
 
>Oreochromis_niloticus_SWS2B_3'UTR 
CAATTTGGACAGCTCGCATACTGAACATAGCACAGAAATGCTAATAATATGACAAATGTATTTTTGCTATTCTTACAGATACATAG
TTTTATGCAGTAAAAATGTTTAAAAAATGCAATAAA 
 
>Metriaclima_zebra_SWS2B_3'UTR 
GTTACTCGTGCCCAATTTGGACAGCTCGCATACTGAACATAGCACAGAAATGCTAATAATGTGACAAACGTATTTTTGCTATTGTT
ACAGATACATAGTTTTATGCAGTAAAAATGTTTAACAAAAAGGAAATAAA 
 
>Oreochromis_niloticus_SWS2A_3'UTR 
GCAACACGTCAATGCTTGCTGATTTCTGAACTGTAAATTACAAAGAATGTACATGTATTTTATCATATGTAAAAATGTCATGATTT
AAGTAGGAATAATCTGCAAAATGAAAATACAAATAAA 
 
>Metriaclima_zebra_SWS2A_3'UTR 
GCAACACGTCAATGCTCGCTGATTTCTGAACTGTAAATTACAAAGAATGTACATGTATTTTATCATATGTAAAAATGTCATGATTT
AAGTAGGAATAATCTGCAAAATGAAAATGCAAATAAA 
 
>Oreochromis_niloticus_ACTG1_PROMOTER 
TAATTTGGTGGCTTCTTCTAATCTAATATTTTAGTGTTTCATATACCTTCTTTCGTTCTCGTTTTTTTTTACTGTAGCACAGGCAT
ACCACACATACACGAGCCCCGCCCCCTCAATGCTGTGTATGAAACTCTGCTGGAATGTGACCATTAAACGACTGGAAACATGGTGA
AGATTGAAACAGGTAAAGTATGCATACTGAGCATACATGGTGCTCACATACAGAATAAGAGAGTGGCTGAATTGGAGACTTAATGG
GAGTTTAAAGGGAGAGGGTGGGGTGAGAAGGGGATGAGTGAGAAGTGGACAGAAGCTACCTGCCAGCTTCTTCCATATACGGTCTT
AGTCAGAGCTGGCCTTACCCAGGACTGTGAGTTTCTCTGACTGTGTGAGTGAGCAATGCAGGGAGGGAGTGCCTACATTTGTGTGT
TGTAATGCGTGCATGAGTCATGCACGCTGCCTAGTTTTGAAATTGCTCAAGGAAAGGCGTGAGGTTGAGAAACTTCTGTCTGGGTA
GAGAACAAAGTTTAAAAGATTCTTTTAAAAGATCAATTTAATCATTTAAAACTGTGATTGAAACAAATCGGATAAAGAATACAGAA
GAAAATGTGAGCGGTGACAGACAAACACATGCTTACATACATGGCCTTAAAAAGGGAGATTCATTCATTTCCTCAGAGTGGTCACA
TGACCGGAGCAGCGCATTCTTCCCCCCATGTGACTCTCTCCAATATCTCCTTATATGGACGTCATCCAAAGGAACTCTTAAAGGGA
TGGTGGTGCCCTGGGTCTATACTTATGGCCATGGCCAGACCGAGTGAGAAACTGCCTTTGTTTCTCAGCTCTGGATTTGGACTCAA
CCTTGCGCCACTGCGACATCCAGCGTCCGTTCTCTATAACGCCGAGACTTTATCCAGGCTGTCTGCCAGATGTAACCACACTGCTG
CTGAACATTAGGACTAAAAATCCTTTCCTCTCTCGTTTCTTCTTCATACAGAAA 
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Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_AMPD3_PROMOTER 
CATTTAGTCATTATCAACTCTGCACAATTACATTGAGATTTGTGAGCATTTATGAGAGGATATTGCTTTGTTTATGTTCACAAACT
GAAAAAAACAACTGCCTCATGAGCTGCTATATGGTGTGAAATCAGTTGCATGCTAAATCTGAGTGAGCATCTAGCAAACAAGTTAA
CTTCCATATGTAACTAACATTGTTAGTTTTTTTTCATGGCACCATGGGAAAAAATACTATAGCTTTGAATTTGTTCTGAGTCAGTG
TATCTCTGTAAAAGTGTTTGAATTGGGGAACAAAATGAAACAAACGCATGACAATGACTCATTACATATGAATGACCACACAGAAT
TATGTTTATTTCATGATTAATGATGCTATTGTGCTATAAAAACCGTTATAATTACTGTAAACTGGAGCTTTTTGTTCAAAGGCTGG
AAAGGTTCACTGGGTACTGTACATAATTTCAGTATGGCTCAAGTTCAGTATGGATACATCCAATTCAGTTACAATTCTTTACACAT
CTCACACACACATACAATTCAGCAAAGAGACACTAGAATAGAACAGAATAGAATAGAATAGAATAGAATAGAATAGAATATGTCCA
GCAGCAAAGTGACAGGCAGATGGAGCACGCAGCAAAAAATACAGTACAGTTAGTAAGTTATTAAAAATTAAAAAAAATATTAAAAA
CAGAAAAAGGAAAAACTGTGCAAATAACAGCAAAGATATAAACAACTATAATGTAACTATAATATAAACAACTTATTGCGTTTGTT
GGGAGCAGCGATAGTTATAAAGTCTACCAGCTGCTGCGAGGAAGGACCTGCAATAATGAATGCCCTGTCCCCAAACACGTGCACAG
GTAGATCTCCCTGTTTACAAAACACCACACAGTATCAGAGCATTTAACGTCCTGACAAGTACGGCAGACCTCCTTTGCACTCTACA
GTCAGAGACTTCAGACGCCGGCCATTTTACTGTGGCTTCTGGCCTCTTGCAGAC 
 
>Oreochromis_niloticus_DHCR7_PROMOTER 
ACGGTACTCCGTGAATAAATTGTGAGTGTGCTTTTTAAAATCCACCGTGCACGGAACAAAGGACGCAGTTATCTCTGAACGGTCAC
GGTAGATTAAGTTTGCATTATGGGAAGTGGATCTGACATATGTACTGAACAATCATACTATCAACACAGAATCCGGAAATTAACGG
TTTTGTTTACGTTATACAACGATGGGTTTCCCCCTCCCCCGTCAGATATAGCTTTCTACACGAAGCTGCTAAAACAGCGTGTTTTT
ACTTGTTTAGACTATACATATATATATATATATGAAAGCCATAAGTGTTTTAAGCTGAAGTTTTCCAGTTTTATTGTTATGGTAGC
TTTAGTGCTGCAGAACGGTGTGCATTTGTGTTACTCATATTTGTGGGGCGGTTCACAGGGTCACATTCTGGGGATCCGCCCCCTGT
TTGTGCAGATAATGCAAATTCCTGGAAAGTAAGTTTTAGTACTTGCCTTTTTTAGTTTAGGATGGGTTACAGTTAAGTTTAGAGTA
AAGCAACAGTGCATGGGAAGGAGACGTGACTGTGTCTTTGTGTGAAAGAGAGAAGCGAAAATGAAACAGATACAAAGAAGAATAAA
TGATTTCATGCATAAGGTGCCATCAGGTTTCCTGTTAAACGAGTTGGGTCTGTCTGTTATTGCACATCTCCAAGGACTTGCACTTT
ATTCCTCCAATTAGCACATTATCTGTTTATAAACGTGCGGCCTGTGGAGTAAGCTGCATGATTAGATTTGCAGTGACATTGTGACT
CTGGAGGGTTTGTTCAGCAAGTACACACAAAAGACTAGAGTCAATATGTGAACTAGAAGGTAACATCTGTTTGGTTAATAACAGGC
TGTTACTTACTGCTGGCACATTCAGTGAAAGTTACTGAGTATCTGACCGACTTACTGCAGTGGTGCACAAAGTGCAGCACATTTGT
AGATAACAGATTATAAACTGATAACAAAATTCTTCACCACAGTTGAGTGGAGCA 
 
>Oreochromis_niloticus_ENSGAC000000020282_PROMOTER 
AAATGTTTATTCAGGCCATTAAGATACTGCTGCTGTACCGTACATCCGTCCCCTGATGCCGTTTCCATTTCTTATGTAAAATTTAA
AACTAAATGAAACTAAGCTAAACGGCAGATTGGCTGATCTCAGTGGTAGCCCGCATCTGCTGATTGCTCAGCACATACCCATCTAA
GCGTCAATCTGGTTAATTTCATATAACACATGGTATTAAAGCTGCTTCAGCCAGCCCACGAGTTGCTGTGCATATGCATGCTGCTT
TGCAACCCCACTCCACCCTGTCATGCTCTGTCTGACTTAATCAGAGAGACTATGTTGGCAAATATAAGTTACTGCATGTGGAATGG
ATTCTTTTAGGTAAAGTTGTGATGACTGAATTGCATTCAGGCATTCAGCTGTATATTTCACACTAGACCTGAGAGGTGTGTTGGAC
TCTCTAGACACAAGAGCTATTCCTCCTTTAAATCATCCTATAATATATGTACCAGTAGGGCTACCTAAGAACAACTGCTCCTTTCT
TGTTATTCTCGTTGCCAGTGGATATTATTTTTGGACTCCCATCTAACTCGACAGTACGGGGTGGACTGAGTCAGTTTTTCCCTCGA
TACTACAGGTGCAAAGGGTAACATTTTCACTGCGGTTTAGCACAGAATGACCACATTATATGTGTGGGAGTCGTACAGGGTAGTTC
AATACCAGTGACTCAACGATTAGTAGGTGCCAATATTTCTGGCTTTCTAAACTCGGACCAACGAAACTGATGGATCCCACATCATT
TGCATACAAAAGAGCATGACTGCGAGCACTTTTGTGGTGCCATATCGGGGTTATTTTGAGAATATAACTGAATAATGAACATCTGA
CATGTGGCTTTCTCATCCACCAGGCAAATTTCTTTTTTTCTCCTGTCTTTCAGAGGTTCATGCGAACCTTCACATGTCACGTGCAC
TGATCTCTAGCATTAGAAGACTCAAAGCATCACCACACCATCATGTTTCTACAC 
 
>Oreochromis_niloticus_IGFALS_PROMOTER 
CTTCACTAATAGCAGATNTATAAGAATAAGAAAAGAGATCACTTATTTAACCTTTCTTTTTCCAAGTAAAAAGTTCTTTCGCTGTT
ACAGCAACAGAGNCACAGAAATGAAAGTGCTCCTTTTGGCTGTTTTCCACTGTGTTATGCGCAACAGATGAAGGAGGGTCCAACAT
TAGTCATGTCCTGAGGCCCACTACAGCAGCACAGGAGGAGTAATCTTTGGTTTTACAGCTTGTTTTTTTCTTCTTCTTTTGATAGA
GCTATTTCTTCACCGAAGTTACTACATTCAGCTGGTTTTTATGTACTTCTCTTAGACTCATTTTAGAATCCTGGTGGTGTTTGGCT
GTCATTGCTTTTCTAAAATGAAGCAGTTAATACCGCACACAGTCTTTTTAGTGTTGGTTTGTCACATAGCGTTTTATGTTTGAAAA
GACAACAAGATAAGTTGTGTGGTTTCAAAGGTGAATCAGCTTGGACTGTGAATTGAATACCAGCCAATTAAACAAAAAAAACACAG
AGAAAAAACAAAGTACTAAAGTCTGAGTCATAATCACTTTAACAAGCACAGCAACAAATTTTCATCTTCACTTGCTAAATGGGCAT
GTTTAATTGTTTTTACTGTGATGCTGAAAAGGTGTAGGTCATTGGATGGGATGAGAGTGACTAGATATATGTGTTTTACTGTTAAT
GATGCACAATAGATAGATAGATGGACAGGCAATGTAGTATAGTATATATTTCCAAATCAGTTAAACCTAATAAAAATCCCTGAAAA
CCCAGTTCAGTTTAAACTTGTATGATTTCTGTATCCAGATAATGATTACAAAAGTCTAAGTTAAACAGGCCTAACATAGCTGCAGC
AGGATAAGCCTGTGTGTTCATTAGCTACAGTGTATGTGTTCTAATACTTTATCTCTCTAACTGGCAATAACTCTGATGAGCATCCA
GCTGCTTAATTTAGATTAACATCTTGCTTTCTAGGCAATTTCTCTGCTGTTAAA 
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Supplementary File 5-1 (continued) 
 
>Oreochromis_niloticus_KCNJ9_PROMOTER 
TTCTGGACCTCAGTTCAACCAGACTGAAACGCATCACTATTTATCTCTTTGTTTCTGATAAAAATCTCCAGAGATTTAGAGATATT
GACTTACTCCGGAGTCTGGATGAACATTTTCTCCATTCAGCCCTGCACCCTCTTCTCCTCCCCATCTGTCTCGCAGTAGTAGTAGT
GAATCTTTTCTAATTTAGACCATACTGCAGAGCTTCACCCCTCAGCAATTTTGACAGTCTTGCTCATTAAGCTCTGCTCTGTTTGC
TCCAATCTTTGCCGTACATCTTCATACAATAAAAAGAAAGAAAGCCTAACTAGGGAACTAGGGAAATGTGCAGTTTATATGACCCT
TTGGTGTTTTAACTCCAACTTGTGATCAAGAATTGATGTCATCATTGCAAAGGACAAAAGTCCTACAAAGCAGAGCCAGACCTTTT
TCGCAGAAAAGGCAGATTTTGTTTTACCTTAAAATAAGTCTCCATAGCTTGAGTAGCATGCACTATGATTGATATTCATTGATTAA
AGCGTATGTGATAGCGGTTTAGTGTCATAATTTCAGTTCTGGCTGGGTGCATCCACAGTAAAAAGCCTATAAAACAAAACAAAACA
CAGATGAAGTCCAGTGTTATAGCTTTTCTTCTCCAAGCGTTTGATGATGTTGTCCCGTCGCACTTCATCTGCTCCGTTTTATTCAC
CTGTCATTTTTCATTCATGTTTTCCCTTCTTCACCAGTCTGACTTTCCTTTGAGCCACGCTGCATCTCCCTCAGTAGTTTTGTCCC
TTGCTACCTCCCTGTGTTTATGCTCACGTCTCTCGAAGTGCCTTCATCCAATTCTCATTGTCTGACTGTAGTCAGAGTTGTAGCTT
TAAAACCAAAACATTTCAGAAAGGGAGCCTCATGCATGTTTTTGAAAGTGTTTAATGGAACAATAAAGAGCTGTCTTCAACACTGT
AAAGGATCAAAAGGCGATGACACTTTTCCTCCCATTTGTTAGCCTCACATATTT 
 
 
>Oreochromis_niloticus_REEP1_PROMOTER 
GGGATAAGAATTTCGAGGATAGGCAATATCCCTGTCCTTGAGATCACTTTTTAGTTTTTATGAGGTCATTTTAATAAGGTTTGACC
TTCAGTTGTAAATGTCAATTGTGAGCAAGATTACAGTCAATACAATCTGAAATATTTGGACTCTTGCTCATTGTTTTAGGCCACAC
TAGCTACCGTGCATCTTCCTCAAATAACCCACTGTCACTTGATTTGTGCTCATTTGATTAATTGTAACATTTTCCTTTAAAAATGT
TACACCATAGAATAGTAGTAACATCAGGACCCTGCATCCTGAAGTGGGCCTGTGTGTATGTAAAGAGCATGACGTGTTAATGGGTA
ACAGGTGAAAACACCATGTTCTCTTTACAGTTGTTTAATAAAGTTCTTTAATCTTTTCTTTCAAGAGTGTTCAGACTAAAATATTT
GTTCCTGTCTGCAGCTCTGAGGCAGTGTGATAGATAATACTCTCTACTATTCGGACATAAACAAAACAAGCAATCAAGAAATTTAC
TTGTAGATAAATCGCTAATTAAAATGTTTTCGTTGCAGTAATGCGTGTGTGTGTAGCTTCATTTAAATGACCACAAAATTATTCAT
TCAAACACATATCGGCCATGTACAATTACCGTATTATTCCAAGTAGGAGGTAGTTTCTGGATCTTTGAGCTTTACGGGAATTTGGT
TGCAGTATTAAAAGGTAAATTTGAAAGGGATTGCAGAATACAAACGCTCAAAAGGAGCACGGAGAGGGGGAACAGGAGATATTTGT
CTCCTTTGCAACCCTGCATAAAATCGACACATCCACACACCCTTGTGGGCTGTCTGCTGTCTGTGCAATGCAACACTGCCATCTAT
GGATAAGAGCTGTAGGCCGCTCACTGTTTATCCCGCATCACGTTGCCGCCTGTGTGCGTCCACACGCAGCCGCCTGGACGCGCCTG
TCATCTGGAGGAAACTCCTCCCTGCAGACAGCGCGTCCTGTCGCCTTCCCAGCG 
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